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Abstract 

 

An essential step in the manufacturing or development of a product, or in inspecting 

the durability of an existing structure or machinery, is to have information about the 

strength of its consisting materials. Such an information, which can be summarized in 

the form of a stress-strain diagram, can be obtained by performing a conventional 

tensile test on the specimens made of the target material. However, when the 

fabrication of a product requires different manufacturing processes such as welding, 

the final structure is made of different materials that each has its own unique behavior, 

e.g., the unique stress-strain curve. In many cases, it is not possible to prepare a 

homogeneous tensile specimen from such a product, e.g. a welded joint contains three 

different zones such as base metal, weld seam and heat affected zone. Therefore, it 

is proposed to reproduce the microstructure of the interest zone in a large area by 

using a thermomechanical simulator to finally provide a standard tensile specimen or 

prepare the micro tensile specimens from the target area that require significant effort 

or the infrastructures which are not available in many small companies or research 

institutes. Consequently, an alternative approach is needed to determine the 

mechanical properties of a structure locally with straightforward implementation for the 

end user. The current research work aims to further develop the instrumented 

indentation technique (test) to establish a correlation between the indentation test 

information and the material parameters of an investigated sample. In the first step, 

the force-indentation depth curves obtained as the output of the instrumented 

indentation machine are connected with the mechanical properties of the indented 

samples using a trained artificial neural network. Subsequently, the methodology has 

been developed by training the artificial neural network based on the data from the 

surface of an indented sample, which is summarized in the form of the indented surface 

profile. The latter approach is not only more precise than the first one, it is additionally 

independent of the instrumented indentation machine which makes it applicable in 

many small companies. Moreover, there is a strong agreement between the output of 
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the two trained artificial neural networks and the experimental results, indicating the 

robustness of the employed methodology. Additionally, at the end of the current report 

and in further work, the introduced methodology was advanced and a concept was 

presented to perform material characterization with artificial neural networks which are 

trained with the images taken from the indented surface of a specimen using a high-

resolution 3D measurement system and a light microscope. Although, these trained 

artificial neural networks show acceptable performance and further ease material 

characterization for the end user, the accuracy of the predicted material parameters 

can be increased enormously by enlargement of the training datasets. 
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Zusammenfassung 

 
Ein entscheidender Schritt bei der Herstellung oder Entwicklung eines Produkts oder 

bei der Inspektion der Haltbarkeit einer bestehenden Struktur oder Maschine ist es, 

detaillierte Kenntnisse über die Festigkeit der verwendeten Materialien zu haben. Eine 

solche Information, die in Form eines Spannungs-Dehnungs-Diagramms 

zusammengefasst werden kann, kann durch eine klassische Zugprüfung an den 

Proben aus dem Zielmaterial bestimmt  werden. Erfordert die Herstellung eines 

Produkts jedoch verschiedene Fertigungsprozesse wie z. B. Schweißen, besteht die 

fertige Struktur aus verschiedenen Materialien, die jeweils ein einzigartiges Verhalten 

aufweisen, z. B. die einzigartige Spannungs-Dehnungskurve. In vielen Fällen ist es 

nicht möglich, eine homogene Zugprobe aus einem solchen Produkt herzustellen, z.B. 

enthält eine Schweißverbindung drei verschiedene Zonen wie Grundwerkstoff, 

Schweißnaht und Wärmeeinflusszone. Eine Möglichkeit besteht darin, die zu 

untersuchende Zone in einem großen Bereich mit Hilfe eines thermomechanischen 

Simulators zu reproduzieren, um somit eine normierte Zugprobe aus dem Zielbereich 

zu fertigen. Diese Methode bedeutet einen erheblichen Aufwand und erfordert 

Infrastrukturen, die in vielen kleinen Unternehmen oder Forschungsinstituten nicht 

verfügbar sind. Folglich wird ein alternativer Ansatz mit einfacher Implementierung für 

den Endanwender benötigt, um die mechanischen Eigenschaften einer Struktur lokal 

zu bestimmen. Die aktuelle Forschungsarbeit zielt darauf ab, die instrumentierte 

Eindringprüfung weiterzuentwickeln, um eine Korrelation zwischen den Informationen 

der Eindringprüfung und den Materialparametern einer untersuchten Probe 

herzustellen. Im ersten Schritt werden die als Output der instrumentierten 

Eindringmaschine erhaltenen Kraft-Eindringtiefen-Kurven mit Hilfe eines trainierten 

künstlichen neuronalen Netzes mit den mechanischen Eigenschaften der 

eingedrückten Proben verbunden. Anschließend wurde eine Methodik entwickelt, mit 

der das künstliche neuronale Netz auf Basis der Daten der Oberfläche einer 

eingedrückten Probe, die in Form des eingedrückten Oberflächenprofils 
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zusammengefasst werden, trainiert werden kann. Der letztere Ansatz ist nicht nur 

präziser als der Erste, er ist zusätzlich unabhängig von der instrumentierten 

Eindringmaschine, was ihn in vielen kleinen Unternehmen anwendbar macht. 

Außerdem gibt es eine starke Übereinstimmung zwischen der Ausgabe der beiden 

trainierten künstlichen neuronalen Netze und den experimentellen Ergebnissen, was 

auf die Stabilität der verwendeten Methodik hinweist. Zusätzlich wurde am Ende des 

aktuellen Berichts und in „Further Work“ die vorgestellte Methodik weiterentwickelt und 

ein Konzept vorgestellt, bei dem die Materialcharakterisierung mit künstlichen 

neuronalen Netzen durchgeführt wird, welche mit den Bildern, aufgenommen mit 

einem hochauflösenden 3D-Messsystem und einem Lichtmikroskop, der 

eingedrückten Oberfläche einer Probe trainiert werden. Obwohl diese trainierten 

künstlichen neuronalen Netze eine akzeptable Performance zeigen und die 

Materialcharakterisierung für den Endanwender weiter erleichtern, kann die 

Genauigkeit der vorhergesagten Materialparameter durch Vergrößerung der 

Trainingsdatensätze enorm gesteigert werden. 
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obtained from the surface of the indented specimens. The training datasets were generated in a 

large volume by using the finite element method (FEM) 
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Abbreviation 

 

FEM Finite Element Method 

HAZ Heat Affected Zone 

BM Base Metal 

WM Weld Metal 

IIT Instrumented Indentation Technique 

AHSS Advanced High Strength Steel 

ANN Artificial Neural Network 

RSW Resistance Spot Welding  

LBW Laser Beam Welding 

AI Artificial Intelligence 

GPU Graphical Processing Units 

DIC 3D-Digital Image Correlation (DIC) 

DP-steel Dual Phase steel 

TRIP-steel Transformation Induced Plasticity steel 

TT Tensile Test 

t8/5  Time of the dropping temperature from 800 °C to 500 °C 

TTT diagram Time Temperature Transformation diagram 

LMA Levenberg-Marquardt Algorithm  

MSE Mean Square Error 

R Pearson Correlation Coefficient 
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1. Introduction 

 

One of the most critical aspects in the initial design, development, and construction of 

any new structure or product is to have enough information about its materials' 

reliability and strength. This information should be considered at various steps of 

manufacturing of the new product, such as the designing, the idea implementation, and 

the prototype testing [8]. Knowing the material data leads to identifying and improving 

the structural weaknesses in the early phases of product manufacturing. This fact 

becomes even more critical when fast changes in modern society force the industries 

and manufacturers to optimize and reduce their final products' weights to lower fuel 

consumption and lower air pollution [9]. However, the main challenge is that how we 

can increase safety, strength, and crashworthiness at the same time [10]. As a result, 

identifying the material data and parameters have gained increasing importance.  

 

1.1. Scope and Objectives of the Research  

 

The material information, known as the mechanical properties that rely on the physical 

properties of materials are of utmost importance in the different branches of industries 

[11]. The traditional method in assessing alloys' mechanical materials is the uniaxial 

standard tensile testing [12]. However, processes such as welding or grinding affect 

the mechanical properties locally so that the properties of the bulk of material are 

different from those affected areas. For example, welding results in a different type of 

microstructure in a tiny area known as the heat-affected zone (HAZ) or weld metal 

(WM). One method to study the mechanical properties of these affected zones is to 

make micro tensile specimens from the material of the target zone [13, p. 01]. However, 

the fabrication of such micro-scale specimens is extremely expensive, and each step 

from specimen fabrication to performing the tensile test requires a specialized 
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infrastructure that is not available in many companies or research institutes. Another 

approach is to reproduce the microstructure of the target zone, for instance the WM, 

over a large area and then to produce a homogeneous tensile specimen from the 

reproduced and simulated microstructure. This method also requires a 

thermomechanical simulator [14] which is not available in many universities or 

companies, not even in the research center where the present research was carried 

out. Therefore, it is necessary to develop a method which is able to evaluate the 

mechanical properties of the inhomogeneous structure such as welded zones locally.  

An alternative method to the tensile test to determine the mechanical properties of the 

material is to correlate the hardness measurement with material data such as the yield 

strength or other parameters that describe the plastic behavior of the material [15]. 

Efforts to relate the hardness measurement analytically to the stress-strain diagram 

have been started many decades ago and this analytical approach is known as the 

representative stress-strain method [16]. This methodology is limited to determine only 

a few parameters of the mechanical properties and cannot predict the entire stress-

strain diagram [17]. Furthermore, the current approach does not have sufficient 

accuracy when it is used to determine the material data of modern steel grades, such 

as advanced high strength steels (AHSS) or WM due to their high value of yield 

strength [18]. 

The indentation test procedure has been developed and attempts have been made to 

collect more data, such as force and indentation depth, simultaneously and over a 

period of time, and then to sum this information in a force-indentation depth diagram 

[19]. Having more data allows to establish a more reliable correlation between the 

indentation test and the mechanical properties of the material. The artificial neural 

network (ANN) can be used to solve such an inverse problem and provide a correlation 

between the information from the indentation test and the material data [20]. This 

method has been developed over the last decades and shows that the results are quite 

acceptable for steel structures with low yield strength, but fail drastically in predicting 

the material data when their yield strength exceeds 400 MPa [18].  

However, innovation and development in steel production makes it possible to produce 

AHSSs with a yield strength of more than 400 MPa [21]. Such steel grades as DP-

steels (e.g. DP1000) or high strength fine grained structural steel (e.g. S690QL) are 

widely used nowadays in various industries such as automotive sector or construction. 
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Some welding processes, such as resistance spot welding (RSW) technique or laser 

beam welding (LBW) approach, result in the production of a WM with higher yield 

strength compared to the plain steel base material (BM). Therefore, the currently 

available ANNs and analytical approaches (representative stress-strain method) fail to 

establish a correlation between the result of the indentation test and the mechanical 

properties of AHSSs (e.g. DP or TRIP Steels) in both the BM and WM. The current 

research aims to develop an ANN capable of predicting the material behavior of welded 

AHSS structures with a yield strength of more than 400 MPa by using data from 

instrumented indentation technique (IIT). 

 

1.2. Methodology of the Research Work 

 

The first step in using an ANN together with the data of IIT to calculate the material 

properties of AHSSs with a yield strength greater than 400 MPa is to train the ANN for 

this target range. The ANN as a supervised machine learning algorithm needs input 

and output datasets to find a pattern or do correlation between datasets. In this case, 

the data collected from the instrumented indentation technique, which is summarized 

in a force-indentation depth diagram, can be used as the input data of ANN, and its 

output is the parameters describing the mechanical properties of the material. It is 

possible to have small datasets from the indentation test performed experimentally on 

a limited number of samples. However, it is possible to generate a large volume of 

training datasets with a validated numerical model of the IIT. The simulation model 

must be fed with the imaginary material data, which is varied at the desired intervals, 

as the input data and output data of the numerical model becomes the points which 

describe the force-indentation depth diagram. The numerical simulation have to be 

performed repeatedly to generate sufficient datasets. In the training step related to 

ANN, the simulation model's input becomes the desired output of the ANN, and the 

simulation output becomes the input of the ANN. When the ANN is trained, its accuracy 

has been checked and validated by the reference data, e.g., the mechanical properties 

obtained from the tensile test. This means that the force-indentation depth diagram 

resulting from the IIT must be given as input to the ANN to calculate the indented 

specimens' material data.  
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In the further development of this methodology, it became possible to use other 

datasets for training the ANN in addition to the force-indentation depth diagram 

obtained from IIT. The induced deformations on the sample surface are furthermore 

used to train another ANN to determine the material data. The simulation model 

generates sufficient datasets to train the ANN with dataset of penetration profile curves. 

In this approach, the input data is the penetration profile on the surface of the specimen 

generated from the numerical simulation and the output of the ANN remains the 

mechanical properties. By using the information from the surface deformation profile 

of the steel, the accuracy of the ANN to predict the material data becomes higher, and 

the material characterization method makes independent of the instrumented 

indentation machine, since it is no longer necessary to measure the force and 

indentation depth simultaneously over a period of time.  

Another dataset used to train the ANN is the images captured by a three-dimensional 

(3D) measurement sensor from the surface of the indented sample. The output of the 

sensor shows the deformation depth in colored scale. The images showing the 

deformation on the surface of the indented samples in a colorful scale are processed 

and the important features are obtained by using unsupervised machine learning 

algorithms. Then, these representative features showing the deformation depth on the 

surface of the samples are used to train the ANN. The accuracy of the material data 

obtained with the trained ANN with the dataset of 3D measurement images are lower 

than the result of the ANN trained with the dataset of the force-indentation depth 

diagram and the profile of the deformed surface. In addition, the output of this ANN 

has been examined with test materials which are unknown to the ANN and the results 

show that the predicted material data are in the acceptable range.  

The fourth and final datasets used to train the ANN are the images from the surface of 

indented specimen taken with the light microscope. In this phase, the same procedure 

such as image processing and feature extraction, as described for training the ANN 

with the third dataset, is repeated. Several statistical tests are performed to verify the 

accuracy and correctness of the used methodology in each step. In the final 

examination, the results of the trained ANN were compared with the test materials 

which are unknown to the trained ANN. The steps of data generating and training of 

the ANNs with different datasets are shown in Figure 1.1. 
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Figure 1.1: An overview of the applied methodology in the present work. The first step is to prepare a 

numerical simulation model of the instrumented indentation technique (IIT) with the finite element 

method (FEM) and then validate it with the experimental data. The simulation model then generates 

sufficient datasets to train the artificial neural network (ANN) in the first two methods: force-penetration 

(indentation) depth curves and penetration (indentation) profile curves. In the next step, the training is 

performed by using the images captured by a 3D measurement sensor and a light microscope. In all 

ANNs, the outputs are the material model parameters that describe the welded steel structure's 

mechanical properties in different zones, such as weld seam and base metal [1] 

 

1.3. Dissertation Structure  

 

The current dissertation consists of seven chapters including introduction, literature 

review, material characterization with tensile test, instrumented indentation technique, 

material characterization with artificial intelligence, summary and finally appendix. 

The importance of material testing in industry and also the different approaches to 

determine the mechanical properties of an inhomogeneous steel structure have 

already been discussed in the current chapter, the so-called introduction. It was then 

explained that the analytical formulas and available ANNs fail to predict the mechanical 
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properties of AHSSs such as DP-steels by using the IIT data. Then, the methodology, 

used in the current research work, to train the ANNs with different datasets was 

presented shortly. 

The second chapter, the literature review, provide the necessary theoretical 

background to understand the research objective and the methodology used to answer 

the research question. At the beginning, the necessity of innovations for the 

construction of new products is discussed. It then focuses on the role of AHSS in 

modern products, particularly in the automotive industry. Subsequently, the 

manufacturing processes, such as welding techniques, and their effects in the 

production and finishing of inhomogeneous steel structures are explained. In the next 

step, the traditional and conventional methods to analyze material data and the 

necessary requirements for their applications are introduced. Next, the available 

methods for estimating the mechanical properties from the indentation test are 

reviewed. These methods are compared with each other and their respective 

advantages, drawbacks, accuracy and areas of usage are highlighted. At the end of 

this chapter, the results and methodologies used by other researchers to determine 

material parameters using artificial intelligence (AI) are presented, and the reason and 

necessity for conducting the current research in accordance with the work of other 

researchers is pointed out.  

The third chapter, known as material characterization with tensile test, aims to 

determine the material data of the welded AHSSs in both BM and WM. This information 

is later required as test data to check and verify the accuracy of the trained ANN. It is 

also necessary to obtain them in order to start with the numerical simulation model of 

the IIT. First, the AHSSs used in this work are presented and described in details. 

Then, the methodology for determining the mechanical properties of the BM of the 

steels is demonstrated and the accuracy of the material model is evaluated.  In the 

next step, a novel method is described to determine the mechanical properties of the 

WM without reproducing its microstructure in a larger volume by using a 

thermomechanical simulator, due to its unavailability at the research center where the 

present study is conducted. In this method, the microstructure of the WM in the 

resistance spot welding technique (RSW) is reproduced in one steel sheet by varying 

the welding parameters. To ensure that both WMs have the same microstructure, a 

range of analyses such as metallographic investigation, temperature and hardness 
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measurement are carried out. Then, the notched tensile specimens are prepared to 

guarantee that the fracture during the tensile test occurs in the WM, as the goal is to 

determine the material data of this zone. Lastly, an investigation is conducted on the 

concept of geometry factor and the differences between the stress-strain diagram of 

the notched and smooth tensile specimen. In the end, it becomes possible to determine 

the stress-strain diagram of the smooth and welded tensile specimens considering the 

geometry factor. Finally, the material model parameters of the weld seam from the 

RSW approach are calculated and their accuracy are evaluated.  

The objective of the fourth chapter, instrumented indentation technique, is to show the 

procedure of performing the instrumented indentation test on different samples. 

Another goal is to introduce a validated numerical simulation model of the indentation 

test which is capable to generate a large volume of data for training an ANN with an 

extremely high accuracy. In addition, the material data of the WM produced by laser 

beam welding (LBM) and also the HAZ in RSW are obtained by inverse analysis with 

the numerical model of IIT. Furthermore, this section describes the methodology and 

results of measuring the deformation on the surface of the indented samples by optical 

sensors, which will later be used to train the ANN. 

The fifth chapter, material characterization with ANN, describes the procedure for 

training and testing the ANN with two types of datasets by using the results of the 

previous sections, such as the experimentally measured or numerically calculated 

datasets from Chapter 4 for training and the mechanical properties of the material from 

Chapter 3 for testing of the accuracy and validation of the ANN. The input for training 

of the two ANNs are the numerically calculated force-indentation depth diagrams and 

the deformation profile curves, respectively, and the output are the imaginary 

parameters of a material model that describes the plastic behavior of welded steels. 

The data selection, quality and quantity of datasets, ANNs architecture, procedure and 

parameters of training, accuracy of ANNs output and various statistical tests to check 

the correctness and confidence of the used supervised machine learning algorithms 

are explained and discussed in details. In the last step, the results of the individual 

trained ANNs are compared with the test materials and the repeatability of the results 

and the error interval are discussed. 
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Another chapter, labeled as summary, once again provides an overview on the 

methodology and findings of the present research work. In the appendix, known as the 

further work, the two other ANNs are trained with the input data obtained from the 

images captured by a 3D measurement sensor and a light microscope and the output 

remains the material parameters. The current datasets are cleaned with image 

processing and the representative features are extracted with unsupervised machine 

learning algorithms. In a similar way to Chapter 5, the results of the trained ANNs are 

compared with the test materials to evaluate and analysis the accuracy of trained ANNs 

with last two datasets.



  

 

 

2. Literature Review 

 

Companies in the automobile industry innovate to keep their share of the market and 

gain more in the future. The fundamental to innovation is knowing the features of 

materials used in the industry. It was Schumpeter who showed the importance of 

innovation for firms by focusing on the roles of economic factors in promoting new 

technologies [22]. In fact, companies innovate in order to reach new markets and gain 

a competitive advantage for themselves. Innovation is not limited to manufacturing, 

and it encompasses new suggestions in implementation, marketing, or improving 

processes [23]. Loof et al. has demonstrated that innovation is a vital factor for 

companies to survive. In the recent decade, the competitive environment has been 

intensified. It leads to pushing firms more into continuous innovation in products and 

processes to ensure their better performance [24]. A valuable product can only be 

produced if a suitable manufacturing process is chosen together with proper material 

according to its mechanical properties and chemical composition [25]. Therefore, 

material characterization is an information bridge to assess the current situation and 

plan for superior properties and gain competitive advantage by innovative products 

and processes. 

 

2.1. Advanced High Strength Steels in Automotive Industry 

 

The automotive industry considers material manufacturing seriously in terms of 

production safety, cost, and light-weight materials. AHSSs that have at least a yield 

strength of 210 MPa have become the car industry's primary material. By increasing 

the yield strength higher than 350 MPa, the ductility and weldability of steel drastically 

reduces due to high carbon content. Instead, microalloying elements containing a 

small amount of nickel, vanadium, and titanium are designed to raise the yield 

strength up to 550 MPa [21]. The AHSSs include dual-phase, complex-phase, 
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structural and TRIP (Transformation Induced Plasticity) manganese-boron steels, 

combining their advantages by different microstructural constituents. They show 

excellent forming properties with high strengths having martensite in their structure. 

Dual phase (DP) steels have gained increasing attention due to their superior strength 

as well as light-weighting features, especially in the car industry [26]. DP-steels are 

low-carbon steels with a soft matrix (ferritic phase) and particles of a second hard 

phase (martensite) [27]. Transformation to martensite is diffusionless, and it occurs 

within high rates of cooling to surpass the diffusion-controlled transformation of 

austenite to ferrite, pearlite, or bainite in the Iron-Carbon equilibrium diagram. The 

martensitic transformation completes by shearing or cooperative movement of a huge 

number of atoms [28].  

There are three different approaches to produce DP steels, which include (a) 

intercritical annealing of a ferritic-perlitic microstructure, (b) intercritical annealing of 

a quenched martensitic microstructure, and (c) austenitizing and intercritical 

annealing. All the three methods are followed by quenching in water [29]. Suppose 

the temperature increases during intercritical annealing of DP-steels, then the volume 

share of the martensitic phase raises. Consequently, it enhances the material's 

strength but weakens its ductility. Another critical factor in shaping DP-steels is time 

[30] [31]. Cold-rolled steel sheets are passing through several rollers in the roll-

forming process to shape into the final format. Overall, cold-work affects the stress-

strain diagram. The finished steel has a higher yield strength and lower ductility [32]. 

Generally, the DP-steels' strength value depends on the volume fraction and 

morphology of the martensitic phase in their microstructure. This class of steels' yield 

strength can be between 350-650 MPa. They have a microstructure containing more 

than 20 percent martensite islands dispersed in a ferritic matrix. Their carbon content 

is usually less than 0.2%, giving them a superior ability for RSW [33].  

Another steel grade investigated in this research work is S690QL, a low-alloyed 

thermo-mechanically treated steel types with yield strength higher than 690 MPa and 

limited carbon content of 0.2% [34]. The steel grades are often used for structural 

applications are S355QL, S460QL and S690QL. The initial letter S in their names 

refers to structure, the following number shows their minimum yield strength, and QL 

shows that the fine grained steel is quenched and tempered [35].  
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2.2. Welding Technology for Advanced High Strength 

Steels 

 

Due to the welding suitability of low-carbon steels in principle, the classical joining 

processes in automotive body construction include low-cost and effective methods 

such as resistance spot welding (RSW) and laser beam welding (LBW) [36]. A 

considerable challenge in welding technology is the microstructural changes at the 

joints of two steel sheets, which leads to undesired hardening or softening of the 

material in the local areas [37]. Therefore, research and development departments of 

automobile producers need accurate information about material properties.  

Generally, a welded structure contains three different regions such as weld metal 

(WM), heat affected zone (HAZ) and the base metal (BM). The WM is the material 

that has been melted. Moreover, the changed microstructure of the material that has 

not been melted, is known as HAZ [38]. The high heat input primarily causes the 

underlying phase transformations in the WM and the HAZ during the welding process, 

affected by the high heating/cooling rates. As a result, the material behavior in the 

different zones of a welded joint may deviate from the BM. Martensite formation leads 

to increased hardness values, resulting in lower formability in the joining area [39].  

RSW employs the heat generated through resistance against an electrical current to 

join surfaces. The contacting surfaces are heated up in the electrical current 

concentration region by short pulses of low-voltage, high-amperage to form a fused 

nugget of WM. The significant advantage of RSW is high operating velocity and 

suitability for robotization [40]. The working principle in RSW is as follows: two pin-

shaped electrodes press the workpiece to be joined together. Electric current flows 

between the electrodes through the workpieces at a certain time. It heats the joint to 

the welding temperature, shaping a welded joint between two workpieces under 

mechanical pressure. If spattering can be seen at the welding point, it leads to severe 

electrode wear and ultimately to unusable welds. Therefore, the contact force 

between two workpieces should be neither too large nor too small because it strongly 

influences the resistance. Additionally, the electrode material should be rigid with low 

resistance and high thermal conductivity [41]. The diameter of the electrode pin is a 

function of the thickness of the steel sheet [38]. 
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LBW uses a high-power laser beam as the source of heating for penetrating the weld 

joint. The main advantage of LBW comparing to RSW is its smaller distortion area 

and more flexibility in application [42]. LBW, in contrast to RSW, is a non-contact 

welding process. This process's heating/cooling rate is so fast that the HAZ is smaller 

in comparison to other conventional welding method [38]. The workpiece absorb the 

laser beam until the metal melts and then the material vaporizes partially, and a 

narrow keyhole is formed, which can be up to 3 mm deep depending on used material 

and the power of laser beam. The metal vapor should be extracted or blown away 

because it can interfere with the laser beam [43]. The laser-active medium can be 

performed with solid-state or gas lasers. For example, a solid-state laser with an 

active medium made from single crystal (Nd:YAG) is widely used for thinner steel 

sheets, when the plate thickness is less than 3 mm [38].  

Welding leads to a significant change in the mechanical properties of a component, 

so that the conventional tensile test cannot be used as a standard method for 

determining material data. Therefore, in this research work, a methodology is 

developed to characterize the mechanical properties of welded joints without tensile 

testing. However, as a first step, it is necessary to explain the traditional approaches 

and the importance of material characterization. 

 

2.3. Characterization of Material Mechanical Properties  

 

The material information, measured by applying the external force in the solid-state 

material, is called the mechanical properties [11]. The deformation and fracture 

characteristics under applied stresses (tensile, compressive, or multiaxial) describe 

materials' mechanical behavior [44].  This physical behavior is simply represented by 

the relationship between the stress and the strain of a material on a macroscale which 

usually is depicted in the stress-strain diagram [11]. Brittle materials such as oxides, 

amorphous carbon coatings, and single crystalline silicon follow the fracture 

mechanics in elastic region. It means that the sample broke after exerting linear 

elastic loading without any considerable plastic deformation. On the other hand, semi-

brittle behavior of materials such as steels which are ductile materials can only be 

explained by elasto-plastic fracture mechanics [45]. The stress-strain diagram of 

metals, particularly steel, offers two different behaviors: elastic and plastic zones [46].  
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The Young modulus expresses the relationship between the stress and the axial 

strain in the elastic range, which is achievable by applying external tensile force. By 

removing the external loading, the elastic strain recovers completely. Therefore, the 

elastic modulus is merely quantified by calculating the tangent of the elastic recovery 

line [47]. The deformation and strain of steels in other directions perpendicular to the 

applied external force in a complex structure can be determined by Poisson's ratio in 

the elastic region [48]. Furthermore, a structure undergoes plastic deformation when 

the tensile stress goes beyond the yield strength. The yield strength is the point where 

the straight elastic recovery line ends, and the non-linear plastic curve begins. The 

plastic deformation is permanent and survives even after the external force is 

removed [49]. 

A traditional and still widely used method for determining the stress-strain diagram is 

the uniaxial tensile test [12]. For this purpose, in the first step, a dog bone tensile 

specimen in a particular size should be prepared from homogeneous material 

according to the guideline [50]. Subsequently, the sample should be fully clamped 

from both sides, and the test should be completed under the ideal conditions and 

experimental setup [51, p. 2016]. The displacement, stress, and associated strain are 

then recorded at each time step and finally represented in the stress-strain curve [51, 

p. 2016]. The engineering stress-strain curve cannot fully describe the deformation 

characteristic of metal since it relies on the original dimensions of the samples, 

however, the sample dimensions continuously change during the tensile test. 

Besides, the ductile material pulled from both sides in the uniaxial tensile test 

becomes unstable and necks down. A correction is needed to calculate the true 

stress-true strain curve. On the other hand, the true stress-strain curves increase 

continuously to fracture point by considering the actual stress based on the real cross-

sectional area of the specimen [44]. Figure 2.1 shows the engineering and true stress-

strain curves of an AHSS in different loading phases.  
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Figure 2.1 A Comparison between engineering and true stress-strain curves in different loading 

ranges, such as the elastic zone where the magnitude of the stress is less than the yield strength, the 

strain hardening that occurs up to the tensile strength, and the necking that begins from ultimate 

strength up to fracture 

Material behavior in the plastic region is complex and can be defined by the 

differential equations, a so-called material model, with one or several internal 

parameters. The elastic-plastic material model can have different forms based on 

non-linear isotropic or kinematic hardening parameters. It is hugely time-consuming 

to calculate their internal parameters and, at the same time, a critical factor in 

describing the structural behavior as accurately as possible [52]. Besides the internal 

parameters, knowledge about the ultimate tensile stress and failure strain of material 

is required to explain the material behavior when it collapses [53]. The area under the 

curve in the stress-strain diagram related to the elastic-plastic region indicates the 

amount of energy material absorbs and its toughness [54]. The material data is a 

unique property of each steel type and describes the overall behavior of material from 

the early (elastic region) to the final step (plastic region and then failure) after applying 

an external force [55]. 

As the uniaxial stress rarely occurs in an industrial application, the multiaxial stress 

state can be replaced by a uniaxial equivalent stress which can be calculated 

according to von Mises yield criteria. The plastic behavior of an isotropic material can 
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be expressed as a yield function which specifies conceivable states on the spanned 

coordinate system with different axis. The elasticity range can be defined, when the 

amount of yield function is equal to zero. As soon as the stress state touches the yield 

surface and becomes bigger than the yield function, the material plasticizes [56]. 

During the plastic deformation, the yield surface grows along due to the material strain 

hardening, where its shape, size, and position can alter. In this case, the yield function 

depends on plastic comparative strain which is determined according to von Mises’ 

law. In isotropic hardening, the yield surface grows symmetrically about the origin and 

the shape as well as the flow surface size change uniformly in all directions, however, 

the position of the axis remains similar. Conversely, in kinematic hardening, the flow 

surface shifts from the origin, but its shape and size remain the same. The 

mathematical description of nonlinear isotropic hardening can be quantified by Voce 

[57] as shown in the Equation (2.1) according to Figure 2.2 with the assumption that 

the stress will reach a maximum value.  

σ = Rp0.2 + R0 · εpl + R∞ · ( 1 − e
(−b ∙ εpl)) (2.1) 

According to this material model, the Equation has four parameters of Rp0.2, R0, R∞, 

and b. In this Equation, 𝑅𝑝0.2 (MPa) is the amount of yield strength. σ (MPa) shows 

the amount of stress at corresponding equivalent plastic strain (𝜀𝑝𝑙). In the material 

model, 𝑅0 (MPa) stands for the tangent of the line in the stress-strain diagram in the 

plastic region or the linear hardening coefficient. Furthermore, 𝑅∞ (MPa) shows the 

difference between the yield stress and the maximum value of stress or exponential 

hardening coefficient. The exponential saturation rate is described with the material 

parameter of b. The Voce material model follows the von Mises/Hill yield criterion and 

associative flow rule for describing the nonlinear isotropic hardening in an exponential 

form and the yield function can be defined as: 

𝐹 = [
3

2
{𝑆}𝑇[𝑀]{𝑆}]

1
2
− 𝜎 = 0 (2.2) 

In Equation (2.2), F and {S} stand for the yield criterion and deviatoric stress, 

respectively. M is the constant matrix used as a multiplier when the accumulated 

plastic work must be calculated over the total time of loading. Furthermore, the 

accumulated equivalent plastic strain (ε𝑝𝑙
𝑎𝑐𝑐) and its increment (∆ε𝑝𝑙

𝑎𝑐𝑐) can be 

calculated from Equation (2.3) and (2.4) as: 
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{∆ε𝑝𝑙
𝑎𝑐𝑐} =

3

2
𝛾
{𝑆}

𝜎𝑒
 

(2.3) 

ε𝑝𝑙
𝑎𝑐𝑐 =∑√

2

3
{∆ε𝑝𝑙

𝑎𝑐𝑐}
𝑇
[𝑀]{∆ε𝑝𝑙

𝑎𝑐𝑐} 

(2.4) 

In Equation (2.3), the parameter 𝛾 and 𝜎𝑒 stand for plastic multiplier and equivalent 

stress, respectively. In addition, the isotropic hardening material model has been 

further developed by considering the power hardening law based on the Gurson [58] 

and Tvergaard and Needleman [59] material model to describe the ductile plasticity, 

as seen in Equation (2.5): 

σ𝑌
𝜎𝑜
= (

σ𝑌
𝜎𝑜
+
3𝐺

𝜎𝑜
𝜀̅𝑝𝑙)

𝑁

 (2.5) 

In Equation (2.5), the parameters σ𝑌 and 𝜎𝑜 stand for current and initial yield strength, 

respectively. The other parameters, G and N show the shear modulus and stress 

ratio, accordingly. Finally, the parameter 𝜀̅𝑝𝑙 can be calculated based on the porosity, 

macroscopic plastic strain and Cauchy stress tensor and defines the microscopic 

equivalent plastic strain. However, the current research work focuses only on the 

determination of the martial model parameters of Equation (2.1), as shown in Figure 

2.2, which is able to describe the material behavior of AHSSs in quasi-static tensile 

test with a high accuracy, which will be discussed in the next chapter. 

 

Figure 2.2 Parameters of the Voce non-linear isotropic hardening model [60] 
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The parameters of the Voce material model can be identified by performing a tensile 

test, however, the major challenge with preparing a uniaxial tensile testing specimen 

is that a sufficient material volume must be available to produce the defined tensile 

specimens. It is easily possible to construct samples from conventional materials 

such as plain steels. Various manufacturing processes are widely used in the 

industry, such as welding and grinding, to produce a final product, lead to 

inhomogeneity and local changes in used materials. For example, a welded structure 

contains three entirely different areas: the weld metal, heat affected zone (HAZ), and 

the base material [61]. Each region has completely different mechanical properties 

and may not have enough dimensions to make a tensile specimen.  

Another approach can be to produce a notched tensile specimen from the welded 

steels, with the notch located exactly in WM, to force fracture to occur at this point 

[62]. It was found [63] that it is possible to calculate the true stress of a smooth tensile 

specimen from the notched tensile specimens according to the following equations: 

𝜎𝑡𝑟𝑢𝑒
𝑆𝑚𝑜𝑜𝑡ℎ(𝜀) = 𝜎𝑡𝑟𝑢𝑒

𝑁𝑜𝑡𝑐ℎ𝑒𝑑(𝜀) 𝐺⁄  (2.6) 

G𝑛=0.1 = 1.007 + 0.18777 (
𝐷𝑜
𝑅𝑜
) − 0.01313 (

𝐷𝑜
𝑅𝑜
)
2

 
(2.7) 

G𝑛
G𝑛=0.1

= 1.053 − 053𝜀𝑃𝑚𝑎𝑥 
(2.8) 

The parameter G in Equation (2.6) stands for the geometry factor and depends on 

the initial diameter (𝐷𝑜) and notch radius (𝑅𝑜) of the notched tensile specimens. 

However, the size of the geometry factor can be changed depending on the value of 

strain hardening (n) and can be calculated from Equation (2.8). On the other hand, 

Equations (2.6) to (2.8) apply to the tensile specimens with the special geometry and 

the variation of the tensile specimen size may affect the applicability of the mentioned 

formulas.  

Besides, the tensile test, as a destructive technique, includes uncertainty in the final 

result. As a rule, the test must be repeated at least three times, and the deviation 

among the results can be up to ten percent [64]. Therefore, an alternative method is 

required to determine the material data when a product or structure contains 
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inhomogeneous material. Consequently, the new alternative approach should satisfy 

these key features:  

a. This technique should be applicable to the local areas on the target material 

when the phase material is small, such as a welded zone  

b. It should reduce the burden to produce the tensile specimens 

c. It should have proper accuracy  

d. The new method should not be destructive 

Although the conventional uniaxial tensile test is a destructive technique, other 

approaches such as ultrasonic [65] or electromagnetic methods [66] are non-

destructive and can be employed to identify the local material parameters. The effects 

of residual stresses or the magnetic field during the specimen preparation should be 

considered when measuring material parameters. On the other hand, they cannot 

fully predict the stress-strain diagram of a material. It is possible to obtain local 

material data entirely from hardness measurement, as an in-field and minor 

destructive test. This widely used approach in industry will be developed further in 

this research work.  

 

2.4. Alternative Methods for Material Characterization 

 

One of the first attempts to establish a relationship between the hardness 

measurement and the stress-strain diagram of the material was conducted by Tabor 

in 1951 [15]. He found a correlation between the applied force, the indenter size, and 

the corresponding relative strain on the specimen's surface after indentation 

measurement [15]. The hardness measurement with instrumented indentation 

technique (IIT) is more efficient in collecting comprehensive data to make a more 

accurate correlation [19]. One of the main differences between the conventional 

hardness measurement and the instrumented indentation test is that the force should 

be steadily imposed on the surface of a specimen in IIT, then slightly removes over a 

while. The applied force and the corresponding indentation depth in loading and 

unloading are continuously recorded, followed by plotting as the force-indentation 

depth diagram [67].  

Furthermore, nanoindentation test can simultaneously measure the loads as small as 

1 nN with depth evaluation in the 0.1 nm range [68]. It is recommended to employ a 
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spherical indenter, which is more resistant to deformation than the test specimen. For 

instance, a polished tungsten carbide when performing the IIT is a proper choice. 

Furthermore, the test must be completed at room temperature while the loading 

should be kept between 2N and 3kN. The depth of the plastic deformation under the 

indented surface is around ten times more than the indentation depth. Consequently, 

the obtained material data determines this area's mechanical properties and not the 

bulk of material [69].  

The IIT machine must have enough equipment to isolate the test sample from the 

temperature changes and potential external noises as well as vibrations. The proper 

sensors must be installed to record and measure the force, the penetration depth on 

the specimen surface, and the time in each test cycle. The machine must also have 

the ability to provide the power in several loading and unloading cycles [70]. The 

typical radius of the spherical indenter is between 200 and 500 µm [71]. The smallest 

distance between the individual indentations must be ten times bigger than the 

indentation radius. Suppose the indentation is performed beside the specimen edge. 

In that case, the distance between the first indentation and the border must be six 

times bigger than the indentation radius. Besides, the specimen surface must be 

prepared so that its roughness should become less than 0.1% of the penetration 

depth [72]. It is observed that IIT can be performed not only on the blank samples but 

also on coated specimens [73]. A schematic representation of the IIT system head 

components from universal hardness testing machine ZHU/zwicki-Line which 

contains load cell, an indenter and two measuring sensors are presented in Figure 

2.3.  
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Figure 2.3 Schematic representation of instrumented indentation testing (IIT) system head from 

ZHU/Zwicki-Line universal hardness testing machine. The components include an indenter with a 

specific geometry with the maximum diameter of 10 mm for the application of Brinell hardness testing 

which is mounted on a rigid column, through which the load is applied, and two sensors that measure 

the indentation displacement and the force [74] 

The resulted force-indentation depth curve from the IIT can be correlated to material 

data with three main different methods. First, by using the analytical approaches 

which correlate the changes in the surface of the indented samples to mechanical 

properties. Another approach is applying the inverse numerical calculation to find the 

best possible input data as the material parameters of the indented sample. The last 

main methodology is using the artificial neural network to correlate the force-

indentation depth diagram to mechanical properties of samples. It is necessary to 

know each approach individually for any further development of a new methodology. 

 

2.4.1. Representative Stress and Strain 

 

The resulting Force-Indentation depth diagram, driven from the IIT approach by 

considering multiple loading and unloading phases and increasing the amount of 

maximum force (𝐹𝑚𝑎𝑥(𝑖)) and indentation depth (ℎ𝑚𝑎𝑥(𝑖)) at each cycle (i), as shown 

in Figure 2.4, can be analytically correlated with the mechanical properties of a given 

material in the form of the stress-strain diagram. The area under the force-indentation 

depth diagram shows the total indentation work (𝑊𝑖), which is composed of elastic 

(𝑊𝑖
𝑒) and plastic (𝑊𝑖

𝑝
) work. As seen in Figure 2.4, the elastic work can be calculated 

considering the area under the unloading path and the area remaining between the 
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loading and unloading paths shows the plastic work and can be influenced based on 

the speed of the applied load [75]. 

 

Figure 2.4 Force-Indentation depth diagram with several loading and unloading phases and increasing 

the amount of maximum force (𝐹𝑚𝑎𝑥(𝑖)) and indentation depth (ℎ𝑚𝑎𝑥(𝑖)) at each load cycle (𝑖) and 

elastic work under the unloading path (𝑊𝑖
𝑒) as well as the initial unloading slope (S(i)) 

In order to calculate the stress-strain diagram, the key parameters that describe the 

contact between the indenter and specimen, such as the deformation height (pile-up) 

or depth (sink-in) and the total contact area and the contact angle should be firstly 

measured as shown in Figure 2.5. The pile-up or skin-in almost always occurs during 

penetration on the surface of the indented specimen and is mainly influenced by the 

material parameters such as Young’s modulus, strain hardening exponent, and 

friction coefficient [76]. When the surface is exposed, the area below the indenter 

applies stress and it begins to deform elastically at first and then plastically. However, 

due to strain hardening, the strength in the area contacted by the indenter also 

increases with the stress and the area which is softer, deforms plastically. Ductile 

material tends to pile-up as less consolidation occurs and the material with larger 

consolidation exponent to sink-in [77].  
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Figure 2.5 Schematic profile of the indented surface after performing of the indentation test by 

considering the pile-up and sink-in phenomena with indentation depth (ℎ𝑚𝑎𝑥) and contact depth (ℎ𝑐) 

The next step is to calculate the stress and strain based on the contact parameters 

and then gather them in a material model [78]. The representative true stress (𝜎(𝑖)) 

and true strain (𝜀(𝑖)) can be calculated from the sink-in geometry based on the 

parameters introduced in Figure 2.4 and Figure 2.5 as presented in [18] according to 

[79] [16]. 

𝜎(𝑖) =
1

3.5

𝐹𝑚𝑎𝑥(𝑖)

𝜋𝑐(𝑖)2
 

(2.9) 

𝜀(𝑖) = 0.12
𝑐(𝑖)

𝑅√1 − (
𝑐(𝑖)
𝑅 )2

 
(2.10) 

𝑐2(𝑖) =
2

5
(
2 − 𝑛𝑖𝑛
4 + 𝑛𝑖𝑛

) 𝜋𝑎2 =
2

5
(
2 − 𝑛𝑖𝑛
4 + 𝑛𝑖𝑛

) (2𝑅ℎ𝑐(𝑖) − ℎ𝑐
2(𝑖)) 

(2.11) 

ℎ𝑐(𝑖) = ℎ𝑚𝑎𝑥(𝑖) −
3

4

𝐹𝑚𝑎𝑥(𝑖)

         (
𝑑𝐹(𝑖)
𝑑ℎ(𝑖)

)
𝐹𝑚𝑎𝑥(𝑖)

 
(2.12) 

𝜎(𝑖) = ln𝐾 + 𝑛 ln 𝜀(𝑖) (2.13) 

In Equation (2.11), the projected contact section between the indenter and the 

specimen is presented with 𝜋𝑎2 as shown in Figure 2.5. The initial unloading slope 

((
𝑑𝐹(𝑖)

𝑑ℎ(𝑖)
)
𝐹𝑚𝑎𝑥(𝑖)

) in Equation (2.12) stands for the contact stiffness and depends on the 

geometry of the contact area and surface roughness [80]. It can be assumed that the 

parameters (𝑛𝑖𝑛) from Equation (2.11) and (n) from Equation (2.13) can be 

approximately equal and represent the work hardening exponent from the indentation 
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test and the stress-strain curve, respectively. It is first necessary to calculate the 

representative true stress and true strain from Equation (2.9) and Equation (2.10) to 

later determine the variables K and n in Equation (2.13). Then, the representative true 

stress and true strain must be recalculated with the already computed parameter (n) 

in a repetitive process to determine the most accurate n and K, and thus the yield 

strength [18]. 

An observation demonstrated that it is possible to analytically calculate the stress and 

corresponding strain at several points beyond the yield strength, sufficient to 

determine the desired material model [16]. Besides, the yield strength and ultimate 

tensile strength of various materials were calculated with an accuracy of up to 5% 

using the representative stress and strain method [81]. There is enough experimental 

work to demonstrate the robustness and trustworthiness of this method, the simplicity 

of using its algorithms, and there is no further need for complicated numerical 

simulation. However, this method is not flexible enough and cannot predict the yield 

strength of AHSSs [18]. Moreover, it does not have any other solution to calculate the 

other necessary theoretical material data [17]. 

 

2.4.2. Inverse Analysis by means of Finite Element Method  

 

In addition to the representative stress and strain method, the stress-strain diagram 

of a material can be estimated with the inverse analysis through FEM. In this repetitive 

approach, the goal is to find the most accurate estimation of the material data using 

a trial and error procedure. In this regard, the force-displacement curve can also result 

from an infinite number of combinations of material parameters. Inverse analysis 

employs FEM calculations to select parameters and consequently the deviation of 

force-penetration curve between experimental results and FEM simulation should be 

minimal. FE model iteratively computed until a match is found with the experimental 

force-penetration diagram. Therefore, the infinity possibilities of parameter 

combinations are limited to the force-displacement curve.  

An approach used in several works [82]  [83] to determine the material parameters 

from the force-indentation depth diagram with inverse analysis technique is applying  

Kalman filter algorithm [84]. This methodology has been used in various fields such 

as manufacturing and signal processing to solve the inverse problems [85], in addition 
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to being used in computational mechanics to identify the parameters of 

nonhomogeneous material model [86]. The Kalman filter theory can be described with 

the following equations. 

𝑥𝑡 = 𝑥𝑡−1 + 𝐾𝑡[𝑧𝑡 − 𝐻𝑡(𝑥𝑡−1)] (2.14) 

𝐾𝑡 = 𝑃𝑡ℎ𝑡
𝑇𝑅𝑡

−1 (2.15) 

𝑃𝑡 = 𝑃𝑡−1 − 𝑃𝑡−1ℎ𝑡
𝑇(ℎ𝑡𝑃𝑡−1ℎ𝑡

𝑇 + 𝑅𝑡)
−1ℎ𝑡𝑃𝑡−1 (2.16) 

In Equation (2.14), the 𝑥𝑡 stand for the vector of unknown measured parameters at 

updating step t. For instance, vector 𝑥𝑡 contains the target material model parameters 

at increment t such as elasticity modulus or yield strength (𝑥𝑡 = [𝑥𝑖]𝑡). The vector 𝑧𝑡 

and 𝐻𝑡 describe the experimentally measured parameters and the relationship 

between the measurable parameters and the quantities that indicate the state of a 

material, such as material constants. For example, vector 𝑧𝑡 contains the magnitude 

of measured displacements with its corresponding measurement error at a specific 

load step, however, the elements (𝐻𝑗)𝑡 of vector 𝐻𝑡 show only the exact value of 

displacement [82]. The vector of unknown parameters must be calculated in an 

iterative process considering the correction factor, which can be calculated by the 

Kalman gain matrix 𝐾𝑡 as shown in Equation (2.15). The matrix ℎ𝑡 is the gradient of 

matrix 𝐻𝑡 according to the unknown parameters at step t as shown in Equation (2.17) 

and must be defined before starting with the calculation [83]. The matrix 𝑃𝑡 and 𝑅𝑡 are 

the measurement and error covariance matrix at increment step t as described in 

Equation (2.18) and Equation (2.19).  

ℎ𝑡 =
𝜕[𝐻𝑗]𝑡

𝜕[𝑥𝑖]𝑡
=

(

 
 

𝜕(𝐻1)𝑡
𝜕(𝑥1)𝑡

⋯
𝜕(𝐻1)𝑡
𝜕(𝑥𝑖)𝑡

⋮ ⋱ ⋮
𝜕(𝐻𝑗)𝑡

𝜕(𝑥1)𝑡
⋯

𝜕(𝐻𝑗)𝑡

𝜕(𝑥𝑖)𝑡)

 
 

 

 

(2.17) 

𝑃𝑜 = (
((𝑥1)𝑚𝑎𝑥 − (𝑥1)𝑚𝑖𝑛)

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ((𝑥𝑖)𝑚𝑎𝑥 − (𝑥𝑖)𝑚𝑖𝑛)

2
) 

(2.18) 

𝑅𝑡 = (
(𝑅)2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (𝑅)2

) 

(2.19) 
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In another approach to calculate the material parameters with inverse analysis, a 

validated and as precise as possible numerical simulation model of the indentation 

test within the range of all boundary conditions must be prepared. The indentation 

test should then be performed on the desired samples and then in an extraordinarily 

time-consuming and numerically expensive procedure, the simulation model's 

material model parameters have to be arbitrarily and repeatedly changed to find the 

best match between the force-indentation depth diagrams of the IIT, which are 

separately obtained from the experimental and numerical work. In other words, the 

output is known, and the input must be modified in such a way to calculate the desired 

result [87].  

This means that the goal must be to minimize the mean square error (MSE) between 

the output of the numerical model and the experiment, as shown in Equation (2.20). 

In another work [88], it was proposed to normalize the squared error based on the 

value of the experimental output to give equal importance to each output, as shown 

in Equation (2.21). Additionally, such an approach can benefit from constrained 

optimization routines if additional information such as the value of elastic modulus or 

yield strength can be estimated in advance [89].  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

2

𝑛

𝑖=1

 
(2.20) 

𝐸𝑟𝑟𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =∑
(𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

2

𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑛

𝑖=1

 
(2.21) 

However, it is possible to optimize the procedure by finding the best guesses in each 

step to reduce the total calculation time. For example, several representative points 

must be chosen from the experimental force-indentation depth curve to begin with the 

inverse analysis. The first numerical simulation is performed by guessing the material 

data. The rest of the simulation, belonging to other successive points, depends on 

the first simulation's accuracy. The procedure must be continued step by step to draw 

the entire force-indentation depth curve. This method can become more efficient if 

the first guess is made based on the previous information [90]. In another 

complementary process, the focus is more on some other parameters such as 

indenter shape, the actual contact area between the indenter and the surface, as well 
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as penetration force and pressure [91]. For instance, several indentations must be 

performed and the curves must be normalized according to a specific parameter such 

as pressure. The experiment's results in curves and inverse numerical simulation 

have to be matched in a single diagram [92].  

Contrary to the representative stress and strain method, the inverse analysis 

approach is flexible enough to be applied to different materials such as ceramics and 

even the specimens with the coated surface or various forms of the indenters 

spherical or conical shape is used [93]. The drawback of this method is that if the first 

guess is not close enough to the real material data, the rest of the simulation to 

estimate the mechanical properties as accurately as possible will be numerically 

expensive and time-consuming. 

 

2.4.3. Artificial Intelligence and Material Data 

 

In addition to the first two methods, the force-indentation depth diagram can be 

associated with the stress-strain diagram employing a trained artificial neural network 

(ANN). Attempts to use the ANN to determine the material data have been 

significantly developed at the end of the last century [94]. It became clear that the 

ANN is a strong and powerful tool for solving the inverse and complicated problems 

in mechanical engineering [95].  

The artificial neural network, known as the most accurate and robust machine 

learning algorithm, was first introduced in 1943 when scientists attempted to map the 

brain function into a mathematical and then a computer model [96]. A couple of years 

after the introduction of ANN, it was expected that many complex technical problems 

could be solved by this novel method, and even that it could overtake and control all 

aspects of humans life. However, due to some fundamental aspects of the early 

model of the ANN, known as symbolic AI, it could not meet the expectations, and 

ANN lost its popularity at the end of the last century. Symbolic AI is a strong tool for 

solving problems based on a set of rules, such as chess or backgammon. It means 

that the developer can define a set of rules or the rules' regulations initially, and the 

AI can then act based on them. On the other hand, it could not solve the complex and 

fuzzy problems such as recognizing a specific object in an image [97]. The next phase 

in the development of AI occurred in 1980 when the concept of the Expert System 
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and the LISP programming language were introduced to solve complex problems 

based on conditional rules [98].  

Neural networks can be viewed as directed graphs that transmit data along directed 

connections as seen in Figure 2.6. According to how data transmission works, there 

are two types of neural networks. If there is only one direction, forward, from the input 

neurons to the output neurons, it is called a feed-forward network. If it contains loops 

or directed circuits, it is called a recurrent network. The neurons in the input layer 

distribute the input data to the neurons in the next layer, while the hidden layer has 

no contact with the environment and may contain multiple hidden layers. The output 

neurons provide the output data. A nonlinear mapping can be shaped in hierarchical 

ANNs from multiple input data to multiple output data by using a learning process. 

Therefore, the network should be trained with different patterns containing input and 

output data. The current ANN is capable of generalization, a kind of interpolation so 

that the trained network can estimate the results even for unlearned examples and 

can operate quickly in the application phase [99].  

 

Figure 2.6 Schematic representation of a feed-forward ANN with three layers such as input layer (Layer 

1), hidden layer (Layer 2) and output layer (Layer 3) and features of input dataset (𝑥𝑖
1), outputs (𝑥𝑖

3) 

and an example of weight between each neurons (𝑤11
2 ) 

The mathematical description between the input and output of the ANN as depicted 

in Figure 2.6 can be shown in Equations (2.21) to (2.23). Equation (2.21) shows a 

logistic function as an example of sigmoid function to make the linear regression term 

(𝑏 + 𝑤𝑇𝑋) nonlinear. In the linear regression, the vectors X and w represent the input 
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and the weight, respectively, and the bias is shown by the parameter b. Equation 

(2.22) shows the cost function that results from the mean square error between the 

target value and the calculated output of the logistic regression. The most accurate 

value of the weights leading to a minimum value of the cost function can be calculated 

based on the standard gradient descent method with learning rate of ∝ in an iterative 

process as shown in Equation (2.23). The most critical point in the learning process 

is to improve the optimization algorithm by using other methods such as  stochastic 

or batch gradient descent to minimize the cost function to find best possible weights 

by reducing the calculation time. 

𝑓(𝑋) =
1

1 + 𝑒−(𝑏+𝑤
𝑇𝑋)

 
 (2.21) 

𝐽 =
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥))

2

𝑖

 
 (2.22) 

w = w−∝ ∇J(w) = w−∝ (
∂J

∂𝑤1
, … ,

∂J

∂𝑤𝑁
) 

 (2.23) 

Of all the AI developments, the revolution in machine learning took place around 

2012, when it became possible to perform the calculations with the graphical 

processing units (GPU). The GPU significantly reduces the artificial neural network's 

expensive computation time with the backpropagation algorithms, known as a deep 

neural network [100]. The main distinction between the traditional machine learning 

algorithms and deep neural network is that the accuracy in modern ANN is 

significantly increased by having more datasets. However, the accuracy becomes 

greater when there are more datasets in the traditional version only in the beginning. 

It then remains constant even when the training datasets are increased. For instance, 

AlexNet applied a deep neural network with enough datasets to improve image 

recognition accuracy by about 10% to 83.6% [101]. Following this remarkable 

development in machine learning, AI has been applied to other fields such as text 

mining, speech recognition, and even mechanical engineering, particularly material 

characterization, to revolutionize them too, as explained in [102] [103] [104] [105] 

[106].  

The question which arises at this point is that what the backpropagation algorithm is. 

As a supervised learning algorithm that contains multiple layers such as input, hidden, 
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and output in a row, ANN relies on the input and output to begin with the training 

process. In the training procedure, the goal is to find the correct variable between the 

layers, called weight, so that the error between the ANN's output and the actual 

results becomes minimal. If the weight of a neuron or input is greater than the weight 

of other neurons or inputs, this specific input influences the final calculated outputs 

compared to the other input data. In a simple forward method with two output and 

input layers, the input values are multiplied by the randomly chosen weights and 

summed together to calculate the outputs. Then, in the backpropagation method, the 

calculation must be done from the outputs toward the inputs, which should remain 

constant and not be changed. In this step, the backpropagation algorithm uses an 

optimization algorithm such as gradient descent to change the weights and biases to 

make the differences between the desired and calculated outputs for each dataset 

minimal as shown in Equation (2.24) and Equation (2.25). In the following equations, 

l and i stand for the layer and the neuron at layer l and wik represents the weight 

between neuron i and k in different layers. This numerically expensive procedure 

must be repeated repeatedly with each training dataset to find the best value of the 

weights that leads to the most accurate value of the computed outputs [107]. 

∂J

∂𝑤𝑖𝑘
𝑙 =

∂J

∂𝑓𝑖
𝑙

∂𝑓𝑖
𝑙

∂𝑤𝑖𝑘
𝑙  

 (2.24) 

∂J

∂𝑏𝑖
𝑙 =

∂J

∂𝑓𝑖
𝑙

∂𝑓𝑖
𝑙

∂𝑏𝑖
𝑙 

 (2.25) 

Yagawa demonstrated in detail the advantages of the neural network over 

conventional algorithms in computational mechanics to solve structural analysis 

issues, damage mechanics of welded structures, material modeling, and numerical 

simulation [99]. It has been shown that a trained ANN can predict the value of 

Poisson's ratio by considering a simple material model that describes plasticity and 

under one-time loading and two-times unloading [20]. Moreover, changing the input 

datasets and the ANN's architecture leads to a more precise estimation of the 

Poisson's ratio [108]. In another work, three internal parameters of a complex 

viscoplastic material model based on the Chaboche work has been identified by ANN 

[109]. The robustness and trustworthiness of the trained ANN have been proved 

when it was used to predict the elastic modulus, yield strength, and the parameters 

of the viscoplastic model of different materials [110]. In another study, the ANN was 
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trained with the datasets obtained from numerical simulation to predict a purely 

kinematic and isotropic model [111]. In another investigation, a friction stir welded 

aluminum plate's mechanical properties with a thickness of 3 mm were quantified by 

a trained ANN. The results were then compared with material data obtained from the 

tensile test performed on the micro specimens produced from the weld seam [102]. 

Furthermore, it has been shown that a trained conventional neural network is capable 

of estimating the mechanical properties of a mineral material using the images 

captured by scanning electron microscopy from its structure at mesoscale [112]. In 

related research, artificial intelligence was used to establish a correlation between a 

composite structure's material data and the images taken from its complex 

microstructure [103]. 

Similarly, the chemical compositions and the process parameters in the production 

line of a hot rolled steel were used as the conventional neural network's input data to 

determine the mechanical properties. The results show a strong dependency 

between the amount of carbon content and the value of tensile strength. Moreover, 

the yield strength is dependent on the finishing rolling and coiling temperature [104]. 

In addition, deep learning was used to calculate the effective thickness of a shell 

element and the tensile strength of a steel structure with an H-section. The used 

conventional neural network was validated by polling and extracting the feature layers 

and  evaluating the accuracy level [105]. A modified and developed conventional 

neural network was applied to predict the concrete's residual stress using the images 

captured from its microstructure with a portable digital microscope [106]. Moreover, 

the mechanical properties of different material types such as woods, cardboards, and 

plastics were identified using a microwave sensor and analyzing the collected data 

with machine learning algorithms [113]. Furthermore, Ullner shows that the available 

neural network and the analytical methods (representative stress-strain method) fail 

significantly to predict steel structures' mechanical properties when their yield 

strength is higher than 400 MPa. Any estimation of the welded steels' material data 

in both BM or WM with yield strength higher than this value leads to a dramatic 

difference between the result of the ANN and the tensile test as a reference value, as 

seen in Figure 2.7. Moreover, he shows that the result of the analytical approach 

known as the representative stress-strain method deviates significantly from the 

measured values of the tensile test when it is applied to estimate the mechanical 

properties of the welded AHSSs which have yield strength greater than 400 MPa and 
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1000 MPa in BM and WM, respectively. The investigation is performed on the TRIP 

steel HCT690T with the yield strength of 400 MPa on both BM and WM produced by 

RSW. The output of ANNs and analytical methods are compared with the result of 

tensile test on BM and the heat-treated and then quenched material of HCT690T [18].  

 

Figure 2.7 Comparison between the calculated stress-strain diagram from the representative stress-

strain method (RS specimen) and the predicted material data using the current available neural 

network (NN) with the tensile test as a reference value; (a) all materials used are the base material of 

AHSS (HCT690T); (b) tensile tests are carried out on heat treated metal of AHSS (HCT690T) which 

is heated to 1200 ℃ and then immediately cooled with water, the indentations are performed on the 

weld seam of RSW made of HCT690T [18] 

Consequently, the observation that the current and available ANNs and the 

representative stress-strain method (analytical approach) cannot predict the material 

data of AHSSs when the yield strength is higher than 400 MPa is the research 

question of the current work. The objective of the present work is to train ANNs 

capable of predicting the mechanical properties of welded AHSSs in different welded 

zones such as BM, WM or HAZ together with the IIT data. Therefore, DP steels and 

a high strength fine grained structural steel (S690QL) as commonly used AHSSs with 

yield strength higher than 350 MPa are used in the current research to examine the 

performance of the trained ANNs. The first step to achieve this goal is to determine 

the mechanical properties of the AHSSs used, which will be performed in the next 

chapter. 
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3. Material Characterization with 

Tensile Test 

 

Among the various welding technologies, resistance spot welding (RSW) and laser 

beam welding (LBW) play a significant role in the automobile industry's joining 

methods. The application of those technologies for the automotive body alters the 

microstructure in the welded areas. It is necessary to identify the mechanical 

properties of the welded advanced high strength steels (AHSSs) to be able to make 

a reliable statement about the material behavior and the strength of weld metal (WM). 

Therefore, this research work aims to develop an artificial neural network (ANN) with 

which the welded AHSSs' mechanical properties typical in automotive engineering 

and their joints such as heat affected zone (HAZ) or WM can be determined locally 

without performing the tensile test. Therefore, it is needed in the first step to determine 

the material parameters which are used later to check the validity and performance 

of the trained ANN.  

 

3.1. Methodology 

 

The primary issue with welded AHSSs' mechanical behavior is how they respond to 

uniaxial loading situation in different zones. Therefore, the stress-strain behavior of 

the various zones of a welded joint should be investigated. The conventional method 

is uniaxial tensile test with a dog-bone sample to draw the stress-strain diagram as a 

representative of the elastoplastic behavior of metals. However, it is impossible to 

produce a conventional tensile specimen from the WM due to inhomogeneous 

material in the welded zones and the tiny size of the WM. It is common to use the 

thermomechanical simulator [14] to reproduce the microstructure of WM in a larger 



45 
 

area. Since such equipment and infrastructure is not available in the research institute 

where the current project is conducted, a novel method is proposed to determine the 

material parameters of WM without the need for a thermomechanical simulator.  

In this methodology, it is first necessary to weld two plates with the industrial welding 

parameters and perform a metallographic investigation to analyze the microstructure 

and hardness of the WM resulting from the conventional welding parameters. 

Subsequently, the welding parameters were changed several times to find the optimal 

welding parameters to reproduce the microstructure of WM as large as possible in 

only one plate. Therefore, it is necessary to perform the metallographic analysis again 

to study the microstructure and hardness of the reproduced WM with optimal welding 

parameters. Then, the tensile specimens must be made from the welded plates 

containing different materials such as BM and WM. Since the strength of the WM 

produced by RSW is higher than that of the BM, it is necessary to make a notch in 

the WM to ensure that the fracture occurs definitely in the WM. On the other hand, 

the stress-strain diagrams of the notched and smooth tensile specimens are different. 

Therefore, it is necessary to perform a tensile test on both notched and smooth tensile 

specimens to find out the geometry factor and the relationship between the two 

diagrams. With the value of the geometry factor, it is possible to calculate the stress-

strain of the welded smooth tensile specimens from the welded notched tensile 

specimens. However, the first step to begin with this methodology is to characterize 

and learn about the AHSSs used in the current research. 

 

3.1.1. Material Characterization 

 

Several AHSSs have been used in the current research work, which contain DP-

steels such as DP600, DP800 and DP1000, and a high strength fine grained 

structural steel such as S690QL. The significance of these steels is their low carbon 

content. In DP-steels, the high amount of manganese, silicon and chromium allows 

shaping a two-phase microstructure with higher strength yields without decreasing 

ductility [21]. DP-steels are widely used in the automotive industry to manufacture the 

body of automobiles, and structural steels are mostly used in the constructions. The 

conventional welding methods used for DP steels are RSW or LBW, and for high 

strength fine grained structural steels are LBW or Arc welding. The investigations of 
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the current research are carried out on the base metal of DP600, DP800, DP1000 

and S690QL and on the welded joints of DP600 and DP1000 made of RSW and WM 

of S690QL made of LBW. 

The cold-rolled, and zinc-coated steel plates of DP600 with a thickness of 1 mm, zinc-

coated steel plates of DP800 with a thickness of 1.5 mm, and the blank plates of 

DP1000 with a 2 mm thickness, and the blank plates of S690QL with 8 mm thickness 

are used. The chemical compositions of the selected steels are summarized in Table 

3.1.  

Table 3.1 Chemical compositions of used materials, in weight %. 

Material C Si Mn Cr Mo Al Fe 

DP1000 0.11 0.5 2.14 0.03 0.002 0.04 balance 

DP800 + ZE 0.14 0.8 1.47 0.1 0.01 0.015 balance 

DP600 + ZE75/75 0.1 0.14 1.4 0.16 0.18 0.02 balance 

S690QL 0.2 0.8 1.7 1.5 0.7 - balance 

 

The metallic sheets were prepared using metallographic techniques and the etching 

solution employed was a 2% Nital solution. Figure 3.1 (a) and (b), captured by light 

microscopy, show the two-phase microstructure of the DP600 and DP1000 steel 

sheets, respectively, which contains a soft matrix (ferritic phase) with islands of the 

martensitic phase. The soft ferrite matrix is responsible for ductility (formability), and 

the martensitic phase increases strength in DP steels. Figure 3.1 (c) shows the high 

strength fine grained structural steel S690QL, which contains two phases of bainitic 

and martensitic microstructure. Since in the present research only the mechanical 

properties of DP800 in base material are considered and it was not welded by any 

techniques, the metallographic investigations on DP800 were not performed. 
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Figure 3.1 Microstructure of base metal; (a) DP600; (b) DP1000; (c) S690QL; light microscopy 

 

3.1.2. Resistance Spot Welding 

 

A C-type servo motor spot weld-gun was applied for RSW of steel plates with a 

medium-frequency (1000 Hz) direct-current transformer. The geometry of the water-

cooled electrode caps provided according to what was suggested in reference [114]. 

The samples with dimensions of 80×30×2 mm3 made from both DP600 and DP1000 

steel plates. Then two steel sheets (similar material) of DP1000 and DP600 were 

welded according to the industrial welding parameters [115] as demonstrated in Table 

3.2.  

Table 3.2 Industrial welding parameters related to RSW of two plates based on following guideline 

[115] 

Material Electrode force 

in kN 

Holding time 

in ms 

Electric current  

in kA 

Electrode cape 

DP1000 5 140 9 F16 

DP600 3.5 260 8 F16 

 

For the fabrication of the dog bone tensile specimens, it is necessary to have a large 

volume of a homogeneous material such as WM or BM on hand to produce the tensile 

specimens. Due to the lack of infrastructure in the research institute, it was not 

possible to manufacture the micro tensile specimens or reproduce the microstructure 

of WM in a larger area with a thermomechanical simulator, so it has been tried to vary 

the welding parameters to find the optimal parameters that can reproduce the similar 

microstructure of WM in a larger area. The four parameters of electrode force, holding 

time during welding, electric current and electrode cap have been altered more than 
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100 times based on the interval given in Table 3.3 in order to find the optimal welding 

parameters.  

Table 3.3 Variation of the welding parameters of RSW on plate (both DP600 and DP1000) to find the 

optimal welding parameters to reproduce the WM as large as possible in one plate  

Electrode force 

in kN 

Holding time 

in ms 

Electric current 

in kA 
Electrode cape 

0.5 to 9 100 to 606 4.5 to 20 A-B-E-F-G 

 

The new welding parameters should meet the following requirements so that they can 

be selected as optimal parameters to reproduce the microstructure of the WM in a 

steel plate: a) the microstructure of the weld nugget from two plates and the weld 

nugget from one plate must be similar; b) the surface deformation should be kept to 

a minimum since the plates must later be used to prepare tensile specimens; c) finally, 

the weld nugget should be provided with a maximum size since they must be used 

as tensile specimens. 

In order to have a better overview about the combination of the changes in the welding 

parameters, the variation configuration of the RSW parameters are presented in 

Figures 3.2 to 3.5 and compared with the conventional industrial RSW parameters 

according on the guidelines [115]. RSW has been repeated with different types of 

electrode caps, as they have different geometries and by changing them, the level of 

pressure on the surface of the sample and the size of the reproduced microstructure 

can be drastically affected. For example, the electrode cap A16 has a flat surface tip 

and, as expected, leads to less deformation at the surface of the welded specimens 

compared to the specimens welded with the electrode cap of F16, since the latter has 

a rounder geometry at its surface tip compared to A16. Another important parameter 

is the holding time in the RSW process, and expected that with its increase the size 

of the WM grows too.  Therefore, RSW has been started with a holding time of about 

100 ms and raised to more than 600 ms, which corresponds to the maximum capacity 

of the used infrastructure. Subsequently, RSW was continued with a holding time of 

600 ms and other parameters such as electrode force and electric current were 

changed to find the optimal welding parameters under the condition that no splash is 

visible, by repeating the welding process twice for each parameter combination. 
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Figure 3.2 Variation configuration of the electrode force, holding time and electrode cape as the 

welding parameters of RSW for DP600 in order to find the optimal welding parameters to reproduce 

the WM as large as possible in one plate and comparison with the industrial [115] welding parameters  

 

 

Figure 3.3 Variation configuration of the electrode force, holding time and electrode cape as the 

welding parameters of RSW for DP1000 in order to find the optimal welding parameters to reproduce 

the WM as large as possible in one plate and comparison with the industrial [115] welding parameters 

 



50 
 

 

Figure 3.4 Variation configuration of the electrical current, holding time and electrode cape as the 

welding parameters of RSW for DP600 in order to find the optimal welding parameters to reproduce 

the WM as large as possible in one plate and comparison with the industrial [115] welding parameters  

 

 

Figure 3.5 Variation configuration of the electrical current, holding time and electrode cape as the 

welding parameters of RSW for DP1000 to find the optimal welding parameters to reproduce the WM 

as large as possible in one plate and comparison with the industrial [115] welding parameters 
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The investigation shows that there is a direct relationship between the magnitude of 

the electrode force, the electric current and the size of the reproduced WM when the 

RSW is applied to only one plate. When the magnitude of the electric current is 

increased, the value of the electrode force must also be increased and the size of the 

WM grows as a consequence. However, a high value of electrode force leads to the 

formation of small cracks on the surface of the specimens, as shown in Figure 3.6, 

which should not be present in tensile specimens. Therefore, there should be a 

compromise between the desired size of reproduced WM and the magnitude of the 

electric current and electrode force. 

 

Figure 3.6 Formation of microcracks on the surface of DP600 specimen after increasing the electrode 

force to 8 kN, electric current to 19 kA and holding time to 600 ms by using the electrode cape of A16 

Considering all the above requirements and restrictions, the parameters shown in 

Table 3.4 are chosen as the optimal RSW parameters to reproduce the microstructure 

of WM in one plate as large as possible. In Section 3.2.1, called "Metallographic 

Analysis", the microstructure of the reproduced WM with the following parameters is 

investigated and compared in details with the microstructure of the RSW based on 

the industrial welding parameters. 

Table 3.4 The optimal welding parameters to reproduce the WM of RSW on one plate  

Material 
Electrode force 

 in kN 

Hold time 

 in ms 

Electric current  

in kA 

Electrode cape 

DP600 5 600 16 A16 

DP1000 5 600 13.5 A16 
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3.1.3. Laser Beam Welding 

 

In the current research work, LBW was performed using a TruDisk 16002 Yb:YAG 

disk laser, which is a solid-state laser source and has a maximum power of 16 kW 

with a wavelength of 1030 nm. The AHSSs of DP600, DP1000 and S690QL were 

welded by LBW technique to investigate their microstructure and material properties. 

Figure 3.7 shows the experimental setup and the position of the DP600 steel during 

LBW. 

 

Figure 3.7 Experimental setup and position of DP600 steel during LBW with TruDisk 16002 Yb:YAG 

disk laser 

At the beginning, two plates of DP600 and DP1000 were positioned alongside each 

other as shown in Figure 3.7. Then, the parameters of LBW such as welding velocity 

and defocusing are kept constant at 1.8 m/min and 0 mm, respectively. The power of 

the laser beam was slightly increased to find out the proper laser power which is able 

to weld thoroughly two steel sheets made of DP600 and DP1000. The steel sheets 

placed next to each other are made of the same material. The same procedure is 

followed again for the S690QL, except that the welding velocity remains constant at 

the level of 2 m/min. The above processes lead to the parameters of LBW as shown 

in Table 3.5.  
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Table 3.5 Welding parameters of LBW on AHSSs 

Material 
Power 

 in Kw 

Defocusing 

in mm 

Velocity 

in m/min 

DP600 1.6 0 1.8 

DP1000 2.4 0 1.8 

S690QL 8 0 2 

 

In the next steps, more than 84 plates of DP600 and DP1000 were blind welded by 

varying the parameters of LBW in an interval as given in Table 3.6. The objective is 

to find the optimal welding parameters that result in the largest possible WM with 

similar microstructure to the WM obtained from the parameters in Table 3.5. In 

addition to the similarity of the microstructure, it is important to know that the 

deformation due to LBW on the plates and the deformation on the surface of the 

specimens must be kept to a minimum, since the tensile specimens must be 

produced later from the welded plates. 

The welding velocity again remains constant at 1.8 m/min and the defocus and laser 

power were changed proportionally to each other to induce more energy during 

welding. It has been shown that increasing the laser power and defocus results in a 

larger and wider weld nugget, however, the desired microstructure cannot be 

reproduced. In Section 3.2.1, "Metallographic Analysis", the microstructure of the 

reproduced WM with parameters from Table 3.6 is investigated and compared in 

details with the microstructure of the LBW based on the welding parameters from 

Table 3.5. 

Table 3.6 Variation of welding parameters of LBW to find the optimal welding parameters 

Power 

 in kW 

Defocusing 

 in mm 

Velocity  

in m/min 

1 to 16 -100 to 0 1.8 

 

3.1.4. Tensile Test 

 

The objective of performing the quasi-static tensile test is to determine the mechanical 

properties of the used AHSSs and their WMs in order to later check the accuracy and 

performance of the trained ANNs. The conventional test can be conducted on the 

specimens made of the base material of the AHSSs. However, the challenge is to 

determine the stress-strain diagram of the WMs, since its size is not large enough to 

produce a homogeneous tensile specimen from them. Therefore, a novel 
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methodology is introduced in this research work to identify the material data of the 

WM from the welded notched tensile specimens. In such a methodology, the following 

steps must be taken: 

 Preparation of smooth tensile specimens from BM of used AHSSs 

 Preparation of the notched tensile specimens from the welded and not welded 

plates of used AHSSs 

 Comparison of the stress-strain diagrams of the notched and smooth tensile 

specimens of BM to determine the geometry factor 

 Calculation of the stress-strain diagram of the WM by using the geometry 

factor and the stress-strain diagram of the notched welded tensile specimens 

 Review the methodology by numerically simulating the tensile specimens and 

comparing the results with the results of the experiments 

 Validate the determined material parameters by comparing them with available 

data from the literature   

Therefore, in the first step, it is necessary to explain the geometry of the tensile 

specimens and the experimental setups for performing the tensile test on notched 

specimens. 

 

3.1.4.1. Experimental Analysis 

 

The tensile specimens were made from BM of AHSSs as shown in Figure 3.8 to 

determine the mechanical properties of BM. The geometry of the tensile specimens 

of DP600 with a thickness of 1 mm, DP800 with a thickness of 1.5 mm, DP1000 with 

a thickness of 2 mm, and S690QL with a thickness of 8 mm are shown in Figure 3.8 

from (a) to (d), respectively. The geometry of the specimens is determined according 

to the guidelines [50]. The specimens were first cut using the waterjet cutting 

technique and then the edges were milled to produce a homogeneous specimen with 

accurate geometry and no microcracks. 
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Figure 3.8 Geometry of tensile specimens prepared for tensile test according to guideline [50]; (a) 

DP600 with thickness of 1mm; (b) DP800 with thickness of 1.5mm; (c) DP1000 with thickness of 2mm; 

(d) S690QL with thickness of 8mm 

Besides, it is essential to quantify the mechanical properties of WM to validate the 

trained ANN with their material data, since the yield strength of WM resulting from 

RSW is higher than the corresponding BM, therefore,  the trained ANN can be tested 

in the upper range of the training interval. The tensile specimens made from the 

welded steel sheets must contain a notch in the area where the WM is located. The 

reason for such a geometry is that the yield strength of WM is higher than that of BM 

and the notch or the reduced geometry forces the fracture to occur exactly in WM, 

thereby enabling the determination of the material behavior of WM. However, the 

geometry of the welded notched tensile specimens are depended on the size of the 

WM. It is mentioned in the literature that the WM length should be considered larger 

than the distance between notches to minimize the impact of inhomogeneity caused 

by the welding process. Furthermore, the distance between notches should be also 

greater than or equal the notch radius to decrease the impact of strain hardening on 

the concentration stress coefficient caused due to notched geometry [63]. The 
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mentioned criteria were followed during the preparation of the welded notched tensile 

specimens. 

The mechanical behavior of metals in a tensile test is affected by stresses and strains 

experienced in the specimen. However, the presence of notches and cracks affect 

deformations in fracture mechanics. A notch, or any other stress concentration 

regions will experience higher applied stress than other unaffected zones. 

Technically, the mechanical properties of a metal with a smooth sample is different 

from a notched sample. The tensile yield strength of steels in a notched sample are 

recorded greater than those smooth samples in a uniaxial tensile test. The maximum 

amount of stress ahead of the notch is a function of the notch's geometry on the 

specimen [116]. Therefore, it is necessary to perform the tensile test on both smooth 

and notched tensile specimens of BM to compare them with each other and 

determine the influence of the notch on the stress-strain diagram and quantify it in 

terms of geometry factor. With the value of the geometry factor, it is possible to 

calculate the stress-strain diagram of the smooth specimens as a reference value 

from the notched specimens [63]. 

Figure 3.9 shows the geometry of the tensile specimens prepared to determine the 

mechanical properties of the WM resulting from RSW. The notch geometry depends 

on the size of the WM produced on a single plate of DP600. In Section 3.2.1, 

"Metallographic Analysis", the microstructure and size of the reproduced WM with the 

optimized and varied welding parameters are studied in details. Figure 3.9 (a) and (b) 

shows the geometry of the smooth and notched tensile specimens from BM, 

respectively. The quasi-static tensile test is performed on both specimens to calculate 

the geometry factor. Figure 3.9 (c) shows the geometry of the welded notched tensile 

specimens from DP600. The notch is accurately positioned on WM to force the 

fracture in WM to obtain the total stress-strain curve of WM.  Since the yield strength 

of DP600 in BM is extremely lower than the yield strength of DP600 in WM, it is 

therefore possible that the fracture occurs outside of the notch and in BM. 

Consequently, additional notched tensile specimens, as shown in Figure 3.9 (d) and 

(e), are prepared with a larger notch radius of BM and WM, respectively, to ensure 

that the fracture takes place in the WM. 

The final dimensions of the tensile specimens of DP600, Figure 3.9 from (a) to (e), 

were cut from the plates using a waterjet cutting machine. Then, the edges of the cut 
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specimens were finished by milling to produce the specimens as accurately as 

possible. Finally, the specimens were ground on the top and bottom surfaces to 

remove the heat-affected zones and the deformations on the specimen surface 

caused by the electrode force. Therefore, the final thickness of the DP600 tensile 

specimens was reduced from 1 mm to 0.4 mm. Next, the specimens were 

sandblasted at the clamping section to increases the surface roughness locally and 

consequently prevents slippage during clamping. 

 

Figure 3.9 Geometry of tensile specimens prepared for tensile test; (a) DP600 with thickness of 0.4 

mm, smooth sample made of BM; (b) DP600 with thickness of 0.4 mm, distance between notches of 

3 mm and made of BM; (c) DP600 with thickness of 0.4 mm, distance between notches of 3 mm and 

WM in notched area; (d) DP600 with thickness of 0.4 mm, distance between notches of 2 mm and 

made of BM; (e) DP600 with thickness of 0.4 mm, distance between notches of 2 mm and WM in 

notched area 

In the same way, Figure 3.10 shows the geometry of the tensile specimens prepared 

to determine the mechanical properties of the WM resulting from RSW of DP1000. 

Figure 3.10 (a) and (b) show the geometry of the smooth and notched tensile 

specimens from BM, accordingly. Figure 3.10 (c) presents the geometry of the welded 

notched tensile specimens from DP1000. As the yield strength of DP1000 in BM is 

higher than the yield strength of DP600 in BM, it is not necessary to prepare more 

tensile specimens with larger notch radius. The final dimensions of the tensile 



58 
 

specimens of DP1000, Figure 3.10 from (a) to (c), were first cut from the plates using 

a waterjet cutting machine and then machined by milling. Finally, the specimens were 

ground on the top and bottom surfaces, and the final thickness of the DP1000 tensile 

specimens was reduced from 2 mm to 0.9 mm. The specimens were then 

sandblasted at the clamping area to prevent slippage during tensile test. 

 

 

Figure 3.10 Geometry of tensile specimens prepared for tensile test; (a) DP1000 with thickness of 0.9 

mm, smooth sample made of BM; (b) DP1000 with thickness of 0.9 mm, notched sample made of BM; 

(c) DP1000 with thickness of 0.9 mm, notched sample with WM in notched area 

The strain controlled tensile test was performed on the smooth tensile specimens 

made of DP600, DP800, DP1000 and S690QL steel sheets with a strain rate of 10-3 

s-1. The strain was measured globally at a extensometer length of 50 mm. Next, the 

tensile test was performed on notched tensile specimens with the strain rate of  

4 × 10-5 s-1. The strain was measured locally and optically on place where the fracture 

occurs with a virtual extensometer length of 1 mm using a commercial 3D-digital 

image correlation (DIC) system GOM Aramis 4m as shown in Figure 3.11.  Aramis, 

as a contactless strain measurement system, operates at scales from one micrometer 

to meters, depending on whether two states of a specimen are being compared. The 

position of pixel subsets based on contrast in the original images can be compared 

with images of the deformed samples to calculate the strain profile. By coloring the 

samples with white paint and then spraying a black paint on the surface of the sample, 

the stochastic patterns can be generated. Furthermore, the strain rate must be 

adjusted according to the length of the reduced zone of the notched tensile specimen. 

Since the length of the reduced region is smaller than that of the smooth tensile 
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specimens for the notched specimens, the quasi-static tensile test must be performed 

with a much smaller strain rate on notched specimens compared to that required for 

smooth samples to guarantee a quasi-static tensile test. 

 

Figure 3.11 performing of quasi-static tensile test and measuring of strain optically with a commercial 

3D Digital Image Correlation (DIC) system of GOM Aramis 4m 

 

3.1.4.2. Numerical Approach 

 

The smooth and notched tensile specimens of DP600 and DP1000 were numerically 

simulated based on the geometry of Figures 3.9 and 3.10. Figure 3.12 (a) and (b) 

presents the simulation models of the notched tensile specimens of DP1000 and 

DP600, respectively. The specimens were fixed on the bottom side, and a load was 

continuously applied to the sample's upper side. A two-dimensional simulation was 

carried out with four-node plane elements. A mesh size of 0.05 mm in the notch and 

1 mm in the remaining tensile specimen was used. To calculate the local strain in the 

welded area, the displacement of four points in the notch was investigated, as 

schematically shown in Figure 3.12 (a). Calculating the distance between point 1 and 

point 2 results in the specimen's changing cross-section during the tensile test which 

is needed to determine the true stress. With the displacement of points 3 and 4, the 
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specimen's strain can be investigated locally in the notched area. This corresponds 

to the operating principle of virtual extensometers for evaluating tensile tests with the 

DIC system and determining of the true strain. As a result, the true stress-strain 

curves can be determined with the actual cross-sections, true strains, and applied 

loads. 

 

 

Figure 3.12 Numerical Simulation model of the notched specimens; (a) notched geometry of DP1000; 

(b) notched geometry of DP600 with larger notch radius 

The material parameters of a nonlinear isotropic strain hardening material model as 

shown in Figure 2.2 and Equation (2.1) for the smooth sample of DP1000 BM can be 

determined by inverse simulation. This is done by simulating the tensile tests with 

varying material parameters randomly until a minimum mean squared error between 

the simulation and experimental results has been reached. With this approach, the 

material parameters for the DP1000 BM are obtained. Subsequently, the notched 

specimen with the notch geometry shown in Figure 3.12 (a) was simulated with the 

same material model parameters of DP1000 BM to only investigate the influence of 

this notch geometry on the stress-strain behavior of BM. The geometry factor for 

DP1000 was calculated by comparing both of the aforementioned stress-strain 

curves. Similarly, the material parameters for welded (RSW) and notched DP1000 

can be determined by using the experimental data from the tensile tests and inverse 

simulation, as described above. Those material model parameters for welded and 

notched specimens of DP1000 are then multiplied by the geometric factors to 
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calculate the material parameters for smooth and welded specimens from DP1000. 

Finally, the notched and welded specimen is simulated with the calculated model 

parameters for smooth and welded specimens and compared with the tensile tests' 

results to validate the simulation result.  

The same procedure is used to calculate the material parameters of DP600. 

However, a modified notch geometry with larger notch radius, as shown in Figure 3.9 

(d) and (e), must be used since the tensile tests on the notched specimens with small 

notch geometry have shown that fracture occurs outside the notched and welded 

(RSW) region of the DP600 specimen. Consequently, new geometry factors for 

DP600 must be determined using the same approach as explained above. In the 

same way, the material model parameters for welded and notched DP600 are 

calculated by inverse simulation and multiplied by the geometry factor of the modified 

notch geometry to determine the material model parameters for smooth and welded 

DP600. Then, the tensile test for the notched specimen is simulated with the material 

model parameters of the smooth and welded specimens and compared with the 

experimental results to validate the simulation model of DP600. 

 

3.2. Results and Discussion 

 

In this section, the results of each step in the experimental and numerical analysis 

performed to determine the mechanical properties of BM and WM of AHSSs are 

presented and discussed in details. First of all, the macrostructure and microstructure 

of the welded AHSSs from RSW and LBW are shown and described. Then, the 

results of the tensile test on the smooth and notched tensile specimens from both BM 

and WM are presented and compared with each other to determine the material data 

of BM and WM. Finally, the presented methodology is validated with the numerical 

simulation result and checked against the available literature data. 

 

3.2.1. Metallographic Analysis 

 

The aim of performing the metallographic analysis is to study the microstructure of 

the reproduced WM resulting from the varied and optimal welding parameters. It is 

necessary to verify that both WMs obtained from welding of the plates with industrial 

and optimal welding parameters have the similar microstructure. The first step is to 
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compare the images taken from the microstructure of the WMs using the light 

microscope with similar scale. Then, the hardness measurement must be performed 

on different scales to analyze in details the different zones of the welded joints. 

Figures 3.13 and 3.14 compare the microstructure of DP600 and DP1000 in different 

zones with each other. Figures 3.13 and 3.14 from (a) to (d) show the microstructure 

of BM, WM resulting from RSW on two plates with the industrial welding parameters 

as shown in Table 3.2, WM resulting from RSW on one plate with optimal welding 

parameters as shown in Table 3.4, and WM made from LBW with the welding 

parameters as shown in Table 3.5. It can be seen that a mixture of ferrite and 

martensite microstructure in BM of both DP600 and DP1000 is completely 

transformed into columnar martensite grains after welding with different techniques. 

 

Figure 3.13 Microstructure of DP600: (a) base metal; (b) WM of RSW of two plates; (c) reproduced 

WM of RSW of one plate; (d) WM of LBW. 
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Figure 3.14 Microstructure of DP1000: (a) base metal; (b) WM of RSW of two plates; (c) reproduced 

WM of RSW of one plate; (d) WM of LBW. 

Figure 3.15 compares the microstructure of BM of high strength fine grained structural 

steel S690QL with WM from LBW with parameters from Table 3.5. It can be seen that 

the two phases of bainitic and martensitic microstructure of BM are fully converted to 

martensitic microstructure.    

 

Figure 3.15 Microstructure of S690QL: (a) base metal; (b) WM of LBW 

 

Investigations have shown that the martensitic microstructure is formed in the WM of 

DP-steels, when the cooling time of t8/5 (i.e., the time it takes for the WM or HAZ to 

cool from 800 °C to 500 °C) is less than three seconds. However, the weld metal's 

cooling rate in RSW method is expected to be around 400 K/s [117]. After 
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conventional RSW and under experiencing such a high cooling rate, the ferrite and 

martensite microstructure of the DP-steels used in the present work is wholly 

transformed into a martensite microstructure with the hardness value exceeding 350 

HV1. 

As a result, the heating and cooling curves of HAZ during the RSW and LBW on 

DP1000 specimens with welding parameters of Tables 3.4 and 3.5, respectively, must 

be recorded and compared with each other to make a statement about the 

microstructure of welded joints. For this purpose, the temperature curve for each 

welding process was measured using four thermocouples (type K) which were 

installed on the surface of each specimen close enough to WM but in HAZ. The 

heating and cooling curves for each thermocouple were determined and are 

summarized in Figure 3.16 (LBW) and Figure 3.17 (RSW). During welding, two 

thermocouples on the surface of each specimen were completely burned and 

therefore could not provide any information. Consequently, only the heating and 

cooling curves of two thermocouples are shown in each diagram. 

Both Figures 3.16 and 3.17 show that the cooling time from about 800 °C to 500 °C 

is at most less than 0.5 s, depending on the welding technique and the position of the 

thermocouples. For example, thermocouples 1 and 2 are located 3 and 4 mm, 

respectively, away from the centerline of the WM resulting from the RSW. According 

to Time Temperature Transformation (TTT) diagrams of DP-steels  [99], such a high 

cooling rate can lead to a similar microstructure of martensite after welding and 

indicates a hardness value of more than 350 HV1. This can be confirmed later by 

performing of hardness measurements on WM of DP-steels. 
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Figure 3.16 Heating and cooling curves in the HAZ of LBW of DP1000, four thermocouples 

(thermoelements) were installed but the information were received from two of them 

 

 

Figure 3.17 Heating and cooling curves in the HAZ of RSW on one plate of DP1000, four 

thermocouples (thermoelements) were installed but the information were received from two of them 

The macrostructure of the welded joints of RSW and LBW of DP600 and DP1000 are 

shown in Figures 3.18 and 3.19 to gain a better overview of the size of the WM and 

HAZ. The metallographic investigation from steel plates of DP600 and DP1000 as 

seen in Figures 3.18 and 3.19, respectively, show that the weld nugget diameter for 
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the plates with industrial welding parameters (Table 3.1) is larger than the minimum 

nugget diameter of 4√𝑡 [115]. In this equation, "t" is the plate thickness and is equal 

to 2 mm and 1 mm for DP1000 and DP600, respectively. Furthermore, the weld 

nugget diameter became around 10% and 22% bigger after welding the DP600 and 

DP1000 steel sheets, respectively, with the new welding parameters (Table 3.5) 

compared with the industrial welding parameters (Table 3.1) . Although the applied 

electrode force is approximately similar in both optimum and industrial welding 

parameters, the surface deformation after the welding of one plate is reduced 

compared to the surface deformation resulted from welding of two plates due to the 

changing of electrode cap from F16 to A16.  

Therefore, the new welding parameter sets lead to the bigger weld nugget size, 

smaller surface deformation, and similar microstructure. This makes it possible to 

produce the notched welded tensile specimens from the steel plates that are welded 

with the optimal welding parameters. However, it is necessary to perform a hardness 

measurement to obtain more information about the size and microstructure of the 

different zones in the welded joints. 

 

Figure 3.18 Macrostructure of welded joint of DP600: (a) RSW of two plates; (b) reproduced WM of 

RSW of one plate; (c) LBW. 
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Figure 3.19 Macrostructure of welded joint of DP1000: (a) RSW of two plates; (b) reproduced WM of 

RSW of one plate; (c) LBW 

Vickers hardness test in scale of HV0.1 for both welding methods and DP-steels 

completed according to  [119]. Figures 3.20 and 3.21 show the mapping of hardness 

value (HV0.1) for DP600 and DP1000. Each indentation was automatically performed 

on the samples with 0.1 mm distance from the last one in each direction (X and Y) in 

order to measure the Vickers hardness value (HV0.1) based on what has been 

described in reference [119]. The total number of indentations for DP600 in RSW of 

two plates and one plate is 4296 and 2436, respectively. However, 11050, 4944 and 

3520 indentations were required to cover the entire welded joints of DP1000 in RSW 

of one plate and two plates as well as the welded joint of LBW, respectively. Then, 

the value of each indentation is assigned to a color to get an overall view of how 

hardness is disturbed in the welded structure. 
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Figure 3.20 Hardness (HV0.1) mapping of DP600: (a) RSW of two plates (4296 indentations); (b) 

RSW of one plate (2436 indentations). 

 

Figure 3.21 Hardness (HV0.1) mapping of DP1000: (a) RSW of two plates (11050 indentations); 

(b) RSW of one plate (4944 indentations); (c) LBW (3520 indentations). 

The images resulted from the microstructure of RSW on one and two plates of DP600 

and DP1000 show that both consist of the columnar grain of the martensitic 

microstructure. As expected, the Vickers hardness value of the WM of DP600 and 

DP1000 steels is above 400 HV1 due to the martensitic microstructure. However, as 

seen in Figure 3.20 (a) and (b) as well as in Figure 3.21 (b), the Vickers hardness 

measurement at the scale of HV0.1 shows a soft region between the WM and the 

HAZ. This soft area, shown as a green elliptical ring, only becomes visible by 

performing the indentation at scale of HV0.1. The softening at the WM boundary 

occurs due to carbon separation due to different cooling rate of WM and the HAZ. It 

results in the transformation of the low-carbon austenite into bainite-ferrite or ferrite-
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martensite phase. As seen in Figure 3.22, the carbon content in the WM and HAZ is 

almost 0.2%. However, the carbon content is drastically reduced to almost 0.1% in a 

tiny area of less than 100 µm between the WM and the HAZ and leads in a softer 

area in the fusion zone with a ferrite microstructure, while the surrounding part has a 

martensite microstructure with a higher hardness value [120]. 

 

Figure 3.22 Comparison the amount of the carbon content in WM, the border of the WM and the HAZ 

and finally in the HAZ [120]  

On the other hand, this soft area on the upper and lower side of the specimens has 

no significant influence on determining the weld metal's mechanical properties 

because it was removed by grinding during the tensile specimens' preparation. 

Moreover, the fracture occurs precisely in the notched area where the distance 

between the notches is the minimum. This area is far from the softer region and 

therefore cannot influence the measured stress-strain diagram by tensile test. As a 

result, the introduced parameters of the RSW can be used to reproduce the 

microstructure of the weld seam in a larger area, with lower surface deformation, 

similar microstructure, and without using the thermomechanical simulator.  

Figure 3.23 compares the result of Vickers hardness measurement on HV1 scale 

performed on DP600 and DP1000 steels by RSW and LBW and S690QL by LBW. 

The LBW is performed with the industrial welding parameters as described in Table 

3.5, and the RSW in one and two plates with the welding parameters of Table 3.2 and 

3.4, respectively. It can be observed that the hardness value of WM from the different 

welding techniques is more than 350 HV1, which again shows the existence of the 

whole martensitic microstructure in this area. 
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Figure 3.23 Comparison between Vickers hardness value (HV1) of DP600, DP1000 and S690QL 

welded with RSW and LBW. LBW on all steel plates is carried out with the welding parameters from 

Table 3.5, and RSW on one plate and two plates is conducted with the welding parameters from Table 

3.2 and 3.4, respectively.  

As seen in Figure 3.18(b), 3.19(b) and 3.23, the size of the WM reproduced by LBW 

with conventional welding parameters as mentioned in Table 3.5 is smaller than 2 

mm for all steel grades used in this work such as DP600, DP1000 and S690QL. With 

the parameters mentioned in Table 3.5, the weld width becomes extremely small to 

produce the notched tensile specimens. In the current project, an attempt was made 

to reproduce the weld microstructure of the LBW process in a larger volume by 

varying the welding parameters such as power, defocusing and the welding velocity 

to induce more energy into the plates by increasing the welding power and decreasing 

the defocusing to increase the weld size in an interval as mentioned in Table 3.6 as 

mentioned in Section 3.1.3. Figure 3.24 compares the Vickers hardness value of the 

welded joints of DP600 obtained by LBW with the conventional welding parameters 

and the varied parameters in the interval of Table 3.6. For the conventional welding 

parameters, the welding velocity, power (p) and defocus are 1.8 mm/min, 1.6 kW and 

0 mm, respectively. Then, the plates were welded at a constant velocity of 1.8 mm/min 

and the power was changed between 3.6 and 4.8 kW and the defocus between -40 

and -100 mm. It can be seen that the weld size becomes much larger by changing 

the welding parameters, however, a similar microstructure cannot be reproduced. 

When the welding parameters are varied, the resulting microstructure's hardness 

value is between 250 and 300 HV1. According to the isothermal Time Temperature 
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Transformation (TTT) diagram of the DP-steels, it can consequently be justified that 

this hardness value cannot be for the martensitic microstructure [102].  

 

Figure 3.24 Comparison between Vickers hardness value (HV1) of DP600 welded with LBW with 

different welding parameters. LBW on sample of DP600 is carried out with constant welding velocity 

of 1.8 mm/min and different laser beam power (p) and defocus (f)  

Similarly, Figure 3.25 compares the Vickers hardness value of DP1000 WMs from 

LBW with the conventional and varied welding parameters in the interval of Table 3.6. 

For the conventional welding parameters, the welding velocity, power (p) and defocus 

are 1.8 mm/min, 2.4 kW and 0 mm, respectively. Then, the plates were welded with 

similar velocity and the power was changed between 8.4  and 13.7 kW and the 

defocus between -40 and -100 mm. Exactly the same as DP600, the size of WM 

becomes much larger by changing the welding parameters, nevertheless, the new 

welding parameters cannot generate the similar microstructure. The hardness value 

of the resulting microstructure is between 250 and 400 HV1, which does not belong 

to the martensitic microstructure. Therefore, the attempts to reproduce the WM of 

LBW on a larger volume by varying the welding parameters failed. 
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Figure 3.25 Comparison between Vickers hardness value (HV1) of DP1000 welded with LBW with 

different welding parameters. LBW on sample of DP1000 is carried out with constant welding velocity 

of 1.8 mm/min and different laser beam power (p) and defocus (f)  

In summary, it has been shown that it is possible to regenerate the microstructure of 

the WM from RSW of two steel sheets in only one sheet and in a larger area by 

changing the welding parameters. However, it is not possible to reproduce the WM 

of LBW in a bigger area with the same methodology. Therefore, the mechanical 

properties of the WM of RSW can be determined from notched tensile specimens, as 

described in the next section. Nevertheless, the mechanical properties of WM of LBW 

can be obtained by performing the instrumented indentation test together with inverse 

analysis by the finite element method as explained in chapter 4.  

 

3.2.2. Determining the Material Parameters 

 

The objective of this section is to demonstrate initially the experimental results of the 

tensile tests performed on the smooth and notched tensile specimens from BM or 

WM of the utilized AHSSs. In the second part of this section, the accuracy of the 

material model used to describe the mechanical properties of the AHSSs in both BM 

and WM is evaluated. In the next step, the material parameters of WM from RSW of 

DP600 and DP1000 are calculated based on the geometry factor obtained by 
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comparing the smooth and notched tensile specimens from BM. Then, the introduced 

methodology is verified by comparing the experimental result of the notched-welded 

tensile specimens with the stress-strain diagram obtained from the simulated notched 

tensile specimens with the calculated material parameters of WM. 

 

3.2.2.1. Experimental Analysis 

 

The quasi-static tensile tests were performed on the smooth and notched tensile 

specimens of BM and WM. The strain was measured locally using the DIC systems 

as described in Section "3.1.4.1. Experimental Analysis". Figure 3.26 shows the local 

strain distributions on the notched and welded tensile specimens of DP600 and 

DP1000. As shown in Figure 3.26 (a), the strain distribution on the notched and 

welded tensile specimens with the geometry shown in Figure 3.9 (e) is maximum in 

the notched region where the WM is located. Therefore, such geometry can lead to 

the determination of the mechanical properties of DP600 WM from RSW. Figure 3.26 

(b) shows the local strain distribution on the notched-welded tensile specimens of 

DP1000 with the geometry as depicted in Figure 3.10 (c). It can be seen that the 

maximum strain appears as well in the notched region where the WM is available. 

However, performing the tensile test on the notched and welded tensile specimens 

of DP600 with small notch radius with the geometry of Figure 3.9 (c) shows that the 

maximum value of local strain occurs outside the notched region, as shown in Figure 

3.26 (c). This is because the yield strength of DP600 WM is extremely higher than 

that of DP600 BM. Therefore, a notch with a radius of 1.5 mm is not large enough to 

observe the fracture in WM and consequently the stress-strain diagram of WM DP600 

cannot be obtained. This is the reason why two different types of notched tensile 

specimens of DP600 are produced. However, since the aim of the current research 

is to determine the mechanical properties of WM DP600 from RSW, further analysis 

is performed only on the notched tensile specimens of DP600 with a large notch size 

with the geometry of Figure 3.9 (d) and Figure 3.9 (e). 
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Figure 3.26 Strain distribution of the notched and welded (RSW) specimens before fracture; (a) DP600 

with large notch radius with the geometry of Figure 3.9 (e); (b) DP1000 with notch radius as shown in 

Figure 3.10 (c); (c) DP600 with small notch radius with the geometry of Figure 3.9 (c) 

Table 3.7 shows the mechanical properties of the AHSS in BM and WM obtained by 

performing the tensile test on the smooth or notched tensile specimens. As shown in 

Figure 3.8 (a) and Figure 3.9 (a), the smooth tensile specimens of DP600 were 

prepared with two different geometries. However, the stress-strain curves obtained 

by performing the tensile test on both specimens are similar. The reason for making 

the smooth tensile specimens with the geometry of Figure 3.9 (a) is to compare two 

identical specimens, one containing a notch (Figure 3.9 (b)) and the other one smooth 

(Figure 3.9 (a)), in order to calculate the geometry factor. The same procedure was 

repeated for DP1000 with the specimen geometry as presented in Figure 3.8 (c) and 

Figure 3.10 (a).  

Tensile test was performed on three specimens of each used AHSS or in other words 

each sample type such as smooth or notched specimens and then the average 

results were calculated and presented in Table 3.7. Analyzing the result of the 

notched and notched-welded specimens of DP600 and DP1000 show that RSW 

leads to a reduced total elongation at the maximum force. It can be concluded that 

the microstructural changes reduce ductility and increase the strength of the material. 

The yield and tensile strength are enhanced by 140% and 87% in the case of DP600 

and by 44% and by 28% for DP1000 after RSW. The higher magnitude in the growth 

of yield and tensile strength after welding of DP600 compared to DP1000 may result 

from the fact that DP600 BM has lower strength than DP1000 BM. However, the WM 

of both steels has a similar martensitic microstructure after RSW. 
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Table 3.7 Mechanical properties of DP600, DP800, DP1000 and S690QL (mean values) based on the 

true stress-strain diagram 

Material 
Yield strength 

in MPa 

Tensile strength 

in MPa 

Strain hardening 

exponent 

Total elongation at 

maximum force in 

% 

DP600 

Smooth sample 360 ± 1.73 633 ± 2 0.216 ± 0.002 18.7 ± 1.1 

Notched sample 430 ± 10.07 698 ± 2 0.124 ± 0.009 15.8 ± 1.37 

Notched-welded 

sample (RSW) 
1036 ± 3.06 1304 ± 10.82 0.049 ± 0.008 4.18 ± 0.26 

DP800 Smooth sample 531 ± 2 877 ± 6 0.165 ± 0.002 14.27 ± 1.3 

S690QL Smooth sample 690 ± 2.69 883 ± 2.1 0.162 ± 0.003 12.2 ± 0.98 

DP1000 

Smooth sample 630 ± 2.08 1025 ± 1.53 0.096 ± 0.002 8.3 ± 0.036 

Notched sample 800 ± 36.3 1145 ± 8.08 0.104 ± 0.003 8.7 ± 0.376 

Notched-welded 

sample (RSW) 
1150 ± 20.5 1460 ± 13.44 0.057 ± 0.008 4.3 ± 0.25 

 

The stress-strain diagrams from the tensile tests performed on different tensile 

specimens of DP600 are shown in Figure 3.27. The tensile test was performed three 

times on each specimen of DP600 and the mean value and standard deviation are 

shown in Figure 3.27 and Table 3.7, respectively. The geometry of the smooth, 

notched and notch-welded tensile specimens of DP600 with thickness of 0.4 mm are 

shown in Figure 3.9 (a), Figure 3.9 (d) and Figure 3.9 (e), respectively. As explained 

in Section 3.1.4.1, called experimental analysis, the center of a virtual extensometer 

with a length of 1 mm is located in WM exactly where the crack starts and the fracture 

occurs to measure the true strain. Then, the applied force on each side of the tensile 

specimens was divided by the actual cross-section of the notched area obtained from 

the optical measurement with the Aramis system to calculate the true stress. 

It can be observed that the stress-strain diagrams of the smooth and notched tensile 

specimens of DP600 from BM are parallel to each other, though the magnitude of the 

true stress obtained from the notched tensile specimens is higher than that of the 

smooth specimens, due to the stress concentration factor caused by the notched 

geometry. Nevertheless, it is possible to transfer and map the stress-strain diagrams 

of notched and smooth specimens if the value of the geometry factor is available, 

which will be calculated in the next section. The stress-strain diagram of the notched 

specimens from WM of DP600 shows an extremely higher value of true stress 

compared to the specimens from BM. This is expected due to the martensitic 

microstructure and the consequently higher strength of WM, as well as the existence 

of the notch in the tensile specimens.  
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Figure 3.27 True stress–strain curves of smooth, notched, and notched-welded (RSW) specimens of 

DP600 (mean value), the geometry of the samples are shown in Figure 3.9 (a), Figure 3.9 (d) and 

Figure 3.9 (e) respectively   

On a similar basis, Figure 3.28 shows the stress-strain diagrams from the tensile tests 

performed on different tensile specimens of DP1000. Exactly the same as DP600, 

the tensile test was performed three times on each specimen of DP1000. The mean 

and standard deviation are shown in Figure 3.28 and Table 3.7 accordingly. Figure 

3.10 (a), Figure 3.10 (b) and Figure 3.10 (c) show the geometry of the smooth, 

notched and notch-welded tensile specimens of DP1000 with thickness of 1 mm. The 

methodology for measuring the true stress-strain diagram of the DP1000 specimens 

is similar for the DP600 specimens.  

Predictably and similar to DP600, the stress-strain curve measured on the notched-

welded specimens of DP1000 is in a much higher level than the stress-strain diagram 

of specimens from BM DP1000 due to the martensitic microstructure in the notched 

region. Although the magnitude of the true stress obtained from the notched tensile 

specimens of BM DP1000 is higher than the true stress of the smooth specimen as 

a result of the notch, both graphs are parallel to each other. 
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Figure 3.28 True stress–strain curves of smooth, notched, and notched-welded (RSW) specimens of 

DP1000 (mean value), the geometry of the samples are shown in Figure 3.10 

The mechanical properties of WM based on the smooth tensile specimens, which is 

the focus of this section, can be calculated from multiplying the geometry factor by 

the stress-strain diagram of the notch-welded tensile specimens which will be 

explained in more details in the next section. 

 

3.2.2.2. Numerical Analysis 

 

The focus of the present work is to determine the material parameters of AHSSs in 

both BM and WM using the trained ANN together with the IIT data. Since welding 

does not significantly change the magnitude of the elastic modulus, the behavior of 

AHSSs in both WM and BM is similar in the elastic region. However, the parameters 

describing the plastic behavior of AHSSs, such as yield strength, tensile strength, and 

ductility, are remarkably varied after welding. Therefore, the trained ANN must 

concentrate on calculating the stress-strain diagram in the plastic region, which is 

above the yield point. On the other hand, IIT cannot predict the total strain of AHSSs 

and fail to calculate the total strain at fracture. Consequently, a material model 

capable of calculating the stress-strain diagram of AHSSs in the plastic region up to 

the maximum value of the experienced engineering stress as accurately as possible 

must be used.  
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Voce nonlinear isotropic strain hardening material model as described in Equation 

(2.1) and Figure 2.2 with four parameters of yield strength (𝑅𝑝0.2 in MPa), slop of 

tangent line at maximum value of overstress (𝑅0 in MPa), the differences between 

the yield strength and the tangent line at maximum value of overstress at the point 

where the plastic strain is zero (𝑅∞  in MPa) and the saturation rate (b) can describe 

the plastic behavior of the AHSSs in both BM and WM up to maximum value of 

overstress as exactly as possible. The above material parameters were calculated 

from the true stress-strain diagram of the AHSSs and presented in Table 3.8. To 

determine the material parameters, the tensile specimens were numerically simulated 

and the material parameters were repeatedly changed to find the best matches, which 

are obtained when there is the least mean squared error between the stress-strain 

curves from the tensile test and the numerical simulation. 

The parameters of the Voce material model are calibrated based on the true stress-

strain diagram of AHSS in the strain hardening range, which goes from yield strength 

to ultimate strength, based on the type of microstructure and steels used. The 

calibration of the material model was performed in an interval starting with DP600 

BM, which has the lowest yield strength equal to 360 MPa, and ending with the 

measured yield strength at 1150 MPa, which belongs to the notched-welded 

specimens of DP1000. It is not required to make the calibration of the material model 

parameters larger and expand them to other ranges, since the parameters are later 

varied only in the interval of the least and most strength steels used, and must 

calculate the true stress-strain diagram in the plastic range up to the ultimate strength. 

Table 3.8 Material model parameters of DP600, DP800, DP1000 and S690QL determined based on 

Voce non-linear isotropic hardening model from the true stress-strain diagram 

Material 
Rp0.2 in  

MPa 

R0 in  

MPa 

R∞ in  

MPa 

b 

DP600 

Smooth sample 360 710 268 22 

Notched sample 430 1300 207 25 

Notched-Welded sample (RSW) 1036 120 325 125 

DP800 Smooth sample 531 440 422 27 

S690QL Smooth sample 690 393 184 17 

DP1000 

Smooth sample 630 1100 390 72 

Notched sample 800 1250 340 75 

Notched-Welded sample (RSW) 1150 200 380 100 
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The computed true stress as the output of the material model in a certain range of 

plastic strain is compared with the measured true stress at the corresponding plastic 

strain to investigate the accuracy of the used material model and its presented 

parameters to calculate the stress-strain curves of AHSSs. For example, the 

difference between the magnitude of the true stress at 1% plastic strain between the 

result of the tensile test on the smooth specimens and the material model is 6 and 36 

MPa for DP600 and DP1000, respectively, as seen in Figure 3.29. At 4% plastic 

strain, the accuracy of the material model in calculating the true stress increases and 

the stated differences decrease to about 5 and 1 MPa for DP600 and DP1000, 

accordingly. At plastic strain of ultimate strength, which is more than 18% and 8% for 

DP600 and DP1000, respectively, the differences between the measured and 

calculated true stress reaches to 2 and 6 MPa, correspondingly. Similarly, the 

material model can predict the true stress at 1% plastic strain of DP800 BM with an 

accuracy of 6 MPa. The deviation between the model output and the measured value 

of the tensile test at DP800 BM at 4% and 14% plastic strain is only 1 MPa. 

The used material model can additionally estimate the true stress-strain curve of the 

notched tensile specimens with an extremely high accuracy. The differences between 

the true stress at plastic strain of 3% and 6% between the output of material model 

and the measured value from the notched tensile specimens of DP600 BM is 6 and 

8 MPa, respectively. The mentioned differences decrease by notched tensile 

specimens of DP1000 BM at plastic strain of 2% and 6% to around 3 MPa each. 

Besides, the applied material model works well to calculate the true stress-strain of 

notched-welded tensile specimens. As an example, the mismatch between the true 

stress at 1% and 4% plastic strain of notched-welded tensile samples of DP1000 is 

about 7 and 2 MPa, correspondingly. As a result, it can be concluded that the used 

material model is able to follow the true stress-strain curves of AHSSs in both BM 

and WM with an extremely high accuracy.  
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Figure 3.29 Comparison between the true stress-strain diagram obtained from the notched and smooth 

tensile specimens from BM of DP600 and DP1000 with the stress-strain diagram calculated according 

to the determined material model parameters of DP600 and DP1000 steels 

Following computation of the material model parameters for the different types of 

specimens from BM and WM of AHSSs, there is a need to compute the material 

model parameters of AHSSs in WM based on the smooth-welded tensile specimens. 

Since such a specimen type was not provided, it is required to calculate the material 

parameters of WM by multiplying the material parameters of notched-welded tensile 

specimens by the geometry factor. The geometry factor must be calculated by 

comparing the notched and smooth tensile specimens of BM made of similar material. 

Figures 3.27 and 3.28 compare the experimental stress-strain responses of notched 

and smooth tensile specimens of DP600 and DP1000, respectively, and show that 

they are parallel to each other. However, further investigation is needed to analyze 

the effect of thickness and size of notch radius on the stress-strain diagram of a 

material. Then, a tensile specimen based on the geometry of Figure 3.10 (b) was 

numerically simulated with the material parameters of the smooth specimen of 

DP1000, as shown in Table 3.8. The simulation was repeated several times with 

different plate thicknesses (0.4 and 0.9 mm) and different geometry ratios (0.4, 1, 2 
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and 4) which is the division of the distance between the notches (D) by the notch 

radius (R).  

As seen in Figure 3.30 and as expected, the stress-strain curve moves upwards with 

increasing geometry ratio. The stress-strain curves of smooth specimens with a 

thickness of 0.4 and 0.9 mm are similar and located in the lowest position. In contrast, 

the stress-strain diagram of DP1000 with a geometry ratio of 4 is in the uppermost 

interval. However, changing the geometry ratio with similar plate thickness shifts the 

diagrams up or down parallel to each other. Depending on the geometry ratio, the 

specimens with thicker plate may have a higher or lower amount of overstress. For 

example, stress-strain path is higher for thicker plate specimens than for thinner 

specimens when the geometry ratio is equal to or less than 1. On the other hand, it 

can be observed that with increasing geometry ratio, the deviation between the 

stress-strain curves of a specimen with different thickness becomes larger at higher 

values of plastic strain. Furthermore, the stress-strain curve of notched specimens 

with an extremely high geometry ratio, such as 10, is no longer parallel to smooth 

tensile specimen. However, the geometry ratio of the specimens used in this work is 

equal to or less than 2, and consequently, the resulting stress-strain curves of the 

notched specimens are parallel to the smooth specimens, as observed from the 

experimental and numerical results. Therefore, it is possible to calculate the 

mechanical properties of smooth-welded tensile specimens from the notched-welded 

tensile specimens by having the value of geometry factor. 
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Figure 3.30 Comparison between the true stress-strain curves of smooth and notched tensile 

specimens based on the different value of geometry ratio (D/R) and plate thickness for the DP1000 

BM; geometry ratio is the division of the distance between the notches (D) by the notch radius (R) 

The geometry factor of DP600 and DP1000 specimens can be calculated by 

comparing the material model parameters of smooth and notched tensile specimens 

made of base metal with the geometry described in Figure 3.9 (a and d) and Figure 

3.10 (a and b), respectively, and with the parameters listed in Table 3.8. The notch 

radius of the DP600 specimens is larger than the notch radius of the DP1000 

specimens, therefore the geometry ratio of the DP600 specimens is smaller than that 

of the DP1000 specimens and is 0.51 compared to the value of 2 for the DP1000 

specimens. The resulting geometry factor calculated for each material model 

parameter of DP600 and DP1000 specimens are shown in Table 3.9 which quantifies 

the effect of notch geometry on the deviation of material parameters calculated from 

smooth standard tensile specimens.  

As seen in Table 3.9, the geometry factor of two material model parameters (Rp0.2 

and R∞) of DP1000 are higher than DP600 because the geometry ratio of DP1000 

specimens, which is 2, are higher than that of DP600 specimens, which is 0.51. It can 
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be justified so that increasing these two parameters which describe the yield strength 

and the ultimate maximum overstress, respectively, can move the stress-strain 

diagram upward. It is also explained that increasing the geometry ratio can shift the 

stress-strain diagram towards the top. Consequently, the geometry factor of two 

material model parameters is anticipated to grow by raising the geometry ratio. 

However, the geometry factor of two other material parameters which describe the 

slop of tangent line at maximum value of overstress  (R0) and the saturation rate (b) 

are higher for DP600 compared to DP1000 specimens. These two material 

parameters show how fast the ultimate stress can be reached and are related to the 

slope of the stress-strain curves. As seen in Figure 3.30, the thickness of the 

specimens can change the line slope of stress-strain diagram and as mentioned the 

thickness of DP600 and DP1000 are not similar. Therefore, the narrower magnitude 

of geometry ratio and plate thickness of DP600 specimens compared to DP1000 

cause the stress-strain diagram of DP600 notched specimens to move upward less 

than the stress-strain diagram of DP1000 notched specimens, though with a higher 

saturation rate. 

Table 3.9 Geometry factors between the smooth and notched specimens made from base metal of 

DP600 and DP1000 obtained from true stress-strain diagram 

Material 
Rp0.2 in  

MPa 

R0 in  

MPa 

R∞ in  

MPa 

b 

DP600 Geometric factors  1.19 1.83 0.77 1.14 

DP1000 Geometric factors  1.27 1.14 0.87 1.04 

 

In the last step, using the geometry factor from Table 3.9 and the material parameters 

of notched tensile specimens, the material model parameters of the weld metal based 

on a smooth-welded tensile specimen are calculated and presented in Table 3.10. As 

seen, the differences between the material parameters of WM in DP600 and DP1000 

are smaller than the differences between the material parameters of BM of both steels 

due to the complete martensitic microstructure in WM made by RSW. For instance, 

the yield strength of DP1000 BM is around 75% higher than the yield strength of 

DP600 BM, however, the yield strength of DP600 WM is only 4% lower than the yield 

strength of DP1000 WM. The other material parameters such as saturation rate and 

ultimate maximum overstress follows also the similar pattern. On the other hand, the 

comparison of the material parameters of WM with BM of a steel, such as DP600, 

shows that the yield strength increases dramatically around 140%, yet the material 
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parameters that identify the ductility of a steel show a different behavior.  For 

example, the differences between the ultimate stress and yield strength increases 

with the enhancement of the saturation parameter after RSW of DP600 steel, which 

shows that the WM reaches its maximum overstress magnitude extremely faster than 

BM describing the brittle behavior of WM. 

Table 3.10 Material model parameters of DP600 and DP1000 on weld metal resulted from RSW 

Material 
Rp0.2 in  

MPa 

R0 in  

MPa 

R∞ in  

MPa 

b 

DP600 Smooth-welded sample 867 65 420 110 

DP1000 Smooth-welded sample 906 175 437 96 

 

To verify the accuracy of used material model and obtained material parameters, 

tensile specimens of DP600 and DP1000 are simulated numerically by using the 

determined material model parameters and then the output of simulation model is 

compared with the measured true stress-strain curve from the tensile test. As 

described in Section "3.1.4.2. Numerical Approach", the true stress-strain diagram of 

AHSSs is measured using the DIC system, and the calculated true stress is computed 

by constantly considering the actual cross section, which is located exactly in the 

center of the notch region and is perpendicular to it. On the other hand, the true strain 

is calculated by computation of the displacements between two points located on 

each side of the fracture path in the notch area. The smooth and notched tensile 

specimens of BM were simulated with material parameters obtained from smooth 

tensile specimen as standard sample. Then, the notched-welded specimens were 

simulated with two types of material parameters; the region where the WM is located 

was simulated with material parameters of smooth-welded specimens, as mentioned 

in Table 3.10, and the other region belonging to the base metal is simulated with the 

material parameters of smooth tensile specimens of BM. With this methodology, it is 

possible to confirm the correctness of the calculated material parameters of the WM. 

Figure 3.31 compares the true stress-strain curves obtained from the quasi-static 

tensile test and the numerical simulation of tensile specimens with the determined 

material parameters of the DP600 specimens. As expected, the simulation model 

used the determined material model parameters can follow the experimental results 

with extremely high accuracy, especially for DP600 BM. However, a slight deviation 

between the curves obtained from numerical and experimental work on notched- 
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welded specimens of DP600 can be observed after 4% plastic strain. This difference 

can be justified by the fact that it was tried to find the best match for the material 

parameters only up to the ultimate strength and the plastic strain higher than almost 

4% exceeds this limit for notched-welded DP600 specimens. 

 

Figure 3.31 Comparison between the true stress–strain curves of smooth, notched, and notched-

welded (RSW) specimens of DP600 (mean value) with stress-strain curve obtained from the numerical 

simulation model of tensile specimens with material model parameters of Table 3.7 

As with DP600, a comparison between the output of the simulation model for DP1000 

tensile specimens and the measured output is shown in Figure 3.32. As expected 

and similar to DP600, the simulation model using the determined material model 

parameters of DP1000 agrees with the experimental results with extremely high 

accuracy. However, it can be observed that there is a wider deviation between the 

tensile test result and the numerical simulation in smooth tensile specimens when the 

plastic strain is less than 2%. It can be justified by the fact that the calibration of the 

material model on DP1000 BM at 1% plastic strain, as explained before, has a higher 

deviation (36 MPa) compared to other ranges of plastic strain for other steels, 

consequently a little difference can be noticed in this case. 
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Figure 3.32 Comparison between the true stress–strain curves of smooth, notched, and notched-

welded (RSW) specimens of DP1000 (mean value) with stress-strain curve obtained from the 

numerical simulation model of tensile specimens with material model parameters of Table 3.7 

In summary, it can be confirmed once again that the introduced material model and 

its identified parameters based on the concept of geometry factor can estimate the 

mechanical properties of AHSSs in both WM and BM with quite high accuracy. In the 

next step, the obtained results will be confirmed with the available data from other 

research works.  

 

3.2.3. Methodology Validation 

 

The calculated material model parameters of WM from RSW of DP600 and DP1000 

specimens with thickness of 0.4 and 0.9 mm, respectively,  are compared with the 

results of Dancette [7] in Figure 3.33 to validate the introduced method. Dancette 

investigated the mechanical properties of HAZ from RSW DP980 with sheet 

thicknesses of 1 and 3 mm. He used a Gleeble  3500  thermomechanical  simulator 

system to reproduce the microstructure of HAZ from RSW in larger area to prepare a 

smooth tensile specimen and then perform the quasi-static tensile test. The DP980 

plates with thickness of 1 and 3 mm are heated both firstly to 1200 ℃ and then the 

cooled with different rate. The cooling time DP980 with thickness of 1 mm (t8/5~1s) is 

less than DP980 with thickness of 3 mm (t8/5 ~2s). As can be seen in Figure 3.33 on 
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the stress-strain curves of DP980, different plate thicknesses and different cooling 

rates resulting in different microstructure cause a deviation of almost 200 MPa in 

ultimate tensile strength. Therefore, it is expected that DP600 and DP1000 plates 

initially welded at thicknesses of 1 and 2 mm and then ground to thicknesses of 0.4 

and 0.9 mm exhibit slight variation in the stress-strain curves when compared with 

each other. However, the stress-strain diagram of DP600 and DP1000 WM lies 

exactly between the DP980 HAZ sheets with martensitic microstructure and shows 

similar behavior to them.  

 

Figure 3.33 Comparison between the true stress-strain diagram of WM from RSW of DP600 and 

DP1000 plates calculated in the current research work with the result of stress-strain diagrams 

according to martensitic microstructure of HAZ DP980 of RSW from the literature [7] which uses a 

thermomechanical simulator to reproduce the martensitic HAZ microstructure in a larger region 

The comparison between the results obtained from the literature [7] and the 

methodology used in the current research work confirms again the robustness and 

trustworthiness of the obtained diagram for characterizing the mechanical properties 

of WM without using a thermomechanical simulator. As explained in details, the 

differences in the stress-strain curves are originated from the different cooling rate of 

RSW on DP600 and DP1000 plates compared to the simulated DP980 plates. On the 

other hand, different geometries and thicknesses of the tensile specimens may 

slightly change the stress-strain diagram. The result of this chapter will be used in the 

next sections to validate the numerical model of IIT and also the correctness and 

accuracy of the trained ANNs to determine the material model parameters of AHSSs 

in WM and BM.   
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4. Instrumented Indentation 

Technique 

 

The first step to train and validate the ANNs capable of determining the mechanical 

properties of AHSSs in both BM and WM is to calculate the material model 

parameters of the test steels, which were measured and calculated in the third 

chapter. However, the mechanical properties of WM from LBW or HAZ from RSW 

cannot be calculated using the methodology presented in the third chapter due to the 

small size of the target zone. Therefore, in this chapter, another methodology based 

on the inverse analysis of the instrumented indentation test (technique), as explained 

in the section " 2.4.2. Inverse Analysis by means of Finite Element Method", is applied 

to calculate the mechanical properties of the mentioned zones.   

Moreover, it is necessary to study the procedure of performing the IIT to understand 

the resulting force-indentation depth curves and additionally deformed surfaces 

caused by the indentation test. The experimental analysis of the IIT and the measured 

data can be used to validate the numerical simulation model of the IIT, which must 

later be applied to generate a large volume of datasets to train the ANNs. Moreover, 

the measured force-indentation depth curves and the deformed surfaces with 

corresponding material model parameters of the investigated steels are finally used 

to test the accuracy of the trained ANNs. 

The current chapter first begins with an explanation of the instrumented indentation 

testing machine as the core of the methodology used to achieve the two objectives 

already mentioned. Then, the procedure for performing the IIT and the steps for 

providing the specimens for the indentation test are described. In the next step, the 

optical measurement equipment used to examine the deformed surface of the 
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indented specimens is presented. Afterwards, in the present chapter, the results of 

the IIT on the AHSSs in BM and WM are depicted and the profile of the indented 

surfaces that is measured with the optical sensor is demonstrated. Finally, the 

numerical simulation model of the IIT with the applied boundary conditions and mesh 

sizes is outlined and its accuracy is discussed, and the results are compared with the 

findings of the experimental analysis.  At the end, the material model parameters of 

WM of LBW and HAZ of RSW are calculated with the validated numerical simulation 

model of IIT according to the concept of inverse analysis. 

 

4.1. Methodology 

 

The conduction of IIT is to some extent similar to hardness measurement, though the 

force and indentation depth must be recorded simultaneously by incrementing the 

magnitude of the applied force, and this information can be aggregated in the form of 

a force-indentation depth curve. Thus, the main difference between IIT and hardness 

measurement that is relevant to the current research is the ability of collecting more 

information (feature of datasets) with IIT compared to conventional hardness 

measurement. In this section, the experimental setup for performing IIT on BM or WM 

of DP600, DP800, DP1000 and S690QL is firstly explained, and then the optical 

sensors used to examine the deformed surface of the indented specimens are shown. 

Then, the numerical model of IIT is presented and the boundary conditions that need 

to be considered in the numerical simulation are discussed. 

 

4.1.1. Performing of Instrumented Indentation Test  

 

The indentation tests were performed with the ZHU2.5/Z2.5 testing machine 

(ZwickRoell, Kennesaw, GA, USA) equipped with a hardness measurement head and 

fully automatic X/Y table. A digital displacement measuring system using a glass 

scale with a resolution of 0.02 μm, a force sensor that electromechanically measures 

the applied forces between 5 and 2500 N, and a replaceable indenter are installed in 

the hardness measuring head. An optical unit which consists of a light microscope 

with four lenses which has a charge coupled device camera and a sliding carrier is 

additionally a part of IIT machine and located next to the hardness measurement 

head. The sliding carrier allows adjustment of the specimen location between the 
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microscope and the loading assembly by simply moving the unit, thus ensuring that 

the specimen under test does not move. Figure 4.1 shows ZwickRoell ZHU 2.5 

indentation testing machine with its different components. 

 

Figure 4.1  ZwickRoell ZHU 2.5 indentation testing machine with its components: 1) loading unit 2) 

displacement measurement system 3) light microscope 4) indenter and 5) test specimen 

All tests were carried out using a spherical diamond indenter from ZwickRoell with a 

tip radius of 0.2 mm on high strength dual phase steels DP600, DP800, DP1000 and 

fine-grained structural steel S690QL. The IIT was conducted on the BM, WM of RSW 

and LBW as well as the HAZ with maximum load of 120 N and the applied position-

controlled load rate of 0.05 mm/min for all steel grades to achieve the indentation 

depth of 8-12% according to the nominal indenter radius of 0.2 mm. After reaching 

the maximum load and observing a waiting time of 2 s, the force on the specimen 

was removed at the unloading rate 0.05 mm/min. The test results are automatically 

summarized in graphical and tabular form for further statistical evaluation by using 

fully automatic control software called testXpert implemented in ZwickRoell ZHU 2.5 

testing machine. 

Special effort must be made on control of surface roughness to minimize the influence 

of the finishing process, such as grinding, over the quality of the indented surface of 

the specimens and thus reduce the potential uncertainty in the measurement of the 

force-indentation depth curve. Surface roughness accounts for the inaccuracy of the 
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contact zone at very low indentation depth. The uncertainty of the penetration depth 

is proportional to the average arithmetic mean of surface roughness. The measured 

indentation depth should be at least 20 times greater than the arithmetic mean of the 

surface roughness to limit its contribution on the uncertainty of the indentation depth 

measurement to a maximum of 5% [69]. It means that by inserting a spherical 

indenter with the maximum test load of 120 N on the steel specimens, the surface 

should have an arithmetic mean roughness (Ra) of 1.6 to 3.2 μm. In addition, the 

slope of the specimen surface must be taken into account during the IIT. The 

deviation between the specimen surface from the normal axis of force application 

must be less than 1° as mentioned in ISO 14577-1:2002 [69]. The specimen should 

rest firmly on an inelastic support to avoid movement during the test. The thickness 

of the specimen must be at least ten times the indentation depth or three times the 

diameter of the indented zone to minimize the influence of the support on the 

measurement findings. The investigated sample surface was mechanically ground, 

as the required surface roughness for performing of IIT at macroscale, which is 

conducted in the current project, should be between 1.6 and 3.2 µm. Further 

mechanical or chemical process such as polishing to reduce the surface roughness 

was not required. The samples of DP1000, DP800, DP600 and S690QL for 

performing of IIT, as shown in Figure 4.2, are embedded in resin to make them 

convenient to hold during the sample preparation (grinding) and easier to fix by 

carrying out the test. 

 

Figure 4.2  Samples of AHSSs for performing of IIT 1)DP1000; 2)DP800; 3)DP600 and 4)S690QL  

 

4.1.2. Analysis of the Penetration Profile  

 

Alicona Infinite Focus as an optical microscope with a high resolution 3D 

measurement system, which combines all the functionalities of a coordinate and 
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surface measuring machine, is used in the current work to examine the surface of 

samples after conducting of IIT. A semi-transparent mirror is used in Alicona system 

to direct and focus the light through the objective on the component. The light 

reflected from the specimen surface returns to the optical system and is directed onto 

the active surface to reproduce an image with information about color and dimension 

of sample. The signal processing unit scans only those parts of the image on which 

the light beam is focused to reconstruct and combine them into a final 3D image [122]. 

The microscope with movement range of 100x100×100 mm3 is equipped with a 

motorized nosepiece and a set of five different types of special microscopic objectives 

which have different magnification scales from 2.5x to 100x and various working 

areas. The CFI LU Plan EPI ELWD objective with magnification scale of 20x, working 

area of 13 mm and field view of 0.286x0.218 mm2 was used for determination of the 

indented profile in surface of all samples studied in this work. 

In addition to the Alicona system, the deformation on the surface of the indented 

specimens was measured using the light microscope of ZwickRoell ZHU 2.5 

indentation machine with a magnification scale of 40x, horizontal and vertical view 

fields of 220 and 165 µm, respectively, and the resolution of 0.2 µm per pixel. 

 

4.1.3. Numerical Simulation of Indentation Test 

 

A two-dimensional numerical simulation model of the IIT was established using eight-

node elements with geometry and dimensions as shown in Figure 4.3. The 

PLANE183 element type with a quadratic displacement behavior and two degrees of 

freedom at each node was chosen for the simulation model, allowing the modeling of 

irregular meshes. A flexible-flexible contact pair was defined between the indenter tip 

(target) and the steel specimen (contact). Furthermore, the Lagrange method was 

used as the contact algorithm, which uses an iterative series of error updates to 

calculate the error factor to determine the Lagrange multiplier. The model was 

constructed axisymmetric to the y-axis, and the bottom of the sample was fixed. In 

the axis of symmetry, the edges are then fixed with a symmetry constraint and 

movement in the x-direction is prevented. In this way, it can be ensured that the 

indenter penetrates only vertically and the deformation is symmetrical. In the first 

loading step, the force (F) in the order of 120 N was applied uniformly and gradually 
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to the upper edge nodes of the quarter circle of the indenter and then removed again 

in the second loading phase. The friction coefficient is defined as 0.15 according to 

reference [123] for the contact between the diamond indentor with a linear elastic 

material behavior and the Young's modulus of 1140 GPa and Poisson's ratio of 0.07 

and the steel specimen with the nonlinear isotropic strain hardening material model 

with the Equation (2.1). 

 

Figure 4.3 Geometry of the numerical simulation model of the instrumented indentation test 

The mesh sensitivity analysis was performed for the DP1000 BM with a refinement 

of the mesh size especially in the contact area where the maximum deformation of 

the steel specimens occurs. Using different mesh sizes alters the calculation of the 

indentation depth at maximum load which is chosen as an indicator for the evaluation 

of the simulation model accuracy. As seen in Table 4.1, the difference between the 

indentation depth at 1 and 5 μm mesh size is less than 1%, although the simulation 

model with finer mesh size is more than 3 times computationally more expensive than 

a model with coarser mesh. Since using a coarser mesh size does not significantly 

change the accuracy and drastically reduces the computation time, especially in this 

case where the simulation model has to be run several hundred times to generate 

the training datasets of the ANN, a mesh size of 5.7 μm in the area of contact between 

the indenter and the sample and 18 μm in the rest of the model was chosen. It was 

noticed as well that the calculation time for softer material such as DP600 BM 

becomes much longer as more deformation occurs and thus the computation time 

rises. 
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Table 4.1  Mesh sensitivity analysis and variation of indentation depth for numerical simulation model 

of IIT by using material model parameters of DP1000 BM for indented specimen 

Mesh size of contact  
elements in μm 

Number of elements 
Indentation depth  

at Fmax in μm 

20 3391 32,11 

5 6417 31,33 

2 7740 31,15 

1 8882 31,10 

The displacement and the load of a node in the middle of the contact between the 

indenter and the specimen were investigated to determine the load-indentation depth 

curve. Furthermore, the indenter's penetration profile was simulated by calculating 

the displacements of the nodes on the surface of the sample after applying the load. 

The material parameters for welded DP600, DP1000 and S690QL could be 

determined by inverse simulation. For this approach, in the first step, the indentation 

test was simulated with random values of the material model parameters as given in 

Equation (2.1). Subsequently, the simulation model was iteratively run with different 

material model parameters until a minimum mean squared error between the 

simulation and the experimental results of the indentation tests was obtained. In fact, 

such an approach can benefit from an optimization routines if additional information, 

such as the elastic modulus and yield strength, can be estimated in advance [70]. 

Using this approach, the difference between the simulation results and the 

experimental data was minimal, and therefore, the material parameters for WM of 

LBW and the HAZ of RSW were obtained. Furthermore, numerical simulations were 

carried out with the material parameters for the BM and WM of RSW, as already 

determined from the tensile tests, to validate the results.  

 

4.2. Results and Discussion 

 

In this section, the experimental results from the IIT such as force-indentation depth 

curves of the target microstructure and the profile from the surface of the indented 

samples taken by the Alicona system and light microscopy are presented first. Then, 

the outputs of the numerical simulation model of IIT are introduced and the accuracy 

of the model is discussed based on the experimental data. Finally, the material model 

parameters of the weld zones of AHSSs, which were not determined in Chapter 3, 
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are calculated by performing the inverse simulation with the validated numerical 

model of IIT. 

 

4.2.1. Force-Indentation Depth Curve 

 

As mentioned in section "4.1. Methodology" of IIT, the indentation test was performed 

on DP600 in different zones such as BM and WM of RSW and LBW, DP800 in BM, 

DP1000 in BM and WM of RSW and LBW, as well as HAZ of RSW, and finally 

S690QL in BM as well as HAZ and WM of LBW. The aim was to perform the 

indentation test on all possible different zones of a welded joint, which is welded with 

different welding technologies. Nevertheless, the size of HAZ in LBW or RSW of 

DP600 and DP1000 was small so that it was not possible to perform the IIT in this 

area. For example, the HAZ in the LBW of DP1000 is less than 0.5 mm in width on 

each side, which makes it extremely difficult to perform IIT with an indenter tip radius 

of 0.2 mm and increases the test result uncertainty. However, reducing the indenter 

radius results in the need to increase the quality of the surface roughness and 

additionally increases the test uncertainty since the indenter may be pushed in 

different grains of the target microstructure, which have different properties and react 

or resist variously to the movement of the indenter. Thus, it was objected to perform 

the test on the welding zone with the small width to enhance the robustness and 

reliability of the test results. 

The result of performing IIT on BM of DP800 and different weld zones of S690QL 

from LBW is shown in Figure 4.4 as a plot of force indentation depth (penetration) 

curve. The indentation test was repeated at least three times on each target 

microstructure to ensure the accuracy of the test procedure. Then, the average result 

of the tests were calculated and plotted in each figure. The results of performing IIT 

on DP800 BM three times and their average are shown in Figure 4.4, indicating that 

all curves follow a similar trend and the results are repeatable and robust enough. As 

expected, the indentation depth at the maximum force of the IIT procedure varies for 

different microstructures depending on the hardness and strength of the material. For 

example, the WM of S690QL resulting from LBW has the highest hardness value 

(more than 400 HV1) compared to other investigated zones in Figure 4.4, 

consequently, exhibits the lowest indentation depth. The hardness of S690QL in HAZ 

is greater than BM but smaller than WM, therefore it is located between these two 
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curves. On the other hand, the load was gradually removed after reaching the 

maximum level or the highest value of indentation depth. After the load is completely 

removed from the surface of the specimen, the material preserves the elastic 

deformation, but the plastic strain is left below the indented surface. The area 

between the unloading path and the vertical line (parallel to the y-axis) starting from 

the maximum force and the x-axis (penetration depth) determines the elastic work, 

which depends on the elastic modulus and yield strength of the investigated 

specimens [124]. Furthermore, there is a direct relationship between the ratio of 

elastic work to total work (elastic and plastic work) and the material properties and 

the hardness magnitude of the specimens [125]. Since all the investigated samples 

belong to the BM or WM of the AHSSs, the differences between the elastic modules 

of the investigated materials are negligible. Thus, the variation in the slope of the 

unloading path for the different materials results from the different magnitude of the 

yield strength and plastic behavior, as well as the variation in the value of the 

measured hardness in the studied specimens. 

 

Figure 4.4 Force-Indentation (Penetration) depth curve for DP800 BM and S690QL in different zones 

of LBW joints such as BM, HAZ and WM 

As shown in Figures 4.5 and 4.6, the experimental indentation depth in the WM of 

DP600 and DP1000 resulting from RSW is smaller than other zones. Similarly, the 
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WM indentation depth from LBW remains far from the indentation depth on BM and 

close to the WM from RSW. The results show that the penetration depth of HAZ 

resulting from the RSW of DP1000 is about 0.035 mm, which is the highest value 

compared to other penetration depths. It occurs due to softer microstructure of HAZ 

from RSW of DP1000, as seen in Figure 3.23, in comparison to other zones such as 

WM or BM. Furthermore, a comparison between the indentation depth on BM of 

DP600 and DP1000 shows that the resistance of DP1000 to deformation due to the 

penetration of an indenter is much higher than that of DP600.  

 

Figure 4.5 Force-Indentation (Penetration) depth curve for DP600 with different microstructure type 

such as BM, WM of RSW and LBW 

The differences between the indentation depth of WM from LBW and RSW on both 

DP600 and DP1000, as seen in Figures 4.5 and 4.6, can be justified by evaluation of 

the measured Vickers hardness value on these zones, as shown in Figure 3.23. 

Suppose the hardness value in a particular zone is higher than the other zones. In 

that case, the penetration depth should be proportionally lower. Both WM contains 

the martensitic microstructure, however, the hardness value in WM of RSW for both 

steel types is higher than that in WM of LBW due to faster cooling time in RSW 

compared to LBW as measured and presented in Figures 3.16 and 3.17. According 

to Time Temperature Transformation (TTT) diagrams of DP-steels  [99], such a short 

cooling time can lead to a martensitic microstructure, however, the hardness value 

increases significantly by raising the cooling time rate after welding. 
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Figure 4.6 Force-Indentation (Penetration) depth curve for DP1000 with different microstructure type 

such as BM, WM of RSW and LBW as well as the HAZ of RSW 

 

4.2.2. Profile of Deformed Surface 

 

The surface of the indented samples has been investigated with a high-resolution 3D 

measurement system and a light microscopy as explained in section “4.1.2. Analysis 

of the Penetration Profile” to analyze the effect of indentation test on the surface of 

specimens after performing of the IIT. For instance, Figure 4.7 (a) shows the isometric 

3D projection of the deformed surface of the D1000 WM produced from RSW after 

conducting of IIT, with color scale measurement next to it. Figure 4.7 (b) is similar to 

Figure 4.7 (a), except that the top view is illustrated. Furthermore, Figure 4.7 (c) 

presents the location and position of the path on which the profile of the indented 

surface is measured, as shown in Figure 4.7 (d). The similar measurements have 

been performed on all the indented samples of AHSSs in both BM and WM and then 

the findings are summarized in form of the penetration depth-distance diagrams and 

presented in Figures 4.9, 4.10 and 4.11. Since a spherical indenter has been used to 

perform the IIT and the test material under the indenter is homogeneous, only one-

half of the profile from the indented surface, which is shown in Figure 4.7 (d), has 

been presented in the further process of this work. 
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Figure 4.7 The deformed surface of the indented specimen produced from the WM of DP1000 with 

RSW, the measurement was performed with a high-resolution 3D measurement system (Alicona 

Infinite Focus) (a) 3D isometric projection of the indented surface (b) top view of the indented surface 

(c) 3D isometric projection of the indented surface with a red line to illustrate the path location of the 

profile of the indented surface (d) profile of the indented surface measured with the Alicona system 

from the path shown in (c) 

Figure 4.8 (a) shows the top view of the indented surface of the DP1000 WM from 

RSW, measured with the Alicona system, without demonstration of the deformation 

measurement. Next to it, Figure 4.8 (b) shows the surface of the indented specimen 

taken with the light microscopy of the ZwickRoell ZHU 2.5 indentation testing 

machine. As seen in Figure 4.8 (b), the indentation results in a black hole whose size 

depends on the shape of the indenter and the sample type. The surrounding area is 

deformed and its shape and color has been changed after performing of the 

indentation. The data representing the deformation of the indented surface, shown in 

Figure 4.7 (b), Figure 4.7 (d), and Figure 4.8 (b), are later used in addition to the force 

indentation depth curves which are represented in section “4.2.1. Force-Indentation 

Depth Curve” to train the ANNs to characterize the mechanical properties of the 

welded AHSSs. However, throughout the rest of this section, the profile of the 

indented surface summarized in the form of penetration depth-distance curves for the 

indented specimens of S690QL, DP600, DP800 and DP1000 in various 

microstructure depending on the steel grades will be presented and discussed. 
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Figure 4.8 The deformed surface of the indented specimen produced from the WM of DP1000 with 

RSW (a) top view of the indented surface measured with Alicona system (b) top view of the indented 

surface measured with light microscopy of ZwickRoell ZHU 2.5 indentation testing machine 

Figure 4.9 shows the profile of the indented surface based on the diagram shown in 

Figure 4.7 (d), except that it is only from the indentation center, which is a point with 

maximum value of indentation depth. The profile of the indented surface for some 

samples, such as S690QL WM from LBW, DP1000 WM from LBW, and DP1000 HAZ 

from RSW, were recorded twice and are shown in Figure 4.9 and Figure 4.11 to 

demonstrate the robustness and repeatability of the conducted measurement. As 

seen in the Figure 4.9, the indentation curve of S690QL WM from LBW in point 1 and 

2 both follow the same course and show the similar indentation path. However, a 

small difference, which is less than 6 µm in the critical area, could result from the light 

reflection during the 3D measurement of the indented surface or the occurrence of 

the softer or harder microstructure. As expected, the indentation depth of DP800 BM 

is the deepest compared to the indentation depth of S690QL BM and WM, as it has 

the least yield strength among these three investigated microstructures. Moreover, 

the indentation paths of S690QL BM and DP800 BM are parallel to each other, as 

both have approximately similar plastic behaviors, which are reflected in the 

magnitude of tensile strength and strain hardening exponent, as shown in Table 3.7 

for the smooth specimens of DP800 and S690QL. Furthermore, the WM of S690QL 

has the lowest penetration depth thanks to its strength and the presence of a 

martensitic microstructure. Another phenomenon observed in Figure 4.9 is the 

occurrence of pile up only for the BM of S690QL and DP800. It seems that the 

appearance of pile up or sink in is directly related to the strength and plastic behavior 

of the investigated material. However, this phenomenon will be discussed in details 

later.  
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Figure 4.9 Profile of the indented surface from the indentation center (the point with maximum value 

of indentation depth) of DP800 BM, S690QL BM and WM of S690QL from LBW repeated twice (point 

1 and point 2) 

Figure 4.10 shows the indentation profile of DP600 specimens in different areas of 

welded zones such as BM and WM from RSW and LBW. The indentation profile of 

WM from both welding technologies, e.g. LBW and RSW, is close to each other due 

to the martensitic microstructure, though a slight difference in the order of less than 

10 µm is observed in the center of the indentation. A similar pattern was observed in 

the indentation depth diagram of DP600 steel, as shown in Figure 4.5, such that the 

indentation depth of DP600 WM from RSW is less than DP600 WM from LBW at 

maximum indentation force. As shown in Figure 4.10, no pile up is observed in the 

profile of the indented specimens from WM. On the other hand, the indentation profile 

of DP600 BM is larger than the indentation depth of DP600 WM considering that the 

former material is softer and its yield and tensile strengths are lower than those of 

WM. Another point that can be observed in Figure 4.10 is an unexpected leap in the 

penetration profile of DP600 BM in around 0.12 mm far from the penetration center. 

In addition, the penetration profile of DP600 BM is expected to show the pile up effect 

similar to BM of DP800 or S690QL. Both phenomena can be justified by inaccuracies 

and possible errors in image recognition and finally regeneration of indentation path 

in Alicona system due to light reflection from indented DP600 BM sample or 

implemented image recognition algorithms in optical system as observed in 3D 

isometric projection of the indented surface. 
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Figure 4.10 Profile of the indented surface from the indentation center (the point with the maximum 

value of the indentation depth) of DP600 BM, WM of DP600 from LBW and WM of DP600 from RSW 

Figure 4.11 shows the deformation profile of DP1000 steel in BM, WM of LBW and 

RSW, and HAZ of RSW. The indentation profile of DP1000 from the HAZ of RSW 

and WM of LBW was recorded twice (point 1 and 2) to show the robustness and 

reliability of the measurement. Both recordings follow a similar pattern and agree 

together completely with a maximum difference of less than 4 µm in the area of largest 

deviation. Both WMs of RSW and LBW of DP1000 show the similar maximum 

penetration depth due to the similar martensitic microstructure, though a slight 

difference can be observed far from the penetration center and near the surface that 

is not affected by the penetration. The penetration path in the HAZ of DP1000 from 

RSW is deeper than the BM of DP1000 for both recorded routes. This phenomenon 

can be justified by considering the differences between the hardness measurement 

of the HAZ and the BM for DP1000, as shown in Figure 3.21 (a) and Figure 3.23 in 

the lines belonging to DP1000-RSW. As seen in the last two mentioned Figures, the 

hardness value in the HAZ of DP1000 from RSW is lower than BM of DP1000. 

Therefore, it is expected that the penetration depth of HAZ is larger than BM. In Figure 

4.11, a slight pile up effect can be observed for all investigated materials, however, 

its magnitude is much smaller than the pile up size for the softer materials such as 

BM of DP800 or S690QL, which exceeded roughly 5 and 7 µm, respectively. 
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Figure 4.11 Profile of the indented surface from the indentation center (the point with the maximum 

value of the indentation depth) of DP1000 BM, WM of DP1000 from LBW repeated twice (point 1 and 

point 2), HAZ of DP1000 from RSW repeated twice (point 1 and point 2) and WM of DP1000 from 

RSW 

 

4.2.3. Numerical Simulation of Indentation Test 

 

The numerical simulation model of IIT, as explained in section "4.1.3. Numerical 

Simulation of Indentation Test" and shown in Figure 4.3, was performed with already 

determined material parameters of known steels, as demonstrated in Table 3.8 and 

Table 3.10. The calculated force-penetration depth curves and the profiles of the 

indented surface from the numerical simulation model were first compared with the 

experimental data as presented in Figure 4.12 and Figure 4.13, respectively, to 

validate the simulation model. Then, the validated model was used to perform the 

inverse analysis to calculate the material data of other weld zones that failed to be 

calculated in Chapter 3, such as WM of DP600, DP1000 and S690QL from LBW and 

HAZ of DP1000 from RSW and the results are shown in Table 4.2. Another goal of a 

validated simulation model of IIT is to generate a large volume of training datasets to 

later train the ANNs capable of calculating the mechanical properties of AHSSs in 

different welding zones. 

Figure 4.12 compares the numerically and experimentally determined force-

indentation depth curves to verify the simulation model. There is a strong agreement 

between the simulation and experimental results, especially when the penetration 
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depth is small. For instance, the agreement between the calculated and measured 

force-penetration depth curves for the sample DP1000 WM from RSW is significantly 

closer than the sample DP600 BM. Another observation is the deviation between the 

calculated and measured unloading curves for all the investigated samples, which is 

also reported in other research works such as [126] [127]. 

In order to achieve a stronger agreement between the results of the numerical 

simulation and the experimental analysis for the determination of the force-

indentation depth curves, it is necessary to use a material model capable of 

calculating the strain hardening exponents as a function of the indentation test 

outputs [128] [129] [130]. The reason for this is that there is a positive correlation 

between the total work, including plastic and elastic work, resulting from the 

indentation test and the material properties, in particular the hardness of the substrate 

whose behavior is tightly comparable to the response of the specimens to the 

indentation test [125]. Another reason for the slight discrepancy between the 

numerical and experimental results could be due to the occurrence of creep because 

of the waiting time after loading and before unloading while performing the indentation 

test, which can be seen as a small flat line at maximum force in each force-indentation 

depth curves in Figure 4.12 [131] [132]. Another point to consider is the effect of 

contact stiffness as an indicator to generalize the force-displacement behavior 

between two contacting surfaces, which can be calculated as the slope of the tangent 

line in the region near the initial point of the unloading curves [133]. The contact 

stiffness depends on the geometry of the contact area, such as plastic and maximum 

indentation depth and surface roughness indicators, and its change can vary the 

slope of the unloading path resulting from the simulation model [80]. 

In summary, the current work presents a simulation model of IIT with strong 

agreement between the simulation and experimental results, especially for the 

material with high yield strength and measured hardness, whose investigation is the 

main objective of this current research work. In addition, more complex material 

models based on the indentation test and creep behavior can improve the accuracy 

of the simulation model for softer materials. However, the goal of training the ANNs 

in the current work is to obtain the material model parameters from a quasi-static 

tensile test, not to determine the parameters of a creep or indentation test based 

material model. 
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Figure 4.12 The comparison between the numerically calculated and the experimentally measured 

Force-Indentation (Penetration) depth curve for the specimens with the known material parameters to 

validate the numerical simulation model of IIT 

Figure 4.13 compares the numerically calculated and the experimentally measured 

profiles of the indented specimen surface. The similar simulation model as used for 

the calculation of the Force-Indentation depth curves from Figure 4.12 and as 

explained in section "4.1.3 Numerical simulation of the indentation test" was used 

here. The only difference between the curves from the numerical work in Figure 4.12 

and Figure 4.13 is that the indenter displacement was recorded and shown in Figure 

4.12, however, the profile of the indented surface after performing of the indentation 

test in the simulation model was shown in Figure 4.13. 

The first point that can be observed is the differences between the experimentally 

measured maximum indentation depth in Figure 4.12 and Figure 4.13. For instance, 

the maximum deviations between the maximum indentation depth in both figures are 

less than 9 and 7 µm for DP600 BM and DP1000 BM, respectively. For other 

investigated materials, the differences between the experimentally measured 

maximum penetration depth from Figure 4.12 and Figure 4.13 are less than 5 µm. 

The reason for recording different indentation depth values is that two different 

measuring devices were used to record the indentation depth in Figure 4.12 and 

Figure 4.13. The experimental data in Figure 4.12 is generated by the instrumented 
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indentation testing machine based on the movement of the indenter, in contrast to 

the experimental graphs in Figure 4.13, which are collected by inspecting the surface 

of the indented specimens with the 3D optical microscope, which can provide different 

information.  

Furthermore, the indentation depths of both graphs can be expected to differ slightly 

because each measuring equipment has its own measurement error tolerance. For 

example, the error in the measured indentation depth from the instrumented 

indentation testing machine may come from the non-zero compliance of the test 

frame, which results in the movement of both indenters and the test frame and 

changes the original force-indentation depth curve [134]. On the other hand, the 

accuracy of the measured parameters by Alicona system can be affected due to the 

illumination direction and the position of the sample with different geometry to the axis 

of the light polarizer, as well as the variation of the focus of the microscope lens, 

which can ultimately have an impact on the measured profile of the indented surface 

[135]. 

As seen in Figure 4.13, there is a strong agreement between the simulation and 

experimental data describing the profile of the indented surface, especially for 

material with higher magnitude of yield strength and hardness value. For example, 

the differences between the numerically and experimentally determined indentation 

depth in the center of the indentation (the point with the maximum value of the 

indentation depth) are 15 and 1.5 µm for the BM of DP600 and DP800, respectively. 

The reason for the slight discrepancy between the simulation and experimental 

results has already been described in details in the explanation of Figures 4.10 and 

4.12 and will not be recapitulated here. Moreover, the simulation model must be used 

later to calculate the material parameters of weld zones from the RSW and LBW, 

which have higher strength and hardness compared to the corresponding BM, and 

the presented numerical model works perfectly well for such a material.   
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Figure 4.13 The comparison between the numerically calculated and the experimentally measured 

profiles of the indented sample from the indentation center (the point with the maximum value of the 

indentation depth) for the specimens with the known material parameters to validate the numerical 

simulation model of IIT 

Another phenomenon observed in the indentation surface profile of the specimens in 

both experimental and simulation work is the occurrence of the pile-up effect. In order 

to get a better overview and discuss about it in details, the indentation profile of three 

DP-steels in the base material such as DP600, DP800 and DP1000, which have 

similar martensitic and ferritic microstructure, is compared. DP600 has the lowest 

strength compared to the other studied DP steels in this work, as shown in Table 3.7 

and Table 3.8. On the other hand, it was reported that the martensite content of 

DP600, DP800 and DP1000 is 0.18, 0.25 and 0.48, respectively, and the rest of the 

microstructure is ferritic, with grain sizes of 8.4, 5.7 and 3.8 µm, accordingly [136]. 

Similarly, both simulation and experiment show that the pile-up size of DP600 is larger 

than DP800, and similarly DP800 is bigger than DP1000. On the other hand, it has 

been shown that there is a direct relationship between the pile-up magnitude and the 

grain size in a certain interval [137]. There is also a dependency between the grain 

size and the strength of a steel structure based on the Hall-Petch law [138]. It can 

therefore be concluded that DP600 experiences a larger pile-up due to its larger grain 

size and consequently lower strength compared to the other investigated steels.  
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From the numerical simulation point of view, the magnitude of the pile-up increases 

as the exponential saturation rate (b) and the difference between the yield strength 

and the saturation stress (𝑅∞) decrease. Therefore, the magnitude of the calculated 

pile-up in DP600 BM is higher than that in DP1000 BM. This leads to a more disparity 

for the numerically calculated indentation depth for the BM of DP600 compared to the 

DP1000 BM or WMs of other steels. Furthermore, the accuracy of the IIT simulation 

model proposed in this work can be revalidated as it shows exactly the similar flow in 

computing the magnitude of the pile-up. 

The validated numerical simulation model of IIT was employed to calculate the 

mechanical properties of other weld zones, which could not be determined in Chapter 

3, by using the inverse analysis. As explained in section “4.1.3. Numerical Simulation 

of Indentation Test” the unknown material model parameters of the investigated 

steels have been changed repeatedly in the simulation model of IIT to generate the 

force-indentation depth curves and profiles of the indented surface. Subsequently, 

experimental and simulation curves for each variation of the material model 

parameters are compared to find out the best parameters configuration that provides 

the smallest mean squared error between simulation and experiment. Normally, such 

an iterative procedure is numerically expensive and requires an optimization 

algorithm to improve the estimated parameters in each iteration. However, the 

objective of the present work is to calculate the material parameters of the WM of 

AHSSs, which have a martensitic microstructure and thus a high value of yield 

strength and low ductility. The prior knowledge about the unknown parameters that 

need to be calculated with the inverse simulation leads to a much lower numerical 

effort and does not require any further optimization algorithm. 

Table 4.2 shows the material model parameters of WM of DP600, DP1000 and 

S690QL from LBW and HAZ of DP1000 from RSW. As expected, the yield strength 

of DP600 and DP1000 in WM has been increased after LBW, however, its magnitude 

is smaller than that of WM from RSW, as shown in Table 3.10. Similarly, Figure 3.23 

shows that the Vickers hardness of DP600 and DP1000 WM from LBW is lower than 

that of WM from RSW, which consequently results in less strength. On the other hand, 

the parameters describing the isotropic strain hardening and ductility of the material 

remain approximately the same for the WM resulting from RSW or LBW for both 

DP600 and DP1000. Moreover, the material parameters of the HAZ from the RSW of 
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DP1000 show that their yield strength decreases significantly compared to the yield 

strength of DP1000 BM. This can be justified by the fact that the Vickers hardness in 

the HAZ of the RSW of DP1000 is lower than that of the BM and WM, as shown in 

Figure 3.23. In addition, the WM of S690QL from LBW has the highest value of yield 

strength compared to the other WMs and is also a least ductile steel among the other 

analyzed materials, as its Vickers hardness value is higher than that of any other 

investigated material, as shown in Figure 3.23. 

Table 4.2 Determination of material parameters of different welding zones of AHSSs by inverse 

analysis with numerical simulation model of IIT  

Material Rp0.2 in  
MPa 

R0 in  
MPa 

R∞ in  
MPa 

b 

S690QL LBW - WM 1000 200 400 100 

DP600 LBW - WM 700 30 320 40 

DP1000 RSW - HAZ 460 1500 343 50 

LBW - WM 800 175 437 96 

Figure 4.14 compares the force-indentation depth curves between the experimental 

data and the simulation model results with the material data from Table 4.2. There is 

a strong correlation between the simulation and experimental data, especially in the 

loading phase of the indentation test for WM and HAZ of DP steels. As shown in the 

explanation of Figure 4.14, the discrepancy between the unloading paths from 

simulation and experimental work can have an impact on the calculation of elastic 

work and can be reduced by using a material model capable of predicting only the 

indentation path of AHSSs from both BM and WM as accurately as possible. 

However, Figure 4.14 shows that the obtained parameters in Table 4.2 are robust 

enough to be used for describing the stress-strain path of the investigated weld 

zones. 
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Figure 4.14 The comparison between the numerically calculated and experimentally measured Force-

Indentation (Penetration) depth curve for the samples with the unknown material parameters, whose 

mechanical properties were determined by using the inverse numerical simulation model of IIT 

In the same matter as Figure 4.14, Figure 4.15 compares the measured profiles of 

the indented surface with the Alicona system after performing the indentation test with 

the result of the simulation work for the materials whose parameters were calculated 

with the inverse analysis and presented in Table 4.2. As expected, the size of the 

pile-up for the WMs investigated in Figure 4.15 is much smaller than for the BMs of 

the DP steels, as shown in Figure 4.13, where the strength and hardness of the WMs 

resulting from the LBW are larger than the corresponding BMs of the welded steels 

in this work. Moreover, the strong correlation between the simulation results and the 

experimental analysis of the indented profile reconfirms the accuracy and correctness 

of the obtained material parameters in Table 4.2 and shows that they can be 

employed as test materials to evaluate and verify the accuracy of the trained ANNs 

in the current work, which is presented in the next chapter.  
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Figure 4.15 The comparison between the numerically calculated and experimentally measured profiles 

of the indented specimen from the indentation center (the point with the maximum value of the 

indentation depth) for the samples with the unknown material parameters, whose mechanical 

properties were determined by using the inverse numerical simulation model of IIT 

To summarize, the IIT process was numerically simulated with a two-dimensional 

model and validated with the experimental results of BM and WM. This was then used 

to determine the material data of weld zones such as WM from LBW of DP steels and 

S690QL and HAZ of DP1000 from RSW using the inverse analysis. The need to have 

an accurate, simple and fast model which is able to perform the simulation of several 

hundred IITs in a short time to generate a large amount of data to train the ANNs 

leads to the setup of a two-dimensional symmetric numerical simulation model. 

 

4.2.4. Methodology Validation 

 

In the last step, in order to evaluate and revalidate the accuracy of the methodology 

used in the current chapter, the available data from the literature [7], as already shown 

in Figure 3.33, are used again and a further comparison based on the result of this 

chapter was performed as shown in Figure 4.16. As mentioned in the method 

validation of Chapter 3, the result of tensile test on HAZ of DP980 specimens with 1 

and 3 mm thickness from thermomechanical simulation based on the work of 

Dancette [7] was first compared with the result of tensile test on the prepared 
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specimens of DP600 and DP1000 with 0.4 and 0.9 mm thickness, respectively, made 

from WM of RSW. Then, the stress-strain curves of WM of DP600 and DP1000 from 

LBW and HAZ of DP1000 from RSW are considered in Figure 4.16 to discuss about 

accuracy of the material characterization with inverse analysis based on the 

simulation model of IIT. 

 

Figure 4.16 Comparison between the true stress-strain diagram of WM from LBW of DP600 and 

DP1000 plates and HAZ from RSW of DP1000 calculated from IIT with the result of stress-strain 

diagrams according to martensitic microstructure of HAZ DP980 of RSW from the literature [7] and the 

measured stress-strain curves from the tensile test (TT) on the notched specimens made of DP600 

and DP1000 WM from RSW as shown in Figure 3.33  

As explained in chapter three, the HAZ of DP980 plates are reproduced by heating 

them to 1200℃ and then cooling at different rates, where t8/5 is less than 2s. According 

to TTT diagrams of DP-steels [99], such a high cooling rate leads to a martensitic 

microstructure which is similar to microstructure of WM. However, the investigated 

HAZ of RSW from DP1000 with inverse analysis of the IIT simulation model belongs 

to a zone far from the WM with the lowest measured hardness and, consequently, 

lower strength and lower level of the stress-strain diagram compared to the other weld 

zones. Furthermore, with the exception of the DP600 WM from LBW, the presented 

stress-strain diagrams of the WMs in Figure 4.16 show a slight deviation from each 

other and a similar behavior as expected based on the magnitude of the measured 

hardness as shown in Figure 3.23 which describing the reproduced microstructure 

after welding. Moreover, the stress-strain diagram of DP600 WM from LBW is lower 

than the stress-strain curves of other WMs but greater than the HAZ of DP1000 from 
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RSW. Figure 3.23 shows exactly the same behavior, as the hardness of DP600 WM 

from LBW is lower than the hardness of WMs, but greater than the hardness in the 

HAZ of DP1000 from RSW, especially in the region closer to the BM. 

The comparison between the stress-strain diagrams from the literature [7] and the 

current research work further revalidate the results achieved based on the inverse 

analysis of the IIT simulation model. The slight differences between the stress-strain 

curves of the different investigated zones are expected since they were generated 

based on different measurement and calculation methods, welding procedures and 

belong to different welding zones. The results of the current and previous chapters 

are used in the next section to analyze the correctness and accuracy of the trained 

ANNs capable of computing the material model parameters. 
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5. Material Characterization with 

Artificial Neural Network 

 

In the current chapter, the methodology of training the ANNs capable of calculating 

the mechanical properties of AHSSs in different weld zones is presented. As 

mentioned in the introduction, the ANNs in this research were trained with four 

independent datasets as shown in Figure 1.1. The steps to train the ANNs with the 

first two datasets, e.g., the force-penetration depth curves as well as the profile of the 

indented surface with their corresponding stress-strain diagrams, are explained in this 

chapter and their results and accuracy are discussed in details. The last two ANNs 

trained with the images of the indented surfaces are included in the appendix as 

further work. 

First, various steps to train the ANNs such as generation of the large datasets, feature 

selection from the input datasets such as force-indentation depth diagrams and profile 

of the indented surfaces are described. Then, the architecture and parameters of the 

ANNs are discussed and explained in details. In the next section, the stress-strain 

diagrams resulting from the ANNs are evaluated and compared with the results 

obtained in the previous chapters to analyze the robustness and reliability of the 

trained ANNs and validate their outputs. 

 

5.1. Methodology 

 

The different steps to generate the large volume of datasets and then the workflow to 

train the ANNs with the datasets of the force indentation depth diagrams and the 

indented surface profiles are shown in Figure 5.1 and Figure 5.2, respectively. As 

shown on the left side of Figure 5.1, the parameters of the material model, as given 

in Equation 2.1, must be iteratively changed in the defined intervals as input data to 
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the simulation model of IIT, which was validated in chapter four, to generate the force 

indentation-depth curves and eventually provide a large volume of datasets for 

training the ANN. When enough datasets are generated, the training of the ANN can 

be started, as shown in the right side of Figure 5.1. In this step, the selected points 

from the force indentation depth diagrams generated by the FEM will become the 

input datasets of the ANN and the output will be the corresponding material model 

parameters, which will be iteratively changed at the defined intervals. When the 

training phase is complete, the accuracy of the trained ANN must be evaluated by 

comparing its outputs with the results of the test materials as determined in chapters 

three and four. If the accuracy of the outputs is not acceptable, the parameters or 

architecture of ANN must be changed or more datasets should be generated to 

increase the accuracy of trained ANN. 

 

Figure 5.1 An overview of the methodology proposed in the present work to train the artificial neural 

network (ANN) to determine the material data by using Force-Indentation depth diagrams obtained 

from the instrumented indentation test. The training datasets were generated in a large volume by 

using the finite element method (FEM)   

The methodology of training ANN with the second type of datasets, e.g. the profile of 

the indented surface as input data, is similar to the procedure of training ANN with 

the first type of datasets, e.g. the diagram of the force indentation depth as input data. 

However, as seen in Figure 5.2, the output of the simulation model of IIT will become 

the profile of the indented surface instead of the force indentation depth diagram. On 

the other hand, the input of the ANN is the output of the simulation model, e.g. the 

profile of the indented surface. The rest of the methodology remains similar as 

described in the explanation of Figure 5.1. In both Figure 5.1 and Figure 5.2, the 

subscript "i" refers to the number of datasets used to train the ANN. For example, if 

100 force-indentation depth diagrams and their corresponding stress-strain curves 
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are provided to train the ANN, the final value of "i" is 100. In addition, the subscript "j" 

refers to each element of a dataset, e.g., if the input of a dataset contains 15 features, 

then the subscript "j" starts at 1 and ends at 15. 

 

Figure 5.2 An overview of the methodology proposed in the present work to train the artificial neural 

network (ANN) to determine the material data by using the penetration profile curves obtained from 

the surface of the indented specimens. The training datasets were generated in a large volume by 

using the finite element method (FEM)  

To begin with the methodology description of the ANN training, first the steps to 

generate the training datasets and the procedure to select the features from each 

dataset are explained. Then, the structure, architecture and parameters of the ANN 

are outlined. 

 

5.1.1. Generation of Training Datasets 

 

The parameters of Voce nonlinear isotropic hardening material model, as shown in 

Equation (2.1), were randomly changed about 250 and 500 times at the intervals 

presented in Table (5.1) as input to the simulation model of IIT, as depicted in Figure 

4.3, to generate 250 and 500 imaginary materials for training the ANNs.  

Table 5.1 Variation intervals of the material model parameters for the generation of datasets 

Parameter Interval 

Rp0,2 in MPa [340; 1050] 

R0 in MPa [50; 1150] 

R∞ in MPa [170; 460] 

b [15; 115] 
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The stress-strain curves of the imaginary materials, as shown in gray in Figure 5.3, 

are later used as input to the simulation model of the IIT and consequently as output 

of the ANN. As shown in the left side of Figure 5.1 and Figure 5.2, the imaginary 

materials are used to generate the force-indentation depth curves and the profile of 

the indented surfaces to obtain a complete dataset including input and output. Only 

the ANN that correlates the force-indentation depth curves with the stress-strain 

diagrams is trained with the 250 and 500 datasets to evaluate the effect of increasing 

the size of the datasets on the accuracy and flexibility of the trained ANN. The other 

ANN related to the profile of the indented surfaces are trained with 250 datasets. 

 

Figure 5.3 Stress-strain curves from the variation of material model parameters based on Table 5.1, 

the stress-strain curves shown in the legend belong to materials whose mechanical properties are 

determined using different approaches in chapter three and chapter four as shown in Tables 3.8, 3.10 

and 4.2 

The material parameters determined in chapters three and four with the notch tensile 

specimens and the inverse analysis with the simulation model of IIT as given in Table 

3.8, Table 3.10 and Table 4.2 are shown in Figure 5.3. They must be used later as 

test materials to verify the accuracy and applicability of the trained ANNs. Therefore, 

they are excluded from the training datasets to remain unknown for the ANN. After 

training the ANN, the output of the ANN is compared with the test materials to quantify 

the error levels.  
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5.1.2. Training Datasets based on the Force-Indentation 

Depth Curves 

 

A considerable rise in the number of neurons or layers increases the complexity of 

the training process and makes it more difficult to optimally adjust weights and 

thresholds to minimize the difference between the desired output and the one 

provided by the ANN. The performance of the neural network in terms of 

generalization becomes poor and it may lead to overfitting, which is why the features 

of a dataset must be reduced and the input and output variables for training must be 

chosen carefully. Therefore, the variables of the training datasets have to be reduced 

dimensionally.  

For instance, a material model with four parameters, based on Equation (2.1), is 

introduced in the present work to describe the mechanical properties of the material 

instead of using the entire points in the stress-strain curves. Furthermore, it is 

required to reduce the number of features in the input. To do this, 15 points that 

characterize the force-indentation depth curve are selected for the input of the 

training. The points are distributed over the loading and unloading phases of the 

curve. The 10th data point is inserted at the end of the loading phase, where the force 

is maximum. The fifteenth data point is stored at the moment when the load is fully 

unloaded. Since each point has both x (indentation depth) and y (force) values, this 

gives a total of 30 features in a dataset. The inputs and outputs of a training dataset 

are shown in Table 5.2 and Figure 5.4. 

Table 5.2 The inputs and outputs of the ANN, trained with dataset  

of the force-indentation depth curves 

Inputs Outputs 

𝑥1…9 = 𝐹1…9 

𝑥10 = 𝐹𝑚𝑎𝑥 = 120 𝑁 

𝑥11…15 = 𝐹11…15 

𝑥16…24 = ℎ1…9 

𝑥25 = ℎ𝑚𝑎𝑥 

𝑥26…30 = ℎ11…15 

𝑡1 = Rp0,2 

𝑡2 = R0 

𝑡3 = R∞ 

𝑡4 =  𝑏 
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The ANN with the dataset of force-indentation depth curves was trained twice, first 

with a dataset containing 250 and then 500 pairs of inputs and outputs as presented 

in Figure 5.4. The goal is to evaluate the accuracy and performance of ANNs trained 

with two different size of datasets. To sum up, the ANN from Figure 5.4 has three 

layers of input, hidden, and output with 30, 10, and 4 neurons in each layer, 

respectively. 

 

Figure 5.4 Force-Indentation depth curves generated by the FEM model and the corresponding stress-

strain diagrams as the training datasets of the ANN with extracting the points as features of the dataset 

input including the indentation force and the corresponding indentation depth from Force-Indentation 

depth curve 

An important point to improve the performance of ANN training is data normalization, 

i.e., scaling the data from the original range in such a way that all values lie in the 

range of 0 and 1, which requires the information about the minimum and maximum 

observation. Data normalization is necessary since the input and output variables 

have different units (e.g., MPa, μm, N) which results in the different scales of the 

variables. Scale mismatches between input variables can increase the complexity of 

problem modeling. For example, large input values with different ranges lead to a 

unstable model that has poor learning performance and sensitivity to input values, 

resulting in higher generalization error. Rescaling of input and output variables is an 

essential step in the training phase of ANN. Data normalization is performed to 

improve the accuracy of the subsequent numerical calculation and to obtain more 

precise outputs.  
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The inputs, as shown in Table 5.2, include the indentation depth with unit μm 

(micrometer) and the indentation force with unit N (newton). The value of each 

indentation depth (ℎ𝑗) is larger than 0 and smaller than 100 μm in the dataset of "i". 

Moreover, the magnitude of the indentation force (𝐹𝑗) changes between 0 and 120 N 

in each dataset. Therefore, each input element (j) of dataset (i) is divided to 120 in 

case of force and to 100 for indentation depth, as seen in Equation (5.1), to normalize 

the input datasets. 

𝑥𝑖 = {

𝐹𝑗

120
 → 𝑗 =  1…15;  𝑖 = 1…15

ℎ𝑗

100
→ 𝑗 =  1. . .15;  𝑖 = 16…30

 
(5.1) 

The parameters of the material model used as output of ANN, as given in Table 5.2, 

were normalized as shown in Equations (5.2) to (5.5). As seen in Table 5.1, the 

material parameters have different units and were varied in different intervals, which 

makes it necessary to put them in a similar scale and in the range of 0 to 1. 

𝑡1 = 
Rp0,2 −min (Rp0,2)

max (Rp0,2) − min(Rp0,2)
 

(5.2) 

𝑡2 = 
R0 −min(R0)

 max (R0)  −  min(R0)
 

(5.3) 

𝑡3 = 
R∞ −min(R∞)

 max (R∞)  −  min(R∞)
 

(5.4) 

𝑡4 = 
𝑏 − min(b)

 max (b)  −  min(b)
 

(5.5) 

 

5.1.3. Training Datasets based on the Profile of the 

Indented Surfaces 

 

In addition to the force-indentation depth diagram, the profile of the surface deformed 

by the indentation test can be obtained from the numerical simulation and used to 

train an ANN to characterize the material parameters. As mentioned in chapter four, 

when the force is removed after performing the IIT, the surface of the steel specimen 

does not completely recover, instead an indentation depth due to plastic deformation 

is formed in the contact area. The idea in the present work is to build a correlation 
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between the material parameters and the deformed surface of the specimen after 

performing the IIT.  

The procedure of training with the datasets from the profile of indented surfaces is in 

principle similar to training with force-indentation depth diagram as explained in the 

previous section. The difference between the training methodologies lies in the 

generation of the training input datasets with numerical simulation model. The 

simulation model is basically the same, however other variables are exported. For 

instance, in the force-indentation depth diagram, the maximum force and the 

indentation depth as well as the force and the corresponding indentation at each 

loading and unloading increments are stored.  

However, in order to train the ANN with profile of the indented surface,  in the last 

increment and after removing the force, all values in x (distance from the center of 

indentation) and y (indentation depth) direction from the nodes in the contact line 

between the steel sample and the indenter are extracted. Finally, 15 points as shown 

in Figure 5.5 are selected from the deepest to the highest point of the indented surface 

to be used as the feature of the datasets. As seen in Table 5.3, each point consists 

of two pieces of information, including the indentation depth and the distance from 

the center of indentation, consequently, the total number of elements of the input is 

30 and the output holds 4 parameters of the nonlinear isotropic material model as 

described in Equation (2.1). 

Table 5.3 The inputs and outputs of the ANN, trained with dataset  

from the profile of the indented surface 

Inputs Outputs 

𝑥1…15 = ℎ1…15 

𝑥16…30 = 𝑆16…30 

𝑡1 = Rp0,2 

𝑡2 = R0 

𝑡3 = R∞ 

𝑡4 =  𝑏 

 

The numerical simulation were repeated 250 times to generate 250 datasets for the 

training of the ANN based on profile of the indented surface. As seen in Figure 5.5, 

three layers of input, hidden, and output of the ANN has 30, 10, and 4 neurons, 

respectively. Following the same procedure as in Section 5.1.2, the outputs of each 

dataset are normalized to increase the performance of the ANN. Each element in the 
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input of the ANN is similarly normalized by a linear scale transformation and their 

value is mapped between -1 and 1, where -1 and 1 represent the minimum and 

maximum possible quantities. 

 

Figure 5.5 Indented surface profiles generated by the FEM model and the corresponding stress-strain 

curves as the ANN training datasets with extracting the points as features of the dataset input including 

the indentation depth and its corresponding distance from the center of the indentation 

 

5.1.4. Training and Architecture of Artificial Neural 

Network  

 

Once the datasets are provided, ANN training can begin with the goal of finding a 

general relationship between the inputs and outputs. The ANN can approximate 

unknown data well within the training range corresponding to the values contained in 

training datasets. Through training, the ANN memorizes the training datasets as 

examples and learns to adapt to new situations. However, intensive learning or little 

control over the training process can lead to overfitting, meaning that the ANN is so 

highly adapted to the training datasets that it has difficulty in generalizing to unknown 

datasets and consequently making good predictions. 

One of the methods to increase the generalization capability is to divide the datasets 

into three subsets such as training, validation and test datasets. An ANN is trained 

with the training datasets to minimize the error between the calculated and desired 

outputs during training by setting the appropriate weights and thresholds. The 
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validation dataset is not used to train the ANN, instead the accuracy of the ANN is 

quantified by using the final parameters from the training phase by using the unknown 

datasets, e.g. the validation dataset, to monitor the training process. Similar to the 

validation dataset, the error is calculated according to test datasets based on the 

parameters from the training phase. However, its purpose is to evaluate the quality 

of the ANN compared to the generalization. Out of 250 and 500 datasets, 80% are 

randomly allocated for training, 10% for validation, and 10% for testing, with the 

maximum number of epochs equal to 1000. An epoch means that all datasets pass 

through the ANN once forward and once backward to recalculate the weights and 

thresholds. In this methodology, the training procedure stops at a certain epoch when 

the error in the validation dataset starts to climb several times in a row. 

The error between the desired output (𝑡𝑖) from the training dataset and the actual 

output (𝑦𝑖) predicted by a trained ANN can be calculated using the mean square error 

(MSE). As the MSE gets progressively smaller, the performance of the ANN in terms 

of generalization gets continuously better. In the training phase, the MSE of validation 

and test datasets must be calculated separately and in most cases is larger than the 

MSE of test dataset in the training phase. The trained ANN does not know the 

validation and test datasets and approximates these data only based on the 

knowledge from the training dataset. As mentioned in chapter three, MSE can be 

calculated by using Equation (5.6) as follows: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (5.6) 

After performing the training, the training datasets are fed into the ANN once again to 

form the linear regression, which quantitatively describes the relationship between 

the desired and actual outputs and is normally employed in the algorithms such as 

ANN. The Pearson correlation coefficient (R) is a property of linear regression that 

shows the linear dependency between two variables, and when it becomes equal to 

one means that the model fits perfectly. The correlation coefficient provides a 

quantifiable assessment of whether the goal of the training was achieved and how 

well actual outputs match desired outputs and can be calculated from Equation (5.7) 

where µ and 𝜎 are the mean and the standard deviation of the population, 

respectively. 
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𝑅 =
1

𝑛 − 1
∑(

𝑦𝑖 − 𝜇actual output

𝜎actual output
)

𝑛

𝑖=1

(
𝑡𝑖 − 𝜇desired output

𝜎desired output
) (5.7) 

The MSE and the correlation coefficient (R) can be used to quantitatively compare 

and evaluate the quality of the ANN training. The challenge in comparing the different 

trained ANNs is that they give different outputs even if the configuration of the ANN 

is the same. This is due to the randomness within the distribution of the training, 

validation and test datasets and the arbitrary initialization of the starting weights and 

thresholds at each training sequence which leads to different solutions for the same 

problem. Having inadequate randomness in the datasets distribution and training 

parameters initialization can result in a trained ANN with large error, which is not 

flexible enough and has low generalization. 

Cross-validation can be used to make a statement about the quality of the trained 

ANN based on the new datasets that are unknown to the trained ANN. The datasets 

can be divided into two separate categories; for instance, one for training the ANN 

and one for evaluating the quality of the trained ANN. Monte Carlo cross-validation is 

used to randomly split the datasets into training and validation records multiple times. 

Every instance, the model is fitted to the training datasets and the performance of the 

ANN is evaluated against the validation datasets. The number of repetitions is 

important to reduce uncertainty about the model performance. In the present work, 

50 ANNs with different distribution datasets were trained to evaluate the MSE and 

correlation coefficient from each dataset configuration based on the Monte Carlo 

cross-validation concept. After training the ANNs 50 times, an ANN with the smallest 

MSE and the largest correlation coefficient is selected as the representative ANN with 

the best performance, whose outputs are then tested with test datasets. 

Subsequently, an optimal architecture of the ANN must be found based on the 

number of hidden layers and the number of neurons in each hidden layer. It is 

recommended in the literatures [139] [140] [141] that the number of neurons in the 

hidden layers must be between the number of neurons in the input and output layers, 

or it must be two-thirds of the sum of the neurons in the input and output layers, or 

the number of neurons in the hidden layers should not exceed twice the number of 

neurons in the input layer. However, it is not possible to follow the above 

recommendations as the hidden layers also depend on the randomness of the 

dataset distribution and initialization of parameters, training algorithms, number of 
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training datasets, and so on. Furthermore, if the ANN contains two hidden layers, the 

number of neurons in each of these layers must remain the same to increase the 

performance of the ANN [142].  

The number of neurons in the hidden layer is gradually increased from 5 to 29 

neurons based on the above suggestions to determine the best number of hidden 

neurons by evaluating the MSE and correlation coefficient for each configuration 

based on the cross-validation concept. The configuration of the ANN was changed 

with 5, 8, 10, 15, 20, and 25 neurons in one hidden layer and with the same number 

of neurons of 5, 10, and 15 in two hidden layers. The relationship between the number 

of neurons in the hidden layers and the MSE or correlation coefficient are shown in 

Figure 5.6 and Figure 5.7, respectively.  

 

Figure 5.6 The relationship between the number of neurons in the hidden layers and the mean square 

error (MSE) obtained from the training and testing datasets, the first six ANNs have one hidden layer 

and the last three ANNs have two hidden layers with 5, 10 and 15 neurons in each layers 

As seen in Figure 5.6, the blue line shows the MSE resulting from the training 

datasets, which decreases as the number of hidden neurons increases. Since the 

MSE of the test datasets is increased by decreasing the MSE of the training datasets, 

it can be concluded that adding more hidden neurons leads to overfitting. As one of 

its indicators is a low MSE from the training datasets and at the same time a large 

MSE from the test datasets as it is clear for the ANNs with two hidden layers. The 

MSE from the training datasets with 5 hidden neurons is relatively large, which means 
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that the ANN did not learn well from the training datasets since its coefficient 

correlation especially for the material parameter of b is worse than the other 

configurations of the ANN. An ANN with 10 neurons in the hidden layer shows the 

best combination of results compared to the other configurations of ANN and is 

therefore used in the present work. 

 

Figure 5.7 The relationship between the number of neurons in the hidden layers and the correlation 

coefficient obtained by comparing the calculated and desired outputs (four material model parameters 

of Equation (2.1)), the first six ANNs have one hidden layer, and the last three ANNs have two hidden 

layers with 5, 10 and 15 neurons in each layers 

Furthermore, the Levenberg-Marquardt backpropagation algorithm (LMA) [143], 

developed by Kenneth Levenberg and Donald Marquardt, provides a numerical 

solution to the problem of minimizing a nonlinear function using the least squares 

method. LMA is one of the fastest algorithms for backpropagation and has stable 

convergence, however, requires more memory than other algorithms. The LMA 

combines the gradient descent and the Newton algorithm together to maintain the 

stability of the first algorithm and become faster by taking advantage of the latter 

approach. It is more robust than the Newton algorithm as it can converge well in many 

conditions even when the error surface is much higher in complexity than the 

quadratic situation. In the domain with complex contour, the gradient method is 

employed as long as the local curvature allows a quadratic approximation, then the 

Newton method can be applied to accelerate the convergence. The mathematical 

description of LMA is demonstrated [144] [145] in Equation (5.8).  
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𝑥𝑖+1 = 𝑥𝑖 − [𝐻 + 𝜇𝐼]
−1 𝑔 = 𝑥𝑖 − [𝐽

𝑇𝐽 + 𝜇𝐼]−1 𝐽𝑇𝑒 (5.8) 

In the above equation, the terms H and g represent the Hessian matrix and the 

gradient containing the Jacobian matrix (J) and the network error vector (e), 

respectively. The variable μ indicates by having a large value that the algorithm 

becomes gradient descent, and when its value is decreased, the importance of the 

Newton approach increases to speed up the function performance, and when it 

becomes zero, the Equation (5.8) becomes the Newton method. Due to the 

aforementioned advantages, this algorithm is implemented in the present work to find 

the minimums of the cost function in order to optimally adjust ANN. 

 

5.2. Results and Discussion 

 

After training the ANNs with the datasets of the force-indentation depth diagrams and 

the profile of the indented surfaces, it is necessary to evaluate and discuss the 

accuracy and repeatability of the predicted outputs as well as the reliability and 

precision of the trained ANNs. As explained in Section 5.1.4, about 50 ANNs were 

trained individually with different configuration of training, validation and test datasets  

according to each sort of datasets and the results and parameters of the best trained 

ANN are presented here. First the result of the trained ANNs with the dataset of force-

indentation depth diagrams with the size of 250 and 500 records is detailed, and then 

the training protocols of the ANN trained with the dataset of the profile of the indented 

surfaces are described. Finally, the sensitivity analysis evaluates the effect of each 

material parameter and its weighting on the overall stress-strain diagram. 

 

5.2.1. Trained ANN with the Force-Indentation Depth 

Curves Datasets 

 

First, the ANN was trained with the dataset of force-indentation depth diagrams with 

the size of 250 records and the results discussed here are shown in Figures 5.8 to 

5.10 and Table 5.4. Figure 5.8 shows the MSE value of the training, validation, and 

testing dataset for each epoch, which provides an opportunity to observe the error 

progression during the training process. The error is quite large at the beginning due 

to the randomly initialized weights and thresholds, and decreased significantly after 
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one epoch and the MSE is reduced as the ANN is iteratively adjusted at each epoch. 

From the 5th epoch, the error decreases slightly slower and at the 42nd epoch the 

training stops, since the error of the validation dataset increases about 6 times 

consecutively from 36th epoch, which is an indicator of possible overfitting. The best 

validation performance happens at epoch 36 with MSE of around 0.044. The training 

datasets are returned to the trained ANN to quantify the frequency distribution of 

errors from the training datasets by calculating the differences between the desired 

outputs and the outputs calculated by the ANN. The trained ANN can approximate 

the material parameters mostly with error close to zero which is an indicator of ANN 

performance. 

 

Figure 5.8 Development of the MSE value in each epoch from the training, validation, and testing 

datasets for the ANN trained with the Force-Indentation depth curves (250 datasets) 

To verify that the training objective is met, the Pearson correlation coefficient (R) of 

each data subset must be calculated and compared with each other by feeding the 

ANN with all datasets and then forming a linear regression between the calculated 

and desired outputs. The correlation coefficient of the training dataset, as expected, 

is the highest with a value of 0.81, since the ANN fitting is performed based on this 

subset of data. On the other hand, the validation and testing datasets show lower but 

still good accuracy with the correlation coefficient of 0.88 and 0.77, respectively. 

In addition, the correlation coefficient of each ANN output is calculated after all 

normalized data are converted to their original values to better observe the accuracy 
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of the predicted material model parameters from the training datasets. As seen in 

Figure 5.9, the correlation coefficient of yield strength has the highest value compared 

to other strain hardening parameters and is approximately 0.98 which shows that the 

ANN can determine it better than other material model parameters. Moreover, it is 

difficult to estimate the material model parameter b with a high accuracy as its 

correlation coefficient is almost 0.73. However, the parameters such as correlation 

coefficient or MSE are only the first indications of the ANN's performance. The more 

detailed evaluation about the ability of the ANN to predict the material model 

parameters must be performed after testing the ANN with unknown datasets. 

 

Figure 5.9 Correlation coefficient (R) obtained by comparing the desired outputs and outputs of the 

trained ANN with the Force-Indentation depth curves 

After the trained ANN with the dataset of force-indentation depth curves is obtained, 

the accuracy and functionality of the trained ANN must be verified by comparing its 

outputs with the material model parameters of the unknown materials to quantify, 

once again, the error range of the ANN prediction. As seen in Table 5.4, the 
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mechanical properties of various test materials, whose actual (real) parameters were 

determined in chapters three and four and shown in Tables 3.8, 3.10, and 4.2, are 

compared to the parameters predicted by the ANN, and their deviation is quantified 

based on Equation 5.9. Once again, the real material model parameter sets of each 

material which is known as the reference is given as the input to the validated 

numerical simulation model of IIT as shown in chapter four to calculate the 

corresponding force-indentation depth curves. The trained ANN are fed with the 

generated force-indentation depth curves and the output of the ANN is considered as 

the prediction. 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐷𝑒𝑣. ) =
|𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑃𝑟𝑒𝑑𝑡𝑖𝑜𝑛(𝑃𝑟𝑒𝑑. )|

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 100% 

(5.9) 

As seen in Table 5.4, the mean value of deviation between the reference and the 

predicted magnitude of yield strength is the lowest compared to other material model 

parameters, which is in agreement with the correlation coefficient of 0.98 between the 

desired and calculated value of Rp0,2 as shown in Figure 5.9. On the other hand, the 

strain hardening parameters such as exponential saturation rate (b) or the line 

tangent of stress-strain diagram in the plastic region (𝑅0) can be predicted with the 

lower accuracy which is around 64% and 78%, respectively. 

Table 5.4 Quantification of the deviation (Dev.) between the outputs of the trained ANN (Pred.) with 

the Force-Indentation depth curves (250 datasets) and the reference values whose mechanical 

properties are determined using different approaches in chapter three and chapter four as shown in 

Tables 3.8, 3.10, and 4.2 

Material 
Rp0,2 R0 R∞ b 

Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. 

DP1000 (BM) 692 10% 941 14% 384 1% 44 39% 

DP1000 LBW (WM) 961 13% -19 111% 388 11% 42 57% 

DP1000 RSW (WM) 964 6% 563 222% 289 34% 94 2% 

DP800 (BM) 568 7% 928 111% 250 41% 59 118% 

DP600 (BM) 359 0% 527 26% 319 19% 22 0% 

DP600 LBW (WM) 605 1% 52 31% 386 8% 95 5% 

DP600 RSW (WM) 954 10% -11 117% 356 15% 70 37% 

S690 (BM) 593 14% 305 22% 239 30% 69 307% 

S690 LBW (WM) 997 0% 293 46% 406 1% 91 9% 

Mean Value of Deviation  7%  78%  18%  64% 

Although the magnitude of the difference between the prediction and reference 

material model parameters depends on the model parameters and material type, the 
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question is how large are the differences between the entire stress-strain curves of 

prediction and reference. Figure 5.10 compares the stress-strain curves from the 

experiment with the output from ANN to demonstrate the differences between the two 

curves resulting from the deviation between the material parameters, as calculated in 

Table 5.4. For instance, Table 5.4 shows that the maximum deviation between the 

predicted and reference yield strength are 14% and 13% which belongs to BM of 

S690 and WM of DP1000 from LBW, respectively. On the other hand, the magnitude 

of the deviation between other parameters of the mentioned materials is relatively 

high, e.g. the difference between the predicted and calculated b and Ro is about 307% 

and 111% for BM of S690 and WM of DP1000 from LBW, correspondingly.  

However, Figure 5.10 shows that the agreement between the predicted and reference 

stress-strain diagram of S690 BM and WM of DP1000 from LBW are lower than the 

other stress-strain curves, though still acceptable and strong. It came from the fact 

that each material parameter has a specific weight on the final shape of stress-strain 

diagram, and a small error in one of them such as Rp0,2 may completely change the 

entire stress-strain diagram, while another parameter such as b may not have a 

strong impact on the ultimate value of the stress. The influence of each material 

model parameter on the final stress-strain curve will be assessed and quantified in 

the next section, called Sensitivity Analysis. 

 

Figure 5.10 Comparison between the output of the ANN trained with the Force-Indentation depth 

curves (250 datasets) and the reference values whose mechanical properties are determined using 

different approaches in chapter three and chapter four as shown in Tables 3.8, 3.10 and 4.2 
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In addition to the former ANN, another ANN is trained with the force-indentation depth 

curve dataset using duplicate (500) records to investigate the effect of increasing 

volume of data on the accuracy of the trained ANN. Table 5.5 shows the predicted 

material parameters by the ANN trained with 500 records and the deviation between 

the real and predicted parameters according to Equation (5.9). As seen in Table 5.5, 

the magnitude of the mean deviation between the predicted and reference yield 

strength improved by 3% and became 4%. Moreover, other strain hardening 

parameters, especially b, can be predicted much better when the amount of training 

records is increased. 

Table 5.5 Quantification of the deviation (Dev.) between the outputs of the trained ANN (Pred.) with 

the Force-Indentation depth curves (500 datasets) and the reference values whose mechanical 

properties are determined using different approaches in chapter three and chapter four as shown in 

Tables 3.8, 3.10, and 4.2 

Material 
Rp0,2 R0 R∞ b 

Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. 

DP1000 (BM) 659 5% 952 13% 400 2% 55 24% 

DP1000 LBW (WM) 890 5% 139 21% 392 10% 82 15% 

DP1000 RSW (WM) 973 7% 337 92% 350 20% 83 14% 

DP800 (BM) 583 10% 982 123% 242 43% 50 86% 

DP600 (BM) 350 3% 617 13% 298 11% 26 18% 

DP600 LBW (WM) 613 2% 190 153% 337 20% 83 8% 

DP600 RSW (WM) 839 3% 103 58% 426 1% 124 12% 

S690 (BM) 678 2% 418 6% 171 7% 34 101% 

S690 LBW (WM) 1013 1% 141 30% 404 1% 87 13% 

Mean Value of Deviation  4%  57%  13%  32% 

Although the mean value of the deviation between the reference and predicted 

parameters are improved by increasing the records volume, the estimation of the 

material parameters of some steels, such as WM of DP600 from LBW, are degraded 

by comparing Table 5.4 and Table 5.5, which can further be seen in Figure 5.11. On 

the other hand, the prediction of mechanical properties of some other materials such 

as BM of S690 have been improved drastically. The comparison of Figure 5.10 and 

Figure 5.11 shows that a larger number of datasets generally results in a more 

accurate ANN, however, for some materials the accuracy of the prediction may be 

lower. 
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Figure 5.11 Comparison between the output of the ANN trained with the Force-Indentation depth 

curves (500 datasets) and the reference values whose mechanical properties are determined using 

different approaches in chapter three and chapter four as shown in Tables 3.8, 3.10 and 4.2 

Furthermore, the comparison between the correlation coefficients obtained from the 

regression plots produced by comparing the reference and predicted outputs of the 

ANNs trained with 250 and 500 records show that the correlation coefficient of the 

material parameter b increased significantly when more records were available, which 

is in agreement with the results obtained by comparing the mean deviation of this 

material parameter between Table 5.4 and Table 5.5. In addition, the correlation 

coefficient of other material model parameters such as yield strength or line tangent 

of the stress-strain diagram in the plastic region was improved, though not at the 

same level as the exponential saturation rate (b). 

 

5.2.2. Trained ANN with the Profile of the Indented 

Surfaces Datasets 

 

In the next step, another ANN was trained with the dataset of the indented surface 

profile with 250 datasets to determine the mechanical properties of the indented 

specimens. Similar to the previous section, 50 ANNs were trained with different 

configurations of training, validation and testing datasets and the results and 

parameters of the best ANN are presented here. As seen in Figure 5.12, the training 

process ends at epoch 95 and the ANN of the 89th epoch with the validation 
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performance of 0.0095 is delivered back. Figure 5.12 shows that the MSE of the 

training and validation datasets decreased continuously until epoch 89. However, 

after this epoch, the MSE of the training datasets declined while the MSE of the 

validation slightly increased, which is an indicator of overfitting after epoch 89 which 

can similarly be observed in the MSE value of the test datasets. Generally, a larger 

number of epochs and recalculation of weights by more iterations may result in a 

lower value of MSE, however, it does not guarantee an optimally trained ANN. 

Furthermore, the comparison between the MSE value development of the ANNs 

trained with the force-indentation depth curves and profiles of indented specimens 

datasets, shown in Figure 5.8 and Figure 5.12, respectively, reveal that the MSE 

value of the ANNs trained with the latter datasets is lower than that of the former one. 

Therefore, the ANN with training datasets of the profile of the indented surface is 

expected to provide more accurate and precise results compared to the ANNs trained 

in Section 5.2.1. 

 

Figure 5.12 Development of the MSE value in each epoch from the training, validation, and testing 

datasets for the ANN trained with the profile of the indentation surface (250 datasets) 

In the next step to evaluate the accuracy of the trained ANN, Figure 5.13 shows the 

correlation coefficients of the different material model parameters calculated by 

comparing the desired and predicted outputs. All material parameters have extremely 

high correlation coefficients with maximum and minimum values of 0.996 and 0.946, 

which belong to the yield strength and exponential saturation rate, respectively, 
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demonstrating the performance and accuracy of the trained ANN. Although the 

current ANN was trained with only 250 datasets, the correlation coefficient of its 

outputs is higher than that of the previous ANN trained with 500 datasets, showing 

that instead of increasing the dataset volume, generating more qualitative datasets 

can lead to a better performance. 

 

Figure 5.13 Correlation coefficient (R) obtained by comparing the desired outputs and outputs of the 

trained ANN with profile of the indented surface (250 datasets) 

In addition, the results of the trained ANN with the datasets of the indented surface 

profile must be checked with the parameters of the unknown materials in a similar 

way as explained in Section 5.2.1. As seen in Table 5.3, the current ANN can predict 

the yield strength with a mean deviation of about 4% and other strain hardening 

parameters with a mean deviation of less than or equal to 21%. The comparison of 

the data from Table 5.5 with Table 5.6 shows that not only the average deviation of 

the records in Table 5.6 is lower than in Table 5.5, but also the maximum value of the 

deviation for each material parameter was reduced by training the ANN with a 



136 
 

different type of dataset. For instance, the maximum value of deviation for yield 

strength in Table 5.6 is 7%, whereas the maximum value of the similar parameter in 

Table 5.5 is 10%. Therefore, the agreement between the entire stress-strain curves 

of the prediction and the reference is expected to be reduced by using the indented 

surface profiles instead of the force-indentation depth curves as training datasets 

which is also in consistency with value of the correlation coefficient. 

Table 5.6 Quantification of the deviation (Dev.) between the outputs of the trained ANN (Pred.) with 

the profile of the indented surfaces (250 datasets) and the reference values whose mechanical 

properties are determined using different approaches in chapter three and chapter four as shown in 

Tables 3.8, 3.10, and 4.2 

Material 
Rp0,2 R0 R∞ b 

Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. 

DP1000 (BM) 618 2% 1063 3% 412 6% 87 21% 

DP1000 LBW (WM) 891 5% 158 10% 395 10% 101 5% 

DP1000 RSW (WM) 923 2% 208 19% 414 5% 114 18% 

DP800 (BM) 539 2% 436 1% 412 2% 11 58% 

DP600 (BM) 350 3% 645 9% 313 17% 23 3% 

DP600 LBW (WM) 634 6% 147 96% 386 8% 89 1% 

DP600 RSW (WM) 930 7% 53 19% 364 13% 91 18% 

S690 (BM) 728 6% 438 11% 147 20% 15 13% 

S690 LBW (WM) 980 2% 160 20% 471 18% 119 19% 

Mean Value of Deviation  4%  21%  11%  17% 

In the last step to evaluate the performance of the current ANN, the stress-strain 

curves of the unknown materials obtained from the ANN are qualitatively compared 

with the reference ones as shown in Figure 5.14. Figure 5.14 shows that there is a 

strong correlation between the predicted and reference stress-strain curves for 

almost all unknown materials, however, the ANN can estimate the stress-strain 

curves of some materials, such as BM of DP1000, better than other steels, such as 

BM of DP800, as expected based on the data mentioned in Table 5.6. As mentioned 

in Section 5.2.1, each material parameter has its own weight on the overall stress-

strain curves and estimating a parameter that does not have a strong influence on 

the entire curve with a low accuracy does not lead to a significant deviation between 

the reference and the prediction. The significance of each material parameter in the 

material model is discussed in the next section, which helps to better understand the 

influence of each material parameters deviation on the overall stress-strain curve. 
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Figure 5.14 Comparison between the output of the ANN trained with the profile of the indented surfaces 

(250 datasets) and the reference values whose mechanical properties are determined using different 

approaches in chapter three and chapter four as shown in Tables 3.8, 3.10 and 4.2 

 

5.2.3. Sensitivity Analysis 

 

Despite the relatively high mean value of deviation between some of the calculated 

and reference material model parameters such as “b”, as seen in Table 5.4, Table  

5.5, and Table 5.6, there is a slight disagreement between the entire calculated and 

reference stress-strain curves, as shown in Figure 5.10, Figure 5.11, and Figure 5.14. 

The reason for that is the different weight of the individual material parameters on the 

entire stress-strain curve, which can be visualized and understood by performing the 

sensitivity analysis.  

For performing the sensitivity analysis, each material model parameter was varied 

individually based on the interval given in the Table 5.1, while the other three 

parameters were kept constant. For instance, the material parameter "b" has been 

modified from 15 to 115 and then the corresponding stress-strain curves for each 

variation of up to 10% of the plastic strain have been calculated, as seen in Figure 

5.15. Then, the stress magnitude at 8% of plastic strain was recorded to plot the 

variation in stress according on the modification of the material model parameters at 

8% of plastic strain as seen in Figure 5.16. This arbitrary specific percentage of plastic 
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strain was chosen since fracture occurs after 8% for the welded and not welded 

steels. 

 

Figure 5.15 Stress-strain curves calculated on the basis of each material model parameter variation 

according on the interval of Table 5.1 

As seen in Figure 5.16 (left and up), the changes of yield strength (Rp0,2) based on 

the interval of Table 5.1 as demonstrated in x-axis lead to a significant variation of 

the stress value at 8% of plastic strain from almost 700 to 1400 MPa as seen in y-

axis. Nevertheless, the variation of other material parameters such as R0, which 

stands for the tangent of the line in the stress-strain diagram in the plastic region in 

an interval between 50 to 1150 MPa, varies the total amount of stress only in a range 

close to 100 MPa, e.g. from 1000 to about 1100 MPa. On the other hand, the Figure 

5.16 (left and down) shows that the variation of material model parameter R∞ which 

presents the difference between the yield strength and the saturation stress has more 

effect on the changes of the stress in comparison to parameter R0. For instance, when 

R∞ changes for 290 unites, the total amount of stress at 8% of plastic strain varies 

almost less than 350 MPa. Similarly, changing the exponential saturation rate (b) 

between the interval of 15 to 115 does not dramatically change the amount of stress 

at 8% of plastic strain e.g. only in less than 100 MPa. However, its changes show a 

significant effect on area of the transition mode from elastic to plastic behavior which 
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is at initiation of plasticity and depending on the configuration of the other material 

model parameters, especially the yield strength, as shown in Figure 5.15 (right and 

below). 

 

Figure 5.16 Sensitivity analysis of the material model parameters as output of the ANNs to evaluate 

their influences on the ultimate stress value by their variation in x-axis in the defined intervals as 

described in Table 5.1 by plotting the amount of stress at 8% of plastic strain 

It can be concluded that the material parameters Rp0,2 and R∞ have a significant effect 

on the final amount of stress, while the variation of the other parameters such as R0 

and b does not change the stress-strain curve considerably. On the other hand, as 

seen in Table 5.4, Table 5.5 and Table 5.6, the mean value of the deviation for the 

parameters Rp0,2 and R∞ is small intrinsically and even the lowest compared to other 

material parameters. Therefore, it is expected to observe a small deviation between 

the stress-strain curves of reference and prediction in Figure 5.10, Figure 5.11 and 

Figure 5.14, although the deviation between the reference and predicted material 

parameters such as "b" is relatively high. 

In summary, the current chapter explains the methodology of the ANN training with 

the datasets of the force-indentation depth curves and the profile of the indented 

samples, including the feature extraction and the architecture of the ANN. Then, the 

accuracy of the trained ANN is evaluated with different sizes of records and at the 
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end, the stress-strain diagrams as the output of the ANN is compared with the 

reference curves which show a strong agreement between them. 
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6. Summary 

 

The goal of the current research is to introduce and develop ANNs capable of 

determining the mechanical properties of AHSSs in both base and weld metal from 

the information collected with the indentation test. Such records can be collected in 

various ways, e.g., the force-indentation depth diagrams or profiles of the indented 

surface. Other related datasets are the images taken from the indented surface of the 

specimens using a high-resolution 3D measurement system or light microscope, 

which are discussed in more details in the Appendix as further work. The training of 

the ANNs includes different phases, such as generation of datasets, training of the 

ANNs, and at the end, evaluation of the performance and accuracy of the ANNs with 

test materials. 

In the current work, the mechanical properties of four AHSSs such as DP1000, 

DP800, DP600 and S690QL in different weld zones produced with different 

technologies such as RSW or LBW were determined to later verify the accuracy of 

the trained ANNs with them. The stress-strain diagrams of the AHSSs in base metal 

were obtained by performing the uniaxial quasi-static tensile test on the conventional 

tensile specimens. However, the challenge was to identify the material parameters of 

the weld metal or HAZ of the AHSSs, since it is not possible to prepare any standard 

tensile specimens from inhomogeneous structures. In the absence of a 

thermomechanical simulator in our research institute, the microstructure of WM made 

of RSW in DP600 and DP1000 is reproduced on a larger scale in one plate by 

changing the welding parameters. The subsequent metallographic investigations 

such as microstructural analysis, hardness measurement as well as heating and 

cooling cycle measurement show that the reproduced microstructures are similar for 

both industrial and optimal welding parameters.  
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In the next step, the notched tensile specimens from the welded plates were provided 

with the weld metal in the notch region to force the fracture to occur in the weld metal 

to determine the mechanical properties of WM made of RSW in DP600 and DP1000. 

In a parallel investigation, the effect of notch geometry was quantified as a term of 

the geometry factor and was applied to determine the conventional stress-strain 

curves of WM. In addition, the accuracy of the material model in calculating the 

parameters of the used AHSSs was analyzed in details for both BM and WM. It was 

found that RSW results in a reduction in ductility and an increase in yield and tensile 

strength for DP600 and DP1000. It was noticeable that the material parameters for 

welded DP600 and DP1000 were very similar, indicating that the same martensitic 

structure was present in the weld metal. 

Afterwards, the instrumented indentation technique was used to perform the 

indentation on the specimens to obtain the force-indentation depth curves and also 

to examine the surface of the indented specimens with a 3D high-resolution 

measurement system as well as light microscope. In addition, a numerical simulation 

model of IIT was established and its accuracy was evaluated against the experimental 

data of the force-indentation depth curves and the profile of the indented surfaces. 

The goal of the simulation model is to generate a large volume of qualitative datasets 

to train the ANNs. In addition, the numerical simulation model was used to perform 

the inverse analysis to determine the mechanical properties of the weld zones of 

AHSSs such as WM of DP600 and S690QL from LBW and HAZ of DP1000 from 

RSW that could not be identified with the notched tensile specimens. The results 

demonstrated that the strength in the WM of LBW enhanced due to the martensitic 

microstructure. However, the yield strength of the resistance spot welded DP1000 in 

HAZ was reduced compared to the BM. 

The final step to achieve the goal of this study is to train the ANNs with sufficient 

number of training records. Two ANNs were first trained with the same type of 

datasets (Force-Indentation depth curve) with different number of records, e.g., 250 

and 500, to investigate the effect of increasing the number of records on the accuracy 

and performance of the trained ANNs. In addition, another ANN was trained with the 

input data of the profile of the indented surface and the output was similar to the other 

ANNs, i.e., the parameters of the material model. To assess the accuracy of the 

trained ANNs, a detailed analysis including the evaluation of MSE, the correlation 

coefficient, and the deviation between the calculated and the desired outputs (test 
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materials) was performed. It was observed that increasing the number of records 

improves the accuracy of the trained ANNs, though the effect is significant for some 

parameters such as the exponential saturation rate and minor for other parameters 

such as yield strength. On the other hand, the trained ANN with the profile of the 

indented surface with the small datasets (number of training data: 250) provides an 

ANN with better performance than the trained ANN with the large datasets of the 

force-indentation depth diagrams (number of training data: 500).  

Moreover, the comparison between the entire stress-strain diagrams of predictions 

and references shows that there is a strong agreement between them and all three 

trained ANNs with different sizes and types of datasets can calculate the entire stress-

strain diagrams accurately enough for any further applications. 
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7. Appendix: Further Work 

 

In order to develop the methodology of material characterization with instrumented 

indentation technique (Figure 1.1, first methodology), an attempt was made to make 

the procedure independent of the instrumented indentation machine. Therefore, as 

explained in Section 5.2.2, the concept of training the ANN was developed by using 

the datasets of the indented surface profiles (Figure 1.1, second methodology). 

Although the surface of the specimens was indented with the instrumented 

indentation machine, the indentation can be performed with any equipment if the 

experimental conditions are calibrated the same for all specimens. Furthermore, there 

is no need to measure the force and the corresponding indentation depth in each 

step, which is the main output of the instrumented indentation machine. This means 

that the material characterization method is so far independent of an indentation 

machine, which can be not available in many companies or research institutes. 

In a further step, the possibility of material characterization with the optical methods 

under certain conditions was evaluated based on the fact that if it is possible to 

determine the mechanical properties from the profile of the indented surface which is 

obtained from the images taken from the surface of the indented samples with a high-

resolution 3D measurement system, as seen in Figure 4.7 (d), it may also be possible 

to work with an isometric 3D projection of the indented surface (Figure 1.1, third 

methodology), as seen in Figure 4.7 (a). The fact is that both, e.g. the profile of the 

indented surface (Figure 4.7 (a)) and the 3D projection of the indented surface (Figure 

4.7 (d)) contain the very same information, namely the indentation depth on the 

surface of the specimens. The challenge is that the large datasets of the indented 

surface profile were generated using the numerical simulation as explained in Section 

5.1.3, however, the numerical simulation cannot be applied to generate the datasets 
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of the indented surface images. Therefore, the training of the ANN in the current 

section is limited to a small volume of datasets. 

The surface of indented specimens was visually analyzed by using the Alicona infinite 

focus as a contactless 3D surface measurement system as explained in section 4.2.2. 

The information related to the deformation depth of indented surface in each point 

was recorded in 2D and 3D and represented with a color. First, the images were 

processed to bring them into the same color scale as a measurement reference and 

the same size, brightness, and pixel. In total, nine images from the surface of the 

specimens mentioned in Tables 3.8, 3.10, and 4.2 were captured and processed. 

Each final image has a square shape with the same brightness and contained 

170×170 pixels. The pixels had color values based on an RGB (red, green and blue) 

format which shows the indentation depth. The input data is needed to be 

dimensionally reduced to have less complexity before employing them as the input to 

train the ANN to eliminate the possibility of overfitting. By performing k-means 

clustering as an unsupervised machine learning algorithm, the RGB values in each 

pixel of the image were observed and partitioned into five optimal clusters extracted 

by analyzing the Silhouette index of each data point in each cluster of the k-means 

results. The algorithm returned the centroid of the clusters based on the RGB values 

and additionally assigned every pixel to its proper group. Furthermore, the Mann–

Whitney–Wilcoxon test was conducted on each representative cluster to show that 

that each cluster is unique and independent of the others by resulting the p-value of 

less than 0.05. The transformation is depicted in Figure 7.1 in the unsupervised 

training part. Once again and as seen in isometric image of Figure 7.1, the colors 

from the 3D measurement system show the depth of penetration at each specific 

point. 

The clustered colors were then sorted according to the Hue-saturation value, which 

was used to represent the depth from the 3D-measurement. By sorting the colors, it 

was guaranteed that the first centroid showed the region with the deepest indentation, 

located mostly in the middle of the image. The last centroid defined the highest region 

of the surface unaffected by the indentation or pile-up. Finally, the RGB values of 

each centroid were used as input for the training dataset. With this, the image that 

initially had 170×170×3 variables were reduced to a total of 5×3 parameters. Then, 

these parameters, shown in the red circle in Figure 7.1, were packed into a vector 

(15×1), and this vector was used as input data. The material parameters of each 
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image were used as the corresponding output. In the end, 15 input, 7 hidden, and 4 

output neurons were needed to train the ANN with images from the 3D-measurement 

as shown in Figure 7.1. 

Figure 7.1 Feature extraction with the unsupervised learning algorithm from the images of the indented 

surface of a specimen captured with a high-resolution 3D measurement system (Alicona Infinite 

Focus), as explained in Section 4.2.2, and training the ANN as a supervised learning algorithm with 

them as input and the corresponding stress-strain curves as output 

Since the number of images in the current dataset is limited, three different ANNs 

were trained and two materials were excluded in each training to check the accuracy 

of the trained ANNs by using them as test materials. As seen in Figure 7.2, the trained 

ANNs in the current section were able to determine the stress-strain curves well, but 

with lower accuracy compared to the first two datasets, e.g., force-indentation depth 

curves and the profile of the indented surfaces, the results of which are shown in 

Figures 5.10, 5.11, and 5.14. 

Furthermore, Figure 7.2 shows that all the resulting stress-strain curves from the 

three trained ANNs can follow the reference diagrams, but with different deviation. 

The various differences between them may be due to the fact that the outputs of the 

training datasets are limited and concentrated on a certain part. By eliminating two 

output diagrams (stress-strain curves in Figure 7.1) as test material, the concentration 
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of data in a certain interval can be decreased and thus some curves can be predicted 

with lower accuracy. The deviation between the reference and the predicted yield 

strength varied from 3% to 26%. Due to the importance of the yield strength in the 

selected material model and the entire stress-strain curve, a small variation of this 

parameter can significantly change the resulting stress-strain curve, as discussed in 

Section 5.2.3. The high value of deviation was mainly caused by the limited number 

of training datasets and it is expected to be reduced by increasing the volume of 

training datasets. 

 

Figure 7.2 Comparison between the output of the ANN trained with features extracted from images 

captured from the indented surface of a specimen using a high-resolution 3D measurement system 

(Alicona Infinite Focus), as explained in Section 4.2.2, and the reference values whose mechanical 

properties were determined using different approaches in Chapter Three and Chapter Four, as shown 

in Tables 3.8, 3.10, and 4.2 

Additionally, the concept of material characterization is further developed with the 

current methodology to make it more practical for the end user by using the images 

of the indented specimen surface taken with a simple light microscope as the input of 

the training datasets (Figure 1.1, fourth methodology). As explained in Section 4.2.2,  

the indented surface was examined under a simple light microscope with 40× 

magnification. All images were captured under the same conditions, such as lighting 

and camera position. In total, 11 grayscale images were successfully captured with 

the light microscope from the materials mentioned in Tables 3.8, 3.10, and 4.2 and 

the corresponding heat affected zones.  
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The images had a square shape with dimensions of 200×200 pixels. Image 

segmentation with k-means clustering was also performed on them. The optimal 

number of clusters, extracted by analyzing the Silhouette index of each data point in 

each cluster of k-means results, was 5. Since the images were in grayscale, the 

centroids of the clusters had three identical RGB values. This parameter represents 

the brightness, with 0 defined as black and 1 as white. The indented area is 

recognizable with its darker color as well as its surrounding. The size of the indented 

area is different between images and depends on the depth of the penetration. 

Therefore, instead of color values of each centroid, the number of pixels assigned to 

each cluster was considered as the input of training dataset. The centroids of five 

clusters were then sorted from light to dark as seen in Figure 7.3. In this step, the 

ANN was constructed with 5 input, 5 hidden, and 4 output neurons for the training 

with images from the light microscope. The Tansig and Purelin transfer functions were 

used as the activation function in the hidden and output layer. The learning rate of 

the network was 0.01. Due to the limited training dataset, backpropagation and he 

Levenberg–Marquardt optimization as well as Bayesian regularization were used to 

construct the ANN. This algorithm needs more computation time but is suitable for 

training with limited records. Moreover, the performance of the ANN was analyzed 

with the cross-validation method. 
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Figure 7.3 Feature extraction with the unsupervised learning algorithm from the images of the indented 

surface of a specimen captured with a light microscope, as explained in Section 4.2.2, and training the 

ANN as a supervised learning algorithm with them as input and the corresponding stress-strain curves 

as output 

Figure 7.4 shows the comparison between the predicted stress-strain curves from the 

ANNs trained with the grayscale images taken with a simple light microscope and the 

reference values from Tables 3.8, 3.10, and 4.2. It seems that the ANN had difficulties 

in determining the strain hardening parameters such as Ro and b. However, it could 

estimate Rp0,2 and R∞ with a deviation between the reference and prediction of less 

than 16% and 25%, respectively. Similar to the previous trained ANNs, three ANNs 

were trained and two test materials were excluded in each training to test the 

performance and accuracy of the trained ANNs with them later. Moreover, the similar 

explanation as for Figure 7.2 can be given here to justify the different deviations 

between the reference and predicted stress-strain curves. 
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Figure 7.4 Comparison between the output of the ANN trained with the features extracted from images 

captured with a light microscope from the indented surface, as explained in section 4.2.2, and the 

reference values whose mechanical properties were determined using different approaches in Chapter 

Three and Chapter Four, as shown in Tables 3.8, 3.10, and 4.2 

In the Appendix of the current dissertation, named "Further work", the methodology 

of material characterization by using the information of the indented surface of a 

sample was developed to introduce the concept of material parameter determination 

of a steel by using the images taken from the indented surface. The images were 

captured using a high-resolution 3D measurement system that accurately records all 

deformations on the surface of a specimen, and also using a light microscope. The 

goal of introducing these methods, shown as the third and fourth methods in Figure 

1.1, is to facilitate on-site materials testing and inspection. However, more datasets 

are needed to perform material characterization by using images from the surface of 

the indented samples as a robust approach. Since it was not possible to provide such 

a large volume of datasets in the current work due to lack of resources and 

infrastructure, these methods are presented in the Appendix as Further Work to show 

that there is potential for future research in this area. 
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