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Chapter 1

Introduction

In this work, the influence of temperature fluctuations on the dust formation
in dust driven winds of Asymptotic Giant Branch (AGB) stars is investigated.

AGB-stars are intermediate mass stars in a late stage of their stellar
evolution. They are usually unstable against radial pulsations, which develop
in their convective stellar envelope. Furthermore, AGB-stars often develop
strong stellar winds, which are driven by radiation pressure on dust, which
forms in their pulsationally elevated atmospheres. These winds lead to a
substantial mass-loss of the star, which results in an evolution of the AGB-
star to a planetary nebula with a White Dwarf – the former core of the
AGB-star – as its central object.

The dust driven winds of AGB-stars play a central role for the evolution
of intermediate mass stars. Furthermore, they constitute an important input
of dust grains and heavy elements into the interstellar medium, and play a
key role in the modelling of the chemical evolution of galaxies.

Since the main driving mechanism of these dust-driven winds is the radi-
ation pressure from the stellar radiation on the newly formed dust particles,
the details of the dust condensation process are important for a quantitative
analysis of these objects.

A standard method to investigate the physical processes in AGB-winds
are self-consistent numerical model calculations, that solve the coupled equa-
tions of hydrodynamics, thermodynamics, radiative transfer, chemistry and
time dependent dust nucleation, growth, and evaporation for pulsating AGB-
stars (see Fleischer et al. 1992; Fleischer 1994; Winters et al. 1997; Woitke
et al. 1999; Jeong et al. 2003; Schirrmacher et al. 2003; Dorfi & Höfner 1991;
Gautschy-Loidl et al. 2004; Woitke 2006). Despite the fact, that the stel-
lar pulsations originate inside the turbulent convective stellar envelope, the
influence of temperature fluctuations has, so far, been ignored. The spatial
and temporal resolution of such numerical hydrodynamical calculations is

1



2 CHAPTER 1. INTRODUCTION

limited, and any processes that take place on time scales shorter than the
numerical time-steps, or on spatial scales smaller than the typical grid zones
must be described by subgrid models of these processes. In this context, the
possible presence of fluctuations is usually ignored by saying, that all pre-
sented numerical quantities represent mean values, which are averaged over
all subgrid scales. While this assumption is usually very good for hydro-
dynamical processes, and leads to realistic hydrodynamical wind structures,
the complete neglection of the influence of possible temperature fluctuations
can lead to quite large errors for processes, which show a strong asymmetric
temperature dependence, like chemical reaction networks, or the nucleation
and growth of dust particles.

The key feature, that motivates the investigation of the interplay of dust
formation and temperature fluctuations, is the circumstance, that the seed
particles will only nucleate from the gas phase, if the supersaturation ra-
tio exceeds a certain critical value Scrit, while an existing dust particle will
continue to grow also at moderate supersaturations. Since, the supersatura-
tion ratio S depends very sensibly on the temperature, a situation is realised,
where the presence of temperature fluctuations could lead to substantial dust
condensation in a situation, where no dust nucleation would occur under the
assumption, that the mean temperature represents the real temperature on
all subgrid scales.

In order to investigate the influence of the temperature fluctuations, the
dust formation is first formulated as a stochastic process using a formalism
developed by Dirks (2000). This formulation leads to a system of Fokker-
Planck equations for the probability distribution of the moments of the grain-
size distribution function. Since this set of Fokker-Planck equations cannot
be implemented directly into self-consistent numerical model calculations de-
scribing an AGB-wind, a series of gasbox-calculations is presented, in order
to investigate i) of what order of magnitude the temperature fluctuations
would have to be in order to have a remarkable influence on the dust for-
mation, and ii) at which time-scales of the correlation time a microturbulent
description of the fluctuation is admissible. The gasbox-models are also com-
pared with Monte-Carlo simulations of the same stochastic process. Guided
by the results of these gasbox-calculations, a one-parametric microturbulent
approach is developed and implemented into self-consistent, time-dependent
numerical model calculations. Subsequently, a large number of dynamical
wind models was calculated and evaluated. The results are ambivalent, de-
pending on the details of the underlying microscopic description of the gas.
For an ideal monoatomic gas with an LTE-cooling function, the results show
a clear trend of increasing massloss rates with an increasing strength of the



3

temperature fluctuations. For models with a more sophisticated gas model
combined with tabulated NLTE-cooling functions, this trend was not as clear.

This work is embedded in the scientific work of the Zentrum für As-
tronomie und Astrophysik (ZAA) of the Technical University of Berlin in
several ways. The investigation of dust formation in astrophysical situations
has a long standing tradition at the ZAA, in particular the development
of a method, which describes the dust complex by moments of the grain-
size distribution function (see, e.g. Gail et al. 1984; Gail & Sedlmayr 1985,
1987a, 1988, 1987b; Patzer et al. 1998), has made it possible to implement
a time dependent description of dust nucleation, growth, and evaporation
into self-consistent hydrodynamical model calculations of AGB-stars (see,
e.g. Fleischer et al. 1992; Winters et al. 1994b; Fleischer et al. 1995; Winters
et al. 1995; Arndt et al. 1997; Schirrmacher et al. 2003; Jeong et al. 2003),
and other astrophysical objects like Brown Dwarfs (see, e.g. Helling et al.
2001, 2003), or RCorBor-stars (see, e.g. Goeres & Sedlmayr 1992; Woitke
et al. 1994). The stochastic description of the dust formation applied in
this work was developed by Dirks (2000) based on a similar method for the
stochastic treatment of radiative transfer developed by Gail et al. (1975b),
(see also Gail et al. 1976, 1980, 1975a; Gail & Sedlmayr 1974). One idea of
this work is to find a way to make the stochastic dust description developed
by Dirks (2000) suitable for implementation into self-consistent hydrodynam-
ical model calculations. Since, with the so-called Child-code, a running and
well-tested code for the self-consistent time-dependent modelling of carbon
rich AGB-winds is available at the ZAA, it seemed a natural choice, to aim
for an implementation of the stochastic dust description into this code.

The structure of this work is as follows. In Chapter 2 the basic physical
concepts are presented and discussed, in Chapter 3 the numerical methods
used in this work are described, the results of the gasbox models are pre-
sented in Chapter 4 and discussed in Chapter 5. Guided by these results,
the construction of a tables for a microturbulent nucleation rate is described
in Chapter 6. This microturbulent nucleation rate is then implemented into
self-consistent dynamical wind calculations, the results of which are presented
in Chapter 7 and discussed in Chapter 8. Finally, a summary of this work
and an outlook for a possible future development is given in Chapter 9.
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Chapter 2

Basic Physical Concepts

2.1 Dust formation in astrophysical situations

Dust is found in a wide variety of astrophysical situations - from planetary
atmospheres to the intergalactic space. Whenever dust is present in a hydro-
dynamic medium, it dominates its optical appearance, because it effectively
absorbs visible light and reradiates the energy as thermal IR-emission, an
effect which can be observed as extinction of the light of distant stars in the
main plane of the milky way. This affects not only the optical appearance
of many astrophysical objects, but can also dominate their energy balance:
the collapse of an interstellar cloud to a protostar, for example, requires the
cooling effect of dust, which consists in the circumstance, that dust grains
cool by radiating in the IR, and are subsequently reheated by collisions with
the gas, which in turn has no effective way of cooling by radiation at the
temperatures typical for interstellar clouds.

Moreover, dust is not only important for the energetical and momentum
coupling between a hydrodynamical medium and a trespassing radiation-
field, it also plays a very important role for the chemistry of the gas, acting
as a catalyzer for many chemical reactions: the formation of H2 from atomic
hydrogen at typical interstellar densities, for example, would take longer than
the typical life time of a cool molecular cloud. The ability of dust grains to
collect interstellar atoms and molecules on their surface, and moreover the
ability of the solid bulk material of the grain to absorb the excess energies
of exothermic reactions considerably enhance the potential of the interstellar
material to produce complex organical and anorganical molecules.

In this work, I used the dust moment method, developed by Gail, Keller,
& Sedlmayr (1984) in the form described by Gauger et al. (1990), where dust
formation is described as a two step process consisting in grain nucleation

5
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and subsequent growth to macroscopic particles. In this section, I want to
resume the microphysical model presented in Gail et al. (1984) and Gauger
et al. (1990) and the references therein, in order to make clear how exactly
the dust moments Ki, the nucleation rate JN`

and the net growth rate τ−1

are calculated throughout this work, and especially how they depend on the
thermodynamical input parameters Tgas, Tdust, and ρ which will be the free
variables in all hydrodynamical studies presented in chapters 4, and 7.

A carbon rich situation is assumed, i.e. it is assumed that the number
density of carbon atoms is higher than that of oxygen atoms. Thus, due to
the high binding energy of the CO-molecule, the oxygen will be effectively
locked in CO and is therefore not available for the formation of high temper-
ature condensates, which could condense to solid grains under astrophysical
thermodynamical conditions. Grains will then be formed only by the excess
carbon, which is not locked in CO. Physical objects where a carbon rich
dust chemistry is observed are, for example, C-stars, i.e. stars during the
late stages of their evolution along the Asymptotic Giant Branch (AGB) or
WC-stars, i.e. carbon rich Wolf-Rayet-stars.

Mathematically, the formation, growth and evaporation of dust particles
are described by the time development of moments of the particle size dis-
tribution f(N, t). In order to be able to describe the dust complex via a
one dimensional distribution function, which depends on the particle size N
only, i.e. on the number of monomers that form the particular grains, it is
obviously necessary to assume, that the grains actually consist of a number
of identical monomers and of these identical monomers only1. Therefore,
the carbon is assumed to condensate to graphite clusters. The formation of
carbon rich dust via PolyAromatic Hydrocarbons (PAH’s) cannot be investi-
gated in the framework of this method, because the resulting grains are not
likely to consist of similar monomers, which prevents the description via a
distribution function of the form f(N, t). Already the description of dust nu-
cleation via PAH’s would require the investigation of the chemical pathway
leading to the critical cluster (see e.g. Goeres 1993), a task which goes well
beyond the scope of this work. For the same reason, the method cannot be
applied straight forward to an oxygen-rich situation, where dust formation
takes place via inhomogeneous growth, and the need of keeping track of the
stoichiometric composition of the grains, requires the use of a more sophis-
ticated distribution function. (A deterministic self-consistent model of an
O-rich AGB star is presented by Jeong et al. 2003, .)

1The method assumes that the grains consist of identical monomers, this does not
require that nucleation, growth and destruction are described by processes involving
monomers only. Indeed, in this work not only C-atoms, but also C2, C2H and C2H2

are assumed as species contributing to nucleation and growth via chemical reactions.
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2.1.1 Some general remarks about condensation pro-
cesses

The saturation pressure psat(r) over a curved surface is always greater than
that over a flat surface p∞. In thermal equilibrium psat is given by the
Thomson-Helmholtz-equation:

ln

(
psat(r)

p∞

)
=

2σsurfµmu

rρkBT
, (2.1)

where σsurf is the surface tension and µmu the mass of the monomer. Thus,
for a set of thermodynamic variables (T ,ρ) there will be a specific grain size
rcrit at which grains will be in stable phase equilibrium with the gas phase.

Grains of the size rcrit are called critical clusters. Grains smaller than the
critical cluster will evaporate, whereas grains larger than the critical cluster
will grow by catching monomers from the gas phase. Since the condensable
material in the gas is depleted by the growth process of the particles larger
than rcrit, rcrit will increase according to Eq. (2.1) leading to the evaporation
of more grains and so on, until an equilibrium between the new solid phase
and the depleted gas establishes, where the partial pressure of the monomers
corresponds to the saturation pressure over the solid surface, while the partial
pressures of the remaining i-mers should be in chemical equilibrium (CE)
with the monomers.

The supersaturation ratio is defined as the ratio between the partial pres-
sure of the monomer p1 and the pressure of a saturated vapour of a flat surface
p∞:

S =
p1

p∞
(2.2)

This definition of the supersaturation ratio yields the problem, that in a
situation with S = 1 the self-nucleation of particles from the gas phase is
impossible, because the size of the critical cluster would be infinite. Thus,
for nucleation to take place in a seed free environment, a finite supersat-
uration Scrit > 1 is required, which should be of that order of magnitude,
that allows the barrier of the critical cluster rcrit(S) size to be reached by a
chemical fluctuation process. However, for the reasons sketched above, this
state of supersaturation is intrinsically thermodynamically unstable, because
the newly formed seeds will immediately start growing und thus, deplete the
gas phase from condensable monomers. As a rule of thumb, the ”easier” the
dust nucleation takes place, the less particles form, because the growth of
the big supercritical particles will usually consume the material faster, than
the formation of the critical clusters, which constitutes a bottle neck of the
reaction chain.
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The fact, that nucleation is a phenomenon of a thermodynamical (and
chemical) non-equilibrium situation yields the problem, that the description
of this state via equilibrium quantities alone might not be sufficient to catch
the essential aspects of the process.

2.1.2 The grain size distribution function

The grain size distribution function f(N, t) yields the number of grains of
size N at the moment in time t per hydrogen core2. f(N, t) carries the
complete information about the dust complex at a given moment in time.
All other physical quantities concerning the dust complex can be derived by
the knowledge of f(N, t). For this purpose, it is very helpful to define the
following moments of the distribution function (see e.g. Gauger et al. 1990,
Eq. 1)3:

Ki(t) =
∞∑
N`

N i/df(N, t), (2.3)

with N` corresponding to the lower size limit of the distribution function,
i.e. to the minimum cluster size of a macroscopic particle. d is the spatial
dimension of the particle. In this work, all particles are assumed to be
spherical, i.e. d = 3. The first four moments are:

K0(t) =
∞∑
N`

f(N, t), (2.4)

K1(t) =
∞∑
N`

N1/3f(N, t),

K2(t) =
∞∑
N`

N2/3f(N, t),

K3(t) =
∞∑
N`

Nf(N, t).

These moments can be used to express the following physical quantities (see
Gail et al. 1984, Eq.3.4 – 3.8):

2The quantities are normalised to the total number density of hydrogen cores nĤ =
nH + 2nH2 + . . . . Thereby the moments Ki are independent of the local mass density and
of the dissociative state of the gas.

3The hats used by Gauger et al. are omitted in this work.
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1. particle density nd of grains of size ≥ N`:

nd = K0,

2. average grain radius:

〈r〉 = r0
K1

K0

,

with r0 as the (hypothetical) radius of a monomer,

3. average grain surface:

〈AN〉 = 4πr2
0

K2

K0

,

4. average particle size:

〈N〉 =
K3

K0

,

5. number density nc of monomers condensed into grains of size ≥ N`:

nc = K3.

In principle, the moments Ki carry the same information as the distribution
function f(N, t) itself, but only, if all moments are taken into account, i.e.
i = −∞, . . . ,−1, 0, 1, 2, . . . , +∞. However, for the description of the dust
complex at the theoretical depth desired in this work, the first four moments
are sufficient (see Gail et al. 1984).

The time evolution of the first four dust moments is given by (see Gauger
et al. 1990, Eq. 40)

dK0

dt
= JN`

(2.5a)

dKi

dt
= N`

i
d JN`

+
i

d

1

τ
Ki−1. (2.5b)

In the case of dust growth, JN`
is the creation rate of clusters of size N`.

It is then assumed that JN`
corresponds to the stationary nucleation rate

J∗ calculated according to classical nucleation theory (see Gail & Sedlmayr
1984, and references therein). In the case of dust evaporation, JN`

is the
corresponding destruction rate. In contrast to the nucleation rate, the de-
struction rate is a function of the dust distribution function f(N, t) itself,
because the amount of grains, that can be destroyed in a particular situation
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will obviously depend strongly on the amount and size of the grains present
at the particular moment. The actual calculation of the grain destruction
rate is described in Sect. 2.1.6.

τ−1 corresponds to the net growth rate, i.e. it also includes the effects
of dust destruction. In this work, dust destruction is assumed to take place
via thermal evaporation and chemical sputtering. If other processes should
be included, it must be checked whether their dependence on the grain-size
allows an inclusion into τ−1. Otherwise, a mathematical treatment using the
moments of the distribution function might no longer be possible.

Mathematically, Eq. (2.5a) is a closing condition for the equation system
Eq. (2.5b), so that the moments with negative i’s do not have to be evaluated.
Another closing condition for the upper moments is not needed, since the Ki

depend only on lower moments and JN`
, but not on any higher moments.

Nevertheless, for obvious physical reasons, the consumption of carbon in the
gas phase by condensation to the solid phase must be taken into account,
which gives another equation linking the chemical abundance of carbon cores
in the gas phase εC to the moment K3

εC(t) = εC,0 −K3(t), (2.6)

where εC,0 is the carbon-core abundance of the dust-free situation.

2.1.3 Nucleation

In the framework of classical nucleation theory (e.g. Feder et al. 1966), the
nucleation process is regarded as a random walk problem of clusters in the
cluster size space. A cluster that has reached the critical cluster size will
most probably continue to grow to macroscopic dimensions. Smaller clusters
are more likely to reevaporate. Therefore, the nucleation rate J∗ is assumed
to be the formation rate of critical clusters in a quasi stationary equilibrium
situation. Stationary in this case means, that the clusters are assumed to
grow fast from the critical size N∗ to the size N` - the minimum size of a
macroscopic particle, which is also the lower edge for the calculation of the
moments Ki. This rate is given by (see Gail et al. 1984, Eq. 2.17)

Js
∗ = βANZ

◦
c(N∗) (2.7)
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where AN denotes the surface of a grain of size N , and β denotes the rate of
i-mers growing onto a cluster of size N

β =

N0∑
i=1

vth(i)
◦
c(i)i2/3si(N) (see also Gail et al. 1984, Eq.2.14) (2.8)

=

N0∑
i=1

√
kBTgas/2πmui

◦
c(i)i2/3αi (2.9)

=
√

kBTgas/2π
2∑

i=1

αi√
mui

i2/3◦c(i), (2.10)

N0 is the highest i-mer that plays a role in the nucleation process. In Eq. (2.9)
the sticking coefficient si(N) from Eq. (2.8) has been approximated by the
evaporation coefficient αi of the i-mer from a flat graphite-surface. Z is the
Zeldovich-factor (see Gail et al. 1984, Eq. 2.18)

Z =

(
1

2π

∂2 ln
◦
c

∂N2

∣∣∣∣∣
N∗

)1/2

. (2.11)

◦
c(N) is the equilibrium distribution of dust grains of size N in thermal equi-
librium (see Gail et al. 1984, Eqs. 2.6, 2.9, and 2.7)

◦
c(N) = n1 exp

{
(N − 1) ln S − θN

T
(N − 1)2/3

}
, with (2.12)

θN =
θ∞

1 +
(

Nd

N−1

)1/3
, and (2.13)

θ∞ = σsurf4πr2
0/kB, (2.14)

where σsurf is the surface tension of the grains material, Nd is the particle size
for which σsurf(N) reduces to one half of the value of σsurf for bulk material,
and N∗ is the critical cluster size calculated by (see Gail et al. 1984, Eqs. 2.15
and 2.16)

N∗ = 1 +
N∗,∞

8

1 +

[
1 + 2

(
N`

N∗,∞

)1/3
]1/2

− 2

(
N`

N∗,∞

)1/3


3

(2.15)

N∗,∞ =

(
2θ∞

3T ln S

)3

, (2.16)

and S is the supersaturation ratio given by

S =
n1kBT

psat

=
p1

psat

, (2.17)
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with the particle density of the monomers n1, their corresponding partial
pressure p1 and the saturation pressure psat of the monomers with respect to
the grain. In this work, psat is approximated by the saturation pressure of

monomers in phase equilibrium over a flat surface
◦
psat(1) (see Patzer et al.

1998, Appendix A)

◦
psat(1) = exp

(
∆fG

◦−
1 (s)−∆fG

◦−
(1)

RT

)
p
◦−
. (2.18)

p
◦−

denotes the pressure of the standard state, ∆fG
◦−
1 (s) is the standard molar

Gibbs free energy of formation of the solid phase (referred to the standard
state), and ∆fG

◦−
(1) is the standard molar Gibbs free energy of formation

of the monomer. The temperature used in (Eq. 2.18) corresponds to the
temperature of the solid, which is supposed to be in thermal equilibrium with
the gas phase. If the condition of thermal equilibrium is violated, the gas and
the solid phase can have different temperatures. In this case, the pressure p1

of the monomers must be calculated using the gas temperature Tgas, while
the saturation pressure psat should be calculated with the dust temperature
Tdust. Since the influence of the dust temperature on the supersaturation
ratio is very strong, I want to make some remarks to the choice of the value
for this temperature.

• In the case of local thermal equilibrium (LTE, see Sect. 4.1) the situa-
tion is simple: dust and gas have per definition the same temperature
Tdust = Tgas.

• In non-LTE situations, Tdust might depend on the particle size Tdust =
Tdust(N). However, for the moment method we need to assume that
Tdust(N) is constant for N > N`, because otherwise the validity of
Eq. (2.5b) breaks down. One choice in this work for Tdust is, for exam-
ple, the deterministic mean temperature T , a choice which corresponds
to the assumption that the grains do not follow the fluctuations of the
gas temperature, (see Sect. 4.2). In the dynamical calculations pre-
sented in Chapter. (7), Tdust is usually set to the radiation temperature
Trad for the calculation of the growth rate τ−1, because under conditions
typical for AGB star winds the energetic coupling of the macroscopic
grains to the radiation field is stronger than that to the surrounding
gas.

• For the calculation of the nucleation rate however, the essential tem-
perature is that of the critical cluster. Since the critical cluster is very
small, in most parts of this work, its temperature is assumed to be equal



2.1. DUST FORMATION IN ASTROPHYSICAL SITUATIONS 13

to the gas temperature Tgas. Therefore, in most cases, the supersatu-
ration ratio for the nucleation rate is calculated with Tdust = Tgas. In
order to investigate the influence of the temperature of the critical clus-
ter on the nucleation rate some models were calculated with Tdust = T
for the nucleation rate. These results are presented in Sect. (4.2).

Throughout this entire work, the supersaturation ratio S is calculated using
a fitting polynomial based on molecular data from the JANAF-tables, cal-
culated by H.-P. Gail, in the version that is used in the Child-Code (e.g.
Fleischer et al. 1992; Fleischer 1994; Schirrmacher et al. 2003).

2.1.4 Growth and Evaporation Rates

In principle, the net growth rate τ−1 is calculated according to Eq. (18) from
Gauger et al. (1990), assuming C, C2, C2H and C2H2 as growth species, it is
the difference between the (pure) growth rate τ−1

gr and the evaporation rate
τ−1
ev

τ−1 = τ−1
gr − τ−1

ev .

According to Eq. (20) from Gauger et al. (1990), the growth rate τ−1
gr is given

by

τ−1
gr =

I∑
i=1

iA1vth(i)α(i)f(i, t) + (2.19)

I′∑
i=1

iA1

Mi∑
m=1

vth(i, m)αc
m(i)ni,m.

i is the number of monomers added to an arbitrary cluster, m labels the
individual chemical reactions contributing to the grain growth, A1 = 4πr2

0

is the (hypothetical) monomer surface, vth is the mean thermal velocity of
the corresponding species, α(i) and αc

m(i) are the sticking coefficients of the
corresponding species. Note, that in this approach the growth rate is in-
dependent from the size of the growing clusters, if this was not the case,
Eq. (2.5b) would lose its validity. Assuming as growth processes

a) the homogeneous growth by association of C and C2 onto the cluster
surface (first term in Eq. 2.19) and

b) the chemical growth via the reactions (second term in Eq. 2.19) :
CN−2 + C2H → CN + H and CN−2 + C2H2 → CN + H2
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Eq. 2.19 becomes

τ−1
gr = A1vth,CαCnC + (2.20)

2A1vth,C2αC2nC2 +

2A1vth,C2Hαc
C2HnC2H +

2A1vth,C2H2α
c
C2H2

nC2H2 .

Using

vth(i) =

√
kBTgas

2πmi

, (2.21)

we obtain:

τ−1
gr = A1

√
kTgas

2π

{
αC√
mC

nC + 2

(
αC2√
mC2

nC2 +
αC2H√
mC2H

nC2H +
αC2H2√
mC2H2

nC2H2

)}
.

(2.22)

According to Gauger et al. (1990) (Eq. 21), the evaporation rate τ−1
ev is

given by

τ−1
ev =

I∑
i=1

iA1vth(i)αif(i, t)
1

Si

1

bi

α∗(i) + (2.23)

I′∑
i=1

iA1

Mi∑
m=1

vth(i, m)αc
m(i)ni,m

1

Si

1

bc
i,m

αc
∗(i, m).

The α∗(i), αc
∗(i, m), bi and bc

i,m are quantities describing non-TE effects (see
Gail & Sedlmayr 1988, Eq. (18) and Eq. (22)); the evaluation of these coef-
ficients is discussed in section 2.1.5.

Assuming as destruction processes

a) the evaporation of C or C2 from the grain (first term in Eq. 2.23) or

b) chemical sputtering via the reactions (second term in Eq. 2.23) CN +
H → CN−2 + C2H and CN + H2 → CN−2 + C2H2,

Eq. 2.23 becomes

τ−1
ev = A1vth,CαCnC

1

S

1

bC

α∗,C + (2.24)

2A1vth,C2αC2nC2

1

S2

1

bC2

α∗,C2 +

2A1vth,C2Hαc
C2HnC2H

1

S2

1

bC2H

α∗,C2H +

2A1vth,C2H2α
c
C2H2

nC2H2

1

S2

1

bC2H2

α∗,C2H2 .
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2.1.5 Chemistry

In order to determine the particle densities of the dust forming species, a
description of the chemical processes in the gas in needed. Following a gas
kinetic approach would require the solution of a chemical rate network, where
all reactions involving a chemical element contributing to the species of in-
terest, contribute with a separate rate equation, balancing forward and back-
ward reaction. Since every rate equation depends on the particle densities of
all species involved in the particular reaction, all equations involving a partic-
ular species are coupled and have to be solved together. Besides the fact that
the solution of such a rate network is very tricky and time consuming, the
reaction rate coefficients are usually unknown – especially for astrophysical
thermodynamical situations – and available estimates are only very rough
approximations. The solution of all these problems goes well beyond the
scope of this work.

Therefore, throughout this work, the gas is assumed to be in chemical
equilibrium (CE), i.e. we expect the chemistry to be in a stationary state,
where all forward reactions rates are balanced by the corresponding back-
ward reaction rates. In this case, the local particle density of each species
is constant and can be calculated by the Law of Mass Action. The partial
pressure of each species can then be calculated from the partial pressure
of its constituents and a specific constant for the particular species called
the dissociation constant D. The dissociation constant can be calculated by
the forward and backward reaction constants of the chemical reaction. Since
atomic species cannot dissociate the corresponding constants can be formally
set to 1.

Using the assumption of CE, it is possible to calculate the coefficients
αc
∗(i, m), bi and bc

i,m describing the non-equilibrium effects, introduced in
section 2.1.4.

Taking Eq. (18) from Gail & Sedlmayr (1988)

α∗(N, i) =

◦
α(N − i, i, Tdust)

α(N − i, i)

√(
Tdust(N)

Tgas

)
, (2.25)

the quotient of the rate coefficients
◦
α(N−i, i, Tdust)/α(N−i, i) becomes 1 (in

CE), and neglecting the size dependence of the dust temperature (cf. section
2.1.3) the α∗(i) can be approximated by

α∗(i) = α∗ =

√
Tdust

Tgas

. (2.26)
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According to Gail & Sedlmayr (1988) (Eq. 22), the coefficients αc
∗(i, m)

are given by

αc
∗(i, m) =

◦
αc(i, m)

αc(i, m)

βc(i, m)
◦
βc(i, m)

(2.27)

where the ”circled” quantities are the equilibrium rates of clusters of size i
growing onto a grain4 via the reaction m; the ”uncircled” quantities describe

the real rate, i.e. in CE α =
◦
α and β =

◦
β and therefore

αc
∗(i, m) = 1. (2.28)

The departure coefficients bi and bc
i,m are calculated according to Appendix A

from Gauger et al. (1990). Eq.(A9) therein states

bi =

(
n(1)

ñ(1)

)−i
n(i)

ñ(i)

Di(Tgas)

Di(Tdust)

Tdust

Tgas

. (2.29)

This time, the ñ stand for the equilibrium values, while the n are the ”real”
values; again in CE we have ñ = n, the first two terms become unity, and we
get

bi =
Di(Tgas)

Di(Tdust)

Tdust

Tgas

, (2.30)

bC = 1 · Tdust

Tgas

, because C is an atomic species,

bC2 =
DC2(Tgas)

DC2(Tdust)

Tdust

Tgas

.

Eq. (A12) from Gauger et al. (1990) states

bc
i,m =

(
n(1)

ñ(1)

)−i

(
ni,m

ñi,m

)
(

nr
i,m

ñr
i,m

)
(

Di,m(Tgas)

Di,m(Tdust)

)
(

Dr
i,m(Tgas)

Dr
i,m(Tdust)

) , (2.31)

again the first two terms involving the deviation of the particle densities
from CE vanish; Dr

i,m is the dissociation constant of the molecule formed by
the backward reaction of the growth reaction m. Considering the chemical

4Like in Gauger et al. (1990) the dependence of these quantities from the grain size N
is neglected in this work.
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growth via the reactions CN−2+C2H → CN +H and CN−2+C2H2 → CN +H2

and chemical sputtering via the corresponding reverse reactions, we obtain:

bc
C2H =

DC2H(Tgas)

DC2H(Tdust)

1
1

=
DC2H(Tgas)

DC2H(Tdust)
(2.32)

bc
C2H2

=

DC2H2(Tgas)

DC2H2
(Tdust)

DH2
(Tgas)

DH2
(Tdust)

=
DC2H2(Tgas)DH2(Tdust)

DC2H2(Tdust)DH2(Tgas)
.

2.1.6 Dust destruction

In principle, the determination of the dust destruction rate, i.e. the number
density of dust grains that shrink by evaporation to a size below N`, requires
the knowledge of the dust distribution function f(N, t). Unfortunately the
reconstruction of f(N, t) from its first four moments Ki (i = 0, 1, 2, 3) alone
is usually impossible, which makes it necessary to keep track of the distribu-
tion function along the calculation. Gauger, Gail, & Sedlmayr (1990) have
presented a method, where the dust destruction is calculated from the his-
tory of the evolution of the dust moments Ki. The key idea of this method is
a variable transformation of the equation system (2.5a,2.5b) describing the
temporal change of the dust moments Ki, which will considerably facilitate
the treatment of evaporation. The time evolution of the dust moments on
the usual time-axis is given by Eq. (2.5a,2.5b)

dK0

dt
= JN`

dKi

dt
= N`

i
d JN`

+
i

d

1

τ
Ki−1. (2.33)

Introducing the dimensionless particle radius a by

a = N
1
d (2.34)

the change of a of for a given dust particle is given by

da

dt
=

1

d

1

τ

(
=

1

3

1

τ

)
. (2.35)

The important point for the applicability of the described method is the fact
that the temporal change of the dimensionless particles radius da/dt for any
given particle is independent of its current value a, i.e. da/dt is equal for all
particles in a given volume element and the physical processes of growth or
evaporation correspond to a constant shift of the whole distribution function
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f(a, t) in the a-space5. A direct consequence of this behaviour is that the
shape of the function (and all of its moments Ki) remains untouched except
for the ”material” inserted by nucleation or removed by grain destruction
at the lower edge a`. It is therefore very useful to perform a variable trans-
formation on the equation system (Eq. 2.5b). Instead of the variable t, a
variable amax corresponding to the maximum particle radius of the grains in
a given volume element is introduced. At a given point in time t0, when
the condensation process sets in, the maximum particle radius will be that

corresponding to the cluster size a` = N
1
3
` , therefore amax(t0) = a`. For an

uninterrupted growth process, each point in time t1 after t0 can be labelled
by the particular value of the size of the biggest particle amax(t1), irrespective
of how erratic the growth process may have proceeded in time:

amax(t1) =
1

d

∫ t1

t0

1

τ(t′)
dt′ + a`. (2.36)

During the phase of dust growth, the time evolution Ki(t) is stored as
a function of amax, i.e. as Ki(amax). In a phase of evaporation, the dimen-
sionless particle size of the biggest grain amax shrinks in exactly the same
way as all others, namely according to Eq. (2.35). Since in the a-space all
particles shrink exactly alike, the effect on the Ki is the same, as if they
had never grown to amax. The evaporation process corresponds to a shift of
the dust distribution f(a, amax) to smaller a by an amount da = 1/3τ−1dt.
Thus, in case of evaporation, the new dust moments Ki(tnew) can be calcu-
lated by simply restoring them to their value at the time corresponding to
Ki(amax(tnew)), after amax(tnew) has been calculated according to Eq. (2.35).
The dust destruction rate Jev is then given implicitly by

Jev =
1

∆t
(K0(told)−K1(tnew)) . (2.37)

2.1.7 Input data needed for the dust description

Table 2.1 gives an overview of the material data required for the calculation
of dust nucleation, growth and evaporation.

5Obviously the newly formed dust needs to be inserted at the lower edge.
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Table 2.1: Material constants required for the dust cal-
culation

Symbol Value Source Description

αi αC = 0.37
αC2 = 0.34

Hölzel et al. (1968) sticking coefficients
(actually the data in Hölzel
et al. (1968) correspond
to the evaporation coeffi-
cients.)

log(εH) 0.00 Allen (1973) hydrogen abundance
log(εHe) -1.00 Allen (1973) helium abundance
log(εO) -3.18 Allen (1973) oxygen abundance
εC εC = [C/O] εO carbon abundance, usually

given by the parameter
[C/O]

r0 0.128 nm Gail et al. (1984) hypothetical monomer ra-
dius

A1 A1 = 4πr2
0

=20.7 10−16 cm2

hypothetical monomer sur-
face

σsurf 1400 erg cm−2 Gail et al. (1984) surface tension of the grain
material

Nd 5 Gail et al. (1984),
Eq. (5.4)

particle size for which
σsurf(N) reduces to one half
of the value of σsurf for bulk
material

Di,Di,m Chase Jr. et al. (1985)
(JANAF)

dissociation constants

∆fG
◦−
1 (s) Chase Jr. et al. (1985)

(JANAF)
standard molar Gibbs free
energy of formation of the
solid phase

∆fG
◦−
(1) Chase Jr. et al. (1985)

(JANAF)
standard molar Gibbs free
energy of formation of the
monomer
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2.2 Temperature Fluctuations

Fluctuations are ubiquitous in the universe. They can, for example, be a
result of various types of waves, stellar convection or turbulent velocity fields.
In the circumstellar envelopes (CSE) of AGB stars, turbulent dissipation of
the shock waves, that originate from the stellar pulsation, and steepen up in
the outer atmosphere, seems to be a good candidate for causing temperature
fluctuations. Furthermore, it has to be pointed out, that the stellar pulsation
itself is generated in the convective stellar6 envelope, which also makes it
plausible to assume the presence of fluctuations.

Due to the limited spatial resolution of hydrodynamical model calcula-
tions, fluctuations that occur on scales smaller than the scale of the grid
cannot be resolved by the code. Usually, these fluctuations are ignored by
interpreting all hydrodynamical quantities as mean values averaged over any
subgrid structure. Whereas this procedure gives usually good results for typ-
ical hydrodynamical investigations, the complete ignorance of any small scale
thermodynamical features might camouflage the possibility of certain chem-
ical processes that are very sensitive to temperature fluctuations. Especially
dust formation in a dust free situation, which requires a high supersaturation
ratio S � 1 for nucleation, whereas the growth of the dust particles will con-
tinue as long as there is any supersaturation S > 1, yields the possibility that
the use of averaged values for the temperature might strongly underestimate
the potential of the circumstellar gas to form dust out of the gas phase.
Since

• there is no satisfactory theory for describing the exact nature of the
temperature fluctuations induced by convection, turbulence or dissipa-
tion, and

• a later application for hydrodynamical sub-grid modeling will require
a description which depends on a few parameters only,

in this work, an approach is chosen, which describes the fluctuations by two
parameters: σ, the rms temperature deviation, and λ the correlation time of
the fluctuations. It is not the scope of this work to determine values of these
parameters from the physical processes that might cause the fluctuations,
but to investigate the influence of the temperature fluctuations on the dust
formation, in order to answer questions like:

• How large would temperature fluctuations have to be, in order to have
a significant impact on the dust formation?

6The circumstellar envelope is a region outside the star, starting above the photosphere,
the stellar envelope lies inside the star below the photosphere
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• How large would temperature fluctuations have to be, in order to have
a significant impact to the hydrodynamical structure of a stellar wind?

• What influence do the time-scales of the fluctuations have?

The approach presented in the following sections, will help to answer these
questions for simple gas box models (see Sect. 4) and guided by these answers
a method will be presented in Sect. 6 which will allow for the inclusion of
the effects of temperature fluctuations into self-consistent time-dependent
models of AGB-star winds (see Sect. 7).

2.2.1 Description of the fluctuations

The stochastic approach presented in this section has been developed by
Dirks (2000), based on works from Gail, Sedlmayr, & Traving (1975b) (also
Gail et al. 1976, 1980) about a stochastic formulation of the radiative transfer
problem. In this section, I will give a brief summary of the method in order
to discuss the implications of the necessary assumptions in Sect. 2.2.2.

Starting from a parametrised description of the temperature fluctuations
as a Markov-process, in this section, a 6-dimensional Fokker-Planck equation
(2.55) will be derived that describes the time development of the one-point
probability p1(t, T (t), K̂(t)), which gives the probability of finding a certain
value

K̂ := (K̂0, K̂1, K̂2, K̂3) (2.38)

at a given moment in time t under the condition

Tgas(t) = T (t) + T (t). (2.39)

Note that in Eq.(2.39) as in the rest of this section T denotes a temperature
deviation and not the gas temperature Tgas itself, i.e. T can have positive
and negative values. T stands for a deterministic mean temperature.

In the end of this section, that Fokker-Planck equation is transformed into
a set of four 2-dimensional Fokker-Planck equations for adequately defined
moments of p1, which is better suited for the subsequent numerical treatment.

Modeling the fluctuations as a stochastic process

The fluctuations are modeled via a 5-dimensional stochastic process
(Θ,K)t; t ∈ R+

0 . The paths of this process represent the possible joint evolu-
tions of the five random variables T , K̂0,K̂1,K̂2, and K̂3 for the temperature
deviation and the dust moments:

(Θ,K)t(T, K̂) = (T, K̂0, K̂1, K̂2, K̂3)(t). (2.40)
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Note, that the K̂ρ denote the random variables of the stochastic process,
whereas the Kρ stand for the deterministic moments of the grain-size distri-
bution function as presented in Chapter 2.1. It is assumed that the process
(Θ,K)t is a Markov process, i.e. for any given moment in time t, any future
values of (T, K̂)(tfut) with tfut > t do not depend on the history of the process
(T, K̂)(tpast) with tpast < t.

Under these circumstances, a Fokker-Planck equation for the one-point
probability p1(t, T, K̂) can be derived (see Dirks 2000):

∂p1(t, T, K̂)

∂t
= −∂(p1(t, T, K̂) BT )

∂T
−

∂(p1(t, T, K̂) Bµ

K̂
)

∂K̂µ

+
1

2

∂2(p1(t, T, K̂) AT )

∂T 2
+

1

2

∂2(p1(t, T, K̂) Aµν

K̂
)

∂K̂µ ∂K̂ν

+
∂2(p1(t, T, K̂) Aµ

T K̂
)

∂K̂µ ∂T
,

(2.41)

using the sum convention for the Greek indices µ, ν = 0, 1, 2, 3. The coeffi-
cient functions for µ, ν and δ > 0 are defined by the following infinitesimal
moments (see again Dirks 2000). For a better readability the dependency of
pt on t, T , K̂ and ∆t, ∆T , ∆K̂: is omitted in Eq. 2.42:

BT (t, T, K̂) = lim
∆t→0

1

∆t

∫∫
‖(∆T,∆K̂)‖<δ

∆T pt d∆T d4∆K̂, (2.42a)

Bµ

K̂
(t, T, K̂) = lim

∆t→0

1

∆t

∫∫
‖(∆T,∆K̂)‖<δ

∆K̂µ pt d∆T d4∆K̂, (2.42b)

AT (t, T, K̂) = lim
∆t→0

1

∆t

∫∫
‖(∆T,∆K̂)‖<δ

(∆T )2 pt d∆T d4∆K̂, (2.42c)

Aµν

K̂
(t, T, K̂) = lim

∆t→0

1

∆t

∫∫
‖(∆T,∆K̂)‖<δ

∆K̂µ ∆K̂ν pt d∆T d4∆K̂, (2.42d)

Aµ

T K̂
(t, T, K̂) = lim

∆t→0

1

∆t

∫∫
‖(∆T,∆K̂)‖<δ

∆K̂µ ∆T pt d∆T d4∆K̂. (2.42e)
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pt = pt(t, T, K̂, t+∆t, T +∆T, K̂+∆K̂) is the transition probability density
that gives the probability of finding the system in the state (T +∆T, K̂+∆K̂)
at time t + ∆t under the condition that it was in the state (T, K̂) at the
moment t.

For the determination of the coefficients (2.42) of the Fokker-Planck equa-
tion (2.41), the transition probability density pt(t, T, K̂, t + ∆t, T + ∆T, K̂+
∆K̂) is required. In order to find an expression for pt, it is at first assumed
that the transition probability density factorises into the transition probabil-
ity density pt

T for the temperature component of the stochastic process (2.40)
and the conditional transition probability pt

K(T ) for the dust moment com-
ponent:

pt(t, T, K̂, t + ∆t, T + ∆T, K̂ + ∆K̂) =

= pt
T(t, T, t + ∆t, T + ∆T )pt

K(t, T, K̂, t + ∆t, K̂ + ∆K̂). (2.43)

Note that pt
K depends on T , whereas pt

T does not depend on K̂. This fac-
torisation of pt corresponds to the physical assumption (see discussion in
Sect. 2.2.2), that the local dust formation at the moment of the fluctuation
has no influence on the temperature fluctuation itself. As a consequence,
the transition probability densities pt

T and pt
K from (2.43) can be determined

separately.

The transition probability of the temperature component

The temperature component Θ of the stochastic process 2.40 is modelled via
a Langevin equation

dΘ(t) = −1

λ
Θ(t)dt + σ̃Γ(t)dt. (2.44)

This is a stochastic differential equation, the solutions of which are stochastic
processes instead of ”ordinary” functions. The first term on the right hand
side of Eq. (2.44) describes the tendency of the gas to relax towards a state
of equilibrium, which is characterised by T = 0, i.e. Tgas = T . In this
context, λ has the meaning of a relaxation time scale. Γ(t) denotes a random
”force” - in this context rather a random input to the thermal energy of
the gas - representing a random fluctuation. σ̃ is a scaling factor of this
term, describing the ”strength” of the fluctuation. Again, the mathematical
details of this approach are discussed in Dirks (2000). Here, I just want to
state that the stochastic differential equation (2.44) is solved by a Gaussian
Markovian Ornstein-Uhlenbeck process ΘOU

t which - with the initial condition
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of a normally distributed random variable Θ0 with the expectation value 0 -
has the following properties (see Dirks 2000, Eq. 3.8-3.10)

E(ΘOU
t ) = 0, (2.45a)

Var(ΘOU
t ) =

1

2
λσ̃2 =: σ2 and (2.45b)

Cov(ΘOU
s , ΘOU

t ) = σ2e−
1
λ
|t−s|, (2.45c)

introducing the rms temperature fluctuation σ. The one point probability
density of the temperature fluctuation is then given by a Gaussian bell

pT
1 = (2πσ2)

1
2 e−

T2

2σ2 . (2.46)

Furthermore, the correlation function ρcorr(s, t) of the process is

ρcorr(s, t) =
Cov(ΘOU

s , ΘOU
t )√

Var(ΘOU
s )Var(ΘOU

t )
= e−

1
λ
|t−s|. (2.47)

Thus, the parameter λ represents the correlation time of the fluctuations,
i.e. the temperature deviations for two moments in time T (t1) and T (t2)
are correlated on a time scale comparable to λ and practically uncorrelated
for |t2 − t1| � λ. The coefficients (2.42a) and (2.42c) of the Fokker-Planck
equation (2.41) can then be calculated as

BT (t, T, K̂) = −1

λ
T and (2.48a)

AT (t, T, K̂) = 2
σ2

λ
. (2.48b)

The transition probability of the dust component

After having determined the coefficients (2.42a) and (2.42c) of the Fokker-
Planck equation (2.41), an expression for the conditional transition probabil-
ity density pt

K(T ) is required in order to calculate the remaining coefficients
(2.42b),(2.42d) and (2.42e).

It is assumed, that the random character of the dust component results
exclusively as a consequence from the random temperature fluctuation. Thus
for small time steps – i.e. ∆t � λ – the transition probability density of the
dust moments pK(T ) is given by

pK(t, T, K̂, t + ∆t, K̂ + ∆K̂) = δ(∆K̂− (AK̂ + b)T∆t), (2.49)
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where the term AK̂+b corresponds to the deterministic dust moments equa-
tions (2.5a,2.5b) with

A =


0 0 0 0

1
3
τ−1 0 0 0
0 2

3
τ−1 0 0

0 0 τ−1 0

 , and (2.50)

b =


JN`

N`

1
3 JN`

N`

2
3 JN`

N`JN`

 . (2.51)

Using A and b, Eqs. (2.5a,2.5b) can be written as

d

dt
K = A ·K + b, (2.52)

or - for the components of K

dKρ

dt
= AρνKν + bρ, ρ, ν = 0, 1, 2, 3. (2.53)

The coefficients (2.42b),(2.42d) and (2.42e) can now be calculated using
Eq. (2.49) (see Dirks 2000, p. 36–39)

Bµ

K̂
= AµνK̂ν + bµ , (2.54a)

Aµν

K̂
= 0 , (2.54b)

AT K̂ = 0. (2.54c)

After inserting the coefficients (2.48) and (2.54) into the Fokker-Planck equa-
tion (2.41) we obtain:

∂p1(t, T, K̂)

∂t
=

1

λ

∂

∂T
(Tp1) +

σ2

λ

∂2p1

∂T 2
− ∂

∂Kµ

(p1(AµνKν + bµ)). (2.55)

Transforming the Fokker-Planck Equation

We will now transform the Fokker-Planck equation (2.55) for the probability
distribution p1(t, T, K̂) into a set of four coupled Fokker-Planck equations
for adequately defined moments of p1. This will lead to a set of equations
(2.66), which will be the basis for our further investigations.
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The transformation procedure is identical to that from Dirks (2000) (p. 42),
except for the fact, that we do not restrict ourselves to spherically symmetric
situations, but stay in the comoving Lagrangian frame.

We define the moments Qρ with respect to the random variable Kρ as

Qρ :=

∫
K̂ρp1(t, T, K̂)d4K̂ (ρ = 0, . . . , 3). (2.56)

This definition yields∫
Qρ(t, T )dT =

∫∫
K̂ρp1(t, T, K̂)d4K̂dT = E(K̂ρ)(t), (2.57)

E(K̂ρ)(t) being the expectation value of K̂ρ at the time t.

We now apply the operator
∫

d4K̂K̂ρ to Eq. (2.55) for all ρ = 0, 1, 2, 3.
Thereby we transform the Fokker-Planck equation for the probability density
p1(t, T, K̂) into a set of four coupled Fokker-Planck equations for the four
moments Qρ of p1:

∂

∂t
Qρ =

1

λ

(
∂

∂T
T + σ2 ∂2

∂T 2

)
Qρ − (2.58)∫

∂

∂Kµ

(p1(AµνKν + bµ))K̂ρd
4K̂, ρ = 0, 1, 2, 3.

Similar to the treatment from Dirks (2000) we split the last term
using (f ′g = (fg)′ − fg′):∫

∂

∂Kµ

(p1(AµνKν + bµ))K̂ρd
4K̂ = (2.59)∫

∂

∂Kµ

(p1(AµνKν + bµ)K̂ρ)d
4K̂ −

∫
p1(AµνKν + bµ)(

∂

∂Kµ

K̂ρ)d
4K̂.

Using Gauss’ Theorem, (still following Dirks), the first term on the rhs. of
Eq. (2.59) vanishes∫

∂

∂Kµ

(p1(AµνKν + bµ)K̂ρ)d
4K̂ =

∫
F

p1(AµνKν + bµ)K̂ρdF = 0, (2.60)

because the probability distribution p1 must vanish on the surface of the
configuration space, due to its normalisation:∫

p1(t, T, K̂)d4K̂ = 1. (2.61)
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The second term of Eq. (2.59) can be simplified (see Dirks 2000, p. 43):∫
p1(AµνKν + bµ)(

∂

∂Kµ

K̂ρ)d
4K̂ = Aρν + bρp

T . (2.62)

Substituting Eq. 2.60 and Eq. 2.62 into Eq. 2.58 gives a set of four equa-
tions for the Qρ, which are coupled via the Aρν :

∂

∂t
Qρ =

1

λ

(
∂

∂T
T + σ2 ∂2

∂T 2

)
Qρ + AρνQν + bρp

T . (2.63)

A close inspection of Eq. (2.57) reveals, that the Qρ still contain the
probability distribution pT . Therefore the values of the Qρ(T) will vary
by orders of magnitude, depending on the temperature deviation T from
the mean temperature – a fact which causes problems during the numerical
evaluation. We therefore define the ”smoothened” moments

qρ(t, T ) :=
Qρ(t, T )

pT (t, T )
, (2.64)

yielding∫
Qρ(t, T )dT =

∫
qρ(t, T )pT (t, T )dT (2.65)

=

∫∫
K̂ρp1(t, T, K̂)d4K̂dT = E(K̂ρ)(t).

The qρ can be interpreted as conditional expectation values of the K̂ρ, i.e. the

expectation value of K̂ρ under the condition that the temperature deviation
has a value of T .

Inserting Eq. (2.64) into Eq. (2.63) leads us to the final set of Fokker-
Planck equations, which we are going to evaluate numerically:

∂

∂t
qρ = −1

λ
T

∂

∂T
qρ +

σ2

λ

∂2

∂T 2
qρ + Aρνqν + bρ (2.66)

This is a coupled set of equations of Fokker-Planck type, which describes the
time development of the conditional expectation values qρ(t) of the dust mo-

ments K̂ρ. In order to solve the equation system (2.66), we have to provide

1. the parameters σ and λ of the assumed temperature fluctuation,

2. an initial condition qρ,0 for t = 0,
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3. the boundary paths qρ(Tmin, t),qρ(Tmax, t), and

4. a deterministic thermodynamic structure, providing T (t), ρ(t) on top
of which the source terms – Aρνqν and bρ, containing nucleation and
growth rates – are evaluated.

2.2.2 Discussion of the fluctuation model

In this Section, I want to discuss the physical and mathematical assump-
tions made during the process of modeling the temperature fluctuations with
respect to their physical meaning.

Firstly, I want to discuss the consequences of the decision to describe the
temperature fluctuations using the theory of stochastic processes. In contrast
to a direct hydrodynamical description of the fluctuations, which temporally
resolves the thermodynamical evolution of the fluctuations (see, e.g. Helling
et al. 2001), the results obtained with a stochastical approach will always
have a statistical character. The solution of the equation system (2.66) will
not give information about a particular object, but on the statistical appear-
ance of an ensemble of similar objects. Particular members of this ensemble
can behave very differently than the ”average” behaviour resulting from the
equation system (2.66) might suggest. The correlation time λ divides the
family of solutions into three domains:

• The microturbulent domain: In this domain the fluctuations are
very fast compared to the time scales of nucleation and growth of the
dust grains. Individual representants of processes solving the equation
system (2.66) will usually look very similar to the corresponding expec-
tation value qρ(t) – at least if smoothened over the individual member.
Within the microturbulent domain, the solution qρ(t) from Eq. (2.66)
becomes independent of the correlation time λ.

• The macroturbulent domain: In this case, the fluctuations are very
slow compared to the time scales of nucleation and growth of the dust
grains. Due to slow relaxation to the equilibrium state, the individual
representants of the solution will often show strong deviations from the
corresponding expectation values. Once the temperature deviates from
the mean value in one way or another, in the macroturbulent case it
will tend remain on the same ”side” of the mean value.

• The mesoturbulent domain: This domain lies between the micro-
and the macroturbulent case, the correlation time of the fluctuations
is of the order of the time scale dominating the evolution of the dust
complex.
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The microturbulent limit case is of particular interest with respect to finding
a subgrid-model for the influence of temperature fluctuations in hydrody-
namical calculations, because in this case, the averaged7 structure of any
particular member of the ensemble resembles the structure of the expecta-
tion values resulting from Eq. (2.66). If the correlation time λ is considerably
shorter than the numerical timestep ∆t, the average of a quantity over the
time step, corresponds to the expectation value of the quantity resulting of
Eq. (2.66) in the microturbulent limit. In this case, the result of Eq. (2.66)
becomes independent of λ, and a one-parametric description of the fluctua-
tion depending only on the rms-temperature fluctuation σ is reasonable. It
will therefore be a central question during the investigation of Eq. (2.66), for
which values of λ the solutions of Eq. (2.66) will reach the microturbulent
domain.

Another important assumption, which is essential in deriving Eq. (2.41)
is that the stochastic process (Θ,K)t is a Markov process. A Markov process
is a process ”with short memory”, in the sense, that for any given moment
in time t, the future evolution of the process, depends only on the present
values of (T, K̂0, K̂1, K̂2, K̂3)(t), but not on those in the past. Physically, this
is not a dangerous assumption as long as we do not want to include effects,
where the evolution of the individual fluctuation T of the temperature or of
the dust moments K̂ρ depends for example explicitly on the rate of change of
these quantities during that individual fluctuation. It does not constitute a
problem for the applicability of this method, if the evolution of the mean ther-
modynamic structure T , ρ in a particular astrophysical environment shows
any sort of memory effects.

The assumption, that the transition probability pt is assumed to factorise
as pt = pt

Tpt
K(T ) means, that the evolution of the dust moments during an

individual fluctuation will not act back on the fluctuation itself. Again, it is
perfectly permitted, that the dust formation influences the mean thermody-
namic structure - which it usually does. In the picture, where we assume the
dust formation to take place in an environment which is turbulent, because
of dissipation from stellar pulsation waves, this assumption is perfectly ful-
filled. It might become problematic in ”pathological” situations, like e.g. a
turbulence element which is accelerated so strong by radiation pressure on
the newly formed dust grains, already during the dust nucleation, that it
considerably changes the large scale turbulence field from which it originates
itself. For the description of such a case, one would have to fall back onto

7Averaged in this context has to be understood in the sense of smoothened, i.e. for
sufficiently small intervals the value of a quantity in that interval is set to the average of
that quantity within that particular interval.
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a direct hydrodynamical description which temporally and spatially resolves
the fluctuation and its large scale environment. However, as already stated
above, the origin of the fluctuations is not subject of this work. I there-
fore want to close the discussion of this aspect with the hint, that, if the
fluctuation model presented in the previous section is ever to be applied to
a situation where the fluctuations are triggered by the dust formation it-
self, the assumption of the factorisation of pt should be subjected to a close
reinspection.

During the derivation of the equation system (2.66) we have assumed that
the equation system (2.5) can be linearised by Eq. (2.53). This linearisation
is only an approximation of the original system (2.5) for two reasons

1. The vector b should contain the terms which are constant with re-
spect to the Ki. Nevertheless, b contains the nucleation rate JN`

which
depends about linearly on the carbon abundance εC, which in turn
is antiproportional to K3 (see Eq. 2.6). However this assumption is
not as bad as it might seem, because in practice, it is sufficient that
Eq. (2.53) is a good approximation for times in the order of the numer-
ical timestep used to evaluate the equation system. Furthermore, the
terms including the nucleation rate are usually only important at the
beginning of the condensation process, when only little carbon is used
up by the condensation, and εC is practically constant εC ≈ εC,0.

2. Another problem occurs in the case of evaporation. Again, the de-
struction rate Jev will surely depend on the exact shape of the grain
size distribution function f(N, t). However, this term will in general
be small compared to the τev term contained in A, unless the evapora-
tion is nearly complete and if the evaporation is finally complete, the
moments vanish anyway (Kρ = 0).

The temperature fluctuations are modelled via the Langevin equation
2.44, which is solved by a so called Ornstein-Uhlenbeck process ΘOU

s . The
resulting correlation function (2.47)

ρcorr(s, t) =
Cov(ΘOU

s , ΘOU
t )√

Var(ΘOU
s )Var(ΘOU

t )
= e−

1
λ
|t−s|.

implies a power-law spectrum of the form (see Böger et al. 2003)

P (ω) ∼ λ

1 + λ2ω2
. (2.67)

where ω denotes the angular frequency a wave constituting the fluctuation
field and P (ω) its relative intensity. For λω � 1, the ω-dependence of P (ω)
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can be approximated by

P (ω) ∼ ω−2. (2.68)

2.2.3 Another method: Direct modeling of the fluctu-
ations

Instead of the stochastic approach presented in the previous sections, the
fluctuations can be modeled ”directly” by performing the integration of the
dust moment equations (2.5a,2.5b) on top of a concrete realisation of the
stochastic process (Θ,K)t, i.e. a particular random temperature structure
Tgas(t), which has been gained by subjecting the deterministic structure T (t)
to random temperature deviations T (t). A result of such a modeling process
will be the time development of the dust moments Ki(t) on the particular
random temperature structure Tgas(t), which has served as input. An advan-
tage of this method is, that the resulting representants are actual realisations
of the stochastic process, i.e. they look like the structures one would expect
to observe, when observing a particular real object. This is certainly not
the case for the expectation values E(Kρ)(t) resulting from the solutions of
the equation system (2.66); in particular the mean temperature structure
T (t) is, for example, characterised by the complete absence of temperature
fluctuations.

The main disadvantage of this direct hydrodynamical modeling is the
fact, that different realisations of the same process (Θ,K)t with the same
parameters σ, λ on top of the same mean thermodynamical structure T (t)
can look very different (see Fig. 4.9). It is thus not clear, which features of a
particular solution have a general validity, and which features are just random
properties of the particular representant. In order to gain information about
the behaviour of the entire ensemble of possible realisations of the process,
it is necessary to calculate a high number representants, hoping that their
average converges to a particular solution.

Another problem of the direct hydrodynamical modeling of these pro-
cesses is, that all fluctuations have to be resolved numerically in space and
time. This can cause numerical problems as discussed in Sect. 3.3

2.3 Dust driven winds of AGB-stars

Long Periodic Variable stars (LPVs) on the Asymptotic Giant Branch (AGB)
in the Hertzsprung Russel Diagram develop cool dust driven winds with high
mass-loss rates. Typical parameters for these objects are given in Tab. 2.2.
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Figure 2.1: Plot of the coupling between the various physical complexes,
that have to be described simultaneously, when modeling a dust-driven wind.
Taken from Sedlmayr & Winters (1997)
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stellar mass 0.7 . . . 2.0M�
stellar luminosity 103 . . . 105L�
stellar temperature 2000 . . . 3000 K
mass loss rate 10−7 . . . 10−4M� yr−1

final wind velocity 10 . . . 30 km s−1

pulsation period 100 . . . 1000 days

Table 2.2: Typical values for stellar and wind parameters for dust forming
late type stars. Taken from Sedlmayr & Winters (1997).

The general picture is that of an atmosphere, which is levitated by stel-
lar pulsation waves, that have steepened up to shock waves while running
through the density gradient in the outermost part of the atmosphere. In this
levitated atmosphere the temperatures are low enough at simultaneously suf-
ficiently high densities to allow for efficient dust formation. Since the newly
formed dust has a considerably higher opacity than the circumstellar gas, it
very efficiently absorbs the stellar radiation and is accelerated by the mo-
mentum transfer of the absorbed photons. The gas is dragged outwards by
frictional coupling to the dust particles and a dust driven winds establishes.

The various physical domains relevant for the description of such a dust
driven wind are shown in Fig. 2.1. They are strongly coupled via innumerable
processes. The hydrodynamics, for example, couples to the dust formation
via the opacity of the dust. The dust formation depends very sensibly on the
local gas temperature and on the radiation field. The gas temperature again
is determined by the interplay of energy input via the dissipation of hydrody-
namic waves or the absorption of radiation and the cooling via hydrodynamic
expansion and emission of radiation. Both the dust formation and the molec-
ular opacity, which determines radiative heating and cooling, depend on the
chemical composition of the gas, which again, even in the simplest imagin-
able case of chemical equilibrium (CE), is determined by temperature und
density.

Thus, in order to achieve a selfconsistent physical description of a dust
driven wind, we require the simultaneous solution of a coupled equation sys-
tem describing hydrodynamics, thermodynamics, radiative transfer, chem-
istry and the dust condensation processes.

After pioneering studies from Wood (1979) and Bowen (1988), the first
really selfconsistent dynamical 1D-models of dust-driven winds around pul-
sating carbon-rich AGB-stars, including a time dependent calculation of the
dust component and a grey radiative transfer have been presented by Fleis-
cher et al. (1992) (see also e.g. Fleischer 1994; Winters et al. 1997; Schirrma-
cher et al. 2003). Their results have been confirmed by Höfner et al. (1996)
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(see also Dorfi & Höfner 1991; Höfner & Dorfi 1992; Feuchtinger et al. 1993)
using a different numerical method. Jeong et al. (2003) have presented the
first models for an oxygen-rich situation, where the condensation processes
are more complicated, because it is neither clear which substances will start
to form seed particles, nor which substances will later grow onto these seeds.
Höfner et al. (2003) have investigated 1D-models with a frequency-dependent
radiative transfer. Woitke (2006) has presented 2D-models of carbon-rich
AGB-star-winds including time dependent hydrodynamics and dust forma-
tion coupled with a 2D Monte Carlo radiative transport, but without stellar
pulsation. Wachter (2007) has investigated the interplay of mass-loss and
stellar evolution for AGB-populations with subsolar metallicities.

In this work, the influence of temperature fluctuations on the dust forma-
tion will be investigated by implementing a microturbulent nucleation rate
calculated as described in Sect. 6 into the Child-code, the 1D-hydro-code
developed by Fleischer et al. (1992) in the version described in Schirrmacher
et al. (2003). The physical approach followed by the Child-Code will be
described in the following sections.

2.3.1 Hydrodynamics

The circumstellar shell is assumed to be spherically symmetric, which allows
the reduction from a 3-dimensional to a 1-dimensional geometry. The 1D-
geometry in turn, allows for a Lagrangean formulation of the hydrodynamic
problem in a comoving frame, where R denotes the position of a fluid element,
which is described by the Lagrangean variables r and t. r denotes the position
of an element at the instant t0: r = R(t0). The equation of motion then reads

Dv

Dt
= −V0

(
R

r

)2
∂p

∂r
+ atot, (2.69)

where v is the velocity of the fluid element, V0 denotes the specific volume
of the fluid element at the moment t0, p is the gas pressure, and atot stands
for the sum of all accelerations, in our case the sum of radiative acceleration
arad and gravitative deceleration agrav

atot = agrav + arad , with (2.70)

agrav = −GM(R)

R2
, and

arad =
4π

c0

χH

ρ
H(R) ,

where G denotes the gravitational constant, M(R) the sum of the stellar
mass M∗ and the fraction of the envelope mass inside the position R, c0 the
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speed of light, χH the flux weighted extinction coefficient, and H(R) is the
frequency integrated Eddington flux at the position R (see e.g. Sedlmayr &
Winters 1997), which can be expressed by the flux weighted Eddington flux
at the radius of the star R∗

H(R) = H∗

(
R∗

R

)2

, (2.71)

which is a function of the stellar luminosity L∗:

H∗ =
1

(4π)2

L∗

R2
∗
. (2.72)

It is very useful to introduce the function

α(R) =
4π

c0GM(R)

χH

ρ
R2H(R) =

1

4πc0GM(R)

χH

ρ
L∗, (2.73)

which represents the radiative acceleration of a fluid element in units of the
local gravitational deceleration. If α(R) > 1 the fluid element is accelerated
away from the star, otherwise it will fall back towards the star.

2.3.2 Thermodynamics

The integration of Eq. (2.69) requires a thermal equation of state which gives
an expression for the pressure p in dependence of the thermal state variables.
Depending on the gas model chosen for the description of the circumstellar
gas, the thermal equation of state can have different forms. When using the
model of an ideal gas, the pressure is given by

p(µ, ρ, Tgas) =
ρ

µmu

kBTgas, (2.74)

where µ denotes the mean molecular weight of the gas particles in units of
the atomic mass units mu. In this work, when using the approach of an ideal
gas, the effect of a variable molecular mass is neglected, which leaves the gas
pressure p(Tgas, ρ) as a function of temperature Tgas and density ρ only.

Another description used in parts of this work, is the gas model relying on
Woitke (1997), who uses a multicomponent description of the gas, considering
all molecular, atomic, and ionic species as well as the electrons separately.
The thermal equation of state then reads

p

(
ρ, Tgas, Trad,

〈
dv

dl

〉)
= patoms + pmolecules + pions + pelectrons

= (natoms + nmolecules + nions + nelectrons)kBTgas, (2.75)
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where the natoms,... stand for the particle densities of atoms, molecules, ions,
and electrons, and the patoms,... for the corresponding partial pressures. These
particle densities are obtained by solving a system of rate equations for the
densities of all species involved and all relevant electronic excitation levels
under the influence of a radiation field parametrised by the radiation temper-
ature Trad in statistical equilibrium as described in detail in Woitke (1997)
(see also Schirrmacher et al. 2003, appendix). Since in this approach line
emission is treated using the Sobolev theory, the parameter〈

dv

dl

〉
=

1

3

∣∣∣∣ ∂v

∂R

∣∣∣∣+ 2

3

(
2x

−1/2
0 − 1

) ∣∣∣ v
R

∣∣∣ with

x0 = 1 + max

{
0,− ∂v

∂R
/

v

R

}
, (2.76)

which describes the geometry of the circumstellar velocity field, is introduced
as an additional state variable. Note that via the

〈
dv
dl

〉
, the pressure does not

only depend on the local values of Tgas and ρ but, in principle, also on the
global velocity structure v(R).

The gas temperature Tgas can be determined implicitly by the solution of
the energy equation

de(Tgas, . . .)

dt
= −p(Tgas, . . .)dV + Q̇(Tgas, . . .) (2.77)

where e is the specific internal energy of the fluid element per unit mass and
Q̇ is the sum of all heating and cooling rates:

Q̇ = Q̇rad + Q̇vis. (2.78)

Q̇rad denotes the net radiative rate of energy exchange between the gas and
the radiation field, when Q̇rad > 0 the gas is heated by the absorption of ra-
diation, when Q̇rad < 0 the gas is cooling by emission of radiation. Q̇vis is the
viscous heating rate, which describes the heating of the gas by dissipation of
shock waves. Throughout this work, Q̇vis is modeled via the tensor-viscosity
by Tscharnuter & Winkler (1979). For the later discussion, it might be useful
to introduce the adiabatic heating/cooling rate

Q̇ad = −pdV, (2.79)

which stands for the rate of change of the internal energy of the gas via
hydrodynamical compression or expansion.

The expressions for e and Q̇rad depend on the underlying model of the gas
and of the energy exchange between gas and radiation field. In this work, two



2.3. DUST DRIVEN WINDS OF AGB-STARS 37

different approaches are used. An overview over these two thermodynamical
approaches is given in Table (2.3). The first one was presented by Fleischer
et al. (1992) and describes the gas as an ideal atomic gas with the state vari-
ables Tgas and ρ. In this case, the thermal equation state is given by (2.74),
while the caloric equation of state, which gives the dependence between the
internal energy and the state variables reads

e (Tgas, ρ) =
f

2

1

µmu

kBTgas, (2.80)

f denotes the number of degrees of freedom; f = 3 for an atomic gas. Note
that the internal energy of the ideal gas does not depend on the density. In
combination with this simple gas model, the radiative cooling

Q̇rad = 4σBκ(Trad
4 − Tgas

4). (2.81)

In the following, this cooling behaviour will be referred to as ”T 4-cooling”.
The second thermodynamical approach used in this work was presented in

Woitke (1997) (see also Schirrmacher et al. 2003). Here the gas is understood
as a mixture of various atomic, molecular and ionic species plus electrons,
whose particle densities in all relevant excitation states are determined by
solving a system of rate equations in statistical equilibrium with a radiation
field, parametrised by its radiation temperature Trad. The internal energy is
then given by

e =
1

ρ
(Etrans + Erot + Evib + Eel + Eion + Ediss) . (2.82)

Etrans is the translational energy of all gas particles, Erot and Evib rotational
and vibrational energy of the molecules, Eel is the excitation energy of the
electrons, Eion the ionisation energy of the ions and Ediss the dissociation en-
ergies of the molecules. The net radiative heating/cooling rate Q̇rad is then
obtained by summing up all microscopic rates, which involve an interaction
between the gas and the radiation field, i.e. those rates, where the corre-
sponding microscopic process includes the emission or the absorption of a
photon.

2.3.3 Radiative Transfer

Within the framework of a circumstellar envelope, the treatment of the ra-
diative transfer problem is essential for the determination of the gas tem-
perature. Since – irrespective of which of the two thermodynamic concepts
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Description:
ideal gas, LTE, T 4-cooling multicomponent gas, non-LTE, de-

tailed cooling function emerging
from SE calculation

State variables:

Tgas, ρ Tgas, Trad, ρ,
〈

dv
dl

〉
Equations of state:

thermal: p = ρkBTgas(µmu)
−1

caloric: e = fkBTgas(2µmu)
−1

Eq. (2.75, thermal) and Eq. (2.82,
caloric) calculated in SE

Radiative Cooling:

analytical T 4-cooling (Eq. 2.81) tabulated cooling rates Q̇rad result-
ing from summing up all radiative
rates from the SE-Calculation.

Molecular weight:
constant mean molecular weight
µ = 1.26 mu assuming all hydrogen
is in the atomic state

the different species have their cor-
rect molecular weight, the mean
molecular weight can be calculated
by µ = ρkBTgas/(mup).

Literature:
Fleischer et al. (1992)
Fleischer (1994)

Woitke (1997)
Schirrmacher et al. (2003)

Table 2.3: Comparison between the two thermodynamic models used for the
circumstellar gas.

presented in the previous section is used – the determination of the gas tem-
perature Tgas requires the knowledge of a radiation temperature Trad only,
it is sufficient – from a mathematical point of view – to treat the radiative
transfer problem in grey approximation. In practice a two stream approx-
imation developed by Lucy (1971, 1976) and Unno & Kondo (1976) in a
version improved by Hashimoto (1995) (for details see Winters et al. 1997)
has been used, which leads to the following equation for the determination
of the radiation temperature Trad:

Trad
4 =

R2F (Rin)

2σB

·
[

1

Rout(1 + µRout)
+

µRout

Rout
2−

−µR

R2
+

3

2

∫ Rout

R

(
χ(R′) +

2µR′

R′

)
dR′

R′2

]
, (2.83)

where µR, the cosine of the separation angle of the two radiation streams
I+(R), and I−(R), is itself determined by the solution of the differential



2.3. DUST DRIVEN WINDS OF AGB-STARS 39

equation

dµ3
R

dR
=

χ(R)

4

(
1− 5µ−R2

)
+

3µR

R

(
1− µ2

R

)
. (2.84)

2.3.4 Dust and chemistry

The dust condensation in the dynamical models is calculated using the dust
moment method developed by Gail & Sedlmayr (1984), which has already
been discussed in detail in Sect. 2.1. The equation system (2.5) is solved si-
multaneously with the hydro- and thermodynamical equations and the equa-
tion for the radiation temperature, using the gas temperature Tgas and density
ρ as input for the source terms J and τ−1 in Eq. (2.5). The dust tempera-
ture Tdust for the determination of the supersaturation ratio S is set to Trad

for the determination of the growth rate τ−1, while it is set to Tgas for the
determination of the nucleation rate J . The idea behind this choice, is that
the growth rate τ−1 is calculated for macroscopic particles, which – due to
their higher absorption efficiency – couple stronger to the stellar radiation
field, than to the comparatively thin circumstellar gas. In contrast the criti-
cal clusters, which are relevant for the calculation of the nucleation rate, are
usually very small and therefore assumed to be in equilibrium with the gas
phase, from which they emerge.

The chemistry is assumed to be in chemical equilibrium throughout this
entire work, which means that the particle densities of the growth species
can be calculated by the law of mass action.

The dust opacity

Via Eq. (2.73) the acceleration of the wind is coupled to the flux weighted
extinction coefficient χH, which can be calculated by the gas and dust opacity

χH = (κgas + κdust) ρ (2.85)

where κgas and κdust are frequency averaged mean opacities. The following
approximations are made: The gas opacity is assumed to have the constant
value of κgas = 2× 10−4 cm2g−1 based on the Rosseland-mean opacities from
Alexander et al. (1983). The dust opacity is calculated according to Gail &
Sedlmayr (1987b) in the small particle limit of Mie-Theory

κdust =
3

4
V0K3Q

′(Tdust) (2.86)

where the extinction efficiency Q′(Tdust) of the dust is approximated by a
parameter function

Q′(Tdust) = ηoptTdust. (2.87)
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Since the dust particles are energetically coupled to the radiation field, rather
than to the surrounding gas, it is assumed that the dust temperature corre-
sponds to the radiation temperature, i.e. Tdust = Trad.

2.3.5 Discussion of the approximations

1. Spherical symmetry: The assumption of spherical symmetry reduces
the geometry of the objects from a 3D- to a 1D-problem. Until a few
years ago, this was absolutely necessary to reduce the numerical effort
to solve the non-linear coupled equation system, which describes the
dust-driven winds. By assuming spherical symmetry, one renounces to
the investigation of effects of stellar rotation or magnetic fields, as well
as to the individual hydrodynamical resolution of turbulence or con-
vection processes. Whereas rotation and magnetic fields do not seem
of particular importance for the understanding of dust-driven AGB-
winds, turbulent velocity fields will certainly occur in the convective
envelope inside the star at the bottom of the stellar atmospheres, as
well as during the dissipation of the stellar pulsation waves in the cir-
cumstellar envelope. At the moment, the computing capacities are
advancing into regions, where codes that solve the complex coupled
equation system for the wind in the frame of a multidimensional hy-
drodynamical description are beginning to be developed (Woitke 2006,
has presented 2D-models of dust driven AGB-winds, which are at the
moment still neglecting the pulsation of the star.) However, even these
calculations have to tackle the problem, that they cannot resolve the
dissipation of the turbulence elements to the sub-grid scales. Since the
aim of this work is to investigate the influences of temperature fluc-
tuations on the dust formation, and there is no reason to believe that
a multidimensional hydrodynamical frame for these investigations will
make a particular difference, the use of a well understood 1D-model
seems to be well justified. For the determination of suitable values
of the fluctuation parameters σ and λ, models using multidimensional
hydrodynamics might, however, be of some use.

2. Carbon Dust: Two main classes of AGB stars are observed, car-
bon rich and oxygen rich stars. It is by now widely accepted, that
these two classes represent subsequent evolutionary stages of low and
intermediate mass AGB-stars. During a thermal pulse, the convective
envelope of these stars reaches the He-burning layer, where carbon is
produced, and mixes the new carbon up into the stellar envelope and
atmosphere. If the carbon abundance in the atmosphere exceeds the
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oxygen abundance, the spectral class from the star switches from O to
C.

The ratio εC/εO =: [C/O] of carbon and oxygen abundance is a key
indicator for the nature of the chemistry in the stellar atmosphere
and the circumstellar envelope. Due to the high binding energy of
the CO-molecule (about 11 eV), nearly all atoms of the less abun-
dant species are blocked in CO-molecules with a striking impact on
the chemistry of the remaining species. In an oxygen-rich situation,
the typical high temperature condensates are silicates SixOy and metal
oxides, like TixOy, MgxOy, AlxOy. In this case, it is not really clear
which species nucleate at first and which species will later grow onto
the seed particles. A simple grain size distribution function of the form
f(N) as presented in Sect. 2.1 can not be used to describe the emerging
heterogeneous dust grains. (Jeong et al. 2003, have presented model
calculations for such oxygen rich AGB-winds.) The carbon rich situa-
tion is simpler, when assuming that graphite is the main constituent of
the dust grains. This might not be the whole picture, because probably
some nucleation will also take via polyaromatic hydrocarbons (PAH’s),
but again, the detailed investigation of the nucleation paths is not the
aim of this work. Since there seems no reason to believe, that temper-
ature fluctuations will a priori have a different influence in the oxygen-
rich case than in the carbon rich situation, in this work, for the sake of
simplicity, the carbon rich formulation is used.

3. Gas model (LTE): For the models calculated using the T 4-cooling
acc. to Eq. (2.81), the gas is modeled as a one-atomic ideal gas with
a constant molecular weight. This assumption neglects the effects of
ionisation and molecule formation/dissociation. The neglection of ion-
isation is widely uncritical, since the radiation fields from AGB-stars
have no significant short wavelength ionising component. In the con-
text of the presented hydrodynamical models, ionisation might occur
in the innermost parts, below the surface of the star, which is only
included for reasons of numerical stability, and not to be the subject
of the latter physical interpretation. Another case, where ionisation
might occur, is in the strongest shock waves, that are developed by
some models of particularly compact stars (low luminosity, high mass,
strong pulsation). However, the modeling of the shock waves using
shock-broadening via artificial viscosity follows a philosophy, of giving
a good model of the surroundings of the shock, but not for the details
of the thermodynamical structure of the shock itself.
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The neglection of molecule formation and dissociation is more critical,
because in particular the formation of molecular hydrogen from hydro-
gen atoms does have a significant impact on the mean molecular weight
(µ ≈ 2.3 for H2, and µ ≈ 1.3 for H) and therewith on the pressure (see
Eq. 2.74), while the associated dissociation energy constitutes a signif-
icant energy reservoir, which will considerably delay radiative cooling.
A proper modeling of the H2-formation in chemical equilibrium is cer-
tainly possible, but since the implementation into the Child-Code is
not as trivial as it might look, it has never been done, after the version
including the SE-state equations and -cooling functions, which includes
these effects implicitly, was running (Schirrmacher et al. 2003).

The assumption of T 4-cooling is very close to the isothermal limit case
for the fastest thinkable radiative cooling (or heating) of the gas, where
the gas temperature is assumed to relax immediately (i.e. on time scales
shorter than the numerical time step) to the radiation temperature
Trad. The general structure of the stellar wind looks quite alike in
the isothermal limit case except for some extra heating in the shock
front, and also very much like the models with SE-state-equations and -
cooling functions. Nevertheless, these models have been included in this
work, because it has turned out, that the dust condensation depends
sensibly on possible temperature differences between the gas and the
dust, which is assumed to couple to the radiation field via Tdust = Trad,
and it therefore seemed interesting to investigate models with a different
temperature difference between Tdust and Tgas.

4. Gas model (statistical equilibrium): The assumptions made dur-
ing the calculation of the thermal (2.75) and the caloric (2.82) equation
of state, and the non-LTE cooling functions Q̇rad are discussed in de-
tail in Woitke (1997). Here I only want to discuss those assumptions
that are most important within the framework of the hydrodynamical
models of this work.

First thing to mention is, that the radiation field and the hydrodynam-
ical structure enter the description in the form of only two parameters:
Trad and

〈
dv
dl

〉
. This is obvious a quite rough approximation for these

two nonlocal phenomena, but for the applicability of the gas model in
a selfconsistent numerical calculation, this reduction was imperative.

The description of the velocity field by the parameter
〈

dv
dl

〉
implies

the assumption, of a velocity field which is monotonously increasing
with increasing distance from the star. This is important to determine
the resonance region around a line-emitting gas element, where the
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emitted line photon can still be absorbed in the same line. The effect
of several shells having the same velocity at various distances from the
star is neglected, i.e. it is assumed, that the line radiation emitted by
the innermost shell is not absorbed by an outer shell having the same
velocity, as well as the heating of the outer shell by a possible high line
emission from an inner shell is not taken into account. Nevertheless,
in contrast to the usual complete ignorance of line cooling effects, this
one-parametric description is certainly a step forward.

The reduction of the entire frequency dependent radiation field to a ra-
diation temperature Trad only is certainly a quite rough approximation
as well. This corresponds to the assumption that the spectral energy
distribution Jν of the radiation field corresponds to that of a black
body with the temperature Bν(Trad). This spectral energy distribution
is needed to calculate the excitation levels of all species in the gas,
where the effects of various lines cooling at particular wavelengths can
certainly be very important. There is no principle problem, of doing
the SE-calculation with an arbitrary radiation field. However, the need
of including the resulting state- and cooling functions into an overall
model, which only delivers a radiation temperature and no spectral in-
formation, requires an accordingly simple approximation of the spectral
distribution of the radiation field.

Another assumption concerning the interaction between gas and radia-
tion field is, that every feedback from the gas to the radiation field via
particular emission processes is neglected. The SE-calculation delivers
the net energy exchange rate Q̇rad between the gas and the radiation
field, which is then used in the energy equation, but no corresponding
term describing a possible feedback to the radiation field is included
in the treatment of the radiative transfer. This might be no crucial
assumption within the frame of a grey radiative transport, where any
emission from a particular gas element will be a rather subtle8 modu-
lation of the overall radiation field. When implementing a frequency
dependent radiative transfer into the overall system, where the line
emission from a particular gas element can be quite important for the
corresponding line intensity, this point will need a close reinspection.

8Note, that the neglection of feedback of the exact energy exchange rates to the radia-
tion field, does not mean, that there is no emission from the gas taken into account when
solving the radiative transfer. It means only that the quite detailed information about the
exact energy exchange processes, which is obtained during the SE-calculation, is discarded
after calculating the state functions, and the gas emission for the radiative transfer is later
determined using a simpler model.
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5. Stationary, grey radiative transfer: In this context, ”stationarity”
means, that the travelling time of the photons of one part of the cir-
cumstellar envelope to any other is neglected. When being picky about
it, this assumption is not strictly fulfilled, because the light travelling
time in a typical circumstellar envelope of an AGB star can be in the
order of 102 . . . 104 s, which is about the same as typical time steps in
the numerical calculation. However, in the resulting models, no effects
are observed, where a sudden change of the radiation field at a certain
distance from the star, has a striking immediate effect on the situation
at a completely different position, which then suddenly vanishes after
a time short compared to the corresponding light travelling time. The
assumption of stationarity in the radiative transfer calculation does
therefore not seem a crucial one.

The restriction to a grey radiative transport, i.e. reduction of the fre-
quency dependent radiative transfer equation for Iν to the frequency
integrated form for I =

∫∞
0

Iνdν, using frequency integrated values for
the extinction coefficients χν , certainly cuts away a good deal of phys-
ical effects, like radiative heating/cooling/driving of particular lines,
possible maser effects, frequency shifts in the stellar spectrum due to
the opacity of the dust in the visible light, and its high emission in the
IR-spectral region.

Historically – like the restriction to 1D – this restriction was neces-
sary to reduce the computation effort for solving the nonlinearly cou-
pled selfconsistent equation system of the time dependent wind. By
now, like for the multidimensional models, computer power is about to
reach the level, where a frequency dependent treatment of the radia-
tive transfer is possible (see e.g. Höfner et al. 2003; Gautschy-Loidl
et al. 2004). Unlike in the situation for the multidimensional hydrody-
namics, a frequency dependent treatment of the radiation field might
very well have significant effects on the influence of temperature fluc-
tuations on the dust formation, because it will be one of the results
of this work, that the temperature of the dust, in particular of the
critical clusters, are very important for the details of the condensation
process. The temperature of a dust grain depends very sensibly on the
interplay of its individual frequency dependent extinction coefficient
and the details of the radiation field, that it is coupled to. However,
the solution of an equation system, describing such a detailed coupling
between a radiation field and the local gas/dust mixture in a time de-
pendent hydrodynamical situation, which would also have to include a
detailed frequency dependent calculation of atomic, molecular and size
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dependent dust opacities, combined with a dust description far more
detailed than the moment method presented in Sect. 2.1, is still beyond
our numerical capacities and far beyond the scope of this work.

6. Chemical equilibrium: The exact knowledge of the molecular abun-
dances is important i) for the calculation of the opacity that enters the
radiative transfer, ii) for the calculation of the nucleation and growth
rates of the dust grains, and iii) for the calculation of the state and
cooling functions. Since we are applying a grey radiative transfer cal-
culation which uses a constant gas opacity, the first requirement can be
dropped. For the determination of the state and cooling functions we
either use the ideal monoatomic gas-model, that neglects all chemical
processes by assuming a constant molecular weight, or tabulated func-
tions gained by the solution of a system of rate equations in statistical
equilibrium. In the latter case, a detailed chemistry was calculated dur-
ing the calculation of the tables for p, e and Q̇rad, and then discarded.
Therefore, the only remaining need for a chemical calculation in the
frame of the time-dependent hydrodynamical models, is the need for
the particle densities of the growth species for the dust calculations.
Thus, for the sake of simplicity, only the abundances of H, H2, C, C2,
C2H and C2H2 are calculated under the assumption of i) chemical equi-
librium and ii) that all oxygen is blocked in CO.
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Chapter 3

Numerical Realisation

3.1 Evaluation of the deterministic dust equa-

tions

The equation system (2.5) needs to be evaluated i) for the deterministic cal-
culations required for the boundary paths of the Fokker-Planck system (2.66),
ii) for the calculation of the last two terms on the r.h.s. of Eq. (2.66), that
contain the transition probabilities of the dust component Kt of the stochas-
tical process (Θ,Kt), and finally iii) for the calculation of the Monte-Carlo
models presented in Sect. 4.3.

For the case of dust nucleation and growth, the numerical evaluation of
Eq. (2.5) is straight forward. The nucleation rate J and the growth rate τ−1

are calculated as described in Sect. 2.1. However, the calculation of J requires
the parameter Scrit, which corresponds to the minimum supersaturation ratio
required for dust nucleation from the gas phase.

The treatment of the dust evaporation and destruction as described in
Sect. (2.1.6) is more challenging, because it requires the storage of the dust
moment history in the form Ki(amax). In case of evaporation, the new value of
amax,new (< amax,old) is calculated, and the values of the Ki are then restored
to the value they had, when the maximum particle radius amax last had the
value amax,new. Since it is impossible to store Ki(amax) for every discrete
value of a, the a axis is binned and the Ki stored into arrays of a-bins.
When the maximum particle radius amax exceeds the edge of these arrays
astorage,max, the value astorage,max is doubled and the storage arrays Ki(amax)
need to be remapped onto the newly dimensioned arrays. This procedure is
repeated, if necessary, until the maximum particle radius amax(t) ”fits” again
into the array. In the reverse case, when evaporation has gone so far, that the
remaining amax lies rather close to the lower edge of the a-axis, no remapping

47
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Symbol Value Description

a` 10 minimum grain size in units of the dimensionless
particle radius a, for which a cluster is regarded as
a macroscopic grain. This parameter corresponds
to the minimum grain size N` for which the grain
size distribution function is defined.

astorage,max > 100 a-value at the upper boundary of the storage
arrays Ki(amax). When the size of the biggest
particle amax(t) exceeds astorage,max, the value of
astorage,max is doubled and the functions Ki(amax)
need to be remapped

Na 100 Array length for the storage of the dust moment
Ki(amax).

Scrit 3 In the deterministic case the nucleation rate J is
only calculated, when the supersaturation ratio S
exceeds the value of Scrit

Table 3.1: Numerical parameters for the deterministic dust calculation.

is implemented, because once the information is lost at the compression of the
Ki(amax) during the growth, it cannot be restored, by filling a resized array
with interpolated values. If however, the evaporation process in a volume
element is complete astorage,max is restored to its initial value.

An overview over the numerical parameters required for the evaluation of
Eq. (2.5) is given in Table 3.1.

3.2 Evaluation of the Fokker-Planck-System

We need to evaluate the system of coupled Fokker-Planck-Equations given
by (Eq. 2.66)

∂

∂t
qρ = −1

λ
T

∂

∂T
qρ +

σ2

λ

∂2

∂T 2
qρ + Aρνqν + bρ, ρ = 0, 1, 2, 3. (3.1)

Formally, this equation system is identical1 to Eq. (4.13) from Dirks (2000).
Therefore, in this work, the same numerical scheme is adapted, which will
be sketched in the rest of this section.

1Note, however, that Dirks uses a different time variable and functions q̃ρ, that take
into account the spherical structure of his wind.
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3.2.1 Discretization

Eq. 2.66 is evaluated on a (t,T )-grid, where t stands for the time in seconds
and T for the deviation of the gas temperature from a given mean value T (t)
in Kelvin, i.e. the actual gas temperature at a given grid point is

Tgas(t, T ) = T (t) + T, (3.2)

Tgas(t, 0) = T (t).

The time derivative is approximated by a first order forward difference, while
the T-derivatives are approximated by second order Taylor approximations
(see Dirks 2000). The temperature spacing doesn’t necessary need to be
equidistant, however throughout this work an equidistant spacing for the
temperature deviation is used.

3.2.2 Crank-Nicolson Scheme

The time integration of the Fokker-Planck system (2.66) is then performed
using a Crank-Nicolson-Scheme, which is a special case of a weighted average
method, (see Morton & Mayers 1994, Section 2.10). The idea of the weighted
average methods is that they allow a continuous ”switching” between ex-
plicit and implicit integration via a parameter θ which specifies the degree
of ”explicitness”:

∂

∂t
qρ(k, j) ≈ θfk + (1− θ)fk+1, (3.3)

fk = −1

λ
T (k, j)

∂

∂T
qρ(k, j) +

σ2

λ

∂2

∂T 2
qρ(k, j) + Aρν(k, j)qν(k, j) + bρ(k, j),

where k is the discretized time variable and j the discretized variable for the
temperature deviation T . For θ = 1, Eq. (3.3) yields the expression for an
explicit time step, whereas θ = 0 corresponds to a fully implicit time step.
If θ is chosen as 0.5 the scheme is called a Crank-Nicolson-Scheme.

When inserting the discretization into the Crank-Nicolson-Scheme, one
obtains a set of linearly coupled algebraic equations, which can be represented
by a tridiagonal matrix, and solved by standard numerical methods. In this
work, Crout’s algorithm has been used (see Burden & Faires 2001, p.408).

3.2.3 Initial and boundary values, and the determinis-
tic mean path

The temporal forward integration of the Fokker-Planck system (2.66) on a
(t, T ) plane-requires
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1. initial values qρ(t, T ),

2. boundary values qρ(t,−∆Tmax), and qρ(t, +∆Tmax), and

3. the deterministic thermodynamical mean path T (t), ρ(t).

In principle, any arbitrary combination of T (t), and ρ(t) can be chosen as
deterministic path. In this work, a simple model of a stationary AGB-wind
was used (see Table 4.1). In this case, it is sufficient to start the integration
close enough to the star, to ensure a dust free initial situation and the initial
condition becomes trivial:

qρ(t, T ) := 0. (3.4)

A physically reasonable choice of the boundary conditions is more difficult,
but test runs have revealed, that if the ∆Tmax is chosen large enough, the
choice of the boundary values is uncritical for the solution qρ(t, T ) in the
T -domain, which will later contribute to the calculation of the expectation
values. For the calculations presented in Sect. 4, the boundary paths have
been set to the corresponding deterministic paths:

qρ(t, ∆Tmax) = Kρ(t, Tgas + ∆Tmax) = Kρ(t, Tmax) (3.5)

qρ(t,−∆Tmax) = Kρ(t, Tgas −∆Tmax) = Kρ(t, Tmin), (3.6)

where the Kρ(t,±∆Tmax) have been calculated along a wind structure with
a constant temperature offset of ±∆Tmax. The cut-off of the temperature
deviation at ±∆Tmax is necessary, because in integration from −∞ to +∞
is numerically impossible and physically senseless. The value of ∆Tmax is
parametrised introducing the numerical parameter γ

∆Tmax = γσ. (3.7)

Typical values for the parameter γ are 5, . . . , 10; usually a value of γ = 8
has been adopted. If γ is chosen too small, the influence of the boundaries
can become overwhelming, which results in an apparent solution qρ, which
actually turns out to be only the arithmetic mean of the boundary-paths. If
γ is chosen to big, it is possible – in particular for large values of σ, that large
parts of the (t,T)-plane lie in thermodynamical regions below Tgas = 500K,
where the chemical model for the dust-growing species begins to lose sense.
In extreme situations, an inconsiderate choice of γ can lead to the (numerical)
appearance of negative gas temperatures, which obviously has to be strictly
avoided.
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3.2.4 Numerical resolution

After having provided the fluctuation parameters σ and λ, the deterministic
mean structure, and the parameters needed for the dust calculation (see
Sect. 3.1), only the grid spacings of the (t, T ) grids remain to be provided:

• Time steps (t-grid): in order to achieve a reasonable numerical res-
olution, the time step ∆t must be smaller than the correlation time λ.
Furthermore, it is desirable that the relative changes of the qρ do not
become to large. Typical values for ∆t were 102 . . . 103 s in order to
get a proper spatial resolution of the stationary wind, but during the
actual condensation phase time steps were allowed to go down as far
as 10−2 s.

• T -Grid: The number of grid points along the T -axis was varied from
100 to 200. When this number is too small negative qρ might result
during the solution of the tridiagonal system, when chosen too large,
the influence of the boundaries was sometimes growing undesirably
high.

3.3 Direct modeling of the fluctuations

As described in Sect. 2.2.3, it is possible to model the fluctuations directly.
Instead of the expectation values for the Ki, one obtains a particular ther-
modynamical structure representing a possible realisation of the stochastic
process (Θ,K)t, (see e.g. Fig. 4.9).

Numerically, these structures are obtained, by constructing a representant
of the stochastical process Θt as suggested by Eq. (2.44). Each time step,
a random temperature fluctuation corresponding to the second term on the
r.h.s. of Eq. (2.44) is added to the mean temperature T . Due to their
randomness, in this work, theses models will be referred to as Monte Carlo-
models. The correlation is assured by a relaxation term, similar to the first
term on the r.h.s. of Eq. (2.44), i.e. each time step, the difference between
the last Tgas and T is reduced by the factor exp(−∆t/λ) (see Eq. 2.47), and
then a new gauss weighted random term acc. to Eq. (2.46) is added.

The density ρ is then coupled adiabatically to the temperature deviation
T according to

ρ(T ) =

(
T + T

T

) 1
γad−1

, with γad =
f + 2

2
, (3.8)

with γad denoting the adiabatic exponent, and f the number of degrees of
freedom of the gas. In this work, f was chosen as f = 3, corresponding to a
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one atomic ideal gas. However, the influence of the density on dust nucleation
and growth is linear, i.e. when normalised to the number density of hydrogen
cores nĤ, the nucleation rate J is nearly independent on the density (see e.g.
Fig. 6.1, top left).

Problems occurring during the direct modeling

Due to the explicit usage of random numbers during the direct modeling of
the fluctuations, in principle, arbitrarily high fluctuations are possible, even
though improbable. Whereas these ”exotic” representants are included im-
plicitly in the ensemble of stochastic pathways, whose behaviour is described
by the equation system (2.66), they can cause trouble when they randomly
turn up during the construction of a particular representant of that ensemble
Tgas(t). Typical problematic situations are, e.g. , strong negative fluctua-
tions that might lead to negative temperatures. These are mathematically
that improbable, that their effect will hardly influence the solutions of the
Fokker-Planck system (2.66), however, when randomly generating the rep-
resentants these improbable solutions can show up. Another example for a
numerically problematic situation is, when a particular random fluctuation
becomes so big, that its application would require a shorter time step.

In this work, the Monte-Carlo calculations are only presented to give
another point of view with respect to the interpretation of the nature of
the stochastic process (Θ,K)t. Models that were numerically problematic
were just not chosen for representation. If, however, it is desired to use these
Monte-Carlo models for the calculation of expectation values, these problems
would need to be tackled, because the biased neglection of the problematic
models could have a significant influence on the resulting expectation values,
because they are calculated by averaging over a large number of models.

3.4 Selfconsistent, dynamical wind models

For the numerical evaluation of the equation system described in Sect. 2.3,
the Child-Code is used, which was originally developed by Fleischer et al.
(1992), (see also Fleischer 1994; Winters et al. 1997). The Child-code is
a one-dimensional hydro-code, which solves the hydrodynamical equations
(2.3.1) together with the equations for thermodynamics (2.3.2), radiative
transfer (2.3.3), a CE-chemistry and the time dependent dust moment equa-
tions (2.3.4, and 2.1) by an explicit forward integration in a comoving La-
grangean frame with an adaptive grid. The stellar pulsation is modelled by
a sinusoidal variation of the velocity of the inner boundary.
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Two families of models were calculated (see Sect. 2.3.2 and Table 2.3).
The models using the ideal gas model and analytical T 4-cooling rates were
calculated using the original Child-code in the version of Winters et al.
(1997), whereas the models with non-LTE cooling functions and a more so-
phisticated modeling of the gas according to Woitke (1997) were calculated
using the Child-code in the version described by Schirrmacher et al. (2003).

3.4.1 Model parameters

A particular wind model is described by the following parameters (see also
Table 3.2): stellar mass M?, stellar luminosity L?, photospheric temperature
T?, pulsational period P , and carbon-to-oxygen ratio [C/O]. Furthermore,
two parameters for the description of the stellar pulsation are needed: the
initial velocity amplitude vamp,0 and the final velocity amplitude vamp of the
piston at the inner boundary. By the implementation of the microturbulent
nucleation rate (see Sect. 6), an additional parameter describing the temper-
ature fluctuation, the rms temperature deviation σ, is added.

In addition to the above described primary model parameters, a set of
numerical parameters is needed. An overview and descriptions are given in
Table 3.2.

3.4.2 The start model

The dynamical calculations are started on a dust-free hydrostatic start model,
which was constructed using the same spatial discretization. When switching
on the piston, the first waves steepen up dramatically and reach unphysically
high velocities. Therefore the piston is not started with its final velocity vamp,
but with a lower value vamp,0 and increased to its final value within the time
tpis. Furthermore, Rout is increased slowly from 2R? to 25R?, and, in regular
intervals trezone, any grid points above the current Rout are discarded and new
ones inserted in the inner integration domain. This way, the first unrealistic
shock front is quickly cut off, which saves a good deal of calculation time.
However, due to these starting procedures, it is necessary to wait until the
model has relaxed towards a periodical or pseudo-stationary state, before the
result can be evaluated. This will take at least until the shock front, that
was induced by the last pulsation with a reduced amplitude has reached Rout.
For Rout = 25R? and tpis = 15P , this will surely be the case after 40P . The
results presented in Chapter. 7 were evaluated not earlier than after 90P , so
that any perturbations by the starting procedure have had enough time to
leave the integration domain.
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Model Parameters
Symbol Values Description

[C/O] 1.8 carbon to oxygen ratio
L? 6000 . . . 10000L� stellar luminosity
M? 0.8 . . . 1.0M� stellar mass
P 650 days pulsational period
T? 2400 . . . 3000 K photospheric temperature

vamp 2× 105 cm/s final piston amplitude
Other parameters and material constants

Symbol Value Description

Nstart 512 initial value of grid points
Nfinal 1024 . . . 1924 final number of grid points

Q′(Tdust) (4.4 . . . 5.9)× Tdust[K] extinction efficiency of the dust(see Gail &
Sedlmayr 1985; Helling 1999)

Rin 0.91R? position of the inner boundary
Rout 2 . . . 25R? position of the outer boundary
tpis 15P Time for the initial acceleration of the piston

trezone 0.5P Time interval between two rezoning proce-
dures

vamp,0 5× 104 cm/s initial piston amplitude
εP 200 fraction of the period P for maximum time

step : ∆tmax = P/εP

εCFL 8× 10−3 . . . 5× 10−2 Courant-Friedrichs-Levy-factor

∆t
!
< εCFL∆x/v

εamax 0.1 maximum relative change of the particle sizes
per time step

εκd
0.05 maximum relative change of the dust extinc-

tion κd per time step
εK0 0.02 maximum relative change of the number of

dust particles per time step
εK3 0.01 maximum relative change of the 3rd dust mo-

ment per time step
εT 0.1 maximum relative change of Tgas per time

step
κgas 2× 10−4 cm2 g−1 gas opacity (assumed constant)

Table 3.2: Parameters for the dynamical wind calculation.
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3.4.3 Boundary Values

The hydrodynamical calculation requires an inner and an outer boundary
condition. As inner boundary condition, the piston approximation (see Wood
1979) is chosen

v(Rin, t) = vamp(t)cos

(
2πt

P

)
. (3.9)

As outer boundary, a constant pressure gradient is assumed (see Fleischer
et al. 1992).

For the radiative transfer, two additional boundary conditions are re-
quired. At the inner boundary, the separation angle is set zero µ(Rin) = 0,
and the stellar flux F (Rin) is assumed to be constant, which results in a
stellar luminosity that varies with the stellar radius

L?(t) = 4πRin
2(t)F (Rin), (3.10)

where F denotes the frequency integrated radiation flux, which relates to the
frequency integrated Eddington flux H as F = 4πH. At the outer boundary,
the optical depth is forced to vanish, and no external irradiation is assumed
to exist.

3.4.4 Discretization

The spatial discretization follows the approach from Richtmyer & Morton
(1967). Quantities that depend on a volume are defined between two grid
points, all other quantities are defined at the position of the grid points.

In regular time intervals trezone, the grid is rezoned, i.e. all grid points, that
have wandered beyond the current outer boundary Rout(t) are discarded and
reinserted into the grid. This reinsertion is not realized by simply inserting
single grid points, but by splitting two zones into three, a procedure which
allows for the conservation of all physical quantities (for details, see Fleischer
1994). With increasing integration time, the number of grid points is stepwise
increased from Nstart to Nfinal.

The time steps are adapted dynamically. The corresponding parameters
εcriterion in Table 3.2 give an overview over the various criteria used for the
determination of the time step. Generally speaking, the maximum time
step is the desired temporal resolution ∆tmax = P/εP, when determining the
length of the next time step this value is checked against the various criteria
(see Table 3.2) and the corresponding minimum time step is used.
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3.4.5 The dynamical calculation

At first the hydrostatic dust-free start model is constructed. Then, the dy-
namical calculations are started ”on top” of the start model. The piston
amplitude vamp, the position of the outer boundary Rout and the number of
grid points are slowly increased until the desired values are reached. The
calculation is usually stopped after an integration time of 120P .

Every single time step is calculated according to the following scheme:

1. Determination of the new velocity at the inner boundary

2. Calculation of the new position of the inner boundary

3. Calculation of the new velocity structure

4. Calculation of the new radial structure of the Lagrangean elements. At
this time it is checked, whether the time step is alright, and – if not –
jumped back to (1) with a shorter time step.

5. Calculation of the new density structure

6. Calculation of the artificial viscosity structure

7. Evaluation of the dust moment equations

8. Iterative semi-implicit evaluation of the energy equation, state equa-
tions and cooling functions

9. Evaluation of the radiative transfer

10. Calculation of the radiative accelerations for the next time step

11. Determination of the length of the next time step



Chapter 4

Gas box models

This chapter is divided into three parts. In the first two parts, the Fokker-
Planck system Eq (2.66) is solved on top of the thermodynamic structure
of a simple stationary wind for the LTE-case (Tdust = Tgas, Sect. 4.1) and
one NLTE-case (Tdust = T , Sect. 4.2). The basic wind parameters of this
stationary model are adopted from Dirks (2000) and given in Table 4.1. The
Fokker-Planck system (2.66) is solved as described in Sect 3.2 using the wind
structure from Table (4.1) as input for the calculation of the nucleation and
growth rates. The time variable required for the solution of Eq. (2.66) is
obtained via t = (R − R?)/vwind, where R is the distance from the centre of
the star and vwind the wind velocity, which is assumed constant (see discussion
in Chapter 5).

In Sect. 4.3, some Monte-Carlo calculations are presented, where the de-
terministic dust equations (2.5) are solved on a random thermodynamical
structure generated on the basis of the same wind model.

T (R) = T?

√
R?/R

R? = 3.7 · 1013cm
T? = 2500K

vwind = 20 km/s
M? = 1M�
Ṁ = 2 · 10−5M�/yr

ρ̄(r) = Ṁ/(4πr2v)
εC/εO = 3

Table 4.1: Parameters of the stationary wind
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4.1 LTE

In this section, calculations are presented, where the dust temperature Tdust is
set equal to the gas temperature Tgas. This corresponds to the approach used
by Dirks (2000), who assumes the dust grains to be in thermal equilibrium
with the gas phase at every moment in time, i.e. if the gas is heated by the
temperature fluctuation, the dust is assumed to be also heated without delay.

After presenting an overview of the behaviour of the Fokker-Planck sys-
tem (2.66) solved on top a stationary wind structure, some parameter studies
are presented, in order to investigate the influence of the parameters describ-
ing the fluctuation σ and λ. Finally, a comparison between the results of this
work and the model calculations from Dirks (2000) is presented.

4.1.1 The general picture

Figs. 4.1, and 4.2 show the results of an exemplary model calculation. The
parameters of the fluctuation are σ = 60 K and λ = 108 s (Fig. 4.1) and
λ = 103 s (Fig. 4.2). The integration width in temperature space was chosen
as ∆Tmax = γσ using γ = 8, i.e. ∆Tmax = ±480 K in this model.

The right hand sides of each figure show the results for a grid of a purely
deterministic calculation, i.e. a calculation where the deterministic dust equa-
tions (2.5) are solved as described in Sect. 3.1 on top of a temperature struc-
ture Tgas(r, T ) = T +T and a density structure which is adiabatically coupled
according to Eq. (3.8) to the corresponding ρ̄(r). Note that in the deter-
ministic calculation, there is no interaction between different temperature
channels.

The left hand sides of Figs. 4.1, and 4.2 show the results of the stochastic
calculation, i.e. the solution of the coupled set of Fokker-Planck equations
(2.66) for the degree of condensation fc = q3/εC (top panel) and the dust
particle density nd/nĤ = q0 (2nd panel), and the nucleation rate J (3rd panel)
and the net growth rate τ−1 (bottom panel) calculated using the correspond-
ing q3 for the carbon consumption. The boundary paths (T = ±∆Tmax) for
the stochastic models are set to the corresponding deterministic paths, i.e.
they are identical on the left and right sides from Figs. 4.1, and 4.2.

By looking at the deterministic plot for the nd (2nd panel at the right),
one can clearly see, that in the channel with the lowest temperature, the dust
formation starts at about 1.5 R?, whereas in the hottest channel it only starts
at about 4 R?. In contrast, the model including temperature fluctuations (top
left panel) shows quite uniform dust formation setting in at 1.5 R?, i.e. as
soon as the dust formation starts in the coolest channel. This behaviour
can be understood as the result of two effects: i) the direct transport of
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Figure 4.1: Comparison between the deterministic and the stochastic model.
σ = 60 K, λ = 108 s
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Figure 4.2: Comparison between the deterministic and the stochastic model
in the microturbulent limit case. σ = 60 K, λ = 103 s
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the qρ through the T -space via the drift and diffusion terms in the Fokker-
Plank equation (2.66) and ii) the fact that under the given circumstances (i.e.
the given T (r)/ρ(r)-structure) the conditions for dust growth are favourable
earlier (i.e. at smaller distances from the star), than they become favourable
for dust nucleation (see panel 3 and 4). Thus, the dust seeds which nucleate
in the cool channels are transported1 into the hot channels, where they meet
conditions favourable for subsequent growth.

Figs. 4.2 shows the microturbulent limit case, which can be identified by
the fact, that the qρ (here fc and nd) show no remarkable variation along
the T -axis. Nucleation and growth rate still show their T -dependence, be-
cause they are not ”mixed” directly by the Fokker-Planck equations, but only
weakly coupled via the carbon consumption q3.

The top panels of Figs. 4.1 and 4.2 show the degree of condensation fc. In
the microturbulent limit (Fig. 4.2), the model shows a nearly uniform degree
of condensation for nearly all temperature channels except for the boundary
channels. For the longer correlation time (Fig. 4.1) this behaviour is far less
pronounced.

The vanishing influence of the boundaries can be seen very good at the
plot of the stochastical nucleation rate in Fig. 4.1, bottom panel, where the
nucleation rate of the deterministic boundary path looks nearly like a wall
at the high temperature boundary, just like at the plot of the stochastical
degree of condensation for the low boundary. In general, the influence of
the boundary depends on the the correlation time λ of the fluctuation, on
the width of the temperature channel σγ, and on the number of grid points
along the T -axis. These parameters have to be chosen in such a way that the
influence of the boundary vanishes in the later calculation of the expectation
values (see remarks in Sect. 3.2).

Fig. (4.3) shows the mean thermodynamic structure T (r) (red) and ρ(r)
(blue) of the the wind (top panel) and (in panel 2 to 5) the comparison
between the dust quantities calculated deterministically along the mean path
(black) and the corresponding expectation values according to the solution
of the system of Fokker-Planck equations (red). A look onto the nucleation
rate (JN`

, panel 2), the dust particle density (nd, panel 4) and the degree
of condensation (fc, panel 5) shows that dust formation is favoured by the
temperature fluctuation: for the given parameters, nucleation sets in about
0.5R? earlier than in the deterministic case. For the degree of condensation
(fc, panel 5) the effect is weaker, but still obvious.

1”Transported” in this context means: a given gas element, which is subject to a
temperature fluctuation, will keep the dust formed during this fluctuation, as long as it is
not explicitly evaporated. In the 3D-representation of Figs. 4.1, and 4.2 this process can
be understood as a transport between the different temperature channels.
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Fig. 4.3 shows that, in general, the conditions for dust growth (panel 3) are
most favourable shortly before they become favourable for nucleation. The
injection of dust nuclei from a cooler channel can therefore be understood as
an additional source of nucleation, inserting seed particles at a moment in
time, where they will very effectively grow.

4.1.2 Some parameter studies

Fig. 4.4 shows a parameter study for variations of σ at λ = 104 s. In the
second panel the logarithm of the expectation value of the stochastical nucle-
ation rate is shown, i.e. the expectation value 〈J〉 (R) of the nucleation rate
J(R, T, q3(R, T )), which has been calculated using the carbon abundance
εC(R, T ) = εC,0 − q3(R, T )

〈J〉 (R) =

∫ +∆Tmax

−∆Tmax

J(R, T, q3(R, T ))p(T )dT. (4.1)

Panel 3 shows the corresponding expectation value for the net growth rate
τ−1(R), which was calculated analogously. Panel 4 shows the expectation
value for the dust particle density (in units of nĤ) calculated as

〈nd〉 (R) =

∫ +∆Tmax

−∆Tmax

q0(R, T )p(T )dT. (4.2)

Panel 5 shows the expectation value for the degree of condensation 〈fc〉 which
is given by

〈fc〉 (R) =

∫ +∆Tmax

−∆Tmax

q3(R, T )

εC,0

p(T )dT. (4.3)

The most important trend for an increasing rms temperature deviation
σ is that the nucleation (panel 2) starts closer to the star, resulting in a
faster increase of the dust particle density nd (panel 4), and the degree of
condensation fc (panel 5). A closer inspection of panel 2 reveals, that the
peak value of the nucleation rate decreases with increasing σ, which results
in a slightly lower final dust particle density, as can be seen by a very close
look to panel 4. The peak of the net growth rate τ−1 (panel 3) wanders
slightly outwards with increasing σ and decreases in height. Note, however,
that τ−1 is plotted on a linear scale in panel 3, while J and nd are plotted
on logarithmic scales in panel 2 and 4.

An interesting feature of the σ-study is the fact that, for small values of σ,
the stochastic model approaches2 the deterministic one. This behaviour was

2Indeed, for σ = 1 K the on plots like shown in Fig. 4.4 there is really no more difference
perceivable, which is why such a plot is not shown in this work
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expected (see discussion in Dirks 2000), because the limit case of arbitrarily
small fluctuations leads back to the deterministic structure.

Fig. 4.5 shows a set of models for a varying correlation time λ. The
represented quantities are the same as in Fig. 4.4. The deterministic hy-
drodynamical structure T (R) (red), ρ(R) (blue), shown in the top panel is
identical for both plots.

The main feature is, that there is an overall difference between the en-
semble of the stochastic models and the deterministic model, while the dif-
ferences between the various stochastic plots are small. In particular, during
the important phase of the onset of nucleation and growth (panel 2 and 3,
at R = 2 − 3), one can hardly perceive a difference between the various
correlation times. The development of the grain number density (panel 4)
reveals some differences at very low densities, where, for longer correlation
times, nd seems to increase a bit faster. However, when the condensation
is complete, the final values for nd are all off the same order of magnitude.
An interesting feature can be seen when looking at the degree of condensa-
tion fc in panel 5. It looks like the models are switching between two limit
cases. The microturbulent case, where the plot for fc seems to be shifted
by ≈ 0.4R? towards the star (blue and green line, for λ = 104 . . . 107 s) and
the macroturbulent limit (cyan and red line), where the condensation sets
in earlier but increases slower than in the microturbulent or deterministic
case. All in all, the parameter study for λ shows, that the influence of this
parameter is weak.

Unlike for the variation of the rms temperature deviation σ, the variation
of λ never leads back to a (pseudo)-deterministic behaviour. The microtur-
bulent limit case (blue lines) corresponds to an immediate mixing of the qρ

of the various temperature channels (along the T -axis in Figs. 4.1, and 4.2),
whereas the structure of the macroturbulent limits case can be obtained by
averaging the isolated deterministic paths weighted with p(T ).

qρmacroturbulent(R) =

∫ ∞

0

Kρp(T )dT. (4.4)

4.1.3 Comparison to earlier work

In this section the gas box models described in the previous two sections are
compared with the results from Dirks (2000) who performed similar model
calculations. From a mathematical point of view, both model families are
identical, despite the fact that Dirks (2000) arrived at a set of Fokker-Planck
equations similar to Eq. (2.66) by first assuming spherical symmetry and
then performing a set of transformations, while in this work Eq. (2.66) is
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interpreted as a gas box model subject to the external wind structure given
in Table (4.1). However, the resulting equation system is identical. Numer-
ically, Dirks (2000) has programmed a FORTRAN code for the solution of
the Fokker-Planck equations, where the routines for calculating the time de-
velopment of the dust moments were taken from the Child-code (described
in Sect. 2.3), whereas for this work the entire code was written completely
from the scratch in C.

Figs. (4.6) and Fig. (4.7) show a comparison between the models resulting
from this work (bottom) and between some results from Dirks (2000) (top).
The top3 pictures are screenshots taken from Dirks (2000), while the bottom
pictures are plots from models calculated with the same model parameters.
The colour coding in all plots is alike, however in the bottom plots the deter-
ministic model was omitted. The general appearance of both model families
is nearly identical, except for slight differences in Fig. (4.7) for large values
of λ. The difference between these plots and the corresponding parameter
studies presented in the previous section results from the fact, that the pa-
rameter γ = 3.29 was chosen too small by Dirks (2000), which leads in most
cases to a behaviour, where, instead of representing the intended solution
from Eq. 2.66, the qρ contain only the arithmetic mean between the two
boundary paths. This explains, for example, the plateaus of the degree of
condensation in panel 5 of all plots, which lie exactly at fc = 0.5, i.e. the first
step results from the increase of fc(−∆T ) from 0 to 1 in the lower boundary
path, and the second step results from the increase of fc(+∆T ) from 0 to 1
in the upper boundary path.

However, the fact that the models look identical for the same parameters,
even in this numerically problematic region, can be regarded as a good hint,
that both codes solve the problem, in principle, in a correct way.

3resp. the ones on the r.h.s. when turning the page in way that the labels are upwards
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Figure 4.3: Comparison between the deterministic model along the mean
path and the expectation values of the stochastical model. σ = 60 K, λ =
104 s, γ = 5.
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Figure 4.4: Parameter study for σ = 20K (blue), 40K (green), 60K (red). For
comparison, the deterministic model is also plotted (black line). λ = 104 s,
γ = 8.
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Figure 4.5: Parameter study for λ = 104 s (blue), 107 s (green), 108 s (cyan),
109 s (red). For comparison, the deterministic model is also plotted (black
line). σ = 60 K (top), γ = 8.
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Figure 4.6: Dust nucleation and growth under the influence of temperature
fluctuations with λ = 103s, γ = 3.29 and σ = 20K (dark blue), 40K (pink),
60K (yellow), 80K (cyan). Top: results from Dirks (2000) (the black curves
correspond to the deterministic model), Bottom: Results from this work.
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Figure 4.7: Dust nucleation and growth under the influence of tempera-
ture fluctuations with σ = 60K, γ = 3.29 and λ = 103s (black), 104s (dark
blue), 105s (pink), 106s (yellow), 108s (cyan). Top: results from Dirks (2000)
(p.61 ,Fig. 6.1), Bottom: Results from this work.
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4.2 NLTE

In order to study the influence of possible deviations between the gas tem-
perature Tgas and the dust temperature Tdust, some models were calculated,
where the dust temperature Tdust is assumed to remain at the mean temper-
ature during a fluctuation of the gas temperature Tgas. This approach could,
for example, describe a situation, where i) the dust is coupled energetically
to the radiation field rather than to the gas phase and ii) the stellar radia-
tion field is not expected to be considerably altered by a local temperature
fluctuation.

Fig. 4.8 shows the results of this set of calculations for different values of
σ in the microturbulent limit case (λ = 103 s). Note that – in contrast to
Fig 4.6 – σ is only varied from 1 K to 15 K.

The difference between these models and the LTE is drastic. The onset
of nucleation (panel 2) does not just occur at higher temperatures, but the
peak value of the nucleation rate is also increased by about two orders of
magnitude for σ = 15 K (red line) compared to the deterministic reference
model (black line). This early onset of very efficient nucleation leads to a
much faster condensation of all available material, fc (panel 5) reaches the
value of 1 (complete condensation) at about 2.6R? for σ = 15 K compared to
the value of about 5.3R? for the deterministic case. This fast consumption of
all material available for condensation leads to an abrupt breakdown of the
growth rates τ−1 (panel 3) at the moment where the degree of condensation
fc (panel 5) begins to rise. The final dust particle densities nd (panel 4) are
about one order of magnitude higher than in the LTE-case, probably due to
the higher peak values of the nucleation rates, which produce more nuclei
before the available carbon is exhausted.

The drastic increase of the nucleation rate results from an increase of
the supersaturation ratio S, when the gas temperature Tgas exceeds the dust
temperature Tdust, (see Eqs. 2.17 and 2.18, and the related discussion in
Sect. 2.1.3). All in all, the deviation between Tdust and Tgas has a very large
impact on the condensation process. In particular, if Tdust is below Tgas,
the nucleation rate can be raised by orders of magnitude even for moderate
deviations. In these models, the condensation sets in earlier in the hot paths,
where Tgas > Tdust unlike during the LTE situation with Tdust = Tgas, where
the condensation sets in earlier in the cool paths (see Figs. 4.1, and 4.2).
Thus, within the thermodynamical dust-forming window, the local influence
of the difference between Tgas and Tdust is stronger, than the influence of the
(joint gas- and dust-)temperature in the case of LTE.

The possible implications of this result are discussed in Chapter 5. The
influence of the correlation time on these models is as weak as in the LTE-
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case, which is why a corresponding plot with a parameter study for the
correlation times was omitted for this model family.



72 CHAPTER 4. GAS BOX MODELS

Figure 4.8: Parameter study for σ = 1K (blue), 5K (green), 10K (cyan), 15K
(red). For comparison the deterministic model is also plotted (black line).
λ = 103 s, γ = 8.
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4.3 Monte-Carlo calculations

Fig. 4.9 shows some results from the Monte-Carlo calculations, which were
performed according to the description in Sect. 3.3. In contrast to the cal-
culations presented in the previous sections of this chapter, the models pre-
sented in Fig. 4.9 are not expectation values resulting from the solutions of
the Fokker-Planck equations (2.66), but they represent particular random
representants of the stochastic process (Θ,K)t, described in Section 2.2.

The hydrodynamical structures Tgas(R), ρ(R) depicted in the top panels
off all 6 plots in Fig. 4.9 are obtained from the wind model acc. to Ta-
ble (4.1) by adding a correlated random temperature deviation to the mean
temperature T (R), which was parametrised by the same parameters σ and
λ, that occur in the Fokker-Planck equations (2.66). All models have been
calculated under the assumption Tdust = Tgas.

The quantities presented in the 5 panels of each plot are, in principle,
the same as in the corresponding plots in the previous sections, except for
the fact, that in this section they have no statistical character, as do the
expectation values from the previous sections. In this Section, the quantities
presented correspond to the deterministic quantities if one assumes, that the
hydrodynamical structure in each top panel represents an actual development
of gas temperature Tgas and density ρ for that particular gas box.

The aim of these calculations is mainly to gain an insight on the particular
representants of the stochastic process (Θ,K)t and their dependence on the
parameters σ and λ, because these single representants are the members of
the ensemble, the expectation values of which were presented in the previous
sections. For a later interpretation it seems therefore very useful to gain an
idea of what the particular wind elements do look like, before being subjected
to the statistical treatment that results in the Fokker-Planck equations (2.66).
The problems, that occur during the attempt of subjecting a stationary wind
model to a particular fluctuation are discussed in Chapter 5.

The results shown in Fig. 4.9 correspond to three exemplary combinations
for λ and σ (top: λ = 107 s, σ = 60 K, middle: λ = 104 s, σ = 60 K, bottom:
λ = 104 s, σ = 20 K), each showing two different representants (left and right)
for the same pair of parameters, which differ by a different initialisation of
the random number generator.

The top two models for λ = 107 s are close to the macroturbulent limit
case. (The macroturbulent limit case itself, for e.g. λ = 109 s, would corre-
spond to a structure, where the entire Tgas-structure is shifted by a random
value, and the corresponding plot looks like a randomly shifted deterministic
plot.) For the first representant (left) the nucleation process reaches its peak
later than the deterministic reference model (black line), which results in
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σ = 60 K, λ = 107 s

σ = 60 K, λ = 104 s

σ = 20 K, λ = 104 s
Figure 4.9: Selection of representants of the Monte Carlo calculations.
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a an outward shift of the runaway condensation (see fc, panel 5) by about
0.5 R?. For the second model (right), the nucleation peaks earlier and higher
than in the deterministic reference model, resulting in a slight inward shift
of the main condensation region. Note, however, that in both cases the nu-
cleation seems to start later than in the deterministic case. This is a random
feature which, nevertheless, gives two interesting insights: i) the position of
the peak of the nucleation rate is more important for the subsequent con-
densation than the first appearance in the logarithmic plots presented in this
chapter, and ii) the random nature of these models considerably reduces the
significance of a single model for a quantitative interpretation.

The middle of Fig. 4.9 shows two representants for the same σ but in the
microturbulent limit (λ = 104 s, for lower values of λ the calculation time
increases significantly, because shorter time steps are needed. Furthermore,
due to the higher number of random numbers required for the generation
of the temperature structure, the numerical problems described in Sect. 3.3
become significant.) In this case, it can be seen, that the overall conden-
sation process, which is best indicated by the development of the degree of
condensation fc (panel 5), is alike for both models, despite the fact, that the
details (panels 1 to 4) vary remarkably. These plots look alike for all repre-
sentants of the microturbulent limit case, i.e. there are no models, where the
plot for fc is shifted by a considerably different amount, or even in the other
direction.

Finally, in order to give an impression of a variation of the parameter σ
in this context, in the bottom panel, two more representants of the microtur-
bulent limit case for σ = 20 K are presented. As expected, the temperature
deviations (top panel) are smaller, an so are their effects on all other quan-
tities.
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Chapter 5

Discussion of the gas box
models

5.1 General remarks

In order to properly discuss the results of the gas box models presented in
the previous chapter, it is useful to resume the mathematical nature of the
calculated quantities. The qρ(t, T ) that result from the Fokker-Planck system
Eq. (2.66) can be interpreted as conditional expectation values of the random
variables K̂ρ of the stochastic process (Θ,K)t under the condition that the
deviation from the mean temperature T has the value T at the moment t.
Since the mean temperature T in the models presented in chapter 4 is a func-
tion of time, the resulting qρ depend on the applied wind model (Table 4.1).
A solution qρ(t, T ) is thus determined by the underlying deterministic wind
model, i.e. the functions T (t), and ρ(t), the initial and boundary values, and
the choice of the parameters σ and λ describing the nature of the assumed
temperature fluctuations.

In contrast to the conditional expectation values qρ resulting from the
Fokker-Planck system, the Monte-Carlo models presented in Sect. 4.3 deliver
deterministic solutions Kρ of particular random wind-structures, which are
obtained by a random variation of the same mean temperature structure that
was used for the solution of the Fokker-Planck system, using a consistent
choice for the fluctuation parameters σ and λ.

It is important to point out that neither of the two approaches can be
interpreted as a consistent model for a stationary wind. The most obvious
reason for this circumstance is, that – strictly speaking – a stationary wind
cannot be subject to a temporal fluctuation, whereas on the other hand any
temporally stable inhomogeneous spatial structure, which could look some-

77
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what like the Monte-Carlo models in Fig. 4.9, should be a solution of a
stationary wind equation, and such solutions have never been found.

Unfortunately, the idea of a stationary wind would be the natural as-
sociation for a stochastic process of the type (Θ,K)t, because that process
depends on one parameter only, namely the time t. In a stationary situation,
this parameter can be mapped to the radial position r of a wind element via
r =

∫ t

0
v(t′)dt′ without problems, and the stochastical process (Θ,K)t would

be a wonderful model for a such a stationary wind.
However, when looking at the microphysics of a wind element subject to

a temperature fluctuation, the physical and chemical processes will always
depend on the time t via the fluctuation itself and other time dependent
chemical and physical processes and on the material surrounding the wind
element, to which it is coupled via the non-local equations of radiative trans-
fer. Any wind element would therefore depend not only on its own history,
but is also coupled to its environment at each moment in time. This spa-
tio/temporal coupling cannot be described by a Markov process like (Θ,K)t.

For this reason, the model calculations presented in the last chapter can
only be interpreted as gas box models, i.e. as models for the temporal evo-
lution of the conditional expectation values qρ of the random variables K̂ρ

in a volume element that was subject the the temporal variation of T and
ρ as given by the wind model acc. to Table 4.1. No feedback of the modi-
fied dust condensation to the wind model is included, because it cannot be
included within the framework of the stochastical fluctuation model used in
this work. Under this point of view, the Monte-Carlo models have to be inter-
preted accordingly, despite for the fact, that they do not deliver conditional
expectation values, but deterministic solutions for a random situation.

For the interpretation of the significance of the models for the appearance
of real singular objects, this circumstance leads to two important conclusions:

• In the microturbulent limit, it can be assumed that the fluctuations
are fast enough to have an immediate influence on the system on time
scales short compared to the variation of the mean temperature T . In
this case, the deterministic quantities Kρ and all resulting quantities,
like the opacity and the resulting acceleration of the gas, can in prin-
ciple be substituted by corresponding microturbulent quantities. All
equation systems – no matter whether they describe stationary or time
dependent situations – can then be solved exactly like in the determin-
istic case. Under the numerical point of view, this would constitute a
one-parametric (σ) sub-grid modelling of the fluctuations.

• In all other cases, it is not admissible to exchange the deterministic
quantities Kρ by any stochastical equivalents. All expectation values
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gained by the resulting qρ of the Fokker-Planck equations can only be
interpreted as ensemble averages over different gas boxes, and no in-
formation about the feedback on the wind via acceleration or radiative
transport can be gained by the presented model calculations. For nu-
merical model calculations describing a particular wind, this means,
that in meso- or macroturbulent situations the fluctuations have to be
resolved numerically so that their non-local influence on the wind are
properly included. If the correlation time λ is short compared to the
typical time steps of the numerical wind model under consideration, a
two-parametric (σ and λ) sub-grid model could in principle be imple-
mented, however, in this situation, the resulting wind structures would
again represent ensemble averages over a family of wind situations and
could not be interpreted straight forward as representation of a partic-
ular object.

5.2 The wind model

5.2.1 The choice of the turbulence parameters

Since no observational details about temperature fluctuations in the circum-
stellar envelopes of AGB-stars are available, the values for the rms temper-
ature deviation σ and the correlation time of the fluctuations λ have been
chosen according to the following considerations.

Mathematically, σ could have any positive value. σ = 0 K corresponds to
the deterministic limit case. For a value of σ = 1 K, some models have been
calculated for test purposes, and the results have indeed shown structures,
that looked identical to the deterministic reference model.

In the LTE-case, σ was then increased by steps of 20 K until the calcu-
lations for the lower boundary ran into numerical problems. Using a value
of γ = 8, this was usually the case for a value of about 80 K, which means
that the lower boundary lies 640 K below the deterministic structure, where
in the outer parts of the atmosphere the temperature of the lower boundary
drops below 500 K, which is the value onto which the chemical data used in
this work are reliable.

Considering the fact, that e.g. in the solar granulation, which is a re-
sult of the solar convection, temperature deviation of more than ±100 K are
observed, this choice of σ does on the other hand not seem completely ex-
aggerated. Higher values for σ might be imaginable in the inner part of the
envelope, where the temperature is still high. However, since our formalism
requires a unique value of σ for the entire structure, a restriction for σ to
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values of about 60 . . . 80 K seemed preferable to an arbitrary cut-off, of the
stochastic treatment of the model at some radial distance from the star.

The values chosen for λ range from 103 . . . 109 seconds, where the resulting
structures are close to the microturbulent (λ = 103 s) and the macroturbulent
(λ = 109 s) limit cases. The macro- and microturbulent limit cases can be
identified by 3D-plots, like Fig. 4.1, and 4.2.

5.2.2 Approximations of the wind model

The underlying wind model for all calculations of Chapter 4 (given by the
parameters in Table 4.1) is certainly a very simple one and needs some further
discussion.

As was pointed out in the beginning of this chapter, it is principally im-
possible to consistently solve an equation describing a stationary wind using
the stochastical formalism presented in Sect. 2.2. It is therefore necessary
to solve the Fokker-Planck equations (2.66) on top of a deterministic input
structure for T (t), and ρ(t).

The two most unrealistic features of the chosen structure seem to be i)
the constant wind velocity and ii) the rather high value of the carbon to
oxygen ratio [C/O] = 3. However, both these assumptions result from the
same problem.

Obviously, every stellar wind starts with a slow velocity at the ”surface”
of the star, and is then accelerated to its final value v∞. However, since for
the dust driven winds, that are investigated in this work, this acceleration is
a result of the details of the dust condensation process, any input structure
that already yields the acceleration in a velocity structure v(r), also implies
a particular evolution of the dust formation in the wind. Therefore, the use
of such a structure would only suggest a higher degree of realism, without
actually having it. Furthermore, when using a v(r)-structure (see e.g. Dirks
2000, p. 70) the problem occurs, that if the gas box runs through the thermo-
dynamical dust-formation window at a point, where the wind velocity is still
small, it stays there unrealistically long, because of the lack of acceleration.
This leads to numerical problems, because in principle, the time steps would
now have to be chosen so small, that the chemical balance between evap-
oration and growth in the nearly fully condensed material can be resolved.
If the time steps are not adapted, the models become numerically unstable,
leading to senseless results, and if adapted, the calculation time increases to
unrealistic orders of magnitude. Thus, a constant wind close to the typical
final velocities is assumed, which corresponds to a physical model, where the
volume elements are ”thrown” through the dust formation window. As a
consequence, the resulting predictions for the location of the dust formation
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zone, have nothing to say about possible locations of dust formation zones
in real stellar winds, but they are however comparable to each other, and
adequate for answering such rough questions as

1. For what orders of magnitude of λ can the dust condensation process
be treated in the micro/macro-turbulent limit case?

2. For what values of σ do the temperature fluctuations have a relevant
impact on the dust condensation?

The high value of [C/O] = 3 was then chosen to obtain wind models,
which are completely condensed at the outer boundary of the models.

5.2.3 The LTE-models

The model calculations presented in Sect. 4.1 reveal that the most important
effect of the temperature fluctuations is the circumstance, that additional
seed particles are ”transported” from channels, where nucleation is already
possible into channels, where nucleation is still impossible, but where the
thermodynamic conditions are already favourable for grain growth. This
results in an onset of nucleation at higher temperatures compared to the
deterministic reference models. In contrast, the influence of the fluctuations
on the growth process itself is comparably small.

The quantitative shift of the condensation zone in units of R? can, how-
ever, not be regarded as relevant for realistic wind models, because of the
shortcomings of the applied wind model, that was used as input for the
thermodynamical structure of the wind. Nevertheless, the models give some
insight about what ”amplitude” the fluctuations should have, in order to
have relevant influence on the dust condensation, and for which correlation
times λ the problem can be treated in the micro- or macroturbulent limit
case:

1. In the LTE-case, an rms temperature deviation of σ ≈ 20 K is required
to remarkably influence the condensation process.

2. The microturbulent limit case is reached at correlation times of
λ ≈ 103 . . . 104 s, whereas the macroturbulent limit is reached at λ ≈
107 . . . 109 s.

5.2.4 The NLTE-models

The models presented in Sect. 4.2 can be regarded as an upper limit case for
the possible influence of temperature fluctuations on dust condensation, be-
cause inside the thermodynamic dust-forming window, the supersaturation
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ratio depends a lot stronger on deviations between gas and dust tempera-
ture than on the temperature itself. Indeed, a strong influence on the dust
condensation can be observed already for values of σ as small as σ = 5 K.
However, the approximation Tdust = T , might be reasonable for macroscopic
dust grains, that tend to be energetically coupled to the radiation field1 in
situations typical for AGB-winds, but is probably unrealistic for the small
critical clusters, that are important for the calculation of the nucleation rate.

In principle, in a situation with a given gas and radiation temperature,
one would expect a size dependent temperature distribution for the dust
grains Tdust(N), which starts at Tdust(1) = Tgas for the monomer and ends
at Tdust ≈ Trad for macroscopic grains. However, such a detailed treatment
of the grain energy would also lead to size dependent growth rates τ−1(N),
which cannot be reconciled with a treatment of the dust complex using mo-
ments Kρ of the distribution function f(N, t). The determination of Tdust(N)
is particularly difficult for the small critical clusters, because they are often
of a size, where they cannot be treated as macroscopic particles and detailed
absorption coefficients κν would be required to calculate the exact energy bal-
ance with the surrounding radiation field. This would require furthermore
a frequency dependent treatment of the radiative transfer, which might (by
now) be possible, when directly resolving the fluctuations in a hydrodynam-
ical code, which in turn would only make sense, when the correlation time
of fluctuations is shorter than the numerical time steps of the corresponding
code.

In that sense, the main results of the presented NLTE-models is, that
the temperature of the critical cluster might have a relevant impact for the
nucleation process already in a deterministic situation, but in particular un-
der the influence of independent fluctuations of the gas temperature or the
radiation field. However, no approach to obtain a more realistic model of the
temperature of the critical cluster, which would allow an inclusion into the
present numerical wind models is at sight.

5.3 Resume

The results from the gas box models presented in Section. 4 have shown that:

1. Fluctuations with correlation times λ < 103 . . . 104 seconds can be
treated in the microturbulent limit, and

2. the main impact of the fluctuations is that of an enhanced nucleation

1In this case the additional assumption T = Trad is applied.
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at high temperatures, while the net growth rates do not react sensibly
to the fluctuations.

The aim of this work was to find a method of including the effects of possi-
ble temperature fluctuations in the frame of existing time dependent model
calculations of dust driven winds of AGB-stars. The longest time steps in
these calculations are of the order of 103 seconds. Any fluctuations with a
correlation time > 103 can therefore be resolved numerically and hydrody-
namically within the framework of the existing numerical models and need
no special treatment. Fluctuations which cannot be resolved numerically by
the code, require a subgrid modelling, which can now be developed, guided
by the results from Section. 4.

All fluctuations which are too fast for a numerical resolution in the time
dependent calculation turn out to be definitely in the microturbulent regime
with respect to the dust physics. A microturbulent treatment of the fluc-
tuations in the framework of dynamical model calculations is therefore ad-
missible. The fact that the main impact of the temperature fluctuations
consists in a higher nucleation rate at higher temperatures, leaving the net
growth rate relatively unchanged, suggests an approach that consists in the
implementation of a microturbulent nucleation rate into the dynamical code,
leaving the description of the growth rate unchanged. The advantages of this
approach are:

• The necessary changes of the dynamical code are very restricted. Only
a new routine for the calculation of the microturbulent nucleation rate
has to be provided.

• The problems of calculating proper stochastic dust destruction rates,
as described in Sect. 2.2.2, are evaded. Evaporation and growth are
treated in the traditional way, which ensures a proper treatment of the
dust destruction.
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Chapter 6

The microturbulent nucleation
rate

The required microturbulent nucleation rate Jmicro is calculated by solving
the Fokker-Planck equation (2.66) for q0 in a gas box of constant Tgas, ρ and
εC and subsequent evaluation of the results:

Jmicro = E

(
∆q0

∆t

)
=

∫ ∆Tmax

−∆Tmax

pT

(
q0,new − q0,old

tstep

)
dT. (6.1)

A value of 200 grid points along the T -axis has turned out to be a good choice.
The number of time steps was chosen as twice the number of temperature
grid points, which ensures that every ”signal” from the boundary can com-
fortably reach every part of the grid during the calculation. The calculation
must be carried out at least until the nucleation rate reaches a stationary
value, which is satisfied without any problems with this choice of parame-
ters. The correlation length was set to λ = 10−1 seconds, which lies well
within the microturbulent regime and the time step was set to λ/100. The
microturbulent nucleation rate Jmicro, was evaluated according to Eq. (6.1)
on a 3D-grid for Tgas, ρ and εC, range and spacings are given in Table 6.1.
A sequence of 2D-Tgas/ρ-slices for different values of σ is shown in Fig. 6.1.
It can clearly be seen, that the dependence of Jmicro on the density is by
orders of magnitude weaker than the dependence on the temperature. Con-
sequently, the number of table-points for the temperature was chosen larger
than for the density. The influence of εC on Jmicro is approximately linear
(not shown), i.e. considerably weaker than the temperature dependence, but
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Figure 6.1: The microturbulent nucleation rate log(J) in a Tgas/log(ρ) plane
for εC ≈ 5.3× 10−4, i.e. C/O ≈ 1.8. The temperature is given in Kelvin and
the density in [g/cm3]. The dashed lines correspond to nucleation rates of
log(J) = −19 and −25. Top left: deterministic rate, top right: σ = 1 K,
middle left: σ = 10 K, middle right: σ = 20 K, bottom left: σ = 40 K,
bottom right: σ = 60 K.
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lower edge upper edge No. of grid points type of spacing
Tgas 700 K 2000 K 100 linear
ρ 10−18 g/cm−3 10−8 g/cm−3 20 logarithmic
εC 0 5.3× 10−4 50 linear

Table 6.1: Range and spacing of the 3D-tables containing the microturbulent
nucleation rates Jmicro

stronger than the density-dependence1. In Fig. 6.2 Jmicro(Tgas) is represented
for various values of σ and εC = 5.3 × 10−4, which corresponds to a dust
free situation in a gas with a C/O-ratio of 1.8 for a solar oxygen abundance,
and a density ρ = 10−14 g/cm−3. It can be seen, that the influence of the
fluctuations results in overall higher values for the nucleation rates for most
temperatures, but also in a slight decrease of the peak values. However, these
peak values do not correspond to the nucleation peaks in a wind situation,
because is by no means assured, that the thermodynamical structure of the
wind will lead a volume element through the range of optimal nucleation,
which corresponds to the peaks in Fig. (6.2). It is well possible, that in
a wind situation depletion effects become important, before the optimum
temperature for nucleation is reached.

1Note that Jmicro is given in units of the particle density of hydrogen cores nĤ. There-
fore the dependence of this nucleation rate on the partial pressure of monomers manifests
itself only in the dependence on the chemical abundance εC and not in the dependence on
the density ρ.
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Figure 6.2: σ-study for Jmicro for ρ = 10−14 g/cm−3 and εC = 5.3×10−4. σ =
5K (red), 10K (green), 20K (blue), 40K (brown) and 60K (pink).



Chapter 7

Dynamical models of AGB-star
winds

The tabulated microturbulent nucleation rate, calculated as described in
Chapter 6, was included into the the Child-code, a code for the dynam-
ical modeling of AGB-star winds, including a time dependent treatment of
the dust complex. The Child-code was originally developed by Fleischer
et al. (1992). The input physics of the code was described in Section 2.3, and
the numerics in Section 3.4.

Some snapshots of the resulting wind structures are shown in Figs. 7.1,
7.2, 7.3, and 7.4. In each figure, four snapshots are represented for the
deterministic reference model and for the same model calculated with a
microturbulent nucleation rate for σ = 20 K, 40 K, and 60 K. Figs. 7.1,
and 7.2 show models including tabulated NLTE-cooling and state functions
(see Table 2.3, right column), while Figs. 7.3, and 7.4 show results for the
same model parameters, but calculated using an analytical T 4-cooling and
an ideal gas (see Table 2.3, left column). Figs. 7.1, and 7.3 were calculated
with ηopt = 4.4 K−1, while Figs. 7.2, and 7.4 show the same models with
ηopt = 5.9 K−1. The physical details of these figures will be discussed in
Sect. 8.1. However, due to the complex dynamical structure of these objects,
combined with some random behaviour due to the details of the particular
numerical history, the analysis of particular snapshots can only be used to
understand the overall physical behaviour of the models. For a quantitative
analysis, quantities that are averaged over a large number of periods must be
considered. Therefore, the final velocity v∞ and the massloss rate Ṁ were
calculated by averaging the corresponding values at R = 20R? from t = 90P
to t = 120P ; the results are given in Table 7.1, and Table 7.2. A quantitative
analysis of these results is given and discussed in Sect. 8.2

In Table 7.1, a set of model calculations is presented for the analytical
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T 4-cooling and the ideal gas model (see Table 2.3, left column). These mod-
els were calculated using a code in the version of Winters et al. (1997). A
model is described by the following set of varying input parameters: T∗ (ef-
fective temperature), M? (stellar mass), L? (stellar luminosity in the rest
position of the piston), and σ (rms temperature deviation of the microtur-
bulent fluctuation). Furthermore, the following additional input parameters
have been set constant for all dynamical model calculations presented in this
work: [C/O] = 1.8 (carbon to oxygen ratio), P = 650 days (stellar pulsa-
tional period), and vamp = 2 km/s (velocity amplitude of the piston at the
inner boundary). For each set of parameters, two calculations (A and B)
with a different value for ηopt have been performed, in order to investigate,
whether the importance of the fluctuations varies with the coupling between
dust and radiation field (A: ηopt = 4.4 K−1, Planck mean acc. to Winters
et al. (1994a), B: ηopt = 5.9 K−1, Rosseland mean acc. to Gail & Sedlmayr
(1985)).

In Table 7.2 a set of model calculations for the same set of parameters is
presented for models with tabulated NLTE-cooling and state functions (see
Table 2.3, right column). These models were calculated using a code in the
version of Schirrmacher et al. (2003).

All numerical parameters were kept constant for all calculations presented
in this work, i.e. no ”fine-tuning” of the time step criteria was carried out.
This has the advantage of making quantitative comparisons between the
models of each set more reliable, but it also has the disadvantage, that quite
a number of model calculations have failed during the starting phase, when
the first few artificially high shock waves often create numerical problems.
For these models, v∞ and Ṁ have been marked by ’(–)’ in the tables.
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Figure 7.1: Snapshots from the dynamical model calculations at t = 90P ,
model 12, NLTE-cooling, ηopt = 4.4 K−1. Top left: deterministic, top right:
σ = 20 K, bottom left: σ = 40 K, bottom right: σ = 60 K. Represented
quantities: top panel: velocity v (red), particle density of hydrogen cores
nĤ (blue), panel 2: gas temperature Tgas (orange), radiation temperature
Trad (grey dashed), panel 3: nucleation rate J (light green), net growth
rate τ−1 (dark green), panel 4: degree of condensation fc (black), radiative
acceleration α (blue).
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Figure 7.2: Snapshots from the dynamical model calculations at t = 90P ,
model 12, NLTE-cooling, ηopt = 5.9 K−1. Top left: deterministic, top right:
σ = 20 K, bottom left: σ = 40 K, bottom right: σ = 60 K. Represented
quantities: top panel: velocity v (red), particle density of hydrogen cores
nĤ (blue), panel 2: gas temperature Tgas (orange), radiation temperature
Trad (grey dashed), panel 3: nucleation rate J (light green), net growth
rate τ−1 (dark green), panel 4: degree of condensation fc (black), radiative
acceleration α (blue).
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Figure 7.3: Snapshots from the dynamical model calculations at t = 90P ,
model 12, ideal gas, T 4-cooling, ηopt = 4.4 K−1. Top left: deterministic, top
right: σ = 20 K, bottom left: σ = 40 K, bottom right: σ = 60 K. Repre-
sented quantities: top panel: velocity v (red), particle density of hydrogen
cores nĤ (blue), panel 2: gas temperature Tgas (orange), panel 3: nucleation
rate J (light green), net growth rate τ−1 (dark green), panel 4: degree of
condensation fc (black), radiative acceleration α (blue).



94 CHAPTER 7. DYNAMICAL MODELS OF AGB-STAR WINDS

Figure 7.4: Snapshots from the dynamical model calculations at t = 90P ,
model 12, ideal gas, T 4-cooling, ηopt = 5.9 K−1. Top left: deterministic, top
right: σ = 20 K, bottom left: σ = 40 K, bottom right: σ = 60 K. Repre-
sented quantities: top panel: velocity v (red), particle density of hydrogen
cores nĤ (blue), panel 2: gas temperature Tgas (orange), panel 3: nucleation
rate J (light green), net growth rate τ−1 (dark green), panel 4: degree of
condensation fc (black), radiative acceleration α (blue).
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Table 7.1: Massloss-rates and final velocities for models
with T 4-cooling, ideal gas

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

0/E 2600 1.0 104 - 26.52 1.08× 10−5

20 26.28 1.14× 10−5

A 40 26.08 1.21× 10−5

60 (–) (–)
- 29.94 9.37× 10−6

B 20 28.87 9.84× 10−6

40 29.71 1.08× 10−5

60 (–) (–)
1 2800 1.0 104 - 24.45 8.83× 10−6

20 24.66 7.80× 10−6

A 40 25.02 8.68× 10−6

60 (–) (–)
- 29.50 7.40× 10−6

B 20 28.50 8.11× 10−6

40 28.44 8.34× 10−6

60 (–) (–)
2 3000 1.0 104 - 21.31 4.74× 10−6

20 22.57 4.94× 10−6

A 40 25.43 5.29× 10−6

60 (–) (–)
- 26.26 4.75× 10−6

B 20 25.30 5.20× 10−6

40 28.11 5.56× 10−6

60 (–) (–)
3 2400 1.0 104 - 23.52 3.01× 10−5

20 (–) (–)
A 40 21.25 3.64× 10−5

60 (–) (–)
- 24.89 2.91× 10−5

B 20 24.19 3.39× 10−5

40 24.32 3.17× 10−5

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities for models with T 4-
cooling, ideal gas

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

4 2600 1.0 8× 103 - 23.05 9.52× 10−6

20 22.66 1.06× 10−5

A 40 22.69 1.08× 10−5

60 (–) (–)
- 26.35 9.29× 10−6

B 20 25.88 9.80× 10−6

40 25.83 1.06× 10−5

60 (–) (–)
5 2600 1.0 6× 103 - 19.39 1.04× 10−5

20 19.75 7.87× 10−6

A 40 (–) (–)
60 (–) (–)
- 23.58 8.00× 10−6

B 20 22.97 8.58× 10−6

40 23.23 7.70× 10−6

60 (–) (–)
6 2400 1.0 8× 103 - (–) (–)

20 21.83 2.10× 10−5

A 40 21.69 2.05× 10−5

60 (–) (–)
- (–) (–)

B 20 24.19 1.91× 10−5

40 24.81 2.08× 10−5

60 (–) (–)
7 2800 1.0 8× 103 - 22.53 7.88× 10−6

20 21.58 8.74× 10−6

A 40 22.84 6.62× 10−6

60 (–) (–)
- 26.86 6.24× 10−6

B 20 25.02 6.37× 10−6

40 25.61 7.42× 10−6

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities for models with T 4-
cooling, ideal gas

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

8 3000 1.0 8× 103 - (–) (–)
20 (–) (–)

A 40 (–) (–)
60 (–) (–)
- (–) (–)

B 20 (–) (–)
40 (–) (–)
60 (–) (–)

9 3000 1.0 6× 103 - (–) (–)
20 (–) (–)

A 40 (–) (–)
60 (–) (–)
- (–) (–)

B 20 (–) (–)
40 (–) (–)
60 (–) (–)

10 2600 0.8 104 - (–) (–)
20 (–) (–)

A 40 23.96 2.79× 10−5

60 24.00 2.82× 10−5

- (–) (–)
B 20 26.93 2.43× 10−5

40 26.63 2.56× 10−5

60 26.64 2.72× 10−5

11 2800 0.8 104 - 27.41 9.81× 10−6

20 26.62 1.07× 10−5

A 40 26.40 1.11× 10−5

60 26.19 1.22× 10−5

- (–) (–)
B 20 30.08 9.41× 10−6

40 29.81 1.04× 10−5

60 29.27 1.21× 10−5

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.



98 CHAPTER 7. DYNAMICAL MODELS OF AGB-STAR WINDS

Massloss-rates and final velocities for models with T 4-
cooling, ideal gas

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

12 3000 0.8 104 - 24.61 8.27× 10−6

20 23.92 8.68× 10−6

A 40 24.86 8.88× 10−6

60 24.97 1.01× 10−5

- 28.28 7.35× 10−6

B 20 28.11 8.40× 10−6

40 27.46 8.72× 10−6

60 27.40 9.91× 10−6

13 2400 0.8 104 - (–) (–)
20 (–) (–)

A 40 (–) (–)
60 23.04 4.92× 10−5

- (–) (–)
B 20 (–) (–)

40 23.48 4.92× 10−5

60 25.55 4.87× 10−5

14 2600 0.8 8× 103 - 23.92 1.52× 10−5

20 23.63 1.64× 10−5

A 40 24.48 1.39× 10−5

60 24.41 1.52× 10−5

- (–) (–)
B 20 27.11 1.23× 10−5

40 26.89 1.29× 10−5

60 26.80 1.47× 10−5

15 2600 0.8 6× 103 - (–) (–)
20 20.76 1.21× 10−5

A 40 20.74 1.23× 10−5

60 (–) (–)
- 24.12 9.76× 10−6

B 20 23.84 1.05× 10−5

40 23.68 1.09× 10−5

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities for models with T 4-
cooling, ideal gas

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

16 2400 0.8 8× 103 - (–) (–)
20 (–) (–)

A 40 (–) (–)
60 (–) (–)
- (–) (–)

B 20 22.62 3.53× 10−5

40 23.01 3.34× 10−5

60 (–) (–)
17 2800 0.8 8× 103 - 23.16 9.22× 10−6

20 22.87 9.86× 10−6

A 40 22.79 1.10× 10−5

60 22.68 1.14× 10−5

- 27.26 8.49× 10−6

B 20 26.74 9.59× 10−6

40 26.88 1.02× 10−5

60 26.70 1.00× 10−5

18 3000 0.8 8× 103 - 24.38 4.87× 10−6

20 23.27 7.57× 10−6

A 40 23.21 8.15× 10−6

60 23.93 5.88× 10−6

- 26.69 4.26× 10−6

B 20 25.98 4.95× 10−6

40 26.08 7.26× 10−6

60 26.65 5.87× 10−6

19 3000 0.8 6× 103 - 19.63 8.37× 10−7

20 19.36 8.67× 10−7

A 40 20.70 7.61× 10−7

60 (–) (–)
- 23.65 7.47× 10−7

B 20 22.79 8.33× 10−7

40 23.20 7.27× 10−7

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Table 7.2: Massloss-rates and final velocities, models
with tabulated NLTE-cooling and state functions.

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

0/E 2600 1.0 104 - 24.35 1.87× 10−5

20 25.04 1.82× 10−5

A 40 24.55 1.69× 10−5

60 24.52 1.63× 10−5

– 27.50 1.73× 10−5

B 20 27.35 1.68× 10−5

40 27.62 1.78× 10−5

60 27.47 1.89× 10−5

1 2800 1.0 104 - 23.76 6.86× 10−6

20 24.11 6.17× 10−6

A 40 24.34 8.94× 10−6

60 24.45 1.01× 10−5

– 26.76 1.01× 10−5

B 20 27.06 7.01× 10−6

40 28.27 7.48× 10−6

60 29.99 4.68× 10−6

2 3000 1.0 104 - 21.91 2.67× 10−6

20 23.97 2.46× 10−6

A 40 26.36 3.83× 10−6

60 26.12 4.05× 10−6

– 26.01 2.02× 10−6

B 20 29.05 2.78× 10−6

40 28.83 2.93× 10−6

60 29.09 4.37× 10−6

3 2400 1.0 104 - 22.64 2.89× 10−5

20 22.91 2.70× 10−5

A 40 23.31 2.71× 10−5

60 (–) (–)
– 26.14 3.29× 10−5

B 20 27.00 2.30× 10−5

40 26.92 2.06× 10−5

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities, models with tabulated
NLTE-cooling and state functions.

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

4 2600 1.0 8× 103 - 23.54 4.86× 10−6

20 23.30 5.47× 10−6

A 40 24.90 3.87× 10−6

60 (–) (–)
– 28.28 3.95× 10−6

B 20 28.71 4.00× 10−6

40 28.67 3.07× 10−6

60 (–) (–)
5 2600 1.0 6× 103 - 20.53 3.20× 10−6

20 19.86 2.76× 10−6

A 40 20.89 4.47× 10−6

60 (–) (–)
– 23.85 3.45× 10−6

B 20 24.22 3.45× 10−6

40 23.30 3.54× 10−6

60 (–) (–)
6 2400 1.0 8× 103 - 22.41 2.16× 10−5

20 22.29 2.21× 10−5

A 40 22.15 2.32× 10−5

60 (–) (–)
– 25.36 1.93× 10−5

B 20 25.65 1.89× 10−5

40 25.18 2.22× 10−5

60 (–) (–)
7 2800 1.0 8× 103 - 22.61 4.00× 10−6

20 23.73 3.50× 10−6

A 40 23.51 5.30× 10−6

60 (–) (–)
– 25.93 4.79× 10−6

B 20 26.00 4.79× 10−6

40 25.30 3.67× 10−6

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities, models with tabulated
NLTE-cooling and state functions.

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

8 3000 1.0 8× 103 - 19.16 2, 72× 10−7

20 18.32 2.84× 10−7

A 40 17.41 4.34× 10−7

60 (–) (–)
– 21.05 3.07× 10−7

B 20 19.16 3.17× 10−7

40 20.71 4.99× 10−7

60 (–) (–)
9 3000 1.0 6× 103 - 13.00 8.24× 10−8

20 12.99 8.30× 10−8

A 40 13.03 8.20× 10−8

60 (–) (–)
– (–) (–)

B 20 15.04 6.78× 10−8

40 15.09 6.77× 10−8

60 (–) (–)
10 2600 0.8 104 - 26.32 1.19× 10−5

20 26.89 1.07× 10−5

A 40 24.30 1.78× 10−5

60 24.65 1.85× 10−5

– 28.89 1.15× 10−5

B 20 29.54 1.04× 10−5

40 27.10 1.77× 10−5

60 27.73 1.76× 10−5

11 2800 0.8 104 - 24.02 8.40× 10−6

20 25.31 1.05× 10−5

A 40 25.78 7.06× 10−6

60 26.52 7.22× 10−6

– 28.51 6.99× 10−6

B 20 28.19 4.93× 10−6

40 28.53 9.06× 10−6

60 29.64 5.05× 10−6

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities, models with tabulated
NLTE-cooling and state functions.

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

12 3000 0.8 104 - 25.53 9.22× 10−6

20 25.41 8.90× 10−6

A 40 25.73 9.88× 10−6

60 25.90 8.62× 10−6

– 27.55 8.54× 10−6

B 20 27.77 8.23× 10−6

40 29.04 7.50× 10−6

60 28.76 6.62× 10−6

13 2400 0.8 104 - 22.48 3.98× 10−5

20 23.92 2.97× 10−5

A 40 22.19 4.60× 10−5

60 23.70 3.26× 10−5

– 24.68 5.27× 10−5

B 20 25.79 3.41× 10−5

40 (–) (–)
60 25.75 3.27× 10−5

14 2600 0.8 8× 103 - 22.73 1.27× 10−5

20 22.71 1.35× 10−5

A 40 23.49 9.85× 10−6

60 23.08 1.39× 10−5

– 26.70 1.12× 10−5

B 20 26.47 1.08× 10−5

40 26.53 1.00× 10−5

60 26.32 8.58× 10−6

15 2600 0.8 6× 103 - 20.49 9.94× 10−6

20 20.56 9.46× 10−6

A 40 20.46 8.13× 10−6

60 (–) (–)
– 23.61 9.35× 10−6

B 20 23.32 9.84× 10−6

40 24.74 4.38× 10−6

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.
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Massloss-rates and final velocities, models with tabulated
NLTE-cooling and state functions.

Model T?[K] M∗/M� L∗/L� σ[K] v∞[km/s] Ṁ [M�/yr]

16 2400 0.8 8× 103 - (–) (–)
20 22.72 2.14× 10−5

A 40 22.27 2.25× 10−5

60 22.71 2.09× 10−5

– 25.58 2.15× 10−5

B 20 25.43 1.96× 10−5

40 25.65 2.09× 10−5

60 25.20 2.40× 10−5

17 2800 0.8 8× 103 - 22.50 9.26× 10−6

20 22.93 8.67× 10−6

A 40 22.80 8.78× 10−6

60 23.86 7.40× 10−6

– 25.90 7.49× 10−6

B 20 25.84 7.10× 10−6

40 26.87 7.13× 10−6

60 27.03 6.91× 10−6

18 3000 0.8 8× 103 - 22.52 4.05× 10−6

20 24.57 3.76× 10−6

A 40 24.63 3.94× 10−6

60 23.80 3.60× 10−6

– 25.52 3.80× 10−6

B 20 26.61 2.74× 10−6

40 26.74 3.73× 10−6

60 25.80 4.16× 10−6

19 3000 0.8 6× 103 - 19.94 5.40× 10−7

20 20.18 5.03× 10−7

A 40 22.10 4.87× 10−7

60 (–) (–)
– 25.69 1.72× 10−6

B 20 25.87 1.71× 10−6

40 23.74 5.21× 10−7

60 (–) (–)

All models in this table have been calculated with a C/O-ratio of
1.8, a pulsation period of 650 days and a piston velocity of 2 km/s.
A: ηopt = 4.4, B: ηopt = 5.9.



Chapter 8

Discussion of the dynamical
wind models

An overview over the basic physical processes dominating the overall ap-
pearance of the wind models presented in Chapter 7 is given in Sect. 8.1.
A quantitative analysis of the resulting mean massloss rates is presented in
Sect. 8.2.

8.1 General overview

At first, it should be remarked, that nearly all models that did not run
through the entire integration period of 120 P ”died” at a very early stage of
the integration – usually within the very first period – because the first shock
front that evolves when the piston is applied to the hydrostatic start model
reaches unphysically high velocities. This is a well known behaviour, and
can in principle be tackled by some ”fine-tuning” of the numerical parame-
ters. For the code version using the NLTE-cooling and state functions, this
fine-tuning was made some years ago, when it was optimised for the analysis
of strong shock waves presented in Schirrmacher et al. (2003). However, this
”fine-tuning” is a very time consuming process, and at the moment, when
it turned out that quite a number of models calculated using the ideal gas
model with the analytical T 4-cooling rate failed to run, most models were al-
ready calculated. Since all models within the same set of calculations should
be carried out with the same numerical parameters, for the models with T 4-
cooling no numerical fine-tuning was carried out, and each model family was
calculated with the same executable program-file. Most models that did not
run, had either i) a comparably high effective temperature combined with a
comparably low luminosity and a high stellar mass (e.g. models 8, and 9), a
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situation which results in a hot compact star with a strong density decrease
in the start model, which, in turn, leads to high shock fronts, or ii) compa-
rably low effective temperatures combined with a low stellar mass and high
luminosity (e.g. model 13), a situation where effective dust condensation al-
ready sets in in the starting model, which again results in a steep dust driven
shock wave developing at the very beginning of the calculation. Furthermore,
it turned out, that the models with σ = 60 K and M? = 1M� did not run,
which again can be interpreted as a combination of early onset of nucleation
in a compact starting model.

As a general trend, it can be seen, that – as expected – models with low
temperatures tend to higher massloss rates compared to ”hot” models, as do
models with high luminosity when compared to models with low luminosities.
The influence of the mass can also be seen when comparing the corresponding
models in Tables 7.1, and 7.2 (the models 10–19 correspond to the models
0–9 with a mass of 0.8M�.) The models with a low mass have always higher
massloss rates than the corresponding models with a higher mass.

In the following, the structures presented in Figs. 7.1, 7.2, 7.3, and 7.4
shall be discussed. For a more detailed discussion of the structures resulting
from dynamical model calculations using the Child-code, see e.g. . Fleischer
et al. (1992), Fleischer (1994), or Schirrmacher et al. (2003).

In the top panel of each plot, the velocity (red) and the particle density of
hydrogen cores (blue) is plotted. The red dashed line represents v = 0, i.e. in
regions where the velocity structure lies below the dashed line, the material is
falling back to the star. The high peaks in the velocity structure correspond
to shock waves, which result from pressure waves that were induced by the
stellar pulsation and have steepened up in the decreasing density structure
above the star. These shock waves accumulate the circumstellar material,
which can be seen by the density peaks (blue) that coincide with the shock
fronts.

Behind these shock fronts, high densities often coincide with temperatures
favourable for dust condensation. Correspondingly, the peaks of the net
growth rate τ−1 (dark green, panel 3) also coincide with the shock fronts.
Dust is formed behind these fronts, which is then accelerated by radiation
pressure on dust, as can be seen in the plot for the radiative acceleration α
(light blue, panel 4), which is strongly coupled to the degree of condensation
fc (black, panel 4). Thus, the shock fronts are additionally accelerated by the
radiation pressure on the newly formed dust grains. The energy dissipation
of these shocks heats the gas (orange line, panel 2).

The next important feature is the backwarming effect, which means, that
the material inside a newly formed dust shell is heated by the inward di-
rected radiation emitted from that shell. This heating through backwarm-
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ing inhibits the dust formation behind a dust shell and leads to the typical
onion-like structures of several separated outward moving dust shells. The
backwarming effect manifests itself as a step in the gas temperature (orange,
panel 2) which usually follows the shock front.

The nucleation rate J (light green, panel 3) is plotted on a logarithmic
scale, because of the very dynamical behaviour of this quantity with respect
to the thermodynamical properties of the environment. Usually, the final
dust particle density (not shown) of a dust shell is determined only by the a
short time period around the moment, where the nucleation reaches its peak
value. The plots of J in Figs. 7.1, 7.2, 7.3, and 7.4 can therefore only help an-
swering such questions as whether relevant nucleation takes place at all, and
in what situation the corresponding peak value is reached. However, since
both, the coupling of the dust complex to the hydrodynamics (Eq. 2.86), and
to the chemistry via depletion of condensable carbon (Eq. 2.6) depend only
on the total amount of condensed carbon, and not on the number density of
carbon grains, an exact quantitative evaluation of the interplay between nu-
cleation and growth on the dust moments K0, K1 and K2 yields no important
insights on the overall structure of the wind.

Due to the sensitive dependence of the nucleation rate on the details
of the dynamical situation, no obvious trend for the influence of the rms
temperature deviation of the microturbulent fluctuations σ can be seen in
any of the figures, because the singular structures at a particular moment in
time are of a much too individual nature.

With respect to the influence of the dust extinction, parametrised by ηopt,
the comparison between the shock waves in Figs. 7.1, and 7.2, which are all
approximately at a similar distance from the star, reveals that – as expected –
the radiative acceleration α (blue, panel 4) reaches higher values for a higher
dust extinction. The same trend is valid for the models in Figs. 7.3, and 7.4,
even if not visible in the presented snapshots, because no comparable dust
shells can be seen at the particular represented moment.

When comparing the two different approaches for gas model and cooling
functions, the model in Fig. 7.1 (tabulated NLTE-cooling and state functions)
corresponds to the model in Fig. 7.3 (T 4-cooling function, ideal monoatomic
gas) and the model in Fig. 7.2 to the one in Fig. 7.4. Apparently, both
model families show a different phase shift between the stellar pulsation and
the details of the dust condensation, which makes a detailed comparison of
the presented snapshots difficult (a detailed analysis of the influence of the
NLTE-cooling and state functions is given in Schirrmacher et al. (2003)).
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8.2 Quantitative analysis

Due to the complex nonlinear coupling of the processes in an AGB-wind
a comparative quantitative analysis of ”snapshots” (like those presented in
Section. 8.1) from different model calculations is very hard to interpret, be-
cause the details of every hydro- and thermodynamical structure cannot be
described by a manageable amount of variables. In order to gain some in-
sights on the overall influence of the temperature fluctuations, in this section
an analysis of the averaged massloss rates will be presented. The mean
massloss rate is an adequate quantity for such an analysis, because it is a
physically meaningful quantity describing the entire model calculation. Fur-
thermore, the massloss rate is the important resulting quantity of these dy-
namical wind models with respect to a subsequent implementation to stellar
evolution calculations (see Wachter 2007), and – in contrast to the detailed
hydrodynamical structure – the massloss rate is an observable quantity.

For the quantitative evaluation, the ratios between the stochastic and
deterministic mass loss rates have been calculated according to

χ20 =
Ṁσ=20K

Ṁdet

, (8.1)

χ40 =
Ṁσ=40K

Ṁdet

, (8.2)

χ60 =
Ṁσ=60K

Ṁdet

. (8.3)

These ratios were averaged over the models for which they could be calcu-
lated. The results are presented in Table 8.1, the models using the tabulated
NLTE-cooling rates and state functions calculated in statistical equilibrium
are referred to as ”NLTE-cooling and state functions” (see Table 2.3, right
column). Nsample denotes the number of different χσ, that were used for the
averaging process. The quantity σn−1(χσ) stands for the standard deviation
of χσ.

The results reveal that for the models calculated using the ideal gas model
and T 4-cooling, a clear trend of increasing massloss rates with an increasing
σ establishes, while for the models with the NLTE-cooling rates and state
functions such a trend can not really be seen. For some samples of these
models, the inclusion of the microturbulent nucleation rate even seems to
reduce the massloss rates. This is not a selection effect, because of the
models that did not run for the T 4-cooling models. For the models using
NLTE-cooling and state functions, the nonlinear coupling of the equation
system describing the wind is a lot stronger, because pressure p and internal
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Table 8.1: Relative changes of the massloss rates under the influence of the
temperature fluctuations.

T 4-cooling, ideal gas, ηopt = 4.4 K−1

σ χ̄σ Nsample σn−1(χσ)
20 1.07 12 0.18
40 1.11 12 0.21
60 1.18 5 0.10

T 4-cooling, ideal gas, ηopt = 5.9 K−1

σ χ̄σ Nsample σn−1(χσ)
20 1.08 13 0.04
40 1.16 12 0.19
60 1.30 3 0.11

NLTE-cooling and state functions, ηopt = 4.4 K−1

σ χ̄σ Nsample σn−1(χσ)
20 0.97 19 0.11
40 1.09 19 0.26
60 1.05 12 0.31

NLTE-cooling and state functions, ηopt = 5.9 K−1

σ χ̄σ Nsample σn−1(χσ)
20 0.92 19 0.17
40 0.97 18 0.35
60 1.03 12 0.48

energy e depend not only on Tgas and ρ, but also directly on Trad and and
the mean velocity gradient

〈
dv
dl

〉
, which makes the physical interpretation of

the singular structures very difficult, especially if the general appearance as
shown in Figs. 7.1, 7.2, 7.3, and 7.4 shows no striking differences neither
at first nor at second sight. Therefore – unfortunately – the origin of the
discrepancies between the values for χσ of the two model families remains
unknown.
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Chapter 9

Summary and Outlook

9.1 Summary

The influence of temperature fluctuations on the dust formation in AGB-
winds has been investigated in order to find a way of implementing fluctuation
effects into dynamical numerical model calculations.

As a first step, the temperature fluctuations were modelled as a stochastic
Markovian process using the formalism developed by Dirks (2000), which
allows the parametrisation of the fluctuation by the two parameters σ (rms
temperature deviation) and λ (correlation time). This approach leads to a
set of coupled Fokker-Planck equations for the conditional probabilities of
the moments of the grainsize distribution function.

This set of Fokker-Planck equations was solved for a set of gas-box models,
which roughly represent the hydro- and thermodynamic environment of an
outward moving wind element in a cool, dust driven AGB-star wind. The re-
sults of these calculations were compared to Monte-Carlo calculations, which
modelled particular representants of the stochastical process. The main im-
pact of the temperature fluctuations turned out to be an increase of the
effective nucleation rate caused by the ”stochastic” injection of seed parti-
cles into the thermodynamical domain of moderate supersaturation, where no
seeds would nucleate in the deterministic case. Furthermore the parameter
space for σ and λ was investigated with the result, that

1. for temperature deviations with σ > 20 K, the fluctuations can remark-
ably influence the dust condensation,

2. for σ > 60 K, the numerical treatment by means of the Fokker-Planck
equations becomes difficult, due to the large integration width along
the T -axis, which is required to obtain reliable results,
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3. for correlation times λ < 104 s, the fluctuation can be regarded as
microturbulent within the frame of the thermodynamical situation in
an AGB-star wind.

The last point of the above mentioned results from the gasbox calculations
suggested that a microturbulent stochastical nucleation rate could serve as
a subgrid model for a dynamical code, since all fluctuations that occur on
time scales shorter than the longest time steps usually used in dynamical
model calculations (≈ 103 s) turned out to be microturbulent. This has
the advantage, that the microturbulent fluctuations can be described by one
parameter only: the rms temperature deviation of the fluctuation σ.

Consequently, microturbulent nucleation rates were calculated and tabu-
lated for various values of σ, and implemented into the Child-code developed
by Fleischer et al. (1992), a code for the selfconsistent modelling of dynami-
cal AGB-winds including hydrodynamics, thermodynamics, a grey radiative
transfer, an equilibrium chemistry and a time dependent treatment of dust
formation and destruction.

Dynamical model calculations have been performed for a sample of 20
sets of stellar parameters and σ = 20, 40, 60 K, and a deterministic reference
for each model. Furthermore, all models have been calculated for two values
of the dust extinction and for two different gas models: one model using the
approach of an ideal monoatomic gas, combined with an analytical cooling
rate, and another model using a more sophisticated approach, that consisted
basically in the determination of all particle densities and energy exchange
rates in statistical equilibrium (see Woitke 1997).

The resulting time-dependent wind models revealed, that for the first set
of models, using the ideal gas model, an increase of the mean massloss rates
of the order of about 5 to 30 per cent depending on the rms temperature
deviation σ could be observed. For the second set of models, using the more
sophisticated gas model, such an increase could not be deduced from the
results of the model calculations.

9.2 Outlook

The concept of a microturbulent description of dust nucleation as presented
in Chapter 6 can be applied to other numerical model calculations, that are
used to model circumstellar envelopes of AGB-stars, as long as a deterministic
dust description based on the moments of the grainsize distribution function
by Gail et al. (1984) as described in Sect. 2.1 is already applied.

An application to other astrophysical situations, where dust formation
takes place – e.g. the atmospheres of gas planets or Brown Dwarfs – would
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require an investigation on whether the microturbulent formulation is ad-
missible in the particular environment or not. Such an investigation could
be performed on the basis of the stochastic formalism by Dirks (2000) as
described in Sect. 2.2, if the following conditions are fulfilled:

1. A deterministic formulation of the thermo- and hydrodynamical en-
vironment is needed as input to gasbox calculations similar to those
presented in Chapter 4 of this work.

2. A set of initial conditions for the (conditional) dust moments is re-
quired, in order to integrate both, the deterministic dust moment equa-
tions (2.5) as well as the set of Fokker-Planck equations (2.66) for the
stochastic evolution of the dust moments.

For atmospheres that are in principle in hydrostatic1 equilibrium, the
first point includes the important problem of finding a time scale for the
dust formation. In the case of a convective atmosphere of a Brown Dwarf,
this time scale might be given by the convective motion of the gas elements.
However, in this case, the problem arises, whether further turbulence can
be expected within a given convection element or not. If this is the case, a
subgrid formulation might be found, which allows to interpret the results of
a subsequent application of the stochastic formalism as model for a concrete
convection cell. If it cannot be assumed, that fluctuations occur within the
particular convection element, the results would have to be interpreted as en-
semble averages. Such ensemble averages will probably represent reasonable
values for the mean density or temperature of the atmosphere, with respect
to the details of the chemistry of a particular marker molecule, a hydro-
and thermodynamical structure that results from an averaging process over
an ensemble of possible situations might very well lead to completely wrong
results.

The second point also yields some problems in the framework a hydro-
static atmosphere. Whereas in a wind situation, the start of the integration
can easily be set so close to the star that a dust-free starting value can be
expected, the choice of reasonable starting values can be very problematic
within the context of a convective hydrostatic atmosphere. Again, if looking
at particular convection elements, this problem could be solved by start-
ing the integration sufficiently deep in the atmosphere, where the gas is hot
enough to assure a dust-free situation, but whether this assumption is jus-
tified or not could be difficult to judge, because this would depend on the
details of the applied convection theory. Another effect that might complicate

1”Hydrostatic” in this context means, that the object develops no stellar wind.
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the situation in hydrostatic atmospheres are processes like the sedimentation
of large dust grains which would not only complicate the treatment of the
problem using moments of the grainsize distribution function, but could also
lead to an additional injection of grains in deep, dust-free regions that would
constitute an extra contribution to nucleation, which i) delivers seed particles
that are larger than the critical cluster, and ii) could not be calculated by the
thermodynamical properties of the ”receiving” gas element alone, but would
depend on the details of the dust-formation taking place in higher parts of
the atmosphere, outside the convection element under consideration.
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van, Heike Richter, Akemi Tamanai, Uwe Theil, Astrid Wachter, Jan-Martin
Winters und Peter Woitke. Auch Herrn Prof. Dr. Kegel möchte ich für alle
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