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Abstract

Simulations of the turbulent cascade forming in the solar wind, including cross helicity, commonly adopt a
homogeneous setup, not taking into account wind expansion. Here we want to assess the predictions of decaying
3D compressible (low Mach number) MHD simulations, respectively homogeneous and with expansion, in order
to examine which is the most fruitful approach to understanding the turbulent cascade in the solar wind. We follow
turbulent evolution during 10 nonlinear turnover times, considering several initial values of the initial spectral
slope and cross helicity. In the expanding case, the transverse sizes of the plasma volume are stretched by a factor
of 5 during the simulation, corresponding to traveling from 0.2 up to 1 au. In homogeneous simulations, the
relative cross helicity rises, and the Elsässer spectra E± show “pinning,” with a steep dominant spectrum and flat
subdominant spectrum, the final spectral indices depending on cross helicity but not initial indices. With
expansion, the relative cross helicity decreases, and dominant and subdominant spectra share the same index, with
the index relaxing to an asymptotic value that generally depends on the initial index. The absence of pinning, as
well as the decrease of relative cross helicity, probably both rely on the permanent injection by expansion of an
excess of magnetic energy at the largest scales, equivalent to injecting subdominant energy. Also, spectra generally
steepen when initially starting flatter than k−5/3 but stop evolving at a finite time/distance.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Solar wind (1534); Space plasmas (1544);
Alfven waves (23); Interplanetary medium (825); Magnetohydrodynamics (1964)

1. Introduction

Turbulent dissipation and heating play an important role in
the evolution of the interplanetary plasma and the acceleration
of the solar wind, as demonstrated in solar wind models
(Cranmer et al. 2007; Verdini et al. 2010; Chandran et al. 2011;
van der Holst et al. 2014; Shoda et al. 2018, 2019; Réville et al.
2020; Matsumoto 2021). At the base of this, there is the
question of the nature of the turbulent cascade at work in the
solar wind.

To proceed, one can compare direct predictions of cascade
theories to observations, possibly with the help of direct
simulations. A good example is that of local spectral anisotropy,
computed in a frame attached to the local mean magnetic field and
using structure functions. Assuming axial symmetry around the
direction of the local mean field, work by Horbury et al. (2008)
first recovered the so-called critical balance results, in which the
perpendicular cascade is strong and the spectrum along the mean
field is generated by linear transport along it. Later, work by Chen
et al. (2012) showed important deviations from axisymmetry
around the local mean field. This was reproduced by 3D MHD
simulations showing that expansion breaks the local axisymmetry
in the whole inertial range (Verdini & Grappin 2015).

A second example is that of the origin of the global spectral
anisotropy, that is, the origin of the so-called Maltese cross

(Matthaeus et al. 1990) obtained in a frame attached to the
mean magnetic field computed during a fixed interval of time.
We identified the two branches of the Maltese cross as
corresponding to the signature of, respectively, weak or strong
expansion. We could reproduce the two configurations via
simulations with expansion and in both cases recover the
observed slow plasma cooling with distance (Montagud-Camps
et al. 2018, 2020). A last interesting example is that of the
origin of the switchback formation in the early solar wind,
which seems to be possibly attributed to the expansion of the
plasma (Squire et al. 2020).
Despite these successes, the large majority of work in which

a cascade theory is proposed for the solar wind neglects
expansion (e.g., Boldyrev 2005; Lithwick et al. 2007; Perez &
Boldyrev 2010; Chandran et al. 2015). These works predict
specific spectral scalings for z± (see definition below) or
velocity and magnetic fluctuations covering the observed range
[−5/3, −3/2]. However, in situ observations show that the
spectral indices, at scales above the sub-ion scale, are
distributed in a large interval of values at a given distance
(Grappin et al. 1991; Boldyrev et al. 2011), and that the
spectral index varies with distance (Bavassano et al. 1982;
Chen et al. 2020) and the average properties of the flow, such
as proton temperature (Grappin et al. 1991), solar wind speed,
and cross helicity (Chen et al. 2013). In this paper, we
investigate such properties via numerical simulations, compar-
ing the results obtained with and without expansion and
insisting on Alfvénic (i.e., high cross helicity) streams, which
are ubiquitous in the solar wind.
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Note that a whole family of works dealing with the evolution
of turbulence in the solar wind (e.g., Adhikari et al. 2020) does
not describe the details of the cascade, such as the evolution of
turbulent energy spectra, but instead directly proposes
approximate evolution equations for moments, i.e., energies
and correlations, including some known properties associated
with expansion.

In the present work, we instead follow in detail the formation
and decay of the turbulent cascade by solving the primitive
MHD equations in two versions: the standard compressive
MHD equations (without expansion) on one side and MHD
equations with finite expansion on the other side, also called
EBM equations (see below). The plasma evolution is followed
during 10 nonlinear times, which in the expanding case
corresponds to the heliocentric distance of the plasma volume
increasing by a factor of 5, e.g., varying from 0.2 to 1 au. We
consider in this work cases dominated by outward-propagating
Alfvén waves, as well as cases with equal populations
propagating in both directions, as both cases are important in
the solar wind.

We run weakly compressive simulations, i.e., with a turbulent
Mach number equal to 0.12, characteristic of the quasi-
incompressible fluctuations at hour scales (Matthaeus et al.
1991; Bavassano & Bruno 1995; Ofman 2010). We adopt in our
simulations with expansion an expansion rate ò= 0.4 (see
definition below; Equation (7)), a value for which expansion
terms are comparable to nonlinear terms at the large scales. Such
an expansion rate is characteristic of scales of the order of 1 day
(Montagud-Camps et al. 2020); a more realistic study would
require using a smaller expansion rate and/or a very high
resolution in order to include scales smaller than 1 hr, but this
would require important numerical resources, and we think that
the present choice of parameters is a reasonable compromise for a
first study. These choices allow one to study a quasi-
incompressible turbulent state and clearly reveal the differences
between homogeneous turbulence and turbulence with expansion.

The plan of the present paper is as follows. Section 2
describes the equations, basic parameters, and initial conditions
of the simulations. Section 3 gives the results. Section 4 is a
discussion, and Section 5 is a conclusion.

2. Method: Equations

2.1. Equations and Definitions

Here we briefly derive the basic equations and method (for a
more detailed derivation, see, e.g., Grappin et al. 1993; Dong
et al. 2014; Montagud-Camps et al. 2018).

We start with the MHD equations for the density ρ, (isotropic)
pressure P, velocity fluctuation ˆu U U er0= - (where U is the
total velocity and U0 is the mean radial flow amplitude), and
magnetic field B. Consider a Cartesian frame with XYZ
coordinates, the X-axis parallel to the radial passing through

the middle of the box, and change to a Galilean frame moving
with the mean wind along the radial coordinate. In this frame,
the plasma volume is uniformly stretched in the transverse
directions (see Figure 1(b)), thus neglecting curvature terms.
All fields are assumed periodic in the comobile coordinates

x, y, and z:

( )t , 1t=
( ) ( )x X U a , 2x0t= -

( ) ( )y Y a t , 3=
( ) ( )z Z a t . 4=

The parameter

( )a L L L L 5x x y x z
0 0= =

is the initial aspect ratio of the domain (Lx, Ly, and Lz being the
size of the domain in the three directions and the suffix “0”
denoting the initial value). Note that the radial size Lx is a
constant, while the other sizes of the domain increase linearly
with time. The parameter a(t) measures the transverse
expansion. It is defined as the heliospheric distance R(t) of
the barycenter of the plasma domain, normalized by the initial
distance R0:

( ) ( )a R t R t L L L L1 . 6y y z z0
0 0= = + = =

In this equation, ò= da/dt is the expansion parameter, defined
as the initial ratio between the characteristic expansion and
turnover times in the transverse directions (perpendicular to the
radial),

 ( )U R

k u
, 7

y

NL

exp

0 0
00

rms
0

t
t

= =

where k L L2 2y y z
00 0 0p p= = is the initial minimum wave-

number in the transverse directions, and urms
0 is the initial rms

value of the velocity fluctuations. The EBM equations finally
read, with dissipation terms omitted,

( ) ( ) ( )u a2 , 8tr r r¶ +  = -
( ) ( ) ( )u uP P P P a. . 2 , 9t g g¶ +  +  = -

( ) ( ) ( )
( )

u u u B BP B a. 2 . ,
10

t
2 r r¶ +  +  + -  = -



( ) ( )B u B B u B u a. . . , 11t¶ +  -  +  = -


( )P T , 12r=

where ( ) u u0, ,y z= and ( ) B B B2 , ,x y z= . The nabla
operator that appears in the previous equations is written in
terms of comobile coordinates as ∇= (1/(ax)∂x, (1/a(t))∂y,
(1/a(t))∂z). The plasma is transported radially, which implies
that, in a local Cartesian coordinate system (x, y, z), where x

Figure 1. Sketch of the initial and final plasma volumes after 10 nonlinear times in (a) standard homogeneous MHD simulations and (b) simulations with expansion
(see text).
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represents the local radial direction, it expands in directions y
and z perpendicular to the local radial direction (Figure 1(b)).

Expansion modifies the evolution in two ways: (i) by
damping the different fields’ amplitudes (see the right-hand
side terms in Equations (8)–(12)) and (ii) by damping the
gradients perpendicular to the radial due to the 1/a(t) factor in
the nabla expression. Explicit viscoresistive terms (not shown)
are added to the previous equations in order to dissipate the
energy that is transported along the spectrum down to the
smallest available scales. This energy is given to the internal
energy. Note that in the expanding case, the viscoresistive
terms are modified in order to minimize the decrease of the
Reynolds number with time (Montagud-Camps et al. 2018).

Note that if we choose ò= 0 in Equations (8)–(12), we
recover the standard compressible MHD equations.

Finally, we define the so-called Elsässer variables,

( ) ( )z u B Bsign , 13x
0 d r= 

where δB= B− B0. We define the normalized cross helicity
(hereafter simply called “cross helicity”) as the relative energy
excess in the z+ mode:

( )E E

E E

z z

z z
. 14c

2 2

2 2
s =

-
+

=
á ñ - á ñ

á ñ + á ñ
+ -

+ -

+ -

+ -

2.2. Numerics, Initial Conditions

Periodic boundary conditions are assumed in all directions of
a cube of side 2π in the comobile variables x, y, and z. We use a
standard pseudospectral code to numerically solve the above
3D EBM equations with a guide field. All results are from runs
with a resolution of N3= 5123 grid points. A third-order
Runge–Kutta time integration scheme is used.

The initial state consists of nonzero amplitudes for the z+(k)
and z−(k) fields, excited within shells 1� k�Δk, with k= |k|
(in units of 2πLy/l, with l the wavelength), and weighted so that
the 1D spectral index is approximately m0. Initial incompressi-
bility is obtained by imposing k. z±(k)= 0. Density and pressure
are uniform. The velocity fields and magnetic fluctuations
are then deduced from the z± fields using the definition

(Equation (13)). Random phases are chosen for both z+ and
z− fields, which implies that z+ (k) and z− (k) are uncorrelated,
thus leading (since 〈z+. z−〉= u2− b2/ρ) to u brms rms r .
Amplitudes are chosen so as to lead to the chosen initial cross
helicity c

0s .
Figure 1 shows in a schematic way the evolution of the

plasma volume from start to end (after 10 nonlinear times) in
the two kinds of simulations: (a) homogeneous and (b)
expanding. In the latter case, the plasma volume is transported
from the initial heliocentric distance R0 to 5R0, with
R0= 0.2 au.
In the homogeneous case (a), the mean magnetic field is

parallel to the x axis and remains so. The aspect ratio of the
domain is adapted to the amplitude of the mean field so that
B0/Lx= brms/Ly= brms/Lz.
In the expanding case (b), we do not start with a mean field

aligned with the radial, as this is not the standard situation.
Instead, we adopt a slightly rotated configuration (B B 0.2y x

0 0 = ).
In this way, due to the expansion of the plasma volume in the
transverse directions during transport, the conservation of
magnetic flux through the expanding faces of the volume leads
to B B 1y x

0 0 = ; i.e., the mean field progressively rotates to an
angle of 450 with respect to the radial, a standard value at 1 au.
The initial domain (as well as the initial eddies) is chosen in most
of our simulations to be elongated in the radial direction (i.e., with
an aspect ratio ax= 5), so that at the end, the domain aspect ratio
is unity. The interest of this choice is rationalized in Section 4.2.
Table 1 presents the list of runs considered here. Parameters

are the expansion parameter ò (Equation (7)); the initial spectral
index m0, which is imposed in a wavenumber interval Δk
starting from the minimum wavenumber; the initial value of the
normalized cross helicity σc, defined as the relative excess of
dominant energy; the initial aspect ratio of the domain
ax= Lx/Ly= Lx/Lz; the mean magnetic field Bt 0

0
= ; and the

dynamic viscosity μ0.
As already mentioned, the initial turbulent Mach number is

M= urms/c= 0.12, with c= ((5/3)(P/ρ))1/2, where P is the
gas pressure and ρ is the density. Such a low Mach number
implies quasi-incompressibility, which allows one to consider
the two Elsässer energies as quasi-inviscid invariants, i.e.,
leading to separate cascades of the two energies. Most runs

Table 1
Initial Conditions for the Simulations

Run ò m0 Δk c
0s Bt 0

0
= ax μ0[10

−4]

hA0, 5, 8 0 −5/3 16 0, 0.5, 0.8 [1, 0, 0] 1 2
hB0, 5, 8 0 −1 16 0, 0.5, 0.8 [1, 0, 0] 1 2
eA0, 5, 8 0.4 −5/3 64 0, 0.5, 0.83 [2, 0.4, 0] 5 1.3
eB0, 5, 8 0.4 −1 64 0, 0.5, 0.83 [2, 0.4, 0] 5 1.3
eC5, 8 0.4 −3/2 64 0.5, 0.83 [2, 0.4, 0] 5 1.3
eE8 0.4 −1.25 64 0.83 [2, 0.4, 0] 5 1.3
hA8k4 0 −5/3 4 0.8 [1, 0, 0] 1 1
eA8k16 0.4 −5/3 16 0.83 [2, 0.4, 0] 5 1.3
eC8a1 0.4 −3/2 64 0.83 [2, 0.4, 0] 1 1.3
eC8a3 0.4 −3/2 64 0.83 [2, 0.4, 0] 3 1.3
hA8b5 0 −5/3 16 0.8 [5, 0, 0] 5 2
eC8b6 0.4 −3/2 64 0.83 [6, 1.2, 0] 5 1.3
e2A0, 5, 8 0.2 −5/3 64 0, 0.5, 0.83 [2, 0.4, 0] 5 1.3
e2B0, 5, 8 0.2 −1 64 0, 0.5, 0.83 [2, 0.4, 0] 5 1.3

Note. From left to right: name of the run, expansion parameter ò, initial spectral index m0, initial power-law extent Δk, normalized cross helicity c
0s , initial mean

magnetic field vector Bt 0
0
= , aspect ratio of the numerical domain ax, and dynamic viscosity μ0. Note that the first four rows group together runs with three different

values of cross helicities. Resolution is 5123 for all runs. All runs are integrated during 10 nonlinear times, except run eB8, which ends at t = 20.
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have ò= 0.4, which corresponds to about a 1 day timescale in
Helios data at 1 au, at solar minimum, while the value ò= 0.2
corresponds to an 8 hr scale (Montagud-Camps et al. 2020).
With one exception, the value of the initial spectral slope m0 is
−1, −5/3, or −3/2; as we will see, this leads to nonnegligible
differences in the evolution of the spectra. The effect of varying
the spectral extent Δk, aspect ratio ax (Equation (5)), and mean
magnetic field will be discussed in detail in Section 4.

2.3. Diagnostic Tools, Initial Spectra

Simulations provide 3D energy spectra E3D, from which we
deduce 1D energy spectra in the three xyz directions,

( ) ( ) ( )E k E k k k dk dk, , , 15x
D

x y z y z
3ò=

and similarly for the other two spectra, E(ky) and E(kz). The 1D
spectra will show either total energy (ET), that is, kinetic +
magnetic energy per unit mass, or, most of the time, the E+ and
E− spectra separately. In the expanding case, the 0x direction is
that of the radial, with the plane x0y containing the mean
magnetic field direction.

In the following, we use either physical or normalized
wavenumbers. For physical wavenumbers (kx, ky, or kz), we use
as a unit wavenumber the initial smallest transverse wave-
number,

( )k L2 , 16y y
00 0p=

where Ly
0 is the transverse size of the initial numerical domain.

Due to differences in both initial conditions and anisotropy
evolution, it will also prove useful to use normalized
wavenumbers when comparing spectra with and without
expansion. This simply consists of normalizing the abscissa
(either kx, ky, or kz) by its minimum value when plotting
spectra.

Spectral indices will be defined as

( ( ) ( ) ( ) ( )m E k k E k k k klog log , 17i i2 1 2 1= = =

where ki can be either kx, kz, or an equivalent of kz, for which
one takes the average of the two spectra E(ky) and E(kz). Note
that the interval [k1, k2] will be fixed in normalized coordinates.
We present in Figure 2 the initial total energy spectra versus
physical wavenumbers kx (solid line), ky (dotted), and kz
(dashed) for the four series of runs hAs, hBs, eAs, and eBs. All
spectra are compensated by k−5/3. One sees that for
homogeneous runs hAs and hBs, the 1D spectra occupy the
same wavenumber range in all three directions; this corre-
sponds to the domain aspect ratio ax= 1. For runs with
expansion, the radial (E(kx)) spectrum is shifted with respect to
the two spectra E(ky) and E(kz), which corresponds to the
domain aspect ratio ax= 5.

As seen in the figure, another difference between the
homogeneous and expanding simulations is the initial extent of
the excited spectrum, which is Δk= 16 in the homogeneous
runs andΔk= 64 in the expanding runs (see Table 1). It is seen
that in the figure, the scaling is constant only in the first half of
the interval Δk, while the spectrum is becoming steeper in the
second half of the interval. Also, even in the first half of the
excited interval, the spectra are actually somewhat steeper than
the imposed scaling km0

, as is clearly seen from the two cases
with m0= −5/3. The value m0 is thus to be taken as a plain

indication, while meaningful evaluations of the spectral indices
m± (see Equation (17)) will be given when analyzing the time
evolution of the spectra in the next section.

3. Results

3.1. Varying c
0s and m0

We first consider the effect of varying the initial cross
helicity c

0s and spectral index m0.

3.1.1. Global Quantities

Here we consider global quantities versus time: the two
Elsässer energies E z 22= á ñ  , the ratio brms/|B

0|, and the
normalized cross helicity σc(t).
Figure 3 shows the decay of the dominant and subdominant

energies E+ and E− versus time. Results for the homogeneous
(hA0,5,8) and expanding (eA0,5,8) runs are given in the left and
right panels, respectively. In each panel, solid, dotted, and
dashed lines indicate, respectively, c

0s = 0, 0.5, and 0.8 (for
homogeneous runs) or 0.83 (in the expanding case). As
expected, when c

0s is nonzero, cross helicity is seen to grow
with time for homogeneous runs and decay for expanding runs.
We consider in Figure 4 the decay of energies E± versus radial
distance R in the expanding case; in the left panel, we show the
three runs eA0,5,8 with m0= −5/3, and in the right panel, we
show the three runs eB0,5,8 with m0= −1. The 1/R WKB
energy decay appears as a short thin solid line. The two long
thin solid lines correspond to the mean E± energy decay found
by Bavassano et al. (2000, 2002) in Helios data. Run eB8 is
closer to these observations than run eA8; clearly, the energy
decay curves for both E+ and E− depend on the initial
conditions.
Figure 5 shows brms/|B

0| and σc versus time stacked on one
another for runs hAs, hBs, eAs, and eBs, i.e., varying c

0s and m0.

Figure 2. Initial 1D total energy spectra for runs hAs, hBs, eAs, and eBs. Each
panel shows the 1D spectra in the three directions: ET(kx) (solid), ET(ky)
(dotted), and ET(kz) (dashed). All spectra are compensated by k−5/3. As a rule,
ET(ky) and ET(kz) are almost indistinguishable.
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In each case, c
0s = 0, 0.5, and 0.8 (or 0.83 in the expanding

case) are shown, respectively, with solid, dotted, and dashed
lines. For the homogeneous runs (top panels), the mean
magnetic field is constant; thus, as expected, brms/|B

0| is
decaying with time. Also, increasing c

0s leads to slower
magnetic energy decay. This is not so surprising, since an
increase in c

0s leads to a smaller z− and thus a longer turnover
time for z+ (and thus for brms: ( )kz1NLt =+

- . On the contrary,
runs with expansion (bottom panels) show increasing brms/|B

0|
because expansion more strongly damps the radial component
of the mean field than fluctuations due to the linear Alfvén
coupling.

Note that, for the expanding case, the three curves do not
depend much on cross helicity. This means that the main source
of damping is expansion, not turbulent decay, as could be
suspected by remarking that the decay of the dominant energy
curve in Figure 4 is not very different from the WKB 1/R law.
Note also that the time evolution of brms/B0 depends strongly
on the initial angle of the mean magnetic field with the radial; it
is clear that starting with a large angle will lead to a much
slower decrease of B0, while the contrary will occur if the initial
angle is close to zero. The angle we considered here has been
chosen to match the average observed angle at 1 au, i.e., 450.

Consider now cross helicity versus time. When starting with
a nonzero c

0s , homogeneous flows (top panels) show a clear
increase of σc due to the larger relative decay rate of the minor
species z−. This is explained by the fact that the minor species
cascade is driven by the dominant amplitude, thus leading to a
rapid decay of the minor species, called “dynamic alignment”
(Dobrowolny et al. 1980; Matthaeus & Montgomery 1980;
Grappin et al. 1982). On the contrary, flows with expansion

(bottom panels) show a decrease of σc with time (and thus
distance). Such a cross-helicity decrease was first observed in
Helios and Voyager observations by Roberts et al. (1987). At
last, we note (and discuss later below) that the cross-helicity
decrease is slower when starting with flatter spectra (compare
the two bottom panels, runs eA5,8 and eB5,8).

3.1.2. Spectral Quantities

We present in Figure 6 a cut at kz= 0 of the 3D E+ spectra at
times zero and 10 for the two runs with initial large cross
helicity, with the homogeneous in the top panels (hA8) and
expansion in the bottom panels (eA8). The direction of the
mean magnetic field is indicated by a straight line, which in the
expanding case rotates progressively so that it is 450 off the
radial at the end of run eA8. We see that the direction of the
cascade is perpendicular to B0 in both runs, and that it rotates
with B0 in the expanding case. Note that other anisotropies are
possible in the expanding case; starting with a quasi-isotropic
spectrum and a large enough expanding rate generally leads to
spectra aligned with the radial direction, a source of the second
branch in the so-called Maltese cross (Matthaeus et al. 1990;
Verdini & Grappin 2016; Montagud-Camps et al. 2020).
We next consider in Figure 7 the 1D reduced spectra E± (k)

averaged during the interval 8� t� 10 for the four families of
runs hA0, 5, 8; hB0, 5, 8; eA0, 5, 8; and eB0, 5, 8. The spectra
E+ (k) and E− (k) are compensated by k−3/2. Ordinates are
arbitrary, chosen to optimize readability. Recall that different
directions are used for the homogeneous and expanding runs.
For the homogeneous runs, we plot the average of the spectra
E(ky) and E(kz), i.e, spectra in directions perpendicular to the
mean magnetic field, while for the runs with expansion, we plot
E(kx), that is, in the radial direction. In both cases, we
normalize the wavenumbers by their minimum values.
We added vertical dotted lines at k= 4 and 10, which we

will consider from now on as markers of the inertial range

Figure 3. Varying cross helicity: total energies E± vs. time for homogeneous
runs hAs and runs with expansion eAs. Here c

0s = 0, 0.5, and 0.8 (0.83 for the
run with expansion) are shown by solid, dotted, and dashed lines, respectively.

Figure 4. Varying cross helicity: total energies E± vs. heliocentric distance R
for runs with expansion eAs and eBs. Styles are the same as in Figure 3. The
two long thin solid lines are the mean energies E+ and E− as found by
Bavassano et al. (2000, 2002) from Helios data, and the short thin solid line is
the 1/R (WKB) decay.

Figure 5. Varying cross helicity and initial spectral index brms/B0 (top) and
cross helicity σc vs. time. Styles are the same as in Figure 3.
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boundaries, since spectra can be approximated by power laws
in this range.

Examining the different spectra shows interesting differences
in the distribution of cross helicity along the spectral range and

the dependence (or not) on initial conditions. First, in runs with
nonzero σc

0, cross helicity is concentrated on the largest scales
in the homogeneous runs, while in the expanding runs, it is
either uniformly distributed or showing a minimum at the
largest scale. Second, in the homogeneous runs, the final slope
does not depend on the initial slope, while in the runs with
expansion, it does.
These properties are well visible in Figure 8, where we show

the evolution of the two spectral indices m+ and m− with time,
computed in the interval 4� k� 10. Cross helicity grows from
left to right, with the homogeneous runs appearing in the top
panels and runs with expansion in the bottom panels. Each
panel allows one to compare the evolution of indices m+ (solid
lines) and m− (dotted lines) with two different starting indices:
m0=−5/3 in double thick green lines and −1 in thick black
lines.
Homogeneous and expanding runs show completely differ-

ent evolutions. Expanding runs are almost independent of cross
helicity and show simple properties: (i) the two indices
converge toward values that depend strongly on their initial
values, and (ii) the two indices m+ and m− remain about equal.
For homogeneous runs, we see that (i) m+ and m− converge
toward values that do not depend on their initial value, and (ii)
when cross helicity is substantial, indices become unequal, with
|m+|> |m−|; i.e., E+ becomes steeper than E−. This behavior
was first found in closure calculations by Grappin et al. (1983)
and commonly denoted as “spectral pinning” (Lithwick &
Goldreich 2003), as discussed below.

Figure 6. Cuts at kz = 0 of 3D E+(kx, ky, kz = 0) spectra at time t = 0 and 10.
Straight lines indicate the direction of the mean magnetic field. Top panels:
homogeneous run hA8. Bottom panels: run with expansion eA8. The unit
wavenumber is L2 y

0p , where Ly
0 is the initial transverse size of the domain.

Figure 7. Varying c
0s and m0. Shown are the 1D reduced energy spectra E+(k)

and E−(k) in normalized coordinates, compensated by k−3/2 and averaged in
the time interval 8 � t � 10. The ordinates are arbitrary to maximize
readability. The runs are hAs, hBs, eAs, and eBs. Styles are the same as in
Figure 3. Vertical dotted lines (k = 4 and 10 in normalized coordinates)
indicate the wavenumber interval chosen to compute spectral indices in the
following.

Figure 8. Varying c
0s and m0. Shown are indices m+ and m− vs. time (solid and

dotted lines, respectively) computed in the normalized wavenumber interval
4 � k � 10. Each panel shows two runs with a given c

0s (from left to right, 0,
0.5, 0.8, 0, 0.5, and 0.83). Runs with m0 = −5/3 appear as double thick green
lines, and runs with m0 = −1 appear as thick black lines. Solid horizontal lines
mark spectral indices −3/2 and −5/3.
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3.2. Spectral Extent Δk, Mean Magnetic Field, and Expansion
Parameter ò

In series hAs, hBs, eAs, and eBs analyzed above, we varied
c
0s and m0. A look at these runs in Table 1 also shows that ax,

Δk, and B0 are systematically different in the homogeneous
and expanding runs. We thus consider here the successive
effect of varying Δk, Bt 0

0
= , as well as an intermediate value of

the expansion parameter ò between 0 and 0.4. We postpone the
case of the initial aspect ratio of the domain ax to the Section 4.

In Figure 9, we consider two runs, one homogeneous (hA8)
and one with expansion (eA8) with high cross helicity and
m0= −5/3. Each one is compared with a similar run with Δk
four times smaller (hA8k4 and eA8k16). The left panels show
the spectra at time t= 10, and the right panels show the spectral
indices m± versus time. Homogeneous runs are shown in the
top panels, expanding runs in the bottom panels. Runs with
large Δk appear in green lines, and runs with reduced Δk
appear in black lines.

Decreasing Δk produces initially steeper spectra, as seen in
the right panels (black lines), for both the homogeneous and
expanding runs. This is due to the initial lack of excitation in
the reference interval [4, 10]. However, at t= 10, the final
slopes become comparable to those of runs with the standard
values of Δk, as seen in the right panels. We conclude that the
choice of different values of Δk (16 and 64) for the
homogeneous and expanding runs are of minor importance,
as relaxation toward the same turbulent state is ensured
whatever the value of Δk, albeit more or less rapidly.

In Figure 10, we show the effect of increasing the initial
mean magnetic field from B0= (1, 0, 0) to (5, 0, 0) in the
homogeneous case (runs hA8 and hA8b5) and from B0 = (2,

0.4, 0) to (6, 1.2, 0) in the expanding case (runs eC8 and
eC8b6; see Table 1).
In both the homogeneous and expanding cases, it is seen that

increasing the mean magnetic field leads to steeper spectra. The
effect is stronger in the homogeneous case. Such an effect has
been observed in several works investigating the transition
from strong to weak anisotropic cascade, albeit with zero cross
helicity (Dmitruk et al. 2003; Rappazzo et al. 2007; Perez &
Boldyrev 2008). Note also that the spectral pinning (i.e.,
|m+|> |m−|) we have observed previously in homogeneous
runs is seen to appear here in expanding runs, as well when the
mean field is large enough.
We finally show in Figure 11 the indices m± (t) with half our

standard value of the expansion rate, i.e., ò= 0.2. We consider
the usual three values of cross helicity, 0, 0.5, and 0.83, and the
two starting indices m0 = −5/3 (green lines) and −1 (black
lines). The resulting curves are globally similar to those shown
in the bottom panels of Figure 8; however, one sees for runs
with nonzero c

0s and m0= −5/3 the appearance of some
pinning (|m+|> |m−|), albeit more moderate than previously
seen in homogeneous runs (top panels in Figure 8).

4. Discussion

We have compared in this paper the results obtained on the
turbulent evolution using two models: (i) homogeneous MHD
and (ii) MHD with expansion. We first summarize the
properties predicted by the two models, and then we discuss
the validity of the parameters chosen.

Figure 9. Varying the initial spectral extent Δk: E± spectra compensated by
k3/2 at t = 10 (left panels) and spectral indices (right panels). Top panels:
homogeneous runs hA4 (green lines) and hA8k4 (with reducedΔk; black lines).
Bottom panels: expanding runs eA8 (green lines) and eA8k16 (with reduced
Δk; black lines). Spectra are compensated by k−3/2, with vertical dotted lines
marking the inertial range. Solid and dotted lines show the m+ and m− indices,
respectively.

Figure 10. Increasing the initial mean magnetic field B0: spectral indices m+
(solid lines) and m− (dotted lines) vs. time. Starting at the top left panel, we
show (i) homogeneous runs hA8 with B0 = (1, 0, 0), (ii) hA8b5 with B0 = (5,
0, 0), (iii) runs with expansion eC8 with B0 = (2, 0.4, 0), and (iv) eC8b6 with
B0 = (6, 1.2, 0). Homogeneous runs have 0.8c

0s = , and runs with expansion
have 0.83c

0s = .
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4.1. Contrasted Properties of the Two Models

In homogeneous MHD simulations, spectral pinning is
found, that is, a steeper dominant component E+, with the
difference between the two indices m+ and m− increasing when
cross helicity is larger. In other words, the spectral indices
depend on total cross helicity. This is not compatible with the
usual picture proposed by the strong perpendicular cascade
(that is, perpendicular to the mean magnetic field), for which
both spectra E+ and E− are parallel, with m+ =m−= −5/3
(Lithwick et al. 2007); instead, it is compatible with the weak
isotropic cascade prediction of the generalized Iroshnikov–
Kraichnan theory (Grappin et al. 1983), for which m++m−=
−3. This value is found in our homogeneous runs when the
mean magnetic field is not too much larger than unity. The
pinning phenomenon has been found in previous MHD
simulations. First, in 2D incompressible MHD simulations
(with no mean field), the weak isotropic version is found
(m++m−= −3) in Pouquet et al. (1988). More recently, Perez
& Boldyrev (2010) found it but, to explain why solar wind
observations show no spectral pinning, proposed that the solar
wind turbulence are forced to exhibit parallel E± spectra due to
a quasi-infinite inertial range resulting from an infinite
Reynolds number.

We have seen that spectral pinning is absent from our
simulations with expansion as soon as the expansion parameter
is large enough and the mean magnetic field is not much larger
than the brms amplitude. In that case, the two spectra E± are
indeed more or less parallel, i.e., m+;m−, as observed in solar
wind spectra (Grappin et al. 1990; Chen et al. 2020). As a rule,
initially steep spectra (e.g., m0; −5/3) remain steep at larger
distances, while initially flat spectra (e.g., m ; −1) steepen and
relax to intermediate index values, e.g., −1.5. Again, a similar
behavior is observed in solar wind data (Chen et al. 2020). In
the homogeneous case, on the contrary, the relaxed spectral
index is independent of the initial spectral index, as expected in
a turbulent state.

In the rest of the discussion below, we consider in turn the
following issues:

(i) the choice of the initial domain aspect ratio for the
expanding cases;

(ii) the difference between radial and perpendicular directions
in the expanding cases;

(iii) the relation between spectral index and cross correlation;
(iv) the origin of the absence of pinning in the solar wind; and
(v) the reason that the spectral index does not always

converge to −5/3 in expanding runs.

4.2. Domain Aspect Ratio

In the simulations with expansion examined up to now, we
started with a numerical domain extended in the radial direction
by a factor of 5 (ax= 5), thus arriving at the end at a cubic
domain. A cubic domain is a priori supposed to favor the local
nonlinear interactions, which are necessary to ensure a
“normal” turbulent cascade. However, the opposite choice
(ax= 1) is also possible; in that case, local interactions are
maximum at the beginning of the evolution, not at the end. We
compare in Figure 12 the two cases at the end of the simulation,
t= 10, further adding a run with the intermediate value ax= 3.
The figure shows E± spectra along kx (solid lines) and ky

(dotted lines) for the runs with expansion (from left to right):
eC8a1, eC8a3, and eC8 with ax= 1, 3, and 5, respectively. The
inertial range is marked by dotted lines as previously. Note that
we use physical wavenumbers, so that the inertial range is
given by 4/5� k� 10/5 (the factor 1/5 is due to the fact that
the final transverse size is five times the initial one in all
three runs).
We see that, for both ax= 5 and 3, turbulence at t= 10 is

quasi-isotropic, which means that the coupling between the
radial direction and the perpendicular plane is efficient, while it
is much less so when ax= 1, which is probably due to the too-
large importance of nonlocal interactions in this case, at least at
the end of the computation. From this, we conclude that
choosing ax between 3 and 5 is a reasonable choice. See
Montagud-Camps et al. (2020) for a similar discussion in the
context of turbulent dissipation with a large turbulent Mach
number.

4.3. Radial versus z Direction

In simulations with expansion, we have chosen to measure
spectral scaling in the radial direction to allow direct
comparison with observations. It is of interest to also examine
the scaling in directions perpendicular to the mean field for the
sake of comparison with the scaling obtained in homogeneous
runs and because the preferred cascade develops perpendicu-
larly to the mean magnetic field (Figure 6).
In Figure 13, we compare the spectral evolution along

directions kx (left panels) and kz (right panels) at times t= 0,
2, K, 10 in the two expanding runs eA8 and eB8. The E±
spectra are compensated by k−3/2.
We see that the interval [4, 10] (in normalized coordinates) is

a reasonable candidate for the inertial range in both the kx and

Figure 11. Intermediate expansion rate ò = 0.2. Shown is the time evolution of
indices m+ and m−, computed in 4 � k/k0 � 10 for six runs, with growing
initial cross helicity from left to right. See Figure 8 for styles. Green lines
denote runs with m0 = −5/3, and black lines are runs with m0 = −1.

Figure 12. Varying the domain aspect ratio ax in expanding runs eC8a1,
eC8a3, and eC8. Shown are the 1D spectra at t = 10 in different directions
using physical wavenumbers E±(kx) (solid lines) and E±(ky) (dotted lines).
From left to right, ax = 1, 3, and 5. The two vertical dotted lines mark the
boundaries of the inertial range adopted above; see text. The unit length
is ( )L 2y

0 p .
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kz directions. Actually, the spectral indices do not seem very
different. Figure 14 shows the spectral indices for the two runs
separately: left, computed in the kx direction, and right, in the kz
direction. One sees that in the kz case, the indices m± show
larger fluctuations, which is clearly related to the spectra being
more irregular. We thus conclude that the differences we have
observed up to now in spectral behavior between the
homogeneous and expanding runs are not due to our choice
of selecting the kx direction, i.e., not a direction perpendicular
to the mean field, in the expanding case.

4.4. Comparison with Helios Data

We attempt here to compare the evolution of some properties
of the solar wind turbulence as observed during the Helios 1
mission with those shown by MHD with expansion. A first
property is the combined decay of cross helicity with distance
and that of the spectral slope. The second is the relation
between cross helicity and the spectral index.

The observed turbulent evolution is illustrated in Figure 15
by four averaged spectra E+ and E−, compensated by f−5/3.
The left panel shows fast stream averages (>500 km s−1), and
the right panel shows slow stream averages (<500 km s−1).
Each panel shows two couples of spectra E±, one close to the
Sun (0.3 au< R< 0.5 au; solid lines) and one far from the Sun
(0.8 au< R< 1 au; dotted lines).

Visual inspection shows that (i) cross helicity decreases with
distance in either fast or slow streams; (ii) in either fast or slow
streams, spectra steepen with distance; (iii) either close to the
Sun or (see Chen et al. 2013) close to 1 au, the spectra are
flatter when cross helicity is higher; and (iv) the previous
property is not built during transport from 0.3 to 1 au but is
already present at 0.3 au. Hence, this relation between spectral

index and cross helicity is a by-product of processes acting
closer to the Sun, either the low corona or the accelerating
region.
We now turn to the simulations with expansion. We show in

Figure 16 the index m+ versus time for two series of runs. In
the left panel, we show runs with high cross helicity σc

0= 0.83,
and we show lower cross helicity 0.5c

0s = in the right panel. In
each case, we vary the initial spectral index m0 from −1 to −5/
3. The same style is adopted in the two panels for each pair of
runs with the same value of m0. More precisely, the runs
considered for high cross helicity in the left panel are eB8, eE8,
eC8, and cA8, and those for moderate σc

0 in the right panel are
eB5, eC5, and eA5.
The insert in each panel shows the evolution of cross helicity

with time for the specific runs eE8 and eC5, denoted
respectively in the figures by the letters F and S for “fast”
and “slow,” to be explained below. Note that the cross-helicity
curves shown are representative of the other runs in each of the
two panels. So, as we already knew, property (i) is shared with
Helios data.
We can also see that m+(t) is systematically decreasing with

time, except when starting from −5/3 or close to it. This
conclusion might have been guessed already from Figure 8;
however, here the larger ensemble of initial indices allows a
more secure conclusion. So, property (ii) is also shared by
Helios data.

Figure 13. The E+ (thick lines) and E− (thin lines) spectra along the radial (kx;
left panels) and perpendicular (kz; right panels) directions for two runs with
expansion: eA8 (top) and eB8 (bottom). Times t = 0, 2, K, 10, spectra are
compensated by k−3/2. Dotted lines are the boundaries of the interval used to
compute the spectral indices.

Figure 14. Spectral indices m+ (solid lines) and m− (dotted lines) vs. time
computed in the radial (4 � kx � 10; left panel) and z (4 � kz � 10; right panel)
directions. Shown are runs eA8 (thick green lines) and eB8 (thin black lines).

Figure 15. The E± spectra of the Helios 1 mission during the first 4 months:
relation between spectral index, distance, and cross helicity/wind speed. Fast
streams are shown in the left panel, and slow streams are shown in the right
panel. Spectra are averaged separately close to the Sun (solid lines) and close to
1 au (dotted lines); see text for details. Vertical dotted lines mark the frequency
interval [få, 2.5få] with få = 3 × 10−4 Hz (1/få ; 1 hr).
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Note that assuming a wind that would be made with equal
weights of all runs shown in the figure would produce no
correlation at all between the spectral index and the cross
helicity at either t= 0 or 10; property (iii) should thus not be
recovered. So, let us introduce the correlation at t= 0, for
instance, by considering the distribution made of just the two
runs F and S, defined previously. Run F has a σc larger than
that of run S, as well as a spectrum flatter than that of run S, at
both t= 0 and 10 (and in between). As we see in the figure,
runs F and S at time t= 10 still satisfy the required property.
So, property (iii) is probably satisfied, assuming that the solar
wind turbulent stream is made of a family of streams with
initial properties close to those of runs F and S.

4.5. Why Does Pinning Not Appear in Solar Wind Turbulence?

Figure 17 suggests the solution. It shows in the two left
panels the familiar E± spectra at t= 10 for the homogeneous
run hA8 (top) and the expanding run eA8 (bottom), both
compensated by k−5/3. In the two right panels, we plot the
magnetic (thick line) and kinetic spectra (thin line). In the
expanding run (and not in the homogeneous run), there is a
clear magnetic excess at the largest scale. Correspondingly, in
the expanding run, one sees that the E− spectrum also has an
“excess” at the largest scale. The interpretation is simple: at the
largest scale, the magnetic excess algebraically leads to an
excess of E−. There is thus a permanent large-scale injection of
zero cross helicity at the largest scale.

Our final interpretation is that this large-scale injection of a
magnetic excess is the source of (i) the decrease with time of
the relative cross helicity in the expanding plasma and (ii) the
absence of pinning.

Now, how is the magnetic energy excess injected at large
scales? A critical scale is the WKB scale, below which
magnetic and velocity fluctuations decrease at the same rate
with distance (δu= δb/ρ1/2; 1/R1/2). Above this critical
WKB scale, expansion dominates; i.e., the Alfvén coupling is
inefficient, and the velocity fluctuations damp globally faster
than the magnetic fluctuations due to the conservation of
magnetic flux, angular momentum, and radial momentum
(Zhou & Matthaeus 1990; Grappin et al. 1993; Oughton &
Matthaeus 1995; Dong et al. 2014). This is sufficient to
generate the magnetic excess as soon as the expansion is large
enough for the largest scale of the simulation to indeed be non-
WKB. Figures 10 and 11 confirm this, as they show that partial

pinning reappears when either the expansion parameter is
decreased or the mean magnetic field is increased.
On the contrary, whenever the large non-WKB scales gain

importance, either because the initial mean magnetic field is
decreased or as the expansion rate is increased, one finds (not
shown) a large-scale increase of the magnetic excess and an
associated acceleration of the normalized cross-helicity
decrease.
Note that other large-scale sources of low or zero cross

helicity are present in the solar wind, such as shear flows
associated with stream structures (Roberts et al. 1991). Stream
structures certainly contribute to the decrease of cross helicity
with distance, but locally, while the expansion contribution is
ubiquitous in the solar wind.

4.6. Why Does the Spectral Index Not Always Converge to
−5/3?

When expansion is present, we have seen that the spectral
index converges to a value that depends on the initial index m0,
except when the initial slope is close enough to the value −5/3.
A possible explanation is that, since expansion damps the
turbulent amplitude in addition to turbulent dissipation, the
nonlinear time is increased; thus, the evolution is slowed down
compared to the homogeneous case.
The evolution of the spectral indices m± is shown in

Figure 18 up to time t= 20 for run eB8. One sees that the two
indices show no clear drift toward −5/3 in the interval
6� t� 20, remaining at values close to −3/2. To examine
whether the above explanation is acceptable, we define the
“age” of the turbulence as the number N of nonlinear times tNL
accumulated since the beginning of the calculation. It can be
expressed as

( ) ( ) ( ) ( )N t k t u t dt , 18
t

y
0

0
rmsò= ¢ ¢ ¢

Figure 16. Spectral index m+ evolution for high and low cross helicity:
0.83c

0s = in the left panel and 0.5 in the right panel. In each panel, a series of
initial indices m0 is considered. Inserts show cross-helicity evolution for runs F
(left) and S (right).

Figure 17. Origin of the suppression of pinning in the expanding case:
homogeneous run hA8 (top row) and expanding run eA8 (bottom). The left
panels show E± spectra at t = 10, compensated by k−5/3. The right panels
show Ev (thin lines) and Eb (thick lines) spectra.
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where ky
0 and urms are, respectively, the smallest wavenumber

and the rms velocity fluctuation.
The age versus time is shown in Figure 19 for four runs with

large cross helicity without and with expansion: hA8, hB8, eA8,
and eB8 with black, blue, red, and green solid lines,
respectively. The difference between the two homogeneous
runs and the two runs with expansion is drastic. The two
homogeneous runs have their age growing almost linearly with
time, from t= 0 up to 10, due to (i) the constancy of the largest
scale and (ii) the limited decay of the largest eddies with time.
The two runs with expansion, on the contrary, show a quasi-
saturation of their age after time t ; 8. This is due to both a
higher-amplitude decay rate and the linear expansion of the
plasma with time in the two directions transverse to radial
( ( )k t a R R t1 1y

0
0µ = µ + ; Equation (6)).

To evaluate the relative importance of these two effects on
the freezing, we plotted with dotted lines the age obtained when
taking into account only the turbulence amplitude (i.e.,
replacing ( )k ty

0 with ( )k t 0y
0 = ) for runs eA8 and eB8. The

resulting curves show a decrease compared to the two curves
for homogeneous runs but clearly do not correspond to a
saturation of the age. One may thus conclude that the main
origin of the quasi-freezing of the spectral evolution is due
principally to the expansion of the largest eddies and
secondarily to the indirect effect of expansion, which is the
increased decay of the turbulent amplitude.

Note that in the simple, nonturbulent case of the shock
formation of an acoustic wave with a wavevector lying within
the perpendicular plane, one analytically finds that the increase
of the effective expansion, when initially large enough, stops
the wave from steepening before the shock is formed (Grappin
et al. 1993).

5. Conclusion

In this paper, we considered decaying turbulence, starting
with random fluctuations of velocity and magnetic field, and
varying initial cross helicity and spectral index. Our key results
can be summarized as follows (we denote results obtained
using homogeneous runs with (H) and results obtained using
runs with expansion with (E)).

1. The m± indices converge to values independent of the
initial conditions (H); on the contrary, the indices keep a
memory of the initial conditions (E).

2. Pinning occurs with nonzero c
0s ; as a result, |m+|/|m−|

relaxes to a value that grows with c
0s (H). On the contrary,

as a rule, m+;m−, probably due to a permanent
injection of the subdominant mode E− at the largest
scale by expansion (E).

3. The memory of initial conditions allows one to under-
stand the conservation of the correlation between high
cross helicity and flat spectra during the transport
between 0.2 and 1 au, but the generation of the
correlation probably occurs close to the Sun, requiring
physical effects that are absent from the present
simulations (E).

4. When increasing B0, pinning persists, but both E± spectra
steepen, as already known in the 0c

0s = case (H). Some
pinning appears, and the spectra also steepen (E).

It would be interesting in future work to consider smaller
values of the expansion parameter in order to be directly
applicable to the inertial range. Also, increasing the resolution
would allow one to describe the break separating the large-
scale 1/f range from the true inertial range.
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