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Abstract: The rapid displacement of the ocean floor during large ocean earthquakes or volcanic
eruptions causes the propagation of tsunami waves on the surface of the ocean, and consequently
internal gravity waves (IGWs) in the atmosphere. IGWs pierce through the troposphere and into
the ionospheric layer. In addition to transferring energy to the ionosphere, they cause significant
variations in ionospheric parameters, so they have considerable effects on the propagation of radio
waves through this dispersive medium. In this study, double-frequency measurements of the Global
Positioning System (GPS) and ionosonde data were used to determine the ionospheric disturbances
and irregularities in response to the tsunami induced by the 2011 Tohoku earthquake. The critical
frequency of the F2 layer (foF2) data obtained from the ionosonde data also showed clear disturbances
that were consistent with the GPS observations. IGWs and tsunami waves have similar propagation
properties, and IGWs were detected about 25 min faster than tsunami waves in GPS ground stations
at the United States west coast, located about 7900 km away from the tsunami’s epicenter. As IGWs
have a high vertical propagation velocity, and propagate obliquely into the atmosphere, IGWs can
also be used for tsunami early warning. To further investigate the spatial variation in ionospheric
electron density (IED), ionospheric profiles from FORMOSAT-3/COSMIC (F3/C) satellites were
investigated for both reference and observation periods. During the tsunami, the reduction in IED
started from 200 km and continued up to 272 km altitude. The minimum observed reduction was
2.68 × 105 el/cm3, which has happened at 222 km altitude. The IED increased up to 767 km altitude
continuously, such that the maximum increase was 3.77 × 105 el/cm3 at 355 km altitude.

Keywords: ionospheric disturbances; tsunami; internal gravity waves; vertical coupling

1. Introduction

Based on the electric charge, the Earth’s atmosphere is divided into two major layers,
the troposphere and the ionosphere. The troposphere, in which the atmospheric compo-
nents are electrically neutral, is the lower atmosphere ranging from the surface to about
60 km [1]. The ionosphere is the upper part of the Earth’s atmosphere, which is extended
from approximately 60 km to more than 1000 km. Solar radiation produces free electrons
and ions in this region that affect the propagation of electromagnetic waves [2]. Studying
the coupling between these two layers has been an interesting topic for atmosphere and
space weather research for several decades [3]. A tsunami displaces the atmosphere as
it propagates across the open ocean, the atmosphere responds to this excitation by prop-
agating gravity waves obliquely upward, these waves are referred to as internal gravity
waves (IGWs), and grow nearly exponentially with height as they proceed into the rarefied
regions of the upper atmosphere [4]. IGWs are buoyancy oscillations that can propagate
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horizontally and vertically, their propagation is under the gravity force of the Earth [5].
On the one hand, the ionospheric disturbances can decrease the performance of precise
positioning and navigation [6]. On the other hand, the ionospheric disturbance signals
induced by some tropospheric events, such as earthquakes, tsunamis, and lightning, can
be used to study these events [7–9].

A tsunami is generated when a large oceanic earthquake or volcanic eruption causes
rapid displacement of the ocean floor. Studies about the propagation of IGWs during the
1970s have suggested that the ionosphere is sensitive to IGWs by the forcing effect of a
tsunami on the surrounding atmosphere [10]. Peltier and Hines inferred that IGWs might
be detectable and used for tsunami warning system purposes [4]. After the Sumatra and
Indian tsunami in 2004, researchers pay significant attention to observing tsunamis by
ionospheric sounding. Using the high-frequency Doppler sounding network in Taiwan, Liu
et al. observed ionospheric disturbances triggered by the 2004 Indian Ocean tsunami [11].
Occhipinti et al. used total electron content (TEC) data measured by the Jason-1 and
Topex/Poseidon satellite altimeters to detect the signature of IGWs on the ionosphere [12].
However, both Doppler sounding networks and altimetry satellites have a low spatial and
temporal resolution, which makes it difficult to study the propagation characteristics of
ionospheric disturbances in detail. Artru et al. used TEC data, observed from the Geonet
network in Japan, to extract the ionospheric disturbances induced by the 23 June 2001
8.2 Mw earthquake in Peru for the first time [8]. Due to the high spatial and temporal
resolution, the GPS TEC data have been widely used in ionospheric monitoring and
tsunami detection [13–16].

According to the US Geological Survey, an earthquake (Mw = 9) occurred with the
epicenter at 38.32◦N, 142.37◦E; it occurred on 11 March 2011 at 5:46:23 UT near Tohoku,
Japan, and then induced a tsunami. In this paper, we employ various geodetic techniques
to detect ionospheric disturbances and ionospheric irregularities induced by the tsunami
on the west coast of the United States of America. According to the travel time map in
Figure 1, the tsunami reached the west coast of the USA about 10 h after the earthquake.
Various researchers have studied the arrival time of IGWs in the 2011 Tohoku tsunami, but
their approach was mainly post-process. In this paper we investigated a near real-time
method to detect IGWs, therefore using this procedure can lead to faster tsunami warnings
compared to DARTs and tide gauges. Moreover, ionospheric perturbations caused by
tsunamis were also studied by different satellite geodetic techniques.
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Figure 1. Travel time map of the 2011 Tohoku tsunami. The spatial distribution of tide gauge (or-
ange point), DART (red point), and location of the epicenter (yellow star) are shown in the figure 
[17]. 
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(http://www.unavco.org/data/gps-gnss.html- accessed on 20 April 2020 ). The sampling 
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sphere during the tsunami, data of one day before and one day after the tsunami day were 
analyzed. Data from ionosonde, the deep-ocean assessment and reporting of tsunamis 
(DART), and tide gauges were used to validate the obtained results. Figure 2 shows the 
spatial distribution of the stations and the types of instruments used in the present analy-
sis. 

 

Figure 1. Travel time map of the 2011 Tohoku tsunami. The spatial distribution of tide gauge (orange
point), DART (red point), and location of the epicenter (yellow star) are shown in the figure [17].

2. Materials

In this study, 56 GPS stations were selected from the UNAVCO network, (http://
www.unavco.org/data/gps-gnss.html, accessed on 20 April 2020). The sampling interval
for all stations was 15 s or 30 s. To identify the peculiar signatures of the ionosphere during
the tsunami, data of one day before and one day after the tsunami day were analyzed. Data
from ionosonde, the deep-ocean assessment and reporting of tsunamis (DART), and tide
gauges were used to validate the obtained results. Figure 2 shows the spatial distribution
of the stations and the types of instruments used in the present analysis.

Solar and geomagnetic activities are the dominating factors that control the behavior
of the ionosphere. Geomagnetic storms and solar activity mask the effects of tropospheric
events in the ionosphere, and responses of the F region to tsunamis can be sought only
under particular geomagnetic and solar conditions [18]. The index F10.7 was 129.5, 121.5,
and 119.2 solar flux units (SFU) on 10, 11, and 12 March, respectively. According to the F10.7
index variation, solar radiation was in the steady state. The geomagnetic activity can be
interpreted using several parameters. One of these parameters is the Kp index, which varies
from 0 to 9 (values equal and greater than 5 represent a geomagnetic storm) [19]. Another
parameter is the Ap index, which varies from 0 to 400 (values greater than 50 represent
a geomagnetic storm) [20]. Figure 3 shows the geomagnetic activity level. The solar and
geomagnetic indices were downloaded from the archives of Goddard Space Flight Center
(https://omniweb.gsfc.nasa.gov/form/dx1.html, accessed on 20 April 2020).

http://www.unavco.org/data/gps-gnss.html
http://www.unavco.org/data/gps-gnss.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
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Referring to Figure 3, the Kp index was below 5 units on March 11, from 6 to 18 UT,
which indicates quiet geomagnetic conditions during the major part of the tsunami event.
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3. Methods
3.1. TEC Measurements

Using dual-frequency GPS observations ( f1= 1575.42 MHz, f2 = 1227.60 MHz), the
ionospheric delay can be calculated. Then smoothed code pseudorange measurements for
f1 and f2 are estimated using the following Equation (1) [21]:

P̃k
1,i = Pk

1,i + Lk
1,i − Lk

1,i + 2 f 2
2

f 2
1− f 2

2
(Lk

1,i − Lk
2,i − (Lk

1,i − Lk
2,i))

P̃k
2,i = Pk

2,i + Lk
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f 2
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2
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2,i − (Lk

1,i − Lk
2,i))

(1)

where k and i denote the pseudo-random noise (PRN) of a given satellite and receiver,
respectively; P̃k

1,i and P̃k
2,i are the smoothed dual-frequency code measurements at epoch t;

Lk
1,i and Lk

2,i are the phase measurements observed by receiver i as seen from satellite k at

epoch t; Lk
1,i and Lk

2,i are the mean phase measurements at cycle slip free time interval; Pk
1,i

and Pk
2,i are the mean code measurements. Finally, slant TEC (STEC) value is calculated

using the following equation:

STECk
i (t) =

f 2
1 f 2

2
40.31( f 2

2 − f 2
1 )

(P̃k
i,4(t)− DCBk − DCBi + εL) (2)

In Equation (2) STECk
i (t) is slant TEC between satellite k and receiver i, P̃k

i,4(t) is the
smoothed code measurement, or the so-called geometry-free linear combination. DCBk

and DCBi denote the satellite and receiver differential code biases, respectively. In this
study, DCBi value is calculated using the Li et al. method [22]. In this method, the global
ionospheric map (GIM) TEC values are interpolated to the same GPS footprint locations
and times. The DCBi of each station is estimated by least squares adjustment using the
observations of all satellites. To remove multipath effects, only the measurements with
elevation angles higher than 20◦ are considered. STEC along the GPS line of sight (LOS) is
converted into the vertical TEC (VTEC) using the mapping function as follows:

VTEC = STEC cos(sin−1(
Re sin z

Re + Hion
)) (3)

where Re represents the mean radius of the Earth, z is the zenith distance of the LOS from
the receiver to GPS satellites, and Hion is the altitude of the ionospheric thin-layer shell,
which is set to 450 km in this study.

3.2. TEC Disturbances

Hernández-Pajares et al., Ref. [23], used a first-order numerical difference method to
extract ionospheric disturbances. Their method uses Equation (4), as follows:

∆TEC(t) = ∆s(t) = s(t)− 0.5(s(t− τ) + s(t + τ)) (4)

where ∆s(t) is the first-order numerical difference of TEC series, t and τ denote the ob-
servation epoch and time step, respectively. This method can effectively capture the TEC
variations for measurements with elevation angle higher than 40◦. In this paper, a second-
order numerical difference method is employed to eliminate the TEC trend because the
satellites at low elevation can better highlight the presence of oscillating perturbations [12].
The second-order numerical difference is calculated by Equation (5), as follows:

∆2TEC(t) = ∆2S(t) = ∆S(t)− 1
2
(∆S(t− τ) + ∆S(t + τ)) (5)

The ∆2S(t) values and primary IGW signals have the same period (T), and the ratio
amplitude (R) is calculated using Equation (6), as follows:
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R = 4 sin4(π·τ/T) (6)

The method is very effective when R is larger than 1, whereas the sensitivity will
degrade when R is smaller than 0.4 [24]. If equals 300 s, the sensitive period is 6 to 26 min
with the ratio of amplitude bigger than 0.4. The relation between R and T is plotted in
Figure 4 for τ equal to 300 s.
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3.3. Ionospheric Irregularities

The rate of TEC index (ROTI) defined as the standard deviation of the rate of TEC
(ROT) is used to indicate the presence of ionospheric irregularities. ROTI is calculated with
a sliding window for each five minute interval using Equation (7) [25,26].

ROTI =
√
〈ROT2〉 − 〈ROT〉2 (7)

ROT (in TECU/minute) is calculated as follows:

ROT(t) =
L4(t)− L4(t− 1)

∆t× 1016 × 40.3× ( 1
f 2
1
− 1

f 2
2
)

(8)

where L4(t) is the geometry-free phase combination at epoch t; f1 and f1 are frequency;
and ∆t is the time difference between the epochs (in minutes).

4. Results
4.1. IGWs

The location of the ionospheric pierce point (IPP) is calculated for all of the satellites.
Figure 5 shows the IPP paths over the west American coast, between 15:00 UT to 20:00 UT,
corresponding to each station. Due to limited space and for simplification, the figure only
shows one IPP path for each station. This figure shows the spatial distribution of GPS
stations with different colors. Each station is related to only one IPP path, which has the
same color (e.g., station P001 with red color corresponding with PRN 21).
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Figure 5. Location of sample GPS stations and IPP paths between 15:00 UT and 20:00 UT over west
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For each station, IPPs of only one satellite path is depicted, which has the same color.

The IGWs originated by the ocean tsunamis propagate in a conical shape through
the atmosphere, with their vertex located at the epicenter of the tsunami. Therefore, the
IGWs velocity has both vertical and horizontal components. As already known, by the
increase in the altitude, the atmospheric density reduces exponentially, thus the amplitude
of the IGWs increase as they propagate to higher altitudes [27]. One way to distinguish
the signals associated with IGWs induced by the tsunami is to search for disturbances that
are propagating at ∼200–300 m/s in an outward direction from the tsunami’s source [28].
The vertical propagation velocities of IGWs are 40–50 m/s [8]. Figure 6 shows the ∆2TEC
time series of PRN18, PRN22, and PRN29 observed from different stations from 14:30 UT
to 21:00 UT on 11 March. The ∆2TEC time series of PRN 18, 22, and 29 are shown as
an example to show the ionospheric disturbances from the beginning to the end of the
propagation of IGWs. The ionospheric disturbances appeared over the west American coast
at about 15:10 UT, then faded at about 20:00 UT. The horizontal speed of the ionospheric
disturbances was between 200 and 300 m/s. Figure 7 shows the locations of the IPPs of
PRN18, PRN22, and PRN29 observed from all the GPS stations from 15:10 UT to 20:00 UT
on 11 March. As it can be seen, within the land area, PRN 18 is further west compared to
PRN 22 and 29, so it has detected IGW signatures earlier. Within the ocean area, PRN 22
was further west and should have been able to detect IGWs earlier, but due to the oblique
propagation direction of IGWs, the signatures were not detectable there.
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Figure 8 shows the ∆2TEC time series and time-frequency analysis of PRN 18, PRN
22, and PRN 29 observed from the GPS station PABH. The GPS station PABH is northwest
of America and is selected as a sample. At the beginning of the propagation of IGWs, the
dominant frequency and amplitude of the ∆2TEC time series was small (the dominant
frequency of the ∆2TEC time series was between 0.75 and 1.5 mHz in Figure 8f), and after
a while, the dominant frequency and amplitude of the ∆2TEC time series increased (the
dominant frequency of the ∆2TEC time series was between 1.5 and 2 mHz in Figure 8b,d).
At the end of the propagation of IGWs, the dominant frequency and amplitude of the
∆2TEC time series decreased again (the dominant frequency of the ∆2TEC time series was
between 0.75 and 1.5 mHz in Figure 8d).
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Figures 9 and 10 show the ∆2TEC time series of PRN18, PRN22, and PRN29 observed
from the same stations from 14:30 UT to 21:00 UT on 10 March (a day before the tsunami)
and 12 March (a day after the tsunami). There are no obvious disturbances in the ∆2TEC
time series on 10 and 12 March. The average values of ∆2TEC between 15:10 UT and
20:00 UT (time of the propagation of IGWs to the ionosphere on 11 March) on the three
days of March 10, 11, and 12 of 2011 were 0.01, 0.04, and 0.01 TECU, respectively.
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Figure 11 shows the locations of the DART and tide gauge stations and the GPS station
CABL. Also, the location of the IPPs for PRN15 and PRN16 observed from station CABL
are plotted in the figure. The IPPs of PRN15 and PRN16 were over the ocean and land,
respectively. The PRN15, PRN16, and CABL stations were selected as a sample.
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Figure 11. Spatial distribution of DART (yellow diamond), tide gauge stations (dark-blue circle), GPS
station CABL (red triangle), and location of IPPs for PRN15 and PRN16 observed from GPS station
CABL on 11 March 2011.

Figure 12 shows the ∆2TEC time series, time-frequency analysis, and ROTI time series
of PRN15 and PRN16 observed from the GPS station CABL. The ionospheric disturbances
and ionospheric irregularities are observed above the land and sea, but the ionospheric
disturbances and ROTI values of PRN15 were more than PRN16. The ∆2TEC time series of
PRN15 and PRN16 observed from the GPS station CABL have similar frequency character-
istics. This phenomenon illustrates that the ocean tsunami generates IGWs that propagate
obliquely in the ionosphere [15]. The results of the time-frequency analysis indicate that
the average dominant frequency of ionospheric disturbances was 1.2 ± 0.3 mHz with a
period of 14.42 min on 11 March.
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Figure 12. Time series for PRN16 (a) and PRN15 (c) observed from GPS station CABL. (b) and (d)
the time-frequency analysis for the ∆2TEC time series. ROTI time series for PRN16 (e) and PRN15 (f)
observed from GPS station CABL on 11 March 2011.

4.1.1. Horizontal Speed Phase of IGWs

The ionospheric disturbances are observed from 15:10 UT to 20:00 UT on 11 March.
According to [29], we interpolated the ionospheric disturbances in meridional and zonal
wavenumbers at 30-s intervals between 15:10 UT and 20:00 UT because the sampling
interval of some of the GPS stations was 30 sec. The wavenumbers were calculated in
meridional and zonal wavenumbers using fast Fourier transformation (FFT) analyses of
ionospheric disturbances. The horizontal phase speed of the ionospheric disturbances was
calculated at 30-s intervals between 15:10 UT and 20:00 UT, using Equations (9) and (10).

ωr =
2π

τr
(9)

where τr is the period of ionospheric disturbances and ωr is the ground-based frequency.

cH =
1√

(k/ωr)
2 + (l/ωr)

2
=

1√
(1/cx)

2 +
(
1/cy

)2
(10)

where k and l are the zonal and meridional wave numbers, respectively, and cH , cx, and cy
are the horizontal phase speed, zonal phase speed, and meridional phase speed of IGWs.
The results indicate that the horizontal phase speed of the IGWs was 231.31 ± 44 m/s.
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4.1.2. Ionosphere Response to IGWs

In this study, we calculated ROTI to investigate ionospheric irregularities in the IGWs
induced by the tsunami. Figure 13 shows the average ROTI values for all of the satellites
observed from all of the GPS stations used on March 10, 11, and 12. The ROTI values (red
curve) suddenly increased after 15:10 UT and again decreased back to normal values at
about 20:00 UT on 11 March compared to the ROTI values on 10 and 12 March (green and
blue curves). The average values of ROTI between 15:10 UT and 20:00 UT (the time of
propagation of the IGWs to the ionosphere on 11 March) on the three days were 0.25 ± 0.01,
0.27 ± 0.008, and 0.25 ± 0.01 TECU/min, respectively.
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4.2. Tsunami Waves Activity

We compared the ∆2TEC time series with sea level time series measured by all of the
active tide gauges and DART stations on the west American coast on 11 March, to detect
the correlation between the propagation characteristics of the IGWs and tsunami waves.
The sampling intervals of all of the stations were 60 s. The DART station data is available
at (www.ndbc.noaa.gov/dart.shtml, accessed on 20 July 2020) and the tide gauge station
data is available at (www.ioc-sealevelmonitoring.org/list.php, accessed on 20 July 2020).
We used the same second-order numerical difference method (Equation (5)) to process
the sea level time series. The arrival times of the tsunami waves to the different stations
are listed in Table 1. The DARTs stations detected the tsunami waves earlier than the tide
gauges, due to the location of the DART stations, which were 300 km from the coast, while
the tide gauges were near the beach. The first time, the tide gauges at Arena and West
Port observed tsunami waves at 15:34 UT and 15:39 UT, respectively. The locations and
names of the tide gauge and DART stations are shown in Figure 11. Figure 14 shows the
time-frequency analysis and time series of the Arena and West Port station. The red dots in
Figure 14a,c indicate the time of arrival of the tsunami waves at the stations. The results of
the time-frequency analysis indicate that the average dominant frequency of the tsunami
waves was 1.86 ± 1 mHz with a period of 10.3 min on 11 March.

www.ndbc.noaa.gov/dart.shtml
www.ioc-sealevelmonitoring.org/list.php
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Figure 14. Sea level time series for tide gauges at (a) Arena, and (c) West Port stations on 11 March
2011. The red points indicate the time of arrival of the tsunami waves at the stations, and the
time-frequency analysis for tide gauges at (b) Arena, and (d) West Port stations.

Table 1. The time arrival of tsunami waves to different stations.

Station Tsunami Time Arrival (UT) Latitude (◦ N) Longitude (◦ W)

Alameda 16:36 37.77 −122.3
Arena 15:34 38.91 −123.72

Astoria 16:24 46.21 −123.77
Cherry Point 17:08 48.86 −122.76

Jolla 16:22 32.87 −117.26
San Fran 16:15 37.81 −122.47

South Beach 15:42 44.63 −124.04
West Port 15:39 46.91 −124.11

46404 14:33 45.85 −128.78
46407 14:39 42.71 −128.83
46411 14:59 39.34 −127.07

The tsunami propagation velocity was computed using the equation of shallow wa-
ter [8], as follows:

Vtsunami =
√

gH (11)

where g is the gravity with a value of 9.8 m/s2, and H is the ocean depths in meters.
The ocean depth value was obtained from the DART data. The tsunami propagation
velocity varies from 163.8 to 204.3 m/s. Table 2 shows the variation range of the tsunami
propagation velocity at each DART station. Finally, the average velocity of the tsunami
waves is 182.25 ± 18 m/s.

Table 2. Tsunami propagation velocity of range.

Station Tsunami Propagation Velocity (m/s)

46404 163.8
46407 178.9
46411 204.3
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4.3. Validation of Results
4.3.1. Using Ionosonde Data

The foF2 data observed by the Point Arguella (PA836) ionosonde station were used
for validation of the ionospheric disturbances. The data for this station are available at
(ftp://ftp.ngdc.noaa.gov/ionosonde, accessed on 20 June 2020). The foF2 can be converted
to electron density using Equation (12).

f [Hz] = 8.98
√

Ne(m−3) (12)

The diurnal variation in the foF2 parameter from the 10 to 12 March is shown in
Figure 15 with a red color. The range of variation in foF2 under the quiet period (10 and 12
March) was calculated using Equation (13).

aver = average( f o f2(10), f o f2(12))
std = stdev( f o f2(10), f o f2(12))
upper = aver + std
lower = aver− std

(13)Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
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(10 and 12 March 2011).

Figure 15 shows that the foF2 values increased suddenly after 15:00 UT and then
decreased back to the normal value at 20:00 UT on 11 March, compared to the quiet days
(10 and 12 March). The foF2 values were not between the lower and upper limit from
15:00 UT to 20:00 UT on 11 March (Figure 15b), while on the 10th and 12th of March
(Figure 15a,c) the values were completely between the lower and upper limit. Figure 16
shows the difference between the upper value and the diurnal variation in the foF2 param-
eter in each epoch from 14:00 UT to 22:00 UT on 11 March 2011. The ionosonde station did
not have data from 17:00 to 18:15 UT on 11 March (Figure 15b). Only the PA836 station had

ftp://ftp.ngdc.noaa.gov/ionosonde
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data in the Western United States on 11 March 2011. The abnormal onset and end times of
the GPS observation were 15:10 UT and 20:00 UT. Therefore, the results of ionosonde are
consistent with the GPS analysis. It is also worth noting that there were no obvious dis-
turbances on the day before (10 March) and the day after (12 March), using the ionosonde
data.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 15.  Variations in the ionospheric parameter foF2 obtained at PA836 from 10 to 12 March 
2011 (red line), for (a) 10th, (b) 11th, and (c) 12th March 2011. The solid blue line is lower values of foF2 
parameter on quiet days (10 and 12 March 2011). The solid green line is upper values of foF2 param-
eter on quiet days (10 and 12 March 2011). Blue dot line is the average of quiet day values (10 and 
12 March 2011).  

 
Figure 16. The difference between the upper value and the diurnal variation of the foF2 parameter 
in each epoch from 14:00 UT to 22:00 UT on March 11, 2011. 

4.3.2. Using Electron Density Disturbances 
One of the techniques to obtain the ionospheric profiles of electron density is GPS 

radio occultation (RO). We used ionospheric electron density (IED) profiles obtained from 
F3/C RO measurements to detect the vertical ionospheric disturbances. The data are pro-
vided by CDDAC (COSMIC Data Analysis and Archive Center, http://cdaac-www.cos-
mic.ucar.edu-accessed in August 2020). Figure 17 shows the location of the ionospheric 

Figure 16. The difference between the upper value and the diurnal variation of the foF2 parameter in
each epoch from 14:00 UT to 22:00 UT on 11 March 2011.

4.3.2. Using Electron Density Disturbances

One of the techniques to obtain the ionospheric profiles of electron density is GPS radio
occultation (RO). We used ionospheric electron density (IED) profiles obtained from F3/C
RO measurements to detect the vertical ionospheric disturbances. The data are provided by
CDDAC (COSMIC Data Analysis and Archive Center, http://cdaac-www.cosmic.ucar.edu,
accessed on 20 August 2020). Figure 17 shows the location of the ionospheric occultation
tangent points of two RO profiles and the set of four IPP tracks of GPS PRN 18 from the
southern stations P001, P014, P473, and P796.
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Figure 18a shows the vertical profile of electron density (red curve) measured from
F3/C RO at 18:36 UT on 11 March 2011 (reference period). This is a setting occultation
between the F3/C satellite (C-006) and PRN-31, starting with the occultation (tangent) point
altitude of 62 km and subsequently ascending to 767 km. The location of the occultation
point upon starting is 121.35◦W, 28.59◦N and at the ending is 106.88◦W, 28.43◦N. This
means that the occultation point not only ascends vertically from the bottom to top, but
also sweeps horizontally a large distance (~1414 km) from west to east. The tangent
point projections of this profile are shown in Figure 17 with a red color. PRN31 and
C006 measured another RO electron density profile at 107.13◦W, 30.98◦N at ~18:09 UT on
12 March 2011 (observation period). The tangent point projections of this RO profile are
shown in Figure 17 with a green color. Figure 18a shows the vertical profile of electron
density with a green color. Another RO electron density profile was measured at 19:11 UT
on 14 March by PRN24 and C006. The tangent point projections of this profile are shown
in Figure 17 with a blue color. No RO electron density profile was measured near the
reference period on 10 and 13 March. Figure 18a shows the vertical profile of electron
density with a blue color. As Figure 18a shows, there is little difference between the amount
of electron density on March 12 and March 14, indicating no especial ionospheric event.
However, there is a significant difference between the amount of electron density on day 11
and the other two days (12 and 14 March). In this study, the difference and the percentage
of electron density variations between the reference and observation periods have been
calculated using Equations (14) and (15). The recorded IED profiles are interpolated to a
height interval of 1 km.

di f f erence = Nere f erence − Neobservation (14)

Percent_Variation =
Nere f erence − Neobservation

Neobservation
× 100 (15)

According to Figure 18b, the reduction in IED started from 200 km and continued
up to 272 km altitude, and the maximum reduction was 2.68 × 105 el/cm3 (~27%), which
happened at the 222 km altitude. The IED increased up to 767 km altitude continuously,
such that the maximum increase was 3.77 × 105 el/cm3 (~64%) at 355 km altitude. The
electron density peak was 12.22 × 105 el/cm3 at 291 km altitude on 11 March, and the
value was 12.18 × 105 el/cm3 at 258 km altitude. Generally, it can be inferred that the
tsunami induced an increase in the IED peak value and altitude.
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Figure 19 shows the ∆2TEC values of PRN 18 observed from the mentioned stations
on 10, 11, and 12 March 2011. There are no obvious disturbances in the ∆2TEC time series
of PRN 18 observed from the four GPS stations on 10 and 12 March. Thus, it is clear that
the IGWs propagated during the tsunami, reached the F2 layer peak altitude and caused
electron density disturbances.
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2011. Results from each station are vertically shifted from the previous station by 1.5 TECU.

5. Discussion

In this study, the ionospheric disturbances induced by IGWs during the tsunami on
11 March 2011 on the west American coast were detected using space-based and ground-
based data.

Sea level disturbances and ionospheric disturbances have similar propagation char-
acteristics, such as speed, frequency, and arrival time. Ionosphere disturbances and iono-
spheric irregularities were observed in the time series of satellites that passed over the land
and ocean in the region between the tsunami epicenter and the observation stations. The
ionospheric disturbances and ROTI values over the land were higher than those of over
the ocean. This phenomenon is the result of the IGWs propagation in the oblique direction.
The ROTI, ∆2TEC, and ionosonde variations were not significant because we studied the
effect of IGWs 7900 km away from the epicenter. As expected, water level disturbances
are greater near the epicenter than those far from the epicenter; therefore, the ROTI, TEC,
and ionosonde variations would have been significant if ionospheric disturbances were
detected using the GPS stations of Japan. Near the epicenter, IGWs propagate due to varia-
tions in the crust of the earth and sea level. Far from the epicenter, IGWs propagate due to
variations in the sea level [28,30]. The relative contribution of the tsunami-driven IGWs, as
compared to IGWs generated by the earthquake itself, deserves further research [28].

The average of ionospheric disturbances between 15:10 UT and 20:00 UT on 11 March
was four times larger than the average amount on 10 and 12 March (between 15:10 UT
and 20:00 UT). The average ROTI value between 15:10 UT and 20:00 UT on 11 March was
1.1 times larger than that of 10 and 12 March (between 15:10 UT and 20:00 UT).
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The reduction in IED started from 200 km and continued up to 272 km altitude, and
the maximum reduction was 2.68× 105 el/cm3 (~27%), which happened at 222 km altitude.
The IED increased up to 767 km altitude continuously, such that the maximum increase was
3.77 × 105 el/cm3 (~64%) at 355 km altitude. Generally, the tsunami induced an increase in
the IED peak of value and altitude. Occhipinti et al. showed that about one hour after the
occurrence of the tsunami, the main part of the IGWs energy reaches the altitude of 300 km.
At this height, the electron density value becomes significant. This effect in the upward
velocity adjusts the tsunami waveform as it propagates from the surface of the ocean
surface to high altitudes. The ionosphere responds instantaneously to the IGW forcing, and
produces a passing wave that disappears with the diffusion and chemical loss after some
time. On the contrary, ion production and loss plays a crucial role; the signatures of the
IGWs in the plasma are maximized in the direction of the magnetic field [31]. In addition,
Occhipinti et al. demonstrated that when a tsunami occurs in the Northern Hemisphere,
the perturbed electron density would not exceed 10% in both the E and F regions; however,
when it travels south, the electron density could reach to up 80% [31].

The ionospheric disturbances appeared at 15:10 UT and faded at about 20:00 UT. The
results of the ionosonde and GPS observations were in good agreement. The first time
the tide gauges detected tsunami waves was at 15:34 UT, about 25 min after ionospheric
perturbations appeared in the ionosphere. So far, various researchers have studied the
arrival time of IGWs and tsunami waves, and have concluded that IGWs can be used
to warn of tsunami waves [15,27]. We used the near real-time method (second-order
numerical difference method) to detrend VTEC and water level measurements. As IGWs
propagate obliquely in the atmosphere, with both horizontal and vertical propagation
velocity components, and the vertical propagation velocity of the IGWs is high, the IGWs
in the ionosphere can be detected earlier than the tsunami waves in the ocean. The vertical
propagation velocity of the IGWs is about 50 m/s, which increases approximately with
height due to temperature variations [4,32]. The Kp index was more than five during
the tsunami. Liu et al. [33] also suggested that the magnetic storm had little effect on the
ionospheric disturbances on 11 March 2011.

6. Conclusions

In this study we investigated the effects of IGWs developed by the tsunami on the
bottom-side ionosphere. As the IGWs originate from the ocean, the tsunamis propagate in
a conical shape through the atmosphere, and their velocity has both vertical and horizontal
components. The IGWs horizontal velocity component and the tsunami’s velocity are
more or less the same, but the vertical component of the IGWs velocity increases rapidly
with the increase in the altitude, therefore the effect of the IGWs propagation through the
bottom-side ionosphere, which is manifested as ionospheric irregularities, can be detected
by the GPS ground stations in the region of the tsunami earlier than the tsunami itself.

In this investigation we studied the 2011 Tohoku tsunami and its effects on the Ameri-
can west coast, which is located 7900 km away from the tsunami’s epicenter. The earthquake
occurred at 5:46 UT, and was detected at 15:34 UT on the American west coast for the first
time. However, the first footprints of IGWs, observed at one of the GPS ground stations
located in the same region, were detected at 15:10 UT, which is about 25 min earlier than
the tsunami’s first detection.

This proves the fact that the effect of IGWs originated from the tsunamis on the bottom-
side ionosphere can be used as an alternative approach for a tsunami’s early warning.
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