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Nuñes and Dr. Pablo Soberón.

I was very lucky to share the office with 3 of my favorite Mathematicians: Alberto Channini, Giovanni
Conforti and Atul Shekhar... it was like having (inside my head) a book of stochastic calculus opened
in the right page, a good comedy movie and the Radiotelevisione Italiana (simultaneously and always).
Without them or without the members of the almost-that-cool-office (Benedikt, Giuseppe and Matti), I
wouldn’t have enjoyed this so much.

I also want to thank Iliana who shared with me this period, and helped me to go through many
difficult moments. We did it!

I want to thank my friends in both sides of the Atlantic Ocean and my family, specially my mother
(who is also my co-author and invariably believes in me), my sister (who is always there for me) and
my father and my grandfather (for inspiring me). Finally, I want to thank Ximena, who gave me the
strength needed to write up this thesis.

To all of you I will always be grateful.

I acknowledge financial support from the DFG Research Training Group 1845 (scholarship) and from
the Mexican Council of science (CONACyT) in cooperation with the DAAD (complementary support).
I also had support to participate in conferences from the Berlin Mathematical School (BMS) and from
the DFG priority program Probabilistic Structures in Evolution (DGF-SPP 1590).

v



vi



Contents

1 Introduction 5

1.1 Some basic models in population genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Convergence of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 The generator of a stochastic process . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Couplings and weak convergence of stochastic processes . . . . . . . . . . . . . . . 21
1.2.4 Couplings, stationary distribution and mixing time . . . . . . . . . . . . . . . . . . 22
1.2.5 Duality of Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Further evolutionary forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.3 Structured coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I Seedbanks 33

2 Generalizations of the KKL model 35

2.1 Construction of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Three different behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Convergence to the Kingman coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 An auxiliary process and its stationary distribution . . . . . . . . . . . . . . . . . . 41
2.3.2 A mixing time criterion for convergence to the Kingman coalescent . . . . . . . . . 42
2.3.3 Applications of the criterion for convergence to the Kingman coalescent . . . . . . 46

3 The Seedbank Coalescent 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 The seedbank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 The forward model and its scaling limit . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 The dual of the seedbank frequency process . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Long-term behaviour and fixation probabilities . . . . . . . . . . . . . . . . . . . . 54

3.3 The seedbank coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Definition and genealogical interpretation . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Related coalescent models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Properties of the seedbank coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Some interesting recursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Coming down from infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Bounds on the time to the most recent common ancestor . . . . . . . . . . . . . . 66

II Modeling the Lenski experiment 73

4 An individual based model for the Lenski experiment, and the deceleration of the

relative fitness 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 A neutral model for the daily cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



4.1.2 Mutants versus standing population . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Genetic and adaptive evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Deterministic approximation on longer time scales . . . . . . . . . . . . . . . . . . 78
4.1.5 Diminishing returns and epistasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Models and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Mathematical model of daily population cycles . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Neutral model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 The genealogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.4 Including selective advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.5 Genetic and adaptive evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.6 Genetic and adaptive evolution on a short scale . . . . . . . . . . . . . . . . . . . . 84
4.2.7 Genetic and adaptive evolution on a long time scale . . . . . . . . . . . . . . . . . 85

4.3 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 A simplified sampling and construction of the auxiliary Galton Watson processes . 88
4.3.2 A Galton Watson approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Asymptotics of the stopping rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.4 Asymptotics of the approximating Galton Watson processes and Proof of Prop. 4.2.8 93
4.3.5 First stage of the sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.6 Second stage of the sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.7 Third stage of the sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.8 Proof of Theorem 4.2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.9 Proof of Proposition 4.2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.10 Proof of Theorem 4.2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.11 Convergence of the fitness process . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A Some calculations and technical remarks 105

A.1 Bound on a mixing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Convergence to the seedbank diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3 Basics on Yule processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.1 Basics on Yule processes and proof of Theorem 4.2.5 . . . . . . . . . . . . . . . . 109
A.3.2 Properties of near-critical Galton Watson processes . . . . . . . . . . . . . . . . . . 111

viii



Table 1: Notation: Chapter 1, Part 1

Symbol Description Page

N Population size: number of individuals per generation 6
i, k Discrete units of time 6
t Continuous units of time 6

n,m Sample size: number of individuals in a sample 6
{U (w)(k)} Family of independent uniform RV in {1, ..., N} 6

VN Set of vertexes of a Wright Fisher graph 6
EN Set of edges of a Wright Fisher graph 2

v = (g, l) ∈ VN The l-th individual in the g−th generation 6
(DN

i ) Number of decedents at generation i of a sample at generation zero 6

(HN
k ) Frequency process: HN

i =
DN

i

N 6
AL(v) Ancestral line of the individual v ∈ VN 7
τN Time to extinction or fixation 7
pjk the transition probability from the state j to the state k 7

(g0, l0) Most recent common ancestor 7
TN
MRCA Time to the most recent common ancestor 7
(|AN

g |) Number of ancestors process 8
(AN

g ) Ancestral process 9
TN
MRCA[n] T.M.R.C.A. of n individuals in generation zero 8

S0 A sample of n individuals in generation zero 9
S−g−1 A sample of m individuals in generation −g − 1 9←−
W,

−→
W, E Useful events to prove moment duality 9
πN Probability of fixation starting from one individual 11
[n] Set consisting of all the partitions of {1, 2, ..., n} 11
π An element of [n] 11
|π| Number of blocks in the partition π 11
≻ Relation “follow” {{1}{2}} ≻ {{1, 2}} 11
GN Geometric random variable with parameter 1/N 11
(Kt) The Kingman coalescent 11
ψi Time of the i-th coalescence event 12
(Xt) Generic symbol for a stochastic process (WF diffusion in page 13) 13
(Bt) Brownian motion 13
(Mt) Frequency process of the Moran model 13
(Wt) Poisson process 13
(St) Continuous time simple symmetric random walk 14
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Motivation

Dormancy is defined by Lennon and Jones [38] as “any rest period or reversible interruption of the
phenotypic development of an organism”. It is a widespread evolutionary strategy and it has observable
influence in ecology, adaptative evolution and genetic evolution. It is crucial for adaptation, for example
it helps plants to survive the winter and bacteria to survive starvation. Further, Dormancy is also a useful
tool in research laboratories. The aim of this thesis is to study dormancy by developing probabilistic-
population-genetic models.

According to [38] up to 80% of the bacterial cells in the soil are in latent or dormant state. The soil is
just an example, the number of active and inactive cells in bacterial populations tends to be of the same
order of magnitude. Bacteria in dormant form constitute a genetic pool that challenges our intuition on
the dynamics of genetic diversity. Some classic notions in population genetics become more complex in
the presence of these reservoirs: What does it mean that a trait goes to fixation? What is the meaning
of generation?

When we think about classic population genetics, the Wright Fisher model is the first object that
comes to our mind. This is a probabilistic model for haploid populations in which there are numbered
generations, each generation consists of exactly N individuals, where N is a natural number, and each
individual chooses its parent from the previous generation uniformly at random (see Definition 1.1.1).
The Wright Fisher model and its scaling limit, the Kingman coalescent (see Definition 1.1.26), have
successfully been used to study the genealogy of many populations.

A seedbank, in the case of trees, is the set of seeds in the soil that can produce a newborn tree.
The term seedbank has a more general connotation, it is used to denote a large group of individuals in
latent state. The presence of seedbanks makes the Wright Fisher model an inadequate model, because
the hypothesis that each individual chooses its parent form the previous generation becomes unrealistic.
In this sense we say that the effect of seedbanks is not included in classical probabilistic modeling of
population genetics.

To overcome these limitations, in 2001 Kaj, Krone and Lascoux [33] postulated an extension of the
Wright Fisher model that includes seedbanks (see Section 2.1). Their model can be described as follows:
fix the population size N ∈ N and a probability measure µ on the natural numbers. This measure
determines the generation of the immediate ancestor of an individual backward in time, meaning that
an individual living at generation k ∈ Z has its immediate ancestor in generation k − l with probability
µ(l).

In [33] the authors study the case where µ has finite support, and they conclude that on the evolu-
tionary scale the ancestral process induced by their seedbank model converges to a constant time change
of the Kingman coalescent.1 Even though the Kaj Krone and Lascoux model (KKL model) and the
Wright Fisher model are different, both are in the universality class of the Kingman coalescent. In this
sense one can say that the effect of the seedbanks that can be effectively modelled using a bounded µ
(weak seedbanks), is not drastic.

Chapter 2 has the goal of studying the KKL model beyond the assumption that µ has finite support.
We extend the main result of [33] to cases in which µ has infinite support, but light tail (See Theorem
2.3.10). Further, we show that there exist choices of µ that change radically the behavior of the ancestral
process, and that can’t be modeled by manipulating the effective population size i.e. the limit cannot
be a time changed Kingman coalescent (See Theorem 2.2.2). In particular, if µ has a very heavy tail, for

1The evolutionary scale is when time is measured in units of the population size i.e. the rescaling factor is N .
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every fixed population size N > 1, the probability that two individuals do not have a common ancestor
is positive.

In Chapter 2 we also extend the KKL model to let the measure µ depend on the population size
N . We consider µN = (1 − ϵ)δ1 + δNβ , which is interpreted as follows: almost all individuals choose
their parent from the previous generation, but few perform a very big jump. We prove that if β < 1/5
the time rescaled ancestral process, rescaled by a factor N1+2β , converges to the Kingman coalescence.
Interestingly, the relevant scale N1+2β is orders of magnitude bigger2 than the evolutionary scale.3

The KKL model has the disadvantages that it is not Markovian and that it is hard to study it forward
in time. In Chapter 3, we propose a seedbank model that allows a forward and a backward Markovian
representation. The forward process converges in the evolutionary scale to a two dimensional diffusion,
that we named the seedbank diffusion. The seedbank diffusion is characterized as the unique solution
of the two dimensional SDE

dXt = c(Yt −Xt)dt+
√

Xt(1−Xt)dBt,

dYt = cK(Xt − Yt)dt,

where (Bt)t≥0 is a standard Brownian motion. The ancestral process converges to a coalescent process,
that we named the seedbank coalescent. The seedbank coalescent takes values in the space of marked
partitions: each block has a label that can be either s or p (seed or plant), the label of each block changes
at a certain rate and each pair of p-blocks coalesces at rate 1 (See definition 3.3.1). It turns out that
the relation between the seedbank diffusion and the seedbank coalescent is similar to the classic relation
between the Kingman coalescent and the Wright Fisher diffusion. In Theorem 3.2.7 we showed that the
seedbank diffusion and the block counting process of the seedbank coalescent are moment dual. The rest
of Chapter 3 deals with properties of the seedbank coalescent, for example in Theorem 3.4.8 we show
that the expected time to the most recent common ancestor in a sample of size n is of order log log(n).4

So far we have just discussed latency under natural conditions. However, latency is also used in
research laboratories. It plays a crucial role in the area of biology known as “experimental evolution”. The
philosophy of this research area is to measure adaptative and genetic evolution of bacterial populations
under laboratory conditions. To measure adaptation in practice it is imperative to compare an unevolved
ancestral population with an evolved population. How can one compare two populations that exist at
different times? The answer is: by using latency. To explain this better, we will describe “the long
term experiment with Escherichia coli” [41], which is also known as the Lenski experiment in honor of
Dr. Richard Lenski. This experiment is a cornerstone in experimental evolution and the main object of
study of Chapter 4. The Lenski experiment investigates the long-term evolution of 12 initially identical
populations of the bacteria E. coli in identical environments. One of the basic concepts of the Lenski
experiment is that of daily cycles. Every day starts by sampling the same amount of cells from the
bacteria available in the medium that was used the day before. This sample is propagated in an identical
medium as that of the previous day. This procedure is repeated daily. Up to now, the experiment has
been going on for more than 60000 generations (or 9000 days, see [39]). One important feature is that
samples of ancestral populations were stored at low temperatures, forcing the bacteria to reach a latent
state. Afterwards the bacteria can be made to reproduce under competition with later generations in
order to experimentally determine the fitness of an evolved strain relative to the founder ancestor of the
population by comparing their growth rates. It was observed, for example by Wiser et al.[74], that the
relative fitness over time increases sublinearly, a behaviour which is commonly attributed to effects like
clonal interference or epistasis.

In Chapter 4 we construct an individual based model that studies the adaptive evolution in the Lenski
experiment, and that does neither include clonal interference nor epistasis. Our results show (Theorem
4.2.15) that in a suitable scale, the relative fitness increases approximately as the curve

f(t) =

√

1 +
4.04

r20
t, t ≥ 0.

2These results were used to discuss the effect of seedbanks in evolution of bacteria, published in [23].
3Chapter 2 consists of results published in [7] and [6]. However, most of the proofs presented in this Chapter are new.
4Chapter 3 consists essentially of the paper [8] together with some results that can be found in [5].

2



where r0 is the reproduction rate of the ancestral population. This is consistent with previous work on
the topic (see[74]) and provides the new insight that the design of the experiment is a factor that shapes
adaptive evolution in the Lenski experiment, and should be taken into account to make statements about
the role of epsitasis and clonal interference.5

The rest of this thesis is organized as follows: In Chapter 1 we introduce several concepts and ideas,
in order to make this work as self-contained as possible. In Chapter 2 we discuss generalizations of the
KKL model, in particular when µ has an unbounded support and when µ := µN is a function of the
population size. In Chapter 3 we post our proposal for a seedbank model and we study its properties.
Chapter 4 consists in a model that studies a particular case in which latency is used as a tool in an
experiment: the Lenski experiment. Finally, Appendix A contains some technical results that are useful
in different parts of the thesis.

5Chapter 4 is essentially the paper [24].
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generations, where each generation has exactly the same number of individuals and each individual has
exactly one parent, which is a randomly chosen individual from the previous generation. The individuals
and their relations form a graph. The following definition makes this precise. The graphical construction
above of the Wright Fisher model is inspired in [7].

Definition 1.1.1. Let VN =
{
v = (g, l) ∈ Z × {1, 2, ..., N}

}
, {Uv}v∈VN

be a sequence of independent
random variables, uniformly distributed in {1, 2, ..., N}, and

EN =
{
{(g − 1, U(g,l)), (g, l)} for all v = (g, l) ∈ VN

}
.

We define the N-Wright Fisher graph to be the random graph with vertex set VN and edge set EN .

Definition 1.1.2. We define the generation g, for any g ∈ Z, to be Gen(g) = {v = (g, l′) ∈ VN : l′ ∈
{0, 1, ..., N}}.

Remark 1.1.3. In the previous definition each vertex v = (g, l) ∈ VN should be understood as the l-th
individual in the g-th generation. There are as many generations as integer numbers and each generation
consists of N individuals.

Definition 1.1.4. If v′ = (g′, l′) and v = (g, l) are such that g − g′ = k > 0, and there exist a sequence
of exactly k − 1 edges in EN that connect v′ and v, we say that v′ is an ancestor of v and that v is a
descendant of v′. If two individuals have a descendant/ancestor relation and g− g′ = 1, then we say that
they have an offspring/parent relation.

The vertices of the graph are individuals, and the edges are the parental relations. If we assume that
generation zero is the present, there are two natural ways to study the graph: going to the future or
going to the past.

Let us first go in the direction of the future (forward in time). Let us fix one individual in generation
zero, how many individuals in generation one are its offspring? Each individual in generation one will be
its offspring with probability 1/N , and there are N individuals, so the number of offspring in generation
one of the individual in generation zero is Binomially distributed with parameters (1/N,N). A similar
reasoning can be applied if we sample more than one individual. Suppose that we sample n individuals
in generation zero and we want to know how many individuals in generation one are descendants of some
member of the sample. Each individual in generation one chooses a (fixed) member of the sample as its
parent, with probability 1/N . So the number of individuals in generation one that have a parent in the
sample of size n in generation zero, is Binomially distributed with parameters (n/N,N).

Let us call DN
i the number of descendants at generation i of a sample of individuals in generation

zero. Then (DN
i )i∈N is a Markov chain with values in {1, 2, ..., N}. Indeed, note that if DN

i = d then
DN

i+1 is an independent Binomial random variable with parameters (d/N,N) (this implies in particular

that (DN
i )i∈N is a Markov chain). It is often useful to work with HN

i =
DN

i

N .

Definition 1.1.5. The frequency process of the Wright Fisher model is the Markov chain (HN
i )i∈N,

with state space {0, 1/N, 2/N, ..., 1} and transition probabilities,

pj,k =

(
N

kN

)

jkN (1− j)(1−k)N

for any j, k ∈ {0, 1/N, 2/N, ..., 1}.

Remark 1.1.6. The name frequency process comes from the following interpretation: assume that in the
Wright Fisher graph at generation zero there are two types of individuals, black and pink, so that n
individuals are black and N − n pink. The frequency of black individuals is a realization of (HN

i ).

Remark 1.1.7. Throughout the whole thesis we will denote a stochastic process by (Y N
i ), instead of

writing (Y N
i )i∈I , whenever it is clear which is the index i and the index set I. For example, in the

previous remark (HN
i ) stands for (HN

i )i∈N.
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where {U(g′,l′)}(g′,l′)∈VN
is the sequence of uniform random variables introduced in Definition 1.1.1.

Remark 1.1.11 implies that TN
MRCA[2] = TMRCA is finite almost surely and, more precisely, that

E[TN
MRCA[2]] = N . It is interesting to note that for all n ∈ N, TN

MRCA[n] is finite almost surely.

Proposition 1.1.15. For every n ∈ N, it holds that

E[TN
MRCA[n]] < ∞.

Proof. The proof is immediate by induction. For n = 2 the claim follows. Assume the claim is true for
n−1. If we denote TN

MRCA[n−1] the time to the most recent common ancestor of the individuals labeled
1, 2, ..., n− 1, then either the n labeled individual has a common ancestor with the rest of the sample at
the random time TN

MRCA[n − 1] or at time TN
MRCA[n − 1] there are exactly two ancestors of the whole

sample of size n. Then we have that by the strong Markov property

E[TN
MRCA[n]] ≤ E[TN

MRCA[n− 1]] + E[TN
MRCA[2]] < ∞.

Now we will introduce the ancestral process, which contains a bit more information than the number
of ancestors process. The ancestral process takes values in the space of partitions. It is generated by
the equivalence relations {∼g}g∈N, defined by the rule v1 ∼g v2 if and only if v1 and v2 have a common
ancestor in generation −g.

Definition 1.1.16. Let {vi}i∈{1,2,...,n} = {(0, li)}i∈{1,2,...,n} be a sample of n individuals in generation
zero. For every g ∈ N define ∼g to be the equivalent relation on {1, 2, ..., n} characterized by the rule:
For every i, j ∈ {1, 2, ..., n}, we say that i and j are g-equivalent, and we write i ∼g j, if and only if

|{AL(0, lj)} ∩ {AL(0, li)} ∩ {Gen(−g)}| = 1.

Let πg be the equivalence classes generated by ∼g. Then, the ancestral process of the Wright Fisher

model is defined as
(AN

g )g∈N := (πg)g∈N.

Let us denote [n] the set of partitions of {1, 2, ..., n} for any n ∈ N.

Remark 1.1.17. Let π be a partition of [n]. Let |π| be the number of blocks of the partition π. Note
that the number of ancestors process is related to the ancestral process, as, in distribution,

(|AN
g |)g∈N = (|πg|)g∈N.

We have defined a forward and a backward process associated to the Wright Fisher graph. A natural
question is: How do these two processes relate? We can follow the ideas of [50] to find an answer.

Fix m,n ∈ N. Let S−g−1 = {v1, ..., vm} = {(−g − 1, l1), ..., (−g − 1, lm)} be a sample of size m of
individuals at generation −g − 1 ∈ Z. For every i ∈ {0, 1, 2, ..., N}, define the event

−→
W (i) = {There are i descendants of S−g−1 in generation− 1}.

Now define S0 = {v′1, ..., v′n} = {(0, l′1), ..., (−g − 1, l′n)} to be a sample of size n of individuals at
generation 0. For any i ∈ {1, 2, ..., n}, define the event

←−
W (i) = {There are i ancestors of S0 in generation − g}.

Finally, define the event

E = {All the ancestors of S0 in generation − g − 1 are contained in Sg−1}. (1.1.2)

Note that the events
−→
W (i),

←−
W (i) and E belong to the sigma algebra of the Wright Fisher graph. We can

use the law of total probability in two different ways to calculate the probability of E . On one hand we
have

P(E) =
N∑

i=0

P(E |−→W (i))P(
−→
W (i)) =

N∑

i=0

(i/N)nPm/N (HN
g = i/N) = Ex[(H

N
g )n] (1.1.3)

Here, the crucial step was in the second equality, where we needed the following:
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Lemma 1.1.21. For every m ∈ {0, 1, ..., N}, let x = m/N . As before τN = inf{i : HN
i (1−HN

i ) = 0},
then Px(H

N
τN = 1) = x.

Proof. As HN
τN ∈ {0, 1} we have that Px(H

N
τN = 1) = Ex[H

N
τN ]. By Lemma 1.1.8 and the dominated con-

vergence Theorem, we know that Ex[H
N
τN ] = limg→∞ Ex[H

N
g ]. Finally, by Theorem 1.1.18 we know that

limg→∞ Ex[(H
N
g )n] = limg→∞ En[x

AN
g ] = x, where the last equality is a consequence of the dominated

convergence Theorem and of Proposition 1.1.15.

Remark 1.1.22. A similar technique is used in Corollary 3.2.3 to study the long term behavior of the
seedbank diffusion.

Corollary 1.1.23. Let πN := P1/N (HN
τN = 1). Then limN→∞ NπN = 1.

Proof. This is an immediate application of Lemma 1.1.21 for the case x = 1/N .

Remark 1.1.24. In the presence of selection, the value of πN changes. Compare this result with Haldane’s
formula (See Remark 1.3.7) and Theorem 4.2.10 in Chapter 4.

Let us now assume that the number of individuals in each generation is very big. It turns out that
rescaling the backward and the forward processes suitably one obtains well defined limits, which turn
out to be interesting and useful processes.

In Remark 1.1.11 we learned that the time to the most recent common ancestor of a sample of size
two is Geometrically distributed with parameter 1/N . For every N ∈ N, let GN be a geometric random
variable with parameter 1/N . Recall that for any t > 0,

lim
N→∞

P(GN > Nt) = lim
N→∞

(1− 1/N)⌊Nt⌋ = e−t. (1.1.5)

This gives a hint of the right scale to look for a limit. Indeed, if we consider the sequence of processes
{(AN

⌊Nt⌋)t∈R+}N∈N, it converges to a well defined object, the Kingman coalescent. We will denote this

process by (Kt)t∈R+ . From (1.1.5) we grasp that this object should be such that each pair of ancestral
lines coalesces after an exponential time with parameter 1. This is the first ingredient to define (Kt)t∈R+ ,
the second ingredient is that each pair of ancestral lines coalesces independently from the others. As
we did with the ancestral process, we will first define a process with values in the natural numbers, and
then a partition valued process.

Definition 1.1.25. The block counting process of the Kingman coalescent (|Kt|)t∈R+ is a continuous
time Markov process, with values in N characterized by the transition rates:

(
n
2

)
from n to n − 1. All

other transition rates are zero.

The Kingman n-coalescent ([34]), opposed to the block counting process of the Kingman coalescent,
does not take values in the natural numbers. It is a process with values in the partitions of [n]. The
intuition behind it is the same as in the discrete time case, which is that two individuals in a sample
will be in the same block of the random partition at time t if and only if they have a common ancestor
before time t. That is, a pair of blocks coalesces each time that the individuals inside the two blocks find
a common ancestor.

We say that a partition π1 ∈ [n] follows a partition π0 ∈ [n] if π1 can be constructed by merging exactly
2 blocks of π0, in that case we write π0 ≻ π1. For example, if n = 3, we can see that {{1}, {2}, {3}} ≻
{{1, 2}, {3}}.

Definition 1.1.26. The Kingman n-coalescent, (Kt), with initial distribution K0 = π0 ∈ [n], is the
continuous time Markov process with values in [n], characterized by the transition rates: (Kt) goes from
π0 to π1 at rate 1 if π1 follows π0. All other transition rates are zero.

Remark 1.1.27. If we denote by |π| the number of blocks of a partition π ∈ [n], we note that |Kt| is
precisely the process defined in 1.1.25, as each partition of k blocks has

(
k
2

)
partitions that follow it.

The Kingman coalescent is a key object in population genetics, not only because of its simplicity, but
also because it is a universal limit for models in population genetics ([34], [51]). Now we will show the
power of the Kingman coalescent by calculating the expected time to the most recent common ancestor
of a sample of size n.
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Remark 1.1.29. It is notable that E[TMRCA[n]] < 2 for all n. This is not the case for all coalescent
process, for example in the Bolthausen-Sznitman coalescent and in the seedbank coalescent the expected
time to the most recent common ancestor of a sample of n individuals is of order log log(n) (See [22] and
Theorem 3.4.8).

Now we discuss the scaling limit of the forward in time processes.

Definition 1.1.30. The Wright Fisher diffusion is the pathwise unique solution to the stochastic differ-
ential equation X0 = x ∈ [0, 1] and

dXt =
√

Xt(1−Xt)dBt (1.1.6)

where (Bt) is a Brownian motion.

Remark 1.1.31. The Wright Fisher diffusion is closely related to one of the main objects of study of
Chapter 3, the seedbank diffusion (See Corollary 3.2.2).

Remark 1.1.32. Pathwise uniqueness of the solution of Equation (1.1.6) is a consequence of the Theorem
of Yamada and Watanabe [76]. Existence of a solution can be prove using Theorem 3.2 of [30].

An introduction to Stochastic integration can be found in [15], and an introduction to diffusion theory
can be found in [62]. Using the Dambis Dubins Schwarz Theorem (see [15]), an equivalent definition of
the Wright Fisher diffusion is the following.

Proposition 1.1.33. The Wright Fisher diffusion is the solution to the time change equation X0 = x ∈
[0, 1] and

Xt = B∫ t
0
Xs(1−Xs)ds

where Bt is a Brownian motion.

To give some intuition for (Xt) we will explain where the time change comes from. To do this let us
introduce another classical model called the discrete Moran model. In this model there are N individuals
per generation and at each time step an individual is chosen randomly to reproduce and an individual
is chosen randomly to die. It can happen that the same individual is chosen to do both actions, in that
case it does nothing. At generation zero individuals are assigned types (say black and pink) and each
individual gets the same type of its parent. This model is very similar to the Wright Fisher model, with
the difference that here only one individual performs an action at each time step, while in the Wright
Fisher model all individuals in the population perform an action at each time step. If we denote (as in
the Wright Fisher case) HN

i the frequency of black individuals in the population at the i-th time step,
we obtain a Markov chain. Note that if HN

i = x, the frequency will increase to x+1/N in the next step
if a black individual is chosen to reproduce and a pink one to die. This happens with probability x(1−x)
as x is the probability of choosing a black one to reproduce and 1 − x is the probability of choosing a
pink one to die. By similar arguments we see that P(HN

i+1 = x − 1/N |HN
i = x) = (1 − x)x, so we can

motivate the following formal definition:

Definition 1.1.34. For any N ∈ N, the N -frequency process of the discrete Moran model is the Markov
chain, (HN

i )i∈N with state space {0, 1/N, 2/N, ..., 1} and transition probabilities

Px(H1 = x+ k) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x(1− x) if k = 1/N,

1− 2x(1− x) if k = 0,

x(1− x) if k = −1/N,

0 in any other case.

Now let us randomize the time to obtain a continuous time process. For this, we recall the Poisson
process, which is a Markov process with values in the natural numbers that goes from the state n to the
state n + 1 at rate 1, and such that all other transitions are impossible. In the following definition we
present a classic way to construct a Poisson process that will be useful for some examples later.
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Definition 1.1.35. Let {ei}∞i=1 be a sequence of independent identically distributed standard exponential
random variables. Let

Wt := sup{r ∈ N :
r∑

i=1

ei < t}.

Then (Wt) is a standard Poisson process. For any c ∈ R, we define a Poisson process with rate c, to be
any Markov process equal in distribution to (Wct).

Now we can use (HN
i ) and (Wt) to construct the frequency process of a Moran model.

Definition 1.1.36. Let (MN
t )t∈R+ be a continuous time Markov process with state space

{0, 1/N, 2/N, ..., 1}, defined by the formula

MN
t := HN

Wt

where (Wt) is a standard Poisson process and (Hi) is the N-frequency process of the discrete Moran
model. (MN

N2t) is the N-frequency process of the Moran model.

A reason for introducing this process is that we can construct it using a simple symmetric random
walk in continuous time. Let (St) be a simple symmetric random walk in continuous time, and let
UN
t = 1

N S∫ t
0
2Us(1−Us)ds

then in distribution

(Mt) = (UN
t ).

Note that as 1
N SN

N2t ⇒ Bt weakly over the space of Skorohod, where (Bt) is a Brownian motion. It is
intuitively clear that

(UN
N2t) ⇒ (X2t)

weakly over the space of Skorohod, where (Xt) is the Wright Fisher diffusion, introduced in Definition
1.1.30. The relevant scale here is N2, in contrast to the relevant scale in the Wright Fisher case which
is N . This follows from the fact that in the Wright Fisher model N (Reproduction/death) events occur
each time step, while in the discrete Moran model only one event occurs. This convergence can be proved
using generators (See Subsection 1.2.2).

1.2 Toolbox

In this subsection we introduce some notions that will be used during the rest of this work. We explain
what convergence means for a sequence of stochastic processes. We talk about two tools to prove
convergence of stochastic processes: the generator and couplings. Finally, we discuss the notion of
duality of Markov processes.

1.2.1 Convergence of stochastic processes

Let us first give a general definition of a stochastic process

Definition 1.2.1. Let (Ω,F ,P) be a probability space. Let I be some index set. For each i ∈ I let
Xi : Ω → E be a random variable. Then {Xi}i∈I is an E valued stochastic process. If I = R

+ we
say that {Xi}i∈I is a continuous time stochastic process, and if I = N we say that {Xi}i∈I is a
discrete time stochastic process.

A crucial concept in this thesis is convergence of stochastic processes. Our approach will be to
think a stochastic process as a probability measure over a path space. The gain is that we will be able
to understand convergence of stochastic processes, by regarding it as weak convergence of probability
measures over a path space.

We should first precisely define what we mean by a path space.

Definition 1.2.2. For any T ∈ R
+ and for any complete and separable metric space E, we say that a

function f : [0, T ] → E is càdlàg, if f is continuous from the right with limit from the left. We define
the set M = M(T,E) to be the set of càdlàg functions, this is M = {f : [0, T ] → E : f is càdlàg}.
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Px((Xt) ∈ ·) is a probability measure on (M,M). We say that a sequence of càdlàg stochastic processes
{(XN

t )}N∈N converges, as N goes to infinity, weakly over the space of Skorohod to a stochastic process
(Xt), and we write (XN

t ) ⇒ (Xt), if for all continuous and bounded functions f : M → R

lim
n→∞

∫

M

fdP((XN
t ) ∈ ·) =

∫

M

fdP((Xt) ∈ ·).

We will denote by S the space of càdlàg stochastic processes with the topology induced by the weak
convergence.

Remark 1.2.6. It turns out that S is a complete and separable metric space (See page 381 of [73]).

To really use this definition one would need to understand which functions f : M → R are continuous
with respect to the metric dM . This looks like a hard task, but luckily Prohorov ([61]) found a metric
that allow us to efficiently understand which sequences of stochastic processes converge weakly.

Definition 1.2.7. Let A ∈ M, for any ϵ > 0 we define the open ϵ-neighborhood of A to be the set

Aϵ = {x ∈ M : dM (x, y) < ϵ, for some y ∈ A}.

Let O be the set of all open sets in M. Let (Xt) and (Yt) be two càdlàg stochastic processes. We define
the Prohorov distance between (Xt) and (Yt) to be

ρ
(

(Xt), (Yt)
)

= inf{ϵ : P
(
(Xt) ∈ A

)
≤ P

(
(Yt) ∈ Aϵ

)
+ ϵ, ∀A ∈ O}.

It turns out that ρ(·, ·) is indeed a metric and convergence under ρ(·, ·) is equivalent to weak conver-
gence. A proof of this can be found in section 11.3 of [73]. Now we write a precise statement of this
fact.

Theorem 1.2.8. If (E, d) is a complete and separable metric space, then the space of laws of càdlàg
stochastic processes with values in (E, d) together with the Prohorov metric, that we denote (S, ρ), is a
complete and separable metric space, and ρ

(
(XN

t ), (Xt)
)
→ 0 if and only if (XN

t ) ⇒ (Xt) weakly.

The structure the space of càdlàg paths allows us to use a less strict notion of convergence, this is
convergences of the finite dimensional distributions. Indeed, if we consider (Xt) ∈ S, and we fix t ∈ R

+,
then XN

t is just an E valued random variable and weak convergence of E valued random variables is
the well known the convergence in distribution that is often taught in undergraduate courses (at least
for E = R). Moreover, if we consider a finite amount of fixed time points, {t1, ..., td} for some d ∈ N,
the random vector (XN

t1 , ..., X
N
td
) is a random variable with values in Ed, and again we have a good

grasp of what it means that a sequence of such random variables converges. The intuition suggests, that
weak convergence of stochastic process is similar to convergence of random vectors (XN

t1 , ..., X
N
td
) for a

sufficiently large collection of time points.

Definition 1.2.9. We say that a sequence of stochastic processes {(XN
t )}N∈N converges to (Xt) in the

sense of convergence of the finite dimensional distributions, and we write (XN
t ) ⇒ (Xt), if for any finite

subset {t1, ..., td} of a dense set D ∈ I, the following convergence in distribution holds

(XN
t1 , ..., X

N
td
) → (Xt1 , ..., Xtd).

Convergence in the finite dimensional sense does not implies weak convergence in the space of Sko-
rohod (for a counterexample see Example 11.6.1 of [73]). However, if a sequence of stochastic processes
is relatively compact and converges in the finite dimensional sense, then it converges weakly over the
space of Skorohod. The following Theorem makes this statement precise and its proof can be found in
Chapter 4 of Whitt [73].

Theorem 1.2.10. A sequence of processes {(XN
t )}N∈N converges weakly over the space of Skorohod to

(Xt) if (X
N
t ) ⇒ (Xt) and {(XN

t )}N∈N is relatively compact.

So far we have developed a clear notion of convergence of stochastic processes, but we need to
construct appropriate tools to be able to prove such convergence. This will be our task in the next
subsections.
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1.2.2 The generator of a stochastic process

In this subsection we define the semigroup of a Markov process and its generator. We discuss that in
certain cases, convergence of a sequence of generators implies convergence of stochastic processes. We
provide some interesting examples. The main reference for this subsection is [18].

A stochastic process is a very complex mathematical object. Our goal in this section will be to show
how to construct an operator (which is a much simpler mathematical object) that captures the essence
of a stochastic process. This technique works appropriately for Markov processes under mild conditions.
Let (Xt) be a Markov process realized in a filtered probability space (Ω,F,Ft,P) with values is (R,B).
We well write Px(Xt ∈ ·) := P(Xt ∈ ·|X0 = x) and Ex(Xt) := E(Xt|X0 = x). We will start by associating
a semigroup of operators to each Markov process.

Definition 1.2.11. The semigroup of operators associated to a Markov process (Xt)t∈R+ , that we denote
by {Pt}t∈R+ , is defined by the formula

Ptf(x) = Ex[f(Xt)]

for any x ∈ R and f : R → R measurable.

The generator of a Markov process is simply the generator of its semigroup of operators.

Definition 1.2.12. The generator of a Markov process (Xt) is defined as the L1 limit

Af(x) = lim
t→0

Ex[f(Xt)− f(x)]

t
.

The set of functions such that Af exists is called the domain of the generator and we denote it by D(A).

The generator is a very useful object to study Markov processes, as it is only one operator, but
contains a summary of a Markov process. Heuristically, if one has a sequence of Markov processes
{(XN

t )}N∈N, with generators {AN}N∈N, then if for every function f : R → R in a large enough class
of functions C, such that C ⊆ D(AN ) for all N ∈ N, the sequence of functions {ANf(x)}N∈N converges
uniformly to a function Af(x), and A happens to be the generator of a Markov process (Xt), then
(XN

t ) ⇒ (Xt). For a precise statement of this claim and its proof see Chapter 2 and 4.8 of [18]. The
intuition behind this useful result is that (under some mild conditions) convergence of the generators
implies convergence of the finite dimensional distributions, and relative compactness as well. This allow
us to apply Theorem 1.2.10 and obtain weak convergence over the space of Skorohod.

Let us start by calculating the generator of a Poisson process.

Proposition 1.2.13. The generator A of a Poisson process (Wct) (defined in 1.1.35) with rate c, applied
to a polynomial f : N ↦→ R is the operator such that for any n ∈ N

Af(n) = c(f(n+ 1)− f(n)).

Its domain D(A) contains all bounded functions f : N → R.

Proof. The proof consists of applying the definitions 1.2.12 and 1.1.35. Indeed,

Af(n) = lim
t→0

En[f(Wct)− f(n)]

t

= lim
t→0

[f(n+ 1)− f(n)]
1

t
Pn(Wct = n+ 1)

= lim
t→0

[f(n+ 1)− f(n)]
1

t
P0(Wct = 1)

= [f(n+ 1)− f(n)] lim
t→0

1− e−ct

t

= [f(n+ 1)− f(n)]c.

L1 convergence follows from the previous calculation given that f is bounded.

Remark 1.2.14. It is very useful to read the generator: we have Af(n) = c(f(n + 1) − f(n)), and we
interpret it as: the process Nt goes from the state n to the state n+ 1 at rate c
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We can go from the standard Poisson process (Wt) to a Poisson process with rate c by considering
a constant time change (Wct). Instead of using a constant to change the time of our Poisson process,
we can use a function of the state of the process. Let g : N → R

+ be measurable, we will consider the
process Mt = W∫ t

0
g(Ms)ds

. This is a well defined process, that can be simply constructed as the Markov

process with values in N, that goes from the state n to the state n+ 1 at rate g(n).

Remark 1.2.15. The generator A of the process Mt = W∫ t
0
g(Ms)ds

is such that, applied to any polynomial

f : N → R,

Af(n) = g(n)[f(n+ 1)− f(n)].

The interpretation of this generator is simple, the process goes from the state n to the state n + 1 at
rate g(n).

We can construct our favorite process using this time change technique. Indeed, let n0 ∈ N,

|Kt| = n0 −W∫ t
0 (

|Ks|
2 )ds,

then (|Kt|) is equal in distribution to the block counting process of the Kingman coalescent (|Kt|) started
with n0 blocks, introduced in Definition 1.1.25.

Example 1.2.1. The generator of the block counting process of the Kingman coalescent is such that
for every function f : N ↦→ R and every n ∈ N

Af(n) =

(
n

2

)

[f(n− 1)− f(n)].

Now we give a notion of generator for a discrete process.

Definition 1.2.16. Let (Xi)i∈N be a Markov chain with values on a discrete space E. The discrete
generator of (Xi) is the generator of the continuous time process (XWt)t∈R, where (Wt) is a standard
Poisson process. The discrete generator of (X⌊ct⌋)t∈R+ is defined to be the generator of (XWct).

Lemma 1.2.17. Let {pn,j}n,j∈E be the transition matrix of a Markov chain (Xi)i∈N, defined as in
1.2.16. The discrete generator of (X⌊ct⌋)t∈R+ is the operator such that for any bounded and measurable
function f : E → R and any n ∈ E

Af(n) = c
∑

j∈E

pn,j [f(j)− f(n)].

Proof. The proof consists of applying Definition 1.2.16.

Af(n) = lim
t→0

En[f(XWt
)− f(n)]

t

= lim
t→0

∑

j∈E

(f(j)− f(n))
1

t
Pn(XWt = j)

= lim
t→0

∑

j∈E

(f(j)− f(n))
1

t
Pn(X1 = j)P0(Wt = 1)

=
∑

j∈E

(f(j)− f(n))pn,j lim
t→0

1− e−ct

t

= c
∑

j∈E

(f(j)− f(n))pn,j

Again, L1 convergence follows from pointwise convergence as f is bounded.

Using the same technique we can characterize the generator of a general continuous-time discrete-
space Markov process
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Lemma 1.2.18. Let (Zt)t∈R+ be a continuous time discrete space Markov process with countable state
space E and such that rnj ∈ R is the transition rate form the state n ∈ E to the state j ∈ E. The
generator of (Zt)t∈R+ is the operator such that for any f : E → R and n ∈ E

Af(n) =
∑

j∈E

rnj [f(j)− f(n)]. (1.2.1)

Proof. Let

pnj :=
rnj

∑

j∈E rnj

and consider the function g : E → R
+, defined by the formula

g(n) =
∑

j∈E

rnj .

First note that {pnj}n,j∈E is a stochastic matrix, because

∑

j∈E

pnj =
∑

j∈E

rnj
∑

j∈E rnj
= 1.

Then, there exists a discrete time Markov chain (Xi)i∈N with state space E and transition matrix
{pnj}n,j∈E . Let Yt = XW∫ t

0 g(Ys)ds
. Note that in distribution (Yt) = (Zt), so they have the same

generator.

The rest of the proof consist of applying Definition 1.2.12 to (Yt).

Af(n) = lim
t→0

En[f(Yt)− f(n)]

t

=
∑

j∈E

[f(j)− f(n)]pnjg(n)

=
∑

j∈E

[f(j)− f(n)]rnj .

Our next task is to study the generator of some continuous time real valued processes with continuous
trajectories. For this we follow Chapter 7.1 in [16]. We will define a class of processes called diffusions

using the notion of generator and later we will make intuitive sense of these objects.

Definition 1.2.19. A one dimensional diffusion process is a continuous Markov process with values
in R and infinitesimal generator A, such that for every bounded and two times differentiable function
f : R ↦→ R and every point x ∈ R,

Af(x) = a(x)
∂

∂x
f(x) +

1

2
b(x)

∂2

∂x2
f(x),

where a : R ↦→ R and b : R ↦→ R.

Remark 1.2.20. It is not the case that for every a : R → R and b : R → R there exists a diffusion process.
For a deeper study of diffusion theory the reader is referred to [62].

The function a is known as the drift and function b is known as the diffusivity of the diffusion. Let
us gain some intuition, by studying some examples.

Example 1.2.2. Let Xt be the solution of the ordinary differential equation

d

dt
Xt = a(Xt) (1.2.2)
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Assume that a is continuous and such that the ODE has a unique solution. Let us calculate the generator
of Xt using Definition 1.2.12. Let f be bounded and twice differentiable and x ∈ R.

Af(x) = lim
t→0

Ex[f(Xt)− f(x)]

t

= lim
t→0

Ex[
∫ t

0
∂
∂sf(Xs)ds]

t

= lim
t→0

Ex[
∫ t

0
f ′(Xs)

∂
∂sXsds]

t

= lim
t→0

Ex[
∫ t

0
f ′(Xs)a(Xs)]

t

= f ′(x)a(x).

In the second equality we used the Fundamental Theorem of Calculus and in the third the chain rule.
In the last equality we used the continuity at x of a and and of f ′ at the point x. A consequence of this
example is that, provided that the ODE in Equation (1.2.2) has a solution, the diffusion with drift term
a(·) and no diffusivity, is a deterministic trajectory.

Now we want to know which process has the generator Af(x) = 1
2f

′′(x). Let (St) be a simple
symmetric random walk. For every fixed N ∈ N let (SN

t ) := ( 1
N S⌊N2t⌋). Let AN be the Generator of

(SN
t ). Let f be a bounded a twice differentiable function and x ∈ N/N. Using Lemma 1.2.17, and then

applying Taylor expansion we observe

ANf(x) = N2[1/2f(x+ 1/N) + 1/2f(x− 1/N)− f(x)]

= N2

[

1

2

2∑

i=0

(1/N)i
f (i)(x)

i!
+

1

2

2∑

i=0

(−1/N)i
f (i)(x)

i!
− f(x)

]

+O(1/N)

=
1

2
f ′′(x) +O(1/N),

where f (i) is the i-th derivative of f . Defining the operator A to be such that Af(x) = 1
2f

′′(x), we
conclude that for all bounded a twice differentiable f : R ↦→ R, and for every x ∈ R

ANf(x) → Af(x).

in L1. On one hand it can be checked that the sequence of generators {AN}N∈N fulfills the technical
requirements to ensure that the convergence of the generator implies the weak convergence over the
space of Skorohod (SN

t ) ⇒ (Bt). For example, Theorem 4.8.2 in [18] can be applied. On the other
hand it is known (using the Lévy construction of Brownian motion or the Donsker invariance principle)
that (SN

t ) ⇒ (Bt), where (Bt) is the Brownian motion. With a bit more work this intuitive argument
can be turned into a proof that the Brownian motion has generator A characterized by the formula
Af(x) = 1

2f
′′(x).

Indeed, one can think of a diffusion process as an ODE perturbed by a time-change of a Brownian
motion. The most common way to define a diffusion is as the solution (if it exists) to the stochastic
differential equation

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b2(Xs)dBt. (1.2.3)

To learn more about SDEs see [15]. One can verify that that the solution to Equation 1.2.3 (if it exists)
is continuous and has generator

Af(x) = a(x)
∂

∂x
f(x) +

1

2
b(x)

∂2

∂x2
f(x)

as in Definition 1.2.19.
Now, the most important diffusion in Population Genetics is the Wright Fisher diffusion, which is

the solution to the SDE, X0 ∈ [0, 1] and

dXt =
√

Xt(1−Xt)dBt.
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The generator A of (Xt) is such that for every continuous and twice differentiable function f ∈ D(A)
and every x ∈ [0, 1],

Af(x) =
1

2
x(1− x)

∂

∂x2
f(x). (1.2.4)

Remark 1.2.21. When we work with R valued Markov processes, it is convenient to consider functions
f to be bounded and twice differentiable. Unbounded functions are frequently outside the domain of R
valued Markov processes. When we work with Markov processes with values in some compact subset of
R, it is often convenient to take f to be a polynomial. In these cases. the domain includes all polynomials
and they are a dense class of functions.

Recall the frequency process of the Moran model, (MN
N2t)t∈R+ , defined in 1.1.36. Let AN be the

generator of (MN
N2t)t∈R+ . Then, by Lemma 1.2.18, for any polynomial f : [0, 1] ↦→ R and x ∈ R,

ANf(x) = x(1− x)N2[1/2f(x+ 1/N) + 1/2f(x− 1/N)− f(x)]

= x(1− x)
1

2
f ′′(x) +O(1/N) (1.2.5)

Note that the error term O(1/N) is uniformly bounded in x. Comparing Equation (1.2.4) and Equation
(1.2.5) (and verifying some technical conditions) allow us to apply Theorem 4.8.2 in [18] and conclude
that, as N → ∞

(MN
t ) ⇒ (Xt).

1.2.3 Couplings and weak convergence of stochastic processes

We define the notion of a coupling of random variables, and stochastic processes. We define convergence
in probability of a sequence of stochastic processes. We show that convergence in probability implies
weak convergence of stochastic processes. The main reference for this subsection is [43]

Definition 1.2.22. A coupling of two random variables X, Y , with values on E and defined in the
probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) is a pair of random variables X ′ and Y ′ defined in the
same probability space (Ω,F ,P) such that, in distribution, X = X ′ and Y = Y ′. The pair (X ′, Y ′) is a
E × E valued random variable defined on (Ω,F ,P).
A coupling of two probability measures µ1, µ2 is a coupling of two random variables X,Y such that the
distribution of X is µ1 and the distribution of Y is µ2.

Let (Xi)i∈I and (Yi)i∈I be two stochastic processes with values in the same metric space (E, d). What
is P(d(Xi, Yi) < ϵ)? The problem with this question is that in principle it does not make any sense: as
the two processes might be realized in different probability spaces. P could be the product measure, but
it could also be something else. This leads us to the definition of coupling for stochastic processes.

Definition 1.2.23. A coupling of two stochastic processes (Xi)i∈I and (Yi)i∈I is a pair of stochastic
processes (X ′

i)i∈I and (Y ′
i )i∈I defined in the same probability space (Ω,F ,P) such that, in distribution,

(Xi) = (X ′
i) and (Yi) = (Y ′

i ).

We can use the concept of couplings to prove weak convergence of stochastic processes, without
relying on the Markov property. Here we stress that the method discussed in the previous subsection
(the generator) relies on the Markov property. Coupling will be a crucial tool in Chapter 2, where we
deal with non-Markovian processes.

Example 1.2.3. Let (Xi)i∈N and (Yi)i∈N be two Markov processes with values in E, realized on Ω1 and
Ω2 respectively and with the same transition probabilities. Assume than X0 ∼ γ1 and Y0 ∼ γ2, where
γ1, γ2 are probability measures in E. Let τcoup = inf{i ∈ N : Xi = Yi}. Define

Y ′
i =

{

Yi for all i ≤ τcoup

Xi for all i ≥ τcoup.
(1.2.6)

The pair (Xi)i∈N and (Y ′
i )i∈N is a coupling of (Xi)i∈N and (Yi)i∈N realized on the product space Ω1×Ω2

(Note that τcoup is a stopping time in the product σ-algebra). Note that P(Xi ̸= Y ′
i ) = P(τcoup > i).

This coupling is very useful, and it is know as Doeblin coupling [13].
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Definition 1.2.24. We say that a sequence of stochastic processes, {(XN
i )}N∈N, with values in a Metric

space (E, d), converges in probability to a process (Xi) with values in the same metric space, if for every
N ∈ N there exists a coupling ((XN ′

i )i∈I , (X
′
i)i∈I) and it is such that for every ϵ > 0

lim
N→∞

P(dM
(
(XN ′

i ), (X ′
i)
)
> ϵ) = 0.

where dM is the Skorohod M2 distance.

Lemma 1.2.25. If {(XN
i )}N∈N converges in probability to (Xi), then {(XN

i )}N∈N converges weakly in
the space of Skorohod equipped with the M2 metric to (Xi).

Proof. To prove this Lemma we need to apply Theorem 1.2.8. We will show that for any fixed δ > 0,
limN→∞ ρ

(
P((XN

i ) ∈ ·),P((Xi) ∈ ·)
)
< δ. Recall that ρ(·, ·) is the Prohorov distance (see Definition

1.2.7).
The convergence in probability of {(XN

i )}N∈N to (Xi) implies that there exists a coupling ((XN ′
i ), (X ′

i))
of (XN

i ) and (Xi), such that for all δ > 0, there exists Nδ ∈ N and for every N > Nδ ∈ N,

P(dM
(
(XN ′

i ), (X ′
i)
)
> δ) < δ.

Let A ∈ M be open (M was defined in 1.2.5) and let N > Nδ (recall the Definition of Aδ introduced in
1.2.7). Then,

P((XN
i ) ∈ A) = P((XN ′

i ) ∈ A)

≤ P((X ′
i) ∈ Aδ) + δ

= P((Xi) ∈ Aδ) + δ.

This implies that

lim
N→∞

ρ
(
P((XN

i ) ∈ ·),P((Xi) ∈ ·)
)
= inf{ϵ : P

(
(Xt) ∈ A

)
≤ P

(
(Yt) ∈ Aϵ

)
+ ϵ, ∀A ∈ O} < δ

where O is the set of open elements of M.

The following Lemma will be useful in the proof and the applications of Theorem 2.3.3.

Lemma 1.2.26. Let {(LN

i )i∈I}N∈N and {(LN
i )i∈I}N∈N be two sequences of stochastic processes realized

in the same probability space Ω with values in the same metric space E. If {(LN
i )i∈I}N∈N converges

weakly over the space of Skorohod to (Xi)i∈I and limN→∞ P
(
(LN

i ) = (L
N

i ), ∀i ∈ I
)
= 1, then {(LN

i )}N∈N

converges to (Xi) weakly over the space of Skorohod .

Proof. Let ϵ > 0. Consider Nϵ ∈ N such that for all N > Nϵ, ρ
(
P((LN

i ) ∈ ·),P((Xi) ∈ ·)
)
< ϵ/2 and

P
(
(LN

i ) = (L
N

i ), ∀i ∈ N
)
> 1− ϵ/2. Let A ∈ M be open. Then

P ((Xi) ∈ A) ≤ P((LN
i ) ∈ Aϵ/2) + ϵ/2 ≤ P((L

N

i ) ∈ Aϵ/2) + ϵ,

then we conclude that ρ
(
P((L

N

i ) ∈ ·),P((Xi) ∈ ·)
)
< ϵ.

1.2.4 Couplings, stationary distribution and mixing time

There are ways to quantify the distance between two probability measures, meaning how similar they
are. For example, the Prohorov distance and the Total Variation distance. We will explain the second
example, because it will be relevant in Chapter 2. The main reference for this subsection is [43]

Definition 1.2.27. Let µ1 and µ2 be two probability measures on the same measurable space (Ω,F).
We define their total variation distance, ∥µ1 − µ2∥TV , by the formula

∥µ1 − µ2∥TV = sup
A∈F

|µ1(A)− µ2(A)|.

This notion of distance of probability measures allows us to understand better a very relevant object
in the study of Markov processes, the stationary distribution.
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Definition 1.2.28. A stationary distribution of a stochastic process with values in E, (Xi)i∈I is a
probability distribution ν on E, such that for every open set A ⊆ E, and for every i ∈ N

ν(A) = Pν(Xi ∈ A).

The stationary distribution is very useful, mostly due to the following theorem. We will denote P(E)
the set of all probability measures in over E.

Theorem 1.2.29. Suppose that (Xi)i∈I is an irreducible and aperiodic Markov chain with finite state
space E, then there exist a unique stationary distribution ν ∈ P(E), such that for any initial distribution
γ ∈ P(E),

lim
i→∞

||Pγ(Xi ∈ ·)− ν||TV = 0.

A proof of this Theorem can be found in Chapter 4.3 of [43]. A probabilistic proof of this claim was
made by Doeblin, and it is based on the Doeblin coupling introduced in Example 1.2.3. This approach
is related with the coupling interpretation of the total variation distance, and the optimal coupling, that
we now discuss.

Lemma 1.2.30. Let µ1, µ2 ∈ P(E) be two probability measures on a discrete space E. Then

||µ1 − µ2||TV = inf
(X′

1,X
′
2) is a coupling of µ1 and µ2

P(X ′
1 ̸= X ′

2).

Furthermore, there exists a coupling (X1, X2), that we call the optimal coupling, such that

||µ1 − µ2||TV = P(X1 ̸= X2).

Proof. First note that for any subset A ⊆ E, and any coupling (X ′
1, X

′
2) of µ1 and µ2, it holds that

|µ1(A)− µ2(A)| = |P(X ′
1 ∈ A)− P(X ′

2 ∈ A)|
≤ P(X ′

1 ∈ A,X ′
2 ∈ E/A) + P(X ′

2 ∈ A,X ′
1 ∈ E/A)

≤ P(X ′
1 ̸= X2)

From this it is immediate that

||µ1 − µ2||TV ≤ inf{P(X ′
1 ̸= X ′

2 : (X ′
1, X

′
2)) is a coupling of µ1 and µ2}.

To show that the equality can be realized, we construct the optimal coupling. Let µ0 ∈ P(E) be such
that for every subset A ⊆ E,

µ0(A) =
min{µ1(A), µ2(A)}

∑

x∈E min{µ1(x), µ2(x)}
.

Now, for s = 1, 2, let µs be such that

µs(A) =
µs(A)−min{µ1(A), µ2(A)}
1−∑

x∈E min{µ1(x), µ2(x)}
.

Note that µs ∈ P(E), because for every subset A ⊆ E, µs(A)−min{µ1(A), µ2(A)} > 0 and
∑

x∈E(µs(x)−min{µ1(x), µ2(x)}) = 1−∑

x∈E min{µ1(x), µ2(x)}.
Consider the following independent random variables. Let Y0 be a random variable with distribution

µ0, and for s = 1, 2 let Ys be a random variable with distribution µs. Let W be a random variable
with values on {0, 1}, such that P (W = 1) =

∑

x∈E min{µ1(x), µ2(x)}. Note that, for s = 1, 2, the
distribution of

Xs = WY0 + (1−W )Ys

is µs. Then (X1, X2) is a coupling of µ1 and µ2, and

P(X1 ̸= X2) = P(W = 0) = 1−
∑

x∈E

min{µ1(x), µ2(x)} = ||µ1 − µ2||TV ,

where the last equality follows by an algebraic manipulation (see Proposition 4.7 of [43].).
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Example 1.2.4. Let (Xi)i∈N be an irreducible and aperiodic Markov process. If one uses the Doeblin
coupling between the process (Xi) started in some point x ∈ E and the same process started in the
stationary distribution ν, (in the notation of Example 1.2.3) one observes that for every i ∈ N

||ν − Px(Xi ∈ ·)||TV ≤ P(τcoup > i).

This is the observation that helped Doeblin to prove Theorem 1.2.29 using probabilistic arguments.

Theorem 1.2.29 implies that, after enough time, the distribution of any irreducible and aperiodic
Markov chain with finite state space becomes similar to its stationary distribution. However, the time
one needs to wait in order to be close to stationarity depends strongly on the Markov process. There is
a very efficient way to quantify this.

Definition 1.2.31. The mixing time of a Markov chain (Xi)i∈N with values in E and unique invariant
distribution ν ∈ P(E) is defined as

τmix := inf

{

i > 0 : sup
x∈E

∥Px(Yi = · )− ν∥TV ≤ 1

4

}

. (1.2.7)

The mixing time gives a very precise notion of how much time one needs to wait until the process is
very close to stationarity.

Lemma 1.2.32. For any x ∈ E, l, s ∈ N and any Markov chain (Xi)i∈N that fulfills the assumptions of
Theorem 1.2.29, it is true that

∥Px(Xlτmix+s ∈ ·)− ν∥TV ≤ 2−l.

A proof of this can be found in Section 4.5 of [43].

1.2.5 Duality of Markov processes

We define duality of Markov processes. We show how to use generators to prove duality. We introduce
the moment duality, and explain its importance. The main reference of this subsection is [31].

Duality is a tool that allows us to obtain information about a Markov process using information that
we have about an other Markov process. To be precise:

Definition 1.2.33. Let (Xt)t∈I be a Markov process with values in E1 and (Nt)t∈I be a Markov process
with values in E2. Let H : E1 × E2 → R be a function. We say that (Xt) and (Nt) are dual with

respect to H if for all t ∈ I, x ∈ E1 and n ∈ E2, it is true that H is measurable and

Ex[H(Xt, n)] = En[H(x,Nt)].

In practice an effective method to prove duality is by means of the generator. Indeed, we have the
following useful result, its proof can be found in Proposition 1.2 in [31].

Proposition 1.2.34. Let (Xt) and (Yt) be Markov processes with state space E1 and E2 and generators
A and A respectively. Let H : E1 × E2 → R be bounded and continuous. If H(x, ·), P 1

t H(x, ·) ∈ D(A)
for all x ∈ E1, t > 0 and H(·, n), P 2

t H(·, n) ∈ D(A) for all n ∈ E2, t > 0. Then,

AH(x, y) = AH(x, y) ∀x ∈ E, y ∈ F, (1.2.8)

if and only if (Xt) and (Yt) are dual with respect to H.

A duality function H which is of great importance in population genetics is H : [0, 1] × N → [0, 1]
defined by the formula

H(x, n) = xn.

Definition 1.2.35. Let (Xt)t∈I be a Markov process with values in [0, 1] and let (Nt)t∈I be a Markov
process with values in N. We say that (Xt) and (Nt) are moment duals if for every t ∈ I, x ∈ [0, 1]
and n ∈ N

Ex[X
n
t ] = En[x

Nt ].
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Remark 1.2.36. The function H : [0, 1]×N ↦→ R defined by the formula H(x, n) = xn, is bounded. Fixing
n, it is an analytic function of x. Then, it can be verified for the examples that we will study in Section
1.3, that the conditions: H(x, ·), P 1

t H(x, ·) ∈ D(A) for all x ∈ E1, t > 0 and H(·, n), P 2
t H(·, n) ∈ D(A)

for all n ∈ E2, t > 0 are satisfied. Later, we will only concentrate in proving Equation (1.2.8) to apply
Proposition 1.2.34.

A classic example of moment duals are the Wright Fisher diffusion and the Kingman coalescent.

Theorem 1.2.37. The Wright Fisher diffusion and the block counting process of the Kingman coalescent
are moment duals.

Proof. LetH(x, n) = xn. Let
←−
A be the generator of the block counting process of the Kingman coalescent

and
−→
A be the generator of the Wright Fisher diffusion. Using Example 1.2.1 we observe that

←−
AH(x, n) =

(
n

2

)

[H(x, n− 1)−H(x, n)]

=
n(n− 1)

2
[xn−1 − xn]

=
1

2
x(1− x)n(n− 1)xn−2

=
1

2
x(1− x)

∂2

∂x∂x
H(x, n).

The right hand side of the last equation is
−→
AH(x, n), the generator of the Wright Fisher diffusion applied

to H(·, n) ∈ D(
−→
A ) evaluated in x ∈ [0, 1] (see Equation (1.2.4)).

1.3 Further evolutionary forces

We briefly discuss some generalizations of the Wright Fisher model. The main reference for this subsection
is [17]

1.3.1 Mutation

We discuss a two type model with neutral mutation. We talk about duality. We also introduce the
infinite sites model and the Tajima D. Mutation is a key ingredient in Chapter 4 and in [5].

There are many different approaches to generalize the Wright Fisher model to include mutation. In
this introduction we will focus on two: the two types Wright Fisher frequency process with mutation,
and the infinite site model.

In the two types model, a population consisting of two types evolves as in the Wright Fisher frequency
process, but, contrary to the Wright Fisher model, not every individual has the same type as its parent.
Most of the times this is the case, but with certain probability an offspring can be affected by a mutation.
This causes that a parent and its offspring are of different types. In this model we study a diffusion
approximation, as we did with the Wright Fisher frequency process.

The infinite sites model ([47],[72]) assumes that each mutation occurs in a different place. Then, in
principle there can be more than two types. As time evolves the number of types increases. In many
situations this model is appropriated to study real data.

Let us now study the two types Wright Fisher model with mutation. Assume that each generation
consists of N individuals. Each individual chooses its parent from the previous generation uniformly
at random. At generation zero, each individual is assigned a type, which can be either a or A. Let
θN1 ∈ [0, 1] and θN2 ∈ [0, 1]. The type of an individual which is the offspring of an individual of type a will
be a with probability 1− θN2 and will be A with probability θN2 (if affected by a mutation). Analogously,
The type of an individual which is the offspring of an individual of type A will be A with probability
1−θN1 and otherwise will be of type a. We observe that if at certain generation there are xN individuals
of type a, the number of type a individuals at the following generation will be binomially distributed
with parameters N and x(1− θN2 ) + (1− x)θN1 . This leads to the following definition:
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When studying a real sample of n DNA sequences, one can define a segregating site as follows: A
nucleotide (a position in the DNA) is a segregation site if there are at least two elements of the sample
having different letters in this nucleotide. Then, the number of segregation sites and the average pairwise
differences can be obtained from the sampled sequences of DNA, assuming that each site can be hit by
a mutation at most once. By our derivations on the theoretical model it follows that, if the sample
was subject to neutral evolution, the experimentally obtained quantities |S| and ∆ = 2

n(n−1)

∑

i̸=j ∆i,j

should be such that ∆− |S|/∑n
i=1 1/i is close to zero. Close to zero here means that

D =
∆− |S|/∑n

i=1 1/i

Var[∆− |S|/∑n
i=1 1/i]

∈ [−2, 2]

If |D| > 2 this is a strong evidence that the underling tree is not Kingman (no neutral selection). A
negative D can be the product of a selective sweep. A positive D can be the product of a decrease in the
population size. The quantity D is known as Tajima’s D, and it is one of the best known neutrality tests.

In [5] we discuss the effect of strong seedbanks in the Tajima D of a population. In Chapter 4 we
study a model with mutation, in which the mutations arrive asymptotically as a Poisson process (see
Theorem 4.2.14).

1.3.2 Selection

Selection will be important in Chapter 4, so we present here a short introduction.

Let us now study the two types Wright Fisher model with selection. Assume that each generation
consists of N individuals. At generation zero, each individual is assigned a type, which can be either
a or A. Let sN ∈ R

+ (sN is known as the selective advantage). Each individual at each generation is
assigned a weight which is 1 if the individual is of type a and 1+ sN if the individual is of type A. Each
individual chooses its parent from the previous generation uniformly on the weights, meaning that if the
i-th individual has weight wi, each individual in the following generation chooses it as its parent with
probability wi∑N

j=1 wj
. The type of each individual is the same as its parent’s type. We observe that if in a

certain generation there are xN individuals of type a, the number of type a individuals in the following

generation will be binomially distributed with parameters N and x
1+sN (1−x) = x− sNx(1−x)

1+sN (1−x) . This leads

to the following definition:

Definition 1.3.3. The frequency process of type a individuals, in the two types N -Wright Fisher
model with selection, with selection parameter sN > 0, is the Markov chain (XN

t ), with state space
{0, 1/N, 2/N, ..., 1} and transition probabilities

pj,k =

(
N

kN

)(
x

1 + sN (1− x)

)kN (

1− x

1 + sN (1− x)

)(1−k)N

for any j, k ∈ {0, 1/N, 2/N, ..., 1}.

Remark 1.3.4. The quantity sN is known in the literature as the selective advantage of one type over
the other. Selective advantage is a crucial concept in Chapter 4 (See Proposition 4.2.8).

When the population is big and the selective advantage is small, we can consider a diffusion approx-
imation. This happens to be very useful in Subsection 4.3.6.

Proposition 1.3.5. Assume that sN = s/N for some s ∈ R
+. Let (Xt) be the solution to the SDE

dXt = −sXt(1−Xt)dt+
√

Xt(1−Xt)dBt,

then, if xN
0 → x0,

XN
Nt ⇒ Xt

weakly over the space of Skorohod.
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Proof. Let us calculate the generator AN of (XN
Nt) applied to a polynomial f : R → R, at a point x ∈ R.

ANf(x) = NEx[f(X1)− f(x)]

= NEx [(X1 − x)f ′(x)] +NEx

[
(X1 − x)2

2
f ′′(x)

]

+O(1/N)

= N(Ex[X1]− x)f ′(x) +N
1

2
varx[X1]f

′′(x) +O(1/N)

= −sx(1− x)f ′(x) +
1

2
x(1− x)f ′′(x) +O(1/N).

As before, O(1/N) is a converge uniformly to zero, as a function of x ∈ [0, 1].

The process (Xt) in the previous proposition is known as the Wright Fisher diffusion with selection,
and admits a very nice dual that was first introduced in [53], and that we will study now.

Proposition 1.3.6. Let (Xt) be as in Proposition 1.3.5 and let A be its generator. Let (Nt) be the
N-valued continuous time Markov chain with generator A such that, applied to any function f : N → R

at any point n ∈ N, fulfills

Af(n) = sn[f(n+ 1)− f(n)] +

(
n

2

)

[f(n− 1)− f(n)].

Then, (Xt) and (Nt) are moment dual.

Proof. The proof consists in applying the generator to the function H(x, n) = xn.

AH(x, n) = sn[xn+1 − xn] +

(
n

2

)

[xn−1 − xn]

= −sx(1− x)nxn−1 +
1

2
x(1− x)n(n− 1)xn−2

= −sx(1− x)
∂

∂x
H(x, n) +

1

2
x(1− x)

∂2

∂x2
H(x, n)

= AH(x, n).

Remark 1.3.7. When studying selection, a very important question is, if the number of individuals per
generation is N ∈ N, what is the probability that a single individual with selective advantage s > 0, is
able to go to fixation? Fixation means that at certain generation all individuals are its descendants. A
famous result in this direction is Haldane’s formula, which states that in the Wright Fisher model with
selection, in the case 1 ≪ s > 0 and Ns ≪ 1, denoting
πN = P(fixation of genetic type of a single mutant with selective advantage s), we have that

lim
N→∞

πN = 4s

A proof of Haldane’s formula can be found in [16]. The constant 4 is model dependent, but the fact
that it is a linear function of the selective parameter is a widespread property (see [56]). We will study
a similar question for the case of moderate selection in Chapter 4. Moderate selection is the regime in
which sN → 0 and NsN → ∞.

Remark 1.3.8. Besides the probability of fixation, the time that a mutation takes to either get extinct or
to go to fixation is also an interesting quantity to calculate. Let τN be the time until there is only one
type in the population, that is τN = inf{i : XN

i (1 −XN
i ) = 0}. In the proof of Theorem 1.1.8 there is

a trivial bound that applies for all kinds of selection parameters sN , which is limN→0 P(τ
N > 2N ) = 0.

This is an extremely bad bound. Obtaining decent bounds is not always easy. In the case of sN = s > 0
it can be proved that the time to fixation is of order (2/s) log(N). Theorem 4.2.10 in Chapter 4 deals
with this problem in the case of moderate selection.
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probabilities

p(j1,j2),(k1,k2) =

(
N (1)

k1N (1)

)

(x(1− c1,2) + yc1,2))k1N
(1)

(1− (x(1− c1,2) + yc1,2))(1−k1)N
(1)

×
(

N (2)

k2N (2)

)

(y(1− c2,1) + xc2,1))k2N
(2)

(1− (y(1− c2,1) + xc2,1))(1−k2)N
(2)

,

for any ji, ki ∈ {0, 1/N (i), 2/N (i), ..., 1}, i ∈ {1, 2}.
Again, when the population is large, under suitable conditions we can consider a diffusion approxi-

mation.

Proposition 1.3.10. Assume that N (1) = N and N (2) = ϵN , for some ϵ > 0. Let c2,1(N) = c2,1/N and
c1,2(N) = c1,2/N for some c2,1, c1,2 ∈ R

+. Let (Xt, Yt) be the solution to the SDE

dXt = c1,2(Yt −Xt)dt+
√

Xt(1−Xt)dB
1
t ,

dYt = c2,1(Xt − Yt)dt+ ϵ
√

Yt(1− Yt)dB
2
t

where (B1
t ) and (B2

t ) are two independent Brownian motions. Then, if (xN
0 , yN0 ) → (x0, y0),

(XN
Nt, Y

N
Nt) ⇒ (Xt, Yt),

weakly over the space of Skorohod.

Proof. Let us calculate the generator AN of (XN
t , Y N

t ) applied to a polynomial f : [0, 1]× [0, 1] → R, at
a point (x, y) ∈ [0, 1]× [0, 1]. We will use the two dimensional Taylor’s formula

ANf(x, y) =NEx[f(X1, Y1)− f(x, y)]

=NEx[(X1 − x)
∂

∂x
f(x, y)] +NEx

[
(X1 − x)2

2

∂2

∂2x
f(x, y)

]

+NEx[(Y1 − y)
∂

∂y
f(x, y)] +NEx

[
(Y1 − x)2

2

∂2

∂y2
f(x, y)

]

+O(1/N)

=c1,2(y − x)
∂

∂x
f(x, y) +

x(1− x)

2

∂2

∂x2
f(x, y)

+ c2,1(x− y)
∂

∂y
f(x, y) + ϵ

y(1− y)

2

∂2

∂y2
f(x, y) +O(1/N).

where O(1/N) is uniformly bounded on (x, y). The proof is complete by standard arguments, as the
generator of (Xt, Yt) is exactly

Af(x, y) = c1,2(y − x)
∂

∂x
f(x, y) +

x(1− x)

2

∂2

∂2x
f(x, y) + c2,1(x− y)

∂

∂y
f(x, y) + ϵ

y(1− y)

2

∂2

∂2y
f(x, y).

For a detailed manipulation of the smaller order terms in a similar calculation, see Appendix A.2.

Now, we can deduce the moment dual.

Proposition 1.3.11. Let (Xt, Yt) be as in Proposition 1.3.10 and let A be its generator. Let (Nt,Mt)
be the N × N valued continuous time Markov chain with generator A such that, applied to any function
measurable and bounded f : N× N → R at any point (n,m) ∈ N× N, fulfills

Af(n,m) = c1,2n[f(n− 1,m+ 1)− f(n,m)] +

(
n

2

)

[f(n− 1,m)− f(n,m)]

+c2,1m[f(n+ 1,m− 1)− f(n,m)] + ϵ

(
m

2

)

[f(n,m− 1)− f(n,m)].

Then, (Xt, Yt) and (Nt,Mt) are such that

E(x,y)[X
n
t Y

m
t ] = E(n,m)[x

NtyMt ].
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Proof. The proof consists of applying the generator A to the function H(x, y, n,m) = xnym.

AH(x, y, n,m) =c1,2n[xn−1ym+1 − xnym] +

(
n

2

)

[xn−1ym − xnym]

+ c2,1m[xn+1ym−1 − xnym] + ϵ

(
m

2

)

[xnym−1 − xnym]

=c1,2nxn−1ym(y − x) +

(
n

2

)

xn−2ymx(1− x)

+ c2,1mxnym−1(x− y) +

(
m

2

)

xnym−2y(1− y)

=c1,2(y − x)
∂

∂x
H(x, y, n,m) +

x(1− x)

2

∂2

∂x2
H(x, y, n,m)

+ c2,1(x− y)
∂

∂y
H(x, y, n,m) + ϵ

y(1− y)

2

∂2

∂y2
H(x, y, n,m)

=AH(x, y, n,m).

Definition 1.3.12. Define the time to the most recent common ancestor in the structured coales-
cent, of a sample of n individuals from island 1 and m from island 2, to be

TMRCA[n,m] := inf{t > 0 : Nt +Mt = 1 given that N0 = n,M0 = m},

where (Nt,Mt) is as in Proposition 1.3.10.

Two important properties of the structured coalescent are that it comes down from infinity and that
E[TMRCA[·, ·]] : N×N ↦→ R

+ is a bounded function (compare with Theorem 3.4.4 and Theorem 3.4.8 in
Chapter 3). Now we prove that E[TMRCA[·, ·]] is a bounded function.

Lemma 1.3.13. There exists a constant independent of n and m, k > 0 such that for every n,m ∈ N,

E[TMRCA[n,m]] < k.

Proof. The main idea is to imitate the calculation of the expected time to the most recent common
ancestor for the Kingman coalescent (see Lemma 1.1.28). Let k = n+m. Let ψ1 be the time of the first
coalescent event, ψ2 the time of the second coalescent event and so on: ψi = inf{t > 0 : Nt+Mt = k− i}.
Now note that if Nt+Mt = k− i, then at least ⌊k−i+1

2 ⌋ individuals are in the same island. Without loss
of generality assume that ϵ < 1. This implies that

E[ψi+1 − ψi] ≤
(

ϵ

(k−i+1
2

2

))−1

(1.3.1)

We finally observe that TMRCA[n,m] = ψk−1 =
∑k−1

i=1 (ψi − ψi−1), where ψ0 = 0. Then for any k > 2,

E[TMRCA[n,m]] =E

[
k−1∑

i=1

(ψi − ψi−1)

]

=

k−1∑

i=1

E[ψi − ψi−1]

≤2

⌊(k+1)/2⌋
∑

s=1

(

ϵ

(
s

2

))−1

+ sup
n2+m2=2

E[TMRCA[n2,m2]]

=4ϵ−1

(

1− 1

⌊(k + 1)/2⌋

)

+ sup
n2+m2=2

E[TMRCA[n2,m2]]

The first inequality follows from Equation (1.3.1). We finish the proof by observing that the right hand
side is finite and independent of n,m.
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Part I

Seedbanks
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Chapter 2

Generalizations of the KKL model

Now we present the first seedbank model. Some parts of this Chapter are based on [7] and [6]. The main
Theorem of the chapter (Theorem 2.3.3) is based on discussions with J. Berestycki and N. Kurt.

Seedbanks can play an important role in the population genetics of a species, acting as a buffer against
evolutionary forces such as random genetic drift and selection as well as environmental variability (see
e.g. [70] for an overview). Their presence typically leads to significantly increased genetic variability resp.
effective population size (see, e.g., [68], [42], [55], [69]) and could thus be considered as an important
‘evolutionary force’. In particular, classical mechanisms such as fixation and extinction of genes become
more complex: genetic types can in principle disappear completely from the active population at a
certain time while returning later due to the germination of seeds or activation of dormant forms.

Seedbanks and dormant forms are known for many taxa. For example, they have been suggested to
play an important role in microbial evolution [38], [23], where certain bacterial endospores can remain
viable for (in principle arbitrarily) many generations.

In 2001, Kaj, Krone and Lascoux [33] postulated and studied an extension of the classical Wright
Fisher model that includes seedbanks effects. In their model, each generation consists of a fixed amount
of N individuals. Each individual chooses its parent a random amount of generations in the past and
copies its genetic type. Here, the number of generations that separates each parent and offspring is
understood as the time that the offspring spends as a seed or dormant form. Formally, a parent is
assigned to each individual in generation g by first sampling a random number B, which is assumed to
be independent and identically distributed for each individual, and then choosing a parent uniformly
among the N individuals in generation g−B (note that the case B ≡ 1 is just the classical Wright Fisher
model). The distribution of B, that we denote µ ∈ P(N), is called the seedbank age distribution.

The main result in [33] is that if µ is restricted to finitely many generations {1, 2, . . . ,m}, where m is
independent of N , then the ancestral process induced by the seedbank model converges, after the usual
scaling of time by a factor N, to a time changed (delayed) Kingman coalescent, where the coalescent
rates are multiplied by 1/E[B]2. An increase of the expected value of the seedbank age distribution
thus further decelerates the coalescent, leading to an increase in the effective population size. However,
as observed by [70], since the overall coalescent tree structure is retained, this leaves the relative allele
frequencies within a sample unchanged. In this scenario we thus speak of a ‘weak’ seedbank effect. In
this chapter we will focus on ‘weak’ seedbank effect, but we will also show that seedbanks can cause
stronger effects.

We are interested in the case where B is an unbounded random variable. In particular, we will assume
that

P(B > k) = µ({k, k + 1, ...}) = L(k)k−α,

for all k ∈ N, where L is a slowly varying function. We will show that the genealogical process conver-
gences to a time change of the Kingman coalescent in the case α > 1. On the other hand, we will show
that a strong seedbank effects can lead to a behaviour which is very different from the Kingman coales-
cent. In particular, if the seedbank age distribution is ‘heavy-tailed’, say, then if α < 1 the expected time
for the most recent common ancestor is infinite, and if α < 1/2 two randomly sampled individuals do
not have a common ancestor at all with positive probability. Hence this will not only delay, but actually
completely alter the effect of random genetic drift.
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Finally we will study a seedbank model in which the seedbank age distribution depends on the
population size. We will study an example in which convergence to the Kingman coalescence holds after
rescaling time with a scale function that goes to infinity orders of magnitude faster than N . This is a
seedbank model with

µ = µ(N) = (1− ε)δ1 + εδNβ , β > 0, ε ∈ (0, 1).

In particular, we will show that for β < 1/5 the ancestral process converges, after rescaling the time
by the non-classical factor N1+2β , to a time-changed Kingman coalescent, so that the expected time to
the most recent common ancestor is highly elevated in this scenario. However, since the above model is
highly non-Markovian, the results in other parameter regimes, in particular β = 1, are still elusive.

2.1 Construction of the model

The formal construction of our model follows [33, 7, 6]. Fix β > 0, ε ∈ (0, 1). For each N ∈ N let

µN :=
∞∑

i=1

aNi δi, (2.1.1)

where
∑∞

i=1 a
N
i = 1, 0 ≤ aNi ≤ 1 and δi is the atomic Dirac measure with support {i}.

Fix once and for all a reference generation 0, from which time in discrete generations runs backwards.
Fix a sample size m ≥ 2 and a sampling measure γ for the generations of the original sample on the
integers N. We will usually assume that γ has finite support (independent of N), an important example
being γ = δ0. Let m ∈ N be independent of N , and assume that m < N . The ancestral lineages of m
sampled individuals indexed by w ∈ {1, ...,m} in the seedbank process, who lived in generations sampled

according to γ with respect to reference time 0, are constructed as follows. Let {(S(w)
i )i∈N}w∈{1,...,m} be

a family of independent Markov chains, whose state space is the non-negative integers N0, with S
(w)
0 ∼ γ,

and homogeneous transition probabilities,

P
(
S
(w)
1 = k′

⏐
⏐S

(w)
0 = k

)
= µN (k′ − k), 0 ≤ k < k′, i = 1, ...,m.

The interpretation is that S
(w)
0 represents the generation of individual w, and S

(w)
1 the generation of

its parent (backward in time), and so on. The set {S(w)
0 , S

(w)
1 , ...} ⊆ N0 is thus the set of generations of

all ancestors of individual w, including the individual itself.

This construction should be thought as a generalization of the Wright Fisher Graph introduced in
Definition 1.1.1. Indeed, one can construct the Kaj Krone and Lascoux graph.

Definition 2.1.1. Let VN =
{
v = (g, l) ∈ Z × {1, 2, ..., N}

}
, {Uv}v∈VN

be a sequence of indepen-
dent random variables, uniformly distributed in {1, 2, ..., N}, {lv}v∈VN

be a sequence of independent µN

distributed random variables and

EN =
{
{(g − l(g,l), U(g,l)), (g, l)} for all v = (g, l) ∈ VN

}
.

We define the N-KKL graph to be the random graph with vertex set VN and edge set EN .

In order to construct the ancestral process of several individuals, we introduce interaction between
ancestral lines as follows. Within the population of size N, in any fixed generation k, the individuals

are labeled from 1 to N. Let (U
(w)
i )i∈N,w∈{1,...,m} denote a family of independent random variables

distributed uniformly on {1, ..., N}. We think of U
(w)

S
(w)
i

as the label within the population of size N of

the i-th ancestor of individual w. This means that the label of each ancestor of each individual is picked
uniformly at random in each generation that the ancestral line of this individual visits, exactly as it is
done in the Wright Fisher model. The difference is that an ancestral line in the Wright Fisher model
visits every generation, while in the Kaj Krone and Lascoux (KKL) model it does not. Note that of
course all the random variables introduced up to now depend on the population size N.
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After time T1 we discard all S(j) for j ∈ Ip1 , j ̸= ip1, and only keep S(ip1) for every p = 1, ..., N. We interpret
this as merging the ancestral lineages of all individuals from Ip1 into one lineage at time T1, separately
for every p with Ip1 ̸= ∅. In case there are several non-empty Ip1 , we observe simultaneous mergers. For
r ≥ 2 we define now recursively

Tr := inf
{
k > Tr−1 : ∃i, l ∈ N, ∃w, j ∈ Icr−1 ∪ Jr−1, i ̸= j : k = S

(w)
i = S

(j)
l , U

(w)
k = U

(j)
k

}
, (2.1.6)

and

Ir :=
{
w ∈ Icr−1 ∪ Jr−1 : ∃i, l ∈ N, ∃j ̸= w, j ∈ Icr−1 ∪ Jr−1 : Tr = S

(w)
i = S

(j)
l , U

(w)
Tr

= U
(j)
Tr

}
, (2.1.7)

and similarly Ipr := {w ∈ Ir : U
(w)
Tr

= p}, ipr = min Ipr , p = 1, ..., N, and Jr = ∪p:Ip
r ̸=∅{ipr}. We stop the

recursive construction as soon as Icr = ∅, which happens after finitely many r. Now we can finally define
the main object of interest of this chapter.

Definition 2.1.3. Fix N ∈ N, β > 0, and ε > 0. Fix m ≪ N and an initial distribution γ on N0.
Define a partition-valued process (AN

k )k∈N0 , starting with AN
0 =

{
{1}, ..., {m}

}
, by setting AN

k = AN
k−1 if

k /∈ {T1, T2, ..}, and constructing the AN
Tr
, r = 1, 2, ... in the following way: For each p ∈ {1, ..., N} such

that Ipr ̸= ∅, the blocks of AN
Tr−1 that contain at least one element of Ipr , are merged. Such merging is done

separately for every p with Ipr ̸= ∅, and the other blocks are left unchanged. The resulting process (AN
k )k∈N

is called the ancestral process of m individuals in the Wright Fisher model with seedbank age

distribution µN and initial distribution γ. The time to the most recent common ancestor of the m
individuals is defined as

TN
MRCA(m) := inf

{
k ∈ N : AN

k = {1, ...,m}
}
. (2.1.8)

Remark 2.1.4. This definition of ancestral process is slightly more involved than the equivalent definition
for the Wright Fisher model, Definition 1.1.16. The reason for this is merely the technical difficulties,
induced by the fact that in the KKL model ancestral lines do not visit all generations. However, the
reader should remember than the concept behind the two definitions is the same.

It is important to note that (AN
k ) is not a Markov process: The probability that a coalescent event

occurs at time k depends on more than just the configuration AN
k−1. In fact, it depends on the values

max{S(w)
n : S

(w)
n ≤ k− 1}, w = 1, ...,m, that is, on the generation of the last ancestor of each individual

before generation k.

Now let us present an equivalent construction of (AN
k ) in terms of renewal processes.

Fix N ∈ N and a probability measure µ on the natural numbers. Let v ∈ VN := Z×{1, ..., N} denote
an individual of our population. For v ∈ VN we write v = (gv, lv) with gv ∈ Z, and 1 ≤ lv ≤ N, hence gv
indicating the generation of the individual in Z, and lv the label among the N individuals alive in this
generation.

The ancestral line AL(v) = {v0 = v, v1, v2, . . . } of our individual v is a set of sites in VN , as in
definition 1.1.9, where gv0

, gv1 , . . . ↓ −∞ is a strictly decreasing sequence of generations, with independent
decrements gvk

−gvk−1
=: ηl, l ≥ 1 with distribution µ, and where the lv0

, lv1
, . . . are i.i.d. uniform random

variables with values in {1, . . . , N}, independent of {gvk
}k∈N0

. Letting

Si :=
i∑

k=0

ηl,

where we assume S0 = η0 = 0, we obtain a discrete renewal process with interarrival law µ. In the
language of [45], we say that a renewal takes place at each of the times Si, i ≥ 0, and we write (qi)i∈N0

for the renewal sequence, that is, qi is the probability that i is a renewal time.

It is now straightforward to give a formal construction of the full ancestral process starting from
m ∈ N individuals at time 0 in terms of a family of N independent renewal processes with interarrival
law µ and a sequence of independent uniform random variables Uw

k , k ∈ −N, w ∈ {1, . . . ,m}, with
values in {1, . . . , N} (independent also of the renewal processes). Indeed, let the ancestral processes pick
previous generations according to their respective renewal times, and then among the generations pick
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labels according to their respective uniform random variables. As soon as at least two ancestral lineages
hit a joint ancestor, their renewal processes couple, i.e. follow the same realization of one of their driving
renewal processes (chosen arbitrarily, and discarding those remaining parts of the renewal processes and
renewal times which aren’t needed anymore). In other words, their ancestral lines merge.

Denote by Pµ
N the law of the above ancestral process. For v = (gv, lv) ∈ VN with gv = 0, we have

qi = Pµ
N

(

AL(v) ∩
(
{−i} × {1, ..., N}

)
̸= ∅

)

, (2.1.9)

and the probability that w = (gw, lw) ∈ VN is an ancestor of v, for gw < gv, is given by

Pµ
N (w ∈ AL(v)) =

1

N
qgv−gw =

1

N
q−gw .

For notational convenience, let us extend qi to i ∈ Z by setting qi = 0 if i < 0. Note that q0 = 1.

In the rest of this chapter, we denote by Pγ the law of (S
(1)
i ), indicating the initial distribution of

the generations of the individuals. We write P⊗γm for the law of the process (AN
k ) if the generations,

of each of the m sampled individuals, are chosen independently according to γ. We abbreviate by slight
abuse of notation both Pδ0 and P⊗δm0

by P0.

2.2 Three different behaviors

In this subsection, a seedbank effect with unbounded seedbank age distribution µ is considered. To make
this statement precise we need the following definition.

Definition 2.2.1. For each α > 0, let Γα := {µα}, α ∈ (0,∞) be the set of all measures µ such that

µ({i, i+ 1, ...}) = i−αL(i), n ∈ N,

for some slowly varying function L : N ↦→ N, i.e. for any a ∈ R
+,

lim
i→∞

L(⌊ai⌋)
L(i)

= 1

Below, we identify three regimes concerning the time to the most recent common ancestor: If α > 1,
then the expected time to the most recent common ancestor is of order N, and the ancestral process
converges to a constant time change of Kingman’s coalescent under classical rescaling by the population
size. For 1/2 < α < 1, the time to the most recent common ancestor is finite almost surely, but the
expectation is infinite for any N. If α < 1/2, then there might be no common ancestor at all.

Theorem 2.2.2 (Existence and expectation of the time to the most recent common ancestor). Let
µ ∈ Γα, γ = δ0, v, w ∈ VN , v ̸= w and N ∈ N.

(a) If α ∈ (0, 1/2), then P(AL(v) ∩AL(w) ̸= ∅) < 1 for all N ∈ N,

(b) If α ∈ (1/2, 1), then P(AL(v) ∩AL(w) ̸= ∅) = 1 and E[TMRCA[2]] = ∞ for all N ∈ N.

(c) If α > 1, then P(AL(v) ∩AL(w) ̸= ∅) = 1 for all N ∈ N and E[TMRCA[2]] < ∞ for all N ∈ N.

In other words, for α > 1/2 two individuals almost surely share a common ancestor, but the expected
time to the most recent common ancestor is finite for α > 1 and infinite if α ∈ (1/2, 1). Compare this
Theorem with Lemma 1.1.15.

Remark 2.2.3. In the boundary case α = 1, the choice of the slowly varying function L becomes relevant.
If we choose L = const., then it is easy to see from the proof that E[τ ] = ∞. The case α = 1/2 also
depends on L and requires further investigation.

To prove Theorem 2.2.2 we will need some bounds on the qi (defined in Equation(2.1.9)) that can be
obtained via Tauberian theorems. Proof of Theorem 2.2.2. We first prove (c), which corresponds to

the case where we have convergence to Kingman’s coalescent. Without loss of generality, assume gv =
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gw = 0. Denote by (Ri) and (R′
i) the sequences of renewal times of the renewal processes corresponding

to v and w respectively, that is, Ri = 1{i∈{S0,S1,...}}. In other words, Ri = 1 if and only if v has an
ancestor in generation −i, and qi = P (Ri = 1). Let

T := inf{i : Ri = R′
i = 1}

denote the coupling time of the two renewal processes. Since each time v and w have an ancestor in the
same generation, these ancestors are the same with probability N, we get

E[TMRCA] = NE[T ].

But if α > 1, we have that Eµ[η1] < ∞, and therefore by Proposition 2 of [44], E[T ] < ∞.
(b) We will use Lemma 5.1.b. in [27], which is:

Lemma 2.2.4 ([27] 5.1.b). Let µ ∈ Γα. Let {qi}i∈N be as in Equation (2.1.9). The sum

∞∑

i=0

q2i

is finite if α ∈ (0, 1/2) and infinite if α > 1/2.

Now, for independent samples R and R′, the expected number of generations where both individuals
have an ancestor, is given by

E
[

∞∑

i=0

RiR
′
i

]
=

∞∑

i=0

E[Ri]E[R′
i] =

∞∑

i=0

q2i ,

which is infinite if α > 1/2 due to Lemma 2.2.4. Each of these times, the ancestors are the same with
probability 1/N, therefore with probability one A(v) and A(w) eventually meet. However, the expected
time until this event is bounded from below by the expectation of the step size,

E[TMRCA] ≥ E[η] = ∞

if α < 1.
(a) In this case, E

[∑∞
i=0 RiR

′
i

]
=

∑∞
i=0 q

2
i < ∞, and therefore

P
(

∞∑

i=0

RiR
′
i = ∞

)
= 0,

which implies that the probability that AL(v) and AL(w) never meet is positive.

Remark 2.2.5. In [23] the observation that the existence of seedbanks can drastically delay the time to
the most recent common ancestor was used to provide a plausible explanation for the peculiar genetic
relation between Azotobacter vinelandii and Pseudomonas. It turns out that around 60% of the genome
of Azotobacter is shared with Pseudomonas. This is rather large, but apparently not enough to consider
Azotobacter as a Pseudomonas. Azotobacter is known for its ability to produce cysts. We proposed
that Azotobacter has an ancester Pseudomonas in the very far past. We supported our hypothesis by
comparing the genome of Azotobacter with the genome of different Pseudomonas. We concluded that
the existence of a seedbank could have had a crucial effect in the evolution of Azotobacter.

2.3 Convergence to the Kingman coalescent

We will now study the weak seed bank regime, in which the ancestral process of the Kaj, Krone and
Lascoux model converges to a time changed Kingman coalescent.

This section consists of three subsections: in the first we introduce an auxiliary process. In the second
we state and prove a criterion for convergence to the Kingman coalescent. Finally in the last subsection
we apply the criterion to some important particular cases.
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Note that, conversely, given S
(w)
i , i ∈ N0, equation (2.3.3) uniquely determines Mi, i ∈ N0. Taking γ

as the distribution of S0 and as the initial distribution for (Xi), since the urn process (Xi) is determined
by the successive times it visits urn 1, Lemma 2.3.1 yields a one-to-one correspondence between ancestral
lines in the KKL process, and the above urn process.

Let EµN
denote the expectation of a µN -distributed random variable i.e.

EµN
= E[B] =

∞∑

i=1

µN ({k, k + 1, ...}).

Lemma 2.3.2 (Lemma 1 in [33]). The probability measure νN on {0, ..., Nβ − 1} defined by

νN (k) :=
µN

(
{k, k + 1, ...}

)

EµN

, k = 0, 1, 2..., (2.3.4)

is the unique stationary distribution of the urn process (Xk).

Proof. The proof follows from equation (2.3.1).

PνN
(X1 = k) =PνN

(X1 = k|X0 = k + 1)PνN
(X0 = k + 1)

+ PνN
(X1 = k|X0 = 0)PνN

(X0 = 0)

=νN (k + 1) + µN (k)νN (0)

=νN (k)

In view of Lemma 2.3.1, an important quantity in this paper will be the probability that Xk = 0,
which under stationarity is equal to

νN (0) =
1

EµN

. (2.3.5)

This is particularly important because

PνN⊗νN
(X

(i)
k = X

(j)
k = 0) = ν2N (0) =

( 1

EµN

)2

. (2.3.6)

2.3.2 A mixing time criterion for convergence to the Kingman coalescent

Theorem 2.3.3. Fix a sequence of seedbank age distributions {µN}N∈N, such that for every N ∈ N

|supp(µN )| < ∞. Let (XN
k )k∈N0 be the urn process associated to µN , with XN

0 = (0, ..., 0). Let (AN
k )

be the ancestral process induced by the urn process (XN
k ). If (XN

k )k∈N0
is irreducible and aperiodic with

stationary distribution νN and a mixing time τNmix, and they are such that

τNmixE
2
µN

N
→ 0 as N → ∞, (2.3.7)

then for any sample size m ∈ N, the rescaled ancestral processes (AN
⌊NE2

µN
t⌋)t∈R+ converges weakly over

the space of Skorohod to the Kingman m-coalescent.

Remark 2.3.4. For simplicity we will always assume XN
0 = (0, ..., 0), but the results are true under more

general initial conditions. In [7] and [6] particular cases of the previous Theorem are discussed for more
general initial conditions (independent of N).

Remark 2.3.5. If one considers unbounded seedbank age distributions, in the sense of |supp(µN )| = ∞,
then τNmix = ∞. In that case the theorem is still true, but it is absolutely not useful. One can study
unbounded seedbanks by truncating µN and applying a coupling argument. Unfortunately, this method
still doesn’t seem to work as well as one would like it to work (see Theorem 2.3.7 and compare it with
the main Theorem of [7]).
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Proof. Heuristically, if equation (2.3.7) holds, by the time until the first coalescent event “has an oppor-
tunity to happen”, the urn process (XN

k ) gets very close to its stationarity distribution νN . Imagine an
urn process which is always in stationarity, then the probability of observing a coalescence event in the
ancestral process that it induces, depends only on the number of ancestors (the number of balls in the
urn process or equivalently the number of blocks in the state of the ancestral process). In this case, the
ancestral process is a Markov process. The philosophy of this proof is to compare the ancestral process
(AN

k ) with an artificial ancestral process that comes form an artificial urn process which, in some sense,
is always in stationarity. The gain of doing this is that we can use the generator of the artificial ancestral
process to prove convergence to the Kingman coalescent and then use a coupling argument to extend the
result to the real ancestral process. The main idea to construct the coupling is to observe the position
of each pair of individuals w, j ∈ {1, 2, ...,m} only when both members of the pair have the same label

i.e. U
(w)
k = U

(j)
k (when there is an opportunity to coalesce). This gives enough time to the urn processes

X
(w)
k , X

(j)
k to have a very similar distribution to the stationary distribution ν.

The proof is notationally heavy, so the reader is invited to consult Table 2.1.

Table 2.1: Notation
Symbol Description State space

{U (w)
k } Family of independent uniform on {0, 1, ..., N} RV {0, 1, ..., N}
τwj
i Times at which coalescence is possible between N

the blocks with smallest element w and j respectively
τi Times at which coalescence is possible N

(XN
k ) Urn process N

(AN
k ) Ancestral process constructed using (XN

k ) and {U (w)
k } [m]

(RN
i ) Equal in distribution to (XN

τi ) N

(R
N

i ) Sequence of independent νN distributed RV, N

(R
N

i , RN
i ) are constructed using optimal coupling

(ZN
k ) (ZN

τi ) = RN
i and constant in k /∈ {τi} N

(Z
N

k ) (Z
N

τi ) = R
N

i and constant in k /∈ {τi} N

(L
N

i ) Ancestral process constructed using (Z
N

k ) and {U (w)
k } [m]

(LN
i ) Ancestral process constructed using (ZN

k ) and {U (w)
k } [m]

Q Absorption time of (LN
i ) N

k Time measured in generation N

i Time measured in opportunities to coalesce N

t Time in the limiting scale R
+

Fix the seedbank age distributions µN and fix the sample size m ∈ N. Denote EN = supp(µN ). The
N will be dropped from the notation when there is no ambiguity. Recall the family of random variables

(U
(w)
k )k∈N0

, for each w ∈ {1, ...,m}, which is the sequence of IID uniform in {1, ..., N} random variables,

introduced in the construction of (AN
k ) in Section 2.1. For any pair j, w ∈ {1, 2, ...,m}, j ̸= w, let τ jw0 = 0

and
τ jwi = inf{k > τ jwi−1 : U

(j)
k = U

(w)
k }.

Let τ0 = 0 and
τi = inf{k > τi−1 : k = τ jws for some s ∈ N, j, w ∈ {1, 2, ...,m}}.

Observe that for all w, j ∈ {1, 2, ...,m} it holds that almost surely τi ≤ τ jwi . Note further that {τ jwi −
τ jwi−1}i∈N is a sequence of IID geometric random variables with parameter 1/N . Indeed,

P(τ jwi − τ jwi−1 ≥ k) = P(τ jw1 ≥ k) = P(U (j)
s ̸= U (w)

s ∀ s < k) = (1− 1/N)k−1

This implies in particular that, for every i ∈ N and j, w ∈ {1, 2, ...,m}, τ jwi is almost surely finite. Then
we conclude that for every i ∈ N, τi is almost surely finite.

Let R
N

0 = RN
0 = XN

0 . Conditionally on RN
i−1 = r = (r1, ..., rm) and R

N

i−1 = r = (r1, ..., rm),

let (R
N

i , RN
i ) be the optimal coupling of the stationary distribution of (XN

k ), which is ν⊗m
N , and the
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probability measure

ξi,r(·) := Pr(X
N
τi−τi−1

∈ ·) = Pr1,...,rm((X
(1)
τi−τi−1

, ..., X
(m)
τi−τi−1

) ∈ ·), (2.3.8)

which are two probability measures on Em
N . Applying the strong Markov property to the almost surely

finite stopping time τi−1 we observe that

ξi,r(·) = Pr(X
N
τi−τi−1

∈ ·) = Pr(X
N
τ1 ∈ ·) =: ξr(·). (2.3.9)

As we construct RN
i and R

N

i using the optimal coupling, we know by Lemma 1.2.30 that

P
(
RN

i = R
N

i |RN
i−1 = (r1, ..., rm)

)
= 1− ||ν⊗m

N − ξr1,...,rm ||TV (2.3.10)

Lemma 2.3.6. The above construction implies that:

• (RN
i , R

N

i )i∈N is a Markov process.

• The stochastic process (R
N

i )i∈N is a sequence of independent νN -distributed random variables .

• In distribution (RN
i )i∈N = (XN

τi )i∈N.

Proof. The first claim is immediate by construction. The second claim is verified inductively. It is clear

by construction that R
N

1 is νN -distributed and independent of R
N

0 . Assume that (R
N

i )i∈{1,...,n−1} is a
collection of independent νN -distributed random variables. Then,

P(R
N

n = an, R
N

n−1 = an−1, ..., R
N

1 = a1) =
∑

b∈EN

P(R
N

n = an, R
N

n−1 = an−1, ..., R
N

1 = a1, R
N
n−1 = b)

=
∑

b∈EN

P(R
N

n = an
⏐
⏐R

N

n−1 = an−1, ..., R
N

1 = a1, R
N
n−1 = b)

× P(R
N

n−1 = an−1, ..., R
N

1 = a1, R
N
n−1 = b)

=
∑

b∈EN

P(R
N

n = an
⏐
⏐R

N

n−1 = an−1, R
N
n−1 = b)

× P(R
N

n−1 = an−1, ..., R
N

1 = a1, R
N
n−1 = b)

=νN (an)
∑

b∈EN

P(R
N

n−1 = an−1, ..., R
N

1 = a1, R
N
n−1 = b)

=νN (an)P(R
N

n−1 = an−1, ..., R
N

1 = a1)

This proofs the inductive step and proofs the claim.
To verify the last claim notice that by construction (RN

i )i∈N is a Markov chain, (the right hand side
of equation (2.3.9) depends only on (r1, ..., rm)). As XN

0 = RN
0 , to prove the claim we just need to verify

that the transition matrix of (RN
i )i∈N is the same as the transition matrix of (XN

τi )i∈N.

For any fixed (r1, ..., rm) ∈ E⊗m
N and (x1, ..., xm) ∈ E⊗m

N ,

Pr1,...,rm(RN
1 = (x1, ..., xm)) =ξi,r1,...,rm((x1, ..., xm))

=Pr1,...,rm((X(1)
τ1 , ..., X(m)

τ1 ) = (x1, ..., xm)). (2.3.11)

Then the transition probabilitis are equal, and the equality in distribution holds.

For every k ∈ N, let ik := max{i : τi ≤ k}. We define

Zk := RN
ik

and
Zk := R

N

ik
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We construct (LN
k ) and (L

N

k ) just as we constructed (AN
k ) in Section 2.1, where (Zk) (resp. (Zk)) plays

the role of (Xk). This means that j and w coalesce in (LN
k ) the first time k > 0, such that Z

(w)
k = Z

(j)
k

and U
(w)
k = U

(j)
k . By Equation (2.3.11), in distribution (AN

k ) = (LN
k ) as in either process coalescence

can occur only on times k = τNi , for some i ∈ N.

Now, notice that (L
N

k ) is a Markov chain with values in [m], the space of partitions of m elements.
Let π, π′ ∈ [m]. Recall that, we say that π′ follows π, and we write π ≻ π′, if π′ can be constructed from
π by merging exactly 2 blocks. Assume that π ≻ π′. Assume further, without loss of generality, that π′

is constructed by merging the blocks of π with smallest element w and j respectively. Then,

P(L
N

k = π′ |LN

k−1 = π) =P({∃i : k = τwj
i }, Z(w)

k = Z
(j)

k = 0) + o(1/N)

=P(∃i : k = τwj
i )P(Z

(w)

k = Z
(j)

k = 0|∃i : k = τwj
i ) + o(1/N)

=
1

N

1

E2
µN

+ o(1/N)

Now, let π be a partition of m elements, that is different from π and that can not be constructed
by merging 2 blocks of π. Then, in order to go from π to π in one step, a necessary condition is that

at least 3 elements of {U (w)
k }w∈{1,...,m} are equal or at least 2 pairs of elements of {U (w)

k }w∈{1,...,m} are

equal. Either event happen with probability N−2. Further, at least 3 elements of {Z(w)

k }w∈{1,...,m} must
be at state zero. This happen with probability E

−3
µN

P(L
N

k = π |LN

k−1 = π) ≤ 1

N2E3
µN

.

From these two equations we can calculate the generator of L
N

k . For any π ∈ [m], let [m]π = {π′ ∈ [m] :

π ≻ π′}. Let f : [m] ↦→ R.1 Let L be the discrete generator of L
N

k . Then

Lf(π) =
∑

π′∈[m]π

f(π′)− f(π)

NE2
µN

+O(
1

N2E3
µN

).

This suffices to conclude that (L
N

⌊NE2
µN

t⌋)t>0 ⇒ (Kt)t>0, weakly over the space of Skorohod over [m],

where (Kt) is the Kingman coalescent (see, [18] Theorem 4.8.2 and Theorem 3.7.8).
It remains to show that with probability going to 1 as N goes to infinity, the processes (LN

k ) and the

process (L
N

k ) follow the same trajectory. Let Q = inf
{
i ∈ N : L

N

τi = {{1, 2, ...,m}}
}
be the absorption

time of (L
N

τi ). Note that {{1, 2, ...,m}} is an absorbing state of L
N

τi and LN
τi . Our aim for the rest of the

proof will be to verify the hypothesis of Lemma 1.2.26.

P
(
(LN

k ) = (L
N

k ), ∀k ∈ N
)
=P

(
(LN

τi ) = (L
N

τi ), ∀i ≤ Q
)

≥P(RN
i = R

N

i , ∀i ≤ Q)

Note further that for any function f : N ↦→ R
+, such that limN→∞ f(N) = ∞, it holds that

lim
N→∞

P(Q > f(N)E2
µN

) ≤ lim
N→∞

1−
(
1− (1− E

−2
µN

)f(N)E2
µN

/m)m
= 0.

To obtain the inequality one can consider a modified coalescent in which only one pair has the possibility
to coalesce at each time and then one can calculate the probability that non of the m coalescent events
(neccesary to attain the absorbing sate) takes more that f(N)E2

µN
/m units of time. Then we observe

that the two last equations lead to

lim
N→∞

P
(
(LN

k ) = (L
N

k ), ∀k ∈ N
)
≥ lim

N→∞
P(RN

i = R
N

i , ∀i ≤ f(N)E2
µN

) (2.3.12)

≥ lim
N→∞

(

inf
r∈Em

(1− ||ν⊗m
N − ξi,r||TV )

)⌊f(N)E2
µN

⌋

1We do not require further properties of the function f , because [m] is a finite (discrete) space.
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Here we used Equation (2.3.10) in the second inequality. Now observe that, for all r = r1, ..., rm ∈ Em,

||ν⊗m
N − ξi,r||TV =||ν⊗m

N −
∞∑

s=1

Pr1,...,rm((X(1)
s , ..., X(m)

s ) ∈ ·)P(τi − τi−1 = s)||TV

≤
∞∑

s=1

||ν⊗m
N − Pr1,...,rm((X(1)

s , ..., X(m)
s ) ∈ ·)||TV P(τ1 = s)

≤
∞∑

h=1

τmix∑

k=1

||ν⊗m
N − Pr1,...,rm((X

(1)
rτmix+k, ..., X

(m)
hτmix+k) ∈ ·)||TV P(τ1 = τmix + k)

≤τmixP(τ1 = 1)
∞∑

h=1

2−h

≤
(
m

2

)
τmix

N
,

where in the first inequality we used the triangle inequality and the fact that in distribution τi−τi−1 = τ1.
In the second inequality we used Lemma 1.2.32 and that τ1 is a geometric random variable, so P(τ1 = i)
is a decreasing function of i.

Substituting in equation (2.3.12), we conclude

lim
N→∞

P
(
(LN

k ) = (L
N

k ), ∀k ∈ N
)

≥ lim
N→∞

(

1−
(
m

2

)
τmix

N

)⌊(f(N)EN
µN

)2⌋
. (2.3.13)

If the assumption stated in Equation (2.3.7) is satisfied we can choose the function

f(N) = ln(
N

τmixE
2
µN

),

so we have that f(N) → ∞ and, using the Bernoulli’s inequality,

lim
N→∞

P
(
(LN

k ) = (L
N

k ), ∀k ∈ N
)

≥ lim
N→∞

(
1−

(
m

2

)

ln(
N

τmix(EN
µN

)2
)
τmixE

2
µN

N

)

= 1.

We conclude by Lemma 1.2.26 that (LN
⌊NE2

µN
t⌋) converges to (Kt), weakly over the space of Skorohod,

which finally imply that (AN
⌊NE2

µN
t⌋) converges to (Kt), weakly over the space of Skorohod.

2.3.3 Applications of the criterion for convergence to the Kingman coales-

cent

We now present a proof of a special case of the main theorem of [7], that follows an application of 2.3.3.
This is also a proof of the main Theorem of [33], as a particular case.

Theorem 2.3.7. Assume that µN = µ for all N ∈ N, where µ is a seedbank age distribution such that

µ({n : n > i}) = L(i)i−α,

for some slowly varying function L : N → R and some α > 1. Fix a sample of size m ∈ N and
let (XN

0 ) = (0, ..., 0). Then, as N → ∞, the sequence of stochastic processes (AN
⌊NE2

µt⌋)t∈R+ converges

weakly over the space of Skorohod to Kingman’s m-coalescent.

Proof. We will use a coupling argument. Fix a constant β ∈ (α−1, 1), so that αβ > 1. Let (XN
k ) be the

urn process of a KKL model with seedbank age distribution µ
N

defined by

µ
N
(i) =

⎧

⎪⎨

⎪⎩

µ(i) for i ∈ {2, ...., Nβ}
µ(1) + µ({i > Nβ}) for i = 1,

0 for i > Nβ .

(2.3.14)
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Let (XN
k ) be the urn process of a seedbank model with seedbank age distribution µ. Note that E(µ) ≤

Eµ < ∞.

First let us prove that (AN
⌊NE2

µt⌋) ⇒ (Kt), where (AN
⌊NE2

µt⌋) is the ancestral process that correspond

to (XN
⌊NE2

µt⌋). Let τ
N
mix be the mixing time of (XN

k ). Note that for every ϵ > 0, there exist Nϵ ∈ N, such

that for all N > Nϵ

τNmix ≤ Nβ+ϵ. (2.3.15)

This bound (and probably much better bounds) can be shown using renewal theory or the Doeblin
coupling (see Example 1.2.3 and Example 1.2.4). A quick argument follows an easy proposition:

Let V N
k ∈ {1, ..., 3Nβ} be the number of generations, among generations {−3Nβ , ..., 0}, that are

visited by the ancestral lines of two individuals v1, v2, such that individual v1 belongs to generation zero
and individual v2 belongs to generation −k ∈ {−Nβ , ..., 0}. Note that τcoup ≤ k if and only if V N

k > 0.

Proposition 2.3.8. lim infN→∞ P(V N
k > 0) > 0.

Proof. Note that E[Vk] < 3Nβ
P(Vk > 0). We will show that lim infN→∞ P(Vk > 0) > 0, by showing that

E[Vk] = O(Nβ). For every N ∈ N, by convergence to the stationary distribution of the urn process,
limi→∞ qi > 1/(2Eµ), where qi is as in Equation (2.1.9). So that for every k ∈ {1, 2, ..., Nβ}

lim
N→∞

∑3Nβ

i=1 qiqi−k

Nβ
> E

−2
µ .

This implies that Vk = o(Nβ).

The bound on the mixing time is finally obtained by applying the Doebling coupling in each coordinate
of the urn process independently (as in Example 1.2.4), and noticing that, by Proposition 2.3.8, the
coupling has positive probability of being successful (independent of N) each 3Nβ generations. Clearly
this implies that the probability that the coupling is not successful for at least one coordinate, in the
first Nβ+ϵ generations, is exponentially small. Then, Equation (2.3.15) follows and we observe that, for
large enough N ,

τNmixE
2
µ
N

N
≤ Nβ+ϵ−1.

If we take 0 < ϵ < 1 − β, the assumption of Theorem 2.3.3 (Equation (2.3.7)) is true and we can then
conclude that (AN

⌊NE2
µt⌋) ⇒ (Kt).

To finish the proof, we construct a coupling of (XN
k ) and (XN

k ), by the rule XN ′
0 = XN

0 and if

XN ′
k = XN

k and X
N(w)
k+1 −X

N(w)
k < Nβ for all w ∈ {1, 2, ...,m}, then XN ′

k+1 = XN
k+1. Otherwise XN ′

k+1 is

independent of XN
k+1 and has the same transition law as XN

k+1.

Let JN = inf{k ∈ N : XN ′
k ̸= XN

k }. Let u ∈ (0, αβ − 1), note that for any starting point x ∈ E⊗m,

Px(JN < N1+u) < 1− (µ({i < Nβ}))mN1+u

< 1− (1−N−αβ)mN1+u → 0.

Denote TN
MRCA the time to to the most recent common ancestor of (AN

k ). Note that the convergence to
the Kingman coalescent of (AN

k ), implies in particular that Px(T
N
MRCA > N1+u) → 0. Then

Px(T
N
MRCA > JN ) < Px(T

N
MRCA > N1+u) + Px(JN < N1+u) → 0.

This implies that P(XN ′
k = XN

k , ∀k ∈ N) → 1. Thus the statement of the Theorem follows by applying
Lemma 1.2.26.

Remark 2.3.9. We only proved the convergence to the Kingman coalescent for α > 1 and not for the
less restrictive condition Eµ < ∞, which can be proved using renewal theory (see [7]). This is due to
our bound on the mixing time, which is bad (Equation (2.3.15)). The intuition suggests that the mixing
time is of order one. I believe that mixing times are an excellent tool to study weak seedbanks with
unbounded seedbank age distribution, and that these techniques will lead to new results (also involving
further evolutionary forces).
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Now we present a slightly weaker result than the main Theorem of [6].

Theorem 2.3.10. Consider the ancestral process of a sample of size m ∈ N in a seedbank model with
seedbank age distribution

µN = (1− ε)δ1 + εδNβ (2.3.16)

and starting condition for the urn process (XN
0 ) = (0, ..., 0). If 0 < β < 1/5 the sequence of processes

{(AN
⌊ε2N1+2βt⌋)t≥0}N∈N converges to Kingman’s m-coalescent weakly on the space of Skorohod.

Proof. First note that EµN
= 1−ε+εNβ = O(Nβ), this imply that

τN
mixE

2
µN

N = O(
τN
mix

N1−2β ). It is proved in

the Appendix that τmix < N3β+δ for every δ > 0 (see Lemma A.1.1 in the Appendix). Then if β < 1/5,
we can take 1− 5β > δ > 0, so that the assumption of Theorem 2.3.3 (Equation (2.3.7)) is satisfied. The
statement of the Theorem follows Theorem 2.3.3.

Remark 2.3.11. The result of Theorem 2.3.10 was proved in [6] for β < 1/4. What happens for β > 1/4
is still open.

We will sketch a last example, which is related to the main object of the next chapter. We take

µα
N = (1− 1

Nα
)δ1 +

1

Nα

∞∑

i=1

P(Gα = i)δi

where α > 0 and Gα is a geometric random variable such that E[Gα] = Nα. Note that EµN
= 2− 1

Nα . It
can be verified that the mixing time of is of order Nα. Then, by Theorem 2.3.3, if α < 1, the ancestral

process converges to the Kingman coalescent. However, if α = 1, then
τmix(Eµ)

2

N = O(1), and Theorem
2.3.3 does not apply. It turns out that in this case the scaling limit is not the Kingman coalescent. In
the next chapter we study an equivalent model to the case α = 1, which happens to converge to the
seedbank coalescent.
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Chapter 3

The Seedbank Coalescent

3.1 Introduction

This chapter consists essentially of the paper [8] and contains parts of [5].

As we saw in the last chapter, while there are mathematical results in the weak seedbank regime, it
appears as if the ‘right’ scaling regimes for stronger seedbank models, and the potentially new limiting
coalescent structures, have not yet been identified. This is in contrast to many other population genetic
models, where the interplay of suitably scaled evolutionary forces (such as mutation, genetic drift, se-
lection and migration) often leads to elegant limiting objects, such as the ancestral selection graph [53],
or the structured coalescent [29, 54]. A particular problem is the loss of the Markov property in Wright
Fisher models with long genealogical ‘jumps’.

In this chapter we thus propose a new Markovian Wright Fisher type seedbank model that allows
for a clear forward and backward scaling limit interpretation. In particular, the forward limit in a
bi-allelic setup will consist of a pair of (S)DEs describing the allele frequency process of our model,
while the limiting genealogy, linked by a duality result, is given by a coalescent structure which we call
seedbank coalescent. In fact, the seedbank coalescent can be thought of as a structured coalescent of
a two island model in a ‘weak migration regime’, in which however coalescences are completely blocked
in one island. Despite this simple description, the seedbank coalescent exhibits qualitatively altered
genealogical features, both in comparison to the Kingman-coalescent and the structured coalescent. In
particular, we prove in Theorem 3.4.4 that the seedbank coalescent does not come down from infinity,
and in Theorem 3.4.8 that the expected time to the most recent common ancestor of an n sample is
of asymptotic order log log n as n gets large. Interestingly, this latter scale agrees with the one for the
Bolthausen-Sznitman coalescent identified by Goldschmidt and Martin [22].

Summarizing, the seedbank coalescent seems to be an interesting and natural scaling limit for pop-
ulations in the presence of a ‘strong’ seedbank effect. In contrast to previous genealogies incorporating
(weak) seedbank effects, it is a new coalescent structure and not a time-change of Kingman’s coalescent,
capturing the essence of seedbank effects in many relevant situations.

The remainder of this chapter is organised as follows:

In Subsection 3.2, we discuss the Wright Fisher model with a seedbank component that has a ge-
ometric age structure, and show that its two bi-allelic frequency processes (for ‘active’ individuals and
‘seeds’) converge to a two-dimensional system of SDEs. We derive their dual process and employ this
duality to compute the fixation probabilities as t → ∞ (in law) of the system.

In Subsection 3.3, we define the seedbank coalescent corresponding to the previously derived dual
block counting process and show how it describes the ancestry of the Wright Fisher geometric seedbank
model.

In Subsection 3.4, we prove some interesting properties of the seedbank coalescent, such as ‘not
coming down from infinity’ and asymptotic bounds on the expected time to the most recent common
ancestor, which show that genealogical properties of a population in the presence of strong seedbanks
are altered qualitatively.
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3.2 The seedbank model

3.2.1 The forward model and its scaling limit

Consider a haploid population of fixed size N reproducing in fixed discrete generations k = 0, 1, ...
Assume that individuals carry a genetic type from some type-space E (we will later pay special attention
to the bi-allelic setup, say E = {a,A}, for the forward model).

Further, assume that the population also sustains a seedbank of constant size M = M(N), which
consists of the dormant individuals. For simplicity, we will frequently refer to the N ‘active’ individuals
as ‘plants’ and to the M dormant individuals as ‘seeds’.

Given N,M ∈ N, let ε ∈ [0, 1] such that εN ≤ M and set δ := εN/M , and assume for convenience
that εN = δM is a natural number (otherwise replace it by ⌊εN⌋ everywhere). Let [N ] := {1, . . . , N}
and [N ]0 := [N ] ∪ {0}. The dynamics of our Wright Fisher model with strong seedbank component are
then as follows:

• The N active individuals (plants) from generation 0 produce (1− ε)N active individuals in gener-
ation 1 by multinomial sampling with equal weights.

• Additionally, δM = εN uniformly (without replacement) sampled seeds from the seedbank of size
M in generation 0 ‘germinate’, that is, they turn into exactly one active individual in generation 1
each, and leave the seedbank.

• The active individuals from generation 0 are thus replaced by these (1−ε)N +δM = N new active
individuals, forming the population of plants in the next generation 1.

• Regarding the seedbank, the N active individuals from generation 0 produce δM = εN seeds by
multinomial sampling with equal weights, filling the vacant slots of the seeds that were activated.

• The remaining (1 − δ)M seeds from generation 0 remain inactive and stay in the seedbank (or,
equivalently, produce exactly one offspring each, replacing the parent).

• Throughout reproduction, offspring and seeds copy/resp. maintain the genetic type of the parent.

Thus, in generation 1, we have again N active individuals and M seeds. This probabilistic mechanism is
then to be repeated independently to produce generations k = 2, 3, ... Note that the offspring distribution
of active individuals (both for the number of plants and for the number of seeds) is exchangeable within
their respective sub-population. Further, one immediately sees that the time that a given seed stays in
the seedbank before becoming active is geometric with success parameter δ, while the probability a given
plant produces a dormant seed is ε.

Definition 3.2.1 (The seedbank model). Fix population size N ∈ N, seedbank size M = M(N), genetic
type space E and δ, ε as before. Given initial type configurations ξ0 ∈ EN and η0 ∈ EM , denote by

ξk :=
(
ξk(i)

)

i∈[N ]
, k ∈ N,

the random genetic type configuration in EN of the plants in generation k (obtained from the above
mechanism), and denote by

ηk :=
(
ηk(j)

)

j∈[M ]
, k ∈ N,

correspondingly the genetic type configuration of the seeds in EM . We call the discrete-time Markov
chain (ξk, ηk)k∈N0

with values in EN × EM the type configuration process of the seedbank model.

Remark 3.2.1. This way of introducing a type process is in the spirit of the classic definition of Cannings
processes (see [9]). It is intuitively clear how to carry out a random-graph construction of the model,
similar to our construction of the Wright Fisher graph (Definition 1.1.1). However, if we do that, notation
would become unnecessarily heavy. In any case, it is important to note that the seedbank model allows
a natural backwards in time representation.
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Proposition 3.2.4. Assume that (3.2.2) holds. Consider test functions f ∈ C(2)([0, 1]2). For any
(x, y) ∈ IN×IM , let AN = AN

(ε,δ,M) be the discrete generator of the frequency Markov chain (XN
Nt, Y

M
Nt)t∈R+ ,

which act on f by

ANf(x, y) := NEx,y

[

f
(
XN

1 , Y M
1

)
− f(x, y)

]

.

Then for all (x, y) ∈ [0, 1]2,

lim
N→∞

ANf(x, y) = Af(x, y),

where A is defined by

Af(x, y) := c(y − x)
∂f

∂x
(x, y) + cK(x− y)

∂f

∂y
(x, y) +

1

2
x(1− x)

∂f2

∂x2
(x, y).

A proof can be found in the appendix, see Proposition A.2.1. Since the state space of our frequency
chain can be embedded in the compact unit square [0, 1]2, we get tightness and convergence on path-
space easily by standard argument (see, e.g. [18] Theorem 4.8.2 and Theorem 3.7.8) and can identify the
limit of our frequency chains as a pair of the following SDEs:

Corollary 3.2.2 (Seedbank diffusion). Under the conditions of Proposition 3.2.4, if XN
0 → x a. s. and

Y M
0 → y a.s., we have that

(XN
⌊Nt⌋, Y

N
⌊Nt⌋)t≥0 ⇒ (Xt, Yt)t≥0

on D[0,∞)([0, 1]
2) as N → ∞, where (Xt, Yt)t≥0 is a 2-dimensional diffusion solving

dXt = c(Yt −Xt)dt+
√

Xt(1−Xt)dBt,

dYt = cK(Xt − Yt)dt, (3.2.4)

where (Bt)t≥0 is standard Brownian motion.

The proof again follows from standard arguments, cf. e.g. [18], where in particular Proposition 2.4 in
Chapter 8 shows that the operator A is indeed the generator of a Markov-Process.

Remark 3.2.5. If we abandon the assumption N = KM there are situations in which we can still
obtain meaningful scaling limits. If we assume N/M → 0, and we rescale the generator as before by
measuring the time in units of size N, we obtain (cf. Proposition A.2.1)

lim
N→∞

ANf(x, y) = c(y − x)
∂f

∂x
(x, y) +

1

2
x(1− x)

∂f2

∂x2
(x, y).

This shows that the limiting process is purely one-dimensional, namely the seedbank frequency Yt is
constantly equal to y, and the process (Xt)t≥0 is a Wright Fisher diffusion with migration (with migration
rate c and reverting to the mean y). The seedbank, which in this scaling regime is much larger than
the active population, thus acts as a reservoir with constant allele frequency y, with which the plant
population interacts.

The case M/N → 0 leads to a simpler limit: If we rescale the generator by measuring the time in
units of size M we obtain

lim
M→∞

AMf(x, y) = c(y − x)
∂f

∂y
(x, y)

and constant frequency X ≡ x in the plant population, which tells us that if the seedbank is of smaller
order than the active population, the genetic configuration of the seedbank will converge to the genetic
configuration of the active population, in a deterministic way.

The above results can be extended to more general genetic types spaces E in a standard way using
the theory of measure-valued resp. Fleming-Viot processes. This will be treated elsewhere. Before we
investigate some properties of the limiting system, we first derive its dual process.
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3.2.2 The dual of the seedbank frequency process

As we saw in Theorem 1.1.18, the Wright Fisher diffusion is known to be dual to the block counting
process of the Kingman-coalescent, and similar duality relations hold for other models in population
genetics (see Section 1.3). Such dual processes are often extremely useful for the analysis of the underlying
system, and it is easy to see that our seedbank diffusion also has a nice dual.

Definition 3.2.6. We define the block counting process of the seedbank coalescent (Nt,Mt)t≥0 to be the
continuous time Markov chain taking values in N0 × N0 with transitions

(n,m) ↦→

⎧

⎪⎨

⎪⎩

(n− 1,m+ 1) at rate cn,

(n+ 1,m− 1) at rate cKm,

(n− 1,m) at rate
(
n
2

)
.

(3.2.5)

Note that the three possible transitions correspond respectively to the drift of the X-component, the
drift of the Y -component, and the diffusion part of the system (3.2.4). This connection is exploited in
the following result.

Denote by P
n,m the distribution for which (N0,M0) = (n,m) holds Pn,m-a.s., and denote the corre-

sponding expected value by E
n,m. It is easy to see that, eventually, Nt +Mt = 1 (as t → ∞), Pn,m-a.s.

for all n,m ∈ N0. We now show that (Nt,Mt)t≥0 is the moment dual of (Xt, Yt)t≥0.

Theorem 3.2.7. For every (x, y) ∈ [0, 1]2, every n,m ∈ N0 and every t ≥ 0

Ex,y

[
Xn

t Y
m
t

]
= E

n,m
[
xNtyMt

]
. (3.2.6)

Proof. Let f(x, y;n,m) := xnym. Applying for fixed n,m ∈ N0 the generator A of (Xt, Yt)t≥0 to f acting
as a function of x and y gives

Af(x, y) =c(y − x)
df

dx
f(x, y) +

1

2
x(1− x)

d2f

dx2
f(x, y) + cK(x− y)

df

dy
f(x, y)

=c(y − x)nxn−1ym +
1

2
x(1− x)n(n− 1)xn−2ym

+ cK(x− y)xnmym−1

=cn(xn−1ym+1 − xnym) +

(
n

2

)

(xn−1ym − xnym)

+ cKm(xn+1ym−1 − xnym).

Note that the right-hand side is precisely the generator of (Nt,Mt)t≥0 applied to f acting as a function
of n and m, for fixed x, y ∈ [0, 1]. Hence the duality follows from standard arguments, see e.g. [31],
Proposition 1.2.

3.2.3 Long-term behaviour and fixation probabilities

The long-term behaviour of our system (3.2.4) is not obvious. While a classical Wright Fisher diffusion
(introduced in Definition 1.1.30) will get absorbed at the boundaries after finite time a.s. (in fact with
finite expectation), hitting 1 with probability X0 = x (as in Lemma 1.1.21), this is more involved for our
frequency process in the presence of a strong seedbank. Nevertheless, one can still compute its fixation
probabilities as t → ∞, at least in law, using very similar arguments as in the proof of Lemma 1.1.21.
Obviously, (0, 0) and (1, 1) are absorbing states for the system (3.2.4). They are also the only absorbing
states, since absence of drift requires x = y, and for the fluctuations to disappear, it is necessary to have
x ∈ {0, 1}.

Proposition 3.2.8. All mixed moments of (Xt, Yt)t≥0 solving (3.2.4) converge to the same finite limit
depending only on x, y,K. More precisely, for each fixed n,m ∈ N, we have

lim
t→∞

Ex,y[X
n
t Y

m
t ] =

y + xK

1 +K
. (3.2.7)
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Proof. Let (Nt,Mt)t≥0 be as in Definition 3.2.6, started in (n,m) ∈ N0×N0. To save notation, we write:

T := TMRCA[n,m] = inf
{
t > 0 : Nt +Mt = 1

}
.

Note that for any finite initial configuration (n,m), the stopping time T has finite expectation. Now, by
Theorem 3.2.7,

lim
t→∞

Ex,y

[
Xn

t Y
m
t

]
= lim

n→∞
E
n,m

[
xNtyMt

]

= lim
t→∞

E
n,m

[
xNtyMt | T ≤ t

]
P
n,m (T ≤ t)

+ lim
t→∞

E
n,m

[

xNtyMt

⏐
⏐
⏐T > t

]

  

≤1

P
n,m

(
T > t

)

= lim
t→∞

(

xPn,m
(
Nt = 1, T ≤ t

)
+ yPn,m

(
Mt = 1, T ≤ t

))

= lim
t→∞

(

xPn,m
(
Nt = 1

)
+ yPn,m

(
Mt = 1

))

=
xK

1 +K
+

y

1 +K
,

where the last equality holds by convergence to the invariant distribution of a single particle, jumping
between the two states ‘plant’ and ‘seed’ at rate c resp. cK, which is given by (K/(1 +K), 1/(1 +K))
and independent of the choice of n,m.

Corollary 3.2.3 (Fixation in law). Given c,K, (Xt, Yt) converges in distribution as t → ∞ to a two-
dimensional random variable (X∞, Y∞), whose distribution is given by

L(x,y)

(
X∞, Y∞

)
=

y + xK

1 +K
δ(1,1) +

1 + (1− x)K − y

1 +K
δ(0,0). (3.2.8)

Note that this is in line with the classical results for the Wright Fisher diffusion: As K → ∞
(that is, the seedbank becomes small compared to the plant population), the fixation probability of a
alleles approaches x. Further, if K becomes small (so that the seedbank population dominates the plant
population), the fixation probability is governed by the initial fraction y of a-alleles in the seedbank.

Proof. It is easy to see that the only two-dimensional distribution on [0, 1]2, for which all moments are
constant equal to xK+y

1+K , is given by

y + xK

1 +K
δ(1,1) +

1 + (1− x)K − y

1 +K
δ(0,0).

Indeed, uniqueness follows from the moment problem, which is uniquely solvable on [0, 1]2. Convergence
in law follows from convergence of all moments due to Theorem 3.3.1 in [18] and the Stone-Weierstraß
Theorem.

Remark 3.2.9 (Almost sure fixation). Observing that (KXt+Yt)t≥0 is a bounded martingale, and given
the shape of the limiting law (3.2.8), one can also get almost sure convergence of (Xt, Yt) to (X∞, Y∞)
as t → ∞. However, as we will see later, fixation will not happen in finite time, since the block counting
process (Nt,Mt)t≥0, started from an infinite initial state, does not come down from infinity (see Section
3.4), which means that the whole (infinite) population does not have a most recent common ancestor.
Thus, in finite time, initial genetic variability should never be completely lost. We expect that with
some extra work, this intuitive reasoning could be made rigorous in an almost sure sense with the help
of a “lookdown construction”, and will be treated in future work. The fact that fixation doesn’t occur
in finite time can also be understood from (3.2.4), where we can compare the seed-component (Yt)t≥0 to
the solution of the deterministic equation

dyt = −cKytdt,

corresponding to a situation where the drift towards 0 is maximal (or to dyt = cK(1 − yt)dt where the
drift towards 1 is maximal). Since (yt)t≥0 doesn’t reach 0 in finite time if y0 > 0, neither does (Yt)t≥0.
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3.3 The seedbank coalescent

3.3.1 Definition and genealogical interpretation

In view of the form of the block counting process, it is now easy to guess the stochastic process describing
the limiting gene genealogy of a sample taken from the Wright Fisher model with seedbank component.
Recall the notation, for k ≥ 1, [k] is the set of partitions of {1, 2, ..., k}. For π ∈ [k], |π| is the number of
blocks of the partition π. We define the space of marked partitions to be

This enables us to attach to each partition block a flag which can be either ‘plant’ or ‘seed’ (p or s), so
that we can trace whether an ancestral line is currently in the active or dormant part of the population.

For example, for k = 5, an element π of P{p,s}
k is the marked partition π =

{
{1, 3}p, {2}s, {4, 5}p

}
.

Consider two marked partitions π, π′ ∈ P{p,s}
k , we say π ≻ π′ if π′ can be constructed by merging

exactly 2 blocks of π carrying the p-flag, and the resulting block in π′ obtained from the merging both
again carries a p-flag. For example

{
{1, 3}p{2}s{4, 5}p

}
≻

{
{1, 3, 4, 5}p{2}s

}
.

We use the notation π ⋊⋉ π′ if π′ can be constructed by changing the flag of precisely one block of π, for
example

{
{1, 3}p{2}s{4, 5}p} ⋊⋉ {{1, 3}s{2}s{4, 5}p

}
.

Definition 3.3.1 (The seedbank k-coalescent). For k ≥ 2 and c,K ∈ (0,∞) we define the seedbank

k-coalescent (Π
(k)
t )t≥0 with seedbank intensity c and relative seedbank size 1/K to be the continuous

time Markov chain with values in P{p,s}
k , characterised by the following transitions:

π ↦→ π′ at rate

⎧

⎪⎨

⎪⎩

1 if π ≻ π′,

c if π ⋊⋉ π′ and one p is replaced by one s,

cK if π ⋊⋉ π′ and one s is replaced by one p.

(3.3.1)

If c = K = 1, we speak of the standard seedbank k-coalescent.

Comparing (3.3.1) to (3.2.5) it becomes evident that (Nt,Mt) introduced in Definition 3.2.6 is indeed
the block counting process of the seedbank coalescent.

Definition 3.3.2 (The seedbank coalescent). Wemay define the seedbank coalescent, (Πt)t≥0 = (Π
(∞)
t )t≥0

with seedbank intensity c and relative seedbank size 1/K as the unique Markov process distributed ac-
cording to the projective limit as k goes to infinity of the laws of the seedbank k-coalescents (with
seedbank intensity c and relative seedbank size 1/K). In analogy to Definition 3.3.1 we call the case of
c = K = 1 the standard seedbank coalescent.

Remark 3.3.3. Note that the seedbank coalescent is a well-defined object. Indeed, for the projective
limiting procedure to make sense, we need to show consistency and then apply the Kolmogorov extension

theorem. This can be roughly sketched as follows. Define the process (
−→
Π

(k)
t )t≥0 as the projection of

(Π
(k+1)
t )t≥0, the k + 1 seedbank coalescent, to the space P{p,s}

k . Mergers and flag-flips involving the

singleton {k + 1} are only visible in (Π
(k+1)
t )t≥0, but do not affect (

−→
Π

(k)
t )t≥0. Indeed, by the Markov-

property, a change involving the singleton {k+ 1} does not affect any of the other transitions. Hence, if−→
Π

(k)
0 = Π

(k)
0 , then

(
−→
Π

(k)
t )t≥0 = (Π

(k)
t )t≥0.

holds in distribution. By the Kolmogorov extension theorem the projective limit exists and is unique.

Note that it is obvious that the distribution of the block counting process of the seedbank coalescent,
counting the number of blocks carrying the p and s-flags, respectively, agrees with the distribution the
process (Nt,Mt)t≥0 from Definition 3.2.6 (with suitable initial conditions).
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P-a.s. for some fixed k ∈ N. Then for π, π′ ∈ P{p,s}
k ,

P
(
Π

(N,k)
i+1 = π′ ⏐⏐Π(N,k)

i = π
)
=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1
N +O(N−2) if π ≻ π′,
c
N +O(N−2) if π ⋊⋉ π′ and a p is replaced by an s,
cK
N +O(N−2) if π ⋊⋉ π′ and an s is replaced by a p,

O(N−2) otherwise.

(3.3.2)

for all i ∈ N0.

Proof. According to the definition of the forward in time population model, exactly c out of the N plants
become seeds, and exactly c out of the M = N/K seeds become plants. Thus whenever the current state

Π
(N,k)
i of the genealogical process contains at least one p-block, then the probability that a given p-block

changes flag to s at the next time step is equal to c
N . If there is at least one s-block, then the probability

that any given s-block changes flag to p is given by cK
N , and the probability that a given p-block chooses

a fixed plant ancestor is equal to
(
1 − c

N

)
1
N (where 1 − c/N is the probability that the ancestor of the

block in question is a plant, and 1/N is the probability to choose one particular plant among the N).
From this we conclude that the probability of a coalescence of two given p-blocks in the next step is

P
(
two given p-blocks merge

)
=

(
1− c

N

)2 1

N
.

Since we start with k blocks, and the blocks move independently, the probability that two or more blocks
change flag at the same time is of order at most N−2. Similarly, the probability of any combination of
merger or block-flip events other than single blocks flipping or binary mergers is of order N−2 or smaller,
since the number of possible events (coalescence or change of flag) involving at most k blocks is bounded
by a constant depending on k but not on N.

Corollary 3.3.1. For any k ∈ N, under the assumptions of Proposition 3.2.4, (Π
(N,k)
⌊Nt⌋ )t≥0 converges

weakly as N → ∞ to the seedbank coalescent (Π
(k)
t )t≥0 started with k plants.

Proof. From Proposition 3.3.4 it is easy to see that the discrete generator of (Π
(N,k)
⌊Nt⌋ ) converges to the

generator of (Π
(k)
t ), which is defined via the rates given in (3.3.1). Then standard results (see Theorem

3.7.8 in [18]) yield weak convergence of the process.

3.3.2 Related coalescent models

The structured coalescent The seedbank coalescent is reminiscent of the structured coalescent arising
from a two-island population model (see Subsection 1.3.3 or [75, 67, 54, 28, 29]). Indeed, consider
two Wright Fisher type (sub-) populations of fixed relative size evolving on separate ‘islands’, where
individuals (resp. ancestral lineages) may migrate between the two locations with a rate of order of
the reciprocal of the total population size (the so-called ‘weak migration regime’). Since offspring are
placed on the same island as their parent, mergers between two ancestral lineages are only allowed if
both are currently in the same island. This setup again gives rise to a coalescent process defined on
‘marked partitions’, with the marks indicating the location of the ancestral lines among the two islands.
Coalescences are only allowed for lines carrying the same mark at the same time, and marks are switched
according to the scaled migration rates. See [71] for an overview.

In our seedbank model, we consider a similar ‘migration’ regime between the two sub-populations,
in our case called ‘plants’ and ‘seeds’. However, in the resulting seedbank coalescent, coalescences can
only happen while in the plant-population. This asymmetry leads to a behaviour that is qualitatively
different to the usual two-island scenario (e.g. with respect to the time to the most recent common
ancestor, whose expectation is always finite for the structured coalescent, even if the sample size goes to
infinity, as we proved in Lemma 1.3.13).

The peripatric coalescent The seedbank coalescent was recently independently discovered, under
the name The peripatric coalescent by Lambert and Ma (see [37]). It arises as the scaling limit of
the ancestral process of populations with a central structure in which individuals get isolated for long
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periods and then return to the main bulk of individuals. The seedbank coalescent is a simple and natural
mathematical object, which will likely appear as scaling limit in different contexts. Thus, the properties
of the seedbank coalescent have an interest that goes beyond the study of seedbanks. We will prove some
of them in this chapter.

The coalescent with freeze Another related model is the coalescent with freeze, see [14], where blocks
become completely inactive at some rate. This model is different from ours because once a block has
become inactive, it cannot be activated again. Hence, it cannot coalesce at all, which clearly leads to a
different long-time behaviour. In particular one will not expect to see a most recent common ancestor
in such a coalescent.

3.4 Properties of the seedbank coalescent

3.4.1 Some interesting recursions

One can compute the expected time to most recent common ancestor recursively as follows. We will use

the notation (N
(n,m)
t ,M

(n,m)
t ) to indicate the initial condition of the block counting process is (n,m).

Definition 3.4.1. We define the time to the most recent common ancestor of a sample of n plants
and m seeds, to be

TMRCA[(n,m)] = inf{t > 0 : (N
(n,m)
t ,M

(n,m)
t ) = (1, 0)}.

To shorten notation, we will write

tn,m := E[TMRCA[(n,m)]], (3.4.1)

Remark 3.4.1. This definition is completely analogous to Definition 1.3.12, where we were studying the
structured coalescent. However, in the seedbank model coalescence is only possible in the plant island,

and thus TMRCA[(n,m)] = inf{t > 0 : N
(n,m)
t +M

(n,m)
t = 1}.

Observe that we need to consider both types of lines in order to calculate tn,m. Write

λn,m :=

(
n

2

)

+ cn+ cKm, (3.4.2)

and abbreviate

αn,m :=

(
n
2

)

λn,m
, βn,m :=

cn

λn,m
, γn,m :=

cKm

λn,m
. (3.4.3)

Proposition 3.4.2. Let n,m ∈ N0. Then we have the following recursive representations

En,m[TMRCA] = tn,m = λ−1
n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1, (3.4.4)

with initial conditions t1,0 = t0,1 = 0.

Proof of Proposition 3.4.2. Let τ1 denote the time of the first jump of the process (Nt,Mt)t≥0. If started
at (n,m), this is an exponential random variable with parameter λn,m. Applying the strong Markov
property we obtain

tn,m =En,m[τ1] + En,m

[
ENτ1

,Mτ1
[TMRCA]

]

=λ−1
n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1.

Remark 3.4.2. A recursion for the variance of TMRCA can also be computed. It is not included in this
thesis, but is given in the supplementary material of [5].
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Since the process Nt +Mt is non-increasing in t, these recursions can be solved iteratively. In fact,

t2,0 = 1 +
2

K
+

1

K2
=

(K + 1)2

K2
. (3.4.5)

Notably, t2,0 is constant as c varies (Table 3.1) and in particular does not converge for c → 0 to the
Kingman case. This effect is similar to the corresponding behaviour of the structured coalescent with two
islands if the migration rate goes to 0, cf. [52]. However, the Kingman coalescent values are recovered as
the seedbank size decreases (e.g. for K = 100 in Table 3.1).
The fact that t2,0 = 4 for K = 1 can be understood heuristically if c is large: In that situation, transitions
between active and dormant states happen very fast, thus at any given time the probability that a line is
active is about 1/2, and therefore the probability that both lines of a given pair are active (and thus able
to merge) is approximately 1/4. We can therefore conjecture that for K = 1 and c → ∞ the genealogy
of a sample is given by a time change by a factor 4 of Kingman’s coalescent.
Tables 3.1 shows values of tn,0 obtained from (3.4.4) for various parameter choices and sample sizes. The
relative size of the seedbank (K) has a significant effect on En,0 [TMRCA]; a large seedbank (K small)
increases En,0 [TMRCA], while the effect of c is to dampen the increase in En,0 [TMRCA] with sample size
(Table (3.1)).

In order to investigate the genetic variability of a sample, in terms e.g. of the number of segregating
sites and the number of singletons, it is useful to have information about the total tree length and the
total length of external branches. Let L(a) denote the total length of all branches while they are active,
and L(d) the total lenght of all branches while they are dormant. Their expectations

l(a)n,m := En,m[L(a)], l(d)n,m := En,m[L(d)]. (3.4.6)

may be calculated using the following recursions for n,m ∈ N0, and with λn,m given by (3.4.2),

Proposition 3.4.3 (Recursion: Total tree length). For n,m ∈ N we have

l(a)n,m = nλ−1
n,m + αn,ml

(a)
n−1,m + βn,ml

(a)
n−1,m+1 + γn,ml

(a)
n+1,m−1 (3.4.7)

l(d)n,m = mλ−1
n,m + αn,ml

(d)
n−1,m + βn,ml

(d)
n−1,m+1 + γn,ml

(d)
n+1,m−1, (3.4.8)

Proof of Proposition 3.4.3. The result can easily be obtained observing that each stretch of time of length
τ in which we have a constant number of n active blocks and m dormant blocks contributes with nτ to
the total active tree length, and with mτ to the total dormant tree length. Thus we have

l(a)n,m = nEn,m[τ1] + En,m

[
ENτ1 ,Mτ1

[L(a)]
]
,

and we proceed as in the proof of Proposition 3.4.2. From these quantities we easily obtain the expected

total tree length as l
(a)
n,m + l

(d)
n,m.

Similar recursions hold for their variances as well as for the corresponding values of the total length of
external branches, which can be found in the supplementary material of [5] together with the respective
proofs. From (3.4.7) and (3.4.8) one readily obtains

l
(a)
2,0 =

2(1 +K)

K
, l

(d)
2,0 =

2(1 +K)

K2
. (3.4.9)

We observe that l
(a)
2,0 and l

(d)
2,0 given in (3.4.9) are independent of c as also seen for t2,0 cf. (3.4.5).

The numerical solutions of (3.4.7) and (3.4.8) indicate that for n ≥ 2,

l
(a)
n,0 = Kl

(d)
n,0. (3.4.10)

Hence the expected total length of the active and the dormant parts of the tree are proportional, and
ratio is given by the relative seedbank size.
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One can further investigate this relation by writing

2tn,0
lan,0

=
lan,0 + ldn,0

lan,0
=

K + 1

K

Further, using equation 3.4.5 one observes that

2tn,0
lan,0

=
√
τ2,0

which, taking n = 2 reduces to

2
√
t2,0 = la2,0

This equation tells an nice story: in the Kingman case “K = ∞”, we know that t2,0 = 1, and la2,0 = 2,
meaning that the 2 individuals are active the whole time (obviously, as in this case there is no seedbank).
If K = 1, we know that t2,0 = 4, and we see that la2,0 = 4, which means that half of the time the
individuals where active and half inactive. Finally, as the seedbank grows (K goes to 0) one can see that
the proportion of active time decreases quickly (as the inverse of a square root).
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Table 3.1: The expected time to most recent common ancestor (En,0 [TMRCA]) of the seedbank coales-
cent, obtained from (3.4.4), with seedbank size K, sample size n and dormancy initiation rates c as
shown. All sampled lines are from the active population (sample configuration (n, 0)). For comparison,
E [TMRCA[n]] = 2(1− 1/n) when associated with the Kingman coalescent (K = ∞). The multiplication
×104 only applies to the first table with K = 0.01.

K = 0.01, ×104

sample size n
c 2 10 100
0.01 1.02 2.868 5.185
0.1 1.02 2.731 4.487
1 1.02 2.187 2.666
10 1.02 1.878 2.085
100 1.02 1.84 2.026

K = 1
sample size n

c 2 10 100
0.01 4 10.21 17.18
0.1 4 9.671 14.97
1 4 8.071 10.02
10 4 7.317 8.221
100 4 7.212 7.954

K = 100
sample size n

c 2 10 100
0.01 1.02 1.846 2.052
0.1 1.02 1.838 2.026
1 1.02 1.836 2.02
10 1.02 1.836 2.02
100 1.02 1.836 2.02
K = ∞ 1 1.80 1.98
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3.4.2 Coming down from infinity

The notion of coming down from infinity was discussed by Pitman [59] and Schweinsberg [63]. They say
that an exchangeable coalescent process comes down from infinity if the corresponding block counting
process (of an infinite sample) has finitely many blocks immediately after time 0 (i.e. the number of
blocks is finite almost surely for each t > 0). Further, the coalescent is said to stay infinite if the number
of blocks is infinite a. s. for all t ≥ 0. Schweinsberg also gives a necessary and sufficient criterion for
so-called “Lambda-coalescents” to come down from infinity. In particular, the Kingman coalescent does
come down from infinity. However, note that the seedbank coalescent does not belong to the class of
Lambda-coalescents, so that Schweinsberg’s result does not immediately apply. For an overview of the
properties of general exchangeable coalescent processes see e.g. [4] (the reader is invited to compare the
following Theorem with Lemma 1.3.13).

Theorem 3.4.4. The seedbank coalescent does not come down from infinity. In fact, its block counting
process (Nt,Mt)t≥0 stays infinite for every t ≥ 0, P-a.s. To be precise, for each starting configuration
(n,m) where n+m is (countably) infinite,

P
(
∀t ≥ 0 : M

(n,m)
t = ∞

)
= 1.

The proof of this theorem is based on a coupling with a dominated simplified coloured seedbank
coalescent process introduced below. In essence, the coloured seedbank coalescent behaves like the
normal seedbank coalescent, except we mark the individuals with a colour to indicate whether they have
(entered and) left the seedbank at least once. This will be useful in order to obtain a process where
the number of plant-blocks is non-increasing. We will then prove that even if we consider only those
individuals that have never made a transition from seed to plant (but possibly from plant to seed), the
corresponding block counting process will stay infinite. This will be achieved by proving that infinitely
many particles enter the seedbank before any positive time. Since they subsequently leave the seedbank
at a linear rate, this will take an infinite amount of time.

Definition 3.4.5 (A coloured seedbank coalescent). In analogy to the construction of the seedbank
coalescent, we first define the set of coloured, marked partitions as

P{p,s}×{w,b}
k :=

{
(π, u⃗, v⃗) | (π, u⃗) ∈ P{p,s}

k , v⃗ ∈ {w, b}k
}
, k ∈ N,

P{p,s}×{w,b} :=
{
(π, u⃗, v⃗) | (π, u⃗) ∈ P{p,s}, v⃗ ∈ {w, b}N

}
.

It corresponds to the marked partitions introduced earlier, where now each element of {1, 2, ..., k}, resp.
N, has an additional flag indicating its colour: w for white and b for blue. We write π ≻ π′, if π′ can
be constructed from π by merging two blocks with a p-flag in π that result into a block with a p-flag in
π′, while each individual retains its colour. It is important to note that the p- or s-flags are assigned
to blocks, the colour-flags to individuals, i. e. elements of [k] resp. N. We use π ⋉ π′, to denote that
π′ results from π by changing the flag of a block from p to s and leaving the colours of all individuals
unchanged and π⋊π′, if π′ is obtained from π, by changing the flag of a block from s to p and colouring
all the individuals in this block blue, i.e. setting their individual flags to b. In other words, after leaving
the seedbank, individuals are always coloured blue.

For k ∈ N and c,K ∈ (0,∞) we now define the coloured seedbank k-coalescent with seedbank intensity
c and seedbank size 1/K, denoted by (Πt)t≥0, as the continuous time Markov chain with values in

P{p,s}×{w,b}
k and transition rates given by

π ↦→ π′ at rate

⎧

⎪⎨

⎪⎩

1, if π ≻ π′,

c, if π ⋉ π′,

cK, if π ⋊ π′.

(3.4.11)

The coloured seedbank coalescent with seedbank intensity c and seedbank size 1/K is then the unique
Markov process on P{p,s}×{w,b} given by the projective limit of the distributions of the k-coloured
seedbank coalescents, as k goes to infinity.

Remark 3.4.6. 1. Note that the coloured seedbank coalescent is well-defined. Since the colour of an
individual only depends on its own path and does not depend on the colour of other individuals (not
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even those that belong to the same block), the consistency of the laws of the k-coloured seedbank
coalescents boils down to the consistency of the seedbank k-coalescents discussed in Remark 3.3.3.
In much the same way we then obtain the existence and uniqueness of the coloured seedbank
coalescent from Kolmogorov’s Extension Theorem.

2. The normal seedbank (k-)coalescent can be obtained from the coloured seedbank (k-)coalescent by
omitting the flags indicating the colouring of the individuals. However, if we only consider those
blocks containing at least one white individual, we obtain a coalescent similar to the seedbank
coalescent, where lineages are discarded once they leave the seedbank.

For t ≥ 0 define N t to be the number of white plants and M t the number of white seeds in Πt. We
will use a superscript (n,m) to denote the processes started with n plants and m seeds P-a.s., where
n,m = ∞ means we start with a countably infinite number of plants, resp. seeds. We will always start
in a configuration were all individual labels are set to w, i.e. with only white particles. Note that our
construction is such that (N t)t≥0 is non-increasing.

Proposition 3.4.7. For any n,m ∈ N ∪ {∞}, there exist a coupling of (N
(n,m)
t ,M

(n,m)
t )t≥0 and

(N
(n,m)
t ,M

(n,m)
t )t≥0 such that

P

(

∀t ≥ 0 : N
(n,m)
t ≥ N

(n,m)
t and M

(n,m)
t ≥ M

(n,m)
t

)

= 1.

Proof. This result is immediate if we consider the coupling through the coloured seedbank coalescent
and the remarks in 3.4.6.

Proof of Theorem 3.4.4. Proposition 3.4.7 implies that it suffices to prove the statement for (M t)t≥0

instead of (Mt)t≥0. In addition, we will only have to consider the case of m = 0, since starting with
more (possibly infinitely many) seeds will only contribute towards our desired result.

For n ∈ N ∪ {∞} let

τnj := inf{t ≥ 0 : N
(n,0)
t = j}, 1 ≤ j ≤ n− 1,

be the first time that the number of active blocks of an n-sample reaches k. Note that (N t)t≥0 behaves like
the block counting process of a Kingman coalescent where in addition to the coalescence events, particles
may “disappear” at a rate proportional to the number of particles alive. Since the corresponding values
for a Kingman coalescent are finite P-a.s., it is easy to see that the τnj are, too. Clearly, for any n,
τnj − τnj−1 has an exponential distribution with parameter

λj :=

(
j

2

)

+ cj.

At each time of a transition τnj , we distinguish between two events: coalescence and deactivation of an
active block, where by deactivation we mean a transition of (Nn

t ,M
n
t )t≥0 of type (j + 1, l) ↦→ (j, l + 1)

(for suitable l ∈ [n]), i.e. the transition of a plant to a seed.
Then

P
(
deactivation at τnj−1

)
=

cj
(
j
2

)
+ cj

=
2c

j + 2c− 1
, (3.4.12)

independently of the number of inactive blocks. Thus

Xn
j := 1{

deactivation at τn
j−1

}, j = 2, ..., n, j < ∞,

are independent Bernoulli random variables with respective parameters 2c/(j+2c− 1), j = 2, ..., n. Note
that Xn

j depends on j, but the random variable is independent of the random variable τj−1 due to the
memorylessness of the exponential distribution. Now define An

t as the (random) number of deactivations
up to time t ≥ 0 that is, for n ∈ N ∪ {∞},

An
t :=

n∑

j=2

Xn
j 1{τn

j−1<t}. (3.4.13)
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For n ∈ N, since λj ≥
(
j
2

)
, it follows from a comparison with the block counting process of the Kingman

coalescent, denoted by (|Kn
t |)t≥0 (if started in n blocks), that for all t ≥ 0,

lim
n→∞

P
(
τn⌊logn−1⌋ ≤ t

)
≥ lim

n→∞
P
(
|Kn

t | ≤ ⌊log n− 1⌋
)

≥ lim
n→∞

P
(
|Kt| ≤ log n− 1

)
= 1.

where the last equality follows from the fact that the Kingman-coalescent (Kt)t≥0 comes down from
infinity, cf. [63, 59]. For t ≥ 0,

P

(

An
t ≥

n∑

j=logn

Xn
j

)

≥ P

(

1{τn
log n−1<t}

n∑

j=logn

Xn
j ≥

n∑

j=logn

Xn
j

)

(3.4.14)

≥ P
(
τnlogn−1 < t

)
. (3.4.15)

and hence, by (3.4.14)

lim
n→∞

P

(

An
t ≥

n∑

j=logn

Xn
j

)

= 1. (3.4.16)

Note that due to (3.4.12),

E

[ n∑

j=logn

Xn
j

]

=

n∑

j=logn

2c

j + 2c− 1
= 2c(log n− log log n) +R(c, n), (3.4.17)

where R(c, n) converges to a finite value depending on the seedbank intensity c as n → ∞. Since the Xn
j

are independent Bernoulli random variables, we obtain for the variance

V

[ n∑

j=logn

Xn
j

]

=

n∑

j=logn

V
[
Xn

j

]
=

n∑

j=logn

2c

j + 2c− 1

(

1− 2c

j + 2c− 1

)

≤ 2c log n as n → ∞. (3.4.18)

For any ϵ > 0 we can choose n large enough such that, E[
∑n

j=logn Xk] ≥ (2c− ϵ) log n holds, which yields

P

( n∑

j=logn

Xn
j < c log n

)

≤ P

( n∑

j=logn

Xn
j − E

[ n∑

j=log n

Xn
j

]

< −(c− ϵ) log n
)

≤ P

(⏐
⏐
⏐

n∑

j=logn

Xn
j − E

[ n∑

j=logn

Xn
j

]⏐
⏐
⏐ > (c− ϵ) log n

)

≤ 2c

(c− ϵ)2 log n
, (3.4.19)

by Chebyshev’s inequality. In particular, for any κ ∈ N,

lim
n→∞

P
(

n∑

j=logn

Xn
j < κ

)
= 0,

and together with (3.4.16) we obtain for any t > 0

lim
n→∞

P(An
t < κ) = 0. (3.4.20)

Since the (An
t )t≥0 are coupled by construction for any n ∈ N∪{∞}, we know in particular that P(A∞

t <
κ) ≤ P(An

t < κ), for any n ∈ N, t ≥ 0, κ ≥ 0 and therefore P(A∞
t < κ) = 0, which yields

∀t ≥ 0 : P(A∞
t = ∞) = 1. (3.4.21)
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Since in addition, (A∞
t )t≥0 is non-decreasing in t, we can even conclude

P(∀t ≥ 0 : A∞
t = ∞) = 1. (3.4.22)

Thus we have proven that, for any time t ≥ 0, there have been an infinite amount of movements to the
seedbank P-a.s. Now we are left to show that this also implies the presence of an infinite amount of
lineages in the seedbank, i.e. that a sufficiently large proportion is saved from moving back to the plants
where it would be “instantaneously” reduced to a finite number by the coalescence mechanism.

Define Bt to be the blocks of a partition that visited the seedbank at some point before a fixed time
t ≥ 0 and were visible in the “white” seedbank coalescent, i.e.

Bt := {B ⊆ N | ∃ 0 ≤ r ≤ t : B{s} ∈ Π(∞,0)
r and contains at least one white particle }.

Since we started our coloured coalescent in (∞, 0), the cardinality of Bt is at least equal to A∞
t and

therefore we know P(|Bt| = ∞) = 1. Since Bt is countable, we can enumerate its elements as Bt =
⋃

n∈N
{Bn

t } and use this to define the sets Bn
t := {B1

t , . . . , B
n
t }, for all n ∈ N. Since Bt is infinite P-

a.s., these Bn
t exist for any n, P-a.s. Now observe that the following inequalities hold even pathwise by

construction:

M
(∞,0)
t ≥

∑

B∈Bt

1{B{s}∈Π
(∞,0)
t } ≥

∑

B∈Bn
t

1{B{s}∈Π
(∞,0)
t }

and therefore the following holds for any κ ∈ N:

P(M
(∞,0)
t ≤ κ) ≤ P(

∑

B∈Bn
t

1{Bs∈Π
(∞,0)
t } ≤ κ)

∗
≤

κ∑

i=1

(
n

i

)

(e−ct)i(1− e−ct)n−i n→∞−−−−→ 0

which in turn implies P(M
(∞,0)
t = ∞) = 1. In * we used that for each of the n blocks in Bn

t we know

P(B ∈ Π
(∞,0)
t ) ≥ e−ct and they leave the seedbank independently of each other, which implies that the

sum is dominated by a Binomial random variable with parameters n and e−ct.
Since the probability on the left does not depend on n, and the above holds for any κ ∈ N, we obtain

P(M
(∞,0)
t = ∞) = 1 for all t > 0. Note that this also implies P(M

(∞,0)
t +N

(∞,0)
t = ∞) = 1 for all t > 0,

from which, through the monotonicity of the sum, we can immediately deduce the stronger statement

P
(
∀t > 0 : M

(∞,0)
t +N

(∞,0)
t = ∞

)
= 1.

On the other hand, we have seen that P(N
(∞,0)
t < ∞) = 1, for all t > 0, which , again using its

monotonicity, yields P(∀t > 0 : N
(∞,0)
t < ∞) = 1. Putting these two results together we obtain

P(∀t > 0 : M
(∞,0)
t = ∞) = 1

3.4.3 Bounds on the time to the most recent common ancestor

In view of the previous subsection it is now quite obvious that the seedbank causes a relevant delay in
the time to the most recent common ancestor of finite samples. We will mostly be interested in the case
where the sample is drawn from plants only, and write TMRCA[n] := TMRCA[(n, 0)]. The main results of
this section are asymptotic logarithmic bounds on the expectation of TMRCA[n]. (The reader is invited
to compare the following Theorem with Lemma 1.3.13)

Theorem 3.4.8. For all c,K ∈ (0,∞), the seedbank coalescent satisfies

E
[
TMRCA[n]

]
≍ log logn. (3.4.23)

Here, the symbol ≍ denotes weak asymptotic equivalence of sequences, meaning that we have

lim inf
n→∞

E
[
TMRCA[n]

]

log log n
> 0, (3.4.24)
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and

lim sup
n→∞

E
[
TMRCA[n]

]

log log n
< ∞. (3.4.25)

The proof of Theorem 3.4.8 will be given in Proposition 3.4.9 and Proposition 3.4.11. The intuition
behind this result is the following. The time until a seed gets involved in a coalescence event is much
longer than the time it takes for a plant to be involved in a coalescence, since a seed has to become a
plant first. Thus the time to the most recent common ancestor of a sample of n plants is governed by the
number of individuals that become seeds before coalescence, and by the time of coalescence of a sample
of seeds.

Due to the quadratic coalescence rates, it is clear that the time until the ancestral lines of all sampled
plants have either coalesced into one, or have entered the seedbank at least once, is finite almost surely.
The number of lines that enter the seedbank until that time is a random variable that is asymptotically
of order log n, due to similar considerations as in (3.4.17). Thus we need to control the time to the most
recent common ancestor of a sample of O(log n) seeds. The linear rate of migration then leads to the
second log.

Turning this reasoning into bounds requires some more work, in particular for an upper bound. As
in the proof of Theorem 3.4.4, let Xk, k = 1, ..., n denote independent Bernoulli random variables with
parameters 2c/(k + 2c− 1). Similar to (3.4.13) define

An :=
n∑

k=2

Xk. (3.4.26)

Lemma 3.4.3. Under our assumptions, for any ϵ > 0,

lim
n→∞

P(An ≥ (2c+ ϵ) logn) = 0

and

lim
n→∞

P(An ≤ (2c− ϵ) log n) = 0.

Proof. As in the proof of Theorem 3.4.4 before we have

E[An] =
n∑

k=2

2c

k + 2c− 1
= 2c log n+R′(c, n),

where R′(c, n) converges to a finite value depending on c as n → ∞, and

V(An) ∼ 2c log n as n → ∞.

Thus again by Chebyshev’s inequality, for sufficiently large n (and recalling that c is our model parameter)

P(An ≥ (2c+ ϵ) log n) ≤ P(An − E[An] ≥ ϵ log n)

≤ P(|An − E[An]| ≥ ϵ log n)

≤ 2c

ϵ2 log n
.

This proves the first claim. The second statement follows similarly, cf. (3.4.19).

Recall the process (N t,M t)t≥0 from the previous subsection. The coupling of Proposition 3.4.7 leads
to the lower bound in Theorem 3.4.8.

Proposition 3.4.9. For all c,K ∈ (0,∞), the seedbank coalescent satisfies

lim inf
n→∞

E
[
TMRCA[n]

]

log log n
> 0. (3.4.27)
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Proof. The coupling with (N t,M t)t≥0 yields

TMRCA[n] ≥ TMRCA[n],

where TMRCA[n] denotes the time until (N t,M t) started at (n, 0) has reached a state with only one
block left. By definition, An of the previous lemma gives the number of individuals that at some point
become seeds in the process (N t,M t)t≥0. Thus TMRCA[n] is bounded from below by the time it takes
until these An seeds migrate to plants (and then disappear). Since the seeds disappear independently of
each other, we can bound TMRCA[n] stochastically from below by the extinction time of a pure death
process with death rate cK started with An individuals. For such a process started at An = l ∈ N

individuals, the expected extinction time as l → ∞ is of order log l. Thus we have for ϵ > 0 that there
exists C > 0 such that

E
[
TMRCA[n]

]
≥E

[
TMRCA[n]1{An≥(2c−ϵ) logn}

]

≥C log log nP
(
An ≥ (2c− ϵ) logn

)
,

and the claim follows from the fact that by Lemma 3.4.3, An ≥ (c− ϵ) log n almost surely as n → ∞.

To prove the corresponding upper bound, we couple (Nt,Mt) to a functional of another type of
coloured process.

Definition 3.4.10. Let (N t,M t)t≥0 be the continuous-time Markov process with state space E ⊆ N×N,
characterised by the transition rates:

(n,m) ↦→

⎧

⎪⎨

⎪⎩

(n− 1,m+ 1) at rate cn,

(n+ 1,m− 1) at rate cKm,

(n− 1,m) at rate
(
n
2

)
· 1{n≥√

n+m}.

This means that (N t,M t)t≥0 has the same transitions as (Nt,Mt), but coalescence is suppressed if
there are too few plants relative to the number of seeds. The effect of this choice of rates is that for
(N t,M t)t≥0, if n ≳

√
m, then coalescence happens at a rate which is of the same order as the rate of

migration from seed to plant.

Lemma 3.4.4. The processes (N t,M t)t≥0 and (Nt,Mt)t≥0 can be coupled such that

P

(

∀t ≥ 0 : N
(n,m)
t ≤ N

(n,m)

t and M
(n,m)
t ≤ M

(n,m)

t

)

= 1.

Proof. We construct both processes from the same system of blocks. Start with n +m blocks labelled
from {1, ..., n+m}, and with n of them carrying an s-flag, the others a p-flag. Let Si, P i, i = 1, ..., n+m
and V i,j , i, j = 1, ..., n + m, i < j be independent Poisson processes, Si with parameter cK, P i with
parameter c, and V i,j with parameter 1. Moreover, let each block carry a colour flag, blue or white. At
the beginning, all blocks are supposed to be blue. The blocks evolve as follows: At an arrival of Si, if
block i carries an s-flag, this flag is changed to p irrespective of the colour and the state of any other
block. Similarly, at an arrival of P i, if block i carries a p-flag, this is changed to an s-flag. At an arrival
of V i,j , and if blocks i and j both carry a p-flag, one observes the whole system, and proceeds as follows:

(i) If the total number of p-flags in the system is greater or equal to the square root of the total number
of blocks, then blocks i and j coalesce, which we encode by saying that the block with the higher
label (i or j) is discarded. If the coalescing blocks have the same colour, this colour is kept. Note
that here the blocks carry the color, unlike in the coloured process of the previous sections, where
the individuals were coloured. If the coalescing blocks have different colours, then the colour after
the coalescence is blue.

(ii) If the condition on the number of flags in (i) is not satisfied, then there is no coalescence, but if
both blocks were coloured blue, then the block (i or j) with the higher label is coloured white (this
can be seen as a “hidden coalescence” in the process where colours are disregarded).

It is then clear by observing the rates that (Nt,Mt) is equal in distribution to the process which counts at
any time t the number of blue blocks with p-flags and with s-flags respectively, and (N t,M t) is obtained
by counting the number of p-flags and s-flags of any colour. By construction we obivously have N t ≥ Nt

and M t ≥ Mt for all t.
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Define now
TMRCA[m] := inf

{
t ≥ 0 : (N

(0,m)

t ,M
(0,m)

t ) = (1, 0)
}
.

Lemma 3.4.5. There exists a finite constant C independent of m such that

TMRCA[m] ≤ C logm.

Proof. Define for every k ∈ 1, 2, ...,m− 1 the hitting times

Hk := inf{t > 0 : N t +M t = k}. (3.4.28)

We aim at proving that E
0,m[Hm−1] ≤ C√

m
and E

0,m[Hj−1 − Hj ] ≤ C
j−1 for j ≤ m − 1, for some

0 < C < ∞. Here and throughout the proof, C denotes a generic positive constant (independent of m)
which may change from instance to instance. To simplify notation, we will identify

√
j with ⌈√j⌉, or

equivalently assume that all occurring square roots are natural numbers. Moreover, we will only provide
the calculations in the case of the standard seedbank-coalescent, that is, c = K = 1. The reader is invited
to convince himself (or herself) that the argument can also be carried out in the general case.

We write λt for the total jump rate of the process (N,M) at time t, that is,

λt =

(
N t

2

)

1{Nt≥
√

Nt+Mt}
+N t +Mt,

and set

αt :=

(
Nt

2

)
1{Nt≥

√
Nt+Mt}

λt

, βt :=
N t

λt

, γt :=
M t

λt

for the probabilities that the first jump after time t is a coalescence, a migration from plant to seed
or a migration from seed to plant, respectively. Even though all these rates are now random, they are
well-defined conditional on the state of the process. The proof will be carried out in three steps.

Step 1: Bound on the time to reach
√
m plants. Let

Dm := inf{t > 0 : N
(0,m)

t ≥ √
m} (3.4.29)

denote the first time the number of plants is at least
√
m. Due to the restriction in the coalescence rate,

the process (N
(0,m)

t ,M
(0,m)

t )t≥0 has to first reach a state with at least
√
m plants before being able to

coalesce, hence Dm < Hm−1 a.s. Hence for any t ≥ 0, conditional on t ≤ Dm we have λt = m and
N t <

√
m. Thus Mt > m−√

m a.s. and we note that at each jump time of (N t,M t) for t ≤ Dm

γs ≥
m−√

m

m
= 1− 1√

m
a.s. ∀s ≤ t

and

βs ≤
1√
m

a.s. ∀s ≤ t.

The expected number of jumps of the process (N t,M t) until Dm is therefore bounded from above by
the expected time it takes a discrete time asymmetric simple random walk started at 0 with probability
1−1/

√
m for an upward jump and 1/

√
m for a downward jump to reach level

√
m−1. It is a well-known

fact (see for example [19], Ch. XIV.3) that this expectation is bounded by C
√
m for some C ∈ (0,∞).

Since the time between each of the jumps of (N t,M t), for t < Dm, is exponential with rate λt = m, we
get

E
0,m[Dm] ≤ C

√
m · 1

m
=

C√
m

. (3.4.30)

Step 2: Bound on the time to the first coalescence after reaching
√
m plants. At time t = Dm, we

have λ =
(√

m
2

)
+

√
m+m−√

m, and thus

βt =

√
m

(√
m
2

)
+m

=
2
√
m

3m−√
m

≤ C√
m

a.s.,
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and

αt =
m−√

m

3m−√
m

≥ 1

3

(
1− 1√

m

)
a.s.

Denote by Jm the time of the first jump after time Dm. At Jm there is either a coalescence taking place
(thus reaching a state with m − 1 individuals and hence in that case Hm−1 = Jm), or a migration. In
order to obtain an upper bound on Hm−1, as a “worst-case scenario”, we can assume that if there is no
coalescence at Jm, the process is restarted from state (0,m), and then run again until the next time that
there are at least

√
m plants (hence after Jm, the time until this happens is again equal in distribution

to Dm). If we proceed like this, we have that the number of times that the process is restarted is
stochastically dominated by a geometric random variable with parameter 1

3 (1− 1√
m
), and since

E
0,m[Jm −Dm] = λ−1

Dm
=

1
(√

m
2

)
+m

≤ C

m
,

we can conclude (using (3.4.30)) that

E
0,m[Hm−1] ≤ E

0,m[Jm]
3
√
m√

m− 1

=
(
E
0,m[Dm] + E

0,m[Jm −Dm]
) 3

√
m√

m− 1

≤ C√
m
. (3.4.31)

Step 3: Bound on the time between two coalescences. Now we want to estimate E
0,m[Hj−1 −Hj ] for

j ≤ m− 1. Obviously at time Hj−, for j ≤ m− 1, there are at least
√
j + 1 plants, since Nt +Mt can

decrease only through a coalescence. Therefore1 NHj
≥ √

j − 1. Hence either we have NHj
≥ √

j and

coalescence is possible in the first jump after Hj , or NHj
=

√
j− 1, in which case γHj

≥ j−√
j

j = 1− 1√
j
,

meaning that if coalescence is not allowed at Hj , with probability at least 1− 1√
j
it will be possible after

the first jump after reaching Hj . Thus the probability that coalescence is allowed either at the first or
the second jump after time Hj is bounded from below by 1− 1√

j
.

Assuming that coalescence is possible at the first or second jump after Hj , denote by Lj the time to
either the first jump after Hj if NHj

≥ √
j, or the time of the second jump after Hj otherwise. Then in

the same way as before, we see that αLj ≥ 1 − C√
j
. Thus the probability that Hj−1 is reached no later

than two jumps after Hj is at least
(
1 − C√

j

)2
. Otherwise, in the case where there was no coalescence

at either the first or the second jump after Hj , we can obtain an upper bound on Hj−1 by restarting
the process from state (0, j). The probability that the process is restarted is thus bounded from above
by C√

j
. We know from equation (3.4.31) that if started in (0, j), there is E

0,j [Hj−1] ≤ C√
j
. Noting that

λHj ≥ j, and we need to make at most two jumps, we have that E0,m[Lj ] ≤ 2/j. Thus we conclude

E
0,m[Hj−1 −Hj ] ≤ E

0,m[Lj ]
(
1− C√

j

)2
+

C√
j
E
0,j [Hj−1]

≤ 2

j − 1

(
1− C√

j

)
+
( C√

j

)2

≤ C

j − 1
. (3.4.32)

These three bounds allow us to finish the proof, since when starting (N t,M t) in state (0,m) our calcu-
lations show that

E
[
TMRCA[m]

]
= E

0,m[H1] = E[Hm] +
m−1∑

j=2

E[Hj−1 −Hj ]

≤ C√
m

+ C
m−1∑

j=2

1

j − 1
∼ C logm (3.4.33)

1keeping in mind our convention that Gauß-brackets are applied if necessary, and hence NHj
≥

√
j + 1− 1 ≥

√
j − 1.
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as m → ∞.

This allows us to prove the upper bound corresponding (qualitatively) to the lower bound in (3.4.27).

Proposition 3.4.11. For c,K ∈ (0,∞), the seedbank coalescent satisfies

lim sup
n→∞

E
[
TMRCA[n]

]

log log n
< ∞. (3.4.34)

Proof. Assume that the initial n individuals in the sample of the process (Π
(n)
t )t≥0 are labelled 1, ..., n.

Let
Sr := {k ∈ [n] : ∃0 ≤ t ≤ r : k belongs to an s-block at time t}

denote those lines that visit the seedbank at some time up to t. Let

ϱn := inf{r ≥ 0 : |Sc
r | = 1}

be the first time that all those individuals which so far had not entered the seedbank have coalesced.
Note that ϱn is a stopping time for the process (Π

(n)
t )t≥0, and N

(n,0)
ϱn and M

(n,0)
ϱn are well-defined as the

number of plant blocks, resp. seed blocks of Π
(n)
ϱn . By a comparison of ϱn to the time to the most recent

common ancestor of Kingman’s coalescent cf. [71], E[ϱn] ≤ 2 for any n ∈ N, and thus

E
[
TMRCA[(n, 0)]

]
≤ 2 + E

[
TMRCA[(N

(n,0)
ϱn ,M

(n,0)
ϱn )]

]

≤ 2 + E
[
TMRCA[(0, N

(n,0)
ϱn +M

(n,0)
ϱn )]

]
, (3.4.35)

where the last inequality follows from the fact that every seed has to become a plant before coalescing.
Recall An from (3.4.26) and observe that

N
(n,0)
ϱn +M

(n,0)
ϱn ≤ An + 1 stochastically. (3.4.36)

This follows from the fact that for every individual, the rate at which it is involved in a coalescence
is increased by the presence of other individuals, while the rate of migration is not affected. Thus by
coupling (Nt,Mt)t≥0 to a system where individuals, once having jumped to the seedbank, remain there
forever, we see that Nϱn +Mϱn is at most An + 1.

By the monotonicity of the coupling with (N t,M t), we thus see from (3.4.35), for ϵ > 0,

E
[
TMRCA[n]

]
≤ 2 + E

[
TMRCA[A

n + 1]
]

= 2 + E
[
TMRCA[A

n + 1]1{An≤(2c+ϵ) log n}
]

+ E
[
TMRCA[A

n + 1]1{An>(2c+ϵ) log n}
]
. (3.4.37)

From Lemma 3.4.5 we obtain

E
[
TMRCA[A

n + 1]1{An≤(2c+ϵ) logn}
]
≤ C log(2c− ϵ) log n ≤ C log log n,

and since An ≤ n in any case, we get

E
[
TMRCA[A

n + 1]1{An>(2c+ϵ) logn}
]
≤ C log n · P(An > (2c+ ϵ) log n) ≤ C.

This completes the proof.

Remark 3.4.12. In the same manner as in the proof of Theorem 3.4.8, one can show that for any
a, b ≥ 0,

E
[
TMRCA[an, bn]

]
≍ log

(
log(an) + bn

)
.
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Part II

Modeling the Lenski experiment

73





Chapter 4

An individual based model for the

Lenski experiment, and the

deceleration of the relative fitness

4.1 Introduction

This chapter consists essentially on the paper [24].
The Lenski experiment (see [40, 41, 39] for a detailed description) is a cornerstone in experimental

evolution. It investigates the long-term evolution of 12 initially identical populations of the bacterium
E. coli in identical environments. One of the basic concepts of the Lenski experiment is that of the daily
cycles. Every day starts by sampling approximately 5·106 cells from the bacteria available in the medium
that was used the day before. This sample is propagated in a minimal glucose medium. The bacteria
then reproduce (by binary splitting) with an exponential population growth. The reproduction continues
until the medium is deployed, i.e., when there is no more glucose available. Then the reproduction stops
and a phase of starvation starts. This phase lasts until the beginning of the next day, when the new
sample is transferred to fresh medium. Around 5 · 108 cells are present at the end of each day.

Up to now the experiment has been going on for more than 60’000 generations (or 9000 days, see
[39]). One important feature is that samples of ancestral populations were stored in low temperature,
forcing the bacteria to go to a dormant state. Afterwards, the bacteria could be made to reproduce
under competition with later generations in order to experimentally determine the fitness of an evolved
strain relative to the founder ancestor of the population by comparing their growth rates in the following
manner [40]: A population of size A0 of the unevolved strain and a population of size B0 of the evolved
strain perform a direct competition in the minimal glucose medium. The respective population sizes at
the end of the day, that is, after the glucose is consumed, are denoted by A1 and B1. The (empirical)
relative fitness F (B|A) of strain B with respect to strain A is then given by the ratio of the exponential
growth rates, calculated as

F (B|A) =
log(B1/B0)

log(A1/A0)
. (4.1.1)

Considerable changes of the relative fitness have been observed in the more than 25 years of the
experiment ([41, 3, 74]). As expected, the relative fitness of the population increases over time, but one
of the features that have been observed is a pronounced deceleration in the increase of the relative fitness,
see Figure 2 in [74]. In particular it has been observed that it increases sublinearly over time. Several
questions have arisen in this context ([3, 74]): How can the change of relative fitness be explained or
approximated? Which factors account for the deceleration in the increase of the relative fitness?

In [3], the authors perform an analysis on the change of the relative fitness for the first 20’000
generations of the experiment, and of the mutations that go to fixation during the same period. They
conjecture that effects of dependence between mutations, like clonal interference and epistasis, contribute
crucially to the deceleration of the gain of relative fitness.
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In [74], the authors analyse the change of the relative fitness for the first 50’000 generations of
the experiment, and fit the observations to a power law function. They also conjecture that clonal
interference and epistasis contribute crucially to the quantitative behavior of relative fitness, and support
this conjecture by sketching a mathematical model which predicts a power law function for the relative
fitness.

In this paper, we propose a basic mathematical model for a population that captures essential features
of the Lenski experiment, in particular the daily cycles. It models an asexually reproducing population
whose growth in each cycle is stopped after a certain time, and a new cycle is started with a sample of
the original population. We include (beneficial) mutations into the model by assuming that an individual
may mutate with a certain (small) probability and draws a certain (small) reproductory benefit from the
mutation. We then calculate the probability of fixation of a beneficial mutation, and its time to fixation.
Using this, we can prove that under some conditions on the parameters of mutation and selection, with
high probability there will be no clonal interference in the population, which means in our situation
that, with high probability, beneficial mutations only arrive when the population is homogeneous (in
the sense that all its individuals have the same reproduction rate). This result implies that we are
essentially dealing with a model of adaptive evolution, which allows a thorough mathematical analysis.
In particular, using convergence results for Markov chains in the spirit of [35], we are able to prove that
the relative fitness of the population, on a suitable timescale in terms of the population size, converges
locally uniformly to a deterministic curve (see Figure 4.2).

In this way we arrive at an explanation of a power law behavior (with a deceleration in the increase)
of the relative fitness. This explanation is in terms of the experiment’s design, and does not invoke clonal
interference, nor a direct epistatic effect of the befeficial mutations.

More specifically, in our model every beneficial mutation which is succesful in the sense that it goes
to fixation, will increases the individual reproduction rate by the same amount (ρ, say), irrespective
of the current value r of the individual reproduction rate. In this sense the model is “non-epistatic”.
However, there will be an indirect epistatic effect caused by the design of the experiment: since the
amount of glucose, which the bacteria get for their population growth, remains the same from day to
day, a population with a high individual reproduction rate will consume this amount more quickly than a
population with a low individual reproduction rate. In other words, the daily duration of the experiment
(that is the time t = ti during which the population grows at day i) will depend on the current level
r = ri of the individual reproduction rate, and will become shorter as r increases. Indeed, the ratio of
the two expected growth factors in one day is exp((r + ρ)t)/ exp(rt) = exp(ρt). Even though ρ does
not depend on r by our assumption, this ratio does depend on r, because, as stated above, the duration
t = ti of the daily cycles becomes smaller as r increases. We are well aware that clonal interference as
well as direct epistatic effects will also be at work in the Lenski experiment, and should be modelled.
On the other hand, we are convinced that our results will help to separate these effects from the indirect
epistatic effect caused by the constant daily nutrition of the population.

In the remainder of this introductory section we discuss our mathematical approach and main results,
and put our methods into the context of related work. The formal statement of the model and the main
results will be given in Section 4.2, and the proofs in Section 4.3. The most intricate proof is that of
Theorem 4.2.10 which relies on a coupling of the daily sampling scheme with near-critical Galton Watson
processes that is successful over a sufficiently long time period. Some tools from the theory of branching
processes (Yule and Galton Watson processes) are presented in the Appendix.

4.1.1 A neutral model for the daily cycles

We build our model on few basic assumptions: Every individual reproduces independently by binary
splitting at a given rate until the end of a growth cycle, which corresponds to one day (in the sense of
[39]). Our daily cycle model is determined by specifying the reproduction rate of each individual, and
a stopping rule to end the growth of the population. To illustrate this we assume for the moment a
neutral situation, i.e. all individuals have the same reproduction rate. The experiment is laid out such
that the total number of bacteria at the end of one day is roughly the same for every day. This suggests
the following mathematical assumptions: Each day starts with a population of N individuals. These
individuals reproduce by binary splitting at some fixed rate r until the maximum capacity is reached.
We assume that this happens (and that the “Lenski day” is over) as soon as the total number of cells
in the medium is close to γN for some constant γ > 1 (a precise definition and a discussion of the
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corresponding stopping rules will be given in Section 4.2.1). The description of the experiment suggests
to think of N = 5 · 106, and γ ≈ 100, since at the end of each day, one gets around 5 · 108 bacteria,
see supplementary material of [40]. The subsequent day is started by sampling N individuals from the
approximately γN total amount available, and the procedure is repeated.

This setting induces a genealogical process, which we study on the evolutionary time scale, that is
with one unit of time corresponding to N = 5 · 106 days. On this time scale, the genealogical process
turns out to be approximately a constant time change of the Kingman coalescent, where the constant
is cγ := 2(1 − 1

γ ). In this sense, N/cγ plays the role of an effective population size. With the stated

numbers, this is much larger than the number (≈ 9000) of “Lenski days” that have passed so far. In
other words, in the neutral model so far only a small fraction of one unit of the evolutionary timescale
has passed. Still, this model provides a good basis to introduce mutation and selection. In fact, we will
see that the design of the experiment (via the stopping rule that defines the end of each day) affects the
selective advantage provided by a beneficial mutation and in this way has an influence that goes well
beyond the determination of the effective population size in the neutral model.

Our genealogical model arises naturally from the daily cycle setting, see Figure 4.1. Schweinsberg [64]
obtained a Cannings dynamics by sampling generation-wise N individuals from a supercritical Galton
Watson forest, and analysed the arising coalescents as N → ∞. Our model is similar in spirit, with the
binary splitting leading to Yule processes. We will introduce the additional feature that some individuals
reproduce at a faster rate; in this sense Schweinsberg’s sampling approach to neutral coalescents is
naturally extended to a case with selection.

Figure 4.1: Two of the daily cycles (or “days”), with N = 4 and γ = 3. The N -sample at the end of day 1
constitutes the parental population at the beginning of day 2.

4.1.2 Mutants versus standing population

Next we consider a modification of the previous model, supposing that at a certain day a fraction of the
population reproduces at rate r, while the complementary fraction (founded by some beneficial mutant in
the past) reproduces faster, say at rate r+ϱN , with ϱN > 0. Our assumptions will be that the increment
of the reproduction rate ϱN is small, but not too small, more precisely we will assume that ϱN ∼ N−b for
some 0 < b < 1/2 (∼ denoting asymptotic equivalence, i.e. the convergence of the ratio to 1 as N → ∞).
We assume that the reproduction rate is heritable. Based on the observation that with the stopping
procedure indicated above a “Lenski day” lasts approximately log γ

r units of time of the Yule process, we
will prove in Proposition 4.2.8 that the expected number of offspring at the beginning of the next day of
an individual with reproduction rate r+ ϱN is increased for large N by approximately ϱN

log γ
r compared
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to an individual with reproduction rate r. In this sense the effective selective advantage of a beneficial
mutation is approximately ϱN

log γ
r .

Let us emphasize that here one obtains a dependence on the reproduction rate r of the standing
population due to the relation between r and the “length of a day”, i.e. the time span it takes the total
population to reach the maximum capacity. The implication of this result is that the selective advantage
provided by reproducing ϱN units faster is comparatively large if the standing population is not well
adapted and thus reproduces at a low rate, and is comparatively small if the population is well adapted
in the sense that it already reproduces fast.

4.1.3 Genetic and adaptive evolution

In order to study the genetic and adaptive evolution of a population under the conditions of the Lenski
experiment, we consider a model with moderately strong selection – weak mutation and constant additive
fitness effect of the mutations. We assume that the population reproduces in daily cycles as described
above, and that at each day with probability µN a beneficial mutation occurs within the ancestral
population of that day, where µN → 0 as N → ∞. Following the ansatz described above, we assume
that an individual affected by such a beneficial mutation increases its reproduction rate and that of
its offspring by ϱN . Some of these mutations will go to fixation (in which case they will be called
“successful”), while the others are lost from the population. Calculating the probability of fixation of
a beneficial mutation is a classical problem, studied already at the beginning of the last century by
Haldane in the Wright Fisher model. These questions still have a major interest in modern times, and
have recently been studied in different contexts (see for example [36] or [56]).

Assume now that the initial population on day i consists of N − 1 individuals that reproduce at rate
r and one mutant that reproduces at rate r+ ϱN . We will see in Theorem 4.2.10 that the probability of
fixation of such a mutant is asymptotically

ρN log γ

r

γ

γ − 1
(4.1.2)

as N → ∞. A crucial role in the proof of our result is played by an intricate approximation of the
number of the mutants’ descendants by near-critical Galton Watson process, as long as their number is
relatively small compared to the total population.

In Proposition 4.2.13, we prove that in a certain regime of the model parameters, namely if ϱN ∼
N−b, µN ∼ N−a, with b ∈ (0, 1/2) and a > 3b, the time it takes for a mutation to go to fixation or
extinction is with high probability shorter than the time between two mutation events which is of order
µ−1
N . This result allows us to exclude clonal interference even on the time scale ⌊tϱ−2

N µ−1
N ⌋, and to

approximate the reproduction rate process of our original model by a simple Markov chain which can be
interpreted as an idealized process where successful mutations fixate immediately on the scale of their
arrival rate, and unsuccessful ones are neglected.

In this respect, the analysis presented in this paper can be seen in the framework of the theory of
stochastic adaptive dynamics, as studied by Champagnat, Méléard and others, see [10, 11] and refer-
ences therein. Let us emphasize, however, that we prove the validity of our approximation by taking
simultaneous limits of the population size N → ∞, the rate of mutation µN → 0, and the increment of
the reproduction rate ϱN → 0, which requires some care, and is carried out by taking the specifics of our
model into account.

4.1.4 Deterministic approximation on longer time scales

The calculation of the fixation probability in Theorem 4.2.10 and the exclusion of clonal interference in
Proposition 4.2.13, as well as the resulting Markov chain approximation of the reproduction rate process
are the key steps in the analysis of the long-term behaviour of the population in the Lenski experiment.
This allows to derive the process counting the number of eventually successful beneficial mutations until
a certain day, and the process of the relative fitness of the evolved population compared to the initial
fitness.

It turns out, as we prove in Theorem 4.2.14 that for large N , on the time scale ⌊tϱ−1
N µ−1

N ⌋, the number

of successful mutations is approximately a Poisson process with constant rate γ log γ
(γ−1)r0

, if the observation

of the population starts on some day where the reproduction rate is constant and equal to r0 > 0.
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where g is a positive constant and ⟨Sn+1⟩ is the expected value of Ŝn+1. According to [74], the parameter
g serves to model the phenomenon of epistasis, which corresponds to a non-linearity in the fitness effects.
Through (4.1.5), it is a priori assumed that the expected value of the beneficial effect of a mutation
decreases as the number of successful mutations increases. Arguing heuristically by a branching process
approximation, the authors of [74] obtain an approximation of the relative fitness by the function

w = (ct+ 1)1/2g. (4.1.6)

Here c depends on clonal interference and epistasis. In [74] the approximation is compared to real data,
taking different pairs (g, c) and proving that the power law approximation in equation (4.1.6) fits better
to data than the hyperbolic curve proposed in [3].

Our Theorem 4.2.15 is consistent with (4.1.6), as we prove that, under the assumptions of our model,

w = (c′t+ 1)1/2. (4.1.7)

Notably, the “diminishing returns” for the case g = 1 emerge in our model under the assumption that
every beneficial mutation adds a constant amount ϱN to the intraday individual reproduction rate, which
corresponds to the absence of epistasis in this part of the model. This shows that the observed power law
behaviour of the relative fitness can to some extent be explained by the mere design of the experiment,
based on a simple non-epistatic intraday model – a fact which may also be seen as a strengthening of
the argument of Wiser et al [74] that a power law is an appropriate approximation to the evolution of
relative fitness.

In order to arrive at a power law (4.1.6) for more general g, we have to extend our model slightly.
Indeed, in Corollary 4.2.16 we prove that a gain in the reproduction rate of x−qϱN , for some q > −1,
if the present relative fitness is x, leads to a power law fitness curve with exponent 1/(2(1 + q)), which
compares to (4.1.6) by taking q = g − 1.

For a recent study that proposes a general framework for quantifying patterns of macroscopic epistasis
from observed differences in adaptability, including a discussion of fitness and mutation trajectories in
the Lenski experiment, see [25]. We refer also to the discussion in [12] of various epistatic models that
would explain a declining adaptability in microbial evolution experiments, and to the discussion in [49]
concerning the evolutionary dynamics on epistatic versus non-epistatic fitness landscapes with finitely
many genotypes.

4.2 Models and main results

4.2.1 Mathematical model of daily population cycles

In this section, we construct a mathematical model for the daily reproduction and growth cycle of a
bacterial population in the Lenski experiment, and state some first results, in particular on fixation
probabilities of beneficial mutations. These are the foundations for our main results to be presented in
Section 4.2.5.

4.2.2 Neutral model

We start by introducing the neutral model, where all individuals in the population reproduce at the
same rate. The model consists of a continuous time intraday dynamics, and a discrete time interday
dynamics, the latter is governed by a stopping- and a sampling rule. We number the daily cycles, or
“days” as we call them for simplicity, by i ∈ N0. Fix N ∈ N, and r > 0. We assume that every daily cycle
starts with exactly N individuals that reproduce at rate r, the basic reproduction rate. More precisely,
we decree that, independently for every day i ∈ N0, the (neutral) intraday population size process has

the distribution of a Yule process, denoted by (Z
(N)
t )t≥0, with reproduction parameter r, started with

Z
(N)
0 = N individuals. Consequently, for every t > 0, the random variable Z

(N)
t follows a negative

binomial distribution with parameters N and e−rt (see Corollary A.4 in Appendix A). In Appendix
A.3.1, we collect the properties of Yule process that are relevant for this paper.

Fix now γ > 1, and define stopping times

ςN := inf{t > 0 : Z
(N)
t ≥ γN} (4.2.1)
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and

σ(N) := inf{t > 0 : E[Z
(N)
t ] ≥ γN}. (4.2.2)

Note that ςN is a random variable, while σ(N) is deterministic. In fact, since E[Z
(N)
t ] = Nert, we see

immediately that σ(N) does not depend on N and equals

σ :=
log γ

r
. (4.2.3)

Definition 4.2.1 (Neutral model). Fix N ∈ N, r > 0, γ > 1. In the neutral model, independently for

every i ∈ N0, the population size at the end of day i is given by a copy of the random variable Z
(N)
σ ,

where (Z
(N)
t )t≥0 is defined above.

In other words, at every day the neutral population is started with N individuals that reproduce by
binary splitting at rate r (which leads to the above Yule process), with the population growth stopped
at time σ that depends on γ and r.

Remark 4.2.2 (Stopping rules). The two stopping times ςN and σ give rise to two different stopping rules
for the population: The stopping rule 1 stops the population growth at time ςN , that is the time when
population size has reached exactly ⌈γN⌉. On the other hand, stopping rule 2 uses σ instead, which

implies that the size of the stopped population, given by Z
(N)
σ , has a negative binomial distribution with

parameters N and 1
γ . While ςN might be a more natural choice for the stopping time of the population

growth, σ is easier to deal with. In this paper we will work under stopping rule 2, but we expect the
essentials of our results to be true for ςN as well. In fact, as we show in Lemma A.3.5, ςN converges to
σ in distribution.

4.2.3 The genealogy

Before turning our attention to the model with selection, we briefly discuss the neutral genealogy. If we
label the individuals within this process, we can keep track of their ancestral relationship by specifying
a sampling rule.

Definition 4.2.3 (Sampling rule). The parent population of day i + 1 is a uniform sample of size N
taken from the population at the end of day i.

Let νi = (νi1, · · · , νiN ), i = 0, 1, 2, . . ., be a sequence of vectors such that νij is the number of offspring
in the population at the beginning of day i of individual j from the population at the beginning of
day i − 1. Since (νi)i∈N0 are independent and identically distributed, and for each i the components
of νi are exchangeable and sum to N , we are facing a Cannings model, where the “days” play the role
of generations (see [71] for more background on Cannings models and coalescents). We can now fix a
generation i and consider the genealogy of a sample of n(≤ N) individuals. Here, for conceptual and
notational convenience, we shift the “present generation” to the time origin and extend the Cannings
dynamics (which is time-homogeneous) to all the preceding generations as well.

Definition 4.2.4 (Ancestral process). Sample n individuals at generation 0 and denote them by l1, · · · , ln.
Let [n] be the set of partitions of {1, 2, · · · , n} and B(N,n) = (B

(N,n)
g )g∈N0

be the process taking values

in [n] such that any j, k being in the same block in B
(N,n)
g if and only if there is a common ancestor at

generation −g for individuals lj , lk. Then B(N,n) is the ancestral process of the chosen sample.

It turns out that the genealogical process converges after a suitable time-scaling to the classical
Kingman coalescent (see [71] for a definition and more details on the relevance of Kingman’s coalescent
in population genetics). The time-rescaling depends on the population size N and is determined by a
constant depending on γ.

Theorem 4.2.5 (Convergence to Kingman’s coalescent). For all n ∈ N, the sequence of ancestral

processes
(
B

(N,n)

⌊Nt/2(1− 1
γ

)
⌋
)t≥0 converges weakly on the space of càdlàg paths as N → ∞ to Kingman’s

n-coalescent.
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The proof of Theorem 4.2.5 is given in Appendix A. Here we give a brief heuristic explanation of
the time change factor 2(1 − 1/γ)/N . This factor is asymptotically equal to cγ,N , the pair coalescence
probability in one generation, which in turn equals the probability that the second of two sampled
individuals belongs to the same (one generation) offspring as the first one. Hence, in the limit N → ∞,
cγ,N is asymptotically equal to the ratio (EĜ − 1)/(NEG), where G is the one-generation offspring

number of a single individual, and Ĝ is a size-biased version of G. If G has a geometric distribution with
expectation γ (which is the case in our setting, as can be seen from Lemma A.3.3 in the Appendix), then
EĜ = EG2/EG = 2γ−1, and hence cγ,N ∼ 2(1− 1

γ )/N . (In particular, for large γ, G/γ is asymptotically

exponential, EĜ ∼ 2EG, and cγ,N ∼ 2
N .)

4.2.4 Including selective advantage

We now drop the assumption that the relative fitness is constant over the whole population, and include
some selective advantage. Fix r > 0, γ > 1 as before. For N ∈ N let ϱN ≥ 0. Throughout this chapter,
we will assume that the sequence (ϱN )N∈N satisfies the condition

∃b ∈ (0, 1/2) : ϱN ∼ N−b as N → ∞. (4.2.4)

We extend our basic population model in the following way. Assume that at day i a number k among
the N individuals of the initial population have a selective advantage in the sense that they reproduce at
rate r+ϱN , and the remaining N−k individuals reproduce at rate r. We call the selectively advantageous
individuals the mutants, and the others the wild-type individuals. We assume that fitness is heritable,
meaning that offspring (unless affected by a mutation) retain the fitness of their parent. The intraday
population size process at day i is then of the form

Yt := Y
(N,k)
t = M

(k)
t + Z

(N−k)
t , t ≥ 0, (4.2.5)

where (Z
(N−k)
t )t≥0 is a Yule process with reproduction rate r, started with Z

(N−k)
0 = N − k individuals,

while (M
(k)
t )t≥0 is a Yule process with reproduction rate r + ϱN , started with Mk

0 = k individuals,

and independent of (Z
(N−k)
t )t≥0. Note that for fixed r and ϱN the distribution of (Yt)t≥0 is uniquely

determined by the initial number M
(k)
0 = k of mutants.

We apply stopping rule 2 to this model, which translates into stopping population growth at a
deterministic time depending on k (and N), namely at

σk := σ
(N)
k = inf{t ≥ 0 : E[Yt] ≥ γN}. (4.2.6)

This is still a deterministic time, though somewhat harder to calculate than σ, which equals σ0 in this
notation. Due to our construction, at the end of day i the total population has size Yσk

, among which

there are M
(k)
σk mutants, and Z

(N−k)
σk wild-type individuals.

One of the main tasks of this paper will be to calculate the number of mutants at the beginning of

day i, for i ∈ N0. Assuming that we know the population Yσk
= M

(k)
σk + Z

(N−k)
σk at the end of day i− 1,

we apply Definition 4.2.3, which means that given M
(k)
σk = M, and Z

(N−k)
σk = Z, we sample uniformly N

out of the M +Z individuals. Denote by Ki the number of mutants contained in this sample. Fixing K0

and repeating this independently for i ∈ N defines the interday process (Ki)i∈N0
counting the number

of mutants in the model with selection at the beginning of each day. Summarizing, this process can be
described as follows:

Proposition 4.2.6 (Model with selection). Fix γ > 1, r > 0 and ϱN , N ∈ N satisfying (4.2.4). Fix
K0 ∈ {1, ..., N}. Assume Ki−1 has been constructed, and takes the value k. Let M follow a negative
binomial distribution with parameters k and e−(r+ϱN )σk , and let Z follow a negative binomial distribution
with parameters N − k and e−rσk independent of M . Conditional on M and Z, the number Ki is
determined by sampling from the hypergeometric distribution with parameters N,M and M + Z.

Proof. This follows from the construction, noting that (Mt)t≥0 and (Zt)t≥0 evolve independently until
the deterministic time σk, and recalling that sampling N individuals without replacement out of M of
one type and Z of another type is described by the hypergeometric distribution.
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Remark 4.2.7 (More than two types). The definition of the model with selection generalizes in an obvious
way to situations where there are more than two different types of individuals in the population. If there
are ℓ different types reproducing at ℓ different (fixed) rates, the population within one day grows like
ℓ independent Yule processes with suitable initial values and reproduction rates, the stopping time is
defined accordingly, and the sampling remains uniform over the whole population.

Since the mutants reproduce faster, their proportion will increase (stochastically) during the day.
Hence, sampling uniformly at random from the population at the end of day i we expect to sample more
than the initial number of mutants, meaning that the fitness of the population will increase over time.

Proposition 4.2.8 (Selective advantage). Under assumption (4.2.4),

E[K1|K0 = 1]− 1 ∼ ϱN
log γ

r
as N → ∞. (4.2.7)

Remark 4.2.9. Recall Subsection 1.3.2 where we introduced the notion of selective advantage, in the
context of generalized Wright Fisher models.

Under the condition {K0 = 1} the N −K1 wild-type individuals that are sampled at the end of day 0
are exchangeably distributed upon the N − 1 wild-type ancestors that were present at the beginning of
day 0. Hence, the expected (sampled) offspring of each of these wild-type ancestors is ∼ 1 as N → ∞, and
thus, in view of Proposition 4.2.8, we can say that the selective advantage of a single mutant, resulting
from the increase of its reproduction rate from r to r + ϱN , is given by ϱN

log γ
r .

The main result of this section concerns the fixation probability of a beneficial mutation affecting one
individual at the beginning of day 0, and an estimate of the time that it takes for a successful mutation
to go to fixation (or for an unsuccessful mutation to go extinct). Let

πN := P
(
∃i ∈ N : Ki = N |K0 = 1

)
(4.2.8)

denote the probability of fixation if the population size process is started with one mutant at day 0 and
write

τNfix := inf{i ≥ 1 : Ki = N} ∈ [0,∞] (4.2.9)

for the time of fixation, and
τNext := inf{i ≥ 1 : Ki = 0} ∈ [0,∞] (4.2.10)

for the time until the mutation has been lost from the population, with the usual convention that
inf ∅ = ∞. Let

τN := τNfix ∧ τNext

be the first day at which either the whole population carries the mutation, or there are no more individuals
in the population carrying the mutation. Let

C(γ) :=
γ log γ

γ − 1
. (4.2.11)

Theorem 4.2.10 (Probability and speed of fixation). Assume (4.2.4), and assume that a mutation
affects exactly one individual at day 0, and that no further mutations happen after the first one. Then
as N → ∞,

πN ∼ ϱN
C(γ)

r
. (4.2.12)

Moreover, for any δ > 0 there exists Nδ ∈ N such that for all N ≥ Nδ

P(τN > ϱ−1−3δ
N ) ≤ (7/8)ϱ

−δ
N . (4.2.13)

The proof, which will be given in Section 4.3, relies on a comparison with a supercritical (near-critical)
Galton Watson process in the “early phase of the sweep”. While the basic idea is classical (dating back
to work of Fisher from the 1920’s), the scaling (4.2.4) of the supercriticality and the specific nature of our
Cannings dynamics required new arguments and a delicate analysis. For related results on near-critical
Galton Watson processes (which in some parts inspired our reasoning) see the recent work of Parsons
[56].
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4.2.5 Genetic and adaptive evolution

Our ultimate goal is to understand the deceleration of the increase in the relative fitness observed in [74],
in particular as compared to the linearly increasing number of successful mutations (“adaptive versus
genetic evolution”). In our model the relevant scales for the two processes turn out to be different,
since the assumptions are such that many successful mutations are needed in order to have a change of
approximately one unit in the relative fitness.

This section is divided into two parts. First, we study the model on a short time scale, which is
the relevant one for the arrivals of successful mutations. We prove that under some assumptions on the
model parameters the number of successful mutations converges on a suitable time scale to a standard
Poisson process. Afterwards, we introduce the process of relative fitness of the population, and we show
that this process converges on a longer time scale to a deterministic function.

4.2.6 Genetic and adaptive evolution on a short scale

The assertion of Theorem 4.2.10 can be rephrased as follows: In a background of wild-type individuals
that reproduce at rate r, a beneficial mutation that leads to a reproduction rate r+ϱN has a probability of
fixation obeying (4.2.12). Besides recalling condition (4.2.4) on the selection, in the following assumption
we require that the mutation rate is small enough to exclude “effective clonal interference” between
beneficial mutations.

Assumption (Additive, moderately strong selection-weak mutation). b

i) Beneficial mutations add ϱN to the reproduction rate of the individual that suffers the mutation.

ii) In each generation, with probability µN there occurs a beneficial mutation. The mutation af-
fects only one (uniformly chosen) individual, and every offspring of this individual also carries the
mutation.

iii) There exists 0 < b < 1/2, and a > 3b, such that µN ∼ N−a and ϱN ∼ N−b as N → ∞.

We use the term moderately strong selection in order to indicate that the strength of selection in our
model is between what is generally called strong selection, where ϱN = O(1), and weak selection where
ϱN = O(N−1) as N → ∞. Models with such types of selection were recently considered in the context
of density dependent birth-death-mutation processes by Parsons [56, 57]. The term weak mutation is
used to indicate that the mutation rate is small enough to guarantee the absence of clonal interference
as N → ∞, which we will prove in Proposition 4.2.13.

Definition 4.2.11 (Interfering mutations, clonal interference). Consider a pair of successive mutations.
Recall that τN denotes the first time after the first mutation at which the individual reproduction rate
is constant within the population. Denote by mN the time of the second mutation. We say that the
two mutations interfere if mN < τN . We say that clonal interference occurs if there exists a pair of
interfering mutations. In particular, there is no clonal interference until day i if there is no mutation
starting until day i that interferes with any other mutation.

Remark 4.2.12. (i) As we will see in Proposition 4.2.13 below, Assumption A iii) guarantees that the
probability of clonal interference of any pair of successive mutations is of order at most µNϱ−1

N . In
particular, this ensures that the probability of not observing any event of clonal interference on a time
scale of order µ−1

N ϱ−2
N (which we will see to be relevant for our model) tends to 1 as N → ∞.

(ii) Our assumption A iii) is somewhat stronger than requiring µN ≪ ϱN , which is a standard assumption
in adaptive dynamics excluding clonal interference, see e.g. [11]. In view of Theorem 4.2.10 and of our
detailed calculations in Section 3 we think that replacing a > 3b by a > b in Assumption A iii) should
still lead to the same results. However, there are substantial technical difficulties to consider in this case,
since a > b only excludes clonal interference of two successive mutations, but not on the longer time
scales that are relevant for our results.
(iii) While there is little doubt that there is clonal interference (of successive beneficial mutations) in the
Lenski experiment [48], it is noticeable that, as will be seen in Theorem 4.2.15, in order to qualitatively
explain certain features of the experimental results on the relative fitness of the population, it is not
mandatory to include clonal interference as a model assumption. Including clonal interference into the
model will be one goal of our future research in this topic.
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Let
Φi := 1 +

ϱN
r0

Hi. (4.2.15)

Thus on the event that there is no clonal interference we have

Φi −
ϱN
r0

≤ Fi ≤ Φi. (4.2.16)

From Theorem 4.2.14 we see that the relevant time scale for the successful mutations is given by
µ−1
N ϱ−1

N . Since the selective advantage of a single mutation is of order ϱN (cf. (4.2.8)), in view of (4.2.15)
it seems plausible that the time scale on which to expect a non-trivial limit of the fitness process is
ϱ−2
N µ−1

N . This suggests that the relative fitness has to be considered on a time scale different from that
of the number of successful mutations.

Indeed our next theorem shows that the process F := (F⌊µ−1
N ϱ−2

N t⌋)t≥0 has a non-trivial scaling limit,

which turns out to be a deterministic parabola.

Theorem 4.2.15 (Convergence of the relative fitness process). Assume R0,j = r0 for j = 1, ..., N ,
and let (Fi)i∈N0

be the process of relative fitness. Then under Assumption A, the sequence of processes
(F⌊(ϱ2

NµN )−1t⌋)t≥0 converges in distribution as N → ∞ locally uniformly to the deterministic function

f(t) =

√

1 +
2C(γ)t

r20
, t ≥ 0 .

The proof of this theorem will be given in Section 4.3.11. It relies on the fact that due to Proposition
4.2.13 the relative fitness process (Fi)i∈N0 can be approximated by the process (Φi)i∈N0 defined in (4.2.15).

A similar result can be obtained if a beneficial mutation provides a slightly different advantage, for
example due to epistasis. In particular, assume that a mutation that goes to fixation when the relative
fitness is x, for any x ≥ 1 provides an increment

ϱ
(x)
N = ψ(x)ϱN (4.2.17)

to the reproduction rate, for some continuous function ψ : R+ → R
+.

Corollary 4.2.16. Under Assumption A and (4.2.17), let Fψ
i be the relative fitness of the population

at day i with respect to the ancestral population at time 0. Then the process (Fψ
⌊(ϱ2

NµN )−1t⌋)t≥0 converges

in distribution and locally uniformly as N → ∞ to the deterministic function h which is the solution of
the differential equation

ḣ(t) =
ψ(h(t))2C(γ)

r20h(t)
, h(0) = 1, t ≥ 0.

In particular, if ψ(x) = x−q for some q > −1, then

h(t) =
(

1 +
2(1 + q)C(γ)

r20
t
) 1

2(1+q)

, t ≥ 0. (4.2.18)

This should be compared to [74], see also the discussion in Section 4.1.5.

4.3 Proof of the main results

In this section, we provide the proofs of the results that we stated in Section 4.2, in particular Theorem
4.2.10, which is technically the most involved and requires several preparatory steps, which are carried
out first. After these preparations, the proof of Theorem 4.2.10 will be carried out in Section 4.3.8. The
proofs of the other main results will be given in Sections 4.3.9 through 4.3.11.

It turns out that if the number of mutants reaches at least εN, for some ε ∈ (0, 1), then the mutation
will fixate with probability tending to one as N → ∞. Our strategy for proving Theorem 4.2.10 is thus
to divide the time between the occurrence of a mutation and its eventual fixation into three stages. For
the case of a successful mutation this is depicted in Figure 4.4.

The first stage starts at the day of the mutation, and ends at the first day i ∈ N that the number Ki

of mutants has reached a level εN, for some ε ∈ (0, 1/2). The second stage starts upon reaching εN, and
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4.3.1 A simplified sampling and construction of the auxiliary Galton Watson

processes

The construction of our model (as explained in Section 4.2.4) was such that Ki+1 was obtained from
Ki by letting two independent Yule populations with initial sizes Ki and N −Ki and respective growth
rates r+ ϱN and r evolve until time σKi

(defined in (4.2.6)) and then sampling uniformly N individuals
from the total of those two populations, which amounts to a mixed hypergeometric sampling of the
number of individuals (Proposition 4.2.6). In order to simplify the picture, we would like to use bino-
mial rather than hypergeometric sampling, i.e. sampling individuals independently of each other with
equal probability. In this way we will manage to construct two Galton Watson processes (Ki)i∈N0

and
(Ki)i∈N0

that will serve as upper and lower bounds for our true process (Ki)i∈N0
in the first stage of the

sweep. We prepare this construction by first giving an alternative description for the sampling of mutants.

Consider the population at the end of a given day (day 0, say). AssumeK0 = k, hence by construction
at the end of day 0 there are Mσk

mutant individuals for which we want to determine whether or not
they will be sampled for the next day. (Recall the definition of Mt from (4.2.5).) Label these mutant
individuals with numbers 1, . . . ,Mσk

. Define

Xj := 1{individual j is selected}, j = 1, ...,Mσk
.

Define a random variable

Γ :=
Yσk

N
. (4.3.2)

Thus Γ is the ratio between the number of individuals at the end of day 0 and the number of individuals
at the beginning of day 1, and by (4.2.6), E[Γ] = γ. Moreover, Γ ≥ 1, and P(Γ > 1) is exponentially close
to 1 as N → ∞. Conditional on Γ, for every j = 1, ...,Mσk

,

P(Xj = 1) =
1

Γ
,

but due to our sampling mechanism, the Xj , j = 1, ...,Mσk
, are not independent. Their joint law

conditional on Γ and Mσk
can be described as follows. Let (Uj)j∈N be i.i.d uniform random variables on

[0, 1]. Let X̃1 := 1{U1<1/Γ}, and define recursively for j ≥ 2

X̃j := 1{
Uj<

N−
∑j−1

l=1
X̃l

ΓN−(j−1)

}. (4.3.3)

For later convenience we define Uj and X̃j for j ∈ N, even though Xj is defined only for j = 1, ...,Mσk
.

Lemma 4.3.1. Conditional on Γ, (X̃j)j=1,...,Mσk
is equal in distribution to (Xj)j=1,...,Mσk

.

Proof. Conditional on Γ, we can represent the sampling procedure as follows: Individual 1 has probability
1/Γ of being selected. For individual 2, the probability of being sampled depends on whether or not
individual 1 was selected, in fact

P(X2 = 1) =
N − 1

ΓN − 1
P(X1 = 1) +

N

ΓN − 1
P(X1 = 0), (4.3.4)

or equivalently

P(X2 = 1|X1) =
N −X1

ΓN − 1
. (4.3.5)

Proceeding thus recursively, we find that the probability that the jth individual is selected, conditional
on knowing X1, ..., Xj−1, is

P(Xj = 1|X1, ..., Xj−1) =
N −∑j−1

l=1 Xl

ΓN − (j − 1)
= P(X̃j = 1|X̃1, ..., X̃j−1). (4.3.6)

This completes the proof.
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We will show in the next section that if α ∈ (b, 1/2), then P(J > Mσk
) is exponentially close to one for

any k ≤ εN . From this we will deduce that with high probability, for K0 = K0 = K0 = 1, we have

Ki ≤ Ki ≤ Ki ∀i ≤ TN
1 . (4.3.10)

Note that by definition
Ki ≤ Ki, ∀i ∈ N0 (4.3.11)

always holds. The following characterization of (Ki)i∈N0 and (Ki)i∈N0 is immediate from the construc-
tion:

Proposition 4.3.3. Let α > 0 as before, and (Ki,Ki,Ki)i∈N0 as in Definition 4.3.2. Then (Ki)i∈N0 is a
Galton Watson process whose offspring distribution is mixed binomial with parameters M and 1

γ +N−α,

where M is geometric with parameter e−(r+ϱN )σ0 . Similarly, (Ki)i∈N0
is a Galton Watson process whose

offspring distribution is mixed binomial with parameters M and 1
γ − N−α, where M is geometric with

parameter e−(r+ϱN )σ⌈εN⌉ .

4.3.2 A Galton Watson approximation

A crucial role in our analysis of stage 1 of the sweep will be played by equation (4.3.10), which we are
now going to prove. Let b be such that (4.2.4) holds, and assume K0 = k for some k ≤ εN. We will show
that if α > b, then with sufficiently large probability J > N , and Mσk

< N. The first part will require
some work. To start with, we will work with a slight modification of J . Let

J̃ := inf
{

j :
N −∑j−1

l=1 X̃l

ΓN − (j − 1)
∈ R \

[ 1

Γ
− 1

2
N−α,

1

Γ
+

1

2
N−α

]}

. (4.3.12)

Lemma 4.3.4. Let α ∈ (b, 1/2). There exists a constant c̃ independent of N such that for N large
enough,

P

(

J̃ > N
⏐
⏐
⏐

⏐
⏐γ − Γ

⏐
⏐ ≤ 1

2
N−α

)

≥ 1− 2e−c̃N1−2α

. (4.3.13)

Proof. Let AΓ :=
{⏐
⏐γ − Γ

⏐
⏐ ≤ 1

2N
−α

}
. By the construction and the definition of X̃j , equation (4.3.13) is

equivalent to

P

(N −∑j−1
l=1 X̃l

ΓN − (j − 1)
∈
[ 1

Γ
− 1

2
N−α,

1

Γ
+

1

2
N−α

]
∀j ∈ {1, ..., N}

⏐
⏐
⏐AΓ

)

≥ 1− 2e−c̃N1−2α

. (4.3.14)

Now rearranging the terms one gets that for 0 ≤ j ≤ N − 1

1

Γ
− 1

2
N−α ≤ N −∑j

l=1 X̃l

ΓN − j
≤ 1

Γ
+

1

2
N−α (4.3.15)

is equivalent to

−1

2
N1/2−α

(
Γ− j

N

)
≤ 1√

N

j
∑

l=1

(
X̃l −

1

Γ

)
≤ 1

2
N1/2−α

(
Γ− j

N

)
. (4.3.16)

So our aim will be to show that with sufficiently large probability on the event AΓ

sup
j∈{0,1,2,...,N−1}

{ 1√
N

j
∑

l=1

(X̃l −
1

Γ
)} ≤ 1

2
N1/2−α(Γ− 1)

and

inf
j∈{0,1,2,...,N−1}

{ 1√
N

j
∑

l=1

(X̃l −
1

Γ
)} ≥ −1

2
N1/2−α(Γ− 1).

Due to our assumptions, we can consider (Xj)j=0,...,N−1 resp. (Xj)j=0,...,N−1 instead of (X̃j)j=0,...,N−1.
Indeed, since γ,Γ ≥ 1 we have on the event AΓ

⏐
⏐
1

γ
− 1

Γ

⏐
⏐ ≤

⏐
⏐γ − Γ

⏐
⏐ ≤ 1

2
N−α. (4.3.17)
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Then
[ 1

Γ
− 1

2
N−α,

1

Γ
+

1

2
N−α

]
⊆

[ 1

γ
−N−α,

1

γ
+N−α

]
,

which implies that on the event AΓ, (4.3.9) is valid for every i ≤ J̃ . We recall the independence between
AΓ, X̄,X. Thus we are done if we show

P

(

sup
j∈{0,1,2,...,N−1}

{ 1√
N

j
∑

l=1

(X l −
1

Γ
)} ≤ 1

2
N1/2−α(Γ− 1)

⏐
⏐
⏐AΓ

)

≥ 1− e−c̃N1−2α

(4.3.18)

and

P

(

inf
j∈{0,1,2,...,N−1}

{ 1√
N

j
∑

l=1

(X l −
1

Γ
)} ≥ 1

2
N1/2−α(−Γ + 1)

⏐
⏐
⏐AΓ

)

≥ 1− e−c̃N1−2α

. (4.3.19)

This is an application of large deviations for maxima of sums of independent random variables, see for
example [1]. Observing that E[Xj ] =

1
γ +N−α and var(Xj) = γ−1(1− γ−1 +O(N−α)), we obtain by a

direct application of Theorem 1 of [1] that for any A > 0 there exists c̃1 = c̃1(A, γ) ∈ (0,∞) such that

P

(

sup
j∈{0,1,2,...,N−1}

{ 1√
N

j
∑

l=1

(X l −
1

γ
−N−α)} > AN1/2−α

)

≤ e−c̃1N
1−2α

. (4.3.20)

Then (4.3.18) follows with (4.3.17). Similarly we obtain (4.3.19).

Corollary 4.3.5. Let α ∈ (b, 1/2). There exists a constant c independent of N such that for N large
enough

P
(
J > N

)
≥ 1− e−cN1−2α

. (4.3.21)

Proof. Recall from the proof of the previous lemma that if | 1γ − 1
Γ | ≤ 1

2N
−α then

[
1

Γ
− 1

2
N−α,

1

Γ
+

1

2
N−α] ⊆ [

1

γ
−N−α,

1

γ
+N−α],

which implies that in this case J̃ < J . We already observed that | 1γ − 1
Γ | ≤ |γ−Γ|, so it remains to show

that |γ − Γ| < 1
2N

−α with large probability. Indeed, for l = 1, 2, . . . , N and N large enough

P
(
|Γ− γ| ≤ 1

2
N−α

)
= P

(
|Yσl

N
− γ| ≤ 1

2
N−α

)

= P
(
|Yσl

−Nγ√
N

| ≤ 1

2
N1/2−α

)

≥ 1− e−c′N1−2α

for some constant in c′ independent of N , where the last inequality follows from a generalisation of
Cramér’s theorem, see Theorem 2 of [58] (note that σl is a sum of independent but not identically
distributed random variables). Let c be a constant independent of N such that c > max(c′, c̃), where c̃
is the constant from Lemma 4.3.4. For N large enough

P

(

J > N
)

≥ P

(

J > N, | 1
γ
− 1

Γ
| ≤ 1

2
N−α

)

≥ P

(

J̃ > N, | 1
γ
− 1

Γ
| ≤ 1

2
N−α

)

≥ P

(

J̃ > N
)

− P

(

| 1
γ
− 1

Γ
| > 1

2
N−α

)

≥ 1− 2e−c̃N1−2α − e−c′N1−2α

≥ 1− e−cN1−2α

.
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Lemma 4.3.6. Let α ∈ (b, 1/2), and 0 < ε < 1/γ. Assume K0 ≤ K0 ≤ K0 and K0 = k, for some
k ≤ εN. There exists c > 0 independent of N such that for all N large enough,

P(Mσk
< N) ≥ 1− e−cN .

Proof. Let Gj be the number of offspring of the mutant number j ≤ k ≤ εN at the end of the day,
namely at time σk. By construction they are i.i.d. with finite second moment. Let (G′

j)j∈N be i.i.d

random variables equal in distribution to G1. Note that E[G1] ≤ e(r+ϱN )σ0 = γ(1 + o(1)). Since ε < 1/γ
we can choose N large enough such that E[G1] ≤ 1/ε. Then

P
(
Mσk

< N
)
= P

(
k∑

j=1

Gj < N
)

≥ P
(

εN∑

j=1

G′
j < N

)
≥ 1− e−cN

for a suitable c > 0. The last inequality follows from Cramer’s Theorem, since εE[G1] < 1.

Recall that TN
1 = inf{i ≥ 1 : Ki ≥ εN}.

Proposition 4.3.7. Let α ∈ (b, 1/2) and 0 < ε < 1/γ. Assume K0 ≤ K0 ≤ K0 and K0 = k ≤ εN.
Then there exists c independent of N such that for N large enough

P
(
Kmin(i,TN

1 ) ≥ Kmin(i,TN
1 ) ≥ Kmin(i,TN

1 ), ∀i ≤ g
)

≥ (1− 2e−cN1−2α

)g for all g ∈ N0. (4.3.22)

Proof. Corollary 4.3.5 implies that P(K1 ≤ K1 ≤ K1 | Mσk
< N) ≥ 1− e−cN1−2α

. Thus by Lemma 4.3.6
we have

P(K1 ≤ K1 ≤ K1) ≥ 1− 2e−cN1−2α

, (4.3.23)

which implies

P
(
Kmin(g,TN

1 ) ≥ Kmin(g,TN
1 ) ≥ Kmin(g,TN

1 ) |Kmin(i,TN
1 ) ≥ Kmin(i,TN

1 ) ≥ Kmin(i,TN
1 ), ∀i ≤ g − 1

)

≥ 1− 2e−cN1−2α

.(4.3.24)

From (4.3.24) the result follows easily by induction: Assume that (4.3.22) is true for g − 1. Then

P
(
Kmin(i,TN

1 ) ≥ Kmin(i,TN
1 ) ≥ Kmin(i,TN

1 ), ∀i ≤ g
)

= P
(
Kmin(g,TN

1 ) ≥ Kmin(g,TN
1 ) ≥ Kmin(g,TN

1 )|Kmin(i,TN
1 ) ≥ Kmin(i,TN

1 ) ≥ Kmin(i,TN
1 ), ∀i ≤ g − 1

)

× P
(
Kmin(i,TN

1 ) ≥ Kmin(i,TN
1 ) ≥ Kmin(i,TN

1 ), ∀i ≤ g − 1
)

≥ (1− 2e−cN1−2α

)(1− 2e−cN1−2α

)g−1.

4.3.3 Asymptotics of the stopping rule

In order to put the Galton Watson bounds to use, we need some control on σk.

Lemma 4.3.8. Under the assumptions of this section, for any k = 1, 2, . . . , N,

σk =
log γ

r + kϱN/N
+

k

N
O(ϱ2N ) +

k2

N2
O(ϱ2N ). (4.3.25)

where |O(ϱ2N )|/ϱ2N is bounded uniformly in N and k.

Proof. Note that log γ
r+ϱN

= σN ≤ σk ≤ σ0 = log γ
r for all k = 0, ..., N. Hence limN→∞ σk = log γ

r for all k.

We assume that N is large enough such that log γ
2r ≤ σk ≤ log γ

r .
By (4.2.5) and (4.2.6) we have

γN = E[M (k)
σk

] + E[Z(N−k)
σk

] = ke(r+ϱN )σk + (N − k)erσk . (4.3.26)
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Hence σk satisfies the equation
γN = erσk

(
keϱNσk +N − k

)
. (4.3.27)

Dividing by N, taking logarithms on both sides, and using Taylor expansion first on the exponential and
then on the logarithm leads to

log γ =rσk + log
(
1 +

k

N
(eϱNσk − 1)

)

=rσk + log
(
1 +

k

N
ϱNσk +

k

N
O(ϱ2N )

)

=rσk +
k

N
ϱNσk +

k

N
O(ϱ2N ) +

k2

N2
O(ϱ2N ).

(4.3.28)

Here we use the fact that log γ
2r ≤ σk ≤ log γ

r for all k if N is sufficiently large. Rewriting, we get the
desired expression of σk.

We will use this mostly in the following form, which is an immediate application of Lemma 4.3.8.

Corollary 4.3.9. For any k = 1, 2, . . . , N, as N → ∞

e(r+ϱN )σk = γ
(
1 + (1− k

N
)
ϱN
r

log γ +O(ϱ2N )
)

where |O(ϱ2N )|/ϱ2N is bounded uniformly in N and k.

4.3.4 Asymptotics of the approximating Galton Watson processes and Proof

of Prop. 4.2.8

We can now calculate the asymptotic expectation and variance of our auxiliary Galton Watson processes.

Lemma 4.3.10. Let α ∈ (b, 1/2). Let (Ki)i∈N0
and (Ki)i∈N0

be as defined in Section 4.3.1 with K0 =
K0 = K0 = 1. We have

E1[K1] = 1 +
log γ

r
ϱN + o(ϱN ) E1[K1] = 1 +

log γ

r
(1− ε)ϱN + o(ϱN ), (4.3.29)

and

var1[K1] =
2(γ − 1)

γ
(1 +O(ϱN )) var1[K1] =

2(γ − 1)

γ
(1 +O(ϱN )). (4.3.30)

Proof. Recall M,M from Proposition 4.3.3. By construction, and from Corollary 4.3.9

E1[K1] = (1/γ −N−α)E[M ]

= (1/γ −N−α)e(r+ϱN )σ⌈εN⌉

= 1 +
log γ

r
(1− ε)ϱN − γN−α + o(ϱN )

= 1 +
log γ

r
(1− ε)ϱN + o(ϱN )

where the last equality follows from the fact that our assumptions imply that N−α = o(ϱN ). In the same
way we obtain

E1[K1] = 1 +
log γ

r
ϱN + o(ϱN ).

It remains to calculate the variance

var1[K1] = E1[var1[K1|M ]] + var1[E1[K1|M ]]

= E1

(
[M

( 1

γ
−N−α

)(
1− 1

γ
+N−α

)
] + var1

[
M

( 1

γ
−N−α

)]

=
( 1

γ
−N−α

)(
1− 1

γ
+N−α

)
e(r+ϱN )σ⌈εN⌉ +

( 1

γ
−N−α

)2(
e2(r+ϱN )σ⌈εN⌉ − e(r+ϱN )σ⌈εN⌉

)
.
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Plugging in Corollary 4.3.9, simplifying and taking into account that N−α = o(ϱN ) for α > b leads to

var1[K1] =
2(γ − 1)

γ

(
1 + (1− ε)ϱN

log γ

r
+ o(ϱN )

)
=

2(γ − 1)

γ
+O(ϱN ).

The same steps lead to var1[K1] = 2(γ − 1)/γ +O(ϱN ).

Remark 4.3.11. (i) This result together with Lemma 4.3.6 proves Proposition 4.2.8. (ii) Applying
Lemma A.3.6 from the Appendix shows

P((Ki) survives) ∼
C(γ)

r
ϱN

and

P((Ki) survives) ∼
(1− ε)C(γ)

r
ϱN .

Corollary 4.3.12. Under the assumptions of Lemma 4.3.10, for k ≤ εN, as N → ∞,

Pk((Ki) survives | (Ki) survives ) = Pk((Ki) dies out | (Ki) dies out) = 1. (4.3.31)

Further,
Pk((Ki) dies out | (Ki) survives ) ≤ ε(1 + o(1)), (4.3.32)

and
Pk((Ki) survives | (Ki) dies out ) ≤ ε(1 + o(1)). (4.3.33)

Proof. The first equation follows immediately from (4.3.11). We prove (4.3.32), (4.3.33) follows similarly.
Let c(γ, r) := γ log γ

(γ−1)r . Note that

Pk((Ki) dies out | (Ki) survives ) =
Pk((Ki) dies out)− Pk((Ki) dies out)

Pk((Ki) survives)

∼ (1− c(γ, r)(1− ε)ϱN )k − (1− c(γ, r)ϱN )k

1− (1− c(γ, r)ϱN )k
. (4.3.34)

Let g(k) be the r.h.s of (4.3.34). We will show below that g is decreasing in k if N is large, from which
the statement follows, observing

g(k) ≤ g(1) ≤ ε(1 + o(1)).

To prove the monotonicity of g(k), let a = c(γ, r)ϱN . Let N large enough such that 0 < a < 1. Assume
that k ≥ 1 and k ∈ R

+. Then we can differentiate log(1− g(k)) in k which yields

∂

∂k
log(1− g(k)) =

(1− a)k log(1− a)

1− (1− a)k
− (1− a+ aε)k log(1− a+ aε)

1− (1− a+ aε)k
. (4.3.35)

The function xklog(x)
1−xk is a decreasing function in x, for 0 < x < 1, as can be seen by differentiation.

Apply this to the r.h.s of (4.3.35), we obtain d log(1−g(k))
dk ≥ 0 for all k ≥ 1. This implies dg(k)

dk ≤ 0. So
g(k) is decreasing in k.

4.3.5 First stage of the sweep

With these preparations we can now address the first stage of the sweep, cf. Figure 4.4. We are going
to calculate the probability that the number of mutants reaches εN for some ε > 0, and determine the
time it takes to reach εN . We achieve this by using the supercritical Galton Watson processes provided
by Lemma 4.3.7. Recall TN

1 = inf{i ≥ 0 : Ki ≥ εN}.
Lemma 4.3.13. Let 0 < ε < 1/γ. Then we have as N → ∞

ϱN log γ

r

γ

γ − 1
(1− ε)(1 + o(1)) ≤ P1(∃i : Ki ≥ εN) ≤ ϱN log γ

r

γ

γ − 1
(1 + o(1)), (4.3.36)

and for any δ > 0

lim sup
N→∞

P1(T
N
1 > ϱ−1−δ

N |TN
1 < ∞) ≤ ε

1− ε
.
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Proof. Let α ∈ (b, 1/2) and let (Ki)i∈N0
and (Ki)i∈N0

be defined as in Section 4.3.1, with K0 = K0 =
K0 = 1. We write (Ki) reaches εN for the event that there exists i > 0 such that Ki ≥ εN, and
analogously for (Ki), (Ki). By Remark 4.3.11, Lemma A.3.6, and Lemma A.3.7,

P1((Ki) reaches εN) ∼ P1((Ki) survives) ∼
ϱN log γ

r

γ

γ − 1
(4.3.37)

and

P1((Ki) reaches εN) ∼ P1((Ki) survives) ∼
ϱN log γ

r

γ

γ − 1
(1− ε). (4.3.38)

Let
A := A(γ, α, ε, δ,N) := {Ki ≤ Ki ≤ Ki ∀i ≤ min(TN

1 , ϱ−1−δ
N )}.

Setting g := ϱ−1−δ
N in Proposition 4.3.7 and applying the Bernoulli inequality we have

P1(A
c) ≤ 1− (1− 2e−cN1−2α

)ϱ
−1−δ
N ≤ ϱ−1−δ

N 2e−cN1−2α

, (4.3.39)

implying P1(A) → 1 exponentially fast as N → ∞. Let TN
1 := inf{i > 0 : Ki ≥ εN}. Then

P1((Ki) reaches εN) ≥ P1((Ki) reaches εN, (Ki) reaches εN,A, TN
1 ≤ ϱ−1−δ

N )

= P1((Ki) reaches εN,A, TN
1 ≤ ϱ−1−δ

N )

≥ P1((Ki) reaches εN, TN
1 ≤ ϱ−1−δ

N )− P(Ac)

∼ P1((Ki) reaches εN) (4.3.40)

using (4.3.39) and Lemma B.3 in the last inequality. Together with (4.3.38) this proves the lower bound

in (4.3.36). For the upper bound, let T
N

0 := inf{i : Ki = 0}. Note that

P1((Ki) reaches εN) = P((Ki∧TN
1
) reaches εN)

and
P1((Ki∧TN

1
) reaches εN) = 1− P((Ki∧TN

1
) dies out).

Thus we have

1− P1((Ki) reaches εN) ≥ P1((Ki∧TN
1
) dies out)

≥ P1((Ki∧TN
1
) dies out; (Ki) dies out;A;T

N

0 ≤ ϱ−1−δ
N )

= P1((Ki) dies out;A;T
N

0 ≤ ϱ−1−δ
N )

∼ P1((Ki) dies out)

∼ 1− P1((Ki) reaches εN), (4.3.41)

where we have used (A.3.3) from the Appendix and Lemma A.3.7. This implies the upper bound.
We are thus left with proving the last statement of the Lemma. Fix δ > 0. We have

P1(T
N
1 > ϱ−1−δ

N | (Ki) reaches εN) =
P1(T

N
1 > ϱ−1−δ

N , (Ki) reaches εN, (Ki) survives)

P1((Ki) reaches εN)

+
P1(T

N
1 > ϱ−1−δ

N , (Ki) reaches εN, (Ki) dies out)

P1((Ki) reaches εN)
. (4.3.42)

By (4.3.40) and Lemma A.3.7 we have for large enough N the inequality

P1((Ki) reaches εN) ≥ P1((Ki) survives),

and thus the first term on the right-hand side of (4.3.42) can be bounded from above by

P1(T
N
1 > ϱ−1−δ

N | (Ki) survives) ≤ P1(T
N
1 > ϱ−1−δ

N , A | (Ki) survives) + P1(A
c |(Ki) survives)

≤ P1(T
N
1 > ϱ−1−δ

N | (Ki) survives) +
P1(A

c)

P((Ki) survives)
. (4.3.43)
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The first term on the right-hand side converges to 0 due to Lemma A.3.8. By Lemma A.3.6 we have
P1((Ki) survives) ∼ cϱN , therefore by (4.3.39) the second term on the right-hand side converges to 0 as
well. Thus we have shown that the first summand in (4.3.42) converges to 0. To deal with the second
term, we observe

P1(T
N
1 > ϱ−1−δ

N , (Ki) reaches εN, (Ki) dies out)

≤P1((Ki) reaches εN, (Ki) dies out)

=P1((Ki) reaches εN, (Ki) dies out, (Ki) dies out)

+ P1((Ki) reaches εN, (Ki) dies out, (Ki) survives)

≤P1((Ki) reaches εN, (Ki) dies out) + P1((Ki) dies out, (Ki) survives)

≤P1((Ki) reaches εN, (Ki) dies out,K⌊ϱ−1
N ⌋ > 0)

+ P1((Ki) reaches εN, (Ki) dies out,K⌊ϱ−1
N ⌋ = 0)

+ P1((Ki) dies out, (Ki) survives). (4.3.44)

We have

P1((Ki) reaches εN, (Ki) dies out,K⌊ϱ−1
N ⌋ > 0) ≤ P((Ki) dies out,K⌊ϱ−1

N ⌋ > 0)

which goes to 0 exponentially fast due to (A.3.3) in the Appendix, and using Lemma A.3.7 we get

P1((Ki) reaches εN, (Ki) dies out,K⌊ϱ−1
N ⌋ = 0) ≤ P1(A

c)

which goes to 0 exponentially fast due to (4.3.39). Finally we have

P1((Ki) dies out, (Ki) survives) =P1((Ki) dies out | (Ki) survives)P1((Ki) survives)

≤ε(1 + o(1))P1((Ki) survives)

=
ε

1− ε
(1 + o(1))P1((Ki) survives),

see Corollary 4.3.12. Thus the second summand in (4.3.42) is bounded from above by ε
1−ε (1+ o(1)), and

the claim follows.

Corollary 4.3.14. Let TN
0 := inf{i : Ki = 0}. For 0 < ε < 1/γ ∧ 1/16 there exists N

(1)
ε such that for

any k ≤ εN,
Pk(T

N
1 ∧ TN

0 > ϱ−1−δ
N ) ≤ 1/2. (4.3.45)

Proof. Fix k ≤ εN . We have

Pk(T
N
1 ∧ TN

0 > ϱ−1−δ
N ) = Pk(T

N
1 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
1 )Pk(T

N
1 ∧ TN

0 = TN
1 )

+ Pk(T
N
0 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
0 )Pk(T

N
1 ∧ TN

0 = TN
0 ).

Due to (4.3.32) we can see that all the steps leading to the last statement in Lemma 4.3.13 hold if the
processes are started in k ≤ εN instead of 1. Hence we have that for all 1 ≤ k ≤ εN

lim sup
N→∞

Pk(T
N
1 > ϱ−1−δ

N |TN
1 < ∞) ≤ ε

1− ε
. (4.3.46)

Moreover, if we stop (Ki) with K0 = k ≤ εN when the Markov chain is larger than εN , then (Ki)
is an absorbing Markov chain with absorbing states 0 and any number larger than εN . That implies
Pk(T

N
1 ∧ TN

0 < ∞) = 1. Notice that under event {TN
1 ∧ TN

0 < ∞}, we have {TN
1 < ∞} = {TN

1 ∧ TN
0 =

TN
1 }. Altogether we obtain

lim sup
N→∞

Pk(T
N
1 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
1 ) ≤ ε

1− ε
(1 + o(1)), (4.3.47)

which is smaller than 1/4 for our choice of ε. Therefore (4.3.45) holds for any k ≤ εN such that
Pk(T

N
0 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
0 ) ≤ 1/4. Assume therefore that Pk(T

N
0 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
0 ) > 1/4.
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Due to Proposition 4.3.7 and Lemma A.3.8 we then have that Pk(T
N
1 ∧ TN

0 = TN
0 ) ≥ 1/4 for N large

enough. For such k

Pk(T
N
0 > ϱ−1−δ

N |TN
1 ∧ TN

0 = TN
0 ) ≤ Pk(K⌊ϱ−1−δ

N ⌋ > 0, A |TN
1 ∧ TN

0 = TN
0 ) + Pk(A

c |TN
1 ∧ TN

0 = TN
0 )

≤ 4Pk(K⌊ϱ−1−δ
N ⌋ > 0, A, (Ki)i∈N dies out) + 4Pk(A

c)

≤ 4Pk(K⌊ϱ−1−δ
N ⌋ > 0, (Ki)i∈N dies out) + 4Pk(A

c).

Equation (4.3.33) implies

4Pk(K⌊ϱ−1−δ
N ⌋ > 0, (Ki)i∈N dies out) ≤ 4Pk(K⌊ϱ−1−δ

N ⌋ > 0, (Ki)i∈N dies out) + 4ε(1 + o(1)).

By (4.3.39), Pk(A
c) goes to 0 exponentially fast, and Pk(Kϱ−1−δ

N
> 0 | (Ki)i∈N0

dies out) goes to 0 by

(A.3.3). Thus if ε < 1/16 the right-hand side of the above inequality is bounded above by 1/4, and we
have completed the proof.

4.3.6 Second stage of the sweep

In the second stage of the sweep we will make an approximation, just like the one we did in Proposition
1.3.5.

Lemma 4.3.15. For ε ∈ (0, 1/2) let 1− ε′ ∈ (ε, 1). Then we have for any k ≥ εN

lim
N→∞

Pk(∃i : Ki ≥ ⌊(1− ε′)N⌋) = 1.

Moreover, limN→∞ P(TN
2 − TN

1 > ϱ−1−δ
N ) = 0 for any δ > 0.

Proof. We use an ODE approximation. Recall that Ki denotes the number of mutants at the beginning
of day i. Let x ∈ [ε, 1). From Corollary 4.3.9, we obtain that the expected number of offspring at the end
of day i of a single mutant, given that there are ⌊xN⌋ mutants at the beginning of the day, is given by
e(r+ϱN )σ⌊xN⌋ . Using Corollary 4.3.9, we obtain

E[Ki |Ki−1 = ⌊xN⌋] = ⌊xN⌋
γ

(
e(r+ϱN )σ⌊xN⌋

)
= ⌊xN⌋

(
1 + ϱN

log γ

r
(1− xN) +O(ϱ2N )

)
. (4.3.48)

From Corollary A.3.4 and Corollary 4.3.9 we see that there exists c = c(γ, r) < ∞ such that

var(Ki |Ki−1 = k) ≤ cN, k = 1, 2, . . . , N.

For f ∈ C2[0, 1] we define the rescaled discrete generator of (Ki)i∈N0

ANf(
k

N
) = ϱ−1

N E[f(Ki/N)− f(k/N) |Ki−1 = k], x ∈ [0, 1].

Using Taylor approximation on f we infer that, for some y ∈ [0, 1],

ANf(
k

N
) = ϱ−1

N

(

E
[
(
Ki

N
− k

N
)f ′(

k

N
) +

1

2

(Ki

N
− k

N

)2
f ′′(y)

⏐
⏐Ki−1 = k

])

.

We have,

Ek

[(K1

N
− k

N

)2]
=

1

N2
Ek[K

2
1 − Ek[K1]

2] +
1

N2
Ek[K1]

2 − 2
k

N2
Ek[K1] + (

k

N
)2

=
1

N2
vark(K1) +

(
Ek[K1]/N − x

)2

≤ c

N
+O(ϱ2N ),

(4.3.49)
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where |O(ϱ2N )|/ϱ2N is bounded uniformly in N and k. Hence recalling ϱ−1
N N−α → 0 for α > b and the

continuity of f ′′ on [0, 1], we obtain the following convergence which is uniform in k and y:

sup
y∈[0,1],k=0,1,...,N

|ϱ−1
N

(

Ek

[
(
K1

N
− k

N

)2]
f ′′(y)

)

| → 0, N → ∞.

Since Ek[
K1

N − k
N ] = k

γ e
(r+ϱN )σk − k

N , one can apply Corollary 4.3.9. Together with the above display,
we obtain

sup
k=0,1,...,N

|ANf(
k

N
)− k

N
(1− k

N
)f ′(

k

N
)| → 0, N → ∞.

Applying Theorem 1.6.5 and Theorem 4.2.6 of [18] we infer that for every x ∈ [0, 1], the sequence of
processes ( 1

NK⌊ϱ−1
N t⌋)t≥0, N = 1, 2, . . ., K0 = ⌊xN⌋ converges locally uniformly in distribution to the

deterministic (increasing) function g(t) which is defined by the initial value problem

g′(t) = g(t)(1− g(t))
log γ

r
, g(0) = x ∈ [0, 1].

Now choose t∗ such that g(t∗) > 1− ε′, provided g(0) = ε > 0. This implies

lim
N→∞

P(K⌊ϱ−1
N t∗⌋ ≥ ⌊(1− ε′)N⌋|K0 ≥ ⌊εN⌋) = 1, (4.3.50)

and a fortiori, limN→∞ P(TN
1 − TN

2 > ϱ−1−δ
N ) = 0 for any positive δ.

Corollary 4.3.16. For any ε ∈ (0, 1/2), there exist N
(2)
ε ∈ N such that for every N > N

(2)
ε , for every

k ≥ εN,
Pk(∃i ≤ ϱ1−δ

N : Ki ≥ ⌊(1− ε)N⌋) ≥ 1/2.

Proof. The proof follows immediately from (4.3.50).

4.3.7 Third stage of the sweep

For the last stage of the sweep, after the number of mutants has reached at least (1 − ε)N, we use a
Galton Watson coupling similar in spirit to the coupling at the first stage. The difference is that this
time we will be working with the process of wild type individuals rather than the mutants. Fix again
α ∈ (b, 1/2). Let Qi := N − Ki be the number of wild-type individuals at the beginning of day i. We
proceed similarly as in Section 4.3.1 to define approximating Galton Watson processes (Q

i
)i∈N0

and

(Qi)i∈N0
, for i ∈ N constructing Q

i
and Qi recursively from the same Yule forest as Qi : Recall that

the wild type individuals reproduce at rate r. Assume that Q
i−1

and Qi−1 are constructed, and start

independent Yule trees growing at rate r for each individual as we did in Section 4.3.1 to construct Ki

and Ki. Assume Qi−1 = q ∈ (0, εN). Grow the Yule trees until time σ⌈(1−2ε)N⌉ and distinguish the
individuals according to whether they were born before σN , before σN−q, or before σ⌈(1−2ε)N⌉. Taking
the time of birth into consideration, the individuals born before σN will be sampled independently with
probability γ−1−N−α to form Q

i
, born before σN−q will be chosen according to (4.3.3) to form Qi, and

those before σ⌈(1−2ε)N⌉ with probability γ−1 +N−α to form Qi.

It is clear that Lemma 4.3.4 and Corollary 4.3.5 still hold, and thus we can prove the equivalent to
Proposition 4.3.7. Define

TN
w (m) := inf{i : Qi > mεN or Qi = 0}, m ≥ 1.

Lemma 4.3.17. Let α ∈ (b, 1/2). Let m ≥ 1, and 0 < ε < 1/(mγ). Assume Q
0
= Q0 = Q0 ≤ εN. Then

there exists c large enough such that for N large enough,

P

(

Qmin{i,TN
w (m)} ≥ Qmin{i,TN

w (m)} ≥ Q
min{i,TN

w (m)}, ∀i ≤ g
)

≥ (1− 2e−cN )g for all g ∈ N0.

for some constant c independent of N.
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Proof. This follows from a straightforward adaptation of the proof of Proposition 4.3.7, since the con-
dition ε ≤ 1/(mγ) allows us to prove the analog of Lemma 4.3.6, observing that the definition of
TN
w (m) ensures that we stop the procedure if Qi reaches mεN individuals (and not εN as in Proposi-

tion 4.3.7).

We have the alternative description corresponding to Proposition 4.3.3: (Qi)i∈N0
is the Galton Watson

process whose offspring distribution is mixed binomial with parameters W and 1
γ + N−α, where W is

geometric with parameter e−rσ⌈(1−2ε)N⌉ . Similarly, (Q
i
)i∈N0 is the Galton Watson process whose offspring

distribution is mixed binomial with parameters W and 1
γ −N−α, where W is geometric with parameter

e−rσN . From this we obtain the analogue of Lemma 4.3.10.

Lemma 4.3.18. For (Q
i
)i∈N0

and (Qi)i∈N0
defined above there exist c, c independent of N such that for

N large enough,
E1[Q1] = 1− cϱN + o(ϱN ) and E1[Q1

] = 1− cϱN + o(ϱN ) (4.3.51)

Proof. By construction, and from Corollary 4.3.9

E1[Q1
] = (1/γ −N−α)E[W ] = (1/γ −N−α)erσN

= (1/γ −N−α)(γ − ϱN
log γ

r
) + o(ϱN )

= 1− log γ

γr
ϱN + o(ϱN ),

where the last equality follows from the fact that our assumptions imply that N−α = o(ϱN ). This is
the first assertion in (4.3.51). In the same way we obtain E1[Q1] = 1 − cϱN + o(ϱN ), for some positive
constant c independent of N .

Lemma 4.3.19. Let m ≥ 1 and 0 < ε < 1/(mγ). For any k ≥ (1− ε)N ,

lim sup
N→∞

Pk(τ
N
fix > ϱ−1−δ

N ) ≤ 2/m

for any δ > 0. In particular, Pk(∃i : Ki = N) ≥ 1− 2/m.

Proof. Under Pk we have by assumption that K0 = k ≥ (1 − ε)N, and thus Q0 = N − k ≤ εN. We
consider (Qi)i∈N0

, (Q
i
)i∈N0

as constructed at the beginning of this section, with α ∈ (b, 1/2). Let

A := A(γ, α, ε,N,m) :=
{

Qmin{i,TN
w (m)} ≥ Qmin{i,TN

w (m)} ≥ Q
min{i,TN

w (m)}, ∀i ≤ ϱ−1−δ
N

}

.

Then Lemma 4.3.17 shows
P(A) → 1 as N → ∞.

Note that
Ek[Q⌊ϱ−1−δ

N ⌋] ∼ (N − k)(1− c̄ϱN )ϱ
−(1+δ)
N ≤ (N − k)e−c̄ϱ−δ

N ≤ εNe−c̄ϱ−δ
N → 0

as N → ∞. Consequently, since on the event {TN
ω (m) > ϱ−1−δ

N } ∩A we have Q⌊ϱ−1−δ
N ⌋ ≥ 1,

Pk(T
N
w (m) > ϱ−1−δ

N ) ≤ Pk(T
N
w (m) > ϱ−1−δ

N , A) + Pk(A
c) ≤ Ek[Q⌊ϱ−1−δ

N ⌋1{TN
w (m)>ϱ−1−δ

N }1A] + Pk(A
c)

≤ Ek[Q⌊ϱ−1−δ
N ⌋] + Pk(A

c) → 0 as N → ∞.

Since

Pk(τ
N
fix > ϱ−1−δ

N ) =Pk(τ
N
fix > ϱ−1−δ

N , TN
w (m) > ϱ−1−δ

N ) + Pk(τ
N
fix > ϱ−1−δ

N , TN
w (m) ≤ ϱ−1−δ

N )

≤Pk(T
N
w (m) > ϱ−1−δ

N ) + Pk(QTN
w (m) ≥ εmN),

we are left with proving
lim sup
N→∞

Pk(QTN
w (m) ≥ εmN) ≤ 2/m. (4.3.52)
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Let κ be the first time when (Qi)i≥0 is not less than εmN or equal to 0. Note that under A∩{TN
w (m) ≤

ϱ−1−δ
N }, if QTN

w (k) ≥ εmN , then necessarily, QTN
w (m) ≥ εmN . So in conclusion:

Pk(QTN
w (m) ≥ εmN,A, TN

w (m) ≤ ϱ−1−δ
N ) ≤ Pk(Qκ ≥ εmN,A, TN

w (m) ≤ ϱ−1−δ
N ). (4.3.53)

Notice that (Qi)i≥0 is, as a sub-critical Galton Watson process, a supermartingale. Then (Qi∧εmN)i≥0

is a bounded supermartingale and, for any time strictly before κ, these two supermartingales are the
same. Now we have

εN ≥ Ek[Q0] = Ek[Q0 ∧ εmN ] ≥ Ek[Qκ ∧ εmN ] = Pk(Qκ ≥ εmN)εmN.

So
Pk(Qκ ≥ εmN) ≤ 1/m.

Therefore using (4.3.53) we have for N large enough

Pk(QTN
w (m) ≥ εmN) ≤ Pk(Qκ ≥ εmN) + Pk(T

N
w (m) > ϱ−1−δ

N ) + P(Ac) ≤ 2/m.

This implies (4.3.52), and moreover Pk(∃i : Ki = N) = Pk(QTN
w (k) = 0) ≥ 1− 2/m.

This result will be useful in the following simple form:

Corollary 4.3.20. For every 0 < ε < 1/(4γ) there exist N
(3)
ε ∈ N such that for all N ≥ N

(3)
ε , δ > 0 and

k ≥ (1− ε)N
Pk(τ

N
fix > ϱ−1−δ

N ) ≤ 1/2.

Proof. Take m ≥ 4 in Lemma 4.3.19.

4.3.8 Proof of Theorem 4.2.10

We are now finally able to prove Theorem 4.2.10. Let m ≥ 4 and 0 < ε < 1/(mγ) ∧ 1/16. By Lemma
4.3.13 we have

πN = P1(∃i : Ki = N) ≤ P(Ki reaches εN) ≤ γ log γ

γ − 1

ϱN
r
(1 + o(1)).

Further, observe that for 1 ≤ k ≤ k′ ≤ l ≤ N, by definition of the model,

Pk(K1 ≥ l) ≤ Pk′(K1 ≥ l)

and therefore by induction Pk(Ki ≥ l) ≤ Pk′(Ki ≥ l), i ∈ N. Thus

Pk((Ki) reaches l) ≤ Pk′((Ki) reaches l).

Therefore, for every ε ∈ (0, 1/(mγ) ∧ 1/16), by the strong Markov property and Lemma 4.3.13,

πN ≥P⌊εN⌋(∃i : Ki = N) · P1(Ki reaches εN)

≥P⌊εN⌋(∃i : Ki = N) · γ log γ
γ − 1

ϱN
r
(1− ε)(1 + o(1)).

From Lemmas 4.3.19 and 4.3.15 we obtain lim infN→∞ P⌊εN⌋(∃i : Ki = N) ≥ 1 − 2/m for any m ≥ 2.
Thus

(1− ε)(1− 2/m) ≤ lim inf
N→∞

γ − 1

γ log γ

r

ϱN
πN ≤ lim sup

N→∞

γ − 1

γ log γ

r

ϱN
πN ≤ 1.

Sending m → ∞ (and ε → 0) gives (4.2.12).

Now we will prove that P1(τ
N > ϱ−1−2δ

N ) ≤ (7/8)ϱ
−δ
N . Let Nε = sup{N (1)

ε , N
(2)
ε , N

(3)
ε } where

N
(1)
ε , N

(2)
ε , N

(3)
ε can be found respectively in Corollary 4.3.14, 4.3.16 and 4.3.20. Using the three corol-

laries and the strong Markov property of the process (Ki)i∈N0
we know that for all N > Nε, and for any

k ∈ {1, 2, ..., N}
Pk(τ

N ≤ 3ϱ−1−δ
N ) ≥ (1/2)3. (4.3.54)
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Using the Markov property at time ⌈3ϱ−1−δ
N ⌉, we see that for any n ∈ N

P1(τ
N > 3nϱ−1−δ

N ) ≤ P1(τ
N > ⌈3ϱ−1−δ

N ⌉)
N−1∑

k=1

Pk(τ
N > 3(n− 1)ϱ−1−δ

N )P1(K⌈ϱ−1−δ
N ⌉ = k)

≤ (1− (1/2)3)
N−1∑

k=1

Pk(τ
N > 3(n− 1)ϱ−1−δ

N )P1(K⌈ϱ−1−δ
N ⌉ = k).

Thus, proceeding iteratively, and using the fact that (4.3.54) is uniform in k ∈ {1, ..., N − 1}, we obtain

P1(τ
N > 3nϱ−1−δ

N ) ≤ (1− (1/2)3)n.

In particular, choosing n = ⌈ϱ−δ
N ⌉ we obtain for δ > 0

P1(τ
N > ϱ−1−3δ

N )P1(τ
N > 3ϱ−1−2δ

N ) ≤ (7/8)ϱ
−δ
N .

□

4.3.9 Proof of Proposition 4.2.13

Due to Theorem 4.2.10, and due to the Assumption that the mutations arrive independently of each
other at geometric times with parameter µN , we have that for any δ′ > 0

P(mN < τN ) ≤1− P(mN > ϱ−1−δ′

N | τN < ϱ−1−δ′

N )P(τN < ϱ−1−δ′

N )

≤1− (1− µN )⌊ϱ
−1−δ′

N ⌋(1− (7/8)⌊ϱ
−δ′/3
N ⌋).

Now the Bernoulli inequality yields

P(mN < τN ) ≤ 1− (1− µN⌊ϱ−1−δ′

N ⌋)(1− (7/8)⌊ϱ
−δ′/3
N ⌋)

= µN⌊ϱ−1−δ′

N ⌋+ (7/8)⌊ϱ
−δ′/3
N ⌋ − µN⌊ϱ−1−δ′

N ⌋(7/8)⌊ϱ
−δ′/3
N ⌋.

From this we obtain
P(mN < τN ) ≤ µNϱ−1−δ

N

for any δ > δ′, provided N is large enough. This proves the first claim. Now, let Ej be the event
that there is no clonal interference until the day that the j-th successful mutation starts. Observe that
P(E1) is given by the probability that any unsuccessful mutation started before the first successful one
has disappeared before the next mutation (successful or unsuccessful) starts. By the first part of this
theorem, for any given mutation this is the case with probability P(mN ≥ τN ) ≥ 1 − µNϱ−1−δ

N , for
δ > 0. Denote by L the number of mutations until the first successful one. Since the mutations arrive
independently of each other, we see by induction that for l ∈ N0

P( no clonal interference in the first l mutations |L = l + 1) ≥ (1− µNϱ−1−δ
N )l.

By Theorem 4.2.10, L is (asymptotically) geometric with success parameter C(γ)ϱN/r0. Thus summing
over all possible values of L we obtain by Theorem 4.2.10 and the first part of this proof, for δ > 0,

P(E1) ≥
∞∑

l=0

P(L = l + 1)(1− µNϱ−1−δ
N )l

≥
∞∑

l=0

(1− C(γ)ϱN
r0

)l
C(γ)ϱN

r0
(1− µNϱ−1−δ

N )l

=
C(γ)ϱN

r0

∞∑

i=0

(1− C(γ)ϱN
r0

− µNϱ−1−δ
N + 3

C(γ)

r0
ϱ−δ
N )l

=
C(γ)ϱN

r0

1

C(γ)ϱNr−1
0 + µNϱ−1−δ

N − C(γ)r−1
0 µNϱ−δ

N

=
1

1 + µNϱ−2−δ
N r0C(γ)−1 − µNϱ−1−δ

N

≥ 1− µNϱ−2−δ′′

N + o(µNϱ−2−δ′′

N )
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for N large enough and δ′′ > δ. Fix n ∈ N. Similar to the previous calculation, for j ≤ nϱ−1
N , we have

P(Ej+1|Ej) ≥ 1 − µNϱ−2−δ′′

N /3 + o(µNϱ−2−δ′′

N ). Proceeding iteratively one thus observes that for any
fixed n ∈ N

P(E⌊ϱ−1
N n⌋) ≥ (1− µNϱ−2−δ′′

N + o(µNϱ−2−δ
N ))⌊nϱ

−1
N ⌋

≥ 1− nµNϱ−3−3δ′′

N (1 + o(1)). (4.3.55)

By Assumption A iii) this tends to 1 for δ′′ > 0 small enough. Let In be the day at which the ⌊ϱ−1
N n⌋-th

successful mutation starts. We can write

In =
n∑

j=1

I(j),

if I(j) denotes the time between the fixation of the j − 1th and the initiation of the jth successful
mutation (and I(1) = I1). Let L(j) denote the number of unsuccessful mutations that happen during
time I(j). The success probability of a mutation that happens during I(j) is according to Theorem 4.2.10
given by C(γ) ϱN

r0+(j−1)ϱN
. Therefore, conditional on Ej , L

(j) is geometrically distributed with success

parameter C(γ) ϱN

r0+(j−1)ϱN
. Moreover, conditional on Ej , the time between two of the L(j) unsuccessful

mutations is stochastically larger than a geometric random variable with parameter µN , since this is the
rate at which mutations arrive, and the geometric distribution is memoryless. Thus we see that the time

I(j) is stochastically larger than a geometric random variable with parameter C(γ)µNϱN

r0+(j−1)ϱN
and a fortiori

stochastically larger than GN
j , if (GN

j )j∈N0
is a sequence of independent geometric random variables

with parameter C(γ)µNϱN/r0. Thus conditionally on E⌊nϱ−1
N ⌋, stochastically In ≥ ∑⌊ϱ−1

N n⌋
j=1 GN

j . Let

n = ⌈2Tr0/C(γ)⌉. Then

lim
N→∞

P(no clonal interference until ϱ−2
N µ−1

N T ) ≥ P(E⌊ϱ−1
N n⌋, In > ⌈ϱ−2

N µ−1
N T ⌉)

= P(E⌊ϱ−1
N n⌋)P(In > ⌈ϱ−2

N µ−1
N T ⌉|E⌊ϱ−1

N n⌋)

≥ P(E⌊ϱ−1
N n⌋)(1− 2P(

⌊ϱ−1
N n⌋
∑

j=1

GN
j < ⌊ϱ−2

N µ−1
N T ⌋))

By Cramér’s large deviation principle the second factor tends to 1. Thus the statement follows from (4.3.55).
□

4.3.10 Proof of Theorem 4.2.14

Denote by Di the event that there is no clonal interference up to day i, that is, any mutation that starts
until or including day i happens in a homogeneous population. Define

H̃i := Hi1Di
−∞1Dc

i
.

Then we have for any T > 0 that the two processes (Hi)1≤i≤ϱ−2
N µ−1

N T and (H̃i)1≤i≤ϱ−2
N µ−1

N T coincide on

the event (Dc
⌈ϱ−2

N µ−1
N T⌉), whose probability converges to 0 as N → ∞, by Proposition 4.2.13. Thus it is

sufficient to show that (H̃⌊tϱ−1
N µ−1

N ⌋)0≤t≤T converges in distribution to (M(C(γ)t/r0))0≤t≤T w. r. to the

Skorokhod topology, cf. Theorem 3.3.1 in [18]. This will be achieved by a standard generator calculation.
The process (Hi)i∈N0 is a Markov chain on N0 ∪ {−∞} with the following transition probabilities: If
n ≥ 0, then

P(H̃i+1 = n+ 1 | H̃i = n) =
C(γ)µNϱN
r0 + nϱN

P(Di+1 |Di),

P(H̃i+1 = n | H̃i = n) =
(

1− C(γ)µNϱN
r0 + nϱN

)

P(Di+1 |Di),

P(H̃i+1 = −∞| H̃i = n) = P(Dc
i+1 |Di),
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and
P(H̃i+1 = −∞| H̃i = −∞) = 1.

Observe first that for any δ > 0 we have

P(Dc
i+1 |Di) ≤ µ2

Nϱ−1−δ
N . (4.3.56)

This follows since conditional on the event Di, the event Dc
i+1 can only happen if at day i + 1 a new

mutation happens, and interferes with the previous mutation. The probability that a new mutation
happens is given by µN , and the probability of interference of a pair of mutations is P(mN < τN ). Thus
(4.3.56) follows from Proposition 4.2.13.
For bounded functions g on N0∪{−∞}, the discrete generator of (H̃i)i∈N0 on the time scale i = ϱ−1

N µ−1
N t

is given by (cf. Theorem 1.6.5 of [18])

BNg(n) :=
1

ϱNµN
E
[
g(H̃i+1)− g(n)

⏐
⏐ H̃i = n

]

=
1

ϱNµN

(C(γ)µNϱN
r0 + nϱN

P(Di+1 |Di)(g(n+ 1)− g(n)) + P(Dc
i+1 |Di)(g(−∞)− g(n))

)

=
C(γ)

r0 + nϱN
P(Di+1 |Di)(g(n+ 1)− g(n)) +

P(Dc
i+1 |Di)

ϱNµN
(g(−∞)− g(n)).

Due to (4.3.56) and Assumption A iii), the r.h.s. converges as N → ∞ to

C(γ)

r0
(g(n+ 1)− g(n)),

which is the generator of the Poisson process (W (C(γ)t/r0))t≥0. By Theorem 4.2.6 of [18] this implies
convergence of the corresponding processes. □

4.3.11 Convergence of the fitness process

Proof of Theorem 4.2.15. We proceed analogously to the proof of Theorem 4.2.14. Define

Φ̃i := 1 +
ϱN
r0

H̃i,

and recall Φi = 1+ ϱN

r0
Hi. As above, observe that the two processes (Φi)1≤i≤ϱ−2

N µ−1
N T and (Φ̃i)1≤i≤ϱ−2

N µ−1
N T

coincide on the event Dc
⌈ϱ−2

N µ−1
N T⌉, whose probability converges to 0 as as N → ∞, and that (Φ̃i)i∈N0 is

a Markov chain with transition probabilities

P(Φ̃i+1 = x+
ϱN
r0

| Φ̃i = x) =
C(γ)µNϱN

xr0
P(Di+1 |Di),

P(Φ̃i+1 = x | Φ̃i = x) =
(

1− C(γ)µNϱN
xr0

)

P(Di+1 |Di),

P(Φ̃i+1 = −∞| Φ̃i = x) = P(Dc
i+1 |Di),

for x > 0 and
P(Φ̃i+1 = −∞| Φ̃i = −∞) = 1.

Thus the discrete generator of (Φ̃i)i∈N0
on the time scale i = ϱ−2

N µ−1
N t is given by

ANg(n) :=
1

ϱ2NµN
E
[
g(Φ̃i+1)− g(x)

⏐
⏐ Φ̃i = x

]

=
1

ϱ2NµN

(C(γ)µNϱN
xr0

P(Di+1 |Di)(g(x+
ϱN
r0

)− g(x)) + P(Dc
i+1 |Di)(g(−∞)− g(x))

)

=
C(γ)

ϱNr0x
P(Di+1 |Di)(g(x+

ϱN
r0

)− g(x)) +
P(Dc

i+1 |Di)

ϱ2NµN
(g(−∞)− g(x)).
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Due to (4.3.56) and Assumption A iii), the r.h.s. converges for a continuously differentiable function
g : R → R that vanishes at ∞, as N → ∞ to

Ag(x) :=
C(γ)

r20x
g′(x)

as N → ∞ (as can be seen from Taylor’s expansion, compare the proof of Lemma 4.3.15). This, in turn,
is the generator of the solution to the (deterministic) differential equation

ḣ(t) =
1

h(t)

C(γ)

r20
, t ≥ 0,

whose solution (for the initial value h(0) = 1) is f. So we can apply Theorem 4.2.6 in [18] to conclude
that Φ̃ and then Φ converges in distribution to (f(t))t≥0 in the Skorokhod topology. Convergence of F
follows from the relation (4.2.16). Since f is continuous, this amounts to locally uniform convergence in
distribution.

Proof of Corollary 4.2.16. The proof is as for Theorem 4.2.15, with the only difference that now we
replace Φ̃ by Φ̃ψ, with transition probabilities for x ≥ 1

P(Φ̃ψ
i+1 = x+

ψ(x)ϱN
r0

| Φ̃ψ
i = x) =

C(γ)µNϱNψ(x)

xr0
P(Di+1 |Di),

P(Φ̃ψ
i+1 = x | Φ̃ψ

i = x) =
(

1− C(γ)µNϱNψ(x)

xr0

)

P(Di+1 |Di),

P(Φ̃ψ
i+1 = −∞| Φ̃ψ

i = x) = P(Dc
i+1 |Di),

for x > 0 and
P(Φ̃ψ

i+1 = −∞| Φ̃ψ
i = −∞) = 1.

which leads to a slightly different discrete generator

Aψ
Ng(x) =

C(γ)ψ(x)

ϱNr0x
P(Di+1 |Di)

(
g(x+

ψ(x)ϱN
r0

)− g(x)
)
+

P(Dc
i+1 |Di)

ϱ2NµN
(g(−∞)− g(x)).

Thus we get

lim
N→∞

Aψ
Ng(x) =

ψ(x)2C(γ)

r20x
g′(x)

and we conclude as above. In particular, solving

ḣ(t) =
C(γ)

r20

1

h(t)2q+1

yields (4.2.18).
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Appendix A

Some calculations and technical

remarks

A.1 Bound on a mixing time

We will prove a bound on the mixing time, that we used in the proof of Theorem 2.3.10.

Lemma A.1.1. Let ϵ > 0 and β > 0. Let µN = (1− ϵ)δ1 + ϵδNβ . Let (Xk) be the urn process and νN
its stationary distribution. For β > 0 let PNβ denote the set of probability measures on {0, ..., Nβ − 1}.
For all λ > 3β > 0, there exist δ > 0 and N0 ∈ N, such that for all N ≥ N0

sup
µ∈P

Nβ

∥Pµ(XNλ ∈ · )− νN∥TV ≤ e−Nδ

.

In particular the mixing time of (Xk), τmix, fulfills

τmix ≤ Nλ.

Proof. Let (Zn)n∈N0 be a realization of the urn process started in the invariant distribution νN in-
dependent of (Xn)n∈N0

. We couple (Xn) and (Zn) by the Doeblin coupling in the following way: let
σ0 := inf{n ∈ N0 : Xn = Zn}. Define

X̃n :=

{

Xn if n ≤ σ0,

Zn if n > σ0.

Write P := Pγ⊗νN
. Then P(X̃n = k) = Pγ(Xn = k) for all n ∈ N0, k ∈ {0, ..., Nβ − 1}. By Example 1.2.4,

we have
∥Pµ(Xn ∈ · )− νN∥TV ≤ P(X̃n ̸= Zn) = P(σ0 > n). (A.1.1)

Our aim is therefore to bound P(σ0 > n). To this end we consider the difference of the two process at
particular times. Define m0 := inf{n ≥ 0 : Xn = 0}, l0 := inf{n ≥ 0 : Zn = 0}, and let recursively, for
i ≥ 1,

mi := inf{n > mi−1 : Xn = 0, Xn−1 = 1}
and

li := inf{n > li−1 : Zn = 0, Zn−1 = 1}.
Note that for all i ≥ 0 we have Zmi

− Xmi
≥ 0 and Xli − Zli ≥ 0. Without loss of generality we can

assume that Z0 − X0 > 0, which implies m0 < l0. Since the difference of the two processes remains
constant as long as none of the two processes is in urn 0, we see that

σ0 ∈ {mi : i ≥ 2} ∪ {li : i ≥ 1}, (A.1.2)

i.e. the coupling always happens in urn 0, and it happens if either process (Zn) jumps from 1 to 0 while
(Xn) is in 0 or vice versa.
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Define for i ≥ 0
Vi :=

⏐
⏐
{
n ∈ {mi, ...,mi+1 − 1} : Xn = 0

}⏐
⏐,

and
Wi :=

⏐
⏐
{
n ∈ {li, ..., li+1 − 1} : Zn = 0

}⏐
⏐,

the number of visits in urn 0 of either of the process during one ‘cycle’ (note that between mi and
mi+1 the process (Xk) has exactly one jump of lenght Nβ . By construction, (Vi)i≥0 and (Wi)i≥0 are
independent sequences of iid geometric random variables with parameter ε, and

(Zmi
−Xmi

)− (Zmi−1
−Xmi−1

) = Wi−1 − Vi−1, (A.1.3)

(Xli − Zli)− (Xli−1
− Zli−1

) = Vi−1 −Wi−1, (A.1.4)

i ≥ 1. Moreover we note that

mi+1 −mi = Vi +Nβ , li+1 − li = Wi +Nβ . (A.1.5)

The random sequence (
∑k

i=0(Vi−Wi))k≥0 is a random walk with centered increments whose variance
(depending on ε but not on N) is finite. Moreover, σ0 can be controlled by the first time this random
walk exits the set {−Nβ + 1, ..., Nβ − 1}, since this event corresponds to either (Zn) ‘catching up’ with
(Xn), or vice versa. More precisely, defining

R := inf
{
k ≥ 0 : |

k∑

i=0

(Vi −Wi)| ≥ Nβ
}
,

we see from (A.1.3) and (A.1.4) that
σ0 ≤ mR. (A.1.6)

Equation (A.1.6) implies that for any λ > 0,

P
(
σ0 > Nλ

)
≤ P

(
R∑

i=1

(mi −mi−1) > Nλ
)

= 1− P
(

R∑

i=1

(mi −mi−1) ≤ Nλ
)

≤ 1− P
(
{R <

1

2
Nλ−β} ∩ {mi −mi−1 ≤ 2Nβ ∀i = 1, ...,

1

2
Nλ−β}

)

≤ P
(
{R >

1

2
Nλ−β} ∪ {∃1 ≤ i ≤ 1

2
Nλ−β : mi −mi−1 > 2Nβ}

)

≤ P
(
R >

1

2
Nλ−β

)
+ P

(
∃1 ≤ i ≤ Nλ−β : mi −mi−1 > 2Nβ

)
.

(A.1.7)

To control the first term on the rhs, we use classical bounds on the exit time from an interval of symmetric
random walks with finite variance, see e.g. Theorem 23.2 of [66]. This provides that for every δ′ > 0
there exists δ > 0 such that

P
(
R > N2β+δ′

)
≤ e−Nδ

. (A.1.8)

For λ > 3β, we can choose δ′ > 0 such that 2β + δ′ < λ− β, hence we find the bound

P
(
R >

1

2
Nλ−β

)
≤ e−Nδ

. (A.1.9)

To bound the second term in (A.1.7), by (A.1.5) and a union bound we find, for N large enough,

P
(
∃1 ≤ i ≤ Nλ−β : mi −mi−1 > 2Nβ

)
≤ Nλ−β

P
(
V1 > Nβ

)

= Nλ−β(1− ε)N
β ≤ Nλ−βe−εNβ ≤ e−Nβ/2

.
(A.1.10)

In view of (A.1.1), together the bounds (A.1.7), (A.1.9) and (A.1.10) prove the Lemma.

106



A.2 Convergence to the seedbank diffusion

Proposition A.2.1. Assume c = εN = δM and M → ∞, N → ∞. Let (DN,M )N,M∈N be an array of
positive real numbers. Then the discrete generator of the allele frequency process (XN

⌊DN,M t⌋, Y
M
⌊DN,M t⌋)t∈R+

on time-scale DN,M is given by

(ANf)(x, y) = DN,M

[ c

N
(y − x)

∂f

∂x
(x, y) +

c

M
(x− y)

∂f

∂y
(x, y)

+
1

N

1

2
x(1− x)

∂2f

∂x2
(x, y) +R(N,M)

]

,

where the remainder term R(N,M) satisfies that there exists a constant C1(c, f) ∈ (0,∞), independent
of N and M, such that

|R(N,Ma)| ≤ C1(N
−3/2 +M−2 +N−1M−1 +NM−3).

In particular, in the situation where M = O(N) as N → ∞ and DN,M = N we immediately obtain
Proposition 3.2.4.

Proof. We calculate the generator of (XN
k , Y M

k )k≥0 depending on the scaling (DN,M )N,M∈N. For f ∈
C3([0, 1]2) we use Taylor expansion in 2 dimensions to obtain

(ANf)(x, y) =
1

DN,M

[∂f

∂x
(x, y)Ex,y

[
XN

1 − x
]
+

∂f

∂y
(x, y)Ex,y

[
Y M
1 − y

]

+
1

2

∂2f

∂x2
(x, y)Ex,y

[(
XN

1 − x
)2
]

+
1

2

∂2f

∂y2
(x, y)Ex,y

[(
Y M
1 − y

)2
]

+
∂2f

∂x∂y
(x, y)Ex,y

[(
XN − x

) (
Y M
1 − y

)]

+ Ex,y

[ ∑

α,β∈N0
α+β=3

Rα,β(XN
1 , Y N

1 )(XM
1 − x)α(Y M

1 − y)β
]]

where the remainder is given by

Rα,β(x̄, ȳ) :=
α+ β

α!β!

∫ 1

0

(1− t)α+β−1 ∂3f

∂xα∂yβ
(
x− t(x̄− x), y − t(ȳ − y)

)
dt

for any x̄, ȳ ∈ [0, 1]. In order to prove the convergence, we thus need to calculate or bound all the
moments involved in this representation.

Given Px,y the following holds: By Proposition 3.2.2

XN
1 =

1

N
(U + Z),

Y M
1 =

1

M
(yM − Z + V ),

in distribution where U , V and Z are independent random variables such that

U ∼ Bin(N − c, x),

V ∼ Bin(c, x),

Z ∼ Hyp(M, c, yM).

Thus we have
Ex,y[U ] = Nx− cx, Ex,y[V ] = cx, E

[
x,yZ] = cy,

and moreover
Vx,y(U) = (N − c)x(1− x).
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One more observation is that as 0 ≤ V ≤ c and 0 ≤ Z ≤ c, it follows that |Z − cX| ≤ c and |V −Z| ≤ c,
which implies that for every α ∈ N

|Ex,y[(Z − cX)α]| ≤ cα,

|Ex,y[(Z − V )α]| ≤ cα,

and for every α, β ∈ N

|Ex,y[(Z − cX)α(V − Z)β ]| ≤ cα+β (A.2.1)

We are now prepared to calculate all the mixed moments needed.

Ex,y[X
N
1 − x] =

1

N
Ex,y[U + Z −Nx]

=
1

N
Ex,y[U −Nx+ cx] +

1

N
Ex,y[Z − cx]

=
c

N
(y − x)

Here we used (A.2), in particular Ex,y[U −Nx+ cx] = Ex,y[U − Ex,y[U ]] = 0. Similarly,

Ex,y[Y
M
1 − y] =

1

M
Ex,y[My + V − Z −My]

=
1

M
Ex,y[V − Z]

=
c

M
(x− y).

Noting XN
1 − x = 1

N (U −Nx+ cx) + 1
N (Z − cx) leads to

Ex,y[(X
N
1 − x)2] =

1

N2
Ex,y[(U −Nx+ cx)2]

+
2

N2
Ex,y[U −Nx+ cx]Ex,y[Z − cx]

+
1

N2
Ex,y[(Z − cx)2]

=
1

N2
Vx,y[U ] +

1

N2
Ex,y[(Z − cx)2]

=
1

N
x(1− x)− c

N2
x(1− x) +

1

N2
Ex,y[(Z − cx)2],

where
⏐
⏐− c

N2
x(1− x) +

1

N2
Ex,y[(Z − cx)2]

⏐
⏐ ≤ c2

N2
.

Moreover we have

⏐
⏐Ex,y[(Y

M
1 − y)2]

⏐
⏐ =

⏐
⏐
1

M2
Ex,y[(V − Z)2

⏐
⏐ ≤ c2

M2
.

Using Equation (A.2.1) we get

⏐
⏐Ex,y[(X

N
1 − x)(Y M

1 − y)]
⏐
⏐ ≤

⏐
⏐

1

NM
Ex,y[U − xN + cx]Ex,y[V − Z]

⏐
⏐

+
⏐
⏐

1

NM
Ex,y[(Z − cx)(V − Z)]

⏐
⏐

≤ c2

NM
.

We are thus left with the task of bounding the remainder term in the Taylor expansion. Since f ∈
C3([0, 1]2), we can define

C̃f := max{ ∂3f

∂xα∂yβ
(x̄, ȳ) | α, β ∈ N0, α+ β = 3, x̄, ȳ ∈ [0, 1]}
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which yields a uniform estimate for the remainder in the form of

|Rα,β(x̄, ȳ)| ≤ 1

α!β!C̄f

which in turn allows us to estimate

⏐
⏐Ex,y

[ ∑

α,β∈N0
α+β=3

Rα,β(XN
1 , Y N

1 )(XN
1 − x)α(Y M

1 − y)β
]⏐
⏐

≤ 1

α!β!C̄f

∑

α,β∈N0
α+β=3

Ex,y

[
|(XN

1 − x)α(Y M
1 − y)β |

]
.

Thus the claim follows if we show that the third moments are all of small enough order in N and M.
Observe that for α ∈ {0, 1, 2} we have

Ex,y[|(U −Nx+ cx)|α] ≤ N. (A.2.2)

For α = 0 this is trivially true, for α = 1 it is due to the fact that the binomial random variable U is
supported on 0, ..., N − c and Nx − cx is its expectation, and for α = 2 it follows from the fact that
(U −Nx+ cx)2 = |(U −Nx+ cx)2| and the formula for the variance of a binomial random variable. For
α = 3 it follows e.g. from Lemma 3.1 in [32] that

Ex,y[|(U −Nx+ cx)|3] = O(N3/2). (A.2.3)

Thus we get for any 0 ≤ α, β ≤ 3 such that α+ β = 3 that

Ex,y

[
|(X1 − x)α(Y M

1 − y)β |
]

=
1

NαMβ

α∑

i=0

(
α

i

)

Ex,y[|(U −Nx+ cx)i(Z − cx)α−i(V − Z)β |]

≤ 1

NαMβ

α∑

i=0

(
α

i

)

Ex,y[|(U −Nx+ cx)i|]Ex,y[|(Z − cx)α−i(V − Z)β |]

≤ 1

NαMβ

α∑

i=0

(
α

i

)

N(2c)α−i+β1{1,2,3}(α) +
3(2c)3

N3/2
1{3}(α)

≤ C
( 1

NM
+

1

M2
+

1

N3/2

N

M3

)
,

from (A.2.1), (A.2.2) and (A.2.3), where the constant C depends only on c. This completes the proof.

A.3 Basics on Yule processes

A.3.1 Basics on Yule processes and proof of Theorem 4.2.5

Definition A.3.1 (Yule process). A Yule process with rate ris a continuous-time Markov process taking
values in N such that the transition rates are given by:

{

n → n+ 1 at rate rn

n → others at rate 0.

Remark A.3.2. Consider a population model starting with n0 individuals, where each individual repro-
duces independently at rate r by splitting into two individuals. Then counting the total number of
individuals, one gets a Yule process. This is the population model which we consider in the Lenski
experiment during one day, with starting population size n0 = N .

Lemma A.3.3. Let Zr be a Yule process with rate r and Zr
0 = 1. Then, for t > 0, Zr(t) follows a

geometric distribution with parameter e−rt.
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Proof. Let (Ei)i≥1 be independent exponential random variables with parameters i. Then it follows
immediately from Definition A.3.1 that

P(Zr(t) > k) = P(
k∑

i=1

Ei < rt). (A.3.1)

Let {(W (i)
t )}1≤i≤k be k i.i.d unit Poisson processes. For each i = 1, . . . , k, let Ti be the first jumping

time of (Wi). Then we see that

sup
1≤i≤k

{Ti}
(d)
=

k∑

i=1

Ei.

Consequently, (A.3.1) equals (1− e−rt)k.

Corollary A.3.4. If Zr(0) = n0 ∈ N, then Zr(t) follows a negative binomial distribution with parameters
n0 and e−rt. In particular,

E[Zr(t)] = n0e
rt, and var(Zr(t)) = ert(ert − 1)n0.

Proof. This just follows from the fact that the individuals reproduce independently and the fact that the
negative binomial distribution is obtained by summing independent geometric random variables.

The next lemma shows that ςN is asymptotically equal to σ.

Lemma A.3.5. Let ςN and σ = σ0 be as defined in (4.2.1) and (4.2.6). Then

ςN
(d)→ σ.

Proof. During one day in the Lenski experiment, consider the population consisting of N subpopulations
each of whose sizes follows an independent Yule process with parameter r. Let Zr

N (t) denote the size of
total population at time t. Then Zr

N (t) is the sum of N i.i.d geometric variables with parameter e−rt.
Let ε > 0. Then due to the law of large numbers

P
(Zr

N (σ − ε)

γN
< 1

) N→∞→ 1; P
(Zr

N (σ + ε)

γN
> 1

) N→∞→ 1.

Therefore P(σ − ε ≤ ςN ≤ σ + ε)
N→∞→ 1. Since ε can be arbitrarily small, the lemma follows.

Proof of Theorem 4.2.5. This is a direct application of Theorem 2.1 in [51]. Fix a generation in
the Cannings model and let cN be the probability for a pair of individuals to be coalesced in the previous
generation and dN the probability for a triple of individuals to be coalesced in the previous generation.
Then it suffices to prove that

cN
N→∞→ 0, dN/cN

N→∞→ 0. (A.3.2)

Notice that cN , dN do not depend on the generation since the reproduction, sampling and labeling in
each day do not depend on the past and on the future. Therefore we can consider a typical day (the
population at the beginning of a day constitutes a generation) and take the notations at the beginning
of Section 2.1.1. Let Y i

t be the size of the family of individual i at time t. Then

ZN
t = Y 1

t + Y 2
t + · · ·Y N

t ,

with (Y i
t )1≤i≤N identically and independently distributed as a geometric distribution with parameter

e−rt. The day ends at time σ = log γ
r and notice that the population for the next day will be chosen

uniformly, hence one can express cN , dN as follows:

cN = E
[
∑N

i=1

(
Y i
σ
2

)

(
ZN

σ
2

)

]
∼

2(1− 1
γ )

N
, dN = E

[
∑N

i=1

(
Y i
σ
3

)

(
ZN

σ
3

)

]
= O(N−2),

which gives (A.3.2), and thus completes the proof. □
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A.3.2 Properties of near-critical Galton Watson processes

The following lemma (Theorem 3 of [2], and see also Theorem 5.5 in [26] under weaker conditions)
provides the survival probability for certain near-critical Galton Watson trees.

Lemma A.3.6. Consider a sequence of supercritical Galton Watson processes (GN
i )i∈N0

, N = 1, 2, . . .,
with offspring mean 1+βN (with βN → 0) and offspring variance σ2 + vN (with vN → 0) and uniformly
bounded third moment, starting from one ancestor in generation 0. Then the survival probability ϕN

obeys ϕN ∼ 2βN

σ2 .

Lemma A.3.7. Let (GN
i )i∈N0

, N = 1, 2, ... be as in Lemma A.3.6. Assume that βNN → ∞ as N → ∞.
Then, for every ε > 0, P(∃i : GN

i ≥ εN) ∼ P(limi→∞ GN
i = ∞).

Proof. Again let ϕN be the survival probability of GN started in one individual. Then

P( lim
i→∞

Gi = ∞|∃i : Gi ≥ εN) ≥ 1− (1− ϕN )εN ∼ 1− (1− 2βN

σ2
)εN → 1, N → ∞.

Lemma A.3.8. Let (GN
i )i∈N0 , N = 1, 2, ... be as in Lemma A.3.6. Assume that βN ∼ cN−b, N =

1, 2, . . ., for some c > 0 and b ∈ (0, 1). For fixed ε ∈ (0, 1), let ωN := inf{i ≥ 0 : GN
i ≥ εN}. Then we

have for any δ > 0
lim

N→∞
P1(ωN > β−1−δ

N |ωN < ∞) = 0.

Further, let υN := inf{i ≥ 0 : GN
i = 0}. Then for any δ > 0, for N large enough,

P1(υN > β−1−δ
N | υN < ∞) ≤ e−Nbδ

. (A.3.3)

Proof. First we consider the difference between conditioning GN on survival (forever) and on reaching
εN , respectively. Since we know (from Lemma B1) that

P1(G
N survives) ∼ 2βN

σ2
∼ c′N−b, (A.3.4)

we can infer, using the strong Markov property, that

P1(G
N reaches εN and GN does not survive ) ≤ P⌊εN⌋(G

N does not survive )

= (1− ϕN )
⌊εN⌋ ≤

(
1− c′N−b

)⌊εN⌋ ≤ exp(−c(ε)N1−b). (A.3.5)

Thus we can estimate

P1(ωN > β−1−δ
N |GN reaches εN) =

1

P1(GN reaches εN)
P1(ωN > β−1−δ

N , GN reaches εN)

≤ 1

P1(GN reaches εN)
P1(G

N reaches εN and does not survive)

+
1

P1(GN survives )
P1(ωN > β−1−δ

N , GN survives).

The first summand on the r.h.s tends to 0 as N → ∞ because of (A.3.4) and (A.3.5). Thus, for proving
the lemma it suffices to show that

lim
N→∞

P1(ωN > β−1−δ
N |GN survives ) = 0. (A.3.6)

Let ϕN be the survival probability of GN , and denote by HN
i , i = 0, 1, . . ., the generation sizes of those

individuals that have an infinite line of descent, conditioned on survival of GN . Then we have (cf.
Proposition 5.28 in [46])

f∗(s) :=
∑

k≥0

skP1(H
N
1 = k) = E1[s

HN
1 ] =

E[(1− ϕN + ϕNs)G
N
1 ]− (1− ϕN )

ϕN
, s ≥ 0.
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Obviously, P1(H
N
1 = 0) = f∗(0) = 0 and P1(H

N
1 = 1) = (f∗)′(0) = E[GN

1 (1 − ϕN )G
N
1 −1], which, using

Taylor expansion, is transformed to

E[GN
1

(

1− (GN
1 − 1)ϕN +

(GN
1 − 1)(GN

1 − 2)ϕ2
N

2
(1− tϕN )G

N
1 −3

)

= E1[G
N
1 (1− (GN

1 − 1)ϕN )] +O(ϕ2
N ) = 1− βN + o(βN ), (A.3.7)

where t = t(GN
1 ) ∈ (0, 1). The first equality is due to the assumption in Lemma A.3.6 that the third

order moment of GN
1 is uniformly bounded. We can thus infer that, for any fixed η ∈ (0, 1),

P1(H
N
1 ≥ 2) ≥ ηβN ,when N is large enough.

We can now give a lower bound for GN
i , conditioned on survival of GN , in two steps: first by HN

i , and
then by a (discrete time) Galton Watson process with offspring distribution (1− ηβN )δ1 + ηβNδ2. Call
this process BN . With 1

⌊ηβN⌋ generations as a new time unit, the sequence of processes BN converges,

as N → ∞, to a standard Yule process. This means that, for every fixed t > 0, at a time of ⌊tηβN⌋−1

generations, BN has an approximate geometric distribution with parameter e−t. Thus we conclude after
⌊βN⌋−1−δ generations, BN (and a fortiori also GN when conditioned to survival) is larger than εN with
probability tending to 1 as N → ∞. This shows (A.3.6), and concludes the proof of the first statement.
For the last statement, observe that by Theorem 5.28 of [46] the distribution of (GN

i ) conditioned on
extinction is equal to the distribution of a Galton Watson process with probability generating function

f(s) := (1− ϕN )−1
∑

k≥0

((1− ϕN )s)kP1(G
N
1 = k).

Thus we have

E1[G
N
1 |GN dies out] = f

′
(1) = E[GN

1 (1− ϕN )G
N
1 −1] = 1− βN + o(βN ),

where the last equality follows from equation (A.3.7). Then, by Proposition 5.2 in [46] we observe that

E1[G
N
⌈β−1−δ

N ⌉|G
N dies out] = (1− βN + o(βN ))β

−1−δ
N ≤ e−Nbδ

(A.3.8)

so we conclude

P1(vN > β−1−δ
N |vN < ∞) = P1(G

N
⌈β−1−δ

N ⌉ > 0|GN dies out) ≤ E1[G
N
⌈β−1−δ

N ⌉|G
N dies out] ≤ e−Nbδ

.
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