
SoftwareX 16 (2021) 100871

g
b
s
a
h

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

AnyMOD.jl: A Julia package for creating energy systemmodels
Leonard Göke
TU Berlin, Workgroup for Infrastructure Policy (WIP), Straße des 17. Juni 135, 10623 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 2 November 2020
Received in revised form 9 September 2021
Accepted 19 October 2021

Keywords:
Macro-energy systems
Energy system modeling
Open-source modeling
Julia

a b s t r a c t

AnyMOD.jl is a Julia framework for creating large-scale energy system models with multiple periods
of capacity expansion. It applies a novel graph-based approach that was developed to address the
challenges in modeling high levels of intermittent generation and sectoral integration. Created models
are formulated as linear optimization problems using JuMP.jl as a backend.

To enable modelers to work more efficiently, the framework provides additional features that help
to visualize results, streamline the read-in of input data, and rescale optimization problems to increase
solver performance.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.1.6
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_103
Code Ocean compute capsule
Legal Code License MIT license (MIT)
Code versioning system used git
Software code languages, tools, and services used Julia
Compilation requirements, operating environments & dependencies Julia 1.3.1
If available Link to developer documentation/manual https://leonardgoeke.github.io/AnyMOD.jl/stable/
Support email for questions lgo@wip.tu-berlin.de

Software metadata

Current software version v0.1.6
Permanent link to executables of this version https://github.com/leonardgoeke/AnyMOD.jl/releases/tag/v0.1.6
Legal Software License MIT license (MIT)
Computing platforms/Operating Systems Linux, Microsoft Windows, iOS
Installation requirements & dependencies Julia 1.3.1
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://leonardgoeke.github.io/AnyMOD.jl/stable/

Support email for questions lgo@wip.tu-berlin.de

1. Motivation and significance

Since the production of energy accounts for three-quarters of
lobal emissions, mitigating climate change requires the decar-
onization of the energy system [1]. Cutting emissions requires to
hift supply of primary energy to electricity from wind and solar
nd extend its use to other sectors. As a result, the energy system
as to undergo fundamental change and evolve from largely

E-mail address: lgo@wip.tu-berlin.de.

independent sectors with little supply from renewables into an
integrated system characterized by fluctuating renewables.

Capacity expansion models investigate the long-term develop-
ments of macro-energy systems, but existing methods were de-
veloped for systems still characterized by fossil fuels and struggle
to describe the transformation towards a renewable system [2].
Models like ReEDS, Message, or Switch, pursue a time-slice ap-
proach, that reduces the entire year to a small number of inde-
pendent periods [3–5]. This reduction limits the detail applied to
fluctuating renewables and more importantly prohibits to con-
sider long-term storage, a key component of renewable energy
ttps://doi.org/10.1016/j.softx.2021.100871
352-7110/© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100871
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100871&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_103
https://leonardgoeke.github.io/AnyMOD.jl/stable/
mailto:lgo@wip.tu-berlin.de
https://github.com/leonardgoeke/AnyMOD.jl/releases/tag/v0.1.6
https://leonardgoeke.github.io/AnyMOD.jl/stable/
mailto:lgo@wip.tu-berlin.de
mailto:lgo@wip.tu-berlin.de
https://doi.org/10.1016/j.softx.2021.100871
http://creativecommons.org/licenses/by/4.0/


Leonard Göke SoftwareX 16 (2021) 100871

s
t
i
a
i
c

f
w
a
g
o
w
e
p

p
a
e
e
e
p
w
s
m

s
t
a
p
a
i

2

J
d
a
N
d
s
f
m
a
l
t
c
v

2

M
s
t
p
a

A
d
c
i
c

ystems [6,7]. Other models, like PyPSA or Calliope, diverge from
his approach and consider a continuous and hourly time-series
nstead, which enables a detailed representation of renewables
nd long-term storage [8,9]. But in return these models are lim-
ted to a single year and, opposed to models using time-slices,
annot analyze development pathways for today’s system.
Against this background, AnyMOD.jl provides a framework

or modeling the long-term transformation of the energy system
ith the level of detail necessary to represent fluctuating renew-
bles and long-term storage. The framework implements a novel
raph-based method introduced in Göke [10] that varies the level
f temporal and spatial detail by energy carrier to keep models
ith high resolution computationally tractable. The approach also
nables to model the substitution of energy carriers and, on the
ractical side, facilitates the read-in of input data.
AnyMOD.jl follows an easy to use, but difficult to master

rinciple. Since individual models are solely defined by CSV files
nd can be run with a few lines of standard code, running an
xisting model, and performing sensitivity analysis requires little
xperience. More advanced applications, like creating new mod-
ls and individually modifying their formulation, requires some
rogramming skills and a deeper understanding of the frame-
ork’s structure. Since models are defined from CSV files and
hort code scripts, the framework supports version-controlled
odel development to promote collaboration and transparency.
The following section gives an overview of the framework’s

tructure and presents two functionalities with greater detail,
he read-in of parameter data (Section 2.2.1) and the re-scaling
lgorithm (Section 2.2.2). The subsequent section describes an ap-
lication that models the transformation of the European power
nd gas sector. The final section paper highlights the framework’s
mpact and concludes.

. Software description

The package is implemented in Julia. Its key dependencies are
uMP.jl as a backend for linear optimization and DataFrames.jl for
ata processing [11,12]. The framework uses PyCall.jl to create
n internal Python environment and apply the Python packages
etworkX and Plotly for plotting. Gurobi is added as an optional
ependency, because its function to compute irreducible incon-
istent subsystems is utilized to debug infeasible models. Apart
rom that, the framework is compatible with any open or com-
ercial solver capable of interoperating with the JuMP.jl pack-
ge.1 To increase performance the package heavily utilizes Ju-
ia’s multi-threading capabilities. Since not supported by JuMP.jl,
he mere creation of constraints uses only one thread, but the
omputationally more intensive composition of constraints from
ariables and parameters is multi-threaded.

.1. Software architecture

The class diagram in Fig. 1 illustrates the architecture of Any-
OD.jl and how it revolves around the AnyModel object. For the
ake of clarity, the diagram is not exhaustive and only covers
he most relevant dependencies, objects and attributes. Listing 1
rovides the corresponding code to initialize, populate, solve and
nalyze the model object.
After loading AnyMOD.jl, the constructor initializes the

nyModel object based on two mandatory arguments: an input
irectory and an output directory. The CSV files defining a model
onsist of set and parameter files that have to be placed in the
nput directory. The set files define all time-steps, regions, energy
arriers and technologies considered in a model and map how

1 JuMP.jl uses the package MathOptInterface.jl to interface solvers.

Table 1
Exemplary data frame of generation variables.
Time-step Region Carrier Technology Variable

1 1 1 1 gen(1, 1, 1, 1)
2 1 1 1 gen(2, 1, 1, 1)
3 1 1 1 gen(3, 1, 1, 1)

Table 2
Exemplary data frame of energy balance constraints.
Time-step Region Carrier Constraint

1 1 1 dem(1, 1, 1) =
∑

t gen(1, 1, 1, t)
2 1 1 dem(2, 1, 1) =

∑
t gen(2, 1, 1, t)

3 1 1 dem(3, 1, 1) =
∑

t gen(3, 1, 1, t)

these are related, for example which carriers a technology can
generate. Following the graph-based approach, the elements of
each set are organized as nodes of hierarchical trees.� ⊵

using AnyMOD # loading packages
model_object = anyModel("../demo","results") # construct model object

# create optimization problem and set an objective
createOptModel!(model_object)
setObjective!(:costs, model_object)

# solve model and report results
using Cbc
set_optimizer(model_object.optModel, Cbc.Optimizer)
optimize!(model_object.optModel)
reportResults(:summary, model_object)� �

Listing 1: Script to initialize, create and run a model

Qualitative inputs on sets are complemented with quantitative
data from the parameter files, that for instance provide demand
time-series or technology properties like investment costs or
efficiency. While the naming and format of set files is strictly
defined, parameter data can be freely structured and distributed
across files. As a result, models can be composed modularly, since
different models can share the same input files. After reading in
all parameter data, the constructor creates a ParElement object
for each parameter with data and meta information and assigns
it to aModelPart object. TheModelPart objects partition the model
into different parts, for instance, the ParElement for demand
time-series will be assigned to a model part dedicated to the
energy balance. Each technology got its own part object of the
subclass TechPart, that also stores technology specific attributes
like assigned carriers.

After construction, the AnyModel object is passed to the cre-
ateModel! function, which creates all the variables and constraints
of the underlying optimization problem optModel. These variables
and constraints are again assigned to model parts and stored as
data frames. For instance, Table 1 depicts a data frame of gener-
ation variables. The column on the right stores the JuMP variable
objects and the four other columns give the time-step, region,
carrier, and technology of each variable, which are provided as
indexes of the Node objects created during initialization. Such
data frames for variables are combined with parameter data using
database operations to construct constraints. For instance, gener-
ation variables are aggregated by technology and than joined with
the demand parameter to create the energy balance in Table 2.

After the optimization problem is created, its objective is set
with the setObjective function. At this point the user can also
freely modify and extend the automatically generated problem by
accessing the JuMP attributes of the AnyModel object and its parts.
Finally, the optimization problem optModel is passed to a solver
and analyzed afterwards. All results are written to the output
directory, which was passed to the constructor in the beginning.
A reporting file with error messages and warnings is written to
this directory as well.
2



Leonard Göke SoftwareX 16 (2021) 100871

2

e
s
a
a

2

s
b
m
p
a
C
t
t
o
p
a
r
t
t
s
r
v
m
e
r

r
d
p
r
i
s
i
c
t
t

o

Fig. 1. UML class diagram of package components.

.2. Software functionalities

As outlined above, AnyMOD.jl is a package for the creation of
nergy system models. Additional features are aimed either at
implifying its application or enhancing the performance of cre-
ting and solving models. In the following, two of these features
re presented in greater detail.

.2.1. Inheritance algorithm
According to the previous section, model constraints are con-

tructed from variables and parameters, which are again defined
y input data. Usually, models use a single parameter value in
any constraints. For example, the efficiency of a newly build gas
ower plant does typically not vary by time-step or region and
ll constraints describing these plants will use the same value.
onsequently, it would be inefficient, if AnyMOD.jl required users
o provide efficiency data at a temporal and spatial resolution. On
he other hand, efficiencies of heat-pumps are highly dependant
n region and time-step, because they depend on ambient tem-
erature. So, not permitting efficiencies to depend on time-step
nd region, would prevent to model these technologies accu-
ately. A similar problem occurs, if investment costs of emerging
echnologies, like photovoltaic, are expected to decrease within
he model horizon, but costs for other technologies remain con-
tant. Here, providing all costs at a yearly resolution leads to
edundant inputs for most technologies, but if costs cannot be
aried by year at all, cost degression of photovoltaic cannot be
odeled. In conclusion a predefined resolution of input data
ither results in an highly inefficient read-in of input data or
estricts modeling capabilities.

To resolve this problem, AnyMOD.jl does not predefine the
esolution of input data and instead automatically infers how
ata should be used from the way it is specified. For example,
roviding different efficiencies in dependence of time-step and
egion will result in temporally and spatially resolved efficiencies
n the model, but if instead a parameter is provided without time-
teps or regions, the model uses a uniform value. This concept
s not limited to certain parameters or dimensions, but applies
omprehensively. The implementing algorithm builds on the idea
o ‘‘inherit’’ missing data for a specific node from its relatives in
he hierarchical tree.2

2 This idea of ‘‘inheritance’’ is not be confused with inheritance in the context
f object orientated programming.

Fig. 2. Basic mechanism of inheritance within hierarchical trees.

Fig. 2 illustrates the basic mechanism of the algorithm based
on an exemplary hierarchical tree organizing time-steps. The first
level of the tree organizes different years with days, 4-hours steps
and hours following on the subsequent levels. Green numbers
indicate input data provided for a specific node. If input data is
not specified in dependence of the time-step, it is assigned to the
root of the tree. The algorithm can obtain missing data at the
circled node in three different ways: either move up the tree and
use ‘8.3’, move down the tree and sum the hourly values, or move
down the tree and average the hourly values. How the algorithm
deploys these three methods for each dimension depends on the
inheritance rules of the parameter. A detailed overview for each
parameter is provided in the parameter list of the documentation.

Finally, it can be outlined how these rules are deployed to
obtain parameter data. The described algorithm corresponds to
the matchSetParameter function of ParElement in Fig. 1 and takes
the following inputs: a data frame to be filled with parameter
data, a respective parameter object and the hierarchical trees.
First, the algorithm checks for direct matches between the input
data frame and the parameter data. Afterwards, it loops over
the inheritance rules to inherit new data for missing nodes as
described above. If new data is obtained, the algorithm checks
again for matches with the input data frame. The loops ends
when either all rows are matched with data, or all inheritance
rules have been applied. In the latter case, unassigned rows are
3

https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list
https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list


Leonard Göke SoftwareX 16 (2021) 100871

t
m
t

Fig. 3. Impact of scaling algorithm on solver run-time.

either dropped or assigned a default value, if one is defined for
the respective parameter.

2.2.2. Scaling
The formulation of an optimization problem can have a major

impact on solver performance. The barrier algorithm, the fastest
method for solving large linear problems, is particularly sensitive
to a model’s numerical properties, and poor formulations will
thus greatly increase computation time. For this reason, Any-
MOD.jl automatically applies a two-step scaling process when
creating optimization problems. The process aims to narrow the
range of coefficients and constants in a problem between 10−3

and 106, as recommended.3
As a demonstration of how this range is achieved, Eq. (1)

constitutes the constraints of an exemplary linear model. In the
first and second row, the coefficients for x1 are currently outside
of the targeted interval. In addition, the maximum range of coeffi-
cients in the second row amounts to 1011 (= 102

10−9 ), which exceeds
he maximum range of the targeted interval of 109 (= 106

10−3 ) and
eans the equation cannot be multiplied with a constant factor

o shift coefficients into the desired interval.

10−8 x1 + 103 x2 + x3 ≤ b1
10−9 x1 + 102 x2 + x3 ≤ b2

x1 + x2 + x3 ≤ b2

(1)

Therefore, in the first step the maximum range of coefficients
is decreased by substituting variables. In the example, x1 is substi-
tuted with 103 x′

1, which results in the system displayed in Eq. (2).

10−5 x′

1 + 103 x2 + x3 ≤ b1
10−6 x′

1 + 102 x2 + x3 ≤ b2
103 x′

1 + x2 + x3 ≤ b2

(2)

Since the first step decreased the maximum range, in the
second step coefficients can be shifted into the interval between
10−3 and 106. For this purpose, each constraint (or row) is scaled
with a constant factor. In the example, the first row is multiplied
by 102 and the second row by 103 resulting in the system dis-
played in Eq. (3) that finally complies with the recommended
range.

10−3 x′

1 + 105 x2 + 102 x3 ≤ 102 b1
10−3 x′

1 + 105 x2 + 103 x3 ≤ 103 b2
103 x′

1 + x2 + x3 ≤ b2

(3)

AnyMOD.jl uses default factors for substitution that depend on
the variable type and can be adjusted if they fail to achieve the
desired result. Factors for scaling can be automatically computed
based on the current coefficients in a constraint.

3 See the Gurobi Guidelines for Numerical Issues for details.

Fig. 3 demonstrates the impact of automated scaling by com-
paring the solve times of Gurobi’s barrier implementation for
a test model.4 To ensure robustness of the results, Barrier was
run with both available ordering algorithms, ‘‘approximate min-
imum degree’’ and ‘‘nested dissection’’. With automated scaling
disabled, a NumericFocus parameter of three is necessary to avoid
early termination or extremely long solve times due to numerical
difficulties. In conclusion, automated scaling decreases solve time
of the test model roughly by a factor of three.

3. Illustrative example

Hainsch et al. [13] applied AnyMOD.jl to the decarbonization
of the European power and gas sector on a pathway from 2030
to 2040 instead of a single year. The analysis with AnyMOD.jl
complements results from another energy system model with
less spatiotemporal detail. The application subdivides Europe on a
country level and includes an aggregated representation of trans-
mission infrastructure to enable the exchange of energy carriers
between countries.

Fig. 4 was plotted with the plotEnergyFlow function and pro-
vides an overview of the technologies and energy carriers con-
sidered. In the graph, carriers are symbolized by colored vertices
and technologies by gray vertices. Entering edges of technologies
point towards their input carriers; outgoing edges refer to out-
puts. Since the model includes both the power and gas sector, it
is not limited to short-term storage of power, like batteries, but
also considers creation and utilization of synthetic fuels for long-
term storage. Since fluctuating renewables are the main source
of supply by 2040, power is modeled at an hourly resolution.
To reduce model size and account for the inherent flexibility of
gaseous energy carriers, fossil gas, hydrogen, and synthetic gas
are balanced daily instead. All other energy carriers are modeled
yearly.

The energy flows for France in 2040 when solving the model
are displayed in Fig. 5. The sankey diagram does not only show
how hydrogen is used for long-term storage of power, but also
how final demand for hydrogen and synthetic gases, for example
from the industry sector, is covered. In addition, the substantial
amount of imports and exports for all carriers highlights the
importance of large models that can account for several regions
at once.

4. Impact and conclusions

AnyMOD.jl provides a framework for modeling the transfor-
mation towards a decarbonized energy system at a high spa-
tiotemporal resolution. For this purpose, it implements a graph-
based method introduced that enables to vary the level of detail

4 The corresponding model files can be found in the following repository:
https://github.com/leonardgoeke/AnyMOD_example_model/tree/May2020.
4

http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
http://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
https://github.com/leonardgoeke/AnyMOD_example_model/tree/May2020


Leonard Göke SoftwareX 16 (2021) 100871
Fig. 4. Graph of technologies and energy in example.

Fig. 5. Sankey diagram for France in 2040 in example.

by energy carrier. In addition, the framework introduces a more
flexible method to read-in input data and automatically scales
created optimization problems to increase solver performance.
Lastly, the tool provides advanced plotting features, like Sankey
diagrams.

To facilitate access for users, AnyMOD.jl can be used without
any proprietary software. Using the framework does not require
extensive programming skills but supports version-controlled
model development, since models are created from CSV files.

To extend and modify a created model, advanced users can
easily access and manipulate its underlying JuMP objects. The
organization of input files is highly flexible and eases the creation
of new models from existing files.

In conclusion, AnyMOD.jl enables research to spend less time
on coding and data management and more time focusing on
the scientific part of their work. Its high level of accessibility
also makes AnyMOD.jl suitable for use by companies, regulators,
or non-governmental organizations. Finally, AnyMOD.jl promotes
5



Leonard Göke SoftwareX 16 (2021) 100871

o
o
w

t
s
a
t

D

c
t

A

f
v
w
c
s

R

penness and transparency in various ways. Due to the relevance
f these qualities for public policy, this is of particular importance
ith energy system models [14].
Additional features currently developed include a more de-

ailed representation of transmission infrastructure and the inclu-
ion of more than one weather year in a single model. The later
lso includes the development of a distributed solution algorithm
o keep the resulting increase in model size manageable.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The research leading to these results has received funding
rom the European Union’s Horizon 2020 research and inno-
ation programme under grant agreement No. 773406. Also, I
ant to thank Mario Kendziorski and Richard Weinhold for their
onstructive feedback and introduction to the Julia language. A
pecial thanks goes to all Julia developers.

eferences

[1] Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K,
et al. Climate change 2014: Mitigation of climate change. contribution of
working group III to the fifth assessment report of the intergovernmental
panel on climate change. Cambridge, United Kingdom and New York, NY,
USA: Cambridge University Press; 2014.

[2] Levi P, Kurland S, Carbajales-Dale M, Weyant J, Brandt A-R, Benson S.
Macro-energy systems: Toward a new discipline. Joule 2019;3:2282–6.
http://dx.doi.org/10.1016/j.joule.2019.07.017.

[3] Cohen SM, Becker J, Bielen DA, Brown M, Cole WJ, Eurek KP, et al. Regional
energy deployment system (ReEDS) model documentation: Version 2018.
2019, http://dx.doi.org/10.2172/1505935, URL: https://www.osti.gov/biblio/
1505935.

[4] Howells M, Rogner H, Strachan N, Heaps C, Huntington H, Kypreos S, et al.
OSeMOSYS: The open source energy modeling system: An introduction to
its ethos, structure and development. Energy Policy 2011;39(10):5850–70.
http://dx.doi.org/10.1016/j.enpol.2011.06.033.

[5] Johnston J, Henriquez-Auba R, Maluenda B, Fripp M. Switch 2.0: A
modern platform for planning high-renewable power systems. Software
X 2019;10:100251. http://dx.doi.org/10.1016/j.softx.2019.100251.

[6] Schill W. Electricity storage and the renewable energy transition. Joule
2020;4:2047–64. http://dx.doi.org/10.1016/j.joule.2020.07.022.

[7] Göke L, Kendziorski M. The adequacy of time-series reduction for renew-
able energy systems. Energy 2021;238:121701. http://dx.doi.org/10.1016/j.
energy.2021.121701.

[8] Pfenniger S, Pickering B. Calliope: a multi-scale energy systems modelling. J
Open Source Softw 2018;3(29):825. http://dx.doi.org/10.21105/joss.00825.

[9] Brown T, Hörsch J, Schlachtberger D. PyPSA: Python for power system anal-
ysis. J Open Res Softw 2018;6. http://dx.doi.org/10.5334/jors.188, arXiv:
1707.09913.

[10] Göke L. A graph-based formulation for modeling macro-energy systems.
Appl Energy 2021;301:117377. http://dx.doi.org/10.1016/j.apenergy.2021.
117377.

[11] Dunning I, Huchette J, Lubin M. JuMP: A modeling language for mathe-
matical optimization. SIAM Rev 2017;59(2):295–320. http://dx.doi.org/10.
1137/15M1020575.

[12] Bezanson J, Edelman A, Karpinski S, Shah V. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98. http://dx.doi.org/10.
1137/141000671.

[13] Hainsch K, Göke L, Kemfert C, Oei P-Y, Hirschhausen C. European green
deal: Using ambitious climate targets and renewable energy to climb out
of the economic crisis. DIW Weekly Report 2020;28+29. http://dx.doi.org/
10.18723/diw_dwr:2020-28-1.

[14] Pfenniger S, DeCarolis J, Hirth L, Quoilin S, Staffel I. The importance of
open data and software: Is energy research lagging behind? Energy Policy
2017;101:211–5. http://dx.doi.org/10.1016/j.enpol.2016.11.046.
6

http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://refhub.elsevier.com/S2352-7110(21)00138-2/sb1
http://dx.doi.org/10.1016/j.joule.2019.07.017
http://dx.doi.org/10.2172/1505935
https://www.osti.gov/biblio/1505935
https://www.osti.gov/biblio/1505935
https://www.osti.gov/biblio/1505935
http://dx.doi.org/10.1016/j.enpol.2011.06.033
http://dx.doi.org/10.1016/j.softx.2019.100251
http://dx.doi.org/10.1016/j.joule.2020.07.022
http://dx.doi.org/10.1016/j.energy.2021.121701
http://dx.doi.org/10.1016/j.energy.2021.121701
http://dx.doi.org/10.1016/j.energy.2021.121701
http://dx.doi.org/10.21105/joss.00825
http://dx.doi.org/10.5334/jors.188
http://arxiv.org/abs/1707.09913
http://arxiv.org/abs/1707.09913
http://arxiv.org/abs/1707.09913
http://dx.doi.org/10.1016/j.apenergy.2021.117377
http://dx.doi.org/10.1016/j.apenergy.2021.117377
http://dx.doi.org/10.1016/j.apenergy.2021.117377
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.18723/diw_dwr:2020-28-1
http://dx.doi.org/10.18723/diw_dwr:2020-28-1
http://dx.doi.org/10.18723/diw_dwr:2020-28-1
http://dx.doi.org/10.1016/j.enpol.2016.11.046

	AnyMOD.jl: A Julia package for creating energy system models
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Inheritance algorithm
	Scaling


	Illustrative example
	Impact and conclusions
	Declaration of competing interest
	Acknowledgments
	References


