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Chapter 1

Introduction

In this work, the influence of temperature fluctuations on the dust formation
in dust driven winds of Asymptotic Giant Branch (AGB) stars is investigated.

AGB-stars are intermediate mass stars in a late stage of their stellar
evolution. They are usually unstable against radial pulsations, which develop
in their convective stellar envelope. Furthermore, AGB-stars often develop
strong stellar winds, which are driven by radiation pressure on dust, which
forms in their pulsationally elevated atmospheres. These winds lead to a
substantial mass-loss of the star, which results in an evolution of the AGB-
star to a planetary nebula with a White Dwarf — the former core of the
AGB-star — as its central object.

The dust driven winds of AGB-stars play a central role for the evolution
of intermediate mass stars. Furthermore, they constitute an important input
of dust grains and heavy elements into the interstellar medium, and play a
key role in the modelling of the chemical evolution of galaxies.

Since the main driving mechanism of these dust-driven winds is the radi-
ation pressure from the stellar radiation on the newly formed dust particles,
the details of the dust condensation process are important for a quantitative
analysis of these objects.

A standard method to investigate the physical processes in AGB-winds
are self-consistent numerical model calculations, that solve the coupled equa-
tions of hydrodynamics, thermodynamics, radiative transfer, chemistry and
time dependent dust nucleation, growth, and evaporation for pulsating AGB-
stars (see Fleischer et al. 1992; Fleischer 1994; Winters et al. 1997; Woitke
et al. 1999; Jeong et al. 2003; Schirrmacher et al. 2003; Dorfi & Hofner 1991;
Gautschy-Loidl et al. 2004; Woitke 2006). Despite the fact, that the stel-
lar pulsations originate inside the turbulent convective stellar envelope, the
influence of temperature fluctuations has, so far, been ignored. The spatial
and temporal resolution of such numerical hydrodynamical calculations is
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limited, and any processes that take place on time scales shorter than the
numerical time-steps, or on spatial scales smaller than the typical grid zones
must be described by subgrid models of these processes. In this context, the
possible presence of fluctuations is usually ignored by saying, that all pre-
sented numerical quantities represent mean values, which are averaged over
all subgrid scales. While this assumption is usually very good for hydro-
dynamical processes, and leads to realistic hydrodynamical wind structures,
the complete neglection of the influence of possible temperature fluctuations
can lead to quite large errors for processes, which show a strong asymmetric
temperature dependence, like chemical reaction networks, or the nucleation
and growth of dust particles.

The key feature, that motivates the investigation of the interplay of dust
formation and temperature fluctuations, is the circumstance, that the seed
particles will only nucleate from the gas phase, if the supersaturation ra-
tio exceeds a certain critical value S, while an existing dust particle will
continue to grow also at moderate supersaturations. Since, the supersatura-
tion ratio S depends very sensibly on the temperature, a situation is realised,
where the presence of temperature fluctuations could lead to substantial dust
condensation in a situation, where no dust nucleation would occur under the
assumption, that the mean temperature represents the real temperature on
all subgrid scales.

In order to investigate the influence of the temperature fluctuations, the
dust formation is first formulated as a stochastic process using a formalism
developed by Dirks (2000). This formulation leads to a system of Fokker-
Planck equations for the probability distribution of the moments of the grain-
size distribution function. Since this set of Fokker-Planck equations cannot
be implemented directly into self-consistent numerical model calculations de-
scribing an AGB-wind, a series of gasbox-calculations is presented, in order
to investigate i) of what order of magnitude the temperature fluctuations
would have to be in order to have a remarkable influence on the dust for-
mation, and ii) at which time-scales of the correlation time a microturbulent
description of the fluctuation is admissible. The gasbox-models are also com-
pared with Monte-Carlo simulations of the same stochastic process. Guided
by the results of these gasbox-calculations, a one-parametric microturbulent
approach is developed and implemented into self-consistent, time-dependent
numerical model calculations. Subsequently, a large number of dynamical
wind models was calculated and evaluated. The results are ambivalent, de-
pending on the details of the underlying microscopic description of the gas.
For an ideal monoatomic gas with an LTE-cooling function, the results show
a clear trend of increasing massloss rates with an increasing strength of the



temperature fluctuations. For models with a more sophisticated gas model
combined with tabulated NLTE-cooling functions, this trend was not as clear.

This work is embedded in the scientific work of the Zentrum fiir As-
tronomie und Astrophysik (ZAA) of the Technical University of Berlin in
several ways. The investigation of dust formation in astrophysical situations
has a long standing tradition at the ZAA, in particular the development
of a method, which describes the dust complex by moments of the grain-
size distribution function (see, e.g. Gail et al. 1984; Gail & Sedlmayr 1985,
1987a, 1988, 1987b; Patzer et al. 1998), has made it possible to implement
a time dependent description of dust nucleation, growth, and evaporation
into self-consistent hydrodynamical model calculations of AGB-stars (see,
e.g. Fleischer et al. 1992; Winters et al. 1994b; Fleischer et al. 1995; Winters
et al. 1995; Arndt et al. 1997; Schirrmacher et al. 2003; Jeong et al. 2003),
and other astrophysical objects like Brown Dwarfs (see, e.g. Helling et al.
2001, 2003), or RCorBor-stars (see, e.g. Goeres & Sedlmayr 1992; Woitke
et al. 1994). The stochastic description of the dust formation applied in
this work was developed by Dirks (2000) based on a similar method for the
stochastic treatment of radiative transfer developed by Gail et al. (1975b),
(see also Gail et al. 1976, 1980, 1975a; Gail & Sedlmayr 1974). One idea of
this work is to find a way to make the stochastic dust description developed
by Dirks (2000) suitable for implementation into self-consistent hydrodynam-
ical model calculations. Since, with the so-called CHILD-code, a running and
well-tested code for the self-consistent time-dependent modelling of carbon
rich AGB-winds is available at the ZAA, it seemed a natural choice, to aim
for an implementation of the stochastic dust description into this code.

The structure of this work is as follows. In Chapter 2 the basic physical
concepts are presented and discussed, in Chapter 3 the numerical methods
used in this work are described, the results of the gasbox models are pre-
sented in Chapter 4 and discussed in Chapter 5. Guided by these results,
the construction of a tables for a microturbulent nucleation rate is described
in Chapter 6. This microturbulent nucleation rate is then implemented into
self-consistent dynamical wind calculations, the results of which are presented
in Chapter 7 and discussed in Chapter 8. Finally, a summary of this work
and an outlook for a possible future development is given in Chapter 9.
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Chapter 2

Basic Physical Concepts

2.1 Dust formation in astrophysical situations

Dust is found in a wide variety of astrophysical situations - from planetary
atmospheres to the intergalactic space. Whenever dust is present in a hydro-
dynamic medium, it dominates its optical appearance, because it effectively
absorbs visible light and reradiates the energy as thermal IR-emission, an
effect which can be observed as extinction of the light of distant stars in the
main plane of the milky way. This affects not only the optical appearance
of many astrophysical objects, but can also dominate their energy balance:
the collapse of an interstellar cloud to a protostar, for example, requires the
cooling effect of dust, which consists in the circumstance, that dust grains
cool by radiating in the IR, and are subsequently reheated by collisions with
the gas, which in turn has no effective way of cooling by radiation at the
temperatures typical for interstellar clouds.

Moreover, dust is not only important for the energetical and momentum
coupling between a hydrodynamical medium and a trespassing radiation-
field, it also plays a very important role for the chemistry of the gas, acting
as a catalyzer for many chemical reactions: the formation of Hy from atomic
hydrogen at typical interstellar densities, for example, would take longer than
the typical life time of a cool molecular cloud. The ability of dust grains to
collect interstellar atoms and molecules on their surface, and moreover the
ability of the solid bulk material of the grain to absorb the excess energies
of exothermic reactions considerably enhance the potential of the interstellar
material to produce complex organical and anorganical molecules.

In this work, I used the dust moment method, developed by Gail, Keller,
& Sedlmayr (1984) in the form described by Gauger et al. (1990), where dust
formation is described as a two step process consisting in grain nucleation
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and subsequent growth to macroscopic particles. In this section, I want to
resume the microphysical model presented in Gail et al. (1984) and Gauger
et al. (1990) and the references therein, in order to make clear how exactly
the dust moments Kj, the nucleation rate Jy, and the net growth rate 7~
are calculated throughout this work, and especially how they depend on the
thermodynamical input parameters Tg,s, Thust, and p which will be the free
variables in all hydrodynamical studies presented in chapters 4, and 7.

A carbon rich situation is assumed, i.e. it is assumed that the number
density of carbon atoms is higher than that of oxygen atoms. Thus, due to
the high binding energy of the CO-molecule, the oxygen will be effectively
locked in CO and is therefore not available for the formation of high temper-
ature condensates, which could condense to solid grains under astrophysical
thermodynamical conditions. Grains will then be formed only by the excess
carbon, which is not locked in CO. Physical objects where a carbon rich
dust chemistry is observed are, for example, C-stars, i.e. stars during the
late stages of their evolution along the Asymptotic Giant Branch (AGB) or
WC-stars, i.e. carbon rich Wolf-Rayet-stars.

Mathematically, the formation, growth and evaporation of dust particles
are described by the time development of moments of the particle size dis-
tribution f(N,t). In order to be able to describe the dust complex via a
one dimensional distribution function, which depends on the particle size N
only, i.e. on the number of monomers that form the particular grains, it is
obviously necessary to assume, that the grains actually consist of a number
of identical monomers and of these identical monomers only!'. Therefore,
the carbon is assumed to condensate to graphite clusters. The formation of
carbon rich dust via PolyAromatic Hydrocarbons (PAH’s) cannot be investi-
gated in the framework of this method, because the resulting grains are not
likely to consist of similar monomers, which prevents the description via a
distribution function of the form f(N,t). Already the description of dust nu-
cleation via PAH’s would require the investigation of the chemical pathway
leading to the critical cluster (see e.g. Goeres 1993), a task which goes well
beyond the scope of this work. For the same reason, the method cannot be
applied straight forward to an oxygen-rich situation, where dust formation
takes place via inhomogeneous growth, and the need of keeping track of the
stoichiometric composition of the grains, requires the use of a more sophis-
ticated distribution function. (A deterministic self-consistent model of an
O-rich AGB star is presented by Jeong et al. 2003, .)

!'The method assumes that the grains consist of identical monomers, this does not
require that nucleation, growth and destruction are described by processes involving
monomers only. Indeed, in this work not only C-atoms, but also Cy, CoH and CoHs
are assumed as species contributing to nucleation and growth via chemical reactions.
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2.1.1 Some general remarks about condensation pro-
cesses

The saturation pressure pg,(r) over a curved surface is always greater than
that over a flat surface p,,. In thermal equilibrium pg, is given by the
Thomson-Helmholtz-equation:

2
In Psat (7’) _ Osurf UMy : (21)
Poo rpkgT

where o4, is the surface tension and um, the mass of the monomer. Thus,
for a set of thermodynamic variables (T',p) there will be a specific grain size
ret @t which grains will be in stable phase equilibrium with the gas phase.

Grains of the size r. are called critical clusters. Grains smaller than the
critical cluster will evaporate, whereas grains larger than the critical cluster
will grow by catching monomers from the gas phase. Since the condensable
material in the gas is depleted by the growth process of the particles larger
than reit, ree Will increase according to Eq. (2.1) leading to the evaporation
of more grains and so on, until an equilibrium between the new solid phase
and the depleted gas establishes, where the partial pressure of the monomers
corresponds to the saturation pressure over the solid surface, while the partial
pressures of the remaining i-mers should be in chemical equilibrium (CE)
with the monomers.

The supersaturation ratio is defined as the ratio between the partial pres-
sure of the monomer p; and the pressure of a saturated vapour of a flat surface
Doo:

P1
S -~ (2.2)
This definition of the supersaturation ratio yields the problem, that in a
situation with S = 1 the self-nucleation of particles from the gas phase is
impossible, because the size of the critical cluster would be infinite. Thus,
for nucleation to take place in a seed free environment, a finite supersat-
uration S > 1 is required, which should be of that order of magnitude,
that allows the barrier of the critical cluster 7. (S) size to be reached by a
chemical fluctuation process. However, for the reasons sketched above, this
state of supersaturation is intrinsically thermodynamically unstable, because
the newly formed seeds will immediately start growing und thus, deplete the
gas phase from condensable monomers. As a rule of thumb, the ”easier” the
dust nucleation takes place, the less particles form, because the growth of
the big supercritical particles will usually consume the material faster, than
the formation of the critical clusters, which constitutes a bottle neck of the

reaction chain.
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The fact, that nucleation is a phenomenon of a thermodynamical (and
chemical) non-equilibrium situation yields the problem, that the description
of this state via equilibrium quantities alone might not be sufficient to catch
the essential aspects of the process.

2.1.2 The grain size distribution function

The grain size distribution function f(N,t) yields the number of grains of
size N at the moment in time ¢ per hydrogen core?. f(N,t) carries the
complete information about the dust complex at a given moment in time.
All other physical quantities concerning the dust complex can be derived by
the knowledge of f(IV,t). For this purpose, it is very helpful to define the
following moments of the distribution function (see e.g. Gauger et al. 1990,
Eq. 1)3:

o0

Ki(t> = ZNi/df(N7t)v (23)

Ny

with NN, corresponding to the lower size limit of the distribution function,
i.e. to the minimum cluster size of a macroscopic particle. d is the spatial
dimension of the particle. In this work, all particles are assumed to be
spherical, i.e. d = 3. The first four moments are:

KO(t> = Zf(Nvt)v (24>
Kt = SNV,

Ky(t) = i N2 f(N,t),
Ny

These moments can be used to express the following physical quantities (see
Gail et al. 1984, Eq.3.4 — 3.8):

2The quantities are normalised to the total number density of hydrogen cores ng =
ng + 2nm, + . ... Thereby the moments K; are independent of the local mass density and
of the dissociative state of the gas.

3The hats used by Gauger et al. are omitted in this work.
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1. particle density nq of grains of size > Ny:

na = Ko,
2. average grain radius:

K
<T‘> = TO?{}

with ¢ as the (hypothetical) radius of a monomer,

3. average grain surface:

Ky
<AN> - 471—7’8?()7

4. average particle size:

K3
<N> = K Y
0
5. number density n. of monomers condensed into grains of size > Nj:

ne = Kg.

In principle, the moments K, carry the same information as the distribution
function f(N,t) itself, but only, if all moments are taken into account, i.e.
1= —00,...,—1,0,1,2,...,4+00. However, for the description of the dust
complex at the theoretical depth desired in this work, the first four moments
are sufficient (see Gail et al. 1984).

The time evolution of the first four dust moments is given by (see Gauger
et al. 1990, Eq. 40)

dK,
W = JNZ (25&)
dK; i 11

= NyaJ -—Ki . 2.5b
q et g (2:3b)

In the case of dust growth, Jy, is the creation rate of clusters of size N,.
It is then assumed that Jy, corresponds to the stationary nucleation rate
J, calculated according to classical nucleation theory (see Gail & Sedlmayr
1984, and references therein). In the case of dust evaporation, Jy, is the
corresponding destruction rate. In contrast to the nucleation rate, the de-
struction rate is a function of the dust distribution function f(N,t) itself,
because the amount of grains, that can be destroyed in a particular situation
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will obviously depend strongly on the amount and size of the grains present
at the particular moment. The actual calculation of the grain destruction
rate is described in Sect. 2.1.6.

771 corresponds to the net growth rate, i.e. it also includes the effects

of dust destruction. In this work, dust destruction is assumed to take place
via thermal evaporation and chemical sputtering. If other processes should
be included, it must be checked whether their dependence on the grain-size
allows an inclusion into 77!, Otherwise, a mathematical treatment using the
moments of the distribution function might no longer be possible.

Mathematically, Eq. (2.5a) is a closing condition for the equation system
Eq. (2.5b), so that the moments with negative i’s do not have to be evaluated.
Another closing condition for the upper moments is not needed, since the K;
depend only on lower moments and Jy,, but not on any higher moments.
Nevertheless, for obvious physical reasons, the consumption of carbon in the
gas phase by condensation to the solid phase must be taken into account,
which gives another equation linking the chemical abundance of carbon cores
in the gas phase e¢ to the moment K3

ec(t) = eco — Ks(1), (2.6)

where €c is the carbon-core abundance of the dust-free situation.

2.1.3 Nucleation

In the framework of classical nucleation theory (e.g. Feder et al. 1966), the
nucleation process is regarded as a random walk problem of clusters in the
cluster size space. A cluster that has reached the critical cluster size will
most probably continue to grow to macroscopic dimensions. Smaller clusters
are more likely to reevaporate. Therefore, the nucleation rate J, is assumed
to be the formation rate of critical clusters in a quasi stationary equilibrium
situation. Stationary in this case means, that the clusters are assumed to
grow fast from the critical size N, to the size N, - the minimum size of a
macroscopic particle, which is also the lower edge for the calculation of the
moments K;. This rate is given by (see Gail et al. 1984, Eq. 2.17)

J? = BANZE(N,) (2.7)
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where Ay denotes the surface of a grain of size N, and 3 denotes the rate of
i-mers growing onto a cluster of size N

No

B = > wmli)c(i)i*3s;(N) (see also Gail et al. 1984, Eq.2.14) (2.8)

=1
No
= Y/ knTps/2mmyic(i)i* oy (2.9)
=1
2 s
= \JhpTps/2m Y ———i3¢(i), (2.10)
i—1 VALY

Ny is the highest i-mer that plays a role in the nucleation process. In Eq. (2.9)
the sticking coefficient s;(IN) from Eq. (2.8) has been approximated by the
evaporation coefficient «; of the i-mer from a flat graphite-surface. Z is the
Zeldovich-factor (see Gail et al. 1984, Eq. 2.18)

1 oome| "

nc
J=|— — ) 2.11
(27r ON?2 N) ( )

E(N ) is the equilibrium distribution of dust grains of size N in thermal equi-
librium (see Gail et al. 1984, Egs. 2.6, 2.9, and 2.7)

o 0
¢(N) = njexp {(N —1)InS — ?N(N - 1)2/3} , with (2.12)
0 oo and (2.13)
N = T A/ .
L ()
O = Osurdnrl/ks, (2.14)

where o4, is the surface tension of the grains material, Nq is the particle size
for which ogu,(IN) reduces to one half of the value of oy, for bulk material,
and N, is the critical cluster size calculated by (see Gail et al. 1984, Egs. 2.15
and 2.16)

1/2 13 3
N, oo N, \'? N,
N, =1 ’ 1 1+2 -2 2.1
+ 3 + + <N*oo) N*,oo ( 5)
20 \°

and S is the supersaturation ratio given by
mksT  p

S = ,
psat psat

(2.17)
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with the particle density of the monomers ny, their corresponding partial
pressure p; and the saturation pressure pg,; of the monomers with respect to
the grain. In this work, ps, is approximated by the saturation pressure of

monomers in phase equilibrium over a flat surface Io?sat(l) (see Patzer et al.

1998, Appendix A)

]Ojsat(]-) = exp (AfGl <8)R_TAfG (1)> P . (2.18)

p~ denotes the pressure of the standard state, A;G| (s) is the standard molar
Gibbs free energy of formation of the solid phase (referred to the standard
state), and A¢G" (1) is the standard molar Gibbs free energy of formation
of the monomer. The temperature used in (Eq. 2.18) corresponds to the
temperature of the solid, which is supposed to be in thermal equilibrium with
the gas phase. If the condition of thermal equilibrium is violated, the gas and
the solid phase can have different temperatures. In this case, the pressure p;
of the monomers must be calculated using the gas temperature Tj,s, while
the saturation pressure pg,; should be calculated with the dust temperature
Tyust- Since the influence of the dust temperature on the supersaturation
ratio is very strong, I want to make some remarks to the choice of the value
for this temperature.

e In the case of local thermal equilibrium (LTE, see Sect. 4.1) the situa-
tion is simple: dust and gas have per definition the same temperature
Taust = Tgas~

e In non-LTE situations, Ty, might depend on the particle size Ty, =
Taust(IV). However, for the moment method we need to assume that
Taust(IV) is constant for N > N,, because otherwise the validity of
Eq. (2.5b) breaks down. One choice in this work for T4, is, for exam-
ple, the deterministic mean temperature 7', a choice which corresponds
to the assumption that the grains do not follow the fluctuations of the
gas temperature, (see Sect. 4.2). In the dynamical calculations pre-
sented in Chapter. (7), Tqust is usually set to the radiation temperature
T'.aq for the calculation of the growth rate 771, because under conditions
typical for AGB star winds the energetic coupling of the macroscopic
grains to the radiation field is stronger than that to the surrounding
gas.

e For the calculation of the nucleation rate however, the essential tem-
perature is that of the critical cluster. Since the critical cluster is very
small, in most parts of this work, its temperature is assumed to be equal
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to the gas temperature Tg,s. Therefore, in most cases, the supersatu-
ration ratio for the nucleation rate is calculated with Tyus = Thas. In
order to investigate the influence of the temperature of the critical clus-
ter on the nucleation rate some models were calculated with Tius = 7'
for the nucleation rate. These results are presented in Sect. (4.2).

Throughout this entire work, the supersaturation ratio S is calculated using
a fitting polynomial based on molecular data from the JANAF-tables, cal-
culated by H.-P. Gail, in the version that is used in the CHILD-Code (e.g.
Fleischer et al. 1992; Fleischer 1994; Schirrmacher et al. 2003).

2.1.4 Growth and Evaporation Rates

In principle, the net growth rate 771 is calculated according to Eq. (18) from

Gauger et al. (1990), assuming C, Cy, CoH and CoHy as growth species, it is

the difference between the (pure) growth rate Tg;l and the evaporation rate
-1

TBV

-1 _ -1 -1
T =Ty — Tey -

According to Eq. (20) from Gauger et al. (1990), the growth rate 7,;' is given
by

I

Tt = Y iAo (i)a(i) f(i 1) + (2.19)
1;1 .

D ALY v (i, m)al, (i) m.

i=1

¢ is the number of monomers added to an arbitrary cluster, m labels the
individual chemical reactions contributing to the grain growth, A; = 4mr2
is the (hypothetical) monomer surface, vy, is the mean thermal velocity of
the corresponding species, a(i) and af, (7) are the sticking coefficients of the
corresponding species. Note, that in this approach the growth rate is in-
dependent from the size of the growing clusters, if this was not the case,
Eq. (2.5b) would lose its validity. Assuming as growth processes

a) the homogeneous growth by association of C and Cy onto the cluster
surface (first term in Eq. 2.19) and

b) the chemical growth via the reactions (second term in Eq. 2.19) :
Cy_os+CyH — Cy+ H and Cny_g+ CyHy — Cy + Hy
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Eq. 2.19 becomes
Tg_rl = Alvthpacnc + (220)
2A1vth,02a02n02 +
2A1Ven,conOG, g CoH +
2 A1 Vth,CoHy QUG 1, TV CoHa -
Using
kBTgas

2.21
2mm ( )

Uth(i) =

we obtain:

Nce,H + ——

(2.22)

Tﬁl—A kTgas OéC n _'_
e B WA W o

According to Gauger et al. (1990) (Eq. 21), the evaporation rate 7.;! is
given by
I

11

b= ;zAlvth( i) f (i, t)SZb o, (i) + (2.23)
I M; 1 1
;ml;%(z,m)w o ()i 7 i al (i, m).

The a.(i), af(i,m), b; and b, are quantities describing non-TE effects (see
Gail & Sedlmayr 1988, Eq. (18) and Eq. (22)); the evaluation of these coef-
ficients is discussed in section 2.1.5.

Assuming as destruction processes

a) the evaporation of C or Cy from the grain (first term in Eq. 2.23) or

b) chemical sputtering via the reactions (second term in Eq. 2.23) Cy +
H — CN_2 + CQH and CN + H2 — CN_2 + CQHQ,

Eq. 2.23 becomes

. 11

Tow = Arvimcacnog S e —c+ (2.24)

1 1
2A1Uth,02 aCQnCQ ? b_a*,CQ +
Co

1 1
2A1Uth,CQHOé%2an2H§—b Oy CoH T
CoH

1 1
21417~)th ,C2Ho O5CQH2 nCzHQ SZ b &*,CQHQ'
C2Hso

ev
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2.1.5 Chemistry

In order to determine the particle densities of the dust forming species, a
description of the chemical processes in the gas in needed. Following a gas
kinetic approach would require the solution of a chemical rate network, where
all reactions involving a chemical element contributing to the species of in-
terest, contribute with a separate rate equation, balancing forward and back-
ward reaction. Since every rate equation depends on the particle densities of
all species involved in the particular reaction, all equations involving a partic-
ular species are coupled and have to be solved together. Besides the fact that
the solution of such a rate network is very tricky and time consuming, the
reaction rate coefficients are usually unknown — especially for astrophysical
thermodynamical situations — and available estimates are only very rough
approximations. The solution of all these problems goes well beyond the
scope of this work.

Therefore, throughout this work, the gas is assumed to be in chemical
equilibrium (CE), i.e. we expect the chemistry to be in a stationary state,
where all forward reactions rates are balanced by the corresponding back-
ward reaction rates. In this case, the local particle density of each species
is constant and can be calculated by the Law of Mass Action. The partial
pressure of each species can then be calculated from the partial pressure
of its constituents and a specific constant for the particular species called
the dissociation constant D. The dissociation constant can be calculated by
the forward and backward reaction constants of the chemical reaction. Since
atomic species cannot dissociate the corresponding constants can be formally
set to 1.

Using the assumption of CE, it is possible to calculate the coefficients
ag(i,m), b; and bf,, describing the non-equilibrium effects, introduced in
section 2.1.4.

Taking Eq. (18) from Gail & Sedlmayr (1988)

a.(N,i) = (2.25)

(N 4,3, Taust) | { Taust(N)
Oé(N - i, Z) Tgas 7

the quotient of the rate coefficients (N —1, 4, Tyust) /(N —i, i) becomes 1 (in
CE), and neglecting the size dependence of the dust temperature (cf. section
2.1.3) the a..(i) can be approximated by

T us
(i) = a, = | Yfgt (2.26)
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According to Gail & Sedlmayr (1988) (Eq. 22), the coefficients a$(i, m)
are given by

(2.27)

where the "circled” quantities are the equilibrium rates of clusters of size ¢
growing onto a grain? via the reaction m; the ”uncircled” quantities describe

the real rate, i.e. in CE a = & and 0= 5 and therefore
as(i,m) = 1. (2.28)

The departure coefficients b; and 0f,, are calculated according to Appendix A

)

from Gauger et al. (1990). Eq.(A9) therein states

o n(l) B n('l) Di(Tgas) Tdust
bl a (ﬁ(l)) ﬁ(z) Di<Tdust) Tgas ‘ <229>

This time, the n stand for the equilibrium values, while the n are the "real”
values; again in CE we have n = n, the first two terms become unity, and we
get

Di (Tgas> Tdust

b; —_— , 2.30
D'L’ (Tdust) Tgas ( )
Tdust . . .
bc = 1-——, because C is an atomic species,
Tgas
b DC2 (Tgas) Tdust
Ca

DCQ (Tdust) Tgas .

Eq. (A12) from Gauger et al. (1990) states

o\~ (52) (Fe)
n ﬁi»m Di,’m Tdust
B ( ) W\ [ Phm(Teas) \ (2.31)
(ﬁ) (D;,,n(Td_ust))

again the first two terms involving the deviation of the particle densities

from CE vanish; Dy, is the dissociation constant of the molecule formed by
the backward reaction of the growth reaction m. Considering the chemical

4Like in Gauger et al. (1990) the dependence of these quantities from the grain size N
is neglected in this work.
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growth via the reactions Cy_s+CyH — Cn+H and Cy_o+CyHy — Cy+Hy

and chemical sputtering via the corresponding reverse reactions, we obtain:
DCQH (Tgas)

C DCQH(Tdust) _ DCQH(TgaS)

G2 % B DCQH(Tdust)

(2.32)

Doy Hy (Tgas)

o D02H2 (Tqust) o DCQHQ (Tgas)DHz (Tdust>

CC'Q H2 - DH (T as) o )
DH;(ngust) Dy, (Taust) D, (Tgﬂs)

2.1.6 Dust destruction

In principle, the determination of the dust destruction rate, i.e. the number
density of dust grains that shrink by evaporation to a size below Ny, requires
the knowledge of the dust distribution function f(N,t). Unfortunately the
reconstruction of f(N,t) from its first four moments K; (i = 0,1, 2, 3) alone
is usually impossible, which makes it necessary to keep track of the distribu-
tion function along the calculation. Gauger, Gail, & Sedlmayr (1990) have
presented a method, where the dust destruction is calculated from the his-
tory of the evolution of the dust moments Kj. The key idea of this method is
a variable transformation of the equation system (2.5a,2.5b) describing the
temporal change of the dust moments Kj, which will considerably facilitate
the treatment of evaporation. The time evolution of the dust moments on
the usual time-axis is given by Eq. (2.5a,2.5b)

dK,
2o g
dt Ne
K, s il

Ny + LS KL 9.33
dt eIt g (2.33)

Introducing the dimensionless particle radius a by

ul=

a=N (2.34)

the change of a of for a given dust particle is given by

da 11 11

(=22, 2.35

at  dr ( 3 T> (2.35)
The important point for the applicability of the described method is the fact
that the temporal change of the dimensionless particles radius da/dt for any
given particle is independent of its current value a, i.e. da/dt is equal for all

particles in a given volume element and the physical processes of growth or
evaporation correspond to a constant shift of the whole distribution function
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f(a,t) in the a-space®. A direct consequence of this behaviour is that the

shape of the function (and all of its moments Kj;) remains untouched except
for the "material” inserted by nucleation or removed by grain destruction
at the lower edge a,. It is therefore very useful to perform a variable trans-
formation on the equation system (Eq. 2.5b). Instead of the variable ¢, a
variable ., corresponding to the maximum particle radius of the grains in
a given volume element is introduced. At a given point in time ty, when
the condensation process sets in, the maximum particle radius will be that

corresponding to the cluster size a, = NE, therefore ayax(tg) = a,. For an
uninterrupted growth process, each point in time t; after 5 can be labelled
by the particular value of the size of the biggest particle ayax(t1), irrespective
of how erratic the growth process may have proceeded in time:

1 [ 1
max t1) = dt, . 2.36
(1) d/to T (236)

During the phase of dust growth, the time evolution Kj(t) is stored as
a function of apayx, i.e. as Ki(amax). In a phase of evaporation, the dimen-
sionless particle size of the biggest grain a., shrinks in exactly the same
way as all others, namely according to Eq. (2.35). Since in the a-space all
particles shrink exactly alike, the effect on the K is the same, as if they
had never grown to ap... The evaporation process corresponds to a shift of
the dust distribution f(a, amax) to smaller a by an amount da = 1/3771dt.
Thus, in case of evaporation, the new dust moments K;(tnew) can be calcu-
lated by simply restoring them to their value at the time corresponding to
Ki(amax(thew)), after amax(thew) has been calculated according to Eq. (2.35).
The dust destruction rate J,, is then given implicitly by

1

Jev:A_t(

Ko(toa) — Ki(tnew)) - (2.37)

2.1.7 Input data needed for the dust description

Table 2.1 gives an overview of the material data required for the calculation
of dust nucleation, growth and evaporation.

5Obviously the newly formed dust needs to be inserted at the lower edge.
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Table 2.1: Material constants required for the dust cal-

culation

] Symbol \ Value

\ Source

\ Description

Q; ac = 0.37 Holzel et al. (1968) sticking coefficients
ac, = 0.34 (actually the data in Holzel
et al. (1968) correspond
to the evaporation coeffi-
cients.)
log(eg) | 0.00 Allen (1973) hydrogen abundance
log(epe) | -1.00 Allen (1973) helium abundance
log(eo) | -3.18 Allen (1973) oxygen abundance
€c ec = [C/0]eo carbon abundance, usually
given by the parameter
[C/0]
To 0.128 nm Gail et al. (1984) hypothetical monomer ra-
dius
Ay A= 47rr(2) hypothetical monomer sur-
=20.7 10716 ¢m? face
O surf 1400 erg cm™2 Gail et al. (1984) surface tension of the grain
material
Ny 5 Gail et al. (1984), | particle size for which
Eq. (5.4) Osurt (V') reduces to one half
of the value of oy, for bulk
material
D;,D; , Chase Jr. et al. (1985) | dissociation constants
(JANAF)
A¢G1 (s) Chase Jr. et al. (1985) | standard molar Gibbs free
(JANAF) energy of formation of the
solid phase
AtG (1) Chase Jr. et al. (1985) | standard molar Gibbs free
(JANAF) energy of formation of the
monomer
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2.2 Temperature Fluctuations

Fluctuations are ubiquitous in the universe. They can, for example, be a
result of various types of waves, stellar convection or turbulent velocity fields.
In the circumstellar envelopes (CSE) of AGB stars, turbulent dissipation of
the shock waves, that originate from the stellar pulsation, and steepen up in
the outer atmosphere, seems to be a good candidate for causing temperature
fluctuations. Furthermore, it has to be pointed out, that the stellar pulsation
itself is generated in the convective stellar® envelope, which also makes it
plausible to assume the presence of fluctuations.

Due to the limited spatial resolution of hydrodynamical model calcula-
tions, fluctuations that occur on scales smaller than the scale of the grid
cannot be resolved by the code. Usually, these fluctuations are ignored by
interpreting all hydrodynamical quantities as mean values averaged over any
subgrid structure. Whereas this procedure gives usually good results for typ-
ical hydrodynamical investigations, the complete ignorance of any small scale
thermodynamical features might camouflage the possibility of certain chem-
ical processes that are very sensitive to temperature fluctuations. Especially
dust formation in a dust free situation, which requires a high supersaturation
ratio S > 1 for nucleation, whereas the growth of the dust particles will con-
tinue as long as there is any supersaturation S > 1, yields the possibility that
the use of averaged values for the temperature might strongly underestimate
the potential of the circumstellar gas to form dust out of the gas phase.
Since

e there is no satisfactory theory for describing the exact nature of the
temperature fluctuations induced by convection, turbulence or dissipa-
tion, and

e a later application for hydrodynamical sub-grid modeling will require
a description which depends on a few parameters only,

in this work, an approach is chosen, which describes the fluctuations by two
parameters: o, the rms temperature deviation, and A the correlation time of
the fluctuations. It is not the scope of this work to determine values of these
parameters from the physical processes that might cause the fluctuations,
but to investigate the influence of the temperature fluctuations on the dust
formation, in order to answer questions like:

e How large would temperature fluctuations have to be, in order to have
a significant impact on the dust formation?

6The circumstellar envelope is a region outside the star, starting above the photosphere,
the stellar envelope lies inside the star below the photosphere



2.2. TEMPERATURE FLUCTUATIONS 21

e How large would temperature fluctuations have to be, in order to have
a significant impact to the hydrodynamical structure of a stellar wind?

e What influence do the time-scales of the fluctuations have?

The approach presented in the following sections, will help to answer these
questions for simple gas box models (see Sect. 4) and guided by these answers
a method will be presented in Sect. 6 which will allow for the inclusion of
the effects of temperature fluctuations into self-consistent time-dependent
models of AGB-star winds (see Sect. 7).

2.2.1 Description of the fluctuations

The stochastic approach presented in this section has been developed by
Dirks (2000), based on works from Gail, Sedlmayr, & Traving (1975b) (also
Gail et al. 1976, 1980) about a stochastic formulation of the radiative transfer
problem. In this section, I will give a brief summary of the method in order
to discuss the implications of the necessary assumptions in Sect. 2.2.2.

Starting from a parametrised description of the temperature fluctuations
as a Markov-process, in this section, a 6-dimensional Fokker-Planck equation
(2.55) will be derived that describes the time development of the one-point
probability p; (¢, T(t), K(t)), which gives the probability of finding a certain
value

K = (Ko,Kl,KQ,KP,) (238)
at a given moment in time ¢ under the condition
Taas(t) = T(t) + T(t). (2.39)

Note that in Eq.(2.39) as in the rest of this section 7" denotes a temperature
deviation and not the gas temperature Ty, itself, i.e. T' can have positive
and negative values. T stands for a deterministic mean temperature.

In the end of this section, that Fokker-Planck equation is transformed into
a set of four 2-dimensional Fokker-Planck equations for adequately defined
moments of p;, which is better suited for the subsequent numerical treatment.

Modeling the fluctuations as a stochastic process

The fluctuations are modeled via a 5-dimensional stochastic process
(©,K)s;t € RE. The paths of this process represent the possible joint evolu-
tions of the ﬁve random variables T, KO,K 1,K2, and K. 3 for the temperature
deviation and the dust moments:

(0,K)(T,K) = (T, Ko, K1, Ks, K3)(t). (2.40)
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Note, that the K , denote the random variables of the stochastic process,
whereas the K, stand for the deterministic moments of the grain-size distri-
bution function as presented in Chapter 2.1. It is assumed that the process
(0, K); is a Markov process, i.e. for any given moment in time ¢, any future
values of (T K)(tfut> with tg¢ > ¢ do not depend on the history of the process
(T, K) (tpast) With tpase < L.

Under these circumstances, a Fokker-Planck equation for the one-point
probability p;(t, T, K) can be derived (see Dirks 2000):

apl(taTa K) a(pl(taTa K) BT) a<p1<t7T7 K) Bllf()

ot oT af(u
1(p(t, T K) Ar) 19 (m(t, T.K) AY) . &*(p1(t, T, K) Ab )
2 oT? 2 0K,0K, 0K, 0T ’

(2.41)

using the sum convention for the Greek indices u,v = 0,1,2,3. The coeffi-
cient functions for p, v and § > 0 are defined by the following infinitesimal
moments (see again Dirks 2000). For a better readability the dependency of
ptont, T, K and At, AT, AK: is omitted in Eq. 2.42:

SN . 1 t 4 AT
Br(t,T,K) = Al}:r_r}o A7 / AT p"dAT d*AK, (2.42a)
||(aT.aK)|| <6
N 1 A N
I _ L t 4
By (t,T,K) = Al%rilo A7 // AK,p dAT d*AK, (2.42b)
||(aT,AK)]|| <6
N 1 2t IAR
Ar(t, T,K) = Alir—r}o A7 // (AT)" p" dAT d"AK, (2.42¢)
(AT, AK)|| <6

~ 1 N ~ ~
pv _ : t 4
AZ(LTK) = lim < // AK, AK,p' dAT d*AK,  (2.42d)

||(AT,AR)]|| <6

~ 1 ~ N
H _ . t 4
Al (T K) = lim // AK, AT p' dAT d*AK.  (2.42¢)

||(aT,AK)]|| <6
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Pt =pl(t, T, K, t+At, T+ AT, K + AK) is the transition probability density
that gives the probability of finding the system in the state (T+ AT, K+AK)
at time t + At under the condition that it was in the state (7,K) at the
moment ¢.

For the determination of the coefficients (2.42) of the Fokker-Planck equa-
tion (2.41), the transition probability density p'(t, T, K, t + At, T+ AT, K +
AK) is required. In order to find an expression for pt, it is at first assumed
that the transition probability density factorises into the transition probabil-
ity density pk for the temperature component of the stochastic process (2.40)
and the conditional transition probability pk (7') for the dust moment com-
ponent:

Pt T K, t+At, T+ AT, K + AK) =
= ph(t, Tt + At, T + AT)pl (t, T, K, t + At, K + AK). (2.43)

Note that pi depends on T, whereas p% does not depend on K. This fac-
torisation of p' corresponds to the physical assumption (see discussion in
Sect. 2.2.2), that the local dust formation at the moment of the fluctuation
has no influence on the temperature fluctuation itself. As a consequence,
the transition probability densities p%. and pl from (2.43) can be determined
separately.

The transition probability of the temperature component

The temperature component © of the stochastic process 2.40 is modelled via
a Langevin equation

o) = —%@(t)dt 4 5T (#)dt. (2.44)

This is a stochastic differential equation, the solutions of which are stochastic
processes instead of "ordinary” functions. The first term on the right hand
side of Eq. (2.44) describes the tendency of the gas to relax towards a state
of equilibrium, which is characterised by 7' = 0, ie. Tys = T. In this
context, A has the meaning of a relaxation time scale. I'(¢) denotes a random
"force” - in this context rather a random input to the thermal energy of
the gas - representing a random fluctuation. & is a scaling factor of this
term, describing the ”strength” of the fluctuation. Again, the mathematical
details of this approach are discussed in Dirks (2000). Here, I just want to
state that the stochastic differential equation (2.44) is solved by a Gaussian
Markovian Ornstein-Uhlenbeck process OPY which - with the initial condition
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of a normally distributed random variable ©( with the expectation value 0 -
has the following properties (see Dirks 2000, Eq. 3.8-3.10)

E(©PY) =0, (2.45a)
1

Var(©°Y) = 5)\52 =: 0% and (2.45D)

Cov(6°Y,09Y) = o2 w1l (2.45¢)

introducing the rms temperature fluctuation . The one point probability
density of the temperature fluctuation is then given by a Gaussian bell

T2

P = (2mo?)2e 22 (2.46)
Furthermore, the correlation function peor(s,t) of the process is

B Cov(09Y, 69Y)
v/ Var(69V)Var(©9Y)

Peorr (5 1) = el (2.47)

Thus, the parameter A\ represents the correlation time of the fluctuations,
i.e. the temperature deviations for two moments in time 7'(¢;) and T'(t5)
are correlated on a time scale comparable to A and practically uncorrelated
for |t — t1] > A. The coeflicients (2.42a) and (2.42c) of the Fokker-Planck
equation (2.41) can then be calculated as

- 1

Br(t, T,K) = _XT and (2.48a)
~ o2

Ar(t, T,K) = 27. (2.48Db)

The transition probability of the dust component

After having determined the coefficients (2.42a) and (2.42c¢) of the Fokker-
Planck equation (2.41), an expression for the conditional transition probabil-
ity density pi(T) is required in order to calculate the remaining coefficients
(2.42b),(2.42d) and (2.42e).

It is assumed, that the random character of the dust component results
exclusively as a consequence from the random temperature fluctuation. Thus
for small time steps —i.e. At < A\ — the transition probability density of the
dust moments px(7T) is given by

pe(t, T K, t + At, K + AK) = §(AK — (4K + b)rAt), (2.49)
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where the term AK +b corresponds to the deterministic dust moments equa-

tions (2.5a,2.5b) with

5SS
I
Wl

, and (2.50)

1

0
0
0

]
Wit

0
T 0
-
0

o O OO

7_—1

i
b = | Nl (2.51)
N3 Jy,

NeJn,
Using A and b, Eqgs. (2.5a,2.5b) can be written as

d

—K=A-K+b 2.52

dt 4 B +h, (2:52)
or - for the components of K

dK

d_tp = ApVKV + bp, p, V= O, ]_, 2, 3. (253)

The coefficients (2.42b),(2.42d) and (2.42e) can now be calculated using
Eq. (2.49) (see Dirks 2000, p. 36-39)

B = AwK, +b, | (2.54a)
A =0 (2.54b)
Apg = 0. (2.54c)

After inserting the coefficients (2.48) and (2.54) into the Fokker-Planck equa-
tion (2.41) we obtain:

202 0
d D - _(pl(AMVKV + bu)) (255)

op(t, T K) 190 o?
A oT? 0K,

o xarp)t

Transforming the Fokker-Planck Equation

We will now transform the Fokker-Planck equation (2.55) for the probability
distribution p; (¢, 7T, K) into a set of four coupled Fokker-Planck equations
for adequately defined moments of p;. This will lead to a set of equations
(2.66), which will be the basis for our further investigations.
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The transformation procedure is identical to that from Dirks (2000) (p. 42),
except for the fact, that we do not restrict ourselves to spherically symmetric
situations, but stay in the comoving Lagrangian frame.

We define the moments (), with respect to the random variable K, as

Qp = /Kppl (t,T, K>d4f< (p=0,...,3). (2.56)

This definition yields
/ Q,(t, T)AT = / / Ko (t, T, K)A'RAT = B(K,) (1), (2.57)

E(K,)(t) being the expectation value of K, at the time t.

We now apply the operator [d*KK, to Eq. (2.55) for all p = 0,1,2,3.
Thereby we transform the Fokker-Planck equation for the probability density
pi(t, T, K) into a set of four coupled Fokker-Planck equations for the four
moments @), of p;:

) 1/0 02
an Y (8_TT+ 02_8T2> Qp— (2.58)
) o
/_aK (p1(AL K, +b,)K,d'K, p=0,1,2,3.
w

Similar to the treatment from Dirks (2000) we split the last term
using (f'g = (f9)" = fg):

0 . N
/87(171(14“”}@ +b,))K,d'K = (2.59)
o
0 . . d - .
/a—K#(pl(AWKu +b,)K,)d'K — /Pl(A;wKu + bu)(a—pr)d4K-

Using Gauss’ Theorem, (still following Dirks), the first term on the rhs. of
Eq. (2.59) vanishes

o) . . .
/ e (p1(A,L K, +b,)K,)d'K = / p1(A K, +b,)K,dF =0, (2.60)
o F

because the probability distribution p; must vanish on the surface of the
configuration space, due to its normalisation:

/pl(t,T, K)d'K = 1. (2.61)
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The second term of Eq. (2.59) can be simplified (see Dirks 2000, p. 43):

0 - N
/ (A Ky + b)Y (e K )AYK = A, + by (2.62)
0K,
Substituting Eq. 2.60 and Eq. 2.62 into Eq. 2.58 gives a set of four equa-
tions for the @),, which are coupled via the A,,:

0 1/ 0 0?
an = X (G_TT + 0'2%) Qp + Apry + bppT. (263)

A close inspection of Eq. (2.57) reveals, that the @, still contain the
probability distribution p”. Therefore the values of the Q,(T) will vary
by orders of magnitude, depending on the temperature deviation 7' from
the mean temperature — a fact which causes problems during the numerical
evaluation. We therefore define the ”smoothened” moments

_ Qu(t,T)
qp(t,T) == PT(ET) (2.64)
yielding
/Qp(t,T)dT = /qp(t,T)pT(t,T)dT (2.65)

— / / K,pi(t, T, K)A*KdT = E(K,)(1).

The g, can be interpreted as conditional expectation values of the Kp, i.e. the
expectation value of K , under the condition that the temperature deviation
has a value of T'.

Inserting Eq. (2.64) into Eq. (2.63) leads us to the final set of Fokker-
Planck equations, which we are going to evaluate numerically:

0 1.0 o? 0?

a1l = —XTa—qu + Y aptt Aq, + b, (2.66)

This is a coupled set of equations of Fokker-Planck type, which describes the
time development of the conditional expectation values g,(t) of the dust mo-
ments K,. In order to solve the equation system (2.66), we have to provide

1. the parameters ¢ and X of the assumed temperature fluctuation,

2. an initial condition g, for ¢ = 0,
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3. the boundary paths ¢,(Timin, t),qp(Tmax, t), and

4. a deterministic thermodynamic structure, providing 7'(t), 5(t) on top
of which the source terms — A,,q, and b,, containing nucleation and
growth rates — are evaluated.

2.2.2 Discussion of the fluctuation model

In this Section, I want to discuss the physical and mathematical assump-
tions made during the process of modeling the temperature fluctuations with
respect to their physical meaning.

Firstly, I want to discuss the consequences of the decision to describe the
temperature fluctuations using the theory of stochastic processes. In contrast
to a direct hydrodynamical description of the fluctuations, which temporally
resolves the thermodynamical evolution of the fluctuations (see, e.g. Helling
et al. 2001), the results obtained with a stochastical approach will always
have a statistical character. The solution of the equation system (2.66) will
not give information about a particular object, but on the statistical appear-
ance of an ensemble of similar objects. Particular members of this ensemble
can behave very differently than the ”average” behaviour resulting from the
equation system (2.66) might suggest. The correlation time A divides the
family of solutions into three domains:

e The microturbulent domain: In this domain the fluctuations are
very fast compared to the time scales of nucleation and growth of the
dust grains. Individual representants of processes solving the equation
system (2.66) will usually look very similar to the corresponding expec-
tation value g,(t) — at least if smoothened over the individual member.
Within the microturbulent domain, the solution ¢,(¢) from Eq. (2.66)
becomes independent of the correlation time .

e The macroturbulent domain: In this case, the fluctuations are very
slow compared to the time scales of nucleation and growth of the dust
grains. Due to slow relaxation to the equilibrium state, the individual
representants of the solution will often show strong deviations from the
corresponding expectation values. Once the temperature deviates from
the mean value in one way or another, in the macroturbulent case it
will tend remain on the same ”side” of the mean value.

e The mesoturbulent domain: This domain lies between the micro-
and the macroturbulent case, the correlation time of the fluctuations
is of the order of the time scale dominating the evolution of the dust
complex.
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The microturbulent limit case is of particular interest with respect to finding
a subgrid-model for the influence of temperature fluctuations in hydrody-
namical calculations, because in this case, the averaged” structure of any
particular member of the ensemble resembles the structure of the expecta-
tion values resulting from Eq. (2.66). If the correlation time A is considerably
shorter than the numerical timestep At, the average of a quantity over the
time step, corresponds to the expectation value of the quantity resulting of
Eq. (2.66) in the microturbulent limit. In this case, the result of Eq. (2.66)
becomes independent of A, and a one-parametric description of the fluctua-
tion depending only on the rms-temperature fluctuation o is reasonable. It
will therefore be a central question during the investigation of Eq. (2.66), for
which values of A the solutions of Eq. (2.66) will reach the microturbulent
domain.

Another important assumption, which is essential in deriving Eq. (2.41)
is that the stochastic process (0, K); is a Markov process. A Markov process
is a process "with short memory”, in the sense, that for any given moment
in time ¢, the future evolution of the process, depends only on the present
values of (7, Ko, K1, Ko, Kg)(t), but not on those in the past. Physically, this
is not a dangerous assumption as long as we do not want to include effects,
where the evolution of the individual fluctuation T" of the temperature or of
the dust moments K » depends for example explicitly on the rate of change of
these quantities during that individual fluctuation. It does not constitute a
problem for the applicability of this method, if the evolution of the mean ther-
modynamic structure T, p in a particular astrophysical environment shows
any sort of memory effects.

The assumption, that the transition probability p’ is assumed to factorise
as p' = phpk(T) means, that the evolution of the dust moments during an
individual fluctuation will not act back on the fluctuation itself. Again, it is
perfectly permitted, that the dust formation influences the mean thermody-
namic structure - which it usually does. In the picture, where we assume the
dust formation to take place in an environment which is turbulent, because
of dissipation from stellar pulsation waves, this assumption is perfectly ful-
filled. It might become problematic in ”"pathological” situations, like e.g. a
turbulence element which is accelerated so strong by radiation pressure on
the newly formed dust grains, already during the dust nucleation, that it
considerably changes the large scale turbulence field from which it originates
itself. For the description of such a case, one would have to fall back onto

" Averaged in this context has to be understood in the sense of smoothened, i.e. for
sufficiently small intervals the value of a quantity in that interval is set to the average of
that quantity within that particular interval.
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a direct hydrodynamical description which temporally and spatially resolves
the fluctuation and its large scale environment. However, as already stated
above, the origin of the fluctuations is not subject of this work. I there-
fore want to close the discussion of this aspect with the hint, that, if the
fluctuation model presented in the previous section is ever to be applied to
a situation where the fluctuations are triggered by the dust formation it-
self, the assumption of the factorisation of p* should be subjected to a close
reinspection.

During the derivation of the equation system (2.66) we have assumed that
the equation system (2.5) can be linearised by Eq. (2.53). This linearisation
is only an approximation of the original system (2.5) for two reasons

1. The vector b should contain the terms which are constant with re-
spect to the Kj. Nevertheless, b contains the nucleation rate Jy, which
depends about linearly on the carbon abundance ec, which in turn
is antiproportional to K3 (see Eq. 2.6). However this assumption is
not as bad as it might seem, because in practice, it is sufficient that
Eq. (2.53) is a good approximation for times in the order of the numer-
ical timestep used to evaluate the equation system. Furthermore, the
terms including the nucleation rate are usually only important at the
beginning of the condensation process, when only little carbon is used
up by the condensation, and ec is practically constant ec ~ €c .

2. Another problem occurs in the case of evaporation. Again, the de-
struction rate J,, will surely depend on the exact shape of the grain
size distribution function f(N,t). However, this term will in general
be small compared to the 7., term contained in A, unless the evapora-
tion is nearly complete and if the evaporation is finally complete, the
moments vanish anyway (K, = 0).

The temperature fluctuations are modelled via the Langevin equation
2.44, which is solved by a so called Ornstein-Uhlenbeck process ©9V. The
resulting correlation function (2.47)

Cov(62Y, 67Y)

pcorr(57 t) = = ei%nis"
v/ Var(©9V)Var(©9Y)
implies a power-law spectrum of the form (see Boger et al. 2003)
P(w) A (2.67)
AT '

where w denotes the angular frequency a wave constituting the fluctuation
field and P(w) its relative intensity. For Aw > 1, the w-dependence of P(w)
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can be approximated by

P(w) ~ w2 (2.68)

2.2.3 Another method: Direct modeling of the fluctu-
ations

Instead of the stochastic approach presented in the previous sections, the
fluctuations can be modeled ”directly” by performing the integration of the
dust moment equations (2.5a,2.5b) on top of a concrete realisation of the
stochastic process (0, K);, i.e. a particular random temperature structure
Tyas(t), which has been gained by subjecting the deterministic structure T'(t)
to random temperature deviations 7'(¢). A result of such a modeling process
will be the time development of the dust moments K;(t) on the particular
random temperature structure Ty,s(t), which has served as input. An advan-
tage of this method is, that the resulting representants are actual realisations
of the stochastic process, i.e. they look like the structures one would expect
to observe, when observing a particular real object. This is certainly not
the case for the expectation values E(/K,)(t) resulting from the solutions of
the equation system (2.66); in particular the mean temperature structure
T(t) is, for example, characterised by the complete absence of temperature
fluctuations.

The main disadvantage of this direct hydrodynamical modeling is the
fact, that different realisations of the same process (©,K); with the same
parameters o, A on top of the same mean thermodynamical structure 7'(¢)
can look very different (see Fig. 4.9). It is thus not clear, which features of a
particular solution have a general validity, and which features are just random
properties of the particular representant. In order to gain information about
the behaviour of the entire ensemble of possible realisations of the process,
it is necessary to calculate a high number representants, hoping that their
average converges to a particular solution.

Another problem of the direct hydrodynamical modeling of these pro-
cesses is, that all fluctuations have to be resolved numerically in space and
time. This can cause numerical problems as discussed in Sect. 3.3

2.3 Dust driven winds of AGB-stars

Long Periodic Variable stars (LPVs) on the Asymptotic Giant Branch (AGB)
in the Hertzsprung Russel Diagram develop cool dust driven winds with high
mass-loss rates. Typical parameters for these objects are given in Tab. 2.2.
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Figure 2.1: Plot of the coupling between the various physical complexes,

that have to be described simultaneously, when modeling a dust-driven wind.
Taken from Sedlmayr & Winters (1997)
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stellar mass 0.7...2.0Mg
stellar luminosity 103...10°Lg
stellar temperature 2000...3000 K
mass loss rate 1077... 107 M, yrt
final wind velocity 10...30 km s~}
pulsation period 100...1000 days

Table 2.2: Typical values for stellar and wind parameters for dust forming
late type stars. Taken from Sedlmayr & Winters (1997).

The general picture is that of an atmosphere, which is levitated by stel-
lar pulsation waves, that have steepened up to shock waves while running
through the density gradient in the outermost part of the atmosphere. In this
levitated atmosphere the temperatures are low enough at simultaneously suf-
ficiently high densities to allow for efficient dust formation. Since the newly
formed dust has a considerably higher opacity than the circumstellar gas, it
very efficiently absorbs the stellar radiation and is accelerated by the mo-
mentum transfer of the absorbed photons. The gas is dragged outwards by
frictional coupling to the dust particles and a dust driven winds establishes.

The various physical domains relevant for the description of such a dust
driven wind are shown in Fig. 2.1. They are strongly coupled via innumerable
processes. The hydrodynamics, for example, couples to the dust formation
via the opacity of the dust. The dust formation depends very sensibly on the
local gas temperature and on the radiation field. The gas temperature again
is determined by the interplay of energy input via the dissipation of hydrody-
namic waves or the absorption of radiation and the cooling via hydrodynamic
expansion and emission of radiation. Both the dust formation and the molec-
ular opacity, which determines radiative heating and cooling, depend on the
chemical composition of the gas, which again, even in the simplest imagin-
able case of chemical equilibrium (CE), is determined by temperature und
density.

Thus, in order to achieve a selfconsistent physical description of a dust
driven wind, we require the simultaneous solution of a coupled equation sys-
tem describing hydrodynamics, thermodynamics, radiative transfer, chem-
istry and the dust condensation processes.

After pioneering studies from Wood (1979) and Bowen (1988), the first
really selfconsistent dynamical 1D-models of dust-driven winds around pul-
sating carbon-rich AGB-stars, including a time dependent calculation of the
dust component and a grey radiative transfer have been presented by Fleis-
cher et al. (1992) (see also e.g. Fleischer 1994; Winters et al. 1997; Schirrma-
cher et al. 2003). Their results have been confirmed by Héfner et al. (1996)
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(see also Dorfi & Hoéfner 1991; Hofner & Dorfi 1992; Feuchtinger et al. 1993)
using a different numerical method. Jeong et al. (2003) have presented the
first models for an oxygen-rich situation, where the condensation processes
are more complicated, because it is neither clear which substances will start
to form seed particles, nor which substances will later grow onto these seeds.
Hoéfner et al. (2003) have investigated 1D-models with a frequency-dependent
radiative transfer. Woitke (2006) has presented 2D-models of carbon-rich
AGB-star-winds including time dependent hydrodynamics and dust forma-
tion coupled with a 2D Monte Carlo radiative transport, but without stellar
pulsation. Wachter (2007) has investigated the interplay of mass-loss and
stellar evolution for AGB-populations with subsolar metallicities.

In this work, the influence of temperature fluctuations on the dust forma-
tion will be investigated by implementing a microturbulent nucleation rate
calculated as described in Sect. 6 into the CHILD-code, the 1D-hydro-code
developed by Fleischer et al. (1992) in the version described in Schirrmacher
et al. (2003). The physical approach followed by the CHILD-Code will be
described in the following sections.

2.3.1 Hydrodynamics

The circumstellar shell is assumed to be spherically symmetric, which allows
the reduction from a 3-dimensional to a 1-dimensional geometry. The 1D-
geometry in turn, allows for a Lagrangean formulation of the hydrodynamic
problem in a comoving frame, where R denotes the position of a fluid element,
which is described by the Lagrangean variables r and ¢. r denotes the position
of an element at the instant ¢o: r = R(to). The equation of motion then reads

Dv R 28p
Dr -V (?) I + ot (2.69)

where v is the velocity of the fluid element, V{ denotes the specific volume
of the fluid element at the moment %g, p is the gas pressure, and ayy; stands

for the sum of all accelerations, in our case the sum of radiative acceleration
araq and gravitative deceleration agpay

Qtot = Qgrav + Qrad 7W1th (270)
GM(R
Qgray = _R—g) ,and
4
Qrad _T‘-X_H (R) )
Co p

where G denotes the gravitational constant, M(R) the sum of the stellar
mass M, and the fraction of the envelope mass inside the position R, ¢q the
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speed of light, yy the flux weighted extinction coefficient, and H(R) is the
frequency integrated Eddington flux at the position R (see e.g. Sedlmayr &
Winters 1997), which can be expressed by the flux weighted Eddington flux
at the radius of the star R,

H(R) = H, (%)2, (2.71)

which is a function of the stellar luminosity L,:

1 L,
H =———. 2.72
(in)? 2 (2.72)

It is very useful to introduce the function
1 XH

4
M p2p(R) Xy (2.73)

a(R) = coGM(R) p - drcoGM(R) p

which represents the radiative acceleration of a fluid element in units of the
local gravitational deceleration. If a(R) > 1 the fluid element is accelerated
away from the star, otherwise it will fall back towards the star.

2.3.2 Thermodynamics

The integration of Eq. (2.69) requires a thermal equation of state which gives
an expression for the pressure p in dependence of the thermal state variables.
Depending on the gas model chosen for the description of the circumstellar
gas, the thermal equation of state can have different forms. When using the
model of an ideal gas, the pressure is given by

p
p(:uvpa Tg&S) = kaTgasa (274)

where ;1 denotes the mean molecular weight of the gas particles in units of
the atomic mass units m,. In this work, when using the approach of an ideal
gas, the effect of a variable molecular mass is neglected, which leaves the gas
pressure p(Tyas, p) as a function of temperature T, and density p only.

Another description used in parts of this work, is the gas model relying on
Woitke (1997), who uses a multicomponent description of the gas, considering
all molecular, atomic, and ionic species as well as the electrons separately.
The thermal equation of state then reads

dv

p (p7 Tga57 Trad7 <a >) = Patoms + Pmolecules + Dions + Pelectrons

= (natoms + Nmolecules + Nions + nelectrons)kBTgasa (275)
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where the n,toms,.. stand for the particle densities of atoms, molecules, ions,
and electrons, and the patoms,.. for the corresponding partial pressures. These
particle densities are obtained by solving a system of rate equations for the
densities of all species involved and all relevant electronic excitation levels
under the influence of a radiation field parametrised by the radiation temper-
ature Ti,q in statistical equilibrium as described in detail in Woitke (1997)
(see also Schirrmacher et al. 2003, appendix). Since in this approach line
emission is treated using the Sobolev theory, the parameter

v\ _ Liow
dl/  3|0R

Ty = 1+max{0,—%/%}, (2.76)

2/ _
+3 (29501/2 - 1) )%’ with

which describes the geometry of the circumstellar velocity field, is introduced
as an additional state variable. Note that via the <i—7l)>, the pressure does not
only depend on the local values of Tg,s and p but, in principle, also on the
global velocity structure v(R).

The gas temperature T, can be determined implicitly by the solution of
the energy equation

de(Tyas; - - -)

5T = —p(Thas, .- )AV + Q(Thas, - - ) (2.77)

where e is the specific internal energy of the fluid element per unit mass and

@ is the sum of all heating and cooling rates:

Q = Qraa + Quis. (2.78)

(:aq denotes the net radiative rate of energy exchange between the gas and
the radiation field, when Qy.q > 0 the gas is heated by the absorption of ra-
diation, when Qaq < 0 the gas is cooling by emission of radiation. Qs is the
viscous heating rate, which describes the heating of the gas by dissipation of
shock waves. Throughout this work, Qs is modeled via the tensor-viscosity
by Tscharnuter & Winkler (1979). For the later discussion, it might be useful
to introduce the adiabatic heating/cooling rate

Qua = —pdV, (2.79)

which stands for the rate of change of the internal energy of the gas via
hydrodynamical compression or expansion.

The expressions for e and Q,aq depend on the underlying model of the gas
and of the energy exchange between gas and radiation field. In this work, two
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different approaches are used. An overview over these two thermodynamical
approaches is given in Table (2.3). The first one was presented by Fleischer
et al. (1992) and describes the gas as an ideal atomic gas with the state vari-
ables Ty,s and p. In this case, the thermal equation state is given by (2.74),
while the caloric equation of state, which gives the dependence between the
internal energy and the state variables reads

f1
e(Tgasap) = E,um

kpTyas, (2.80)

f denotes the number of degrees of freedom; f = 3 for an atomic gas. Note
that the internal energy of the ideal gas does not depend on the density. In
combination with this simple gas model, the radiative cooling

Cx?rad = 4O-B/{(T‘rad4 - Tgas4>- (281)

In the following, this cooling behaviour will be referred to as ”T*-cooling”.

The second thermodynamical approach used in this work was presented in
Woitke (1997) (see also Schirrmacher et al. 2003). Here the gas is understood
as a mixture of various atomic, molecular and ionic species plus electrons,
whose particle densities in all relevant excitation states are determined by
solving a system of rate equations in statistical equilibrium with a radiation
field, parametrised by its radiation temperature T;,q. The internal energy is
then given by

1
€= ; (Etrans + Erot + Evib + Eel + Eion + Ediss) . (282)

Elrans is the translational energy of all gas particles, E,.; and FEy;, rotational
and vibrational energy of the molecules, Fy is the excitation energy of the
electrons, Ej,, the ionisation energy of the ions and Fy;s the dissociation en-
ergies of the molecules. The net radiative heating/cooling rate Qrad is then
obtained by summing up all microscopic rates, which involve an interaction
between the gas and the radiation field, i.e. those rates, where the corre-
sponding microscopic process includes the emission or the absorption of a
photon.

2.3.3 Radiative Transfer

Within the framework of a circumstellar envelope, the treatment of the ra-
diative transfer problem is essential for the determination of the gas tem-
perature. Since — irrespective of which of the two thermodynamic concepts
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Description:

ideal gas, LTE, T*-cooling multicomponent gas, non-LTE, de-
tailed cooling function emerging
from SE calculation

State variables:

Tgasa P ‘ Tgasa Trada Ps <%>
Equations of state:
thermal: p = pkpTyas(my) Eq. (2.75, thermal) and Eq. (2.82,
caloric: e = fkpTyas(2umy,) ™" caloric) calculated in SE
Radiative Cooling:
analytical T%-cooling (Eq. 2.81) tabulated cooling rates (QQ.q result-

ing from summing up all radiative
rates from the SE-Calculation.

Molecular weight:

constant mean molecular weight the different species have their cor-
i = 1.26 m, assuming all hydrogen | rect molecular weight, the mean
is in the atomic state molecular weight can be calculated
by p = pkpTyas/(Mmup).
Literature:
Fleischer et al. (1992) Woitke (1997)
Fleischer (1994) Schirrmacher et al. (2003)

Table 2.3: Comparison between the two thermodynamic models used for the
circumstellar gas.

presented in the previous section is used — the determination of the gas tem-
perature Tj,s requires the knowledge of a radiation temperature T;,q only,
it is sufficient — from a mathematical point of view — to treat the radiative
transfer problem in grey approximation. In practice a two stream approx-
imation developed by Lucy (1971, 1976) and Unno & Kondo (1976) in a
version improved by Hashimoto (1995) (for details see Winters et al. 1997)
has been used, which leads to the following equation for the determination
of the radiation temperature T,.q:

R?F(Ri, 1 .
(Bin) i HRou

20—B . |:ROUt<]‘ + /’LRout> 'ROth2

pr 3 [Hew 2p\ AR’
_R_I;+§/R (X(R/)+ R?) R2 |’ (2.83)

4
Trad =

where pg, the cosine of the separation angle of the two radiation streams
It(R), and I~(R), is itself determined by the solution of the differential
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equation
duk  x(R) 1R
T R A Rt U (284)

2.3.4 Dust and chemistry

The dust condensation in the dynamical models is calculated using the dust
moment method developed by Gail & Sedlmayr (1984), which has already
been discussed in detail in Sect. 2.1. The equation system (2.5) is solved si-
multaneously with the hydro- and thermodynamical equations and the equa-
tion for the radiation temperature, using the gas temperature Ty, and density
p as input for the source terms J and 77! in Eq. (2.5). The dust tempera-
ture Tyt for the determination of the supersaturation ratio S is set to Tiaq
for the determination of the growth rate 7!, while it is set to T,s for the
determination of the nucleation rate J. The idea behind this choice, is that
the growth rate 77! is calculated for macroscopic particles, which — due to
their higher absorption efficiency — couple stronger to the stellar radiation
field, than to the comparatively thin circumstellar gas. In contrast the criti-
cal clusters, which are relevant for the calculation of the nucleation rate, are
usually very small and therefore assumed to be in equilibrium with the gas
phase, from which they emerge.

The chemistry is assumed to be in chemical equilibrium throughout this
entire work, which means that the particle densities of the growth species
can be calculated by the law of mass action.

The dust opacity

Via Eq. (2.73) the acceleration of the wind is coupled to the flux weighted
extinction coefficient xg, which can be calculated by the gas and dust opacity

XH = (Hgas + Kdust) P (285)

where Kgas and kqust are frequency averaged mean opacities. The following
approximations are made: The gas opacity is assumed to have the constant
value of Kges = 2 X 107 cm?g ™! based on the Rosseland-mean opacities from
Alexander et al. (1983). The dust opacity is calculated according to Gail &
Sedlmayr (1987b) in the small particle limit of Mie-Theory

3
Rdust = Z‘/OKSQ,(Tdust) (286)

where the extinction efficiency @Q'(Tgust) of the dust is approximated by a
parameter function

Ql (Tdust) = noptTdust- (287)
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Since the dust particles are energetically coupled to the radiation field, rather
than to the surrounding gas, it is assumed that the dust temperature corre-
sponds to the radiation temperature, i.e. Tgqust = Trad-

2.3.5 Discussion of the approximations

1. Spherical symmetry: The assumption of spherical symmetry reduces
the geometry of the objects from a 3D- to a 1D-problem. Until a few
years ago, this was absolutely necessary to reduce the numerical effort
to solve the non-linear coupled equation system, which describes the
dust-driven winds. By assuming spherical symmetry, one renounces to
the investigation of effects of stellar rotation or magnetic fields, as well
as to the individual hydrodynamical resolution of turbulence or con-
vection processes. Whereas rotation and magnetic fields do not seem
of particular importance for the understanding of dust-driven AGB-
winds, turbulent velocity fields will certainly occur in the convective
envelope inside the star at the bottom of the stellar atmospheres, as
well as during the dissipation of the stellar pulsation waves in the cir-
cumstellar envelope. At the moment, the computing capacities are
advancing into regions, where codes that solve the complex coupled
equation system for the wind in the frame of a multidimensional hy-
drodynamical description are beginning to be developed (Woitke 2006,
has presented 2D-models of dust driven AGB-winds, which are at the
moment still neglecting the pulsation of the star.) However, even these
calculations have to tackle the problem, that they cannot resolve the
dissipation of the turbulence elements to the sub-grid scales. Since the
aim of this work is to investigate the influences of temperature fluc-
tuations on the dust formation, and there is no reason to believe that
a multidimensional hydrodynamical frame for these investigations will
make a particular difference, the use of a well understood 1D-model
seems to be well justified. For the determination of suitable values
of the fluctuation parameters o and A\, models using multidimensional
hydrodynamics might, however, be of some use.

2. Carbon Dust: Two main classes of AGB stars are observed, car-
bon rich and oxygen rich stars. It is by now widely accepted, that
these two classes represent subsequent evolutionary stages of low and
intermediate mass AGB-stars. During a thermal pulse, the convective
envelope of these stars reaches the He-burning layer, where carbon is
produced, and mixes the new carbon up into the stellar envelope and
atmosphere. If the carbon abundance in the atmosphere exceeds the
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oxygen abundance, the spectral class from the star switches from O to

C.

The ratio ec/eo =: [C/O] of carbon and oxygen abundance is a key
indicator for the nature of the chemistry in the stellar atmosphere
and the circumstellar envelope. Due to the high binding energy of
the CO-molecule (about 11 eV), nearly all atoms of the less abun-
dant species are blocked in CO-molecules with a striking impact on
the chemistry of the remaining species. In an oxygen-rich situation,
the typical high temperature condensates are silicates Si, O, and metal
oxides, like Ti,O,, Mg,0O,, Al,O,. In this case, it is not really clear
which species nucleate at first and which species will later grow onto
the seed particles. A simple grain size distribution function of the form
f(N) as presented in Sect. 2.1 can not be used to describe the emerging
heterogeneous dust grains. (Jeong et al. 2003, have presented model
calculations for such oxygen rich AGB-winds.) The carbon rich situa-
tion is simpler, when assuming that graphite is the main constituent of
the dust grains. This might not be the whole picture, because probably
some nucleation will also take via polyaromatic hydrocarbons (PAH’s),
but again, the detailed investigation of the nucleation paths is not the
aim of this work. Since there seems no reason to believe, that temper-
ature fluctuations will a priori have a different influence in the oxygen-
rich case than in the carbon rich situation, in this work, for the sake of
simplicity, the carbon rich formulation is used.

3. Gas model (LTE): For the models calculated using the T*-cooling
acc. to Eq. (2.81), the gas is modeled as a one-atomic ideal gas with
a constant molecular weight. This assumption neglects the effects of
ionisation and molecule formation/dissociation. The neglection of ion-
isation is widely uncritical, since the radiation fields from AGB-stars
have no significant short wavelength ionising component. In the con-
text of the presented hydrodynamical models, ionisation might occur
in the innermost parts, below the surface of the star, which is only
included for reasons of numerical stability, and not to be the subject
of the latter physical interpretation. Another case, where ionisation
might occur, is in the strongest shock waves, that are developed by
some models of particularly compact stars (low luminosity, high mass,
strong pulsation). However, the modeling of the shock waves using
shock-broadening via artificial viscosity follows a philosophy, of giving
a good model of the surroundings of the shock, but not for the details
of the thermodynamical structure of the shock itself.
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The neglection of molecule formation and dissociation is more critical,
because in particular the formation of molecular hydrogen from hydro-
gen atoms does have a significant impact on the mean molecular weight
(u ~ 2.3 for Hy, and p ~ 1.3 for H) and therewith on the pressure (see
Eq. 2.74), while the associated dissociation energy constitutes a signif-
icant energy reservoir, which will considerably delay radiative cooling.
A proper modeling of the Hy-formation in chemical equilibrium is cer-
tainly possible, but since the implementation into the CHILD-Code is
not as trivial as it might look, it has never been done, after the version
including the SE-state equations and -cooling functions, which includes
these effects implicitly, was running (Schirrmacher et al. 2003).

The assumption of T*-cooling is very close to the isothermal limit case
for the fastest thinkable radiative cooling (or heating) of the gas, where
the gas temperature is assumed to relax immediately (i.e. on time scales
shorter than the numerical time step) to the radiation temperature
Tiaa- The general structure of the stellar wind looks quite alike in
the isothermal limit case except for some extra heating in the shock
front, and also very much like the models with SE-state-equations and -
cooling functions. Nevertheless, these models have been included in this
work, because it has turned out, that the dust condensation depends
sensibly on possible temperature differences between the gas and the
dust, which is assumed to couple to the radiation field via Ty, = Traq,
and it therefore seemed interesting to investigate models with a different
temperature difference between Tg,sy and Tg,s.

. Gas model (statistical equilibrium): The assumptions made dur-

ing the calculation of the thermal (2.75) and the caloric (2.82) equation
of state, and the non-LTE cooling functions Qraq are discussed in de-
tail in Woitke (1997). Here I only want to discuss those assumptions
that are most important within the framework of the hydrodynamical
models of this work.

First thing to mention is, that the radiation field and the hydrodynam-
ical structure enter the description in the form of only two parameters:
T,aq and <i—7>. This is obvious a quite rough approximation for these
two nonlocal phenomena, but for the applicability of the gas model in
a selfconsistent numerical calculation, this reduction was imperative.

The description of the velocity field by the parameter ‘5—7;> implies
the assumption, of a velocity field which is monotonously increasing
with increasing distance from the star. This is important to determine
the resonance region around a line-emitting gas element, where the
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emitted line photon can still be absorbed in the same line. The effect
of several shells having the same velocity at various distances from the
star is neglected, i.e. it is assumed, that the line radiation emitted by
the innermost shell is not absorbed by an outer shell having the same
velocity, as well as the heating of the outer shell by a possible high line
emission from an inner shell is not taken into account. Nevertheless,
in contrast to the usual complete ignorance of line cooling effects, this
one-parametric description is certainly a step forward.

The reduction of the entire frequency dependent radiation field to a ra-
diation temperature T;.q only is certainly a quite rough approximation
as well. This corresponds to the assumption that the spectral energy
distribution J, of the radiation field corresponds to that of a black
body with the temperature B, (T}.q). This spectral energy distribution
is needed to calculate the excitation levels of all species in the gas,
where the effects of various lines cooling at particular wavelengths can
certainly be very important. There is no principle problem, of doing
the SE-calculation with an arbitrary radiation field. However, the need
of including the resulting state- and cooling functions into an overall
model, which only delivers a radiation temperature and no spectral in-
formation, requires an accordingly simple approximation of the spectral
distribution of the radiation field.

Another assumption concerning the interaction between gas and radia-
tion field is, that every feedback from the gas to the radiation field via
particular emission processes is neglected. The SE-calculation delivers
the net energy exchange rate Qaq between the gas and the radiation
field, which is then used in the energy equation, but no corresponding
term describing a possible feedback to the radiation field is included
in the treatment of the radiative transfer. This might be no crucial
assumption within the frame of a grey radiative transport, where any
emission from a particular gas element will be a rather subtle® modu-
lation of the overall radiation field. When implementing a frequency
dependent radiative transfer into the overall system, where the line
emission from a particular gas element can be quite important for the
corresponding line intensity, this point will need a close reinspection.

8Note, that the neglection of feedback of the exact energy exchange rates to the radia-
tion field, does not mean, that there is no emission from the gas taken into account when
solving the radiative transfer. It means only that the quite detailed information about the
exact energy exchange processes, which is obtained during the SE-calculation, is discarded
after calculating the state functions, and the gas emission for the radiative transfer is later
determined using a simpler model.
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5. Stationary, grey radiative transfer: In this context, "stationarity”

means, that the travelling time of the photons of one part of the cir-
cumstellar envelope to any other is neglected. When being picky about
it, this assumption is not strictly fulfilled, because the light travelling
time in a typical circumstellar envelope of an AGB star can be in the
order of 10?...10* s, which is about the same as typical time steps in
the numerical calculation. However, in the resulting models, no effects
are observed, where a sudden change of the radiation field at a certain
distance from the star, has a striking immediate effect on the situation
at a completely different position, which then suddenly vanishes after
a time short compared to the corresponding light travelling time. The
assumption of stationarity in the radiative transfer calculation does
therefore not seem a crucial one.

The restriction to a grey radiative transport, i.e. reduction of the fre-
quency dependent radiative transfer equation for I, to the frequency
integrated form for [ = fooo I, dv, using frequency integrated values for
the extinction coefficients y,, certainly cuts away a good deal of phys-
ical effects, like radiative heating/cooling/driving of particular lines,
possible maser effects, frequency shifts in the stellar spectrum due to
the opacity of the dust in the visible light, and its high emission in the
IR-spectral region.

Historically — like the restriction to 1D — this restriction was neces-
sary to reduce the computation effort for solving the nonlinearly cou-
pled selfconsistent equation system of the time dependent wind. By
now, like for the multidimensional models, computer power is about to
reach the level, where a frequency dependent treatment of the radia-
tive transfer is possible (see e.g. Hofner et al. 2003; Gautschy-Loidl
et al. 2004). Unlike in the situation for the multidimensional hydrody-
namics, a frequency dependent treatment of the radiation field might
very well have significant effects on the influence of temperature fluc-
tuations on the dust formation, because it will be one of the results
of this work, that the temperature of the dust, in particular of the
critical clusters, are very important for the details of the condensation
process. The temperature of a dust grain depends very sensibly on the
interplay of its individual frequency dependent extinction coefficient
and the details of the radiation field, that it is coupled to. However,
the solution of an equation system, describing such a detailed coupling
between a radiation field and the local gas/dust mixture in a time de-
pendent hydrodynamical situation, which would also have to include a
detailed frequency dependent calculation of atomic, molecular and size
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dependent dust opacities, combined with a dust description far more
detailed than the moment method presented in Sect. 2.1, is still beyond
our numerical capacities and far beyond the scope of this work.

6. Chemical equilibrium: The exact knowledge of the molecular abun-
dances is important i) for the calculation of the opacity that enters the
radiative transfer, ii) for the calculation of the nucleation and growth
rates of the dust grains, and iii) for the calculation of the state and
cooling functions. Since we are applying a grey radiative transfer cal-
culation which uses a constant gas opacity, the first requirement can be
dropped. For the determination of the state and cooling functions we
either use the ideal monoatomic gas-model, that neglects all chemical
processes by assuming a constant molecular weight, or tabulated func-
tions gained by the solution of a system of rate equations in statistical
equilibrium. In the latter case, a detailed chemistry was calculated dur-
ing the calculation of the tables for p, e and Qrad, and then discarded.
Therefore, the only remaining need for a chemical calculation in the
frame of the time-dependent hydrodynamical models, is the need for
the particle densities of the growth species for the dust calculations.
Thus, for the sake of simplicity, only the abundances of H, Hy, C, C,
CoH and CyH, are calculated under the assumption of i) chemical equi-
librium and ii) that all oxygen is blocked in CO.
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Chapter 3

Numerical Realisation

3.1 Evaluation of the deterministic dust equa-
tions

The equation system (2.5) needs to be evaluated i) for the deterministic cal-
culations required for the boundary paths of the Fokker-Planck system (2.66),
ii) for the calculation of the last two terms on the r.h.s. of Eq. (2.66), that
contain the transition probabilities of the dust component K; of the stochas-
tical process (0, K;), and finally iii) for the calculation of the Monte-Carlo
models presented in Sect. 4.3.

For the case of dust nucleation and growth, the numerical evaluation of
Eq. (2.5) is straight forward. The nucleation rate J and the growth rate 77
are calculated as described in Sect. 2.1. However, the calculation of J requires
the parameter S, which corresponds to the minimum supersaturation ratio
required for dust nucleation from the gas phase.

The treatment of the dust evaporation and destruction as described in
Sect. (2.1.6) is more challenging, because it requires the storage of the dust
moment history in the form Kj(amax). In case of evaporation, the new value of
Amax.new (< Gmaxold) 1S calculated, and the values of the K are then restored
to the value they had, when the maximum particle radius ay., last had the
value Gmaxnew- Since it is impossible to store Kj(amax) for every discrete
value of a, the a axis is binned and the K; stored into arrays of a-bins.
When the maximum particle radius ap., exceeds the edge of these arrays
Qstorage max; the Value Ggtorage max 1S doubled and the storage arrays K;(amax)
need to be remapped onto the newly dimensioned arrays. This procedure is
repeated, if necessary, until the maximum particle radius amyax(t) "fits” again
into the array. In the reverse case, when evaporation has gone so far, that the
remaining a,., lies rather close to the lower edge of the a-axis, no remapping

47
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Symbol  Value Description

ay 10 minimum grain size in units of the dimensionless
particle radius a, for which a cluster is regarded as
a macroscopic grain. This parameter corresponds
to the minimum grain size N, for which the grain
size distribution function is defined.

Astorage,max > 100 a-value at the upper boundary of the storage
arrays Ki(amax). When the size of the biggest
particle amax(t) exceeds Gstoragemax, the value of
Qstorage,max 15 doubled and the functions Kj(amax)
need to be remapped

N, 100  Array length for the storage of the dust moment
Ki(amax)-
Serit 3 In the deterministic case the nucleation rate J is

only calculated, when the supersaturation ratio S
exceeds the value of St

Table 3.1: Numerical parameters for the deterministic dust calculation.

is implemented, because once the information is lost at the compression of the
Ki(amax) during the growth, it cannot be restored, by filling a resized array
with interpolated values. If however, the evaporation process in a volume
element is complete dgporage,max 15 restored to its initial value.

An overview over the numerical parameters required for the evaluation of
Eq. (2.5) is given in Table 3.1.

3.2 Evaluation of the Fokker-Planck-System

We need to evaluate the system of coupled Fokker-Planck-Equations given
by (Eq. 2.66)

0 1,,0 o? ?

= —T2g+Z 2 4+ 4 =0,1,2,3. 1

Formally, this equation system is identical! to Eq. (4.13) from Dirks (2000).
Therefore, in this work, the same numerical scheme is adapted, which will
be sketched in the rest of this section.

I'Note, however, that Dirks uses a different time variable and functions dp, that take
into account the spherical structure of his wind.
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3.2.1 Discretization

Eq. 2.66 is evaluated on a (t,7')-grid, where ¢ stands for the time in seconds
and T for the deviation of the gas temperature from a given mean value 7'(¢)
in Kelvin, i.e. the actual gas temperature at a given grid point is

To(t,T) = T(t)+T, (3.2)
Toas(t,0) = T(1).

The time derivative is approximated by a first order forward difference, while
the T-derivatives are approximated by second order Taylor approximations
(see Dirks 2000). The temperature spacing doesn’t necessary need to be
equidistant, however throughout this work an equidistant spacing for the
temperature deviation is used.

3.2.2 Crank-Nicolson Scheme

The time integration of the Fokker-Planck system (2.66) is then performed
using a Crank-Nicolson-Scheme, which is a special case of a weighted average
method, (see Morton & Mayers 1994, Section 2.10). The idea of the weighted
average methods is that they allow a continuous ”switching” between ex-
plicit and implicit integration via a parameter 6 which specifies the degree
of ”explicitness”:

0 .
1 L0 . 292 . . . .
flc = _XT(kaj)ﬁql)(km]) + TWQ;}U@]) + Apu<k7])QV<k7]) + bﬂ(kv.])»

where k is the discretized time variable and j the discretized variable for the
temperature deviation 7. For § = 1, Eq. (3.3) yields the expression for an
explicit time step, whereas 8 = 0 corresponds to a fully implicit time step.
If 0 is chosen as 0.5 the scheme is called a Crank-Nicolson-Scheme.

When inserting the discretization into the Crank-Nicolson-Scheme, one
obtains a set of linearly coupled algebraic equations, which can be represented
by a tridiagonal matrix, and solved by standard numerical methods. In this
work, Crout’s algorithm has been used (see Burden & Faires 2001, p.408).

3.2.3 Initial and boundary values, and the determinis-
tic mean path

The temporal forward integration of the Fokker-Planck system (2.66) on a
(t,T) plane-requires
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1. initial values g,(¢,T),
2. boundary values g,(t, —ATax), and g,(t, +ATmax), and
3. the deterministic thermodynamical mean path T(t), p(t).

In principle, any arbitrary combination of 7'(¢), and p(¢) can be chosen as
deterministic path. In this work, a simple model of a stationary AGB-wind
was used (see Table 4.1). In this case, it is sufficient to start the integration
close enough to the star, to ensure a dust free initial situation and the initial
condition becomes trivial:

qp(t,T) := 0. (3.4)

A physically reasonable choice of the boundary conditions is more difficult,
but test runs have revealed, that if the AT}, is chosen large enough, the
choice of the boundary values is uncritical for the solution g,(t,7") in the
T-domain, which will later contribute to the calculation of the expectation
values. For the calculations presented in Sect. 4, the boundary paths have
been set to the corresponding deterministic paths:

Qp(t, ATax) = K (t, Taas + Almax) = K,(t, Tinax) (3.5)
Q(t, —ATwax) = K,(t, Tgas — ATmax) = K, (t, Trnin),

where the K,(t, £AT},.x) have been calculated along a wind structure with
a constant temperature offset of +AT,.x. The cut-off of the temperature
deviation at +AT,,.« is necessary, because in integration from —oo to +o00
is numerically impossible and physically senseless. The value of AT, is
parametrised introducing the numerical parameter ~y

ATy = 0. (3.7)

Typical values for the parameter v are 5,...,10; usually a value of v = 8
has been adopted. If v is chosen too small, the influence of the boundaries
can become overwhelming, which results in an apparent solution g,, which
actually turns out to be only the arithmetic mean of the boundary-paths. If
~ is chosen to big, it is possible — in particular for large values of o, that large
parts of the (t,T)-plane lie in thermodynamical regions below 7,5 = 500K,
where the chemical model for the dust-growing species begins to lose sense.
In extreme situations, an inconsiderate choice of v can lead to the (numerical)
appearance of negative gas temperatures, which obviously has to be strictly
avoided.
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3.2.4 Numerical resolution

After having provided the fluctuation parameters o and A, the deterministic
mean structure, and the parameters needed for the dust calculation (see
Sect. 3.1), only the grid spacings of the (¢,7") grids remain to be provided:

e Time steps (t-grid): in order to achieve a reasonable numerical res-
olution, the time step At must be smaller than the correlation time .
Furthermore, it is desirable that the relative changes of the g, do not
become to large. Typical values for At were 10?...10% s in order to
get a proper spatial resolution of the stationary wind, but during the
actual condensation phase time steps were allowed to go down as far
as 1072 s.

e T-Grid: The number of grid points along the T-axis was varied from
100 to 200. When this number is too small negative g, might result
during the solution of the tridiagonal system, when chosen too large,
the influence of the boundaries was sometimes growing undesirably
high.

3.3 Direct modeling of the fluctuations

As described in Sect. 2.2.3, it is possible to model the fluctuations directly.
Instead of the expectation values for the Kj;, one obtains a particular ther-
modynamical structure representing a possible realisation of the stochastic
process (O, K),, (see e.g. Fig. 4.9).

Numerically, these structures are obtained, by constructing a representant
of the stochastical process ©, as suggested by Eq. (2.44). Each time step,
a random temperature fluctuation corresponding to the second term on the
r.h.s. of Eq. (2.44) is added to the mean temperature 7. Due to their
randomness, in this work, theses models will be referred to as Monte Carlo-
models. The correlation is assured by a relaxation term, similar to the first
term on the r.h.s. of Eq. (2.44), i.e. each time step, the difference between
the last Ty, and T is reduced by the factor exp(—At/\) (see Eq. 2.47), and
then a new gauss weighted random term acc. to Eq. (2.46) is added.

The density p is then coupled adiabatically to the temperature deviation
T according to

— 1
T+ T\ Vaa? 2
p(T> = <%> 7With7ad = f%?
with v,q denoting the adiabatic exponent, and f the number of degrees of
freedom of the gas. In this work, f was chosen as f = 3, corresponding to a

(3.8)
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one atomic ideal gas. However, the influence of the density on dust nucleation
and growth is linear, i.e. when normalised to the number density of hydrogen
cores ny, the nucleation rate J is nearly independent on the density (see e.g.
Fig. 6.1, top left).

Problems occurring during the direct modeling

Due to the explicit usage of random numbers during the direct modeling of
the fluctuations, in principle, arbitrarily high fluctuations are possible, even
though improbable. Whereas these ”exotic” representants are included im-
plicitly in the ensemble of stochastic pathways, whose behaviour is described
by the equation system (2.66), they can cause trouble when they randomly
turn up during the construction of a particular representant of that ensemble
Tyas(t). Typical problematic situations are, e.g. , strong negative fluctua-
tions that might lead to negative temperatures. These are mathematically
that improbable, that their effect will hardly influence the solutions of the
Fokker-Planck system (2.66), however, when randomly generating the rep-
resentants these improbable solutions can show up. Another example for a
numerically problematic situation is, when a particular random fluctuation
becomes so big, that its application would require a shorter time step.

In this work, the Monte-Carlo calculations are only presented to give
another point of view with respect to the interpretation of the nature of
the stochastic process (©,K),. Models that were numerically problematic
were just not chosen for representation. If, however, it is desired to use these
Monte-Carlo models for the calculation of expectation values, these problems
would need to be tackled, because the biased neglection of the problematic
models could have a significant influence on the resulting expectation values,
because they are calculated by averaging over a large number of models.

3.4 Selfconsistent, dynamical wind models

For the numerical evaluation of the equation system described in Sect. 2.3,
the CHILD-Code is used, which was originally developed by Fleischer et al.
(1992), (see also Fleischer 1994; Winters et al. 1997). The CHILD-code is
a one-dimensional hydro-code, which solves the hydrodynamical equations
(2.3.1) together with the equations for thermodynamics (2.3.2), radiative
transfer (2.3.3), a CE-chemistry and the time dependent dust moment equa-
tions (2.3.4, and 2.1) by an explicit forward integration in a comoving La-
grangean frame with an adaptive grid. The stellar pulsation is modelled by
a sinusoidal variation of the velocity of the inner boundary.
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Two families of models were calculated (see Sect. 2.3.2 and Table 2.3).
The models using the ideal gas model and analytical T*-cooling rates were
calculated using the original CHILD-code in the version of Winters et al.
(1997), whereas the models with non-LTE cooling functions and a more so-
phisticated modeling of the gas according to Woitke (1997) were calculated
using the CHILD-code in the version described by Schirrmacher et al. (2003).

3.4.1 Model parameters

A particular wind model is described by the following parameters (see also
Table 3.2): stellar mass M,, stellar luminosity L,, photospheric temperature
T, pulsational period P, and carbon-to-oxygen ratio [C'/O]. Furthermore,
two parameters for the description of the stellar pulsation are needed: the
initial velocity amplitude vamp o and the final velocity amplitude vamp, of the
piston at the inner boundary. By the implementation of the microturbulent
nucleation rate (see Sect. 6), an additional parameter describing the temper-
ature fluctuation, the rms temperature deviation o, is added.

In addition to the above described primary model parameters, a set of

numerical parameters is needed. An overview and descriptions are given in
Table 3.2.

3.4.2 The start model

The dynamical calculations are started on a dust-free hydrostatic start model,
which was constructed using the same spatial discretization. When switching
on the piston, the first waves steepen up dramatically and reach unphysically
high velocities. Therefore the piston is not started with its final velocity vamp,
but with a lower value vamp o and increased to its final value within the time
tpis- Furthermore, Ry, is increased slowly from 2R, to 25R,, and, in regular
intervals t,e,0ne, any grid points above the current R, are discarded and new
ones inserted in the inner integration domain. This way, the first unrealistic
shock front is quickly cut off, which saves a good deal of calculation time.
However, due to these starting procedures, it is necessary to wait until the
model has relaxed towards a periodical or pseudo-stationary state, before the
result can be evaluated. This will take at least until the shock front, that
was induced by the last pulsation with a reduced amplitude has reached Ry;.
For Ry = 25R, and t,;s = 15P, this will surely be the case after 40P. The
results presented in Chapter. 7 were evaluated not earlier than after 90 P, so
that any perturbations by the starting procedure have had enough time to
leave the integration domain.
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Model Parameters
Symbol Values Description
[C/O] 1.8 carbon to oxygen ratio
L, 6000 . ..10000Lg stellar luminosity
M, 0.8...1.0Mg stellar mass
P 650 days pulsational period
T, 2400...3000 K photospheric temperature
Vamp 2 x 10° cm/s final piston amplitude
Other parameters and material constants
Symbol Value Description
Ngtart 512 initial value of grid points
Ngnal 1024 ...1924 final number of grid points
Q' (Tqust) (4.4...5.9) X Tyqust[K] extinction efficiency of the dust(see Gail &
Sedlmayr 1985; Helling 1999)
R;, 0.91R, position of the inner boundary
Rt 2...25R, position of the outer boundary
s 15P Time for the initial acceleration of the piston
trezone 0.5P Time interval between two rezoning proce-
dures
Vamp,0 5 x 10* cm/s initial piston amplitude
€p 200 fraction of the period P for maximum time
step : Atpmax = P/ep
€CFL 8 x1072...5x 1072  Courant-Friedrichs-Levy-factor
At % €CFLA'T / v
€amax 0.1 maximum relative change of the particle sizes
per time step
€y 0.05 maximum relative change of the dust extinc-
tion kq per time step
€K, 0.02 maximum relative change of the number of
dust particles per time step
€K 0.01 maximum relative change of the 3™ dust mo-
ment per time step
€T 0.1 maximum relative change of Ty, per time
step
Kgas 2x107* cm? g7t gas opacity (assumed constant)

Table 3.2: Parameters for the dynamical wind calculation.
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3.4.3 Boundary Values

The hydrodynamical calculation requires an inner and an outer boundary
condition. Asinner boundary condition, the piston approximation (see Wood
1979) is chosen

27t

V(Rin, t) = Vamp(t)cos (?) . (3.9)

As outer boundary, a constant pressure gradient is assumed (see Fleischer
et al. 1992).

For the radiative transfer, two additional boundary conditions are re-
quired. At the inner boundary, the separation angle is set zero pu(R;,) = 0,
and the stellar flux F(Ry,) is assumed to be constant, which results in a
stellar luminosity that varies with the stellar radius

L*(t) = 47TRin2(t)F(Rin)> (310)

where I’ denotes the frequency integrated radiation flux, which relates to the
frequency integrated Eddington flux H as F' = 4w H. At the outer boundary,
the optical depth is forced to vanish, and no external irradiation is assumed
to exist.

3.4.4 Discretization

The spatial discretization follows the approach from Richtmyer & Morton
(1967). Quantities that depend on a volume are defined between two grid
points, all other quantities are defined at the position of the grid points.

In regular time intervals t,c,0ne, the grid is rezoned, i.e. all grid points, that
have wandered beyond the current outer boundary R, (t) are discarded and
reinserted into the grid. This reinsertion is not realized by simply inserting
single grid points, but by splitting two zones into three, a procedure which
allows for the conservation of all physical quantities (for details, see Fleischer
1994). With increasing integration time, the number of grid points is stepwise
increased from Ngiart t0 Ngnal-

The time steps are adapted dynamically. The corresponding parameters
Ecriterion 11 Table 3.2 give an overview over the various criteria used for the
determination of the time step. Generally speaking, the maximum time
step is the desired temporal resolution At,.x = P/ep, when determining the
length of the next time step this value is checked against the various criteria
(see Table 3.2) and the corresponding minimum time step is used.
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3.4.5 The dynamical calculation

At first the hydrostatic dust-free start model is constructed. Then, the dy-
namical calculations are started ”on top” of the start model. The piston
amplitude vamp, the position of the outer boundary R,y and the number of
grid points are slowly increased until the desired values are reached. The
calculation is usually stopped after an integration time of 120P.

Every single time step is calculated according to the following scheme:

1. Determination of the new velocity at the inner boundary
2. Calculation of the new position of the inner boundary
3. Calculation of the new velocity structure

4. Calculation of the new radial structure of the Lagrangean elements. At
this time it is checked, whether the time step is alright, and — if not —
jumped back to (1) with a shorter time step.

5. Calculation of the new density structure
6. Calculation of the artificial viscosity structure
7. Evaluation of the dust moment equations

8. Iterative semi-implicit evaluation of the energy equation, state equa-
tions and cooling functions

9. Evaluation of the radiative transfer
10. Calculation of the radiative accelerations for the next time step

11. Determination of the length of the next time step



Chapter 4

Gas box models

This chapter is divided into three parts. In the first two parts, the Fokker-
Planck system Eq (2.66) is solved on top of the thermodynamic structure
of a simple stationary wind for the LTE-case (Tyust = Tgas, Sect. 4.1) and
one NLTE-case (Tyust = T, Sect. 4.2). The basic wind parameters of this
stationary model are adopted from Dirks (2000) and given in Table 4.1. The
Fokker-Planck system (2.66) is solved as described in Sect 3.2 using the wind
structure from Table (4.1) as input for the calculation of the nucleation and
growth rates. The time variable required for the solution of Eq. (2.66) is
obtained via t = (R — R,)/Vwina, Where R is the distance from the centre of
the star and vyinq the wind velocity, which is assumed constant (see discussion
in Chapter 5).

In Sect. 4.3, some Monte-Carlo calculations are presented, where the de-
terministic dust equations (2.5) are solved on a random thermodynamical
structure generated on the basis of the same wind model.

T(R) = T./R.J/R
R, = 3.7-10%cm
T, = 2500K
Uwind = 20 km/s
M, = 1M,
M = 2-107°Mgy/yr
p(r) = M/(4mr?v)
EC/EO = 3

Table 4.1: Parameters of the stationary wind

57
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4.1 LTE

In this section, calculations are presented, where the dust temperature T, is
set equal to the gas temperature T,,s. This corresponds to the approach used
by Dirks (2000), who assumes the dust grains to be in thermal equilibrium
with the gas phase at every moment in time, i.e. if the gas is heated by the
temperature fluctuation, the dust is assumed to be also heated without delay.

After presenting an overview of the behaviour of the Fokker-Planck sys-
tem (2.66) solved on top a stationary wind structure, some parameter studies
are presented, in order to investigate the influence of the parameters describ-
ing the fluctuation ¢ and A. Finally, a comparison between the results of this
work and the model calculations from Dirks (2000) is presented.

4.1.1 The general picture

Figs. 4.1, and 4.2 show the results of an exemplary model calculation. The
parameters of the fluctuation are 0 = 60 K and A = 10% s (Fig. 4.1) and
A =10 s (Fig. 4.2). The integration width in temperature space was chosen
as AT = yo using v = 8, i.e. AT . = £480 K in this model.

The right hand sides of each figure show the results for a grid of a purely
deterministic calculation, i.e. a calculation where the deterministic dust equa-
tions (2.5) are solved as described in Sect. 3.1 on top of a temperature struc-
ture Tyas(r, T) = T+T and a density structure which is adiabatically coupled
according to Eq. (3.8) to the corresponding p(r). Note that in the deter-
ministic calculation, there is no interaction between different temperature
channels.

The left hand sides of Figs. 4.1, and 4.2 show the results of the stochastic
calculation, i.e. the solution of the coupled set of Fokker-Planck equations
(2.66) for the degree of condensation f. = ¢3/ec (top panel) and the dust
particle density nq/ng = qo (2 panel), and the nucleation rate J (3'4 panel)
and the net growth rate 77! (bottom panel) calculated using the correspond-
ing g3 for the carbon consumption. The boundary paths (T = £AT},.y) for
the stochastic models are set to the corresponding deterministic paths, i.e.
they are identical on the left and right sides from Figs. 4.1, and 4.2.

By looking at the deterministic plot for the nq (2°¢ panel at the right),
one can clearly see, that in the channel with the lowest temperature, the dust
formation starts at about 1.5 R,, whereas in the hottest channel it only starts
at about 4 R,. In contrast, the model including temperature fluctuations (top
left panel) shows quite uniform dust formation setting in at 1.5 R,, i.e. as
soon as the dust formation starts in the coolest channel. This behaviour
can be understood as the result of two effects: i) the direct transport of
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the ¢, through the T-space via the drift and diffusion terms in the Fokker-
Plank equation (2.66) and ii) the fact that under the given circumstances (i.e.
the given T'(r)/p(r)-structure) the conditions for dust growth are favourable
earlier (i.e. at smaller distances from the star), than they become favourable
for dust nucleation (see panel 3 and 4). Thus, the dust seeds which nucleate
in the cool channels are transported! into the hot channels, where they meet
conditions favourable for subsequent growth.

Figs. 4.2 shows the microturbulent limit case, which can be identified by
the fact, that the g, (here f, and n4) show no remarkable variation along
the T-axis. Nucleation and growth rate still show their T-dependence, be-
cause they are not "mixed” directly by the Fokker-Planck equations, but only
weakly coupled via the carbon consumption gs.

The top panels of Figs. 4.1 and 4.2 show the degree of condensation f.. In
the microturbulent limit (Fig. 4.2), the model shows a nearly uniform degree
of condensation for nearly all temperature channels except for the boundary
channels. For the longer correlation time (Fig. 4.1) this behaviour is far less
pronounced.

The vanishing influence of the boundaries can be seen very good at the
plot of the stochastical nucleation rate in Fig. 4.1, bottom panel, where the
nucleation rate of the deterministic boundary path looks nearly like a wall
at the high temperature boundary, just like at the plot of the stochastical
degree of condensation for the low boundary. In general, the influence of
the boundary depends on the the correlation time A of the fluctuation, on
the width of the temperature channel o, and on the number of grid points
along the T-axis. These parameters have to be chosen in such a way that the
influence of the boundary vanishes in the later calculation of the expectation
values (see remarks in Sect. 3.2).

Fig. (4.3) shows the mean thermodynamic structure T'(r) (red) and p(r)
(blue) of the the wind (top panel) and (in panel 2 to 5) the comparison
between the dust quantities calculated deterministically along the mean path
(black) and the corresponding expectation values according to the solution
of the system of Fokker-Planck equations (red). A look onto the nucleation
rate (Jy,, panel 2), the dust particle density (nq, panel 4) and the degree
of condensation (f., panel 5) shows that dust formation is favoured by the
temperature fluctuation: for the given parameters, nucleation sets in about
0.5R, earlier than in the deterministic case. For the degree of condensation
(f., panel 5) the effect is weaker, but still obvious.

I”Transported” in this context means: a given gas element, which is subject to a
temperature fluctuation, will keep the dust formed during this fluctuation, as long as it is
not explicitly evaporated. In the 3D-representation of Figs. 4.1, and 4.2 this process can
be understood as a transport between the different temperature channels.
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Fig. 4.3 shows that, in general, the conditions for dust growth (panel 3) are
most favourable shortly before they become favourable for nucleation. The
injection of dust nuclei from a cooler channel can therefore be understood as
an additional source of nucleation, inserting seed particles at a moment in
time, where they will very effectively grow.

4.1.2 Some parameter studies

Fig. 4.4 shows a parameter study for variations of o at A = 10* s. In the
second panel the logarithm of the expectation value of the stochastical nucle-
ation rate is shown, i.e. the expectation value (J) (R) of the nucleation rate
J(R,T,q3(R,T)), which has been calculated using the carbon abundance
ec(R,T) =€eco—qs(R,T)

+ATmax

= [ R TR )T, (4.1)
_A,I‘Inax

Panel 3 shows the corresponding expectation value for the net growth rate

771(R), which was calculated analogously. Panel 4 shows the expectation

value for the dust particle density (in units of ny) calculated as

+ATmax

wah(B) = [ (R T)p(T)T. (4.2
_ATmax

Panel 5 shows the expectation value for the degree of condensation (f.) which

is given by

+ATmax
= [ D (43
—ATmax €c,0

The most important trend for an increasing rms temperature deviation
o is that the nucleation (panel 2) starts closer to the star, resulting in a
faster increase of the dust particle density ng (panel 4), and the degree of
condensation f. (panel 5). A closer inspection of panel 2 reveals, that the
peak value of the nucleation rate decreases with increasing o, which results
in a slightly lower final dust particle density, as can be seen by a very close
look to panel 4. The peak of the net growth rate 77! (panel 3) wanders
slightly outwards with increasing ¢ and decreases in height. Note, however,
that 77! is plotted on a linear scale in panel 3, while J and nq are plotted
on logarithmic scales in panel 2 and 4.

An interesting feature of the o-study is the fact that, for small values of o,
the stochastic model approaches? the deterministic one. This behaviour was

2Indeed, for ¢ = 1 K the on plots like shown in Fig. 4.4 there is really no more difference
perceivable, which is why such a plot is not shown in this work
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expected (see discussion in Dirks 2000), because the limit case of arbitrarily
small fluctuations leads back to the deterministic structure.

Fig. 4.5 shows a set of models for a varying correlation time A. The
represented quantities are the same as in Fig. 4.4. The deterministic hy-
drodynamical structure T(R) (red), p(R) (blue), shown in the top panel is
identical for both plots.

The main feature is, that there is an overall difference between the en-
semble of the stochastic models and the deterministic model, while the dif-
ferences between the various stochastic plots are small. In particular, during
the important phase of the onset of nucleation and growth (panel 2 and 3,
at R = 2 — 3), one can hardly perceive a difference between the various
correlation times. The development of the grain number density (panel 4)
reveals some differences at very low densities, where, for longer correlation
times, nq seems to increase a bit faster. However, when the condensation
is complete, the final values for nq are all off the same order of magnitude.
An interesting feature can be seen when looking at the degree of condensa-
tion f. in panel 5. It looks like the models are switching between two limit
cases. The microturbulent case, where the plot for f. seems to be shifted
by =~ 0.4R, towards the star (blue and green line, for A = 10%...107 s) and
the macroturbulent limit (cyan and red line), where the condensation sets
in earlier but increases slower than in the microturbulent or deterministic
case. All in all, the parameter study for A shows, that the influence of this
parameter is weak.

Unlike for the variation of the rms temperature deviation o, the variation
of A never leads back to a (pseudo)-deterministic behaviour. The microtur-
bulent limit case (blue lines) corresponds to an immediate mixing of the g,
of the various temperature channels (along the T-axis in Figs. 4.1, and 4.2),
whereas the structure of the macroturbulent limits case can be obtained by
averaging the isolated deterministic paths weighted with p(T").

quacroturbulent(R> = \/O Kpp<T)dT (44)

4.1.3 Comparison to earlier work

In this section the gas box models described in the previous two sections are
compared with the results from Dirks (2000) who performed similar model
calculations. From a mathematical point of view, both model families are
identical, despite the fact that Dirks (2000) arrived at a set of Fokker-Planck
equations similar to Eq. (2.66) by first assuming spherical symmetry and
then performing a set of transformations, while in this work Eq. (2.66) is
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interpreted as a gas box model subject to the external wind structure given
in Table (4.1). However, the resulting equation system is identical. Numer-
ically, Dirks (2000) has programmed a FORTRAN code for the solution of
the Fokker-Planck equations, where 