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Abstract

Adversaries can deploy rootkit techniques on the target platform to persistently
attack computer systems in a stealthy manner. Industrial and political espionage,
surveillance of users as well as conducting cybercrime require stealthy attacks on
computer systems. Utilizing a rootkit technique means, that a part of the im-
plemented attack code is responsible for concealing the attack. Attack code that is
loaded into peripherals such as the network interface card or special micro-controllers
currently are the peak of the evolution of rootkits. This work examines such stealthy
peripheral-based attacks on the host computer. Peripherals have a dedicated pro-
cessor and dedicated runtime memory to handle their tasks. This means that these
peripherals are essentially a separate system. Attackers benefit from this kind of iso-
lation. Peripherals generally communicate with the host via the host main memory.
Attackers exploit this fact. All host runtime data is present in the main memory.
This includes cryptographic keys, passwords, opened files, and other sensitive data.
The attacker only needs to locate such data. Subsequently, attackers can read and
modify the data unbeknownst by utilizing the direct memory access mechanism of
the peripheral. This allows for circumventing security software such as state-of-the-
art anti-virus software and modern hardened operating system kernels.

Detecting such attacks is the goal of this work. Stealthy malicious software
(malware) that is based on an isolated micro-controller is implemented to conduct
an attack analysis. The malware proof of concept is called DAGGER, which is de-
rived from Direct memory Access based keystroke code loGGER. The development
and analysis of this malware reveals important properties of peripheral-based mal-
ware. The results of the analysis are the basis for the development of a novel runtime
detector. The detector is called BARM— Bus Agent Runtime Monitor. This detec-
tor reveals stealthy peripheral-based attacks on the host main memory by exploiting
certain hardware properties. A permanent and resource-efficient measurement strat-
egy ensures that the detector is also capable of detecting transient attacks. Such
transient attacks are possible when the applied measurement strategy only measures
at certain points in time. The attacker exploits this measurement strategy by at-
tacking the system in between two measurements and by destroying all attack traces
before the system is measured. The detector represents an alternative solution for
previously proposed preventive protection approaches, i.e., input/output memory
management units. Previously proposed approaches are not necessarily effective due
to practical issues. This fact as well as the threat posed by peripheral-based mal-
ware demand the alternative detector solution that is presented in this work. The
detector does not only reveal an attack, but also halt the malicious device. BARM
immediately detects and prevents attacks that are conducted by DAGGER. The
performance overhead is negligible. Furthermore, BARM is able to report if the
host main memory is attacked by a peripheral to an external platform.
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Zusammenfassung

Um Computersysteme unerkannt und dauerhaft zu attackieren, konnen Angreifer
Rootkit-Techniken auf der Zielplattform einsetzen. Industriespionage sowie Spi-
onage auf politischer Ebene, das Uberwachen von Computerbenutzern oder Ver-
brechen im Umfeld der Cyberkriminalitét erfordern heimliche Angriffe. Eine Rootkit-
Technik anzuwenden bedeutet, dass ein Teil des implementierten Angriffscodes fiir
die Tarnung der Attacke zusténdig ist. Angriffscode, der in Peripheriegeriten wie
zum Beispiel der Netzwerkkarte zur Ausfiihrung kommt, reprasentiert momentan
den Gipfel der Rootkit-Evolution. Diese Arbeit untersucht solche vermeintlich heim-
lichen peripheriebasierten Attacken auf den Hostcomputer. Peripheriegerate haben
einen dedizierten Prozessor sowie dedizierten Laufzeitspeicher, um ihre Aufgaben
zu erfiillen. Somit stellen diese Geréite separierte Systeme dar. Angreifer profi-
tieren von dieser Art der Isolierung. Peripheriegerdte kommunizieren tiblicherweise
iiber den Hauptspeicher mit dem Hostsystem. Angreifer nutzen genau diesen Um-
stand aus. Sdmtliche Laufzeitdaten des Hosts befinden sich im Hauptspeicher. Dazu
zahlen unter anderem kryptografische Schliissel, Passworter, geéffnete Dateien sowie
weitere sensible Daten. Der Angreifer braucht diese Daten lediglich zu lokalisieren.
Dann kann der Angreifer mittels direktem Speicherzugriff des Peripheriegerétes die
Daten unerkannt auslesen oder modifizieren. Dabei werden Sicherheitsprogramme
wie dem Stand der Technik entsprechende Antivirensoftware oder moderne gehértete
Betriebssystemkerne umgangen.

Ziel dieser Arbeit ist es, solche heimlichen Angriffe zu enttarnen. Es wird ein
heimlicher Angriff mit Hilfe eines speziellen vom Hostcomputer isolierten Mikro-
Controllers zu Analysezwecken implementiert. Der zugehorige Proof of Concept
wird DAGGER genannt, was vom englischen Direct memory Access based keystroke
code loGGER abgeleitet ist. Die Entwicklung und Analyse dieses heimlichen Angriffs
bringt wichtige Eigenschaften von peripheriebasierter bosartiger Software zu Tage.
Mit den gewonnenen Erkenntnissen wird ein neuartiger Detektor entwickelt. Der De-
tektor wird BARM genannt. BARM steht fiir Bus Agent Runtime Monitor. Dieser
Detektor deckt mit Hilfe bestimmter Hardwareeigenschaften heimliche Hauptspei-
cherattacken auf. Durch eine permanente und ressourcenschonende Messstrategie ist
der Detektor in der Lage, kurzlebige Attacken zu enttarnen. Solche Attacken sind
moglich, wenn nur zu bestimmten Zeitpunkten gemessen wird. Diese Messstrate-
gie kann der Angreifer ausnutzen, indem er zwischen zwei Messungen angreift und
rechtzeitig vor der kommenden Messung seine Spuren verwischt. Der Detektor
reprasentiert eine alternative Losung zu bisherigen praventiven Schutzsansatzen wie
zum Beispiel zu Memory Management Units, die die Ein- und Ausgaben von Pe-
ripheriegeriaten beriicksichtigen kénnen. Die bisherigen praventiven Ansétze bieten
aufgrund der praktischen Umsetzung nicht notwendigerweise ausreichend Schutz.
Diese Tatsache sowie das Bedrohungspotential, das von kompromittierten Periphe-
riegerdten ausgeht, verlangt nach der in dieser Arbeit vorgestellten alternativen De-
tektorlosung. Der Detektor kann Angriffe nicht nur aufdecken, sondern auch un-
terbinden. BARM detektiert und stoppt DAGGER-Angriffe unverziiglich. Dabei
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entstehen lediglich unbedeutende Leistungsverluste. Zusétzlich ist BARM in der
Lage, zuverlassig einer externen Plattform mitzuteilen, ob der Hauptspeicher durch
ein Peripheriegerit angegriffen wird.
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Introduction

“Most people, I think, don’t even know what a rootkit is, so why should they
care about it?”

Thomas Hesse,
Former President of Sony’s Global Digital Business

ANY people associate the term rootkit to attacks on computer platforms. In
M fact, adversaries deploy rootkits to attack computer users. Rootkit-based at-
tacks are used to conduct industrial espionage as well as political espionage, and
cybercrime [see 16, p.22-25]. Adversaries conduct industrial espionage to steal intel-
lectual property of competitors to slash the cost of technology development cycles.
Political espionage differs from industrial espionage. In the case of political espi-
onage the adversaries are interested in national secrets instead of novel technology.
Cybercriminals use rootkits to steal internet banking credentials, passwords, and
other sensitive data. Rootkits can also be utilized for conducting persistent surveil-
lance of end users. Rootkits are also utilized by law enforcement, as well, to perform
surveillance on suspects [see 16, p.21]. But what exactly is a rootkit? Is it a back-
door? Is it a Trojan horse? In other words, what kind of malicious payload does a
rootkit contain and how is the target computer infiltrated with the rootkit?

Several definitions for the term rootkit can be found in the literature such
as Bill Blunden’s The Rootkit Arsenal: FEscape And FEvasion In The Dark Corners
Of The System [16]. His work also evaluates the rootkit definitions of Mark Russi-
novich (known from the Windows Internals series [106]) and Greg Hoglund (author
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of Rootkits: Subverting the Windows Kernel [60]). Finally, Bill Blunden came up
with his own definition [see 16, p.12]:

“A rootkit establishes a remote interface on a machine that allows the
system to be manipulated [...] and data to be collected (e. g., surveillance)
in a manner that is difficult to observe (e. g., concealment).”

All these definitions imply an important property exhibited by rootkits in gen-
eral, namely the capability of operating stealthily. Attackers deploy rootkits to
camouflage the malicious code that attacks the target computer. This answers the
question about the malicious payload of a rootkit. The payload can be anything that
implements malicious behavior from the user’s perspective. This malicious behavior
can also be a backdoor. A backdoor is used to bypass security mechanisms such as
authentication requests to gain access to a computer system. A backdoor can also
provide an attacker with remote access to a computer. From the attacker’s point
of view it makes sense to hide the backdoor. The backdoor should be used without
the knowledge of the computer user. Hence, a backdoor can benefit from rootkit
mechanisms. Another example for rootkit payload is a surveillance program that
activates the microphone and camera of the target computer to stealthily monitor
the computer user. A keystroke code logger that captures all keystrokes that are
entered by the computer user is also a popular example for malicious payload.

However, the challenge for the attacker is the infiltration of the target com-
puter platform. The attacker has to implement some kind of rootkit installer. A
rootkit installer is commonly referred to as dropper [see 16, p.9] [33]. Such a dropper
can be based on one of the most popular infiltration mechanism, a Trojan horse or
Trojan in short. The goal of a Trojan is to mislead the target computer in installing
a desired program, feature or function. Instead, the user installs malicious payload
such as a keystroke code logger or a backdoor. Such a payload is generally deployed
in a highly privileged environment and camouflaged using rootkit techniques. An-
other popular infiltration approach is the exploitation of a security vulnerability.
The rootkit installer could implement a so-called exploit. An exploit is attack code
that utilizes a security vulnerability. So-called zero-day exploits are more threaten-
ing than non-zero-day exploits. A zero-day exploit utilizes a previously unknown
security vulnerability, which can be advantageous for the attacker. It enables the
attacker to conduct a stealthy infiltration of the target computer.

Another key rootkit property is that the rootkit code runs with the highest
privileges as possible. The goal is to gain at least higher privileges than any potential
detection mechanism. This allows the rootkit to control and modify the detection
mechanism. At a certain point the detection mechanism will fail to detect the rootkit
or the malicious payload that is camouflaged by the rootkit. This is the reason
why attackers seek new and more powerful attack vectors. The more privileges the
attacker has the more control of the target computer the attacker gains.

The goal of the attacker is to gain absolute control of the target computer. The
rootkit evolution documents the arms race between attackers and the anti-malware
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community. Rootkits moved to more privileged execution environments compared
to the original rootkit. In recent years[35, 36, 47, 134, 135], the rootkit evolution
reached a new level. Attackers started to exploit the isolated execution environments
of platform peripherals. Peripherals with a dedicated processor, dedicated memory,
and a hardware feature to directly access the runtime memory of the host are able
to camouflage malicious payload that attacks the target computer. Such attacks
are supposed to be stealthy. No modern anti-virus like software that is available on
the market considers the peripheral-based execution environments. Such software
is executed on the host processor and usually only considers the harddisk and the
main memory for storing malicious code.

1.1 Problem Statement

Malware is a threat for the confidentiality, integrity, and also for the availability of
data. In the case of peripheral-based malware, the attacker can exploit the stealth
potential of peripherals. Malware hidden in platform peripherals is not considered
by anti-virus software. Depending on the peripheral, security software can not even
access the inner workings of the device. For example, certain management controller
have access to the whole host memory and offer remote administration features. To
prevent abuse, the manufacturer applies protection mechanisms that thwart access
to the inner workings of this execution environment.

The mechanism, which is exploited by peripheral-based malware to attack the
host, is called direct memory access or DMA. In this work, we will introduce the
term DMA malware for such classes of attacks. DMA malware has similar charac-
teristics to rootkits. Current countermeasure approaches are unable to deal with the
challenge of DMA malware. For example, mechanisms such as load-time integrity
checks of the code intended to run on the peripheral does not prevent runtime at-
tacks. The same is true for digitally signed firmware images. Another approach
is latency-based attestation. This kind of attestation requires that a checksum be
computed within a certain timeframe. Unfortunately, it also requires the modifica-
tion of the peripheral’s firmware and does not prevent transient attacks. Further
approaches such as special monitoring and memory bus snooping are based on spe-
cial hardware or hardware features. Preventing sensitive data from being present
in the main memory also does not help. Such data can be dumped into the main
memory via a DMA attack.

A proposed countermeasure approach against DMA attacks is the utilization
of a so-called Input/Output Memory Management Unit (I/OMMU). Such a manage-
ment unit can restrict the access of peripherals to parts of the host main memory.
Unfortunately, this technology has significant deficiencies. It was demonstrated
that I/OMMUs can be attacked and circumvented [111, 146, 147, 148]. Hence, the
I/OMMU is not necessarily trustworthy. Some operating systems such as Windows
do not provide a device driver to support the I/OMMU. Additionally, not every

'Details can be found in Section 3.2 “Related Work — Countermeasure Approaches”.
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chipset provides an I/OMMU. Furthermore, memory access policy conflicts cannot
be handled by an I/OMMU. For example, Bulygin [25] demonstrated how to use
a peripheral to reveal malware present in the host runtime memory. We use the
same execution environment for our attack study in Chapter 4. If the I/OMMU
is configured to allow the peripheral to scan the whole host runtime memory to
reveal rootkits, then our attack code can also access the whole runtime memory to
steal sensitive data, for example. Hence, this work does not rely on I/OMMUs as
a countermeasure. Furthermore, I/OMMUs can introduce significant performance
overhead [13, 150], which makes I/OMMUs undesirable in certain scenarios. Due to
these considerations, we believe that a runtime monitor that can detect malicious
memory access with negligible performance overhead is missing. The absence of a
runtime monitor is one of the major motivations for this work.

1.2 Research Question and Methodology

Our research interest is based on the stealth capabilities of modern x86 platforms.
These capabilities are exploited by adversaries to hide malicious code as documented
by the rootkit evolution, see also Section 2.1. This raises the question whether or
not undetectable software can exist at all. To examine this question we consider the
next logical step in the evolution of rootkits, i. e., exploiting platform peripherals to
attack the host runtime memory.

We developed a malware Proof of Concept (PoC) that is executed on an isolated
peripheral. The hardware of this peripheral provides access to the host runtime
memory. We implemented an attack in the form of a keystroke code logger. This
means that our malware searches for the keyboard buffer of the host operating system
and monitors that buffer to capture keystroke codes. The evaluation of the keystroke
logger led us to a follow-up research question, i.e., is the host system able to defend
itself against peripheral-based host main memory attacks? To answer this question,
we implemented a runtime monitor that is executed on the host CPU. With this
monitor we want to demonstrate that additional (malicious) accesses to the host
main memory that originate from platform peripherals can in fact be detected. We
require that the host CPU-based monitor detects malicious accesses even if it is
unable to access the isolated execution environment of the malicious peripheral.

We used our malware example to derive typical properties of this class of
malware. Afterwards, we exploited these properties to detect memory accesses
conducted by the malware. We identified a property that every peripheral-based
malware that attacks the host memory exhibits. Because of this, we consider our
malware proof of concept as typical for this malware class. We implemented the host
CPU-based detector to reveal illegitimate memory accesses conducted by platform
peripherals via direct memory access. The goal was to implement a runtime monitor
that does not only cause minimal performance overhead for the host CPU, but also
prevents transient attacks.
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We also consider the network interface card in the last part of our research.
The network interface card could also host malware. Especially in enterprise en-
vironments it is required that a computer platform reports its status to a central
administrator platform. Such a status report can be modified by malware that is
executed on the network interface card. Hence, we developed an authentic reporting
channel. This channel helps to reveal attacks on such a status report.

Experimental Research Environment Our experimental environment is based on
Intel x86 hardware. The isolated peripheral that we use for our peripheral-based
malware is Intel’s Manageability Engine (Intel ME [79]). The Intel ME is a special
micro-controller that runs a powerful platform management firmware. An adminis-
trator can use the management firmware to remotely reinstall the operating system
even if the operating system is not bootable and the platform is not reachable via
the operating system’s network stack. The ME also works when the platform is in
standby or powered off. Due to these features the manufacturer Intel established
protection mechanisms that cannot be circumvented without significant effort. The
ME is isolated from the host system. The Intel ME environment is completely iso-
lated from the host, whereas other peripherals can be accessed via debug registers
and other mechanisms.

From a detector’s point of view the ME is the worst case execution environment
for hosting peripheral-based malware. The host CPU is unable to access the ME
environment. We use this worst case environment for our research. We infiltrate
the ME environment by applying an exploit that only works with a certain chipset.?
Please note, this work does not aim to find undiscovered security vulnerabilities. We
reused a known security vulnerability to set up our experimental environment due
to the lack of an appropriate Intel developer board.

1.3 Impact of Thesis Contributions

To conduct industrial espionage or steal online banking credentials, for instance,
attackers demand stealthily operating malware. Peripheral-based malware ensures
that the attack remains to be undetectable. Peripherals that fulfill the requirements
for stealthy malware operation are present in almost every modern computer plat-
form. Peripherals such as video cards, network interface cards, and management
controllers are part of desktop computers, server systems, and other computer ter-
minals. Mobile phones and tablet computers also have peripherals with a dedicated
processor, memory, and direct access to the host runtime memory. This means that
all modern platforms are susceptible to peripheral-based malware attacks. Such
malware is executed in an isolated execution environment and outside the scope of
anti-virus software and security mechanisms set up by the operating system kernel.
Due to the lack of a detector for peripheral-based malware and the lack of similar

2The exploit is only applicable to Intel’s Q35 chipset with a certain BIOS version in place. Intel
closed the corresponding security vulnerability by providing a BIOS update.

“Detecting Peripheral-based Attacks on the Host Memory”



8/129 Chapter 1 Introduction

functionality in anti-virus software, the contributions of this thesis can have im-
pact on the mentioned computer devices and their users. We summarize the main
contributions of this thesis in the following:

¢ DMA malware study: We define DMA malware to be able to distinguish
different DMA code. Such malware is executed on a peripheral and able to
attack the host via direct memory access. We develop a proof of concept
DMA malware implementation that is able to conduct a stealthy attack using
an isolated peripheral. Our proof of concept is called DAGGER, which is
derived from DmA-based keystroke loGGER. DAGGER can attack different
host operating systems. DAGGER highlights how efficient and effective DM A
malware is in practice. We identify the core properties of DMA malware to
learn the properties of such malicious software. These properties are the basis
for a DMA malware detector. In a first experiment we provide evidence that
DMA side effects exist. We demonstrate how such an effect can be measured
using common host CPU features. This is a first step for the development of
a DMA malware detector. (see Chapter 4)

e Detecting DMA malware: We developed a monitor that detects DMA
malware by comparing actual memory bus activity with expected memory bus
activity. Our method is able to determine and compare actual bus activity
without any firmware or hardware modification. The detector is based on a
feature that implements permanent runtime monitoring and runs on the host
CPU. We implemented and evaluated a PoC that we call Bus Agent Runtime
Monitor (BARM). Our monitor implements a monitoring strategy that con-
siders transient attacks. It does only cause negligible performance overhead.
BARM can detect and halt DMA malware immediately. (see Chapter 5)

e Authentic platform state reporting that excludes DM A malware: We
demonstrate that our detection method is also suitable in scenarios where a
computer platform has to report its status to a central administrator platform.
We establish an authentic reporting channel that reveals attacks conducted
by malware executed on the network interface card. This means that we
enhance BARM to reveal Man-in-the-Middle (MitM) attacks and to prevent
relay attacks conducted by the network interface card. We implemented a
channel to securely transmit the platform state information to an external
computer. The platform state information enables a remote party to evaluate
BARM measurement results. This means that the remote party can determine
if its counterpart has been attacked by DMA malware. Our channel considers
the host CPU as the channel endpoint and not the complete target platform.
This excludes the network interface card from being part of the endpoint. We
enhance BARM to account for memory bus activity that is caused by the
network interface card. The enhanced BARM utilizes OpenSSL to implement
the authentic reporting channel. We also modify the TLS handshake protocol
to already account for platform state information in the very beginning of
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the communication session. Our modifications are still compliant to the TLS
specification. (see Chapter 6)

A more detailed elaboration can be found in the corresponding chapters.

1.4 Structure of the Thesis

According to our methodology we structured this thesis as follows. In the next
chapter we will introduce the required technical background, preliminaries as well
as assumptions. The target platform for our evaluation is a modern Intel x86 based
system, see Sections 2.2, 2.3, 2.4, 2.5, and 2.6. These sections introduce the most
important terms regarding the target platform, especially the host CPU, Direct
Memory Access (DMA) as well as bus master, and Input/Output Memory Man-
agement Unit. We also introduce our assumptions and the resulting trust and ad-
versary model in Section 2.7. Chapter 3 covers related work. Since we consider
both, the attack as well as attack detection and protection, we have to elaborate
related work in both areas. Related works regarding DMA attacks are described
in Section 3.1. Section 3.2 presents previous works that consider countermeasure
approaches. Furthermore, we want to enable our target platform to report its status
regarding DMA-based malware to an external platform. To do so, we require a com-
munication channel that reveals MitM attacks of the network interface card. This
is necessary, since we also consider network interface cards as dedicated hardware
that can hide DMA attack code.

We conducted a study of DMA malware and present the results in Chapter 4.
A definition for DMA malware is given in Section 4.1. In Section 4.2 we present
DMA malware core functionality. The design and implementation of our DMA mal-
ware is presented in Section 4.3. Section 4.4 describes the evaluation of DAGGER,
Section 4.5 considers countermeasures and discusses in particular I/OMMU issues.
In the same section is demonstrated how we were able to exploit these properties
to demonstrate first DMA side effects. Since the host CPU is unable to directly
realize illegitimate memory accesses conducted by compromised peripherals we try
to provoke a side effect that occurs when a peripheral accesses the main memory.

The evidence of DMA side effects presented in Chapter 4 is the motivation for
the runtime monitor that we introduce in Chapter 5. In Chapter 5 “A Primitive for
Detecting DMA Malware” we demonstrate how DMA side effects can be exploited to
develop a detection tool. We define a general detection model that helps us to build
a detection tool, see Section 5.1. Afterwards we present a PoC implementation based
on the popular Intel x86 platform in Section 5.2. We evaluate our implementation
in Section 5.3. We also test BARM with the DMA malware that we developed in
Chapter 4. Finally, BARM exploits the fact that our DMA malware has to search
for valuable data that causes a certain amount of bus transactions.

In Chapter 6 we enhance our detection tool to implement an authentic state
reporting application. The application sends BARM measurements to an external
platform. The goal is a secure communication channel that excludes malware, which
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runs on the network interface card, from conducting a MitM attack. In Section 6.1
we present a model to negotiate an authentic reporting channel. We require a se-
cure channel such as TLS that is bound to the actual communication endpoint, i. e.,
to the host CPU. Our PoC implementation of our authentic reporting application
is based on OpenSSL, see Section 6.2. This implementation section also describes
the BARM enhancements that are required to consider the network interface card.
The evaluation of our implementation is presented in Section 6.3. We also test
our network related BARM enhancements with our DMA malware DAGGER. Au-
thentic reporting channel security considerations are discussed in Section 6.4. Our
conclusions of this thesis as well as future work are presented in the last chapter,
Chapter 7.
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Technical Background, Preliminaries and
Assumptions

“Putting a computer in front of a child and expecting it to teach him is like
putting a book under his pillow, only more expensive.”

Joseph Weizenbaum,
German / American Computer Scientist

LTHOUGH it is beneficial, in order to understand our later material, to know

many details about modern computer architecture, it would be unrealistic to
explain all these subtle details here. Thus, we refer the reader to literature [see
54, 59, 118, 127] for a thorough treatment of this topic. We limit this chapter to the
most important terms that are necessary to understand this work. We start with
the rootkit evolution. This evolution highlights why the technical background that
is presented in the following sections helps to understand this work.

2.1 The Rootkit Evolution

On the popular x86 platform the power of a rootkit strongly correlates to the exe-
cution environment, i.e., user-mode (ring 3) or kernel-mode (ring 0), for example.
Modern x86 processors provide so-called protection rings to distinguish between dif-
ferent privileged execution environments, see Figure 2.1. An analysis of the rootkit
evolution reveals that attackers discovered new and more powerful execution envi-
ronments on x86 platforms. The following paragraphs summarize different kinds of
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rootkits, i. e., user-mode, kernel-mode, virtual machine based, system management
mode, firmware-based, and peripheral-based rootkits. This overview represents the
rootkit evolution and demonstrates how the term rootkit changed in the recent years.

User-mode rootkits utilize simple techniques. The basic idea is to camouflage
the rootkit as normal software [129]. For example, the attacker adds the desired
malware functionality to a common software tool that is executed in user mode
with super-user/root privileges. The modified tool replaces the original tool on the
target platform. User-mode rootkits are considered as the starting point in the
rootkit evolution. The name is derived from the privilege level that is given by the
super-user root. User-mode rootkits can be discovered by special detection software
running in kernel-mode.

Kernel-mode rootkits are based on an advanced technique to hide the rootkit
using operating system kernel components [60]. Kernel-mode rootkits modify the
kernel, or to be more precise, kernel code (for example system calls) or kernel data.
Kernel modifications change the kernel behavior to enforce certain stealth capabili-
ties to hide malicious activities [see 129], e. g., a keystroke code logger. The rootkit
executed in kernel-mode is immune to techniques that reveal user-mode rootkits.

Much more powerful rootkits to control a computer system are Virtual Machine
Based Rootkits (VMBR) such as SubVirt [77] and Blue Pill[108]. A controlling
instance that is called hypervisor or Virtual Machine Monitor (VMM) is normally
used to host guest operating systems in Virtual Machines (VMs). A VMBR exploits
the VMM environment to host the operating system of the target computer in a
virtual machine. Since the operating system kernel is executed on top of the VMM
environment, VMBRs can be considered to be run in “ring -1”. Thus, a malicious
controlling instance is placed between hardware and operating system. VMBRs are
hard to install. Conversely, VMBRs are also hard to detect. Blue Pill can host the
target operating system on-the-fly, i.e., without a shutdown or reboot.

Another powerful execution environment for rootkits is the System Manage-
ment Mode (SMM). SMM is a special high privileged processor mode that executes
special system software. It can also be exploited to implement so-called SMM-
based rootkits. Code executed in SMM runs with the highest host CPU privileges.
This means that a SMM-based rootkit runs with more privileges than the oper-
ating system kernel and a hypervisor. Hence, SMM-based rootkits can be consid-
ered to be executed in protection “ring -2” [145]. In 2008, Embleton et al. [49] and
Wecherowski [144] demonstrated how SMM can be used for rootkits. SMM code is
stored in firmware, i. e., SMM rootkits can be considered as a special case of firmware
rootkits.

Firmware-based rootkits are also quite powerful. Deploying rootkits in firmware
is very difficult, but not impossible. Firmware is special low-level software that is
stored on flash memory. The Basic Input/Output System (BIOS) is an example of
firmware that is stored on flash memory on the x86 platform. A firmware-based
rootkit is not deployed on a disk. Thus, it is very difficult to detect and to remove
the malicious software. An attacker can use the rootkit to control the computer
hardware and to attack the operating system, even if the user reinstalls the operat-
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Figure 2.1: “Ring -3” Environment compared to other Rootkit Environ-
ments on the x86 Platform

Ring 3 (user mode)

Ring O (kernel mode)

“Ring -1” (hypervisor)
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“Ring -3” (peripherals)

Please note, ring 3 and ring 0 are implemented in hardware (host
CPU). The terms “ring -17, “ring -2”, and “ring -3” are used to
emphasize the power of the corresponding execution environments.
They are not implemented in hardware.

ing system. Heasman [56] demonstrated how to implement and detect a BIOS-based
rootkit at Black Hat Federal 2006. Heasman [57] continued this research. Fur-
ther BIOS firmware attacks that can be the basis for a rootkit were presented by
Wojtczuk and Tereshkin [149], Loukas K [84, 85], and Ortega and Sacco [97, 98].
Brossard [21, 22] also demonstrated that hardware backdooring is practical. The au-
thor exploits the open source BIOS coreboot? and related tools to flash the BIOS
and read-only memory of peripherals to attack a computer platform.

Rootkits hidden in firmware can also be implemented using firmware of plat-
form peripherals. Such rootkits are peripheral-based rootkits. A potentially ex-
ploitable peripheral is the network card [134]. Heasman [55] also discussed how to
implement and detect a Peripheral Component Interconnect (PCI) based rootkit de-
ployed in expansion Read Only Memory (ROM) that is present on the PCI device.
Peripherals are well isolated from the actual host system. Hence, the execution
environments of peripherals are unconsidered by anti-virus software. This makes
peripherals quite attractive for attackers, see Figure 2.2.

A special micro-controller that executes platform management code on a sep-
arate processor offers nice stealth capabilities and can also be used by rootkits.
During the Black Hat USA 2009 conference Tereshkin and Wojtczuk [131] presented
the idea to use this micro-controller for rootkits. They introduced the term “ring -3”

3See http://www.coreboot.org/Welcome_to_coreboot [accessed 25 February 2014]
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Figure 2.2: Overview of Dedicated Isolated Hardware potentially ex-
ploitable by Rootkits
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Rootkits hidden in peripherals can directly access the main memory
of the computer platform. Hence, they can steal sensitive data, such
as the harddisk encryption key, the video telephony session key, on-
line banking credentials, passwords, open files, etc. It is also possible
that such rootkits modify data in the main memory.

to emphasize the stealth capabilities. Such peripheral-based rootkits are considered
to be even more stealthily than SMM-based rootkits. Bulygin [25] demonstrated
how to use this special micro-controller based environment to detect SMM-based
and VMM-based rootkits. Since peripherals such as network interface cards com-
municate with the host operating system via the main memory, peripheral-based
rootkits can attack the host by illegitimately reading from or writing to the host
memory. The mechanism that enables memory access for peripherals is called Direct
Memory Access (DMA, see Section 2.4). Due to this mechanism peripheral-based
rootkits are supposed to be absolutely stealthy and undetectable. Such rootkit tech-
niques are the focus of this work. Peripheral-based rootkits can access the host
memory to steal passwords, online banking credentials, open documents, etc. that
are present in the host’s runtime memory via DMA. They can also infiltrate the host
with further attack code such as a kernel-based backdoor [47].

Note, in this work we avoid the term “ring -3”. No “ring -3” is implemented
in hardware. Terms such as “ring -1”7, “ring -2”, and “ring -3” are only used to
illustrate the privilege level of the corresponding environment on the x86 platform.
The lower the ring the more powerful is the rootkit. In this thesis, we will use
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the term malware (malicious software) because the attacks that we analyze are not
executed on the host CPU. Hence, root privileges are irrelevant. The malware that
we focus on has only the goal to operate stealthily in common with original user
space rootkits.

2.2 Typical x86-based System Architecture

The main components of a typical x86 system architecture as depicted in Figure 2.3.
The linkage of Central Processing Unit (CPU), Memory Controller Hub (MCH), and
Input/output Controller Hub (ICH) is called the chipset [54]. This chipset solution
is also referred to as 3-chip solution. System memory (Random Access Memory or
in short RAM) as well as a display adapter are connected to the MCH. The MCH
controls access to memory. It can block requests to memory addresses or redirect
the request to the ICH, if the destination address belongs to the ICH. Peripheral
devices, such as flash memory, Network Interface Card (NIC), etc., are integrated
into the system using the Peripheral Component Interconnect express (PCle[24])
standard. This standard implements a serial interconnect for peripherals and the
chipset. NICs and other add-on cards can be connected to the ICH via PCle. Flash
memory, which stores firmware such as the Basic Input/Output System (BIOS [see
54, p.369]), is also connected to the ICH.

Please note, Intel introduced a so-called 2-chip solution with the Intel 5 Series
chipset [121, p.15]. 2-chip solution means that the MCH functionality moved into
the host CPU and is called Integrated Memory Controller (IMC [32, p.14]). The IMC
is the controlling instance that controls memory accesses just as the former MCH.
The ICH was renamed to Platform Controller Hub (PCH[68]). The experiments
conducted in this thesis are based on the 3-chip solution.

Further controller devices connect other formats, such as Universal Serial Bus
(USB [8]), Fire Wire (FW [6]), or Serial Advanced Technology Attachment (SATA [7]),
via PCle to the system. Legacy PCI devices are connected to the PCle architecture
via a so-called PCI-to-PCle bridge [24]. In laptop computers Personal Computer
Memory Card International Association (PCMCIA)/EzpressCard [139] devices are
integrated into the system utilizing PCle. The host CPU is not necessarily the only
processor in the system. The video card, for example, supports a Graphics Process-
ing Unit (GPU) to efficiently modify computer graphics. Data to be processed is
stored in Video RAM (VRAM), that is separated from normal system RAM. Other
devices with similar properties are NICs and Intel’s Manageability Engine (ME [79)])
in the platform’s MCH. They also utilize separate processors as well as separate
RAM to execute firmware.

2.3 Intel x86 based Host Central Processing Unit

The Intel x86 Central Processing Unit (CPU) was announced in 1978 [see 59, ap-
pendix K.3]. Since then, the x86 CPU has been enhanced and nowadays x86 proces-
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Figure 2.3: x86 Chipset and Peripheral Components
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The chipset components are the Central Processing Unit (CPU or
host processor), the Memory Controller Hub (MCH, also known as
northbridge) and the Input/output Controller Hub (ICH, also known
as southbridge). Peripherals do not belong to the main chipset.
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sors consist of several units to support proper features for different computing tasks.
Modern extensions are floating point unit, Single Instruction operating on Multi-
ple Data items (SIMD [117, p.524]), Streaming SIMD Extensions (SSE[117, p.748]),
x64 [58, p.351], Physical Address Extension (PAE[69, p.2-23]), multilevel caches (L1,
L2, L3 cache [59, p.117]), Performance Monitoring Units (PMU [see 104, p.429]) and
hardware support for virtualization as described by Grawrock [54]. A modern x86
CPU usually consists of multiple cores [see 59, p.117]. These cores provide registers
of different bit sizes, i.e., from 16 bit up to 512 bit [see 70, Section 1.2.1].

To offer protection mechanisms the CPU supports a privilege model via the
so-called protection mode. The model provides different privilege levels also known
as rings to separate certain software running on top of the hardware. Four rings are
available if the processor is in protected mode. Ring 0 is the most privileged ring
ring 3 has the fewest privileges. The operating system is executed in ring 0. Thus,
it is separated from application software running in ring 3. Ring 1 was considered
for device drivers and ring 2 for services, though in practice ring 1 and 2 are not
used [54, p.41].

System Management Mode (SMM [69]) is another processor mode only available
for system firmware. That mode was introduced in x86 architectures to implement
higher energy-efficiency by, e. g., powering down unused disks and to control system
hardware by, e.g., turning on fans and shutting down systems when temperature
limits are reached. SMM is triggered by an interrupt, i.e., the System Management
Interrupt (SMI). SMI handler code is loaded from flash memory by the BIOS into
the System Management RAM (SMRAM) early in the system initialization. To
prevent modifications of the SMI handler code from other processor modes than
SMM, the chipset provides a special bit that is called D_LCK. The D_LCK bit is set
to protect the SMI code after loading it into SMRAM. If the D_LCK bit is set no
alteration of SMRAM content is possible.

When an SMI triggers SMM, the current executed program is interrupted and
the processor state will be saved. Afterwards, the processor executes the SMI han-
dler code. When the execution of the handler code has been completed, the saved
processor state is restored. After the processor switches back from SMM to the
previous processor mode the interrupted program can continue to operate. Note
that the previous processor mode has lost CPU cycles/time, since both processor
modes cannot be executed simultaneously. SMM can be considered to be a separate
execution environment. SMRAM is a separate address space and only accessible
when the processor is in SMM. In other words, the OS has no access to SMRAM.
Furthermore, privileges in SMM are not restricted, code executed in SMM can call
all I/O as well as system instructions.

Hardware virtualization extensions in x86 are called Intel Virtualization Tech-
nology (Intel VT) on Intel platforms [54]. Virtualization mechanisms are used to run
multiple OSes or applications isolated from each other on a single hardware platform
in parallel. A controlling instance called a hypervisor or a Virtual Machine Monitor
(VMM) hosts guest OSes in Virtual Machines (VMs). Modern x86 CPUs provide
a special instruction set called VT-x. VT-x is part of Intel VT and is intended
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to support hardware virtualization. This hardware support offers two special CPU
operations: VMX root operation and VMX non-root operation. A VMM is run
in VMX root operation. VMs running on top of the VMM are executed in VMX
non-root operation controlled by the VMM. Both operation modes support their
own protection rings, four rings each. Thus, software of the guest system (kernel,
drivers, applications, etc.) can be run in the designated privilege level. The protec-
tion rings in VMX non-root operation are considered to be unprivileged, since these
rings are controlled by the VMM running in VMX root operation. The four rings
of the VMX root operation mode are privileged. Usually, the VMM uses only the
most privileged ring. This ring is often called “ring -1” to emphasize that it controls
the unprivileged rings 0 to 3.

The x86 micro-architecture also implements a pipelining concept with special
execution optimization features, such as branch prediction and out-of-order execu-
tion [118, p.3291f] [127, p.93ff]. The execution pipeline works with micro-operations,
i.e., computations that are implemented as stylized atomic units. Intel architecture
instructions are translated into micro-operations [118, p.331]. For out-of-order ex-
ecution a so-called Reorder Buffer (ROB[118, p.333]) is required to keep track of
renamed registers. Register renaming occurs during out-of-order execution. Reg-
isters used in micro-operations are renamed by utilizing the Register Alias Table
(RAT [118, p.333]) that is also referred to as the Register Allocation Table (RAT [see
127, p.100]).

PMUs are implemented in the form of Model-Specific Registers (MSR [69,
Section 9.4]) that enable software developers to count micro-architecture related
events. This helps programmers to write optimal code for a certain CPU micro-
architecture [104]. For example, the MSRs can be configured to count cache misses,
RAT stalls, and branch mispredictions that occur when executing code [69, Chap-
ters 18/19]. The PMU registers that count events are also referred to Performance
Counter or Hardware Performance Counter (HPC). They are only available in ring
0. Another special purpose register that is related to performance measurements
is the so-called Time Stamp Counter (TSC[69, Section 17.12]) register. The TSC
register can be used to count CPU cycles after a platform reset. Access to the time
stamp counter register as well as to the performance monitoring unit registers from
different privilege levels can be controlled via the x86 control register 4 (CR4) [see
69, Chapter 2].

A special input/output (I/O) feature to exchange data with peripherals is the
concept of I/O-mapped 1/0 via ports (I/O ports[117, p.70,341]) that is provided
by the x86 CPU. This concept is complementary to memory mapped I/O (also sup-
ported by x86 systems [117, p.343]) where memory as well as registers of peripherals
are mapped into the memory address space of the host CPU. Peripherals also com-
municate with the host CPU via interrupts to signal that new data is available,
for example [117, p.252]. To communicate with the host system, peripherals can
also use the concept of direct memory access. In this case the peripheral does not
communicate directly with the host CPU, see Section 2.4.
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Figure 2.4: Third-party and First-party DMA
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(a) Third-party DMA: The host CPU is required to (1) configure
(source and destination address) the central DM A controller via I/0
ports to (2) perform a DMA transfer. The host CPU is (3) inter-
rupted when the DMA transfer has been finished [31, p.454]. Hence,
the host CPU is aware of a third-party DMA transfer. — (b) First-
party DMA: The peripheral device can (1) configure its own DMA
engine. The device acts as bus master (see Section 2.5) to get control
of the system bus to perform a DMA transfer. The device can inter-
rupt the host CPU when the device (2) has completed the transfer.
The transfer also works if the device does not interrupt the host CPU
at the end of the DMA transfer. In this case the CPU is unaware of
the DMA transfer.

2.4 Direct Memory Access

PCle supports Direct Memory Access (DMA) for peripherals, or to be more precise
for dedicated hardware such as video cards, NICs, and management controller. DMA
enables fast memory access without the involvement of the host CPU. The aim of
DMA is to remove the burden from the host CPU. DMA allows peripherals to gain
access to the whole host memory bypassing the CPU. The CPU can perform other
tasks while DMA transfers occur. Peripherals can have their own engines to perform
DMA. This kind of DMA is called first-party DMA [133, p.428]. Another mechanism
is third-party DMA [133, p.428] where a central DMA Controller (DMAC, see Fig-
ure 2.3) is necessary to provide legacy devices (e.g., devices based on the Industry
Standard Architecture (ISA[116]) format) without DMA engines with fast memory
access. It is also integrated in modern platforms [64, p.128].

Figure 2.4 highlights an important difference regarding stealthy operation be-
tween third-party and first-party DMA. When using third-party DMA the host
CPU is aware of the DMA transfer, because the peripheral needs the host CPU to
configure [see 31, p.454] the DMAC via I/O ports* (see Section 2.3). When using
first-party DMA the host CPU is not necessarily aware of the transfer. Note, a
DMAC or a DMA engine can only access host memory addresses, but not host CPU

4See the Linux source code files arch/x86/include/asm/dma.h and arch/x86/include/asm/io.h,
for example.
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Figure 2.5: Bus Master Topology
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Bus masters access the memory via different bus systems (e. g., PCle,
FSB). The MCH arbitrates main memory access requests of differ-
ent bus masters. (based on [23, p.504][24][58, Section 7.3][63, Sec-
tion 1.3][64])

cache, host CPU registers, or the harddisk, for example. The latter implies that
data swapped out from runtime memory to the harddisk is not accessible by a DMA
engine, either.

2.5 Bus Master

A computer platform has several bus systems, such as PCle and Front-Side Bus
(FSB). Hence, a platform has different kinds of bus masters depending of the bus
systems, see Figure 2.5. A bus master is a device that is able to initiate data transfers
(e.g., from an I/O device to the main memory) via a bus [58, Section 7.3]. A device
(CPU, I/O controller, etc.) that is connected to a bus is not per se a bus master.
The device is merely a bus agent [1, p.13]. If the bus must be arbitrated a bus master
can send a bus ownership request to the arbiter [9, Chapter 5]. When the arbiter
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grants bus ownership to the bus master, this master can initiate bus transactions
as long as the bus ownership is granted. Note, this procedure is not relevant for
PCle devices due to its point-to-point property. PCle requests are not required to
be arbitrated and therefore, bus ownership is not required. The bus is not shared
as it was formerly the case with the PCle predecessor PCI.

Nonetheless, the bus master capability of PCle devices is controlled by a certain
bit, that is called Bus Master Enable (BME). The BME bit is part of a standard
configuration register of the peripheral and is usually set by the corresponding device
driver that is executed on the host CPU. The MCH (out of scope of PCle) still
arbitrates requests from several bus interfaces to the main memory [63, p.27], see
Figure 2.5. The host CPU is also a bus master. It uses the Front-Side Bus (FSB) to
fetch data and instructions from the main memory. 1/O controller (e.g., ethernet,
harddisk controller, etc.) provide separate DMA engines for I/O devices (e.g., USB
keyboard /mouse, harddisk, NIC, etc.). This means that when the main memory
access request of a peripheral is handled by the MCH, PCle is not involved at all.

2.6 Input/Output Memory Management Units

Intel introduced a technology called Intel Virtualization Technology for Directed 1/0
(VT-d, [2]) as one of several building blocks to provide hardware supported virtu-
alization for x86 systems. VT-d can be considered as an Input/Output Memory
Management Unit (I/OMMU) to efficiently assist virtualization requirements, such
as reliable isolation of virtual machines running on a virtual machine monitor. VT-
d is mainly used in conjunction with virtualization solutions. With VT-d, system
software, that means a hypervisor or an OS, can create memory protection domains.
For example, isolated subsets of physical memory can be assigned to a virtual ma-
chine or to memory of an I/O device driver. An I/O device that is not assigned to a
protection domain has no access to physical memory of that domain. These access
restrictions are realized using address translation tables. System software configures
so-called DMA Remapping (DMAR) engines provided by Intel VT-d. Such an en-
gine maps a memory request, for example triggered by an 1/O device, to physical
memory. VT-d can block a memory request, if the device is not assigned to the
protection domain. Please note, an activated I/OMMU can introduce significant
performance overhead for the host CPU [13][150][88, p.29]) with the result that the
utilization of this technology is often avoided.

To enable system software to configure DMAR engines, the BIOS is required
to load corresponding information in the form of Advanced Configuration Power
Interface (ACPI[44]) tables into the main memory. System software can use this
information (e.g., number of DMAR engines) to set up protection domains. Please
note, storing the ACPI tables in the main memory raises a serious security threat.
These tables are accessible via direct memory access and can be modified as described
by Wojtczuk et al. [148] and Sang et al. [I11]. System software that is responsible to

“Detecting Peripheral-based Attacks on the Host Memory”



22/129 Chapter 2 Technical Background, Preliminaries and Assumptions

configure the DM AR engines correctly might fail if this vulnerability is exploited by
an attacker.

2.7 Trust and Adversary/Attacker Model

The attacker model provides a description for a stealthy DMA attack scenario. The
attacker is able to infiltrate dedicated hardware present in a computer platform with
malicious payload remotely. This can be carried out via an OS or firmware related
zero-day exploit [see 47, for example]. We assume the attacker is able to attack
the target platform during runtime. This can not only be done remotely using a
firmware exploit, but also via a remote firmware update mechanism as demonstrated
by Duflot [45] and by Triulzi [135], respectively. Alternatively to the described re-
mote exploitation, the attacker can also infiltrate the peripheral before the supposed
owner gains and deploys the peripheral on the target platform.

The dedicated hardware supports first-party DMA as described in Section 2.4
and accesses the main memory via the memory bus, see Figure 2.5. We assume
that the target computer platform has usual up to date defense mechanisms such
as anti-virus software and a host firewall. The platform user does not apply addi-
tional hardware such as a hardware firewall to protect the computer platform. We
assume that only a stealthy attack can result in a successful attack. Hence, the at-
tacker wants to hide the attack by using the stealth potential of dedicated hardware.
Attacks on the main memory (i. e., confidentiality and integrity violations) only orig-
inate from peripherals via DMA. The attacker does not implement an attack that
requires a cooperation between peripheral and host to increase the probability of
a stealthy attack. We further assume that the attacker ensures that an integrity
violation (memory write access) does not result in an attack revelation. Additional
hardware would decrease the probability of a successful stealthy attack significantly.
Most likely, the attacker aims on stealing data, e. g., to conduct industrial espionage
or to acquire online banking credentials, etc. To do so, the attacker wants to read
data from (confidentiality violation) or write data to (integrity violation) the main
memory via DMA.

We consider a computer platform as trustworthy if it conforms to the applied
security policy, that means in our case no DMA-based malware is attacking the host
platform by reading from or writing to the platform’s main memory via DMA. We
rely on a minimal Trusted Computing Base (TCB [37, p.66][99, p.8]) that consists
of the host CPU and the RAM chip hardware as well as the communication path
in between (front-side bus, memory controller hub, memory bus). Software (system
software as well as application software) executed on the host CPU, is in a trusted
state before the platform is under attack. This means that software is loaded as
well as started correctly and behaves as expected. We do not count on preventive
approaches such as I/OMMUs due to the security issues mentioned in Section 2.6.
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“The hacker mindset doesn’t actually see what happens on the other side, to
the victim.”

Kevin David Mitnick,
Security Professional

INCE we determined in our methodology to consider both, the attack as well
S as attack detection and mitigation, we have to elaborate on related work in
both areas. Furthermore, we want to enable our target platform to report its status
regarding DMA-based malware to an external platform. To do so, we require a
communication channel that reveals Man-in-the-Middle (MitM) attacks of the net-
work interface card. This is necessary, since we also consider the NIC as dedicated
hardware that can hide the attack code.

3.1 DMA Attacks

Direct memory access can be a sufficient approach to conduct stealthy attacks on the
host system. Our work analyzes attacks that implement malware functionality and
apply rootkit/stealth capabilities during runtime. In the worst case the DMA-based
malware will also survive platform reboots and standby as well as power off modes.
In the following we distinguish between peripherals that can be connected to the
host platform from the chassis outside and peripherals that are directly connected
to the chipset.
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3.1.1 Devices Connectable from the Outside

Since 2004 several DMA attacks using additional hardware such as USB devices [90],
special PCMCIA cards [61, 11], and FireWire devices [43, 42, 17] were presented. The
attack demonstrated by Maynor [90, p.55ff.] exploits a Motorola mobile phone to
infiltrate the target machine with attack code via USB. The attack reveals itself by
displaying a window on the screen of the target platform. Hence, the attack is a
proof of concept rather than fully operative malware.

Dornseif [43] and Dornseif et al. [42] demonstrated how to exploit an Apple iPod
that is connected via FireWire to the target to conduct a DMA attack. The authors
mention that they can copy the screen content, strings, and key material using
DMA reads. Furthermore, with DMA writes, the authors can change the screen
content, conduct a privilege escalation attack, and inject code into the runtime
memory of the host. Boileau [17] also covered a FireWire-based DMA attack. The
author was able to attack a Windows XP based laptop computer. In 2007, Piegdon
and Pimenidis [101] published another FireWire related DMA attack paper. They
described how to steal private SSH keys as well as to inject arbitrary code. The
injected code implements interactive access to the target machine with administrator
privileges. The authors had to search data structures that are used by the host CPU
to implement virtual address space for processes running on the host CPU. Blass
and Robertson [15] described Tresor-Hunt, another FireWire-based attack to trick
harddisk encryption mechanisms. To be more precise, host CPU bound encryption
mechanisms are attacked. CPU bound means that key data is never released to
the main memory. That data is kept in host CPU registers. The basic idea of
Tresor-Hunt is to inject code into kernel space (an interrupt handler is hooked).
That attack code dumps the key data from the processor registers into the main
memory where it can be captured via DMA. Blass and Robertson [15] use FireWire
to dump the physical host memory. Then, they scan the whole dumped memory
for the interrupt descriptor table to hook an interrupt handler that will eventually
release the encryption key.

David Hulton [61] presented how to use a Field-Programmable Gate Array
(FPGA) peripheral that is connected via cardbus to the target platform to cap-
ture passwords and secret keys present in the main memory. Furthermore, Hulton’s
FPGA device is able to unlock screensaver screen locks. Aumaitre and Devine [11]
also described an attack that is based on an FPGA on a PCMCIA card. It can
also be used to unlock screensavers and to execute arbitrary code. To find the tar-
get memory address in the host memory the authors apply a signature scan in all
physical memory pages.

The project documented by Breuk and Spruyt [18, 19] aims to integrate DMA
attacks into exploitation frameworks. The authors discuss PCI, FireWire, USB,
SATA, DisplayPort, Thunderbolt, and PC Card (i.e., PCMCIA, Cardbus, Express-
Card). Their proof of concept is based on FireWire. To find the target address in
the host’s runtime memory, the authors implemented a signature scan that is ap-
plied to all memory pages. The Inception tool is able to attack the target platform
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via “FireWire, Thunderbolt, ExpressCard, PC Card and any other PCI/PCle in-
terfaces” [87]. The tool can, amongst other things, dump the main memory, unlock
the system, and conduct a privilege escalation attack on Windows, Mac OS, and
Linux based targets. Ongoing research that describes strategies to further exploit
Thunderbolt for DMA attacks is presented by Sevinsky [114]. The author does not
describe a concrete DMA attack via Thunderbolt.

3.1.2 Devices Firmly Established Inside the Platform Chassis

In this work we have a clear focus on stealthiness. The attacker must not need
physical access to the target machine to increase the probability of stealthy infil-
tration. Hence, the attack devices presented in Section 3.1.1 are not considered by
our trust and adversary model, see Section 2.7. We focus on attacks that originate
from platform peripherals. This section considers DMA attacks that originate from
platform peripherals such as special management controller, network interface cards,
and video cards.

Tereshkin and Wojtczuk [131] demonstrated that the DMA engine of Intel’s
ME can be used to write to host memory. The authors described a vulnerability
that allows to inject code into the ME environment. The code of Tereshkin and
Wojtczuk did not implement any malware behavior. It reveals itself by writing to a
known hard coded host memory address. Hence, this approach implements a proof
of concept and no real malware functionality. We use Intel’s ME for our attack
study, see Chapter 4. Our DMA-based attack implements fully operative malware
in the form of a keystroke code logger that is executed in the manageability engine
environment.

The network interface card based attacks described by Duflot etal. [47], Del-
ugré [35, 36] focus on stealthy attacks, malware functionality, and rootkit capabili-
ties. The attack presented by Duflot et al. [47] exploits a vulnerability in the firmware
of a NIC during runtime. The compromised NIC is used to attack the host system
by adding a backdoor. The authors described how the host could access the NIC
internal memory. This offers a possibility to detect the attack code using code ex-
ecuted on the host CPU. As far as we know no anti-virus like software makes use
of this. It should be mentioned that the host access to the NIC internal memory
is not a common feature. For example, the runtime memory of the Intel ME envi-
ronment that we use for our attack study (see Chapter 4) is not accessible by the
host. The work published by Delugré [35, 36] is quite similar to the work published
by Duflot et al. [47]. Both attacks use the same NIC model. The malware presented
by Delugré [35, 36] aims to implement rootkit capabilities.

Arrigo Triulzi [134, 135] presented a stealthy secure shell that offers memory
inspection using DMA. A combination of NIC and video card is used to hide the
shell. The shell is installed by reflashing firmware remotely. NIC and video card
communicate via PCI-to-PCI transfers. The author proposed to count PCI-to-PCI
transfers as a countermeasure, but it was not demonstrated how this can be im-
plemented. Other video card related work was published by Vasiliadis [140]. The
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authors described a method to shift performance overhead away from the host CPU
to the GPU of the video card. Parts of the code are still required to run on the host
CPU. CPU and GPU communicate via shared memory. The performance overhead
arises when techniques such as unpacking or runtime-polymorphism are used. Hence,
Vasiliadis [140] described GPU assisted unpacking as well as runtime-polymorphism,
but no specific malware that uses DMA to attack the host system. Ladakis et al. [80]
implemented a keystroke code logger that runs on a GPU. The keystroke logger is
reminiscent of the keystroke code logger that we published [123].5 They reused the
same signature scan to find the keyboard buffer. Furthermore, the approach requires
executing the signature scan on the host CPU in kernel mode. This Achilles’ heel
can be exploited to detect the attack. The authors actually require a kernel-based
zero-day exploit to increase the probability of a stealthy attack. According to the
authors, special debugging tools can be used to analyze processes executed on the
GPU. These tools can be used to develop a countermeasure for GPU-based malware.
It is also unclear what happens with the captured keystroke codes in the video card
environment. Ladakis et al. [80] do not consider exfiltration.

Recently, Domburg [41] demonstrated how to install attack code on a harddisk
controller. The attack code is stored on the harddisk controller flash memory and
loaded into the harddisk controllor’s DRAM to be executed on the processor of the
harddisk controller. The author could not demonstrate how to exploit the harddisk
controllor’s DMA engine to attack the host runtime memory. Similar work that
is also based on a harddisk controller was presented by Zaddach etal.[152]. The
authors demonstrated a stealthy hard-drive backdoor. However, they attack data
stored on the harddisk, i. e., they did not demonstrate how to exploit the controller’s
DMA engine to attack the main memory of the host system. Hence, their attack
is out of scope of this thesis. We focus on stealthy attacks on the platform’s main
memory.

3.2 Countermeasure Approaches

Different approaches have been proposed that could be considered as countermea-
sures against DMA attacks. For example, measured firmware® is an approach to
check the integrity of the firmware binary. It is assumed that the firmware does
not conduct a DMA attack if the binary is unmodified. The signed firmware ap-
proach also aims at convincing the user that the firmware does not conduct a DMA
attack. The idea is that firmware that is digitally signed by the vendor is trustwor-
thy. Besides these two approaches the following sections also describe related work
such as latency-based attestation, runtime monitoring, bus snooping, sensitive data
protection, and the I/OMMU.

5The keystroke code logger that we published [123] is the basis for our attack study in Chapter 4.
5Tn this case measurement means deriving a hash value.
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3.2.1 Measured Firmware

The Trusted Computing Group (TCG)[136] proposed to attest the peripheral’s
firmware at load time. To be more precise, the approach is based on an additional
chip” that is called Trusted Platform Module (TPM[99]). The TPM is similar to a
smart card chip that is firmly fixed to the chipset of a computer platform. However,
the TPM can store integrity measurements in the form of hash values of binary code
before that code gets executed. This means that the measurement is at load time.
Such measurements can be used to check if the platform is trustworthy. Current ver-
sions of Intel’s Manageability Engine execution environment also utilize a so-called
measured launch that enables the attestation of the peripheral’s firmware using a
hash value [79, Chapter 15|. Unfortunately, measurements conducted at load time
do not exclude runtime attacks. Repeating the measurements during runtime causes
significant performance degradation. It can also not prevent transient attacks where
an attacker exploits the time frame between two measurements. Furthermore, it is
not ensured that the host CPU is able to access all peripheral ROM components
that stores the firmware code.

3.2.2 Signed Firmware

Signed firmware images do also not prevent runtime attacks. Firmware updates can
only be flashed to the corresponding ROM chip if the firmware image has a valid
digital signature. For example, only a BIOS firmware image that was signed by
the motherboard vendor can be flashed into the corresponding ROM chip [see 79,
Chapter 14]. This does not exclude runtime attacks. Attacks were demonstrated by
Wojtczuk and Tereshkin [149] as well as Butterworth et al. [26].

3.2.3 Software/Latency-based Attestation

Other attestation approaches were presented by Li et al. [83, 82], for example. These
approaches are based on latency-based attestation, i.e., a peripheral needs not only
to compute a correct checksum value. It also has to compute the value in a limited
amount of time. A compromised peripheral is revealed if either the checksum value is
wrong or if the checksum computation took to much time. Latency-based attestation
approaches require to modify the peripheral’s firmware and the host needs to know
the exact hardware configuration of the peripheral to be able to attest it. Li et al. [83]
also state that their approach does not work correctly when peripherals cause heavy
bus traffic. They considered only one peripheral in their evaluation. Furthermore,
Nguyen [96] revealed serious issues in attestation approaches as presented by Li
etal. [83]. It is also unclear to which extent latency-based attestation can prevent
transient attacks.

"The TCG specification does not forbid to implement, the TPM in the form of firmware. Intel [see
79, p.108] has a TPM solution based on firmware.
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3.2.4 Monitoring Approaches

Another interesting approach was presented by Duflot etal.[46]. NIC adapter-
specific debug features are used to monitor the firmware execution. Such features
are not available for other peripherals. Another deficiency is the significant perfor-
mance issue for the host (100 % utilization of one CPU core). Our goal is also the
development of a runtime monitor. In contrast to the monitor described by Duflot
et al. [46] our monitor is required (i) to be independent of the inner workings of the
peripheral and (ii) to cause significant less performance overhead, see Chapter 5.

Another runtime monitoring approach was presented by Zhang [153]. That ap-
proach is based on SMM. The author proposes to periodically check the peripherals
firmware as well as configurations. Unfortunately, the author does not describe how
the SMRAM that contains the monitor is protected against DMA attacks before
the I/OMMU is configured correctly. The author also does not explain the checking
interval. Hence, one has to assume that transient attacks are unconsidered. It is
also unclear how much time is required to check all peripherals. An implementation
description as well as an evaluation are missing. Thus, it is not proven that the
proposed approach is applicable in practice.

3.2.5 Bus Snooping Approaches

Moon [92] and Lee [81] follow a different hardware-based approach. The authors
propose a system that is able to snoop the memory bus to detect kernel integrity
violations. The approach is able to prevent transient attacks. Unfortunately, the
authors do not aim at detecting DMA attacks. Furthermore, their snoop monitor
component is based on special hardware (Leon3 processor) that has the same com-
puting power as the monitored host system (also Leon3 processor). It would be
interesting to see if such a memory snooping approach can be exploited to detect
DMA-based malware.

A related approach that was presented by Eckert et al. [48] considers a kind of
DMA attack. The proposed system can be used to detect malware that is transfered
to the host memory via DMA. Hence, the authors only consider write access from
the peripheral to the host memory. The system is unable to prevent DMA read
based attacks where an attacker captures cryptographic keys or online banking cre-
dentials that are present in the main memory, for example. In the described attack
scenario, the authors assume that the attack code is executed on the host processor.
Hence, they scan the data that is written via DMA to the host memory for malware
signatures by also snooping the bus. The authors admit that their signature-based
detection approach has deficiencies. The proposed system requires FPGA-based
hardware and it is also unclear if they focus on first-party or third-party DMA with
their implementation.
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3.2.6 Sensitive Data Protection

To protect sensitive data such as cryptographic keys from memory attacks several
approaches were presented. It is proposed to store sensitive data only in processor
registers or in the cache, but not in the main memory [93, 94, 119, 141]. Unfortu-
nately, Blass and Robertson [15] demonstrated how to use a DMA-based attack to
enforce the host to leak the sensitive data into the main memory, see Section 3.1.1.

3.2.7 Input/Output Memory Management Unit

Sensitive data, which is stored in the main memory could also be protected by an
I/OMMU as proposed by Duflot etal.[47] and Miiller etal.[95]. As already con-
sidered in our trust and adversary model we do not rely on I/OMMUs (see Sec-
tion 2.7). This is because an I/OMMU must be configured faultlessly [83, p.2] and
because I/OMMUs can be successfully attacked [111, 148, 147, 146]. Furthermore,
I/OMMUs are not applicable due to memory access policy conflicts [123] and they
are not supported by every chipset and OS. Sang et al. [112] also confirm that I/OM-
MUs have deficiencies. Another important point that should be considered when
considering an I/OMMU as a countermeasure is that an activated I/OMMU can
according to Ben-Yehuda et al. [13] and Yassour et al. [150] cause significant perfor-
mance overhead.

3.3 Secure Communication Channels considering Platform
State Reporting

None of the related works presented in this section considers NICs as host for mal-
ware that can conduct a Man-in-the-Middle (MitM) attack. We adapt the concept
of a Trusted Channel for this purpose [52, 10]. A trusted channel has all proper-
ties of a secure channel. Additionally, the trusted channel concept enables binding
configuration data of the communication endpoint to the secure channel to ensure
the authenticity (i.e., the identity as well as integrity) of the endpoint. Nonethe-
less, other approaches related to trusted channels exist and are discussed in the
following. To prevent relay attacks (the attacker relays trustworthy configuration
data of a third platform), it is required to implement a secure binding between the
secure channel and the configuration data to be reported to the peer. Not all of the
presented related works implement such a secure binding.

3.3.1 Trusted Platform Module based Approaches

Many approaches based on Trusted Computing (TC [99]) as proposed by the Trust-
ing Computing Group (TCG)® exist. Many approaches enhance existing secure
channel protocols such as Transport Layer Security (TLS[38]) or Internet Protocol

8See http://www.trustedcomputinggroup.org/ [accessed 25 February 2014]
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Security (IPsec[76]) to integrate or bind endpoint configuration data to the secure
channel [120]. We also prefer to benefit from an existing secure channel protocol.

Smith [120] described how to combine platform authentication as well as user
authentication to authenticate an endpoint. To do so, they introduce TLS exten-
sions for a two-phase handshake. Unfortunately, Smith’s description is not very
detailed. Relay attacks as well as endpoint configuration changes are outside the
scope. Sadeghi et al. [110] also introduced a trusted channel concept. Their concept
is based on key transport. We prefer to use contributory key agreement. We con-
sider key material contribution of the involved endpoints. Furthermore, the reference
implementation described by Sadeghi et al. [110] uses TLS to tunnel their channel.
Configuration data is not bound to the secure channel based on TLS.

The TCG developed the Trusted Network Connect (TNC) architecture [138].
TNC mainly addresses network access. Network authentication and policy enforce-
ment is the focus of TNC. This is not our focus. Integrity-based configuration
information are used to decide if a platform is allowed to enter the network or
not. The TCG worked on a specification that extends the TLS protocol for attes-
tation purposes (TLS Extensions for Attestation or TLS-Attestation in short [130,
p.51]). The document is not publicly available via the TCG website.” However, the
TCG [137] published a document called “Binding to TLS”. This document considers
MitM attacks when a client requests access to a network. Another approach based
on TNC is discussed by Rehbock [103]. The author extends the TNC architecture
to web-based environments.

The aim of Marchesini etal. [89] is to attest the trustworthiness of web ap-
plications. They introduced an architecture that is based on the proposed Bear
platform. That platform implements a trust model that aims to map a long-lived
cryptographic key pair (certified by a certification authority) to short-lived platform
configuration parts. The authors admit that their platform has some issues such as
time of check to time of use (TOCTOU, see also Section 3.2).

The approach described by Goldman et al. [53] also aims to link configuration
data to the endpoints of a secure channel. The authors work with the predecessor
of TLS, the Secure Socket Layer (SSL[50]) protocol. The basic idea is to add a
measurement of the SSL certificate to the integrity measurement list that is derived
from executable code. The authors do not state how exactly they prevent MitM
attacks. The SSL certificate could originate from another platform, or, in the case
of our attack scenario, from the NIC that smuggles in the certificate via DMA.
Furthermore, the NIC can attack the endpoint during runtime to compromise data
and cryptographic keys. McCune etal. [91] use a similar protocol as introduced
by Goldman et al. [53]. The authors utilize modern chipset features such as Intel’s
Trusted eXecution Technology (TXT [see 54]) to drastically minimize the size of
the TCB. In their adversary model the authors do explicitly allow DMA attacks.
The reason is that they propose a security architecture that benefits of an isolated
execution environment. When code is executed in that environment interrupts and

9See Footnote 8
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DMA are turned off. Furthermore, the state of the host processor is required to be
saved and restored every time the isolated environment is used. This results in a
performance loss. Hence, this approach is only suitable for quick secure operations.
Protecting user input entered via a USB keyboard is not possible at all, since DMA
is required to copy the keystroke codes from the keyboard to the main memory.

Dietrich [39, 40] also proposes a trusted channel concept based on a TPM as well
as on TLS. He aims at reporting platform configuration changes during a session with
a remote platform. His approach requires modifications to the TPM. It is uncertain
if such hardware modifications are enforceable in practice. Cheng et al.[29] also
aim to prevent MitM attacks by combining the TCG-based platform configuration
reporting approach with a TLS channel. Unfortunately, the authors do not present
an implementation. They also do not clearly describe which TLS handshake message
they use for the negotiation of the proposed channel. The approach described by
Yu etal. [151] also combines TPM-based platform configuration data with the TLS
protocol. The authors strongly focus on the TLS renegotiation attack [see 102].
They claim that this attack is also possible with a trusted channel. We doubt this
since the attack protocol flow presented by Yu etal.[151, p.3] demonstrates that
the MitM is required to send authentic platform configuration data to the server.
Hence, the server is able to detect the code responsible to conduct the renegotiation
attack. The authors do not explain if it is possible for the MitM to forge trustworthy
platform configuration data.

Quite an interesting trusted channel approach with regard to privacy was pre-
sented by Cesena et al. [27]. The proposed channel is a combination of the Direct
Anonymous Attestation (DAA[20]) protocol as adapted by the TCG and TLS. In
this context, DAA allows a platform to prove that it contains a TPM without re-
vealing which particular TPM it is. This helps to preserve privacy if it is required
to avoid the linkage of different sessions to a TPM of a particular platform. Besides
DAA, the proposed channel is quite similar to our trusted channel. The authors
exploit the TLS handshake messages in a similar fashion to our solution.

Sadeghi and Schulz [109] enhance the secure channel protocol IPsec to imple-
ment a trusted channel. The approach uses the Internet Key Exzchange Protocol
Version 2 (IKEv2[75]) as basis to bind platform configuration information to the
channel. Configuration data can also be transmitted during an IPsec session. The
authors also consider how their approach can be integrated into the TNC architec-
ture. Although the presented approach is backwards compatible, minimal modifica-
tions to IKEv2 are required to fully benefit from the trusted channel.

Platform configuration information can also be included in the Diffie-Hellman
(DH) key exchange as demonstrated by Stumpf[128]. The authors rely on a com-
mand (TPM_Quote) that is responsible to get a signed report of the integrity measure-
ments stored inside the TPM. The DH approach does not mitigate the deficiencies
caused by load time measurements.

Lyle and Martin [86] introduced a channel that considers web service technolo-
gies. Their special environment does not allow to apply a TLS-based channel. They
combine the TCG platform configuration reporting approach with so-called message-
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level cryptography [see 86, p.4]. Chang et al. [28] merged the TCG approach with
the Secure Real-time Transport Protocol (SRTP [12])/Z Real-time Transport Protocol
(ZRTP [154]). SRTP/ZRTP provides a secure channel for Voice-over-IP (VoIP [34])
transmissions. The authors aim to provide a trusted channel with the combination
of the TCG approach and SRTP/ZRTP.

Unfortunately, all the presented TPM-based approaches do not consider run-
time attacks (especially DMA-based runtime attacks) sufficiently. They also suffer
from the deficiencies described in the beginning of Section 3.2. Please note, our
work on trusted channels was also originally based on the TPM. In this work, we
adapt the trusted channel concept for another attack scenario where attacks origi-
nate from peripherals. Our trust model (see Section 2.7) considers a different TCB.
We do not count on load-time integrity measurements. A TPM is not required. Our
measurements are based on a runtime monitor that derives state information based
on memory bus transactions, see Chapter 5. These measurements are considered by
the secure communication channel that we use in this work. The channel is based
on the trusted channel concept that we [52, 10] introduced in prior work.

3.3.2 Co-Processor and Smart Card based Approaches

The approaches described by Jiang etal. [74] and Chess et al. [30] are based on a
secure co-processor. The co-processors are used to establish trust by implementing
a concept called trusted co-servers. The co-servers execute evaluated and certified
programs to authenticate the main servers to be able to monitor their behavior. The
co-servers are more secure against physical manipulation. However, they are more
expensive than off-the-shelf hardware. Such co-servers are usually implemented in
the form of PCI(e) cards with a dedicated processor, RAM, DMA engine as well
as ethernet connectors[72, 73]. As such, they are a perfect host for DMA-based
malware.

The trusted channel protocol proposed by Akram etal.[5] is intended for a
special smart card scenario. The focus of the authors is on a privacy preserving
protocol for the smart card user. Hence, their approach is only applicable in scenarios
that involve a smart card whereby the identity of the user must not be revealed. In
an earlier publication Akram et al. [4] presented another channel that is intended for
runtime authentication and verification of a smart card application. That channel
is part of a framework that the authors implemented. The channel protocol was
also verified by the authors. The channel described by Akram et al. [4] also focuses
on smart cards scenarios. Another approach that is based on smart cards was
presented by Jian etal.[143]. The authors propose and formally verify a trusted
authentication protocol for Digital Rights Management (DRM [3]) scenarios. The
protocol also considers platform configuration values. The authors do not evaluate
an implementation of their proposed protocol.
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“In God We Trust; All Others We Monitor.”

Motto of the Air Force Technical Application Center,
Part of the Air Force Intelligence, Surveillance and Reconnaissance Agency

The arms race between malware developers and the anti-malware community
reached a new level. Countermeasures for kernel level [60], hypervisor-based [77], and
system management mode based malware [49] were proposed [51, 107, 25]. As a result
researchers explored new environments for stealthy malicious software. Malware
can be placed on dedicated hardware such as video cards and network interface
cards to attack the host platform [see 134, 135, 47]. Such devices bring, among
other things, a dedicated processor and dedicated runtime memory. These devices
can operate independently from the host system. Anti-virus software cannot detect
malicious code stored in separate memory and executed on a different processor. An
attacker can use such devices, or more precisely, the direct memory access mechanism
to circumvent protection mechanisms built into the operating system by attacking
the host runtime memory directly. We call code performing targeted DMA-based
stealthy attacks to locate and read or modify target data DMA malware. Such data
can be cryptographic keys for encrypted harddisks, credentials for online banking
accounts, instant messenger chat sessions, and open documents located in the file
cache.
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In this chapter we characterize DMA attacks and derive the term DMA mal-
ware. We explore the term by examining if DMA malware can significantly increase
the probability of performing a successful stealthy attack against a computer plat-
form while preserving efficiency and effectiveness. For the evaluation we built our
DMA malware DAGGER — a DmA-based keystroke loGGER that exfiltrates cap-
tured data to an external entity. We are interested in the efficiency, effectiveness
and especially in the stealth properties of DMA malware. We chose to implement a
keystroke logger to demonstrate that “short living” data can be captured by DMA
malware.

Our implementation is based on Intel’s manageability engine that is part of
the popular x86 platform. Intel’s ME is implemented in business as well as con-
sumer platforms (see Intel vPro platforms[66]) to support different applications,
such as the Intel Active Management Technology (IAMT [79]) or the Identity Pro-
tection Technology (IPT [67]). Our DMA malware DAGGER is not executed on the
host processor. It is executed on the processor provided by Intel’s ME. No addi-
tional hardware is required. DAGGER implements an isolated runtime attack on
user input. Additionally, our DMA malware could steal cryptographic keys, target
OS kernel structures in an attack, and copy files from the file cache. Although DMA
malware cannot by detected by anti-virus software, an attacker still faces certain
challenges. DMA malware must be effective, i.e., it should be able to successfully
attack various systems. DMA malware must also be efficient, i. e., fast enough to find
and process data, even when dealing with virtual memory addresses and randomly
placed data. Such malware goes beyond the capability to exploit DMA hardware.

The main contributions of this chapter are:

¢ DMA malware definition: There are different kinds of code that utilizes
DMA. To clearly identify if code should be considered harmless, an attack, or
DMA malware, we introduce an appropriate definition.

e DMA malware core functionality: We present a number of requirements
that must be fulfilled by DMA malware in order to mount successful attacks.

o Evaluation of DMA malware prototype implementations: To demon-
strate that DMA malware increases the probability for successful stealthy at-
tacks while preserving efficiency and effectiveness, we implemented DAGGER.
DAGGER is executed on Intel’s isolated ME. DAGGER operates stealthily
and can attack multiple operating systems. Our implementation is fast and
efficient that it can capture keystrokes very early in the platform boot pro-
cess, that enables DAGGER to capture harddisk encryption passwords under
Linux, for example.

e DMA side effect detection approach: We present a detection approach
that can reveal DMA malware executed in isolated hardware environments.
Our work demonstrates that DMA malware produces unexpected side effects
that we measure utilizing widely used and cross platform available CPU fea-
tures.
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4.1 DMA Malware Definition

To define the term DMA malware we first characterize different kinds of DMA-based
code. This helps to clearly distinguish between simple DMA usage, DMA attacks
and DMA malware, whereby the latter has a clear focus on stealthiness. Note, DMA
malware goes beyond the capability of controlling a DMA engine. DMA-based code
that implements malicious functionality is considered a serious threat. Such code
can be operating stealthily during infiltration and runtime. It is also an advantage,
e.g., for long-term attacks, if the code can survive platform reboots and power off

as well as standby modes. Hence, we can prioritize the following criteria to assess
code that utilizes DMA. That is, the DMA-based code:

(C1) implements malware functionality

(C2) needs no physical access to increase the probability of stealthy
infiltration

(C3) applies rootkit/stealth capabilities during runtime

(C4) can survive reboot/standby/power off modes

We use a binary system for our prioritization:

23 92 ol 90
Cl C2 (C3 C4

This system distinguishes 16 kinds of DM A-based code. We can derive a unique
number for each kind. For example, DMA-based code that does not perform mali-
cious actions (C1 = 0), leaves no traces on the host (C3 = 1), does not need physical
access (C2 = 1), and cannot survive reboots (C4 = 0) is mapped to the binary pat-
tern 0110. This pattern corresponds to class 6 in decimal. The higher the derived
number, the more dangerous is the DMA-based code.

Our definition of DMA malware is as follows:

Definition: DMA malware is malicious software executed on dedicated
hardware attacking a computer system via a mechanism called direct
memory access as well as fulfilling at least the criteria C1, C2, and C3.

When applied to the target platform introduced in Section 2, this definition
means, that DMA malware is based on first-party DMA and the DMA engine can
be configured by the attack code to not involve the host CPU. The attack code is
executed on dedicated hardware with its own processor and runtime memory, such
as a NIC. Controlling the NIC increases the probability that an attacker can hide
data during exfiltration. Table 4.1 applies our binary system to the DMA attacks
that are presented in Chapter 3 “Related Work”. The table also depicts what related
work is DMA malware according to our definition. In this chapter we also aim to
develop a DMA malware proof of concept that fulfills at least the criteria C1, C2,
and C3.
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Table 4.1: Fulfillment of Criteria C1 — C4 of DMA Attack Examples

Attack presented in ‘ Cl1 C2 (C3 (4| DMA Malware
[90] (USB) - - - Y -
[43, 42, 17, 101, 19, 18, 15, 87] (FireWire) | v - « :
[11, 61, 87] (PC Card) v o - v Vv -
[131] (Intel ME) - v -V -
(35, 36, 47] (NIC) VNV v
[134, 135] (Video card and NIC) v v v v v
[80] (Video card) v o v - -

Note, the assessment was done using publicly available material. If
we could not decide with the help of available resources whether a
criterion is fulfilled, we assume that this criterion is fulfilled.

4.2 DMA Malware Core Functionality

When attacking the host, it is not enough for an attacker to control a DMA engine.
The engine enables the attacker to read from and to write to host memory. However,
in most cases the target memory address is not known. This section describes
the core functionality of DMA malware, i.e., overcoming address randomization,
memory mapping, and search space restriction.

The attacker has to determine memory addresses. The problem is that the
memory space allocated for, e. g., kernel data structures is not at the same memory
address after a platform reboot. Data structures are placed randomly in memory by
the OS. This can happen in a natural way when a device driver, for example, allocates
memory and gets the next free unallocated memory chunk. The memory address of
that chunk is not necessarily the same after a platform reboot. Alternatively, the
OS can apply certain randomization algorithms to ensure that data structures are
not placed at the same memory position. Of course, an attacker can scan the whole
system memory for signatures of the target data, but this is very inefficient when
scanning a system with 4 GB physical memory or more.

Operating systems work with virtual memory addresses [see 31, Chapter 15]),
but DMA works with physical memory addresses. The OS creates so-called page
tables that are used by the host CPU to map virtual memory addresses to physical
ones. The mapping is absolutely necessary to resolve memory address pointers
when using DMA. A special host processor control register called CR3 contains the
physical memory address of the page tables. The attacker has no access to the
CR3 register. The visibility of a DMA engine is restricted to host memory only.
Without further analysis the attacker has to scan the whole memory address space
for relevant data. There are two potential ways in which an attacker can overcome
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Figure 4.1: General Design of DAGGER
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DAGGER is executed on a DMA capable device so that it can (1)
search and (2) process data from host runtime memory. It controls
a communication path to exfiltrate information (3).

this problem. The first way is to analyze if the OS places the data structures in
question in approximately the same memory area. The second possibility is to
implement OS memory management mechanisms. That is, the attacker must find a
way to access memory page tables created by the OS. With access to the page tables
the attacker can then traverse page tables and is able to resolve pointers from one
data structure to another. This still requires a known starting point for the search.

4.3 Design and Implementation of DAGGER
We present an overview of a general design for our DmA-based keystroke loGGER

DAGGER in the next subsection before we explain the details of the DAGGER
implementation in Subsection 4.3.2.

4.3.1 General Design

Our design of DAGGER is depicted in Figure 4.1. DAGGER is DMA malware.
That is, DAGGER has to fulfill the DMA malware definition including at least the
criteria C1, C2, and C3. DAGGER consists of three main components:

e Search: find the address of valuable data in the host memory via DMA.

e Process data: read valuable data within the regions identified during the
search process.

¢ Exfiltration: exfiltrate information in a way that is invisible to the host.
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4.3.2 Implementation based on Intel’s ME Environment

To evaluate DMA malware we chose to implement DAGGER on Intel’s ME. Intel’s
ME provides some useful features for implementing DMA malware that we describe
in the following.

The core of Intel’s ME is an embedded micro-controller placed in the platform’s
MCH. This isolated environment contains Read Only Memory (ROM), Static Ran-
dom Access Memory (SRAM), DMA hardware to access the host memory [25, 131],
and a processor as depicted in Figure 4.2. The embedded processor of the ME is
an ARCtangent-A4 (ARC4). The isolated environment is available regardless of the
power state, even in standby or power on/off. It only requires that the chipset is con-
nected with a power source. Applications executed on the embedded micro-controller
are implemented in firmware (ME FW) and stored in flash memory together with
the BIOS. The most prominent ME firmware example is Intel’s Active Management
Technology. But depending on the kind of computer platform (business or consumer
hardware) the ME can also run other firmware. Other firmware executed by Intel’s
ME are for instance: Intel’s Identity Protection Technology, Alert Standard For-
mat [131, p.46]), Intel Quiet System Technology (QST [131, p.46]) for temperature
and fan control, and Integrated Trusted Platform Module (iTPM [79, p.109]).

ME firmware can communicate with the host via a PCI device called ME
Interface (MEI[79, p.71]). The MEI can provide the version of the executed ME
firmware, for example. The ME environment provides additional PCI devices'? to
support certain AMT features such as text console and disk redirection. A serial port
is emulated to implement text console redirection [see 79, Chapter 5]. Text output
that is sent to this port is forwarded to a remote console via the network. With
this capability an administrator can remotely control the BIOS. To implement disk
redirection a local disk is emulated by the ME environment [see 79, Chapter 5]. An
administrator can remotely mount storage media (e. g., a CDROM with an operating
system installer to recover the operating system of the AMT enabled platform) via
the locally emulated disk.

During the platform power-on procedure the ME firmware image is loaded
into ME RAM. The ME firmware itself runs on the micro-controller internal ARC4
processor and it also uses some system RAM as depicted in Figure 4.2 to store
runtime data. This runtime storage is provided by a certain memory area that is
invisible to the main CPU and the OS. The separation is enforced by the chipset [79].

The ME environment introduces Out-Of-Band (OOB) communication, i.e., a
special network traffic channel used by iAMT. The iAMT enabled computer plat-
form is managed by a remote management console using OOB. OOB is also available
regardless of the power state. OOB can be considered to be a separate network con-
nection, running on the same hardware. The ICH implements necessary components
to support the ME environment with the OOB feature. The firmware filters network
traffic intended for, e.g., iIAMT and redirects the packets to the ME. The host is

0These devices can act as bus masters, see Section 2.5.
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Figure 4.2: Intel’s Manageability Engine Environment
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Intel’s Manageability Engine (ME) environment consists of the Man-
ageability Engine that is included in the MCH. Furthermore the en-
vironment consists of an isolated part of the RAM as well as isolated
portions of persistent flash memory. The ICH also contains ME en-
vironment components, especially components that implement the
out-of-band channel.
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Figure 4.3: USB Request Block Signature Scan (simplified)
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The scan (1) begins to search for a pointer to the USB device struc-
ture. A candidate for such a pointer is aligned to a 0x400 boundary.
The value of the structure field transfer_dma must be aligned to a
0x20 boundary. If both conditions are true, the product string in the
USB device structure is (2) checked for the substrings “USB ” and
“Keyboard”. In the last step the signature scan (3) checks if the
keyboard buffer contains garbage, that is, invalid keystroke codes.

unaware of the redirected ME network traffic. This kind of traffic is identified by
TCP port numbers.

4.3.3 Attack Implementation Details for Linux and Windows Targets

We implemented two keystroke logger prototypes to attack two targets, Linux and
Windows based OSes. We decided to find and monitor the keyboard buffer address
of 32bit versions of the target OSes. In comparison to 64 bit versions, 32bit ver-
sions have to deal with a more complicated memory management. For example,
the attacker has to consider Physical Address Extensions (PAE [105, p.769]) or cer-
tain memory offsets when mapping memory addresses. The following subsections
describe, how we implemented the DMA malware core functionality as described
in Section 4.2. The prototypes capture short living keystroke codes within their
monitoring phase. Each prototype handles the search phase for the target buffer
differently. This has at least two reasons. One reason is to evaluate as many as-
pects as possible of DMA malware. The other reason is that OSes have different
memory management properties. We use a vulnerability described by Tereshkin and
Wojtczuk [131] to infiltrate the ME environment during runtime. To call our code
we hook a ME firmware function that we identified as the library function memset.
Tereshkin and Wojtczuk [131] assumed that they hooked a timer interrupt handler,
but they actually hooked the ME firmware function memcpy. We hook memset since
we determined that it is called more often.

Our Linux variant is based on a signature scan as depicted in Figure 4.3. We
analyzed the available Linux source code to derive a signature of our target, the
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physical address of the keyboard buffer. The buffer address is part of the USB
Request Block (URB) structure that is defined in the file include/linux/usb.h of
the Linux source code. The demanded structure field is called transfer_dma. The
memory offsets differ from kernel version to kernel version. We solved that problem
by exploiting the Grand Unified Bootloader (GRUB) that places an identifier at a
constant physical memory address. We implemented a function that reads the iden-
tifier via DMA and parses the kernel version number to derive corresponding offsets.
Afterwards our prototype runs through the search phase, that is, the signature scan.

Since our Linux prototype targets kernel data structures we can restrict the
search space to the first gigabyte of system RAM. Standard Linux systems have a
memory split of 1 GB/3 GB, that means, 1 GB for kernel space and 3 GB for user
space. We were able to further restrict the search space by empirically analyzing in
which memory area the kernel places the data structures needed by our signature
scan. We determined that this memory area is between 0x33000000 and 0x36000000
for the Ubuntu Linux kernel version 3.0.0 after a fresh platform boot. The address
of the keyboard buffer does not change after standby or hibernate mode. With
this approach we overcome the problem of inefficiently scanning the whole system
memory for the randomly placed signature. Mapping virtual addresses to physical
ones is a minor issue when attacking the Linux kernel. Normally, in 32 bit versions a
kernel virtual address (or more precisely kernel logical address [see 31, Chapter 15])
is mapped to its physical address by subtracting a constant offset. In 64 bit Linux
versions such an offset is not needed. Hence, there is no need to know the content
of the CR3 processor register.

The search strategy for Windows-based target platforms works different. To
be able to perform the search using the search path as described below, virtual
addresses must be mapped to physical ones. This mapping is done using page tables
created by the Windows kernel. The memory address of those page tables is loaded
into the CR3 register, which an attacker cannot access via DMA. It turned out after
some empirical tests with a simple driver, that the physical address of the page
tables for the system process takes one of the following two values for Windows
Vista/7 systems: 0x122000 or 0x185000. The system process is the first process
created during Windows startup. With this knowledge DAGGER. can access the
page tables created by the kernel and overcomes the problem of mapping virtual
addresses to physical ones. DAGGER implements a page table traversing algorithm
that takes account of PAE.

Our Windows malware searches for a structure called DeviceExtension that
is maintained by the USB keyboard driver kbdhid.sys. This structure contains a
buffer that stores the codes of the last pressed keys. The source code for kbdhid.sys
is not publicly available. The most convenient way to get internal information of
that driver was to use IDA Pro'', Windows Debugger (WinDbg) tools, and debug

1See http://www.hex-rays.com/products/ida/index.shtml [accessed 25 February 2014]
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Figure 4.4: Find DeviceExtension Structure (simplified)
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With KiInitialPCR as a starting point, DAGGER finds the OMND,
that provides via hash tables a path to the driver object kbdhid.
This object contains a pointer to a device object. The device object
provides the DeviceExtension structure, which contains the keystroke
code buffer.
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Figure 4.5: Find KiInitialPCR (simplified)
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symbols provided by Microsoft'? in the form of pdb files. To finally determine the
location of the buffer in the DeviceExtension structure, our research starts early
in the boot process [see 105, Chapter 13]. We analyzed further internal Windows
structures. To find a starting point for the search, we analyzed the Kernel Processor
Control Region (KPCR[105, p.62ff]), or more precisely KiInitialPCR, the KPCR
for the processor 0. We also examined the Object Manager Namespace Directory
(OMND, part of the Windows object manager). We determined that KiInitialPCR
is well suited to derive a path to the DeviceExtension structure as depicted in
Figure 4.4. KiInitialPCR is not located at a constant memory address. DAGGER
has to apply another step before it can start with the search as depicted in Figure 4.4.

The memory position of KiInitialPCR is determined by a function called
OslpLoadAllModules of the winload.exe binary as depicted in Figure 4.5. This
binary is loaded by the Windows boot manger bootmgr that in turn is loaded by
Master Boot Record (MBR) code, etc. The function loads the Hardware Abstraction
Layer (HAL) library hal.dll as well as the Windows kernel image in a more or less
random manner. The kernel image contains KiInitialPCR at a constant relative
address. The disassembled code of OslpLoadAllModules is similar to an Address
Space Layout Randomization (ASLR [105, p.757]) mechanism.

The memory buffer for the kernel image and the HAL is allocated by 0slpLoad-
AllModules via a function called Bl1ImgAllocateImageBuffer. The latter function
returns stable address values for a Windows system. These values may vary on differ-
ent systems. For every possible return value of the function BlImgAllocateImage-
Buffer there are 64 theoretically possible different 4 KB aligned virtual addresses.
These addresses need to be checked in order to find the kernel image base ad-
dress. The disassembly of OslpLoadAllModules revealed that the randomization
seed for the address randomization has a 5bit value. This implies 32 possible ad-
dresses for each (of two) possible load order cases, i.e., first kernel image and then
hal.dll or vice versa. As long as KiInitialPCR has a constant relative virtual ad-

'2See http://msdn.microsoft.com/en-us/windows/hardware/gg462988 [accessed 25 Febru-
ary 2014]
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Figure 4.6: Network Packet containing Bytes from Keyboard Buffer
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0x02: left shift key

The wireshark instance is executed on an external platform. The
network packet that has been parsed by wireshark contains 4 bytes
that represent the logged keystroke code data.

dress within the kernel image, the same number of virtual addresses to be checked
also applies for a direct KiInitialPCR search without any need to deal with the
kernel image. To ensure that DAGGER found the correct KiInitialPCR we imple-
mented a KiInitialPCR signature check. When DAGGER has identified the correct
KiInitialPCR, it continues to look for the keyboard buffer using the search path
described in Figure 4.4.

We use ethernet controller to exfiltrate the captured keystroke codes. To be
more precise, we use the OOB features of the Intel ME environment. Unfortunately,
there is no documentation that explains how to use this feature.. Hence, we had
to analyze the firmware to figure out how to exfiltrate keystroke codes using the
OOB channel. We were able to find the transmit ring buffer that is used to send
network packets in the ME runtime memory. Furthermore, we were also able to find
the firmware code that is responsible for sending the next network packet from the
transmit ring buffer. To exfiltrate the captured data we prepare network packets,
e.g., DHCP discover packets as depicted in Figure 4.6, that contain the logged
keystroke code. Then, we copy the prepared network packet to the transmit buffer.
Afterwards, we trigger sending the packet by the NIC to an external platform. Please
note, the transmitted packets can easily be found when analyzing the network traffic
with an external platform. To improve the stealthiness of the design we [124, 125]
implemented a covert timing channel that is based on a so-called Jitterbug [see 115].
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4.4 Evaluation

We used an x86 platform with a Q35 chipset, 2 GB RAM, a 4-core 3 GHz CPU, and
iIAMT firmware (version 3.2.1) to evaluate DAGGER with four different 32 bit OS
kernels: Windows Vista Business (Service Pack 2), Windows 7 Professional (Service
Pack 1) and Ubuntu Linux kernel version 2.6.32 as well as kernel version 3.0.0.

4.4.1 DMA Malware Fulfillment

We designed and implemented our DAGGER prototypes according to the DMA
malware definition described in Section 4.1. (C1) is clearly fulfilled since DAGGER
implements working keystroke logger functionality. DAGGER needs no physical
access for the infiltration process (C2). We infiltrate the ME environment using a
software-based exploit during runtime. DAGGER exploits dedicated hardware to
implement rootkit properties (C3). We ran host performance overhead tests (mem-
ory: MEM, network: NET, and CPU), since host and ME environment share the
NIC as well as a RAM chip. Parallel NIC and RAM accesses must be arbitrated
and could therefore cause delays. Our measurement results depicted in Figure 4.7
reveal no significant overhead. The highest overhead that we could detect is ap-
proximately 1.5% when accessing the host memory during the search phase. It is
extremely unlikely that this minimal overhead would reveal DAGGER.

The search times summarized in Figure 4.8 are very short and the very ag-
gressive memory stress test we performed does not represent the memory utilization
of a normal computer system. DAGGER has solely read-only operations to ensure
stealthiness. The popular network sniffer Wireshark'® was not able to detect any
DAGGER traffic on Linux and Windows systems. Host firewalls cannot block such
traffic either. Even if anti-virus software knew DAGGER’s signature it would be
unable to access DAGGER’s memory to apply the signature scan successfully. Nev-
ertheless, we also run a software called Mamutu'®, that is, amongst other things,
specialized in detecting keylogger behavior. Even specialized software could not
find any indication of DAGGER. Regarding criterion C4 we successfully checked if
DAGGER’s attack code is fully functional after a platform reboot, after standby and
after power off state. We determined that this depends on an iAMT BIOS option.
Our code cannot survive a cold boot that happens if this option is not set.

4.4.2 Effectiveness and Efficiency

DAGGER is efficient, since it can permanently catch short living data from the
keyboard buffer. To demonstrate that DAGGER is also effective we tested DAG-
GER with different Windows and Linux versions as well as several keyboards. The
measured search times summarized in Figure 4.8 confirm that DAGGER is quite
efficient. We repeated the measurements for each kernel and for each keyboard 100

13See http://www.wireshark.org/ [accessed 25 February 2014]
'See http://www.emsisoft.com/en/software/mamutu/ [accessed 25 February 2014]
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Figure 4.7: Host Performance CPU, MEM, and NET Overhead Tests
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We used time stamp counters to measure overhead time. We mea-
sured the time it takes to copy a 100 MB test file over the network
(NET) and within RAM (MEM) as well as the time it needs to com-
pute a SHA1 hash sum over this test file ten times in parallel to
stress all four CPU cores (CPU). Each benchmark was performed
three times: without keystroke logger (baseline), keystroke logger in
search mode, and keystroke logger in monitoring mode. For the mon-
itoring mode we configured the keystroke logger to constantly send
network packets of approximately 1000 packets per minute. This
is equal to 500 keystroke and 500 key release events. We repeated
each test 1000 times. A bar in the figure represents the mean of 1000

runs.
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Figure 4.8: Search Time Measurement Results (a) and (b)
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The test results with several keyboards under Linux reveal a best
case for search times of around 1000 ms and a worst case of almost
30,000ms as depicted in (a). The median for all keyboards is at
3281 ms. Useful for comparison: scanning the whole memory area
determined for Linux (see Section 4.3.2) search takes approximately
13,000 ms. The worst case of 30,000 ms is due to an erroneous DMA
transfer that we do not handle directly. This causes DAGGER to
repeat the search phase. On Windows 7 the best search time is ap-
proximately 50 ms and the worst time is around 120 ms, see (b). The
median for all keyboards is at 93 ms. Hence, the search strategy we
implemented for Windows targets performs much better than the
signature scan based strategy for Linux.
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Figure 4.9: Search Time Measurement Results (c) and (d)
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The plot in (¢) compares different target kernels. DAGGER per-
forms slightly better on Windows 7 than on Windows Vista. Linux
2.6.32 places the target memory structure closer to 0x33000000 than
Linux 3.0.0. Thus, DAGGER has more hits around 1000 ms when
attacking Linux 2.6.32. The results in (d) confirm that swapping has
no effect on the efficiency and effectiveness of DAGGER. A platform
reboot was only applied to change the swapping behavior. The peaks
are due to restarts of the search phase.

“Detecting Peripheral-based Attacks on the Host Memory”



4.4 Evaluation 49/129

times. We took a measurement after a platform (re)boot to change the target ad-
dress for each test run. The Linux measurement results imply that we could further
restrict the search space. We could start the search near the lowest address we en-
countered most often during our tests. Search times of around 2500 ms are due to
target addresses near 0x33c00000. Thus, we could skip almost 2500 ms if we start
the search at 0x33c00000. Furthermore, we could skip the search area address range
between 0x34000000 and 0x36000000. Almost no targets were found in this area.
A lot of targets were found near 0x36e0000, i. e., search times of around 12,500 ms
that could also be saved. This increases the probability to miss keyboard buffer
addresses. That is, we can get better search times at the expense of effectiveness.
The best case search times are sufficient to capture hard disk encryption passwords,
for example. We tested this successfully with a Linux system. The Windows kernel
can swap out memory pages to the hard disk — Linux does not. Swapped memory
pages cannot be found by DMA malware. Hence, we also did a test for Windows to
check if swapping has any effect on DAGGER as depicted in Figure 4.9 (d).

4.4.3 ME Firmware Condition

To be really stealthy DAGGER ensures that the ME firmware is still up and running
correctly. iAMT provides a web server for remote platform management [see 79,
p.215] that is still usable. The server responds correctly on the local platform on
Linux and Windows. Firmware tools utilizing the MEI (see Section 4.3.2) also
work when DAGGER is active. We successfully tested the AMT Status Tool (part
of the Local Manageability Service driver) and the Manageability Connector Tool
(part of the Manageability Developer Toolkit 7.0) under Windows. Under Linux we
successfully tested the Intel AMT Open-source Tools and Drivers (version 5.0.0.30),
or more precisely the MFE Status and the ZTCLocalAgent tool. Note, we determined
that DAGGER still runs even after having disabled the iAMT firmware in the BIOS.
It appears that the ME environment cannot be disabled entirely via any BIOS
options.

4.4.4 1/OMMU

To test an I/OMMU (see Section 2.6) as a countermeasure against DAGGER we
enabled Intel VT-d in the BIOS. As far as we know Windows does not support
I/OMMUs directly. We could successfully attack Windows Vista and Windows 7
although the I/OMMU was activated. Linux supports I/OMMU configuration with
additional effort. We also enabled VT-d in the BIOS and we activated I/OMMU
support via the kernel command line. With these additional steps we were able to
prevent the Linux version of DAGGER from reading short living keystroke codes
from OS memory. This protection is not activated by default. In the next section
we discuss, among other things, further issues regarding the I/OMMU.
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4.5 Countermeasures Considerations

To scan for DMA malware using software executed on the host CPU is quite difficult.
For example, current AV software does not scan the runtime memory of peripherals
or the host CPU cannot access the runtime memory due to certain isolation mech-
anisms. The worst case for a scanning approach is that the DMA malware changed
the behavior of the scan software, which would deliver incorrect results. Checking
firmware images at load time, as proposed by the TCG [136], does not prevent run-
time attacks. Furthermore, it is unclear if all ROM components are accessible by
the host.

4.5.1 1/OMMU lssues

In the case of DMA attacks an appropriate configuration of the I/OMMU (see
Section 2.6) is proposed as a preventive countermeasure, for example by Duflot
etal. [47, p.48]. It is required that system software configures the I/OMMU. An
incorrect configuration cannot be excluded [83, p.2].

It is assumed that the I/OMMU is secure. Unfortunately this is not always the
case. Sang etal.[111] demonstrated that an I/OMMU configuration can be tricked
with legacy PCI devices. Wojtczuk et al. [148] revealed that an I/OMMU can be
attacked by modifying the number of DMA remapping engines provided by the
BIOS (see Section 2.6). This is done before the I/OMMU is configured by system
software. The environment we used for DAGGER is able to carry out such an attack.
This threat can only be mitigated by executing special hardware dependent code
called SINIT. However, on at least one previous occasion the manufacturer of the
chipset failed to release SINIT code at the launch of the chipset [147, p.22]. This
code is needed to initialize a well known and trustworthy environment for, e.g., a
hypervisor. It checks the DMA remapping engines and can therefore prevent an
attack as presented Wojtczuk et al. [148].

SINIT belongs to and increases the size of the trusted computing base. Pre-
vious work demonstrated that SINIT code can have exploitable security vulner-
abilities that can be used to trick I/OMMU mechanisms [see 148]. Recently, Wo-
jtezuk and Rutkowska [146] presented another attack that can be used to circumvent
I/OMMU mechanisms as well. To prevent the attacks presented by Wojtczuk and
Rutkowska [148, 146], a SINIT as well as a BIOS update must be applied. Wojtczuk
et al. [147] presented another I/OMMU attack. Note, SINIT is normally triggered
on hypervisor-based platforms. Platforms running a normal OS cannot necessarily
count on the I/OMMU. It should also be mentioned that SINIT requires the activa-
tion of additional platform features, namely the Trusted eXecution Technology and
the TPM [54]. This means that users that do not want to activate the TPM for
example cannot rely on the I/OMMU. Note, the TPM is an opt-in device [see 54,
p.212] and is turned off by default.

For a comprehensive protection against DM A malware it is absolutely necessary
to correctly configure the I/OMMU. However, the I/OMMU can only be considered
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secure if the above mechanisms to protect the whole platform are secure. This
is a difficult task. Hence, alternative approaches were considered by Li et al. [83]
and Duflot etal. [46]. Li etal. [83] state that their approach requires extending the
firmware, does not work correctly if peripherals cause heavy PCle traffic, and the
verifier component needs to know the exact hardware configuration. The approach
presented by Duflot et al. [46] is highly NIC adapter-specific and not applicable to
isolated environments such as Intel’s ME. It is worth noting that malware such
as our implementation controls the NIC without any NIC firmware modifications,
i.e., exfiltration cannot be detected by the approach described by Duflot et al. [46].
Furthermore, this approach has significant performance issues for the host CPU
(100 % utilization of one CPU core).

Memory access policies enforced by I/OMMUSs can be insufficient or can even
prevent the use of some other features in some application scenarios. Consider
hardware supported malware scanners such as CoPilot [100] and Deep Watch [25].
The I/OMMU can be configured to stop CoPilot and DeepWatch from working or to
allow such systems to access the host memory to scan it for malicious software. In the
latter case DMA malware could make use of the execution environment of CoPilot
or DeepWatch to attack the host. DAGGER, for example, uses the DeepWatch
environment, i. e., Intel’s ME. Since iAMT version 5, Intel supports a verified launch
for the firmware to be executed on Intel’s ME [see 79, p.271]. The firmware is
checked during load time. The result of the load time check is provided to system
software. As far as we know the result is not used in practice. The mechanism
cannot prevent runtime attacks as applied by our PoC. This means, DAGGER
confirms that our assumption that an attacker already infiltrated the target system,
e.g., via a zero-day exploit (see Section 2.7), can also hold even if such additional
security mechanisms are in place. An appropriate configuration of the I/OMMU is
a first step against DM A malware. However, without resolving the mentioned issues
a successful deployment cannot be guaranteed.

4.5.2 Detection Approach based on DMA Side Effects

A possible detection approach is based on DMA side effects that we observed in a
first experiment with our own DMA malware prototype DAGGER. Our detection
mechanism is based on multiple widely used and cross platform CPU features.

So far we developed, implemented, and evaluated our mechanism that is able
to detect rogue DMA usage that is not initiated and unexpected for the host system.
DMA usage is initiated by the host CPU when a peripheral has to process data on
behalf of the host CPU. Sending a network packet using the network interface card
is an example. Expected DMA usage originates from peripherals and is intended
for software running on the host CPU such as the operating system. Receiving a
network packet is an example for intended DMA usage. Our method is able to
detect a general side effect pattern. Thus, we believe it is suited to detect other
kinds of DMA malware besides the prototype we implemented. Our investigation
into detecting malicious DMA usage is based on the knowledge that both, the main
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Figure 4.10: Memory Stress Measurements
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CPU and platform peripherals, can request to access the main system memory at the
same time. The memory controller hub arbitrates parallel memory access requests,
see Figure 2.5. The interesting question for us was if this parallel memory access
introduced any measurable side effects. If side effects are present and measurable
then we can use these to detect malicious behavior.

We booted a Linux kernel and started just a root shell to ensure that the
system workload was minimized. Only one CPU core was online. We performed a
memory stress three times: without keystroke logger (baseline), keystroke logger in
search mode, and keystroke logger in monitor mode, see also Section 4.3.3. For the
tests we used a 100 MB file that we copied from one location to another within a
RAM-based file system. We repeated the tests 1000 times and calculated the means.
The results are depicted in Figure 4.10. The diagram reveals how we refined our
strategy with different and more specialized measurement tools.

GNU Time Measurements First we tried the common system tool GNU time to
determine a delay. GNU time measures system resource usages of a process, in our
case the memory stress test tool. As shown in Figure 4.10 on the left hand side the
means of the test runs are nearly the same. We concluded that the measurement
resolution of GNU time is insufficient to reveal delays in our experiment.

Time Stamp Counter (TSC) Measurements We repeated our measurements with
a more accurate hardware-based measurement tool, the TSC [see 69, Section 17.12].
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The TSC counts clock ticks, see Section 2.3. The results are presented in the middle
in Figure 4.10. We were able to (re)produce an overhead of 2% when our prototype
malware is in search mode. DMA was originally introduced to eliminate the burden
on the CPU. That means, to perform memory transfers without the involvement of
the host CPU. Hence, that overhead is surprising and a first piece of evidence that
detectable DMA side effects exists. When our prototype malware is in monitor mode
we cannot see noteworthy overhead when using TSC. The critical difference between
the two modes is that in search mode the malware copies at least a memory page
where it searches for valuable data. However, in monitor mode the malware copies
just 4 bytes from the keyboard buffer.

Hardware Performance Counter (HPC) Measurements We repeated the mea-
surements with a third approach using HPCs, a hardware-based performance moni-
toring tool for code optimization, see Section 2.3. These counters are special purpose
processor registers on Intel processors [69, Chapters 18/19] that count certain events
such as cache misses, branch prediction misses, and resource stalls. Similar HPC
are also available on other platforms such as ARM and SPARC. The Intel platform
we used for our experiments supports 340 events.'® We evaluated all of them and
determined that resource stalls are a particularly effective DMA side effect. HPC
events are more precise than TSC measurements for certain events. We assume
the number of resource stalls are a direct result of the delays we can measure with
TSC. As an example we present the result of a hardware performance counter called
RAT_STALLS:ROB_READ_PORT (see Section 2.3) in Figure 4.10. Compared to the base-
line the overhead is more than double. Without our prototype malware the mean
of our measurements was 1,359,898 counted events. With our prototype malware in
search mode the mean was 3,161,868 counted events, and in monitor mode it was
1,535,054 counted events. The latter is only slightly higher compared to the baseline.
The refined measurements demonstrate the more accurate we measure the better is
the visibility of the DMA side effect.

Detection Based on our findings, DMA side effects can be measured. This means
we can design a DMA malware detection mechanism. The mechanism works by
establishing a measurement baseline and reference values for the TSC/HPC. During
runtime, our system monitors the TSC/HPC values and compares them to the
reference values. If the values deviate from the reference values DMA malware
is detected. We acknowledge that an actual implementation of this delay-based
detection approach needs some additional investigation. In Chapter 5 we present
a more enhanced detector that is also based on HPC. Furthermore, the artificial
memory stress is not required anymore to detect DMA malware with our enhanced
method. In this section we discuss the I/OMMU and a detection approach based
on DMA side effects as countermeasures.

15We used the Performance API, that is available at http://icl.cs.utk.edu/papi/software/
index.html [accessed 25 February 2014], to work with HPC in the described experiment.
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4.6 Chapter Summary

In this chapter we studied DMA malware, i.e., malware hidden in dedicated hard-
ware. Such malware can circumvent protection mechanisms run on the host CPU
by directly accessing the host memory. We implemented and evaluated DAGGER,
a DmA-based keystroke loGGER. The dedicated hardware enables our prototype to
benefit from rootkit properties. DAGGER operates stealthily. It is undetectable by
anti-virus software etc. We can conclude that DAGGER is a representative malware
proof of concept when comparing it with other known DMA malware. Hence, we will
reuse DAGGER in the next chapters to develop a reliable DMA malware detector.

DMA malware is more than controlling a DMA engine. Our evaluation con-
firmed that DMA malware is efficient even if obstacles such as memory address
randomization are in place. We also demonstrated that DMA malware can be effec-
tive, that is, it can attack several OSes. This confirms that DMA malware is stealthy
at no costs regarding efficiency and effectiveness. The host has no reliable means to
protect itself. Throughout this chapter we highlighted that the I/OMMU has sev-
eral issues and the host cannot necessarily count on this preventive countermeasure
against DMA malware. Besides possible vulnerabilities and various preconditions
that must be fulfilled for a successful I/OMMU deployment, the most obvious is-
sue is that common OSes do not or do insufficiently support the I/OMMU. Hence,
DMA malware can attack OSes such as Windows. A general and reliable approach
for scanning the dedicated devices for malware does not exist. A reliable and more
general DMA malware detection mechanism is needed. Other researchers have also
investigated I/OMMU alternatives.

In this chapter we discussed an alternative approach. Our detection approach
is based on the observation that parallel memory accesses from the isolated hardware
(via DMA) and the main CPU produce measurable side effects. Hence, we can con-
clude that illegitimate DMA operations are not stealthy anymore. Nonetheless, we
have to admit that the experimental setup used for the detection is rather artificial.
We conclude that the current setup is insufficient for a detection tool that can be
applied in practice. However, we demonstrated that hardware performance counters
can be the basis for a reliable detection tool. We revealed that the measurement
tool requires a sufficient measurement resolution. Hardware performance counters
fulfill this requirement. We will further investigate this point in more detail in the
next chapter.

Without an alternative, only dedicated hardware whose inner workings is ac-
cessible by the host, i. e., complete RAM and ROM access, should be deployed. This
enables the host to check the device for malicious modifications from time to time. A
precondition for this is a reasonable measurement strategy and that the scanner gets
loaded first. Devices with a dedicated processor, dedicated runtime memory, and
a DMA engine are a threat for the host platform. This chapter demonstrates that
additional protection mechanisms are needed to ensure a platform’s confidentiality,
integrity, and especially its trustworthiness.
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“You can’t defend. You can’t prevent. The only thing you can do is to detect
and respond.”

Bruce Schneier,
American Cryptographer, Computer Security and Privacy Specialist

HE previous chapters presented that computer platform peripherals, or more
T precisely, dedicated hardware such as network interface cards, video cards and
management controller can be exploited to attack the host computer platform. The
dedicated hardware provides the attacker with a separate execution environment
that is not considered by state-of-the-art anti-virus software, intrusion detection
systems, and other system software security features available on the market. Hence,
dedicated hardware is well-suited for stealthy attacks [35, 36, 46, 123, 134, 135]. Such
attacks have also been integrated into exploitation frameworks [19, 18].

For example, Duflot et al. [47] presented an attack based on a network interface
card (NIC) to run a remote shell to take-over the host. They remotely infiltrated the
NIC with the attack code by exploiting a security vulnerability. Triulzi[134, 135]
demonstrated how to use a combination of a NIC and a video card (VC) to access
the main memory that enables an attacker to steal cryptographic keys and other
sensitive data. Triulzi remotely exploited the firmware update mechanism to get the
attack code on the system.

In Chapter 4 we described how we exploited a micro-controller that is inte-
grated in the computer platform’s memory controller hub (MCH) to hide a keystroke
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code logger that captures secret data, e. g., passwords. All these attacks have in com-
mon that they have to access the main memory via direct memory access. By doing
so, the attacks circumvent hardened security mechanisms that are set up by host
system software. Furthermore, the attack does not need to exploit a host system
software vulnerability. Devices that are capable of executing DMA transactions are
called bus masters, see Section 2.5. The host CPU that usually executes security
software to reveal attacks, does not necessarily have to be involved when other bus
masters access the main memory, see Chapter 4. Due to modern bus architectures,
such as peripheral component interconnect express (PCle), a sole central DMA con-
troller, which must be configured by the host CPU, became obsolete. Firmware
executed in the separate execution environment of the dedicated hardware can con-
figure the peripheral’s DMA engine to read from or to write to arbitrary main
memory locations. This is invisible to the host CPU.

In this chapter we present our Bus Agent Runtime Monitor (BARM) — a mon-
itor that reveals and halts stealthy peripheral-based attacks on the platform’s main
memory. We developed BARM to demonstrate that the host CPU is able to detect
additional (malicious) accesses to the platform’s main memory that originate from
platform peripherals, even if the host CPU is unable to access the isolated execution
environment of the suspicious peripheral. With additional access we mean access
that is not intended to deliver data to or to transfer data on behalf of the host
system software. BARM is based on a primitive that is able to analyze memory bus
activity. It compares actual bus activity with bus activity that is expected by host
system software such as the operating system or the hypervisor. BARM reports
an attack based on DMA if it detects more bus activity than expected by the host
system software. BARM is also able to identify the malicious peripheral.

In the previous chapters we also presented that several preventive approaches
concerning DMA attacks have been proposed. For example, Intel developed an
input/output memory management unit (I/OMMU) and calls the technology Intel
virtualization technology for directed I/O (VT-d [2]). The I/OMMU can be applied
to restrict access to the main memory. The aim of VT-d is to provide hardware
supported virtualization for the popular x86 platform. Unfortunately, I/OMMUs
cannot necessarily be trusted as a countermeasure against DMA attacks for several
reasons. For instance, the I/OMMU (i) must be configured flawlessly [83], (ii) can
be successfully attacked [111, 148, 147, 146], and (iii) cannot be applied in case of
memory access policy conflicts, see Chapter 4. Furthermore, I/OMMUs are not
supported by every chipset and system software (e. g., Windows Vista and Windows
7). Another preventive approach is to check the peripheral firmware integrity at
load time. Unfortunately, such load time checks do not prevent runtime attacks.
Repeating the checks permanently to prevent runtime attacks is borne at the cost of
system performance. Note, this also does not necessarily capture transient attacks.
Furthermore, it is unclear if the host CPU has access to the whole read-only memory
that stores the peripheral’s firmware.

We address the challenge of detecting malicious DMA with a primitive that
runs on the host CPU in this chapter. By monitoring bus activity our method

“Detecting Peripheral-based Attacks on the Host Memory”



5.1 General Detection Model 57/129

does not require to access the peripheral’s ROM or its execution environment. Our
primitive is implemented as part of the platform’s system software. The basic idea
is: The attacker cannot avoid causing additional bus activity when accessing the
platform’s main memory. This additional bus activity is the Achilles’ heel of DMA-
based attacks that we exploit to reveal and halt the attack. Our proof of concept
implementation BARM implements a monitoring strategy that considers transient
attacks. The main goal of our technique is to monitor memory access of devices
connected to the memory bus. Especially, host CPU cores fetch data as well as
instructions of a significant amount of processes. This is aggravated by the in- and
output (I/O) of peripherals such as network interface cards and harddisks. BARM
demonstrates how to meet these challenges.

In this chapter we present a method to detect and mitigate DM A-based attacks.
Our main contributions are:

o Model of expected bus activity and measurement of actual bus activ-
ity to reveal attacks: A new mechanism for monitoring the complete mem-
ory bus activity via a primitive executed on the host CPU is presented in this
chapter. Our method is based on modeling the expected memory bus activity.
Furthermore, we present a technique for monitoring the actual bus activity.
We reveal malicious memory access by calculating the difference between the
modeled expected activity and the measured activity. Any additional DMA
activity can be assumed to be an attack.

¢ Disempowerment of malicious peripheral: We can identify the offending
peripheral. We implemented and evaluated our detection model in a PoC that
we call BARM. BARM is efficient and effective enough that it can not only
detect, but also eliminate DMA-based attacks before the attacker caused any
damage.

¢ Runtime monitor measurement strategy: We implemented a measure-
ment strategy for permanent runtime monitoring that considers transient at-
tacks with negligible performance overhead due to commonly available CPU
features of the x86 platform.

Finally, our solution does not require hardware or firmware modifications.

5.1 General Detection Model

Two core points are the basis for our detection model. First, the memory bus is a
shared resource (see Figure 5.1). Second, the system software, i.e., the OS, records
all I/O activity in the form of I/O statistics. Bus masters (CPU and peripherals) are
connected to the main memory via the memory bus. That bus provides exactly one
interface to the main memory that must be shared by all bus masters, see Figure 5.1.
We see this shared resource as a kind of hook or as the Achilles’ heel of the attacker.
The fact of the shared resource can be exploited by the host CPU to determine if
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Figure 5.1: Bus Master Topology Exploited to Reveal Malicious Memory
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If the difference of the measured bus activity value A,, and the ex-
pected bus activity value A, is greater than 0, additional bus activity
A, is measured and a DMA attack is revealed.

another bus master is using the bus. For example, if the host CPU cannot access
the bus for a certain amount of time, the OS can conclude that another bus master
is using the bus.

How exactly the host CPU/OS determines malicious bus activity is depen-
dent of the implementation. We investigated multiple directions based on timing
measurements and bus transactions monitoring. Experiments with the timing mea-
surements of bus transactions are described by Li etal. [83], for example. Timing
measurements of memory transactions are given in Section 4.5.2. Our experiments
revealed that counting bus transaction events is the most reliable method. We
present the implementation of that novel method in Section 5.2.

5.2 An Implementation of the Detection Model

In this section we describe our implementation of the general detection model based
on bus transaction event counting. The purpose of our PoC implementation is to
confirm that the host CPU can detect DMA-based attacks that originate from pe-
ripherals. We implemented BARM for the Intel x86 platform. We developed BARM
as a Linux kernel module. According to the experiment described in Chapter 4, mal-
ware, which is executed in peripherals with a separate DMA engine, can access the
main memory stealthily. The host CPU does not necessarily have to be involved
when a DMA-based memory transaction is set up. Nonetheless, the memory bus is
inevitable a shared resource that is arbitrated by the MCH, see Figure 2.5. This is
the reason why we expect side effects when bus masters access the main memory.
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We analyzed the capabilities of performance monitoring units (PMU, see Sec-
tion 2.3) to find and exploit such DMA side effects. PMUs are implemented as
model-specific registers. These registers can be configured to count performance re-
lated events. The PMUs are not intended to detect malicious behavior on a computer
system. Their purpose is to detect performance bottlenecks to enable a software de-
veloper to improve the performance of the affected software accordingly [104]. In
this work we exploit PMUs to reveal stealthy peripheral-based attacks on the plat-
form’s main memory. Malware executed in peripherals has no access to processor
registers and therefore cannot hide its activity from the host CPU by modifying the
PMU processor registers. Our analysis revealed memory transaction events that can
be counted by PMUs. In particular, a counter event called BUS_TRANS_MEM summa-
rizes all burst (full cache line), partial read/write (non-burst) as well as invalidate
memory transactions [71]. This is the basis for BARM.

Depending on the precise processor architecture, Intel processors provide five
to seven performance counter registers per processor core [69, Section 18]. In this
case, at most five to seven events can be counted in parallel with one processor
core. Three of those counters are fixed function counters, i.e., the counted event
cannot be changed. The other counters are general purpose counters that we use
for BARM to count certain BUS_TRANS_MEM events. We are able to successfully
measure A, when we apply the BUS_TRANS_MEM counters correctly. At this point,
that knowledge is insufficient to decide if the transactions exclusively relate to an
OS task or if malicious transactions are also among them. In the following, we lay
the groundwork to reveal malicious transactions originating from a compromised
DMA-capable peripheral.

5.2.1 Bus Master Analysis

In the following we analyze the host CPU (related to the processor bus system)
and the UHCI controller (related to the PCle bus system) bus masters regarding
the number of bus transactions that they cause. By doing so, we consider the most
important bus systems that share the memory bus. Other bus masters, such as
harddisk and ethernet controllers, can be analyzed in a similar way.

Host CPU The host CPU is maybe the most challenging bus master. The CPU
causes a huge amount of memory transactions. Several processor cores fetch in-
structions and data for many processes. Monitoring all those processes efficiently
regarding the bus activity that they cause is nearly impossible. Hence, we decided
to analyze the host CPU bus agent behavior using the BUS_TRANS_MEM events in
conjunction with certain control options and so-called event name extensions. We
implemented a Linux kernel module for this analysis. Our key results are: (i) Bus
events caused by user space and kernel space processes can be counted with one
counter. (ii) The event name extensions THIS_AGENT and ALL_AGENTS can be used in
conjunction with BUS_TRANS_MEM events [see 71]) to distinguish between bus trans-
actions caused by the host CPU and all other processor bus system bus masters.

“Detecting Peripheral-based Attacks on the Host Memory”



60,/129 Chapter 5 A Primitive for Detecting DMA Malware

Figure 5.2: Intel Quad-Core Processor
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The quad-core processor consists of two bus agents and each bus
agent consists of two cores, see (a). When counting BUS_TRANS_MEM
events with both bus agents, i. e., in (b) BA#0 and BA#1, the THIS_AGENT
name extension delivers significant difference. The kernel log in (b)
also depicts that the values for the ALL_AGENTS name extension are
pretty much the same within a counter query iteration.

THIS_AGENT counts all events related to all processor cores belonging to a CPU bus
agent. ALL_AGENTS counts events of all bus agents connected to the bus where the
host CPU is connected to. The ALL_AGENTS extension is very important for our im-
plementation. It enables us to measure the bus activity value A,, (see Section 5.1)
in terms of number of bus transactions:

Am = BUS. TRANS_MEM.ALL_AGENTS (5.1)

Furthermore, our analysis revealed that a host CPU is not necessarily exactly
one bus agent. A multi-core processor can consist of several bus agents. For example,
we used a quad-core processor (Intel Core 2 Quad CPU Q9650@3.00GHz) that
consists of two bus agents. Two processor cores embody one bus agent as depicted
in Figure 5.2. Hence, the number of processor cores is important when determining
(il)legitimate bus transactions. Note, if the host CPU consists of several bus agents,
it is necessary to start one counter per bus agent with the THIS_AGENT event name
extension. With this knowledge we can determine bus master transactions of all
bus masters A,,. We can distinguish between bus activity of the host CPU (see
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Equation 5.2) and bus activity caused by all other bus masters (see Equation 5.3)
that access the main memory via the MCH.

H
ACPU — ano BUS TRANS_MEM.THIS_AGENT .y bus_agent4n;

(5.2)
H e N, H = number of host CPU bus agents - 1
ACPU = A, — ASPY
& A, = ASPU 4 ACPU (5.3)

This means that we can subtract all legitimate bus transactions caused by user
space and kernel space processes of all processor cores. Note, according to our trust
and adversary model (see Section 2.7) the measured host CPU bus activity value
and the expected host CPU bus activity value are the same (ASTV = ASPUY) since
all processes running on the host CPU are trusted. Analogously the expected bus
activity value is split, i.e., A, = ASPY + ACPU,

Universal Host Controller Interface Controller The Universal Host Controller
Interface (UHCI) controller is an I/O controller for Universal Serial Bus (USB)
devices such as a USB keyboard or a USB mouse. USB devices are polled by the
I/O controller to check if new data is available. System software needs to prepare a
schedule for the UHCI controller. This schedule determines how a connected USB
device is polled by the I/O controller. The UHCI controller permanently checks its
schedule in the main memory. Obviously, this procedure causes a lot of bus activity.
Further bus activity is generated by USB devices if a poll reports that new data
is available. In the following we analyze how much activity is generated, i.e., how
many bytes are transfered by the UHCI controller when servicing a USB device.

In our case, the I/O controller analyzes its schedule every millisecond. That
means, the controller looks for data structures that are called transfer descriptors.
These descriptors determine how to poll the USB device. To get the descriptors
the controller reads a frame pointer from a list every millisecond. A frame pointer
(physical address) references to the transfer descriptors of the current timeframe.
Transfer descriptors are organized in queues. A queue starts with a queue head
that can contain a pointer to the first transfer descriptor as well as a pointer to
the next queue head [see 62, p.6]. According to Intel [62] the frame (pointer) list
consists of 1024 entries and has a size of 4096 bytes. The UHCI controller needs
1024 ms (1 entry/ms) for one frame (pointer) list iteration. We analyzed the number
of bus transactions for one iteration with the help of the highest debug mode of the
UHCT host controller device driver for Linux. In that mode schedule information are
mapped into the debug file system. We determined that the frame pointers reference
to interrupt transfer queues (see Figure 5.3 (d.i) and (d.ii): int2, int4, ..., int128)
and to a queue called async. int2 means, that this queue is referenced by every
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second frame pointer, int4 by every fourth, int8 by every eighth, etc. The async
queue is referenced by every 128th frame pointer.

Unassigned interrupt transfer queues, i.e., queues not used to poll a USB de-
vice, are redirected to the queue head of the async queue, see Figure 5.3 (b). Parsing
the async queue requires three memory read accesses as illustrated in Figure 5.3 (a).
Parsing interrupt transfer queues that are assigned to poll a USB device needs more
than four memory reads. The exact number of memory reads depends on how many
elements the queue has. Usually, it has one element if the queue is assigned to a
USB keyboard. The queue can also have two elements if the queue is assigned to a
keyboard and mouse, for example. If the queue has one element, parsing the whole
assigned interrupt transfer queue needs six memory reads, see Figure 5.3 (¢). We
summarize our examination as follows:

#bus read transactions = 8 X #async reads + 8 X #int128 reads
+16 x #int64 reads + 32 X #int32 reads + 64 X #intl6 reads (5.4)
4128 x #int8 reads + 256 X #intd reads + 512 X #int2 reads

In total 4216 bus read transactions are calculated if int16 is assigned to a
USB keyboard, as depicted in Figure 5.3 (d). According to Intel [62], the UHCI
controller updates queue elements. We expect this for the queue element of the int16
queue. This queue is referenced by 64 frame pointers. Hence, we calculate with 64
memory write transactions. This means that the overall number of bus transactions
is 4280. We successfully verified this behavior with a Dell USB keyboard as well as
a Logitech USB keyboard in conjunction with the single step debugging mode of the
UHCT controller [see 62, p.11], the information was retrieved from the Linux debug
file system in /sys/kernel/debug/usb/uhci/, and performance monitoring units
counting BUS_TRANS_MEM events.

With the same setup we determined how many bus transactions are needed
when the USB device has new data that are to be transmitted into the main memory.
For our USB keyboard we determined that exactly two bus transactions are needed
to handle a keypress event. The same is true for a key release event. The Linux driver
handles such events with an interrupt routine. Hence, to determine the expected
bus activity AVHCT we request the number of handled interrupts from the OS and
duplicate it. This means that the overall number of bus transactions in our example
is AVHCT — 4280 + 2 x #USB interrupts.

Additional Bus Masters To handle the bus activity of the whole computer plat-
form, the behavior of all other bus masters, such as the ethernet controller and the
harddisk controller, must also be analyzed similar to the UHCI controller. We had
to analyze one more bus master when we tested our detection model on Lenovo
Thinkpad laptops. We were unable to turn off the fingerprint reader (FR) via the
BIOS on an older Thinkpad model. Hence, we analyzed the fingerprint reader and
considered this bus master for our implementation. We determined that it causes
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Figure 5.3: UHCI Schedule Information (simplified)
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The schedule reveals that int and async queues are in use. The
physical addresses of queue link targets are denoted in brackets. A
queue link or queue element, which terminates, contains the value
00000001 instead of a physical address. The int16 queue is responsible
for our USB keyboard.
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Figure 5.4: Breakdown of Memory Transactions Caused by Three Active
Bus Masters
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The curve at the top depicts the number of all memory transactions
of all active bus masters (in our setup), that is, 4,,. The curve
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4 bus transactions per millisecond. For this work, or more precisely, to demon-
strate that the host CPU can detect DMA attacks, it is sufficient to consider up
to five bus masters for BARM. Besides from the two CPU-based bus masters and
the UHCI controller we also consider Intel’s Manageability Engine (ME) as a bus
master. During normal operation we assume AMZ = (0. To be able to demonstrate
that our detection model works with a computer platform we do not use all bus
masters available on the platform in our experiment. For example, we operate the
Linux OS from the computer’s main memory in certain tests of our evaluation (see
Section 5.3). This allows us to make use of the harddisk controller I/O functionality
as needed.

With the analysis presented in this section we can already determine which
bus master caused what amount of memory transactions. This intermediate result
is depicted in Figure 5.4.
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5.2.2 Bus Agent Runtime Monitor

With the bus master analysis that we introduced in Section 5.2.1 we were able to
implement BARM in the form of a Linux kernel module. In this section we describe
how we implemented a monitoring strategy that permanently monitors and also
evaluates bus activity. The performance monitoring units are already configured to
measure BUS_TRANS_MEM events. The permanent monitoring of A,,, i.e., ASPY and
ASCPU s implemented using the following steps:

1. Reset counters and store initial I/O statistics of all non-CPU bus masters (e. g.,
UHCI, FR, ME, HD, ETH, VC).

2. Start counting for a certain amount of time ¢ (implemented using high precision
timer).

3. Stop counters when time ¢ is reached.

4. Store counter values for A, and ASPU (see Section 5.2.1) as well as updated
I/0 statistics of all non-CPU bus agents.

5. Continue with step (1) and determine 4, in parallel by waking up the according
evaluation kernel thread.

We also need to compare the measured bus activity and the expected bus
activity. BARM compares ASPU and ASPU when executing the evaluation kernel
thread as follows:

1. Determine ACPU using the stored counter values for A, and ASFY (see Sec-
tion 5.2.1).

2. Calculate ASPU with AVHCT AFR AME = pHD = p\ETH AVC “etc. which are
derived from the difference of the stored updated I/O statistics and the stored

initial I/O statistics. Note, for our implementation we assume AP = 0,
APTH — 0 etc.

3. Compare ASPU and ASPU | report results and, if necessary, apply a defense
mechanism.

Tolerance Value For practicality we need to redefine how A, is calculated. We use
A, to interpret the PMU measurements in our PoC implementation. One reason is
that PMU counters cannot be started/stopped simultaneously. Very few processor
cycles are needed to start/stop a counter and counters are started/stopped one after
another. The same can occur in the very short amount of time, where the counters
are stopped to be read and to be reset (see timeframe between step (3) and step (2)
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Figure 5.5: Tolerance Value T

Best Case for Attacker 27T

If the attacker can predict the very exact moment where BARM de-
termines 7 too little bus transactions, an attack with 27 bus trans-
actions could theoretically executed stealthily.

when permanently monitoring). Similar inaccuracies can occur when reading OS
I/0O statistics. Hence, we introduce the tolerance value 7 € N and refine A,:

A _ 07 if Am_Ae 6{0777-}
o7 [ Am — A, if [ A — A ¢ {0,---, T}

The value of T is a freely selectable number in terms of bus transactions that
BARM can tolerate when checking for additional bus traffic. Our evaluation demon-
strates that a useful 7 is rather a small value (see Section 5.3). Nonetheless, we
have to consider that 7 > 0 theoretically gives the attacker the chance to hide the
attack, i.e., to execute a transient attack. In the best case (see Figure 5.5) the
stealthy attack can have 27 bus transactions at most. It is very unlikely that 27
bus transactions are enough for a successful attack. Data is most likely at a differ-
ent memory location after a platform reboot. Hence, the memory must be scanned
for valuable data and this requires a lot of bus transactions. Mechanisms such as
address space layout randomization (ASLR, see also Section 4.3.3) that are applied
by modern OSes can also complicate the search phase. This results in additional
bus transactions. Furthermore, the attacker needs to know the very exact point in
time when BARM must tolerate —7 transactions.

(5.5)

Identifying and Disabling the Malicious Peripheral If A7, > 0 BARM has de-
tected a DMA-based attack originating from a platform peripheral. It is already of
great value to know that such an attack is executed. A simple defense policy that
can be applied to stop an attack is to remove bus master capabilities using the BME
bit (see Section 2.5) of all non-trusted bus masters. Such a policy can be insufficient
if all platform features are required for operation. It could also result in data loss
without further measures. However, a systemthat has been compromised via such a
targeted attack should be taken offline for a detailed examination.

When stopping the non-trusted bus masters BARM places a notification for
the user on the platform’s screen. Ay, does not include any information about
what platform peripheral is performing the attack. To include that information in
the notification message, we implemented a simple peripheral test that identifies the
suspicious peripheral. When the DMA attack is still scanning for valuable data,
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we unset the BME bits of the non-trusted bus masters one after another to reveal
the malicious peripheral. After the bit is unset, BARM checks if the additional bus
activity vanished. If so, the malicious peripheral is identified and the peripheral
name is added to the attack notification message. If BARM still detects additional
bus activity the BME bit of the wrong peripheral is set again. The OS must not
trigger any I/O tasks during the peripheral test. Our evaluation reveals that our
test is performed in a few milliseconds, see Section 5.3. It is required that the attack
is a bit longer active than our peripheral test. Otherwise, it cannot be guaranteed
that our test identifies the malicious peripheral. The DMA attack on a Linux system
described in Chapter 4 needs between 1000 ms and 30,000 ms to scan the memory.
Our evaluation demonstrates that BARM can detect and stop a DMA attack much
faster.

5.3 Evaluation of the Detection Model Implementation

We evaluated BARM, which is implemented as a Linux kernel module. First, we
conducted tests to determine a useful tolerance value 7. In the main part of this
section, we present the performance overhead evaluation results of our solution. We
demonstrate that the overhead caused by BARM is negligible. Finally, we conducted
some experiments to evaluate how BARM behaves during an attack.

5.3.1 Tolerance Value T

We performed several different tests to detemine a useful tolerance value. We re-
peated each test 100 times. Several different tests means, we evaluated BARM with
different PMU value sampling intervals (32ms, 128 ms, 512 ms, 1024 ms, 2048 ms),
number of CPU cores (1 — 4 cores), RAM size (2GB, 4GB, 6 GB, 8 GB), platforms
(Intel Q35 Desktop / Lenovo Thinkpads: T400, X200, X61s), as well as minimum
(power save) and maximum (performance) CPU frequency to check the impact for 7.
Furthermore, we evaluated BARM with a CPU and with a memory stress test. CPU
stress test means, running the shalsum command on a 100 MB test file 100 times
in parallel to ensure that the CPU utilization is 100 %. For the memory stress test,
we copied the 100 MB test file 2000 times from a main memory location to another.
Our platforms had the following configurations: Q35 — Intel Core 2 Quad CPU
Q9650@3.00GHz with 4 GB RAM, T400 — Intel Core 2 Duo CPU P9600@2.66GHz
with 4 GB RAM, X200 — Intel Core 2 Duo CPU P8700@2.53GHz with 4 GB RAM,
and X61s — Intel Core 2 Duo CPU L7500@1.60GHz with 2 GB RAM. We used a
sampling interval of 32 ms, 1core, 4 GB RAM, the Q35 platform, and the maximum
CPU frequency as basic evaluation configuration. We only changed one of those
properties per test. The results are summarized in Figure 5.6.

Note, to determine 7 we considered up to five bus masters (1 — 2 CPU, 1
UHCI, 1 fingerprint reader, and 1 ME bus master). We used the SliTaz Linux
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Figure 5.6: Determining an Adequate Tolerance Value T
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Figures (a) — (f) present the discrepancy of A, computations when
evaluating BARM with different tests. BARM performed 100 runs
on each test to determine 4,. With discrepancy we mean the differ-
ence between the maximum and minimum A, value. Figures (a) —
(f) visualize the discrepancy in the form of boxplots. For each test
the respective minimum, lower quartile, median, upper quartile as
well as maximum A4, value is depicted. The small point between min-
imum and maximum is the average A, value. The A, values range
mostly between —10 and 10. The highest absolute value is 19, see
Figure (e) X61s.
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distribution'® that allowed us to run the Linux operating system from RAM. As
a result we were able to selectively activate and deactivate different components
as the harddisk controller bus master. The overall test results reveal a worst case
discrepancy between measured and expected bus transactions of 19 (absolute value).
This result confirms that the measurement and evaluation of bus activity yields
reliable values, i.e., values without hardly any fluctuations. Nonetheless, to be on
the safe side we work with a tolerance value 7 = 50 when we evaluate BARM with
a stealthy DMA-based keystroke logger, see Section 5.3.3.

5.3.2 Performance Overhead when Permanently Monitoring

Since BARM affects only the host CPU and the main memory directly, we evalu-
ated the performance overhead for those two resources. BARM does not access the
harddisk and the network card when monitoring. We evaluated BARM on a 64 bit
Ubuntu kernel (version 3.5.0-26). During our tests we run the host CPU with max-
imum frequency thereby facilitating the host CPU to cause as much bus activity as
possible. Furthermore, we executed our test with 1 CPU bus master as well as with
2 CPU bus masters to determine if the number of CPU bus masters has any impact
on the performance overhead. Eventually, we need to use more processor registers
(PMUs) with a second CPU bus master. Another important point is the evaluation
of the sampling interval. Hence, we configured BARM with different intervals and
checked the overhead. To measure the overhead we used time stamp counters (see
Section 2.3) for all our tests. The evaluation results are depicted in Figure 5.7.

5.3.3 A Use Case to Demonstrate BARM'’s Effectiveness

Even if we do not consider all platform bus masters in our presented PoC implemen-
tation we can demonstrate the effectiveness of BARM. This is possible because not
all platform bus masters are needed for every sensitive application. For example,
when the user enters a password or other sensitive data, only the UHCI controller
and the CPU are required. We evaluated BARM with password prompts on Linux.
We set up an environment where four bus masters are active (2 CPU, 1 UHCI, and
1 ME bus master) when using the sudo or ssh command. BARM was started to-
gether with the sudo or ssh command and stopped when the password had been
entered. BARM stopped unneeded bus masters and restarted them immediately
after the password prompt had been passed. We attacked the password prompt
with our DMA-based keystroke logger DAGGER, which is executed on Intel’s ME,
see Chapter 4. DAGGER scans the main memory via DMA for the physical address
of the keyboard buffer, which is also monitored via DMA.

Figure 5.8 (a) visualizes the measurements taken by BARM when the platform
is under attack. Under attack means that DAGGER is already loaded when the
user is asked for the password. Figure 5.8 (b) depicts the results of BARM when
the platform is attacked at an arbitrary point during runtime. For comparison

16GSee http://www.slitaz.org/ [accessed 25 February 2014]
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Figure 5.7: Host Performance CPU and MEM Overhead Evaluation
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We measured the overhead with a memory (MEM) and a CPU
benchmark, each passed with 1 online CPU core (1 CPU bus master)
and 4 online CPU cores (2 CPU bus masters), see Figure (a) and (b).
At first, we performed the benchmarks without BARM to create a
baseline. Then, we repeated the benchmarks with BARM (sampling
interval: 32ms). The results are represented as the relative over-
head. The CPU benchmark did not reveal any significant overhead.
The MEM benchmark revealed an overhead of approx. 3.5%. The
number of online CPU cores/CPU bus masters has no impact re-
garding the overhead. Furthermore, we checked the overhead when
running BARM with different sampling intervals, see Figure (c) and
(d). Again, the CPU benchmark did not reveal any overhead. The
MEM benchmark results reveal that the overhead can be reduced
when choosing a longer sampling interval. A longer interval does
not prevent BARM from detecting a DMA attack. A longer interval
can mean that the attacker caused some damage before the attack
is detected and stopped.
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Figure 5.8: Evaluating BARM with Password Prompts (ssh command)
and at an Arbitrary Point during Runtime
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BARM checks for additional bus activity 4, every 32ms (sampling
interval). A, is found if the measured value is above the tolerance
value 7 = 50. When the platform is not attacked the values are be-
low T, see Figure (a) and (b) “no DAGGER?”. Figure (a) depicts
an attack where DAGGER is already waiting for the user password.
BARM detects DAGGER with the first measurement and stops it
almost immediately. Figure (b) presents DAGGER’s attempt to at-
tack the platform at an arbitrary point during runtime with a similar
result. Figure (c) is the kernel log generated by BARM during the
attack attempt presented in Figure (b).

Figure 5.8 (a) and (b) also visualize BARM’s measurements when the platform is
not attacked. Figure 5.8 (c) is a fraction of the kernel log, which confirms how
fast BARM stopped DAGGER. BARM detected the DMA attack at time stamp
350.401,045s. At time stamp 350.465,042s BARM identified the malicious DMA-
based peripheral. This test confirms that BARM can even detect attacks before the
attacker does damage. BARM stopped the attack when the keystroke logger was still
in the search phase. This means that the keystroke logger did not find the keyboard
buffer. Hence, the attacker was unable to capture any keystrokes. We configured
BARM with a PMU value sampling interval of 32ms. Our evaluation revealed that
the attacker already generated more than 1000 memory transactions in that time
period. This means that we could have chosen even a significantly higher tolerance
value than 7 = 50 bus transactions.
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5.4 Limitations of Current BARM Implementation

Although the evaluation of the implementation of the detection model demonstrated
that DMA malware can be found with negligible performance overhead, the current
implementation also has several limitations. So far, we only considered a certain
UHCI controller, a fingerprint reader, two CPU bus agents, and a ME peripheral as
bus masters (see Section 5.3). Even though we know that each bus master can only
access the main memory via one interface, we cannot exclude the possibility that the
current approach for the detection model is insufficient to integrate all possible bus
masters. The currently integrated bus masters are sufficient to demonstrate that
BARM can detect DAGGER. Additionally, we only consider a single generation of
Intel chipsets. This means that additional investigations with other chipset gener-
ations as well as chipsets made by other manufacturers are necessary to determine
the extent to which BARM is generic.

Another limitation is the fact we tested BARM with one DMA malware ex-
ample. Although DAGGER represents typical DMA malware, i.e., it has to search
for valuable data in the host memory, does not require any cooperation with host
software, and accesses the main memory via the system memory interface, we cannot
exclude that other DMA malware implements mechanisms to circumvent BARM.
Theoretically, an adversary could try to exploit the 27 bus transaction range per
sampling interval (see Figure 5.5), for example. This means that the adversary could
hide up to 27 bus transactions if it is possible to predict the very exact moment
where BARM determines 7 too little bus transactions.

However, if the adversary finds a way to exploit the 27 bus transaction range
per sampling interval, this would also result in a slower search phase to find valuable
host data. The amount of 27 bus transactions is significantly lower compared to
the amount of bus transactions that are usually available to the adversary in a
sampling interval. Conversely, depending on the search time for the target data in
the host memory, the host CPU could exploit the delayed search to, e.g., rearrange
the memory address space. This would enforce the adversary to restart the search
phase. Hence, BARM should be tested with additional DMA malware examples to
confirm that BARM can also detect DMA malware other than DAGGER.

Bus masters such as the ethernet controller could try to circumvent BARM by
(i) ignoring the source address of the data to be copied via DMA and (ii) exploiting
the number of bus transactions determined by the length of the data to be copied for
attacking the host memory. The source address as well as the length are provided by
the host when the host wants to send a network packet, for example. The adversary
only exploits the number of bus transactions determined by the length. Hence,
BARM will not detect any additional bus activity, since the adversary camouflages
the illegitimate bus transactions as expected bus transactions. This kind of attack
can be considered a MitM attack conducted by the network interface card. To be
able to successfully conduct this MitM attack the attacker also needs to correctly
determine the number of expected ethernet controller bus transactions. Chapter 6
presents how to consider MitM attacks conducted by the network interface card.
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The chapter also demonstrates that it is difficult to calculate the correct number of
expected ethernet controller bus transactions (compared to the UHCI controller).
Hence, the adversary must consider potential performance overhead caused when
calculating expected ethernet controller bus transactions.

5.5 Chapter Summary

In this chapter we demonstrate that the host CPU is able to detect additional,
i. e., stealthy and malicious main memory accesses that originate from compromised
peripherals. The basic idea is that the memory bus is a shared resource that the
attacker cannot circumvent to attack the platform’s main memory. This is the
attacker’s Achilles’ heel that we exploit for our detection method. We compare the
expected bus activity, which is known by the host system software, with the actual
bus activity. The actual bus activity can be monitored due to the fact that the bus
is a shared resource. We developed the PoC implementation BARM and evaluated
our method with up to five bus masters considering the most important bus systems
(PCle, FSB, memory bus) of a modern computer platform. BARM can also identify
the compromised peripheral and disable it before the device causes any damage.

Since the host CPU can detect DMA attacks, we conclude that the host CPU
can defend itself without any firmware and hardware modifications. The platform
user does not have to rely on preventive mechanisms such as an I/OMMUs. We
chose to implement a runtime monitoring strategy that permanently monitors bus
activity. Our monitoring strategy considers transient attacks. The countermeasures
presented in the related work chapter (see Section 3.2) such as signed firmware
and latency-based attestation do not consider transient attacks. BARM can be
implemented with less effort and without detailed knowledge of the inner workings
of the peripheral’s firmware and hardware compared to latency-based attestation
approaches, see Section 3.2.3.

We also identified limitations of the current BARM implementation such as the
theoretically exploitable bus transaction range per sampling interval (27) or a pos-
sible MitM attack conducted by the ethernet controller. BARM is unable to detect
a MitM attack implemented in the network interface card that could be revealed
with a latency-based attestation approach. Such attacks can also be prevented by
applying end-to-end security in the form of a trusted channel [52]. We adapt the
concept of a trusted channel in Chapter 6 to enable BARM to detect MitM attacks.
Nevertheless, our BARM evaluation demonstrates that the performance overhead is
negligible. Hence, we conclude that our method can be deployed in practice.
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Authentic Reporting to External
Platforms

“Using encryption on the Internet is the equivalent of arranging an armored
car to deliver credit card information from someone living in a cardboard box
to someone living on a park bench.”

Gene Spafford,
Professor of Computer Science

UR motivation for implementing an authentic channel application for state re-
O porting is to deliver BARM’s measurement results to an external platform
protected from DMA malware. The external communication partner can evaluate
the transmitted measurements to check if the counterpart has been attacked by
DMA malware. The measurement results are based on processor register values (see
Section 5.2). To exclude malware on the network interface card from modifying and
forging outgoing network packets we need a secure communication channel. Such a
channel not only assures confidentiality, integrity, and freshness of the transmitted
data, but also authenticity of the channel endpoints. To implement such a channel
we adapt the concept of a trusted channel that we presented in prior work [52, 10].

A trusted channel is a communication channel that implements secure channel
properties and additionally binds communication endpoint state information to the
communication session. Deploying a secure channel based on IPsec or TLS is insuffi-
cient in our case. IPsec or TLS based secure channels ensure confidentiality, integrity
and freshness of the transmitted data. However, these channels are not bound to the
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actual communication endpoint. We implement the trusted channel based report-
ing application for BARM to prevent at least the following attacks. Such attacks
could be conducted by malware that is executed on the network interface card. The
malware could prevent BARM from communicating with the external platform by
blocking or corrupting outgoing network packets. An attacker could also use such
malware to steal key material, which is present in the host main memory, of the
secure channel via DMA. Afterwards, the attacker can conduct a MitM attack. The
malware could also relay the platform state information of a third platform, which is
not attacked by DMA malware, to the external administrator platform. This means
that the administrator platform could be tricked by conducting a relay attack.

We require at least secure channel properties (requirement R1) to ensure confi-
dentiality, integrity, and freshness of the transfered data for our authentic reporting
channel [see 52, p.32]. The confidentiality property ensures that the attacker only
gets a minimal amount of information. The integrity property ensures that corrupted
network packets will be revealed immediately. The freshness property prevents the
attacker from conducting a replay attack where a valid communication session is
recorded to be replayed at some later time. To reveal an attack that is blocking
packets that contain platform state information we introduce so-called heartbeat
messages as payload that has to be sent during the communication session. A heart-
beat in computing is a signal that indicates that, e.g., the corresponding software
is still up and running [132].

The heartbeat message consists of the current BARM measurement and log in-
formation if an attack was prevented. If the network interface card has been stopped
due to an attack heartbeat messages will no longer be received by the external plat-
form. This behavior is interpreted by the external platform as a NIC-based attack.
The transmitted information also includes state changes. State changes were also
considered by the trusted channel concept [52, 10], but efficient and effective run-
time monitoring with negligible performance overhead as implemented in BARM
was missing [see 52, p.36]: “A state change on one platform is noticed by CM (an ef-
ficient monitoring agent assumed [...]”. BARM represents the missing “monitoring
agent” in our DMA malware scenario.

Compared to prior work [52, 10] the trust and adversary model for our DMA
malware scenario does not require trusted computed mechanisms as proposed by
the TCG, see Section 2.7. Our channel is not based on a TPM since we do not rely
on load-time code integrity checks, see Section 3.2.1. Channel linkage to load-time
measurements stored in a TPM is not required in our application. We require that
the results determined by BARM are bound to our channel (requirement R2). This
is necessary during the negotiation of the communication session as well as during
the communication session itself.

Please note that we do not count on the I/OMMU such as Intel’s VT-d imple-
mentation. This is another difference to the trust model of our prior work [52]. This
technology was introduced shortly before our results were published [52]. This means
that previous authors had not been confronted with I/OMMU issues as presented
in Section 4.5.1. Previous works assumed that drivers capable of configuring the
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I/OMMU correctly exist. For this work we analyzed the I/OMMU in more detail
and we decided not to rely on VT-d for our authentic reporting channel. Our prior
work also introduced the requirement for privacy (requirement R3). This means,
the channel considered the least information paradigm to minimize the disclosure of
platform state information to only the bare necessities.

The main contributions of this chapter are as follows:

e Authentic reporting channel that excludes the network interface
card from the endpoint: Malware executed on the network interface card
is able to steal secret key material from the main memory to conduct a MitM
attack. Hence, we developed an authentic reporting channel that ensures that
only the host CPU is the communication endpoint. Our channel is based on
the secure channel protocol TLS. We adapt the TLS protocol to exchange
BARM measurements and to bind the channel to its supposed endpoint. An
additional feature of our communication channel is platform state change re-
porting. This means that our runtime monitor BARM permanently delivers
every state change regarding DMA malware to the communication partner via
the authentic reporting channel. Our TLS modifications are based on TLS ex-
tensions. This means that our channel is compliant with the TLS specification.
Our TLS compliant channel is the first channel that considers platform state
reporting regarding DM A malware. It is also the first channel that is based on
an implemented effective and efficient runtime monitor to report state changes.
Previous work only assumed the presence of such a runtime monitor.

e Analysis of the ethernet controller: Our communication channel requires
the network interface card. Hence, the ethernet controller will induce bus
transactions. These bus transactions must be considered by BARM. This chap-
ter demonstrates how the ethernet controller can be integrated into BARM’s
detection model, i.e., how to utilize the ethernet controller as an additional
bus agent.

¢ Enhancing BARM’s detection model with a new parameter: The
ethernet controller transfers data packets, which size is greater than the size of
address pointers and keystroke codes. We demonstrate that the cache line size
is an important parameter for BARM’s detection model. The cache line size
is necessary to compute the number of expected bus transactions correctly.

¢ Exploiting additional performance monitoring unit events: We demon-
strate that certain performance monitoring unit configurations can be ex-
ploited to distinguish between memory read bus transactions and memory
write bus transactions. This enables us to check if the number of expected
read bus transactions and expected write bus transactions that are caused by
the ethernet controller are correctly determined by BARM’s detection model.

The following section starts with a description of the authentic reporting chan-
nel model. Afterwards, we explain how we implemented this model.
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6.1 Implementation Independent Model

Our channel model considers client C' (target platform) and server S (external plat-
form) communication. Each endpoint may request platform state information (i.e.,
BARM measurements) of the peer. A local security policy determines what exactly
happens after the platform state information of the peer has been evaluated. Our
authentic reporting channel is controlled by host CPU software. The channel can be
negotiated through a potentially compromised network interface card. We describe
a high-level protocol for negotiating and maintaining an authentic reporting channel
in the following section. Please note, in the following we omit the superscript C' and
S due to the symmetric protocol characteristic.

6.1.1 Negotiating an Authentic Reporting Channel

One important idea of our authentic reporting channel is to prevent platform pe-
ripherals from accessing sensitive information that is related to the channel such as
secret key material. Only host CPU software is allowed to use sensitive channel infor-
mation. Please note, a peripheral could steal such information via DMA. However,
BARM will reveal and stop this kind of DMA attack, see Section 5.3.3. Figure 6.1
depicts the handshake protocol for negotiating an authentic reporting channel for
BARM. In order to conduct the handshake, both parties require a signing key Kign
that is an asymmetric key pair, i.e., Kggn 1= (PKsign, SKsign). Furthermore, both
peers require a certificate C'ert, which includes PKj;q4, as well as a host CPU soft-
ware components identifier (BARM _ID). This certificate is issued by a trusted
party, which can be the external administrator platform. The signing key and the
certificate are created before negotiating an authentic reporting channel. Each peer
verifies the certificate including BARM _I D of its counterpart.

The creation of the channel begins with the negotiation of security parameters.
This means that each party sends its certificate as well as security requirements in
the form of security parameters to the peer. The security parameters determine
which party reports its platform state information. Each peer checks if the security
requirements of the counterpart are acceptable. In the next step, each party sends
its platform state data (the current BARM measurement) to the peer. The state
data is digitally signed and the corresponding signature is transmitted together
with the state data. This ensures that the received state data has been sent by
the expected communication partner. Both parties verify the signature with PK;gp
that was sent by the peer as part of the certificate Cert. If the signature is valid both
parties verify the state data. The handshake may be aborted due to DMA malware
that attacks the peer. This is the case when the transmitted BARM measurement
result is greater than the tolerance value T (see Section 5.2.2). After both client and
server have verified the exchanged data successfully the same session key is computed
and confirmed by both platforms. The computed session key will be bound to the
communication session. After the confirmation the authentic communication session
is in place and both peers start to periodically send heartbeat messages.
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Figure 6.1: Negotiating an Authentic Reporting Channel
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State Change The heartbeat messages either confirm the current platform state
or they report a state change. The reported platform state can reveal that the peer
is under a DMA malware attack, that the suspicious peripheral could be stopped, or
that no attack has been detected. If the peer stops sending heartbeat messages, the
local platform assumes that the peer has been attacked by DMA malware executed
on the network interface card. In this case, BARM has successfully terminated the
ongoing DMA attack by stopping the network interface card. Depending on the local
security policy a platform can tear down the channel, continue with the current
session key, or renegotiate the channel. It is advantageous to continue with the
current session key if the heartbeat message reports that the attack could be stopped
immediately and if the local security policy states that this case is tolerable. To be
more precise, it can make sense if the platform can continue to operate normally
without the affected peripheral. In the case of an involved administrator platform,
we expect that the administrator will analyze the attack in more detail as soon
as possible to remove the DMA malware from the compromised peripheral or, if
absolutely necessary, to exchange the compromised peripheral or chipset with a
benign one.

6.2 Implementation of the Authentic Reporting Channel for
BARM

BARM as presented in Chapter 5 is insufficient for the authentic channel based
reporting application. When BARM sends network packets, it also causes bus ac-
tivity that needs to be considered by BARM’s detection model. To implement an
authentic channel application for our DMA malware scenario we have (i) enhanced
BARM’s detection model, see Section 6.2.1 and (ii) modified the TLS protocol to
bind BARM’s measurement (state information) to that channel, see Section 6.2.2.

6.2.1 Bus Master Analysis: Ethernet Controller

To consider the ethernet controller in BARM’s detection model we have to deter-
mine the expected bus activity value APTH. Hence, we conducted a similar bus
master analysis as presented in Section 5.2.1 for the ethernet controller of our target
platform. We analyzed the ethernet controller (namely FEthernet Controller: In-
tel Corporation 82566DM-2 Gigabit Network Connection (rev 02)[65]) of the same
target platform as the previous experiments, see Chapter 4 and Chapter 5. The
corresponding ethernet controller Linux device driver is e1000e.ko. To simplify our
analysis we configured the driver to use legacy interrupts and no interrupt delays as
well as no interrupt throttling. We also disabled checksumming and segmentation
offloading for the network device.

The ethernet controller works with so-called descriptor rings, i. e., the transmit
descriptor ring and the receive descriptor ring, see Figure 6.2. Each ring consists
of 256 descriptors. A descriptor has a size of 16 bytes. This means that the device
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Figure 6.2: Transmit/Receive Descriptor Ring Structure
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When the device driver informs the NIC that new network packets
are ready to be transmitted, the ethernet controller reads transmit
descriptors from the descriptor ring. The controller also reads the
corresponding packets of the size that is stored in the length field of
the descriptor from the host memory address that is stored in the
address field of the descriptor. The ethernet controller writes the
descriptor done bit in the status field of the descriptor if the the
descriptor has been processed. When new network packets arrive
from the network, the ethernet controller reads receive descriptors
from the descriptor ring. Afterwards, the controller writes the cor-
responding packets of the size that is stored in the length field of
the descriptor to the host memory address. The address is stored
in the address field of the descriptor. The ethernet controller writes
the descriptor done bit in the status field of the descriptor if the
the descriptor has been processed.

driver allocates 4096 bytes for each ring. If the host intends to send network pack-
ets, it prepares transmit descriptors and informs the ethernet controller that new
descriptors are ready to be processed. The ethernet controller reads the descrip-
tors via DMA from the host memory. After evaluating the descriptor the controller
copies the network packet data from the host memory address that is present in the
descriptor (see Figure 6.2) to its internal memory to be able to send the packet. If
the ethernet controller has processed the descriptor, the controller “returns” the de-
scriptor to the host by writing the descriptor done bit in the status field of the
descriptor via DMA. When receiving network packets the process is similar except
that the ethernet controller writes the network packet data into the host memory.

Cache Line Size To integrate the ethernet controller as a bus master into BARM’s
detection model we have to consider that the size of network packets is usually
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Figure 6.3: Transmit Descriptor/Receive Descriptor Dump of the
e1000e.ko Driver
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The dump reveals the most important information to derive the num-
ber of bus transactions caused by the ethernet controller. Some host
memory addresses are not cache line size aligned. This can result in
an additional bus transaction.

greater than keystroke codes, see Section 5.2.1. Keystroke codes are transfered
via one bus transaction. This is not valid for network packets that have a size of
1514 bytes for example. To be able to determine how many bus transactions are
necessary to transfer a particular amount of data we introduce a new parameter,
i.e., the cache line size. The system cache is organized in cache lines. Memory
accesses are handled in cache lines of a certain cache line size C € N [see 127, p.223].
C is 64 bytes for our platform [see 63, p.17]. That means, if one word is requested
from main memory, 64 bytes are actually transfered in one memory transaction. It
is assumed that data that is adjacent in the host memory will likely be accessed in a
subsequent operation. If so, these bytes are already in the cache and no additional
transaction is needed. Memory access of peripherals is also handled in cache lines.
It is possible that such a transaction must be snooped to ensure a coherent cache
line [see 63, p.27].

The descriptor dump of the e1000e.ko driver depicts the host memory ad-
dresses of the network packet data, see Figure 6.3. The dump also reveals that not
every address is cache line size aligned. This means that the number of bus trans-
actions required to transfer the network packet data via DMA is not necessarily the
value stored in the length field divided by the cache line size. Another important
point relates to the receive descriptor handling. According to Intel [65] the ethernet
controller optimizes the process of returning receive descriptors. That means, when
receiving packets the ethernet controller does not write the descriptor done bit
for each descriptor individually. Instead, it “collects” four descriptors that belong
to the same cache line to be able to write four descriptor done bits with one bus
transaction, see Figure 6.2. We consider both scenarios for the equation to compute
the expected bus transactions caused by the ethernet controller.
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Expected Bus Activity of the Ethernet Controller Due to our analysis we define
the expected bus activity of the ethernet controller as follows:

AETH :AZXreads _|_AZme’tes _{_AeRXreads +A§me'tes (61)

Agxf'eads is the expected bus activity that is caused by memory reads when
transmitting a packet. A Xwrites represents activity that is caused by memory writes.
Analogously, AfXreads and AFXwrites are introduced to consider the bus activity
when receiving network packets. To compute Al Xreads  ATXwrites = ARXreads —and
Awa"”” for one BARM sampling interval we have to consider the cache line size
for the memory buffers that are read and written. That means for the memory buffer
that stores the network packet data in host memory we have to align the memory
buffer start address, which is stored in the address field (hma € N) of a descriptor,
to the previous cache line size aligned address. The result is ba_start € N:

ba_start = hma — (hma mod C) (6.2)

The alignment for the memory buffer end address (ba_end € N), which is the
sum of the value in the address field (hma) and the value of the length field
(len € N) of a descriptor is as follows:

ba_end = hma + len + C — ((hma + len) mod C) (6.3)

The same alignment is required for descriptor transfers. The transfer start ad-
dress is determined by the descriptor number of the last descriptor of the previous
sampling interval (old-d € N). The transfer end address is determined by the de-
scriptor number of the last descriptor of the current sampling interval (cur_d € N).
When considering the cache line size the alignment results in descriptor numbers
d_start € N and d_end € N as follows (D € N is the descriptor size in bytes, i.e.,
16 bytes in our case):

((old-d x D) mod C)
D

d_start = old-d — (6.4)

curd x D + C — ((cur-d x D) mod C)
D

FOI' one Sampllng interval AZX'rcads, Asz'rites, Angeads7 and AEXUJrites are
computed as follows:

d_end =

(6.5)

ATXreads — §
e

n=1

cur_dTX —old_dTX
<1 (6.6)

ba_endlX — bastartgx>
C

It is necessary to add 1 memory read bus transaction for each transmit de-
scriptor because of the corresponding descriptor fetch that is (according to our ex-
periments) not optimized in terms of cache lines. This is handled differently when
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Figure 6.4: BUS_TRANS Event Counter
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The sum of BUS_TRANS BURST, BUS_TRANS_P and BUS_TRANS_INVAL counts
results in BUS_TRANS_MEM counts [71].

writing the descriptor done bit. In this case the ethernet controller tries to write
as many descriptor done bits as possible. The maximum is four bits for one bus
transaction.

(dend™ — d_start™) x D
C

When receiving network packets, memory reads only occur due to receive
descriptor fetching. We determined that the ethernet controller fetches four re-
ceive descriptors (equals to the cache line size) with one memory read bus trans-
action during our experiments. We use the indicator function with N := {n €
[old_d®X | cur_ d®X] | (n x D mod C) = 0} in the following equation:

Agxwrites (67)

cur_dBRX

AfXreeds = N dy(n) (6.8)

n=old_dRX

The number of expected bus transactions due to memory writes are as follows:

cur_dBX —old_dFX

ARXw'rites Z bafendfx - ba,startﬁx
‘ C
n=l1 (6.9)
(d_end™™ — d_start®™®) x D
C

We expect that network packet data must be copied to the host memory and
that corresponding descriptor done bits will be written to the descriptors in the
host memory.
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Exploiting Additional BUS_TRANS Events We verified Equation 6.1 with further
BUS_TRANS event counter that are basically subsets of the event BUS_TRANS_MEM,
see Figure 6.4. We determined that the event counter BUS_TRANS_ P counts the
memory reads of a peripheral and that the event counter BUS_TRANS_INVAL counts
the memory writes of a peripheral. We used these counters in conjunction with
THIS_AGENT and ALL_AGENTS name extensions as described in Section 5.2.1 to dis-
tinguish bus transactions caused by the host CPU and bus transactions caused by
the peripheral. The event BUS_TRANS_BURST did not occur during our experiments.
The number of bus transactions caused by the ethernet controller is computed ac-
cording to Equation 6.1 when the e1000e . ko driver function e1000_clean_tx_irq or
e1000_clean rx_irq is called. We enhanced BARM as introduced in Section 5.2.2
to consider AXTH as described in this section.

6.2.2 Implementation based on OpenSSL

OpenSSL is a popular software toolkit that implements cryptographic mechanisms
such as the SSL/TLS protocol and the encoding/decoding of X.509 certificates. The
toolkit provides the developer with shared libraries, i.e., 1ibssl and libcrypto.
The openssl command line tool also makes use of these libraries. Applications that
require the cryptographic mechanisms provided by OpenSSL can use the libraries
directly. Note, the implementation presented in this section is based on our [10]
previous trusted channel implementation. Our modifications are based on TLS and
TLS related Request for Comments (RFC) documents, i. e., RFC4366 and RFC4680.
Hence, the modifications are compliant with the TLS specification.

The TLS handshake protocol used to negotiate a session key of a secure chan-
nel needs to be adapted to consider BARM’s measurement results. Considering the
measurement results during the handshake enables the peer to determine if the tar-
get platform is already attacked by DMA malware. This helps the peer to decide
if the target platform is trustworthy. The peer can abort the handshake of the au-
thentic reporting channel if the other endpoint is considered untrustworthy. Note,
due to our trust model we consider the host CPU as a channel endpoint. Other
computing environments including the network interface card do not belong to the
endpoint. We use asymmetric cryptography mechanisms and certificates to authen-
ticate endpoints. In the following paragraphs we describe the used key exchange
and certificate. We also describe extensions for the TLS Hello messages. Exten-
sions to the TLS protocol are considered by Dierks and Rescorla [38]. To transmit
BARM measurement results (platform state data) additional handshake messages
are required. We use Supplemental Data messages for this purpose.

Key Exchange Type Our implementation of the authentic report channel is based
on an adapted version of the TLS Diffie-Hellman Ephemeral RSA (DHE-RSA) hand-
shake.!” That means, to authenticate endpoint data an RSA signing key pair is used.

7 As described in prior work [10] other key exchange methods such as RSA and DH-RSA can also
be used to implement a trusted channel based authentic reporting application.
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For the negotiation of the session key Diffie-Hellman values are used. The public
Diffie-Hellman part that is transmitted to the peer is signed by the secret part of
the RSA signing key pair.

Endpoint Certificate To authenticate the endpoints, certificates (see cert in Fig-
ures 6.6 and 6.7) are exchanged during the TLS handshake. When using DHE-RSA,
the certificates exchanged via Certificate messages contain the public part PKj;gp
of the signing key pair Kign := (SKsign, PKsign). We have to ensure that the secret
key SKgign is only available to the endpoint. Our certificates include a BARM re-
lated identifier to bind the TLS-based authentic reporting channel to the endpoint.
A certificate that includes a BARM identifier is issued by a trusted third party that
vouches for a correct BARM installation on the target platform and that the secret
key part SKg;g, is only available on that endpoint. Hence, the certificate cert links
the signing key K;q4p to the endpoint that executes BARM. Kg;g4,, key pairs must be
used to authenticate data sent by the client C' and server S during the handshake.
This eventually binds the transmitted platform state data to the authentic reporting
channel. The trusted third party that vouches for the correct BARM installation
and for the secret signing key part SKg;g, could be the administrator who also runs
the evaluation platform that receives platform state data (BARM measurements)
from the target platform. The used certificate is actually a normal TLS certificate
that includes the BARM related identifier. The certificate as well as the signing key
pair K;g, are deployed together with BARM and are considered as long-lived.

Modifications to Hello Messages We use the ClientHello and ServerHello mes-
sages to negotiate the security parameters of the authentic reporting channel, see
Figure 6.6. The client platform C that runs BARM starts the adapted TLS client
and sends the ClientHello message to the server platform S. The server replies
with ServerHello. The Hello messages include the security parameters sec_param
(see Section 6.1) of the corresponding peer, see Figure 6.6. The security parameters
determine which endpoint has to provide platform state data, i.e., BARM measure-
ments. We use Hello message extensions [38] to exchange security parameters. Our
OpenSSL-based implementation makes use of the T'LS Hello Extensions as described
in RFC4366 [14]. A patch for OpenSSL (0.9.8.x) implements the hello extensions,
see Figure 6.5.'% The patch modifies code related to the library 1ibssl. We use
this patch for our authentic reporting channel application implementation.

The patch provides an interface that allows the developer to register new TLS
extensions [see 142]. A TLS extension that is represented by the TLSEXT_GENERAL
object transmits generic data. The application that uses TLS specifies the data
format of the generic data. TLS extensions consist of a type, the data length, and

8The TLS hello extensions and supplemental data patch can be found at http://openssl.
6102.n7.nabble.com/PATCH-TLS-hello-extensions-and-supplemental-data-td38202.html
[accessed 25 February 2014]
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Figure 6.5: TLS Handshake Considering Hello Extensions and Supple-
mental Data Extensions
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The ClientHello message contains client data and the Server-
Hello message contains server data. Additional SupplementalData
messages contain client supplemental data and server supplemental
data. Supplemental data is also considered as TLS extension. (based
on [142])
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the generic data (type-length-value format) as well as certain flags'® and callback
functions that implement the required extension logic. Callbacks (see Figure 6.5)
are only triggered on the peer that instantiated the corresponding TLSEXT_GENERAL
object. The generic data that is transmitted via a Hello message is one generic da-
tum. In our implementation the TLS extension that is exchanged via Hello messages
(hello extension) is:

e ARCH NEGOTIATION EXT: This extension (EXT) for our authentic reporting chan-
nel (ARCH) is used to negotiate security parameters sec_param.

Client as well as server register hello extensions (TLSEXT_GENERAL objects) if
they want to handle them. If a peer receives a Hello message that contains the regis-
tered extension, the peer calls the corresponding extension callback, see Figure 6.5.

Supplemental Data Messages for Platform State Data The client platform C' as
well as the server platform S can provide platform state data. We use so-called Sup-
plementalData messages (see Figure 6.5) as specified by the Internet Engineering
Task Force Networking Group in RFC4680 [113] to transmit platform state data.
The OpenSSL patch also implements SupplementalData messages for OpenSSL
(0.9.8.x).20 The details of the implementation of this patch are explained by Davide
Vernizzi [142]. As described in RFC4680 supplemental data is also used to transmit
generic data. The peer determines whether or not the generic data needs to be
transmitted using hello extensions. The OpenSSL patch also enables us to define
supplemental data extensions that we need for our authentic reporting channel. Sup-
plemental data extensions also consist of a type, the generic data, the data length,
and callback functions. Supplemental data transmitted using the SupplementalData
message can be a stack of several generic data. In our implementation the extensions
to exchange generic data via SupplementalData messages are:

e ARCH_SUPP_DATA_C_EXT: This extension is used to transmit the platform state
data PSDY (supplemental data) from the client C' to the server S.

e ARCH_SUPP_DATA_S_EXT: This extension is used to transmit the platform state
data PSD® (supplemental data) from the server S to the client C.

The patched OpenSSL software handles generic data as presented in Figure 6.5.
Callback functions that also belong to the TLS extensions are called to process the
generic data according to the required extension logic. Analogous to hello extensions,
client and server have to register for supplemental data extensions that they want to
handle via the corresponding supplemental data callbacks. Figure 6.6 and 6.7 depict
how our generic data (hello extensions as well as supplemental data extensions) is
handled using the callback functions during the adapted TLS handshake.

9The extension flags are client_required (the client will abort if the server ignores the extension
where this flag has been set), server_send (the server will send the extension where this flag
has been set), and received (internal use, e. g., to check duplicates).

208ee Footnote 18
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Figure 6.6: Adapted TLS-DHE-RSA Handshake for the Authentic Re-
porting Channel (a)
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Modifications that were made to the TLS handshake are highlighted
in bold text. The adapted handshake is continued in Figure 6.7.
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Figure 6.7: Adapted TLS-DHE-RSA Handshake for the Authentic Re-
porting Channel (b)
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After the handshake has been finished the authentic reporting chan-
nel is used by BARM to transmit heartbeat messages in a regular
interval to communicate platform state changes, i.e., to report a
DMA malware based attack.
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In our proof of concept implementation the generic data format used to ex-
change platform state data PSD via supplemental data is quite simple:

e barm measurement: This data field contains the BARM measurement taken
by the BARM Linux kernel module.

e Devices flag pair list: We use a devices flag pair list to communicate if a
peripheral is attacking the target platform. The first flag represents if the
corresponding device started to attack the host and, if so, the second flag
states if the malicious device could be stopped. The devices flag pair list looks
as follows:

— (uhci_attack, uhci_ disabled): This flag pair represents the UHCI
controller.

— (..._attack, ....disabled): [further devices]

— (me_attack, me_disabled): This flag pair represents the manageability
engine.

e nonceSD: nonceSD consists of the two elements:
— nonce® (client_random)

— nonce® (server_random)

The signature Sigpsp on the platform state data PSD is also sent to the peer
via the SupplementalData message, see Figure 6.6 and 6.7. By doing so, the platform
state data PSD is also bound to the corresponding secure channel. The nonceSD
included in the supplemental data is compared with nonce® and nonce’® (sent via
the Hello messages) to guarantee freshness of the received platform state data PSD.
To authenticate and to be able to check the integrity of platform state data PSD, we
use the secret part SKg;g, of the signing key pair to sign PSD. To be able to verify
the signature each peer provides the certificate that contains the public key part
PKg;gn using the Certificate message directly after transmitting the Supplemental-
Data message, see Figures 6.6 and 6.7. The BARM measurement results that are
also part of the supplemental data are evaluated to derive the trustworthiness of the
peer. Depending on the derived trustworthiness the local platform takes measures
according to the local security policy.

Session Key Computation The session key SeK is computed on both peers as
usual. Since we use DHE-RSA, the secure channel that uses SeK is eventually
linked to the endpoints (host CPUs). The exchanged DH parts are signed using
the secret part of Kgign (SKsign) that links the DH values to Kgig,. The signing
key pair Kg;g, is bound to exactly one endpoint due to the certificate issued by the
trusted third party that vouches for the fact that SKg;gy, is only available on the
endpoint. Hence, the session key is also bound to the endpoint.
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Heartbeat Messages After the handshake has been completed, BARM uses the
negotiated channel to send heartbeat messages in a regular interval to the external
administrator platform. These messages contain the current BARM measurement
and the devices flag pair list in a similar PSD format that has been used during
the handshake. Only nonceSD is missing. The regular heartbeat messages are used
by BARM to report platform state changes, i.e., a DMA malware based attack. If
the external platform does not receive heartbeat messages anymore we assume that
the NIC tried to attack the host platform and BARM was able to successfully stop
the attack. It is also possible that malware that is executed on the NIC blocks the
heartbeat messages. If so, the attack is also revealed.

6.3 Evaluation

We use the same platform and basic evaluation configuration as described in Sec-
tion 5.3 to evaluate the enhanced BARM. Please note, only the client platform must
transmit platform state data.

6.3.1 Expected Bus Activity Validation

To validate Equation 6.1 we conducted different tests. The evaluation results are
depicted in Figure 6.8. The results reveal larger fluctuations in BARM measurement
results when the ping, scp and wget command cause network traffic. Table 6.1 pro-
vides information on the cause of the larger fluctuations. The table presents BARM
measurements that were taken during the download of a 1 GB file using the wget
command. The applied sampling interval was 32 ms. The table depicts that a larger
positive discrepancy (see BARM sample 125924: 13 bus transactions) is followed by
a larger negative discrepancy (see BARM sample 125925: —12 bus transactions).
We assume that a positive discrepancy occurs when network packets were already
copied to the host memory by the ethernet controller, but BARM was unable to eval-
uate the corresponding receive descriptors in the current sampling interval. These
descriptors are available in the next sampling interval. Hence, BARM evaluates
the descriptors in the next interval, which in turn results in a negative discrepancy.
BARM subtracts expected bus transactions from the measured transactions that
were actually measured in the last sampling interval.

As depicted in Table 6.1, the positive and negative values compensate one
another. Thus, the fluctuation can be minimized by simply adding positive and
negative BARM measurement values. As presented in Table 6.1, a pair of positive
and negative measurement values can also occur the other way around (see BARM
samples 125926 and 125927, for example). This means that the negative value is
determined before the positive value. We assume that this occurs when BARM
has already analyzed transmit descriptors when the corresponding packets were not
copied by the ethernet controller yet. Hence, BARM already subtracts the expected
bus transactions from the measured ones before they are actually measured. The
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Table 6.1: BARM Measurement Values Revealing Fluctuations

BARM BARM BARM BARM
sampling number measurement value | sampling number measurement value
125912 5 125944 2
125913 2 125945 25
125914 3 125946 -48
125915 2 125947 28
125916 3 125948 0
125917 0 125949 3
125918 0 125950 5
125919 1 125951 1
125920 2 125952 13
125921 -17 125953 -21
125922 22 125954 5
125923 1 125955 2
125924 13 125956 2
125925 -12 125957 -1
125926 -15 125958 4
125927 22 125959 3
125928 5 125960 -21
125929 0 125961 25
125930 -2 125962 2
125931 5 125963 -2
125932 2 125964 3
125933 5 125965 2
125934 0 125966 5
125935 -2 125967 2
125936 9 125968 -1
125937 2 125969 2
125938 3 125970 2
125939 -2 125971 6
125940 8 125972 0
125941 -3 125973 1
125942 0 125974 2
125943 5 125975 3

The sampling numbers and the corresponding measurement values
taken are from the measurement log that was taken when down-
loading a 1 GB file from http://download.thinkbroadband.com/1GB.zip
[accessed 25 February 2014]. The BARM sampling interval was 32 ms.
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Figure 6.8: Expected Bus Activity Evaluation with Network Traffic
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We evaluated the expected bus activity for six different test cases.
The discrepancy is visualized in the form of boxplots as known from
Figure 5.6. In the first case (BARM) we only run the enhanced
BARM and in the second case we run the enhanced BARM to-
gether with the OpenSSL-based authentic reporting channel. We
took 100 BARM measurements in both cases. BARM and the au-
thentic reporting channel are also active in the remaining test cases
(ping, scp, wget, wget’). We executed the ping command with a
1000 bytes payload 100 times (ping). In the case of scp we copied
a 100 MB file from an external platform to our target platform 100
times. In the wget case we downloaded a 1GB file from http:
//download.thinkbroadband.com/1GB.zip [accessed 25 February 2014]
using the wget command. We applied a BARM sampling interval of
32ms for all test cases except the last one (wget'). The boxplot for
the wget’ case represents the result when using a sampling interval
of 1024 ms during a wget download of a 1 GB file.
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transactions are measured in the next sampling interval that results in a larger
positive discrepancy.

We examined the described behavior with two sampling intervals when using
the wget command to download a 1GB file. As depicted in Figure 6.8, the fluc-
tuations are larger when using wget with a sampling interval of 32ms (see wget)
compared to a sampling interval of 1024 ms (see wget').

6.3.2 Network Performance Overhead Evaluation

We conducted a network benchmark to reveal the network performance overhead
that is caused by the enhanced BARM version. The enhanced BARM version per-
manently sends heartbeat messages. The results are presented in Figure 6.9. The
results in Figure 6.9 reveal a relative performance overhead of approximately 4.5 %
when sending the heartbeat message every 32ms. This interval length corresponds
the the BARM sampling interval. It is not necessary to use the same interval for
reporting as for BARM measurement sampling due to the heartbeat message format
that we use to transmit platform state data. The devices flag pair list represents
a history of malicious peripherals. Hence, the network performance overhead for
32ms sampling and reporting interval can be avoided. The only requirement is that
the sampling interval is less or equal than the reporting interval.

6.3.3 Test with DAGGER
We repeated the DMA malware DAGGER test (see Section 5.3.3) with our enhanced

bus agent runtime monitor BARM. The results are summarized in Figure 6.10,
Figure 6.11, and Figure 6.12. We attacked the target platform at an arbitrary point
in time during runtime. Figure 6.10 confirms that the enhanced BARM could reveal
the DMA attack as well as stop the malicious peripheral. The excerpt from the log
in Figure 6.11 and Figure 6.12 belong to the same experiment that was the basis for
Figure 6.10.

6.4 Security Considerations

In this section we informally evaluate the security requirements that we introduced
in the beginning of this chapter. A formal proof is outside the scope of this work.
Many research related to security proofs of the TLS protocols have been published
in the past. An overview is presented by Kohlweiss etal. [78]. The research also
considers multiple TLS variants. We assume that our TLS-based channel can also
be formally proven. However, the focus of this chapter is the enhanced BARM
that considers the network interface card. Hence, we review the extent to which
our enhanced BARM fulfills the requirements for a secure channel (R1), binding of
BARM measurements to the secure channel (R2), and privacy (R3).

e R1 — Secure channel properties: Due to the applied TLS protocol the se-
cure channel properties confidentiality, integrity, authenticity as well as fresh-
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Figure 6.9: Relative Performance Overhead for Different Reporting In-
tervals and Constant Sampling Interval
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The figure compares the results of three measurement series. The
first measurement series (inactive) represents the baseline. Inactive
means that BARM was not running and no heartbeat messages were
sent. A bar in the figure represents the mean of 100 measurements,
see also Section 5.3.2. We measured the clock cycles (with time
stamp counters) that are needed to copy a 100 MB file from an exter-
nal platform with the scp command. Measurements were taken for a
reporting interval of 32 ms and for a reporting interval of 1024 ms. In
both cases we used the same BARM sampling interval of 32 ms. The
relative performance overhead when sending a heartbeat message ev-
ery 32 ms is approximately 4.5 %. The overhead is only approximately
0.5 % when sending the message every 1024 ms.
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Figure 6.10: Evaluating Enhanced BARM at an Arbitrary Point during
Runtime with the Authentic Reporting Channel
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The conducted experiment is similar to the experiment presented in
Section 5.3.3. BARM’s sampling interval was 32 ms and the tolerance
value was 50 bus transactions. This time BARM considers the eth-
ernet controller as an additional bus master that allowed us to start
our authentic reporting channel. Heartbeat messages were sent ev-
ery 32ms. The figure compares three curves, i. e., the tolerance value
T, BARM’s measurement results without any attack, and BARM’s
measurement results with a DAGGER attack.

Figure 6.11: BARM Authentic Reporting Channel — Client Side
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The figure presents a part of BARM’s log output. BARM is deployed
on the target platform, i. e., the client. The log output demonstrates
that BARM revealed a DMA attack and that BARM was able to
stop the malicious peripheral.
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Figure 6.12: BARM Authentic Reporting Channel — Server Side

SSL_accept:beforefaccept initialization

<< TLS 1,0 Handshake [length 00%e], ClientHello

BARM Authentic Channel: ssl_tlsext_test_server_ext_cb called,

SSL_accept:SSLv3 read client hello A

»>»> TLS 1,0 Handshake [length 0035], ServerHello

SSL_accept:SSLv3 write server hello A

BARM Authentic Channel: ssl_tlsext_test_s supp_data_cb called,
BARM Trusted Channel: No server measurement result required,

>»» TLS 1.0 Handshake [length 000e]???

SSL_acceptiunknown state

»>»> TLS 1,0 Handshake [length 0cSf], Certificate

SSL_accept:SSLv3 write certificate A

»>»> TLS 1,0 Handshake [length 028d], ServerKeyExchange

SSL_accept:SSLv3 write key exchange A

»>»> TLS 1,0 Handshake [length 00a8], CertificateRequest

SSL_accept:SSLv3 write certificate request A

SSL_accept:SSLv3 flush data

<{{<{ TLS 1,0 Handshake [length 02701777

SSL_accept tunknown state

<£<£ TLS 1,0 Handshake [length 0cSf], Certificate

SSL_accept:SSLv3 read client certificate A

<L TLS 1,0 Handshake [length 0046], ClientKeyExchange

SSL_accept:SSLv3 read client key exchange A

<< TLS 1.0 Handshake [len 206], CertificateVerify

SSL_accept: 3 read certif verify A

<{{< TLS 1,0 ChangeCipherSpec [length 0001]

<{{<{ TLS 1,0 Handshake [length 0010], Finished

SSL_accept:S5Lv3 read finished A

>»> TLS 1,0 Handshake [length 065a]??7?

SSL_accept:SSLv3 write session ticket A

>»> TLS 1,0 C i length 0001]

SSL_accept: 3 wri ange cipher spec A

>»> TLS 1,0 Handshake [length 0010], Finished

SSL_accept:SSLv3 write finished A

SSL_accept:SSLv3 flush data

EQRH]Quthentio Channel: ssl_tlsext_test_server_finish_cb called,

00000004

00000002

00000001

00000001

00000004

00000441

00001163

00000001

00000002

00000004

00000002

?000?000

The figure depicts the log output of the adapted OpenSSL server.

The log consists of the TLS handshake messages, callback call mes-
sages, and received BARM measurements. The measurement values
are the same as presented in Figure 6.11. The BARM instance that
is deployed on the client side was able to stop the attack. In this
example, the local security policy tolerates the stopped attack. Al-
ternatively, the server could have torn down the channel when the
server received the BARM measurement of 441 bus transactions. The
server was also configured with 7 = 50 bus transactions.
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ness are ensured for the communication channel. Due to the enhanced BARM
these properties are also ensured on the endpoint, i.e., the host CPU. Given
that the attacker has to search for valuable data, BARM ensures the integrity
and the confidentiality of data that is present in the main memory. The at-
tacker could merely randomly write to or read from the main memory without
searching for valuable data. The attacker also needs to search for nonces, key
material or the session key SeK as well as the private part of the signing
key pair SKg;gn to attack the communication session. Hence, the enhanced
BARM also takes care of the properties authenticity and freshness on the end-
point due to the detection of additional bus traffic when the attacker searches
in the main memory.

The attacker can only conduct a MitM attack if the attacker is able to steal
private key material or the session key via DMA. Scanning the memory for
this data will be detected by BARM. BARM can also identify the malicious
device. Hence, the access to the main memory can be prevented. Note, the
host CPU could enforce the attacker to cause more bus transactions by storing
parts of the sensitive data in processor registers. This technique was proposed
in related work, see Section 3.2.6. This will not protect the sensitive data,
since DMA attacks can be used to dump the content of processor registers
into the main memory. However, such an attack will cause more bus activity,

which will also be detected by BARM.

The attacker could attempt to modify BARM measurements. To do so, the
attacker could try to find the variables in the main memory where BARM
stores the values of the performance monitoring units that we exploit to reveal
DMA attack. However, the DM A-based search would be revealed by BARM.
Alternatively, the attacker could try to modify the host CPU registers that
correspond to the performance monitoring units used by BARM. The attacker
has no direct access to host CPU registers. However, the attacker needs to find
a memory area to store host CPU instructions that modify the performance
monitoring processor registers. It is required that the host CPU will sooner
or later consider the memory area, which contains the malicious instructions.
Again, the attacker has to search for such an area via DMA and this DMA-
based search will be revealed by BARM.

¢ R2 — Binding of BARM measurements to the secure channel: Authen-
ticity of an endpoint is ensured by providing the certificate cert that includes
the BARM identifier and the public key part of the signing key pair PK;gp,.
The certificate is signed by a trusted party. Two factors ensure that the BARM
measurements are bound to the channel. First, the BARM measurement that
is transmitted during the handshake is signed using the endpoint’s secret part
of the signing key SKg;g,. Second, the exchanged DH values that are used
for the session key computation are also signed with SKj;4,. Hence, not only
the first transmitted BARM measurement as well as the DH values are bound
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to the channel endpoint, but also the session key SeK that eventually estab-
lishes the secure communication channel for authentic state reporting. This
means that every heartbeat message is also bound to the channel endpoint.
These messages are only transmitted in encrypted form via the channel that
is protected by SeK.

The endpoint’s authenticity also prevents a relay attack where the attacker
could send a request to a third platform to sign platform state data PSD that
includes a BARM measurement value that is less than 50 bus transactions.
The third platform has no access to SKgi4, of the target platform. That
means, we can exclude that the attacker is able to conduct a relay attack.
Alternatively, the attacker could try to forge a PSD signature. To do so, the
attacker requires SK ;4 that is present in the main memory. Again, when the
attacker searches for SKj;g, via DMA, BARM will reveal this attack and the
memory access will be prevented. Hence, we can conclude that the attacker is
unable to forge digital signatures.

e R3 — Privacy: The only sensitive data that is transmitted unencrypted is the
first BARM measurement value that is sent to the peer during the handshake.
While a compromised network interface card could be used to intercept this
value, it is unlikely that this first measurement value is of use for an attacker.
It is independent of further measurement values, which are required to identify
when BARM determines —7 bus transactions. Hence, we can conclude that
our authentic reporting channel adheres to the least information paradigm.

6.5 Chapter Summary

In this chapter we developed, implemented, and evaluated an authentic reporting
channel application for BARM. This channel is based on the secure channel protocol
TLS. We modified the TLS protocol to consider BARM measurements during the
handshake as well as during the rest of the communication session. Our modifications
are based on TLS extensions. This means that our channel is compliant with the
TLS specification. Furthermore, the implementation of our reporting channel fulfills
the security requirements (host CPU endpoint authenticity and channel binding)
that we defined for the DMA malware scenario. Without the fulfillment of these
requirements malware executed on the network interface card is a threat for an
authentic communication with an external platform.

Our channel is an application for our bus agent runtime monitor if platform
state change reporting is required by a communication partner. The authentic re-
porting channel transmits the state changes to the peer. We confirmed BARM’s
effectiveness and efficiency with our DMA malware DAGGER in conjunction with
the implemented reporting channel. Previous work that is related to authentic plat-
form state reporting assumed the presence of an efficient runtime monitor. However,
the corresponding proof of concept implementations presented in previous work did
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not include such a monitor. Furthermore, previous work did also not consider the
DMA malware scenario.

We can also conclude that BARM can handle more complex bus masters. We
demonstrated that BARM can not only handle the host CPU, the UHCI controller,
etc., but also the ethernet controller. To integrate the ethernet controller into
BARM’s detection model we had to analyze the controller with regards to mem-
ory read and write accesses. We were able to distinguish read and write accesses
by exploiting additional performance monitoring unit configurations. However, to
eventually determine the number of bus transactions that are caused by the ethernet
controller we had to introduce a new parameter. This new parameter is the cache
line size. According to our evaluation, BARM measurement fluctuations are mini-
mally higher as compared to the BARM version that does not consider the ethernet
controller. Nonetheless, the fluctuations are still in the range of 7 = +/ — 50 bus
transactions. Our empirical measurements revealed that the performance overhead
of the authentic reporting application is negligible if heartbeat messages are sent
approximately every second. The reporting interval can be greater than BARM’s
sampling interval. The loss of DMA malware attack information is prevented by
including an attack history in the heartbeat messages.
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Conclusions and Future Work

“Logic is a systematic method of coming to the wrong conclusion with
confidence.”

Manly’s Maxim,
Murphy’s Law Collection

HE compromise of computer platform peripherals to attack the host platform
T memory currently represents the peak of the rootkit evolution. This thesis
presents a study on computer platform attacks that exploit such rootkit techniques.
Platform peripherals are well-suited for hiding malicious code to attack the host
platform. The peripherals consist of an isolated execution environment with a ded-
icated processor, dedicated memory and direct access to the host memory. Prior
to this work, attacks originating from malware that exploits direct memory access
(DMA) were considered to be invisible to the host CPU. Security software such as
state-of-the-art anti-virus software does not consider the isolated execution environ-
ments. However, this thesis demonstrates that the host CPU is able to detect attacks
that exploit DMA. This enables the host CPU to mitigate such attacks.

Nowadays, peripherals such as management controllers and network interface
cards (NIC) are present in almost every computing device. Server systems, desktop
systems, laptops, tablets, and even mobile phones use dedicated controllers to of-
fload work from the host CPU. Although it is a resource intensive task to infiltrate
such a peripheral, these environments remain attractive in terms of stealthiness.
The DMA mechanism is the basis for attacking the host memory. Hence, we call
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peripheral-based attack code, that exploits direct memory access, DMA malware.
With DMA malware an attacker can read from and write to the host main memory
in a stealthy manner. The adversary can have access to all data present in the main
memory. Therefore, the attacker can steal sensitive data such as cryptographic keys,
passwords, internet banking credentials, open documents, as well as all user input.
The adversary can also insert data into the main memory to implement a kernel
backdoor. However, this lowers the probability of a successful stealthy attack, since
host software could theoretically detect the malicious modification to the host mem-
ory. Conversely, the attacker can also attack the host detection software via DMA
to prevent the detection.

In this work we developed and analyzed a DMA malware proof of concept. The
malware is executed on an isolated execution environment whose inner workings
is inaccessible by the host. The goal of this thesis was to demonstrate that the
host CPU can defend itself against DMA malware even if the host CPU is unable
to access the inner workings of the suspected peripheral. The peripheral that we
used for our malware proof of concept is Intel’s Manageability Engine (Intel ME).
Amongst other things, Intel utilizes the ME environment to implement a web server,
which provides system administrators with remote device management capabilities.
Administrators can recover the host OS even when the platform does not boot
up anymore, e.g., due to OS kernel integrity corruptions. Intel applied protection
mechanisms to ensure that ME features cannot be exploited to attack the host.
However, this protection also ensures that, e.g., anti-virus software is incapable of
evaluating the ME environment. Conversely, an attacker capable of infiltrating the
ME environment, e.g., with a zero-day exploit, also benefits from this protection.

Our malware proof of concept is a Direct memory Access based keystroke code
loGGER. DAGGER demonstrates that it is possible to implement stealthy malware
in terms of detection capabilities of the host CPU. The attack code is executed on
the dedicated ME processor. Thus, the keystroke code logger does not result in
a measurable performance overhead for the host. Our malware is also capable of
capturing short living data such as keystroke codes. We exploit the isolated out-
of-band network feature of the ME environment to exfiltrate private data such as
the captured keystrokes to an external platform. This network feature is also in-
visible to the host. Our analysis of DAGGER revealed that DMA malware must
search for valuable data in the host memory. The process of searching the host
memory results in additional bus activity, which increases if memory address ran-
domization mechanisms are used or if the secret data remains in the CPU cache or
CPU registers. We also determined that parallel memory access requests of different
devices are arbitrated by the memory controller hub. This led to the assumption
that the arbiter could cause DMA side effects that can be utilized to detect DMA
malware. We confirmed this assumption by conducting a memory stress test. With
this experiment we demonstrated a reliable measurable DMA side effect. Our mea-
surements consider precise timing based on host CPU clock cycles in conjunction
with performance counters.
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We continued this research with the goal of developing a DMA malware detec-
tor. We analyzed the host CPU’s performance counters. Finally, our investigation
resulted in a performance counter configuration that is capable of distinguishing
legitimate and illegitimate memory bus transactions. We modeled the expected bus
activity of the host operating system and compared it to the measured bus activity.
To model the expected bus activity we use information that is available on the host
CPU in the operating system kernel.

We implemented our model and measurement mechanism in the form of an
operating system kernel module that we call Bus Agent Runtime Monitor, in short
BARM. BARM is a runtime monitor that also considers transient attacks. Our
monitor causes only negligible performance overhead. BARM does not require any
firmware and hardware modifications. Our runtime monitor also does not require
any access to the inner workings of potentially compromised peripherals. After eval-
uating our proof of concept implementation of BARM, we can conclude that the host
CPU is able to detect and halt DMA malware. Our evaluation also revealed min-
imal BARM measurement fluctuations. Such fluctuations can occur when working
with performance counters, which we used for our proof of concept implementation.
We overcame this issue by introducing a tolerance value. The tolerance value is
an empirical value that represents tolerable bus transactions, i.e., in our case the
tolerance value is 50 bus transactions. We demonstrated that DMA malware causes
significantly higher bus activity when searching for valuable data in the host runtime
memory.

However, the tolerance value also demonstrates a limitation of the current
BARM implementation. Theoretically, an adversary could hide up to 27 bus trans-
actions per sampling interval. This can only work if the adversary is able to predict
the exact points in time when BARM determines —7 bus transactions. Conversely,
this would also result in a slower search phase that could be exploited by the host
CPU to protect the target data in the host memory. Another limitation was a pos-
sible MitM attack conducted by the ethernet controller. We mitigated such MitM
attacks by implementing an authentic reporting channel. The authentic channel for
reporting the platform state was another goal of this work. The platform state con-
tains DMA malware in our scenario. BARM delivers authentic measurement results
to an external platform.

A secure channel protocol such as TLS is insufficient in our scenario. We
adjusted the TLS protocol to meet the requirements of authentic platform state
reporting. It is important to consider the NIC as well, since it could potentially
modify or block BARM packets. To avoid detection the NIC could also implement
a Man-in-the-Middle (MitM) attack by relaying benign BARM measurements of
another platform to the platform that wants to evaluate the state of the target
platform. Another example is to steal secret key material that is present in the host
runtime memory via DMA. To eliminate these issues, the communication channel
is bound to the actual endpoint, i.e., the host CPU. BARM digitally signs the bus
activity measurements and ensures that the private key as well as the session key
of the communication channel are protected from DMA malware. To implement a
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proof of concept authentic platform state reporting application we had to enhance
BARM to consider legitimate memory bus activity of the NIC. The evaluation of
our channel application confirms that the NIC can be reliably considered by BARM.

Future Work Although we can conclude that the host CPU is able to defend itself
against DMA malware using BARM there are still some tasks left for future work.
First of all, it would be interesting to evaluate the idea behind BARM on non-Intel
hardware. Other architectures such as ARM also provide hardware performance
counters. Platforms that are based on ARM also work with peripherals that are
potential hosts for DMA malware. This is particularly interesting when considering
that such platforms make extensive use of SoCs (System on a Chip) in their designs.
Hence, peripherals within the same device package or die can be used to implement
system backdoors.

It is also quite interesting to investigate if the timing-based DMA side effect
can also be exploited to implement a reliable detection tool. This can be useful for
architectures that do not support performance counters. The BARM implementa-
tion should also consider other peripherals as well. From our point of view it is more
important to integrate additional peripherals in BARM’s detection model. It is also
possible to eliminate fluctuations in BARM’s measurements. It is important to note
that the integration of DMA-based devices is a resource intensive task. Therefore,
a follow-up research project should examine to which extent this process can be
automated.
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