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aus Berlin

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Martin Buss
Berichter: Prof. Dr.-Ing. Stefan Jähnichen
Berichterin: Prof. Dr. rer. nat. Maritta Heisel

Tag der wissenschaftlichen Aussprache: 17. Dezember 2002

Berlin 2002
D 83





Zusammenfassung

Fortschritte in der Entwicklung der Hardwaretechnologie haben zu einem Vordringen von
Software in neue Anwendungsbereiche und zu ihrem Einsatz zur Lösung immer komplexe-
rer Probleme geführt. Dies trifft insbesondere auf den Bereich eingebetteter Systeme zu.

Viele eingebettete Systeme, vor allem im Bereich der Prozesskontrolle, sind sicherheitskri-
tisch, d.h. sie stellen eine potentielle Gefahr für das Eigentum oder sogar das Leben von
Menschen dar. Weil von solchen Systemen ein hoher Grad an Zuverlässigkeit verlangt wird,
besitzt die Verwendung formaler Techniken in diesem Anwendungsbereich im Vergleich
zu nicht sicherheitskritischen Systemen, bei denen ihr adäquater Einsatz lediglich zu einer
allgemeinen Qualitätsverbesserung führt, ein noch größeres Potential. Trotz dieser Vorzüge
besitzen die etablierten formalen Spezifikationssprachen verschiedene Restriktionen, welche
ihre Nützlichkeit für die Entwicklung eingebetteter Systeme einschränken. Unter anderem
diese Erkenntnis hat dazu geführt, dass sich das Forschungsgebiet der ”Integration formaler
Methoden“ in jüngster Zeit wachsenden Interesses erfreut.

Die vorliegende Arbeit hat eine solche Integration von zwei formalen Techniken, der mo-
dellbasierten Notation Z und der Echtzeitprozessalgebra Timed-CSP, zum Gegenstand. Z
ist eine verbreitete Notation zur Spezifikation datenbezogener Eigenschaften transformatio-
neller Systeme, jedoch nicht zur Modellierung von Verhaltensaspekten geeignet. Timed-CSP
hingegen, eine Erweiterung der Prozessalgebra CSP um Echtzeit, ermöglicht die Definition
von Verhalten inklusive Echtzeitaspekten, unterstützt allerdings nicht die Modellierung von
Datentypen. Ziel dieser Arbeit ist die Ausnutzung der Stärken der beiden komplementären
Formalismen im Rahmen eines Integrationsformalismus’, der als RT-Z bezeichnet wird. RT-
Z unterstützt den Entwicklungsprozess in verschiedenen Phasen — von der Anforderungs-
spezifikation über den Architektur- bis zum Detailentwurf — und erlaubt eine kohärente,
formale Spezifikation aller relevanten Aspekte eines eingebetteten Echtzeitsystems.

Im Folgenden seien die vier wesentlichen Charakteristika von RT-Z skizziert.

Zur Ausnutzung der oben genannten Vorzüge formaler Techniken ist RT-Z vollständig for-
mal fundiert, was die Syntax, die Semantik und den Verfeinerungsbegriff, der die Grundlage
des Prozesses der schrittweisen Entwicklung von Spezifikationen bildet, einschließt.

Die meisten eingebetteten Systeme bestehen aus einer Vielzahl stark interdependenter Kom-
ponenten. Um diese inhärente Komplexität bewältigen zu können, stellt RT-Z eigene, formal
fundierte Strukturierungskonzepte bereit. Dies ist notwendig, weil beide Basisformalismen
nicht über adäquate Strukturierungsmechanismen verfügen.

Weiterhin unterstützt RT-Z sowohl die Anforderungs- als auch die Entwurfsphasen. RT-Z
verfügt zu diesem Zweck über Sprachkonstrukte auf verschiedenen Abstraktionsebenen:
abstrakte Konstrukte zur Spezifikation von Anforderungen, ohne dabei gleichzeitig Imple-
mentierungsdetails festzulegen, und konkrete Konstrukte zur Festlegung solcher Implemen-
tierungsdetails im Entwurf.

Schließlich ist eine herausragende Zielsetzung bei der Integration etablierter Techniken die
Wiederverwendbarkeit ihrer Infrastruktur, z.B. Werkzeuge. RT-Z ist als ”konservierende In-
tegration“ konzipiert und stellt einen optimalen Kompromiss zwischen oben genannter Wie-
derverwendbarkeit und der Kohärenz der Teile einer Spezifikation dar.

Die Eignung von RT-Z — im Vergleich zu anderen Formalismen — für den anvisierten An-
wendungsbereich folgt aus dem Zusammenwirken der Gesamtheit dieser Eigenschaften.
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Recent advances in hardware technology have led to the introduction of software into new
application domains and, within particular domains, to its use to solve increasingly complex
problems; this holds particularly for embedded systems. The relevance of the domain of
embedded systems is increasing, because it occupies a growing portion of the market. It is
estimated [Gupta, 2002] that the market for embedded computer systems will surpass the
market for personal computers until the end of this decade.

Many embedded systems, e.g., in the area of process control, are of a safety-critical nature,
i.e., they have the potential to threat the safety of property or even of human life. Because of
the high degree of reliability required of such systems, the use of formal methods is benefi-
cial in this application domain. Sometimes it is even mandatory. The UK Ministry of Defence
[1997], e.g., issued a standard concerning the procurement of safety-critical software in de-
fence equipment. This standard mandates the extensive use of formal methods.

But there are also economical reasons for employing formal methods: Potter et al. [1996]
have pointed out that “the bulk of the costs of a software project are related to the fixing of
errors at the implementation and test stages and that a very large percentage of these errors
are traceable to imprecision in the early stages of a project.” Consequently, techniques able
to eliminate imprecision and to introduce clarity and rigour at those early stages are likely to
lead to a reduced error rate and hence to substantial cost savings. The use of formal methods
can assist in achieving these goals. Their mathematical foundation makes it possible to state
requirements and designs in a clear and unambiguous way and to reason about their proper-
ties rigorously. Following Clarke and Wing [1996], we use the term formal methods through-
out this thesis in order to refer to mathematically-based languages, techniques and tools for
specifying and verifying systems.

Despite the merits generally attributed to formal methods, the established formal specifica-
tion languages exhibit limitations that restrict their usefulness for the development of soft-
ware in embedded systems. This observation, among others, has caused the integration of
formal methods to become a research field of growing interest. This is witnessed, e.g., by
the establishment of a series of international conferences dedicated to this research topic
[Grieskamp et al., 2000, Butler et al., 2002, Ehrig and Große-Rhode, 2002], but also by the
funding of research projects such as ESPRESS [1998], UNIFORM [1998] and SoftSpez [2000].

The present thesis deals with such an integration of two established formal specification
languages: the state-based specification language Z and the real-time process algebra timed
CSP. The integrated formalism, called RT-Z, is aimed at formally specifying all relevant as-
pects of real-time embedded systems in a coherent manner. RT-Z is designed to support
the development process of embedded systems in different phases—from the requirements
engineering via the architectural to the detailed design.

The Z notation [Woodcock and Davies, 1996] is a formal language for specifying data-related
characteristics of transformational systems, which is in widespread use in academia and—to
a restricted extent—also in industry. However, it is not designed to model behaviour. Timed
CSP [Schneider, 1999b], a real-time extension of the process algebra CSP, on the other hand, is
a powerful language for specifying behaviour, including real-time aspects. However, it does
not provide adequate constructs to model data. The formalisms can hence be considered
as complementary, covering disjoint aspects of real-time embedded systems. Further, their
underlying concepts are well suited to each other. RT-Z exploits the strengths of both formal-
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isms in order to provide a smoothly integrated, single formalism to model all relevant facets
of real-time embedded systems.

Let us stress four essential characteristics of RT-Z.

First, to exploit the abovementioned benefits of formal methods, the integrated formalism
RT-Z is defined completely formally, including its syntax and semantics. Further, its form-
ally defined notion of refinement enables the stepwise development of RT-Z specifications
towards implementations.

Second, most embedded systems are fairly complex systems, containing a large number
of highly interdependent system components. An appropriate specification language must
provide adequate structuring (and encapsulation) mechanisms to cope with this inherent
complexity; they are introduced and backed up formally by RT-Z on top of the integration of
the notations of Z and timed CSP, because both base formalisms are lacking corresponding
mechanisms.

Third, as already indicated, the aim of RT-Z is to support the requirements and the design
phases of the development process. To this end, it provides two kinds of language con-
structs: abstract constructs to specify requirements without fixing aspects of the final imple-
mentation and concrete constructs to fix such implementation aspects in the architectural and
detailed design.

Last, but not least, a crucial rationale of integrating existing, well-established formalisms
is the reuse of their infrastructure, e.g., tools or the knowledge and experience of existing
users. RT-Z is designed as a so-called ‘conserving integration’ and reconciles both the desire
to reuse existing infrastructure and the coherence between different parts of the specification
of an embedded system.

The appropriateness of RT-Z—compared with other integrated formalisms—for specifying
real-time embedded systems results from the interaction of all these characteristics.

Overview

The thesis is organised as follows.

In Part I we introduce the context of the integrated formalism RT-Z: its envisaged applica-
tion area (Chapter 1), its underlying system model and the development process into which
it is incorporated (Chapter 2). The objectives that RT-Z must meet to be useful for the envis-
aged application area within the considered phases of the development process are stated
in Chapter 3. Based on these objectives, we discuss the related work in Chapter 4. Then,
to get a better overview and to have a basis for categorising our approach with respect to
the related work, we propose a classification of approaches to integrating complementary
formalisms in Chapter 5.

Part II deals with the basics of the integrated formalism RT-Z in an informal way. We first
discuss the general principles pursued in integrating the formalisms Z and timed CSP in
Chapter 6. In particular, we distinguish between an abstract and a concrete model of inte-
gration, covering the different abstraction levels to be supported during the development
process. Then, in Chapter 7, we treat the notation of the basic units of an RT-Z specification,
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which we call specification units. We finally introduce the structuring operators of RT-Z in
Chapter 8 allowing us to hierarchically decompose the specification of a large and complex
system into basic specification units.

In Part III we back up formally the notation introduced in the previous part. This includes
the definition of a denotational semantics for RT-Z specification units in Chapter 9 and of the
notion of refinement in Chapter 10, the latter chapter including techniques for establishing
refinement between specification units.

A discussion of the integrated formalism RT-Z is the subject of Part IV. This includes a
comparison of RT-Z with directly related integrated formalisms in Chapter 11 and two case
studies in Chapter 12, carried out in order to illustrate and validate the concepts underlying
RT-Z. In Chapter 13 we draw conclusions and discuss open items that remain as subjects for
future work.

Finally, the appendices contain a detailed account of the two base formalisms of RT-Z (espe-
cially of timed CSP) and two substantial mathematical proofs concerning the consistency of
our semantic definitions and the soundness of our refinement rules for RT-Z.
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Chapter 1

Envisaged Application Area

The integrated formalism we are aiming at is directed towards the development of software
in embedded systems. Embedded systems cover a wide area of applications, including pro-
cess control, signal processing, communication and networking, etc. Following Koopman
[1999, 1996] and Gupta [2002] embedded systems are characterised by:

• being heterogeneous, i.e., including software, digital, electric and mechanical compon-
ents, etc;

• being time-dependent, i.e., associated with (hard) real-time constraints;

• being reactive, i.e., performing computations in response to periodic and spontaneous
events controlled by the environment;

• involving data-processing tasks (e.g., digital signal processing);

• being safety-critical (e.g., process control);

• being inherently concurrent and distributed;

• being application specific, i.e., the application is known a priori before the system de-
sign begins.

Note that not necessarily all of the above characteristics need to apply to each individual
embedded system.

Thus, software components in embedded systems usually

• have complex interrelations to their environment (constituted by various types of com-
ponents);

• are reactive (as opposed to transformational), having several concurrent threads of
control;

• involve data-processing;

• must perform their computations timely, i.e., are associated with real-time constraints;

7



8 Chapter 1. Envisaged Application Area

• are distributed and must hence communicate via networks;

• are required to have a high degree of reliability;

• are not general-purpose.

The required abilities of the integrated formalism we are aiming at derive from the above
characteristics of embedded systems and the software components they contain.

The high degree of reliability that is often required of embedded systems, particularly in
safety-critical applications, renders the use of formal methods a worthwhile option, if not
even prescribed by certification authorities or customers.

A characteristic of embedded systems that makes the use of formal methods realistic is that
they are developed for specific, a priori known purposes. This is a contrast to desktop com-
puting applications, which usually have a more general purpose. It is very hard to elicit
clear requirements for such applications, which makes the use of formal methods problem-
atic. Moreover, desktop computing applications tend to become very complex and put the
main emphasis on aspects that are hardly amenable to a formalisation, e.g., the graphical
user interface. Embedded systems do not have these characteristics and are hence more
amenable to formality.

Of course, the diversity of the relevant aspects—reactiveness, real-time, concurrency, distri-
bution, data processing, and so on—is challenging for a formalism that is to be employed
for developing software in embedded systems.



Chapter 2

Underlying System Model and
Development Process

In this chapter, we discuss the system model underlying the integrated formalism we are
aiming at and the overall development process for embedded systems of which the inte-
grated formalism is one constituent.

2.1 Development Process

We start with outlining the model of the system development process in which the appli-
cation of the integrated formalism we are aiming at is embedded. This process model fol-
lows the waterfall model enhanced with the concept of iterations as presented, e.g., by Som-
merville [1995, p. 9]. In this model, the development process is considered to be partitioned
into a sequence of phases, each of which results in a well-defined set of documents. The
result of a phase is the basis for performing the subsequent phase. In contrast to the basic
waterfall model, the extended one takes into account the need of verification and validation
(V&V) activities at the end of each phase, a negative result of a V&V activity giving rise to a
repetition of phases already passed through.

The considered process model is depicted in Figure 2.1. Phases are depicted by rectangles,
and the resulting documents are depicted by ellipses. The backward arrows represent the
need to go back to a previous phase because of a failed V&V activity. The grey rectangle
encompasses those parts of the overall development process that are to be covered by the
envisaged integrated formalism.

The first two and the last two phases of this model apply to entire systems. In contrast,
the phases in the middle are applicable only to a certain type of system components. The
phases supporting the development of particular types of system components are arranged
in different levels represented by the outmost rectangles. The front rectangle contains the
phases for developing software components.

The aim of the system requirements analysis phase, resulting in the system requirements
specification, is to analyse an existing system and its environment and to specify the require-

9
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Figure 2.1: System development process.

ments (system function) and constraints the redeveloped system must meet with respect to
its environment.

The system design phase, completed by the system design specification, deals with devis-
ing an implementation concept for the considered system that satisfies the requirements and
constraints defined in the system requirements specification. This involves the system archi-
tecture, e.g., the decomposition of the system into certain kinds of system components. The
system design specification contains specifications of different types of system components.
In the following, we consider the development of software components.

The subject of the software requirements elicitation phase, resulting in the software require-
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ments specification, is to define the requirements and constraints each software component,
identified in the system design, must satisfy at its external interface. At this stage, no aspects
of its internal implementation should be fixed.

In the software design phase, an implementation concept is worked out for each specified
software component. This includes stipulating internal aspects, e.g., the internal structure,
the state space, etc. The result of this phase is a software design specification for each soft-
ware component.

The subsequent implementation phase transforms the design specification of each software
component into an executable piece of code (module) in the chosen implementation lan-
guage.

All developed system components—software, hardware, mechanical, electrical components,
and so on—must be integrated eventually to form the entire system, and the integrated
system must be installed in its operational environment. The operation of the developed
system may entail the need to correct, to change or to extend the system, which leads to a
repetition of previous phases.

2.2 System Model

We proceed with discussing the system model underlying the envisaged formalism. It de-
termines the abstraction to be carried out when modelling an embedded system and incor-
porates the information needed in order to interpret specifications of the integrated formal-
ism.1

We start with clarifying the notion of a system; this leads us to a rough, generic system
model. The integrated formalism aimed at is to be applied in different phases of the system
development process just described. Each of the phases is associated with a particular in-
stance of this generic system model. These instances are described in the following sections.

Following Leveson [1995, pp. 136–137] we interpret a system as a collection of components
acting together and interacting with each other in order to achieve some common goal with
respect to its environment at the same time obeying some constraints.

The system state at any point in time is the set of relevant properties characterising the sys-
tem at that time. The system environment is a collection of components that are not part of
the system but whose behaviour can affect the system. The system interacts with the envir-
onment through events crossing the boundary between the system and its environment. Any
set of components that is considered as a system is part of a hierarchy of systems: a system
may contain subsystems and may also be part of larger systems.

We must distinguish between two types of entities in the following description of the in-
stances of the system model.

1 In our opinion, clarifying the system model underlying a specification language is crucial. For instance, the
success of the formal specification language SCR [Heitmeyer et al., 1996] rests, among other things, on the
underlying ‘Four Variable Model’ of Parnas and Madey [1995].
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• Entities that specify characteristics of the artifact at hand that are visible to the envir-
onment.

• Entities that specify characteristics of the artifact at hand that are not visible to the
environment. Such entities are used in order to enable a more convenient modelling of
those characteristics that are externally visible.

As elaborated in the following sections, the state is an entity that is considered to be ex-
ternally visible in the system-related phases but not to be externally visible in the software-
related phases.

The above distinction leads to two different views on artifacts of the system development
process: the closed system view in which an artifact is considered to be completely charac-
terised in terms of its behaviour at the external interface; and the open system view in which
“internal” aspects of its description are taken as an additional part of its characterisation.

2.2.1 System Requirements and Design Specifications

The aim of the system-related phases is to define the embedding of the software to be de-
veloped within its context, which may be constituted by digital, electrical, mechanical com-
ponents, human operators, etc. When developing safety-critical systems, the definition of
safety constraints is one of the most important tasks in these phases.

The entities treated in the system-related phases are (almost) of an arbitrary kind: mech-
anical components, e.g., valves, electrical components, e.g., fuses, digital components, e.g.,
electronic circuits, human operators, and—last but not least—software components. Due to
this diversity there are different kinds of interaction: information flows, electrical current,
mechanical pressure, etc. The system model underlying this phase must be general enough
as to take this diversity of components and interactions into account.

As indicated, a system is modelled as a hierarchy of interacting components. Interaction
between components (and between a system and its environment) is modelled to take place
by means of events occurring on channels. This means that components interact via synchron-
ous communication: for an interaction to take place, the “sender” and the “receiver” have to
simultaneously participate in that interaction. The occurrence of an event may be associated
with the communication of information units (between software components), the transport-
ation of material (between mechanical components), the flow of current (between electrical
components), etc. That is, we associate a particular type with each channel which restricts
the set of objects that can be transported with the occurrence of events on that channel.

Each component is considered to have an interface, which consists of all events that serve
the component to interact with its environment. Furthermore, since a component may be
structured into sub-components, there may be additional events that are not part of the in-
terface but are related to the local interaction between these sub-components. Therefore, we
distinguish between external and internal events with respect to a component. An internal
event is solely controlled by the component, whereas an external event is controlled by both
the component and its environment.

Each component is embedded within a context. It need not achieve its goal under all possible
circumstances, but it may require its environment to satisfy some conditions called environ-
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mental assumptions: if these assumptions are violated by the environment, the component is
neither required to achieve its goal properly nor to obey its constraints.

The state of a component at a particular instant of time is constituted by the set of relevant,
physically available properties characterising the component at that time. In the system-
related phases, as already indicated, the state is considered as an externally visible entity.
That is, the definition of a state with a certain structure and certain properties in a system
specification forces any conforming implementation to have a counterpart with that struc-
ture and that properties. There are two reasons why the state cannot be considered as an
internal aspect of a system specification.

Firstly, safety is a property that is of relevance in the area of embedded systems. Safety, ac-
cording to Leveson [1995], is a property of a system whose definition is directly related to the
state of that system (and its components). Therefore, the meaning associated with a system
specification must incorporate the state, because the classification of an implementation as
safe or unsafe can be carried out only on this basis.

Secondly, as discussed in detail in Section 9.1 by means of an example, there are relevant
types of requirements in the context of system specifications that cannot be handled properly
if not including the state evolution in the meaning associated with a system specification.

The state of a component is transformed in reaction to interactions occurring at the external
interface. State transitions need not be defined deterministically, i.e., the transition from a
pre to a post state in reaction to an external event need not be unique. State transitions may
depend on inputs and they may produce outputs. State transitions are instantaneous; the
continuous change of the state during a time interval is not expressible within the chosen
system model: we do not aim at describing hybrid behaviour.

The decomposition of a system specification into components renders physical structures
that are already fixed by the existing development context. Therefore, the structure of a
system specification fixes the structure of conforming implementations.

2.2.2 Software Requirements Specifications

The artifacts referred to in software requirements specifications are software components.
These software components interact by communicating information units. The facts that we
deal with software and that we do not consider whole systems but only components entail
some consequences on the underlying system model for this phase.

In the software-related phases, as already indicated, the state defined in a specification is
considered as an internal aspect of the specification that does not force conforming imple-
mentations to have a counterpart. The meaning associated with a software specification,
therefore, does not incorporate the evolution of the state. The reason for this different inter-
pretation of the state in the system-related and the software-related phases is twofold.

Firstly, safety is a property that does not refer to software components: a software compon-
ent cannot be safe or unsafe; but it can contribute to the safety of the system into which it
is embedded depending on its external behaviour at the interface. So, our above reasoning
about safety on the system level does not apply to the software level.
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Secondly, since the invention of the information hiding principle, software components are
considered as encapsulated entities that interact only via defined interfaces; the environment
cannot observe the internal structure and the internal state of a software component.

Following Broy et al. [1992], the specification of a state and its operations does not necessar-
ily constrain implementations to have an implementation of the state and all its operations.
Rather, the state machine model is a tool for specifying the data-related characteristics at the
external interface more succinctly and conveniently. The current state of a software com-
ponent can be interpreted as representing the relevant properties of the past interaction that
determine the software component’s ability to interact with the environment in the present
and future.

In contrast to system requirements and design specifications, the structure of a software
requirements specification has only conceptual reasons and does not restrict conforming
implementations.

2.2.3 Software Design Specifications

The artifacts and their interrelations that are referred to in software design specifications
are essentially identical to those in a software requirements specification. Thus, the system
model underlying software design specifications is almost identical to the one underlying
software requirements specifications. However, the following difference exist.

In the software design phase, it is the general task to devise an “implementation concept” for
the requirements specified in the software requirements specification. Like in the system de-
sign, such an implementation concept encompasses (among other things) the decomposition
of software components into sub-components and the definition of their interfaces. That is,
the structure of a software design specification has immediate consequences for conforming
implementations.

This completes our discussion of the instances of the system model underlying RT-Z. These
instances roughly stipulate how the notation of RT-Z, treated in Part II, is to be interpreted,
as formally fixed in Part III.



Chapter 3

Objectives

In Chapter 1, we have discussed the envisaged application area of the integrated formalism
we are aiming at: real-time embedded systems. The development process incorporating the
application of the integrated formalism and the phases of this process to be supported have
been discussed in Chapter 2. We now derive from these context conditions objectives to be
met by the formalism.

Formality, Abstractness and Rigour: Developing safety-critical systems requires a high de-
gree of reliability. Only a notation based on mathematical concepts and associated
with a formal semantics enables the clear and precise definition of requirements, con-
straints and models. A mathematical basis is also the prerequisite for the ability to
specify at different abstraction levels. Finally, formality is the prerequisite for reason-
ing about specifications by means of rigorous proof techniques.

Adequate Expressiveness: The provided language constructs need to be adequate for the
considered application area. On the one hand, the formalism must be expressive
enough; on the other hand, the trade-off between a high expressiveness and the ability
to reason about specifications must be taken into account.

Since, as claimed in Chapter 1, embedded systems are usually reactive, are usually
associated with real-time constraints and usually involve data-processing tasks, the
formalism should provide language constructs to cover all these three dimensions of
the behaviour of an embedded system.

Coverage of the System Development Process: As stated in Chapter 2, the formalism must
be appropriate for different phases of the system development process. It is to be used
to set up system requirements specifications, system design specifications, software
requirements specifications and software design specifications. It must hence be able
to cover all involved abstraction levels.

The formalism must, on the one hand, provide abstract language constructs, which
allow us to specify requirements on the externally observable behaviour in system
and software requirements specifications without fixing implementation aspects. On
the other hand, it must provide concrete language constructs to allow us to specify
architectural and implementation aspects in system and software design specifications.

15
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Scalability (Modularity): The formalism must cope with large and complex systems. To this
end, it must provide appropriate structuring and decomposition concepts.

The above objectives are used to assess the integrated formalism that we present in this thesis
as well as the related work treated in the next chapter.

3.1 Restrictions

For pragmatic reasons we do not aim at achieving all those desirable objectives whose satis-
faction is vital only for a sub-class of the considered application area. The following restric-
tions apply to the formalism we are aiming at.

Hybrid Behaviour: The specification of hybrid systems with discrete and continuous ele-
ments is not to be taken into account. The class of systems that can be specified is
thereby restricted. However, taking into account hybrid behaviour would make the
formalism disproportionately complex.

Stochastic Behaviour: Similarly, the specification of stochastic systems—systems consisting
of parts whose concrete behaviours occur with a certain probability—is not to be taken
into account. Also this decision causes a restriction of the considered system classes,
however, in favour of an essentially simpler model.

Simulation/Executability: The ability to animate and to simulate a formal specification, re-
spectively, is not our main concern. Of course, the simulation of a formal specification
is an important means for validation. However, to focus on the ability to simulate
a specification appears to be in conflict with a high level of abstraction (intelligibil-
ity): simulating a specification necessitates the employment of concrete (executable)
language constructs, which contradicts the requirement for abstractness at least in the
early phases.
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State of the Art: Related Work

Before introducing our integrated formalism RT-Z, we discuss some related approaches,
which partly share our goals. The discussion in this chapter is the basis for our classification
of approaches to combining/integrating formalisms proposed in the next chapter. Those
approaches discussed in this chapter that are related most closely to RT-Z and that have
strongly influenced its design are compared with RT-Z in Chapter 11.

In the remainder of this chapter, the related approaches are introduced in the order of close-
ness to RT-Z.

4.1 CSP-OZ

CSP-OZ [Fischer, 2000, 1997, Fischer and Wehrheim, 1999] is an integration of Object-Z and
(untimed) CSP. According to the classification scheme discussed in the following chapter, it
is a monolithic integration.

In CSP-OZ, each system specification is composed of class specifications. Fischer distin-
guishes between Object-Z classes, encapsulating only Object-Z notation, and CSP-OZ clas-
ses, encapsulating the notations of Object-Z and CSP. Objects, being instances of class speci-
fications, interact with each other along typed CSP channels: each class has an interface part
declaring a set of CSP channels each of which associated with a Z type. In CSP-OZ, each
interaction at the interface of an object corresponds to the application of an Object-Z oper-
ation that is defined in the corresponding class. With each operation application, the input
and output parameters of the corresponding operation are communicated along the corres-
ponding channel. The Z type associated with a channel is thus the schema type containing
the parameters of the corresponding operation schema.

Roughly speaking, each CSP-OZ class consists of three parts.

1. The interface part mentioned above.

2. The Object-Z part. It defines, in the style of Object-Z, data types, constants, a data state
schema, an initialisation schema and operation schemas.1

1 Since ‘schemas’ is established in the Z community as the plural of ‘schema,’ we use it instead of the grammat-
ically correct ‘schemata.’

17
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3. The CSP part. It defines the dedicated process term main; this process basically defines
the order in which operations are applied.

CSP-OZ partly adopts the structuring mechanisms of Object-Z: inheritance and object in-
stantiation. Compared with Object-Z, however, object instantiation is allowed only in a re-
stricted form: only Object-Z classes, which do not contain CSP definitions, are allowed to
instantiate other Object-Z classes in their data state schema and thus to exploit the full gen-
erality of object instantiation in Object-Z (including the ability to express invariants relating
the data states of several instantiated objects). Objects of CSP-OZ classes, on the other hand,
can instantiate objects of CSP-OZ classes only as fully encapsulated entities; they can refer
only to the interfaces of the instantiated objects. Instantiation of objects in CSP-OZ classes
takes place in the CSP part: the instantiating object can dynamically create objects of CSP-OZ
classes depending on its control state.

In CSP-OZ, the integration of Object-Z and CSP is achieved in two layers (phases). In the
first layer, an intermediate language, CSPZ, is defined that integrates Z and CSP. More pre-
cisely, CSPZ is defined as an extension of Standard Z with CSP process expressions. CSPZ
expressions constitute the CSP part of CSP-OZ classes. In the second layer, the structure of
CSP-OZ classes is defined in terms of the Object-Z notation and the intermediate CSPZ lan-
guage. Most important, the meaning of CSP-OZ classes is defined by means of translation
rules into the CSPZ syntax.

CSPZ is an extension of the Z notation with the process term syntax of CSP. It is a very close
integration of the base notations and the basis for our classification of CSP-OZ as a mono-
lithic integration. Roughly speaking, the Z grammar is extended with additional production
rules for CSP process expressions: each CSP expression is a Z expression by definition. This
leads to a very convenient and concise style of specification. For example, the interleaving
of a collection of processes indexed by members of a set expression can be expressed as

||| i : 1 . . N • c!i → Stop

where i : 1 . . N is a Z expression and c!i → Stop is a CSP process expression.

Central to the proposed integration of the Z and CSP notation is the introduction of param-
etrised process definitions, i.e., the ability to parametrise CSP process definitions by arbitrary
Z expressions, e.g.,

P(i : N) c= c!i → Stop.

To define the meaning of such parametrised process definitions, Fischer provided syntactic
transformation rules mapping parametrised process definitions to Z syntax. The above de-
finition, e.g., would be mapped to the axiomatic definition

P : N→ PROCESS
∀ i : N • P(i) = c!i → Stop

where PROCESS is a given set assumed to be present in each CSPZ specification and to
represent all possible process expressions.
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The meaning of CSPZ process terms is defined by a so-called hybrid semantics, which in fact
is a denotational semantics, but associates with each process term a denotation that repre-
sents a labelled transition system; this is the operational nature of the semantics justifying
the term ‘hybrid.’ A main principle of defining the hybrid semantics, written [[ ]]O , is to
interpret each process term in the context of a Z model.2 Accordingly, the semantic function
of CSPZ is a curried function with the signature

[[ ]]O : PROCESS→Model→ LTS

where LTS is intended to represent the set of all labelled transition systems. The function
[[ ]]O is induced by a set of inference rules (several for each CSP operator).

In the second layer, as already indicated, the meaning of CSP-OZ classes is defined in terms
of transformation rules, mapping hierarchies of CSP-OZ classes to single classes and single
CSP-OZ classes to equivalent CSPZ terms. This transformational approach to defining the
semantics of CSP-OZ classes follows the approach of Object-Z, which maps Object-Z syntax
to (plain) Z syntax.

The main principle of defining the meaning of a CSP-OZ class, constituted by an Object-
Z and a CSP part, follows an idea of Smith [1997]: the Object-Z part of a CSP-OZ class is
interpreted as a CSP process and is subsequently composed in parallel with the CSP part,
where both parts must synchronise on the operations of the Object-Z part. Accordingly, the
transformation rules yield two CSPZ process terms procC and procZ for each CSP-OZ class,
representing the CSP and Object-Z part, respectively, and the process term proc, representing
the meaning of the whole CSP-OZ class.

proc(C) = (procC(C) . . . ‖ procZ(C) . . .) \ . . .

A detailed discussion of the strengths and drawbacks of CSP-OZ can be found in Chapter 11.
Only there, after having introduced RT-Z, it is meaningful to further elaborate the descrip-
tion of CSP-OZ, including the discussion of which of the objectives stated in the previous
chapter are met.

Extensions

Hoenicke and Olderog [2002] have proposed an extension of CSP-OZ, called CSP-OZ-DC,
which uses the Duration Calculus [Chaochen et al., 1991] for specifying real-time constraints
on the behaviour of objects. In the Duration Calculus, real-time constraints are specified in
terms of integrals over continuous functions. Thus, the time models underlying CSP-OZ-DC
and RT-Z, which is based on timed CSP, are diametrical.

Sherif et al. [2001] have adapted the predecessor of CSP-OZ, CSP-Z, by substituting timed
CSP for CSP. This allows them to express real-time constraints in addition to the capabilities
of CSP-Z. The authors applied the resulting language, called Timed-CSP-Z, to the specifica-
tion and validation of the on-board computer of a Brazilian research satellite.

Because no semantics has been defined for Timed-CSP-Z, it is not backed up formally.
The authors defined a translation from Timed-CSP-Z specifications to high-level Petri Nets,

2 The term ‘Z model,’ which is Z Standard terminology, is explained in Appendix A.1.
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which can be checked by existing analysis tools for particular types of properties. The trans-
lation process, however, must be carried out manually. Further, since the meaning of Timed-
CSP-Z is not defined formally, there is no base against which the correctness of this transla-
tion process could be checked.

4.2 TCOZ

Timed Communicating Object-Z (TCOZ) [Mahony and Dong, 2000, 1998a, 1999b] is an inte-
gration of Object-Z and timed CSP. According to the classification scheme discussed in the
following chapter, it is a monolithic integration.

Each system specification in TCOZ is composed of class specifications. TCOZ classes incor-
porate the notations of Object-Z and timed CSP. Objects, being instances of class specifica-
tions, interact with each other along (untyped) CSP channels, which constitute the interface
of classes. The most important structuring operators are inheritance and object instantiation.

Each object is associated with a data state specified by an Object-Z state schema in the cor-
responding class, and it transforms the data state by performing operations specified by
Object-Z operation schemas. The dynamic behaviour of an object, i.e., its interaction with
the environment and the internal control of its operations, is specified by the dedicated timed
CSP process term MAIN in the corresponding class.3

The main principles of integrating the notations of Object-Z and timed CSP to obtain the
syntax of TCOZ classes is outlined in the following.

• Object-Z operation schemas are interpreted by TCOZ as terminating timed CSP pro-
cesses. For each operation schema Op of a TCOZ class, the timed CSP process MAIN
of this class can refer to the process Op in order to apply this operation to the current
data state.

• In each operation schema, input and output parameters may be associated with chan-
nels being part of the interface of the class. Applying an operation means to read
the specified input parameters from the corresponding channels, to transform the ob-
ject state according to the relationships specified in the operation schema and to sub-
sequently write the computed output parameters to the corresponding channels. The
exact order of reading input parameters and writing output parameters, the exact tim-
ing aspects of these parameter interactions and the time instant at which the state tran-
sition actually takes place is not fixed by the schema definition.

• The state schema of a class specified in Object-Z is extended by an interface definition,
i.e., a list of (untyped) CSP channels connecting the class objects to other objects. The
operations of the class read and write their parameters from and to these channels,
respectively.

3 TCOZ distinguishes active and passive objects [Dong and Mahony, 1998]. For active objects, the dynamic
behaviour is explicitly defined by the process MAIN. In contrast, the behaviour of passive objects is controlled
by instantiating objects. Objects instantiate other objects by declaring a state variable of the respective class
type in their state schema. The data state of the instantiated object is part of the data state of the instantiating
object. The instantiating object may apply operations of the instantiated object and thereby transform its data
state.
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• The specification of the dynamic behaviour in a TCOZ class mainly follows the syntax
of timed CSP, however, essential extensions have been defined to enable the reference
to the data state.

– So-called state guards serve to make the dynamic behaviour, more specifically the
flow of control, dependent on the current data state of an object. A state guard
is an arbitrary schema expression and may refer to the data state that is present
when the process guarded by the state guard starts.

– Value expressions within timed CSP processes may refer to arbitrary components
of the data state in order to denote values to be communicated via external chan-
nels. These state variables are evaluated with respect to the data state present at
the time of communication.

In summary, the notations of Object-Z and timed CSP are integrated very closely.

Considering the semantic model of TCOZ, the monolithic nature of the integration becomes
even more evident. Both timed CSP and Object-Z are equipped with a formal semantics, see
[Schneider, 1999a] and [Smith, 2000]. By merging the notations of Object-Z and timed CSP
in TCOZ, however, there are no identifiable parts of a TCOZ class solely formulated by one
of both notations. Therefore, it is not feasible to reuse the semantic definitions of the base
formalisms, because there are no parts within a TCOZ class to which the semantic functions
of Object-Z and timed CSP could be applied to somehow obtain the semantic function of
TCOZ. Consequently, the semantics of TCOZ is defined—more or less—from scratch.

The semantic model underlying TCOZ is the so-called timed, infinite states model [Mahony
and Dong, 1999a, 1997]. Each object of a TCOZ class is associated with a set of observations
each of which consisting of a state history, an infinite timed trace and a timed refusal. The
definition of the semantics of TCOZ is rather abstract, using Z as the meta language. The
meaning of the most important structuring facilities of Object-Z—inheritance, object instan-
tiation, containment—is not taken into account in the current version of the TCOZ semantics.
This is problematic, as the Object-Z extensions are the only operators to structure a TCOZ
specification, and they are extensively used (cf. [Mahony and Dong, 1998b]). Inheritance
and object instantiation are undoubtedly utmost powerful notational means, but their use is
problematic within a formal approach if their meaning is not defined precisely.

The strengths and drawbacks of TCOZ, including the discussion of which objectives stated
in the previous chapter are met, are discussed in detail in Chapter 11 after having introduced
RT-Z.

4.3 Object-Z / CSP

Smith and Derrick [Smith and Derrick, 2001, Derrick and Smith, 2000] have presented an
integration of Object-Z and CSP. According to the classification scheme discussed in the
following chapter, it is a conserving integration. The approach they proposed on the basis of
their integrated formalism supports—in addition to specifying concurrent and distributed
systems—aspects of refinement and verification.
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The main idea underlying the integration is the identification of corresponding concepts
of the specification of object-oriented and concurrent systems—classes and operations on
the one and processes and events on the other hand. This identification is underpinned
semantically by giving Object-Z classes a semantics in the failures–divergences model of
CSP; it allows Object-Z classes to be referred to as CSP processes and hence to be composed
by CSP operators.

A system specification in the considered approach consists of two parts. The Object-Z part
comprises a number of Object-Z classes, each defining the behaviour of a single system com-
ponent. The CSP part fixes the configuration of the defined system components and their
interaction with the help of CSP operators, e.g., parallel composition. That is, the approach
chosen by the authors to integrate Object-Z and CSP is absolutely different from the ap-
proach taken in the design of CSP-OZ and TCOZ: in the current approach, Object-Z and
CSP cover different layers of a system specification. The first layer deals with single com-
ponents by solely using Object-Z, and the second layer deals with composing the compon-
ents defined in the first layer by solely using CSP. Thus, the notations of the base formalisms
are strictly separated from each other. This separation between different layers is a contrast
to the approach taken by the other integrations of Object-Z/Z and timed/untimed CSP, in
which the respective notations are integrated within the component level.

Since Object-Z classes are associated with a CSP semantics, refinement between integrated
specifications is simply defined in terms of CSP refinement, i.e., failures–divergences re-
finement. The authors have adapted the work of Josephs [1988], which has provided re-
finement relations for state-based systems that are sound and complete with respect to CSP
refinement, to the Object-Z setting. This enables them to check CSP refinement relations
between Object-Z classes directly using state-based techniques without the need to compute
the failures–divergences semantics of these classes.

The authors have also outlined an approach to verifying integrated specifications. Because
of the strict separation of the base formalisms, the existing verification techniques of Object-
Z and CSP can be combined to check properties of an overall system specification: first CSP’s
inference rules are used in order to reduce properties that the overall system must satisfy to
properties that its components must meet, and then Object-Z’s verification techniques are
applied in order to show that the components really meet these properties.

The major benefit of this approach is the absolutely strict separation of the base formalisms,
exploiting the maximal potential to reuse their infrastructure. The choice of CSP to define the
interactions between system components allows the convenient definition of architectural
aspects.

A disadvantage of this approach, on the other hand, is that CSP is not used in order to define
the dynamic behaviour of single system components (e.g., the temporal order of operation
applications). It is still Object-Z that is used for this purpose. From our point of view, CSP is
more appropriate than Object-Z to specify behavioural aspects.

Furthermore, Smith [2002] has presented an integration of Real-Time Object-Z [Smith and
Hayes, 1999] and CSP. The principles underlying this integration are identical to those ex-
plained above. However, using Real-Time Object-Z for defining the behaviour of system
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components, the specifier is also able to express real-time constraints. Real-Time Object-Z
is based on the timed trace notation of Fidge et al. [1998], which is an interval-based set-
theoretic notation expressing real-time constraints in terms of continuous functions. Thus,
the time models underlying Real-Time Object-Z/CSP and RT-Z are diametrical.

4.4 LOTOS

LOTOS4 [Bolognesi et al., 1995, Bolognesi and Brinksma, 1987] is a formal description tech-
nique developed by the International Standardization Institute (ISO) in the context of the
specification of the Open Systems Interconnection (OSI) architecture. It integrates two com-
plementary languages:

• a process algebra, which is mainly based on CCS [Milner, 1989], for specifying behavi-
oural aspects and

• the algebraic specification language ACT ONE [Ehrig and Mahr, 1985] for specifying
abstract data types, i.e., data structures and value expressions.

According to the classification scheme discussed in the following chapter, it is a conserving
integration.

The system model underlying LOTOS regards a distributed, concurrent system as a process,
composed of a collection of interacting sub-processes. A process is an entity able to con-
trol internal (unobservable) actions and to interact with its environment (constituted by a
set of other processes). Complex interactions between processes are built up of elementary,
atomic units of synchronisations called actions. The occurrence of an action implies process
synchronisation, i.e., all processes that are connected by an action have to participate in its
occurrence simultaneously. The occurrence of an action may be associated with the trans-
mission of data values. Actions are thought of as occurring at a synchronisation point called
gate. The interface of a process is constituted by the set of gates via which it interacts with its
environment.

One distinguishes between full LOTOS, providing the full range of syntactic constructs, and
basic LOTOS, providing only the process algebra language.

A process definition specifies the externally observable behaviour of a system component in
terms of sequences of observable actions at its gates. A process definition is parametrised
by a list of formal gates; these constitute the interface of the process via which the process
interacts with the environment (through synchronisation and value transmissions). The ob-
servable behaviour of a process is defined by a so-called behaviour expression.

In the data type part of a process definition, a set of abstract data types are introduced by us-
ing the algebraic specification language ACT ONE. Basic LOTOS is extended to full LOTOS
by language constructs referring to the elements of the abstract data types, i.e., constants,
functions and carrier sets. In full LOTOS, the occurrence of an action may be associated with
the communication of an arbitrarily complex value.

4 LOTOS is a shorthand for Language of Temporal Ordering Specification.
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The most important additional language constructs of full LOTOS are selection predicates
and guarded behaviour expressions.

Let us first consider a selection predicate in the example action denotation g ?x : T1 !y [x < y].
Each occurrence of an action at gate g involves the communication of two values: the first
value must be of type T1 and is bound to the variable x during synchronisation, and the
second value is uniquely determined by the expression y. The selection predicate x < y defines
a further constraint on the value bound to the variable x during synchronisation.

As a second extension, each behaviour expression, say BE, may be guarded by a predicate,
say G, written G → BE. If the guard G evaluates to true, the behaviour of the guarded expres-
sion is BE; otherwise the whole expression is equivalent to deadlock. The guard may refer to
any process parameter and to any variable bound by a prior communication of the process;
this allows the dynamic behaviour to depend on the current (data) state of the process.

The meaning of behaviour expressions is defined by an operational semantics. To relate
different descriptions of a system, e.g., its requirements specification and its design speci-
fication, several behavioural equivalence relations are defined between behaviour expressions
based on the operational semantics. The core of the process algebra LOTOS is constituted by
a set of algebraic laws stating equivalences between behaviour expressions.

To conclude, LOTOS is an expressive language, closely integrating notations for defining
behaviour and data types. The module concept of LOTOS is elaborate allowing it to tackle
large and complex systems. Moreover, LOTOS has a completely formal foundation. Its proof
rules support a rigorous development of a specification towards an implementation.

However, LOTOS has also some drawbacks. First, it does not aim to specify real-time con-
straints. Second, it is based on an algebraic specification language. While an algebraic speci-
fication language is perfectly suited to specifying requirements, it is difficult to use it in order
to fix design decisions, in particular architectural aspects. Finally, its process algebra is based
on an operational semantics. This implies that requirements must be expressed in terms of
behaviour expressions (rather than predicates).5 In our opinion, specifying requirements in
terms of behaviour expressions is not as adequate as specifying requirements in terms of
predicates.

4.5 RAISE Specification Language

RSL is part of the formal method RAISE [Haxthausen and George, 1993], which is an ac-
ronym for Rigorous Approach to Industrial Software Engineering. RSL is a formal specifica-
tion language and has resulted from an integration of concepts from VDM [Jones, 1986],
CSP [Hoare, 1985], algebraic specification languages and ML [Paulson, 1991]. It is a wide-
spectrum language in that it enables the user to specify a variety of aspects of the system be-
haviour (e.g., dynamic behaviour, functional I/O behaviour) and in that it supports different
abstraction levels. For the abstract levels, axiomatic (algebraic) constructs are provided; for
the more concrete levels, model-oriented constructs are provided.

5 Later in this thesis, we will see that a process algebra that is based on a denotational semantics (such as CSP)
provides a predicate language in addition to the language of process terms.
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The notation is equipped with methodological support, where the overall development pro-
cess mainly follows the stepwise-refinement paradigm. The meaning of RSL specifications
is formally defined by a denotational semantics. Based on this semantics, proof rules have
been developed allowing one to derive properties from RSL specifications and to establish
refinement between two successive specifications in the development process. The entire
RAISE method is also supported by tools, e.g., editors, type-checkers and provers.

In RSL, a system is modelled as a network of interacting system components. Each sys-
tem component is specified by a module. Interaction between different modules takes place
via typed communication channels. The language provides an elaborate module concept,
comprising aggregation, indexed aggregation, parametrisation of modules, stepwise mod-
ule extension and hiding and renaming of module components. Inside a module, however,
there are no elaborate structuring facilities comparable, e.g., with the Z schema calculus.

The language has been designed to encompass the main language constructs of VDM, CSP
and algebraic specification languages; this has been achieved by a very close integration of
these base notations. Within an RSL module, these different language constructs (e.g., CSP
processes, VDM operations) are not separated syntactically. Thus they needed to be lifted
on a uniform semantic interpretation. CSP processes, e.g., are interpreted as VDM functions
with side effects on external channels and on the global state.

As already indicated, RSL is an utmost expressive language covering various aspects of the
behaviour of a system and several phases of the development process. From our point of
view, however, RSL is far too expressive, integrating features of too many different formal-
isms. This leads to a low degree of intelligibility.

Further, the monolithic nature of the integration makes it almost impossible to reuse the
infrastructure of the base formalisms, e.g., existing tools or the knowledge and experience of
their existing users.

4.6 Temporal Logic of Actions

Lamport [1994] has developed the formal specification language TLA (Temporal Logic of
Actions). It is a variant of temporal logic, as invented by Manna and Pnueli [1992], instanti-
ated by a particular system model. TLA+ [Lamport, 2000] improves TLA by introducing a
module concept, i.e., it is designed to cope with complexity. TLA+ is suited for specifying
and reasoning about concurrent systems.

A system specification in TLA+ is composed of a collection of modules. Each module spe-
cifies a system component in terms of the behaviours it may perform.6 Usually, a TLA+

module has the following structure. It first introduces a collection of variables, which con-
stitute the state of the component under consideration. TLA+ is an untyped language, so in
principle variables can assume arbitrary values. State transitions, i.e., pairs of adjacent states
in a behaviour, are then defined by actions, which are predicates on pairs of states. Finally,
safety and liveness properties of the admissible behaviours are defined by using temporal
logic. Safety properties deal with the initial states in which the component may start and

6 A behaviour is an infinite sequence of states, and a state is an assignment of values to variables.



26 Chapter 4. State of the Art: Related Work

with the state transitions it is allowed to perform. Safety properties are usually defined by a
temporal formula of the form

Init ∧ �[Next]

where Init characterises the set of initial states and Next, the so-called next-state action,
defines the relation between adjacent states in a correct behaviour. Thus, safety properties
define what the component must not do. Liveness properties, in the form of weak and strong
fairness conditions, on the other hand, define which actions are assumed to be (eventually)
performed under which conditions.

TLA+ adds the module concept to TLA. Modules can extend other modules by importing
their definitions. This allows general-purpose definitions, e.g., the natural numbers or se-
quences, to be stored in module libraries. The other module operator is instantiation, which
allows a module to incorporate arbitrary collections of instances of other modules. The in-
stantiation operator supports the hierarchical decomposition of system specifications.

Modules in TLA+ are basically containers for collections of definitions. They are used to
structure the definitions of large specifications; but they cannot be used to fix the structure
of a system, e.g., the configuration of its components and their interactions. This is the case
because the interactions between the instantiated modules are defined only implicitly: the
instantiating module connects the instantiated modules by defining actions on the overall
state—including the states of the instantiated modules—thereby composing sub-behaviours
of the instantiated modules to complete behaviours.

A major strength of TLA+ is its module concept, which allows the specifier to structure
large collections of definitions in an intelligible way. Another benefit of using TLA+ is its
tool support. Among others, there is a syntax checker, a model checker and a simulator for
a subclass of “executable” TLA+ specifications. For TLA, there is also an implementation in
the generic theorem prover Isabelle [Kalvala, 1995].

However, TLA+ has also some shortcomings.

Most important, it is difficult (if not impossible) to fix architectural aspects of a design, be-
cause the configuration of components and their interactions are not made explicit in a sys-
tem specification and could hence be changed arbitrarily in refining specifications and hence
in the ultimate implementation.

Further, TLA+ is not a typed language, which, from our point of view, is a major drawback.
Typed languages, e.g., the Z notation, allow specifications to be type-checked, which helps
detect important types of errors, including conceptual ones.

Last, but not least, the notation provided by TLA+ for defining the state does not provide any
structuring concepts comparable with the Z notation (schema calculus). The state is consti-
tuted by a plain (unstructured) collection of variables. The same applies to the specification
of actions, for which only the operators of predicate logic can be used.

4.7 Others

In the remainder of this chapter, we discuss some approaches that are related to RT-Z only
in a wider context but that are nevertheless useful in discussing the design principles under-
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lying RT-Z.

The following viewpoint-oriented approaches are based on the general ViewPoints frame-
work developed by Finkelstein et al. [1994, 1992], whose discussion is beyond the scope of
this thesis.

Viewpoints in a Formal Setting

Boiten et al. [Boiten et al., 2000, 1996, Bowman et al., 1999a, 1996] have proposed a system de-
velopment framework in the context of the Open Distributed Processing (ODP) [ISO, 1998]
standardisation, which is based on the use of multiple viewpoints.

According to the authors, the complete specification of any non-trivial distributed system
involves a large amount of information. To capture all aspects of such a system in a single
model is generally infeasible. As a consequence, their framework aims to establish a con-
figuration of models each aimed at capturing a particular facet of the system, satisfying the
requirements which are the concern of a particular stakeholder of the development pro-
cess. More specifically, the framework achieves this separation of concerns by the identific-
ation of a set of so-called viewpoints. The general idea is that multiple partial specifications
(viewpoints) of a system are developed. Each partial specification represents a different per-
spective on the system under development at a particular level of abstraction. In particular,
different viewpoints may be specified using different formal description techniques (FDT).

An immediate consequence of adopting a multiple viewpoint approach is that descriptions
of the same or related entities can appear in different viewpoints. Thus, different viewpoints
can impose contradictory requirements on the system under development and the consist-
ency of viewpoint specifications needs to be checked. Thus, providing techniques to check
consistency is one of the major research topics in the context of viewpoint modelling. A
necessary prerequisite for checking consistency is to define the relationships between view-
points that overlap. This could be achieved by using the same name for common aspects in
different viewpoints. In general, however, more complicated mechanisms for relating com-
mon aspects of viewpoints are needed. They are called correspondences in this framework.

The traditional approach to consistency checking is to translate all viewpoints to a com-
mon, underlying semantic model (e.g., first-order predicate logic): if all the translations
have a common model, i.e., their conjunction is satisfiable, then the viewpoints are con-
sistent. However, this approach has two shortcomings. First, a detected inconsistency is in
terms of the common semantic model, and it is in general impossible to trace it back to the
involved viewpoints. Second, the translation is accompanied by a loss of syntactic structure,
impeding an incremental approach. For these reasons, the authors pursued an alternative
approach to consistency checking: consistency of viewpoint specifications is defined in terms
of the existence of a common development. The term development comprises several mech-
anisms for evolving specifications towards implementations, e.g., the stepwise refinement
within a single formal description technique and the translation between different formal
description techniques. Since all viewpoint specifications must eventually be realised by a
single implementation, there must be a way to combine specifications from different view-
points during development; this combination is called a unification. To unify specifications
of different formal description techniques, a translation mechanism is needed to transform a
specification between the respective languages.
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The definition of consistency in the considered framework is as follows.

A set of viewpoint specifications are consistent if there exists a specification that
is a development of each of the viewpoint specifications with respect to the iden-
tified development relations and the correspondences between viewpoints. This
common development is called a unification. [Boiten et al., 2000]

Besides the definition of consistency, the framework incorporates a method for construct-
ively establishing the consistency of a set of viewpoint specifications [Bowman et al., 1999b].
This involves algorithms that build unifications from pairs of viewpoint specifications. An
important notion in this context is that of a least developed unification. This is a unification
such that all other unifications are developments of it. Thus, it is the least developed of the
set of possible unifications according to the respective development relations. Using least
developed unifications as intermediate stages, global consistency of a set of viewpoints can
be established by a series of binary checks.

The framework also distinguishes between intra-language consistency and inter-language con-
sistency. Intra-language consistency is a relation between specifications expressed in the
same language, whereas inter-language consistency crosses a language boundary. As men-
tioned, to establish inter-language consistency, translation mechanisms are needed to trans-
form a specification in one language into another language.

A particular instance of this framework is described in [Boiten et al., 2000] by means of a
case study. This instance uses the formal description techniques LOTOS and Object-Z for
the different viewpoints. Appropriate translation techniques from LOTOS to Object-Z are
investigated in [Derrick et al., 1999].

To conclude, the current approach is not a particular integrated formalism but rather a gen-
eral framework containing techniques and guidelines to use the particular formalisms best
suited to a particular development task in a combined way.

Weber [1997] has presented a viewpoint-oriented approach, which aims at the combination
of formal and semi-formal specification techniques for the development of embedded con-
trol systems. He proposed to decompose the specification of an embedded control system
into three viewpoints: an architectural model, a behavioural model and a functional model.
Although his approach is general in that it does not explicitly fix the particular specification
languages to be used for the three models, Weber described his approach with respect to a
particular instance, which uses Z for the functional model, Statecharts for the behavioural
model and class and instance diagrams for the architectural model.

Weber has put emphasis on checking the consistency between the three models. To this
end, he defined a mapping that relates elements in different models that are intended to be
descriptions of a single entity and necessary conditions that must be met for the different
descriptions to be consistent. Of course, this mapping and the consistency conditions are
specific to the particular specification languages chosen for the three models.

Viewpoints in Z

Ainsworth et al. [1994] have investigated techniques to organise large and complex Z speci-
fications. Using their approach, any specification is divided into a set of viewpoints; each
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viewpoint is a partial specification that describes only certain aspects of the system under
development and is constituted by a “state-oriented” Z specification. The process of in-
tegrating all viewpoints of a system to a single specification and of checking their mutual
consistency is called amalgamation in this approach.

Since all viewpoints of a system specification use the same language (Z notation), the ap-
proach is homogeneous and avoids many problems that arise when multiple notations must
be reconciled. On the other hand, this approach does not aim to improve the expressive
power of Z; it restricts itself to manage the complexity of large specifications and thus to
enhance the structuring facilities of plain Z.

The process of amalgamating viewpoints, as illustrated in [Ainsworth et al., 1994] by means
of an example, is mostly driven by the intuition of the human specifier. The result of the
amalgamation of a pair of viewpoints is a combined viewpoint (Z specification) that must,
roughly speaking, be a refinement of both original viewpoints. Corresponding specification
elements of both original viewpoints and the resulting viewpoint are formally related with
the help of retrieve relations, which are the basis to check for refinement.

Conjoining Specifications

Zave and Jackson [1993] have described a general framework for multi-paradigm specifica-
tions. According to their terminology, a multi-paradigm specification is a finite set of partial
specifications, each covered by the formalism best suited to the particular purpose.

Central to their approach is the existence of a common, underlying semantic model: single-
sorted first-order predicate logic. Each formalism to be used in a partial specification must
be equipped with a semantic mapping from its expressions to equivalent assertions in first-
order predicate logic. These mappings might be partial, i.e., in some cases it suffices to
transform the specific parts of a formalism that are used. Composition of partial specifica-
tions, then, corresponds to the conjunction of the assertions that are the transformations of
the partial specifications.

An important notion in this framework is that of the vocabulary of a partial specification,
which is the set of predicates contained in its equivalent assertion. Different partial speci-
fications interact with each other via the intersection of their vocabularies: the predicates
that both partial specifications define and use, respectively. A set of partial specifications are
consistent if there exists a common model of their associated assertions, i.e., if the conjuction
of their associated assertions is satisfiable.

The approach described in [Zave and Jackson, 1993] is a framework rather than a concrete
specification language, because no particular decomposition style is fixed, encompassing

• the decomposition of a multi-paradigm specification into a fixed set of partial specifi-
cations,

• the set of formalisms to be used within these partial specifications and

• how partial specifications interact.

Moreover, the framework does not fix a particular system model: it is not fixed how a spe-
cified system interacts with its environment and which assumptions about the environment
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are made. It describes how to organise/structure specifications using different formalisms,
how to relate aspects covered in different partial specifications, how to obtain the meaning
of a multi-paradigm specification and how to check for consistency.

Major shortcomings of the framework are that most formalisms can be translated at most
partially into predicate logic7 and that the interpretation of a multi-paradigm specification
as the conjunction of the assertions associated with its partial specifications is not intuitive
and hence very difficult to understand.

An instance of this framework is presented in [Zave and Jackson, 1996]. The instantiation is
achieved by fixing a particular decomposition style and system model. The formalisms used
by this instance are primarily Z and finite state machines.

Composing Specifications

Abadi and Lamport [1993] have analysed sufficient conditions that specifications of concur-
rent components must satisfy in order to be successfully composed to a system specification
with given properties.

They have investigated these conditions in a general semantic model, namely the transition-
axiom method (TAM), which is an extension to temporal logic. That is, their composition
principles are independent of particular specification languages. As long as the semantics
of a specification formalism can be mapped to the TAM model, it can be used to specify
components of the system under development. Thus, the TAM model can be regarded as a
common, underlying semantic model in which the meaning of system components, possibly
specified by several formalisms, can be expressed. The meaning of the composition of a set
of component specifications is defined to be the conjunction of the meaning associated with
the component specifications.

Note that in this approach the decomposition of a system into the parts that are covered by
distinct formalisms is absolutely different from the decomposition in the other approaches
discussed in this chapter. In the current approach, different “partial specifications” describe
different system components, so there is no overlap between different partial specifications.
In the other approaches, in contrast, different partial specifications describe the same system
from distinct viewpoints, where the covered aspects usually overlap. Thus, the approaches
are based on orthogonal principles for decomposing system specifications.

7 Große-Rhode [2001] suggests transformation systems as a semantic domain into which all kinds of specifica-
tion languages can be mapped semantically. His approach is more general because transformation systems,
which extend labelled transition systems, are more powerful than first-order predicate logic.
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Classification

Considering the plethora of approaches discussed in the previous chapter and the interna-
tional conferences dedicated to this subject, e.g., [Grieskamp et al., 2000, Ehrig and Große-
Rhode, 2002], we conclude that integrating existing formalisms has become a research field
of growing interest. To get a better overview of the field and to have a basis for categorising
our approach into the existing work, we propose a classification of approaches to combin-
ing/integrating existing formalisms. On the top level of this classification, we distinguish
between two classes.

In component-oriented approaches, the structure of composing the deployed base formalisms
corresponds to the component structure of the specified system, i.e., each component of the
system under development is specified by a particular base formalism. The only instance
of this class described in the previous chapter is the approach of Abadi and Lamport [1993].
In viewpoint-oriented approaches, by contrast, different base formalisms are used in order to
cover different aspects of the system under development. That is, the composition of the
used base formalisms is orthogonal to the component structure of the specified system: each
system component is specified using several base formalisms. All approaches discussed in
the previous chapter with the exception of that of Abadi and Lamport belong to this class.

Let us further refine the class of viewpoint-oriented approaches by proposing three sub-
classes. All three sub-classes can be thought of as being located within a spectrum of the
degree of integrating the respective base formalisms, see Figure 5.1.

Viewpoint-oriented Combinations. One end of the spectrum, with a low degree of integra-
tion, is occupied by the class of viewpoint-oriented combinations. They are frameworks for
combining multiple languages rather than particular combined languages. They provide an
infrastructure containing general techniques and guidelines

• to decompose complex specifications into viewpoints (partial specifications),

• to relate common aspects of different viewpoints,

• to map all viewpoints to a common, underlying semantic model and

• to check a multi-viewpoint specification for consistency.

31
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Figure 5.1: Viewpoint-oriented approaches to integrating formalisms.

In other words, viewpoint-oriented combinations do not fix a particular decomposition style.
We use the term decomposition style of a multi-language specification to refer to the infor-
mation

• of which concrete constituents it is composed,

• which base formalisms are associated with its constituents and

• the concrete correspondences via which its constituents are related.

Particular instances of such frameworks, however, define specific decomposition styles on
the basis of the general guidelines prescribed by the framework.

Instances of this class are the approaches proposed by Zave and Jackson [1993], Weber [1997],
Boiten et al. [1996] and Große-Rhode [2001].

The main advantage related to viewpoint-oriented combinations is the possibility to use the
base formalisms within viewpoints without the need of adaptation. This allows specifiers to
make use of the infrastructure available for the respective base formalisms, e.g., specification
and verification tools, and of their gained knowledge and experience. Another advantage
is the flexibility to use the particular base formalisms best suited for a particular specifica-
tion task. A further aspect of flexibility is the high independence of a viewpoint-oriented
combination from potential changes of the used base formalisms.

The most serious disadvantage associated with viewpoint-oriented combinations, on the
other hand, is that a multi-paradigm specification is not really a single document but rather
an independent coexistence of loosely coupled partial specifications, i.e., there is a low co-
herence between the combined base formalisms. That is, it is difficult to understand the
interaction between different partial specifications and to obtain the overall picture drawn
by all partial specifications together. Another major problem related to viewpoint-oriented
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combinations is due to the fact that a single artifact of the software development can be sub-
ject to several viewpoints. Thus, it is a major concern to ensure the consistency between
different viewpoints.

The other two classes—conserving and monolithic integrations—differ from viewpoint-ori-
ented combinations in that they fix a particular decomposition style, i.e., they define a fixed
set of base formalisms to be deployed and fixed correspondences that relate the selected base
formalisms to each other.

Monolithic Integrations. The other end of the spectrum, with a high degree of integration,
is occupied by the class of monolithic integrations. In this class, the chosen base formalisms
are integrated very closely leading—more or less—to a completely new formalism.

In the first step of the integration, selected elements of the notations of the base formalisms
are merged, yielding the notation of the integrated formalism. That is, monolithic integra-
tions do not pursue the separation of their base notations. The next step lifts the selected ele-
ments of the base notations to a uniform semantic interpretation, which necessarily differs
from their original interpretation. This lifting, however, impedes the reuse of the semantic
definitions of the base formalisms when defining the unified semantics of the integrated for-
malism. This can be illustrated with the help of the monolithic integration TCOZ. In TCOZ,
the notations of Object-Z and timed CSP are merged very deeply: Object-Z operation sche-
mas can be used in timed CSP expressions to represent terminating processes, and the TCOZ
state guard operator uses an Object-Z schema expression to prefix a timed CSP process ex-
pression in order to make the flow of control dependent on the current data state. Therefore,
Object-Z schema expressions and timed CSP expressions need to be lifted on a uniform se-
mantic interpretation; the semantic function of timed CSP cannot be applied to these TCOZ
process expressions because of the contained Object-Z expressions.

Instances of this class are the RAISE specification language (RSL), CSP-OZ and TCOZ.

The most notable merit of monolithic integrations is the strong coherence between the base
formalisms and the notational conciseness of being able to directly merge the syntaxes of the
base formalisms. Their essential drawback is due to the fact that the base formalisms are not
identifiable parts of the integrated formalism, impeding the reuse of their infrastructure.

Conserving Integrations. Last but not least, conserving integrations are located in the centre
of the spectrum. The major design criterion for conserving integrations is the possibility to
reuse the infrastructure of the selected base formalisms. This is the distinguishing feature
with respect to the class of monolithic integrations. Of particular interest for this distinction
is the reuse of the semantic functions of the base formalisms within the unified semantic
model of the integrated formalism.

Note that the transition between conserving and monolithic integrations is fluid, depicted in
Figure 5.1 by the dashed arrow: also monolithic integrations can make use of the semantic
definitions of their base formalisms to a restricted extent. Ultimately, the crucial decision
concerns the direction in which the trade-off between the potential to reuse the infrastructure
of the base formalisms on the one hand and the coherence and uniformity of the integrated
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formalism on the other hand is resolved. The reuse of the semantic definitions is only an
indication for the direction of this resolution.

To achieve this reuse potential, conserving integrations interrelate their base formalisms
more loosely: each base formalism constitutes an identifiable part of the integrated for-
malism. Accordingly, each specification of an integrated formalism is composed of several
separated parts, each obtained by encapsulating the notation of a single base formalism.
The integration of these notationally separated parts to constitute a single, coherent unit is
achieved by defining correspondences (links) between specific notational elements of the
different parts. These correspondences are general in that they apply to all specifications of
an integrated formalism. The above points can be illustrated with the help of the approach of
Smith and Derrick [2001], in which the notations of Object-Z and CSP are strictly separated:
the Object-Z notation is used to define the behaviour of the system components and the CSP
notation is used to define the configuration of these components and their interaction. The
link between the parts consists in identifying processes in the CSP part and classes in the
Object-Z part that have identical identifiers.

Instances of this class are LOTOS, RT-Z and the approach proposed by Smith and Derrick
[2001]. A further instance is the approach of Treharne [2000], who has developed an integra-
tion of B and CSP, which uses CSP process descriptions (called control executives) to con-
trol the order of executing the operations that are specified in a B Abstract System. Finally,
Choppy et al. [2000] have proposed a conserving integration of an algebraic specification
language and state transition diagrams; the integrated formalism is called Korrigan.

The most important feature of a conserving integration is the architecture of composing its
base formalisms. In fact, the used base formalisms should be exchangeable. For LOTOS,
e.g., as an instance of this class, it is planned to replace its abstract data type language.

A major benefit of conserving integrations, as just indicated, is their ability to reuse the exist-
ing infrastructure of their base formalisms, e.g., tool support, proof support and the know-
ledge and experience of existing users. Compared with viewpoint-oriented combinations,
however, this reuse potential is more restricted because of the interdependencies between
the integrated base formalisms. A disadvantage, on the other hand, which is a consequence
of the separation of the base notations, is the lower notational conciseness and convenience
than in monolithic integrations.

To conclude, conserving integrations are a compromise between viewpoint-oriented com-
binations and monolithic integrations; they hence avoid some disadvantages of the other
classes, but cannot fully exploit their advantages.
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This part presents a conserving integration of the formal specification languages Z and timed
CSP. This integrated formalism is designed to support the development process of real-time
embedded systems in several phases—from the requirements engineering via the architec-
tural design to the detailed design.

Embedded systems usually exhibit complex interrelations with their external environment
in addition to complex internal structures. A specification language intended for the chosen
application domain must cope with several dimensions of this complexity, mainly

• the static structure,

• the dynamic behaviour and

• the data-related characteristics

of embedded systems.

Let us first clarify the above terminology. The term static structure refers to invariant char-
acteristics of an embedded system, e.g., the structure of its interface and its architecture.
We use the term dynamic behaviour to combine the terms external stimulus–response behaviour
and internal control behaviour. The external stimulus–response behaviour of an embedded
system incorporates aspects like the temporal ordering of external interactions with the en-
vironment and also real-time constraints on their occurrence. It defines the reaction of the
embedded system to external stimuli in terms of emitting responses into the environment.
The internal control behaviour, on the other hand, involves the distribution and control of
internal actions that implement the external interaction with the environment. Finally, the
term data-related characteristics encompasses aspects like the structure and the invariant prop-
erties of the data state1 of an embedded system as well as the relationships that must hold
between the data values communicated with particular external interactions.

The above dimensions roughly correspond to the three views on embedded control sys-
tems identified by Weber [1997], which he termed architectural model, behavioural model
and functional model. We do not adopt this terminology, because these terms suggest a
viewpoint-oriented approach (cf. Chapter 5), which we do not follow as we will shortly ar-
gue.

The Z notation [Woodcock and Davies, 1996] is a powerful vehicle for specifying data-related
characteristics and fragments of the static structure. However, it is not designed to model
aspects of the dynamic behaviour. The real-time process algebra timed CSP [Schneider,
1999b], on the other hand, is a powerful tool for specifying the dynamic behaviour, includ-
ing real-time aspects, and fragments of the static structure. However, it does not provide
adequate constructs to model data-related characteristics. The two formalisms can hence be
considered to be complementary, covering disjoint aspects of real-time embedded systems.
Further, their underlying concepts are well suited to each other. This part deals with an
integration of Z and timed CSP, called RT-Z. It exploits the strengths of both formalisms in

1 An embedded system maintains an internal data state in order to control its interaction with the environment.
This data state reflects relevant properties of its past interaction that determine its ability to interact with the
environment in the present and future. Transitions on that data state (operations) are defined in order to react
to the occurrence of external interactions.
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order to provide a smoothly integrated, single formalism to model all relevant dimensions
of real-time embedded systems. The base formalisms of RT-Z are outlined in Appendix A.

For a description of the general features of RT-Z that is more compact than our treatment
in this thesis, consult [Sühl, 2002] and [Sühl, 1999]. A predecessor of RT-Z is discussed in
[Heisel and Sühl, 1996].

This part is organised as follows. In Chapter 6, we describe the general principles underlying
our integration of Z and timed CSP. In particular, we distinguish between two models of
integration—an abstract and a concrete one—needed to cover the different abstraction levels
involved during the development process. Then, in Chapter 7, we introduce specification
units, the building blocks of RT-Z specifications, which constitute the frames within which
the notations of Z and timed CSP are integrated. Finally, the structuring mechanisms of RT-
Z, which allow us to decompose the specification of complex, highly concurrent systems, are
introduced and defined in Chapter 8.



Chapter 6

Integration Principles

According to our classification of approaches to combining formalisms proposed in
Chapter 5, RT-Z is a conserving integration of Z and timed CSP. The notations of the base
formalisms are hence separated from each other. Accordingly, each RT-Z specification con-
sists of two parts:

• The data-related characteristics and fragments of the static structure are specified by
using the Z notation. We refer to this part as the ‘Z part.’

• The dynamic behaviour and the remaining fragments of the static structure are spe-
cified by using the notation of timed CSP. We call this part ‘CSP part.’

As a conserving integration, RT-Z defines several links between specific elements of its parts;
these links achieve the integration of the notationally separated parts to constitute a single,
uniform specification.

The fragments of the notations of Z and timed CSP used in the parts and the links with which
the parts are related to each other depend on the particular phase within the development
process that is to be supported. There is an abstract and a concrete model of integration; they
are the subject of the following two sections.

6.1 Specifying Properties (Abstract Model of Integration)

The aim of the early phases of the development process, i.e., the system and software re-
quirements specification phases, is to specify properties of the artifact1 in question without
fixing any implementation aspects. The following types of properties must be covered by a
formalism designed to specify real-time embedded systems.

1. The temporal ordering of interactions at the external interface of the considered artifact,
possibly including real-time constraints.

1 An artifact can be a real (physical) system or a piece of software depending on the current phase of the system
development process.
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2. Relationships that must hold between data values communicated between the considered
artifact and its environment via particular external interactions (I/O relations).

3. Properties of data states present at specific time instants during the evolution of the arti-
fact.

It depends on the current phase of the development process which of these types are really
relevant. In this section, a predicate language is introduced that is suited to the abstract
specification of all these types of properties, in separation as well as in connection with
each other. Evidently, properties of the first two types can hardly be specified in isolation,
because data values, about which requirements are to be specified, are communicated with
interactions at the external interface. The predicate language, informally introduced in this
chapter, is backed up formally in Chapter 9. The purpose of each predicate is to induce the
set of valid timed observations of the artifact under consideration. The structure of these
timed observations is defined in detail in Chapter 9; for the time being, let us outline their
structure as follows: each timed observation associated with an RT-Z specification consists
of a timed trace s, a timed refusal ℵ and a timed state tst. The structure of the pair (s,ℵ) is
identical with the denotations of timed CSP processes and denotes the external interaction
of the specified artifact within the observation interval. The timed state tst, on the other
hand, is a function that records the evolution of the artifact’s data state in the observation
interval. In other words, the purpose of each predicate of RT-Z’s predicate language is to
induce a relation between the timed trace, timed refusal and timed state components of
timed observations (denotations). Throughout this thesis we use the convention that the
timed trace, timed refusal and timed state components of a timed observation are denoted
by the identifiers s, ℵ and tst, respectively. That is, these identifiers are free variables of any
predicate. We do not make explicit this dependence of RT-Z predicates on these identifiers.

Concerning the specification of temporal ordering and real-time properties, i.e., properties
with respect to the acceptance and refusal of interactions at the external interface, we adopt
the macro language introduced by Schneider [1999b], which we discuss in Section A.2. These
macros refer to the timed failure component (s,ℵ) of a timed observation.

Regarding the second type of properties—the specification of I/O relations—we include a
new language construct into the predicate language: references to Z schemas. For each
(separately specified) Z schema

IORel == [ var1 : T1; . . . ; varN : TN | Pred ],

the expressions of the predicate language can contain the reference

IORel(var1 =̂ expr1, . . . , varN =̂ exprN),

where expr1, . . . , exprN are timed CSP expressions evaluating to an (untimed) trace or re-
fusal.2 These trace and refusal expressions contain the information which particular data
values have been communicated with the occurrence of particular events along the corres-
ponding channels (and have been refused to be communicated, respectively). The above
schema reference associates the schema components var1, . . . , varN with the expressions

2 Untimed refusals and traces are sets and finite sequences corresponding to the Z type constructors P and seq,
respectively. T1, . . . , TN have thus the form P X or seq X.
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expr1, . . . , exprN. The informal meaning of this reference is that the evaluated expressions
expr1, . . . , exprN must satisfy the conditions specified by the schema IORel with respect to
the variables var1, . . . , varN.

Therefore, the ability to refer to Z schemas and to associate their components with trace and
refusal expressions allows us to express relationships between data values that are commu-
nicated with particular events at the external interface. This is achieved by means of the Z
notation, which is tailored to this task.

We illustrate the predicate language of RT-Z with the help of the requirements specification
of a reliable communication medium, which is situated between an input channel InChn
and an output channel OutChn and must transmit arbitrary messages in the correct order
without any corruption. In the following, we discuss the specification of three requirements
depicted in Figure 6.1, which the medium must meet.

The first requirement Req1 concerns the temporal ordering of external interactions. At any
time during the protocol execution, at most one message delivered to the protocol machine
at the input channel (InChn) may be pending, i.e., not yet delivered to the environment at the
output channel (OutChn). This means that a new message should be accepted at the input
channel only when a successful output on the output channel has been acknowledged.

Req1 =̂ ∀ t : T • 0 ≤ (s �ttr t) ↓ttr {| InChn |} − (s �ttr t) ↓ttr {| OutChn |} ≤ 1

The above predicate restricts the set of timed traces s that are valid observations of the pro-
tocol behaviour (the components ℵ and tst are left unrestricted). It uses functions operating
on timed trace expressions, which are explained in Appendix E. The expression s �ttr t yields
the timed trace up to and including time t, which records all timed events that occurred
before time t. Then, the expression s �ttr t ↓ttr {| InChn |} yields the number of events that
occurred on channel InChn before time t. Thus, in the above predicate, we compare the num-
ber of events that are communicated along the channels InChn and OutChn, respectively, for
each time interval [0, t].

The second requirement Req2 involves the data values communicated with external inter-
actions: if a message is delivered to the environment at the output channel OutChn, then
this message must not be corrupted, i.e., the contents of transmitted messages must not be
changed.

IsPrefix == [ in, out : seq Message | out prefix in ]
Req2 =̂ ∀ t : T • IsPrefix(in =̂ strip((s �ttr t) �ttr {| InChn |}),

out =̂ strip((s �ttr t) �ttr {| OutChn |}))

The I/O relation schema IsPrefix simply specifies a relationship between the sequences in
and out: out must be an initial prefix of in. This Z schema, interpreted in isolation, does not
restrict the behaviour of the protocol at all; only the association of the schema components
in and out with particular trace expressions within the predicate Req2 achieves this. The
schema reference associates in with the expression strip(s �ttr t �ttr {| InChn |}) (the events
that occurred on channel InChn before time t) and the component out with the expression
strip(s �ttr t �ttr {| OutChn |}) (the events that occurred on channel OutChn before time t).
Req2 therefore requires, for each time instant t, that the sequence of messages delivered at the
output channel must be a prefix of the sequence of messages received at the input channel.
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SPEC. UNIT ReliableMedium

TYPES & CONSTANTS

[Message]

INTERFACE

port InChn, OutChn domain Message

I/O RELATIONS

IsPrefix == [ in, out : seq Message | out prefix in ]

STATE PROPERTIES

State == [ pending : seq Message ]
Buffered == λ in, out : seq Message •

[ State | pending = (λ i : N • i + #out) o
9 (dom out−C in) ]

BEHAVIOURAL PROPERTIES

Req1 =̂ ∀ t : T • 0 ≤ (s �ttr t) ↓ttr {| InChn |} − (s �ttr t) ↓ttr {| OutChn |} ≤ 1
Req2 =̂ ∀ t : T • IsPrefix(in =̂ strip(s �ttr t �ttr {| InChn |}),

out =̂ strip(s �ttr t �ttr {| OutChn |}))
Req3 =̂ ∀ t : T •

let in == strip(s �ttr t �ttr {| InChn |}); out == strip(s �ttr t �ttr {| OutChn |}) •
Buffered(in, out) at t

Behaviour sat Req1 ∧ Req2 ∧ Req3

Figure 6.1: Reliable communication medium: requirements.

Finally, properties of the third type are specified in isolation as well as in connection with
properties of the first two types. On the one hand, one might want to specify invariants of the
data state of the artifact in question. On the other hand, one might be faced with properties
of the data state that must be satisfied depending on particular interactions at the interface.
To enable us to formulate requirements with respect to the evolution of the data state, i.e.,
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to refer to the timed state component (tst) of a timed observation, we provide additional
specification macros. They state properties that particular data states within the observation
interval must exhibit.

We call such properties ‘time-variant state properties.’ Each of the additional specification
macros expressing time-variant state properties relates a Z schema, specifying a particular
property of the data state, and a time interval (or time instant). The timed state component
tst of a timed observation meets such a specification macro if, and only if, all data states that
are recorded in tst within the respective time interval (at the respective time instant) have
the property expressed by the respective schema.

In this section, we give only an informal description of these specification macros. A com-
plete definition is possible only after the discussion of the semantic model in Chapter 9.
Suppose in the following that Prop is a Z schema.

at: The specification macro (Prop at t) is satisfied by a timed state tst if, and only if, the last
data state that is recorded in the timed state tst before time instant t (inclusive) has
property Prop.

before: The specification macro (Prop before t) is satisfied by a timed state tst if, and only if,
the last data state that is recorded in the timed state tst before time instant t (exclusive)
has property Prop.

during: The specification macro (Prop during INT) is satisfied by a timed state tst if, and only
if, all data states of tst during interval INT have property Prop.

invariant: (Prop invariant) is satisfied by a timed state tst if, and only if, each data state of tst
has property Prop, i.e., if Prop is an invariant property.

Returning to our example, there is a time-variant state property we should require: at any
time during the protocol execution, the protocol machine must record in its data state the
sequence of messages (pending) received on the input channel but not yet delivered to the
output channel.3

State == [ pending : seq Message ]
Buffered == λ in, out : seq Message •

[ State | pending = (λ i : N • i + #out) o
9 (dom out−C in) ]

Req3 =̂ ∀ t : T •
let in == strip((s �ttr t) �ttr {| InChn |}); out == strip((s �ttr t) �ttr {| OutChn |}) •
Buffered(in, out) at t

The State schema introduces the data state of the protocol with a single component pending.
Further, Buffered is a function whose range are the subsets of schema bindings associated
with the schema State. Applied to the message sequences in and out, it restricts the com-
ponent pending to contain the difference between the sequences in and out, i.e., the messages
contained in in but not contained in out. The function is applied to the sequence of messages
received at the channel InChn and the sequence of messages delivered at the channel OutChn

3 In our example, pending can contain at least one message.
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in the context of the predicate Req3. Altogether, Req3 requires that the protocol must always
record the messages already received but not yet delivered in an appropriate order.

Note that the specification of time-variant state properties makes sense only if a model of
the data state has been defined before. Specifying properties of the data state is reasonable
only in the system requirements specification phase,4 in which one is concerned with systems
with a ‘physical’ state and where one must guarantee properties of this ‘physical’ state.

We add to the syntax of predicates as just described the ability to parametrise predicate
definitions by a list of identifiers.

ID(fp1, . . . , fpN) =̂ Pred

Pred in the above definition can contain free occurrences of fp1, . . . , fpN at arbitrary places.
Each reference to such a parametrised predicate definition must be supplied with a list of
actual parameters of the same length. Formal and actual parameters are identified accord-
ing to their position in both lists. The meaning of referring to such a parametrised predicate
definition is given by a simple textual substitution: the reference is substituted by the right
hand side of the predicate definition where all free occurrences of formal parameters are sim-
ultaneously substituted by the corresponding actual parameters, supplied in the reference.

Let us elaborate the above in the light of our classification of RT-Z as a conserving integra-
tion. Each RT-Z specification in the abstract model consists of two parts: a Z part encapsulat-
ing the Z notation, used to express properties of data values communicated at the external
interface and of the data state evolution; and a CSP part encapsulating the timed CSP nota-
tion, applied to formulate properties of the dynamic behaviour. Basically, there are three
types of links between the parts, which are outlined in Figure 6.2.

First, interactions between an artifact and its environment are modelled in timed CSP by
synchronous events, which may represent mere synchronisations or the communication of
arbitrarily complex data values. Accordingly, timed CSP allows one to associate type infor-
mation with channels. However, this is supported only in a rather rudimentary way, because
timed CSP lacks an appropriate notation to specify data types.5 To overcome this problem
in RT-Z, we associate a value domain with each channel, i.e., an expression that, evaluated in
the context of the Z part, denotes a set of data values. That is, the occurrence of an event on
a particular channel coincides with the transmission of a data value that must be a member
of the associated set.

Second, the predicates in the CSP part, defining the dynamic behaviour, can refer to schemas
defined in the Z part in order to express relationships that must hold between data values
communicated with external interactions (I/O relations). Within such a schema reference,
data values communicated with particular events are bound to the components of the refer-
enced schema.

Finally, the predicates in the CSP part can refer to schemas specified in the Z part in order to
define time-variant state properties, i.e., properties that the evolution of the data state must

4 as opposed to the software requirements specification phase
5 Regarding plain CSP, the current input language of the model checker FDR2 [Formal Systems (Europe) Ltd,

2000], CSPM, comprises a syntax for expressions, types and channel declarations. Moreover, Scattergood
[1998] has defined a formal semantics for CSPM.



6.2. Specifying Models (Concrete Model of Integration) 45

INTERFACE

port In domain T1;
port Out domain T2

BEHAVIOURAL PROPERTIES

Behaviour sat

. . .

In.val1 at t1
⇒

. . .

Out .val2 live t2
∧

IORel(in =̂ val1, out =̂ val2)
∧

StateProp(. . . val1 . . .) at t3

TYPES & CONSTANTS

[T1,T2]

I/O RELATIONS

IORel
in : T1
out : T2

out = . . . in . . .

STATE PROPERTIES

State

StateProp == λ val : . . . •
[ State | . . . val . . . ]

I/O
relation

time-variant
state property

value
domain

CSP part Z part

1

2

3

Figure 6.2: Links between the parts.

meet in the context of particular external interactions. To this end, we employ the macro
language introduced in this section.

The meaning of an RT-Z specification in the abstract model, as formally defined in Chapter 9,
is the meaning of its CSP part. The Z part serves to establish the context for the CSP part.

6.2 Specifying Models (Concrete Model of Integration)

The aim of the later phases of the development process, i.e., the system and software design,
is to fix a more or less detailed model of the implementation of the considered artifact, which
has to satisfy properties, abstractly specified as outlined in the previous section.

Consider first the Z part of an RT-Z specification in the concrete model. Its purpose is the
specification of the data-related characteristics and fragments of the static structure of the
artifact under consideration. The following aspects are to be covered.

• The structure and invariant properties of the valid data states.

• Operations on that data state, which define state transitions.

• Predicates on that data state, expressing conditions to be evaluated with respect to the
current data state.
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• Constants denoting parameters of the artifact under consideration.

• Data types associated with the channels of the interface, restricting the set of data
values that can be communicated.

In the current, concrete model of integrating Z and timed CSP, we apply the predominant
state-oriented conventions of using Z to formulate the above aspects. This is a contrast to
the abstract model dealt with in the previous section.

Following Broy et al. [1992], the specification of a data state and its operations does not
necessarily constrain the final implementation to have an implementation of the data state
and all its operations. Rather, the state machine model is a tool for specifying the data-
related characteristics at the external interface more succinctly and conveniently. The current
data state of an artifact can be interpreted as representing the relevant properties of the past
interaction that determine the artifact’s ability to interact with the environment in the present
and future.

The CSP part, on the other hand, serves to specify the dynamic behaviour and the remaining
fragments of the static structure of the considered artifact, including the following aspects.

• The external stimulus–response behaviour, i.e., its reaction to external stimuli (input
events at the external interface which can carry arbitrarily complex values) in terms of
emitting responses (output events at the external interface which can also carry arbit-
rarily complex values) into the environment.

• The internal control behaviour, i.e., how it distributes and controls internal actions in
order to implement the external interaction with the environment.

• The architecture of the considered artifact, i.e., its decomposition into particular com-
ponents including their interaction via particular channels.

• The structure of its interface.

In the current, concrete model we use the process term language of timed CSP, which allows
us to fix concrete models covering the above aspects.

Links. Basically, there are four types of links between the Z part and the CSP part, which
are shown in the Figures 6.3 and 6.4.

The first type of link is also present in the abstract model of integration: channels in the CSP
part are associated with value domains defined in the Z part.

Second, timed CSP provides indexed forms of some operators, e.g., of the interleaving op-
erator |||. They are parametrised by an index set, whose members are used to identify the
individual processes being composed. However, timed CSP does not provide an adequate
notation to specify these index sets formally. In RT-Z, by contrast, each index set is formally
defined in terms of an expression that, evaluated in the context of the Z part, denotes a set
of index values.

Third, timed CSP extends (plain) CSP with real-time operators, which are operators with
real-valued parameters. The Z part serves, among other things, to declare and constrain
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Z part
TYPES & CONSTANTS

[Set1]

Set2 : P Set1

IS ::= . . .

t : T

t >R . . .

STATE

State

. . .

. . .

Init

State

. . .

OPERATIONS

Op

∆State
in?, out ! : Set1

. . .

index
set

2

real-time
parameter

3

operation
termination

operation
invocation

4

INTERFACE

port In domain IS × Set1 ;
port Out domain IS × Set1

BEHAVIOUR

Behaviour =̂
|||

i∈IS

In?val : ({i} × Set2) →

OpI ?par : [ in? : Set1 | in? = val .2 ] →

Wait t ;

OpT?par : [ out ! : Set1 ] →

Out !(i , par .out !) → . . .

|[ {| In |} ∪ {| Out |} ]|

. . .

CSP part

value
domain

1

Figure 6.3: Links between the parts (double event approach).

constants of type T, which denotes the time domain of timed CSP and also of RT-Z. Each
real-valued parameter occurring in the CSP part must be given in terms of an expression
that, evaluated in the context of the Z part, denotes a value of type T.

Finally, one of the main tasks of the CSP part, as already indicated, is to control the execution
of the operations specified in the Z part. To model this control relationship, there are two
alternatives for relating Z operations and CSP events. The choice depends on the required
abstraction level; more specifically, it depends on whether or not the specifier intends to
abstract from the time needed to execute an operation.

In the case in which the time interval of executing an operation, say Op, is relevant, the op-
eration schema Op of the Z part is related to the pair of dedicated channels OpI and OpT,
on which the CSP part communicates in order to control the execution of the operation.
This case is depicted in Figure 6.3. Events on the channel OpI represent the invocation of
the operation Op with a particular assignment of values to the input parameters. The data
value that is communicated with such an invocation event between the invoking CSP pro-
cess and the invoked Z operation is a schema binding mapping each input parameter of the
corresponding operation schema to a value. It denotes the agreement of the two parts on
particular values of the input parameters with which the operation is invoked.6 Events on
the second channel of the pair, OpT, represent the termination of the invoked operation Op.
The produced output parameters are transmitted with such a termination event between the

6 Each channel OpI is implicitly associated with the value domain that includes all bindings of the input par-
ameters of the operation schema Op.
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TYPES & CONSTANTS

[Set1]

Set2 : P Set1

IS ::= . . .

t : T

t >R . . .

STATE

State

. . .

. . .

Init

State

. . .

OPERATIONS

Op

∆State
in?, out ! : Set1

. . .

Z part

operation
execution

4

index
set

2

INTERFACE

port In domain IS × Set1 ;
port Out domain IS × Set1

BEHAVIOUR

Behaviour =̂
|||

i∈IS

In?val : ({i} × Set2) →

Wait t ;

OpX ?par : [ in?, out ! : Set1 | in? = val .2 ] →

Out !(i , par .out !) → . . .

|[ {| In |} ∪ {| Out |} ]|

. . .

CSP part

real-time
parameter

3

value
domain

1

Figure 6.4: Links between the parts (single event approach).

terminated operation and the invoking CSP process.7

Relating an operation to a pair of channels and an operation execution to a pair of events,
respectively, allows us to specify requirements concerning the interval of an operation exe-
cution, for instance, constraints on its duration.

In the other case, in which these time intervals are not relevant, an operation schema Op
of the Z part is related to a single channel OpX. This case is depicted in Figure 6.4. Events
on this channel represent the instantaneous execution of the operation. The data value that
is communicated with such an execution event between the executed Z operation and the
executing CSP process is a schema binding mapping each input and output parameter of the
corresponding operation schema to a value. It denotes the agreement of the two parts on
particular values of the input parameters and the sole fixing of the output parameter values
by the Z operation.8

According to the terminology proposed by Fischer [1998], these cases are called the double
and single-event approach, respectively. They can be combined arbitrarily in a single RT-Z
specification. That is, some operations of the Z part can be controlled by means of the single-
event approach, while the remaining operations are controlled by using the double-event
approach.

7 Each channel OpT is implicitly associated with the value domain that includes all bindings of the output
parameters of the operation schema Op.

8 Each channel OpX is implicitly associated with the value domain that includes all bindings of the input and
output parameters of the operation schema Op.



6.2. Specifying Models (Concrete Model of Integration) 49

external
interactions

internal actions
(operations)

|[ ORE ]|

\ ORE

timed CSP
interpretation

Z part

(timed) 
CSP part

concrete specification unit

external behaviour at interface:
denotations without ORE

internal behaviour:
denotations with ORE

(operation related events)

Figure 6.5: Principle of composing the Z part and the CSP part.

Main Principle. Now, we are in a position to discuss the main principle underlying the
integration of Z and timed CSP in the concrete model. This principle follows an idea of Smith
[1997], which he applied to the integration of plain CSP and Object-Z. Following this idea
and adapting it to our specific context, we are able to interpret a Z specification as a timed
CSP process: a process that controls the events related to its operations as follows. It accepts
the invocation/execution of an operation with particular input parameters if, and only if, the
precondition of the corresponding operation schema is satisfied with respect to its current
data state and the supplied input parameters; otherwise, it blocks the invocation/execution
of the operation. The termination of an invoked operation with particular output parameters
is accepted under analogous conditions.

By interpreting the Z part of an RT-Z specification as a timed CSP process, the meaning of
the overall specification is defined as the parallel composition of the CSP part and the timed
CSP interpretation of the Z part, where both parts synchronise on the set of operation-related
events, i.e., on the execution, invocation and termination of operations. These operation-
related events are defined to be internal by hiding them from the environment of the parallel
composition. That is, the occurrence of operation-related events is completely controlled by
the considered artifact and not visible to the environment. This principle of composing the
parts is outlined in Figure 6.5.

As a consequence of composing the Z and the CSP part in the chosen way, an operation is
invoked/executed only if the corresponding invocation/execution event is accepted by both
parts simultaneously; when both parts accept an event, they also agree on a specific assign-
ment of values to the input parameters. This means that the specific values with which an
operation is invoked/executed are equally influenced by both the corresponding Z opera-
tion schema and the value denotation of the corresponding CSP event.

Note that we adopt a view of the application of Z operations that is usually called the ‘block-
ing view’: an operation can be invoked/executed only within its precondition; outside its
precondition, the invocation/execution is blocked.

Due to the chosen way of composing the two parts, we are able to express another relation-
ship between the Z and the CSP part by employing only the links already described. The
dynamic behaviour of an artifact, specified in the CSP part, usually depends on its current
data state, specified in the Z part. In RT-Z, such a kind of dependence is modelled in terms
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of an operation schema, say Pred, that does not change the data state (ΞState) and whose pre-
condition is equivalent to the condition on the data state to be evaluated. According to the
integration principles just discussed, the occurrence of the execution event PredX implies the
successful evaluation of the precondition of the operation schema with respect to the current
data state, in other words, the successful evaluation of the condition to be evaluated.

Parameter Exchange. Let us have a closer look at the interaction between the Z and the
CSP part that takes place when an operation is executed (single event approach). An exe-
cution event, representing the instantaneous application of an operation, communicates the
input and output parameters of the operation. The values of the input parameters must be
agreed on by both the Z operation and the executing CSP process, whereas the values of
the output parameters are solely determined by the executed Z operation. We discuss the
structure of the value denotation of an execution event within the CSP part.

The value communicated with an execution event is a binding, mapping each operation
parameter to a value. Since the output parameters should be solely determined by the Z op-
eration, the value denotation of the execution event in the CSP process must allow arbitrary
values for the output parameters. In contrast, the value denotation of the execution event
must allow us to express arbitrary constraints on the values of the input parameters. These
constraints usually depend on values bound by the CSP process during prior event occur-
rences. The Z operation, by definition, accepts all combinations of input parameter values
that satisfy its precondition with respect to the current data state.

Let us consider the value denotation of an execution event OpX as an example.

OpX?par : [ in? : T1; out! : T2 | in? = in† ]

The above schema expression defines a set of bindings of the input parameter in? and the
output parameter out!. In these bindings, in? is uniquely determined by the value in†, which
can be thought of as being a variable bound during a prior event occurrence. The Z part
accepts all input parameter values in? satisfying the precondition of Op with respect to the
current data state. That is, the execution event OpX occurs if, and only if, the precondition
is satisfied with respect to the combination of the value in† and the current data state. The
value of out!, by contrast, is left unspecified by the schema expression and hence by the CSP
part.

Analogous remarks apply to the double event approach. Let us consider the value denota-
tion of an invocation event OpI as an example.

OpI!〈| in? == in† |〉

Since only input parameters are communicated with invocation events (no output param-
eters!), the binding set associated with an invocation event is singleton if, and only if, the
values of all input parameters are uniquely fixed by the invoking CSP process. This is the
case in the above example, where the channel output operator is used to fix this unique
binding of input parameters.

On the other hand, the value denotation of a termination event, e.g.,

OpT?par : [ out! : T2 ]
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must allow arbitrary output parameter values, which are solely determined by the invoked
operation.

This completes our discussion of the basic principles underlying the abstract and concrete
model of integrating Z and timed CSP. In the next chapter, we deal with the notation of the
two models of integration: abstract and concrete specification units.
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Chapter 7

Specification Units

To manage the inherent complexity of systems, software and systems engineering1 interpret
a system as a hierarchical composition of interacting subsystems and system components.2

Accordingly, the specification of a complex system in RT-Z is composed of a hierarchy of
units, which we call specification units. A basic specification unit defines the behaviour of a
single system component, and the appropriate composition of specification units, forming
compound specification units, produces subsystem and ultimately system specifications. In
other words, specification units are a means for structuring system and subsystem specifi-
cations. Specification units correspond to system units. A system unit can be thought of as
being an instance/implementation of a specification unit, which defines its structure and be-
haviour. Each specification unit can have any number of instances. Hence, the relationship
between specification units and system units in RT-Z can be compared with the relation-
ship between classes and objects in an object-oriented approach. See also Figure 7.1 for an
illustration of the used terminology.

Each RT-Z specification consists of two fragments: the global definitions, introducing con-
stants and data types that are global with respect to the whole specification, and the de-
finition of the structure and behaviour of the system under development, consisting of a
hierarchy of specification units.

Hierarchical decomposition is a means for coping with the complexity of large and highly
concurrent systems. First, the hierarchical decomposition of a system specification in RT-Z
can reflect conceptual or physical structures within the problem domain, and it supports
encapsulation and separation of concerns. Thus, it is a prerequisite for a clear and problem-
oriented system description and hence for the intelligibility of the specified system and the
ability to analyse it. Second, specification units in RT-Z constitute the frames within which
concurrent activities working on a common (data) state space can be encapsulated. That is,
the hierarchical decomposition of a system specification is the only way in RT-Z to model
concurrency on a common data state space.

Syntactically, a specification unit is a named and delimited piece of an RT-Z specification. Its

1 For a detailed account of the concepts underlying systems engineering consult [Kronlöf, 1993, Chapter 1] and
[Leveson, 1995].

2 System components are subsystems that are not decomposed any further.
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system
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system
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aggregated
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system spec.
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implementation
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Figure 7.1: Used terminology.

coarse-grained structure is given by two parts (the Z and the CSP part), and its fine-grained
structure is given by a number of sections, where each section belongs to one part.

All specification languages that aim to cope with complex systems provide syntax to com-
pose specifications of simpler units in a hierarchical manner. Generally speaking, the RT-
Z concept “specification unit” corresponds to the B concept “machine” [Abrial, 1996], the
TLA+ concept “module” [Lamport, 2000], the LOTOS concept “process” [Bolognesi et al.,
1995], the ASTRAL concept “process type definition” [Coen-Porisini et al., 1997], the Object-
Z concept “class” [Smith, 2000] etc.

In this chapter, we introduce the notation for defining single specification units. The struc-
turing mechanisms for building compound specification units are the subject of the next
chapter. As described in Chapter 6, there are two different models of integrating Z and
timed CSP. The structure of a specification unit depends on the chosen model. We first dis-
cuss the structure of specification units in the concrete model; afterwards, we describe this
structure for the abstract model.

7.1 Concrete Specification Units

We discuss concrete specification units with the help of the example started in Section 6.1,
where we have provided the requirements specification of a reliable communication me-
dium. In this section, we prepare the specification of the design of a particular protocol that
achieves such a reliable communication, namely of the alternating bit protocol. This design
specification can be completed only after the introduction of structuring mechanisms in the
next chapter.

The alternating bit protocol (ABP) is a specific design to meet the requirements specification
of the reliable communication medium in Section 6.1. The design is outlined in Figure 7.2.

sender receiver

ack_medium

msg_medium

ABProtocol

MsgSend MsgRcv

AckRcv AckSend

In Out

Figure 7.2: Alternating bit protocol: architecture.
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There are two protocol components, sender and receiver, responsible for the protocol imple-
mentation at the input and output location and for communicating with an external sender
and receiver, respectively. The protocol components are connected by a pair of unreliable,
unidirectional communication media, msg medium and ack medium, which are themselves
modelled as system components rather than channels, because they have a non-trivial, time-
consuming behaviour. The message medium serves to transmit messages with an additional
protocol information from the sender to the receiver component, and the acknowledgement
medium serves to transmit acknowledgement bits the other way around. The protocol com-
ponents interact with the communication media through the channels depicted by arrows;
the channel MsgSend, for example, serves the sender component to deliver message/bit pairs
to the message medium.

To illustrate the discussion of concrete specification units, we choose the sender component
as an example, whose specification unit is depicted in Figure 7.3. Note that—for reasons of
presentation—we have made the specification unit Sender more complex than necessary in
order to cover most aspects of concrete specification units.

A template of concrete specification units is given in Figure 7.4. In the following, we discuss
the sections of concrete specification units in the context of the example.

A specification unit, if concrete or abstract, can be parametrised by a list of formal param-
eters fp1, . . . , fpN. The instantiation of these formal parameters by the context of the speci-
fication unit is discussed in detail in Section 8.5. The concrete specification unit Sender is
parametrised by the identifiers MSG, ACK and MaxDelay, which represent the message and
acknowledgement domains the sender component must be able to process and the time
period the sender component must wait for an acknowledgement of a sent message before
repeating the sending procedure.

Since the considered specification unit is a basic one, it contains neither an EXTENDSsec-
tion nor a SUBUNITSsection. They are discussed in the next chapter when dealing with
structuring mechanisms.

TYPES & CONSTANTS: We distinguish between two kinds of types and constants that can
occur in a specification unit.

• Local types and constants are declared and constrained in the TYPES & CON-
STANTSsection by using the Z notation. Their scope is the current specifica-
tion unit. Therefore, local types must not be used to define the value domains
of interface ports, because the scope of these local types does not encompass the
specification unit’s context, which must be able to refer to the interface.

• Global types and constants are formal parameters of a specification unit. They
are instantiated by the context into which the specification unit is embedded. A
specification unit can express constraints on the possible instantiations of a formal
parameter. This is achieved by additionally declaring the formal parameter in the
TYPES & CONSTANTSsection and by defining appropriate constraints.
This mechanism of defining formal parameters of specification units in conjunc-
tion with constraints on their allowed instantiations makes specification units
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SPEC. UNIT Sender [ MSG, ACK, MaxDelay ]

TYPES & CONSTANTS

[MSG, ACK] MaxDelay : T #ACK = 2

INTERFACE

port In domain MSG;
port MsgSend domain MSG× ACK;
port AckRcv domain ACK

ENVIRONMENTAL ASSUMPTIONS

EA =̂ ∀ t : T; pck : MSG× ACK • MsgSend.pck open t

STATE

State == [ curr : MSG; ack : ACK ]

OPS & PREDS [CorrectAck, IncorrectAck ]

CorrectAck == [ ∆State; rec? : ACK | rec? 6= ack ∧ ack′ 6= ack ]
IncorrectAck == [ ΞState; rec? : ACK | rec? = ack ]

Update curr == [ ∆State; curr? : MSG | curr′ = curr? ∧ ack′ = ack ]
Lookup == [ ΞState; curr! : MSG; ack! : ACK | curr! = curr ∧ ack! = ack ]

BEHAVIOUR

Behaviour =̂ Receive
Receive =̂ In?(rec : MSG) → Update curr(rec) → Send
Send =̂ σ(MsgSend!(curr, ack) → Acknowledge)
Acknowledge =̂ (AckRcv?(rec : ACK) →

IncorrectAckX!〈| rec? == rec |〉 → Send
� CorrectAckX!〈| rec? == rec |〉 → Receive)

.{MaxDelay} Send

Figure 7.3: Sender component: specification unit.

more self-contained.3

3 In particular, the information needed to type-check the Z part of a specification unit independently of its
context is available within that specification unit.
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SPEC. UNIT Name [ fp1, ..., fpN ]

EXTENDS

SUBUNITS

TYPES & CONSTANTS

INTERFACE

ENVIRONMENTAL ASSUMPTIONS

LOCAL

STATE

OPS & PREDS [IDlist ]

BEHAVIOUR

Figure 7.4: Template of concrete specification units.

Global types can be used to define the value domains of the interface ports, be-
cause their scope encompasses the context into which the specification unit is em-
bedded.

A particular kind of constant introduced in the TYPES & CONSTANTSsection are con-
stants of the predefined type T, which are used in the CSP part as parameters of real-
time operators.

As indicated, the context into which the specification unit Sender of our running ex-
ample is embedded instantiates the formal parameters. We are, however, able to ex-
press constraints on the freedom of the context to perform these instantiations. This is
achieved in the TYPES & CONSTANTSsection. First, the identifiers MSG and ACK are
declared as given sets which constrains the context to instantiate these identifiers by
set expressions. Moreover, the identifier MaxDelay is declared as a time value. Finally,
ACK is required to consist of exactly two elements, which is vital for the chosen design.

INTERFACE: The interface of a specification unit consists of the communication channels,
called ports, via which the communication and synchronisation with the environment
is achieved. The declaration
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port chan domain S

associates the Z expression S with the port chan, which is a communication channel in
CSP terms. The Z expression S, evaluated in the context of the corresponding Z part,
denotes the set of data values that can be communicated with events on that channel.
The predefined Z type SYNC is used for channels that serve mere synchronisation
without data transmission purposes.

The scope of the declared ports is the ENVIRONMENTAL ASSUMPTIONSand the BE-
HAVIOURsection of the current unit.

The declarations in the INTERFACEsection of the specification unit Sender are self-
explanatory.

LOCAL: This section is used to introduce internal channels, which are not part of the external
interface but used only for internal communication and synchronisation purposes. The
declaration

channel chan domain S

associates the Z expression S with the channel chan, where S denotes the set of data
values that can be communicated with events on that channel. Internal channels are
implicitly hidden from the environment of the process definition given in the BEHAV-
IOUR section.

The scope of the declared channels is the BEHAVIOURsection of the current unit.

The specification unit Sender does not have a LOCALsection, because there is no need
for an internal communication and synchronisation. In fact, a LOCALsection is needed
only for compound specification units that aggregate other ones and that need to con-
trol the interaction between the aggregated units; for more details see the next chapter.

ENVIRONMENTAL ASSUMPTIONS: This section serves to document the assumptions that
underlie the implementation of a specification unit with respect to the behaviour of
its environment at the interface. If the environment violates these assumptions, an
implementation of the specification unit is free to behave arbitrarily.

Environmental assumptions are formalised with the help of an extension of the predi-
cate language of timed CSP, defined in Section 9.2.4. The environmental assumptions
of a specification unit are defined by the dedicated predicate EA in the ENVIRONMEN-
TAL ASSUMPTIONSsection. It is the task of this predicate to characterise a set of legal
interactions at the interface, which are formalised in RT-Z as timed failures (s,ℵ).

The ENVIRONMENTAL ASSUMPTIONSsection of the example unit defines the predi-
cate EA, which induces a relation between timed traces s and timed refusals ℵ. In-
formally, the channel MsgSend is always required to accept any package consisting of
an arbitrary message and acknowledgement bit. This prevents the sender from being
blocked. The assumption is formulated in terms of the specification macro open, which
expresses that the environment must accept a communication on the given channel
MsgSend at the given time instant t.

STATE: The Z notation is used to define the space of valid data states and the subset in
which the implementations of a specification unit are allowed to start. This is achieved
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by means of the dedicated schemas State and Init. If no Init schema is defined, the initial
subset is fixed to be equal to the whole data state space.4 In addition to these dedicated
schemas, the STATEsection can define further auxiliary schemas whose purpose is to
structure the definition. In any case, the STATEsection can be reduced to the State and
Init schemas by expanding references to auxiliary schemas with their definition.

The context of this section is constituted by the TYPES & CONSTANTSsection.

The data state of the example unit consists of the message and acknowledgement bit
to be currently transmitted to the receiver; the inversion of the bit is expected from the
receiver component as the acknowledgement for the reception of the current message.
This data state is very simple and hence does not allow us to make use of the features of
the Z notation to define invariant relationships between state components. Moreover,
the subset of initial data states is not restricted.5

OPS & PREDS: Transitions and conditions on the data state are specified by operation sche-
mas. All operation schemas are based on the dedicated schema State.

The OPS & PREDSsection is parametrised by a list of identifiers of operations to be con-
trolled and predicates to be evaluated by the CSP part. This list distinguishes schemas
defining operations and predicates from auxiliary schemas.

For each operation schema Op, specifying an operation or predicate, the schema

NotOp == ¬ pre Op ∧ ΞState

is supposed to be defined implicitly. It defines the predicate that is the negation of the
precondition of the operation schema Op.

In addition to the operations defined explicitly, each specification unit defines several
derived operations implicitly. First, it is a frequent task when defining the dynamic be-
haviour in the CSP part to access the current data state in order to communicate parts of
it to the environment. To this end, each specification unit defines the operation Lookup
implicitly, which binds each data state component to an equally named output param-
eter. The derivation of this operation schema from the State schema of a specification
unit is straightforward. The operation Lookup can be used to access the components
of the current data state via the corresponding output parameters. Second, it is also a
frequent task when defining the dynamic behaviour to update a particular component
of the data state with a value received from the environment. To this end, each speci-
fication unit defines the operation Update comp for each component comp of the data
state, which updates this component with the value of the equally named input par-
ameter comp?. The derivation of these operation schemas from the schema State is also
straightforward. The identifiers of all operations defined implicitly are not included
within the identifier list.

Returning to the unit Sender, there are two operations CorrectAck and IncorrectAck that
are defined explicitly and two operations Lookup and Update curr that are defined im-
plicitly (the third implicit operation Update ack is not needed in the following and

4 Init == State
5 We will see later that the initial data state of the sender can be constrained only in conjunction with the initial

data state of the receiver, with which we can deal when having introduced aggregation in the next chapter.
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hence omitted). The operations CorrectAck and IncorrectAck define the reaction to re-
ceiving a correct and incorrect acknowledgement from the receiver component, re-
spectively. The operation schemas Lookup and Update curr, which are in fact not visible,
demonstrate the straightforward derivation of these two kinds of operation schemas
from the state schema.

BEHAVIOUR: The base language for specifying the dynamic behaviour of specification units
is the process term language of timed CSP, which we have extended in order to accom-
modate the needs in the context of the integrated formalism. This extended process
term language is discussed in detail in Section 9.2.4.

The dynamic behaviour is defined by a process with the dedicated identifier Behaviour.
To structure its definition, the BEHAVIOURsection can define further processes, to
which the process Behaviour—directly or indirectly—refers. Process definitions in
timed CSP

ID =̂ ProcTerm

have two purposes:

• to structure large process expressions and
• to express simple and mutual recursion.

We add the ability to parametrise process definitions by a list of identifiers

ID(fp1, . . . , fpN) =̂ ProcTerm

to the syntax of timed CSP. ProcTerm in the above definition can contain occurrences
of fp1, . . . , fpN at arbitrary places. Each reference to such a parametrised process de-
finition must be supplied with a list of actual parameters of the same length. Formal
and actual parameters are identified according to their positions in both lists.

For parametrised process definitions to be well-defined, however, we must exclude
the possibility that they are involved in recursive definitions. That is, for each param-
etrised process definition

P(fp1, . . . , fpN) =̂ ProcTerm

ProcTerm must not contain—directly or indirectly—references to P. Having excluded
recursive definitions of parametrised processes, the meaning of referring to a param-
etrised process definition is given by a simple textual substitution: the reference is
substituted by the right hand side of the process definition where all free occurrences
of formal parameters are simultaneously substituted by the corresponding actual par-
ameters, supplied in the reference.

As already indicated, the dynamic behaviour consists of two aspects. The external
stimulus–response behaviour at the external interface defines the response to external
stimuli in terms of emitting responses into the environment. The internal control be-
haviour, on the other hand, defines the control of the application of internal operations
that have to take place in reaction to external interactions.

Let us return to the example. The BEHAVIOURsection of the unit Sender defines four
processes, which are mutually recursive. The process Receive first awaits a new mes-
sage on the channel In. Having received such a message it must update its current data
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state. This update is defined by the notation Update curr(rec) which is an abbreviation
of the event Update currX!〈| curr? == rec |〉. According to the discussion in the OPS &
PREDSsection, the operation schema Update curr is defined implicitly, and it models
the update of the state component curr. Thus, the above execution event defines the
update of this state component with the received value rec.

The task of the process Send is to deliver the package consisting of the current message
and acknowledgement bit to the channel MsgSend. Therefore, the current data state
must be accessed, before its components can be delivered. The notation

σ(MsgSend!(curr, ack) → . . .)

combines these two steps; it is a shorthand for the process

LookupX?st : [ curr! : MSG; ack! : ACK ] → MsgSend!(st.curr!, st.ack!) → . . .

which accesses the current data state in the first step and uses the variable st, to which
the components of the current data states are bound, in the second step.

The purpose of the process Acknowledge is to await and process the acknowledgement
of the current message, which must be re-sent if an incorrect acknowledgement has
been received or if no acknowledgement has been received for MaxDelay time units.
After an acknowledgement has been received on the channel AckRcv, the subsequent
behaviour of the unit Sender depends on the relationship between the received acknow-
ledgement bit and the current data state. This dependence on the current data state is
expressed by the external choice whose two branches are guarded by the execution
events of the operations IncorrectAck and CorrectAck. As stipulated in the previous
chapter, the execution event of an operation is accepted by the “Z process” if, and
only if, the precondition of the operation schema is satisfied with respect to the cur-
rent data state and the supplied input parameters. Note further that the preconditions
of the operation schemas CorrectAck and IncorrectAck partition the data state. Thus,
for each combination of the current data state and received acknowledgement bit, the
precondition of exactly one operation is satisfied, which resolves the external choice
accordingly.

7.2 Abstract Specification Units

A template of abstract specification units is given in Figure 7.5. We have already presented an
example of abstract specification units in Section 6.1, namely the requirements specification
of a reliable communication medium.

We concentrate only on the differences between the structure of abstract and concrete specifi-
cation units. Since it is not reasonable in the abstract model to stipulate the internal structure
of an artifact, there is neither a SUBUNITSnor a LOCALsection. The purpose of the TYPES &
CONSTANTS, the INTERFACEand the ENVIRONMENTAL ASSUMPTIONSsections is identical
to that of the corresponding sections of concrete specification units.

I/O RELATIONS : This section serves to introduce Z schemas expressing relationships that
must hold between data values communicated with external events. They are referred
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SPEC. UNIT Name [ fp1, ..., fpN ]

EXTENDS

TYPES & CONSTANTS

INTERFACE

ENVIRONMENTAL ASSUMPTIONS

I/O RELATIONS

STATE PROPERTIES

BEHAVIOURAL PROPERTIES

Figure 7.5: Template of abstract specification units.

to in the BEHAVIOURAL PROPERTIESsection. Within such a schema reference, data
values communicated with particular events are bound to the components of the ref-
erenced schema.

STATE PROPERTIES: If present, this section defines the dedicated schema State, which,
like in the concrete model, defines the space of valid data states. At first glance, this
seems to contradict the real purpose of abstract specification units. In the context of
the system development phases, however, in which one is often faced with a physic-
ally fixed state, the model of this system state should be taken into account already in
the abstract requirements specification. Based on this state model one is interested to
express further properties of the state that must hold in particular situations depend-
ing on the external interaction. Additional Z schemas specified in the current section
define time-variant state properties, i.e., properties that the evolution of the system
state must meet in the context of particular external interactions. They are referred to
in the BEHAVIOURAL PROPERTIESsection, too.

BEHAVIOURAL PROPERTIES: This section is the core of abstract specification units, spe-
cifying all relevant types of system properties discussed in Section 6.2 by referring to
the definitions of the previous two sections. Its purpose is to specify the properties
of the dynamic behaviour of the artifact under consideration, including aspects of the
temporal ordering of external interactions, real-time constraints and properties of the
data values communicated with these external interactions. The language for specify-
ing the dynamic behaviour in abstract specification units is the predicate language of
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the timed failures/states model, which we introduce in Section 9.2.5. The dedicated
predicate Behaviour defined in the BEHAVIOURAL PROPERTIESsection induces a re-
lation between timed failures (s,ℵ) and timed states tst, corresponding to legal timed
observations at the interface of the artifact at hand.
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Chapter 8

Structuring Mechanisms

A basic specification unit as discussed in Chapter 7 is suited to specify a single system com-
ponent with a relatively low complexity from scratch. Basic specification units have thus
several shortcomings. First, they are not appropriate to specify large and complex systems;
to be able to cope with such systems, we must provide adequate structuring concepts in or-
der to stepwise reduce a complex problem to simpler problems and to compose the resulting
component specifications to obtain a system specification. Second, a single specification unit
is not able to model parallel activities on a common data state space. To model such parallel
threads of control as well, we need a means for composing individual sequential threads of
control, encapsulated within different specification units. Third, it would be useful to reuse
the definition of existing specification units within different system specifications. There-
fore, a mechanism is needed that allows us to build a system specification on a library of
RT-Z specification units.

To overcome all three shortcomings of single specification units as just discussed, we basic-
ally provide two structuring constructs which compose specification units to more complex
ones. Aggregation copes with the first two limitations and extension with the last.

Aggregation models physical or conceptual ‘part-of’ relationships: an aggregating unit con-
tains several smaller or simpler units, called aggregated units. The data state and the dy-
namic behaviour of an aggregating unit is the (individually defined) composition of the data
states and dynamic behaviour patterns of its aggregated units, respectively. Any specifica-
tion unit within a hierarchy that is induced by the aggregation relationship encapsulates the
structure and behaviour of an entire system, of a subsystem or of a basic system component,
depending on its specific position within the hierarchy. The process term language of timed
CSP is used by an aggregating specification unit to fix the configuration of its aggregated
units including their interaction via particular communication channels. Since each aggre-
gated unit encapsulates its separate data state, composing two aggregated units in parallel
allows us to model parallel threads of control that work on disjoint parts of the overall, com-
posed data state. This issue of parallelism is dealt with in the next section.

Extension, on the other hand, is a concept that supports reuse. It is orthogonal to aggregation:
it allows any specification unit within an aggregation hierarchy to be defined as an extension
of previously defined specification units, for instance, constituents of a specification library.

65
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Extension can be regarded as an import mechanism for general-purpose definitions, but also
as a means for incremental specification.

In Chapter 9, we define the formal meaning of single specification units. In this chapter, we
informally explain the relationships between aggregating and aggregated specification units
on the one hand and between extending and extended specification units on the other hand.
To formally define the meaning of aggregation and extension, we develop transformation
rules that reduce a hierarchy, constituted by the aggregation or extension relationship, to a
single specification unit; and we identify the meaning of a hierarchy of specification units
with the meaning of the single specification unit resulting from the process of reduction.
Both transformations—concerning aggregation and extension—do not mean that we gener-
ally drop the idea of decomposing a specification; they have only the purpose to define the
semantics. This “transformational approach” to defining the semantics of structured speci-
fications is not uncommon: the semantics of Object-Z [Smith, 2000], e.g., is defined in terms
of transformation rules from Object-Z to (plain) Z syntax.

This process of reducing a hierarchy of specification units into a single one is a recursive
process from the leaves of the hierarchy towards the root. Its elementary step is to reduce
an aggregating (extending) and all its aggregated (extended) specification units to a single
specification unit. This elementary step is part of the subject of the subsequent discussion.

8.1 Aggregation

Aggregation, as just indicated, is a structuring mechanism that defines the internal—physic-
al or conceptual—structure of the artifact under consideration. It is therefore applicable only
in the concrete model, i.e., to concrete specification units. The only mechanism to structure
abstract specification units is extension.

8.1.1 Example

To illustrate the aggregation mechanism and the consequences of applying it, we consider a
simple example: fragments of the requirements specification of a ticket sale system, which is
shown in Figure 8.1. The sale of tickets might concern, e.g., a particular performance with a
restricted capacity. We suppose that the ticket sale is distributed to two offices, both specified
by the specification unit TicketOffice. The overall sale system, TicketSale, is the aggregation of
the two offices.

The data state of each office is given by the number of tickets sold so far, where each office
has a fixed maximum allocation of cards (Alloc) that must not be exceeded. The behaviour
of both offices is cyclic, where each cycle concerns a single card request: a request to issue a
particular number of cards (ticket req) is responded successfully (ticket out) if the respective
office is allowed to issue the requested number; otherwise the request fails (failure). The
overall ticket sale system is the composition of the two offices. Its data state is the union of
the data states of the offices, represented by the state components officeA and officeB, and its
dynamic behaviour is the interleaving of the behaviour patterns of the offices.

There are two main aspects related to aggregation we would like to indicate before going
into further details. The first aspect is the concurrency inherent in the ticket sale system: the
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SPEC.UNIT TicketOf£ce

INTERFACE

port ticket req, ticket out domain N;
port failure domain SYNC

TYPES & CONSTANTS

Alloc : N

STATE

State
sold : N
sold ≤ Alloc

Init
State
sold = 0

OPS & PREDS [ Sell ]

Sell
∆State
num? : N
sold+ num? ≤ Alloc
sold′ = sold+ num?

BEHAVIOUR

Behaviour =̂ IDLE
IDLE =̂ ticket req?n : N →

(SellX?par : 〈| num? == n |〉 → ticket out!n → IDLE
¤ NotSellX?par : 〈| num? == n |〉 → failure → IDLE)

SPEC.UNIT TicketSale

INTERFACE

. . .

SUBUNITS

subunit of£ceA spec.unit TicketOf£ce
rename ticket req to ticket reqA, ticket out to ticket outA,

failure to failureA;

subunit of£ceB spec.unit TicketOf£ce
rename ticket req to ticket reqB, ticket out to ticket outB,

failure to failureB;

TYPES & CONSTANTS

Capacity : N
of£ceA.Alloc ≤ Capacity ∧ of£ceB.Alloc ≤ Capacity

STATE

SubunitStates
of£ceA : TicketOf£ce.State
of£ceB : TicketOf£ce.State

GlobalInv
SubunitStates
of£ceA.sold + of£ceB.sold ≤ Capacity

BEHAVIOUR

Behaviour =̂

of£ceA.Behaviour
|||
of£ceB.Behaviour

Figure 8.1: Example: ticket sale system.
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aggregated offices are composed by the interleaving operator (|||) and thus they evolve (in
principle) independently of each other. In particular, this means that the operations defined
by the two offices may be applied concurrently. The second aspect is the concept of so-called
global invariants. In addition to the local invariants of the data states of the offices, the schema
GlobalInv of the ticket sale system specifies a constraint on the relationship between the state
components of the two offices: both offices together must not sell more cards than the overall
capacity of the performance. This global invariant has some important consequences with
respect to the interaction of the aggregated offices.

Consider the data state of the overall system in which the two offices together have almost
exhausted the capacity. If the offices receive requests simultaneously that together but not
alone will exceed the capacity, then the considered RT-Z specification does not prevent the
parallel execution of the corresponding operations. The interpretation prescribed by the
RT-Z semantics is that the system will diverge in this case, i.e., it will behave in an arbit-
rary way. This means that an implementation of the ticket sale specification is required
to respect the overall capacity unless there is a simultaneous request to the two offices
whose cumulative amount exceeds the capacity. The requirements specification simply ab-
stracts from the consideration of this specific situation. It is the task of a more concrete
design specification to devise mechanisms preventing the parallel execution of two requests
under such circumstances. For instance, the offices might be connected by a channel via
which they could coordinate the issue of cards; or the allocations might be fixed such that
officeA.Alloc + officeB.Alloc ≤ Capacity holds.

8.1.2 Global Invariants

Global invariants arise in conjunction with aggregation.1 A global invariant is a constraint
that an aggregating unit imposes on the relationship between state components of several
aggregated units, see the example in the previous section. To understand the implications
of global invariants, we first elaborate on the mentioned process of reducing an aggregation
hierarchy of specification units, which is used to define the meaning of aggregation.

Global invariants are a concept that have a counterpart in the B language [Abrial, 1996], in
which they are called glue invariants,2 and in the formal specification language ASTRAL
[Coen-Porisini et al., 1997].

Let us first consider the structure of the data state of a compound RT-Z specification. In
the context of an RT-Z specification that is composed of an aggregation hierarchy of speci-

1 We will see later that global invariants also arise in conjunction with extension.
2 In brief, B specifications are composed of machines. Machines can include other machines. Each B machine

encapsulates a data state, which is specified in a way similar to Z. Glue invariants are state invariants that
refer to the state variables of several of the included machines.

Although the two concepts are very similar, the consequences they have in B and RT-Z are absolutely different.
The B system model is sequential: it does not take into account the concurrent execution of operations. Thus,
the interaction between operations of different machines working on different subspaces of the overall data
state but all affecting the satisfaction of the glue invariant, need not be considered in B.

As we will see later in this thesis, the ability of RT-Z to relate the data states of different units through global
invariants while allowing operations working on the data states of different units to be executed concurrently
(under particular conditions) is a major achievement of the model underlying RT-Z, but at the same time a
major source of complexity.
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fication units, the overall data state of the specified system is hierarchically partitioned into
subspaces according to the hierarchical decomposition of the RT-Z specification into specifi-
cation units, where each specification unit defines its associated data state.

As mentioned in the beginning of this chapter, the meaning of aggregation is defined in
terms of transformation rules, reducing a hierarchy of specification units to a single one.
These rules are the subject of Section 8.1.4 and Section 8.1.5. During this reduction process,
each operation, defined in a particular specification unit of the aggregation hierarchy, is lif-
ted (promoted) from the data state of its associated specification unit to the overall data state
of the specified system. That is, each operation, which is originally—in the context of its as-
sociated specification unit—interpreted with respect to the corresponding part of the overall
data state, is lifted to a system operation working on the overall data state of the system.
This lifting is defined such that the state transitions characterised by the resulting system
operation satisfy the following conditions.

• The projection of the state transitions to the subspace of the associated specification
unit coincides with the interpretation of the operation in the context of the associated
specification unit.

• The projection of the state transitions to the remaining subspaces of the overall data
state yields no change.

At this level of consideration, the concurrent application of system operations originating
from different specification units entails no problem: since the “real” state changes they
cause concern disjoint parts of the overall data state, they do not interfere each other and
their state transitions can be combined in a consistent way. Things, however, become more
complicated when global invariants are taken into consideration: a global invariant relates
state components of different specification units, and consequently the independence of sys-
tem operations originating from different specification units is no longer guaranteed. In
other words, global invariants have the consequence that the application of a system opera-
tion, originally defined on the data state of its associated specification unit, may now depend
on the overall data state.

Let us discuss global invariants in more detail with the help of the example depicted in
Figure 8.2, in which we consider the aggregation of two components Comp1 and Comp2.
Comp1 consists of a state variable x and an operation Op1 that increases x, and Comp2 consists
of a state variable y and an operation Op2 that decreases y. We (alternatively) consider two
global invariants defined in the aggregating unit, which relate the state variables x and y.
The first one requires their equality, and the second one requires that x is less than y.

Consider the first global invariant, the equality of the state components x and y of the aggre-
gated units. It turns out that this overly strong global invariant does not allow the operations
of Comp1 and Comp2 to be lifted (promoted) in a consistent manner, because both operations
insist on one state component to be changed while the lifting process insists that the other
state component remains unchanged; this is an obvious contradiction to the global invariant.
Thus, the lifted system operations are inconsistent which means that they define no transi-
tion on the overall data state at all. The problem caused by this global invariant is the strong
coupling between the state components of the aggregated units.



70 Chapter 8. Structuring Mechanisms

SPEC.UNIT System

SUBUNITS
subunit c1 spec.unit Comp1;
subunit c2 spec.unit Comp2

STATE

SubunitStates
c1 : Comp1.State
c2 : Comp2.State

GlobalInv
SubunitStates

c1.x = c2.y
c1.x < c2.y

. . .

SPEC.UNIT Comp1
STATE

State == [ x : N ]
OPERATIONS

Op1 == [∆State | x′ = x + 1 ]

SPEC.UNIT Comp2
STATE

State == [ y : N ]
OPERATIONS

Op2 == [∆State | y′ = y− 1 ]

alternatively}(1)
(2)

Figure 8.2: Example of global invariants.

One rationale behind specification units is “separation of concerns.” Specification units
should satisfy the criterion of cohesion: the elements of a unit should be related as close
as possible, and as few as possible (globally formulated) relationships to elements of other
specification units should exist. In the above example, it is questionable if the decomposi-
tion of the data state space into the units Comp1 and Comp2 is reasonable due to the strong
equality relationship between x and y. Dispensing with the decomposition into the units
Comp1 and Comp2 would relieve us of employing global invariants. In the case that the de-
composition into specification units is used in order to fix physical aspects, e.g., distribution,
(strong) global invariants are even more problematic. If, in the example, the specification
units represented distributed system units, the global equality invariant would be infeas-
ible: there is no way to guarantee that distributed system units have always the identical
state of a variable.

Consider now the second global invariant. Since the state components of the specification
units are related via an inequality relationship, their operations, Op1 and Op2, are more in-
dependent of each other than in the context of the first global invariant. According to the
semantics of RT-Z defined in Chapter 9, the concurrent application of the two operations to
a particular data state is well-defined if, and only if, the set of final data states that the rela-
tional composition of the operations produces is not empty and independent of their order.
The concurrent application of operations that is not well-defined results in divergence, i.e.,
in an arbitrary behaviour. If Op1 and Op2 are applied concurrently to a data state satisfying
x = y − 2, the first operation terminates in a state satisfying x = y − 1, in which the precon-
dition of the other operation is not fulfilled. The set of final data states that can be produced
by their relational composition is hence empty. Thus, the concurrent application of the two
operations to the data state x = y− 2 results in divergence. The invalidation of the precondi-
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tion of one operation by the termination of the other one, both changing disjoint subspaces
of the overall data state, is the consequence of the global invariant: taking the global invari-
ant into account, the preconditions of the lifted system operations do not depend only on
their original part of the data state but also on the remaining part. The preconditions of the
lifted operations Op1 and Op2 are both x < y− 1.

The approach taken in RT-Z is to allow scenarios of concurrent operation applications that
are not well-defined and result in an arbitrary behaviour. It depends on the level of abstrac-
tion whether such nondeterminisms are acceptable. In an abstract requirements specifica-
tion, it is frequently the deliberate intention of the specifier to abstract from the consequences
of such a kind of concurrency in order to allow a design to exhibit an arbitrary behaviour.
A sufficiently concrete design specification, on the other hand, must eliminate such non-
determinisms by defining measures that prevent the concurrent application of operations
that interfere each other.

To conclude, a great amount of information about the potential effects of applying opera-
tions can potentially be distributed to several specification units. This distribution leads to a
relatively strong coupling between specification units when global invariants are involved,
making it harder to understand and review a specification, because the ‘separation of con-
cerns’ principle is more or less compromised, depending on how closely components of
different units are related by the used global invariants. Global invariants can lead to close
relationships between operations of different specification units and can introduce a lot of
implicit properties, which are not (necessarily) immediately discernible. They should hence
be used very carefully. On the other hand, they are a very powerful notation that can be
used to structure complex invariants more clearly. The concept of global invariants is also
supported by Object-Z [Smith, 2000].

A discussion of the interaction between global invariants and the concurrent application of
operations from a more semantical point of view can be found in Chapter 9.

8.1.3 Syntax

The SUBUNITSsection of concrete specification units is used to express the aggregation re-
lationship: it declares the system units that aggregate each instance of the specification unit
under consideration. These declarations associate each aggregated system unit with a speci-
fication unit, determining its structure and behaviour.

Any aggregation hierarchy of specification units is induced by the information contained in
the SUBUNITSsection. A specification unit (and its corresponding system units) containing
a SUBUNITSsection is called aggregating unit, and the specification units (and its corres-
ponding system units) recorded therein are called aggregated units.

The declaration

subunit agg spec. unit Spec

introduces a single system unit agg, whose structure and behaviour is determined by the
specification unit Spec, as a part of each instance of the current specification unit. By declar-
ing



72 Chapter 8. Structuring Mechanisms

subunit agg(IS) spec. unit Spec

a collection of system units is introduced, one for each member of the index set IS. Their
structure and behaviour is determined by Spec. Such an indexed collection models a num-
ber of equally structured and equally behaving system units, each of which identified by a
member of IS, which must be a finite set of index values.

8.1.4 Simple Aggregation

As already indicated in the introduction to this chapter, the meaning of aggregation is
defined in terms of transformation rules that reduce a hierarchy of specification units to
a single one: the meaning of an aggregation hierarchy is defined to be the meaning of the
single specification unit resulting from the reduction. This reduction is a recursive process
from the leaves towards the root of a hierarchy. Its elementary step is to reduce an aggre-
gating and all its aggregated specification units. We first explain this elementary step for a
specification unit whose SUBUNITSsection uses only simple aggregation. Indexed aggrega-
tion is dealt with afterwards.

This elementary step is described separately for each section of concrete specification units.
We suppose in the following that the concrete specification unit CSU contains the SUBUNITS
section

subunit agg1 spec. unit Spec1;
. . .
subunit aggN spec. unit SpecN.

The reduction process described in the following takes the aggregated units agg1, . . . , aggN
and the aggregating unit CSU as input and produces a single specification unit, whose mean-
ing is the meaning of the whole aggregation.

To understand the following transformation rules, we must have in mind that the aggregat-
ing unit CSU can aggregate several instances of a single specification unit, i.e.,

Speci = Specj for i 6= j; i, j ∈ {1, . . . , N}.

Constants and types declared in a specification unit need not be uniquely fixed. That is, there
can be different interpretations of a constant or type. Concerning the constants and types
declared in Speci(= Specj), both aggregated units aggi and aggj should have the freedom to
choose different interpretations. We must hence ensure that there are two instances of each
constant and type with distinct identifiers. For this reason, the reduction process prefixes
each constant and type declared in Speci by the identifier of the respective aggregated system
unit, e.g.,

aggi.c vs. aggj.c.

Because of the transformation of constant and type identifiers, all Z expressions within an
aggregated unit, which could refer to those identifiers, must be transformed syntactically.
This syntactic transformation is denoted by the syntactic meta function lift simple Z.

The expressions of the CSP part must undergo a similar transformation. As will be discussed
later, the reduction process prefixes the identifiers of internal channels of aggregated units
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by the identifier of the respective aggregated unit. Thus, each CSP expression referring to an
internal channel must be transformed syntactically. This syntactic transformation is denoted
by the syntactic meta function lift simple CSP.

TYPES & CONSTANTS. A constant, declared and constrained by an axiomatic definition,
needs not be uniquely fixed, because several values might satisfy the constraints as-
sociated with that constant. Different instances of a single specification unit can hence
choose distinct values for that constant. Accordingly, for each axiomatic definition in
the aggregated unit aggi(Speci)

c : T
Pred

the specification unit resulting from the reduction process will contain the axiomatic
definition

aggi.c : lift simple Z(aggi, T)

lift simple Z(aggi, Pred)

where lift simple Z(aggi, Pred) is obtained from Pred by substituting each occur-
rence of a constant or type, say a, by aggi.a.

In Z, the declaration of a given set does not constrain the set that denotes the intro-
duced identifier—not even the structure of the objects that are members of this set is
constrained. Different instances of a single specification unit can hence choose distinct
interpretations for such a given set. Accordingly, for each given set declaration in the
aggregated unit aggi(Speci)

[S]

the specification unit resulting from the reduction process will contain the declaration

[aggi.S].

Free type definitions

T1 ::= c11 | . . . | c1N1 | i11〈〈S11〉〉 | . . . | i1M1〈〈S1M1〉〉
& . . .&
TK ::= cK1 | . . . | cKNK | iK1〈〈SK1〉〉 | . . . | iKMK〈〈SKMK〉〉

are expanded during the reduction process into axiomatic definitions and declarations
of given sets corresponding to the semantic transformation rules defined in the Z
Standard [ISO, 2002, Chapter 14], see also [Woodcock and Davies, 1996, p. 139].



74 Chapter 8. Structuring Mechanisms

c11, . . . , c1N1 : T1

. . .
cK1, . . . , cKNK : TK
i11 : S11� T1; . . . ; i1M1 : S1M1 � T1

. . .
iK1 : SK1� TK; . . . ; iKMK : SKMK � TK

〈{c11}, . . . , {c1N1}, ran i11, . . . , ran i1M1〉 partition T1

. . .
〈{cK1}, . . . , {cKNK}, ran iK1, . . . , ran iKMK〉 partition TK
∀S1 : P T1; . . . ; SK : P TK |

{c11, . . . , c1N1} ∪ i11(|S11[S1, . . . , SK/T1, . . . , TK]|) ∪ . . .∪
i1M1(|S1M1 [S1, . . . , SK/T1, . . . , TK]|) ⊆ S1

∧ . . . ∧
{cK1, . . . , cKNK} ∪ iK1(|SK1[S1, . . . , SK/T1, . . . , TK]|) ∪ . . .∪

iKMK(|SKMK [S1, . . . , SK/T1, . . . , TK]|) ⊆ SK •
S1 = T1 ∧ . . . ∧ SK = TK

Thus, when an aggregated specification unit contains a free type definition, it is trans-
formed into the corresponding given set declaration and axiomatic definitions, which
are in turn subject to the corresponding transformation rules already explained.

Analogously, each definition by syntactic equivalence

S == Expr

is expanded during the reduction process into an axiomatic definition corresponding
to the syntactic transformation rule defined in the Z Standard [ISO, 2002, Chapter 12].

S : {Expr}

To summarise, the specification unit resulting from the reduction process contains all
types and constants of the aggregating unit CSU and all types and constants of the
aggregated units Spec1, . . . , SpecN, transformed as just described.

STATE. We have already outlined the structure of the data state in connection with aggre-
gation: the data state space of an aggregating unit encompasses the data state spaces
of the aggregated units, including their local invariants. An aggregating unit does not
define its individual data state space. That is, a unit containing a SUBUNITSsection
must not define a State schema, because it is automatically defined as a result of the
considered reduction process.

State
SubunitStates
GlobalInv

The data state spaces of the aggregated units are introduced by SubunitStates, which is
itself a schema derived by the reduction process as follows.
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SubunitStates
agg1 : lift simple Z(agg1, Spec1.State)
. . .
aggN : lift simple Z(aggN, SpecN.State)

For each aggregated system unit recorded in the SUBUNITSsection, an equally named
state variable is declared whose type is the schema type of the state schema of the
associated specification unit.3 Note that this schema can be immediately derived from
the SUBUNITSsection of the aggregating unit.

Global invariants, constraining the relationships between state components of different
aggregated units, are defined in the dedicated schema GlobalInv in the STATEsection of
an aggregating unit. The concept of global invariants has been treated in Section 8.1.2.

The schema

Init
SubunitInit
GlobalInit

defines the initialisation of the overall data state space of the aggregation. The initial-
isation of the subspaces of the aggregated system units is defined by the schema

SubunitInit
State
agg1 ∈ lift simple Z(agg1, Spec1.Init)
. . .
aggN ∈ lift simple Z(aggN, SpecN.Init)

which is derived as another result of the reduction process. Each aggregated system
unit must be in a state as defined by the Init schema of the corresponding aggregated
specification unit.

Additional constraints on the initialisation of the overall data state space can be stipu-
lated in the dedicated schema GlobalInit. This concerns constraints on the relationship
between state components of different aggregated units, which must be met in addi-
tion to the local initialisation constraints.

OPS & PREDS. As already outlined with regard to a whole aggregation hierarchy, the op-
erations (and predicates) of the aggregated units agg1, . . . , aggN are originally defined
on the data state space of the corresponding specification unit, and they are lifted to
the overall data state space during the reduction process. This lifting is achieved by
applying the Z concept of promotion.

As a further part of the definition of the reduction process, the promotion schema Φaggi
is derived for each aggregated system unit aggi recorded in the SUBUNITSsection as
follows.

3 We use schema variables denoting states of aggregated system units rather than simply importing the corres-
ponding state schemas, because several aggregated system units may be associated with a single specification
unit.
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aggiState == lift simple Z(aggi, Speci.State)

Φaggi

∆State
∆aggiState

θaggiState = aggi
agg′i = θaggiState′

agg′1 = agg1 ∧ . . . ∧ agg′i−1 = aggi−1

agg′i+1 = aggi+1 ∧ . . . ∧ agg′N = aggN

This promotion schema serves to lift the operations defined on the data state space of
the aggregated system unit aggi (∆aggiState) to the overall data state space (∆State). It
stipulates that the subspaces of the other aggregated system units are left unchanged,
while the transformation within the subspace of the aggregated system unit aggi is in
accordance with the operation to be promoted.

Based on this preliminary definition, the single specification unit resulting from the
reduction process contains the promoted operation schema

aggi.Op == (Φaggi ∧ lift simple Z(aggi, Speci.Op)) \∆aggiState

for each operation schema Op contained in the identifier list of the aggregated specifi-
cation unit Speci. The operation schema Speci.Op can contain references to other opera-
tion schemas of the considered unit, which are themselves lifted during the reduction
process. Accordingly, the meta function lift simple Z substitutes each reference to
an operation schema ref by the new identifier aggi.ref , which the referenced operation
schema will have after the lifting.

This syntactical transformation has essential consequences. Using this approach to
deal with references to operation schemas, each operation schema is lifted in accord-
ance with the lifting of the context into which it is embedded.

An alternative approach would be to expand references to operation schemas imme-
diately. However, this would not allow us to refer to properties of operation schemas
that they have in the context (of the overall data state) into which they are embedded
during the reduction process, as will become apparent by revisiting the ticket selling
example of p. 67. In the aggregated unit TicketOffice, the process term Behaviour refers
to the operation schema NotSell, which is defined implicitly as follows.

NotSell == ¬ pre Sell ∧ ΞState

Following the alternative approach (of immediate reference expansion), the reference
¬ pre Sell would be expanded immediately in the local context of the unit TicketOffice
and its data state: NotSell would have as its precondition the negation of the precon-
dition of Sell, computed within the local context of TicketOffice, namely that the local
capacity Alloc must not be exceeded. After the reduction process, however, both lifted
operation schemas would not have the intended properties in the global context. For
example, the property that the preconditions of the two operations partition the data
state space. This property is not satisfied because of the additional global invariant,
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which affects the precondition of the lifted operation TicketOffice.Sell: an additional
conjunct of the precondition is that the total capacity must not be exceeded. Since the
reference ¬ pre Sell of the definition of NotSell is already expanded in the local context,
the precondition of TicketOffice.NotSell does not incorporate this case of the invalida-
tion of the additional global invariant. Thus, those data states in which the application
of Sell would exceed the total but not the local capacity would not be covered by the
preconditions of the lifted operations and hence the process Behaviour would deadlock
in these data states.

Following the first approach (of delayed reference expansion), on the other hand, the
reference ¬ pre Sell is expanded only in the global context, so the lifted operation
schema NotSell does take the invalidation of the global invariant into account as inten-
ded. Note that all identifiers of local entities of aggregated specification units (such as
operations and predicates) are prefixed during the reduction process by the respective
unit identifier. This is elaborated in the discussion of the INTERFACEand the LOCAL
section.

Note also that we lift only operation schemas contained in the identifier list of the
OPS & PREDSsection. Auxiliary schemas need not be lifted because they are elimin-
ated by means of normalisation.

Since we treat predicates as a specific kind of operations, there is no need to distinguish
between operation schemas defining operations and those defining predicates.

INTERFACE. The interface of the specification unit resulting from the reduction process is
identical with the interface of the aggregating specification unit CSU. Declarations
of the INTERFACEsections of the aggregated specification units must be contained
either in the INTERFACEor the LOCALsection of the aggregating specification unit.
This depends on whether or not these interface elements are hidden in the behaviour
definition of the aggregating specification unit.

The identifiers of external ports (in contrast to the identifiers of internal channels) of
the aggregated units are not prefixed by the respective unit identifier. Therefore, by de-
fault, equally named external ports of different aggregated units are identified during
the reduction process. When this is not intended, they can be appropriately renamed
by using the renaming operator defined for specification units, see Section 8.3. We
have already used this renaming operator in the example on p. 67.

LOCAL. All internal channels declared by the aggregating unit CSU are part of the LOCAL
section of the specification unit resulting from the reduction process. Moreover, for
each declaration

channel chan domain Set

in the LOCALsection of the aggregated unit Speci, the declaration

channel aggi.chan domain Set

is part of the LOCALsection of the resulting unit. That is, the identifiers of internal
channels of the aggregated units are prefixed by the identifier of the respective aggre-
gated system unit. This allows us to distinguish equally named internal channels of
different aggregated system units (e.g., operation-related events).
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ENVIRONMENTAL ASSUMPTIONS. The environmental assumption of the specification unit
resulting from the reduction process is the environmental assumption of the aggregat-
ing specification unit CSU. The environmental assumptions of the aggregated units
must be ensured by the aggregation context, which is a verification condition that
should be checked for each aggregation.

BEHAVIOUR. Finally, we discuss how the definition of the behaviour patterns of the aggre-
gating and of the aggregated specification units are composed to obtain the behaviour
definition of the specification unit resulting from the reduction process. The behaviour
definition of the aggregating unit CSU (process term Behaviour) refers to the behaviour
of the aggregated unit aggi by means of aggi.Behaviour. This reference denotes the ap-
plication of the syntactic meta function lift simple CSPto the behaviour definition
of the specification unit Speci.

aggi.Behaviour =̂ lift simple CSP(aggi, Speci.Behaviour)

This syntactic transformation concerns the renaming of internal channels, discussed
with respect to the LOCALsection.

The process Behaviour of the aggregating unit CSU can compose the behaviour patterns
of the aggregated units by arbitrary process operators. The combination of units by the
parallel operators enables the separation of concurrent behaviour patterns working on
disjoint parts of the overall data state within different system units. Hence, while a
basic specification unit can define only sequential state-dependent behaviour patterns,
aggregation makes it possible to consider concurrency (and distribution). Thereby, the
process term Behaviour of an aggregating unit characterises the (physical or conceptual)
configuration of the aggregated units to constitute the whole aggregation.

8.1.5 Indexed Aggregation

In this section, we describe the reduction process for a specification unit whose SUBUNITS
section contains indexed aggregation. We describe only the differences to the reduction pro-
cess for simple aggregation. When a specification unit contains simple and indexed aggre-
gation, the described transformations are combined in the obvious way.

We assume that the considered specification unit, say CSU, contains (among others) the
declaration

subunit agg(IS) spec. unit Spec

in its SUBUNITSsection where IS is a finite set of index values. Again, the reduction process
is described separately for each section of concrete specification units.

As we will shortly argue in the description of the transformation rules, each constant c : T
declared in the aggregated unit Spec must be lifted to the function agg.c : IS→T, because we
have to take into account that each instance of the indexed aggregation chooses a different
value for that constant. Consequently, each expression of the Z part must be transformed
syntactically: each occurrence of a constant c introduced by the aggregated unit must be
substituted by the function application (agg.c index), where index is a dedicated identifier
that is assumed not to occur in the aggregated unit; it identifies a particular instance of the



8.1. Aggregation 79

indexed aggregation. The syntactical transformation of Z expressions is represented by the
syntactic meta function lift indexed Z.

A similar syntactical transformation must be applied to the expressions of the CSP part of
the aggregated unit. Since the interaction of different instances of the indexed aggregation
via external and internal channels must be distinguished, the values transmitted via these
channels by different instances must be distinguishable. Basically, this is achieved by ex-
tending each communicated value with the identifier of the involved instance. The corres-
ponding syntactic transformation working on process terms is represented by the syntactic
meta function lift indexed CSP.

TYPES & CONSTANTS. A constant, declared and constrained by an axiomatic definition,
needs not be uniquely fixed. When building an indexed collection of a specification
unit, we have to take into account that each instance of such a collection can choose
its own value for such a constant. This means that the reduction process must lift each
constant to a function mapping each instance to a particular value.

Accordingly, for each axiomatic definition in the aggregated specification unit Spec

c : T
Pred

the specification unit resulting from the reduction process will contain the definition

agg.c : IS→ lift indexed Z(agg, T)

∀ index : IS • lift indexed Z(agg, Pred)

where lift indexed Z(agg, Pred) is obtained from Pred by substituting each occur-
rence of a constant, say a, by the function application (agg.a index).

Analogously to the procedure described in the context of simple aggregation, the re-
duction process expands each definition by syntactic equivalence

S == Expr

into the axiomatic definition

S : {Expr}

which in turn is subject to the transformation rule just described.

Specification units instantiated by means of indexed aggregation must not contain type
declarations (given sets or free types). The technical reason for this decision is that the
Z notation does not allow us to lift type declarations in accordance with our approach
to lifting constants. However, also from a conceptual point of view it would not be
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reasonable if different instances of an indexed collection had different interpretations
of a type, which would be the consequence of lifting the types.4

STATE. The state schema of the aggregated unit may depend on any constant, say c : T,
declared by this unit. As discussed, each such constant is lifted to the function agg.c :
IS→ T. Therefore, the state schema must be lifted, too. Each occurrence of a constant,
say c, is transformed into the function application (agg.c index), where index is an ad-
ditional state component characterising the index by which the considered instance of
the indexed collection is identified.

aggState == lift indexed Z(agg, Spec.State) ∧ [ index : IS ]

The data state space of the specification unit resulting from the reduction process is
constituted by the data states of all instances of agg indexed by members of IS. Hence,
the derived schema SubunitStates contains a function mapping each identifier in IS to
a data state in aggState.

SubunitStates
agg : IS→ aggState
. . .

∀ id : IS • (agg id) ∈ [ aggState | index = id ]
. . .

Each occurrence of a constant in the initialisation schema of the aggregated specifica-
tion unit is lifted analogously.

aggInit == lift indexed Z(agg, Spec.Init) ∧ [ index : IS ]

After initialisation, each instance of the indexed collection must be in an initial state
as defined by the Init schema of the aggregated unit. The derived schema SubunitInit
thus contains the following definitions.

SubunitInit
State
∀ id : IS • (agg id) ∈ [ aggInit | index = id ]
. . .

OPS & PREDS. Similar to the case of simple aggregation, a promotion schema is defined,
which lifts each operation schema defined on the individual data state space of a single
instance of the indexed collection to the overall data state space.

4 Simply preventing the lifting of types, however, would lead to an inconsistency, because free types are defined
in terms of the introduction of constants and injective functions. Thus, the declaration of free types would
indirectly imply the lifting of the corresponding constants and injections, which would in turn imply that
different instances of an indexed aggregation would have different interpretations of the free type.



8.1. Aggregation 81

Φagg
∆State
∆aggState
id? : IS
θaggState = (agg id?)
(agg′ id?) = θaggState′

index′ = index = id?
∀ id : IS | id 6= id? • (agg′ id) = (agg id)

Then, the specification unit resulting from the reduction process contains the lifted
operation

agg.Op == (Φagg ∧ lift indexed Z(agg, Spec.Op)) \∆aggState,

for each operation schema Op in the aggregated specification unit Spec. The identifier
id? of the involved instance is an additional input parameter.

INTERFACE. The interface of the resulting specification unit is identical with the interface
of the aggregating unit. Thus, for each declaration

port chan domain Set

in the INTERFACEsection of the aggregated unit Spec, either the declaration

port chan domain IS× Set

must be part of the INTERFACEsection or the declaration

channel chan domain IS× Set

must be part of the LOCALsection of the aggregating unit.

The extension of the domains with the set IS reflects the remark made in the beginning
of this section: the particular instance of the indexed aggregation responsible for an
interaction must be identified by the transmitted value.

LOCAL. For each declaration

channel chan domain Set

in the LOCALsection of the aggregated unit Spec, the declaration

channel agg.chan domain IS× Set

is part of the LOCALsection of the specification unit resulting from the reduction pro-
cess. Note that, in contrast to external ports, the names of internal channels are prefixed
by the respective unit identifier.

BEHAVIOUR. The behaviour definition of the aggregating unit (process term Behaviour)
refers to the behaviour of a particular instance of the aggregated collection with iden-
tifier id ∈ IS by means of agg.Behaviour(id), e.g.,

Behaviour =̂ |||
id∈IS

agg.Behaviour(id).
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The notation agg.Behaviour(id) abbreviates the application of the syntactic meta func-
tion lift indexed CSPto the behaviour definition of the aggregated unit Spec:

agg.Behaviour(id) =̂ lift indexed CSP(agg, Spec.Behaviour)[id/index].

As discussed, the dedicated identifier index, which is substituted by the value id, rep-
resents the index by which an instance of the indexed collection is identified.

The meta function lift indexed CSP causes the following syntactic transforma-
tions.

First, each set or value expression (of an instance of the channel input or output oper-
ator) must be adapted in order to be consistent with the change of the domains associ-
ated with external and internal channels. Each expression

chan?x : S

is transformed into

chan?x : {index} × S or agg.chan?x : {index} × S

depending on whether chan is an external or internal channel. Further, each expression

chan!v

is transformed into

chan!(index, v) or agg.chan!(index, v)

again depending on whether chan is an external or internal channel.

For operation-related events, in contrast, the transformation is slightly different, be-
cause the identifier of the involved instance is transmitted as an input parameter of the
communicated schema binding. Each expression

OpX?par : S

is transformed into

agg.OpX?par : (S ∧ [ id? : IS | id? = index ])

where id? is the input parameter used in the promotion schema Φagg.5 Thus, each
binding of input and output parameters is extended with the pair id? 7→ index, taking
into account the additional parameter introduced by the lifting process.6

This completes our description of the transformation rules for simple and indexed aggrega-
tion. In this way, we have defined the meaning of aggregation in a semi-formal yet system-
atic manner.

5 We assume that the set of bindings is expressed in terms of a schema expression.
6 The transformation of invocation and termination events (double-event approach) is defined analogously.
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stage 1

stage 2

...

...

library (stage 0)

stage N

aggregation

extension

concrete specification unit

Figure 8.3: Structure of concrete specifications in RT-Z.

8.2 Extension

Extension is a structuring mechanism that is orthogonal to aggregation: any specification
unit within an aggregation hierarchy can extend other specification units outside this ag-
gregation hierarchy. Informally speaking, an extending specification unit imports the de-
finitions of the specification units it extends and is able to add new entities, to add new
constraints on imported entities or to redefine imported entities.7 Extension is intended to
support the reuse of “libraries of specification units” and an incremental way of specifica-
tion. It is in some sense comparable with inheritance in object-oriented approaches, but more
restricted. In this section, we explain the use of the extension mechanism and its meaning.

Extension applies to concrete and abstract specification units. We first deal with the exten-
sion of concrete specification units.

Figure 8.3 outlines the structure of concrete specifications in RT-Z. From a structural point
of view, a concrete specification is a finite directed graph whose nodes are constituted by
concrete specification units and whose edges represent aggregation and extension relation-
ships. Aggregation is depicted by dotted arrows, and extension is depicted by solid arrows.
Such a graph must have the property that it can be partitioned into a set of trees, each of
which connected solely by aggregation relationships: these trees are what we have called
up to now aggregation hierarchies. Nodes of different trees can be connected by extension
relationships. Finally, the graph must be acyclic, i.e., there must be no path from a specifica-
tion unit to itself via aggregation and/or extension edges. This latter property is vital for the

7 The term ‘entity’ encompasses ports, channels, processes, constants, operations, etc.
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definition of the meaning of the structuring mechanisms.

From a more conceptual point of view, the structure of a graph forming a concrete specifi-
cation is interpreted as follows. The core of a concrete specification is a single aggregation
hierarchy (tree) of specification units. In the figure, it is enclosed by the rectangle stage N.
This aggregation hierarchy defines the structure and behaviour of the system to be designed.
Using extension relationships to connect this core aggregation hierarchy with other ones, the
concrete specification is further structured along a chronological dimension: the ultimate re-
sult of the design process need not be set up in a single step, but can be defined in several
stages by means of stepwise extension; this allows us to pursue an incremental way of speci-
fication. Each stage 1, . . . , N of the design process is depicted in the figure by a rectangle.
Specification units of a particular stage can extend specification units of a lower stage.

The rectangle stage 0 has a special meaning: it represents a library of specification units,
which can be used to collect general-purpose, frequently used specification units that can be
instantiated during a variety of system development tasks. This library can be regarded as
the stage preceding stage 1 of each design process.

Let us consider the schematic definition of the concrete specification unit CExt as an example
for the following discussion.

SPEC. UNIT CExt

EXTENDS

Base1

instantiate . . . ;
rename . . . ;
hide . . . ;
redefine . . . ;

. . .

BaseN
instantiate . . . ;
rename . . . ;
hide . . . ;
redefine . . . ;

TYPES & CONSTANTS

• new data types and constants

• additional constraints on imported constants

INTERFACE

• new ports

• additional constraints on domains of imported ports
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ENVIRONMENTAL ASSUMPTIONS

• environmental assumptions concerning new ports

• additional environmental assumptions concerning imported ports (EAExt).

SUBUNITS

• new subunits

STATE

• new state components

StateExt == . . . InitExt == . . .

• additional global invariants

GlobalInv == . . . GlobalInit == . . .

OPS & PREDS [ ]

• new operation schemas

Op == [ ∆State; . . . | . . . ]

• redefinition of imported operation schemas (Op is member of redefine list)

Op == [ ∆State; . . . | . . . ]

• extension of imported operation schemas

OpExt == [ ∆State; . . . | . . . ]

LOCAL

• new channels

BEHAVIOUR

• redefinition

Behaviour =̂ . . . references to processes defined in Base1, . . . , BaseN . . .

• extension

BehaviourExt =̂ . . .
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Analogously to aggregation, the meaning of extension is defined in terms of trans-
formation rules that reduce the definitions of the extending (CExt) and of the extended
(Base1, . . . , BaseN) specification units to a single specification unit. Again, we discuss this
reduction process separately for each section.

To understand the following transformation rules related to extension, we must emphasise
one important difference between aggregation and extension. Aggregation is a structuring
mechanism on the level of specification unit instances, i.e., it defines the structure of the in-
stances of specification units. An instance of a specification unit can aggregate instances of
other specification units. In particular, it can aggregate several instances of a single specifi-
cation unit. Extension, in contrast, is a structuring mechanism on the level of specification
units, i.e., it does not fix the structure of the corresponding instances. A specification unit
can extend another specification unit, but an instance of a specification unit cannot extend
an instance of another specification unit. This has important consequences on the following
transformation rules: since extension refers to specification units directly, these rules need
not lift definitions of the extended specification units like the transformation rules for aggre-
gation.

TYPES & CONSTANTS. The extending specification unit CExt is able

• to introduce new constants and data types and

• to add new constraints on those constants and data types imported by the ex-
tended units Base1, . . . , BaseN.

The specification unit resulting from the reduction process will contain all constants
and data types defined by the extending and the extended specification units. We
discuss in the following how the declarations of and constraints on a single constant
or data type, which may be distributed to several of the considered specification units,
are composed in the specification unit resulting from the reduction process.

First, several declarations of a single given set

[T]

in the considered specification units are simply identified with each other and hence
result in a single declaration.

Second, axiomatic definitions of a single constant in several specification units

c : S1

Pred1
. . . c : SK

PredK
are transformed into

c : S1 ∩ . . . ∩ SK
Pred1 ∧ . . . ∧ PredK

That is, the constraints on the constant c contained in different specification units are
conjoined. For this transformation to yield a well-typed result, the set expressions
S1, . . . , SK must have the same type.
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Third, the reduction process expands free type definitions

T ::= c1 | . . . | cK | i1〈〈S1〉〉 | . . . | iM〈〈SM〉〉

into axiomatic definitions and declarations of given sets corresponding to the approach
described in Section 8.1.4 in the context of aggregation. Thus, when an extended or
the extending specification unit contains a free type definition, it is transformed into
the corresponding given set declaration and axiomatic definitions, which are in turn
subject to the corresponding composition rules already explained.

Analogously, each definition by syntactic equivalence

S == Expr

is expanded into the axiomatic definition

S : {Expr}

which is semantically equivalent.

INTERFACE. The extending specification unit CExt is able

• to introduce new ports and

• to further restrict the domains of imported ports.

The specification unit resulting from the reduction process will contain all ports de-
clared by the extending and extended specification units. Declarations of a single port
in several of the considered specification units

port chan domain S1 . . . port chan domain SK
are transformed into

port chan domain S1 ∩ . . . ∩ SK

That is, the derived domain is the intersection of the domains associated with
chan. Again, for this transformation to yield a well-typed result, the set expressions
S1, . . . , SK must have the same type.

ENVIRONMENTAL ASSUMPTIONS. The extending specification unit CExt can define the
predicate EAExt, which is, by convention, interpreted as defining additional environ-
mental assumptions. This predicate is able to refer to the interface ports of the extend-
ing and of the extended specification units and is therefore able to specify assumptions
relating the interface ports of all considered specification units.

EA =̂ (
∧

j∈{1,...,N}
Basej.EA) ∧ EAExt

The environmental assumption resulting from the reduction process is the conjunction
of the environmental assumptions of the extending and the extended units. That is,
one is not free in composing the environmental assumptions of the extended units.
This reflects the nature of extension where existing definitions should not be ignored
but only be augmented in a consistent way.
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SUBUNITS. The extending specification unit CExt is able to introduce new aggregated sub-
units in addition to those introduced by the extended specification units.

Declarations of a single subunit in several of the considered specification units are
identified with each other, so there must not be any difference between these declar-
ations (concerning the instantiations, the renamed and hidden ports).8

STATE. The resulting data state space encompasses the data states of the extended units.
Optionally, the extending specification unit CExt can define its individual data state,
introducing new state components in addition to the state components of the extended
specification units. By convention, the individual data state, if any, is defined by the
schema StateExt.

The specification unit resulting from the reduction process contains the state schema

State
BaseStates
StateExt

GlobalInv

where the subspaces of the extended units are introduced by BaseStates, which is de-
rived as follows.9

BaseStates
Base1.State
. . .
BaseN.State

Global invariants, constraining the relationships between state components of sev-
eral extended units and the extending unit, can be defined by the dedicated schema
GlobalInv in the STATEsection of the extending specification unit.

Also the definition of the overall data state space reflects the idea of extension: the state
invariants of the extended specification units cannot be ignored but only be extended.

The initialisation of the overall data state space is derived as follows.
Init

State
BaseInit
InitExt
GlobalInit

BaseInit
Base1.Init
. . .
BaseN.Init

The extending specification unit can define the schemas InitExt and GlobalInit to stip-
ulate relationships between the state components of the extending and the extended
specification units that must be satisfied by the initial data state.

OPS & PREDS. There are three alternatives for the extending specification unit CExt for de-
fining operations and predicates:

8 The only case where this identification of multiply declared subunits should occur is when there are different
paths from an extending to an extended specification unit that declares a subunit.

9 State components of different extended units with identical name are identified and must thus have compat-
ible types.
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Introduction of new operation schemas: In this case, the extending unit defines an op-
eration schema, say Op, for which there is no corresponding definition in the ex-
tended units.

Redefinition of imported operation schemas: In this case, the extending unit defines
an operation schema, say Op, for which there are corresponding definitions in the
extended units; but these are ignored. The redefinition is made explicit by in-
cluding the identifier Op in the redefine list associated with the corresponding
extended unit.

Extension of imported operation schemas: In this case, the extending unit defines an
operation schema, say OpExt, for which corresponding operation schemas Op are
defined in the extended units.

The following discussion is carried out with respect to the operation/predicate Op.
In the first two of the above cases, the extending unit CExt must define the operation
schema

Op == [ ∆State; . . . | . . . ]

with respect to the overall data state. In the last case, the extending unit CExt must
define the operation schema

OpExt == [ ∆State; . . . | . . . ]

which defines further constraints on the operation Op. Note that OpExt is defined with
respect to ∆State rather than ∆StateExt: this allows OpExt to define constraints on the
data state components of the extended units not defining Op.

Assume that Op is defined by the extended units Basei1, . . . , BaseiM. Then, the specifi-
cation unit resulting from the reduction process contains the definition

Op == (
∧

j∈{i1,...,iM}
Basej.Op) ∧ OpExt

If, for an operation schema Op defined by an extended unit, the extending unit does
neither define Op nor OpExt, the last case applies with the schema OpExt being set to
[ | true ] by default.

LOCAL. The transformation of the declared channels is analogous to that discussed with
respect to the INTERFACEsection.

BEHAVIOUR. The extending specification unit CExt is able

• to extend the imported behaviour patterns of the extended units or

• to completely redefine the dynamic behaviour.

In the first case, the extending unit defines, by convention, the process term
BehaviourExt. The defined process is composed in parallel with the behaviour patterns
of the extended units, which corresponds to a logical conjunction.

Behaviour =̂ ( ‖
i∈{1,...,N}

Basei.Behaviour) ‖ BehaviourExt
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The synchronising parallel operator ‖ enforces a synchronisation of all processes on
the operation-related events.

In the second case, the dynamic behaviour is defined from scratch in the extending
unit by means of the process term Behaviour. This can be done by referring to processes
defined in the extended units Base1, . . . , BaseN.

Let us turn our attention to abstract specification units. The structure of abstract specifica-
tions in RT-Z is less complex than the structure of concrete specifications, because extension
is the only structuring mechanism applicable to abstract specification units. Therefore, an
abstract specification in RT-Z is simply a tree, where the nodes are constituted by abstract
specification units and where the edges represent extension relationships.

We now address the extension of abstract specification units. Let us consider the schematic
definition of the abstract specification unit AExt as an example for the subsequent discussion.

SPEC. UNIT AExt

EXTENDS

Base1

instantiate . . . ;
rename . . . ;

. . . BaseN
instantiate . . . ;
rename . . . ;

TYPES & CONSTANTS

• new data types and constants

• additional constraints on imported constants

INTERFACE

• new ports

• additional constraints on domains of imported ports

ENVIRONMENTAL ASSUMPTIONS

• environmental assumptions concerning new ports

• additional environmental assumptions concerning imported ports (EAExt)
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I/O RELATIONS

• new I/O relations

• extension of imported I/O relations

• redefinition of imported I/O relations

STATE PROPERTIES

• new state components

StateExt == . . . InitExt == . . .

• additional global invariants

GlobalInv == . . . GlobalInit == . . .

• new time-variant state properties

• additional constraints on imported time-variant state properties

BEHAVIOURAL PROPERTIES

• redefinition

Behaviour =̂ . . .

• extension

BehaviourExt =̂ . . .

Again, the meaning of the extension of abstract specification units is defined in terms of
transformation rules, which we explain separately for each section.

TYPES & CONSTANTS, INTERFACE, ENVIRONMENTAL ASSUMPTIONS. The rules for redu-
cing these sections of the extending specification unit AExt and of the extended speci-
fication units Base1, . . . , BaseN are identical with those in the context of concrete speci-
fication units.

I/O RELATIONS . There are three alternatives for the extending specification unit AExt for
defining I/O relations:

Introduction of new I/O relations: In this case, the extending unit defines a schema, say
IORel, for which there is no corresponding definition in the extended units.

Redefinition of imported I/O relations: In this case, the extending unit defines a
schema, say IORel, for which there are corresponding definitions in the extended
units; but these are ignored.
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Extension of imported I/O relations: In this case, the extending unit defines a schema,
say IORelExt, for which corresponding schemas IORel are defined in the extended
units.

The following discussion is carried out with respect to the I/O relation IORel. In the last
of the above cases, the extending specification unit must define the schema IORelExt,
which is interpreted as extending the I/O relation schema IORel. We assume that IORel
is defined by the extended specification units Basei1, . . . , BaseiM. Then, the specification
unit resulting from the reduction process will contain the definition

IORel == (
∧

j∈{i1,...,iM}
Basej.IORel) ∧ IORelExt

If, for a schema IORel defined by an extended unit, the extending unit does neither
define IORel nor IORelExt, the last case applies with the schema IORelExt being set to
[ | true ] by default.

STATE PROPERTIES. For abstract specification units, the derivation of the State schema
from the data states of the extending unit AExt and of the extended units
Base1, . . . , BaseN is identical with the corresponding derivation in the context of con-
crete specification units. Among other things, this means that the extending unit AExt
can define the schemas StateExt and GlobalInv in its STATE PROPERTIESsection.

There are three alternatives for the extending specification unit AExt for defining time-
variant state properties:

Introduction of new time-variant state properties: In this case, the extending unit
defines a schema, say Prop, for which there is no corresponding definition in the
extended units.

Redefinition of imported time-variant state properties: In this case, the extending unit
defines a schema, say Prop, for which there are corresponding definitions in the
extended units; but these are ignored.

Extension of imported time-variant state properties: In this case, the extending unit
defines a schema, say PropExt, for which corresponding schemas Prop are defined
in the extended units.

The following discussion is carried out with respect to the time-variant state property
Prop. In the first two cases, the extending unit AExt must define the schema

Prop == [ State; . . . | . . . ]

with respect to the overall data state. In the last case, the extending unit AExt must
contain the schema

PropExt == [ State; . . . | . . . ]

which defines further constraints on the time-variant state property Prop. Note that
PropExt is defined with respect to State rather than StateExt: this allows PropExt to define
constraints on the data state components of the extended units not defining Prop.
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Assume that Prop is defined by the extended units Basei1, . . . , BaseiM. Then, the specifi-
cation unit resulting from the reduction process will contain the definition

Prop == (
∧

j∈{i1,...,iM}
Basej.Prop) ∧ PropExt

If, for a schema Prop defined by an extended unit, the extending unit does neither
define Prop nor PropExt, the last case applies with the schema PropExt being set to [ | true ]
by default.

BEHAVIOURAL PROPERTIES. The extending specification unit AExt is able

• to extend the imported behaviour patterns of the extended units or

• to completely redefine the dynamic behaviour.

In the first case, the extending unit defines, by convention, the predicate BehaviourExt.
The defined predicate is conjoined with the behaviour definitions of the extended
units.

Behaviour =̂ (
∧

i∈{1,...,N}
Basei.Behaviour) ∧ BehaviourExt

In the second case, the dynamic behaviour is defined from scratch in the extending
unit by means of the predicate Behaviour. This can be done by referring to predicates
defined in the extended units Base1, . . . , BaseN.

Having described the transformation rules for extension, we have defined the meaning of
extension in a semi-formal yet systematic manner.

The syntax for extension used so far is the vertical form. In cases in which the extension of a
specification unit is carried out without instantiating or renaming identifiers, the horizontal
form can be used.

SPEC. UNIT Ext EXTENDSBase

. . .

In the horizontal form, the identifier of the specification unit to be extended is recorded in
the headline of the extending specification unit.

In the current and previous section, we have treated the transformation rules for aggregation
and extension separately. In general, however, an RT-Z specification contains both aggrega-
tion and extension relationships. So, we must address the interplay between the two kinds
of transformation rules.

According to our previous remarks, an RT-Z specification is a finite, directed and acyclic
graph, whose nodes are constituted by (simpler) graphs and whose edges represent ex-
tension relationships. Each graph constituting a node of the top-level graph is a tree of
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specification units whose edges represent only aggregation relationships (i.e., aggregation
hierarchies). Since the top-level graph is finite and acyclic, there must exist nodes without
outgoing edges. These leaf nodes, constituted by aggregation hierarchies, can be reduced
to single specification units by applying the transformation rules for aggregation. Then,
the extension relationships leading to these leaf nodes can be eliminated by applying the
transformation rules for extension. The resulting top-level graph is smaller than the original
graph, so finitely many of the above steps suffice to reduce the whole RT-Z specification
to a single specification unit whose meaning is the meaning of the whole specification by
definition.

8.3 Renaming

When instantiating a specification unit by means of aggregation or extension, the elements
of its interface can be renamed. The syntax in the context of aggregation is as follows.

subunit agg spec. unit Spec
rename chan1 to chan′

1, . . . , chanN to chan′
N

The meaning of the renaming operator for specification units (which should not be confused
with the CSP renaming operator for processes) is the renaming of the involved external chan-
nels in the INTERFACE, BEHAVIOURand ENVIRONMENTAL ASSUMPTIONSsections of the
specification unit Spec. The renaming of the channel identifiers must represent an injective
function.

8.4 Hiding

When instantiating a specification unit by means of aggregation, arbitrary elements of the
interface can be hidden. The syntax is as follows.

subunit agg spec. unit Spec
hide chan1, . . . , chanN

The meaning of the hiding operator is given by transferring the listed channels from the
INTERFACEto the LOCALsection within the specification unit Spec.

8.5 Parametrisation

To support the reuse of specification units in different contexts, any specification unit may
contain a list of formal parameters that must be instantiated by the respective aggrega-
tion/extension context with appropriate actual parameters. Formal parameters are place-
holders for data types or constants. They are introduced in the head of a specification unit
within square brackets. Formal parameters denoting data types allow us to define generic
specification units.
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Each formal parameter introduced by a specification unit must additionally be declared in
its TYPES & CONSTANTSsection in order to allow us to type-check specification units in-
dependently of their context. A parametrised specification unit can define constraints on
the allowed instantiations of its formal parameters in its TYPES & CONSTANTSsection by
expressing constraints on the formal parameters with the help of the Z notation.

When the specification unit

SPEC. UNIT Agg[fp1, . . . , fpN]

. . .

is aggregated by another specification unit

subunit agg spec. unit Agg
instantiate fp1 with ap1, . . . , fpN with apN

the formal parameters are substituted by the supplied actual parameters.

Note that the top-level specification unit of a specification must not contain formal param-
eters, because it is not embedded into a context which provides actual constants and types.

8.6 Example: Alternating Bit Protocol

To illustrate the structuring mechanism aggregation, we proceed with the example started
in Chapter 7: the alternating bit protocol. There, we have discussed the requirements speci-
fication of a reliable communication medium and one component of the design specification
of the AB protocol. In the following, we present the top-level specification unit ABProtocol
of the design, which aggregates the four components that are depicted in Figure 7.2.

SPEC. UNIT ABProtocol

INTERFACE

port In, Out domain Message

TYPES & CONSTANTS

Bit ::= true | false MaxTransDelay, MaxAckDelay : T
MaxAckDelay >R MaxTransDelay +R MaxTransDelay
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ENVIRONMENTAL ASSUMPTIONS

EA =̂ ∀ t : T; msg : Message •
Out.msg live from t ⇒
∃ dt : T | dt 6R (MaxTransDelay +R MaxTransDelay) • Out.msg at (t +R dt)

SUBUNITS

subunit sender spec. unit Sender
instantiate MSG with Message, ACK with Bit,

MaxDelay with MaxAckDelay;
subunit receiver spec. unit Receiver

instantiate MSG with Message, ACK with Bit,
MaxDelay with MaxAckDelay;

subunit msg medium spec. unit UnreliableMedium
instantiate MSG with Message× Bit, MaxDelay with MaxTransDelay;
rename Send to MsgSend, Rcv to MsgRcv;

subunit ack medium spec. unit UnreliableMedium
instantiate MSG with Bit, MaxDelay with MaxTransDelay;
rename Send to AckSend, Rcv to AckRcv;

LOCAL

channel MsgSend, MsgRcv domain Message× Bit;
channel AckSend, AckRcv domain Bit

STATE

GlobalInit
sender.ack = receiver.ack

BEHAVIOUR

Behaviour =̂ (sender.Behaviour
|[ {| MsgSend |} ∪ {| AckRcv |} ]|

(msg medium.Behaviour ||| ack medium.Behaviour)
|[ {| AckSend |} ∪ {| MsgRcv |} ]|

receiver.Behaviour)

Consider first the SUBUNITSsection. It introduces the four components depicted in Fig-
ure 7.2 by means of simple aggregation. The aggregated units msg medium and ack medium
are both instances of the specification unit UnreliableMedium, because they have the same
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generic behaviour. To take their differences into account, both declarations associate the
formal parameter MSG with different sets (instantiate statement), and the identifiers
of the external channels are renamed appropriately in order to embed the media into their
respective context (rename statement).

The data state of the protocol is constituted by the data states of the aggregated units, in this
case of the units sender and receiver. The schema State of the aggregating unit ABProtocol is
derived as discussed in Section 8.1.4.

State
sender : Sender.State
receiver : Receiver.State

Since there are no constraints on the relationship between the data states of the sender and
receiver components, the schema GlobalInv is omitted. There is, however, a constraint on the
relationship between the states of the acknowledgement bits of the components at initialisa-
tion, stipulated by the schema GlobalInit: the bits must be initialised with the identical value,
but the particular value is irrelevant.

Finally, the BEHAVIOURsection fixes the configuration of the aggregated units, including
their interaction via internal channels. This is achieved by means of the process term lan-
guage of timed CSP. Note that all channels that are declared in the LOCALsection are hidden
from the interface by definition.

The specification units Receiver and UnreliableMedium, which define the behaviour of the
receiver component and of the unidirectional, unreliable message media, are given for the
sake of completeness.

The crucial aspect of the definition of the specification unit UnreliableMedium is how it makes
explicit the possible error modes of the message medium in the behaviour definition: after
receiving a message on the channel Send, it chooses an i ∈ N nondeterministically. If i = 0,
then the interleaving process expression simplifies to |||i∈∅ Trans(i, m), which is equivalent
to Skip. This case represents the loss of the received message. If i = 1, then the interleaving
process expression simplifies to |||i∈{1} Trans(i, m), which is equivalent to Trans(1, m). This
case represents the correct behaviour of the message medium, because one copy of the re-
ceived message is correctly delivered. The cases in which i > 1 represent the duplication of
the received message.

SPEC. UNIT UnreliableMedium [ MSG, MaxDelay ]

TYPES & CONSTANTS

[MSG] MaxDelay : T

INTERFACE

port Send, Rcv domain MSG
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BEHAVIOUR

Behaviour =̂ Cycle

Cycle =̂ Send?(m : MSG) → u
i∈N

 |||
j∈1..i

Trans(j, m)

 ; Cycle

Trans(i, m) =̂ Wait((i− 1) ∗R MaxDelay, i ∗R MaxDelay]; Rcv!m → Skip

The specification unit Receiver is defined analogously to the specification unit Sender dis-
cussed in detail in Section 7.1.

SPEC. UNIT Receiver [ MSG, ACK, MaxDelay ]

TYPES & CONSTANTS

[MSG, ACK] #ACK = 2
MaxDelay : T

INTERFACE

port Out domain MSG;
port MsgRcv domain MSG× ACK;
port AckSend domain ACK

STATE

State == [ ack : ACK ]

OPS & PREDS [CorrectAck, IncorrectAck ]

CorrectAck == [ ∆State; rec? : ACK | rec? = ack ∧ ack′ 6= ack ]
IncorrectAck == [ ΞState; rec? : ACK | rec? 6= ack ]

BEHAVIOUR

Behaviour =̂ REC
REC =̂ (MsgRcv?(rec : MSG× ACK) →

(CorrectAckX!〈| rec? == rec.2 |〉 →
(Out!(rec.1) → Skip ||| σ(AckSend!ack → Skip)); REC

� IncorrectAckX!〈| rec? == rec.2 |〉 → σ(AckSend!ack → REC)))
.{MaxDelay} σ(AckSend!ack → REC)
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This completes our informal discussion of the integrated formalism RT-Z. We have intro-
duced two models of integrating Z and timed CSP, we have described the links between the
base formalisms in the two models, we have discussed the structure of abstract and con-
crete specification units and we have introduced and defined the structuring mechanisms
for organising large and complex specifications.

In the next part, we back up formally the RT-Z notation introduced in this part.
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Chapter 9

Denotational Semantics

According to the classification of approaches to combining complementary formalisms pro-
posed in Chapter 5, a conserving integration must be equipped with a common semantics.
In this chapter, we define a denotational semantics for single specification units of RT-Z. Cor-
responding to the distinction between abstract and concrete specification units in Chapter 7,
we have to define two different semantic functions: in Section 9.2, we define the meaning of
concrete specification units; abstract specification units are dealt with in Section 9.3.

9.1 Basics

In correspondence with the denotational semantics of timed CSP, the denotational semantics
of RT-Z maps each RT-Z specification unit to the set of timed observations that could be made
during the evolution of the specified artifact. In the semantic model of RT-Z, such a timed
observation consists of two components.

• The external interaction of the artifact in the observation interval, consisting of

– the record of which events have occurred in which order and at which time in-
stants at the interface between the artifact and its environment (where an event
may involve the communication of a complex data value) and

– the record of which offered events have been refused by the artifact at particular
time instants.

This corresponds to the structure of process denotations in timed CSP, being composed
of timed traces and timed refusals.

• The evolution of the artifact’s data state in the observation interval. We call such a
record timed state. It has no counterpart in the semantic model of timed CSP.

The above description already incorporates an essential design decision, namely that the
evolution of the data state should be part of the denotations. This decision is in accordance
with the semantic model of TCOZ [Mahony and Dong, 1999a] but in contrast to the one of
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CSP-OZ [Fischer, 2000], see Chapter 4. Let us first briefly discuss the decision to include the
evolution of the data state in the denotations of an RT-Z specification.

The semantics of CSP-OZ maps each CSP-OZ class to a set of failure/divergence pairs1,
thereby abstracting from the evolution of the data state. From our point of view, too much
information is lost by ignoring the data state evolution, because some kinds of requirements
with respect to the behaviour of an object cannot be expressed in this case. More precisely,
it is not possible in a satisfactory manner to restrict the allowed behaviour patterns of an
object that has performed a nondeterministic operation whose nondeterminism is not visible
to the environment (not visible via an external interaction). In other words, in CSP-OZ,
the ability to express internal nondeterminisms related to the data state of the object under
consideration stands in contradiction to the ability to make any statements about its required
external behaviour.

We provide an example of such a situation in Figure 9.1.

LossyCoffeeMachine

Capacity : N1

cups : N

cups ≤ Capacity

INIT

cups = Capacity

Output

∆(cups)

cups > 0
cups ′ = cups − 1

Loss

∆(cups)

cups > 0
cups ′

< cups

main = (Output → Skip u Loss → Skip); main

Figure 9.1: Lossy coffee machine.

The CSP-OZ class models a lossy coffee machine with two operations: Output models the
output of one cup of coffee to the user, and Loss models a malfunction of the machine, loosing
an arbitrary number of cups of coffee nondeterministically. It is important to note that this
nondeterminism—the amount of coffee lost—is not visible to the environment. According to
the semantics of CSP-OZ, the failure (〈Loss〉, {Output, Loss}) is an observation of the specified
machine: after a loss has occurred, the machine is able to refuse to output further cups of
coffee, regardless of whether or not it has still coffee available. The reason is that the Loss
operation could potentially lead to a completely empty coffee machine, which is unable to
output further coffee. Since the data state that actually resulted from the Loss event is ignored
by the semantics, one cannot make the acceptance of the output of coffee dependent on the

1 in the sense of the failures–divergences model of (untimed) CSP
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real amount of coffee available. This means that, on the basis of the CSP-OZ semantics, it is
not possible to express requirements with respect to the behaviour of the machine like: “the
machine is ready to output coffee as long as it is not empty.”

To model such systems properly, including nondeterminisms not visible to the environment,
the evolution of the data state must be taken into account.

As discussed in Chapter 2, we must distinguish between two system views in the course of
the system development process. In the open system view, the artifact at hand is considered
as a white box, i.e., its internal properties are visible, whereas it is considered as a black box
in the closed system view. The intention pursued by the above argument was to justify the
need for the open system view from the semantic point of view. This, however, does not
imply that we can dispense with a semantic model reflecting the closed system view.

Accordingly, the approach taken in this chapter is as follows. We first deal with the timed
failures/states model of RT-Z in Sections 9.2 and 9.3, which reflects the open system view
and is the more complex model. Afterwards, we treat the extended timed failures semantics
of RT-Z specification units in Section 9.4, which reflects the closed system view and which
can be easily derived from the former.

9.2 Concrete Specification Units (Open System View)

The structure of concrete specification units and the principles of how they integrate the Z
and timed CSP notation are discussed in Section 7.1. In this section, we define a common
semantic model unifying the semantic models of the base formalisms in order to map each
concrete specification unit of RT-Z to a unique meaning.

In Section 9.2.1, we elaborate the consequences of the potential concurrency of operations
working on different parts of the data state space. In particular, we define constraints on the
possibility to apply operations concurrently. They ensure that scenarios of concurrent oper-
ation applications can be related to corresponding evolutions of the underlying data state in
a reasonable manner. Then, in Section 9.2.2, we give an overview of the semantic integra-
tion within concrete specification units and outline its major steps. Sections 9.2.3 and 9.2.4
introduce intermediate semantic models that are the basis for the final timed failures/states
model dealt with in Section 9.2.5. The formal definition of the semantic integration of the Z
part and the CSP part of a concrete specification unit in Section 9.2.6 on the grounds of the
timed failures/states model concludes the current section.

In Section 9.3, we define the timed failures/states semantics of abstract specification units,
which is done much more succinctly, given their less complex structure and the definitions
in the current section.

9.2.1 Concurrency on Common Data State

Let us consider in the following an RT-Z system specification that is composed of an aggrega-
tion hierarchy of specification units. In this case, the overall data state of the specified system
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can be regarded as being hierarchically partitioned into subspaces according to the hierarch-
ical decomposition of the system specification into specification units, where each specifica-
tion unit defines its associated data state. Roughly speaking, each operation defined in one
of the specification units depends on and transforms only the subspace of the overall data
state that is associated with its specification unit. When applied, it should leave the other
subspaces of the overall data state unchanged and its transformation should depend only
on the current values of variables within this subspace of the data state. However, when we
take the concept of global invariants into account, this clear separation between different sub-
spaces is dropped: a global invariant establishes relationships between variables in different
subspaces of the overall data state, which must be respected when an operation transforms
one subspace of the data state.

As a consequence, RT-Z addresses the concurrent application of operations only under two
specific conditions that are discussed in the following paragraph; if these conditions are not
met, RT-Z refuses to make any statements about the result of the concurrent application.
More specifically, the behaviour that is specified if these conditions are not met is that of the
diverging process, which denotes the set of all timed failures and timed states.

Roughly speaking, the concurrent application of operations is addressed by RT-Z only if
these operations do not interfere with each other, that is, if their corresponding transform-
ations of the data state do not affect each other. More precisely, the effect of concurrently
applying a set of operations, say OpSet, with particular input parameters is well-defined
with respect to the current data state only if the following two conditions are satisfied:

1. The subspaces of the data state potentially changed by applying the operations of
OpSet must be pairwise disjoint. In other words, there must not be any state com-
ponent that might be subject to change by more than one of the concurrently applied
operations.

2. The particular order in which the individual transformations of the data state take
place must not be relevant. That is, the set of final data states and output parameters
the concurrent application of the operations in OpSet may produce must be independ-
ent of the particular order in which the corresponding transformations of the data state
really take place. Moreover, this set of final data states and produced output param-
eters must not be empty. This excludes the case that the application of some of the
operations of OpSet violates the preconditions of others, ensuring that each operation
of OpSet can be applied to the data state resulting from the application of any combin-
ation of other operations of OpSet.

In brief, these conditions allow operations transforming disjoint subspaces of the overall
data state to be applied concurrently if they do not interfere with each other via global in-
variants.

If the concurrent application of a set of operations meets the above ‘non-interference’ con-
ditions with respect to the current data state, then its effect on the current data state is the
sequential composition of the individual state transformations in an arbitrary order. If, on
the other hand, operations are applied concurrently without satisfying these conditions, the
effect on the data state is left unspecified: RT-Z does not really prevent the concurrent ap-
plication of operations interfering with each other, but refuses to define its result. It is the
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State == [ n, m : N | n ≤ m ]
Op1 == [ ∆State | n′ = n + 1 ∧ m′ = m ]
Op2 == [ ∆State | m′ = m− 2 ∧ n′ = n ]

t t1 t2 t3 t4
invocation / termination Op1I Op2I Op1T Op2T

(n, m) (2, 5) (2, 5) (3, 5) (3, 3)
(3, 5) (3, 5) (4, 5) divergence
(4, 5) X (5, 5) X

Figure 9.2: Concurrent application of operations.

responsibility of the specifier to guarantee that the concurrent application of interfering op-
erations is prevented. This gives rise to a specific kind of validation condition.

As already explained, there are two alternatives for modelling state transitions (operations);
either an operation is modelled to be applied during a time interval where this interval is
delimited by the events of invocation OpI and termination OpT, or an operation is modelled
to be applied instantaneously, marked by the event of execution OpX. These two cases must
be distinguished regarding the above ‘non-interference’ conditions.

In the double-event approach, the application of an operation, say Op, starts with the occur-
rence of the invocation event OpI. For the operation to be invoked, the precondition of the
operation must be satisfied with respect to the current data state, where the evaluation of
the precondition may depend on the overall data state, not only on the subspace associated
with the operation (see the example on p. 66). The application of the operation is completed
with the occurrence of the termination event OpT; the caused state transition takes effect at
this time instant: it is based on the data state that is present at termination. It is important
to note that the overall data state may have changed during the application—due to the ter-
mination of other operations applied concurrently. In the double-event approach, the above
‘non-interference’ conditions apply to operation applications whose application intervals—
the intervals between invocation and termination—overlap.

In the single-event approach, on the other hand, the instantaneous application of an opera-
tion, say Op, is marked by the occurrence of the execution event OpX. For the operation to
be executed, its precondition must be evaluated successfully with respect to the current data
state. The above ‘non-interference’ conditions apply to operations executed simultaneously,
i.e., at the same time instant.

We illustrate the above discussion with the help of the example in Figure 9.2. The underlying
data state consists of two components n and m, where n must be less than or equal to m.
Further, there are two operations, Op1 and Op2, incrementing n by 1 and decrementing m by
2, respectively.

We consider three scenarios in which the operations are applied concurrently in the context
of different data states.
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0 t1 t2 t
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T

...

Op1T , Op2T

(Op1X, Op2X)
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Op2

Op2T

(Op2X )

Figure 9.3: Structure of timed states.

In the first scenario, Op1 and Op2 are invoked at t1 and t2 in this order with respect to the
data state (n, m) = (2, 5). This data state allows the operations to be applied in a well-defined
manner, because in whatever order their state transformations take place, the final data state
will be (3, 3). Let Op1 and Op2 terminate at t3 and t4 in this order. Then, the termination of
Op1 leads to the data state (3, 5).

Note first that the state transformation that is caused by the termination of Op2 relates the
data states (3, 5) and (3, 3), where (3, 5) is the data state that is present when Op2 terminates.
At first glance, this might appear counterintuitive, because the state transformation of Op2
is not based on the data state (2, 5) that is present when it is invoked. However, a closer look
reveals that any change of the data state that might have taken place between the invocation
at t2 and the termination at t4 cannot have any effect on Op2’s transformation within its
associated subspace of the overall data state, as long as we consider a well-formed (i.e., non-
interfering) application scenario.

Note also that, even though the state transition that is caused by Op2 is based on the data
state (3, 5) present at termination, it is the data state (2, 5) present at invocation that is used
to determine whether Op2 can be applied (by computing the precondition). Again, as long
as we consider a well-defined application scenario, the fact that the precondition of Op2 is
satisfied at invocation implies that it must also be satisfied at termination.

In the second application scenario, Op1 and Op2 are applied concurrently with respect to the
data state (3, 5), which does not allow the operations to be applied concurrently in a well-
defined manner; because the first operation terminates necessarily in a data state violating
the precondition of the other one. In the example, Op1 terminates at t3 in the data state (4, 5),
in which the precondition of Op2 is not satisfied. Hence, the termination of Op2 at t4 results
in divergence.

In the last application scenario, we consider a data state (4, 5) that prevents the invocation of
Op2 at t2, because its precondition is not satisfied. Thus, in contrast to the previous scenario,
the attempt to apply Op1 and Op2 concurrently does not result in divergence, but in the
application of only Op1.

Let us now consider the structure of timed states as outlined in Figure 9.3, each of which
is a constituent of a timed observation in RT-Z. A timed state has the purpose to record the
changes of the data state caused by the execution or termination of operations. Since ar-
bitrarily many operations may be executed simultaneously (single-event approach) and/or
may terminate simultaneously (double-event approach), a timed state must be able to record
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arbitrarily many state changes for a single time instant. This is achieved as follows: a timed
state assigns a data state to any time instant at which at least one operation is executed or
terminates. This data state represents the result of all individual state changes at that time
instant. In other words, it combines the individual state changes to a single change. Ac-
cordingly, a timed state is a partial function mapping those time instants of the observation
interval at which at least one operation is executed or has terminated to the data state that
is the result of applying in an arbitrary order all these operations to the previously recorded
data state.

This leads to the following interpretation of a timed state. At initialisation (time instant 0),
the timed state records the initial data state, which is one of those data states characterised
by the Init schema of the Z part. For each time instant at which no execution or termination
event occurs, the timed state is undefined. The current data state at such a time instant is
the last data state recorded in the timed state before. For each time instant at which at least
one operation is executed or terminates, the timed state records all state changes that have
resulted from these operation executions or terminations.

9.2.2 Semantic Integration: Overview

We define a denotational semantics, which associates a set of mathematical objects with a
single concrete specification unit; the denotations represent possible timed observations that
could be made when observing the artifact under consideration. Concerning the design of
this denotational semantics, a major decision is not to begin from scratch, but to make use of
the denotational semantics of the base formalisms as far as possible. For both Z and timed
CSP, denotational semantics are provided by the Final Committee Draft of the ISO standard
for Z [ISO, 2002] and the finite timed failures model [Schneider, 1999b], respectively. Reusing
the denotational semantics by encapsulating their semantic functions within the semantic
function of RT-Z is not only more economical than defining an entirely new semantic func-
tion, but also makes the semantics of RT-Z more robust against potential changes of the
semantics of the base formalisms. Following the definition of the Z semantics in [ISO, 2002],
we use the Zermelo–Fraenkel (ZF) axiomatisation of set theory [Hamilton, 1982, Enderton,
1977] in combination with logic as the metalanguage for defining the denotational semantics
of the integrated formalism. We follow the syntactic conventions of using the ZF set theory
that are applied in the Z Standard [ISO, 2002, Chapter 4]. These syntactic conventions lead
to a notation that is similar to the Z notation itself. However, the two notations should not
be confused.

The main principle of integrating the semantic models of Z and timed CSP follows an idea of
Smith [1997] and adapts it to our specific context: each Z specification is given an interpreta-
tion in the semantic model of timed CSP. Using this interpretation, the combination of the Z
and the (timed) CSP part of a specification unit is interpreted as their parallel composition,
where the two parts synchronise on the events related to the operations of the Z part. The
definition of the semantics of concrete specification units consists of three steps associated
with corresponding intermediate semantic models, which are depicted in Figure 9.4: the his-
tory model, the extended timed failures model and the timed failures/states model; the Z
Standard and the timed failures model of timed CSP are their foundation.

In Figure 9.4, there are two lines of transformation. The first line deals with the transform-
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Z Standard

history model

timed failures model

extended timed failures model

timed failures / states model

theory (set of models)

set of histories

set of timed failures

set of timed 
failures / states

set of timed failures

Z part
(Z specification)

CSP part
(extended timed
CSP specification) 

semantics of
concrete specification unit

operation
related
events

interpretation as
timed CSP process

state-oriented
interpretation

consideration of
data state evolution

Figure 9.4: Steps of the semantic integration.

ation of the denotation of a Z specification, as defined by the Z Standard, into a form com-
patible with the denotation of a timed CSP process, i.e., it gives a Z specification a timed
failures/states semantics. The second line is about giving a timed CSP specification a mean-
ing in the timed failures/states model of RT-Z. As just discussed, finally, the appropriately
transformed interpretations of the Z and the CSP part are composed in parallel to obtain the
semantics of the overall concrete specification unit.

The simplest intermediate model is the history model. The denotational semantics given in
the Z Standard maps each section of a Z specification to a set of so-called models. A model
is a function mapping each identifier occurring in the considered specification section to
a value, which the identifier may denote according to all constraints defined in the whole
specification. The Z Standard does not fix a particular interpretation of Z specifications; in
particular, it does not reflect the state-oriented conventions of interpreting Z specifications;
however, this is the mandatory interpretation in the context of concrete specification units.
Therefore, we transform a model into a form reflecting the state-oriented interpretation. This
interpretation regards a Z specification as defining a data state and a set of transitions on
it. Histories, as used by Smith [1997], are mathematical objects reflecting this state-oriented
interpretation. A history represents a possible observation of the specified artifact up to
a particular time instant. It consists of the sequence of data states the artifact has passed
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through, together with the sequence of operation events the artifact has performed. After
this transformation, the meaning of a Z specification is expressed in terms of a set of histories.

The purpose of the extended timed failures model is twofold. First, it lifts the syntax and
the semantic model of timed CSP such that timed CSP expressions can be embedded within
a Z context. Second, it is the underlying model to give a Z specification—via the history
model—a ‘timed CSP-like’ meaning. Hence, it brings together the semantic models of Z and
timed CSP.

The main tasks related to the definition of this model are:

• The extension of the timed CSP syntax in order to express the links from the CSP to the
Z part of a concrete specification unit.

• The definition of the concepts of the timed failures model in ZF set theory, including

– the time domain of timed CSP processes

– the constituents of the denotations in the timed failures model and

– the properties of the timed failures model stating which sets of timed failures are
valid, consistent timed observations of a process.

• The definition of the meaning of the extended syntax based on the denotational se-
mantics of timed CSP.

The final model is the timed failures/states model; it augments the previous model by taking
into account the evolution of the data state of the specified artifact in the considered observa-
tion interval. The lifting from the extended timed failures to the timed failures/states model
concerns only the Z part, because the CSP part does not make any statements about the data
state.

So far, the meaning of the Z part of a concrete specification unit is defined in terms of a set
of pairs of timed failures and timed states, and the meaning of the CSP part is expressed in
terms of a set of timed failures. In the final step, the meaning of the RT-Z specification unit is
defined to be the relation between timed failures and timed states as defined by the Z part,
where the domain of this relation is restricted to the set of timed failures as defined by the
CSP part. More abstractly, the meaning of the specification unit is defined to be the parallel
composition of its parts synchronising on the set of operation-related events, see Figure 6.5.2

9.2.3 History Model

For the purpose of defining the meaning of concrete specification units, we fix a particular
interpretation of their Z parts. Roughly speaking, we adopt the state-oriented interpretation
of Z specifications. This state-oriented interpretation, which is the most widespread con-
vention of using Z in practice [Woodcock and Davies, 1996, Wordsworth, 1992], regards a

2 To be more precise, the operation-related events are hidden after the parts have been composed in parallel.
The operation-related events serve only to connect the parts; they are not part of the external interface of a
specification unit. The information contained in Figure 6.5 is defined formally by the relations tfs of modelINT

and tfs of modelEXT on p. 144.
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Z specification as characterising the specified artifact as a state-transition system. Follow-
ing this convention, a Z specification must define a dedicated schema that models the data
state. Moreover, operation schemas are defined that model transitions on that data state.
The meaning of a Z specification as defined by the Z Standard, however, is absolutely inde-
pendent of any particular kind of interpretation. This semantics associates a theory with each
(sectioned) Z specification, which is a mapping from section identifiers to sets of models. A
model, in turn, is a function mapping each introduced identifier to a value that this identi-
fier may denote according to all specified constraints. As already mentioned, it is the task
of the first sub-step of the semantic integration to transform a set of models, denoting the
meaning of the Z part of a concrete specification unit, into a set of histories, which reflect the
state-oriented interpretation of this Z part.

The metalanguage used in this section to define the denotational semantics of RT-Z is based
on logic and Zermelo–Fraenkel set theory, which is an untyped theory. Regarding the choice
of the semantic metalanguage, we follow the approach of the Z Standard to defining the
denotational semantics of the Z notation. The concrete syntax used in this section is identical
in appearance to that of the base language Z itself, but is grounded only on logic and ZF set
theory. Using the Z notation as the concrete syntax allows us to apply the powerful tool ESZ
[Büssow and Grieskamp, 1998] for performing syntax checks: all formal definitions in this
chapter are type-checked. However, since ZF set theory, in contrast to Z, is untyped, we are
forced to “circumvent” the Z type system at different places.

To define the meaning of concrete specification units, we must be able to refer to their syn-
tactical constituents, which are entire Z specifications (Z part), timed CSP process terms (BE-
HAVIOURsection), predicates of the timed failures model (ENVIRONMENTAL ASSUMPTIONS
section) and Z expressions (channel signatures in the INTERFACEand LOCALsections). Let
ZSpec, ZExpr, ETCSP PROCESS and ETFM PREDICATE denote these syntactical units of
the base formalisms. They are characterised by the corresponding syntax definitions of Z
and timed CSP.

The BEHAVIOURsection can define any number of processes, and it must define the dedi-
cated process Behaviour, which models the dynamic behaviour of the artifact under consider-
ation. Let PROCESS be the set of all identifiers of processes. Then, the information induced
by the BEHAVIOURsection is a function mapping the identifier of each defined process to
the corresponding defining expression. We call that function process environment.

ProcEnv == PROCESS 7 7→ ETCSP PROCESS

The INTERFACEand the LOCALsections of a specification unit associate Z expressions with
external and internal channels, which are evaluated in the context of the Z part and denote
the value domains of the declared channels. Let CHANNEL be the set of all identifiers of
external and internal channels. The information induced by these two sections is a function
mapping channel identifiers to Z expressions. We call that function channel signature.

ChanSgn == CHANNEL 7 7→ ZExpr
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Evaluated in the context of the Z part, each Z expression denotes the set of data values that
can be communicated along the corresponding channel.

A concrete specification unit, as introduced in Chapter 7, incorporates

• a Z specification (ZSpec) containing its TYPES & CONSTANTS, STATEand OPS & PREDS
section,

• two functions (I, L) mapping each external and internal channel, declared in the
INTERFACEand LOCALsections, to a Z expression,

• a predicate (EA) of the extended timed failures model constituting the ENVIRONMEN-
TAL ASSUMPTIONSsection,

• a behaviour definition (Behav) constituting the BEHAVIOURsection and

• a set of identifiers (OPS) characterising some schemas defined in the OPS & PREDS
section as specifying operations and predicates (as opposed to auxiliary definitions).

CSpecUnit == [Zpart : ZSpec;
I, L : ChanSgn;
EA : ETFM PREDICATE;
Behav : ProcEnv;
OPS : F NAME]

According to the rules for constructing the Z part of a concrete specification unit explained
in Chapter 7, each Z specification constituting such a Z part consists of the sections TYPES &
CONSTANTS, STATEand OPS & PREDS, which are related via the obvious parent-relation-
ships. The STATE section must introduce the dedicated schemas State and Init, and the
OPS & PREDSsection must define an operation schema for each identifier in the set OPS.

The Z Standard introduces the set NAME to denote the set of all identifiers of a Z specifica-
tion and the function decor to define the decoration of identifiers. We assume that NAME,
PROCESS and CHANNEL are disjoint. The Z Standard also introduces the symbols W to
denote “a world of sets, providing semantic values for Z expressions,” U to denote “the
semantic universe, providing semantic values for all Z expressions, including generic defi-
nitions” and Model to denote the set of all models.

Furthermore, we refer to the semantic functions [[ ]]ε and [[ ]]Z defined by the Z Standard.
They define the meaning of Z expressions and sections of Z specifications, respectively.

When following the state-oriented conventions, the name space of each Z operation is par-
titioned into plain names, primed names, names ending with a ‘?’ (input parameters) and
names ending with a ‘!’ (output parameters).

Primed == {n : NAME • decor ′ n}
Inputs == {n : NAME • decor ? n}
Outputs == {n : NAME • decor ! n}
PrimedOf == {n : NAME • n 7→ (decor ′ n)}
PlainOf == {n : NAME • (decor ′ n) 7→ n}
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State Model. We first define the data state space that is induced by the schema State of the
STATEsection of a concrete specification unit. More precisely, each particular model of the
meaning of the Z part induces its specific data state. Accordingly, the entire discussion of the
transformation from the Standard’s semantics to the history semantics is done with respect
to a particular model of the meaning of the considered Z part.

A binding, as usual, is defined as a finite function from identifiers to values.

Binding == NAME 7 7→W

The set of data states associated with a model M is the set of bindings that is related to the
dedicated identifier State. The set of initial data states that are related to a model M are
defined analogously.

StateModel == {M : Model; data state : Binding | State ∈ domM∧ data state ∈ MState}
InitModel == {M : Model; init state : Binding | Init ∈ domM∧ init state ∈ M Init}

Since we assume that the Init schema of each concrete specification unit imports the State
schema, it follows that InitModel(|{M}|) ⊆ StateModel(|{M}|) for all M : Model.

Furthermore, the set of (undecorated) state variables introduced by the state schema is de-
termined by the domain of the bindings that are the denotation of the schema State.

StateVars == λM : Model | State ∈ domM • dom(
⋃

(MState))

Operation Model. As discussed in Chapter 7, the OPS & PREDSsection must define an op-
eration schema for each identifier in the set OPS.

Each operation schema has a unique identifier and introduces a set of input and output par-
ameters with corresponding types. Hence, an operation application is characterised by the
identifier of the applied operation and the assignment of values to the operation’s input and
output parameters (the transformation of the data state caused by an operation application
is considered separately).

OP APP == NAME× Binding op name == first[NAME, Binding]
op params == second[NAME, Binding]

The relation OpModel characterises, for each operation schema in OPS, the set of correspond-
ing operation applications (i.e., the assignment of values to the input and output parameters
of the operations) and the set of data state transitions (i.e., the pairs of pre and post states)
they are able to cause. Any modelM associates a set of bindings with each operation schema
op. These bindings contain the state variables of the pre state (in StateVars), the variables
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of the post state (in PrimedStateVars), input variables (in Inputs) and output variables (in
Outputs). A pair of data states is related to a particular assignment of values to input and
output parameters if, and only if, their union is a member of the binding set characterised
by the model.

OpModel == {M : Model; OPS : F NAME; op : NAME;
inout : Binding; delta state : Binding× Binding |

op ∈ OPS ∧ OPS ⊆ domM∧
dom inout ⊆ Inputs ∪Outputs ∧
(∃1 pre == delta state.1; post == delta state.2 •

dom pre = dom post = StateVarsM∧
(∃ bind : M op • bind = pre ∪ (post ◦ PlainOf ) ∪ inout))

• ((M, OPS), (op, inout, delta state))}

More abstractly, each operation schema induces a relation between operation applications,
as defined by OP APP, and data state transitions.

The function AssocSubspace maps each operation op to the subspace of the overall data state
whose components are potentially subject to change when the operation is applied. This sub-
space is needed to formalise the non-interference conditions already presented informally.

AssocSubspace == λM : Model; OPS : F NAME; op : NAME |
op ∈ OPS ∧ OPS ⊆ domM•
StateVarsM\ {var : StateVarsM | ∀ bind : M op • bind var = bind(PrimedOf var)}

The relation OpSetNonInterference formally specifies the conditions that must be met for a set
of operations OpSet to be applied concurrently with respect to a particular data state current,
which have been informally stated in Section 9.2.1.

Firstly, the subspaces of the data state associated with the operations by the function Assoc-
Subspace must be pairwise disjoint.

Secondly, the order in which the operations of OpSet really cause their corresponding state
transformations must not be relevant for the set of possible final data states and produced
output parameters. More formally, each pair of permutations (perm1, perm2) of operation
applications within OpSet must result in the same set of final data states and produced out-
put parameters. This set must not be empty, ensuring that the operations within OpSet do
not violate the preconditions of each other. The relation OpSeqEffects, which is an auxiliary
definition, associates with each permutation of operation applications the set of final data
states final and produced output parameters ops outpar.
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OpSeqEffects == {M : Model; OPS, OpSet : F NAME; current, final : Binding;
ops inpar, ops outpar : NAME 7 7→ Binding; perm : N 7 7→NAME |

dom ops outpar = OpSet ∧
(∃ stseq : 1 . . #OpSet + 1→ Binding •

stseq 1 = current ∧ stseq(#OpSet + 1) = final ∧
(∀ i : 1 . . #OpSet •

(perm i, ops inpar(perm i) ∪ ops outpar(perm i),
(stseq i, stseq(i + 1))) ∈ OpModel(|{(M, OPS)}|)))

• (((M, OPS), perm, current, ops inpar, OpSet), (final, ops outpar))}

OpSetNonInterference == {M : Model; OPS : F NAME; current : Binding;
ops inpar : NAME 7 7→ Binding |

∃1 OpSet == dom ops inpar •
(∀ op1, op2 : OpSet | op1 6= op2 •

AssocSubspace(M, OPS, op1) ∩ AssocSubspace(M, OPS, op2) = ∅) ∧
(∀ perm1, perm2 : 1 . . #OpSet�→OpSet •

OpSeqEffects(|{((M, OPS), perm1, current, ops inpar, OpSet)}|)
= OpSeqEffects(|{((M, OPS), perm2, current, ops inpar, OpSet)}|)
6= ∅)

• ((M, OPS), (current, ops inpar))}

We have to distinguish between the two approaches to relating events and operations dis-
cussed in Section 6.2. In the single-event approach, each operation application is related to
a single execution event, including the record of the input and output parameter values. In
the double-event approach, an operation application is split into the operation invocation,
including the record of the input parameter values, and the operation termination, including
the record of the output parameter values. The purpose of the set POP APP is to distinguish
between operation invocations, terminations and executions, which we call partial operation
events.

Exec == {1} ×OP APP
Invoc == {2} ×OP APP
Term == {3} ×OP APP

POP APP == Exec ∪ Invoc ∪ Term
pop name == first[NAME, Binding]◦

second[N, OP APP]
pop params == second[NAME, Binding]◦

second[N, OP APP]

Partial operation events are modelled as tuples, where the first component determines the
kind of event.

The sets Invocations, Terminations and Executions define relations between a model M, an
operation identifier op and the set of all corresponding invocations, terminations and execu-
tions, respectively.
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Invocations == {M : Model; OPS : F NAME; op : NAME; invoc : Binding |
op ∈ OPS ∧ OPS ⊆ domM∧
dom invoc ⊆ Inputs ∧
(∃ term, pre, post : Binding • dom term ⊆ Outputs ∧

(op, invoc ∪ term, (pre, post)) ∈ OpModel(|{(M, OPS)}|))
• ((M, OPS), (2, (op, invoc)))}

The sets Terminations and Executions are defined analogously and are hence omitted.

History Model. The state-oriented semantics of the Z part of a concrete specification unit,
as outlined in Section 9.2.2, is the set of all possible histories in which the specified artifact
may participate. A history of an artifact at a particular point of its evolution, modelled by
a member of the set History, is characterised by the sequence of partial operation events
it has undergone and the sequence of states it has passed through. In addition, a history
incorporates a component that is derived from the sequence of partial operation events,
namely the corresponding sequence of (complete) operation applications. The derivation of
this additional component is defined later.

Actually, we do not deal with real-time information in the current history model. However,
in order to express the well-formedness conditions of partial operation event sequences in
the following, we need a particular aspect of the timing of events: the information which
partial operation events have occurred simultaneously. The set PartialOpSeq contains all
pairs consisting of a sequence of partial operation events and a relation indicating which of
the events of the sequence have occurred simultaneously.

PartialOpSeq == {events : seq POP APP; simultan : N↔ N |
simultan ⊆ dom events× dom events ∧ simultan ∈ EquivRel[N] ∧
(∀ i, j : dom events | (i, j) ∈ simultan • ∀ k : i . . j • (i, k) ∈ simultan)}

History == PartialOpSeq× (seq Binding× seq OP APP)

events of == first[seq POP APP, N↔ N] ◦ first[PartialOpSeq, seq Binding× seq OP APP]
simultan of == second[seq POP APP, N↔ N] ◦ first[PartialOpSeq, seq Binding× seq OP APP]
states of == first[seq Binding, seq OP APP] ◦ second[PartialOpSeq, seq Binding× seq OP APP]
ops of == second[seq Binding, seq OP APP] ◦ second[PartialOpSeq, seq Binding× seq OP APP]

For a sequence of partial operation events to be a consistent record of the invocation, ter-
mination and execution of operations, it must satisfy different well-formedness conditions,
which are introduced in the following. We introduce these well-formedness conditions in
different steps, where each condition includes the conditions of the previous steps.

The first well-formedness condition concerns the relationship between the invocation and
termination of operations within a sequence of partial operation events. Roughly speaking,
an operation can terminate only if it has been invoked before. Formally speaking, for any
prefix of a well-formed sequence, the number of invocations of a particular operation must
be greater than or equal to the number of its terminations. Further, the difference between
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the numbers must be lower than or equal to one, because at any time at most one instance
of any operation can be invoked without being terminated. This is a consequence of the fact
that any operation interferes with itself. The set WellFormed1 contains all sequences satisfying
this condition at least for the first wf events.

WellFormed1 == {M : Model; OPS : F NAME; h : History; wf : N |
∃1 events == events of h •

(∀ i : 1 . . wf •
events i ∈ Invoc ∧ events i ∈ Invocations(|{(M, OPS)}|)
∨ events i ∈ Term ∧ events i ∈ Terminations(|{(M, OPS)}|)
∨ events i ∈ Exec ∧ events i ∈ Executions(|{(M, OPS)}|)) ∧

(∀ id : OPS; n : 1 . . wf •
0 ≤ #{i : 1 . . n | events i ∈ Invoc ∧ pop name(events i) = id}−
#{i : 1 . . n | events i ∈ Term ∧ pop name(events i) = id} ≤ 1)

• ((M, OPS), (h, wf ))}

The second well-formedness condition deals with the relationship between the sequence of
partial operation events and the corresponding sequence of data states, both being compon-
ents of a history h. First, the state sequence must contain at least one data state, namely the
initial state. Second, each termination/execution event of the component events is related to
a corresponding pair of data states of the states component, so states must have exactly one
member more than the projection of events to termination and execution events.

The function ev to st is introduced to map each event of the component events to the data
state of the component states that is present when the event occurs (more precisely, their
indices are related). The index of the component states by which this data state is determined
depends on the number of termination and execution events that have occurred before.

WellFormed2 == {M : Model; OPS : F NAME; h : History; wf : N; ev to st : N 7 7→ N |
(h, wf ) ∈ WellFormed1(|{(M, OPS)}|) ∧
(∃1 events == events of h; states == states of h •

states 6= 〈〉 ∧
(∀ i : N \ {0} • i + 1 ∈ dom states ⇔ i ∈ dom(events � (Term ∪ Exec))) ∧
dom ev to st = dom events ∧
(∀ i : dom events •

ev to st i = #{j : dom events | j < i ∧ events j ∈ Term ∪ Exec}+ 1))
• ((M, OPS), (h, wf , ev to st))}

The third well-formedness condition requires that the ‘non-interference’ conditions are met
by the sequence of partial operation events. For any index of the sequence, the set of currently
invoked or executed operations must satisfy the ‘non-interference’ conditions with respect
to the current data state. The set of currently invoked and executed operations is determined
by the auxiliary function ConcOps.
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ConcOps == λ OPS : F NAME; h : History; index : N | index ∈ dom(events of h) •
let events == events of h; simultan == simultan of h •
{op : OPS; inpar : Binding |

∃ i : dom events | op = pop name(events i) ∧ inpar = InputsC pop params(events i) •
events i ∈ Exec ∧ (i, index) ∈ simultan
∨
events i ∈ Invoc ∧ (i < index ∨ (i, index) ∈ simultan) ∧
¬ (∃ j : dom events | events j ∈ Term ∧ pop name(events j) = op •

i < j ∧ j < index ∧ (j, index) /∈ simultan)}

WellFormed3 == {M : Model; OPS : F NAME; h : History; wf : N; ev to st : N 7 7→ N |
∃1 events == events of h; simultan == simultan of h; states == states of h •
(h, wf , ev to st) ∈ WellFormed2(|{(M, OPS)}|) ∧
(∀ i : 1 . . wf •

(states(ev to st i), ConcOps(OPS, h, i)) ∈ OpSetNonInterference(|{(M, OPS)}|))
• ((M, OPS), (h, wf , ev to st))}

A sequence of partial operation events that is not well-formed models the divergence of
the specified artifact, i.e., an arbitrary behaviour. We distinguish between two parts of a
sequence: an initial part, which is well-formed, and the remaining part (possibly empty),
which is divergent. In the above definitions, wf is an index expressing that the corresponding
sequence is well-formed at least for the first wf events. In the following, we are interested
only in the maximal values of this index.

MaxWellFormed == {M : Model; OPS : F NAME; h : History; max wf : N;
ev to st : N 7 7→ N |

(h, max wf , ev to st) ∈ WellFormed3(|{(M, OPS)}|) ∧
(∀n : N | (h, n, ev to st) ∈ WellFormed3(|{(M, OPS)}|) • n ≤ max wf )

• ((M, OPS), (h, max wf , ev to st))}

The aim of the subsequent relation InvTermComb is to determine the sequence of (complete)
operation applications (operations) that corresponds to a given sequence of partial operation
events (events), i.e., to define the required relationship between the corresponding compon-
ents of a history h.
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InvTermComb == {M : Model; OPS : F NAME; h : History; max wf : N; ev to st : N 7 7→ N |
(h, max wf , ev to st) ∈ MaxWellFormed(|{(M, OPS)}|) ∧
(∃1 events == events of h; operations == ops of h •
dom operations = 1 . . #{i : 1 . . max wf | events i ∈ Term ∪ Exec} ∧
(∃1 term exec of : dom operations� dom events |

(∀ i, j : dom operations | i < j • term exec of i < term exec of j) ∧
ran term exec of = {i : 1 . . max wf | events i ∈ Term ∪ Exec} •
(∀ i : dom operations •

events(term exec of i) ∈ Term ∧
op name(operations i) = pop name(events(term exec of i)) ∧
(∃1 invoc == max{j : dom events | j < term exec of i ∧

events j ∈ Invoc ∧ pop name(events j) = op name(operations i)} •
op params(operations i) =
pop params(events(term exec of i)) ∪ pop params(events invoc))

∨
events(term exec of i) ∈ Exec ∧
op name(operations i) = pop name(events(term exec of i)) ∧
op params(operations i) = pop params(events(term exec of i)))))

• ((M, OPS), (h, max wf , ev to st))}

Each (complete) operation application of operations is composed either of an invocation and
the corresponding termination event or of a single execution event of events. Since an oper-
ation application is completed only with the occurrence of the termination/execution event,
each operation application in operations is identified with its corresponding termination/exe-
cution event of events by means of the injective, monotone function term exec of . The pairing
of corresponding invocation and termination events is done only for the well-formed part
of the sequence (1 . . max wf ). This is important because the derivation of the possible data
state evolutions in later definitions are based on the sequence of (complete) operation ap-
plications.

The set Histories relates each modelM of the meaning of the Z part of a concrete specification
unit to the set of histories of the specified artifact. The component events of a history records
operation invocations, terminations and executions. The derived component operations is the
sequence of operation applications resulting from the combination of corresponding invo-
cation and termination events of the former component, as defined by the previous relation.
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Histories == {M : Model; OPS : F NAME; h : History |
∃1 events == events of h; states == states of h; operations == ops of h;

max wf : N; ev to st : N 7 7→ N |
(h, max wf , ev to st) ∈ InvTermComb(|{(M, OPS)}|) •

(∀ i : dom operations ∪ {0} • states(i + 1) ∈ StateModel(|{M}|)) ∧
states 1 ∈ InitModel(|{M}|) ∧
(∀ i : 1 . . max wf | events i ∈ Invoc ∪ Exec •

(∃ post, out : Binding | dom out ⊆ Outputs •
(pop name(events i), (InputsC pop params(events i)) ∪ out,

(states(ev to st i), post)) ∈ OpModel(|{(M, OPS)}|))) ∧
(∀ i : dom operations •

(op name(operations i), op params(operations i),
(states i, states (i + 1))) ∈ OpModel(|{(M, OPS)}|))

• ((M, OPS), h)}

A tuple consisting of a sequence of partial operation events (events), a sequence of data states
(states) and a sequence of operation applications (operations) is related to a model M under
the following conditions. First, all data states in the well-formed part of the states sequence
must satisfy the state invariant, and the first data state must additionally fulfil the initial
state predicate. Second, for any invocation or execution event in events, the data state in
states that is present when the event occurs (determined with the help of ev to st) must
satisfy the precondition of the corresponding operation schema.3 Third, for each operation
application in operations, the state pair that is constituted by the data state that is present
before the termination/execution event occurs and the data state that is the result of the
termination/execution must be a member of the operation model, i.e., be related by the
corresponding operation schema.

Note, again, that the sequence of partial operation events of a history needs not be com-
pletely well-formed; the evolution of the data state corresponding to the diverging part of
such a sequence is arbitrary. This is a consequence of the definition of InvTermComb, in
which only the well-formed part of a sequence of partial operation events is used to build
the corresponding sequence of operation applications. Only the latter sequence is the basis
for expressing constraints on the data state evolution in the set Histories.

Finally, the relation PreHist relates two histories if, and only if, the first is a prefix of the
second one (component-wise).

PreHist == {h1, h2 : History |
events of h1 prefix events of h2 ∧
states of h1 prefix states of h2 ∧
simultan of h1 = (simultan of h2) ∩ (dom(events of h1)× dom(events of h1))}

For each pair of histories (h1, h2) ∈ PreHist, h1 is called a pre-history of h2.

3 Note that this condition is necessary in addition to the last condition, because the data state present when an
execution or invocation event occurs needs not be identical to the data state to which the operation is applied.
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This completes the description of the history model, which is depicted in Figure 9.4 by the
rectangle with the corresponding name.

9.2.4 Extended Timed Failures Model (ETFM)

The purpose of the extended timed failures model, which is depicted in Figure 9.4 by the
rectangle in the centre, is

• to define the constituents (notions) of the timed failures model within ZF set theory,

• to extend the syntax of timed CSP in order to accommodate the needs of the CSP part
in the context of the Z definitions within a concrete specification unit and

• to define the semantics of the extended syntax based on the denotational semantics of
timed CSP as given in [Schneider, 1999b].

We base RT-Z on the finite timed failures model, because it is not reasonable to deal with
infinite evolutions of the data state: there is simply no possibility to characterise the data
state of the artifact under consideration after an infinite sequence of operation applications
has occurred. As a consequence, we deal only with finite timed observations (timed traces).

Time Domain

The time domain of timed CSP processes are the positive real numbers. Although real
numbers are not primitive objects of ZF set theory, it is well-known (c.f. [Hamilton, 1982,
Chapter 1]) how to construct R from N via Z and Q. First, the natural numbers are defined
by virtue of the ZF axioms to be specific kinds of sets, and it is shown that these “abstract
natural numbers” satisfy all required laws (e.g., Peano axioms). Then, integers are defined
as equivalence classes over pairs of natural numbers with identical difference, rational num-
bers are defined as equivalence classes over pairs of integers with identical quotient, and
real numbers are defined as equivalence classes over Cauchy sequences of rational numbers
converging at the identical limit. In [Hamilton, 1982] it is demonstrated that real numbers
constructed in this way exhibit all required properties, and it is shown how to define the
basic constants, relations and functions on real numbers on the grounds of rational numbers
and limits of Cauchy sequences. We assume in the following that the tuple (R, 0R, 1R, +R,
∗R, <R) is defined accordingly within ZF set theory.

The Z part of each RT-Z specification unit is based on the Z section Reals, which is depicted
in Figure 9.5, via the parent relationship of Standard Z. That is, the section Reals is an im-
plicit prelude for the Z part of any RT-Z specification unit (analogously to the mathematical
toolkit). Actually, this prelude introduces only the symbols of the carrier set, its elements,
its functions and its relation without any definition. The mapping of these symbols to the
corresponding entities of the semantic universe (R, 0R, 1R, +R, ∗R, <R) is fixed only on
the semantic level of RT-Z: the models of the Z part taken into account when computing the
meaning of an RT-Z specification unit are restricted to those that map the above symbols
to the intended entities of the semantic universe. This is reflected by the definition of the
semantic functions timed failures statesC [[ ]] and timed failures statesA [[ ]] on pp. 145 and 147,
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section Reals

[R]

0R, 1R : R
+R , ∗R : R × R → R
<R : R ↔ R

>R : R ↔ R
6R : R ↔ R
>R : R ↔ R
−R : R × R → R

inf : P R → R
sup : P R → R

(∀ x , y , z : R •
x >R y ⇔ y <R x ∧
x 6R y ⇔ ¬ y <R x ∧
x >R y ⇔ ¬ x <R y ∧
x −R y = z ⇔ z +R y = x )

∀ S : P R; x : R • inf S = x ⇔
(∀ y : S • x 6R y) ∧ (∀ z : R | (∀ y : S • z 6R y) • z 6R x )

∀ S : P R; x : R • sup S = x ⇔
(∀ y : S • y 6R x ) ∧ (∀ z : R | (∀ y : S • y 6R z ) • x 6R z )

Figure 9.5: Z section Reals.

where only a subset of the models of the meaning of the Z part are taken into consideration.
The following expression is only a definition fragment used to illustrate the above statement.

. . .M : [[ . . . ]]Z |
. . .
{R, 0R, 1R,+R, ∗R, <R} ⊆ domM∧
MR = R ∧M 0R = 0R ∧ . . .
. . .

Based on these considerations, the time domain of RT-Z is defined to be the positive real
numbers including zero.

T == {x : R | ¬ x <R 0R}
T+ == {x : R | 0R <R x}

Constituents

In the remainder of this chapter, we use functions and relations working on objects of the
timed failures model introduced in [Schneider, 1999b]. They are explained in Appendix E.
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In RT-Z specifications, we have to distinguish between two different kinds of events. The
first kind of events, which we call operation-related events, are related to the invocation, ter-
mination and execution of operations. The values transmitted by these events are the values
of input and output parameters. The second kind of events are called plain events and con-
cern the internal and external synchronisation and communication. These events are pairs
of channel identifiers and communicated values, too. The set ChannelValue encompasses all
values that can be communicated along channels, either parameters of an operation invo-
cation, termination or execution or arbitrary values of plain events.4

ChannelValue == W

Let the functions InvOf , TermOf and ExecOf map each operation identifier to the identifier
of the channel carrying the corresponding invocation, termination and execution events,
respectively. The set ORC (abbreviates ’operation-related channels‘) encompasses all identi-
fiers of channels carrying operation-related events.

ORC == ran InvOf ∪ ran TermOf ∪ ran ExecOf

An event is a pair of a channel identifier (CHANNEL) and a communicated value (Channel-
Value). According to the semantic models of CSP, a trace is a finite sequence of events, a
refusal is a set of events, and a failure is a pair consisting of a trace and a refusal, where the
observed process has engaged in the events recorded in the trace and is subsequently able to
deadlock if the environment is willing to offer only the events contained in the refusal set.

Event == CHANNEL× ChannelValue chan of == first[CHANNEL, ChannelValue]
val of == second[CHANNEL, ChannelValue]

Trace == {s : seq Event | ∀ i : 1 . . #s− 1 • s i 6= X}
Refusal == P Event
Failure == Trace× Refusal

According to the timed failures model of timed CSP [Schneider, 1999b], a timed event is
a pair consisting of an event and the time instant it is observed. A timed trace is a finite
or infinite sequence of timed events subject to the following conditions. The sequence of
timed events recorded in a timed trace must be ordered in time, the termination event (X) is
allowed to appear only as the last event in a finite timed trace and any infinite trace must not

4 This is a place where we must “circumvent” the type system of Z: the values communicated with operation-
related events are bindings, which in the untyped ZF set theory can be required to be contained in W. This is
not possible in the strongly typed Z notation. We have circumvented the Z type system by means of invisible
(in LATEX) conversion functions.
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be bounded in time, which is dictated by the principle of finite variability.5 In the context of
the finite timed failures model, however, we consider only finite timed traces.

TimedEvent == T× Event time of == first[T, Event]
ev of == second[T, Event]

TimedTrace == {s : seq∞[TimedEvent] |
(∀ i, j : dom s | i < j • time of (s i) 6R time of (s j)) ∧
(∃n : N • dom s = 1 . . n) ∧

X /∈ {i : 1 . . #s− 1 • ev of (s i)}
∨ dom s = N ∧

(∀ t : T • ∃ t∗ : T; e : Event | t <R t∗ • (t∗, e) ∈ ran s) ∧
X /∈ {i : N • ev of (s i)}}

To define the concept of a timed refusal, we need the set HalfOpenInterval, containing all
bounded half-open intervals of time instants, the set RefusalToken, containing all pairs of
time intervals and event sets, and the set FinRefusalTokenSet, which contains all unions of a
finite number of refusal tokens. Using these sets, a timed refusal is defined to be a set of
timed events such that its restriction to any finite interval is a member of FinRefusalTokenSet,
which is again dictated by the principle of finite variability.

HalfOpenInterval == {TI : P T | ∃ b, e : T | 0R 6R b ∧ b <R e • TI = {t : T | b 6R t ∧ t <R e}}
RefusalToken == {S : P TimedEvent | ∃ I : HalfOpenInterval; A : P Event • S = I × A}
FinRefusalTokenSet == {tref : P TimedEvent | ∃C : F RefusalToken • tref =

⋃
C}

TimedRefusal == {tref : P TimedEvent | ∀ t : T •
{t′ : T; e : Event | (t′, e) ∈ tref ∧ t′ <R t} ∈ FinRefusalTokenSet}

A timed failure is a pair of a timed trace and a timed refusal.

TimedFailure == TimedTrace× TimedRefusal

In Section A.2, we discuss in detail the properties TF1–TF3 that a set of timed failures must
meet in order to represent some timed CSP process. To understand the following definition
of the set TimedFailuresModel, which encompasses all sets of timed failures that satisfy these
conditions, read the informal explanation on p. 249.

5 The principle of finite variability requires a process to undergo only finitely many changes in any finite time
interval.
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TimedFailuresModel == {S : P TimedFailure |
(〈〉, ∅) ∈ S

(TF1)
∧
(∀ s, s′ : TimedTrace; ℵ,ℵ′ : TimedRefusal •

(s,ℵ) ∈ S ∧ (s′,ℵ′) � (s,ℵ) ⇒ (s′,ℵ′) ∈ S)
(TF2)

∧
(∀ s : TimedTrace; ℵ : TimedRefusal | (s,ℵ) ∈ S •

(TF3)
(∃ℵ′ : TimedRefusal | ℵ ⊆ ℵ′ ∧ (s,ℵ′) ∈ S •

(∀ t : T; a : Event •
((t, a) /∈ ℵ′ ⇒ ((s �ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈ S) (C1)
∧
t >R 0R ∧ ¬ (∃ ε : T+ • {t∗ : T | t−R ε 6R t∗ ∧ t∗ <R t} × {a} ⊆ ℵ′)
⇒ ((s |�ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈ S)))} (C2)

The relation � occurring in the above definition represents the information order on timed
failures.

� == {s, s′ : TimedTrace; ℵ,ℵ′ : TimedRefusal | s′ ∈ FinTimedTrace ∧
(∃ s2 : TimedTrace • s = s′ a s2 ∧ ℵ′ ⊆ ℵ |�tref beginttr(s2))

• ((s′,ℵ′), (s,ℵ))}

The timed trace component s′ of the first timed failure must be a prefix of the timed trace
component s of the second one, and its timed refusal component ℵ′ may contain only refusal
information also present in the timed refusal component ℵ of the second timed failure up to
the time instant at which s extends s′.

Extended Timed Failures Semantics of Z Specifications

As discussed, the main idea underlying the semantic integration of Z and timed CSP is to
give a Z specification a timed failures semantics. This allows us to regard the Z part and
the CSP part of a concrete specification unit as two parallel processes. The first step towards
this goal, achieved in Section 9.2.3, was to associate a set of histories with each model of the
meaning of a Z specification. The second step, which is the subject of the current section,
is to translate the concept of a history into the concepts of (untimed) CSP, namely traces,
refusals and failures.

We first need to define the auxiliary function ev of op. It maps an operation application to
the corresponding event. An operation application, as recorded in a history, corresponds to
an event if its operation identifier translates into the channel identifier of the event and if
the values transmitted with the operation application and the event occurrence are identical,
each embedded in the respective context.
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ev of op == λ op : POP APP •
let chan == (if op ∈ Invoc then InvOf (pop name op)

else if op ∈ Term then TermOf (pop name op)
else ExecOf (pop name op)) •

(chan, (pop params op))

The functions InvOf , TermOf and ExecOf map each operation identifier to the identifier of
the channel carrying the corresponding event; they have been introduced on p. 124.

The function tracesZ maps histories of the Z part to corresponding traces of operation-related
events, which represent possible observations of the CSP interpretation of the Z part. Basic-
ally, a trace is mapped to a history if it corresponds to the sequence of partial operation
events contained in the history. Both the trace and the history event sequence must have
the same length, and for each index of the sequence the operation application and the trace
event must be related by ev of op.

tracesZ == λ h : History • (λ i : dom(events of h) • ev of op((events of h)i))

Failures of operation-related events, which represent possible observations of the CSP inter-
pretation of the Z part, and histories of the Z part are related by failuresZ. The trace com-
ponent tr of these failures is determined by tracesZ. Regarding the refusals ref related to a
particular trace tr there are two reasons for the membership of an operation-related event e
in ref .

The first reason for the refusal of the event e is that the modelled artifact is not able to
perform e after having performed the operation-related events in tr. The inability to per-
form an operation-related event corresponds to the inability of the modelled artifact to in-
voke/execute this operation if the operation’s precondition is not satisfied with respect to
the current data state. Technically speaking, an event cannot be performed after a particu-
lar trace has been observed if the concatenation of this trace and the event is not a possible
observation of any history of which the considered history is a pre-history.

The other reason for an operation-related event e to be a member of ref (to be refused) is that
there is another operation-related event e′ that is not a member of ref (not refused) and that
is related to e such that both events represent the termination or execution of the same oper-
ation. If they represent the execution of an operation, then they must assign the same values
to the input parameters of this operation. The background of this second alternative is our
decision that the Z part chooses the values of the output parameters nondeterministically;
they are constrained only by the definition of the Z operation schema. Therefore, given a set
of valid assignments of values to the output parameters of an operation, the Z part must be
free to refuse all but one assignment.
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failuresZ == {h : History; hset : P History; fail : Failure |
∃1 tr == fail.1; ref == fail.2 •

tr = tracesZ h ∧
(∀ e : ref •

tra 〈e〉 /∈ {ext : hset | (h, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | e′ /∈ ref • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC ((val of e)) = InputsC ((val of e′)))))
• ((h, hset), fail)}

Note that we need the set of all histories hset that are possible observations of the specified
artifact in order to define the failures corresponding to a history h, because the refusal infor-
mation refers to the inability to expand the considered history h by another valid history.

Timed failures of operation-related events, which represent possible timed observations of
the timed CSP interpretation of the Z part, and histories of the Z part are related by the set
timed failuresZ. To understand the association of timed failures with histories, it is import-
ant to realise that the Z part does not fix any time aspects of the occurrence or refusal of
operation-related events. A (finite) timed failure is related to a history h under the following
conditions. First, the (untimed) trace that is obtained by ignoring the time information of
the timed trace component must be mapped to h by tracesZ. Second, considering an arbit-
rary time instant t, the set of events refused at that time instant (member of the timed refusal)
must be a refusal associated with the (untimed) trace that is obtained by restricting the timed
trace to the interval ending at time instant t (inclusive) and subsequently ignoring the time
information.

timed failuresZ == {h : History; hset : P History; tf : TimedFailure |
∃1 s == tf .1; ℵ == tf .2; simultan == simultan of h •

(∀ i, j : N | (i, j) ∈ simultan • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T •

(∃1 tr == strip(s �ttr t); ref == {e : Event | (t, e) ∈ ℵ} •
∃ prefix : hset | (prefix, h) ∈ PreHist •

(tr, ref ) ∈ failuresZ(|{(prefix, hset)}|)))
• ((h, hset), tf )}

The time information contained in the timed trace component s must be consistent with
the information of the component simultan of the history h concerning the simultaneity of
operation-related events.

In Appendix B, we prove that the above definitions really map each Z specification to a
timed CSP process, i.e., to a set of timed failures satisfying the properties of the timed failures
model as defined on p. 126.
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Process Term Language

According to the description in Chapter 7, the syntax of the CSP part of concrete specification
units slightly extends the syntax of timed CSP processes in order to incorporate the following
adaptations.

• Each application of the channel input operator (c?(x : S) → P(x)) is parametrised by a
Z set expression S, which is evaluated in the context of the Z part.

• Each instance of the channel output operator (c!v → P) is parametrised by a Z value
expression v, which is evaluated in the context of the Z part.

• The index sets used as parameters of the indexed nondeterministic choice (uid∈S), in-
terleaving (|||id∈S) and synchronised parallel (‖id∈S) operators are evaluated in the con-
text of the Z part.

• The real-time operators of timed CSP (timeout (.{t}), timed interrupt (4t) and delay
(Wait t)) have time parameters whose values are evaluated in the context of the Z part.

Let ETCSP PROCESS denote the set of extended process terms as specified by the syntax
definition in Appendix D.

Process terms in the BEHAVIOURsection of concrete specification units can refer to arbitrary
channel identifiers declared in the LOCALand INTERFACEsections, and they can contain
arbitrary time, value and set expressions, which are interpreted in the context of the corres-
ponding Z part. The CSP definitions of concrete specification units can hence be interpreted
only in the context of three pieces of information:

• The assignment of value domains to those channel identifiers to which the CSP defi-
nitions refer. Such an assignment is characterised by a member of ChanSgn.

• The assignment of values to the value, set and time expressions to which the CSP
definitions refer. Such an assignment is determined by a model, being a member of
the denotation of the corresponding Z part.

• The assignment of timed CSP expressions to free process variables occurring in the
process terms. Such an assignment is a member of ProcEnv.

The semantic function of the extended timed failures model for process terms has the fol-
lowing signature.

timed failuresETCSP [[ ]] : ETCSP PROCESS× (ProcEnv× (Model×Model)× ChanSgn)→
TimedFailuresModel

There is a pair of parameters of type Model for the following reason. Some process operators,
e.g., channel input, update the information that is available for evaluating Z expressions. The
channel input operator binds the communicated value to its variable, to which Z expressions
in the subsequent process expression can refer. The current information used to evaluate Z
expressions—including variable bindings—is recorded in the first parameter of the pair.

The scope in which variable bindings are visible is limited. In the process expression,
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P =̂ c?x : S → d!x → Q

e.g., the variable x, bound by the communication on the channel c, can be referred to only in
the process expression subsequent to the channel input: it can be referred to in the channel
output but it cannot be used in order to evaluate the process term Q. Variables are visible
only in the process term in which they are bound. Whenever a process is instantiated, all
variable bindings are discarded. That is, all processes are evaluated with respect to the iden-
tical model, which encodes the information of the Z part without containing any variable
bindings. This model is called the initial model, and it is the second parameter of the pair.

The definition of the semantic function timed failuresETCSP is based on the semantic function
of the timed failures model, which we define in Section A.2. In the following, we provide the
definitions of the extended/adapted operators. The meaning of these operators is defined
in the form

timed failuresETCSP [[ P(par1, . . . , parN) ]](Env,(M,MI),IL) = . . .

where the triple (Env, (M,MI), IL) contains the underlying information of the Z part and
the INTERFACEand LOCALsections needed to interpret the process definition and where
par1, . . . , parN are simple parameters of the process definition, e.g., the channel name of the
prefix operator or the index set of the indexed nondeterministic choice.

Channel Input Operator: The channel input operator chan?(var : Set) → P has three param-
eters: the channel identifier chan, the identifier var, to which the value that is transmit-
ted with the event occurrence is bound, and the set expression Set, which restricts the
set of values that can be communicated with the event occurrence.

The denotation assigned to the channel input operator is split into three subsets. The
first subset deals with an inconsistent use of the parameters: either the channel iden-
tifier is not declared as an external or internal channel or the set associated with the
expression Set is not a subset of the set associated with the considered channel by the
channel declaration. In these cases, the semantics refrains from defining the meaning
of the operator: it just allows an arbitrary behaviour.

The second and third subsets reflect, in essence, the definition of the channel input
operator in timed CSP. The second subset addresses the case that the initial event has
already occurred, while the third subset addresses the case that this initial event is still
awaited.

timed failuresETCSP [[ chan?(var : Set) → P ]](Env,(M,MI),IL) =
{tf : TimedFailure | chan /∈ dom IL ∨ chan ∈ dom IL ∧

¬ [[ Set ]]εM⊆ [[ IL chan ]]εM}
∪{s : TimedTrace; ℵ : TimedRefusal; t : T; val : W |

chan ∈ dom IL ∧ [[ Set ]]εM⊆ [[ IL chan ]]εM∧ val ∈ ( [[ Set ]]εM) ∧
(s,ℵ) −̇tfail t ∈ timed failuresETCSP [[ P ]](Env,(M⊕{var7→val},MI),IL)

• (〈(t, (chan, val))〉a s,ℵ)}
∪{ℵ : TimedRefusal | chan ∈ dom IL ∧ [[ Set ]]εM⊆ [[ IL chan ]]εM∧

{t : T; val : W | val ∈ [[ Set ]]εM • (t, (chan, val))} ∩ ℵ = ∅
• (〈〉,ℵ)}
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In the definition of the second subset, it is first required that all parameters are used in
a consistent way. The data value val transmitted with the event occurrence must be a
member of the set associated with the expression Set by the Z part, and the value val
is bound to the variable var. This procedure of binding the chosen value to the vari-
able is reflected in the definition of the model used to interpret the remaining process
expression P: the original model M is updated with the pair var 7→ val of the variable
and the transmitted value.

Channel Output Operator: Again, the denotation of the channel output operator chan!val →
P is split into three subsets, where the structure is identical to the case of the channel
input operator above. The substantial difference is the treatment of the value val to be
transmitted: since it is now the considered process that determines the concrete value
transmitted along the respective channel, the remaining process P does not depend on
this value and thus the model used to interpret P need not be updated like in the above
case.

timed failuresETCSP [[ chan!val → P ]](Env,(M,MI),IL) =
{tf : TimedFailure | chan /∈ dom IL ∨ chan ∈ dom IL ∧

( [[ val ]]εM) /∈ [[ IL chan ]]εM}
∪{s : TimedTrace; ℵ : TimedRefusal; t : T |

chan ∈ dom IL ∧ ( [[ val ]]εM) ∈ [[ IL chan ]]εM∧
(s,ℵ) −̇tfail t ∈ timed failuresETCSP [[ P ]](Env,(M,MI),IL)

• (〈(t, (chan, ( [[ val ]]εM)))〉a s,ℵ)}
∪{ℵ : TimedRefusal | chan ∈ dom IL ∧ ( [[ val ]]εM) ∈ [[ IL chan ]]εM∧

{t : T • (t, (chan, ( [[ val ]]εM)))} ∩ ℵ = ∅
• (〈〉,ℵ)}

Indexed Nondeterministic Choice: The index set expression S of an indexed nondetermin-
istic choiceuid∈S is interpreted in the context of the Z part.

The definition of the meaning of this operator is divided into two subsets. The first
subset addresses the inconsistent use of the index set parameter, in which the Z part
assigns the empty set to the index set parameter.

The second subset deals with the consistent case. An arbitrary index j is chosen from
the index set assigned to the expression S by the considered model M, and the par-
ametrised process P(i) is interpreted with parameter i substituted by index j, which is
modelled by updating the model M with the pair i 7→ j.

timed failuresETCSP [[ ui∈S P(i) ]](Env,(M,MI),IL) =
{tf : TimedFailure | ( [[ S ]]εM) = ∅}
∪
{tf : TimedFailure | ∃ j : ( [[ S ]]εM) •

tf ∈ timed failuresETCSP [[ P(i) ]](Env,(M⊕{i7→j},MI),IL)}

Indexed Interleaving: Analogously to the indexed nondeterministic choice operator, the in-
dexed interleaving operator |||id∈S has an index set parameter, which is interpreted in
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the context of the Z part. According to the laws of timed CSP, this set must be finite.
Then, the commutativity and associativity of the binary interleaving operator justify
the following definition.

timed failuresETCSP [[ |||i∈S P(i) ]](Env,(M,MI),IL) =
let IS == ( [[ S ]]εM) •

{tf : TimedFailure | IS /∈ F W}
∪
{tf : TimedFailure | IS ∈ F W ∧ tf ∈ (rec interleave [[ P(i) ]](Env,M,IL))IS}

The first subset addresses the inconsistent case, in which the index set expression is
evaluated to an infinite set, while the second subset deals with the consistent case by
referring to the function rec interleave. This function is defined recursively with respect
to the index set IS. The function rec interleave, applied to the set of index values IS,
yields the inductively computed interleaving of the processes P(i) for i ∈ IS, where IS
must be finite. Note the difference between the parameter S of the above and IS of the
following definition: S is a Z expression whereas IS is the corresponding evaluated set
of index values; while we cannot define a recursive function based on Z expressions,
there is an induction principle for finite sets.

rec interleave [[ P(i) ]](Env,M,IL) = λ IS : P W •
{tf : TimedFailure | IS = ∅ ∧ tf ∈ timed failuresETCSP [[ Skip ]](Env,(M,M),IL)}
∪
{s, s1, s2 : TimedTrace; ℵ1,ℵ2 : TimedRefusal |

IS 6= ∅ ∧ (∃ j : IS •
(s1,ℵ1) ∈ timed failuresETCSP [[ P(i) ]](Env,(M⊕{i 7→j},M),IL) ∧
(s2,ℵ2) ∈ (rec interleave [[ P(i) ]](Env,M,IL))(IS \ {j})) ∧

(s1, s2) interleaves s ∧
ℵ1 \ (T× {X}) = ℵ2 \ (T× {X})

• (s,ℵ1 ∪ ℵ2)}

The first subset deals with the induction base—the empty set—where the indexed in-
terleaving process represents just the terminating process Skip.

Accordingly, the second subset deals with the induction step. An index j is arbitrarily
chosen from the non-empty set IS, and the process characterised by this index is com-
posed with the indexed interleaving process that is obtained by deleting the chosen
index from IS. The meaning of the latter process is determined by a recursive ap-
plication of the function rec interleave. The timed failures (s1,ℵ1) and (s2,ℵ2), being
denotations of the derived processes, are combined to the timed failure (s,ℵ1 ∪ ℵ2) of
the whole process, which reflects the definition of the binary interleaving operator in
timed CSP.

Indexed Parallel: The indexed (synchronised) parallel operator is defined analogously to the
indexed interleaving operator.
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timed failuresETCSP [[ ‖i∈S[A]P(i) ]](Env,(M,MI),IL) =
let IS == ( [[ S ]]εM) •

{tf : TimedFailure | IS /∈ F W}
∪
{tf : TimedFailure | IS ∈ F W ∧ tf ∈ (rec parallel [[ (P(i), A) ]](Env,M,IL))IS}

The only difference is the way in which the denotations of the derived processes are
combined in the second subset of the recursive function rec parallel, which reflects the
induction step.

rec parallel [[ (P(i), A) ]](Env,M,IL) = λ IS : P W •
{tf : TimedFailure | IS = ∅ ∧ tf ∈ timed failuresETCSP [[ Skip ]](Env,(M,M),IL)}
∪
{s, s1, s2 : TimedTrace; ℵ1,ℵ2 : TimedRefusal |

IS 6= ∅ ∧ (∃ j : IS •
(s1,ℵ1) ∈ timed failuresETCSP [[ P(i) ]](Env,(M⊕{i 7→j},M),IL) ∧
(s2,ℵ2) ∈ (rec parallel [[ (P(i), A) ]](Env,M,IL))(IS \ {j})) ∧

(∃1 EvSet == [[ A ]]εα (M, IL) •
((s1, s2), EvSet) synch s ∧
ℵ1 \ (T× (EvSet ∪ {X})) = ℵ2 \ (T× (EvSet ∪ {X})))

• (s,ℵ1 ∪ ℵ2)}

Note also the evaluation of the alphabet expression A by means of the semantic func-
tion [[ ]]εα , which is defined in the next section.

Predicate Language

Let us now address the other fragment of the extended timed CSP notation: the predicate
language of the extended timed failures model.

Predicates of the extended timed failures model are used in concrete and abstract specifi-
cation units to express environmental assumptions and/or to define requirements on the
dynamic behaviour. Each predicate is interpreted in the context of a modelM, reflecting the
definitions of the Z part, and a channel signature IL, reflecting the channel declarations of
the INTERFACEand LOCALsections; and it induces a relation between timed traces s and
timed refusals ℵ.

The semantic function for predicates of the extended timed failures model has thus the fol-
lowing signature:

timed failuresETFM [[ ]] : ETFM PREDICATE× (Model× ChanSgn)→ P TimedFailure

We define the semantic function timed failuresETFM in terms of the function [[ ]]PETFM , which is
defined in the following. Both functions evaluate predicates of the extended timed failures
model. The difference between them is that the latter function does not take into account
the information contained in the INTERFACEand LOCALsections. That is, it ignores that
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the data values communicated with the occurrence of events on particular channels must
be members of the value domains associated with these channels. To address this further
requirement is the purpose of the semantic function timed failuresETFM:

timed failuresETFM [[ Pred ]](M,IL) = {s : TimedTrace; ℵ : TimedRefusal |
((s,ℵ),M, IL) ∈ [[ Pred ]]PETFM ∧
∀ i : dom s •

chan of (ev of (s i)) ∈ dom IL ∧
val of (ev of (s i)) ∈ [[ IL(chan of (ev of (s i))) ]]εM}

It has proved to be convenient to decouple the two functions for reasons of separation of
concerns.

Syntax. We define the semantics of the “core” of the predicate language, containing all
those predicates in terms of which all other predicates can be expressed equivalently. Thus,
the process of computing the meaning of a predicate is divided into two phases. In the first
phase, the predicate is transformed into an equivalent “core” predicate (by using transform-
ation rules, which we do not completely treat in this thesis). In the second phase, the “core”
predicate is associated with a meaning according to the semantic function to be defined in
the following. This approach follows the one taken in the Z Standard [ISO, 2002], which also
defines transformation rules between equivalent Z terms and semantic functions only for
the “core” language.

The syntax of the predicate language is formally defined in Appendix D. The predicate
language provides the usual logical connectives (∧, ∨, ¬ , ⇒, ⇔). Its atomic predicates
include all those provided by the predicate language of the (original) timed failures model
[Schneider, 1999b], which allow one to make statements about the timed trace and timed
refusal components s and ℵ. They make use of the various functions on timed traces and
timed refusals as defined by Schneider [1999b] and described in Appendix E.

Our extensions to the predicate language of the timed failures model concern two aspects.
First, we introduce references to Z schemas, say Prop,

Prop(v1 =̂ expr1, . . . , vN =̂ exprN)

as additional atomic predicates. They allow us to specify relationships between data values
communicated along particular channels with particular events. Second, we add to our
predicate language universal and existential quantifications

∀ v : S • Pred ∃ v : S • Pred

over arbitrary set expressions S, evaluated in the context of the Z part. Both extensions
establish relationships between the model component M and the timed failure component
(s,ℵ).

Semantics. The semantic function [[ ]]PETFM associates each predicate of the extended
timed failures model with its characterising set of timed failures (s,ℵ), models M and chan-
nel signatures IL.
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[[ ]]PETFM : ETFM PREDICATE→ P(TimedFailure×Model× ChanSgn)

Logical Connectives.

[[ Pred1 ∧ Pred2 ]]PETFM = [[ Pred1 ]]PETFM ∩ [[ Pred2 ]]PETFM

[[ Pred1 ∨ Pred2 ]]PETFM = [[ Pred1 ]]PETFM ∪ [[ Pred2 ]]PETFM

[[¬ Pred ]]PETFM = (TimedFailure×Model× ChanSgn) \ [[ Pred ]]PETFM

[[ Pred1 ⇒ Pred2 ]]PETFM = [[¬ Pred1 ∨ Pred2 ]]PETFM

[[ Pred1 ⇔ Pred2 ]]PETFM = [[ Pred1 ∧ Pred2 ∨ ¬ Pred1 ∧ ¬ Pred2 ]]PETFM

Universal Quantification. The predicate language of the ETFM allows us to introduce bound
variables var universally quantified over arbitrary Z set expressions S. The set of values de-
noted by the Z expression S is computed with respect to a particular model M of the mean-
ing of the Z part by using the semantic function for Z expressions [[ ]]ε defined by the Z
Standard.

[[ ∀ var : S • Pred ]]PETFM =
⋃
{M : Model •

⋂
{val : [[ S ]]εM•

{tf : TimedFailure; IL : ChanSgn | (tf ,M⊕{var 7→ val}, IL) ∈ [[ Pred ]]PETFM • (tf ,M, IL)}}}

Only those timed failures tf , models M and channel signatures IL are part of the denota-
tion of the universal quantification that can be successfully extended by all values val of the
denotation of the set expression S; this is reflected by the distributed intersection operator⋂

.

Existential Quantification. Existential quantification is defined by exploiting its duality to
universal quantification.

[[ ∃ var : S • Pred ]]PETFM = [[¬ ∀ var : S • ¬ Pred ]]PETFM

Local Definitions. Local definitions associate an expression expr with an identifier var with-
in a local scope. Each local definition extends the model M used to interpret the subsequent
predicate Pred.

[[ let var == expr • Pred ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
(tf ,M⊕{var 7→ [[ expr ]]εZval (tf ,M, IL)}, IL) ∈ [[ Pred ]]PETFM }

The expression expr can be an arbitrary expression evaluating to an untimed trace or an
untimed refusal. The function [[ ]]εZval transforms untimed traces and refusals into corres-
ponding Z values, see the next section.6

6 There are also semantic functions evaluating timed/untimed trace, timed/untimed refusal, time value, time
interval and natural number expressions. They are defined after we have dealt with the atomic predicates.
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Atomic Predicates.

Schema reference. Introducing references to schemas defined in the Z part, say Prop, and
associating their components, say v1, . . . , vN, with untimed trace or refusal expres-
sions, say expr1, . . . , exprN, is the major link between our predicate language and the Z
language.

[[ Prop(v1 =̂ expr1, . . . , vN =̂ exprN) ]]PETFM =
{tf : TimedFailure; M : Model; IL : ChanSgn |
{v1 7→ [[ expr1 ]]εZval (tf ,M, IL), . . . , vN 7→ [[ exprN ]]εZval (tf ,M, IL)} ∈ [[ Prop ]]εM}

The expressions expr1, . . . , exprN are evaluated and transformed into Z values by the
function [[ ]]εZval . The resulting Z binding must be a member of the denotation of the
Z schema, computed with the help of the semantic function [[ ]]ε of the Z Standard.

Timed trace inclusion/prefix. One purpose of the predicate language is to restrict the timed
trace component s. There are several predicates to achieve this, however, we deal only
with the basic predicates, namely inclusion and prefix. The other predicates on timed
traces can be derived.

[[ s1 in s2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ s1 ]]εTTr (tf ,M, IL) inETFM [[ s2 ]]εTTr (tf ,M, IL)}

[[ s1 prefix s2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ s1 ]]εTTr (tf ,M, IL) ⊆ [[ s2 ]]εTTr (tf ,M, IL)}

Note that the base predicate (s1 in s2) is defined in terms of a corresponding relation
inETFM. The formal definition of this relation is part of the definition of the extended
timed failures model. For the sake of brevity, we have omitted its presentation. This
correspondence between base predicates of the predicate language and relations of the
semantic model also applies to subsequent definitions.

Trace inclusion/prefix.

[[ tr1 in tr2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ tr1 ]]εTr (tf ,M, IL) inETFM [[ tr2 ]]εTr (tf ,M, IL)}

[[ tr1 prefix tr2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ tr1 ]]εTr (tf ,M, IL) ⊆ [[ tr2 ]]εTr (tf ,M, IL)}

Timed refusal subset. Another purpose of the predicate language is to restrict the timed
refusal component ℵ. Again, there are several predicates to achieve this; however, we
deal only with the basic predicate used to restrict the timed refusal component, namely
the subset relationship. The other predicates on timed refusals can be derived.

• Base

[[ℵ1 ⊆ ℵ2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ℵ1 ]]εTRef (tf ,M, IL) ⊆ [[ℵ2 ]]εTRef (tf ,M, IL)}
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• Derived

ℵ1 ⊂ ℵ2 ≡ ℵ1 ⊆ ℵ2 ∧ ¬ ℵ1 = ℵ2
te ∈ ℵ1 ≡ {te} ⊆ ℵ1

Refusal subset.

• Base

[[ ref1 ⊆ ref2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
[[ ref1 ]]εRef (tf ,M, IL) ⊆ [[ ref2 ]]εRef (tf ,M, IL)}

• Derived

ref1 ⊂ ref2 ≡ ref1 ⊆ ref2 ∧ ¬ ref1 = ref2
e ∈ ref ≡ {e} ⊆ ref

Time comparison. The predicate language must also deal with the comparison of time
values, related to the occurrence or refusal of particular events. The base predicate
is 6R, from which the other predicates can be derived.

Furthermore, we do not consider time intervals as basic entities of the predicate lan-
guage. Accordingly, the membership of a time value to a time interval is transformed
into an equivalent pair of comparisons with the limits of the interval.

• Base

[[ t1 6R t2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
( [[ t1 ]]εT (tf ,M, IL), [[ t2 ]]εT (tf ,M, IL)) ∈ (M 6R)}

• Derived

t1 <R t2 ≡ ¬ t2 6R t1
t ∈ [t1, t2] ≡ t1 6R t ∧ t 6R t2
t ∈ (t1, t2) ≡ t1 <R t ∧ t <R t2
t ∈ [t1, t2) ≡ t1 6R t ∧ t <R t2
t ∈ (t1, t2] ≡ t1 <R t ∧ t 6R t2

Natural number comparison. Finally, the predicate language must deal with the comparison
of natural numbers, related to the length of timed or untimed traces. The base predicate
is ≤, from which the other predicates can be derived.

• Base

[[ n1 ≤ n2 ]]PETFM = {tf : TimedFailure; M : Model; IL : ChanSgn |
( [[ n1 ]]εNat (tf ,M, IL), [[ n2 ]]εNat (tf ,M, IL)) ∈ (M ≤)}

• Derived

n1 < n2 ≡ ¬ n2 ≤ n1
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Semantic Functions on Expressions. According to the previous discussion of the predicate
language, there are different kinds of entities to be set into relationship. That is, the expres-
sions occurring in the predicate language evaluate to values of different “types,” namely
Z values, timed and untimed traces, timed and untimed refusals, time values and natural
numbers. For each type, we define a separate semantic function evaluating expressions of
this type.

The semantic function

[[ ]]εZval : TimedFailure×Model× ChanSgn→W

is the interface between Z expressions and timed CSP expressions in our predicate language.
Its purpose is to transform entities of the timed failures model, such as traces and refusals,
into corresponding Z entities. The expressions that are bound to schema components within
schema reference expressions are evaluated with the help of this function.

Any expression tr evaluating to an untimed trace can be transformed into a Z sequence. This
is achieved by omitting the channel identifier from each event in the trace with the help of
the projection val of .

[[ seq tr ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn • val of ◦ [[ tr ]]εTr (tf ,M, IL)

Similarly, any expression ref evaluating to an untimed refusal can be transformed into a Z
set. Again, this is achieved by omitting the channel identifier from each event in the refusal
with the help of the projection val of .

[[ set ref ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn • val of (| [[ ref ]]εRef (tf ,M, IL)|)

It is also possible to transform single events into Z values. There are only four possibilities to
denote untimed events: by applying the functions first, head, last and foot yielding the first
and last event of an untimed or timed trace. Since we do not intend to introduce a semantic
function to evaluate event expressions, we must embed separate event expressions within
set expressions, which in turn can be evaluated by means of the function [[ ]]εRef . The unique
members of the resulting singleton sets are determined by the function unique mem.

[[ head tr ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn •
val of (unique mem( [[ {head tr} ]]εRef (tf ,M, IL)))

[[ first s ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn •
val of (unique mem( [[ {first s} ]]εRef (tf ,M, IL)))

[[ foot tr ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn •
val of (unique mem( [[ {foot tr} ]]εRef (tf ,M, IL)))

[[ last s ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn •
val of (unique mem( [[ {last s} ]]εRef (tf ,M, IL)))

Finally, also time expressions can be transformed into corresponding Z values.

[[ time t ]]εZval = λ tf : TimedFailure; M : Model; IL : ChanSgn • [[ t ]]εT (tf ,M, IL)
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Time-valued expressions are first-order citizens in our predicate language. They are eval-
uated with the help of the Z part, because reals including their associated functions and
relations are predefined in the Z part; thus, each model M carries the needed information to
interpret these expressions.

The semantic function

[[ ]]εTTr : TimedFailure×Model× ChanSgn→ TimedTrace

evaluates timed trace expressions.

As mentioned, each predicate of the extended timed failures model induces a relation be-
tween the dedicated identifiers s, ℵ, M and IL. The expression s is used to refer to the timed
trace component.

[[ s ]]εTTr = λ tf : TimedFailure; M : Model; IL : ChanSgn • tf .1

There are different constructors for timed traces. First, one can explicitly provide a finite
sequence of timed events. The timed events can be composed of arbitrary time and value
expressions, which are evaluated by the corresponding semantic functions. The empty timed
trace and the concatenation of timed traces are the other possibilities to construct timed
traces.

[[ 〈(t1, c1.val1), . . . , (tN, cN.valN)〉 ]]εTTr = λ tf : TimedFailure; M : Model; IL : ChanSgn •
λ i : 1 . . N • ( [[ ti ]]

ε
T (tf ,M, IL), (ci, [[ vali ]]

ε
Zval (tf ,M, IL)))

[[ 〈〉 ]]εTTr = λ tf : TimedFailure; M : Model; IL : ChanSgn • ∅

[[ s1a s2 ]]εTTr = λ tf : TimedFailure; M : Model; IL : ChanSgn •
( [[ s1 ]]εTTr (tf ,M, IL))aETFM ( [[ s2 ]]εTTr (tf ,M, IL))

The meaning of the other functions of the timed failures model yielding timed traces, e.g.,
tail and init, is defined in terms of their counterparts in RT-Z’s semantic model. Since their
definition is straightforward, they are omitted.

The semantic function

[[ ]]εTRef : TimedFailure×Model× ChanSgn→ TimedRefusal

evaluates timed refusal expressions.

The timed refusal component is referred to by the expression ℵ.

[[ℵ ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn • tf .2

There are three constructors for timed refusals: the explicit definition of a finite set of timed
events, the empty set and union.
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[[ {(t1, c1.val1), . . . , (tN, cN.valN)} ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn •
{i : 1 . . N • ( [[ ti ]]

ε
T (tf ,M, IL), (ci, [[ vali ]]

ε
Zval (tf ,M, IL)))}

[[ ∅ ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn • ∅
[[ℵ1 ∪ ℵ2 ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn •

[[ℵ1 ]]εTRef (tf ,M, IL) ∪ [[ℵ2 ]]εTRef (tf ,M, IL)

We do not need to define a separate semantic function to evaluate timed event expressions.
The functions yielding timed events are evaluated in the context of singleton set expressions
with the help of the current semantic function.

[[ {head sexpr} ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn •
{headETFM( [[ sexpr ]]εTTr (tf ,M, IL))}

[[ {foot sexpr} ]]εTRef = λ tf : TimedFailure; M : Model; IL : ChanSgn •
{footETFM( [[ sexpr ]]εTTr (tf ,M, IL))}

The various functions yielding timed refusals are defined in terms of their counterparts of
the semantic model of RT-Z. Again, their definition is omitted.

The semantic function

[[ ]]εRef : TimedFailure×Model× ChanSgn→ Refusal

evaluates (untimed) refusal expressions. A particular kind of refusal expression—expres-
sions denoting set of events—are alphabet expressions.

The alphabet of a channel chan, denoted {| chan |}, is the set of all value-carrying events
that can occur on this channel. It can be determined only on the basis of the value domain
associated with the channel—a piece of information fixed by the channel declarations of the
INTERFACEand LOCALsections.

Alphabet expressions occur in the predicate language of the extended timed failures model,
but also as parameters of some timed CSP operators, e.g., of the parallel composition oper-
ator P |[ A ]|Q; so the current semantic function is also used to define the meaning of those
operators of the process term language, see the previous section. As mentioned, each ref-
erence to an external or internal channel ({| chan |}) denotes its alphabet. The INTERFACE
and LOCALsections induce the channel signature IL that maps each channel identifier to a Z
expression, which is evaluated in the context of a particular model M of the Z part.

[[ {| chan |} ]]εRef = λ tf : TimedFailure; M : Model; IL : ChannelType | chan ∈ dom IL •
{chan} × ( [[ IL chan ]]εM)

Note that the expression {| chan |} is defined only if chan is declared as an external or internal
channel, i.e., chan ∈ dom IL.

When the function [[ ]]εRef is used to evaluate alphabet expressions, the timed failure par-
ameter tf is not needed, see the above definition. For notational convenience, we introduce
the following abbreviation
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[[ expr ]]εα (M, IL) = [[ expr ]]εRef ((〈〉, ∅),M, IL)

where we have arbitrarily chosen the simplest timed failure (〈〉, ∅).

The semantic functions [[ ]]εTr , [[ ]]εT , [[ ]]εTInt and [[ ]]εNat evaluate untimed trace, time,
time interval and natural number expressions. Since their definition is straightforward and
provides no further insight, we omit it.

To conclude, we have completely formalised the predicate language of the extended timed
failures model, in particular its novel features that go beyond the predicate language of
timed CSP, e.g., quantification over Z sets and references to Z schemas. This formalisation is
in contrast to the use of predicates in timed CSP, where quantification over data sets is used
but without any formal underpinning.

9.2.5 Timed Failures/States Model (TFSM)

We now discuss the transition from the extended timed failures model to the timed fail-
ures/states model (see Figure 9.4).

The timed failures/states model extends the (extended) timed failures model by taking into
account the evolution of the data state of the artifact under consideration, resulting from
the termination and execution of operations within the observation interval. A timed state
is a finite partial function, associating a data state with particular time instants within the
observation interval.

TimedState == T 7 7→ Binding

A timed state is finite, because it is the result of operation terminations and executions, re-
corded in finite timed traces.

In the timed failures/states model, each specification unit is associated with a set of pairs
consisting of a timed failure and a timed state.

Predicate Language

Predicates of the timed failures/states model are used in abstract specification units7 to
define the overall behaviour of the artifact under consideration. Each predicate in the timed
failures/states model is interpreted in the context of a model M, reflecting the definitions of
the Z part, and a channel signature IL, reflecting the channel declarations of the INTERFACE
and LOCALsections; and it induces a relation between timed failures (s,ℵ) and timed states
tst.

The predicate language is a superset of the predicate language of the extended timed fail-
ures model defined in the previous section. The extension consists of the collection of speci-
fication macros expressing so-called ‘time-variant state properties,’ which we introduced in

7 Therefore, this section is an anticipation of the definition of the semantics of abstract specification units in
Section 9.3.
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Section 6.1; they are additional atomic predicates, to which all operators defined in the pre-
vious section can be applied. These specification macros allow us to specify properties of the
data state evolution by relating the timed state component tst to the remaining components
already present in the extended timed failures model.

The semantic function [[ ]]PTFSM associates each predicate of the timed failures/states model
with its characterising set of timed failures (s,ℵ), timed states tst, models M and channel
signatures IL.

[[ ]]PTFSM : TFSM PREDICATE→ P(TimedFailure× TimedState×Model× ChanSgn)

We need to define the meaning of only the additional atomic predicates, i.e., of the specifica-
tion macros expressing time-variant state properties. Defining the meaning of the constructs
adopted from the extended timed failures model within the current model is analogous to
the definition in the ETF model; the only difference is the additional timed state component,
which is, however, not constrained by the adopted constructs.

Additional Specification Macros. The specification macro (Prop at t) is satisfied by a timed
state tst if, and only if, the last data state that is recorded in the timed state tst before time
instant t (inclusive) has property Prop.

[[ Prop at t ]]PTFSM = {tf : TimedFailure; tst : TimedState; M : Model; IL : ChanSgn |
Prop ∈ domM∧
∃1 t1 == sup{t2 : dom tst | t2 6R [[ t ]]εT (tf ,M, IL)} •

tst t1 ∈ [[ Prop ]]εM}

Accordingly, the specification macro (Prop before t) is satisfied by a timed state tst if, and
only if, the last data state that is recorded in the timed state tst before time instant t (exclusive)
has property Prop.

[[ Prop before t ]]PTFSM = {tf : TimedFailure; tst : TimedState; M : Model; IL : ChanSgn |
Prop ∈ domM∧
∃1 t1 == sup{t2 : dom tst | t2 <R [[ t ]]εT (tf ,M, IL)} •

tst t1 ∈ [[ Prop ]]εM}

The specification macro (Prop during TI) is satisfied by a timed state tst if, and only if, all
data states of tst during interval TI have property Prop.

[[ Prop during [t1, t2] ]]PTFSM = {tf : TimedFailure; tst : TimedState; M : Model; IL : ChanSgn |
Prop ∈ domM∧
∃1 TI == {t : dom tst | [[ t1 ]]εT (tf ,M, IL) 6R t ∧ t 6R [[ t2 ]]εT (tf ,M, IL)} •

∀ t : TI • tst t ∈ [[ Prop ]]εM}

The definition of the macro during for the other possibilities to denote time intervals—[t1, t2),
(t1, t2] and (t1, t2)—is straightforward and hence omitted.

Finally, (Prop invariant) is satisfied by a timed state tst if, and only if, each data state of tst
has property Prop, i.e., if Prop is an invariant property.
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Figure 9.6: Mapping a state sequence to a timed state.

[[ Prop invariant ]]PTFSM = {tf : TimedFailure; tst : TimedState; M : Model; IL : ChanSgn |
Prop ∈ domM∧
∀ t : dom tst • tst t ∈ [[ Prop ]]εM}

This concludes the formalisation of the predicate language of the timed failures/states model
of RT-Z.

Timed Failures/States Semantics of Z Specifications

Consider Figure 9.6. It illustrates the transformation of an untimed state sequence, which is
one component of a history, to a timed state. We have to distinguish between two parts of
such an untimed state sequence: an initial part corresponding to a sequence of well-formed
operation applications (in which operations applied concurrently do not interfere with each
other), and the remaining, diverging part (possibly empty) corresponding to a sequence of
interfering operation applications. In the example of Figure 9.6, we suppose that the state
sequence is well-formed beyond state j. The data states with indices i− 1, i and i + 1 are all
mapped to the time instant t2. That is, all three data states are caused by operations executed
or terminated at t2. The data state recorded in the timed state at t2 is that with the maximal
of those indices that are mapped to t2, namely i + 1, because the other data states (i− 1 and
i) are only “intermediate” leading to the total result of applying all three operations to the
previous data state.

This process of transforming an (untimed) state sequence into a timed state is formally
defined by the relation timedst of stseq. Note that this relation does not fix a particular
mapping of the data states of the untimed sequence to time values. This mapping is pos-
sible only in the context of a particular timed trace, recording the time instants of operation
terminations and executions.
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timedst of stseq == {h : History; tst : TimedState |
∃1 states == states of h •
0R ∈ dom tst ∧ tst 0R = states 1 ∧
(∃ index to time : dom states \ {1}→→ dom tst \ {0R} |

(∀ i, j : dom states | i < j • index to time i 6R index to time j) •
(∀ t : dom tst • tst t = states(max{i : dom states | index to time i = t})))

• (h, tst)}

The surjective, monotone function index to time maps the states of the untimed sequence to
the time values at which they are caused because of the termination or execution of opera-
tions.

The following relation timed statesZ specifies the association of histories of the Z part with
timed states tst that are possible evolutions of the data state provided a particular timed
failure tf has been observed.

timed statesZ == {h : History; tf : TimedFailure; tst : TimedState |
∃1 s == tf .1 •

tst ∈ timedst of stseq(|{h}|) ∧
dom tst = {0R} ∪ {t : T | ∃ i : dom s •

chan of (ev of (s i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (s i) = t}
• (h, (tf , tst))}

The domain of the timed state is defined to be the set of time values at which operations
have terminated or have been executed according to the timed trace s.

9.2.6 Semantic Integration: Definition

We have now available all preliminary definitions to deal with the last step of the semantic
integration. The semantic function of the model of timed failures/states for concrete speci-
fication units, written timed failures statesC [[ ]] , maps each concrete specification unit to a set
of pairs consisting of a timed failure and a timed state. To define this semantic function, we
still need two auxiliary relations, tfs of modelINT and tfs of modelEXT.

The relation tfs of modelINT formally specifies our informal description in Figure 6.5 of com-
posing the CSP part and the CSP interpretation of the Z part of a concrete specification unit.
Let (sCSP,ℵCSP) be a timed failure of the CSP part and (sZ,ℵZ) be a timed failure of the CSP
interpretation of the Z part. The conditions defined in tfs of modelINT to compose these two
timed failures to obtain the timed failure (s,ℵ) of the entire specification unit reflect the de-
finition of the interface parallel operator in timed CSP [Schneider, 1999b, p. 353]. Both parts
synchronise on the set of operation-related events ORE.
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tfs of modelINT == {CSU : CSpecUnit; M : Model; s : TimedTrace; ℵ : TimedRefusal;
tst : TimedState |

∃1 IL == CSU.I ∪ CSU.L;
ORE == ORC× ChannelValue; OREX == (ORC× ChannelValue) ∪ {X} •
(∀ i : dom s •

chan of (ev of (s i)) ∈ dom IL ∧
val of (ev of (s i)) ∈ [[ IL(chan of (ev of (s i))) ]]εM) ∧

(∃ h : Histories(|{(M, CSU.OPS)}|); sZ, sCSP : TimedTrace; ℵZ,ℵCSP : TimedRefusal •
(sZ,ℵZ) ∈ timed failuresZ(|{(h, Histories(|{(M, CSU.OPS)}|))}|) ∧
((sCSP,ℵCSP) /∈ timed failuresETFM [[ CSU.EA ]](M,IL)

∨ (sCSP,ℵCSP) ∈
timed failuresETCSP [[ CSU.Behav Behaviour ]](CSU.Behav,(M,M),IL)) ∧

((sZ, sCSP), ORE) synch s ∧
ℵZ \ (T×OREX) = ℵCSP \ (T×OREX) ∧
ℵ = ℵZ ∪ ℵCSP ∧
((sZ,ℵZ), tst) ∈ timed statesZ(|{h}|))

• ((CSU,M), ((s,ℵ), tst))}

As depicted in Figure 6.5, the operation-related events are hidden from the environment of
the parallel composition, which is formalised by the following relation.

tfs of modelEXT == {CSU : CSpecUnit; M : Model; tfail : TimedFailure; tst : TimedState |
∃1 s == tfail.1; ℵ == tfail.2;

ORE == ORC× ChannelValue •
(∃ s∗ : TimedTrace; ℵ∗ : TimedRefusal •

((s∗,ℵ∗), tst) ∈ tfs of modelINT(|{(CSU,M)}|) ∧
s = s∗ �ttr ORE ∧
ℵ∗ = ℵ ∪ (T×ORE))

• ((CSU,M), (tfail, tst))}

The conditions defined in tfs of modelEXT reflect the definition of the hiding operator in
timed CSP, see [Schneider, 1999b, p. 354].

Finally, we build the union over all models of the meaning of the Z part that are consistent
with the definition of the real numbers within ZF set theory. That is, we take only those
models of the Z part into account that map the symbols of the Z section Reals to the corres-
ponding entities of the semantic universe, whose existence is supposed on p. 122.

timed failures statesC [[ ]] == λ CSU : CSpecUnit •⋃
{M : Model | M ∈ [[ CSU.Zpart ]]Z OpsPreds ∧

{R, 0R, 1R,+R, ∗R, <R} ⊆ domM∧
MR = R ∧M 0R = 0R ∧M 1R = 1R ∧
M+R = +R ∧M∗R = ∗R ∧M <R=<R

• tfs of modelEXT(|{(CSU,M)}|)}
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This concludes the description of the semantic model of timed failures/states for concrete
specification units.

9.3 Abstract Specification Units (Open System View)

Having established the infrastructure of several semantic models in Section 9.2, the denota-
tional semantics of abstract specification units can be defined on this basis quite succinctly.

Recall the structure of abstract specification units as described in Section 7.2. The semantics
of such an abstract unit is the relation between timed failures and timed states as induced by
the predicate that is associated with the dedicated identifier Behaviour in the BEHAVIOUR-
AL PROPERTIESsection.8

Let TFSM PREDICATE denote the set of predicates of the timed failures/states model as
specified by the syntax definition in Appendix D. These predicates constitute the nota-
tion of the BEHAVIOURAL PROPERTIESsection of abstract specification units. The se-
mantic function of the model of timed failures/states for abstract specification units, written
timed failures statesA [[ ]] , associates a set of pairs consisting of a timed failure and a timed
state with each abstract specification unit being composed of

• a Z part, consisting of a TYPES & CONSTANTS, I/O RELATIONS and STATE PROP-
ERTIES section,

• an INTERFACEsection,

• an ENVIRONMENTAL ASSUMPTIONSsection and

• a BEHAVIOURAL PROPERTIESsection, which, by referring to the definitions of the
other sections, fixes the required relation between timed failures and timed states.

ASpecUnit == [Zpart : ZSpec;
I : ChanSgn;
EA : ETFM PREDICATE;
BehavProp : TFSM PREDICATE]

A pair ((s,ℵ), tst) is part of the denotation of an abstract specification unit ASU if

• the timed failure (s,ℵ) violates the environmental assumption or

• there exists a model M such that M, (s,ℵ) and tst satisfy the predicate Behaviour of the
BEHAVIOURAL PROPERTIESsection.

8 The BEHAVIOURAL PROPERTIESsection can contain other named predicates, but these are used only to
structure the predicate Behaviour, which refers—directly or indirectly—to the other predicates. Each set of
predicates can thus be normalised to a single predicate Behaviour.
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timed failures statesA [[ ]] == λ ASU : ASpecUnit •⋃
{M : Model | M ∈ [[ ASU.Zpart ]]Z Props ∧
{R, 0R, 1R,+R, ∗R, <R} ⊆ domM∧
MR = R ∧M 0R = 0R ∧M 1R = 1R ∧
M+R = +R ∧M∗R = ∗R ∧M <R=<R •

{s : TimedTrace; ℵ : TimedRefusal; tst : TimedState |
(∀ i : dom s •

chan of (ev of (s i)) ∈ dom ASU.I ∧
val of (ev of (s i)) ∈ [[ ASU.I(chan of (ev of (s i))) ]]εM) ∧

((s,ℵ) /∈ timed failuresETFM [[ ASU.EA ]](M,ASU.I)
∨
((s,ℵ), tst,M, ASU.I) ∈ [[ ASU.BehavProp ]]PTFSM ∧
(State ∈ domM⇒ (∀ t : dom tst • tst t ∈M State)))

• ((s,ℵ), tst)}}

This concludes the description of the semantic model of timed failures/states for abstract
specification units. Altogether, we have completed the semantic model for the open system
view and proceed with the closed system view in the following section.

9.4 Closed System View

The specification of an artifact in the closed system view incorporates only its behaviour
at the external interface, i.e., its internal properties are hidden. Based on the definition of
the semantic model of RT-Z for the open system view in the previous section, the semantic
functions of RT-Z for the closed system view can be specified quite succinctly; we need only
to hide the timed state component from the corresponding functions defined in the previous
section.

9.4.1 Concrete Specification Units

The semantic function of the timed failures model for concrete specification units, written
timed failuresC [[ ]] , maps each concrete specification unit to a set of timed failures. This
function yields the domain of the relation that is computed by the corresponding semantic
function for the open system view. This amounts to an existential quantification over the set
of timed states.

timed failuresC [[ ]] == λ CSU : CSpecUnit • dom(timed failures statesC [[ ]] CSU)

9.4.2 Abstract Specification Units

The semantic function of the timed failures model for abstract specification units, written
timed failuresA [[ ]] , maps each abstract specification unit to a set of timed failures. Also this
function yields the domain of the relation that is computed by the corresponding semantic
function for the open system view.
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timed failuresA [[ ]] == λ ASU : ASpecUnit • dom(timed failures statesA [[ ]] ASU)

This concludes the description of the semantic model of RT-Z.

9.5 Definedness of Recursive Process Equations

Combining process algebras that are based on denotational semantics with state-based tech-
niques generally raises the question if the fixed point theory underlying the denotational
semantics of the chosen process algebra can be adopted in the combined language. In de-
notational approaches to defining the semantics of process algebras, the meaning of a re-
cursive process equation X = F(X) is defined to be the least fixed point of the process term F
containing free occurrences of the process variable X. The assumption underlying this defi-
nition is the existence of a least fixed point for any valid process term F. To our knowledge,
there are two approaches to ensuring the existence of fixed points of process equations.

The first approach is to impose a complete partial order (CPO) structure on the set of pro-
cesses. The existence of least fixed points is guaranteed in this context, if all process operators
are continuous, consult [Davey and Priestley, 1990, Chapter 4] for details.

The second approach is to impose a complete metric space (CMS) structure on the set of
processes, based on a particular distance function between processes. The existence and
uniqueness of fixed points is guaranteed in this context, if all process operators are contrac-
tion mappings. This is established by Banach’s fixed point theorem, consult [Sutherland,
1975, p. 130] for details. The fixed point approach of timed CSP is based on a complete
metric space structure, as discussed in Section A.2.

When combining a process algebra with a state-based technique, the advantage of the CMS
approach over the CPO approach is that the property of a process operator to be a contrac-
tion mapping does not depend on the finiteness of process alphabets; this is in contrast to
the property of a process operator to be continuous.9 Consequently, the semantic model
of timed CSP, based on the CMS approach, is appropriate for being combined with a state-
based technique capable of introducing infinite data domains.

9 Recursion in the failures–divergences model of CSP was defined by imposing a CPO structure on that model.
For the failures–divergences model to be complete, however, the introduction of unbounded nondeterminism
had to be forbidden. This restriction, in turn, ruled out some process operators, e.g., general nondeterministic
choice and the hiding of infinite event sets. However, infinite event sets arise naturally in the context of
state-based techniques, which are capable of introducing infinite data domains.

To cope with infinite process alphabets and certain forms of unbounded nondeterminism, Roscoe [1992] based
the fixed point theory of CSP on an alternative order, which is different from the usual refinement order.
Although this order is complete (CPO), the hiding operator fails to be continuous. Moreover, some forms of
unbounded nondeterminism still cannot be treated in the context of this alternative order.

For these reasons, Roscoe [1993] invented the infinite traces model, which adds a further component to process
denotations: the infinite traces that a process can exhibit. It covers all forms of unbounded nondeterminisms.
By proving the congruence of the denotational semantics defined for the infinite traces model with the op-
erational semantics of CSP, Roscoe and Barrett [1989] established the existence of fixed points for arbitrary
recursive process equations.

The above discussion should have illustrated the difficulties that were encountered when dealing with un-
bounded nondeterminism in the context of the CPO underlying the denotational semantics of untimed CSP.
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To ensure that recursive process equations in the CSP part of an RT-Z specification unit are
well-defined, we must consider two issues that might counteract the fixed point approach of
timed CSP:

• the additional “dimension” of nondeterminism introduced by the Z part and

• the dependency of the semantics of process terms in the extended timed failures model
from information induced by the Z part.

Concerning the first issue, the behaviour of a specification unit, which is defined by its CSP
part, is usually cyclic. The timed CSP process defining such a cyclic behaviour must be
defined recursively. Further, the CSP part controls the evolution of the Z data state, which
is usually infinite. Thus, the question arises if such recursively defined timed CSP process
equations have a unique solution (i.e., if they have a unique fixed point) in spite of the ad-
ditional “dimension” of unbounded nondeterminism constituted by the evolution of the Z
data state.

Fortunately, the unbounded nondeterminism that is potentially introduced by Z operations
working on an infinite data state on the one hand and the computation of the fixed point
of the timed CSP process equations controlling the execution of these Z operations on the
other hand can be completely separated. This ability to separate these two issues is due to
the semantic separation of the Z part and the CSP part, which are composed in parallel. The
definitions in the CSP part restrict only the order of operation executions and their timing.
The corresponding effect on the data state is encapsulated in the parallel process that is the
timed CSP interpretation of the Z part.

Note further that the timed failures semantics of the Z part is not defined by means of re-
cursive process equations, but it is a direct mapping from Z specifications to sets of timed
failures. The resulting sets of timed failures satisfy the properties of the timed failures model
as demonstrated in Appendix B, i.e., they are guaranteed to represent timed CSP processes.

Concerning the second issue, in the extended timed failures model, each timed CSP process
term is evaluated in the context of information induced by the corresponding Z part; it is
encoded by the parameters of the semantic function timed failuresETCSP. The question arises
if this context, in which process terms are evaluated, has any consequences on the existence
and uniqueness of fixed points of recursive process equations.

These parameters of the semantic function solely concern the evaluation of value, time and
index set expressions within process terms. Furthermore, this context information is identi-
cal for the evaluation of all instances of all process terms: whenever a process term is instan-
tiated recursively, it is evaluated in the same context. That is, if a value, time or index set
expression evaluates to a particular value, then this value is the result of all evaluations of
this expression for all recursive instantiations of the process term. Thus, the context param-
eters do not influence the computation of fixed points of recursive process equations.

To conclude, the fixed point approach underlying timed CSP can be adopted as the fixed
point approach of the integrated formalism RT-Z.
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Chapter 10

Refinement

So far, we have introduced abstract and concrete specification units as a notation to define
requirements and designs at different levels of abstraction; and we have defined a denota-
tional semantics associating these specification units with a formal meaning.

According to Woodcock and Davies [1996], “writing a formal specification is a worthwhile
activity in its own right.” Among other things, this is justified by the facts that formal speci-
fication languages

• have the ability to precisely, unambiguously express requirements, constraints, archi-
tectures etc.,

• are the basis for detecting inconsistencies or incomplete definitions of requirements or
design flaws and

• force the specifier to think more rigorously about the considered artifact, which helps
gaining a deeper understanding of the artifact.

In addition to documenting the result of a single development step, however, one usually
wishes to develop a formal specification towards an implementation in a stepwise manner.
This process of development is called refinement. Refining a specification means improving
it, usually in the sense that it becomes closer to implementation structures. Improving a
specification may be achieved by removing nondeterminism. An abstract specification may
leave some design decisions open, which are resolved in a refinement step by eliminating
nondeterminism.

In the context of RT-Z, we must distinguish between different modes of refinement in sev-
eral respects. Our starting point is to define refinement relations between single specification
units; the refinement of compound specification units is defined on this basis. For both the
refinement of single and compound specification units, we must take into account whether
the refinement is to be conducted in the context of the open or closed system view, i.e., if the
refinement should encompass the evolution of the (internal) data state. Finally, with regard
to the refinement of single specification units, we must distinguish among the refinement
between two concrete specification units and the refinement between an abstract and a con-
crete specification unit.

This chapter is organised according to these distinctions.
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10.1 Refining Single Specification Units

In this section, we define the conditions under which a single specification unit is refined by
another one in both the closed and the open system view; and we deal with techniques to
establish refinement between single specification units.

10.1.1 Retrieve Specification Units

Usually, the refinement of a specification unit is accompanied by a refinement of the un-
derlying data types—concerning the representation of the internal data states as well as the
representation of the information communicated at the external interfaces. A retrieve speci-
fication unit is used to formally record the relationships between a refined specification unit,
say SUA, and a refining specification unit, say SUC.

Figure 10.1 depicts the structure of a retrieve specification unit. It incorporates the retrieve
relations between corresponding data domains in the refined unit SUA and the refining unit
SUC, used there in order to define the domains of ports and channels, the data states and
the parameters of operations. By convention, each retrieve specification unit imports the Z
definitions of the specification units being related.

A retrieve specification unit is structured according to the following three tasks. First, it
defines a retrieve relation for each external port and local channel that is subject to a change
of representing the communicated information. Second, it records the relationship between
the data states of the refining unit and the data states of the refined unit. Third, it defines
a retrieve relation for each operation schema, recording a potential change of representing
the input and output parameters. The refinement of operation parameters is a concept intro-
duced by Derrick and Boiten [2001] using the term IO refinement; IO refinement extends the
conventional refinement techniques of Z, which take into account changes of only the data
state.

Note the potential redundancy between the retrieve relations in the LOCALsection and in
the OPS & PREDSsection. Some of the channels declared in the LOCALsection are related to
operation applications; the retrieve relation for such a channel defines the change of repre-
senting the information communicated via this channel: the input and output parameters of
the corresponding operation. Because of this potential redundancy, the retrieve relations in
the LOCALsection that are associated with operation-related channels are not defined expli-
citly but are derived from the corresponding retrieve relations in the OPS & PREDSsection.

Consider the structure of the Z schemas in the INTERFACEand the LOCALsection, in par-
ticular of the schema RetrChanport1. These schemas define retrieve relations by declaring two
components A and C, which have a special meaning. A denotes any value exchanged at the
considered port of the refined unit SUA, while C denotes a corresponding value exchanged
at the considered port of the refining unit SUC. The predicate part of the schema defines the
relationship between the abstract and concrete representation of the information exchanged
at that port in terms of a predicate containing A and C. This predicate, however, cannot be
arbitrary. We require that the relation defined by the predicate is total in both directions:
each abstract representation must be related to some concrete representation, and vice versa.

The schemas defining the retrieve relations for the data state and the operation parameters,
on the other hand, need not introduce the special identifiers A and C, because the entities
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RETR. SPEC. UNIT RSU : SUA  SUC

INTERFACE

RetrChanport1

A : F T
C : seq T

A = ran C

. . .

LOCAL

RetrChanchan1

A : . . .
C : . . .

. . .

. . .

STATE

RetrState
SUA.State
SUC.State
. . .

OPS & PREDS [ ]

RetrInParOP == [ SUA.OPInPar; SUC.OPInPar | . . . ]
RetrOutParOP == [ SUA.OPOutPar; SUC.OPOutPar | . . . ]
. . .

Figure 10.1: Template of retrieve specification units.

to be related are already associated with identifiers in the refined and the refining unit: the
respective schemas are simply imported by the schema defining the retrieve relation. This
schema import, however, requires that there are no common identifiers used by both the
refined and the refining unit.1

1 This can always be achieved by an appropriate renaming.
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10.1.2 Relating Timed Observations of a Refined and a Refining Unit

The aim of this section is to lift the retrieve relations defined in a retrieve specification unit to
the level of timed observations of a specification unit: retrieve relations between timed fail-
ures and between timed states. Accordingly, the subsequent definitions relate a refined and
a refining specification unit, which are linked by a retrieve specification unit, with respect to
several, increasingly complex concepts: histories, events, traces, failures, timed failures and
timed states. These definitions are needed in order to specify the refinement relations in the
next section.

Throughout the definition of the following relations, concepts are related that are associated
with a refined (subscript a) and a refining specification unit (subscript c). The two specifi-
cation units are linked by a retrieve specification unit whose Z part is associated with a set
of models. MR is assumed to be a member of this set. Let Retrschema denote the function
mapping each identifier occurring in the refined and the refining unit to the identifier of the
corresponding schema in the retrieve specification unit, which defines the retrieve relation
between the concrete instance in the refining unit and the abstract instance in the refined
unit.

The set Retrhist defines a relation between two histories hc and ha associated with a refined
and a refining specification unit.

Retrhist == {ha, hc : History; MR : Model |
dom(events of hc) = dom(events of ha) ∧
(∀ i : dom(events of hc) • pop name((events of hc)i) = pop name((events of ha)i) ∧

{A 7→ ( pop params((events of ha)i)), C 7→ ( pop params((events of hc)i))} ∈
MR(Retrschema(pop name((events of ha)i)))) ∧

dom(states of hc) = dom(states of ha) ∧
(∀ i : dom(states of hc) • ((states of hc)i ∪ (states of ha)i) ∈ (MR RetrState))

• (MR, (ha, hc))}

The set Retrev relates two events eva and evc associated with a refined and a refining speci-
fication unit. The events must be transmitted via the same channel, and the values being
transmitted with their occurrence must be related by the retrieve schema defined in the re-
trieve specification unit and belonging to that channel.

Retrev == {eva, evc : Event; MR : Model |
chan of eva = chan of evc ∧
{A 7→ val of eva, C 7→ val of evc} ∈ MR(Retrschema(chan of eva))

• (MR, (eva, evc))}

The sets Retrtr, Retrfail and Retrtf define the corresponding relations between traces, failures
and timed failures associated with a refined and a refining specification unit. Their definition
is based on Retrev.
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Retrtr == {tra, trc : Trace; MR : Model |
dom tra = dom trc ∧ (∀ i : dom tra • (tra i, trc i) ∈ Retrev(|{MR}|))

• (MR, (tra, trc))}

Retrfail == {tra, trc : Trace; Xa, Xc : Refusal; MR : Model |
(tra, trc) ∈ Retrtr(|{MR}|) ∧ Xc ⊆ Retrev(|{MR}|)(|Xa|)

• (MR, ((tra, Xa), (trc, Xc)))}

Retrtf == {sa, sc : TimedTrace; ℵa,ℵc : TimedRefusal; MR : Model |
∀ t : T •

((strip(sa �ttr t), {e : Event | (t, e) ∈ ℵa}), (strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}))
∈ Retrfail(|{MR}|)

• (MR, ((sa,ℵa), (sc,ℵc)))}

The set Retrtst relates two timed states tsta and tstc associated with a refined and a refining
specification unit. The timed states must map states to the same time instants, and for each
such time instant the states being recorded must be related by the schema RetrState defined
in the retrieve specification unit.

Retrtst == {tsta, tstc : TimedState; MR : Model |
dom tstc = dom tsta ∧ (∀ t : dom tsta • tstc t ∪ tsta t ∈ (MR RetrState))

• (MR, (tsta, tstc))}

The set RetrInterface defines the retrieve relation between timed failures associated with a re-
fined and a refining unit that is induced by a retrieve specification unit RSU.2

RetrInterface == {sa, sc : TimedTrace; ℵa,ℵc : TimedRefusal; RSU : RSpecUnit |
∃MR : [[ RSU.Zpart ]]Z Root • ((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|)

• (RSU, ((sa,ℵa), (sc,ℵc)))}

Analogously, the set RetrInterface/State defines the retrieve relation between timed failures and
timed states associated with a refined and a refining unit that is induced by a retrieve speci-
fication unit RSU.

2 The identifier Root occurring in the definition denotes an “artificial” root section, which is part of each re-
trieve specification unit. This section inherits all other Z sections of a retrieve specification unit; each model
associated with it contains hence all variables declared in the entire unit.
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RetrInterface/State == {sa, sc : TimedTrace; ℵa,ℵc : TimedRefusal; tsta, tstc : TimedState;
RSU : RSpecUnit |

∃MR : [[ RSU.Zpart ]]Z Root •
((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) ∧ (tsta, tstc) ∈ Retrtst(|{MR}|)

• (RSU, (((sa,ℵa), tsta), ((sc,ℵc), tstc)))}

The two previous relations are used to define the refinement relation between specification
units.

10.1.3 Closed System View

Considering a specification unit in the closed system view, if abstract or concrete, we are
interested in its behaviour at the external interface, ignoring its internal behaviour. For a
specification unit to refine another one, its associated set of timed failures must be a subset
of the set of timed failures associated with the refined unit. However, the timed failures of
the two units cannot be compared directly because of a potential change of representing the
data values that are recorded in the timed failures. The comparison is thus performed with
respect to the retrieve relations defined in the previous section.

Concrete to Concrete

Refining concrete specification units is all about converging models towards implementation
structures—with respect to data structures, algorithms as well as architectures.

Definition 10.1
A concrete specification unit CSUA is refined by a concrete specification unit CSUC with
respect to a retrieve specification unit RSU if, and only if, all external interactions consistent
with CSUC are also consistent with CSUA—taking into account the potential change of data
representation as recorded in the INTERFACEsection of RSU.

CSUA vRSU
TF CSUC

⇔
timed failuresC [[ CSUC ]] ⊆ RetrInterface(|{RSU}|)(|timed failuresC [[ CSUA ]] |)

Abstract to Concrete

The transition between abstract and concrete specification units is not really a refinement
step. Rather, a concrete specification unit is constructed from scratch in order to define a
model that meets the requirements defined by an abstract specification unit; demonstrating
the satisfaction of these requirements is a verification task. Verification techniques for RT-Z
are part of future work, see Chapter 13. We nevertheless define the implementation relation
between abstract and concrete specification units in this section.

Definition 10.2
An abstract specification unit ASU is refined by a concrete specification unit CSU if, and only
if, all external interactions consistent with CSU are also consistent with ASU—taking into
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account the potential change of data representation as recorded in the INTERFACEsection
of RSU.

ASU vRSU
TF CSU

⇔
timed failuresC [[ CSU ]] ⊆ RetrInterface(|{RSU}|)(|timed failuresA [[ ASU ]] |)

Note that we have not defined a refinement relation between pairs of abstract specification
units. From our point of view, abstract specification units are not subject to refinement,
because they fix mere requirements, which should be already known when the part of the
development process starts that is supported by RT-Z.

10.1.4 Open System View

Considering a specification unit in the open system view, we are interested in both its inter-
action at the external interface and the evolution of its internal data state. To check if there is
a refinement relationship between two specification units, we must compare their associated
sets of timed failures and timed states. Again, the timed failures and timed states of the two
units cannot be compared directly because of a potential change of data representation. The
comparison is thus made with respect to the retrieve relations defined in Section 10.1.2.

The following definitions are analogous to that of the closed system view.

Concrete to Concrete

Definition 10.3
A concrete specification unit CSUA is refined by a concrete specification unit CSUC with re-
spect to a retrieve specification unit RSU if, and only if, all external interactions and data
state evolutions consistent with CSUC are also consistent with CSUA—taking into account
the potential changes in data representation as recorded in the INTERFACEand STATEsec-
tions of RSU.

CSUA vRSU
TFTS CSUC

⇔
timed failures statesC [[ CSUC ]] ⊆ RetrInterface/State(|{RSU}|)(|timed failures statesC [[ CSUA ]] |)

Abstract to Concrete

Definition 10.4
An abstract specification unit ASU is refined by a concrete specification unit CSU with re-
spect to a retrieve specification unit RSU if, and only if, all external interactions and data
state evolutions consistent with CSU are also consistent with ASU—taking into account the
potential changes in data representation as recorded in the INTERFACEand STATEsections
of RSU.
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ASU vRSU
TFTS CSU

⇔
timed failures statesC [[ CSU ]] ⊆ RetrInterface/State(|{RSU}|)(|timed failures statesA [[ ASU ]] |)

10.1.5 Techniques for Establishing Refinement

According to the discussion in the previous two sections, the task that remains to be dealt
with is the refinement of concrete specification units. In this context, our aim is to make
use of the existing refinement techniques of the base formalisms Z and timed CSP. Because
of the chosen approach to defining the meaning of concrete specification units—the parallel
composition of the Z and CSP part—their parts can be refined independently of each other.
This independence is ensured by the monotonicity of the parallel composition operator with
respect to refinement in the timed failures model.

Concerning the CSP part of concrete specification units this means that we can simply use
the refinement techniques provided by timed CSP.

Concerning the Z part, on the other hand, we must establish a link between the refinement
techniques provided by Z and refinement in the timed failures model. In other words, we
must establish that using state-based techniques to refine the Z part results in a refinement of
the timed CSP interpretation of the Z part according to our semantic definitions in Chapter 9.
This approach follows the work of Josephs [1988] who has demonstrated that state-based
refinement techniques are consistent with refinement in the failures–divergences model of
(untimed) CSP. We cannot, however, simply adopt his results in the context of RT-Z, because

• our approach to defining the timed CSP semantics of a Z specification differs from his
approach to defining the CSP semantics of a state-based system and

• two different semantic models are involved: the timed failures model and the failures–
divergences model.

We proceed as follows. We first introduce the definition of the notions of forward and back-
ward simulations. In Section 10.3 we prove that forward and backward simulations imply
refinement in the timed failures/states model of RT-Z.

Josephs [1988, Rules 2.2 and 2.3 on p. 12] has defined the notions of downward and upward
simulations in the context of state-transition systems.3 We must translate his definitions into
the context of Z as used within RT-Z. The most essential aspect of this translation is the iden-
tification of the set next(σ), denoting the set of outgoing actions from the state σ, and the set
of operations whose preconditions are satisfied in the data state corresponding to σ. This
identification corresponds to the rôle we have assigned to operation preconditions in RT-Z:
an operation is blocked in a data state in which its precondition is not satisfied. The most
substantial difference between the following conditions characterising forward and back-
ward simulations in RT-Z and the corresponding conditions given in [Josephs, 1988] is that
we cannot (explicitly) quantify over the set of operation identifiers present in a specification
unit, whereas Josephs has used universal and existential quantifiers over the set of actions

3 Instead of the terms upward and downward simulation, we use the terms forward and backward simulation,
because they are more intuitive and also used in [Woodcock and Davies, 1996].
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of a state-transition system. Another difference between the definitions of Josephs (and also
the definitions of forward and backward simulation in [Woodcock and Davies, 1996]) and
our definitions is that we have taken into account the refinement of data types associated
with the input and output parameters of operations. The conditions have been extended
accordingly.

Forward Simulations. Let CSUA and CSUC be two concrete specification units. Let RSU be a
retrieve specification unit defining the various retrieve relations. The schema RSU.RetrState
is called a forward simulation between the data states of CSUA and CSUC if the following three
conditions hold for each operation schema OP. All conditions are implicitly universally
quantified over the set of operation identifiers defined in CSUA and CSUC. The conditions
are a translation of the Conditions 1–3 of Rule 2.2 of [Josephs, 1988].

1. Applicability

∀CSUA.State; CSUA.OPInPar; CSUC.State; CSUC.OPInPar |
RSU.RetrState ∧ RSU.InRetrOP •
pre CSUA.OP ⇔ pre CSUC.OP

Note that, in contrast to refinement in Z, the precondition of an operation must not be
changed during refinement. This is a consequence of the different rôles of the precon-
dition in Z and RT-Z (non-blocking vs. blocking).

2. Correctness

∀CSUA.State; CSUA.OPInPar; CSUC.State; CSUC.OPInPar;
CSUC.State′; CSUC.OPOutPar |

pre CSUA.OP ∧ RSU.RetrState ∧ RSU.InRetrOP ∧ CSUC.OP •
∃CSUA.State′; CSUA.OPOutPar • CSUA.OP ∧ RSU.RetrState′ ∧ RSU.OutRetrOP

3. Initialisation

∀CSUC.State | CSUC.Init • ∃CSUA.State | CSUA.Init • RSU.RetrState

Backward Simulations. Let CSUA and CSUC be two concrete specification units. Let RSU be
a retrieve specification unit defining the various retrieve relations. The schema RSU.RetrState
is called a backward simulation between the data states of CSUA and CSUC if the following
three conditions hold for each operation schema OP. Conditions 2 and 3 are direct trans-
lations of the Conditions 2 and 3 of Rule 2.3 of [Josephs, 1988]. Condition 1 is slightly
strengthened, because it is not possible to directly translate the subset relationship without
having the ability to quantify over the set of operation identifiers explicitly.

1. Applicability

∀CSUA.State; CSUA.OPInPar; CSUC.State; CSUC.OPInPar |
RSU.RetrState ∧ RSU.InRetrOP •
pre CSUA.OP ⇔ pre CSUC.OP
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2. Correctness

∀CSUC.State; CSUC.OPInPar; CSUA.State′; CSUA.OPOutPar;
CSUC.State′; CSUC.OPOutPar |

CSUC.OP ∧ RSU.RetrState′ ∧ RSU.OutRetrOP •
∃CSUA.State; CSUA.OPInPar • RSU.RetrState ∧ RSU.InRetrOP ∧ CSUA.OP

3. Initialisation

∀CSUC.State; CSUA.State | CSUC.Init ∧ RSU.RetrState • CSUA.Init

This completes the definition of the notions of forward and backward simulations. Note
that identifying and establishing simulations between specification units is a task that has
been reduced to proof obligations that are expressed in terms of the Z notation and that can
be completely discharged using Z techniques. Such techniques for establishing simulations
between abstract data types (ADT) in Z can be found in [Derrick and Boiten, 2001].

In Section 10.3, we prove that the existence of a forward or backward simulation between
two concrete specification units, as defined in this section, implies refinement in the semantic
model of RT-Z.

Discussion

As already indicated, Derrick and Boiten [2001] have introduced the concept of IO refine-
ment for Z abstract data types, which takes into account changes of representing operation
parameters. Their definition of the notions of forward simulation and backward simulation
and our definition of these notions in this section, however, differ in some aspects for the
following reasons.

First, and most important, the preconditions of operation schemas have different rôles in Z
and RT-Z, giving rise to different applicability and correctness conditions.

Moreover, it seemed most natural to us to treat input parameters analogously to pre states
and output parameters analogously to post states. This analogy/symmetry is directly re-
flected in the above conditions. Derrick and Boiten, by contrast, have used the schema
piping operator in order to relate the abstract and concrete instances of input and output
parameters. This operator allowed them to express the conditions in a more compact way,
however, it prevented a symmetric treatment.

As an analogy to our approach, Derrick and Boiten have not claimed that forward and
backward simulations together are sufficient to prove all valid IO refinement relationships
between abstract data types in Z.

10.2 Refining Compound Specification Units

In this section, we discuss how refinement relations between single specification units are
lifted to compound specification units.
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10.2.1 Aggregation

Our aim is to establish—under particular assumptions—that the refinement of an aggre-
gated specification unit, while keeping the context unchanged into which it is embedded,
results in the refinement of the aggregating specification unit constituting its context. The
reasoning in the remainder of this section is carried out with respect to the open system view
but holds for the closed system view as well.

Let CSUA and CSUC be two concrete specification units and let CompA and CompC be two
compound specification units that aggregate CSUA and CSUC, respectively, within the same
context.

SPEC. UNIT CompA

. . .

SUBUNITS

subunit agg spec. unit CSUA

. . .

SPEC. UNIT CompC

. . .

SUBUNITS

subunit agg spec. unit CSUC

. . .

We need two assumptions in order to justify the satisfaction of the following theorem.

Assumption 10.1
The behaviour definition of CompA embeds CSUA within its context by means of a timed
CSP operator that is monotone with respect to refinement in the timed failures model, e.g.,
parallel composition or interleaving. By assumption, the same holds for CompC and CSUC.

Assumption 10.2
The compound unit CompA does not define any global invariants and global initialisation
constraints. By assumption, the same holds for CompC and CSUC.

Theorem 10.1
Let RSU be a retrieve specification unit defining retrieve relations for the ports and channels
of CSUA and CSUC, and let RSU∗

extend RSU corresponding to the way CSUA and CSUC
are embedded within CompA and CompC: there might be additional ports and channels in
CompA and CompC whose associated domains must also be related (in this case identified).

Ideally, the result to be obtained would be:
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CSUA vRSU
TFTS CSUC ⇒ CompA vRSU

∗

TFTS CompC.

However, since it has not been established that forward and backward simulations together
are sufficient to prove refinement, we must strengthen the premise of the implication by the
following conjunct: there exists a forward or backward simulation between the data states
of CSUA and CSUC.

So, informally speaking, if we are able to prove refinement between CSUA and CSUC using
a simulation between their data states, we are also able to prove refinement between CompA
and CompC.

We do not prove the above theorem formally, but provide a systematic reasoning. This reas-
oning can be sketched as follows. Concerning the Z part, we construct a forward/back-
ward simulation between the data states of CompA and CompC based on the existing for-
ward/backward simulation between CSUA and CSUC. This ensures that the Z parts of the
compound specification units are related by refinement. Concerning the CSP part, we ex-
ploit the assumed monotonicity of the used timed CSP operator to establish the necessary
refinement relationship between the CSP parts of CompA and CompC.

According to Assumption 10.2 and the reduction process defined in Section 8.1.4, the data
state and initialisation schemas of CompA and CompC are derived as follows.

CompA.State
agg : lift simple Z(agg, CSUA.State)
. . .

CompC.State
agg : lift simple Z(agg, CSUC.State)
. . .

CompA.Init
CompA.State

agg ∈ lift simple Z(agg, CSUA.Init)
. . .

CompC.Init
CompC.State

agg ∈ lift simple Z(agg, CSUC.Init)
. . .

By assumption, there is a forward/backward simulation between the data states of CSUA
and CSUC. This simulation can be easily lifted to a simulation between the data states of
CompA and CompC such that the following two conditions hold.

• The components agg of CompA.State and CompC.State are related by the original simu-
lation.

• The other components of CompA.State and CompC.State, which are identical by assump-
tion, are related by the identity relation.

Choosing this lifted simulation, the definition of the promotion of operations defined in
Section 8.1.4 guarantees that each pair of corresponding operations from CompA and CompC
satisfies Conditions 1 and 2 for forward/backward simulations.

• The execution of an operation defined by CSUA and CSUC depends on and transforms
only the state component agg, because we have assumed that there are no global in-
variants.



10.3. Relationship between Simulation and Refinement 163

• Each operation not defined by CSUA and CSUC is defined equally in CompC and CompA
by assumption. Its execution leaves the state component agg unchanged.

Finally, Condition 3 for forward/backward simulations is satisfied, because there are no
global initialisation constraints and because the state components other than agg are related
by the identity relation.

The above reasoning implies the existence of a forward/backward simulation between the
data states of CompA and CompC, so the Z parts of these two units are related by refinement.

Concerning the CSP part, we have assumed that the behaviour definitions of CSUA and
CSUC are composed with the context by means of an operator that is monotone with re-
spect to refinement in the timed failures model. As a consequence of this monotonicity, the
behaviour definition of CompA is refined by the behaviour definition of CompC.

Altogether, we can conclude that CompA is refined by CompC because of the monotonicity of
the parallel operator composing the Z part and the CSP part. Given the transitivity of the re-
finement relation, we can reduce the obligation to prove refinement between two compound
specification units aggregating an arbitrary number of specification units within the same
context to showing that the refinement relation holds between the individual specification
units being aggregated.

The reasoning with regard to indexed aggregation is analogous. We omit it since it does not
provide further insight.

10.2.2 Extension

In contrast to aggregation, it is not reasonable to lift the refinement relation from the level of
single specification units to extension. This is the case because extension is not a means for
structuring large specifications like aggregation, but rather a means for achieving reuse.

If we consider a compound specification unit CompA that extends the specification unit
CSUA, then the definitions of CSUA are extended by new entities and constraints. The ori-
ginal entities and constraints and the additional ones constitute a single “unit,” and it makes
absolutely no sense to retain this extension structure in the compound specification unit re-
fining CompA.

10.3 Relationship between Forward and Backward Simulations and
Refinement in the Timed Failures/States Model

The aim of this section is to prove that two concrete specification units, say CSUA and CSUC,
which are linked by a retrieve specification unit, say RSU, are related by refinement in the
timed failures/states model if

1. the CSP part of CSUC is a refinement of that of CSUA in the timed failures model and

2. the schema RetrState of RSU defines a forward or backward simulation between the
data states of CSUA and CSUC according to the definitions of Section 10.1.3.
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In contrast to Smith and Derrick [2001] we are not able to directly adopt the results of
Josephs [1988], namely the link between upward and downward simulations that relate
state-transition systems and refinement in the failures–divergences model of CSP. The reason
is twofold. Firstly, we must prove the refinement relationship in a different, more elaborate
semantic model: the timed failures model of timed CSP. Secondly, it is not as obvious as
in the approach of Smith and Derrick [2001] that the mapping from Z specifications to the
timed failures semantics as defined in Chapter 9 directly corresponds to the mapping from
state-transition systems to the failures–divergences model as defined by Josephs.

Let CSUA and CSUC be concrete specification units, and let RSU be a retrieve specification
unit, which defines retrieve relations between CSUA and CSUC. Let further RSU.RetrState
define a forward or backward simulation between the data states of CSUA and CSUC. We
assume that the Z parts of CSUA and CSUC do not contain any contradictions (i.e., they are
consistent) and that they do not define any constraints on the symbols declared by the Z
section Reals discussed on p. 122.

Our goal is to prove that

timed failures statesC [[ CSUC ]] ⊆ RetrInterface/State(|{RSU}|)(|timed failures statesC [[ CSUA ]] |)

or, informally speaking, that CSUC refines CSUA with respect to RSU in the context of the
open system view. The above condition is the subject of Theorem 10.9. All other theorems
and lemmata are intermediate steps towards this final result.

Within the Theorems 10.2–10.8 (and the lemmata in Appendix C needed to prove them), let
MC , MA and MR be arbitrary models satisfying

MC ∈ [[ CSUC.Zpart ]]Z OpsPreds; MA ∈ [[ CSUA.Zpart ]]Z OpsPreds;
MR ∈ [[ RSU.Zpart ]]Z Root.

That is, these theorems are implicitly universally quantified.

Moreover, we build our theorems and lemmata in this section on the following definitions
by equivalence.

HSC == Histories(|{(MC , CSUC.OPS)}|); HSA == Histories(|{(MA, CSUA.OPS)}|)

Theorem 10.2
Considered under the relation Retrhist, each history derived from CSUC is also a history that
can be derived from CSUA. Moreover, for all pairs of histories derived from CSUC and CSUA
being related by Retrhist, the sets of operation-related events constituting possible extensions
are equal.

HSC ⊆ Retrhist(|{MR}|)(|HSA|)
∧
∀ hc : HSC; ha : HSA | (ha, hc) ∈ Retrhist(|{MR}|) •

Retrev(|{MR}|)(|ev of op(|{op : POP APP | ∃ h∗a : HSA | (ha, h∗a ) ∈ PreHist •
events of h∗a = (events of ha)a 〈op〉}|)|)

= ev of op(|{op : POP APP | ∃ h∗c : HSC | (hc, h∗c ) ∈ PreHist •
events of h∗c = (events of hc)a 〈op〉}|)
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The conjuncts of the above theorem are immediate consequences of our definition of for-
ward and backward simulations in Section 10.1.3. First, the definitions of forward and back-
ward simulations ensure that the abstract description can “simulate” each behaviour of the
concrete description. This is expressed by the first conjunct. Second, Condition 1 of these
definitions imply that the sets of operations whose preconditions are satisfied with respect
to a corresponding pair of concrete and abstract data states are equal. This is expressed by
the second conjunct.

Theorem 10.3
Considered under the relation Retrtr, the trace derived from any history of CSUC is related
to the trace derived from any history of CSUA, if these histories are related by Retrhist.

∀ hc : HSC; ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) • tracesZ hc ∈ Retrtr(|{MR}|)(|{tracesZ ha}|)

This is an immediate consequence of the definition of tracesZ in Section 9.2.4.

Theorem 10.4
Considered under the relation Retrfail, the set of failures derived from any history of CSUC is
a subset of the set of failures derived from any history of CSUA, if these histories are related
by Retrhist.

∀ hc : HSC; ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
failuresZ(|{(hc, HSC)}|) ⊆ Retrfail(|{MR}|)(|failuresZ(|{(ha, HSA)}|)|)

The theorem is proved in Appendix C.

Theorem 10.5
For each history hc derived from CSUC there is a corresponding history ha derived from
CSUA such that the timed failures associated with hc are a subset of the timed failures asso-
ciated with ha—when being considered under the relation Retrhist.

∀ hc : HSC • ∃ ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
timed failuresZ(|{(hc, HSC)}|) ⊆ Retrtf (|{MR}|)(|timed failuresZ(|{(ha, HSA)}|)|)

The theorem is proved in Appendix C.

Having treated the timed failure component of the meaning associated with concrete speci-
fication units, we turn our attention to the timed state component.

Within Theorem 10.6 (and in the lemmata in Appendix C needed to prove it), let hc ∈ HSC
and ha ∈ HSA be arbitrary such that (ha, hc) ∈ Retrhist(|{MR}|). Furthermore, we build
our theorems and lemmata in the remainder of this section on the following definitions by
equivalence.

TFA == timed failuresZ(|{(ha, HSA)}|); TFC == timed failuresZ(|{(hc, HSC)}|)

Theorem 10.6
Considered under the relation Retrtst, the set of timed states that can be derived from any
timed failure of CSUC is a subset of the set of timed states that can be derived from any
timed failure of CSUA, if these timed failures are related by Retrtf .
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∀ sa, sc : TimedTrace; ℵa,ℵc : TimedRefusal | (sa,ℵa) ∈ TFA ∧ (sc,ℵc) ∈ TFC ∧
((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) •

timed statesZ(|{hc}|)(|{(sc,ℵc)}|) ⊆ Retrtst(|{MR}|)(|timed statesZ(|{ha}|)(|{(sa,ℵa)}|)|)

The theorem is proved in Appendix C.

Theorem 10.7
Considered under the relation RetrInterface/State, the set of timed failures and timed states as-
sociated with CSUC by tfs of modelINT, which is the auxiliary semantic relation defined on
p. 144, is a subset of the set of timed failures and timed states associated with CSUA.

tfs of modelINT(|{(CSUC,MC)}|)
⊆ RetrInterface/State(|{RSU}|)(|tfs of modelINT(|{(CSUA,MA)}|)|)

The following two assumptions, which are needed to prove Theorem 10.7, concern the CSP
parts of CSUA and CSUC. They formalise the first condition expressed informally on p. 164.

Assumption 10.3
Firstly, we assume that the behaviour definition in CSUC is a timed failures refinement of
that in CSUA.

timed failuresETCSP [[ CSUC.Behav Behaviour ]](CSUC.Behav,(MC ,MC),CSUC.I∪CSUC.L)

⊆
Retrtf (|{MR}|)(|timed failuresETCSP [[ CSUA.Behav Behaviour ]](CSUA.Behav,(MA,MA),CSUA.I∪CSUA.L)|)

Assumption 10.4
Secondly, we assume that the environmental assumption of CSUC is weaker than that of
CSUA.

Retrtf (|{MR}|)(|timed failuresETFM [[ CSUA.EA ]](MA,CSUA.I∪CSUA.L)|)
⊆ timed failuresETFM [[ CSUC.EA ]](MC ,CSUC.I∪CSUC.L)

Theorem 10.7 is proved in Appendix C.

Theorem 10.8
Considered under the relation RetrInterface/State, the set of timed failures and timed states as-
sociated with CSUC by tfs of modelEXT, which is the auxiliary semantic relation defined on
p. 145, is a subset of the set of timed failures and timed states associated with CSUA.

tfs of modelEXT(|{(CSUC,MC)}|)
⊆ RetrInterface/State(|{RSU}|)(|tfs of modelEXT(|{(CSUA,MA)}|)|)

The theorem is proved in Appendix C.
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Theorem 10.9
The final theorem contains the refinement condition given in Definition 10.3.

timed failures statesC [[ CSUC ]] ⊆ RetrInterface/State(|{RSU}|)(|timed failures statesC [[ CSUA ]] |)

Let Reals denote the conjuncts in the definition of timed failures statesC [[ ]] on p. 145 related
to the mapping of the symbols representing the real numbers to the corresponding entities
of the semantic universe.

((sc,ℵc), tstc) ∈ timed failures statesC [[ CSUC ]]

` [def. timed failures statesC [[ ]] ]

∃MC : [[ CSUC.Zpart ]]Z OpsPreds | Reals(MC) •
((sc,ℵc), tstc) ∈ tfs of modelEXT(|{(CSUC,MC)}|)

` [Theorem 10.8]

∀MA : [[ CSUA.Zpart ]]Z OpsPreds •
((sc,ℵc), tstc) ∈ RetrInterface/State(|{RSU}|)(|tfs of modelEXT(|{(CSUA,MA)}|)|)

` [consistency of Z part of CSUA; symbols related to reals are not restricted by Z part]

∃MA : [[ CSUA.Zpart ]]Z OpsPreds | Reals(MA) •
((sc,ℵc), tstc) ∈ RetrInterface/State(|{RSU}|)(|tfs of modelEXT(|{(CSUA,MA)}|)|)

` [def. timed failures statesC [[ ]] ]

((sc,ℵc), tstc) ∈ RetrInterface/State(|{RSU}|)(|timed failures statesC [[ CSUA ]] |)

�

To conclude, we have demonstrated that any refinement of the Z part of a concrete specifi-
cation unit—characterised by a forward or backward simulation—results in a refinement of
the overall specification unit in the timed failures/states model of RT-Z. This allows us to
refine concrete specification units in the context of the open system view.

In the closed system view, by contrast, only the timed failures at the external interface of a
concrete specification unit are taken into consideration—ignoring the evolution of the data
state. Given our above reasoning in the context of the open system view, the corresponding
proof in the context of the closed system view is trivial.
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Chapter 11

Comparison with Related Formalisms

In this chapter, we contrast RT-Z with those approaches introduced in Chapter 4 that are
related most closely to RT-Z and that have strongly influenced its design.

11.1 CSP-OZ

In this section, we contrast RT-Z and CSP-OZ and discuss their benefits and drawbacks. The
most relevant differences between CSP-OZ and RT-Z can be traced back to the following two
aspects: the choice of similar but different base formalisms and the membership in different
classes of integrated formalisms.

The most evident difference between CSP-OZ and RT-Z is the integration of similar but
distinct formalisms: Object-Z instead of Z and (untimed) CSP instead of timed CSP. This
entails two immediate consequences.

• Since (untimed) CSP is not built on a model of real-time, CSP-OZ is not directly able to
deal with real-time constraints.

• CSP-OZ is able to make use of Object-Z’s structuring mechanisms: classes and their
objects, inheritance and object instantiation.

As already indicated in Chapter 4, CSP-OZ is a monolithic integration according to our pro-
posed classification scheme. This classification is primarily due to the CSP part of CSP-OZ
classes, which is constituted by the intermediate language CSPZ. In CSPZ, the Z and CSP
notations are integrated very closely. The feature of the CSPZ notation that particularly rep-
resents the monolithic nature of CSP-OZ is the schema prefixing operator [Fischer, 2000,
p. 52]. This operator is similar to state guards of TCOZ: it allows an arbitrary schema ex-
pression to play the role of an event.

Thus, all advantages and disadvantages that are discussed in general with respect to the re-
lationship between monolithic and conserving integrations in Chapter 5 apply in particular
to CSP-OZ and RT-Z.

In the remainder of this section, we discuss specific differences between the two integrated
formalisms.

171
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Supported Phases. CSP-OZ and RT-Z focus on different phases of the development pro-
cess.

CSP-OZ, on the one hand, is well-suited for the later development phases, where CSP-OZ
supports the design phase and where the translation from CSP-OZ to Java [Fischer, 2000,
Part 3] supports parts of the implementation phase. However, CSP-OZ does not offer ab-
stract language features for the early requirements phases: there is no counterpart in CSP-OZ
for RT-Z’s abstract specification units.

RT-Z, on the other hand, primarily focuses on the earlier phases, where abstract specification
units support the requirements phases and where concrete specification units support the
design phases. The derivation of code, however, is not covered.

System Model. CSP-OZ and RT-Z have different underlying system models. More spe-
cifically, the two formalisms have different pictures of how systems are decomposed into
components and how components interact with each other.

In CSP-OZ, channels of class interfaces are related to operations, i.e., the occurrence of an
event on a channel is associated with the application of an operation in the corresponding
objects. The identification of external channels and operations results in a strong coupling of
interacting objects: two objects connected by a channel must contain a pair of equally named
operations, and the parameters of these operations must also be equally named. This means
that the interface between objects is broad, i.e., many details concerning internal properties
of objects are globally visible. As Mahony and Dong [1998a] pointed out, this leads to the
problem that the configuration of objects within networks is largely fixed by internal aspects
of the objects (operation and parameter names) rather than by structural aspects.

Environmental Assumptions. CSP-OZ does not provide any notation to explicitly1 specify
assumptions about the behaviour of the environment of a class with respect to the channels
of its interface.

Dynamic Creation of Objects. CSP-OZ allows the dynamic creation of objects during the
evolution of a system. While this undeniably increases the flexibility of specifying a dynamic
system, the fact that the collection of active objects and their configuration can change dy-
namically is an enormous complication with respect to verification (in the cases in which
dynamic creation is used).

Semantic Definition. Comparing the semantic definitions of CSP-OZ and RT-Z, we must
conclude that the semantics of CSP-OZ is defined on a higher level of abstraction and in a
less complex way. Both the higher level of abstraction and the lower complexity rest on the
notational power of the intermediate language CSPZ of CSP-OZ, which is used to express
the semantics of CSP-OZ classes. In particular, they rest on the ability of CSPZ to closely
integrate process and Z expressions and the ability to parametrise CSPZ process expressions

1 Of course, environmental assumptions can always be expressed by incorporating the description of the envir-
onment into the system specification and by using appropriate naming conventions. However, this approach
is not backed up semantically.
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by arbitrary Z expressions. We argue in the following that these powerful notational abilities
are not backed up semantically in a sound manner and should thus, strictly speaking, not
have been used in the semantic definition of CSP-OZ.

We first deal with the parametrisation of process definitions. In CSPZ, process definitions
can be parametrised by arbitrary Z expressions, e.g.,

P(x : S) c= a!x → Stop.

Fischer fixed the meaning of parametrised process definitions by giving syntactic translation
rules into Z. The above definition, e.g., is translated into the axiomatic definition

P : S→ PROCESS
∀ x : S • P(x) = a!x → Stop

Consider the right hand side of the above equation: syntactically, it is a Z expression con-
taining the terminals of the CSP process syntax→ and Stop. To fix the semantics of the above
axiomatic definition, the application of the semantic function for Z expressions to the right
hand side of the equation

[[ a!x → Stop ]]ε M =?

needed to be defined. However, as elaborated in the following, the semantic function [[ ]]ε

is not defined for process expressions.

Let us address the close integration of process and Z expressions in CSPZ. In contrast to the
approach pursued by Fischer [2000, Section 3.1], we think that Z expressions and process ex-
pressions must be treated as separate syntactic units in the grammar of CSPZ. Otherwise, the
semantic function [[ ]]ε of the Z Standard for evaluating expressions had to be extended for
process expressions. This would amount to define [[ ]]ε for all productions of the extended
grammar involving process expressions, e.g.,

[[ P � Q ]]ε M = . . .

However, this extension of [[ ]]ε to process expressions is not defined in [Fischer, 2000]. It
would thus be necessary in CSP-OZ to separate process expressions and usual Z expressions.
But this would mean that the syntax of CSPZ is essentially more restricted than suggested
by Fischer.2 As a consequence, the conciseness and convenience of the semantic definition
of CSP-OZ [Fischer, 2000, Chapter 4] is based on features of the CSPZ notation that are not
backed up semantically.

Z vs. Object-Z. Object-Z provides powerful constructs such as inheritance and object in-
stantiation to structure large and complex specifications; this is a contrast to (plain) Z, which
does not support any elaborate structuring mechanisms. Since the integrated formalism we
aimed at must necessarily provide means for structuring specifications, it was tempting to
choose Object-Z rather than Z as the basis for our integration, and indeed this is the approach

2 For instance, the term ∀ x : T • P(x) with P a process term is not defined semantically.
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taken in the design of CSP-OZ (and also TCOZ). Let us explain our reasons in the design of
RT-Z for choosing Z nevertheless.

In the following, we argue that the semantic definition of Object-Z’s structuring mechan-
isms [Smith, 2000] cannot be reused for the definition of the meaning of the corresponding
structuring mechanisms of CSP-OZ. This particularly applies to object instantiation, so we
concentrate our discussion on that construct.

In Object-Z, object instantiation is a means for decomposing a complex object into a number
of smaller objects. The component objects are declared in the state schema of the compound
object. This allows the compound object (among other things) to define constraints on the
relationships between state components of several component objects (global state invari-
ants) and to define operations on the overall state space by referring to the operations of
the component objects. On the semantic level, the meaning of such a compound object is
defined as a function of the meaning values of its component objects; but this semantic func-
tion inherently depends on the semantic model of Object-Z. If, however, it is decided to
adopt classes (and their objects) as the basic structuring units of an integrated formalism (as
is the case in CSP-OZ and TCOZ), then the notation of Object-Z is mixed with the notations
of the other base formalisms within a class. The meaning (denotation) associated with a
class, then, must necessarily be different from the meaning of an Object-Z class because of
the additional information covered by the other base formalisms. But this means that object
instantiation in an integrated formalism (considered as a semantic function) operates on new
units: the semantic function of Object-Z cannot be used. From a semantical point of view,
object instantiation must be defined from scratch.

As a consequence, we decided to choose Z and to build the needed structuring mechanisms
on top of the integration of Z and timed CSP. To emphasise it again, the decision to use Z
and to build structuring mechanisms on top of the integration of Z and timed CSP does not
cause any additional work compared with a decision in favour of Object-Z: the structuring
mechanisms must be backed up semantically anyway.

Object Instantiation. According to the above discussion, CSP-OZ needed to redefine object
instantiation. Due to the difficulties of defining its meaning, CSP-OZ distinguishes between
two different kinds of classes: CSP-OZ classes and Object-Z classes. Object-Z classes en-
capsulate only Object-Z notation, and they are able to apply object instantiation in the full
generality of Object-Z. CSP-OZ classes, on the other hand, integrating Object-Z and CSP
notation, use a restricted form of object instantiation: CSP-OZ classes cannot instantiate ob-
jects of other CSP-OZ classes in their state schema. In CSP-OZ classes, object instantiation
takes place in the process expressions of the CSP part. But in this context, instantiating an
object means to aggregate a fully encapsulated entity, which can be accessed only via its ex-
ternal interface. In particular, it is not possible in CSP-OZ classes to specify global invariants
on the data states of different instantiated objects which is possible in Object-Z and also in
RT-Z.

The basic idea of defining the semantics of CSP-OZ classes was to use a layering approach.
The first layer is constituted by the language CSPZ, a language extending the Z syntax with
the language of CSP process expressions. CSPZ specifications, like Z specifications, have a
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flat structure; they are the constituents of classes of CSP-OZ specifications, which add object-
oriented mechanisms such as inheritance and object instantiation to CSPZ. CSP-OZ forms
the second layer. The meaning of a CSP-OZ class is defined in terms of transition rules
mapping the syntax of CSP-OZ to CSPZ syntax.

At first glance, the definition of the restricted form of object instantiation for CSP-OZ classes
is very elegant: it involves only two additional inference rules for CSPZ. In RT-Z, by con-
trast, the effort to define the meaning of simple and indexed aggregation was enormous, see
Sections 8.1.4 and 8.1.5. However, we argue in the following that the approach chosen by
Fischer to define object instantiation is not sound.

To define the meaning of the restricted form of object instantiation for CSP-OZ classes, which
is expressed in the CSP part of a CSP-OZ class in terms of CSPZ syntax, Fischer [2000] defined
the following inference rule on p. 146 (Rule 4.6)

(c, M) τ−→ (procM(c), M0 ⊕ {self 7→ c})

which is part of the definition of the hybrid semantics [[ ]]O of CSPZ. Note that this inference
rule refers to the semantic function of CSP-OZ classes proc. This entails several consequences.

Firstly, the rule is problematic from a conceptual point of view. The circularity—the semantic
function of CSPZ depends on the semantic function of CSP-OZ and vice versa—counteracts
the layering approach. The semantic function proc and the concept of object instantiation
are not known on the level of single CSPZ specifications. Moreover, the semantic function
proc is defined in terms of syntactic transformation rules—on a completely different level of
formality than the definition of the hybrid semantics of CSPZ. In other words, the semantic
function of CSPZ is based on a semantic function with an extremely lower level of formality
which is an arguable approach.

Secondly, and even more important, the above inference rule is incorrect, and there appears
to be no simple way to repair this incorrectness for the following reason.

The semantic function for CSPZ process terms has the following signature.

[[ ]]O : ProcExpr→Model→ LTS

That is, the meaning of a CSPZ process expression is defined only in the context of a particu-
lar model M. Note that each CSPZ process expression is embedded within an entire CSPZ
specification, which also contains usual Z definitions needed to interpret the process expres-
sion. Thus, although Fischer did not define it explicitly, the model M used to interpret the
process expression must be a member of the meaning of the entire CSPZ specification.

Applied to the context of a particular CSP-OZ class, it follows that the meaning of its CSP
part—a CSPZ process expression—must be evaluated in the context of a model M that is
a member of the meaning of its Z part.3 Consider now Rule 4.6: the model M0 used to
interpret the process term procM(c), which represents the meaning of the class M(c) of which
the instantiated object is an instance, is a model of the Z part of the class of the instantiating
object. However, a correct model to interpret the CSPZ process term must be related to the Z
part of the class of the instantiated object. But there is no way to refer to the Z part of the class

3 which defines, e.g., types that are used in the process expressions of the CSP part
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M(c) of the instantiated object, because one can deal only with a single CSPZ specification
on the CSPZ layer, in which the considered inference rule is defined.

In conclusion, the inference rule for object instantiation is not only problematic from a con-
ceptual point of view but not even sound. The consequences are (alternatively)

• That object instantiation is not supported at all in CSP-OZ classes (even in the restricted
form).

• That object instantiation must be dealt with at the CSP-OZ level. That would mean
that object instantiation had to be syntactically separated from CSPZ terms, because
otherwise the CSPZ semantic function would not be applicable; then, transformation
rules had to be defined in the style of the inheritance rules.

11.2 TCOZ

In this section, we contrast TCOZ and RT-Z. There are two main differences between TCOZ
and RT-Z that entail several relative merits and drawbacks.

• The choice of the language specifying the data-related characteristics: Object-Z versus
Z.

• The design decisions underlying the two integrations, leading to the classification of
TCOZ as a monolithic integration and of RT-Z as a conserving integration according to
the classification scheme discussed in Chapter 5.

These differences and their consequences are discussed in the sequel.

Object-Z [Smith, 2000] is an extension of Z with object-oriented structuring operators, allow-
ing a system specification to be structured into a collection of class specifications. On the one
hand, this increases the ability to cope with complex system specifications. TCOZ inherits
these structuring operators and consequently this ability. On the other hand, the current ver-
sion of the semantic model of TCOZ [Mahony and Dong, 1997, 1999a] abstracts from these
structuring operators of Object-Z, so the application of inheritance and object instantiation is
not backed up semantically. For RT-Z, in contrast, whose base formalism Z does not provide
any top-level structuring operators, we needed to define these structuring operators as a
part of the integration itself.

In TCOZ, as already indicated, the base formalisms Object-Z and timed CSP are closely
integrated, leading to a monolithic formalism rather than to a relatively independent coex-
istence of two complementary base formalisms (as is the case in RT-Z). The interdependence
between the elements of timed CSP and Object-Z is strong: the timed CSP syntax is exten-
sively changed by the introduction of new operators that allow the definition of the dynamic
behaviour to refer to the object state. This strong interdependence between the two notations
makes it more difficult to reuse the infrastructure of the base formalisms, e.g., tool support,
proof support, the semantic models, etc.

On the other hand, the close integration of the Object-Z and timed CSP notations in TCOZ
leads to a high notational flexibility and convenience compared with conserving integrations
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such as RT-Z. For instance, the possibility to directly refer to state variables within value ex-
pressions in timed CSP processes allows in many circumstances a more succinct specification
than is possible in RT-Z. As another example, the ability to associate operation parameters
with external channels avoids the need to explicitly specify aspects of parameter communi-
cation in the process definition, in cases where the information of the exact order and time
instants of parameter communications is not relevant. As mentioned, from a mere notational
point of view the structuring operators provided by TCOZ are very elaborated, in any case
superior to the concepts of simple and indexed aggregation offered by RT-Z.

Semantic Models

We contrast the approaches to defining the semantic models of TCOZ and RT-Z. In the
following we emphasise the main differences between these approaches and the resulting
merits and drawbacks.

Invocation/Termination Events vs. Sequences of Update Events. TCOZ is a monolithic in-
tegration. Because of the chosen syntactic integration—each operation schema can be re-
ferred to as a process—operations and processes must be identified semantically. The imme-
diate consequence was to identify each operation schema with a set of sequences of so-called
update events, where an update event represents the update of a single state variable. We
contrast the TCOZ approach of associating each operation application with a sequence of
update events with the RT-Z approach of associating each operation application with an
invocation and termination event.

The abstraction of interpreting an operation application as a sequence of updates of state
variables is, from our point of view, on a fairly concrete level, not adequate for the needs of
the requirements and early design phases. There, one is in general not interested in making
statements or reasoning about the changes of individual state variables. Certainly, a real
implementation is not able to perform a complete state change instantaneously; therefore,
interpreting an operation application as a sequence of state variable updates is adequate for
the description of an implementation on a very concrete level. But even on a concrete level
it is not really adequate to consider updates of single state variables as atomic events: if
one considers a sequence of elements as a single state variable, it is certainly not possible to
update all elements of the sequence instantaneously; therefore, the advantage that the TCOZ
semantic model is closer to real implementations is only of a relative nature.

Moreover, not considering state changes as atomic events means that the concept of state in-
variants, which is central to Z, cannot be adopted in TCOZ, because a potential state invari-
ant would be valid only between different operation applications. Furthermore, the iden-
tification of operations with sequences of update events appears not to be consistent with
the notion of Z data refinement. An abstract state with n state components can be refined
in Z by a concrete state with m ( 6= n) state components; but in the TCOZ model, an oper-
ation application in the abstract system is represented by a sequence of n events, whereas
in the concrete system it is represented by a sequence of m events, between which the CSP
refinement notion cannot hold.
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Parallel Composition. The TCOZ semantics allows parallel processes (within a single ob-
ject) to apply operations in parallel.4 The resulting effect on the object state is that the parallel
processes have to synchronise on the individual updates of the state variables that are in the
intersection of the delta lists of their operation schemas. In other words, only those value
changes of state variables in the delta lists of concurrently applied operations are allowed
by the whole process that are individually allowed by all operations. If the concurrently ap-
plied operations specify inconsistent constraints for at least one common variable, the whole
parallel process deadlocks. The resulting constraint on the state change is hence in effect a
conjunction of the constraints of the operations that are composed in parallel.

At first glance, the ability to arrange different operations of a single object in parallel pro-
cesses is a powerful feature of TCOZ, not provided by RT-Z. However, since operations in
parallel operations have to synchronise on all update events, the specified behaviour is not
really parallel.5

(P1; Op1; Q1) ‖ (P2; Op2; Q2) = (P1 ‖ P2); (Op1 ∧ Op2); (Q1 ‖ Q2)

Let us illustrate the shortcomings caused by this semantic definition by means of three ex-
amples.

The parallel composition of the operations Op1a and Op1b in the first example seems to be
unproblematic from the semantic point of view, because their delta lists are disjoint, so their
state changes do not interfere.

State == [ x, y : N ]
Op1a == [ ∆(x) | x′ 6= x ]; Op1b == [ ∆(y) | y′ = x ]
MAIN =̂ Op1a; e → Skip ‖ e → Op1b

According to the TCOZ semantics, the state changes caused by the operations refer to the
pre state that is present when the whole parallel process starts. Thus, the value of y after the
termination of Op1b equals the value of x before the process starts. This seems to contradict
intuition, because Op1a must have completed its state change before Op1b is invoked (be-
cause of synchronisation e). It would thus seem more intuitive if Op1b would assign y the
value of x that Op1a has computed.

The operations in the second example have a common element in their delta list, namely x.

4 This is a contrast to RT-Z, where parallel operations must be encapsulated in different specification units.
5 For the TCOZ definition of parallel composition to work, it would in fact be necessary that each operation

schema is mapped semantically to the deterministic choice of the order and values of the update events al-
lowed by the operation schema. In contrast, the TCOZ semantics actually specifies a nondeterministic choice.
This means that a parallel composition of operations can arbitrarily deadlock which does not seem to be the
intended interpretation of the parallel application of operations. To define a deterministic choice with respect
to the order and the values of state variable updates, however, would make the semantic definition of TCOZ
extremely more difficult.



11.2. TCOZ 179

State == [ x : N ]
Op2a == [ ∆(x) | x′ > x ]; Op2b == [ ∆(x) | x′ < x ]
MAIN =̂ Op2a; e → Skip ‖ e → Op2b

The operations define an inconsistent state change for this variable so a deadlock results.
Intuition would suggest that Op2a is performed before Op2b such that two changes of x take
place.

In the last example, the state change that is specified by the whole parallel composition is
that the value 4 is assigned to x. The parallel composition degenerates to a conjunction of
the two operations.

State == [ x : N ]
Op3a == [ ∆(x) | x′ > 3 ]; Op3b == [ ∆(x) | x′ < 5 ]
MAIN =̂ Op3a ||| Op3b

Also this is counterintuitive because two seemingly independently applied operations have
to agree on the common state change. The realisation of such a specification is absolutely
unclear, because in order to agree on a common state change the parallel subprocesses must
somehow communicate (via a channel not recorded in the list of synchronisation channels).

To conclude, while it would be useful to permit the parallel application of operations within
a single object, the particular semantic definition of TCOZ does not achieve this goal.

Structuring Mechanisms. Object-Z extends Z with different concepts and operators beyond
the pure class construct, e.g., inheritance and object instantiation. The semantic definition of
TCOZ does not refer to the semantics of Object-Z at all, but it refers only to the Z semantics
of schemas and expressions. So, it is not clear how these additional constructs, which are
the very reason to prefer Object-Z over Z, are defined. According to the TCOZ language
description and case studies, these additional operators of Object-Z are part of TCOZ and
are the only means for decomposing a TCOZ specification.

Embedding of Z Semantics. When comparing the semantic definitions of TCOZ and RT-Z,
the embedding of the Z semantics into the overall semantic model appears to be more seam-
less in TCOZ, because the semantics of Z is referred to at only two points: when referring
to the meaning of an operation and when referring to the meaning of a state guard. The
process of deriving the timed failures semantics of the Z part of an RT-Z specification unit is
undeniably more complex; however, the TCOZ definition does not take into account that the
meaning of an operation schema cannot be derived in isolation, because it usually depends
on the state schema and other global constants. So, the meaning of an operation schema
can be defined only in the context of a complete Z specification, and if this was taken into
account in TCOZ, the embedding of the Z semantics would have a comparable complexity.

Finally, there are some features that have played an important rôle in the design of RT-Z, but
have no counterpart in TCOZ.
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• TCOZ classes can be compared with concrete specification units of RT-Z. There are,
however, no counterparts of abstract specification units in TCOZ. This makes it diffi-
cult to use TCOZ in the early phases of a development process.

• In TCOZ, it is not possible to specify assumptions about the behaviour of the environ-
ment at the external interface (cf. ENVIRONMENTAL ASSUMPTIONSsection in RT-Z).

• In TCOZ, channels are type-heterogeneous, i.e., not associated with a type. This is
a restriction of the interface specification whose reason is not clear to us. We think
that the type of values transmitted via a certain channel is a very relevant piece of
information.

11.3 Object-Z / CSP

In this section, we contrast RT-Z and the integration of Object-Z and CSP proposed by Smith
and Derrick [2001] and discuss their benefits and drawbacks.

As already indicated in Chapter 4, although both integrated formalisms are conserving in-
tegrations, the underlying principles of integrating the base notations are different. While
Object-Z/CSP separates its base notations in different layers of an overall system specifica-
tion, RT-Z separates the base notations in different parts of a single component specification.
This entails the following consequences.

The Object-Z/CSP integration is a conserving integration in the true sense of the word, be-
cause the base notations are strictly separated from each other. This means that the benefits
attributed to the class of conserving integrations in Chapter 5 apply maximally.

The drawback of the layering approach, however, is that CSP is used to specify only archi-
tectural aspects, i.e., the configuration of system components and their interaction. In other
words, the CSP notation is not used on the (fine-grained) component level, e.g., to fix the
temporal ordering of operation applications.

11.4 LOTOS

LOTOS, as introduced in Section 4.4, has several strengths that have strongly influenced the
design of RT-Z.

A major strength of LOTOS are its modularity concepts:

• LOTOS allows the hierarchical decomposition of a system specification into compon-
ent descriptions (process definitions).

• Process definitions are parametrised and can thus be instantiated differently in distinct
contexts, which supports the reuse of process definitions.

• The interface of a process is explicitly specified in terms of a list of formal gates.
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process P1 (pre : State) :=
In1 ?input:T1 ; ...
choice post : State, output : T2 []

[Op1(pre, post, input, output)] --> ... ;
Out1 !output ; P2(post)

[]
In2 ?input:T1 ; ...
choice post : State, output : T2 []

[Op2(pre, post, input, output)] --> ... ;
Out2 !output ; P3(post)

[] ...
endproc

process P2 (pre : State) := ...
process P3 (pre : State) := ...

sorts: State, T1, T2
opns: Op1, Op2, Op3 : State, State, T1, T2 --> Boolean
eqns: ...

Figure 11.1: Modelling a component as an EFSM.

These modularity concepts have influenced the design of the structuring operators of RT-Z
and also the design of the internal structure of specification units.

A very important contribution of LOTOS is the integration of the concepts “synchronisation”
and “value transmission.” This is achieved by associating actions with data types and by
associating synchronisations with the agreement on concrete values. This approach has been
adopted in RT-Z.

LOTOS has, on the other hand, several shortcomings that make it, from our point of view,
less adequate for the application domain of real-time embedded systems than RT-Z.

One serious disadvantage of LOTOS is that it does not provide any concept for explicitly
modelling the data state of a component. In general, the behaviour of a component depends
on the data values that have been communicated with the environment. Therefore, it must
be possible in LOTOS to reflect this value dimension of the past interaction of a component.
Providing no concepts to directly model the data state of a component, LOTOS must sim-
ulate this data state by means of the model of extended finite state machines (EFSM). The
specification of a component as an EFSM is illustrated in Figure 11.1.

An EFSM comprises a finite set of control states, transitions between these control states and
a data state associated with each control state. Each control state of the EFSM is modelled by
a separate LOTOS process (P1, P2, P3), and the data state is represented by introducing ad-
ditional data parameters (pre:State ) for all these processes. Each transition in the EFSM
coincides with a transformation of the underlying data state; it is guarded by an external in-
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teraction and can depend on a certain condition on the data state. A transition in the EFSM
is modelled by instantiating the process representing the destination control state with the
transformed data state by the process representing the source control state. The transforma-
tion of the data state that coincides with a transition in the EFSM is described by a relation
between the pre state, post state, inputs affecting the transformation and outputs resulting
from the transformation. In the algebraic language of LOTOS, ACT ONE, such a relation is
modelled by a boolean-typed function (Op1, Op2, Op3 ). This modelling is achieved in the
data type part of the LOTOS specification by means of a set of conditional equations stating
the properties the relation must satisfy.6

The outlined approach to simulating a data state by additional parameters and mutually re-
cursive process instantiations might be adequate in relatively simple cases in which the dy-
namic behaviour is not complex. A complex dynamic behaviour of a data-state–dependent
component, however, results in a complex EFSM with a variety of control states and transi-
tions and therefore in a large amount of LOTOS processes. This would it make hard to un-
derstand the specification; the process algebra LOTOS was not designed to construct EFSM
models (like for example the ISO language ESTELLE [ISO, 1997]).

The meaning of basic and full LOTOS is defined by an operational semantics identifying
each process with a labelled transition system (LTS). As a consequence of the use of an oper-
ational semantics, properties of processes can itself be expressed only in terms of processes,
where a refinement relationship must be proved between the process denoting a specifica-
tion (model) and the process denoting a property. Compared with a process algebra whose
meaning is defined by means of a denotational semantics, such as CSP, this way of specify-
ing properties of processes is on a rather concrete level. Specifying properties in terms of
predicates like in CSP is more abstract and more comprehensible.

LOTOS does not aim to specify real-time behaviour and thus does not provide any constructs
to do so. There are several proposed enhancements of LOTOS with real-time concepts [Bo-
lognesi et al., 1994, Bryans et al., 1995], but none of them has established as the real-time
enhancement of LOTOS.

The language used by LOTOS for specifying data types, ACT ONE, is an algebraic specifica-
tion language. Its undeniable advantage is the high level of abstraction in specifying abstract
data types; only properties are specified without fixing design decisions. This is particularly
useful in the early phase of requirements specification. On the other hand, ACT ONE does
not provide language constructs that are concrete enough to fix design decisions in the later
design phase.

6 We are not completely able to assess the adequacy of specifying a state transition by means of a set of con-
ditional equations. We assume, however, that this is less adequate than the operators provided by a model-
oriented approach such as Z.
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Case Studies

We present two case studies in order to illustrate RT-Z, as defined in the previous two parts,
more intuitively. Another aim of the case studies is to demonstrate the appropriateness of
RT-Z for the domain of real-time embedded systems.

The first case study focuses on the ability of RT-Z to cope with real-time and complexity, and
the second case study deals with a safety-critical application.

12.1 Multi-lift System

The first case study illustrating RT-Z is the formal specification of a multi-lift system,1 which
we have chosen for the following reasons. Firstly, a lift system is something people are
familiar with, so we are able to concentrate on discussing the features of RT-Z. Secondly, the
multi-lift system has the appropriate level of complexity. On the one hand, it is complex
enough to demonstrate the decomposition concepts of RT-Z, it is an inherently concurrent
system, and there are several real-time requirements to be met. On the other hand, it allows
us to apply an appropriate abstraction that is not overwhelming. Last but not least, the multi-
lift system has served other formalisms as a case study, e.g., TCOZ introduced by Mahony
and Dong [1998a], Object-Z and CSP. The RT-Z case study has been strongly influenced by
the TCOZ case study. In Section 12.1.4, we contrast our case study with the TCOZ case study.

12.1.1 Problem Description and System Architecture

We first explain the architecture of the multi-lift system as far as it is needed to define the
interface between the part of the system that is to be implemented by software, depicted
in Figure 12.1 by the rectangle named SoftwareController, and the other system components.
This system architecture is the result of the system design and taken as the input to our
development process.

1 Strictly speaking, we do not specify an entire multi-lift system but a distributed software controller of such a
system.
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The considered multi-lift system consists of several lifts moving between the floors of a build-
ing. Each floor is equipped with a panel of buttons that allow users to make a request to
move upward or downward by pressing the corresponding request button.2 Analogously,
each lift is equipped with a panel of request buttons, one for each floor of the building.
There is a central external request handler that manages external requests that are currently
pending. External requests are caused by pressing a button at a floor panel; they are to be
served in a ‘first-in-first-out’ manner. As soon as a lift becomes idle, i.e., it has no pending
internal request, the external request handler delivers the next external request to this lift.
Internal requests are caused by pressing a button at a lift panel. According to the above
statements, internal requests have priority over external requests: when internal requests
are pending, a lift serves the closest internal request in the current move direction.

When a lift enters a floor in order to serve a request, the door of the lift is first opened, then
kept open for a constant time period and is closed afterwards. Closing the door might be
blocked by an object. The state of the lift door and potential objects blocking a closing door
are detected by a door sensor. A door motor serves to execute the commands given by the lift
controller. The movement of a lift is controlled by its shaft component. It is not the aim of this
case study to formalise aspects of this component, e.g., how the component detects that the
next floor is reached, etc. Therefore, this component is considered to be part of the software
environment, and we model only the interface to it as well as important assumptions about
its real-time behaviour.

The following data type definitions are global with respect to the whole specification and
serve, among other things, to specify the kind of information that is communicated with the
environment of the software controller and between its components.

MoveDir ::= Up | Down
DoorMsg ::= Opened | Closed | Blocked
DoorCmd ::= OpenCmd | CloseCmd

The global constants floor num and lift num are parameters of the specification, denoting the
number of floors and lifts in the considered building,

floor num, lift num : N1

floor num > 1

and the subsequent sets are needed in order to identify the lifts and floors in the building.

LID == 1 . . lift num
FID == 0 . . floor num
MFloors == 1 . . (floor num− 1)

The following time constants are described in Table 12.1. They reflect characteristics of the
real-time behaviour of the lifts and their doors.

tclose, topen, twait, tmove, tacc/brk, tpriority : T

2 Of course, the ground and the top floor are equipped with only one button.
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time constant meaning
tclose time needed to close lift doors provided process of closing is not

blocked
topen time needed to open lift doors
twait length of interval in which lift doors must be kept open before

they can be closed
tmove time needed by a lift to move from a floor to the next in either

direction
tacc/brk additional time needed to accelerate in the start floor and to

break in the destination floor, respectively
tpriority length of time interval in which internal requests have priority

over external requests

Table 12.1: Time constants.

The derived time constant

tmax int schedule == 2 ∗ floor num ∗ (topen + twait + tclose + tmove + 2 ∗ tacc/brk)

defines the maximal amount of time needed by a lift to go from the ground floor to the top
floor and to return back to the ground floor when all intermediate floors are to be served in
both directions, provided the doors of the lift are not blocked.

12.1.2 Requirements Specification

Let us first express the requirements to the software controller informally. The following
requirements should be understood as a selection from a complete list of requirements.

Req1: Internal requests have priority over external requests.

Req2: Each internal request is served after at least tmax int schedule time units provided the
doors of the corresponding lift are not blocked.

Req3: When there are no pending internal request for at least one lift, the oldest external
request is served (FIFO).

Req4: After the doors of a lift are opened, they remain open for at least twait time units.

The interface between the distributed software controller and its environment is defined in a
separate specification unit because it is needed in the requirements and the design specifica-
tion. The specification units representing both the requirements and the design specification
are defined as extensions of the following specification unit.



186 Chapter 12. Case Studies
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Figure 12.1: Software controller interface.

SPEC. UNIT SoftwareControllerInterface

INTERFACE

Figure 12.1 shows the interface between the software controller and its environment. Ex-
ternal requests from a floor are transmitted along the channel ext request, where each re-
quest incorporates the floor from which it originates and the desired direction of move-
ment. Pushing a floor button causes it to be activated until the request is served. Pushing
an already activated button has no consequence. Internal requests from a lift are trans-
mitted along the channel int request, where each request contains the lift from which it
originates and the target floor. The door of each lift is linked with its sensor via the chan-
nel door status, and it gives commands to its actuator along the channel door cmd. Fur-
ther, each lift gives its shaft component the command to move to a particular floor via
the the channel lift move, and it awaits the completion of such a command on the channel
lift arrived.

port ext request domain FID×MoveDir;
port int request domain LID× FID;
port door status domain LID×DoorMsg;
port door cmd domain LID×DoorCmd;
port lift move, lift arrived domain LID× FID

The abstract specification unit SoftwareControllerReqs constitutes the requirements specifica-
tion of the distributed software controller of the multi-lift system.
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SPEC. UNIT SoftwareControllerReqs EXTENDSSoftwareControllerInterface

ENVIRONMENTAL ASSUMPTIONS

Since the door sensors, the door motors and the shaft components of the lifts are part of
the environment, we can express only assumptions about their behaviour at the software
interface. If these assumptions are violated by these components, the software controller is
free to behave arbitrarily. These assumptions are formalised by the following predicates.

EA =̂ EA1 ∧ EA2 ∧ EA3 ∧ EA4

First, the door motor of each lift is always supposed to accept each possible command on
the channel door cmd.

EA1 =̂ ∀ t : T; cmd : DoorCmd; lift : LID • door cmd.(lift, cmd) open t

Second, the shaft component of a lift is assumed to accept the command to move to a floor
when not executing a prior moving command.

EA2 =̂ ∀ t : T; lift : LID; floor : FID •
(s �ttr ({f : FID • lift arrived.(lift, f )} ∪ {f : FID • lift move.(lift, f )}) |�ttr t = 〈〉 ⇒

lift move.(lift, floor) open t)
∧
(last(s �ttr ({f : FID • lift arrived.(lift, f )} ∪ {f : FID • lift move.(lift, f )}) |�ttr t) ∈

{f : FID • lift arrived.(lift, f )}
⇒

lift move.(lift, floor) open t)
∧
0 ≤ #(s �ttr {f : FID • lift move.(lift, f )} �ttr t)−

#(s �ttr {f : FID • lift arrived.(lift, f )} �ttr t) ≤ 1

There is a further assumption that is related to the real-time behaviour of the shaft com-
ponent. Whenever a lift controller transmits a command via the channel lift move to move
to a particular floor, the shaft component is supposed to accomplish this command within
a particular time interval that depends on the number of floors to be moved.

EA3 =̂ ∀ t : T; lift : LID; floor : FID •
∃1 last : FID |

(∃ t1 : [0, t) • lift arrived.(lift, last) at t1 ∧
(∀ t2 : (t1, t); f : FID • ¬ lift arrived.(lift, f ) at t2))

∨
¬ (∃ t1 : [0, t); f : FID • lift arrived.(lift, f ) at t1) ∧ last = 0 •
lift move.(lift, floor) at t
⇒
lift arrived.(lift, floor) open from (t +R abs(floor− last) ∗R tmove +R 2 ∗R tacc/brk)

Finally, the process of closing the door of a lift is supposed to be completed after tclose time
units, provided the door is not blocked by an object.
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EA4 =̂ ∀ lift : LID; t1 : T •
door cmd.(lift, CloseCmd) at t1
∧
¬ (∃ t2 : [t1, t1 + tclose] • door status.(lift, Blocked) open t2)
⇒

door status.(lift, Closed) open from (t1 +R tclose)

BEHAVIOURAL PROPERTIES

The following requirements Req1 to Req4 correspond to the four requirements described
informally.

Behaviour sat Req1 ∧ Req2 ∧ Req3 ∧ Req4

We first introduce two parametrised process definitions in order to make the definition
of the requirements more intelligible. The predicate ExtPending expresses that an external
request (f , dir) made at time t1 is still pending at t2, i.e., not served by any lift between t1
and t2. Similarly, the predicate IntPending states that an internal request f made in lift l at
t1 is still pending at t2, i.e., not served between t1 and t2.

ExtPending(f , dir, t1, t2) =̂
ext request.(f , dir) at t1
∧ ¬ (∃ t : (t1, t2); l : LID • lift move.(l, f ) at t)

IntPending(l, f , t1, t2) =̂
int request.(l, f ) at t1
∧ ¬ (∃ t : (t1, t2) • lift move.(l, f ) at t)

Internal requests have priority over external requests. In other words, when the controller
of a particular lift gives the command to go to a particular floor that is related to an external
request,a there must not be any pending internal request.

Req1 =̂ ∀ t : T; l : LID; f : FID •
lift move.(l, f ) at t
∧ (∃ t1 : [0, t); dir : MoveDir • ExtPending(f , dir, t1, t))
∧ ¬ (∃ t1 : [0, t) • IntPending(l, f , t1, t))
⇒
¬ (∃ f2 : FID; t1 : [0, t) • IntPending(l, f2, t1, t))

Each internal request must be served after at least tmax int schedule time units provided the
doors of the corresponding lift are not blocked.

Req2 =̂ ∀ l : LID; t : T; f : FID •
(∀ t : T • ¬ door status.(l, Blocked) open t)
∧ int request.(l, f ) at t
⇒
(∃ t2 : [t, t +R tmax int schedule] • lift move.(l, f ) live from t2)

a because all prior internal requests for this floor are already served
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When there are no pending internal request for at least one lift, the oldest external request
must be served.

Req3 =̂ ∀ t, t1 : T; f : FID; dir : MoveDir •
(∃ l : LID • ∀ t1 : [0, t); f : FID • ¬ IntPending(l, f , t1, t))
∧ t1 6R t ∧ ExtPending(f , dir, t1, t)
∧ ¬ (∃ f2 : FID; dir2 : MoveDir; t2 : T • t2 <R t1 ∧ ExtPending(f2, dir2, t2, t))
⇒
(∃ l : LID • lift move.(l, f ) live from t)

After the doors of a lift are opened, they must remain open for at least twait time units.

Req4 =̂ ∀ t : T; l : LID •
door status.(l, Opened) at t
⇒
¬ (∃ t1 : [t, t + twait] • door cmd.(l, CloseCmd) live t1)

This completes the requirements specification. By distributing predicates to the ENVIR-
ONMENTAL ASSUMPTIONSand BEHAVIOURAL PROPERTIESsections, we have unambigu-
ously stated which requirements are related to the software controller under consideration
and which requirements are related to its environment. The predicate language of RT-Z al-
lows us to express all requirements on an abstract level without fixing any implementation
aspects.

12.1.3 Design Specification

We now present the architectural design of the software controller of the multi-lift system,
see Figure 12.2. We discuss the specification units that constitute the design specification in a
top–down order for the high abstraction levels (top-level units) combined with a bottom–up
order for the lower abstraction levels. We think that a system is preferably explained by first
describing the coarse structures before delving into the details.

SPEC. UNIT SoftwareControllerDesign EXTENDSSoftwareControllerInterface

SUBUNITS

The components of the software controller are the controllers of the floor panels and of the
lifts and a component that handles the pending external requests.

subunit floors spec. unit FloorCtrls;
subunit lifts spec. unit LiftCtrls;
subunit erh spec. unit ExternalRequestHandler
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Figure 12.2: Software controller architecture.

LOCAL

The channels that serve to connect the components of the software controller without be-
ing part of the external interface are declared in the LOCALsection. An external request is
passed on by the involved floor controller to the external request handler along the chan-
nel ext enter. A lift that has completed an external request reports this to the respective
floor controller along the channel ext served, which causes the deactivation of the respect-
ive button. Whenever a lift has no pending internal requests, it instructs the external re-
quest handler to provide the next external request in its queue via the channel next ext req,
which in turn is delivered by the external request handler via the channel next ext resp.
Whenever a lift schedules a new internal request, it sends a request along the channel
interm ext req whether the external request handler has an external request in its queue
between the current and the target floor in the current move direction. This request is
replied via the channels interm ext succ and interm ext fail, respectively.

channel ext enter domain FID×MoveDir;
channel ext served domain FID×MoveDir;
channel interm ext req domain LID× FID× FID;
channel interm ext succ domain LID× FID;
channel interm ext fail, next ext req domain LID;
channel next ext resp domain LID× FID×MoveDir

ENVIRONMENTAL ASSUMPTIONS

The environmental assumptions made by the design are identical with that of the require-
ments specification. They are hence omitted. In general, the design specification is able to
weaken the environmental assumptions of the requirements specification.

BEHAVIOUR

The following abbreviation definition introduces ChannelSet to denote the set of events that
can be communicated along particular channels. It is referred to in the following behaviour
definition.
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ChannelSet =̂ {| next ext resp |} ∪ {| next ext req |} ∪ {| interm ext req |}
∪{| interm ext succ |} ∪ {| interm ext fail |}

The process term Behaviour defines the configuration of the components of the software
controller including their interaction along particular channels. Basically, the components
are composed in parallel, synchronising on the given set of internal channels.
Behaviour =̂

floors.Behaviour
|[ {| ext enter |} ∪ {| ext served |} ]|

(erh.Behaviour |[ ChannelSet ]| lifts.Behaviour)

The previous specification unit defines the top-level structure of the software controller. We
now switch to the bottom–up order. That is, we first define the basic specification units of
which the components of the software controller are composed.

SPEC. UNIT Button

The current specification unit defines the behaviour of ‘raw’ buttons as they can be found
on the floors. They are raw in that their interface is not ready to be put into the floor context.
Lifting the button interface into this context is the aim of the following specification units.

INTERFACE

A button can be turned on and off represented by events occurring on the channels turn on
and turn off . Moreover its status can be requested via the channel status, and the current
status is reported either via the channel button on or button off .

port status, turn on, turn off , button on, button off domain SYNC

BEHAVIOUR

Behaviour =̂ Off
Off =̂ turn on → On

� turn off → Off
� status → button off → Off

On =̂ turn off → Off
� turn on → On
� status → button on → On
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SPEC. UNIT FloorButton[dir]

The previous unit serves to model the behaviour of a button independently of its particular
context. The current, parametrised unit serves to lift the Button unit into the context of a
floor panel, where it has to handle either upward or downward requests, depending on
the instantiation of the parameter dir.

TYPES & CONSTANTS

The formal parameter dir, recorded in the head of the specification unit, is declared form-
ally in the TYPES & CONSTANTSsection.

dir : MoveDir

SUBUNITS

subunit button spec. unit Button

INTERFACE

The current unit lifts a raw button to a button accepting downward/upward requests at
a particular floor. Pressing the request button is modelled by an event on the channel
ext request. If it is deactivated when being pressed, then it sends an event to the external
request handler along the channel ext enter. The occurrence of an event on the channel
ext served indicates that the request is served.

port ext request, ext enter, ext served domain MoveDir

LOCAL

The interface of a raw button, which is encapsulated by the current unit, is introduced as a
list of internal channels.

channel status, turn on, turn off , button on, button off domain SYNC

BEHAVIOUR

External events occurring at the external interface are passed on to the interface of the raw
button, and the resulting reaction of the raw button is passed on to the external interface.

Downward as well as upward requests are transmitted along the channel ext request,
where the current unit reacts only to Down or Up requests, depending on the instantiation
of the parameter dir. The behaviour of the aggregated raw button is composed in parallel
with a process that is responsible for mapping the external to the corresponding internal
events.
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Behaviour =̂
FB |[ {status, turn on, turn off , button on, button off} ]| button.Behaviour

FB =̂ (Request � Serviced); FB
Request =̂ ext request.dir → status →

(button off → turn on → ext enter.dir → Skip
� button on → Skip)

Serviced =̂ ext served.dir → status →
(button on → turn off → Skip
� button off → Skip)

SPEC. UNIT MiddleFloorCtrl

The current unit models the controller of a floor between the bottom and top floor. These
floors are equipped with a panel consisting of two buttons, handling downward and up-
ward requests, respectively. Accordingly, two button units are aggregated.

SUBUNITS

subunit up spec. unit FloorButton
instantiate dir with Up;

subunit down spec. unit FloorButton
instantiate dir with Down

INTERFACE

The interface of a middle floor controller is identical with the interface of an upward and
downward request button, where the two kinds of requests are accepted at the same time.

port ext request, ext enter, ext served domain MoveDir

BEHAVIOUR

The behaviour of a middle floor controller is simply the interleaving of the downward and
upward request buttons.

Behaviour =̂ up.Behaviour ||| down.Behaviour

The specification units TopFloorCtrl and BottomFloorCtrl, modelling the top and bottom floor
controllers, are defined in the obvious way and are hence omitted.
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SPEC. UNIT FloorCtrls

The controllers of the middle floors, the bottom floor and the top floor of the considered
building are aggregated by the current unit.

SUBUNITS

The controllers of the middle floors are composed by indexed aggregation, one for each
member of the set MFloors.

subunit mfloors(MFloors) spec. unit MiddleFloorCtrl;
subunit tfloor({floor num}) spec. unit TopFloorCtrl;
subunit bfloor({0}) spec. unit BottomFloorCtrl

Also the controllers of the top and the bottom floor are composed by means of indexed
(rather than simple) aggregation. At first glance, this might appear suspicious, because
there is only a single instance to be aggregated for each. However, indexed aggregation
with singleton sets is used instead of simple aggregation in order to lift the interfaces of
the top and bottom floor units automatically into the context.

The declaration introduces a collection of instances of the specification unit MiddleFloorCtrl,
one for each member of MFloors, a single instance of the unit TopFloor with the identifier
floor num and a single instance of the unit BottomFloor with the identifier 0. The interfaces
of all instances are obtained by enriching the type of each external channel, say T, with the
used index set, yielding FID×T. That is, each individual instance is addressed by using the
identifier of the respective instance as the first component of the value transmitted along
the considered external channel.

INTERFACE

In fact, the interface of the floor aggregation is identical with that of a single floor unit.
However, the domains of the channels are extended by the identifier of the floor that is the
source or destination.

port ext request, ext enter, ext served domain FID×MoveDir

BEHAVIOUR

The behaviour of the overall floor aggregation is simply the interleaving of the controllers
of the middle floors, the bottom and the top floor, because they evolve independently of
each other.

Behaviour =̂

(
|||

id∈MFloors
mfloors.Behaviour(id)

)
||| tfloor.Behaviour(floor num) ||| bfloor.Behaviour(0)
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SPEC. UNIT ExternalRequestHandler

The current unit is responsible for managing the external floor requests in a first-in-first-out
manner.

INTERFACE

Incoming external requests are transmitted by the floor panels along the channel ext enter.
There are two possibilities to assign an external request to a lift. First, when a lift be-
comes idle, it instructs the controller to provide a new external request via the channel
next ext req, and the controller assigns the first pending external request in its queue to
the lift via the channel next ext resp. Second, whenever a lift schedules a new internal re-
quest, it asks the external request handler for an appropriate external request between the
current floor and the target floor in the current move direction. This external request needs
not be the first in the queue, and it is transmitted along the channel interm ext succ in the
positive case.

port ext enter domain FID×MoveDir;
port next ext req domain LID;
port next ext resp domain LID× FID×MoveDir;
port interm ext req domain LID× FID× FID;
port interm ext succ domain LID× FID;
port interm ext fail domain LID

The above partitioning of the interface into ports carrying requests from other units and
ports carrying responses to these requests to the corresponding units is a general pattern.
Since the channels carrying operation-related events are internal in RT-Z, we cannot model
a ‘request–computation–response’ sequence by a single event; we must split it into at least
three events.

STATE

The data state of the external request handler consists of the queue of external requests
queue that are currently pending. The remaining state components are derived ones.

State
queue : seq(FID×MoveDir)
up reqs, down reqs : FID× FID→ F FID

∀ f1, f2 : FID | f1 ≤ f2 •
up reqs(f1, f2) = {f : FID | f 7→ Up ∈ ran queue ∧ f1 < f < f2}
down reqs(f1, f2) = {f : FID | f 7→ Down ∈ ran queue ∧ f1 < f < f2}

Initially, the queue is empty.

Init == [ State | queue = 〈〉 ]
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OPS & PREDS [Join, FindSucc, FindFail, Dispatch, Empty, NonEmpty ]

The operation Join adds a new external request to the current queue.

Join == [ ∆State; req? : FID×MoveDir | queue′ = queuea 〈req?〉 ]

The aim of the next two operations is to determine a potential pending external request
in the queue that is situated between the current and the target floor in the current move
direction of a particular lift. They represent the successful case of finding an appropriate
external request and the corresponding failure case. Note that the preconditions of the two
operations partition the data state space.

FindSucc
∆State
curr fl?, curr dest?, new dest! : FID

curr fl? 6= curr dest?
(∃1 md == if curr fl? ≤ curr dest? then Up else Down •

(md = Up ∧ up reqs(curr fl?, curr dest?) 6= ∅ ∧
new dest! = min up reqs(curr fl?, curr dest?)

∨
md = Down ∧ down reqs(curr dest?, curr fl?) 6= ∅ ∧

new dest! = max down reqs(curr dest?, curr fl?)) ∧
queue′ = squash(queue−B {(new dest!, md)}))

FindFail
ΞState
curr fl?, curr dest? : FID

(∃1 md == if curr fl? ≤ curr dest? then Up else Down •
md = Up ∧ up reqs(curr fl?, curr dest?) = ∅
∨
md = Down ∧ down reqs(curr dest?, curr fl?) = ∅)

The operation Dispatch removes the first external request from the queue.

Dispatch
∆State
req! : FID×MoveDir

queue 6= 〈〉
queue′ = tail queue ∧ req! = head queue

The schemas Empty and NonEmpty define predicates on the data state to which the specifi-
cation of the dynamic behaviour refers.

Empty == [ ΞState | queue = 〈〉 ]
NonEmpty == [ ΞState | queue 6= 〈〉 ]
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BEHAVIOUR

The external request handler has to accomplish three main tasks. It has to insert new
external requests into its queue (process Join), it has to provide the first pending request
to an idle lift (process Dispatch) and it has to check whether there are appropriate pending
external requests on the itinerary of a lift (process Check).

The stimulus–response behaviour of the external request handler depends on its current
data state. When its queue is empty, it is able only to accept new external requests. Other-
wise it provides each of its three tasks to the environment. This dependence on the state is
modelled by the external choice whose branches are guarded by the state predicates Empty
and NonEmpty.

Behaviour =̂ ERH
ERH =̂ EmptyX → Join; ERH

� NonEmptyX → (Join � Dispatch � Check); ERH

Join =̂ ext enter?req : FID×MoveDir → JoinX!〈| req? == req |〉 → Skip

Dispatch =̂ next ext req?lift : LID → DispatchX?par : [ req! : FID×MoveDir ] →
next ext resp!(lift, par.req!) → Skip

Check =̂ interm ext req?req : LID× FID× FID →
(FindSuccX?par : [ curr fl?, curr dest?, new dest! : FID |

curr fl? = req.1 ∧ curr dest? = req.2 ] →
interm ext succ!(req.0, par.new dest!) → Skip

� FindFailX!〈| curr fl? == req.1, curr dest? == req.2 |〉 →
interm ext fail!(req.0) → Skip)

Let us illustrate the relationships between the Z operation schemas and the CSP events by
means of the process Check. The process first awaits a request from a lift on the channel
interm ext req. After such a request has been entered, the handler has to check whether it
has an appropriate external request in its queue. This is the task of the operations FindSucc
and FindFail whose execution events (with the postfix X) guard both branches of the ex-
ternal choice operator �. In each data state of the handler, the precondition of exactly
one operation is satisfied, depending on whether an appropriate request is available. The
corresponding operation is executed which resolves the external choice.

Consider now the values that are communicated with the execution events of the opera-
tions.

On the one hand, the operation FindFail has only input parameters whose values are solely
fixed by the CSP process. Therefore, the value denotation of the CSP execution event is a
single binding that defines the mapping of input parameters to the values that have been
transmitted with the external event before.
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On the other hand, the operation FindSucc has input and output parameters. The values
of the input parameters are to be fixed by the invoking CSP process, whereas the values
of the output parameters are to be fixed by the invoked Z operation. Accordingly, a set of
values can be communicated with the execution event. The event denotation represents
a set of bindings mapping values to the input and output parameters in a way that the
values of the input parameters are uniquely determined and that the values of the output
parameters are arbitrary (constrained only by the operation schema). The set of bindings
is denoted by a schema expression.

SPEC. UNIT LiftCtrls

The controllers of the lifts of the considered building are aggregated by the current speci-
fication unit.

INTERFACE

port int request domain LID× FID;
port ext served domain FID×MoveDir;
port next ext req domain LID;
port next ext resp domain LID× FID×MoveDir;
port interm ext req domain LID× FID× FID;
port interm ext succ domain LID× FID;
port interm ext fail domain LID;
port door status domain LID×DoorMsg;
port door cmd domain LID×DoorCmd;
port lift move, lift arrived domain LID× FID

SUBUNITS

subunit lifts(LID) spec. unit LiftCtrl

TYPES & CONSTANTS

The set REN defines a mapping of the values transmitted along the channel ext served. It
is referred to in the BEHAVIOURsection.

REN == {l : LID; f : FID; md : MoveDir • ext served.(l, f , md) 7→ ext served.(f , md)}

BEHAVIOUR

The lift controllers are composed by means of indexed aggregation using the interleaving
operator, which allows the different lift controllers to evolve independently of each other.
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Figure 12.3: Lift controller architecture.

Technically speaking, the indexed aggregation has the consequence that the interaction of
individual lift controllers along particular channels is extended by the respective lift iden-
tifier. That is, all lift controllers communicate via the identical channels, but synchronise
on disjoint sets of transmitted values.

Behaviour =̂ REN

(
|||

id∈LID
lifts.Behaviour(id)

)

However, this extension of the domain is not appropriate for the external channel
ext served; because the floor controller that has made the request, whose completion is
to be reported, is not interested in the particular lift that has accomplished the request.
Therefore the renaming function REN is applied, which omits the lift identifier from each
communication on the channel ext served.

The architecture of a lift controller is illustrated in Figure 12.3. Each lift controller consists
of a component DoorCtrl controlling the opening and closing process of the lift door, a com-
ponent InternalQueue responsible for managing the set of current internal requests and a
component Supervisor responsible for supervising the other components. Since the ports of
the unit LiftCtrl have already been described, we outline only the internal channels.

The supervisor instructs the internal queue to provide the next internal request via the chan-
nel next int req, and the internal queue sends the respective internal request, if any, via the
channel next int resp. The supervisor informs the internal queue about the successful com-
pletion of an internal request via the channel int served.

The door controller is instructed to open and close via the channels open cmd and close cmd,
and it reports the successful completion of the opening and closing process via the channels
open conf and close conf , respectively.
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SPEC. UNIT LiftCtrl

SUBUNITS

A lift controller is the aggregation of a supervisor component, a door controller and an
internal queue of the activated panel buttons.

subunit queue spec. unit InternalQueue;
subunit supervisor spec. unit Supervisor;
subunit door spec. unit DoorCtrl

The ports and internal channels have already been discussed.

INTERFACE

The domains of the ports are obtained by omitting the set LID from the domains of the
corresponding ports of the specification unit LiftCtrls, which composes the current unit by
indexed aggregation.

port int request domain FID;
port ext served domain FID×MoveDir;
port next ext req domain SYNC;
port next ext resp domain FID×MoveDir;
port interm ext req domain FID× FID;
port interm ext succ domain FID;
port interm ext fail domain SYNC;
port door status domain DoorMsg;
port door cmd domain DoorCmd;
port lift move, lift arrived domain FID

LOCAL

channel open cmd, close cmd, open conf , close conf domain SYNC;
channel next int req, next int resp domain FID×MoveDir;
channel int served domain FID

BEHAVIOUR

The following abbreviation definition introduces ChannelSet to denote the set of events that
can be communicated along particular channels. It is referred to in the following behaviour
definition.

ChannelSet =̂ {open cmd, close cmd, open conf , close conf} ∪ {| next int req |}∪
{| next int resp |} ∪ {| int served |}

The components of a lift controller are composed in parallel. The door controller and the
internal queue evolve completely independently, and they synchronise with the supervisor
through the events in ChannelSet.
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Behaviour =̂
supervisor.Behaviour

|[ ChannelSet ]|
(door.Behaviour ||| queue.Behaviour)

SPEC. UNIT DoorCtrl

INTERFACE

The door controller is instructed by the supervisor component via the channels open cmd
and close cmd, it confirms the completion of these commands via the channels open conf
and close conf , it instructs the door motor via the channel door cmd and it asks the sensor
for the current state of the physical door via the channel door status.

port open cmd, close cmd, open conf , close conf domain SYNC;
port door status domain DoorMsg;
port door cmd domain DoorCmd

BEHAVIOUR

The behaviour of a lift door (and consequently of its controller) is simple. Whenever a lift
enters a target floor, the door goes through a cycle. The door is first opened, then remains
open for at least twait time units and is subsequently closed. The process of closing the door
may be interrupted, which is indicated by the door sensor. In this case, the door must be
re-opened before the next attempt to close the door can take place.

Behaviour =̂ OPEN
OPEN =̂ Wait twait; close cmd → CLOSING
CLOSING =̂ door cmd.CloseCmd →

(door status.Closed → close conf → CLOSED
4 door status.Blocked → BLOCKED)

BLOCKED =̂ door cmd.OpenCmd → door status.Opened → Wait twait; CLOSING
CLOSED =̂ open cmd → OPENING
OPENING =̂ door cmd.OpenCmd → door status.Opened → open conf → OPEN

SPEC. UNIT InternalQueue

The internal queue of a lift is responsible for managing the pending internal requests.
There is no order on these internal requests.
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INTERFACE

New internal requests for a lift enter via the channel int request. The supervisor component
instructs the internal queue component via the channel next int req to provide the next
internal request on the lift’s itinerary, and this next internal request is delivered on the
channel next int resp. When an internal request is completed, it is reported on the channel
int served.

port next int req, next int resp domain FID×MoveDir;
port int request, int served domain FID

STATE

The pending (unordered) internal requests are modelled by the set internal reqs. The re-
maining state components are derived ones used to specify the following operations more
conveniently. Initially, there is no pending internal request.

State
internal reqs : F FID
up reqs, down reqs : FID→ F FID

up reqs = λ fl : FID • {n : internal reqs | n ≥ fl}
down reqs = λ fl : FID • {n : internal reqs | n ≤ fl}

Init
State
internal reqs = ∅

OPS & PREDS [Join, Dispatch, Next, Empty, NonEmpty ]

Join == [ ∆State; req? : FID | internal reqs′ = internal reqs ∪ {req?} ]
Dispatch == [ ∆State; req? : FID | internal reqs′ = internal reqs \ {req?} ]

The operation Next determines, for a given current floor and a current direction of move-
ment, the next pending internal request in the itinerary. The operation is divided into two
cases for each of the two move directions. The chosen requested floor is the closest floor in
the current move direction, where the move direction changes at the top and bottom floor.

NextUp
ΞState
fl?, dest! : FID
md?, md! : MoveDir
internal reqs 6= ∅
md? = Up
(up reqs(fl?) 6= ∅ ∧
dest! = min up reqs(fl?) ∧ md! = Up)
∨
(up reqs(fl?) = ∅ ∧ down reqs(fl?) 6= ∅ ∧
dest! = max down reqs(fl?) ∧ md! = Down)

NextDown
ΞState
fl?, dest! : FID
md?, md! : MoveDir
internal reqs 6= ∅
md? = Down
(down reqs(fl?) 6= ∅ ∧
dest! = max down reqs(fl?) ∧ md! = Down)
∨
(down reqs(fl?) = ∅ ∧ up reqs(fl?) 6= ∅ ∧
dest! = min up reqs(fl?) ∧ md! = Up)
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Next == NextUp ∨ NextDown

The following predicates are needed to express the dependence of the dynamic behaviour
on the current data state.

NonEmpty == [ ΞState | internal reqs 6= ∅ ]
Empty == [ ΞState | internal reqs = ∅ ]

BEHAVIOUR

The behaviour of the queue controller depends on the current data state. If there is no
pending internal request, the internal queue is not able to respond to a request to deliver
the next floor.

Behaviour =̂ IQ
IQ =̂ (NonEmptyX → (Request � Serviced � Select); IQ

� EmptyX → (Request � Serviced); IQ)

The queue controller must accomplish three main tasks. First, it has to react to new internal
requests by activating the corresponding button (process Request). Second, it has to react
to the completion of an internal request by deactivating the corresponding button (process
Serviced). Finally, it has to provide the lift controller with the next pending internal request
when being asked (process Select).

Request =̂ int request?fl : FID → JoinX!〈| req? == fl |〉 → Skip
Serviced =̂ int served?fl : FID → DispatchX!〈| req? == fl |〉 → Skip
Select =̂ next int req?req : FID×MoveDir →

NextX?par : [ fl?, dest! : FID; md?, md! : MoveDir | fl? = req.0 ∧ md? = req.1 ] →
next int resp!(par.dest!, par.md!) → Skip

SPEC. UNIT Supervisor

The current unit supervises the other components of the lift controller.

INTERFACE

port lift move, lift arrived domain FID;
port open cmd, close cmd, open conf , close conf domain SYNC;
port next int req, next int resp domain FID×MoveDir;
port int served domain FID;
port next ext req domain SYNC;
port next ext resp, ext served domain FID×MoveDir;
port interm ext req domain FID× FID;
port interm ext succ domain FID;
port interm ext fail domain SYNC
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STATE

The data state consists of the current floor and move direction.

State == [ floor : FID; mdir : MoveDir ]
Init == [ State | floor = 0 ∧ mdir = Up ]

BEHAVIOUR

The behaviour of the supervisor component is cyclic, expressed by a recursive equation. In
each cycle, it serves an internal or external request, defined by the processes InternalReq and
ExternalReq, respectively. Internal requests have priority over external requests. This is im-
plemented with the help of the timeout operator (.): during the first tpriority time units after
the last request has been accomplished, only internal requests are accepted; afterwards
internal and external requests are accepted equally, represented by the external choice.

Behaviour =̂ SV
SV =̂ σ(

InternalReq(floor, mdir)
.{tpriority}

(InternalReq(floor, mdir) � ExternalReq)); SV

Note the use of the σ operator, which we have introduced in Section 7.1 as an abbreviation.
To obtain the next internal request on the itinerary, the supervisor needs to access its cur-
rent data state, incorporating the current floor (floor) and the current move direction (mdir).
As explained in Section 7.1, a dedicated operation Lookup is defined for each specification
unit, which provides the access to the current data state. The σ-notation is a shorthand for
the execution of this operation, represented by the event

LookupX?st : [ floor! : FID; mdir! : MoveDir ]

prefixing the process that is obtained from the process contained in the brackets of the
σ-operator by substituting st.floor! for floor and st.mdir! for mdir.

Whenever the lift controller schedules a new internal request it first checks whether there
is an external request between the current and the scheduled floor in the respective move
direction. If this is the case, the external request is first served; otherwise the internal
request is served.

InternalReq(fl, md) =̂ next int req!(fl, md) → next int resp?dest : FID×MoveDir →
interm ext req!(fl, dest.0) →

(interm ext fail → HandleInternal(dest.0, dest.1)
� interm ext succ?newdest : FID → HandleExternal(newdest, md))

ExternalReq =̂ next ext req → next ext resp?dest : FID×MoveDir →
HandleExternal(dest.0, dest.1)

HandleInternal(fl, md) =̂ Move(fl, md); int served!fl → Skip

HandleExternal(fl, md) =̂ Move(fl, md); ext served!(fl, md) → Skip
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Move(fl, md) =̂ close cmd → close conf → lift move!fl → lift arrived!fl →
open cmd → open conf → Updatefloor mdir(fl, md); Skip

The notation Updatefloor md(fl, md) is the counterpart of the σ-operator for updating the cur-
rent data state, also discussed in Section 7.1. It is a shorthand for the process that executes
the dedicated operation Updatefloor mdir and associates the operation parameters with the
provided values.

12.1.4 Discussion

The case study presented in this section demonstrates the ability of RT-Z to formally specify
a moderately complex, inherently concurrent and distributed system.

RT-Z has succeeded in modelling all relevant properties of the multi-lift controller, includ-
ing real-time constraints. It has coped with the complexity of the controller by applying
its decomposition concepts, i.e., simple and indexed aggregation and extension. The broad
spectrum of properties of the multi-lift controller has been addressed by the combined ex-
pressive power of Z and timed CSP as provided by RT-Z. Last but not least, we have covered
the (software) requirements specification and design phases, which involve different levels
of abstraction, by using abstract and concrete specification units.

However, we have not demonstrated that the design specification is a refinement of the re-
quirements specification, i.e., that it correctly implements the specified requirements. As dis-
cussed in Chapters 10 and 13, the verification techniques needed to bridge the gap between
abstract and concrete specification units are part of future work.

A more compact version of the multi-lift specification can also be found in [Sühl, 2002].

Let us now discuss the differences between our case study and the TCOZ case study of the
multi-lift controller presented by Mahony and Dong [1998a].

The case study has revealed that the concept of object instantiation adopted in TCOZ is more
flexible than the concept of aggregation provided by RT-Z. Class objects in TCOZ can be
composed by the instantiating object by using arbitrary Z structures, e.g., sets and sequences.
In comparison, indexed aggregation is more restricted. However, the syntactical power of
object instantiation in TCOZ is impaired by its semantical undefinedness, as discussed in
detail in Chapter 11.

Disparate integration principles underlie RT-Z and TCOZ. In some cases, the RT-Z model,
which has no direct counterparts of state guards and of direct references from process ex-
pressions to state variables, gives rise to a larger and more complex specification than the
TCOZ model. An example of this is the need in the RT-Z specification to split the original
channel select of the TCOZ specification into the channels next ext req and next ext resp for
the discussed modelling reasons. On the one hand, this channel duplication makes the speci-
fication less succinct, always involving a pair of events rather than a single event. On the
other hand, modelling this communication relationship between the lift controllers and the
external request handler by means of two channels is closer to reality. No implementation
of the multi-lift specification is able to perform the state computation of the external request
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handler instantaneously; therefore, the events of demanding and providing an appropriate
external request have to be separated in time, i.e., modelled by two different events. To con-
clude, RT-Z forces the specifier to adopt a more concrete modelling style that is—concerning
the intervals of performing operations—closer to the real-time behaviour of the resulting
implementation.

A large part of the RT-Z specification is covered by the declaration of ports and channels. In
particular, the top-level specification units, which aggregate a number of other specification
units, have rather long declaration lists. The INTERFACEand LOCALsections of compound
specification units are redundant, because they can be uniquely determined given the ex-
ternal ports and internal channels of the units being composed. In spite of this redundancy,
we have decided to make the interface of compound specification units explicit. This is a
contrast to TCOZ specifications, in which the interface of a compound object is not defined
explicitly. While this makes the TCOZ specification of the multi-lift controller more compact,
it is very hard to retain the overview: looking at the definition of a compound class, we have
no idea about its interface.

RT-Z’s ability to specify environmental assumptions enabled us to make a clearer separation
between the system to be implemented and its environment than in the TCOZ specification.
In the latter, the shaft component of a lift is part of the modelled system, because it is the only
possibility to express assumptions about its real-time behaviour. The RT-Z specification, on
the other hand, stipulated that the shaft component is outside the system to be implemented
by not incorporating a shaft specification unit but only recording the ports in the INTER-
FACEsection that link the multi-lift controller to the shaft component. The ENVIRONMENTAL
ASSUMPTIONSsection allowed us to express the assumptions about the real-time behaviour
formally that must be met for the multi-lift controller to operate reasonably.

Last, but not least, another difference between the RT-Z and the TCOZ specification, which
is not really caused by the different underlying models, is the order of presenting the speci-
fication units and classes, respectively. The TCOZ specification follows a strict bottom–up
order which is consistent with the ‘definition-before-use’ paradigm. In contrast, we have
deviated from this paradigm in the RT-Z specification, because in our opinion a system is
explained preferably by providing the coarse system structures (i.e., the top-level units) first
before giving the details (i.e., the bottom-level units).
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12.2 Gas Burner

To demonstrate the applicability of RT-Z to safety-critical systems, we discuss a case study
involving a gas burner, whose malfunctioning may cause accidents. The considered system
in terms of which safety constraints are to be formulated is a plant within which a gas burner
is to be operated.

Our case study was inspired by the case study presented by Ravn et al. [1993], which served
the authors to illustrate the duration calculus.

12.2.1 System Requirements

There are two safety constraints on the operation of the gas burner in the plant context.

1. The volume of unburned gas within the plant escaped from the gas burner must never
exceed a volume of max gas volume units.

2. Depending on specific objects in the surroundings of the gas burner within the plant,
the heat produced by the (activated or deactivated) gas burner must not exceed a par-
ticular temperature.

It is important to stress that the system that we specify by the following specification unit
is not the artifact we want to implement (gas burner). Rather, it is the system whose safety
is affected by the operation of the artifact to be implemented. That is, the general approach
taken is to take into account parts of the environment of the artifact to be implemented.

The following data types and constants are global with respect to the whole system specifica-
tion. The type definitions embody several abstractions we have carried out in modelling the
plant system. Temperature values, distances between objects and volumes are modelled by
natural numbers rather than by real numbers. Further, by introducing Object as a given set,
we express that we are not interested in the characteristics of the objects in the surroundings
of the gas burner.

[Object]
Temp == N; Dist == N; Vol == N

The following global variables represent static properties of the plant system, i.e., they are
parameters of the system specification.

max gas volume, min gas escape plant : Vol
max burner temp : Temp
max temp dist : Object 7→ (Dist→ Temp)
∆ : T
∀ o : Object; d1, d2 : Dist | o ∈ dom max temp dist ∧ d1 ≤ d2 •

max temp dist o d1 ≤ max temp dist o d2

In each time interval of length ∆, min gas escape plant volume units of gas are supposed to
escape from the plant. The function max temp dist assigns to each object a function mapping
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each distance of that object to the gas burner to the temperature that it can maximally sustain.
The constant max burner temp denotes the maximal temperature the gas burner can produce.

The first specification unit encapsulates the description of the interface between the plant
system and its environment. The encapsulation allows us to refer to these definitions several
times.

SPEC. UNIT PlantInterface

INTERFACE

Channels in a system specification do not necessarily carry the transmission of informa-
tion units, but they may carry the “flow of material units.” The escape of a particular
volume of gas from the plant to the environment is modelled by events on the channel
gas escape plant. Note that the model underlying RT-Z does not allow us to model a con-
tinuous escape of gas. The gas that escapes from the plant within an interval has to be
accumulated in a single event on the channel gas escape plant. Events occurring on the
channel object enter represent the entry of new objects into the plant, with a specific dis-
tance to the gas burner.

port gas escape plant domain Vol;
port object enter domain Object×Dist

The specification unit Plant is defined to extend the previous one.

SPEC. UNIT Plant EXTENDSPlantInterface

ENVIRONMENTAL ASSUMPTIONS

Analogously to environmental assumptions of software components, which concern prop-
erties of information units, environmental assumptions of system components express
properties required of the material flows between system components.

EA =̂ EA1 ∧ EA2

Regarding the plant system we assume that at least min gas escape plant volume units of
gas may escape from the plant in each interval of ∆ time units.

EA1 =̂ ∀ t : T | t >R ∆ •
Σ(strip(s ↑ttr [t−R ∆, t) �ttr {| gas escape plant |})) ≥ min gas escape plant
∨ (∃ vol : Vol | Σ(strip(s ↑ttr [t−R ∆, t) �ttr {| gas escape plant |})) + vol

≥ min gas escape plant •
gas escape plant.vol open t + ∆)

Moreover, objects entering the plant must not be as close to the gas burner as to violate the
second safety constraint immediately.
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EA2 =̂ ∀ t : T; o : Object; d : Dist •
object enter.(o, d) open t ⇒ (max temp dist o d) ≥ max burner temp

STATE PROPERTIES

The following state schema models the real state of the plant system. That is, each compon-
ent of the state schema represents a characteristic of the plant system that is really present
(observable).

State
gas volume : Vol
burner temp : Temp
object dist : Object 7→Dist

gas volume ≤ max gas volume
burner temp ≤ max burner temp
dom object dist ⊆ dom max temp dist
∀ o : dom object dist • burner temp ≤ max temp dist o (object dist o)

The predicate of the state schema mainly expresses the safety constraints on the operation
of the gas burner (first and last conjunct). The state schema is the natural place to formulate
safety constraints, because—by definition—safety is a property referring to the state of a
system, for a definition of safety consult [Leveson, 1995, pp. 181–183].

In conclusion, the above specification of the system requirements has indicated that RT-Z is
flexible enough to deal with general system components in addition to software components.
This is mainly due to the capabilities of the base language Z whose underlying concepts (set
theory and predicate logic) are general enough to enable the formulation of system and of
software properties.

We have also seen, however, that RT-Z is not able to model continuous behaviour. If the cor-
rectness of a system can be expressed only in terms of continuous functions and differential
equations, i.e., if the abstraction carried out with respect to the gas escape is not adequate,
RT-Z is not the appropriate choice. In this case, formalisms such as the duration calculus
[Chaochen et al., 1991] must be used.

12.2.2 System Design

To guarantee the safety constraints fixed in the system requirements phase, the plant sys-
tem is decomposed into the components depicted in Figure 12.4, which are associated with
specific responsibilities. The gas burner is equipped with a controller that monitors a ther-
mometer (sensor) and instructs a gas valve and an ignition source (actuators). The whole
gas burner is supervised by a human operator. The gas burner controller is responsible for
ensuring the first safety constraint, and the human operator is responsible for the second
safety constraint.
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Figure 12.4: Plant design.

The volume of unburned gas in the plant escaped from the gas burner must not
exceed max gas volume units. According to the environmental assumptions, at least
min gas escape plant volume units are guaranteed to escape from the plant in each time in-
terval of length ∆. From the technical parameters of the gas burner one can derive how long
the gas burner may maximally leak unburned gas and how long the plant needs to reduce
the maximal amount of unburned gas to zero. Suppose that depending on these factors un-
burned gas is allowed to escape at most ∆2 time units within any time interval of length ∆1.
It is decided in the system design that it is the task of the gas burner controller to guarantee
that constraint and that this controller is to be implemented by software.

The second safety constraint concerns the burner temperature that is maximally allowed,
which depends on the distance of objects to the gas burner. It is decided that it is primarily
the responsibility of the human operator to deactivate the gas burner early enough such that
the maximally admissible temperature is not exceeded for each approaching object. This,
however, requires that a command of the human operator to deactivate the gas burner is
executed by the controller timely. Two assumptions underlie the implementation of the
second safety constraint. First, it is supposed that the temperature in the surroundings of
the burner decreases with increasing distance according to a particular function. Second, it
is assumed that once the gas burner is switched off the flame will disappear and the tempera-
ture produced by the gas burner will decrease to the environmental temperature according
to a particular function.

The following specification unit aims to formally define the architecture of the plant sys-
tem as devised in the system design process discussed above. We fix only the structuring
into particular components and their interfaces here. We do not specify the requirements
associated with these system components; this is the subject of the following software re-
quirements phase.

SPEC. UNIT PlantDesign EXTENDSPlantInterface

SUBUNITS

subunit gas burner spec. unit GasBurner;
subunit human operator spec. unit . . .
subunit objects spec. unit . . .
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LOCAL

channel heat on, heat off domain SYNC;
channel distance domain . . .

BEHAVIOUR

Behaviour =̂ (gas burner.Behaviour |[ {heat on, heat off} ]| human operator.Behaviour)
|[ {| distance |} ]| objects.Behaviour

In the remainder of this case study, we deal only with the gas burner, omitting the other
system components.

SPEC. UNIT GasBurner

INTERFACE

port heat on, heat off domain SYNC

SUBUNITS

subunit controller spec. unit GasBurnerControl;
subunit gas valve spec. unit . . .
subunit ignitor spec. unit . . .
subunit thermometer spec. unit . . .

LOCAL

channel temperature domain Temp;
channel gas out, ignition domain SYNC

BEHAVIOUR

Behaviour =̂ controller.Behaviour
|[ {gas out, ignition} ∪ {| temperature |} ]|
(gas valve.Behaviour ||| ignitor.Behaviour ||| thermometer.Behaviour)

The sensor and actuator components of the gas burner would be designed in hardware de-
velopment processes. In the remainder of this case study, however, we address only the
development of the software controller.
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12.2.3 Software Requirements

The subject of the software requirements specification is the software controller identified
in the previous system design. More specifically, we are dealing with the requirements the
software controller must meet.

We first encapsulate the parameters and the interface of the software controller in separate
specification units, which allows us to refer to them several times.

SPEC. UNIT GBCConstants

TYPES & CONSTANTS

The time constants ∆1 and ∆2 have already been introduced informally in the previous
section, and ∆3 models the length of the control cycles of the software component. The
existence of a control cycle is already fixed in the software requirements specification, be-
cause it has consequences on the expression of the software requirements. The constant
limit denotes the temperature above which the presence of a flame is assumed.

∆1,∆2,∆3 : T
limit : Temp

0R <R ∆3 <R ∆2 <R ∆1

SPEC. UNIT GBCInterface EXTENDSGBCConstants

INTERFACE

port temperature domain Temp;
port heat on, heat off domain SYNC;
port ignition, gas out domain SYNC

ENVIRONMENTAL ASSUMPTIONS

We assume that the software controller has the full and immediate control of the ignition
and the gas actuators. Moreover, the thermometer is supposed to deliver a unique tem-
perature at any time instant.

EA =̂ EA1 ∧ EA2
EA1 =̂ ignition active ∧ gas out active

EA2 =̂ ∀ t : T • ∃1 meas : Temp • temperature.meas open t

The responsibility to ensure the safety constraints associated with the gas burner controller
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during the system design is expressed by the following specification unit.

SPEC. UNIT SafeGasBurnerControl EXTENDSGBCInterface

I/O RELATIONS

The following two Z schemas define the property of a temperature measurement to char-
acterise either the absence or the presence of a flame. They are referred to in the BEHAV-
IOURAL PROPERTIESsection.

NotBurning == [ meas : Temp | meas < limit ]; Burning == [ meas : Temp | meas ≥ limit ]

The subsequent specification of the safety constraints demonstrates one benefit of RT-Z,
namely the coherent integration of the property languages of Z and timed CSP.

BEHAVIOURAL PROPERTIES

The following auxiliary predicates characterise the states in which gas has escaped in the
current control cycle and where the last temperature measurement indicates the ignition
of gas or no ignition, respectively. The two predicates are used in the following predicates
defining the safety constraints.

UnignitedGas(t : T) =̂ NotBurning(meas =̂ last((s �ttr t) �ttr {| temperature |})) ∧
∃ t′ : [t−R ∆3, t) • gas out at t′

IgnitedGas(t : T) =̂ Burning(meas =̂ last((s �ttr t) �ttr {| temperature |})) ∧
∃ t′ : [t−R ∆3, t) • gas out at t′

Behaviour sat SC1 ∧ SC2 ∧ SC3

Firstly, there must not be any time interval longer than ∆2 time units in which gas con-
stantly escapes and in which no flame is detected, i.e., in which gas constantly escapes
unignited.

SC1 =̂ ∀ t1, t2 : T | t1 6R t2 •
(∀ t3 : [t1, t2) • UnignitedGas(t3)) ⇒ t2−R t1 6R ∆2

Secondly, two different attempts to ignite gas (two time instants at which gas escapes unig-
nited) between which there is a time instant at which a flame is detected have to be separ-
ated in time by at least ∆1 time units.
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Figure 12.5: Gas burner controller architecture.

SC2 =̂ ∀ t1, t2 : T | t1 6R t2 •
(UnignitedGas(t1) ∧ UnignitedGas(t2) ∧ ∃ t3 : (t1, t2) • IgnitedGas(t3))
⇒ t2−R t1 >R ∆1

Finally, gas may escape and the ignition source may be activated only when the last com-
mand was a heat on command.

SC3 =̂ ∀ t : T •
last(s �ttr t �ttr {heat on, heat off}) = heat off ⇒ (¬ gas out live t ∧ ¬ ignition live t)

12.2.4 Software Design

In general, RT-Z is designed to formally specify real-time embedded systems and is thus not
specifically oriented towards safety-critical systems. However, it provides important means
for coping with safety-critical applications. In the following software design specification,
one means for enhancing the safety of the gas burner is the strict separation of functional and
safety aspects in different components (defined by specification units). The parallel compos-
ition operator of timed CSP is adequate to compose the functional and safety components,
because each communication with the environment (in particular commands to the actuat-
ors, which are subject to safety considerations) is possible only when the two components
agree on that communication.
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SPEC. UNIT GasBurnerControl EXTENDSGBCInterface

SUBUNITS

The current specification unit defines the decomposition of the software controller into
three components (see also Figure 12.5): one for ensuring the safety constraints, one for
accomplishing the function and one for detecting the transitions of the flame’s state.

subunit function spec. unit FuncComp;
subunit safety spec. unit SafetyComp;
subunit flame spec. unit FlameComp

LOCAL

channel flame on, flame off domain SYNC

BEHAVIOUR

The configuration of the three components is defined by the process term Behaviour. Most
important, the safety component and the functional component are composed in parallel;
and they synchronise on the commands to the actuators, which ensures that each command
is given only if the components agree on that command.

Behaviour =̂
flame.Behaviour

|[ {flame on, flame off} ]|
(function.Behaviour

|[ {gas out, ignition, flame on, flame off , heat on, heat off} ]|
safety.Behaviour)

The safety component is responsible for guaranteeing that the outputs to the actuators are
given according to the safety constraints. In other words, it blocks the output of commands
that would violate these safety constraints. However, it does not take functional considera-
tions into account, i.e., it does not define when it is necessary to send particular commands.

SPEC. UNIT SafetyComp EXTENDSGBCConstants

INTERFACE

port flame on, flame off , heat on, heat off domain SYNC;
port gas out, ignition domain SYNC

LOCAL

channel flm on, flm off , first gas out domain SYNC;
channel enable1, disable1, enable2, disable2 domain SYNC
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BEHAVIOUR

The following process terms defining the behaviour of the safety component are best un-
derstood by considering the state machine depicted in Figure 12.6, which is a direct trans-
lation of these process terms.

Behaviour =̂ BufferOff |[ {flm on, flm off} ]|
(GasIgnition |[ {enable1, enable2, disable1, disable2} ]| (SC1&2 ||| SC3))

The first two safety constraints are modelled by the process term SC1&2, and the last safety
constraint is modelled by SC3. The process terms express the corresponding safety con-
straints in terms of the events enable1, enable2, disable1 and disable2. The two enable events
indicate that the corresponding safety constraint allows the escape of gas and the ignition.
The disable events have the analogous meaning.

The process term GasIgn models the safety component’s acceptance of the escape of gas and
of the ignition in terms of the enable and disable events. It is composed in parallel with the
two process terms modelling the safety constraints, where all three processes synchronise
on the enable and disable events. In brief, the escape of gas and the ignition is accepted if,
and only if, the parallel processes have lastly sent an enable event.

The task of the process term BufferOff , which in turn is composed in parallel with the
three process terms described above, is to buffer the external events flame on and flame off ,
which are passed on by means of the internal events flm on and flm off . This decoupling
is necessary, because the safety component is always required to accept the two external
events.

BufferOff =̂ flame on → BufferOn � flm off → BufferOff
BufferOn =̂ flame off → BufferOff � flm on → BufferOn

GasIgnition =̂ GIDisabled

GIDisabled =̂ enable1 → GIDisabled2 � enable2 → GIDisabled1

GIDisabled1 =̂ enable1 → GIEnabled1 � disable2 → GIDisabled � ignition → GIDisabled1

GIDisabled2 =̂ enable2 → GIEnabled1 � disable1 → GIDisabled

GIEnabled1 =̂ ignition → GIEnabled1 � gas out → first gas out → GIEnabled2

� disable1 → GIDisabled1 � disable2 → GIDisabled2

GIEnabled2 =̂ ignition → GIEnabled2 � gas out → GIEnabled2
� disable1 → GIDisabled1 � disable2 → GIDisabled2

SC1&2 =̂ enable1 → SC1&2ENABLED

SC1&2ENABLED =̂ first gas out → SC1&2IGNITION

SC1&2IGNITION =̂ flm on → SC1&2BURNING
.{∆2} disable1 → SC1&2DISABLED

SC1&2BURNING =̂ (flm off → disable1 → Skip ||| Wait ∆1);
enable1 → SC1&2ENABLED

SC1&2DISABLED =̂ Wait ∆1; enable1 → SC1&2ENABLED
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Figure 12.6: State machine illustrating the behaviour of the safety component.

SC3 =̂ SC3OFF
SC3OFF =̂ heat on → enable2 → SC3ON � heat off → SC3OFF
SC3ON =̂ heat off → disable2 → SC3OFF � heat on → SC3ON

The above process terms are a relatively direct translation of the safety constraints. They
are considerably simpler than a process description of the entire software controller, be-
cause they do not take into account functionality aspects.
Note that the safety component is always ready to engage in the events flame on, flame off ,
heat on and heat off . This is necessary, because the flame component and the human op-
erator, respectively, must have the full control of these events. The safety component only
“consumes” these events. The same is true of the functionality component.

The functionality component is responsible for “pushing” the function of the software con-
troller. That is, it defines in a positive manner when it is necessary to send particular actuator
commands; it does so independently of safety concerns.

SPEC. UNIT FuncComp EXTENDSGBCConstants

INTERFACE

port heat on, heat off , flame on, flame off domain SYNC;
port ignition, gas out domain SYNC
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LOCAL

channel flm on, flm off domain SYNC

BEHAVIOUR

The following process terms defining the behaviour of the functional component are best
understood by considering the state machine depicted in Figure 12.7, which is a direct
translation of these process terms.

Behaviour =̂ Cycle |[ {flm on, flm off} ]|BufferOff
Cycle =̂ Idle 4 (heat off → Cycle)

The process terms Idle, Ignition and Burning correspond to the states of the state machine.

Again, the task of the process term BufferOff is to buffer the external events flame on and
flame off , which are passed on by means of the internal events flm on and flm off .

BufferOff =̂ flame on → BufferOn � flm off → BufferOff
BufferOn =̂ flame off → BufferOff � flm on → BufferOn

The following three process terms define the recurring activities that are associated with
particular states of the state machine.

HeatOn =̂ heat on → HeatOn
GasIgn =̂ Wait ∆3; gas out → ignition → GasIgn
Gas =̂ Wait ∆3; gas out → Gas

Idle =̂ heat on → Ignition
Ignition =̂ (GasIgn ||| HeatOn)

4 (flm on → Burning .{∆2} Idle)
Burning =̂ (Gas ||| HeatOn)

4 (flm off → Idle)

The last component translates the measurements of the thermometer into events that indi-
cate that a flame appeared and disappeared, respectively. The other components have been
defined in terms of these produced events. The purpose of the flame component is thus to
define an abstraction for the safety and function component.

SPEC. UNIT FlameComp EXTENDSGBCConstants

INTERFACE

port temperature domain Temp;
port flame on, flame off domain SYNC
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Figure 12.7: State machine illustrating the behaviour of the functional component.

TYPES & CONSTANTS

Bool ::= Yes | No

STATE

The data state records the state of the flame at the last measurement. It is needed in order
to detect changes of the state of the flame. Initially, the flame is assumed to be off.

State == [ flame : Bool ]; Init == [ State | flame = No ]

OPS & PREDS [NoChange, Appeared, Disappeared ]

The following operation schemas define all possible transitions of the flame’s state (includ-
ing the case that no transition takes place).

NoChange == [ ΞState; meas? : Temp |
flame = No ∧ meas? < limit ∨ flame = Yes ∧ meas? ≥ limit ]

Appeared == [ ∆State; meas? : Temp | flame = No ∧ meas? ≥ limit ∧ flame′ = Yes ]
Disappeared == [ ∆State; meas? : Temp | flame = Yes ∧ meas? < limit ∧ flame′ = No ]

BEHAVIOUR

The behaviour of the flame component is cyclic. In a distance of ∆3 time units, a meas-
urement of the thermometer is requested. The subsequent behaviour depends on the re-
lationship between the current data state and the received measurement val, determining
the unique operation whose precondition is satisfied and thereby resolving the choice. Ac-
cordingly, flame on, flame off or no event is performed.
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Behaviour =̂ Cycle
Cycle =̂ Wait ∆3; temperature?val : Temp →

(NoChangeX.〈| meas? == val |〉 → Cycle
� AppearedX.〈| meas? == val |〉 → flame on → Cycle
� DisappearedX.〈| meas? == val |〉 → flame off → Cycle)

12.2.5 Discussion

To summarise, the gas burner case study has demonstrated the ability of RT-Z

• to cover different levels of abstraction, i.e., requirements and designs,

• to cover general system and software components and

• to cope with safety-critical applications.

The applicability of RT-Z to safety-critical systems is also demonstrated in [Sühl, 2000],
where we have discussed the formal specification of a railway network.

We have, however, not established that our system and software designs really meet the
constraints expressed in the system and software requirements specifications, respectively.
As we discuss in the next chapter, the provision of verification techniques for RT-Z that
would allow us to prove that a given concrete specification unit refines an abstract one is
part of future work.

We have used a Statechart-like notation in order to discuss the behaviour of the safety and
the functional components, specified by timed CSP process terms. One might therefore be
tempted to conclude that Statecharts are a better candidate for being combined with Z. In-
deed this is the approach taken by the ESPRESS project, in which µSZ [Büssow et al., 1997]—
a combination of Z and Statecharts—was developed. Statecharts are undoubtedly more
intuitive than CSP, because they are based on a graphical notation. However, they have
important drawbacks compared to CSP.

Firstly, the Statechart notation lacks a precise, complete and commonly accepted semantics.
There are several tools implementing Statecharts, and all have interpreted the notation in a
slightly different manner. Harel and Naamad [1996], e.g., have dealt with the meaning of the
Statechart notation as implemented in the STATEMATE tool. However, their semantic defi-
nition is on a rather low level of formality: it is basically an informal description of the step
algorithm implemented by STATEMATE in the context of illustrating examples. Further, the
described semantics does not have the useful characteristics of the denotational semantics
of CSP, e.g., compositionality. More recently, formal definitions of the Statechart semantics
have been proposed. Helke and Kammüller [2001], e.g., have formalised Statecharts based
on hierarchical automata using the HOL instance of the generic theorem prover Isabelle. So
far, however, only a subset of the language has been covered.

Secondly, in contrast to CSP, Statecharts are based on a model of asynchronous communi-
cation. From a theoretical point of view, asynchronous communication is less appropriate
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than synchronous communication when reasoning about the behaviour of compound sys-
tems. Moreover, (basic) Statecharts do not have any interface/encapsulation mechanism.
This makes it very difficult to model complex behaviour patterns, because a component
broadcasting a signal can give rise to reactions in all other components. The incorporation of
Statecharts into UML has alleviated this deficiency, because object-orientation provides the
necessary encapsulation mechanisms. However, the formal meaning of UML Statecharts is
even more a subject of current research.

In conclusion, while useful in illustrating the structural aspects of the behaviour of the safety
and functional components, Statecharts are not as appropriate as CSP to define this beha-
viour formally (and to reason about it).
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Chapter 13

Conclusions

We finally discuss the contributions of this thesis and some open issues remaining as subjects
for future work.

13.1 Contributions

The following points concern the contributions of RT-Z to the research field dealing with the
integration of formal specification languages.

Coherent Integration of Z and timed CSP. In this thesis, we have presented an integration
of Z and timed CSP that allows us to specify all relevant aspects of real-time embedded
systems in a coherent manner.

By developing the classification of approaches to integrating existing formalisms in
Chapter 5, we have given an overview of the different (and frequently mutually contra-
dictory) design rationales underlying different integrated formalisms. The classification has
established a basis for comparing RT-Z with the related work.

According to our classification, we have conceived RT-Z as a conserving integration. The
general benefits and drawbacks attributed to this class hence apply to the instance RT-Z.
Most important, by having encapsulated the notations of Z and timed CSP within two sep-
arate parts, we have pursued a separation of concerns. This has helped us in defining the
denotational semantics of RT-Z by reusing the semantic functions of the base formalisms and
in developing refinement techniques for RT-Z by reusing the refinement techniques of the
base formalisms. Moreover, the separation between the base formalisms enhances the intel-
ligibility of RT-Z specifications for those being familiar with Z and timed CSP and makes it
possible to use existing tools.

Coverage of Several Abstraction Levels. A distinguishing feature of RT-Z is that it cov-
ers several abstraction levels. All other approaches integrating (timed/untimed) CSP with
Z/Object-Z have integrated only the concrete language constructs of the respective base
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formalisms, resulting in integrated constructs that basically correspond to the concrete speci-
fication units of RT-Z. That is, they do not provide any counterparts of abstract specification
units.

To define the formal meaning of abstract specification units, we have formalised the use of
abstract data types in the predicate language of timed CSP. This use of abstract data types
within predicates is common in the literature on timed CSP [Schneider, 1999b, Chapter 12],
e.g., for quantifying over the time domain or over other data domains. However, this use
is not underpinned by the denotational (and operational) semantics of timed CSP. So, our
definitions can be regarded as a contribution to the formalisation of an aspect of the actual
use of timed CSP.

Further, the formalisation of timed CSP’s predicate language allowed us to include envir-
onmental assumptions in abstract and in concrete specification units. The ability to specify
environmental assumptions is essential; it assists in clearly separating concerns, because the
requirements to the system under consideration and the requirements to its environment
are specified in separate sections of a specification unit. Environmental assumptions are a
concept not provided by the other integrated formalisms explicitly.

Formal Foundation. We have formally defined the meaning of abstract and concrete speci-
fication units by means of a denotational semantics. Further, the meaning of the structuring
operators of RT-Z has been defined by adopting a transformational approach. This stepwise
semantic definition has been necessary, because a monolithic approach would have made it
impossible to reuse the semantic definitions of the base formalisms.

We have spent much effort in proving that the definition of the semantics of concrete speci-
fication units is consistent with the axioms of the timed failures model of timed CSP (Ap-
pendix B). The proof has been carried out in a mathematical way.1 The consistency ensures
that the meaning that is associated with the Z part of a specification unit represents some
timed CSP process. Only this fact has entitled us to interpret a specification unit as the par-
allel composition of its two parts.

The formal definition of the semantics is the foundation for formal specification. Formal
specification is an activity that is useful in its own rights. This claim is supported by the
following points.

• Perhaps the most important advantage of a formal specification is its ability to clearly,
unambiguously express requirements, constraints and properties of a system. When
accompanied by appropriate informal explanations, a formal specification facilitates
the discussion between different stakeholders of the system development process.

• Formal specifications are in general, if a suitable abstraction has been identified, more
concise than corresponding informal descriptions.

1 This certainly restricts the level of confidence as compared to a formal proof (e.g., by using a theorem prover).
However, the granularity of the proof is fine enough to convince us that the principles of the semantic defi-
nitions are sound.
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• Using a formal language, one is forced to think more rigorously about the considered
system, which helps gaining a deeper understanding of the system and its require-
ments. In fact, the early phases of the development process are extended due to a more
thorough analysis; but this investment is returned in the later phases.

• A formal requirements or design specification is a sound basis for the still indispens-
able task of black-box testing; on the basis of a formal specification one is able to derive
test cases to later exercise the implemented system as well as to decide on the correct-
ness of the system’s reactions.

However, the full potential of the mathematical basis of a formalism can only be exploited
by formal proof techniques that allow one to establish in a rigorous way that specifications
exhibit certain properties. As already stated, we have not yet defined a calculus for RT-Z
that would allow us to formally derive properties of RT-Z specification units. However, the
foundation for such a calculus has already been established. Its fundamental prerequisite is
the formal semantic definition, which we have accomplished. Moreover, we have designed
the integration of Z and timed CSP in such a way that proof obligations to a specification unit
can be reduced to separate proof obligations to its parts. These, in turn, can be discharged
by means of the proof techniques provided by the two base formalisms. This separation of
concerns, by the way, is the very essence of conserving integrations.

Formal Definition of Structuring Operators. We have chosen plain Z in favour of Object-Z,
fully aware of the fact that plain Z does not provide as elaborate structuring operators as
Object-Z. The reason for this choice has been our intention to use the combined express-
ive power of Z and timed CSP for the specification at both the component and the system
level. This is in contrast to the approach of Smith and Derrick [2001] who used Object-Z
to specify the behaviour of single components and CSP to specify the interactions between
components.

Having chosen plain Z, we needed to define our own structuring operators on top of the
integration. The structuring operators of RT-Z have been backed up by means of a trans-
formational approach, see Chapter 8. This separate definition is in contrast to TCOZ, for
which the authors claim that they can use for free the structuring operators of Object-Z as
containers for the integrated notation. However, as we have argued in detail in Chapter 11,
the semantics of these Object-Z operators is not defined for the integrated language.

Global Invariants. As discussed in Section 9.2.1, a major achievement of the semantic model
underlying RT-Z and at the same time a major source of complexity is its ability to cope with
the concurrent execution of operations that work on different subspaces of the overall data
state but which might nevertheless interact. This interaction is expressed in terms of global
invariants.

To the best of our knowledge, this concept is novel in the realm of integrated formalisms. It
is vital for our approach in the system-related phases in the context of safety-critical applica-
tions, because the safety of a system must be expressed in terms of its states: since the overall
state of a system may be distributed to several components, safety constraints may include
relationships between the states of different components. Expressing these relationships is
exactly the purpose of global invariants.
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Refinement. We have formally defined the notion of refinement between specification
units, and we have shown how to use the refinement techniques provided by Z and timed
CSP in order to establish the refinement relationship between specification units in RT-Z.
This connection has been underpinned by our proof in Appendix C that the existence of a
forward or backward simulation between the Z parts of two specification units implies the
refinement relationship between the corresponding timed CSP interpretations in the timed
failures model.

We have also demonstrated that refinement relationships between compound specification
units can be reduced to refinement relationships between pairs of corresponding component
specification units. This compositionality of the refinement relationship is a necessary pre-
condition for establishing refinement relationships between compound specification units in
a convenient manner.

13.2 Satisfaction of Objectives

Recall the objectives that we have formulated in Chapter 3. RT-Z, as presented in this thesis,
satisfies these objectives for the most part.

First, RT-Z is a formally defined specification language allowing one to clearly and precisely
express requirements, constraints and designs. It also allows the specifier to freely choose the
appropriate level of abstraction. Regarding rigour, we have already stated that we have not
yet provided verification techniques that would allow us to reason about RT-Z specifications
rigorously, but that we have established the foundation for such verification techniques, see
the discussion in the next section.

Second, the base formalisms of RT-Z have been intentionally chosen in order to cover the
relevant dimensions of the behaviour of real-time embedded systems. On the other hand,
we have deliberately dispensed with taking into account hybrid and stochastic behaviour,
which makes RT-Z tremendously simpler (however, with the drawback that some types of
embedded systems cannot be modelled adequately). So, to conclude, we think that we have
made a reasonable compromise between the expressiveness and the complexity of the model
underlying RT-Z.

Third, as demonstrated by the case studies in Chapter 12, the language constructs provided
by RT-Z allow us to cover the phases of the development process referred to in the objectives.

Last, but not least, the structuring operators of RT-Z, in particular aggregation and extension,
ensure the scalability of RT-Z. This is witnessed by the multi-lift case study in Section 12.1,
which concerns a moderately complex system.

13.3 Future Work

The following points concern the features that—in spite of being worthwhile—are not ac-
complished so far. Accomplishing these points would lift RT-Z from the level of formal
specification languages to the level of formal methods.
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Calculus. A prominent part of future work is the development of a calculus for RT-Z. It will
consist of a collection of axioms and inference rules allowing us to derive properties from an
RT-Z specification that are related to both behavioural and state-oriented aspects.

As stated in Chapter 6, an essential design rationale behind our integration of Z and timed
CSP has been the possibility to reuse the infrastructure of the base formalisms as far as pos-
sible. This applies particularly to the existing proof techniques of Z and timed CSP. The reuse
is facilitated by the separation of the base formalisms, as generally motivated in Chapter 5
for the class of conserving integrations.

In RT-Z, the notation used to express properties is the notation integrated in abstract specifi-
cation units. So, to be more precise, the purpose of the calculus we are striving for is to derive
properties, as expressed by abstract specification units, from models, as expressed by con-
crete specification units. A particular purpose of these rules will be the proof of refinement
relationships between abstract and concrete specification units.

The rules of the calculus we are aiming at will be related to two different tasks: first deriving
properties from a single specification unit; and second deriving properties from a compound
specification unit, given the properties of its components.

Considering the first task, the aim is to derive those properties of a concrete specification
unit that depend on both the Z part and the CSP part. These can be either properties that can
be expressed only by referring to the two parts, or it can be properties that can be proved only
by employing properties of the two parts. The axioms and inference rules will express the
mutual relationships between the base formalisms in a concrete specification unit as defined
by the semantic model in Chapter 9; they will reduce properties depending on the two parts
to properties depending on only one part, which can be discharged by applying the proof
techniques of the respective base formalisms. The rules will reflect the relationships (among
others)

• between a termination event and the post state resulting from executing the operation,

• between an invocation event and the pre state to which the operation is applied,

• between the value transmitted with a termination event (binding that associates each
output parameter with a value) and the output parameters of the corresponding oper-
ation, and

• between the value transmitted with an invocation event and the input parameters of
the corresponding operation

as defined by the semantics.

The second task deals with deriving properties of compound specification units from prop-
erties of their component specification units. The corresponding inference rules will reflect
the reduction processes defined for aggregation and extension in Chapter 8.

For both Z and timed CSP, there are techniques for formally deriving properties from speci-
fications. The sound and complete calculus of timed CSP is outlined in Section A.2.6. Z, by
contrast, is not equipped with such a complete calculus. However, since the Z notation is
based on predicate logic and set theory, the well-established mathematical techniques de-
veloped for these concepts can be used. Of particular interest are the proof tools developed
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for Z, e.g., HOL-Z [Kolyang et al., 1996] and Z/EVES [Saaltink, 1997], automating various
kinds of proof tasks.

Finally, the axioms and inference rules we are aiming at must be proved sound with respect
to the denotational semantics of RT-Z defined in Chapter 9. Completeness of these rules—
although being desirable—is not realistic.

Examples. In the following, we attempt to give an idea of the nature of the inference rules
we are striving for by means of some examples. All examples deal with deriving properties
from single specification units.

The first inference rule reflects the relationship between the precondition of an operation
schema, a data state in which the corresponding operation is invoked and the input par-
ameters transmitted with a corresponding invocation event. The two antecedents of the
inference rule are related only to the Z part of the concrete specification unit under analysis.
They can be discharged using the proof techniques of Z. The conclusion is related to the CSP
part: it makes a statement about the liveness of an invocation event.

Consider an operation schema Op with input parameters in1?, . . . , inN?. Suppose the data
state present at time t fulfils property Prop. Suppose further that Prop implies the precondi-
tion of Op, with the input parameters fixed to the values val1, . . . , valN.

(Precondition)

Prop at t
Prop ⇒ pre[ Op | in1? = val1 ∧ . . . ∧ inN? = valN ]

OpI.〈| in1? == val1, . . . , inN? == valN |〉 live t

Then we can deduce that the invocation event related to this operation and associating the
input parameters with the given values is offered at time t.

The next rule concerns the relationship between the input parameters of an invocation event
and the output parameters of the corresponding termination event.

The first three antecedents refer only to the CSP part of the concrete specification unit under
analysis, namely to the occurrence of invocation and termination events. The last antecedent,
which assumes that the operation schema Op establishes a relationship between the input
and output parameters of each operation application, is related only to the Z part and can be
discharged using the proof techniques of Z.

(InOutputRel)

OpI.〈| in1? == valI1, . . . , inN? == valIN |〉 at t1
OpT.〈| out1! == valO1, . . . , outM! == valOM |〉 at t2
∀ t3 : [t1, t2) • ¬ OpT at t3
Op ` PropInOut[in1?/x1, . . . , inN?/xN, out1!/y1, . . . , outM!/yM]

PropInOut[valI1/x1, . . . , valIN/xN, valO1/y1, . . . , valOM/yM]

The conclusion transfers the established relationship to the particular values transmitted
with a pair consisting of an invocation and a termination event.
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The last rule deals with additional state invariants valid during certain time intervals. As-
sume we consider a certain subset of operations OpSet that preserve an implicit invariant Inv
in addition to the explicit state invariant State. This means that each operation of this subset
has to terminate in a post state satisfying this implicit invariant, provided it is applied to a
pre state satisfying it. Moreover, suppose we are able to show that within the interval (t, t′)
only termination and execution events belonging to this subset occur. Finally, if we know
that the last data state recorded before this interval fulfils the implicit invariant mentioned
above,

(PartialInvariant)

∀Op : OpSet • (Inv ⇒ ¬ (pre Op)) ∨ ((Op ∧ Inv) ⇒ Inv′)
Inv at t
s �ttr ({op : OPS \OpSet • TermOf op} ∪

{op : OPS \OpSet • ExecOf op}) ↑ttr (t, t′) = 〈〉
[ OpSet ⊆ OPS ]

∀ t′′ : (t, t′) • Inv at t′′

then we can deduce that all data states during this interval fulfil this implicit invariant, too.

To conclude, the above examples should have made clear the principle that properties de-
pending on the two parts of a specification unit are reduced to properties depending only
on a single part.

Methodological Support. According to Grieskamp et al. [2001], “a major drawback of for-
mal techniques is that they are not easy to apply for the average software engineer. Besides
the facts that users of formal techniques need an appropriate education and have to deal
with lots of details, they are often left alone with a mere formalism without any guidance on
how to use it. Hence, methodological support is a key issue to bring formal techniques into
practice.” We acknowledge that this also applies to RT-Z. As mentioned above, a future goal
is to lift RT-Z to the level of formal methods.

Initial results towards this goal have already been achieved. In particular, in [Heisel and
Sühl, 1997] we have presented methodological support for a predecessor of RT-Z. Heisel
[1997] has dealt with the methodological and machine support of formal techniques in the
context of software engineering more generally and more comprehensively.

Operational Semantics. There are several approaches to defining the semantics of specifi-
cation languages. In this thesis, we have used the denotational approach. The advantage
of the denotational approach has been the possibility to uniformly cover the concrete (e.g.,
process terms) and abstract language constructs (e.g., predicates).

There are, however, tasks for which an operational semantics is more appropriate. For in-
stance, if RT-Z is to be supported by a model checker (analogously to the support of CSP
by FDR [Formal Systems (Europe) Ltd, 2000]), an operational semantics is closer to the im-
plementation of a model checker than the denotational semantics. The definition of an op-
erational semantics must be accompanied by the demonstration of its congruence to the
denotational semantics.
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Formalisation in Isabelle/HOL. The formalisation of the semantic model of RT-Z in a the-
orem prover, e.g., the HOL instance of the generic theorem prover Isabelle [Paulson, 1996],
is a promising task. It would allow us to implement the calculus discussed above in that
theorem prover and thus to automate the process of discharging proof obligations. This
automation would also increase the level of confidence in the validity of proofs.

Formalising RT-Z in Isabelle/HOL need not begin from scratch. There are formalisations of
Z [Kolyang et al., 1996] and (plain) CSP [Tej and Wolff, 1997] in HOL/Isabelle, which could
be taken as a basis.

Other Tool Support. For RT-Z to be able to cope with more complex systems than those case
studies presented in the previous chapter, tool support is indispensable. We can distinguish
between two types of tool support for RT-Z specifications.

• Existing tools for Z that can be applied to the Z part of RT-Z specification units.

• Tools that are specific to RT-Z.

The latter ones would be applied to specification units as a whole, e.g., in order to check
dependencies between the parts. This would involve consistency checks and plausibility
checks, e.g.,

• the consistency of data domains associated with corresponding ports of two specifica-
tion units that are connected by aggregation;

• the presence of an operation schema in the Z part for each operation-related event
referred to in the CSP part;

• the reference of each (non-auxiliary) operation schema in the Z part by the CSP part.

Proof support for RT-Z, e.g., for checking refinement between specification units, would go
beyond mere consistency and plausibility checks. It would be based on a formalisation of
the denotational semantics (or a congruent operational semantics) of concrete and abstract
specification units and the transformation rules for aggregation and extension in a theorem
prover or model checker, or both.

To conclude, in developing RT-Z we have made substantial contributions to the research
field dealing with the integration of formalisms. Once the goals outlined in this section are
achieved, RT-Z can be regarded as a full-fledged formal method.
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Appendix A

Base Formalisms

In this appendix, we give a brief overview of the two specification languages that constitute
the integrated formalism RT-Z. The Z notation is dealt with in Section A.1, and timed CSP is
the subject of Section A.2. In Section A.2.8, we refer to some real-time approaches related to
timed CSP.

A.1 Z Notation

The Z notation is a formal specification language, which is in widespread use in academia
and—to a restricted extent—also in industry. It is a strongly typed language based on first-
order predicate logic and set theory.

We assume some familiarity with the Z notation throughout this thesis, for a detailed ac-
count of Z consult [Woodcock and Davies, 1996]. One of the merits of the Z notation is the
emerging international standard, which will certainly promote the production of tool sup-
port for Z and its further dissemination. In the remainder of this section, we briefly discuss
the definitions of the standard that we use in this thesis.

A.1.1 Standardisation

The ISO standard for Z is now near completion. The version of the standard to which we
refer throughout this thesis is the Draft International Standard [ISO, 2002]. We term this
document ‘Z Standard.’ In this section, we discuss the definitions of the Z Standard that we
need in this thesis, in particular for the definition of the semantics of the integrated formal-
ism RT-Z in Part III.

The scope of the Z Standard is the definition of the syntax, the type system and the semantics
of the Z notation. No method of using the Z notation is prescribed.

Concerning the syntax, the Z Standard introduces one main novelty compared with the ver-
sion of the Z notation defined in [Spivey, 1992]: Z specifications are structured into sections.
More precisely, a Z specification consists of a sequence of sections. Each section in a Z speci-
fication can inherit from other sections that precede it. Inheritance means that all definitions
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in the inherited section are available in the inheriting section. There is a dedicated section
prelude, which is implicitly inherited by all sections of a Z specification; it contains general-
purpose definitions, e.g., the natural numbers.

The Z Standard defines the formal meaning of Z specifications by means of a denotational
semantics. Roughly speaking, the meaning of a Z specification is given “in terms of the
semantic values that its global variables may take consistent with the constraints imposed
on them by the specification” [ISO, 2002, p. 71].

The mathematical metalanguage used to define the denotational semantics is based on clas-
sical first-order logic and Zermelo–Fraenkel (ZF) set theory. It is similar in appearance to the
notation of Z itself. In ZF set theory, there are only sets. Members of sets can only be other
sets. Structures like tuples and natural numbers are not primitive in ZF set theory, but there
are well established ways of representing them, see [Hamilton, 1982] for details.

The Z Standard introduces the symbol U to denote “the universe—a world of sets—provid-
ing semantic values for all Z expressions (including generic expressions)” [ISO, 2002]. U is
assumed to be big enough to contain the set NAME, from which Z names are drawn, and
an infinite set. Further, U is supposed to be closed under the formation of power sets and
products. According to the Z Standard [ISO, 2002], “the formation of a suitable U comprising
models of sets and tuples, as needed to model Z, is well-known in ZF set theory.” On this
basis, the symbol W is introduced by the Z Standard to denote the world of semantic values
for Z expressions that are not generic, i.e., W ⊂ U.

The Z Standard proceeds with defining the structure of the denotations of Z specifications.
To this end, the symbol Model is introduced to denote the set of models, which associate
the names of global variables declared by a Z specification with semantic values (Model ==
NAME 7 7→ U), and SectionModels is introduced to denote the set of section models, which are
functions from section names to their sets of models (SectionModels == NAME 7 7→ P Model).

The semantics of the different syntactic categories of the Z notation—specifications, sections,
paragraphs, expressions, predicates and types—is defined by corresponding semantic rela-
tions from the Z syntax to the semantic universe in terms of operations of ZF set theory. We
deal only with the semantic relations to which we refer in this thesis.

• [[ spec ]]Z denotes the meaning of the specification spec. The meaning of a Z specifica-
tion is a function mapping its section names to sets of models. For each section name of
a Z specification, each model related to that section name maps the global variables de-
clared in that section to a semantic value that is consistent with all constraints imposed
on the variable in that section.

• [[ pred ]]P denotes the meaning of the predicate pred. The meaning of a predicate is the
set of models in which the predicate is true.

• [[ expr ]]ε denotes the meaning of the expression expr. The meaning of an expression is
a function that maps each model to the semantic value that is the result of evaluating
the expression with respect to the given model.

Although the Z Standard does not prescribe any method of using the Z notation, the pre-
valent conventions of using the Z notation in a state-oriented way (i.e., as a model-based
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specification language) are described in an annex. Following these conventions, a system is
specified in terms of its states and the operations on these states.

We refer to these conventions in this thesis, because they reflect the way in which the Z
notation is used in the context of concrete specification units.

A.1.2 Discussion

Z is a powerful notation for describing and analysing a system in terms of its states and
operations. It is particularly adequate for systems whose primary nature is that of a data-
processing system, i.e., for systems that have a non-reactive nature.

The schema calculus is a characteristic feature of the Z notation, which makes it superior to
an unstructured use of mathematical logic and set theory. It provides means for structur-
ing Z specifications: “mathematical objects and their properties can be collected together in
schemas: patterns of declarations and constraints” [Woodcock and Davies, 1996].

Moreover, the Z notation is based on well-established and well comprehensible concepts,
namely set theory and predicate logic. This makes it relatively simple to learn using Z.

Another merit of Z is that it is strictly typed. Every entity in a Z specification has a unique
type. This allows one to type-check Z specifications which helps detect certain classes of
errors and improve the consistency of Z specifications.

In spite of these strengths, several drawbacks are attributed to the Z notation.

First, and most important, the Z notation is not designed to deal with behavioural aspects,
e.g., the temporal order in which operations are to be performed or the distinction between
operations that are to be available at the interface of a system and operations that have only
auxiliary purposes.

Second, it is not adequate to fix architectural aspects using the Z notation, because it is not
designed to define aspects of a system architecture such as concurrency, distribution or com-
munication.

Finally, the Z notation provides only rudimentary means for structuring specifications. Sche-
mas are the main facility of the Z notation to structure definitions, but they are not adequate
to decompose the specification of a complex system into encapsulated components.

These drawbacks have been our main motivation—and also the motivation of others—to
seek for a complementary formalism that has its strengths where the Z notation has its weak-
nesses. The next section deals with such a formalism.

A.2 Timed CSP

In this section, we introduce the real-time process algebra timed CSP. Since most people are
not familiar with timed CSP, we treat it in greater depth.
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Timed CSP is a real-time extension of the more widespread process algebra CSP, originally
introduced by Hoare [1985] and further developed by Roscoe [1998]. We assume some fa-
miliarity with process algebras in general and with CSP in particular.1

Earlier versions of timed CSP (sometimes also termed real-time CSP) were described by
Schneider and Davies [Schneider, 1990, Davies, 1993, Davies and Schneider, 1995]. The ver-
sion of timed CSP that we use in this thesis is that treated by Schneider [1999b]. Our descrip-
tion of timed CSP in this section is closely based on the last reference.

Let us first outline the basic concepts underlying CSP. The language of Communicating Se-
quential Processes (CSP) was designed for the description and analysis of systems that con-
sist of interacting components. Components are described in CSP by processes. Processes are
thought of as being independent, self-contained entities with particular interfaces through
which they interact with their environment. Processes can be combined with other processes
to form larger processes, i.e., the way of describing processes is compositional.

Since processes interact with other processes only through their interface, the relevant in-
formation derived from a process description is its behaviour at the interface: the internal
structure of processes is not relevant when describing and analysing the behaviour of the
system that is constituted by these processes. The interface of a process consists of a set of
events. An event represents a particular kind of atomic action that can be performed with
the participation of the process. In describing a process, the first issue to be decided is the
set of events which it can perform. The interface of a process can be considered as its static
specification. Its dynamic specification describes how it will actually behave at the interface,
i.e., it describes the patterns of events in which it can participate.

The universe of events is denoted by Σ. Events are thought of as occurring on particular
channels, which link processes with each other. A channel can be associated with an alphabet,
containing the values that can be carried by events occurring on that channel. An event
occurring on a channel with an associated alphabet consists of two components: the channel
c on which it occurs and the value v that is carried by the event.2

The language of (untimed) CSP and its associated semantic models, e.g., the traces model
or the infinite failures–divergences model, are appropriate for specifying and analysing sys-
tems in terms of the order in which they can perform events. These models have deliberately
abstracted from timing aspects such as the precise times at which events occur or the delays
before events become enabled. For systems whose correct operation depends only on the
order in which events are performed, these semantic models provide the appropriate level
of abstraction, containing no unnecessary details.

Systems, by contrast, whose correct operation depends on the precise real-time behaviour
can be analysed only in the context of a semantic model that introduces an explicit notion of
time. Examples of relevant aspects of the real-time behaviour are maximal response times
or scheduling conditions. The language of timed CSP and its associated semantic model ex-
tend CSP in two ways in order to introduce a notion of time. First, the process operators of

1 Fidge [1994] provides an overview of several process algebras and their underlying concepts.
2 In the remainder of this section, we abstract from the “internal structure” of events by denoting them by

atomic identifiers.
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CSP are adopted and re-interpreted on a more concrete, timed level. Second, additional con-
structs are introduced that allow the precise description of time-sensitive behaviour. These
additional constructs are delay, timeout and timed interrupt.

This section is organised as follows. We introduce the language of timed CSP along with an
outline of its operational semantics in Section A.2.2. The properties of the timed transition
system that is induced by the operational semantics are discussed in Section A.2.3. The
structure of timed observations that can be made of processes and the denotational semantics
of timed CSP are treated in detail in Section A.2.4. Of particular interest when discussing the
denotational semantics is the treatment of recursion. Then, in Section A.2.5, the predicate
language of timed CSP is introduced, which allows one to specify properties that processes
are required to satisfy. Finally, we outline the calculus provided by timed CSP in order to
verify that processes satisfy specified properties.

A.2.1 Computational Model

We first discuss the assumptions that underlie the interpretation of timed CSP processes in
the context of real-time.

Instantaneous events: Timed CSP considers processes as concurrent, synchronising com-
ponents. Events represent synchronisations between concurrent processes. It is hence
natural to consider events as instantaneous, occurring at a single instant of time and
associated with no duration.

To model actions that need time, several events must be used in order to mark the
corresponding intervals.

Newtonian time: It is assumed that there is a single conceptual global clock. Time progresses
at a constant rate in all processes of a system with reference to this global clock. In this
way, the simultaneity of events occurring in concurrent processes can be judged. The
processes do not really read the global clock; rather it is a concept used to define the
meaning of processes.

Real-time: The time domain of timed CSP are the positive real numbers. There is hence no
minimal delay between events occurring at different time instants.

Maximal parallelism: Concurrent processes are supposed not to compete for resources, i.e.,
they are supposed to run on dedicated processors having sufficient processor time and
memory. This maximal parallelism assumption means that concurrent processes need
to synchronise only when this is explicitly specified. In particular, there are no implicit
scheduling assumptions. When scheduling is to be taken into account, it needs to be
modelled explicitly.

Maximal progress: An event occurs precisely when all participating processes are ready to
engage in it. An internal event, which does not require the participation of the process
environment, occurs as soon as the process is ready to perform it. An external event,
by contrast, requires the participation of the process and its environment: it occurs as
soon as both participants are ready to engage in it.
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The computational model incorporates the most basic design decisions underlying the lan-
guage of timed CSP. It embodies the decisions which aspects of the system behaviour are
considered relevant (and can thus be modelled directly) and, conversely, from which other
aspects can be abstracted.

A.2.2 Process Term Language and Operational Semantics

In this section, we introduce the language of timed CSP processes, and its operational se-
mantics is defined in terms of the transitions that processes can undergo. The operational se-
mantics induces a timed labelled transition system, which contains all executions that timed
CSP processes can perform.

The possible executions of processes are described in terms of transitions. Due to the de-
cision to treat events as instantaneous, taking no time, transitions that represent the occur-
rence of events are not associated with the passage of time. Therefore, additional evolu-
tion transitions are introduced representing the progress of time. This separation of event
and evolution transitions has the advantage that the process operators already present in
(untimed) CSP can be defined consistently with their meaning in (untimed) CSP: the event
transitions can be adopted, and additional evolution transitions are defined.

In the timed context, the event transition P
µ→ P′ means that process P is immediately able to

perform event µ, and it will result in process P′ when doing so. The transition from process
P to process P′ will take no time, i.e., the global clock will not change during the transition.

The evolution transition P d
 P′ means that process P is able to evolve for d time units, and

will result in P′ when doing so. After this transition, the state of the global clock will have
advanced by d time units. During an evolution transition, no event transition can occur. If
P is able to evolve through a sequence of states {Pi} over all time without performing any
events, then the abbreviation P ∞

 is used to denote this. Formally,

P ∞
 = ∃{Pi}i∈N, {di}i∈N • (

∞∑
i=0

di = ∞ ∧ P = P0 ∧ ∀ i • Pi
di Pi+1).

In the following, we introduce all operators of the process term language of timed CSP. For
selected operators, we also provide their associated transition rules.

Performing Events

Deadlock. The timed CSP process Stop represents deadlock. Since this process is unable
to perform any event, no event transition rule is associated with it. On the other hand, the
process Stop allows time to progress, which results in the following evolution transition rule.

Stop d
 Stop
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Event Prefix. The process a → P is immediately ready to engage in the event a. It remains
in its initial state, continually offering a, until a occurs. The subsequent behaviour is due to
P. Since events are instantaneous, control passes instantly to process P when a occurs. The
above is formalised by the following rules.

(a → P) a→ P (a → P) d
 (a → P)

Timed Event Prefix. The process a@u → P is a more general form of event prefix. It allows
us to record the time elapsed between the initial offer of the event a (the time the process
starts executing) and the occurrence of a. The time variable u can have free occurrences in P;
it is bound at the instant of time at which a occurs.

The process is immediately ready to engage in a, and offers a continually until it occurs. The
subsequent behaviour is that of P with the time variable u substituted by the time value at
which a has occurred (the time elapsed between the process has started and a has occurred).

Prefix Choice. The behaviour of the prefix choice x : A → P(x) is similar to that of the event
prefix. It is immediately ready to engage in each of the events in A. It remains in its initial
state, continually offering all events in A, until an event in A, say a, occurs. In this case, the
variable x is bound to a, and the subsequent behaviour is determined by P(a).

Successful Termination. The process Skip represents the process that is immediately ready
to terminate (modelled by the dedicated event X), remaining in this state until termination
occurs, and that deadlocks afterwards.

Note that the termination event is treated like a usual external event, i.e., the termination of
a process requires the participation of the environment.

Choice

Timeout. The timeout construction P .{d} Q provides a time-sensitive choice between the
processes P and Q. When the process starts execution, P has control. If P performs an
external event within the first d time units, then the choice is resolved in favour of P. It
may also perform internal events, but this does not resolve the choice. When, on the other
hand, d time units have elapsed without P having performed an external event, a timeout
occurs and the choice is resolved in favour of Q, i.e., P is discarded and control is passed to
Q, which starts executing at the instant of time at which the timeout occurs.

The transition rules for the timeout operator implement the mechanism that ensures that
internal events are urgent: the timeout is modelled by the internal event, which is denoted
by τ . It must occur exactly at the time instant when the timeout duration has elapsed. This is
achieved by ensuring that all evolution transitions cannot lead beyond the timeout duration:
when d time units have elapsed, the only transition that is enabled is the event transition
related to the timeout. This forces the timeout event to occur precisely when the timeout
duration has elapsed.
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Before the timeout occurs, the transitions of the whole timeout process are that of P.

P
µ→ P′ [

µ ∈ ΣX
]

P .{d} Q
µ→ P′

P τ→ P′

P .{d} Q τ→ P′ .{d} Q

P d′
 P′

[ d′ ≤ d ]
P .{d} Q d′

 P′ .{d− d′} Q P .{0} Q τ→ Q

Delay. The process Wait d represents a delayed termination. It delays for exactly d time
units, unable to perform any event, and is ready to terminate afterwards. This process is a
derived process defined as Stop .{d} Skip.

External Choice. The process P � Q provides a choice between its component processes,
which is resolved in favour of the process that performs the first external event. The external
choice operator allows its component processes to evolve independently, enabling and with-
drawing events as time progresses. The occurrence of internal events does not resolve the
choice.

Note that the environment has control over the resolution of the choice by offering an initial
external event of either component process at a particular time instant.

Internal Choice. The process P u Q behaves either like P or like Q. Its environment, how-
ever, has no control over the resolution of this choice. It is not fixed when this choice is re-
solved. The resolution of this nondeterministic choice may be resolved by the implementor,
or it may be resolved only at run-time. Even at run-time, it can be delayed until the point
at which an event is performed that could be offered only by one of the two component
processes.

The internal choice operator must be considered as a specification construct. It defines a
process in terms of the alternative behaviours it can exhibit, but it gives the environment no
control over which alternative is chosen.

Indexed Internal Choice. The indexed internal choiceui∈I Pi generalises the binary internal
choice. The choice is resolved in favour of an arbitrary Pi with i ∈ I.

Concurrency

The assumptions underlying the computational model—in particular the maximal paral-
lelism, the maximal progress and the Newtonian time assumptions—have a direct impact
on the behaviour of concurrent processes. First, maximal parallelism in connection with
Newtonian time means that concurrent processes must always perform evolution transi-
tions together: they are not scheduled sequentially and time must progress at the same rate
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in all of them. Second, maximal progress forces events that are in the synchronisation set3

of concurrent processes to occur exactly when all participants are ready to engage in these
events.

Alphabetised Parallel. In the parallel composition P |[ A | B ]|Q, each of the component pro-
cesses is associated with an alphabet. Within the intersection of the alphabets, the com-
ponent processes must synchronise, and outside this intersection they can perform events
independently. Moreover, they must synchronise on termination. As mentioned, time must
progress at the same rate in all component processes.

P
µ→ P′

Q
µ→ Q′ [

µ ∈ (A ∩ B)X
]

P |[ A | B ]|Q µ→ P′ |[ A | B ]|Q′

P
µ→ P′

[ µ ∈ (A ∪ {τ}) \ B ]
P |[ A | B ]|Q µ→ P′ |[ A | B ]|Q

Q
µ→ Q′

[ µ ∈ (B ∪ {τ}) \ A ]
P |[ A | B ]|Q µ→ P |[ A | B ]|Q′

P d
 P′

Q d
 Q′

P |[ A | B ]|Q d
 P′ |[ A | B ]|Q′

Interleaving. In the process P ||| Q, the component processes can execute independently of
each other. Each external and internal event is performed by precisely one of the compon-
ents. The only exception is the termination eventX: its occurrence requires the participation
of the component processes. Time must progress in the parallel processes at the same rate.

There is also an indexed form of interleaving |||i∈I Pi, in which a collection of processes Pi
are interleaved, one process for each member of the index set I. The index set must be finite.
Since the binary interleaving operator is commutative and associative, indexed interleaving
can be traced back to the binary operator.

Interface Parallel. Interface parallel composition P |[ A ]|Q is a hybrid form, i.e., it combines
the features of the alphabetised parallel composition and interleaving. P and Q must syn-
chronise on all events in the interface set AX, and they interleave on all other events. Again,
time must progress in the parallel processes at the same rate.

3 The synchronisation set is the set of events on which the parallel processes must synchronise.
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There is also an indexed form of interface parallel composition ‖i∈I[A]Pi, in which a collec-
tion of processes Pi are composed in parallel, one process for each member of the index set
I. All processes Pi must synchronise on events in the set AX, and they can perform events
outside this set independently. The index set must be finite. Since the binary interface par-
allel operator is commutative and associative, the indexed interface parallel operator can be
traced back to the binary one.

The interface parallel operator can be considered as the basic form of parallel composition
from which the alphabetised composition and the interleaving composition can be derived
as special cases.

Abstraction

Hiding. In the process P \ A, all events in A are hidden from the environment. Hiding
an event means to remove it from the process interface, so the environment is no longer
required to participate in its occurrence. The encapsulation achieved by the hiding operator
consists in identifying all processes that participate in an event.

The maximal progress assumption requires an event to occur when all participating pro-
cesses are ready to engage in it. This forces an internal event to become urgent. Urgency
is captured in the following transition rule by ensuring that evolution transitions are inhib-
ited when transition rules for internal events are enabled. That is, time is prevented from
progressing beyond points at which internal events are enabled. Accordingly, the evolution
transition rule has a negative premiss.

P
µ→ P′

[ µ /∈ A ]
P \ A

µ→ P′ \ A

P a→ P′
[ a ∈ A ]

P \ A τ→ P′ \ A

P d
 P′

∀ a : A • ¬ ∃P′ • P a→ P′

P \ A d
 P′ \ A

As discussed in the next section, the set of events that are offered by a process does not
change during an evolution transition. This means with respect to the above evolution rule
that if no event in A is possible for P, then no event in A will be possible for P′. This ensures
that the maximal progress assumption is not violated, because no internal event can become
enabled during the evolution transition.

Renaming. The renaming operators allow the synchronisation events of a process to be
renamed. The renaming is achieved by means of a function f : Σ→ Σ satisfying f (X) = X,
i.e., the termination event must not be renamed.

The forwardly renamed process f (P) is able to perform event f (a) whenever P is able to
perform a. The timing behaviour is not affected. Note that the renaming function need not
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be injective. If it is not injective, then several events can be mapped to a single event. This
can lead to additional nondeterminisms in the renamed process.4

The backwardly renamed process f−1(P) is able to perform event a whenever P is able to
perform f (a). Backward renaming does not introduce any additional nondeterminism, be-
cause different events performed by P are always mapped to different events performed by
f−1(P). Again, the timing behaviour is not affected.

Flow of Control

Sequential Composition. The sequential composition (P; Q) starts with executing P. When
P terminates successfully, which is indicated by the occurrence of the event X, then control
passes immediately from P to Q. Urgency of X in the context of sequential composition
means that it occurs precisely when the first process is ready to terminate.

Interrupt. The interrupt construction P 4 Q allows P to execute, which can be interrupted
at any time by Q performing an external event. In effect, Q is executed concurrently with P
until either P terminates or Q performs an interrupt event.

Unlike sequential composition, in the interrupt construction both P and Q must evolve to-
gether. The process Q is also able to perform internal events without triggering the interrupt;
this allows Q to offer and retract external events as time progresses.

Timed Interrupt. The timed interrupt construction P 4d Q allows P to execute for exactly d
time units, after which the interrupt is triggered and control is passed to Q, unless P has ter-
minated before the interrupt occurred. In contrast to the event-driven interrupt construction
discussed above, process Q is not performed concurrently with P, because its state does not
have any impact on triggering the interrupt.

P
µ→ P′

[ µ 6= X ]
P 4d Q

µ→ P′ 4d Q

P X→ P′

P 4d Q X→ P′

P d′
 P′

[ d′ ≤ d ]
P 4d Q d′

 P′ 4d−d′ Q P 40 Q τ→ Q

Recursion

Recursive process definitions N = Q consist of a process variable N and a timed CSP process
term Q, which may contain instances of N. The recursive invocation of a process takes no
time. Any delay required for recursive invocations must therefore be explicitly included. In

4 Consider the function f =̂ {a 7→ c, b 7→ c} and the process P =̂ (a → P1) � (b → P2), which is deterministic.
The process f (P) = (c → f (P1)) � (c → f (P2)), however, is not deterministic, because it is equivalent to
c → (f (P1) u f (P2)).
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this way the treatment of recursion is separated from timing considerations. The recursive
definition N = Q does really equate N and Q.

In the mutual recursion construction N = Q, a collection of process variables N are col-
lectively bound to a collection of process definitions Q, which may refer to those process
variables. Any process variable appearing in a process definition must be bound.

A.2.3 Timed Transition Systems

The transition rules of the operational semantics, which define the meaning of the process
constructors, induce a timed labelled transition system describing all possible executions of
timed CSP processes.

In this section, we deal with the properties of this transition system, which concern the re-
lationships between different transitions that might appear. These properties ensure that
processes behave in a natural and reasonable way. Some properties are concerned with the
way processes evolve through time, and others are concerned with the relationship between
evolution and event transitions. They allow us to gain a better understanding of the nature
of process executions.

Evolution Transitions

The following properties concern the relationships between evolution transitions.

Time determinism: Evolution transitions are deterministic, i.e., if a process evolves through
time, the result is unique. Alternative behaviours arise only because of event transi-
tions.

P d
 P′ ∧ P d

 P′′ ⇒ P′ ≡ P′′

Time additivity: If process P is able to evolve for d time units resulting in process P′ and if
process P′ is able to evolve for d′ time units resulting in process P′′, then P must be
able to evolve for d + d′ time units resulting in P′′. In other words, the presence of an
intermediate process state P′ does not influence the process state that is finally reached.

P d
 P′ ∧ P′ d′

 P′′ ⇒ P d+d′
 P′′

Time interpolation: Conversely, if process P is able to evolve for d + d′ time units resulting in
process P′′, then it must have an intermediate process state P′ at time d.

P d+d′
 P′′ ⇒ ∃P′ • P d

 P′ ∧ P′ d′
 P′′

Time closure: If process P is able to evolve for all durations less than d, it must also be able
to evolve for d time units.

(∀ d′ : R+
0 | d′ < d • ∃P′ • P d′

 P′) ⇒ (∃P′ • P d
 P′)
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An infinite sequence of evolution transitions can be described by an infinite sequence
of processes {Pi}i∈N and durations {di}i∈N. Such a sequence is called Zeno sequence, if
the sum of all durations di is finite:

∞∑
i=0

di = d < ∞.

Such a sequence indicates that process P is able to evolve for all durations less than d
time units. The time closure property allows us to deduce that P is also able to evolve
for d time units. That is, all Zeno sequences have a limit process.

Together, the properties of time determinism and time interpolation ensure that each evolu-
tion transition passes through a unique continuum of process states.

Executions

An execution of a process is described in terms of an alternating sequence of process states
and transitions, where a transition may be an event transition or an evolution transition.
Each transition in an execution relates the two process states that are adjacent.

The properties of evolution transitions discussed above allow one to record evolution tran-
sitions more economically. First, time additivity allows one to collapse any adjacent pair of

evolution transitions P d
 P′ and P′ d′

 P′′ to a single evolution transition P d+d′
 P′′. Second,

an infinite sequence of evolution transitions with initial process P can be collapsed in a sim-
ilar way by exploiting the time closure property. If the sum of the associated durations is

finite, then the infinite sequence can be collapsed into a single evolution transition P d
 P′;

otherwise, if the sum is infinite, it can be collapsed into the evolution transition P ∞
 .

Altogether, the properties of time additivity and time closure allow one to represent each
process execution as an alternating sequence of process states and transition labels that meets
the condition that an evolution transition must not be followed by another evolution transi-
tion.

An execution may be finite or infinite. It is called maximal, if it cannot be extended by further
transitions. An infinite execution must contain an infinite number of event transitions inter-
spersed with evolution transitions. A finite maximal execution either ends with a process
that cannot undergo an event or evolution transition; or it ends with the evolution transition
∞
 .

Process executions have further useful properties, which concern the relationships between
event transitions the process can perform and the evolution transitions it can undergo.

Urgency of internal events: As a consequence of the maximal progress assumption, internal
events occur as soon as they are enabled. So, if a process can perform an internal event
it is not able to evolve for any duration.

P τ→ ⇒ (∀ d : R+
0 • ¬ P d

 )
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This represents the mechanism of the operational semantics to treat internal events as
urgent.

Constancy of offers: The set of external event transitions that are enabled does not change
when time progresses, i.e., when a process undergoes an evolution transition. In other
words, when P evolves to P′, then all events that P can perform must also be possible
for P′, and conversely, all events that P′ can perform must have been possible for P.

P d
 P′ ⇒ (∀ a : ΣX • P a→ ⇔ P′ a→ )

Any change of the set of events offered by a process must be accompanied by an event
transition.

Unrealistic behaviours: In the world of implementations, Newtonian time progresses at a
constant rate and cannot be blocked. The blockage of time is only a mechanism used by
the operational semantics in order to express the urgency of internal events. However,
it does not represent a reasonable behaviour in its own right, because it contradicts the
unstoppable nature of time.

For this reason, any maximal execution, which is to represent the behaviour of a real
process, must have an infinite duration, i.e., it must be possible to observe the process
forever. A maximal execution of a process that does not progress beyond a particu-
lar point of time is not consistent with Newtonian time. There are different kinds of
maximal executions with finite duration.

Timestop: A maximal execution can end with a process that is neither able to perform
an internal or external event neither to undergo an evolution. Such a process is
termed timestop, because it blocks time from progressing.

Spin: A maximal execution can have infinitely many transitions but only finitely many
evolution transitions. In such a sequence, all evolution transitions must appear
within an initial segment; the remaining segment contains only event transitions.
These event transitions occur at the same instant of time. Such an execution is
called spin execution.

Zeno: A maximal execution can consist of infinitely many evolution transitions; but
these could sum only to a finite duration. Such an execution is termed Zeno exe-
cution, because it approaches a time without reaching it.

All of these kinds of unrealistic behaviours can arise within the timed transition system
induced by the operational semantics; however, only in the context of recursive process
equations that are not time-guarded, see the next section.

Well-timed Processes

All of the finite duration maximal executions arise in the context of recursive process equa-
tions N = Q in which there is no sufficient delay between the time a process starts executing
and the time it is invoked recursively. When such a recursive invocation occurs immedi-
ately, timestops and spin executions may be caused; recursive invocations with ever redu-
cing delays may give rise to Zeno executions. These unrealistic behaviours are all prevented
by introducing a minimum positive delay before the time it is invoked recursively.
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A process term is t-guarded if any execution of that process term cannot reach a recursive
invocation in less than t time units. A process term is time-guarded if there exists a t > 0 such
that it is t-guarded.

A timed CSP process is well-timed if all associated single and mutual recursive definitions are
time-guarded. Well-timed processes can never exhibit timestops, spin executions and Zeno
executions. This means that if a process is well-timed then all of its maximal executions have
infinite duration.

Finally, the executions of well-timed processes satisfy the property of finite variability. It
states that any finite time interval of an execution should contain only finitely many events.
Expressed the other way around: infinitely many events take infinitely long to occur.

A.2.4 Denotational Semantics

Processes in timed CSP are considered as interacting system components. That is, processes
are judged only in terms of their behaviour at the external interface; their internal imple-
mentation is not relevant. Thus, two processes that cannot be distinguished by any context,
into which they could be placed, are considered equal. In a timed setting, the context into
which a process is placed can be time-sensitive: it can make the offer of events dependent
on the progress of time.

The timed failures model is a semantic model for well-timed processes: it associates each process
with a set of timed failures. A timed failure is a record of a process execution, consisting of a
timed trace and a timed refusal.

The timed failures model is a compositional model; it formalises those aspects of the beha-
viour of a process that can be observed when interacting with it, and it abstracts from the
other aspects.

Timed Observations

When a process executes, it performs events at its external interface. A timed trace is a record
of performed events together with the times at which they were performed relative to the
starting point of the process execution. Internal events are not recorded in a timed trace,
because they are not visible to the environment.

A timed event is drawn from the set R+
0 ×Σ, consisting of a time and an event. A timed trace

is a sequence of timed events in which the times are non-decreasing: the events are recorded
in temporal order.5

5 Note that even events that occur at the same time instant are arranged in sequence, i.e., a temporal order
between such events is fixed in a timed trace.

On the one hand, this might appear counter-intuitive, because a causal relationship between simultaneous
events is suggested. On the other hand, there is an issue of compatibility between (untimed) CSP and timed
CSP: process expressions are used in both in order to define the temporal ordering of events. The processes

P =̂ a → b → Stop
Q =̂ b → a → Stop

e.g., define two temporal orderings of the events a and b, which are contradictory. Thus, if the two are com-
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A timed trace may be a record of a finite or infinite duration execution. If it corresponds to
a finite duration execution, then its length must be finite; this is dictated by finite variability.
Otherwise, it may be finite, if the execution contains only finitely many external events, or it
may be infinite. In the latter case, the times in the timed trace are not bounded.

Schneider [1999a] defined several functions on timed traces. They are treated in Appendix E.

The timed traces associated with a process can be determined from its executions. An exe-
cution, as introduced in Section A.2.3, is an alternating sequence of process states and transi-
tions, so it contains information about events that are performed and their associated times.
The timed traces associated with a process are those that are associated with its executions.

Processes interact with each other by synchronising on events at particular times. When
a process is offered the opportunity to perform an event, it can make one of two possible
responses. It can either perform the event, or else it can refuse to perform it. The timed trace
is a record of the timed events performed during an execution, whereas the timed refusal is
a record of which timed events were refused.

In the timed setting of timed CSP, event refusals must be considered at particular times
and not only at the end of the execution: refusal information is available throughout an
execution.6 The refusal of an event a at time t reflects the fact that a is not possible in the
process state reached at t. If the execution records the performance of several events at time
t, passing through several states, then the refusal information is associated with the last
of these states; the refusal information is subsequent to all events performed at that time
instant. Accordingly, the states of an execution associated with refusal information are those
states that are followed by an evolution.7

A timed refusal ℵ is a set of timed events. Since refusals accompany evolutions, and event
offers are constant over evolutions, the same set of events will be refused throughout an
evolution. Refusal sets can therefore be structured such that the set of refused events is
finitely variable with respect to time. This means that a refusal set will record intervals over
which sets of events are refused. The appropriate intervals are half-open, corresponding to
the stable states along evolutions.

Schneider [1999a] defined several functions on timed refusals. They are described in Ap-
pendix E.

posed in parallel, the result should be deadlock.

P ‖ Q ≡ Stop

If, however, the process P ‖ Q is considered in the timed setting of timed CSP and if there would be no tem-
poral order between events occurring at the same time, then the above equation would not be true, because
P and Q are both able to perform a and b simultaneously, so their parallel composition would also have this
ability.

This trade-off between intuition and the need to be compatible with CSP was resolved in timed CSP in favour
of compatibility.

6 This is a contrast to the failures–divergences model of CSP, in which refusal information is available only for
the end of an execution.

7 Note that an environment can offer a process several instances of a single event at a single time instant. It is
thus possible that an event is recorded for a particular time instant in the timed trace and in the timed refusal.
This means that the process performed as many instances of the event as recorded in the timed trace, but
refused to perform any further instance as witnessed by the membership of this event in the timed refusal.
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A timed refusal ℵ is said to be consistent with an execution if every timed event (t, a) in
the timed refusal can be refused during the execution. This means that an a transition is not
possible for the particular process state reached at time t during the execution. Several timed
refusals will be consistent with any particular execution. In particular, the empty set will
vacuously be consistent with any execution. Every execution will have a unique maximal
timed refusal consistent with it, containing all possible refused events for the duration of the
execution. A set ℵ will be consistent with an execution if, and only if, it is a subset of the
maximal timed refusal.

Processes are considered in terms of the possible observations that can be made of their
executions. These will be described in terms of timed traces and timed refusals. On the one
hand, every execution is associated with exactly one timed trace. On the other hand, the
events observed to be refused during the execution are not explicit in the transition. Possible
timed refusals are those that are consistent with the execution, but the observation of a timed
refusal depends on what was offered to the process during the execution: if nothing was
offered, then no events will be observed to be refused.

An observation of an execution is a timed failure (s,ℵ) consisting of a timed trace s and a
timed refusal ℵ. The timed trace s is the sequence of events occurring in the execution, and
the timed refusal ℵ is some consistent set of timed events which could be refused during the
execution. A natural way to understand the pair (s,ℵ) as an observation of the process is as
evidence that it is able to perform the sequence of events s, and to refuse all events in the set
ℵ if offered them while performing s. In general, it is a partial record of an execution.

A dual way to consider the pair (s,ℵ) is from the point of view of the environment. The
environment offers events at particular time instants: these offers are either accepted and
appear in s, or else they are refused and appear in ℵ. The timed failure thus provides a record
of all events that were offered to the process during the observation, indicating whether
they were accepted or refused. It may be considered as an experiment conducted by the
environment, offering particular events and eliciting responses.

Timed Failures Model

On the one hand, any timed CSP process is associated with a set of timed failures. On the
other hand, not every arbitrary set of timed failures represents a timed CSP process: there
are three properties (TF1–TF3) that must hold for any set of timed failures corresponding to
some timed CSP process. The timed failures model consists of all sets S of timed failures that
meet these properties.

Firstly, the empty timed failure (〈〉, ∅) must be a possible observation of any process (prop-
erty TF1).

Secondly, any set of timed failures corresponding to a timed CSP process must be down-
wards closed with respect to the information order8 (property TF2). That is, for each timed
failure contained in S, the set must also contain all timed failures that capture its trace and
refusal information only partially, i.e., up to a particular time instant.

8 Schneider defined the information order � on timed failures as follows:

(s′,ℵ′) � (s,ℵ) ⇔ ∃ s′′ • s = s′ a s′′ ∧ ℵ′ ⊆ ℵ |�tref beginttr(s′′).
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Finally, any timed failure (s,ℵ) is associated with a complete timed refusal: the timed refusal
ℵ observed can be augmented with further refusal information to obtain a complete timed
refusal ℵ′ ⊇ ℵ (property TF3). Completeness of ℵ′ means that for any time t, any event a
not appearing in ℵ′ must be possible for the process at that time. This manifests itself in two
ways:

C1: Any timed event (t, a) that does not appear in the timed refusal ℵ′ must provide a pos-
sible alternative continuation to the timed trace. Refusal information at t is subsequent
to the timed trace up to and including that time, so the timed event (t, a) follows the
timed trace up to and including t.

C2: If an event a is not refused as time t is approached, then it is possible throughout the
evolution leading up to time t, so a must also be possible at time t. This is a consequence
of the constancy of event offers and the time closure for evolutions.9

These considerations are formalised as follows:

(〈〉, ∅) ∈ S (TF1)
(∀ s, s′ : TimedTrace; ℵ,ℵ′ : TimedRefusal •

(s,ℵ) ∈ S ∧ (s′,ℵ′) � (s,ℵ) ⇒ (s′,ℵ′) ∈ S) (TF2)
(∀ s : TimedTrace; ℵ : TimedRefusal | (s,ℵ) ∈ S • (TF3)

(∃ℵ′ : TimedRefusal | ℵ ⊆ ℵ′ ∧ (s,ℵ′) ∈ S •
(∀ t : R+

0 ; a : Event •
((t, a) /∈ ℵ′ ⇒ ((s �ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈ S) (C1)
∧
t > 0 ∧ ¬ (∃ ε : R \ {0} • [t− ε, t)× {a} ⊆ ℵ′)

⇒ ((s |�ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈ S)))} (C2)

There is a further property TF4, which holds only for those sets of timed failures representing
timed CSP processes that do not introduce infinite nondeterminism. It states that the infinite
duration timed failures of such a process are exactly those that can be deduced from its finite
duration timed failures. In other words, the time closure of a set of timed failures associated
with such a process must be equal to itself.

S =̂ {(s,ℵ) | ∀ t : R+
0 • (s |�ttr t,ℵ |�tref t) ∈ S} = S (TF4)

9 Case C2 is necessary because case C1 does not cover so-called point nondeterminisms. Consider the process

(a → Stop) .{d} Stop.

At time d, and only at time d, its behaviour is nondeterministic. If the environment offers the event a at time
d after not having offered it in the interval [0, d), then the process may perform a or it may refuse to perform
it, depending on whether control has already switched to Stop. Therefore, (d, a) is a member of the maximal
timed refusal, and it is impossible to use C1 in order to deduce that a is a possible continuation to the timed
trace.

However, since we know that a cannot be refused during the interval [0, d), we can use C2 in order to make
this deduction.
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Timed Failures Semantics

The denotational semantics of timed CSP is compositional: the timed failures associated with
a compound process are completely determined by the timed failures associated with its
component processes and the operator composing the component processes. Accordingly,
there is a single clause for each operator of the syntax of timed CSP.

Deadlock. The process Stop never engages in any event, i.e., it can always refuse any set of
events offered.

timed failures [[Stop]] = {(〈〉,ℵ) | ℵ ∈ TimedRefusal}

Event Prefix. The timed failures associated with the process a → P fall into two classes. On
the one hand, the environment might never offer a, so it will never occur. In this case, a will
never appear in ℵ. On the other hand, a may be offered by the environment at time t and
will appear at the beginning of the timed trace. In this case, a could not have been offered
before t. The behaviour subsequent to the occurrence of a is that of P. These two cases are
reflected by the two sets in the following definition.

timed failures [[a → P]] = {(〈〉,ℵ) | a /∈ σtref (ℵ)}
∪
{(〈(t, a)〉a (s +ttr t),ℵ) | t ∈ R+

0

∧ a /∈ σtref (ℵ |�tref t)
∧ (s,ℵ −̇tref t) ∈ timed failures [[P]]}

Timed Event Prefix. The semantic clause of the timed event prefix operator is similar to
that of the previous operator. The only difference is the case in which event a occurs at time
t. Then, the subsequent behaviour is that of P, in which the time variable u is substituted by
t (P[t/u]).

timed failures [[a@u → P]] = {(〈〉,ℵ) | a /∈ σtref (ℵ)}
∪
{(〈(t, a)〉a (s +ttr t),ℵ) | t ∈ R+

0

∧ a /∈ σtref (ℵ |�tref t)
∧ (s,ℵ −̇ttr t) ∈ timed failures [[P[t/u]]]}

Prefix Choice. Again, the timed failures associated with the process x : A → P(x) fall into
two categories. Either the environment will never offer an event in A, or an event a ∈ A
occurs at time t. In the latter case, the subsequent behaviour is due to process P(a) shifted
through t time units.10

10 In [Schneider, 1999a], this operator seems not to be defined correctly.



252 Appendix A. Base Formalisms

timed failures [[x : A → P(x)]] = {(〈〉,ℵ) | A ∩ σtref (ℵ) = ∅}
∪
{(〈(t, a)〉a (s +ttr t),ℵ) | t ∈ R+

0 ∧ a ∈ A
∧ A ∩ σtref (ℵ |�tref t) = ∅
∧ (s,ℵ −̇tref t) ∈ timed failures [[P(a)]]}

Successful Termination. The process Skip is immediately ready to accept the termination
event X before it deadlocks. Its semantic clause is analogous to that of the event prefix
operator with process P substituted by Stop.

timed failures [[Skip]] = {(〈〉,ℵ) | X /∈ σtref (ℵ)}
∪
{(〈(t,X)〉,ℵ) | t ∈ R+

0 ∧ X /∈ σtref (ℵ |�tref t)}

Timeout. The time-sensitive choice P.{d}Q is resolved in favour of P if the first event occurs
before time t; otherwise it is resolved in favour of Q. Any behaviour of P that records an
event occurrence before time d is also a behaviour of P.{d}Q. The other behaviours are
those in which the timeout occurs. In this case, the timed refusal ℵ restricted to the first d
units must be consistent with P, and the behaviour after d is due to Q, shifted through d time
units.

timed failures [[P.{d}Q]] = {(s,ℵ) | beginttr(s) 6R d ∧ (s,ℵ) ∈ timed failures [[P]]}
∪
{(s,ℵ) | beginttr(s) >R d ∧ (〈〉,ℵ |�tref d) ∈ timed failures [[P]]

∧ (s,ℵ) −̇tfail d ∈ timed failures [[Q]]}

The fact that beginttr(s) 6R d and beginttr(s) >R d are true if beginttr(s) = d embodies the
point nondeterminism at time d.

Delay. The process Wait d is a derived construct defined as Stop .{d} Skip, so its semantics
can be deduced from these three operators.

External Choice. The timed failures associated with the external choice P � Q fall into
three classes. The choice may have been resolved in favour of P, it may have been resolved
in favour of Q or it may not have been resolved yet. In the last case, the timed trace is empty
and the timed refusal is the joint responsibility of P and Q. In the first two cases, the two
processes must have participated in the timed refusal up to the occurrence of the first event,
resolving the choice.

timed failures [[P � Q]] = {(s,ℵ) | (s,ℵ) ∈ timed failures [[P]] ∪ timed failures [[Q]]
∧
(〈〉,ℵ |�tref beginttr(s)) ∈ timed failures [[P]]

∩ timed failures [[Q]]}
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Internal Choice. The timed observations associated with an internal choice are those that
are associated with either of its constituent processes.

timed failures [[P u Q]] = timed failures [[P]] ∪ timed failures [[Q]]

Indexed Internal Choice. The indexed internal choice ui∈J Pi can behave as any of its con-
stituent processes. Its timed failures are hence all of those timed failures associated with any
of its constituents.

timed failures [[ui∈J Pi]] =
⋃

i∈J timed failures [[Pi]]

Alphabetised Parallel. In the parallel composition P |[ A | B ]|Q, the events in AX can occur
only with the participation of P, and the events in BX can occur only with the participation
of Q. Thus, the constituent processes must agree on the events in (A ∩ B)X, or, conversely, if
either of them refuses an event in this set, then the whole process refuses it. The combined
process can engage only in events in (A ∪ B)X, so the timed refusal outside (A ∪ B)X is
arbitrary.

timed failures [[P |[ A | B ]|Q]] = {(s,ℵ) | ∃ ℵ1,ℵ2 •
ℵ �tref (A ∪ B)X = (ℵ1 �tref AX) ∪ (ℵ2 �tref BX)
∧ s = s �ttr (A ∪ B)X

∧ (s �ttr AX,ℵ1) ∈ timed failures [[P]]
∧ (s �ttr BX,ℵ2) ∈ timed failures [[Q]]}

Interleaving. The interleaving P ||| Q can engage in any event (except X) precisely when
one of the component processes can engage in that event. Only termination requires the
synchronisation of P and Q. Therefore, a timed refusal of the combined process must be a
timed refusal of both components, and the timed trace s is an interleaving of the component
timed traces.

timed failures [[P ||| Q]] = {(s,ℵ1 ∪ ℵ2) | ∃ s1, s2 • s interleaves (s1, s2)
∧ (s1,ℵ1) ∈ timed failures [[P]]
∧ (s2,ℵ2) ∈ timed failures [[Q]]
∧ ℵ1 �tref Σ = ℵ2 �tref Σ}

Interface Parallel. The interface parallel operator P |[ A ]|Q combines the features of the al-
phabetised parallel and the interleaving operator. It requires the synchronisation on events
of the interface set A and allows its component processes to interleave on events outside this
interface set. That is, events within A can be refused by either process, but events outside A
can be refused only if both component processes do so.

timed failures [[P |[ A ]|Q]] = {(s,ℵ1 ∪ ℵ2) | ∃ s1, s2 • s synchA (s1, s2)
∧ ℵ1 \tref AX = ℵ2 \tref AX

∧ (s1,ℵ1) ∈ timed failures [[P]]
∧ (s2,ℵ2) ∈ timed failures [[Q]]}
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Hiding. When hiding a set of events from the interface of a process, the process is given
the full control over the occurrence of these events. Maximal progress dictates that such an
event occurs as soon as the process is ready to accept it.

The timed failures of the process P \ A are determined by considering those timed failures
of P in which the events in A are continually refused, meaning that the environment of the
process is always ready to offer more instances of events in A than P is able to accept. In
other words, these timed failures represent observations in which events in A occur as soon
as they are accepted by P. The hiding makes the events in A internal, so they do not appear
in the resulting timed trace.

timed failures [[P \ A]] = {(s \ttr A,ℵ) | (s,ℵ ∪ ([0,∞)× A)) ∈ timed failures [[P]]}

Renaming. The forward renamed process f (P) maps each performed event a to f (a). It is
able to refuse an event a if P is able to refuse all events that are mapped to a (f need not be
injective).

timed failures [[f (P)]] = {(f (s),ℵ) | (s, f−1(ℵ)) ∈ timed failures [[P]]}

In the above equation, f (s) denotes the timed trace obtained by applying f to all elements of
s individually. Moreover,

f−1(ℵ) = {(t, a) | (t, f (a)) ∈ ℵ}
f (ℵ) = {(t, f (a)) | (t, a) ∈ ℵ}.

The backward renamed process f−1(P) can perform the event a when P can perform f (a),
and it can refuse a whenever P can refuse f (a).

timed failures [[f−1(P)]] = {(s,ℵ) | (f (s), f (ℵ)) ∈ timed failures [[P]]}

Sequential Composition. In the sequential composition (P; Q), P is executed until it termin-
ates at which point control is immediately passed to Q. The termination of P is completely
under the control of the sequential composition, i.e., P terminates as soon as it is ready to do
so. This is reflected in the following definition by considering only particular timed failures
associated with P, analogous to the definition of the hiding operator.

A timed failure of (P; Q) either corresponds to a non-terminating behaviour of P, or it cor-
responds to a terminating behaviour of P immediately followed by a behaviour of Q. The
termination of P, if any, does not appear in the resulting timed trace, because it does not
represent the termination of the sequential composition.

timed failures [[P; Q]] = {(s,ℵ) | X /∈ σttr(s) ∧ (s,ℵ ∪ [0,∞)× {X}) ∈ timed failures [[P]]}
∪
{(s1
a s2,ℵ) | ∃ t • X /∈ σttr(s1)

∧ (s2,ℵ) −̇tfail t ∈ timed failures [[Q]]

∧ (s1
a 〈(t,X)〉,ℵ |�tref t ∪ ([0, t)× {X})) ∈ timed failures [[P]]}
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Interrupt. The process P 4 Q starts by executing P. Simultaneously, initial events of Q are
enabled; and as soon as one of these occurs, P is interrupted and control is passed to Q.

A timed failure associated with P 4 Q either corresponds to an uninterrupted behaviour of
P, or it corresponds to an interrupted behaviour of P followed by a behaviour Q. The fact
that Q is enabled while P is executing means that the timed refusal up to an interrupt must
be a joint refusal of P and Q. After an interrupt, the timed failure is due to Q.

timed failures [[P 4 Q]] = {(s1
a s2,ℵ) | (s1,ℵ |�tref beginttr(s2)) ∈ timed failures [[P]]

∧ (s2,ℵ |�tref beginttr(s1 �ttr {X})) ∈ timed failures [[Q]]}

Note that the notation s1
a s2 implies that the catenation is a valid timed trace. This has

two consequences. First, the times recorded in s2 must be greater than or equal to all times
recorded in s1, ensuring that P stops performing events as soon as Q has started. Second,
unless s2 is empty, s1 must not contain the termination event, because in a timed trace it can
appear only as the last event. This ensures that the whole process stops when P terminates.

Timed Interrupt. The timed interrupt P 4d Q first executes P for d time units, and then
passes control to Q unless P has already terminated.

The timed failures associated with P 4d Q consist of two parts: the initial part corresponding
to the execution of P for d time units, and the remaining part corresponding to the execution
of Q beginning at time d.

timed failures [[P 4d Q]] = {(s1
a (s2 +ttr d),ℵ) |
endttr(s1) ≤ d
∧ (s1,ℵ |�tref d) ∈ timed failures [[P]]
∧ (X /∈ σttr(s1) ⇒ (s2,ℵ −̇tref d) ∈ timed failures [[Q]])}

Again, the fact that s1
a (s2 +ttr d) must be a valid timed trace implies that s2 must be empty

if X ∈ σttr(s1).

Recursion. In the dialect of timed CSP [Schneider, 1999a] that we use in RT-Z, there is no
explicit process operator for defining recursion.11 Processes with recurring behaviour are
defined by recursive equations

N = Q.

The above equation identifies the process variable N and the process term Q, which can
contain references to N. In this case, N is defined in terms of itself.

To solve recursive process equations, a structure is imposed on the timed failures model
based on the refinement order and the theory of metric spaces.

The refinement order relates processes in terms of the behaviours they can exhibit. The
more behaviours a process can exhibit, the more nondeterministic it is. Process P is less

11 This is in contrast to the older dialect described in [Davies, 1993], which introduces the fixed point operator
µ.
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deterministic than process Q (P is refined by Q), written P v Q, if the set of behaviours
associated with Q is a subset of that associated with P.

P v Q ⇔ timed failures [[Q]] ⊆ timed failures [[P]]

In the timed failures model, the most nondeterministic process corresponds to the set of
all timed failures, and the most deterministic processes are the maximal processes under
the nondeterminism partial order (i.e., processes whose nondeterminism cannot be further
reduced).

Any well-timed CSP equation N = Q has a least solution (fixed point) under the non-
determinism order. It is considered as the natural solution, because all other solutions (fixed
points) refine it: the least solution contains less restrictions (design decisions) than all other
solutions. Schneider [1999a] has claimed that the least fixed point computed in the timed
failures model coincides with the failure information that can be extracted from the opera-
tional semantics.

The partial order imposed by the nondeterminism order is combined with a metric space
structure in order to ensure the existence and uniqueness of fixed points for well-timed CSP
processes. The metric space structure is based on a distance between processes, which has
the property that the longer it takes to tell two processes apart, the closer together they are.

To define the distance function, the projection of a process S (more precisely, its associated
set of timed failures) to the time interval ending at time t is introduced as follows.

S |�tcsp t = {(s,ℵ) | (s,ℵ) ∈ S ∧ s |�ttr t = s ∧ ℵ |�tref t = ℵ}

This projection extracts all timed failures that contain trace or refusal information beyond
time t. The case t = ∞ is treated separately.

S |�tcsp ∞ = {(s,ℵ) | (s,ℵ) ∈ S ∧ ∃ t : R+
0 • endtfail(s,ℵ) = t}

On this basis, the distance function on processes is defined as follows.

d(S, T) = inf{2−t | t ∈ R+
0 ∧ S |�tcsp t = T |�tcsp t}

If S |�tcsp t = T |�tcsp t, then S and T are indistinguishable up to time t. Any observer who
wishes to tell S and T apart must wait at least t time units. The distance between two pro-
cesses can be at most 1. If the distance between two processes is 0, then they must have the
same set of finite duration timed failures. In this case, if the processes are not identical, then
they must be associated with different sets of infinite duration timed failures.

Schneider [1999a] introduced the finite timed failures model (FTF) in order to make available
the theory of metric spaces, which provides powerful results concerning the existence and
uniqueness of fixed points. The FTF model identifies each process with the set of finite dur-
ation timed failures associated with it. It is the projection of the timed failures model onto
finite duration behaviours. Any two processes P and Q satisfying d(P, Q) = 0 correspond to
the same element in the FTF model, and any two distinct elements will have some strictly
positive distance. As Schneider pointed out, the finite timed failures model together with
the distance function d forms a complete metric space.12

12 The (general) timed failures model together with the distance function does not form a metric space. The
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The following definitions and theorem are drawn from [Sutherland, 1975].

Definition A.1
A metric space M = (A, d) consists of a non-empty set A together with a map d : A× A→ R
satisfying

• d(x, y) ≥ 0 ∧ (d(x, y) = 0 ⇔ x = y)

• d(x, y) = d(y, x)

• d(x, y) + d(y, z) ≥ d(x, z)

for all x, y, z in A.

Definition A.2
A metric space M is complete if every Cauchy sequence in A converges to a point in A.

Definition A.3
A map f : A→ A of a metric space M with metric d is a contraction if there exists a constant
K < 1 such that d(f (x), f (y)) ≤ K ∗ d(x, y) for all x, y in A.

The key result is the following theorem, which states that any contraction in a complete
metric space must have a unique fixed point.

Theorem A.1 (Banach Fixed Point Theorem)
If f : A→A is a contraction of a complete metric space M = (A, d), then f has a unique fixed
point in A.

Assuming that a contraction f has different fixed points

f (x) = x 6= x′ = f (x′)

leads to a contradiction, because the distance between f (x) and f ′(x) must be less than the
distance between x and x′. Thus, the application of f to x and x′ must change at least one of
them; this, however, is in contrast to the property of a fixed point.

Furthermore, the unique fixed point can be determined by choosing an arbitrary member of
A, say x, and by considering the sequence

〈x, f (x), f 2(x), f 3(x), . . .〉.

distance between the processes

P =̂ u
t∈R+

0

Wait t; a → Stop and Q =̂ Stop u P

e.g., is 0, because they are associated with the same set of finite duration timed failures. However, they are
not identical, because Q is able to refuse a forever, whereas P is not able to do this; the infinite duration timed
failures associated with them are different.

timed failures [[Q]] \ timed failures [[P]] = {(〈〉, [0,∞)× {a}}
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Successive elements become closer and closer; the sequence is a Cauchy sequence, which
must have a limit—the fixed point of f —because of the completeness of the metric space. All
such sequences, whatever the starting point, have the same limit. Consequently,

fix(f ) = limn→∞ f n(x)

for all x in A.

Having introduced the theoretical background, we now demonstrate that each t-guarded
process term corresponds to a contraction mapping. According to Section A.2.3, a process
term is t-guarded, if any execution of this term cannot reach a recursive call in less than t
time units. Assume that the process term Q in the equation

N = Q

is t-guarded for t > 0. Let FQ be the function on the finite timed failures model corresponding
to Q. If N1 |�tcsp u = N2 |�tcsp u then FQ(N1) |�tcsp (u + t) = FQ(N2) |�tcsp (u + t) and it follows
that

d(FQ(N1), FQ(N2)) ≤ 2−t ∗ d(N1, N2)

where 2−t < 1.

FQ is hence a contraction mapping on the complete metric space constituted by the FTF
model and the distance d. Thus, Banach’s fixed point theorem applies, assuring the existence
and uniqueness of a fixed point of FQ.

In conclusion, any well-timed CSP term has a unique fixed point in the finite timed failures
model, which is the model underlying RT-Z.13 The unique fixed point can be computed by
using the following equation

timed failures [[N]] |�tcsp ∞ =
⋃

n∈N(timed failures [[Qn]] |�tcsp n ∗ t)

where Qn is defined inductively

Qn+1 = Q[Qn/N]

and Q0 can be chosen arbitrarily.

We have dealt only with simple recursion. The application of the above discussion to mutual
recursion, i.e., to collections of recursively defined processes, is straightforward. We have
hence omitted the discussion of mutual recursion.

A.2.5 Predicate Language

A timed specification is a predicate S(s,ℵ) on timed failures. It describes the behaviour
required of a process in terms of constraints on its timed traces and timed refusals. A process

13 According to Schneider [1999a], the situation is different in the (general) timed failures model. In this model,
for a well-timed CSP term to have a unique fixed point, it must not contain any infinite nondeterminism, i.e.,
it must not contain any operator introducing unbounded nondeterminism.
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P meets a specification S(s,ℵ) if, and only if, all timed failures that are associated with P
satisfy S. Formally,

P sat S(s,ℵ) ⇔ ∀(s,ℵ) ∈ timed failures [[P]] • S(s,ℵ).

Timed specifications are usually expressed in terms of functions on timed traces, refusals
and failures, which are dealt with in Appendix E.

A timed specification S(s,ℵ) is admissible if the fact that all finite approximations of a timed
failure of infinite length meet S implies that S holds of this infinite timed failure as well.

(∀ t : R+
0 • S(s |�ttr t,ℵ |�tref t)) ⇒ S(s,ℵ)

Admissible specifications have the merit that to check a process for satisfaction it suffices to
check all finite duration timed failures for satisfaction.

If the failure of a predicate to hold of a timed behaviour can always be realised within finite
time, then that predicate corresponds to an admissible specification. Inadmissible predicates
are those that may hold of all finite approximations of a timed failure (s,ℵ) but not of (s,ℵ)
itself. An example of a specification that is not admissible is #s < ∞.

Specification macros

Building timed specifications directly as predicates on timed traces s and timed refusals ℵ
becomes cumbersome and error-prone as problems exceed a certain level of complexity. Fur-
thermore, there are frequently occurring specification patterns with regard to safety and
liveness requirements as well as to assumptions about the process environment. Specification
macros are abbreviations of predicates; they can be used as the building blocks of frequently
occurring specification patterns. Specification macros are useful not only for specifying re-
quirements, but they also allow us to reason about specifications on a higher level of ab-
straction. Relationships between macros can be established, which allow us to reason about
specifications at the level of macros rather than directly at the level of timed traces and re-
fusals. Specification macros are given in terms of the free variables s and ℵ.

In this section, we introduce only some important specification macros that we need in the
remainder of this thesis.

The specification macro at simply expresses that a particular event is recorded in the timed
trace as having occurred at a particular time.

a at t ≡ 〈(t, a)〉 in s

The liveness of a process at time t with respect to a particular event a can have two con-
sequences: either the event is performed and hence appears in the timed trace, or else it does
not appear in the timed refusal.

a live t ≡ a at t ∨ (t, a) /∈ ℵ

An equivalent definition is (t, a) ∈ ℵ ⇒ a at t, which states that if a is offered by the environ-
ment, then it must occur.
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The following specification macro abbreviates a more intricate aspect of liveness. A process
might enable an event a at some time t, and continue to offer it at least until some event in A
occurs.

a live from t until A ≡ ([t,beginttr((s �ttr t) �ttr A))× {a}) ∩ ℵ = ∅

The definition states that between t and the first occurrence of a subsequent event from A,
the event a cannot be refused.

The following specification macro is used in order to express assumptions about the envir-
onment of a process. An event a is open at time t if the environment of the process will not
block the occurrence of the timed event (t, a). Thus, if the event does not occur, it is due to
the refusal of the process to perform it, so (t, a) ∈ ℵ.

a open t ≡ a at t ∨ (t, a) ∈ ℵ

Either a is actually performed at t, which clearly reveals that the environment was open to
the occurrence of a, or it appears in the timed refusal.

Another form of environmental assumption is that the environment always allows all occur-
rences of events from A that the process wishes to perform. Such an environment will make
a process active on the set A, because it will perform all occurrences of A urgently.

A active ≡ [0,∞)× A ⊆ ℵ

Several relationships between specification macros have been established by appealing to
their definitions. These relationships allow one to reason about specifications on a higher
level of abstraction.

A straightforward relationship between the macros at, live and open is the following:

a at t ⇔ a live t ∧ a open t.

If a has occurred at time t, then the process and the environment must have offered this event
at this time. Conversely, if the process and the environment are known to enable event a at
time t, then it must occur at this time in accordance with the maximal progress assumption.

A.2.6 Verification

Schneider [1999b] has developed a complete calculus for proving timed CSP processes cor-
rect with respect to timed specifications.

In theory, it is possible to prove a timed CSP process correct with respect to a timed speci-
fication by checking that each timed failure that is associated with the process meets the
specifying predicate. In practice, however, a more structured approach to verification is ne-
cessary.

In Section A.2.4, we presented the denotational semantics of timed CSP, which is composi-
tional. Compositionality means that the denotations of compound processes are defined in
terms of the denotations of their component processes. Analogously, it is possible to provide
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a compositional proof system, which reflects the structure of the semantic equations. Each
proof rule allows the deduction of a timed specification satisfied by a compound process
from the timed specifications that are met by its component specifications. There is a single
inference rule or axiom for each operator of the timed CSP syntax.

In the remainder of this section, we present the proof rules only for selected operators.

Event Prefix. Provided the process P meets the specification S, the behaviour of the process
a → P subsequent to an occurrence of a will satisfy S. The behaviour up to the occurrence of
a is the continual offer of a.

P sat S(s,ℵ)

a → P sat a live from 0 until {a}
∧ s 6= 〈〉 ⇒ first(s) = a ∧ S((tail(s),ℵ)− beginttr(s))

The timed specifications satisfied by a → P are determined in terms of the timed specifica-
tions satisfied by P.

Note the correspondence between the structure of the previous inference rule and the struc-
ture of the semantic equation of the event prefix operator. The correctness of the inference
rule is backed up by the semantic equation.

Timeout. The following inference rule provides an example of reasoning about time-sensi-
tive behaviour. A behaviour of P .{d} Q is either a timed failure associated with P, whose
first event is recorded before time d, or else a timed failure of Q delayed by d time units. In
the latter case, the refusal information up to the timeout must be consistent with P.

P sat S(s,ℵ)
Q sat T(s,ℵ)

P .{d} Q sat (beginttr(s) 6R d ∧ S(s,ℵ)
∨ beginttr(s) >R d ∧ S(〈〉,ℵ |�tref d) ∧ T((s,ℵ) −̇tfail d))

Again, the structure of the inference rule is analogous to the structure of the corresponding
semantic equation.

Recursion Induction. To prove that a recursively defined process meets some specification,
we need a corresponding induction principle.

As discussed in Section A.2.4, the finite duration timed failures of a well-timed recursive
definition N = P are uniquely determined. Let F(X) = P[X/N] be the function on timed
failures corresponding to the body P of the recursive definition. If S is an admissible specifi-
cation, which is satisfiable (for which there is at least one process P0 satisfying it), and if S is
preserved by applications of F, then the recursively defined process N meets S. Formally,

∀X • X sat S(s,ℵ) ⇒ F(X) sat S(s,ℵ)
[ ∃P0 • P0 sat S(s,ℵ)

S(s,ℵ) is admissible
N = F(N)

]
N sat S(s,ℵ)
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This induction rule is correct for the following reason.

There is a process P0 satisfying S by assumption. The antecedent of the rule ensures that also
Fn(P0) meets S for all n ∈ N. According to Section A.2.4, each finite duration behaviour of N
is contained in Fn(P0) for some n ∈ N, because

timed failures [[N]] |�tcsp ∞ =
⋃

n∈N(timed failures [[Fn(P0)]] |�tcsp n ∗ t).

This means that all finite duration timed failures associated with N satisfy S.

Furthermore, for each infinite duration timed failure (s,ℵ) of N, all of its finite approxima-
tions must also be associated with N, because14

timed failures [[N]] ⊆
⋃

n∈N(timed failures [[Fn(P0)]] |�tcsp n ∗ t).

Since S holds of all these finite duration behaviours and since S is an admissible specification,
also the infinite duration timed failures of N must satisfy S. Thus, all timed failures (finite or
infinite) associated with N meet S, hence N sat S.

A.2.7 Discussion

Timed CSP, as introduced in this section, has several strengths.

It provides a powerful notation, its formal foundation and also verification techniques for
defining and analysing the external behaviour of a system in terms of the temporal ordering
and the timing of its interactions with the environment. It is particularly useful for specifying
systems that are reactive in nature.

Furthermore, timed CSP, as an extension of CSP, is able to define certain aspects of system
and software architectures, e.g., concurrency, distribution and communication. This was
demonstrated by Allen and Garlan, who designed the architectural description language
(ADL) Wright [Allen, 1997], which is closely based on CSP.

On the other hand, there are also relevant shortcomings attributed to timed CSP.

Timed CSP is not designed to specify the structure and content of the information that
is communicated between processes. Channels between processes can be associated with
alphabets—sets of values carried by events—but the notation of timed CSP for defining al-
phabets and its values is only ad-hoc; and, more important, it is not covered by the semantic
model of timed CSP. In brief, timed CSP lacks an integrated notation for defining abstract
data types.

Moreover, processes are the only mechanism for structuring system specifications. The
weakness of process descriptions, which makes them inadequate as a high-level structur-
ing mechanism, is the fact that process interfaces are not defined explicitly, i.e., they must
be derived which is hard for complex processes, consisting of several sub-processes. We
think that the availability of the interface is a major prerequisite when describing system
components and their interdependencies.

14 We have not dealt with the computation of fixed points in the (general) timed failures model. The following
subset relationship is motivated by [Schneider, 1999b, p. 361].
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To conclude, the merits and drawbacks of timed CSP and the ones of Z discussed in the
previous section seem to complement each other, making their integration a worthwhile
task.

A.2.8 Other Approaches to Modelling and Reasoning about Real-Time

Nicollin and Sifakis [1991] gave an introduction to timed process algebras by comparing
several instances, including (a previous version of) timed CSP. They presented fundamental
assumptions about timed systems and the nature of time (cf. Section A.2.1) and introduced
the concept of timed transition systems, on which the operational semantics of timed CSP is
based. They also proposed some general principles for the real-time extension of untimed
process algebras, which concern the compatibility of the interpretations associated with a
process in the untimed and the timed setting.

Let us outline four important instances of timed process algebras.

Baeten and Bergstra [1991] introduced the real-time process algebra ACPρ, which is an ex-
tension of ACP (Algebra of Communicating Processes). As a characteristic feature of ACPρ

(and also ACP), its formal meaning is defined by an axiomatic semantics, in contrast to the
operational and denotational approaches taken by the other timed process algebras. In fact,
ACP and ACPρ are collections of axioms that are defined with respect to a simple process
algebra syntax.

ET-LOTOS, developed by Léonard and Leduc [1997], is a real-time extension of LOTOS [Bo-
lognesi et al., 1995]. The time domain underlying ET-LOTOS is not fixed; it is modelled by
a sort, which must be instantiated by any ET-LOTOS specification by using the algebraic
specification language ACT ONE [Ehrig and Mahr, 1985] (which is a base language of LO-
TOS). Syntactically, ET-LOTOS basically extends LOTOS by two constructs: the life reducer
and the delay operator. The life reducer allows the specifier to restrict the interval in which
an action is offered (which roughly corresponds to the timeout operator of timed CSP), and
the delay operator prefixes a behaviour expression by a delay. The authors demonstrated
that all relevant patterns of time-sensitive behaviour can be modelled by combining these
two basic concepts. The operational semantics of ET-LOTOS was defined by strictly separ-
ating event and time transitions, analogously to the definition of the operational semantics
of timed CSP presented in Section A.2.2. ET-LOTOS and timed CSP are very close in spirit,
being based on the same computational model; this is witnessed by Bryans et al. [1995] who
defined a denotational semantics for ET-LOTOS similar to that of timed CSP.

Moller and Tofts [1990] developed a real-time extension of Milner’s Calculus of Communic-
ating Systems [Milner, 1989], called TCCS. It is based on a discrete model of time. Its syntax
extends that of CCS by delay operators and a so-called weak choice operator (as opposed to
the strong choice operator adopted from CCS), which allows the passage of time to resolve
a choice and therefore to express timeouts. The operational semantics of TCCS is defined
analogously to the approach taken by timed CSP and also ET-LOTOS: the inference rules
characterising the possible action transitions of processes (already defined by CCS) are ex-
tended by additional rules characterising the time transitions of processes. The definition of
a bisimulation equivalence relation on TCCS processes and the derivation of an equational
theory, which is sound with respect to bisimulation, is a prerequisite for reasoning about
TCCS processes.
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Hennessy and Regan [1995] proposed a (deliberately) minor extension to the process algebra
CCS, called Timed Process Language (TPL), with a mathematically simple notion of time.
The extension basically consists in introducing a special action σ, which denotes idling until
the next clock cycle (the passage of time). In other words, the approach is based on a discrete
model of time. The semantic theory of TPL is based on testing; it is an extension of the theory
of testing from de Nicola and Hennessy [1984] to the timed setting.

TPL was not designed to be universally applicable, but focuses on application areas in which
time plays a restricted rôle such as protocol verification. For these applications, TPL is ad-
equate because it does not introduce unnecessary complexity. TPL is considered by the
authors “to provide a sound basis on which to develop more extensive theories of timed
systems.”

In addition to timed process algebras, there are other approaches to modelling and reasoning
about time-sensitive systems. Surveys of the most important approaches can be found in
[Heitmeyer and Mandrioli, 1996] and [de Bakker et al., 1991]. In the remainder, we outline
three representative examples of these approaches.

The formalism TTM/RTTL [Ostroff, 1991] comprises two notations. An automaton model
(Timed Transition Model), mainly extended by assigning lower and upper time bounds to
state transitions, is used to construct models of real-time systems; and a real-time temporal
logic (RTTL) serves to abstractly express properties that such models are required to satisfy.
This notational separation between a system model and the properties that it is required to
satisfy is a crucial language feature, which is also shared by timed CSP.

The formalism Modechart/RTL [Jahanian and Mok, 1994] also consists of a pair of specifi-
cation languages. Modechart is a graphical language for constructing models of real-time
systems. It is basically a restriction of Statecharts [Harel, 1987] to those language constructs
that allow a concise and succinct specification of real-time systems while avoiding the se-
mantic problems associated with the more powerful constructs of Statecharts. Properties
that a Modechart must satisfy are specified in terms of the Real Time Logic (RTL), which is
also the logic used to define the semantics of Modecharts. One benefit of this approach is the
provision of tool support for checking a Modechart for consistency and completeness and
for verifying the satisfaction of properties expressed as RTL assertions.

Both TTM/RTTL and Modechart/RTL are based on a discrete time model, whereas the un-
derlying time domain of timed CSP is dense.

The Duration Calculus [Chaochen et al., 1991] is a real-time interval logic based on state dur-
ations. A system is modelled in terms of a collection of state variables that are functions of
time, which is modelled by real numbers. System requirements are specified by means of
duration formulas that are predicates containing integrals over state assertions (predicates
on state variables). That is, the Duration Calculus has a completely different underlying
model than timed CSP. This underlying model is ideal for specifying requirements concern-
ing the duration of intervals in which particular conditions are satisfied, but it is less appro-
priate for specifying other aspects of the dynamic behaviour, e.g., the temporal ordering of
interactions. Which underlying model is more appropriate depends on the specific real-time
system to be developed.



Appendix B

Satisfaction of the Properties of the
Timed Failures Model

The aim of this appendix is to prove that our semantic definitions in Section 9.2.4 are con-
sistent with the properties of the timed failures model formalised on p. 126 and explained
on pp. 249 ff. More precisely, we aim to establish that each Z specification (constituting the
Z part of a concrete specification unit) is mapped to a set of timed failures satisfying these
properties.

B.1 Lemmata

We first state some lemmata we need throughout the main proof. We do not prove these
lemmata but provide informal arguments why they are true.

The first two lemmata are immediate consequences of the definition of the function tracesZ
and the relation PreHist in Sections 9.2.3 and 9.2.4.

Lemma B.1
Given a trace tr that is related to the history h. Then, each prefix tr′ of tr is related to some
history h′ that is a pre-history of h.

tr = tracesZ h
tr′ prefix tr

∃ h′ : HS | (h′, h) ∈ PreHist • tr′ = tracesZ h′

Lemma B.2
Given a trace tr and one of its prefixes tr′ such that the two are related to the histories h and
h′, respectively. If there is a history h∗ of which both h and h′ are pre-histories, then either h
must be a pre-history of h′ or vice versa. Since we have assumed that h′ is related to a trace

265
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that is a prefix of a trace that is related to h, we can conclude that h′ is a pre-history of h.

tr = tracesZ h
tr′ = tracesZ h′

tr′ prefix tr
∃ h∗ : HS • (h, h∗) ∈ PreHist ∧ (h′, h∗) ∈ PreHist

(h′, h) ∈ PreHist

Lemma B.3
Given a timed trace s. Let h, pref1 and pref2 be histories that are related to the entire timed
trace s, to the projection of s onto the interval [0, t1] and to the projection of s onto the interval
[0, t2], respectively, and suppose that both pref1 and pref2 are pre-histories of h. If t2 >R t1,
then pref1 must be a pre-history of pref2.

strip s = tracesZ h
strip(s �ttr t1) = tracesZ pref1 ∧ (pref1, h) ∈ PreHist
strip(s �ttr t2) = tracesZ pref2 ∧ (pref2, h) ∈ PreHist
t2 >R t1

(pref1, pref2) ∈ PreHist

The lemma is an immediate consequence of Lemma B.2, because strip(s �ttr t1) is a prefix of
strip(s �ttr t2) for all t2 >R t1.

Lemma B.4
Let s and s′ be two timed traces such that s′ is a prefix of s. Let further the traces correspond-
ing to s and s′ be related to the histories h and h′, respectively, and let h′ be a pre-history
of h. If the time values recorded in the timed trace s are consistent with the simultaneity
information recorded in the component simultan of of the history h, then we can conclude
that also the time values recorded in the timed trace s′ are consistent with the simultaneity
information recorded in the history h′.

s′ prefix s
strip s = tracesZ h
strip s′ = tracesZ h′

(h′, h) ∈ PreHist
(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j))

(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j))

According to the definition of PreHist, the component simultan of of h′ must be a subset
of that of h. Furthermore, the time values recorded in s′ are identical with those recorded
in the corresponding timed events of s. The consistency of the time values of s with the
simultaneity information fixed by h thus guarantees the consistency of the time values of s′

with the simultaneity information fixed by h′.

Lemma B.5
Given a timed trace s. Let h and pref be histories that are related to the entire timed trace s
and to the projection of s onto the interval [0, t2], respectively, and let pref be a pre-history of
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h. Finally let ext be a history of which pref is a pre-history. Then, the component simultan of
of h and ext projected onto the interval [0, t2] are equal.

strip s = tracesZ h
strip(s �ttr t2) = tracesZ pref
(pref , h) ∈ PreHist
(pref , ext) ∈ PreHist

simultan of ext ∩ {i, j : N | time of (s i) 6R t2 ∧ time of (s j) 6R t2} =
simultan of h ∩ {i, j : N | time of (s i) 6R t2 ∧ time of (s j) 6R t2}

The projection of s onto the interval [0, t2] is entirely covered by the history pref . Since pref
is a pre-history of both h and ext, their components simultan of restricted to the part covered
by pref must be equal. This is a consequence of the definition of PreHist.

B.2 Properties of the Timed Failures Model

Theorem B.1
Let CSU be a concrete specification unit and M be a model associated with its Z part. Let

HS == Histories(|{(M, CSU.OPS)}|).

Then⋃
{h : HS • timed failuresZ(|{(h, HS)}|)} ∈ TimedFailuresModel.

That is, each set of timed failures that is associated with the Z part of a concrete specification
unit satisfies the properties of the timed failures model defined on p. 126 and explained on
pp. 249 ff.

Proof.

The proof is organised according to the decomposition into the conditions TF1, TF2, TF3/C1
and TF3/C2, see the explanation on pp. 249 ff. Throughout the following proof, we mark
those parts of the formulae that are manipulated in the current step by a rectangle.

TF 1

We assume that the Init schema of the Z part of CSU is satisfiable. Each consistent specifica-
tion unit must meet this condition.

∃ InitSt : InitModel(|{M}|) ∩ StateModel(|{M}|)

(〈〉, ∅) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

∃ InitSt : InitModel(|{M}|) ∩ StateModel(|{M}|)

` [def. HS, Histories]

((〈〉, ∅), 〈InitSt〉, 〈〉) ∈ HS
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` [def. tracesZ]

〈〉 ∈ {h : HS • tracesZ h}

` [def. failuresZ]

(〈〉, ∅) ∈
⋃
{h : HS • failuresZ(|{(h, HS)}|)}

` [def. timed failuresZ]

(〈〉, ∅) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

�

TF 2

(s,ℵ) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

∃ s∗ • s = s′ a s∗ ∧ ℵ′ ⊆ ℵ |�tref (beginttr s∗)

(s′,ℵ′) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

(s,ℵ) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

` [def. timed failuresZ]

∃ h : HS •
(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

(strip(s �ttr t), {e : Event | (t, e) ∈ ℵ}) ∈ failuresZ(|{(prefix, HS)}|))

` [Lemma B.1; s′ prefix s ⇒ strip(s′) prefix strip(s)]

∃ h, h′ : HS | (h′, h) ∈ PreHist •

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧

strip s′ = tracesZ h′ ∧

(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •
(strip(s �ttr t), {e : Event | (t, e) ∈ ℵ}) ∈ failuresZ(|{(prefix, HS)}|))

` [Lemma B.4]

∃ h, h′ : HS | (h′, h) ∈ PreHist •

(∀ i, j : N | (i, j) ∈ simultan of h′ • time of ( s′ i) = time of ( s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h) ∈ PreHist •

(strip(s �ttr t), {e : Event | (t, e) ∈ ℵ}) ∈ failuresZ(|{(prefix, HS)}|)))

` [def. failuresZ]
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∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′))))

))

` [t <R beginttr s∗ ∨ t >R beginttr s∗]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T •

t <R beginttr s∗ ∧

(∃ prefix : HS | (prefix, h) ∈ PreHist •
strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))
∨

t >R beginttr s∗ ∧

(∃ prefix : HS | (prefix, h) ∈ PreHist •
strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
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∨
(∃ e′ : Event | (t, e′) /∈ ℵ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′))))))

` [t <R beginttr s∗ ⇒ (s �ttr t = s′ �ttr t
∧ {e : Event | (t, e) ∈ ℵ′} ⊆ {e : Event | (t, e) ∈ ℵ});

t >R beginttr s∗ ⇒ {e : Event | (t, e) ∈ ℵ′} = ∅;

∀ e : ∅ • false;

B ⊆ A ∧ (∀ x : A • P(x)) ⇒ (∀ x : B • P(x));

B ⊆ A ∧ x /∈ A ⇒ x /∈ B]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T •

t <R beginttr s∗ ∧
(∃ prefix : HS | (prefix, h) ∈ PreHist •

strip( s′ �ttr t) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ } •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))
∨
t >R beginttr s∗ ∧
(∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ } • false )))

` [Lemma B.1; (s′ �ttr t) prefix (s �ttr t)]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T •

t <R beginttr s∗ ∧
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(∃ prefix : HS | (prefix, h) ∈ PreHist •
strip(s′ �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))
∨
t >R beginttr s∗ ∧
(∃ prefix : HS | (prefix, h) ∈ PreHist •

( ∃ prefix′ : HS | (prefix′, prefix) ∈ PreHist •

strip(s′ �ttr t) = tracesZ prefix′ ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix′, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))

))))

` [transitivity of PreHist]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T •

t <R beginttr s∗ ∧
(∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s′ �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧
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(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t >R beginttr s∗ ∧

(∃ prefix′ : HS | (prefix′, h) ∈ PreHist •

strip(s′ �ttr t) = tracesZ prefix′ ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix′, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [A ∧ B ∨ C ∧ B ≡ (A ∨ C) ∧ B]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s′ �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s′ �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [def. failuresZ]

∃ h, h′ : HS | (h′, h) ∈ PreHist •
(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

(strip(s′ �ttr t), {e : Event | (t, e) ∈ ℵ′}) ∈ failuresZ(|{(prefix, HS)}|))

` [Lemma B.2; strip(s′ �ttr t) prefix strip s′]

∃ h′ : HS •
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(∀ i, j : N | (i, j) ∈ simultan of h′ • time of (s′ i) = time of (s′ j)) ∧
strip s′ = tracesZ h′ ∧

∀ t : T • ∃ prefix : HS | (prefix, h′ ) ∈ PreHist •
(strip(s′ �ttr t), {e : Event | (t, e) ∈ ℵ′}) ∈ failuresZ(|{(prefix, HS)}|)

` [def. timed failuresZ]

(s′,ℵ′) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

�

TF 3

(s,ℵ) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

∃ℵ′ : TimedRefusal | ℵ ⊆ ℵ′ ∧
(s,ℵ′) ∈

⋃
{h : HS • timed failuresZ(|{(h, HS)}|)} •

(∀ t : T; a : Event •
((t, a) /∈ ℵ′ ⇒ ((s �ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈⋃

{h : HS • timed failuresZ(|{(h, HS)}|)})
∧
(t >R 0R ∧ ¬ (∃ ε : T+ • [t−R ε, t)× {a} ⊆ ℵ′) ⇒
((s |�ttr t)a 〈(t, a)〉,ℵ′ |�tref t) ∈⋃

{h : HS • timed failuresZ(|{(h, HS)}|)})

Let (s,ℵ) ∈ timed failuresZ(|{(h, HS)}|) for an arbitrary history h ∈ HS.

Our first goal is to construct, with respect to the chosen timed refusal ℵ, the set of all maximal
timed refusals ℵ′, because we must establish the existence of such a maximal timed refusal
in TF3. To this end, we need two auxiliary functions.

EquivTerm == λ ch : ran TermOf • {e : Event | chan of (e) = ch}
EquivExec == λ ch : ran ExecOf • λ in : Binding •

{e : Event | chan of (e) = ch ∧ InputsC val of (e) = in}

The function EquivTerm maps each channel that carries termination events to the class (set)
of all termination events that can occur on that channel. Similarly, the function EquivExec
maps each channel that carries execution events to a function, which, in turn, maps each
input parameter binding to the class (set) of all execution events that can occur on the given
channel and that associate the given values with the input parameters.

We now define the set of all maximal timed refusals with respect to the chosen ℵ. Each
maximal timed refusal ℵ′ in this set

• must contain ℵ,

• must contain for each time instant all events that are not possible continuations of the
timed trace s and
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• must contain for each time instant and for each channel carrying termination or execu-
tion events all but one event of the respective class.

ℵmax == {ℵ′ : TimedRefusal | ∀ t : T •
∃1 ref == {e : Event | (t, e) ∈ ℵ}; ref ′ == {e : Event | (t, e) ∈ ℵ′} •
∃nmemTerm : ran TermOf → Event; nmemExec : ran ExecOf → Binding→ Event |

∀ ch : ran TermOf • (nmemTerm ch) ∈ (EquivTerm ch) \ ref ∧
∀ ch : ran ExecOf ; in : Binding • (nmemExec ch in) ∈ (EquivExec ch in) \ ref •
ref ′ = ref
∪
{e : Event | strip(s �ttr t)a 〈e〉 /∈

{pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}}

∪⋃
{ch : ran TermOf • (EquivTerm ch) \ {nmemTerm ch}}

∪⋃
{ch : ran ExecOf ; in : Binding • (EquivExec ch in) \ {nmemExec ch in}}

The following lemmata, which are local with respect to TF3, are immediate consequences of
the definition of the set ℵmax.

Lemma B.6

ℵ′ ∈ ℵmax
(t, e) ∈ ℵ′

(t, e) ∈ ℵ
∨
strip(s �ttr t)a 〈e〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧

(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) = InputsC (val of e′)))

Lemma B.7

ℵ′ ∈ ℵmax
(t, e) /∈ ℵ′

strip(s �ttr t)a 〈e〉 ∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}
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Lemma B.8

ℵ′ ∈ ℵmax
(t, e) ∈ ℵ
strip(s �ttr t)a 〈e〉 ∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧

(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧
(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) = InputsC (val of e′)))

Let ℵ′ be a maximal timed refusal with respect to ℵ, i.e., ℵ′ ∈ ℵmax.

We must prove four subgoals.

1. ℵ ⊆ ℵ′

2. (s,ℵ′) ∈ timed failuresZ(|{(h, HS)}|)

3. TF 3/C1

∀ t2 : T; a : Event | (t2, a) /∈ ℵ′ •
((s �ttr t2)a 〈(t2, a)〉,ℵ′ |�tref t2) ∈

⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

4. TF 3/C2

∀ t0 : T; a : Event | t0 >R 0R ∧ ¬ (∃ ε : T+ • [t0−R ε, t0)× {a} ⊆ ℵ′) •
((s |�ttr t0)a 〈(t0, a)〉,ℵ′ |�tref t0) ∈

⋃
{h : HS • timed failuresZ(|{(h, HS)}|)}

ad 1.

` [ℵ′ ∈ ℵmax; def. ℵmax]

ℵ ⊆ ℵ′

�

ad 2.

(s,ℵ) ∈ timed failuresZ(|{(h, HS)}|)

` [def. timed failuresZ]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

(strip(s �ttr t), {e : Event | (t, e) ∈ ℵ}) ∈ failuresZ(|{(prefix, HS)}|))

` [def. failuresZ; ∀ e : {a : S | P(a)} • P(e)]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
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strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ} •

strip(s �ttr t)a 〈e〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′))))
∧

(∀ e : {a : Event |

strip(s �ttr t)a 〈a〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (a) = chan of (e′) ∧

(chan of (a) ∈ ran TermOf
∨ chan of (a) ∈ ran ExecOf

∧ InputsC (val of a) = InputsC (val of e′)))} •

strip(s �ttr t)a 〈e〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′))))

)

` [Lemma B.8; ((∀ x : A • P(x)) ∧ (∀ x : B • P(x)) ⇒ (∀ x : A ∪ B • P(x)))]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event |
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(t, a) ∈ ℵ
∨

strip(s �ttr t)a 〈a〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (a) = chan of (e′) ∧

(chan of (a) ∈ ran TermOf
∨ chan of (a) ∈ ran ExecOf ∧ InputsC (val of a) = InputsC (val of e′)))

} •

strip(s �ttr t)a 〈e〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))

` [Lemma B.6; A ⊆ B ⇒ ((∀ x : B • P(x)) ⇒ (∀ x : A • P(x)))]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ } •

strip(s �ttr t)a 〈e〉 /∈ {pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) = InputsC (val of e′)))))

` [strip(s �ttr t) = tracesZ prefix ∧ (prefix, h) ∈ PreHist ⇒
{pref , ext : HS | strip(s �ttr t) = tracesZ pref ∧ (pref , h) ∈ PreHist ∧

(pref , ext) ∈ PreHist • ext} = {ext : HS | (prefix, ext) ∈ PreHist};
B ⊆ A ⇒ (x /∈ R(|A|) ⇒ x /∈ R(|B|))]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •
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strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) = InputsC (val of e′)))))

` [def. failuresZ]

(∀ i, j : N | (i, j) ∈ simultan of h • time of (s i) = time of (s j)) ∧
strip s = tracesZ h ∧
(∀ t : T • ∃ prefix : HS | (prefix, h) ∈ PreHist •

(strip(s �ttr t), {e : Event | (t, e) ∈ ℵ′}) ∈ failuresZ(|{(prefix, HS)}|))

` [def. timed failuresZ]

(s,ℵ′) ∈ timed failuresZ(|{(h, HS)}|)

�

ad 3.

(t2, a) /∈ ℵ′

` [Lemma B.7]

strip(s �ttr t2)a 〈a〉 ∈ {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

` [Lemma B.5]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} |

simultan of h∗ = simultan of h
∩ {i, j : N | time of (s i) 6R t2 ∧ time of (s j) 6R t2}

∪ {i : N | time of (s i) = t2 • (i,#(s �ttr t2) + 1)} •

strip(s �ttr t2)a 〈a〉 = tracesZ h∗

` [(s,ℵ) ∈ timed failuresZ(|{(h, HS)}|);
(i, j) ∈ simultan of h∗ ⇒

((i, j) ∈ simultan of h ∨ j = #(s �ttr t2) + 1 ∧ time of (s i) = t2);

((s �ttr t2)a 〈(t2, a)〉)(#(s �ttr t2) + 1) = (t2, a)]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s �ttr t2)a 〈(t2, a)〉)i) =
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time of (((s �ttr t2)a 〈(t2, a)〉)j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗

` [t2 6R t ∨ t2 >R t]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s �ttr t2)a 〈(t2, a)〉)i) =

time of (((s �ttr t2)a 〈(t2, a)〉)j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗ ∧
∀ t : T • t2 6R t ∨ t2 >R t

` [(h∗ , h∗) ∈ PreHist; ∀ e : ∅ • false; (s,ℵ′) ∈ timed failuresZ(|{(h, HS)}|)]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s �ttr t2)a 〈(t2, a)〉)i) =

time of (((s �ttr t2)a 〈(t2, a)〉)j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗ ∧
(∀ t : T •

t2 6R t ∧

(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ prefix ∧
(∀ e : ∅ •

strip((s �ttr t2)a 〈(t2, a)〉)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t2 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))
∨
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t2 >R t ∧
(∃ prefix∗ : HS | (prefix∗ , h) ∈ PreHist •

strip(s �ttr t) = tracesZ prefix∗ ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix∗ , ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))

)

` [∃ x : S • P(x) ∧ S ⊆ T ⇒ ∃ x : T • P(x); Lemma B.3; transitivity of PreHist]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s �ttr t2)a 〈(t2, a)〉)i) =

time of (((s �ttr t2)a 〈(t2, a)〉)j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T •

t2 6R t ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip(s �ttr t2)a 〈a〉 = tracesZ prefix ∧
(∀ e : ∅ •

strip(s �ttr t2)a 〈a〉a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t2 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t2 >R t ∧

(∃ prefix∗ : HS | (prefix∗ , h∗ ) ∈ PreHist •
strip(s �ttr t) = tracesZ prefix∗ ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix∗ , ext) ∈ PreHist • tracesZ ext}
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∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [t2 6R t ⇒ (strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t) = strip(s �ttr t2)a 〈a〉 ∧
{e : Event | (t, e) ∈ ℵ′ |�tref t2} = ∅)

t2 >R t ⇒ (strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t) = strip(s �ttr t) ∧
{e : Event | (t, e) ∈ ℵ′ |�tref t2} = {e : Event | (t, e) ∈ ℵ′})]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of ((s �ttr t2a 〈(t2, a)〉)i) =

time of ((s �ttr t2a 〈(t2, a)〉)j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T •

t2 6R t ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip( ((s �ttr t2)a 〈(t2, a)〉) �ttr t ) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t2 } •

strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t2 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t2 >R t ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip( ((s �ttr t2)a 〈(t2, a)〉) �ttr t ) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t2 } •

strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
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(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t2 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [A ∧ B ∨ C ∧ B ≡ (A ∨ C) ∧ B]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s �ttr t2)a 〈(t2, a)〉)i) =

time of (((s �ttr t2)a 〈(t2, a)〉)j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t2} •

strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t2 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [def failuresZ]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of ((s �ttr t2a 〈(t2, a)〉)i) =

time of ((s �ttr t2a 〈(t2, a)〉)j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T • ∃ prefix : HS | (prefix, h∗) ∈ PreHist •

(strip(((s �ttr t2)a 〈(t2, a)〉) �ttr t), {e : Event | (t, e) ∈ ℵ′ |�tref t2}) ∈

failuresZ(|{(prefix, HS)}|))

` [def. timed failuresZ]

((s �ttr t2)a 〈(t2, a)〉,ℵ′ |�tref t2) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)})

�

ad 4.

t0 >R 0R ∧ ¬ ∃ ε : T+ • [t0−R ε, t0)× {a} ⊆ ℵ′

`
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∀ t1 : [0R, t0) • ∃ t2 : (t1, t0) • (t2, a) /∈ ℵ′

ℵ′ ∈ TimedRefusal

` [def. TimedRefusal: union of finite set of refusal tokens]

∃ t1 : [0R, t0) • ∀ t : (t1, t0) • {e : Event | (t, e) ∈ ℵ′} = {e : Event | (t1, e) ∈ ℵ′}

s ∈ TimedTrace

` [def. TimedTrace: infinite timed traces must not be bounded in time]

∃ t1 : [0R, t0) • s ↑ [t1, t0) = 〈〉

Let t1 : [0R, t0) such that ∀ t : (t1, t0) • {e : Event | (t, e) ∈ ℵ′} = {e : Event | (t1, e) ∈ ℵ′} ∧ s ↑
[t1, t0) = 〈〉. Let t2 : (t1, t0) such that (t2, a) /∈ ℵ′.

(t2, a) /∈ ℵ′

` [Lemma B.7]

strip(s �ttr t2)a 〈a〉 ∈ {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • tracesZ ext}

` [Lemma B.5]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} |

simultan of h∗ = simultan of h
∩ {i, j : N | time of (s i) <R t2 ∧ time of (s j) <R t2} •

strip(s �ttr t2)a 〈a〉 = tracesZ h∗

` [s ↑ttr [t2, t0) = 〈〉]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} |

simultan of h∗ = simultan of h
∩ {i, j : N | time of (s i) <R t0 ∧ time of (s j) <R t0} •

strip(s �ttr t2)a 〈a〉) = tracesZ h∗

` [(s,ℵ) ∈ timed failuresZ(|{(h, HS)}|);

∀ i : dom s | time of (s i) <R t0 • ((s |�ttr t0)a 〈(t0, a)〉) i = s i]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧
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strip(s �ttr t2)a 〈a〉 = tracesZ h∗

` [t0 >R t2]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of ((s |�ttr t0a 〈(t0, a)〉) i) =

time of ((s |�ttr t0a 〈(t0, a)〉) j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗ ∧
∀ t : T • t <R t2 ∨ t2 6R t <R t0 ∨ t >R t0

` [(h∗ , h∗) ∈ PreHist; ∀ e : ∅ • false; (s,ℵ′) ∈ timed failuresZ(|{(h, HS)}|)]

∃ h∗ : {pref , ext : HS | strip(s �ttr t2) = tracesZ pref ∧
(pref , h) ∈ PreHist ∧ (pref , ext) ∈ PreHist • ext} •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗ ∧
(∀ t : T •

t >R t0 ∧

(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ prefix ∧
(∀ e : ∅ •

strip((s �ttr t2)a 〈(t2, a)〉)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t2 6R t <R t0 ∧
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(∃ prefix : HS | (prefix, h) ∈ PreHist •
strip(s �ttr t2) = tracesZ prefix ∧
(∀ e : {a : Event | (t2, a) ∈ ℵ′} •

strip(s �ttr t2)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))

∨
t <R t2 ∧

(∃ prefix : HS | (prefix, h) ∈ PreHist •
strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf

∧ InputsC (val of e) = InputsC (val of e′)))))

)

` [∃ x : S • P(x) ∧ S ⊆ T ⇒ ∃ x : T • P(x); Lemma B.3]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧

strip(s �ttr t2)a 〈a〉 = tracesZ h∗ ∧
(∀ t : T •

t >R t0 ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ prefix ∧
(∀ e : ∅ •

strip((s �ttr t2)a 〈(t2, a)〉)a 〈e〉 /∈
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{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t2 6R t <R t0 ∧

(∃ prefix : HS | (prefix, h∗ ) ∈ PreHist •
strip(s �ttr t2) = tracesZ prefix ∧
(∀ e : {a : Event | (t2, a) ∈ ℵ′} •

strip(s �ttr t2)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t <R t2 ∧

(∃ prefix : HS | (prefix, h∗ ) ∈ PreHist •
strip(s �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′} •

strip(s �ttr t)a 〈e〉 /∈ {ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [t >R t0 ⇒

((s |�ttr t0)a 〈(t0, a)〉) �ttr t = (s |�ttr t0)a 〈(t0, a)〉 = (s �ttr t2)a 〈(t0, a)〉 ∧
{e : Event | (t, e) ∈ ℵ′ |�tref t0} = ∅;

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t) = strip((s �ttr t2)a 〈(t2, a)〉)
t2 6R t <R t0 ⇒

((s |�ttr t0)a 〈(t0, a)〉) �ttr t = s �ttr t = s �ttr t2 ∧
{e : Event | (t2, e) ∈ ℵ′} = {e : Event | (t, e) ∈ ℵ′} =

{e : Event | (t, e) ∈ ℵ′ |�tref t0}
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t <R t2(<R t0) ⇒

((s |�ttr t0)a 〈(t0, a)〉) �ttr t = s �ttr t ∧
{e : Event | (t, e) ∈ ℵ′ |�tref t0} = {e : Event | (t, e) ∈ ℵ′}]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of ((s |�ttr t0a 〈(t0, a)〉) i) =

time of ((s |�ttr t0a 〈(t0, a)〉) j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T •

t >R t0 ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip( ((s |�ttr t0)a 〈(t0, a)〉) �ttr t ) = tracesZ prefix ∧

(∀ e : {e : Event | (t, e) ∈ ℵ′ |�tref t0 } •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t2 6R t <R t0 ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip( ((s |�ttr t0)a 〈(t0, a)〉) �ttr t ) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t0 } •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′)))))
∨
t <R t2 ∧
(∃ prefix : HS | (prefix, h∗) ∈ PreHist •
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strip( ((s |�ttr t0)a 〈(t0, a)〉) �ttr t ) = tracesZ prefix ∧

(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t0 } •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [A ∧ D ∨ B ∧ D ∨ C ∧ D ≡ (A ∨ B ∨ C) ∧ D]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧

strip((s �ttr t2)a 〈(t2, a)〉) = tracesZ h∗ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t0} •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t)a 〈e〉 /∈
{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}

∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [s �ttr t2 = s |�ttr t0; strip((s �ttr t2)a 〈(t2, a)〉) = strip((s |�ttr t0)a 〈(t0, a)〉)]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧

strip( (s |�ttr t0)a 〈(t0, a)〉 ) = tracesZ h∗ ∧

(∀ t : T • (∃ prefix : HS | (prefix, h∗) ∈ PreHist •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t) = tracesZ prefix ∧
(∀ e : {a : Event | (t, a) ∈ ℵ′ |�tref t0} •

strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t)a 〈e〉 /∈
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{ext : HS | (prefix, ext) ∈ PreHist • tracesZ ext}
∨
(∃ e′ : Event | (t, e′) /∈ ℵ′ |�tref t0 • chan of (e) = chan of (e′) ∧

(chan of (e) ∈ ran TermOf
∨ chan of (e) ∈ ran ExecOf ∧ InputsC (val of e) =

InputsC (val of e′))))))

` [def. failuresZ]

∃ h∗ : HS •

(∀ i, j : N | (i, j) ∈ simultan of h∗ • time of (((s |�ttr t0)a 〈(t0, a)〉) i) =

time of (((s |�ttr t0)a 〈(t0, a)〉) j)) ∧

strip((s |�ttr t0)a 〈(t0, a)〉) = tracesZ h∗ ∧
(∀ t : T • (∃ prefix : HS | (prefix, h∗) ∈ PreHist •

(strip(((s |�ttr t0)a 〈(t0, a)〉) �ttr t), {e : Event | (t, e) ∈ ℵ′ |�tref t0}) ∈

failuresZ(|{(prefix, HS)}|)))

` [def. timed failuresZ]

((s |�ttr t0)a 〈(t0, a)〉,ℵ′ |�tref t0) ∈
⋃
{h : HS • timed failuresZ(|{(h, HS)}|)})

�
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Appendix C

Relationship between Simulation and
Refinement in the Timed Failures/States

Model

In this appendix we prove some lemmata that we needed in Chapter 10 in order to establish
that forward and backward simulations between concrete specification units imply refine-
ment in the timed failures/states model.

Lemma C.1

tr = tracesZ h

tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist • tracesZ ext}
⇔
tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist ∧

∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}

We need the following lemmata to prove the current lemma.

Lemma C.2
If trace tr is associated with history h, then trace tra〈e〉must be associated with some history
ext whose event sequence component extends that of h by a single operation application.

tr = tracesZ h

tra 〈e〉 ∈ {ext : History | ∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}

Lemma C.3

x ∈ A

x /∈ B ⇔ x /∈ B ∩ A

291
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Lemma C.4
The following rule formalises the condition under which an intersection operator (or logical
conjunction operator) inside a relational image can be distributed to the outside.

R(|B \ A|) ∩ R(|A|) = ∅

R(|A|) ∩ R(|B|) = R(|A ∩ B|)

Lemma C.5
The conclusion of the following lemma matches the antecedent of the previous one.

{ext : S | (h, ext) ∈ PreHist ∧
¬ ∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}

∩ {ext : S | ∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}
= ∅

It is valid because the lengths of the traces on the left hand side of the intersection operator
are different from the lengths of the traces on the right hand side.

Proof of Lemma C.1.

tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist • tracesZ ext}

⇔ [Lemmata C.2, C.3]

tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist • tracesZ ext}
∩ {ext : History | ∃ op : POP APP •

events of ext = (events of h)a 〈op〉 • tracesZ ext}

⇔ [Lemmata C.4, C.5; {x : S • P} ∩ {x : S • Q} = {x : S • P ∧ Q}]

tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist ∧

∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}

�

Lemma C.6
The following lemma is an immediate consequence of the definition of tracesZ: a trace de-
rived from a history is simply the translation (ev of op) of its sequence of operation applica-
tions.

tr = tracesZ h

tra 〈e〉 /∈ {ext : S | (h, ext) ∈ PreHist •
∃ op : POP APP • events of ext = (events of h)a 〈op〉 • tracesZ ext}

⇔
e /∈ ev of op(|{op : POP APP | ∃ ext : S | (h, ext) ∈ PreHist •

events of ext = (events of h)a 〈op〉}|)
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Proof of Theorem 10.4.

Let hc ∈ HSC and ha ∈ HSA such that (hc, ha) ∈ Retrhist(|{MR}|). Let further be D2 the second
disjunct within the universal quantifier of the definition of failuresZ in Section 9.2.4. Note
that D2 is independent of the history h for which the set of failures is computed. We do thus
not need to consider D2 in our proof.

(trc, Xc) ∈ failuresZ(|{(hc, HSC)}|)

` [def. failuresZ]

trc = tracesZ hc ∧
∀ e : Xc •

trc
a 〈e〉 /∈ {ext : HSC | (hc, ext) ∈ PreHist • tracesZ ext}

∨ D2

` [Lemma C.1]

trc = tracesZ hc ∧
∀ e : Xc •

trc
a 〈e〉 /∈ {ext : HSC | (hc, ext) ∈ PreHist ∧

∃ op : POP APP • events of ext = (events of hc)a 〈op〉 • tracesZ ext}
∨ D2

` [Lemma C.6]

trc = tracesZ hc ∧
∀ e : Xc •

e /∈ ev of op(|{op : POP APP | ∃ ext : HSC | (hc, ext) ∈ PreHist •

events of ext = (events of hc)a 〈op〉}|)
∨ D2

` [Theorem 10.2]

trc = tracesZ hc ∧
∀ e : Xc •

e /∈ Retrev(|{MR}|)(|ev of op(|{op : POP APP | ∃ ext : HSA | (ha, ext) ∈ PreHist ∧

events of ext = (events of ha)a 〈op〉}|)|)
∨ D2

` [(∀ e : Xc • e /∈ R(|Y|)) ⇒ (∀ e : R∼(|Xc|) • e /∈ Y)]

trc = tracesZ hc ∧
∀ e : Retrev(|{MR}|)∼(|Xc|) •

e /∈ ev of op(|{op : POP APP | ∃ ext : HSA | (ha, ext) ∈ PreHist ∧

events of ext = (events of ha)a 〈op〉}|)
∨ D2
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` [Theorem 10.3]

trc ∈ Retrtr(|{MR}|)(|{tracesZ ha}|) ∧
∀ e : Retrev(|{MR}|)∼(|Xc|) •

e /∈ ev of op(|{op : POP APP | ∃ ext : HSA | (ha, ext) ∈ PreHist ∧

events of ext = (events of ha)a 〈op〉}|)
∨ D2

` [Lemma C.6]

trc ∈ Retrtr(|{MR}|)(|{tracesZ ha}|) ∧
∀ e : Retrev(|{MR}|)∼(|Xc|) •

(tracesZ ha)a 〈e〉 /∈ {ext : HSA | (ha, ext) ∈ PreHist ∧

∃ op : POP APP • events of ext = (events of ha)a 〈op〉 • tracesZ ext}
∨ D2

` [Lemma C.1]

trc ∈ Retrtr(|{MR}|)(|{tracesZ ha}|) ∧
∀ e : Retrev(|{MR}|)∼(|Xc|) •

(tracesZ ha)a 〈e〉 /∈ {ext : HSA | (ha, ext) ∈ PreHist • tracesZ ext}
∨ D2

`

∃ tra : Trace; Xa : Refusal |
trc ∈ Retrtr(|{MR}|)(|{tra}|) ∧ Xa = Retrev(|{MR}|)∼(|Xc|) •
tra = tracesZ ha ∧
∀ e : Xa •

tra
a 〈e〉 /∈ {ext : HSA | (ha, ext) ∈ PreHist • tracesZ ext}

∨ D2

` [def. failuresZ; D2 is independent of history; X ⊆ R(|R∼(|X|)|)]

∃ tra : Trace; Xa : Refusal |
(tra, Xa) ∈ failuresZ(|{(ha, HSA)}|) •
trc ∈ Retrtr(|{MR}|)(|{tra}|) ∧ Xc ⊆ Retrev(|{MR}|)(|Xa|)

` [def. Retrfail]

(trc, Xc) ∈ Retrfail(|{MR}|)(|failuresZ(|{(ha, HSA)}|)|)

�

Lemma C.7
The following lemma states that the component simultan of of a history does not influence its
membership to the set of histories associated with a specification unit: two histories differing
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only in the component simultan of are either both members or both no members.

h ∈ Histories(|{(M, OPS)}|)
events of h = events of h∗ ∧ states of h = states of h∗ ∧ ops of h = ops of h∗

h∗ ∈ Histories(|{(M, OPS)}|)

Lemma C.8
If two histories hc and ha are related by Retrhist, then for each prefix of hc there is a prefix of
ha such that these prefixes are related by Retrhist.

hc ∈ HSC; ha ∈ HSA
(hc, ha) ∈ Retrhist(|{MR}|)

∀ prefc : HSC | (prefc, hc) ∈ PreHist •
∃ prefa : HSA | (prefa, ha) ∈ PreHist • (prefc, prefa) ∈ Retrhist(|{MR}|)

Proof of Theorem 10.5.

Let hc ∈ HSC be arbitrary.

(sc,ℵc) ∈ timed failuresZ(|{(hc, HSC)}|)

` [def. timed failuresZ]

(∀ i, j : N | (i, j) ∈ simultan of hc • time of (sc i) = time of (sc j)) ∧
strip sc = tracesZ hc ∧
∀ t : T • ∃ prefc : HSC | (prefc, hc) ∈ PreHist •

(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈ failuresZ(|{(prefc, HSC)}|)

` [Theorem 10.2]

∃ ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
strip sc = tracesZ hc ∧
∀ t : T • ∃ prefc : HSC | (prefc, hc) ∈ PreHist •

(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈ failuresZ(|{(prefc, HSC)}|)

` [Lemma C.8]

∃ ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
strip sc = tracesZ hc ∧
∀ t : T • ∃ prefc : HSC | (prefc, hc) ∈ PreHist •

∃ prefa : HSA | (prefa, ha) ∈ PreHist ∧ (prefc, prefa) ∈ Retrhist(|{MR}|) •
(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈ failuresZ(|{(prefc, HSC)}|)

` [Theorem 10.4]

∃ ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
strip sc = tracesZ hc

∀ t : T • ∃ prefc : HSC | (prefc, hc) ∈ PreHist •
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∃ prefa : HSA | (prefa, ha) ∈ PreHist ∧ (prefc, prefa) ∈ Retrhist(|{MR}|) •
(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈

Retrfail(|{MR}|)(|failuresZ(|{(prefa, HSA)}|)|)

` [Theorem 10.3]

∃ ha : HSA | (hc, ha) ∈ Retrhist(|{MR}|) •
strip sc ∈ Retrtr(|{MR}|)(|{tracesZ ha}|) ∧
∀ t : T • ∃ prefa : HSA | (prefa, ha) ∈ PreHist •

(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈
Retrfail(|{MR}|)(|failuresZ(|{(prefa, HSA)}|)|)

` [Lemma C.7]

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
(∀ i, j : N | (i, j) ∈ simultan of h∗a • time of (sc i) = time of (sc j)) ∧
strip sc ∈ Retrtr(|{MR}|)(|{tracesZ h∗a}|)
∀ t : T • ∃ prefa : HSA | (prefa, h∗a ) ∈ PreHist •

(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈
Retrfail(|{MR}|)(|failuresZ(|{(prefa, HSA)}|)|)

`

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
(∀ i, j : N | (i, j) ∈ simultan of h∗a • time of (sc i) = time of (sc j)) ∧
strip sc ∈ Retrtr(|{MR}|)(|{tracesZ h∗a}|)
∀ t : T • ∃ prefa : HSA | (prefa, h∗a ) ∈ PreHist •

∃ tr∗a : Trace; X∗
a : Refusal | (tr∗a , X∗

a ) ∈ failuresZ(|{(prefa, HSA)}|) •
(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈

Retrfail(|{MR}|)(|{(tr
∗
a , X∗

a )}|)

`

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal |

dom sa = dom sc ∧ (∀ i : dom sc • time of (sc i) = time of (sa i)) •
(∀ i, j : N | (i, j) ∈ simultan of h∗a • time of (sa i) = time of (sa j)) ∧
strip sc ∈ Retrtr(|{MR}|)(|{tracesZ h∗a}|) ∧ strip sa = tracesZ h∗a ∧
∀ t : T • ∃ prefa : HSA | (prefa, h∗a ) ∈ PreHist •

∃ tr∗a : Trace; X∗
a : Refusal | (tr∗a , X∗

a ) ∈ failuresZ(|{(prefa, HSA)}|) •
strip(sa �ttr t) = tr∗a ∧ {e : Event | (t, e) ∈ ℵa} = X∗

a ∧
(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈ Retrfail(|{MR}|)(|{(tr

∗
a , X∗

a )}|)
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`

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal |

dom sa = dom sc ∧ (∀ i : dom sc • time of (sc i) = time of (sa i)) •
(∀ i, j : N | (i, j) ∈ simultan of h∗a • time of (sa i) = time of (sa j)) ∧
strip sa = tracesZ h∗a ∧
∀ t : T • ∃ prefa : HSA | (prefa, h∗a ) ∈ PreHist •

(strip(sa �ttr t), {e : Event | (t, e) ∈ ℵa}) ∈ failuresZ(|{(prefa, HSA)}|) ∧
(strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈

Retrfail(|{MR}|)(|{(strip(sa �ttr t), {e : Event | (t, e) ∈ ℵa})}|)

` [def. timed failuresZ]

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal |

dom sa = dom sc ∧ (∀ i : dom sc • time of (sc i) = time of (sa i)) •
(sa,ℵa) ∈ timed failuresZ(|{(h∗a , HSA)}|) ∧
∀ t : T • (strip(sc �ttr t), {e : Event | (t, e) ∈ ℵc}) ∈

Retrfail(|{MR}|)(|{(strip(sa �ttr t), {e : Event | (t, e) ∈ ℵa})}|) ∧

` [def. Retrtf ]

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal •

(sc,ℵc) ∈ Retrtf (|{MR}|)(|{(sa,ℵa)}|) ∧ (sa,ℵa) ∈ timed failuresZ(|{(h∗a , HSA)}|)

`

∃ h∗a : HSA | (hc, h∗a ) ∈ Retrhist(|{MR}|) •
(sc,ℵc) ∈ Retrtf (|{MR}|)(|timed failuresZ(|{(h∗a , HSA)}|)|)

�

Lemma C.9
The first lemma concerns the relation timedst of stseq, which was defined in Chapter 9 in or-
der to facilitate the definition of timed statesZ. For a pair (hc, ha) of histories related by Retrhist,
we can always find a timed state tsta for each timed state tstc computed by timedst of stseq
such that they are related by Retrtst. We must simply choose the identical injective function
index to time for tstc and tsta.

(ha, hc) ∈ Retrhist(|{MR}|)

∀ tstc : timedst of stseq(|{hc}|) •
∃ tsta : timedst of stseq(|{ha}|) • (tstc, tsta) ∈ Retrtst(|{MR}|)
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Lemma C.10
For each pair of timed failures related by Retrtf , the time instants recorded in their timed
traces are identical.

∀ sa, sc : TimedTrace; ℵa,ℵc : TimedRefusal | ((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) •
{t : T | ∃ i : dom sc •

chan of (ev of (sc i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sc i) = t}
= {t : T | ∃ i : dom sa •

chan of (ev of (sa i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sa i) = t}

Proof of Theorem 10.6.

Let (sa,ℵa) ∈ TFA and (sc,ℵc) ∈ TFC be arbitrary such that ((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|).

tstc ∈ timed statesZ(|{hc}|)(|{(sc,ℵc)}|)

` [def. timed statesZ]

tstc ∈ timedst of stseq(|{hc}|) ∧
dom tstc = {0R} ∪ {t : T | ∃ i : dom sc •

chan of (ev of (sc i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sc i) = t}

` [Lemma C.9]

∃ tsta : timedst of stseq(|{ha}|) | (tstc, tsta) ∈ Retrtst(|{MR}|) •
dom tstc = {0R} ∪ {t : T | ∃ i : dom sc •

chan of (ev of (sc i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sc i) = t}

` [def. Retrtst]

∃ tsta : timedst of stseq(|{ha}|) | (tstc, tsta) ∈ Retrtst(|{MR}|) •
dom tsta = {0R} ∪ {t : T | ∃ i : dom sc •

chan of (ev of (sc i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sc i) = t}

` [Lemma C.10]

∃ tsta : timedst of stseq(|{ha}|) | (tstc, tsta) ∈ Retrtst(|{MR}|) •
dom tsta = {0R} ∪ {t : T | ∃ i : dom sa •

chan of (ev of (sa i)) ∈ ran TermOf ∪ ran ExecOf ∧ time of (sa i) = t}

` [def. timed statesZ]

∃ tsta : timedst of stseq(|{ha}|) | (tstc, tsta) ∈ Retrtst(|{MR}|) •
tsta ∈ timed statesZ(|{ha}|)(|{(sa,ℵa)}|)

`

tstc ∈ Retrtst(|{MR}|)(|timed statesZ(|{ha}|)(|{(sa,ℵa)}|)|)

�
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Lemma C.11
The following lemma states that the relation Retrtf distributes over the parallel composition
operator.

((sa
z,ℵa

z), (sc
z,ℵc

z)) ∈ Retrtf (|{MR}|)
((sa

csp,ℵa
csp), (sc

csp,ℵc
csp)) ∈ Retrtf (|{MR}|)

((sc
z, sc

csp), ORE) synch sc

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX)
((sa

z, sa
csp), ORE) synch sa

ℵa
z \ (T×OREX) = ℵa

csp \ (T×OREX)

((sa,ℵa
z ∪ ℵa

csp), (sc,ℵc
z ∪ ℵc

csp)) ∈ Retrtf (|{MR}|)

Proof of Theorem 10.7.

((sc,ℵc), tstc) ∈ tfs of modelINT(|{(CSUC,MC)}|)

` [def. tfs of modelINT]

. . .

∃ hc : HSC; sc
z, sc

csp : TimedTrace; ℵc
z,ℵc

csp : TimedRefusal •

(sc
z,ℵc

z) ∈ timed failuresZ(|{(hc, HSC)}|) ∧
((sc

csp,ℵc
csp) /∈ timed failuresETFM [[ CSUC.EA ]](MC ,CSUC.I∪CSUC.L)

∨ (sc
csp,ℵc

csp) ∈

timed failuresETCSP [[ CSUC.Behav Behaviour ]](CSUC.Behav,(MC ,MC),CSUC.I∪CSUC.L)) ∧
((sc

z, sc
csp), ORE) synch sc ∧

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX) ∧ ℵc = ℵc
z ∪ ℵc

csp ∧

((sc
z,ℵc

z), tstc) ∈ timed statesZ(|{hc}|)

` [Theorem 10.5]

. . .

∃ hc : HSC; sc
z, sc

csp : TimedTrace; ℵc
z,ℵc

csp : TimedRefusal •

∃ ha : HSA; sa
z : TimedTrace; ℵa

z : TimedRefusal |
(ha, hc) ∈ Retrhist(|{MR}|) ∧ ((sa

z,ℵa
z), (sc

z,ℵc
z)) ∈ Retrtf (|{MR}|) •

(sa
z,ℵa

z) ∈ timed failuresZ(|{(ha, HSA)}|) ∧
((sc

csp,ℵc
csp) /∈ timed failuresETFM [[ CSUC.EA ]](MC ,CSUC.I∪CSUC.L) ∧

∨ (sc
csp,ℵc

csp) ∈

timed failuresETCSP [[ CSUC.Behav Behaviour ]](CSUC.Behav,(MC ,MC),CSUC.I∪CSUC.L)) ∧
((sc

z, sc
csp), ORE) synch sc ∧

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX) ∧ ℵc = ℵc
z ∪ ℵc

csp ∧

((sc
z,ℵc

z), tstc) ∈ timed statesZ(|{hc}|)

` [Theorem 10.6]
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. . .

∃ hc : HSC; sc
z, sc

csp : TimedTrace; ℵc
z,ℵc

csp : TimedRefusal •

∃ ha : HSA; sa
z : TimedTrace; ℵa

z : TimedRefusal | (ha, hc) ∈ Retrhist(|{MR}|) ∧
((sa

z,ℵa
z), (sc

z,ℵc
z)) ∈ Retrtf (|{MR}|) •

∃ tsta : TimedState | (tsta, tstc) ∈ Retrtst(|{MR}|) •
(sa

z,ℵa
z) ∈ timed failuresZ(|{(ha, HSA)}|) ∧

((sc
csp,ℵc

csp) /∈ timed failuresETFM [[ CSUC.EA ]](MC ,CSUC.I∪CSUC.L) ∧

∨ (sc
csp,ℵc

csp) ∈

timed failuresETCSP [[ CSUC.Behav Behaviour ]](CSUC.Behav,(MC ,MC),CSUC.I∪CSUC.L)) ∧
((sc

z, sc
csp), ORE) synch sc ∧

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX) ∧ ℵc = ℵc
z ∪ ℵc

csp ∧

tsta ∈ timed statesZ(|{ha}|)(|{(sa
z,ℵa

z)}|)

` [Assumptions 10.3 and 10.4]

. . .

∃ hc : HSC; sc
z, sc

csp : TimedTrace; ℵc
z,ℵc

csp : TimedRefusal •

∃ sa
csp : TimedTrace; ℵa

csp : TimedRefusal | ((sa
csp,ℵa

csp), (sc
csp,ℵc

csp)) ∈ Retrtf (|{MR}|) •

∃ ha : HSA; sa
z : TimedTrace; ℵa

z : TimedRefusal | (ha, hc) ∈ Retrhist(|{MR}|) ∧
((sa

z,ℵa
z), (sc

z,ℵc
z)) ∈ Retrtf (|{MR}|) •

∃ tsta : TimedState | (tsta, tstc) ∈ Retrtst(|{MR}|) •
(sa

z,ℵa
z) ∈ timed failuresZ(|{(ha, HSA)}|) ∧

((sa
csp,ℵa

csp) /∈ timed failuresETFM [[ CSUA.EA ]](MA,CSUA.I∪CSUA.L)

∨ (sa
csp,ℵa

csp) ∈

timed failuresETCSP [[ CSUA.Behav Behaviour ]](CSUA.Behav,(MA,MA),CSUA.I∪CSUA.L)) ∧
((sc

z, sc
csp), ORE) synch sc ∧

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX) ∧ ℵc = ℵc
z ∪ ℵc

csp ∧

tsta ∈ timed statesZ(|{ha}|)(|{(sa
z,ℵa

z)}|)

` [parallel composition is total]

. . .

∃ hc : HSC; sc
z, sc

csp : TimedTrace; ℵc
z,ℵc

csp : TimedRefusal •

∃ sa
csp : TimedTrace; ℵa

csp : TimedRefusal | ((sa
csp,ℵa

csp), (sc
csp,ℵc

csp)) ∈ Retrtf (|{MR}|) •

∃ ha : HSA; sa
z : TimedTrace; ℵa

z : TimedRefusal | (ha, hc) ∈ Retrhist(|{MR}|) ∧
((sa

z,ℵa
z), (sc

z,ℵc
z)) ∈ Retrtf (|{MR}|) •

∃ tsta : TimedState | (tsta, tstc) ∈ Retrtst(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal |

((sa
z, sa

csp), ORE) synch sa ∧ ℵa
z \ (T×OREX) = ℵa

csp \ (T×OREX) •



301

(sa
z,ℵa

z) ∈ timed failuresZ(|{(ha, HSA)}|) ∧
((sa

csp,ℵa
csp) /∈ timed failuresETFM [[ CSUA.EA ]](MA,CSUA.I∪CSUA.L)

∨ (sa
csp,ℵa

csp) ∈

timed failuresETCSP [[ CSUA.Behav Behaviour ]] (CSUA.Behav,(MA,MA),CSUA.I∪CSUA.L)) ∧
((sc

z, sc
csp), ORE) synch sc ∧

ℵc
z \ (T×OREX) = ℵc

csp \ (T×OREX) ∧ ℵc = ℵc
z ∪ ℵc

csp ∧

tsta ∈ timed statesZ(|{ha}|)(|{(sa
z,ℵa

z)}|)

` [Lemma C.11]

. . .

∃ sa
csp : TimedTrace; ℵa

csp : TimedRefusal •

∃ ha : HSA; sa
z : TimedTrace; ℵa

z : TimedRefusal •
∃ tsta : TimedState | (tsta, tstc) ∈ Retrtst(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal •

((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) ∧
((sa

z, sa
csp), ORE) synch sa ∧ ℵa

z \ (T×OREX) = ℵa
csp \ (T×OREX) ∧

(sa
z,ℵa

z) ∈ timed failuresZ(|{(ha, HSA)}|) ∧
((sa

csp,ℵa
csp) /∈ timed failuresETFM [[ CSUA.EA ]](MA,CSUA.I∪CSUA.L)

∨ (sa
csp,ℵa

csp) ∈

timed failuresETCSP [[ CSUA.Behav Behaviour ]](CSUA.Behav,(MA,MA),CSUA.I∪CSUA.L)) ∧
tsta ∈ timed statesZ(|{ha}|)(|{(sa

z,ℵa
z)}|)

` [def. tfs of modelINT]

(tsta, tstc) ∈ Retrtst(|{MR}|) ∧
((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) ∧
((sa,ℵa), tsta) ∈ tfs of modelINT(|{(CSUA,MA)}|)

` [def. RetrInterface/State]

((sc,ℵc), tstc) ∈ RetrInterface/State(|{RSU}|)(|tfs of modelINT(|{(CSUA,MA)}|)|)

�

Lemma C.12
For the transition between tfs of modelINT and tfs of modelEXT, we need a lemma similar to
Lemma C.11: the relation Retrtf must distribute over the hiding operator.

((s∗a ,ℵ
∗
a ), (s

∗
c ,ℵ

∗
c )) ∈ Retrtf (|{MR}|)

sc �ttr ORE = s∗c
ℵ∗c = ℵc ∪ (T×ORE)
sa �ttr ORE = s∗a
ℵ∗a = ℵa ∪ (T×ORE)

((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|)
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Proof of Theorem 10.8.

((sc,ℵc), tstc) ∈ tfs of modelEXT(|{(CSUC,MC)}|)

` [def. tfs of modelEXT]

∃ s∗c : TimedTrace; ℵ∗c : TimedRefusal •
((s∗c ,ℵ

∗
c ), tstc) ∈ tfs of modelINT(|{(CSUC,MC)}|) ∧

sc �ttr ORE = s∗c ∧ ℵ
∗
c = ℵc ∪ (T×ORE)

` [Theorem 10.7]

∃ s∗c : TimedTrace; ℵ∗c : TimedRefusal •
∃ s∗a : TimedTrace; ℵ∗a : TimedRefusal; tsta : TimedState |

((s∗a ,ℵ
∗
a ), (s

∗
c ,ℵ

∗
c )) ∈ Retrtf (|{MR}|) ∧ (tsta, tstc) ∈ Retrtst(|{MR}|) •

((s∗a ,ℵ
∗
a ), tsta) ∈ tfs of modelINT(|{(CSUA,MA)}|) ∧

sc �ttr ORE = s∗c ∧ ℵ
∗
c = ℵc ∪ (T×ORE)

` [hiding operator is total]

∃ s∗c : TimedTrace; ℵ∗c : TimedRefusal •
∃ s∗a : TimedTrace; ℵ∗a : TimedRefusal; tsta : TimedState |

((s∗a ,ℵ
∗
a ), (s

∗
c ,ℵ

∗
c )) ∈ Retrtf (|{MR}|) ∧ (tsta, tstc) ∈ Retrtst(|{MR}|) •

∃ sa : TimedTrace; ℵa : TimedRefusal |
sa �ttr ORE = s∗a ∧ ℵ

∗
a = ℵa ∪ (T×ORE) •

((s∗a ,ℵ
∗
a ), tsta) ∈ tfs of modelINT(|{(CSUA,MA)}|) ∧

sc �ttr ORE = s∗c ∧ ℵ
∗
c = ℵc ∪ (T×ORE)

` [Lemma C.12]

∃ s∗a : TimedTrace; ℵ∗a : TimedRefusal; tsta : TimedState |
(tsta, tstc) ∈ Retrtst(|{MR}|) •
∃ sa : TimedTrace; ℵa : TimedRefusal |

((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) ∧
sa �ttr ORE = s∗a ∧ ℵ

∗
a = ℵa ∪ (T×ORE) •

((s∗a ,ℵ
∗
a ), tsta) ∈ tfs of modelINT(|{(CSUA,MA)}|)

` [def. tfs of modelEXT]

(tsta, tstc) ∈ Retrtst(|{MR}|) ∧
((sa,ℵa), (sc,ℵc)) ∈ Retrtf (|{MR}|) ∧
((sa,ℵa), tsta) ∈ tfs of modelEXT(|{(CSUA,MA)}|)

` [def. RetrInterface/State]

((sc,ℵc), tstc) ∈ RetrInterface/State(|{RSU}|)(|tfs of modelEXT(|{(CSUA,MA)}|)|)

�
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RT-Z Syntax

The concrete syntax of RT-Z is formally defined in this appendix. Again, we follow the
approach taken in the Z Standard by using the same subset of the standard ISO [1996] as
the syntactic metalanguage. The operators of this syntactic metalanguage that we use in the
following syntax definition are described in Table D.1, which we adopt from [ISO, 2002, p. 3].

As elaborated in Part II, the syntax of RT-Z is built on the syntax of the Z notation. For in-
stance, the TYPES & CONSTANTSsection of a specification unit is constituted by a Z section.
Therefore, the following syntax definition refers to non-terminal symbols of the concrete
syntax of the Z notation, as defined in [ISO, 2002, Section 8.2]. For convenience, we map
the identifiers of these non-terminals to corresponding identifiers that clearly indicate their
Z origin.1

For the predicate languages of both the extended timed failures model (ETFM) and the timed
failures/states model (TFSM), we define the syntax of the core language (to understand the
term “core language” see the remarks on p. 134).

In the following syntax definition, non-terminals with the suffix −tok denote corresponding
terminal symbols, e.g.,

1 Section and Expression are mapped to ZSect and ZExpr , respectively.

symbol definition
= defines a non-terminal on the left in terms of the syntax on the right
| separates alternatives
, separates notation to be concatenated
{} delimit notation to be repeated zero or more times
[] delimit optional notation
() are grouping brackets
‘‘ delimit a terminal symbol
; delimits a definition

Table D.1: Syntactic metalanguage.
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{-tok = ‘ {‘

Moreover, the non-terminal NL denotes a “newline.”

RT-Z Specifications

RTZSpec = [ZSect , NL], (CSpecUnit | ASpecUnit ), {NL, (CSpecUnit | ASpecUnit )};

Id = LETTER, {LETTER| DIGIT | ‘ ‘ };
LETTER= ‘ a‘ | . . . | ‘ z‘ | ‘ A‘ | . . . | ‘ Z‘ ;
DIGIT = ‘ 0‘ | . . . | ‘ 9‘ ;

Specification Units

CSpecUnit = ‘SPEC. UNIT‘ , Id , [ [-tok , Id , {,-tok , Id }, ]-tok ],
[‘EXTENDS‘ , Id , {,-tok , Id }],
NL, CSpecSect , {NL, CSpecSect };

CSpecSect = ExtendsSect
| SubunitsSect
| TypesconstSect
| InterfaceSect
| EnvassumpSect
| LocalSect
| StateSect
| OppredsSect
| BehaviourSect

;

ASpecUnit = ‘SPEC. UNIT‘ , Id , [ [-tok , Id , {,-tok , Id }, ]-tok ],
[‘EXTENDS‘ , Id , {,-tok , Id }],
NL, ASpecSect , {NL, ASpecSect };

ASpecSect = ExtendsSect
| TypesconstSect
| InterfaceSect
| EnvassumpSect
| IORelSect
| StatepropSect
| BehavpropSect

;

ExtendsSect = ‘EXTENDS‘ , NL, ExtendsDecl , {; -tok , NL, ExtendsDecl };

ExtendsDecl = Id , {NL, ExtendsItem , ; -tok };
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ExtendsItem = ‘instantiate ‘ , Id , ‘ with ‘ , Id , {,-tok , Id , ‘ with ‘ , Id }
| ‘rename ‘ , Id , ‘ to ‘ , Id , {,-tok , Id , ‘ to ‘ , Id }
| ‘hide ‘ , Id , {,-tok , Id }
| ‘redefine ‘ , Id , {,-tok , Id }

;

SubunitsSect = ‘SUBUNITS‘ , NL, SubunitsDecl , {; -tok , NL, SubunitsDecl };

SubunitsDecl = ‘subunit‘ , Id , ‘spec. unit‘ , Id , {NL, SubunitsItem , ; -tok };

SubunitsItem = ‘rename ‘ , Id , ‘ to ‘ , Id , {,-tok , Id , ‘ to ‘ , Id }
| ‘hide ‘ , Id , {,-tok , Id }
| ‘instantiate ‘ , Id , ‘ with ‘ , Id , {,-tok , Id , ‘ with ‘ , Id }

;

TypesconstSect = ‘TYPES & CONSTANTS‘, NL, ZSect ;

InterfaceSect = ‘INTERFACE‘ , NL,
‘port‘ , Id , ‘domain‘ , ZExpr ,
{; -tok , NL, ‘port‘ , Id , ‘domain‘ , ZExpr };

EnvassumpSect = ‘ENVIRONMENTAL ASSUMPTIONS‘, NL,
(PredDef ETFM| EvSetDef ),
{NL, (PredDef ETFM| EvSetDef )};

LocalSect = ‘LOCAL‘ , NL,
‘channel‘ , Id , ‘domain‘ , ZExpr ,
{; -tok , NL, ‘channel‘ , Id , ‘domain‘ , ZExpr }
;

StateSect = ‘STATE‘ , NL, ZSect ;

OppredsSect = ‘OPS & PREDS‘, [ [-tok , Id , {,-tok , Id }, ]-tok ], NL, ZSect ;

BehaviourSect = ‘BEHAVIOUR‘ , NL, (ProcDef | EvSetDef ),
{NL, (ProcDef | EvSetDef )};

IORelSect = ‘I/O RELATIONS‘ , NL, ZSect ;

StatepropSect = ‘STATE PROPERTIES‘ , NL, ZSect ;

BehavpropSect = ‘BEHAVIOURAL PROPERTIES‘, NL, (PredDef TFSM| EvSetDef ),
{NL, (PredDef TFSM| EvSetDef )};
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Process Terms

Proc = Id , [ (-tok , Id , {,-tok , Id }, )-tok ]
| ‘ Stop‘ | ‘ Skip‘
| Proc , ; -tok , Proc
| Proc , ‘ |[‘ , EvSetExpr , ‘ ]|‘ , Proc
| Proc , ‘ |[‘ , EvSetExpr , |-tok , EvSetExpr , ‘ ]|‘ , Proc
| Proc , ‘ ||| ‘ , Proc
| Proc , ‘ � ‘ , Proc | Proc , ‘ u ‘ , Proc
| Id , (-tok , Proc , )-tok | Id , ‘ −1‘ , (-tok , Proc , )-tok
| Proc , ‘ \ ‘ , EvSetExpr | Proc , ‘ 4 ‘ , Proc

| ‘ u ‘ , Id , ‘ ∈ ‘ , ZExpr , Proc

| ‘ ||| ‘ , Id , ‘ ∈ ‘ , ZExpr , Proc

| ‘ ‖ ‘ , Id , ‘ ∈ ‘ , ZExpr , [-tok , EvSetExpr , ]-tok , Proc
| Id , ‘ ?‘ , (-tok , Id , ‘ : ‘ , ZExpr , )-tok ‘ → ‘ , Proc
| Id , ‘ ?‘ , (-tok , Id , ‘ : ‘ , ZExpr , )-tok , ‘ @‘ , Id , ‘ → ‘ , Proc
| Id , ‘ !‘ , ZExpr , ‘ → ‘ , Proc

| ‘ Wait ‘ , TExpr | Proc , ‘ .‘ , {-tok , TExpr , }-tok , Proc
| Proc , ‘ 4‘ , TExpr , Proc

;

ProcDef = Id , [ (-tok , Id , {,-tok , Id }, )-tok ], ‘ =̂ ‘ , Proc ;

Event Sets

EvSetDef = Id , ‘ =̂ ‘ , EvSetExpr ;

EvSetExpr = RefExpr | Id ;

Predicates (ETFM)

Pred ETFM= AtomicPred ETFM
| Pred ETFM, ‘ ∧ ‘ , Pred ETFM
| Pred ETFM, ‘ ∨ ‘ , Pred ETFM
| ‘ ¬ ‘ , Pred ETFM
| Pred ETFM, ‘ ⇒ ‘ , Pred ETFM
| Pred ETFM, ‘ ⇔ ‘ , Pred ETFM
| ‘ ∀ ‘ , Id , ‘ : ‘ , ZExpr , ‘ • ‘ , Pred ETFM
| ‘ ∃ ‘ , Id , ‘ : ‘ , ZExpr , ‘ • ‘ , Pred ETFM
| ‘ let ‘ , Id , ‘ == ‘ , ZExpr , ‘ • ‘ , Pred ETFM

;

PredDef ETFM = Id , [ (-tok , Id , {,-tok , Id }, )-tok ], ‘ =̂ ‘ , Pred ETFM;
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AtomicPred ETFM= Id , [ (-tok , Id , {,-tok , Id }, )-tok ]
| Id , (-tok , Id , ‘ =̂ ‘ , ZExpr , {,-tok , Id , ‘ =̂ ‘ , ZExpr }, )-tok
| TTrExpr , ‘ in ‘ , TTrExpr
| TTrExpr , ‘ prefix ‘ , TTrExpr
| TrExpr , ‘ in ‘ , TrExpr
| TrExpr , ‘ prefix ‘ , TrExpr
| TRefExpr , ‘ ⊆ ‘ , TRefExpr
| RefExpr , ‘ ⊆ ‘ , RefExpr
| TExpr , ‘ 6R ‘ , TExpr
| TExpr , ‘ ∈ ‘ , TIntExpr
| NatExpr , ‘ ≤ ‘ , NatExpr

;

ValExpr = ZExpr
| ‘ seq‘ , TrExpr
| ‘ set‘ , TrExpr
| ‘ head ‘ , TrExpr | ‘ foot ‘ , TrExpr
| ‘ first ‘ , TTrExpr | ‘ last ‘ , TTrExpr
| ‘ time‘ , TExpr

;

TExpr = ‘ 0R‘ | ‘ 1R‘ | Id
| TExpr , ‘ +R ‘ , TExpr | TExpr , ‘ ∗R ‘ , TExpr
| ‘ begin ‘ , TTrExpr | ‘ begin ‘ , TRefExpr
| ‘ begin ‘ , (-tok , TTrExpr , ,-tok , TRefExpr , )-tok
| ‘ end ‘ , TTrExpr | ‘ end ‘ , TRefExpr
| ‘ end ‘ , (-tok , TTrExpr , ,-tok , TRefExpr , )-tok

;

TIntExpr = [-tok , TExpr , ,-tok , TExpr , ]-tok
| (-tok , TExpr , ,-tok , TExpr , )-tok
| [-tok , TExpr , ,-tok , TExpr , )-tok
| (-tok , TExpr , ,-tok , TExpr , ]-tok

;

TTrExpr = ‘ s‘
| ‘ 〈‘ , ‘ 〉‘
| ‘ 〈‘ , (-tok , TExpr , ,-tok , Id , [‘ .‘ , ValExpr ], )-tok ,

{,-tok , (-tok , TExpr , ,-tok , Id , [‘ .‘ , ValExpr ], )-tok }, ‘ 〉‘
| TTrExpr , ‘ a ‘ , TTrExpr
| ‘ tail ‘ , TTrExpr | ‘ init ‘ , TTrExpr
| TTrExpr , ‘ �ttr ‘ , RefExpr | TTrExpr , ‘ \ttr ‘ , RefExpr
| TTrExpr , ‘ ↑ttr ‘ , TIntExpr
| TTrExpr , ‘ �ttr ‘ , TExpr | TTrExpr , ‘ |�ttr ‘ , TExpr
| TTrExpr , ‘ �ttr ‘ , TExpr | TTrExpr , ‘ �|ttr ‘ , TExpr
| TTrExpr , ‘ +ttr ‘ , TExpr | TTrExpr , ‘ −̇ttr ‘ , TExpr

;
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TRefExpr = ‘ ℵ‘
| ‘ ∅‘
| {-tok , (-tok , TExpr , ,-tok , Id , [‘ .‘ , ValExpr ], )-tok ,

{,-tok , (-tok , TExpr , ,-tok , Id , [‘ .‘ , ValExpr ], )-tok }, }-tok
| TRefExpr , ‘ ∪ ‘ , TRefExpr
| {-tok , ‘ head ‘ , TTrExpr , }-tok | {-tok , ‘ foot ‘ , TTrExpr , }-tok
| TRefExpr , ‘ \tref ‘ , RefExpr
| TRefExpr , ‘ ↑tref ‘ , TIntExpr
| TRefExpr , ‘ |�tref ‘ , TExpr | TRefExpr , ‘ �tref ‘ , TExpr

| TRefExpr , ‘ +tref ‘ , TExpr | TRefExpr , ‘ −̇tref ‘ , TExpr
;

TrExpr = ‘ 〈‘ , ‘ 〉‘ | ‘ 〈‘ , Id , ‘ .‘ , ValExpr , {,-tok , Id , ‘ .‘ , ValExpr }, ‘ 〉‘
| TrExpr , ‘ a ‘ , TrExpr | ‘ strip ‘ , TTrExpr | ‘ tail ‘ , TrExpr | ‘ init ‘ , TrExpr
| TrExpr , ‘ �tr ‘ , RefExpr | TrExpr , ‘ \tr ‘ , RefExpr

;

RefExpr = ‘ {| ‘ , Id , ‘ |}‘
| ‘ ∅‘ | {-tok , Id , [‘ .‘ , ValExpr ], {,-tok , Id , [‘ .‘ , ValExpr ]} }-tok
| RefExpr , ‘ ∪ ‘ , RefExpr
| {-tok , ‘ first ‘ , TTrExpr , }-tok | {-tok , ‘ last ‘ , TTrExpr }-tok
| ‘ σ‘ , TrExpr | ‘ σ‘ , TTrExpr

;

NatExpr = Id
| ‘ 0‘ | ‘succ‘ , NatExpr
| TTrExpr , ‘ ↓ttr ‘ , RefExpr | TrExpr , ‘ ↓tr ‘ , RefExpr

;

Predicates (TFSM)

Pred TFSM= AtomicPred TFSM
| Pred TFSM, ‘ ∧ ‘ , Pred TFSM
| Pred TFSM, ‘ ∨ ‘ , Pred TFSM
| ‘ ¬ ‘ , Pred TFSM
| Pred TFSM, ‘ ⇒ ‘ , Pred TFSM
| Pred TFSM, ‘ ⇔ ‘ , Pred TFSM
| ‘ ∀ ‘ , Id , ‘ : ‘ , ZExpr , ‘ • ‘ , Pred TFSM
| ‘ ∃ ‘ , Id , ‘ : ‘ , ZExpr , ‘ • ‘ , Pred TFSM
| ‘ let ‘ , Id , ‘ == ‘ , ZExpr , ‘ • ‘ , Pred TFSM

;
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AtomicPred TFSM= AtomicPred ETFM
| Id , ‘ at ‘ , TExpr
| Id , ‘ before ‘ , TExpr
| Id , ‘ invariant‘
| Id , ‘ during ‘ , TIntExpr

;
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Appendix E

Glossary of Timed CSP Notation

We summarise the notation of timed CSP used throughout this thesis. As a convention, s
denotes a timed trace, seq a sequence, ℵ a timed refusal, e an event, t a time instant, A a set of
events, I a time interval and c a channel.

Σ: universal set of events.

X: termination event (X /∈ Σ).

ΣX: Σ ∪ {X}.

τ : internal event (τ /∈ Σ).

channel(c.v): channel component c of compound event c.v.

value(c.v): value component v of compound event c.v.

{| c |}: set of events that can be communicated along channel c.

〈〉: empty sequence (timed, untimed trace).

〈e1, . . . , eN〉: sequence (timed, untimed trace) consisting of the elements (timed, untimed
events) e1, . . . , eN.

seq1
a seq2: concatenation of sequences (timed/untimed traces) seq1 and seq2.

head seq: first element of sequence seq (timed/untimed trace).

tail seq: sequence seq (timed/untimed trace) without the first element.

foot seq: last element of sequence seq (timed/untimed trace).

init seq: sequence seq (timed/untimed trace) without the last element.

#seq: length of sequence seq (timed/untimed trace).

σ seq: set of elements appearing in sequence seq (timed/untimed trace).
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seq1 in seq2: seq1 is a contiguous subsequence of seq2.

seq1 prefix seq2: seq1 is a prefix of seq2.

strip s: untimed trace corresponding to timed trace s.

first s: first event appearing in timed trace s.

last s: last event appearing in the finite timed trace s.

beginttr s, begintref ℵ, begintfail(s,ℵ): time of the first event in timed trace s, timed refusal ℵ or
timed failure (s,ℵ).

endttr s, endtref ℵ, endtfail(s,ℵ): time of the last event in finite timed trace s, least upper bound
of times appearing in timed refusal ℵ or timed failure (s,ℵ).

s �ttr A, ℵ �tref A, tr �tr A: timed trace s, timed refusal ℵ or untimed trace tr restricted to the
set of events A.

σ(s), σtref (ℵ): set of events appearing in timed trace s or timed refusal ℵ.

s ↓ttr A, tr ↓tr A: number of occurrences of events from A in timed trace s or untimed trace
tr.

s \ttr A, ℵ \tref A, (s,ℵ) \tfail A, tr \tr A: timed trace s, timed refusal ℵ, timed failure (s,ℵ) or
untimed trace tr without the elements of A.

s ↑ttr I, ℵ ↑tref I: projection of timed trace s or timed refusal ℵ to time interval I.

s �ttr t, s |�ttr t, ℵ |�tref t: timed trace s before time t, timed trace s strictly before time t and
timed refusal ℵ before time t.

s �ttr t, s �|ttr t, ℵ �tref t: timed trace s after time t, timed trace s strictly after time t and timed
refusal after time t.

s +ttr t, ℵ+tref t, (s,ℵ) +tfail t: timed trace s, timed refusal ℵ or timed failure (s,ℵ) translated
through t time units.

s −̇ttr t, ℵ −̇tref t, (s,ℵ) −̇tfail t: timed trace s, timed refusal ℵ or timed failure (s,ℵ) translated
back through t time units.

(s1,ℵ1) � (s2,ℵ2): information order on timed failures. (s1,ℵ1) contains less trace and
refusal information than (s2,ℵ2).

s interleaves (s1, s2): s is an interleaving of the sequences s1 and s2.

s synchA (s1, s2): s synchronises s1 and s2 on events in AX.
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