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Abstract—Parking is a major constraint for car users and
therefore an important factor in mode choice decisions. In this
paper we introduce a model to simulate parking search behavior
for cars within a multi-agent transport simulation, including
full simulation of all steps of parking search, such as walking
to and from the vehicle. This is combined with the capabilities
of privately owned autonomous vehicles (AVs), which may park
automatically, often in other locations than conventional cars,
once they are not in use. Three different strategies for AVs
to park are developed: (1) Conventional parking search, (2)
parking at a designated AV lot, and (3) empty cruising, where
vehicles do not use any parking space, but keep on driving.
We apply the simulation model to a residential neighborhood
in central Berlin, where parking pressure is generally high and
apply different shares of AV usage to the synthetic population
used. This allows a detailed evaluation of effects for both AV
and conventional vehicle owners. Results suggest that the usage
of designated parking lots may be the most beneficial solution
for most users, with both vehicle wait times and parking search
durations being the lowest.

Index Terms—parking search, autonomous vehicles, transport
simulation, MATSim

I. INTRODUCTION

Beyond well-known effects of traffic flow and congestion,
parking is a major issue of car usage in cities around the
globe. This is especially true in European cities, where on-
street, or curbside parking, is the predominating form of
vehicle parking.

In recent years, agent-based parking search models have
evolved and found usage in several cities. These models aim
at simulating parking search behavior for streets or quarters
of a city. This approach has proven suitable for modeling
additional traffic effects of parking and/or behavioral ques-
tions with regard to parking search behavior. At the same
time, agent-based transport simulations are a powerful tool
to simulate agents’ activities and travel patterns, as well
as the behavior related to it, on a large scale. There have
been several attempts to integrate parking search models
into transport simulations, however, to the knowledge of
the authors, there is currently only one working simulation
available offering both [1].

In the upcoming years, autonomous vehicles may change
the way people are using and parking their private vehicles
quite drastically, which will lead to a new interplay between
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users of conventional vehicles and AV users. Owners of AVs
may pick a totally different parking behavior as the parking
search process can be done without any human interaction.
This could possibly have an effect on users of conventional
vehicles.

In this paper, we introduce an approach to integrate
parking search behavior and privately owned autonomous
vehicles in an agent-based simulation to analyze possible
effects of interplay. The starting point is the parking search
simulation that has been introduced previously [1]. To
our best knowledge, there is currently no other research
that embeds parking search of AVs into microscopic urban
transport simulation that would allow to evaluate possible
effects of AV on the transport system as a whole.

II. STATE OF THE ART

Parking, parking search and parking choice have been
widely researched. On the behavioral side of parking search,
papers by Axhausen[2] and Polak and Axhausen[3] provide
a comprehensive overview of parking search behavior and
ways to model it. The effect of different parking strate-
gies and prices was also investigated by Shoup [4] , who
demonstrated why vehicle cruising occurs and explains the
influence of parking policy on the behavior of drivers.

Several tools to simulate it are available. One of them
is PARKAGENT[5], a multi-agent, spatially explicit model
developed as an ArcGIS extension. It allows the simulation
of both streetside and garage parking lot locations in city
quarters. Agent simulation takes place only during parking
search, which is modeled in high detail. The biggest, and
to the knowledge of the authors, only simulation scenario
published about has been set up for parts of Tel Aviv.

On the contrary, the project SUSTAPARK [6] includes
a detailed traffic model of cities so that the influence of
parking search into a city’s overall traffic state can be
simulated. The model is applied for Leuven, Belgium. The
model is based on cellular automata. Parts of the software
are available under an open source license. A simulation of
behavioral change seems only possible in terms of parking,
but not in terms of other choice dimensions, such as
departure times or mode choice.

Several papers proposed at ETH Zürich have addressed
modeling and simulating parking choice in MATSim [7].
Their main focus is on parking choice modeling (e.g., the
choice between two differently priced garages) [8], without
modeling explicitly related physical activities, such as walk-
ing from or to parking lots, or the actual search for a space
in a lot. Instead, the length of the walking distance and the
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Fig. 1. An agent’s car leg using MATSim’s standard approach (left side), with walk legs to and from parking in between (center) and using an AV (right)

parking costs reduce an agent’s daily score. This approach
is very fast from the computational perspective and hence
useful for simulating different pricing policies and the like,
including mode choice and adaption of agents towards new
modes, such as free-floating car sharing [9]. However, by
omitting explicit parking search, neither the time lost on
parking search is considered nor a possible increase in
congestion that affects other agents is assessed. Parking
search integration was also proposed [10], but apparently
never published.

AVs may have a disruptive effect on both private and
public transport, with several possible scenarios evolv-
ing from their introduction. On one hand, they offer an
enormous amount of opportunities as shared autonomous
vehicles (SAVs). These could offer taxi-like services in urban
areas and gradually help to reduce the number of vehicles
required to serve the demand. Recent simulation studies
suggest a replacement rate of up to 1:10, i.e., one SAV could
replace ten conventional cars [11]–[13]. Consequuently,
parking demand could be reduced significantly, both for
off- and on street parking [13], [14]. SAV user costs may be
on a similar level as car usage costs [15].

However, studies also suggest that SAV operations may
not be economically efficient for operators in areas of low
population density [16] and people will rather continue to
use their private vehicles instead, which may have full,
or at least some, autonomous functionalities, including
automated valet parking. Since the total number of vehicles
remains the overall same, the effect of private AVs on
parking is likely to be less beneficial than the use of shared
vehicles.

Also, there will be a phase where autonomous and
conventional vehicles will both be common in city traffic
and AVs. As to the question, how AVs, indifferent if shared
or private, may park once they are idle, most ideas are
speculative, including ideas of re-balancing fleet vehicles
[17]. Especially in areas with‘ high parking pressure and /
or cost, vehicle owners or fleet providers may chose to park

vehicles elsewhere or even let them cruise [18].
AVs, irrespective if shared or privately owned, may also

lead to a break through in car-to-car communication. This
may ultimately reduce parking cruise to a bare minimum,
as vehicles close to each other may share information about
free spaces in surrounding areas [19].

III. METHODOLOGY

In line with the parking choice approach described [10],
we also decided to use MATSim as a transport simulation
to integrate parking search behavior. The source code of
MATSim and its official extensions, including the park-
ing module used in this research, is open and available
at https://github.com/matsim-org/matsim. As an agent-
based, flexible and pluggable open-source software, its co-
evolutionary algorithms and customizable scoring functions
provide a very versatile base to extend an existing model
with parking search behavior [20]. Furthermore, it might
be possible to integrate some of the existing parking choice
scoring functionality described above with the approach, if
required.

The base concept behind the MATSim simulation is the
evolution of agents’ scores over multiple iterations, origi-
nating from a synthetic population created, for instance,
from census data. The score of an agent is summed up
based on a daily plan of performed activities (usually
positive) and traveling (usually negative) [21]. After each
iteration, a certain share of agents modify their plans (“day-
to-day replanning”). Typical modifications are changes of
departure times, travel modes and routes. If the modified
plan scores well, it is kept, otherwise discarded again. This
process is repeated over several iterations until a stochastic
user equilibrium is reached.

In order to model parking search, as well as other
processes that cannot be planned ahead for the whole
day, MATSim has been extended with several implemen-
tations that allow agents to change their behavior within
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an iteration. This feature is often referred to as within-
day replanning [22], [23] and has extended application
of MATSim to a wide range of different use cases, from
evaluating evacuation scenarios [24] through modeling con-
gestion effects of city-wide SAV fleets [25] to benchmarking
dynamic vehicle routing algorithms [26].

A. Simulation of parking search behavior

1) Simulation extension and modification: For an in-
tegration of parking search algorithms, a combination of
day-to-day and within-day replanning (the latter provided
by the DVRP extension [23]) needs to be used. Before
each iteration agents may include car trips into their daily
plans. These trips, or legs, need to be adjusted during
simulation runtime due to non-determinism of parking
search. Depending on the location of an agent’s vehicle, its
route may differ substantially between iterations and thus
needs be calculated ad-hoc.

2) Data and computational requirements: Apart from the
typical input data required for the MATSim simulation, the
number of parking spots on each link in the study area
is necessary. For links without this information, a direct
on-street parking spot is assumed. Due to the necessity to
route each agent ad-hoc, the computational requirements
are higher than in standard MATSim simulation runs.

3) Agent logic: During a typical MATSim iteration, an
agent starts traveling by car right after performing an activ-
ity. The route it travels along is either set at the beginning
of the iteration or comes from previous iterations. Upon
reaching its destination, the vehicle is removed from traffic
and the agent’s next activity starts. Thus, an agent may
be either in traveling (LEG) or activity performing state
(ACTIVITY ). See Fig. 1 (left) for an overview of this scheme.

In order to simulate parking search, the agent state space
needs to be adjusted. Namely, each car leg needs to be
split up into several stages: (1) determining the vehicle
location and walking there, (2) unparking the vehicle, (3)
route calculation and traveling to destination, including
searching for parking, (4) parking the vehicle, (5) walking
to destination. This means, a single car leg is split into
three legs and two activities (cf. to Fig. 1, center). A similar
approach is also used for the simulation of schedule-based
public transport in MATSim [27].

4) Parking search behavior: A person’s parking search
behavior may depend on several factors, such as the lo-
cation, the pricing of parking, personal experiences, the
willingness to park illegally, and many more [28]. Therefore
it is advisable to allow the search behavior to be agent-
specific. To achieve this, the search behavior is kept behind
an Interface with every agent having possibly a custom
implementation. MATSim’s finest granularity in terms of
traffic flow is link-based, allowing parking search to be
explicit on a link-to-link base.

In this paper, a simple random search logic is used,
as depicted in Fig. 2. Initially, an agent drives to their
destination along a path that has been pre-calculated upon
departure (a). Upon reaching the destination, it traverses

along a randomly selected sequence of neighboring links
to search for parking (b). Once a link has a free parking
spot, the vehicle gets parked (c) and the agent walks to its
destination (d). This behavior may be appropriate in areas
where there is a certain chance to find parking next to the
activity location making it worthwhile to look for a spot
here first.

B. Simulation of autonomous vehicles

MATSim comes with a set of extensions to simulate
dynamic modes, including shared autonomous vehicles, by
allowing dynamic dispatch of vehicles during the simulation
runtime, which, just like parking search, is another form
of within-day replanning. A detailed overview of these
extensions, including a description how to apply and adapt
the code, is available in [26]. Developed use cases include
simulation of taxi services [29], pooled DRT services [30]
and SAVs [11], [17], [31]. The basic principle behind all these
simulations is that upon departure of an agent, a vehicle
is assigned for picking up and transporting the agent to its
destination. The assignment of vehicles can have certain
constraints, depending on the use case. Empty vehicles may
be re-allocated or positioned at ranks, if required.

For the simulation of privately owned AVs, a dedicated
routing algorithm has been implemented. It assigns each
agent always its own private AV. Once an agent finishes
its activity and wants to travel by car, its private AV is
dispatched from the current location to pick the agent up.
Depending on the AV location, the agent has to wait for
some minutes for the car to arrive. After dropping off the
agent at the destination, the AV is idle and will proceed
according to one of the following options:

• Free spot – Remain where it is, should there be parking
available. In this case, the AV will not move from the
link where the customer was dropped off. Otherwise
find a nearby parking spot in the surroundings. In
this case, the vehicle will use the same parking search
algorithm (described in the previous section) as for
conventional vehicles.

• Garage – Proceed to the nearest not- fully occupied
parking lot or garage. Using this strategy, the AV will
continue to the closest designated AV garage.

• Cruise – In this case, the AV will cruise in circles around
the last drop off point until it is required again within
a defined radius around the point.

While the first option results in the parking search be-
havior typical to human drivers, garages are only used for
AVs in this paper. If these are designed to be used only
by AVs, they may be built in a less space-consuming way.
The possibility to let vehicles cruise instead of searching
for parking is an often-feared scenario, especially for areas
where parking charges are high.

Once an agent has finished its activity and requires the
vehicle again, it is dispatched from its current idle location
to pick the agent up. Depending on the vehicle location, the
agent has to wait for some minutes for the car to arrive.
All the software developed in this paper is available freely
under open-source licenses.
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IV. SCENARIO ADAPTATION AND PARKING INTEGRATION

The parking search framework developed is applied to an
existing MATSim Berlin scenario [32]. Data about parking
spaces and their occupancy during nighttime is available
for a distinct area in the Charlottenburg district, around the
Klausenerplatz. The area is surrounded by a motorway to
the east and to major arterial roads in the north and south,
so car users tend to park their vehicle within these barriers.
Consequently, parking pressure in the area is known to be
high. Fig. 3 provides an overview of the study area. Roughly
4 000 curbside parking spaces exist in the area and are used
in the model. These were counted during a student project
in 2016, were also the overall parking room occupancy in
the area was analyzed.

For computational reasons, the synthetic population of
the original scenario with 6 million agents was reduced to
those agents who perform at least one activity in the area or
its immediate surroundings, leaving roughly 37 000 agents.
Travel times on links outside the area were assumed to be
the same as in the base case using dynamically changing
network attributes. In order to evaluate the influence of
AVs on the parking situation, the simulation was run with
several degrees of AV usage: 0, 10 and 20 % of the popula-
tion was equipped with an AV. The case where AVs are not
present is referred to as the base case.

In all runs, 50 iterations were simulated. Agents had

Study area

AV garage
location

© OSM Contributors

Fig. 3. Study area and the designated AV garage location

the choice of modifying their departure times within a 15-
minutes interval. For parking locations, iterations were seen
as days. This means an agent picks up a car in the morning
where it was parked last in the preceding iteration. For
AVs, all of the parking strategies defined in the previous
section (III-B) where used. Furthermore, a simulation was
run where AVs randomly (uniform distribution) pick one
of the idle strategies. There is a single garage of unlimited
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capacity to park AVs at the eastern edge of the study area.
For the cruising strategy, AVs may circle with a radius of up
to 2 000 meters around the position where they dropped
off their owner at the allowed cruising speed.

V. SIMULATION RESULTS

The introduction of AVs with self-parking and cruising
capabilities may have several impacts. Firstly, there are
individual impacts for users of both conventional vehicles
and AVs: depending on the parking strategy AVs choose,
they may or may not compete for parking space with
conventional cars and may have an impact on the parking
search duration of drivers of ordinary vehicles. Furthermore,
the waiting time for owners of AVs may differ depending
on the location of the idle vehicle. A nearby parking spot
may be more favorable here. Finally, there are effects on
the transport network as a whole: AVs that cruise or go to
parking in a special garage produce additional idle mileage,
which may be partly compensated by conventional vehicles
that now have a shorter parking search duration. A com-
prehensive overview of the simulation results is provided in
Table I.

A. Parking search duration

In the base case, the average duration to find a parking
space is 8:50 minutes. This time varies during the day and
is particularly long during late morning hours, when people
commute into the area for work or other activities. During
this peak hour, the average search time is almost 12 minutes
(see Fig. 4).

When AVs are introduced, parking search time for con-
ventional cars generally reduces. As anticipated, search
times are usually lower in the 20 % AV scenarios than in
the 10 % cases.

In the cases where AVs share free parking slots with
conventional vehicles (marked orange in Fig. 4), search
times are roughly as long as in the base case.

Search times notably drop by more than 30 seconds in
the 10 % case and over 90 seconds in the 20 % case when
AVs are not parking but are sent to cruise around (marked
yellow in Fig. 4). Parking pressure is reduced significantly.

The usage of a dedicated garage facility for AVs can
further improve the search time (marked blue in Fig. 4),
which is then calculated to be 8:06 minutes for a 10 %
AV share or 7:05 minutes for the 20 % AV share. While
both demand and supply of parking spaces are obviously
similar in the garage and in the cruise case, the AVs
cause additional congestion in the cruise scenario, which
increases the overall search time for car users.

The random selection of a strategy (marked in gray)
scores somewhere in between the cruise and the parking
slot strategy.

B. Wait vs. walk times

For AV users, the time it takes to recover a vehicle from
its idle location can be used to some extent productively, as
opposed to a walk to the car, which only may be perceived
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Fig. 4. Parking search durations in the base case and with different levels
of AV usage and AV parking strategies

as a positive thing, but is hard to measure in an economical
sense. Despite this, long waiting times are undesirable,
especially for spontaneous departures and the waiting time
should therefore be short.

Both in the 10 % and 20 % scenario, wait times are
roughly the same within each strategy. For the random,
garage and nearest parking spot strategies these are gen-
erally similar in the range of 3:00 to 3:30 minutes. The
waiting time is higher for the cruise strategy, with around
five minutes. Obviously, this value could be smaller if the
cruising radius was set to a lower value. However, all in
all, wait times are short in all scenarios and will most
likely not be of real significance for AV owners. From the
car drivers’ perspective, walking between the vehicle and
activity location is often as important as parking search,
especially because the walk is made both ways. As long as
AVs compete with conventional cars for curbside parking,
the walk times remain at the same levels as in the base
case. However, once AVs are ordered either to park at
the designated garage or cruise, the availability of parking
spaces increases and thus the time spent by car drivers on
both finding a free slot and walking to/from the vehicle
decreases. It should be pointed out that savings made on
the walk time ought to be counted twice (leaving the car
and getting back). In the 20% Garage scenario, for instance,
the total walk time per each activity is reduced by more
than a minute compared to the base scenario. However,
despite some improvements resulting from AVs being sent
to the designated garage, non-AV drivers still need to spend
approximately 20 minutes on searching and walking (per
activity), which is much more than around 3.5 minutes of
waiting for the AV to come.

C. Vehicle kilometers

Due to their capability of driving without a passenger
onboard, AVs will increase the driven distances. This implies
that the vehicle kilometers traveled will increase in all
AV scenarios, mainly due to pick up trips, where agents
otherwise would have walked. Compared to the base case,
the additional empty mileage is around 2 % in the free slot
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TABLE I
SIMULATION RESULTS FOR DIFFERENT SHARES OF AVS AND PARKING SEARCH STRATEGIES

AV Share AV Parking Strategy

Average parking
search duration

(AV and car)
Average wait
time for AV

Average walk
time to/from car VKT car VKT AV total VKT

[mm:ss] [mm:ss] [mm:ss] [km] [km] [km]

0% base case 08:50 n/a 7:10 521 686 0 521 686

10% Free Spot 08:45 03:22 7:10 466 556 67 234 533 790
10% Garage 08:06 03:35 6:56 465 424 67 987 533 411
10% Cruise 08:16 05:09 6:58 465 667 428 827 894 494
10% Random 08:25 03:15 7:03 465 865 166 102 631 967

20% Free Slot 08:23 03:28 7:02 412 370 133 494 545 864
20% Garage 07:05 03:39 6:37 410 375 134 673 545 048
20% Cruise 07:15 04:54 6:42 410 560 684 854 1 095 414
20% Random 07:39 03:23 6:49 411 220 295 078 706 298

and garage strategies in the 10 % AV scenarios and around
4 % in the 20 % scenarios. This additional empty mileage
can most likely be coped easily due to the expected road
capacity increase, as literature suggests [25]. For most links
in the study area, the increase in daily volumes per link
is less than 200 for a 20 % AV share, as Fig. 5 shows for
these strategies. In the cruise scenario, the mileage driven
by all is increased by almost 80 % in the 10 % scenario and
more than doubled in the 20 % case. This shows clearly the
possible impact should vehicle owners be allowed to use

such strategies. This increase in mileage spreads along all
links in the network. For the study area, arterial roads would
have to cope with more than 4 000 additional vehicles per
day, and more than 1 000 additional vehicles in residential
streets, which is an increase of two to three times compared
to the base case.

VI. CONCLUSION

With the integration of parking search into a multi-agent
transport simulation we were able to show the influence
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Fig. 5. Changes in daily traffic volumes in the 20 % AV case compared to the base case.
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autonomous vehicles may have on city life. Only some
possible, of all the enormous capabilites AVs have, are
discussed here. These show both the potential of AVs to
solve parking problems in cities, but also highlight new
problems arising from them. Of the strategies tested in this
paper, sending AVs to a designated parking infrastructure
seems to be most promising: The negative effects of parking
lots, namely long access ways, can be overcome when
using AVs, and parking search for conventional vehicles
can be decreased. With a higher share of AVs, the re-
moval of curbside parking locations may also be discussed.
These positive side effects can easily compensate additional
mileage created by empty driving AVs. Should AVs simply
start searching for parking spaces like conventional vehicles,
the parking search situation will remain as it is now. This
would be only beneficial for AV users, who do not have to
spend time on parking search.

The option most feared in literature, namely an endless
cruising of vehicles, does not seem to be beneficial for AV
users themselves, as waiting times to recover the vehicle
are higher due to congestion and the actual vehicle’s loca-
tion. Additionally, cruising vehicles create significant direct
operating costs, which could only be recovered if parking
charges are even higher than these. This, however, seems
not very probable, considering that vehicle owners may let
their vehicles use cheaper parking lots farther away.

This also leads to additional research questions. These
include the choice between AV parking policies if costs for
parking and externalities are included into the model and
passed on to their owners. Further research should also deal
with a bigger area and a city-wide model, which may lead to
more interactions between agents. Working on both points
will also allow to provide more explicit public parking policy
recommendations for AVs.
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