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Zusammenfassung

In dieser Arbeit wird ein neuer theoretischer Formalismus eingeführt mit dem Ziel, die phonon-
induzierte Relaxation einer Nicht-Gleichgewichts-Verteilung zu einer Gleichgewichtsvertei-
lung an einer Halbleiteroberfläche numerisch zu simulieren. Die Nichtgleichgewichts-Vertei-
lung wird dabei durch eine optische Anregung erzeugt. Der Ansatz dieser Arbeit besteht in der
Kombination zweier bewährter, herkömmlicher Verfahrenzu einem neuen, umfassenderenden
Zugang: während Halbleiteroberflächenstrukturen mittels der Dichtefunktionaltheorie präzise
beschrieben werden können, kommt für dynamische Prozesse in Heterostrukturen die Dichte-
matrixtheorie zum Einsatz. In dieser Arbeit werden die Parameter für die Dichtematrixtheorie
aus den Ergebnissen von Dichtefunktionalrechnungen bestimmt.

Die Arbeit gliedert sich in zwei Teile. In Teil I werden allgemeine theoretische Grund-
lagen erörtert, von den Grundlagen der kanonischen Quantisierung bis zur Diskussion von
Dichtefunktional- und Dichtematrixtheorie in zweiter Bornscher Näherung. Während der Dich-
tefunktionalformalismus zur Strukturbestimmung lange etabliert ist und fertige Programme
existieren, gehen die Erfordernisse an den Dichtematrixformalismus bezüglich der zugrunde-
liegenden Geometrie und der Anzahl der einbezogenen Bänder über das gewöhnlich in diesem
Gebiet erforderliche Maß hinaus. Ein besonderes Augenmerkwird beim Dichtematrixforma-
lismus daher auf Erweiterungen bestehender Formulierungen unter Ausnutzung geometrischer
Symmetrien der Halbleiterstruktur und der Gleichungen gelegt.

In Teil II wird der Einsatz des entwickelten Formalismus am Beispiel einer Silizium (001)
Oberfläche in 2×1-Rekonstruktion diskutiert. Zunächst werden dazu Bandstruktur-Rechnun-
gen mit Dichtefunktionaltheorie und dem LDA-Funktional durchgeführt, wovon dann dieKohn-
Sham-Wellenfunktionen und Eigenwerte zum Einsatz bei der Berechnung von Wechselwir-
kungsmatrixelementen für die Elektron-Phonon-Kopplungund die optische Anregung kom-
men. Diese Matrixelemente werden für optischeÜbergange von den Valenzbändern in die Lei-
tungsbänder und für die Elektron-Phonon-Prozesse innerhalb der Leitungsbänder bestimmt,
wobei die Kopplung an Phononen mittels Deformationspotentialen realisiert wird. Von be-
sonderem Interesse ist dabei das Zusammenspiel von den Volumenbändern und spezieller
Oberflächenbänder, die von der Rekonstruktion an der Oberfläche herrühren und teilweise die
Bandlücke ausfüllen. Im Anschluß an die Bestimmung der Matrixelemente wird die dynami-
sche Entwicklung mit den oben abgeleiteten Gleichungen simuliert.

Den Abschluß der Arbeit bildet ein Vergleich mit experimentellen Daten. Hierbei wird
eine guteÜbereinstimmung erzielt, sowohl was die zeitliche Abfolgedes Relaxationsprozesses
betrifft, als auch in Hinblick auf die entsprechenden Relaxations-Zeitskalen.



Abstract

In this work a new theoretical formalism is introduced in order to simulate the phonon-
induced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface
numerically. The non-equilibrium distribution is effected by an optical excitation. The ap-
proach in this thesis is to link two conventional, but approved methods to a new, more global
description: while semiconductor surfaces can be investigated accurately by density-functional
theory, the dynamical processes in semiconductor heterostructures are successfully described
by density matrix theory. In this work, the parameters for density-matrix theory are determined
from the results of density-functional calculations.

This work is organized in two parts. In Part I, the general fundamentals of the theory
are elaborated, covering the fundamentals of canonical quantizations as well as the theory of
density-functional and density-matrix theory in 2nd order Born approximation. While the for-
malism of density functional theory for structure investigation has been established for a long
time and many different codes exist, the requirements for density matrix formalism concerning
the geometry and the number of implemented bands exceed the usual possibilities of the exist-
ing code in this field. A special attention is therefore attributed to the development of extensions
to existing formulations of this theory, where geometricaland fundamental symmetries of the
structure and the equations are used.

In Part II, the newly developed formalism is applied to a silicon (001) surface in a 2×
1 reconstruction. As first step, density-functional calculations using the LDA functional are
completed, from which theKohn-Sham-wave functions and eigenvalues are used to calculate
interaction matrix elements for the electron-phonon-coupling an the optical excitation. These
matrix elements are determined for the optical transitionsfrom valence to conduction bands
and for electron-phonon processes inside the conduction bands, where the coupling to phonons
is realized by a deformation potential approach. A special interest is attributed to the interplay
of bulk and surface bands originating from the surface reconstruction, which partly reach into
the band gap. From these matrix elements, the dynamical evolution of the initial electron
distribution is calculated using the derived equations.

The thesis is completed by a comparison to experimental data. Here, a good agreement
is found, both for the temporal evolution of the electron population, and for the relaxation
timescales that can be extracted from the simulated data.
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Chapter 1

Introduction

The material properties of semiconductors have been of a leading technological importance,
as the they are the basis of modern electronics and thereforeessential fortelecommunications,
computer technics, optoelectronicsand many other applications. While the technical develop-
ment of the past decades was mostly based on macroscopicallystructured material, the evo-
lution has proceeded over the microstructured (integratedcircuits in microcomputers) to the
nano-scaled materials (quantum dots, nano wires, quantum wells, negative index materials).
This miniaturization is a great challenge to the design and fabrication of new devices, but it
also requires new theoretical approaches for the description of the physical properties, as both
the electronic and the optical properties enter a new regimeof description: While for the elec-
trons, nanostructures can lead to a confinement and thus modification of the quantum wave
function, the interaction of the nano-structured materialto the light can be controlled to a so
far unreachable level, such that completely new effects canbe designed ([Sch06]).

Besides these technological developments, nano-structures have been in the focus of a wide
academic interest for the past years. This is not only causedby the technological impact of the
new techniques, but also by the fact that new investigation techniques have become available
is the recent years. For experimental investigation, the availability of pulsed coherent laser
light with a fs-period, and a high intensity at a so far unreachable frequency range (THz) has
opened new avenues of analysis, while improved scanning-tunnel and force-field microscopy
on the one hand and miniaturization in material conditioning (like lithography) on the other
hand allow a better manufacturing of the samples. On the theoretical side, a great improve-
ment is achieved due to the still increasing computer power,which allows the calculation of
increasingly complex systems with more and more parameters, but also an important effort
in developing dedicated formalisms both by combining and adapting known approaches and
deriving completely new algorithms is ventured.

As a side effect to this miniaturization challenge, also notice is attracted to some aspects
of long established fundamental research, which can be reinvestigated by improved modern
techniques, or which have an effect on nanostructures. In this context, some aspects of the study
of surfaces are very important for various reasons: on the one side, surfaces or at least interfaces
are a basic ingredient of nanostructures, as these are obtained by assembling layers of different
materials. The ratio of interfaces to volume increases in favour of the interface by decreasing
the structure – it is likely that surface effects are of growing importance by miniaturization. As
an extreme example, some nanomaterials are build up by combining functional molecules to a
surface. On the other side, relaxation phenomena on semiconductors, e.g. as a consequence of
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1 INTRODUCTION

phonon scattering, have come into the focus, as fs-resolvedspectroscopy allows a resolution of
these phenomena on the genuine timescale [Sha99], which arelong known to have effects on
the line shape in the spectra of nano structures (e.g. quantum wells). For ordinary spectroscopy,
the effect of such scattering is out of reach, and the hitherto research was only able to consider
this only on a phenomenological level. For surfaces, the specific electronic structure (which has
a great influence on the the optical properties) can effect very particular coupling mechanisms
to phonons, forming specific modes at the surface.

Among the semiconductors, silicon has always had an outstanding position due to its phys-
ical properties and also its practically unlimited availability. Although it has been widely used
for various kinds of electronic devices, an accurate theoretical investigation of the band struc-
ture is quite difficult due to the non-parabolic character ofthe bandstructure, which prevents
the application of a simple, low orderk · p approach [Kit91]. Another consequence of the
bandstructure is the theoretical description of the optical excitation. Here, theindirect tran-
sitions, which assure the transitions at a low level of energy, are difficult to handle, as they
are a second-order process involving multi-particle scattering with phonons. In addition, a
feature of the electronic band structure of silicon which has attracted interest for a long time
are the various surface reconstructions, in particular thereconstructions of the (001) surface.
By these reconstructions, specific surface bands emerge in the band structure, partly inside the
semiconductor-bandgap, and thus influence the optical absorption [GP94, Hai95, HGL+97]
and also the phonon scattering [JB99, TT03, WKFR04].

1.1 Aim of this work

In this thesis, two focuses are discussed. As first subject, in part I, the development of a new ap-
proach is in the center. This new approach is based on the combination of two long established
methods, which have, however, developed independently, this is comprehensible from the fact
that they focus on different fields of semiconductor physics. As a consequence of the difficul-
ties modelling phonon relaxation in a semiconductor surface environment mentioned above, it
is obvious that enhancements have to be made to existing theoretical descriptions. The dynam-
ics in bulk semiconductors (as in Gallium-Arsenide [SMH+96, LFL+96, HGB00a, HGB00b,
HGB01, HGB03]) and nano-structured systems of various dimensionalities (as for quantum
dots [FWDK03, FSKK06] or quantum wells [WFK03, WFL+04, But07]) has been very suc-
cessfully investigated by using thedensity-matrix formalism[KHSK96, AM98, KSM+99].
While the density-matrix formalism is a general framework leading to differential equations
to describe the dynamics of a quantum system, the dimensionality, energetical properties and
transition rates figure inside these equations as quasi external parameters, in the form of an
electronic band structure and transition matrix elements for the interactions. Here, usually, as
a good approximation for many applications, simple assumptions for the electronic band struc-
ture (parabolic bands) and for the matrix elements (resulting from slowly varying envelope
wave functions (SVEA) with constant microscopical matrix elements) are used, which allow,
due to further internal symmetries, often an analytical simplification of the scatter equations
[FWDK03, WFK03, WFL+04].

For surface structures, however, a description within these these assumptions is at least in
principle dubious – from the fact, that such a system can not be reasonably interpreted as a bulk-
structure or a confined two-dimensional structure [JRM01],no obvious characterization of en-
velope functions or confined parameter restrictions exists[BKSK07b]. As a matter of fact, re-
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Figure 1.1: Schematical Overview of the expected relaxation processesat a silicon (001) surface.
In the background, the bulk bandstructure (grey) and the Ddown surface band (black) are shown.
While the bulk-bulk scattering (blue) yet occurs in a bulk system, the bulk-surface (red) and

surface surface processes (green) are directly related to the surface reconstruction.

cent investigations with an Indium-Phosphide model systemhave shown that the application of
such approximations in this context can lead to a qualitatively good description of the dynami-
cal evolution of a system (cmp. Sec. 1.3) [RWK04b, RWK04a, TGH+04, ZBG+04, ZBFK05],
while a quantitative agreement fails in the first instance. Thus, a more realistic description us-
ing a density-matrix formalism can only be expected by employing more realistic parameters
for the relaxation equation [BKSK07b, BKSK07a]. The first intent of this thesis is to provide
a method to implement structure calculations for surfaces by density-functional theory(DFT)
into the density-matrix framework [RMKR03]. Density-functional theory is one of the leading
methods for theoretical analysis of microscopic structures, ranging from clusters to periodical
systems, and has proved its applicability in numerous contexts. The basic idea of our approach
is to perform structure calculations to obtain an accurate electronic bandstructure, which is
based on the correspondingKohn-Shamwavefunctions and the self-energy correction by the
GW-formalism, and using the resulting wavefunctions to calculate transition matrix elements
for several interactions (in this thesis, the interactionsin the dynamics are however restricted to
optical excitation and phonon-induced relaxation). As an extension, one should also think of
additional calculations for phonon modes [FP95], this, however, is not elaborated in this work.

The second part of this thesis consists of an application of the newly derived formalism.
To this end, phonon-induced relaxation processes are discussed as a consequence of optical
excitation for a silicon (001) surface. An overview over thepossible processes, which are
related to theDdown surface band in such a structure (cmp. Sec. 5.2), are shown inFig. 1.1.
While ordinary density-functional calculations for the silicon (001) 2×1 surface are discussed
in Chapter 5 for several parameters, the calculations of thematrix elements and electronic band
structure for use in the density-matrix calculation are presented in Chapter 6. The dynamical
calculation is finally done in Chapter 7, where the effects ofthe relaxation processes are widely
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(1×1) (2×1) symmetric (2×1) asymmetric (2×2) (4×2)

Figure 1.2: The various surface reconstructions of silicon (001). In the Figures, the two topmost
layers of the surface are shown. The top-level atoms are depicted in green where they are all at
the same height or in red (higher level atom) and blue (lower level atom) where they form a tilted
dimer, the second level atoms are shown in yellow. The surface unit cells for the structure are

symbolized by a black rectangle.

discussed for various initial conditions. A comparison to the few experimental findings in this
field is also discussed.

1.2 Physical aspects of the silicon (001) surface

Besides the known crystallization behaviour in the bulk, where, due to its 4-valence, silicon
condenses in a diamond structure, the silicon (001) surfacehas led to controversial arguments
for a long time. The usual surface reconstruction geometries are shown if Fig. 1.2 [DM00,
DS92, FP95, RBK95]: The 1× 1 surface is the basic unit cell of the (001) surface without
reconstruction. More realistic configurations for the clean surface are 2× 1 reconstructions,
where the bulk lattice has been dissolved at the surface in favor of the formation of a dimer. This
dimer formation is a characteristic of the diamond-like structures and has been experimentally
confirmed since a long time. The symmetric and asymmetric 2× 1 reconstructions differ in
the tilting of the dimer, in the symmetric case, the dimer is flat on the surface, while in the
asymmetric case, an angle to the surface is found. Energetically more favorable than the 2×1
case are the 2×2 and 4×2 reconstructions. These differ from the 2×1 case by the orientation
of the dimers: the asymmetrical 2× 1-reconstruction consists of rows of parallelly oriented
dimers, while at the 2×2 reconstruction, the dimers are alternating, but the neighboring rows
are equally oriented. At the 4×2 reconstruction, finally, the dimers are alternating in thetwo
directions.

At room temperature (300 K), the differences in the formation energy for the asymmet-
rical dimers are too low to allow a clear distinction of the predominant dimer phase at the
surface [DM00]. At low temperature (below 90 K), however, a discrepancy was deduced from
the experimental and theoretical findings concerning the tilting angle: while the most favor-
able reconstruction was theoretically found to be the 4×2 reconstruction and a definite result
was that it is energetically unfavorable to have a flat dimer (the symmetric 2×1 case), at this
surface, there was no experimental evidence for an asymmetric reconstruction. As this devia-
tion could not be explained by thermodynamical reasons, it is today related to the interplay of
the measurement device (often a STM-tip with a certain voltage to the surface) and the dimer
tilting potential [SSB04, SS06]. As a consequence, it is theaccepted position today that at
low temperature the 4× 2 dimer reconstructions prevails. Still the effects of the different re-
constructions for the band structure is a topic of research [Egg05], which requires theoretical
techniques beyond the density functional approach, and still, the results are not coherent. In

12
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V(α)

dimer tilting angleα

Figure 1.3: Schematic illustration of the tilt-
ing potential of the dimer. The tilting to-
wards one side is favored over the other side.

this thesis, due to the example character of the discussion,the calculations are performed for
an asymmetric 2×1 reconstruction.

The tilting of the dimer is dominated by a potential as illustrated in Fig. 1.3, where the min-
imum of the potential is shifted to a non-zero angleα . Such a potential gives rise to a surface-
localized phonon mode1 with a strong coupling to surface-related electronic bands, especially
the states of theDup andDdown bands (cmp. Chapter 5). It is likely that the strong coupling
to the surface attributes an important role in a surface-related relaxation process to this phonon
mode, especially in combination with an optical exposure ofthe surface. In the present work,
however, the phonon spectrum is not calculated microscopically, but only schematically by an
approximated phonon spectrum. Thus the dimer tilting effects are neglected in the phononic
relaxation.

1.3 Optical excitation and phonon induced relaxation at theIndium-
Phosphide (001) surface

One approach to describe the relaxation involving surface states has been formulated by adapt-
ing the specialized density-matrix theory used for the simulation of quantum-heterostructures
to a generalized multiband system and using basically the same assumptions as in the for-
mer case. A surface structure whose electronic properties are approximatively described by
a two-dimensional parabolic band structure has found to be the Indium-Phosphide (100) sur-
face [HBS+86, SB98, SBE+98, FVV+00, SEE+00]. A model [ZBG+04, ZBFK05] has been
developed for a simulation of a Two Photon Photoemission experiment [HSK+93, THE+03,
TGE+05].

In the first step of [ZBFK05], the band structure is describedby a model of four parabolic
bands, which are interpreted as two-dimensional or three-dimensional according to their char-
acter (Fig. 1.4): A bulk valence band, a bulk conduction band, a surface band with a lower
effective mass, intersecting the bulk conduction band and an additional vacuum band to model
the emission process with quasi-free electrons. For every band, a set of wave functions is intro-
duced, for the bulk bands, these are ordinary bulk wave functions based on three-dimensional
Bloch waves (cmp. Eq. (2.25)), while for the two-dimensional bands (the surface and vacuum
bands), a two-dimensional Bloch description in the surface-parallel direction is combined with
an exponential decay in thez-direction (rhs of Fig. 1.4). To allow a simple analytic calculation

1The description in term of phonons (which are a linear approximation for small elongation in a parabolic
potential, cmp. Sec. 2.3.3), might however break down for a highly non-parabolic potential.
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Figure 1.4: Band structure and simplified z-component of the wave functions for the Indium-
Phosphide (100) surface.

of the matrix elements, the surface (atz = 0) is modelled by an abrupt decay at the surface
for the bulk bands and the surface band (which means for the bulk bands that the effect of
surface is neglected) and by coupling to an external plane wave via the formulation of trans-
mission and reflection rates for the vacuum band. For a “realistic” choice of parameters, the
exponential decay rates used in this model are introduced heuristically by extracting a decay
factor from the presumed surface states in a corresponding density-functional theory calcu-
lation [ZBG+04, ZBFK05] for the surface band or by a reasonable choice of the penetration
depth of free-electron states into a solid for the vacuum band [ZBFK05]. For this direct semi-
conductor, all wave functions of the bands (with a two-dimensional dependency onk for the
surface and vacuum bands and a three-dimensional dependency on k for the other bands) are
approximated by the wave function atk = 0, as it is a common choice in nanostructure physics
of two-dimensional systems (as in quantum wells [But07]).

From these definitions, matrix elements for the optical excitation and for the relaxation (via
LO-phonons and Fröhlich-coupling) can be derived. While the electron-phonon interaction
between the two bulk bands evaluates to standard matrix elementsDval/cond

k,k′,q which are known
from bulk parameters, the situation is more complicated forthe two-dimensional bands. For the
matrix elements from the surface band to the vacuum band (here, only the optical interaction
is relevant, as phononic relaxation does not occur into and inside the vacuum states), also
simple expressions are found. For the transitions from bulkto surface and to vacuum however,
the formulation of a coherent expression is not possible based on the given assumptions, as the
wave functions are defined for different dimensionalities.By interpreting the exponential decay
shapes as an envelope to an underlying three-dimensional bulk wave, analytical expressions
based on the bulk matrix elements and the decay rates can be deduced, e.g. the matrix element
for a transition from the bulk conduction band to the surfaceband reads:

Dcond/surf
k,k′,q =

√
e2h̄ωLO

2Vε0εphon
δk′,k+q

iΛ1/2
s

qz−kz+ iΛS
2

Dcond/surf (1.1)

Here,ωLO is the optical phonon frequency,εphon the effective permittivity due to the Fröhlich-
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Figure 1.5: Comparison of theoretical and experimental relaxation at the InP (100) surface. The
theoretical data are simulated with the simplified four modemodel (Fig. 1.4), the experiment is

performed with a two-color-two-photon-photoemission setup. From [TGE+05].

coupling,V the unit cell volume andΛs the surface state decay rate towards the bulk2. Analo-
gous to the models used in density-matrix theory [But07], the matrix element constantDcond/surf

is given by the three dimensional overlap of the Bloch waves for the conduction bulk and sur-
face bands:

Dcond/surf=

∫

Ω
d3rucond

0 (r)usurf
0 (r). (1.2)

With respect to surface theory, this is a dubious assumption, as the decay of the states near
the surface needs not necessarily extend to multiple bulk unit cells. It is also obvious that the
suppression of surface effects in the bulk wave functions can lead to a strong deviation from
the realistic values even if the exponential decay of the surface state is a good approximation.

As result, the theoretical photoemission spectrum can be calculated time resolved by draw-
ing the population of the vacuum state on an energy axis. In Fig. 1.5, the relaxation simulated
with the four-band model is compared to the experimental results from [TGE+05]. It is obvious
that the qualitative features of the relaxation are in a goodagreement: the shape and position
of the peaks and the temporal evolution are quite congruent.A discrepancy is found in this
superficial comparison for the first timesteps (while in experiment, the peak at lower energy,

2The following material parameters are used for this calculation: valence band min. 0 eV, conduction band min.
1.339eV, surface band min. 1.589eV, vacuum band min. 7.7eV,effective masses:mv

eff=−0.45 me, mc
eff=0.078me,

ms
eff=0.2 me, mf

eff=1.0 me, surface band dampingΛs = 0.5nm−1, vacuum band penetration depthΛ f = 2.4nm−1,
ε0=9.52,ε∞=12.35,T=300K, Phonon energy 43meV, dipole matrix elements: val./cond. 0.3 e nm, val./surf. 1.2/0.0
e nm, cond./vac.=0.3 e nm, surf./vac.=0.09 e nm . Cmp. [ZBFK05].
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1 INTRODUCTION

corresponding to the conduction bulk band minimum, is pronounced for every timestep, it ap-
pears only after 250 fs of relaxation in the simulation), andin the relation of the heights of the
two peaks (here, in the experiment, the higher energy peak ismore pronounced, while this holds
for the lower energy peak in the simulation). The biggest handicap in this comparison is how-
ever the fact that the same timescale in the theoretical and experimental relaxation can only be
found by artificially augmenting the size of the wave function overlapDcond/surf(Eq. 1.1, which
are theoretically limited by theCauchy-Schwartz-equation, restricting the scalar product of two
wave functions to one) to a value of 4. This is far from a physically reasonable choice, as the
value of this matrix element is rather expected to be fairly below one.

As a conclusion, we can state that the “classical” modellingfor quantum-heterostructures
is insufficient for the description of surface structures. Areason for this is that while in a
quantum well, the band structure is accurately defined by a few parameters (as the reduced
bulk masses of the compound materials and the thickness of the layers) and a lot of information
about an electron state can be extracted from the same parameters (like the envelope function
in the confinement direction), nothing is known about the electronic structure at a surface from
pure bulk data, and even if the bandstructure could be parametrized, no coherent information
could be extracted from it for the electronic wave functionsand without a time-consuming
solution of the Hamiltonian. As a consequence, it appears favorable to persecute an approach
of calculating the electronic band structure and the corresponding wave functions by anab-
initio method, as it was proposed in Sec. 1.1 and in the following parts of this thesis.

1.4 Other approaches for the investigation of optical excitation or
phonon-induced relaxation

In this section, we will present two methods which have been used to model similar processes
as presented in Sec. 1.1 and Sec. 1.3. Most methods are based on density-functional calcu-
lations. We can however state that none of the methods in thissection provides a general
framework open for the inclusion of additional interactions on a truly quantum-physical basis,
or a coherent connection of the relaxation processes to macroscopical temperatures (which im-
plies the unambiguousness of the final state after relaxation). This doesn’t put the applicability
of the presented methods for specific situations into question.

1.4.1 Quasi-particle corrections to the band structure

While formally higher order correlation effects are described within the theoretical formulation
of density-functional theory, most practically used functionals (in particular the local-density
approximation, cmp. Sec. 3.3) combined with theKohn-Sham-equationslack an appropriate
description of such effects. For semiconductors, where thevalence and conduction bands are
separated by the band gap, one effect of this somewhat reduced formulation manifests in an
often underestimatedKohn-Shambandgap energy as a result of the DFT calculation. This is
mainly due to neglecting polarization effects, which can beintroduced as energy corrections
stemming from quasi-particles formed of an excited electron in the conduction bands and a
missing electron (hole) in the valence bands having a high binding due to their complemen-
tary charges (it should be mentioned that basically all electrons can form quasi-particles with
electron (or holes) in other states, however, they are not necessarily strongly bound).
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An alternative to the standard density-functional theory which is able to to introduce such
quasi-particle corrections has been formulated in theGW-approach by [Hed65]. In their ap-
proach, which is based on aGreen’s function formalism, they introduce a variational principle
to formulate equations for the microscopical permittivityand the self-energy of the electrons
in a structure. For the resulting equations, a perturbationexpansion usingDyson’s equation
is derived. As an input to theGW-formalism,Kohn-Shameigenvalues and the corresponding
eigenfunctions as a result of a density-functional calculation can be used. The result of aGW-
calculation is an adjustment of theKohn-Sham eigenvalues, in the the first order approximation
this is usually denoted asG0W0, as the correction to the eigenvalues are directly computedfrom
theGreen’s functionsbased on the initialKohn-Shameigenfunctions.

The GW-approach is one of the standard methods of structure analysis [ORR02], widely
used for the calculation of optical spectra [DG93, ARSO98] and often very accurate [RQN+05].
For surface structures the application of the formalism is not always possible, especially if they
are metallic. The relatively high computational effort necessary for theGW-calculation makes
it furthermore impossible to use the formalism in slab structures with too many layers (cmp.
Sec. 5.2), so often, in such a context, it has to be decided whether it is more desirable to have
a calculation with a small slab, but an accurate band structure for only a few bands (what can
make the bandstructure too unprecise for the description ofthe surface) or a calculation with a
big slab and an uncorrected band structure for many bands (cmp. Figs. 5.6-5.11).

A drawback of this statical form of quasi-particle correction is that the implicit dynamical
properties of quasi-particles, especially of the energetically relevant excitons, are neglected in
favor of the computation of aa final state after long-time “relaxation” of the quasi-particles.
This is doubtlessly very useful for the derivation of the optical spectra, but in the context of
this thesis, with the aim to discuss the phonon-induced relaxation on a picosecond timescale, a
discussion of the electron-phonon interaction leading to dynamical processes is needed in the
time domain. Additionally, the dynamics might depend on exciton formation. While exciton
formation and dynamics can be discussed in the energy domain– similar to theGW-formalism
– by employing theBethe-Salpeter-equation[WRKP05], it is likely that it interacts with the
phonon relaxation and thus must be discussed dynamically, e.g. within density-matrix theory
by an appropriate Hamiltonian. On the other hand, no method has been found to implement
a phononic relaxation beyond phenomenological theory intothe combined DFT/GW/Bethe-
Salpeter-approach, so an discussion of dynamics on anotherbasis cannot be avoided in this
context.

In silicon, calculations on the basis of theGW-formalism have been performed in various
contexts, different works have been published about the (100) surface [KP95, FP95, RBK95,
SSB04, Egg05, SS06] and its reconstructions. For silicon (amongst other semiconductors), it
has been found that the corrections of the bandgap are quasily constant throughout the whole
Brillouin zone, theGW-correction falls back to a simple augmentation of all conduction band
energies about a certain constant value. As a consequence, also the corrections to theKohn-
Sham-statesare usuallyk-independent (or even vanish). This procedure is usually denoted as
scissors-shiftof the band structure. In the calculations described in Chapter 7, we apply such a
scissors shift, as there is no known alternative method (besides a full implementation of dynam-
ical quasi-particle interaction) to obtain a fairly realistic band structure from the demonstrably
incorrect result of a density functional calculation within thelocal-densityapproximation3.

3The local-density approximation cannot generally give correct results for the bandstructure calculation, as some
features are unrealistic, e.g. the lack of self-interaction in the functional and the missingδV/δn-discontinuity.
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1.4.2 Time-dependent density-functional theory

A different extension to density-functional theory is the integration of dynamical evolution of
the electron state into the formalism [RG94]. A time-development of the electron distribution
can only expected in a non-equilibrium environment, thus, this approach requires the adaption
the ground state formulation in DFT towards a non-equilibrium behaviour. While optical exci-
tation can be considered by dipole coupling to a classical field, the strength of this approach lies
in the consistent dynamical calculation of electronic and lattice properties: Through the elec-
tronic density distribution known at every timestep, also the system of ions can be dynamically
evolved on the basis of the classical forces. By this, it is possible to trace the lattice vibrations
without the need to apply a phonon formalism, such that the dynamics is not restricted to linear
approximations. This formalism is used in various contexts, e.g. for molecular vibrations, and
has also been applied to the time-evolution of the silicon (001) surface [vHLP05].

In comparison to the dynamical formalism in this thesis, theevidence of a time-dependent
density-functional approach is based on a different level.While the dynamical evolution in the
energy-space, based on the population of particular electron states based on a pure quantum-
dynamical description, is in the foreground in the density-matrix formalism, the calculation of
the dynamical development of an electron distribution and amore or less classical evolution
of the lattice is performed in TDDFT. While the integration of quantum-coherence effects is
one of the central points in DMT, this is not directly possible in TDDFT. On the other hand,
TDDFT allows a much more detailed analysis of the nature of lattice vibrations, which can be of
interest for the investigation of surface dimer vibrationsnot necessarily in a harmonic potential
(cmp. Fig. 1.2). However, the dissipation process to finallycool the lattice vibrations into an
equilibrium distribution is still unsatisfactory for TDDFT, while it is an intrinsic property of
the density-matrix formalism through the bath hypothesis (cmp. Sec. 4.2.3).
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Theoretical Foundations

19





Chapter 2

Time dependent quantum theory

The electronic properties of a solid state material under non-equilibrium conditions have to
be described in many-particle quantum theory due to the existence and interaction of many
electrons and nuclei. In this chapter, the basic concepts ofquantum theory incorporating non-
equilibrium dynamics are presented. The basic idea of our approach is to use a two step ap-
proach by dividing the statical contributions of the Hamiltonian (which then can be calculated
using anab-initio approach, Chapter 3) from the dynamical non-equilibrium contributions (us-
ing density-matrix theory, Chapter 4).

2.1 Schr̈odinger picture vs. Heisenberg picture

A quantum system is described by a HamiltonianH [Sch02, SW93, CTDL07]. The Hamilto-
nian incorporates a kinetic energy termT and a potentialV:

H = T +V. (2.1)

While T is generally time independent,V might explicitly depend on time. The stateΦS(t) of
the quantum system is found by solving the fundamental time-dependentSchr̈odinger equation:

ih̄
∂
∂ t

ΦS(t) = TΦS(t)+VΦS(t). (2.2)

Contributions toV can usually be obtained by taking a classical potential a transcribing all
contained observables (e.g. electron density or position)to quantum mechanical operators.

A physically identical formulation of a quantum system can be achieved by transforming
the operators and wave functions with an unitarian operatorU(t, t0). By applying the time-
development operator

U(t, t0) = e−ih̄
∫ t
t0

H(t ′)dt′
, (2.3)

we obtain an alternative description, where the quantum state ΦH = U(t, t0)ΦS(t) is no longer
time dependent. The temporal development of the quantum system is now uniquely determined
by the operators. Corresponding to theSchr̈odinger-equation(2.2), the dynamical evolution of
the operators is determined by theHeisenberg-equationof motion for an operatorO:

ih̄
d
dt

O = [H ,O]+ ih̄
∂
∂ t

O. (2.4)
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By now, no special assumptions about the many-particle quantum system have been used
to develop the equations. The kinetic energy operatorT of an n-particle quantum system is
usually decomposed into a sum of single-particle kinetic energy operators:

T = ∑
i

− h̄2

2mi
∆r i . (2.5)

The potential energy operatorV, however, can generally not be treated in a similar way, as
all inter-particle potentials are also described by this part of the Hamiltonian. Nevertheless, it
can be split into a decomposable part (e.g. a static externalor background potential) and an
interaction part:

V = ∑
i

vi(r i)+Vint(r1, ..., rn), (2.6)

where thevi(r i) now only depend on the coordinate of a single particle. Furthermore, the
interaction potentialVint can be interpreted in terms of a statical partVstat

int and a dynamical

partVdyn
int . The idea of splitting-up the potential is to separate the parts that contribute to the

equilibrium state of the system from those which only have aneffect in the case of a non-
equilibrium electron population. The latter can be either understood in terms of an excitation
potential (e.g. coupling to an electromagnetic field) or a relaxation potential which tends to
restore the equilibrium state. The Schrödinger equation of the statical part can then be solved
by an adapted method (cmp. Chapter 3) using the statical Hamiltonian

Hstat= T +∑
i

vi(r i)+Vstat
int , (2.7)

whereas in the dynamical part, the remaining dynamical contributions to the Hamiltonian are
treated as a perturbation to the statical part by an appropriate approach (cmp. Chapter 4):

Hdyn = Hstat+Vdyn
int . (2.8)

In addition to those potential related assumptions, also simplifications are applied to the
wave functions. Corresponding to the decomposition of the statical potential in (2.6), we ap-
proximate the many-particle wave functionΦ(r1, ..rn) by a totally antisymmetric product func-
tion, where the wave functionsφi(r) of the single-particle states of an effective single particle
Hamiltonian occur. This can be expressed in terms of theslater-determinant:

Φ(r1, ..., rn) =
1√
n!

∣∣∣∣∣∣∣

φ1(r1) · · · φn(r1)
...

. . .
...

φ1(rn) · · · φn(rn)

∣∣∣∣∣∣∣
(2.9)

It is obvious that this simplification is no constraint for a quantum system that only contains a
potential which can be split into single contributions depending on a single coordinate without
interaction terms. Within the interaction contribution ofthe potential, on the other hand, this
approximation has to be justified for the particular system.

2.2 Quantum field theory – canonical quantization procedure

The formalism introduced in Sec. 2.1 suffices to describe a quantum system with a fixed particle
number and a given set of quantum states. If, however, a quantum statistical discussion is
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2.2 QUANTUM FIELD THEORY – CANONICAL QUANTIZATION PROCEDURE

necessary or the number of particles varies, the formalism has to be extended. The canonical
way to find a many particle description is to apply a canonicalfield quantization procedure
to the quantum fields in the Hamiltonian, which also providesthe possibility to treat quasi-
particles (like excitons, phonons) or massless particles (like photons) quantum mechanically
(usually this is referred to assecond quantization). The canonical prescript to quantize a system
is as follows:

1. From a known wave equationW(ξi, ξ̇i ,∇ξi , t) = 0 (this can be for example aSchr̈odinger
equation, an electromagnetic wave equation, a phonon dispersion), aLagrange-density
L [BD65, Büc04] is constructed to fulfill the variational equation

W(ξi , ξ̇i ,∇ξi, t) = ∂t
∂L

∂ (∂tξi)
+

3

∑
j=1

∂ j
∂L

∂ (∂ jξi)
−L

ξi
= 0. (2.10)

2. A canonical momentum for the field variableξi is defined by

πi =
L

∂ (∂tξi)
. (2.11)

Using this momentum, we can formulate a Hamiltonian density

H = ∑
i

πi∂tξi−L (2.12)

and a Hamilton-Function
H =

∫
dr3

H . (2.13)

The field variablesξi are now interpreted as field operatorsΞi, which is achieved by
introducing fundamental commutation relations for the field operators, which correspond
to classical Poisson-bracesPoisson bracesfor the field functions [BD65]. The character
of the particle described byΞi determines the choice of a commutator[O,O′]− = OO′−
O′O for bosons or an anticommutator[O,O′]+ = OO′+O′O for fermions:

[Ξi,Π j ]± = δi j (2.14a)

[Ξi ,Ξ j ]± = 0 (2.14b)

[Πi,Π j ]± = 0 (2.14c)

By this step, the Hamilton-function is transformed into a Hamilton-operator. The time-
development of observables can then be evaluated using theHeisenberg-equation(2.4),
as the field operatorsΞi are now canonically in theHeisenberg-picture(Sec. 2.1).

A usually more convenient representation of the quantum fields can be obtained by per-
forming a mode expansion. The field functionξi(t, r) and the corresponding field operatorsΞ
depend on time and location. On the other hand, solving the field equation (2.10) for a field
variableξ into a complete set of complex modes, the mode operatorsm†

k(t) andmk(t) can be
defined

Ξi(r , t) = ∑
k

(
f 1
r ξ k

i (r)mk + f 1
i (ξ k

i )∗(r)m†
k

)
(2.15a)
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a1

a2

b1

b2

Figure 2.1: Example of a two dimensional hexagonal unit cell (lhs) and the corresponding
reciprocal lattice vectors and first Brillouin zone (rhs)

Πi(r , t) = ∑
k

(
f 2
r ξ k

i (r)mk + f 2
i (ξ k

i )∗(r)m†
k

)
(2.15b)

and the new commutation relations for the mode operators arethen given by

[mk,m
†
l ]± = δkl, [m†

k,m
†
l ]± = 0, [mk,ml ]± = 0. (2.16)

The choice of the factorsf 1
r , f 1

i , f 2
r and f 2

i depends on the character of the fieldsξi . For a
classical real field for example, we havef 1

r = 1, f 1
i = 1, f 2

r = i and f 2
i = −i. The correct

commutator depends, as in Eqs. (2.14), on the nature of the particle, for fermions, the choice is
the anticommutator, for bosons the commutator.

2.3 Quantum physical properties of a regular solid state material

The quantum mechanical properties of periodical systems can be described on a different level
of abstraction with respect to a free system [AM81, Czy00]. Periodicity in a solid state material
can be expressed through the lattice axesa1, a2 anda3. Inside the parallelepiped spanned by
the axesa1, a2, a3, the unit cell of the structure is located, which is repeatedin the specific
directions with a period of the corresponding lattice vector. Consequently, a lattice vector

Ri ∈ {n1a1 +n2a2 +n3a3} (2.17)

points to the identical origins of the lattice. The quantum description of the periodical system
with theSchr̈odinger equationcan be entirely derived from a single unit cell. Corresponding
to this restriction in real space, the area in the according Fourier (ork-) space is limited by the
reciprocal lattice{b1,b2,b3}, which is given by the definition

b1 =
2πa2×a3

a1×a2 ·a3
, b2 =

2πa3×a1

a1×a2 ·a3
, b3 =

2πa1×a2

a1×a2 ·a3
, (2.18)

and the reciprocal lattice vectors are then – similarly to Eq. (2.17) – defined by

Gi ∈ {n1b1+n2b2 +n3b3}. (2.19)
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Thefirst Brillouin zonecan be constructed from the reciprocal lattice vectors as the space which
is bound by the condition

2k ·Gi ≤G2
i (2.20)

for all Gi . The relations between the real space andk-space representations are illustrated in
Fig. 2.1.

The periodicity of the structure implies a translational symmetry in space by the lattice
vectorsa1, a2 and a3 and their multiples. This property can be expressed by introducing a
translation operatorTR

TR f (r) = f (r +R) (2.21)

which can be defined by
TR = eR·∇, (2.22)

such that periodicity is established whenTRi andH commute, and for normalization, all valid
eigenfunctions ofH must also be eigenfunctions ofTRi to an eigenvalue with a modulus of
one.

2.3.1 Two dimensional systems

The three-dimensional definitions in Eq. (2.18) can in principle be formulated for a system
where phase space of the electrons is of lower dimensionality [BE88, Lüt93, Bec03, DS96].
This can be either a restricted system (like a quantum well ora quantum dot) or a naturally low
dimensional system (like a graphene-sheet). In this context, the surface structures have a special
status, because although the symmetrical properties are those of a two-dimensional system, it is
in fact three-dimensional, as the third dimension extends on a whole half-space. In numerical
calculations, this situation is usually described by aslab approach: the surface structure is
specified in three dimensions, where the directions parallel to the surface are given in their
genuine surface symmetry and the periodicity is used for thecorresponding coordinates. The
direction perpendicular to surface is described to a certain depth by specifying a finite number
of layers and a vacuum layer.

In this thesis, to make a clear distinction between the dimensionalities of differents systems,
we introduce a two-dimensional vectorv =




v1

v2

0


 . (2.23)

In the surface structures, it is assumed that the three-dimensional lattice vectora3 is always
parallel to thez-direction and oriented perpendicular to the surface. It determines the extension
of the slab perpendicular to surface, while the other vectorsa1 anda2 are given by the geometry
of the surface elementary cell. Although a three-dimensional Brillouin zone can be defined by
these three vectors (using Eq. (2.18)), the discussion of the physical properties is only based on
the two reciprocal lattice vectorsb1 =

2πa2×ez

a1×a2 ·ez
b2 =

2πez×a1

a1×a2 ·ez
(2.24)

whereez is the unit vector inz-direction.
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2.3.2 General considerations on electronic properties

A formulation of the staticalSchr̈odinger-equation(2.2) with a periodic potential allows to re-
strict the possible solutions the unimodular eigenfunctions of the translational operator (Eq. (2.21))
[Czy00, AM81]. This is fulfilled by introducing the so-called Bloch-functions

φnk(r) = eikr unk(r), (2.25)

whereunk(r) = unk(r +Ri) is a lattice-periodic function. Thek-vector is an element of the first
Brillouin zoneΩ (Eq. (2.20)) and constitutes a continuous quantum number additionally to the
band indexn. It is convenient to describe the periodicity ofunk(r) by a Fourier series, where
the reciprocal lattice is exploited:

unk(r) = ∑
G

unk(G)eiG·r . (2.26)

For obvious reasons, orthonormality of these wave functions is no longer constituted on the
whole spaceR3, but can be defined on the volume of the unit cellΩ = |a1× a2 · a3|. The
corresponding orthogonality relation is

∫

Ω
unkun′k = δn,n′ , (2.27)

or, in terms of the Fourier representation 2.26,

∑
G

unk(G)un′k(G) = δn,n′ . (2.28)

Together with the representation of the electronic waves 2.25, it follows the orthogonality rela-
tion ∫

Ω
φ nkφn′k = δn,n′δk,k′ . (2.29)

Also the corresponding energy eigenvalues of theSchr̈odingerequation are defined by the
two quantum numbersn andk:

Enk , k ∈Ω. (2.30)

2.3.3 Vibrations (Born-Oppenheimer approximation)

In principle, the dynamics of both electrons and nuclei are important for the quantum mechani-
cal description of a solid. Nevertheless, the masses of the electronsmand the nucleiMi and the
corresponding kinetic energies are fairly different (m≪Mi). The impact of the nuclear motion
on the electrons is much bigger than vice-versa, and the wavefunctions of the nuclei are much
more localized than those of the electrons. The dynamics of the nuclei can be described on a
classical basis without restricting the quantum mechanical description of the electrons. This
approach is called theBorn-Oppenheimer approximation[Czy00, SW02]. On the other hand,
the nuclear coordinates can be decomposed into

Ri(t) = Ri

∣∣∣∣
0
+ci(t), (2.31)

where theci(t) denote a small deviation from the minimum position of total energyRi|0. A
perturbation expansion of thevibrationsci(t) is used to express the potential. Although they
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are in principle a discrete set of nuclear elongation coordinates, it is useful to interpret the vi-
brations as continuous fieldsci(r , t), where the index now counts the different atomic positions
in the unit cell. With this declaration, a quantization procedure (Sec. 2.2) can be applied and
they can be described as vibrational quantaphonons.

The potential which acts on a nucleus originates mostly fromCoulomb interaction (cmp.
Sec. 2.3.4). The core electrons are usually bound to the nuclei, such that it is better to refer
to the ions as the oscillating particles, although the electrons have practically no effect on the
mass. By a series expansion of the ion-ion potential by the vibrational fields at the ion posi-
tions, the first order ofci(r , t) vanishes due to the placement of the ions near their equilibrium
positions (where the total energy reaches is minimum value), such that the first non-vanishing
order is the second. As a consequence, the forces on the ions are determined by a superposition
of Hooke’s law for the neighbouring ions, and the corresponding dynamical equations yield for
the ion at positionRi with massMi :

Mi c̈i(r , t) = ∑
j

DRiR j c
j(R j + r , t). (2.32)

The dynamical matrixDi j
RiR j

is given by the second derivatives of the potential between the ion
at positionRi and the ion at positionR j in the elementary cell.

While the vibrational fieldsci(r , t) are useful for classical interpretation of the elongations,
it is more convenient for quantization and calculus to introduce the normalized complex modes
by

ci(r , t) =
1
2

(√ 1
h̄Miωi

si(r , t)+

√
1

h̄Miωi
si(r , t)

)
, (2.33a)

ċi(r , t) =
1
2i

(√ ωi

h̄Mi
si(r , t)−

√
ωi

h̄Mi
si(r , t)

)
. (2.33b)

Due to the translational invariance of the periodical structure and the homogeneity of the dif-
ferential equation (2.31) , the normalized modes have to fulfill the ansatz

si(r , t) = eiq·r−ωi tei , (2.34)

whereei is the polarization vector for modei andq is a vector from the first Brillouin zone.
By inserting this into the dynamical equations (2.31), thesecular equationfor the phonon
dispersion can be obtained, and by choosing theei as eigenvectors of the dynamical matrix, the
phonon dispersion can be calculated from the eigenvalues ofD(q):

−ω2
i = ei ·D(q)ei . (2.35)

The number of phonon modes can be calculated from the number of ions in the unit cellN
as 3N, where a degeneracy of some modes is usual, according to the symmetry of the structure.
The first 3 modes, which haveωi(0) = 0, are called acoustical modes, while the other 3(N−1),
with ωi(0) 6= 0, are the optical modes. For a smallq, the acoustical modes can be approximated
by a linear dispersion with the sonic speedci asωacoust= ci |q|, while optical phonons have a
more or less flat dispersion and can often be approximated by aconstantωopt = ω0.
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2.3.4 Coulomb interaction

Due to the nature of the electrons and ions in a solid state material as charged particles, the most
important interaction is the Coulomb interaction. Inside asolid state material, the classical
Coulomb energy for a classical charge distributionρ(r) is cast into several contributions which
take into account the many-particle nature of a solid [SW02,SW93]:

VCoul =
1
2

∫
d3r

∫
d3r ′

e2

4πε0

ρ(r)ρ(r ′)
|r − r ′|

=
1
2∑

i j

e2

4πε0

ZiZ j

|Ri−R j |
︸ ︷︷ ︸
nucleus-nucleus potential

+
1
2 ∑

i

∫
d3r

e2

4πε0

ZiρCore(r)
|Ri− r |

︸ ︷︷ ︸
nucleus-core electron potential

+
1
2

∫
d3r

∫
d3r ′

e2

4πε0

ρCore(r)ρCore(r ′)
|r − r ′|︸ ︷︷ ︸

Core electron-electron potential
︸ ︷︷ ︸

independent of shell electrons ˆ= constant

+
1
2 ∑

i

∫
d3r

e2

4πε0

Ziρ(r)
|Ri− r |

︸ ︷︷ ︸
nucleus-electron potential

+
1
2

∫
d3r

∫
d3r ′

e2

4πε0

ρCore(r)ρ(r ′)
|r − r ′|︸ ︷︷ ︸

Core electron-electron potential
︸ ︷︷ ︸

VS

(2.36)

+
1
2

∫
d3r
∫

d3r ′
e2

4πε0

ρ(r)ρ(r ′)
|r − r ′|︸ ︷︷ ︸

electron-electron potential

.

TheZi refer to the charges of the nuclei, which are assumed as point-like particles, due to their
limited extension with respect to the valence electrons.ρ(r) corresponds to the electron-related
charges, which can be delocalized in a solid. Usually, a distinct description of core electrons
and valence electrons is desirable, as the chemical latticebonding is mainly related to the va-
lence charges, while the core charges are strongly attachedto the nuclei. To this end, a core
chargeρCore(r) is introduced for the non-valence electrons. TheBorn-Oppenheimer approxi-
mation(Eq. (2.31)) is used to separate nuclear and electronic motion by inserting Eq. (2.31).
As a consequence, an interaction term of phonons and electrons can be derived by performing
a series expansion of the phonon modesci(r , t) using a functional derivative (cmp. Sec. B.2.2):

VS≈VS

∣∣∣
s=0

+

∫
d3r ∑

i

ci(r , t)
δ

δci(r , t)
VS. (2.37)

The overall Coulomb energy is then given by

VCoul =E0+

∫
d3rVNuclρ(r)+

∫
d3rVCore(r)ρ(r)

︸ ︷︷ ︸
VLat

(2.38)

+

∫
d3r ∑

i

ci
δ

δci

∫
d3r ′VCoreρ(r ′)

︸ ︷︷ ︸
electron-phonon-coupling

+

∫
d3r
∫

d3r ′
e2

4πε0

ρ(r)ρ(r ′)
|r − r ′|︸ ︷︷ ︸

electron-electron-coupling

,

whereVLat is the effective lattice potential including core-electron interaction and nuclear in-
teraction. Using Eq. (B.11), the electron-phonon couplingterm can be expressed in terms of
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the following formula [SW02]:

VEl-Ph =
∫

d3r ∑
i

(
ci(r , t)D0

i (r)+
∂ci(r , t)

∂ r
D1

i (r)
)

ρ(r). (2.39)

The electron-phonon potentialDi(r) can in some cases be derived microscopically, but can also
be treated as parameter.

The transcription of the interaction energy contributionsto quantum mechanical quantities
is achieved by replacing the electron density functionρ(r) by the electron density operator for
a many-particle system

ρ(r) = e∑
i

δ (r − r i), (2.40)

where ther i are the coordinates for theN electrons. The energy expectation value is then
obtained by calculating the expectation value with theN-particle wave functions (2.9):

ECoul = 〈Φ|VCoul|Φ〉. (2.41)

The evaluation of this expression for the particular elements in Eq. (2.38) yields, by making
use of the orthonormality of the one-particle wave functions φi(r):

ELat =E0 +∑
i

∫
d3rVCore(r)φ i(r)φi(r), (2.42a)

EEl-Ph =∑
i

∑
j

∫
d3r
(

ci(r , t)D0
i (r)+

∂ci(r , t)
∂ r

D1
i (r)

)
φ (r)φ(r), (2.42b)

EEl-El =∑
i

∑
j

∫
d3r

∫
d3r ′

e2

4πε0

φ i(r)φi(r)φ j(r
′)φ j(r ′)

|r − r ′|
︸ ︷︷ ︸

Hartree-term

, (2.42c)

−∑
i

∑
j 6=i

∫
d3r
∫

d3r ′
e2

4πε0

φ i(r)φi(r ′)φ j(r
′)φ j(r)

|r − r ′|
︸ ︷︷ ︸

exchange term

.

While the existence of multiple electrons in the system has no significance for theELat and
EEl-Ph contributions, it has an effect for theEEl-El interaction. Here, the term consists of two
parts: theHartree-termrefers to classical interaction of single electrons, whereas theexchange
term is due to the fact that Pauli’s principle requires a totally antisymmetric wavefunction (Eq.
(2.9)). For a single-particle theory, all terms besides theexchange term can be described by
a local (multiplicative) interaction termV(r) in the Hamiltonian, while the latter is cast into a
non-local (integrative) expression.

2.3.5 Electron-Light coupling

In contrast to the inherent statical Coulomb interaction ofthe charged particles, the coupling
to an external electromagnetic field is included by a U(1)-invariance of the wave function into
the Hamiltonian1 [BD65, AE75, SW93]. The electromagnetic field is expressed by the vector

1An exact description of the particle-electromagnetic fieldinteraction would require a coherent solution of
electromagnetic field equations (Maxwell-equations) inside the material with the boundary conditions given by the
external field. Keeping in mind that the light pulse should model a short, weak exposure, our approximations seem
tolerable.
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potentialA(r , t), which is set into Coulomb gauge [Jac99]:

∇ ·A = 0, (2.43)

and the electrostatic potentialV(r , t), which can be cast to zero without loss of generality. The
vector potential enters theSchr̈odinger equation through the replacement of the momentum
operatorp by

p =
h̄
i
∇−→ h̄

i
∇−qA(r , t), (2.44)

effecting several contributions to the original equations:

ih̄
d
dt

φ(r , t) =− 1
2m

(
h̄2∆−2qA(r , t)

h
i

∇+q2|A(r , t)|2
)

φ(r , t). (2.45)

Two approximations are now used with regard to this equation. First, due to the long wave-
length of the optical light compared to the typical size of microscopic structures, the spatial
dependence of the vector potential can be neglected, soA(r , t) is expressed asA(t). This is
usually called thedipole approximation. As a second approximation the|A(t)|2-contribution
in Eq. (2.45) is neglected, as the fields used in our discussion are rather small and are therefore
of minor influence due to the quadratic order.

The use of the vector potentialA(t), which is only given indirectly by the physical ob-
servables electrical and magnetical field, is often inconvenient for the description of the optical
interaction. An equivalent form of the coupling based on theelectrical field can be obtained by
applying a U(1)-phase transformation to the wave function in the Schrödinger equation2 by

U(r , t) = e
i
h̄qrA (t). (2.46)

The transformed Schrödinger equation then reads

ih̄
d
dt

φ(r , t) =− h̄2

2m
h̄2∆φ(r , t)+qrE(t)φ(r , t). (2.47)

The most significant difference to Eq. (2.45), besides the emergence of the electrical field
E(t) =−d/dtA(t), is the appearance of thedipole operatord = qr . It can be shown that under
normal conditions, the two formulations (2.45) and (2.47) are quasi identic. To this end, if we
look at a matrix element of two arbitrary states|φi〉 and|φ j〉, which corresponds to an optical
transition from state|φi〉 to state|φ j〉, it can be seen that

〈φi |r |φ j〉=
〈φi |[r ,H]|φ j〉

E j −Ei
=

ih̄
m(E j −Ei)

〈φi |p|φ j〉. (2.48)

While the pulse is now sufficiently long to ensure a sharp transition (E j −Ei
∼= h̄ω , whereω

denotes the frequency of the light), the two formulations (neglecting the|A|2-term in (2.45))
yield exactly the same expression, as the electrical field isrelated by derivative to the vector
potential.

2This also implies a gauge transformation of the vector potential A(t) such thatÃ(t) = 0.
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2.3.6 Statical and dynamical system Hamiltonian

By combining the interaction terms in sections 2.3.4 and 2.3.5 with the kinetic energy contribu-
tion, the overall Hamiltonian (2.1) can be obtained. As presented in Eq. (2.6), this Hamiltonian
is then divided into a statical and a dynamical part. The complete expression for the Hamilto-
nian is given by

H = T +VEl +VPhon+VEl-Opt+VEl-Phon+VEl-El. (2.49)

In our approach, the static contribution to the Hamiltonianis equivalent to the ground state,
as we will assume that the final state after relaxation does not differ significantly from the
ground state. In the ground state discussion, we will assumethat the system is neither perturbed
through vibrations nor by optical excitations. The Coulomb-interaction between the electrons,
on the other hand, is of course important, but only between the electrons in the ground states,
while other electrons are not affected. Consequently, the ground-state Hamiltonian reads:

Heq = T +VEl +Veq,El-El. (2.50)

The remaining terms in Eq. (2.49) are treated in a non-equilibrium approach by second quanti-
zation of the electron and vibrational (phonon) fields. The single-particle description of the
ground-state theory enables us to interpret the entire ground state Hamiltonian (2.50) as a
single-particle Hamiltonian usable for the quantization procedure (Sec. 2.2):

Hnoneq= Heq+VPhon+VEl-Opt+VEl-Phon+Vnoneq,El-El. (2.51)

The quantization will be performed in Sec. (4.1). While the calculation of the ground state will
be elaborated in Chapter 3, the dynamical theory incorporating the non-equilibrium contribu-
tions (Eq. 2.51) is discussed in Chapter 4.

31



2 TIME DEPENDENT QUANTUM THEORY

32



Chapter 3

Basic aspects of Density-Functional
Theory

Although there are known numerical approaches to find the solutions of the single particle
Hamiltonian (2.50) in an iterative and self-consistent way, the numerical effort is considerable
and often too high. Based on the decomposition of the wave functions by a slater determi-
nant (2.9), the electron-electron interactionVel-el in the Schrödinger equation, is given by two
contributions (cmp. Eq. (2.42c)) [Czy00]:

Vel-elφi(r) =
e2

4πε0
∑

j

∫
d3r ′

φ j(r
′)φ j(r ′)

|r − r ′| φi(r)

︸ ︷︷ ︸
Hartree-term

+
e2

4πε0
∑

j

∫
d3r ′

φ j(r
′)φi(r ′)

|r − r ′| φ j(r)

︸ ︷︷ ︸
exchange-term

. (3.1)

While the Hartree-term can be calculated with justifiable effort due to its dependency from the
overall electron density

f (r) = 〈Φ|ρ(r)|Φ〉 = ∑
i

∣∣φi(r)
∣∣2, (3.2)

the exchange term requires a numerical integration for every wave functionφi(r). Apart from
the high cost through this calculation step, the scaling in dependence of the size of the system
(number of electronic states, discretization) is bad. In spite of the highly increased computa-
tional potential in comparison to the past, the systems thatcan be investigated by thisHartree-
Fock-approachare still very limited in size.

In 1964, Hohenberg and Kohn [HK64] developed a different approach. Their basic idea
was that the ground state of a quantum system is injectively related to the electron densityf (r).
In theHohenberg-Kohn-Theorem, they have shown that the ground state energyE0 is an one-
to-one mapping of the ground state electron densityf0(r). The proof of this theorem is based
on the facts that different ground state energies in a non-degenerate system require different
Hamiltonians and that furthermore a difference in Hamiltonians of the form (2.50) with equal
electron density can only affect the single-particle potential, because all other contributions
rely on the density. The single particle potential, on the other hand, is not influenced by the
electronic structure and is non-ambiguous for a system1. Hence, the task is to derive a set of

1It should however be noted that there exist a trivial exception to that statement. The minimum value of the
energy has no physical relevance and can be chosen arbitrarily, therefore the ground state energy is only fixed up to
a constant. This exception is mentioned in the original Hohenberg-Kohn theorem [HK64].
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3 BASIC ASPECTS OFDENSITY-FUNCTIONAL THEORY

equations that no more rely on the exchange-term of single particle wave functions, but on the
particle densityf (r).

3.1 Variational principle

From the fact that the ground state energy is un-ambiguous, it follows by the Hohenberg-Kohn
theorem that this also holds for the electron density. On theother hand, as the densityf (r) can
be chosen from a continuous configuration space, the minimumof the ground state functional
EGround[ f (r)] can be found using a variational principle. The electron density at this minimum
is then the ground state density. The density can however notbe chosen fully independently,
but it must reflect the fixed particle numberN of the system through

∫
d3r f (r) = N. (3.3)

The variation can now be performed by using the functional derivative (B.3) with the this
constraint by introducing Lagrange multiplicators for theconstraint conditions:

δ
δ f (r)

(
EGround[ f (r)]−µ

∫
d3r f (r)

)
!
= 0. (3.4)

By now, no assumptions have been made with respect to the formof the ground state energy
EGround and the electron densityf (r). In the spirit of a Hartree-Fock approach, it is now self-
evident to propose a partition of the energy in the followingway:

EGround[ f (r)] = TS[ f (r)]+ELat[ f (r)]+EH[ f (r)]+EXC[ f (r)]. (3.5)

TS[ f (r)] stands for the kinetic energy of the system of non-interacting electrons,ELat denotes
the statical Lattice potential, andEH[ f (r)] andEXC[ f (r)] represent the Hartree and exchange-
correlation energy terms (Eq. (2.42c)). The “correlation”denotes an extension to the pure
“exchange” term based on the fact that the product wave function Eq. (2.9) is not exact and
doesn’t take many-particle effects into account. Such corrections to the one-particle description
can be numerically calculated by a many-particle theory (e.g. Green’s functions [Hed65]). The
first two of those contributions can be expressed by

ELat =
∫

d3rVLat f (r) (3.6)

and

EH =
∫

d3rVH f (r) =
∫

d3r
∫

d3r ′
e2

8πε0

f (r ′) f (r)
|r − r ′| (3.7)

The electron densityf (r) can be interpreted corresponding to Eq. (3.2). By this step,we
implicitly assume that the electronic states can be calculated by solving a statical single particle
Schrödinger equation for the single particle states inf (r), namely

Eiφi(r) = Tφi(r)+VSφi(r). (3.8)

Following Eq. (2.5), the one-particle kinetic energyT =−h̄2/2me∆, where all statical contribu-
tions and contributions from other electrons are now combined in the single-particle potential
VS.
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3.2 Kohn-Sham equations

By executing the variations of Eq. (3.5), a set of serviceable equations can be found. This
derivation was first performed by W. Kohn and L. Sham in 1965 [KS65], who gave the name
to the resulting equations. From Eqs. (3.5) and (3.4), we getthe relation

0 =
δEGround

δ f (r)
−µ =

δT
δ f (r)

+VLat(r)+VH(r)+
δEXC

δ f (r)
−µ . (3.9)

While the conversion fromELat toVLat is a more or less trivial calculation following Eqs. (3.6)
and (3.7), no explicit expression for the relation betweenT and f (r) on the one hand andEXC

and f (r) on the other hand is known in advance. Otherwise, by the variation of ES, under the
constraint

∫
dr f (r) = 1, we obtain

0 =
δES

δ f (r)
−µS =

δT
δ f (r)

+VS−µS. (3.10)

By subtracting Eqs. (3.9) and (3.10), the kinetic energyT can be eliminated and a definite
expression forVS is obtained:

VS(r) = VLat +VH +
δEXS

δ f (r)
+ µ−µS. (3.11)

The two constant Lagrange parametersµ andµS cannot influence a wave function calulated
with VS and are suppressed. By this equation, a direct connection between the single particle
wave functionsφi and the density-dependent Hartree potentialVH and exchange-correlation
potentialδEXS/δ f (r) is found. The electron density, however, is related to the wave functions
by Eq. (3.2). On this basis it is now possible to express a self-consistent algorithm by a con-
secutive evaluation of the electron density and the single particle Schrödinger equations (3.8).
The conception of such an algorithm is shown in Fig. 3.1.

The ground state energy from these calculations is finally found using Eq. (3.5). We find

EGround= ∑
i

Ei−
∫

d3rVS(r) f (r)+

∫
d3rVLat(r) f (r)+EH +EXC. (3.12)

By inserting Eq. (3.11), this finally results in

EGround= ∑
i

Ei−
1
2

EH−
∫

d3r
δEXC

δ f (r)
f (r)+EXC. (3.13)

The Kohn-Shamequations are generally only valid for the ground state density and the as-
sociated lowest single-particle electron states. It is however possible to calculate more states
than needed for the ground state in the single particle Schr¨odinger equation (3.8), but as no
Coulomb and exchange interaction is taken into account in Eq. (3.11) for these states (only
the ground state density is incorporated), their values areonly approximative. In this spirit, is
also possible to use a thermal distribution function (Fermi-function) for the occupation of the
electronic states, this can be important for the investigation of temperature related effects at the
Fermi-level. For excited states, generally also many-particle-effects of higher order (beyond
the exchange-correlation functional), namely quasiparticle interactions (for exampleexcitons),
are important for the determination of the energy structure.
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Test wave functionsφi(r)

��

Calculate densityf (r) = ∑i |φi(r)|2

��

CalculateVS( f (r), r)

��

Solve single electron Schrödinger equation

Eiφi(r) =− h̄2

2me
∆φi(r)+VSφi(r)

��

EGround(n)−EGround(n−1) small?
Φ(n)−Φ(n−1) small ?

BC

ED

no

oo

yes

��

atomic forces small? no //

yes
��

Change atomic positions

ED
oo

Ei , φi(r), atomic positions

Figure 3.1: Flow diagram for a typical density-functional calculationrun. The initial test
functions are usually chosen according to the specific geometrical requirements of the sys-

tem [BKNS97].

3.3 Exchange-Correlation functional

While all “classical” interactions for the electrons (VLat, VH) are implemented exactly in the
Kohn-Sham-equations, the crucial point of the theory is theformulation of the exchange-
correlation functionalEXC. Although theexchangepart of this functional is conceptionally
based on the exchange part in Eq. (3.1), there is no direct analytical transcription of the depen-
dency on the wave functionsφi(r) to a dependency on the electron densityf (r).

By specific, simplifying assumptions on the electronic system, it is however possible to find
approximated expressions forEXC. In the so calledJellium model, where the positive charges
are introduced as a constant homogenous background charge,it is possible to derive an analytic
expression for the exchange term [Czy00]:

EX =
∫

dr
(
− e2

16π2ε0
(3π2 f (r)

1
3

)
f (r). (3.14)

TheEC contribution can only be solved analytically for the special casesf → 0 and f → ∞.
Usually, interpolations of numerical simulations of the intermediate densities are used for the
calculation. This approach is referred to as thelocal-density approximation(LDA).

We should mention that there are also more elaborated extensions to the local-density ap-
proximation. In thegeneralized gradient approximation(GGA), also the dependency on∇ f (r)
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is parametrized in the simulation of the functional. For molecular physics, various functionals
are used depending on the purpose.

3.4 Structure relaxation

Although in the derivation scheme of density-functional theory (sections 3.1 and 3.2) the lattice
enters as an external statical potential, it is possible to calculate the classical forces on the ions
induced by both ionic and electronic forces. If the Ground state energy (depending implicitly on
the ionic coordinates through the lattice and core electronpotential) is interpreted as a classical
potential [Hel37, Fey39], the force on an ioni at positionRi is defined as

Fi =−∇Ri

(
Eionic +EGround

)
. (3.15)

The energyEionic is the classical potential energy of the ion-ion interaction (cmp. Eq. (2.36)).
Apart from the discussion in terms of the density in Sec. 3.2,there is also a description in terms
of a “Ground state Hamiltonian” as

EGround= 〈Φ|HGround|Φ〉, (3.16)

which can be constructed using Eqs. (3.11) and (3.13). With this identity, we can express the
gradient of the ground state energy as follows:

∇Ri EGround=∇Ri 〈Φ|HGround|Φ〉 (3.17)

=〈Φ|
(
∇Ri HGround

)
|Φ〉+

(
∇Ri 〈Φ|

)
HGround|Φ〉+ 〈Φ|HGround

(
∇Ri |Φ〉

)
.

After applying the Hamilton operator to|Φ〉 and〈Φ|, the last two terms can be combined:

=〈Φ|
(
∇Ri HGround

)
|Φ〉+EGround∇Ri 〈Φ|Φ〉.

By the normation of the electronic wave functions|Φ〉, the second term vanishes. InHGround,
only theVLat-contribution has an explicit dependency onRi, so we finally conclude the follow-
ing expression:

Fi =−∇Ri Eionic−
∫

d3r∇RiVLat f (r). (3.18)

Note that the application of the Hamiltonian in Eq. (3.17) isonly valid for an electronic sys-
tem in an eigenstate. Therefore it is important at this pointthat the electron density entering
Eq. (3.18) is well converged towards the ground state configuration. From the knowledge of
the forces, ionic moves can be parametrized, leading to a relaxation of the structure towards
the ground state equilibrium position. This is only reasonable as an outer loop to an ground
state calculation (as in Fig. 3.1). Another application is the computation of a “frozen phonon”
spectrum, where the ions are explicitly put into a non-equilibrium position to evaluate their
force constants.

3.5 Pseudopotentials

As introduced in Eq. (2.38) the core and valence electrons can be described separately due to
the properties of chemical bonding. Hence, it is a convenient way and a good approximation
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cutoff
radius

ΦHrL

VHrL

Figure 3.2: Schematic description of the pseudopotential approximation. The nuclear potential
(bottom, black, dashed) is replaced by an effective core potential (red), where the interaction of
core electrons incorporated. Outside a cutoff radius, the potentials are equal. This procedure
reduces the number of knots of a valence wave function (top; black, dashed: valence wave

function for nuclear potential, red: valence wave functionfor core potential.

[Ham89] to drastically reduce the computational effort to replace the potentials of the nuclei
(which form the basic background lattice potential) by an effective pseudopotential, where
also the effects of the core electrons are included (Fig. 3.2). An important feature of such a
substitution is that the number of knots of a valence wave function is also reduced, as the core
electrons are no more considered as solutions of the underlying Schrödinger equation (this, of
course, induces an additional reduction of the numerical effort).

The derivation of such apseudo-potential, however, is a non-trivial task, as some require-
ments are imposed on the type of such a potential function. Apart from the basic request that
the potential and the valence wave functions should be identical to the preliminary nuclear so-
lutions outside of a certain cutoff radius, it is also desirable that the charge contained inside the
cutoff radius is conserved, or the integral of the valence wave functions over the cutoff radius
should remain the same (referred to as “norm conserving pseudopotential”).

For the use of a pseudopotential within a density-functional calculation, the interaction of
the valence electrons can be subtracted. The transfer from the spherical symmetry of the ionic
subsystems to a Cartesian symmetry of a lattice requires furthermore a non-local integration of
the pseudopotential which can be treated in a combined local/non-local description [Ham89].

3.6 Calculational aspects of density-functional theory inperiodical
systems

While so far no assumptions about the nature of the underlying material system are included
into the equations, another aspect of using a density-functional algorithm is the choice of the
numerical description of the wave functions, densities andpotentials. The most significant
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feature of a solid state system is its periodicity (cmp. Sec.2.3), the wave functions can be
expressed explicitly by a form as in Eq. (2.25). The natural choice for the basis of the wave
functions in a periodical system is therefore to express thewave functions in terms of the lattice
periodic Bloch-wavesunk(G) (Eq. (2.26)), where

φnk(r) = ∑
i

unk(G)ei(G+k)r . (3.19)

The phase factoreikr is only relevant in the description of the wave functions, while all po-
tentials and the electron density are truly lattice periodic and can, as the Bloch-waves (2.26),
be described by a fourier series onG. Consequently all equations besides the one-particle
Schrödinger equation (3.8) can be entirely formulated with the Bloch-wavesunk(G), while the
latter can be transformed by explicit evaluation of the phase factors into

Enkunk(r) =− h̄2

2me

(
k2+2ik∇+ ∆

)
unk(r)+VSunk(r). (3.20)

The two great advantages of the Fourier-series representation are now that some operators
used in this Schrödinger equation comply very well with thek-space picture, as they can be
expressed much simpler in Fourier space, e.g. the∇ and ∆ operators in Eq. (3.20) become
multiplicative, and that the transformation from real space tok space can by implemented very
efficiently byFast-Fourier-Transformation. Hence it is possible to maintain the real space and
the k-space representations of the wave functions and the densities in parallel and use for all
specific potential contributions the representation that is suitable. With it, the Schrödinger
equation (3.20) is again transformed and finally yields

Enkunk(G) =− h̄2

2me

(
k +G

)2
+Vrealspace(r)unk(r)+∑

G′
Vk-space(G−G′)unk(G′). (3.21)

The diagonalization of this equation can be performed by an appropriate algorithm, usually an
iterative approach is used in this context.

For the use of the Fourier-series in a numerical computation, the choice of a cutoff con-
dition, which limits the number of frequency contributionsto the series, is crucial. The most
coherent method is to define a cutoff energyEcutoff, so that

h̄2

2me

(
G+k

)2≤ Ecutoff (3.22)

holds, e.g. only theG-vectors satisfying the condition are considered in the series. By this
setting, the shortest wavelength of the spatial oscillations for the wave functions in real space
is limited homogeneously for all spatial directions toλ =

√
2meEcutoff/h̄. Another great ad-

vantage of the Fourier description is clarified by the following considerations: the number of
G-vectors inside the “energy sphere” ((3.22)) can be estimated by the relation

nG ≤
4π
3

√
2meEcutoff

3

h̄3|b1×b2 ·b3|
, (3.23)

where the rangen1 of G-vectors in the first lattice coordinate is within{−Ecutoff/|b1|,Ecutoff/
|b1|} and similarly for the other lattice coordinates (cmp. Eq. (2.19)). In the corresponding
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b1

b2

k-space

a1

a2

realspace

Figure 3.3: Illustration of the relations between the k-space and real space representations. In
k-space, only the points fulfilling the energy condition(3.23)(indicated by the black circle) are
used for the expansion of the basis, while in real space, all points are required. The energy
condition also ensures an equidistant mesh in all directions in real space, whereas in k-space,

not the mesh, but the extension is equidistant.

real space representation with a corresponding number of supporting points, the number of
necessaryR-vectors is given by

nr ≥ 8
E3

cutoff

|b1||b2||b3|
, (3.24)

as basically all real-space points have to be used. The result shows that the description in
k-space can help to save a considerable amount of memory.

3.7 Structure calculations for surfaces

The calculation of a surface structure according to the slabmodel (Sec. 2.3.1) affects a breaking
of the periodicity in the surface-perpendicular direction. This is in contradiction to the Fourier-
series representation of Eq. (3.19), where an explicit periodicity is implied also in that direction.
This disaccord can be resolved by thesupercell approach. The basic idea of this approach is
to enlarge the slab unit cell artificially in thez-direction to create a vacuum layer of a certain
depth above or below the structure. If the vacuum layer is chosen sufficiently thick, the bound
states in the structure (which are the only ones of interest here) decline to zero inside the
vacuum. Consequently, no coupling (tunneling) of the electron states can occur between several
periodical slabs, and the wave functions are entirely located inz-direction inside a single slab. A
direct consequence of this is that the dependency of the wavefunction on thek-vector vanishes
in the z-direction: due to the vacuum, the electron problem for the potential Vslab(z) in z-
direction can be solved inside the slab without taking the periodicity into account. First, we
consider the Hamiltonian in one isolated slab. As the wave functionsφi(z) of this problem are
bound, a discrete energyEi spectrum, independent from a continuous wave vector variable kz,
is expected:

Eiφi(z) =− h̄2

2me
∆φi(z)+Vslab(z)φi(z). (3.25)
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Figure 3.4: Schema of the supercell model.

On the other hand, for the repeated slabs, the description from Eq. (3.20) for a Bloch wave
functionunkz(z) must also be valid because of the imposed periodicity by the Fourier expansion:

Enkzunkz =− h̄2

2me

(
k2

z +2ikz
∂
∂z

+
∂ 2

∂z2

)
unkz +

∞

∑
k=−∞

Vslab(z−k|a3|)unkz. (3.26)

Now, as the wave functions are localized and bound to only oneof the potentials in the sum in
Eq. (3.26), the energy values in Eqs. (3.25) and (3.26) must be the same. This is only possible
by choosingunkz according to

unkz(z) = e−ikz

(
(z−avac) mod |a3|+avac

)
φn(z), (3.27)

whereavac is az-coordinate of a location in the vacuum where the wave functionφn(z) vanishes
– hence the discontinuity of the exponential does not matter. Consequently, the two represen-
tations (3.25) and (3.26) fall back to the same energy valuesand represent, up to a phase factor
which is constant on one slab, the same wave functions. Furthermore, thekz-dependency has
been factored out. As a conclusion, it can be stated that the supercell approach is an extension
to the standard density-functional approach for periodical systems. It does not require a change
of the code.

The implications of the geometry of the slab, however, require some additional thoughts.
Besides the choice of a certain surface orientation, there does not need to be any relation be-
tween the symmetries of the underlying bulk system and the slab. The symmetries of the slab
mirror the symmetries at surface (inx andy direction), which is often reconstructed and there-
fore only matches the bulk lattice symmetry by specific integer factors in the lattice directions.
This effect, of course, is irrelevant for the lower atom layers in the slab. In thez-direction,
there is obviously no symmetry at all under normal conditions. At the “back end” of the slab
(denoted as “rear surface” in Fig. 3.4), no surface with reconstruction should be modeled, but it
is intended to simulate a preferably smooth transition to the bulk material (cmp. sec 2.3.1). To
this end, chemical bondings (which arise from the cut of the structure at the back end) are not
left open (as it is the case at the surface – this allows for thereconstruction), but passivated by
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Figure 3.5: Illustration of the link between atomic positions, electronic potential and particle
density f(r in the supercell approach for a Silicon (100) 2×1 reconstruction. The atomic posi-
tions are indicated by the yellow circles (Silicon) and bluecircles (passivating Hydrogen). The
electronic potential for four different cuts along the z-axis is shown in black, the partially inte-
grated electron density is depicted in red. At the surface (lhs), the tilted dimer reconstruction is
clearly observable. In the vacuum zones left and right of theslab, the potential converges to the

vaccum level, while the electron density approximates zero.

geometrically placed protons ( ˆ= Hydrogen ions), which counterbalance the electrical charges
and effect a consistent fading out of the wave functions at the rear side. As an example the
positions of the atoms, the potential inz-direction and the total electron distribution are shown
for a silicon (001) 2×1 surface slab calculation of seven layers in Fig. 3.5.
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Chapter 4

Density-Matrix Theory

While the density-functional theory presented in Chapter 3can be employed to investigate the
equilibrium properties of a surface system, we will developequations to examine the dynam-
ical properties in this Chapter [RK02, HJ98]. The approach discussed within density-matrix
formalism is based on a canonically quantized description (cmp. Sec. 2.2) of the expecta-
tion values of the microscopic population and polarizations. The non-equilibrium dynamics
is driven by those parts of the total interaction potential (Eq. (2.49)) which are not contained
in the ground state Hamiltonian (Eq. (2.51)). The solutionsof the ground state are evaluated
using density-functional theory, consequently, the second quantization here will be based on
the DFT-solutions of theKohn-Shamequations.

4.1 Canonical Quantization of the system variables

There are three fields occurring in the Hamiltonian which arecandidates for a canonical field
quantization procedure (Sec. 2.2, [BD65, Hak73, Mah81]): the electronic wavesφnk(r), the
phonon fieldci(r , t) and the vector potentialA(r , t). Nevertheless, only the first two of these
will be treated in a quantum mechanical way, whereas the latter will be kept in the classical
picture.

The global Lagrange-densityL for an interacting single-particle system with electrons
obeying the Schrödinger equation and phonons as classicalvibrations coupled to electrons is
given by

L =ih̄φ
∂
∂ t

φ + ih̄φ
∂
∂ t

φ − h̄2

2m
∇φ∇φ −Veqφφ −Vel-el,noneqφφ −Vel-lightφφ (4.1)

+
Mi

2 ∑
i

∂
∂ t

si ∂
∂ t

si −∑
i

∑
j

U i jkl
R j

si
kTRi s

j
l −∑

i
Vel-phonsiφφ ,

where the phonon potential∑i ∑ j U
i jkl
R j

si
kTRi s

j
l incorporates the translational operator Eq. (2.21).

By applying the generalized Lagrange formalism (Sec. B.3),the Schrödinger equation for the
electron fieldsφ , the adjoint Schrödinger equation for the fieldsφ and the phonon motion
equation Eq. (2.32) is obtained again.

The canonical momenta (Eq. (2.11)) for the fields are then given by

πφ =ih̄φ (4.2a)
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πφ =ih̄φ (4.2b)

πsi =Mi
∂
∂ t

si (4.2c)

and we can calculate the Hamilton density (Eq. (2.12)) as

H =
h̄2

2m
∇φ∇φ +Veqφφ +

h̄
i
Aφ∇φ +Vel-el,noneqφφ (4.3)

+
1

2Mi
∑

i
πsi πsi +∑

i
∑

j
U i jkl

R j
si
kTRi s

j
l +∑

i
Disiφφ .

After transforming the fields to the field operators

φ →Φ πφ = φ →Φ†

si → Si πsi →ΠSi , (4.4)

the Hamiltonian in second quantization can be written down:

H =− h̄2

2m

∫
d3r∇Φ†∇Φ +

∫
d3rVeqΦ†Φ +

∫
d3r

h̄
i
AΦ†∇Φ +

∫
d3rVel-el,noneqΦ†Φ (4.5)

+∑
i

1
2Mi

∫
d3rΠSi ΠSi +∑

i
∑

j

∫
d3rU i jkl

R j
Si

kTRi S
j
l +∑

i

∫
d3rDiSiΦ†Φ.

Now, mode expansions are applied for the three fields. For theelectrons, the mode expansion
consists of the ground state wave functions that solve the Schrödinger equation for the ground
state Hamiltonian (2.50) and can be obtained as discussed inChapter 3:

Φ(r , t) =∑
nk

eiωnktφnk(r)ank (4.6a)

Φ†(r , t) =∑
nk

e−iωnktφ nk(r)a
†
nk (4.6b)

so that the commutation relations for those fermioniccreationandannihilation operators are
then given corresponding to Eq. (2.16):

[a†
nk ,an′k′ ]+ = δnn′δk,k′ . (4.7)

For the bosonic phonon modes, the expansion is slightly moreelaborate. The complex modes
are the same as in Eq. (2.33). The link between these modes andthe real field operators is then:

Si =
1
2 ∑

q

(
si
q(r)e

iωiqtb†
iq +si

q(r)e
−iωqtbiq

)
(4.8)

ΠSi =
i
2 ∑

q
ωiq
(
si
q(r)e

iωiqtb†
iq−si

q(r)e
−iωiqtbiq

)

In this case, the commutators apply for the phonon creatorsb†
iq and annihilatorsbiq:

[b†
iq,bi′q′ ]− = δi,i′δq,q′ . (4.9)
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Figure 4.1: Illustration of the processes
treated by the Hamiltonian(4.11). Besides
optical excitation, electronic redistribution
ank → a†

n′k′ by phonon emission biq or ab-

sorption b†i,−q is considered.

The time-dependence of the modes can be released by switching to the Heisenberg picture and
applying a unitary transformation (2.3) to the electronic and phononic modes and operators.
As a result, the operators are now time dependent, while the modes are not. By inserting these
complete mode expansions into the Hamiltonian (4.5), the field equations (the Schrödinger
equation (2.2) for the equilibrium part and the vibrationalwave equation (2.32)) and the com-
pleteness can be used and a commonly known simplified form of the Hamiltonian is derived:

H =∑
nk

Enka†
nkank

︸ ︷︷ ︸
Eq. electrons

+∑
nk

∑
n′k′

∫
d3rφ nk(r)

h̄
i

∇φn′k′(r)
︸ ︷︷ ︸

=pn′k′
nk

A(t)a†
nkan′k′

︸ ︷︷ ︸
electron-light coupling

+Vel-el,noneq︸ ︷︷ ︸
neglected

+∑
iq

h̄ωiq
(
b†

iqbiq +
1
2︸︷︷︸

const. energy
neglected

)

︸ ︷︷ ︸
Eq. phonons

+∑
nk

∑
n′k′

∑
iq

∫
d3rDisi

q(r)φ (r)φ(r)
︸ ︷︷ ︸

=Dn′k′
nk
iq

a†
nkan′k′biq

︸ ︷︷ ︸
phonon destruction

(4.10)

+∑
nk

∑
n′k′

∑
iq

∫
d3rDisi

−q(r)φ (r)φ(r)
︸ ︷︷ ︸

=Dn′k′
nk

i,−q

a†
nkan′k′b

†
iq

︸ ︷︷ ︸
phonon creation

.

Two contributions in this Hamiltonian are not discussed anyfurther. First, the coulomb interac-
tion between the electrons is neglected during the dynamical evolution of the non-equilibrium
system. It is known from the physical properties of quantum heterostructures that the corre-
sponding dynamical effects are rather slow, and furthermore, the deviation from the equilib-
rium is small, and for an relaxation well above the band edge,excitonic effects can be ne-
glected [Bin92, SKS+96, HKK03]. This behaviour can not be expected for a silicon surface
structure, as excitonic effects are visible in the surface dynamics [WKFR04]. Nevertheless, in
the current formulation of our theory, we do not consider thecoulomb interaction at the surface.
The second suppressed term in (4.10) is theh̄ωiq contribution inside the phonon Hamiltonian.
Although it supplies a constant contribution of 1/2h̄ωiq to total the energy and usually affects
the lattice constant by a factor of about 0.05% due to anharmonicity effects of the phonon po-
tential, it has no influence on the dynamics discussed in Sec.4.2 and can therefore be neglected
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for this part of the discussion.
The interaction matrix elementspn′k′

nk andDn′k′
nk;i,q are entirely determined by the one-particle

wave functions. The final goal of this work is the descriptionof a surface structure in the
slab geometry (cmp. Sec. 2.3.1), consequently, the three-dimensionalk-vectors occuring in
Eq. (4.10)) can be replaced by two-dimensional ones (k).

With these declarations and after regrouping the last two terms of Eq. (4.10) (wheresi
q(r) =

si
−q(r) due to an internal symmetry of Eq. (2.35)), the resulting Hamiltonian is finally

H =∑
nk Enka†

nkank +∑
iq h̄ωiqb†

iqbiq +∑
nk ∑

n′k′ pn′k′
nk A(t)a†

nkan′k′
+∑

nk ∑
n′k′∑iq Dn′k′

nk
iq a†

nkan′k′(biq +b†
i,−q)). (4.11)

This Hamiltonian is furtheron used to derive the dynamical evolution of the system, which will
be outlined in the next section.

4.2 Dynamical equations

In second quantization, all observables are expressed in terms of the creation and destruction
operators of the involved quantized fields, notably the electronic operatorsa†

nk andank, and the
phononic operatorsb†

iq andbiq. The observables that give an insight in the dynamical evolution
of the system in our case are the electronic density (cmp Eq. (3.2))

f (r) = ∑
nk ∑

n′k′ φnk(r)φn′k′(r)a†
nkan′k′ (4.12)

and the macroscopic polarization, which can be related to electrodynamical Maxwell-material
equations,

P(r) = ∑
nk ∑

n′k′ φ nk(r)φn′k′(r)dn′k′
nk a†

nkan′k′ (4.13)

with the dipole matrix elementdn′k′
nk , which is bound to the momentum matrix elementpn′k′

nk
by Eq. (2.48). Measurable quantities are given by the expectation values〈ψ |O|ψ〉 of these
operators. The quantum state|ψ〉 is not known, it can only be described statistically in terms
of the density operator

ρ = ∑
nk pn′k′

nk |φnk〉〈φn′k′ |. (4.14)

Here, the population polarizationspn′k′
nk describe the probability to find an electron in the super-

position of the two single particle states|φnk〉 and|φn′k′〉. Forn = n′ andk = k′, this signifies
the population probability of the state|φnk〉, so we make the additional definition

fnk = pnk
nk (4.15)

In an unperturbed system, only these diagonal parts of the density matrix are non-vanishing
(pure states). The expectation value of an operatorO is then given by

〈O〉= tr(ρO) (4.16)
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with the trace trO = ∑i〈φi |O|φi〉. For the operatorsa†
nkank anda†

nkan′k′ , one obtains the expec-
tation values

〈a†
nkank〉= fnk and 〈a†

nkan′k′〉= pn′k′
nk . (4.17)

As a consequence, the physically investigatable quantities can be totally expressed in terms of
the statistical population densitiesfnk andpnk

nk.

4.2.1 General construction scheme and hierarchy problem

The actual dynamics of a second-quantized system in Heisenberg representation can be investi-
gated by evaluating the Heisenberg equations of motion (2.4). By this, the dynamical evolution
of operators can be calculated [HK90, Kuh98].

To find the temporal evolution of the electronic density (4.15), we apply Eq. (2.4) with
the Hamiltonian (4.11) to the polarization operatora†

nkan′k′ and make use of the commutation
relations (4.7):

ih̄
d
dt

(a†
mlam′l′) =

[
a†

mlam′l′ ,H]
=
(
Eml−Em′l′)a†

mlam′l′ +A(t)∑
nk(pnk

mla†
nkam′l′ −pm′l′

nk a†
mlank)

+∑
nk ∑

iq(Dml
nk
iqa†

m′l′ank(b†
i,−q +bi,q)−Dm′l′

nk
iq a†

mlank(b†
i,−q +bi,q)). (4.18)

This set of equations is not closed, as these dynamical equations depend on the phonon-assisted
density matricesa†

mlankb†
i,−q anda†

mlankbi,q. The dynamics of these quantities can again be
found by evaluating the corresponding Heisenberg equations of motion (2.4):

ih̄
d
dt

(a†
mlam′l′b†

i,−q) = [a†
mlam′l′b†

i,−q,H]

=
(
Eml−Em′l′ + h̄ωiq)a†

mlam′l′b†
i,−q +A(t)∑

nk(pnk
mla†

nkamlb†
i,−q−pm′l

nk a†
mlankb†

i,−q)
+∑

nk ∑
iq (Dml

nk
iqa†

m′l′ank(b†
i,−qb†

i,−q +biqb†
i,−q)−Dm′l′

nk
iq a†

mlank(b†
i,−qb†

i,−q +biqb†
i,−q))

+∑
nk ∑

n′k′Dn′k′
nk
iq a†

mlam′l′a†
nkan′k′ (4.19a)

and

ih̄
d
dt

(a†
mlam′l′bi,q) = [a†

mlam′l′bi,q,H]

=
(
Eml−Em′l′− h̄ωiq)a†

mlam′l′bi,q +A(t)∑
nk(pnk

mla†
nkamlbi,q−pm′l

nk a†
mlankbi,q)

+∑
nk ∑

iq (Dml
nk
iqa†

m′l′ank(bi,qb†
i,−q +biqb†

i,−q)−Dm′l′
nk
iq a†

mlank(b†
i,−qb†

i,−q +biqb†
i,−q))

+∑
nk ∑

n′k′Dn′k′
nk
iq a†

mlam′l′a†
nkan′k′ . (4.19b)
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Here, again, we can see that the resulting system of equations is not closed and couples now
to products of four operators. The dynamical equations for the four-order-terms would, them-
selves, couple to contributions containing even more-operators-terms. The only way to solve
this hierarchy of equations is to introduce a method to truncate the series and to obtain a closed
set of differential equations, which can possibly be solved. The order of truncation, however,
has to be justified by the plausibility of the results.

4.2.2 Correlation expansion

A reasonable approach to an infinite-order problem is to use amean-field method. The idea
behind this is that usually, the higher an order gets, the smaller the effects of the dynamical
evolution are. However, the expectation value of anN-operator product (calledN-order corre-
lation) is not independent from e.g. two-operator products, as generally, theN operators can
be approximatively split intoN expectation values (one operator is thus in themean-fieldof the
others). Similarly, also products of more operators which are contained in the original set ofN
operators can make a contribution, and basically every possible combination of operators has
to be considered.

A general scheme to expand anN-order correlation into all possible sub-correlations is
illustrated by the following equations [AS94, Fri96]: for aset of operatorsOi, the first 3 orders
can be separated according to

〈O1〉=〈O1〉c

〈O1O2〉=〈O1O2〉c + 〈O1〉c〈O2〉c (4.20)

〈O1O2O3〉=〈O1O2O3〉c +sig(P1)〈O1O2〉c〈O3〉c

+sig(P2)〈O1O3〉c〈O2〉c +sig(P3)〈O2O3〉c〈O1〉c + 〈O1〉c〈O2〉c〈O3〉c.

The sig-operator depends on the nature of the particles (fermions or bosons) and on the number
of permutationsP using appropriate commutation relations (which, in fact, determine the
sign); for bosons, sig equals always one, for fermions, sig is given by(−1)Pi . Following the
prescriptions indicated in Eqs. (4.20), the correlation expansion can be performed to any order.
For the correlations〈〉c on the rhs of Eq. (4.20), we can now assume that their contribution to
the dynamical evolution is reduced by increasing order, so it is reasonable to neglect higher
order correlations starting from a certain order.

In the case of a system with electronic and phononic operators, all contributions up to
second order can be calculated explicitly. For electrons, as long as particle conservation is
expected, only pair of creators and annihilators are non-vanishing, for phonons, correspond-
ing assumptions can not be made at this level, but will be based on further assumptions in
Sec. 4.2.3. The correlations mentioned in Eqs. (4.18) and (4.19) are:

〈a†
nkan′k′〉=〈a†

nkan′k′〉c
〈b†

iq〉=〈b†
iq〉c

〈b†
iqbi′q′〉=〈b†

iqbi′q′〉c + 〈b†
iq〉c〈bi′q′〉c (4.21)

〈a†
nkan′k′b†

iq〉=〈a†
nkan′k′b†

iq〉c + 〈a†
nkan′k′〉c〈b†

iq〉c
〈a†

nkan′k′b†
iqbi′q′〉=〈a†

nkan′k′b†
iqbi′q′〉c + 〈a†

nkan′k′〉c〈b†
iqbi′q′〉c + 〈a†

nkan′k′b†
iq〉c〈bi′q′〉c

+ 〈a†
nkan′k′bi′q′〉c〈biq〉c + 〈a†

nkan′k′〉c〈b†
iq〉c〈bi′q′〉c
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〈a†
nka†

mlan′k′am′l′〉=〈a†
nka†

mlan′k′an′k′〉c + 〈a†
nkan′k′〉c〈a†

mlan′k′〉c−〈a†
nkan′k′〉c〈a†

mlam′l′〉c.
These prescriptions can now be used inside Eqs. (4.18) and (4.19). All contributions with more
than three operators are then neglected, so a new and closed set of differential equations for the
correlation terms is obtained.

4.2.3 Bath hypothesis

While a complete evaluation of the phonon dynamics is involved, it is usually a good ap-
proximation for systems with weak excitation and weak coupling under thermal conditions to
describe the phonons by a thermal distribution function. The assumption of thermal phonons is
valid for most calculations in nanostructured materials [Bin92, But07], although the quality of
the approximation can generally not be shown in detail. In silicon, the bath hypothesis should
at least lead to a good description for the bulk phonon modes.A consequence of applying this
approximation is that the phonon operators are not considered as dynamical variables and are
not calculated in the differential equations. As a result ofthe assumption of equilibrium, all
expectation values besides the phonon occupation

niq = 〈b†
iqbiq〉 (4.22)

vanish, as the phonons remain in a pure state. This applies especially for the expectation values
of single phonon operators like〈b†

iq〉, which appear numerously in Eq. (4.21). The distribution
function used is, due to the bosonic nature of the phonons, the Bose-distribution

niq(T) =
1

e
h̄ωiq
kBT −1

(4.23)

whereT is the temperature of the system,kB the Boltzmann constantand h̄ωiq the phonon
energy.

By applying now the correlation expansion and the bath hypothesis in the expectation val-
ues of the dynamical equations (4.18) and (4.19) and inserting (4.17), we obtain a simplified
system of differential equations, where

ih̄
d
dt

pm′l′
ml =

(
Eml−Em′l′)pm′l′

ml +A(t)∑
nk(pnk

mlpm′l′
nk −pm′l′

nk pnk
ml) (4.24)

+∑
nk ∑

i′q′(Dml
nk
iq 〈a†

m′l′ankb†
i′,−q′〉+Dml

nk
i′q′〈a†

m′l′ankbi′q′〉−Dm′l′
nk
i′q′ 〈a†

mlankb†
i′,−q′〉−Dm′l′

nk
i′q′ 〈a†

mlankbi′q′〉)
yields for the polarization densities and

ih̄
d
dt
〈a†

mlam′l′b†
i,−q〉=(Eml−Em′l′ + h̄ωiq)〈a†

mlam′l′b†
i,−q〉

+A(t)∑
nk(pnk

ml〈a†
nkam′l′b†

i,−q〉−pm′l′
nk 〈a†

mlankb†
i,−q〉) (4.25a)

+∑
nk ∑

i′q′(Dml
nk
i′q′ pnk

m′l′niq(T)−Dm′l′
nk
i′q′ pnk

ml(niq(T)+1
))

+∑
nk ∑

n′k′Dn′k′
nk
iq pn′k′

ml pm′l′
nk −∑

nk ∑
n′k′Dn′k′

nk
iq pm′l′

ml pn′k′
nk
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and

ih̄
d
dt
〈a†

mlam′l′bi,q〉=(Eml−Em′l′ − h̄ωiq)〈a†
mlam′l′bi,q〉

+A(t)∑
nk(pnk

ml〈a†
nkam′l′bi,q〉−pm′l′

nk 〈a†
mlankbi,q〉) (4.25b)

+∑
nk ∑

i′q′(Dml
nk
i′q′ pnk

m′l′(niq(T)+1
)
−Dm′l′

nk
i′q′ pnk

mlniq(T)
)

+∑
nk ∑

n′k′Dn′k′
nk
iq pn′k′

ml pm′l′
nk −∑

nk ∑
n′k′Dn′k′

nk
iq pm′l′

ml pn′k′
nk

for the expectation values for the phonon assisted density matrices. The very last terms in
(4.25a) and (4.25b) can be neglected, as the non-diagonal polarizations that occur inside these
are always zero. With these equations, all requirements aremade for a solvable problem. Nev-
ertheless, a huge quantity of variables is contained in these differential equations: in addition
to the densitiesfnk and polarizationspn′k′

nk , all phonon assisted quantities have to be evolved
dynamically. In a system ofN bands andK k-points, the numerical effort scales with a factor of
aboutN2K2. This is usually too cumbersome for apersonal computerin a system withN≈ 10
andK ≥ 100, as it is required for a surface slab.

4.2.4 Markov Approximation

It is well known that the effect of the phonon assisted density matrices is of minor importance
in systems with many scattering channels and weak phononic coupling. This property can be
can be exploited in the so calledMarkov approximation[SKM94, But07]. The idea behind this
approximation is that the “memory” of the phonon-assisted quantities, e. g. their dependency
on the dynamics of past, is negligible. The first assumption for this approach is that in the
Eqs. (4.25), the influence of the light coupling is of minor importance an can be neglected (as
it is, for the polarization equations (4.24), of second order in A(t)). With it and by choosing
an initial condition of〈a†

mlam′l′b†
i,−q〉| = 0 at t = −∞, which can be justified by the fact that a

t = −∞, no deviation from the equilibrium occurs and consequentlyalso no phonon-assisted
density matrices, we can integrate Eqs. (4.25) formally:

〈a†
mlam′l′b†

i,−q〉= i
h̄

∫ ∞

0
dt ′e

i
h̄(Eml−Em′l′−h̄ωiq)t ′(∑

nk ∑
iq Dml

nk
iqniq(T)pnk

m′l′(t− t ′) (4.26a)

−∑
nk ∑

iq Dm′l′
nk
iq (niq(T)+1

)
pnk

ml(t− t ′)+∑
nk ∑

n′k′Dn′k′
nk
iq pn′k′

ml (t− t ′)pm′l′
nk (t− t ′)

)

〈a†
mlam′l′bi,q〉= i

h̄

∫ ∞

0
dt ′e

i
h̄(Eml−Em′l′+h̄ωiq)t ′(∑

nk ∑
iq Dml

nk
iq (niq(T)+1

)
pnk

m′l′(t− t ′) (4.26b)

−∑
nk ∑

iq Dm′l′
nk
iq niq(T)pnk

ml(t− t ′)+∑
nk ∑

n′k′Dn′k′
nk
iq pn′k′

ml (t− t ′)pm′l′
nk (t− t ′)

)
.

The “memory” of those equations is now carried by the dynamics of the polarizationspn′k′
nk .

Therefore, the next step is to neglect the dynamical effectsof the interactions inside the polar-
izations in Eqs. (4.26). This is achieved by setting all interaction terms in Eq. (4.24) to zero
(pn′k′

nk = 0, Dn′k′
nk;i,q = 0) and perform a “free” integration of the polarization dynamics, which
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gives us a description of the unperturbed evolution of the polarization duringt ′ of the “real”
polarizationpm′l′

ml (t):

pm′l′
ml ∣∣∣

free
(t− t ′) = e−i(Eml−Em′l′ )t ′ pm′l′

ml (t). (4.27)

If these relations are reinserted into the phonon-assisteddynamical equations (4.26), the tem-
poral integration can be carried out, giving an analytical form of the dynamics, where only an
explicit dependency on the equal-time polarizationspm′l′

ml (t) occurs. Now, the so-found equa-
tions are again inserted into the polarization dynamics (4.24) to totally eliminate the phonon-
assisted quantities. The result is a system of differentialequations depending purely on the
polarizations:

ih̄
d
dt

pm′l′
ml =

(
Eml−Em′l′)pm′l′

ml +A(t)∑
nk(pnk

mlpm′l′
nk −pm′l′

nk pnk
ml) (4.28)

− i
h̄∑

nk ∑
n′k′ ∑n′′k′′∑iq Dn′′k′′

m′l′
iq D

nk
n′k′
iq (

∆(En′k′ −Enk− h̄ωiq)((niq +1)pn′k′
ml (δn,n′′δk,k′′ − pn′′k′′

nk )
−niq(δm,n′δl,k′ − pn′k′

ml )pn′′k′′
nk )

+ ∆(En′k′ −Enk+ h̄ωiq)(niqpn′k′
ml (δn,n′′δk,k′′ − pn′′k′′

nk )
− (niq +1)

(
δm,n′δl,k′ − pn′k′

ml )pn′′k′′
nk ))

− i
h̄∑

nk ∑
n′k′ ∑n′′k′′∑iq D

n′′k′′
ml
iq Dnk

n′k′
iq (

∆(En′k′ −Enk− h̄ωiq)((niq +1)pn′k′
m′l′(δn′′,nδk′′,k− pnk

n′′k′′)−niq(δm′,n′δl′,k′ − pn′k′
m′l′)pnk

n′′k′′)
+ ∆(En′k′ −Enk+ h̄ωiq)(niqpm′l′

n′k′(δn′′,nδk′′,k− pnk
n′′k′′)− (niq +1)

(
δn′,m′δk′,l′ − pm′l′

n′k′)pnk
n′′k′′)).

The integral∆(ω), stemming from the previous integration, can be expressed in terms of a
Cauchy principle valueP:

∆(ω) =
∫ ∞

0
dteiωt = lim

α→0

iα
α2 + ω2 + lim

α→0

iω
α2 + ω2 = πδ (ω)+ iP(ω). (4.29)

The principle value part of this equation makes only a complex-valued contribution to∆(ω).
The effect of this in view of equation (4.28) is, contrarily to the other parts of the phonon
coupling, a shift of the energies with respect to the free system, as it can be seen in line with
the other energiesEml. For quantum heterostructures thispolaron shiftis usually expected to
be small and therefore neglected [But04]. For the silicon (001) surface, the effect is generally
non-negligible. However, in the present formulation of thetheory, polaronic effects are not
discussed. Whence, the imaginary part of Eq. (4.29) is neglected, and we assume∆(ω) =
∆(ω) = πδ (ω).

Moreover, in Eq. (4.28), we notice that the dynamics dependson non-diagonal polarizations
in quadratic order. Usually, these contributions are also expected to be very small, as the order
of magnitude for non-diagonal polarizations is below that of the diagonal densities. Hence, we
neglect all quadratic polarization terms by setting in Eq. (4.28)

m=n′ n =n′′ (4.30)l =k′ k =k′′.
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fn1k1

fn2k2

fn3k3

fn4k4

fn5k5

(1− fml) fml (1− fn1k1)

(1− fn2k2)

(1− fn3k3)

(1− fn4k4)

(1− fn5k5)

Figure 4.2: The possible scattering channels of Eq.(4.32).

The result of these additional approximations is a much simplified set of equations, where
especially the number of summations is drastically reduced. For the non-diagonal polarizations
(m 6= m′ andl 6= l′), the insertion into Eq. (4.28) yields:

d
dt

pm′l′
ml =

1
ih̄

(
Eml−Em′l′)pm′l′

ml +
1
ih̄

A(t)∑
nk(pnk

mlpm′l′
nk −pm′l′

nk pnk
ml) (4.31)

−
(
Γin

ml + Γout
ml + Γin

m′l′ + Γout
m′l′)pm′l′

ml .

For the diagonal parts of the polarizations (densities), the corresponding equations are even
simpler:

d
dt

fml = 2
h̄

A(t)∑
nk ℑ

(
pnk

mlpml
nk)+2Γin

ml(1− fml)−2Γout
ml fml. (4.32)

In these equations, new symbolsΓin/out
ml have been introduced. These quantities denote the

scattering rates, which give evidence of the scattering into and out of a state|ml〉. They are
given by

Γin
ml = ∑

nk ∑
iq ∣∣∣Dnk

ml
iq ∣∣∣2(δ (Eml−Enk− h̄ωiq)(niq +1

)
+ δ (Eml−Enk+ h̄ωiq)niq) fnk (4.33a)

=:∑
nk←−Λ nk

ml fnk
and

Γout
ml = ∑

nk ∑
iq ∣∣∣Dnk

ml
iq ∣∣∣2(δ (Eml−Enk+ h̄ωiq)niq + δ (Eml−Enk− h̄ωiq)(niq +1

))(
1− fnk)

=:∑
nk−−→Λ nk

ml(1− fnk). (4.33b)

The scattering matrices are entirely expressed in terms of the densitiesfnk without the non-
diagonal polarizations. The physical explanation of the non-diagonal equations (4.32) is ob-
vious. Scattering in this equation relies on the two contributions containingΓ at the end of
the rhs. The scatter-in part (withΓin) depends on(1− fnk), the more this state is populated,
the less it is possible to scatter into it. The scatter-out part, depending onfnk, on the contrary,
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behaves in the opposite way: the more it is populated, the more electrons scatter out again. Fur-
thermore, scattering depends on temperature through the phonon-distribution in the scattering
matrices, and, due to theniq +1-terms (which are related to spontaneous phonon emission), it
is always more probable to scatter to a state of lower energy than to a state of higher energy.
The scattering events are always energy-conserving, as is implied by the delta-distributions in
Eqs. (4.33): the energy differenceEml andEnk of the two electronic states|ml〉 and|nk〉 must
match the phonon energȳhωiq.

The dynamics of the polarizations (Eq. (4.31)) is mainly influenced by the optical excita-
tion. The scatter matrices (4.33) (which are positive definite) occur only as damping terms.
Without light field, the polarizations cannot be augmented and fade out.

4.2.5 Fundamental symmetries

The most obvious symmetry in the equations is contained in the matrix elementspn′k′
nk and

Dn′k′
nk;iq. Due to construction, the following relations hold:

pn′k′
nk =pnk

n′k′ (4.34a)

Dn′k′
nk
iq =D

nk
n′k′
i,−q (4.34b)

In the framework of an electronic many-particle system, particle conservation is required.
For the dynamic of the electronic densities (Eq. (4.32)), this implies implicitly, that the sum
over all densities must equal zero at all times, or its temporal derivation must vanish:

d
dt ∑ml fml = ∑

ml d
dt

fml = 0. (4.35)

Eq. (4.32) can now be inserted with the scattering matrices
−→
Λ nk

ml and
←−
Λ nk

ml (cmp. Eqs. (4.33)),
effecting a direct condition for the involved variables:

0 =
1
ih̄

A(t)∑
ml ∑nk(pnk

mlpml
nk−pml

nkpnk
ml)+∑

ml ∑nk(−→Λ nk
ml(1− fnk) fml +←−Λ nk

ml fnk(1− fml)). (4.36)

The first term (proportional toA(t) is obviously zero, as the two negated contributions to the
sum are the same. From the second term, a condition for the scatter matrices can be derived, as
Eq. (4.36) must hold independent of the densitiesfnk:

−→
Λ nk

ml +←−Λ ml
nk = 0. (4.37)

This result complies with a direct comparison of the explicit scattering rates (4.33). Never-
theless, it has a significance a numerical compution of the scattering rates, where, if the rates
can only be calculated approximatively, a symmetrization can be sensible to ensure a density-
conserving relaxation.

4.2.6 Slow relaxation approximation

As it can be seen by comparing Eqs. (4.31) and (4.32), the polarizationspn′k′
nk are exclusively

coupled to the dynamics of the densitiesfnk in Eq. (4.32) through the vector potentialA(t)1.

1We note that important light polarization effects can occurat the surface. While diffraction and reflection
(Fresnel laws) are not important for a perpendicularly incident light ray, the field strength of the vector potential
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Under experimental conditions where relaxation behaviouris investigated, the system is usu-
ally excited by a very short laser pulse (≈ 100 fs). If the subsequent relaxation time can now
be estimated significantly longer (≈ 1 ps), it is possible to separate the excitation dynamics
through the light fieldA(t) from the relaxation dynamics: A short pulse is only non-vanishing
during the pulse lengthτ and therefore zero for most of the time when relaxation occurs2.
Consequently, the polarizations are only coupled for a veryshort time to the densities in the
relaxation equation (4.32) at the beginning of the relaxation. On the other hand, the relaxation
influences the polarization dynamics (Eq. (4.31)) only by damping throughΓin

ml andΓout
ml . For

the duration of the light pulse, this damping can be neglected. As a result of these considera-
tions, the dynamical equations can be formulated for two limiting cases:

1. The optical excitation is determined for an undamped system using both Eq. (4.31) and
(4.32) without dampingΓin/out = 0. These equations are valid during the pulse. It is
convenient to set the pulse immediately beforet = 0 (but it must be assured that att = 0,
the pulse has sufficiently vanished). Then, through the pulse, a distribution of densities
fnk is provided.

2. The relaxation process is totally independent of the polarizations pn′k′
nk , and therefore

described by Eq. (4.32) withA(t) = 0. The optical excitation is introduced by taking the
resulting density distribution of 1) as initial condition for the relaxation.

By utilizing the band gap property of the semiconductor bandstructure, the optical excita-
tion can be integrated analytically.

4.2.6.1 Optical excitation

In a semiconductor, the bandgap separates the valence bandsfrom the conduction bands. The
population distribution is given by theFermi-Dirac-distribution. At zero temperature (T = 0K),
this behaviour can be formulated by introducing a distribution function according to

fnk = θ(EF −Enk), (4.38)

whereEF denotes the Fermi-level (in the band gap) andθ(ω) the unit-step function. This
distribution is still a good approximation at room temperature for the real distribution. We
assume a weak excitation with low intensities, so the population is always close to one or zero.
If we neglect the temporal evolution of the densities and thepolarizations, and insert Eq. (4.38),
we obtain:

ih̄
d
dt

pml
m′l′ = (Eml−Em′l′)pml

m′l′ +A(t)
(

pml
m′l′θ(E0−Eml)−pml

m′l′θ(E0−Em′l′)) (4.39)

This equation can be integrated formally:

pml
m′l′ = ∫ t

−∞
dt′A(t ′)

(
pml

m′l′θ(E0−Eml)−pml
m′l′θ(E0−Em′)

)
e−

i
h̄(Eml−Em′l′ )(t−t ′) (4.40)

A(t) can be modified by a significant factor due to the different refraction indices of the silicon material and the
vacuum. Due to the example character of this discussion, such effects are neglected.

2It should be noted that inA(t)p-coupling, we cannot assume that the vector potentialA is vanishes for both
limits t→−∞ andt→ ∞. It can be stated, however, thatA(t) tends to a constant att =±∞ (at the other boundary,
it can be set to zero), an this effect is eliminated in Eqs. 4.31 and (4.32). Still, the equivalence in (2.48) holds.
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For the densities (Eq. (4.32)), the equation of motion underthese circumstances is given by

ih̄
d
dt

fml = A(t)∑
m′l′(pml

mlpml
m′l′−pm′l′

ml pml
m′l′)= 2iA(t)∑

m′l′ℑ(pml
m′l′ pm′l′

ml ). (4.41)

Here, the formal integration yields, after expanding the imaginary operators:

fml =2
h̄

∫ t

−∞
dt′A(t ′)∑

m′l′(ℑ(pm′l′
ml )ℜ(pm′l′

ml )+ ℜ(pm′l′
ml )ℑ(pm′l′

ml )
)

Now, the formal solution Eq. (4.40) can be reinserted:

=
2

h̄2

∫ t

−∞
dt′∑

m′l′(ℑ(pm′l′
ml )

(
(4.42)

(
ℑ(pm′l′

ml )θ(EF −Em′l′)+ ℑ(pm′l′
ml )θ(EF −Eml))ℜ

(∫ t ′

−∞
dt′′A(t ′′)e

i
h̄(Em′l′−Eml)(t ′−t ′′)

)

−
(

ℜ(pm′l′
ml )θ(EF −Em′l′)−ℜ(pm′l′

ml )θ(EF −Eml))ℑ
(∫ t ′

−∞
dt′′A(t ′′)e

i
h̄(Em′l′−Eml)(t ′−t ′′)

))

+ ℜ(pm′l′
n )

(

(
ℑ(pm′l′

n )θ(EF −Em′l′)+ ℑ(pm′l′
n )θ(EF −Eml))ℑ

(∫ t ′

−∞
dt′′A(t ′′)e

i
h̄(Em′l′−En)(t ′−t ′′)

)

+
(

ℜ(pm′l′
ml )θ(EF −Em′l′)+ ℜ(pm′l′

ml )θ(EF −Eml))ℜ
(∫ t ′

−∞
dt′′A(t ′′)e

i
h̄(Em′l′−Eml)(t ′−t ′′)

))
.

The essential investigations of this thesis are about relaxation processes in the conduction band
of a semiconductor. Therefore, we focus on the bands for which Enk > EF holds. After joining
the complex exponentials to a cos-function, the distribution function for these excited states
reads:

fml∣∣∣∣
Eml>EF

=
2

h̄2 ∑
m′l′ ∫ t

−∞
dt′A(t ′)

∣∣pm′l′
ml ∣∣2∫ t ′

−∞
dt′′A(t ′′)cos

(1
h̄
(Em′l′−Eml)(t ′− t ′′)

)

For a pair function, wheref (x) = f (−x), it is now possible to transform the two entangled
integrals into two independent integrals. After subsequently reexpanding the cos, this yields:

=
1

h̄2 ∑
i

∣∣pi
n

∣∣2
(∫ t

−∞
dt′A(t ′)e

i
h̄(Ei−En)t ′

∫ t

−∞
dt′′A(t ′′)e−

i
h̄(Ei−En)t ′′

+
∫ t

−∞
dt′A(t ′)e−

i
h̄(Ei−En)t ′

∫ t

−∞
dt′′A(t ′′)e

i
h̄(Ei−En)t ′′

)

which is finally equivalent to

=
1

h̄2 ∑
m′l′∣∣pi

ml∣∣2∣∣∣∣∫ t

−∞
dt′A(t ′)e

i
h̄(Em′l′−Eml)t ′∣∣∣∣2. (4.43)

Hence, after the pulse, the distribution of the population in the conduction band is given by

fml∣∣∣∣
Eml>EF

=
1

h̄2 ∑
m′l′∣∣pm′l′

ml ∣∣2∣∣∣∣Ã(
Em′l′ −Eml

h̄
)

∣∣∣∣
2

(4.44)

whereÃ(ω) is the temporal Fourier transform of the vector potential.
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4.2.6.2 Phonon relaxation

Without considering the electron-light coupling dynamically, the relaxation equations (4.32)
are independent of the polarizations:

d
dt

fml = 2Γin
ml(1− fml)−2Γout

ml fml. (4.45)

This equation can not be solved by an analytical integrationstep, so a numericalinitial-value-
problemsolving algorithm (like aRunge-Kutta-method) has to be used. With Eq. (4.45), it
is however not necessary to perform the calculation of the polarizationspn′k′

nk . This is a great
reduction of computational hardware requirements, as the polarizationspn′k′

nk are defined for
every pair of bands and are thus much more numerous than the densities fnk.

The initial conditions for the temporal evolution have to bechosen reasonable, e.g. by
using Eq. (4.44).

4.3 Coupling matrix elements

The derived equations are generally valid for a two-dimensional multiband system. The spe-
cialization of the dynamical equations (4.44) and (4.45) toa specific material system is achie-
ved by the definition of the matrix elementspn′k′

nk for the optical excitation andDn′k′
nk;iq for

the phonon relaxation (cmp. Eq. (4.10)). Into these matrix elements, the system proper-
ties enter through the single particle wave functions|φnk〉, which appear as solutions of the
ground state Hamiltonian (2.50) and which are calculated inChapter 5, and through the phonon
modes (2.33). In this section, the final link between the two methodsdensity-functional theory
for the ground states anddensity-matrix theoryfor the dynamical evolution is drawn.

4.3.1 Electron-phonon coupling matrix elements

The electron phonon coupling is described in Eq. (4.10) by the the coupling matrix element for
a two-dimensional system

Dn′k′
nk
iq =

∫
d3r
(

D0
i (r)s

iq(r)+D0
i ∇siq(r)φ nk(r)φn′k′(r). (4.46)

The electron-phonon PotentialD0/1
i (r) can be derived as in Eq. (2.38). A general property

(which holds, due to the supercell approach, for all directions) is that it is lattice periodic, so
Di(r) = Di(r +R) for a lattice vectorR. Thus, a convenient way to express the potential is in
terms of a Fourier series (cmp. sec 2.3):

D0/1
i (r) = ∑

G
D0/1

i (G)eiGr . (4.47)

The phonon modes are influenced by the slab symmetry, so the functional form is given by
siq(r) = si(z)eiqr = ∑Gz

si(Gz)ei(qr+Gzz). Inserting this, the Bloch wave representation Eq. (2.26)
and Eqs. (4.47) into Eq. (4.46), we get

Dn′k′
nk
iq = ∑

G
∑
G′

∑
G′′

∑
Gz

unk(G)un′k′(G′)(D0
i (G

′′)+D1
i (G

′′)(q,Gz)
)

si(Gz)
)

(4.48)
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∫
d3rei

(
−(G+k)r+(G′+k′)r+G′′r+qr+Gzz

)

︸ ︷︷ ︸
δG′+G′′+Gz+k′+q,G+k .

The spatial dependency of the electron-phonon potential, however, is difficult to investigate,
as an explicit calculation of the spatially dependent electron-phonon potential is laborious. In
principle, an electron phonon interaction is mainly determined by either the dependency on the
phonon modesi(r , t) or, if the latter vanishes, by the dependence on the first derivative of the
modes∇si(r , t). In our case, we only consider the direct dependency on the derivative of the
mode (D1

i ) as this is expected in a non-polar material and a purely longitudinal phonon mode,
consequently,Di1(r) is non-vectorial. ForFröhlich-coupling, the other case would hold.

Furtheron, we assume that the spatial variation of the electron-phonon potential is not too
important and neglect the spatial dependency ofD1

i (r). This drastical assumption that can not
be justified by the material properties. With these declarations, the delta-condition in the matrix
element (4.48) can be expressed much simpler, asG′′ vanishes:

Dn′k′
nk
iq = ∑

G
∑
G′

∑
Gz

unk(G)un′k′(G′)D1
i (q,Gz) ·si(Gz)δG′+Gz+k′+q,G+k. (4.49)

The evaluation of the Kronecker-delta reveals a momentum conservation condition for thek-
vectors. Nevertheless, there are two different cases that have to be discussed. First, if the
sumk′+ q remains inside the first Brillouin zone (2.20), the scattering is truly momentum
conserving, and the conditions k′+q=k (4.50a)

G′+Gz =G

hold. By this, only the sums overG andGz are left over in Eq. (4.49).
If k′+ q points outside the first Brillouin zone, the determination of the matrix elements

is more complicated. In this case, the vector is at most as long as one of the firstG-vectors
(which are composed as a sum of the lattice vectorsbi and a factor of{−1,0,1}). However it
interferes in the Kronecker delta with the otherG-vectors, so, ifk′+q−G0 is again in the first
Brillouin zone, the following conditions can be extracted from the delta:k′+q =k+G0 (4.50b)

G′+Gz =G+G0.

This means for theseumklapp-processesthat for all possibleG0-vectors, special matrix ele-
ments have to be provided. For a two-dimensionalG0, as it is discussed in this thesis, there are
basically eight different possible umklapp vectors.

While it is possible to calculate a set of realistic phonon modes (e.g. by evaluating the
atomic forces as in Sec. 3.4) and also the phonon-electron coupling constantsDi

1, the compu-
tational requirements to calculate all matrix elements with a mode dependency as in Eq. (4.49)
are still very high. A further simplification for the matrix elements can be achieved by replac-
ing the explicit dependency on the slab modes by an approximated dependency on bulk modes.
The main issue on this approach is that the special surface properties of the phonons are not
included. The bulk modes can be transferred to the supercellby cutting the vacuum space at
both sides and applying an adequate coordinate transformation. A single mode in the bulk will
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b1

b2

G0

First Brillouin zone

Figure 4.3: lhs: Illustration of the possible scattering processes: withinthe Brillouin zone
(black) or over the zone boundary (blue) with an umklapp vector G0 (red). The reduced zone
is shaded in grey.rhs: Illustration of the bulk approximation. The Brillouin zoneof the bulk
(colored tetrahedron) is entirely covered by repeated Brillouin zones of the slab (brick mesh),

such that allk-points of bulk modes can be represented by a slab mode.

be mapped to several modes with differentωiq = ωbulk
ibulkqbulk

, where a new pair of(i,q) is assigned
from the bulk mode by the transformation in the slab because the Brillouin zone of the bulk is
always bigger. By using the bulk mode expansion (2.34), Eq. (4.49) can be expressed by

Dn′k′
nk
iq =

√
h̄

2Mωiq ∑
G

∑
G′

unk(G)un′k′(G′)Di
11(q) ·ei

0δG′+k′+q,G+k. (4.51)

This form of the coupling element corresponds to a macroscopical definition in terms of

Diqeiqr =

√
h̄

2ρVωiq V
∂EGround

∂V︸ ︷︷ ︸
Di

DefPot

∆V
V

∣∣∣∣
iq. (4.52)

In this representation, the energyDi
DefPot describes the relative change of the ground state en-

ergy by deformation through volume change∆V/V. This is the reason why this approach is
often denoted asDeformation potential representation. Parameters forDi

DefPot can in princi-
ple be calculated by ab-initio approaches, but are also accessible to experimental investiga-
tion [LB87].

4.3.2 Optical matrix elements

The electron light coupling in Eq. (4.10) depends mainly on the momentum matrix element
pn′k′

nk . This matrix element can be calculated by

pn′k′
nk =

∫
d3rφ nk(r) h̄

i
∇φn′k′(r). (4.53)
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By inserting Eq. (2.26), this simplifies according to

pn′k′
nk =

1
2π ∑

G,G′
unk(G)un′k′(G′)∫ d3re−i(k+G)r h̄

i
∇ei(k′+G′)r

=
h̄

2π i ∑G
unk(G)

(
G+k

)
un′k(G), (4.54)

as the integral evaluates to a Kronecker-delta which assures G = G′ andk = k ′. Consequently,
only diagonal excitations with momentum conservation can be induced by this interaction (This
is, besides the classical nature of this interaction, also aconsequence of the dipole approxima-
tion, where theA(t)-field is interpreted as spatially homogenous). Furtheron,the transitions to
the equal state (n = n′) cancel out in the dynamical equations (4.31) and (4.32), sodue to the
orthogonality relation (2.28), the matrix elements are given by

pn′k
nk =

h̄
2π i ∑G

Gunk(G)un′k(G). (4.55)

4.4 Evaluation of the scatter matrices

In the scattering equations (4.45), the scatter matrices
←−
Λ nk

ml and
−→
Λ nk

ml are independent of the
dynamics, but determine the relaxation process. The scattering conditions (4.50) are exploited
by the elimination of the phonon wave vector sum and the dependent wave vectorqG0 = k−l+G0, whereG0 can now also equal0. According to Eqs. (4.33), the matrices are determined
by the following equations:

←−
Λ nk

ml =∑
i

∣∣∣Dnk
ml

iqG0

∣∣∣
2(

δ (Eml−Enk− h̄ωiqG0
)
(
niqG0

+1
)
+ δ (Eml−Enk + h̄ωiqG0

)niqG0

)
(4.56)

−→
Λ nk

ml =∑
i

−
∣∣∣Dnk

ml
iqG0

∣∣∣
2(

δ (Eml−Enk− h̄ωiqG0
)niqG0

+ δ (Eml−Enk+ h̄ωiqG0
)
(
niqG0

+1
))

These equations clarify that the scattering matrices have alot of vanishing entries. Only those
entries, where now the energy-δ -conditions are fulfilled, contribute to the scattering. The
energy-variables in theδ -function can be transformed from a to al-dependency by inverting
the kernel of the delta functionl(m,n,k) =

[
Eml−Enk± h̄ωiqG0

]−1
(4.57)

and replacing the energy-δ by a condition forl:
δ (Eml−Enk± h̄ωiqG0

) = ∑
j

1

|∇l(Eml± h̄ωiqG0

)
|δ (l− l j). (4.58)

The l j are the zeros obtained by condition (4.57). The evaluation of these zeros is, of course,
non-trivial, and has to be performed numerically on a discrete mesh ofl. Still, l j is a two-
dimensional vector, and the condition forl can be interpreted as a one-dimensional curve (or
a set of curves)C±mnki(s) in the Brillouin zone, which depends on all free parameters of the
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C±mnki(s)

Figure 4.4: Illustration of the interpola-
tion process for the evaluation of the energy-
delta-condition by Eq.(4.57). The black
curve signifies the path on which the zeros
are located, the circles are the mesh of the
discretization. Scattering processes are at-
tributed to all mesh points with a grey shad-
ing according to the distance of the zero-

point on an edge of the mesh.

equation, including the sign (±) of the phonon energy. The summation overl in Eq. (4.33) is
therewith expressed by an integration over the curve:

∑l −→ ∫ dC±mnki

ds
ds (4.59)

For givenm, n, k, i and±, the vectorsl(s) pointing to the non-vanishing elements of the
scattering matrices

←−
Λ nk

ml and
−→
Λ nk

ml are given byl(s) = C±mnki(s), (4.60)

while their magnitude is set according to

←−
Λ nk

ml(s) =∑
i

∣∣∣Dnk
ml(s)
iqG0

∣∣∣
2(

G−mnki(s)
(
niqG0

+1
)
+G+

mnki(s)niqG0

)
(4.61a)

−→
Λ nk

ml =∑
i

−
∣∣∣Dnk

ml
iqG0

∣∣∣
2(

G−mnki(s)niqG0
+G+

mnki(s)
(
niqG0

+1
))

(4.61b)

with the size parameters

G+
mnki(s) =

1

|∇l(Eml(s) + h̄ωiqG0

)
|
dC+

mnki

ds
ds (4.62a)

G−mnki(s) =
1

|∇l(Eml(s)− h̄ωiqG0

)
|
dC−mnki

ds
ds (4.62b)

The mapping of the curve to the discrete supporting points ofthe underlying mesh ofl in
Eq. (4.60) must be done using a method of interpolation (cmp.Fig. 4.4). Although the cal-
culation of the mapping and the interpolation is quite costly, it is only required once for a
dynamical calculation run, while the multiplication of thematrix is done in every dynamical
time step. Thus, due to the high number of vanishing entries in the matrix, it is also a big
advantage to implement a method to perform the summations inEq. (4.45) exclusively on the
non-vanishing entries.
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Chapter 5

Density-Functional Calculations at the
Silicon (100) 2×1 surface

After presenting the basics of theory, we now proceed to the application of the methods in-
troduced in Part I. As first step, we thus perform density-functional calculations for a spe-
cific surface system. As surface system, the silicon (001) surface is chosen for investigation
(cmp. Sec. 1.2). At this surface, various locally identicalreconstructions appear, and according
to the size of the reconstruction unit cell, a number of additional surface bands occurs in the
band structure. For temperatures of about 90 K, the predominant reconstruction is the 4× 2
reconstruction. In our simulations, we will use the asymmetric 2×1 reconstruction, which is
energetically close to the 4×2 reconstruction and already contains most features.

The first step in calculating a surface structure, however, is to investigate the corresponding
bulk structure. For silicon, this is a diamond lattice with atwo-atom basis in a tetrahedral unit
cell. The main purpose of these investigations is, besides the adjustment of parameters for the
applied computer program, the derivation of a theoretical bulk lattice constant. A good agree-
ment of the experimental and the theoretical lattice constants is a prerequisite for a trustworthy
calculation.

The DFT calculations have been carried out with the program packagefhi98md [BKNS97],
which has a long reputation for structure calculations. It has been programmed inFortran 90
and is particularly adapted for the use in solid state supercell computation.

5.1 Calculations on bulk silicon

For the band structure calculation with thefhi98md package, several steps are necessary. The
first step consists of the calculation of the pseudopotentials (cmp. Sec. 3.5) using the program
fhipp. In the atomistic nomenclature, the silicon nucleus has 14 protons and has thus an
atomistic charge of 14e0. The first ten electrons are the core electrons, they are described by
the s1, s2 and p2 orbitals. The pseudopotential is build up on a calculation of these ten core
electrons. Then, with the pseudopotentials, the ground state calculation can be started, where
theKohn-Sham-statesfor the electrons are determined for the ground state. As a further step, a
band structure can be evaluated by using the electron density from the ground state calculation
(Sec. 5.1.2).
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5 DENSITY-FUNCTIONAL CALCULATIONS AT THE SILICON (100) 2×1 SURFACE

Figure 5.1: The silicon diamond lattice structure. The top plane represents a (100) cut of the
structure. The bulk unit cells for the diamond structure (red) and an orthorhombic (2×1) cell

(blue) are indicated.

5.1.1 Ground state calculation

The calculation of the bulk structure is then achieved usinga plane wave basis defined by the
cutoff radius (Eq. (3.22)), the lattice basis (Eq. (2.17)) and its reciprocal counterpart (Eq. (2.19)).
The lattice basis in diamond geometry is influenced by the bulk lattice constanta, which can be
understood as a isotropic stretch factor (although it is oriented at the underlying cubic supercell,
rhs. of Fig. 5.2). For the ground-state calculation, a regular mesh (Monkhurst-Pack-mesh) of
k-points on the first Brillouin-zone is chosen in order to sufficiently describe the different fea-
tures of the wave functions at differentk-points. The number ofk-points is also a parameter to
these calculations. Due to the high symmetry of the diamond lattice, only a fraction of the mesh
points have to be included in the calculation, as many of themare geometrically equivalent and
the others can be mapped by symmetry operations. The Kohn-Sham-equations (Sec. (3.2)) for
this reducedk-point set are then evaluated using the iterative approach described in Fig. 3.1.
The algorithm continues looping until the ground state energy has reached a total minimum,
which can be investigated by looking at the variation of the energy per time step. For the di-
agonalization of the Hamiltonian in the single particle Schrödinger equation (3.8), an iterative
approach (Williams-Soleror damped Joannopoulos) is used which is possible for a self-adjoint
Hamiltonian. In spite of the disadvantages of such an algorithm (dependency on parameters
for solving algorithm, required orthogonalization of eigenvectors after each iteration step), the
numerical effort compared to a polynomial solving scales with a more favorable dependency
on the size of the structure. The choice of good parameters for the algorithm decides about
the number of iterations required for convergence (or, in the worst case, about the divergence),
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Figure 5.2: lhs: Brillouin zone of the diamond lattice structure (black lines) and of the or-
thorhombic 2×1 bulk structure (colored brick) in the same geometry. The zone boundaries fulfill
condition(2.20). rhs: Illustration of the diamond structure inside a cubic lattice. The edge of

the cubic superstructure (a) is used as lattice constant forthe diamond structure.

these parameters depend mainly on the particular lattice structure.

Additionally to the diamond-lattice bulk calculations, the silicon bulk is calculated within
another superstructure. With regard to the future 2×1-surface-structure calculations, it is useful
for comparison to perform a computation in the same surface geometry. To this end, a single
orthorhombic (001) 2×1 cell (containing eight atoms) is investigated. A silicon bulk structure,
the diamond unit cell (red) and the orthorhombic unit cell (blue) are presented in Fig. 5.1. The
corresponding first Brillouin zones for thek-vectors, given by condition Eq. (2.20), are shown
for those two geometries in Fig. (5.2). The orthorhombic cell, which is bigger in real space
(Fig. 5.1), supplies a smaller Brillouin zone in the reciprocal space (lhs of Fig. (5.2)). Some
high symmetry points and lines are indicated in the two Brillouin zones.

The check on the dependency of the diamond bulk calculation on certain computational
parameters is summarized in Figs. 5.3 and 5.4. The course of action to investigate the bulk
lattice minima and the total energy minima with respect to the density of thek-point mesh
and the cutoff energy (Eq. (3.22)) is as follows: first, sampling values are chosen for the lat-
tice constant and the cutoff energy around the estimated minimum value. For the mesh, only
a few choices are possible for the discretization (like 4× 4× 4 or 8× 8× 8). Calculations
are then performed for all combinations of the values for lattice minimum, the cutoff energy
and the mesh, allowing to extract ground state energy valuesfrom these. The most evident
conclusion from these calculations if Fig. 5.3 is that a meshof 4× 4× 4 is sufficient for this
bulk description, as there is no apparent difference to the higher discretized computations. The
second conclusion from this Figure is that the energy minimum is still influenced by the cutoff
energy, though the energy change is small (≈ 0.05 Ry between 8 Ry and 20 Ry cutoff). A
convergence is however seen for the highest cutoff energies. In Fig. 5.4, the lattice minima
and corresponding ground state energies of Fig. 5.3 are plotted. These minima are found by
fitting the previously calculated lattice-energy curves with a thermodynamical state equation
(Murnaghan equation), from which the minimum can be derived analytically. This is achieved
using the programmurn, which is also a part of thefhimd package. Both ground state energy
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Figure 5.3: Determination of the lattice constant minimum with respectto the cohesive energy
per atom and investigation of someconvergence criteria forthe diamond bulk lattice. The differ-
ent markers signify a difference of the cutoff energies. On the lhs, the calculations are performed
with a mesh of4×4×4, on the rhs, for8×8×8. No significant changes are found between the

two pictures

and lattice constant finally converge at a cutoff radius of 20H, while the ground state energy
shrinks monotonously, the lattice constant has a non-continuous behaviour. In contrast to the
variational principles used to derive the Kohn-Sham-equations, no equivalent approach holds
for thek-point sets, so a global minimum can not be found in any case byincreasing the density
of the mesh.

5.1.2 Band structure calculation

The band structure of the two bulk geometries can be then calculated using a second run of
the fhimd program. A band structure run typically needs only points onsome symmetry
lines with a relatively high discretization with respect tothe discretization needed to perform
a converging ground state calculation. The execution of a ground state calculation on a mesh
containing all necessary points for the band structure is therefore a waste of computer resource
requirements. An easy way to avoid this relatively high discretization is to insert an electron
density from another calculation with low discretization (but high enough to assure a proper
convergence) into aband structure calculation, where only thek-points which are to be shown
in the band structure are included. The electron density in this run is not changed during the
iterations, so the only task of the program is to diagonalizethe Hamiltonian at the chosenk-
points, without any self-consistent iterations. A justification of this procedure is that the results
for the electron density for a converged calculation is not significantly changed by applying
a denser mesh with morek-points. This technique is particularly useful if conduction band
states are calculated, as these are irrelevant for the electron density and the ground state energy.
Another advantage is the fact that there are no restrictionsabout thek-points chosen in the
second run. Consequently, it is possible to calculate a numerous subsets ofk-points in parallel
within totally independent calculations. This feature will be used extensively in Chapter 6.

The band structures for the two bulk geometries are shown in Fig. 5.5. For the diamond
lattice (lhs), a true three-dimensional path through the Brillouin zone is taken. The nature of
silicon as semiconductor is pointed out by the bandgap between the valence bands ( ˆ= the lowest
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Figure 5.4: Convergence test for the cutoff energy. The minimum bulk lattice constant (black)
and the associated cohesive energy per atom (red) are gainedfrom a fit with a murnaghan state

equation, as shown in Fig. 5.3.

four bands) and the conduction bands (the higher bands). At low temperatures, only the valence
bands are populated. It is clearly visible that the band gap is only indirect, the maximum of the
highest valence band is located at anotherk-point as the minimum of the lowest conduction
band. Consequently, for an optical excitation with band gapenergy (≈ 1.1 eV), a scattering of
the photon via an auxiliary phonon is necessary. A direct excitation, as it is described by the
optical Hamiltonian (2.45) or (2.47), is only possible for much higher energies (≈ 2.5 eV).

For the orthorhombic bulk structure (rhs of Fig. 5.5), the path is oriented at the surface ge-
ometry. To this end, only thekx andky parts of the vector are non-zero. In this two-dimensional
cut of the Brillouin-zone, the indirect band gap of the diamond lattice is not visible any more.
The selection rules on the participating electron states, however, still forbid optical transitions
by these channels1. Furthermore, the number of bands has increased according to the aug-
mentation of the number of atoms in the unit cell, while, on the other hand, the bands in the
band structure are related by a folding at the symmetry lines. This is clearly an effect of the
reduced Brillouin zone with respect to the diamond lattice.Note that no new physical effects
can be expected by just augmenting the bulk unit cell. A comparison to surface structures can
be achieved by also varying thekz-coordinate of the orthorhombic bulk cell. This allows to
evaluate a range of possible energies for a specifick-point and band in the surface geometry,
on which the surface band structure can be mapped lateron. Anapplication of this technique is
shown in Figs. 5.6-5.11.

1This can be seen by reminding that the wave functions of the states are not changed by switching only the geom-
etry. Thus, a wave functioneikr unk(r) in the diamond structure is replaced by a wave functioneik̃r eik0r un(k̃+k0)

(r)

in orthorhombical symmetry, wherẽk0 is the constant lattice vector difference originating fromthe reducing of the
zone and, while nonzero, constitutes a new band. While calculating momentum matrix elements (Sec. 4.3.2),k̃0
annihilates all matrix elements which are not non-zero before in the diamond lattice.
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Figure 5.5: Bulk band structure for the ground states and the lowest conduction states for silicon.
On the lhs, the band structure along the high symmetry lines of the diamond unit cell is shown.
On the rhs, the bandstructure along a 2×1 (100) unit cell (for kz = 0) is depicted. The indirect

band gap in the lhs picture is no more visible in the rhs.

5.2 Supercell calculations for the 2×1 surface

After discussing the bulk structure, we will now investigate the 2× 1 reconstruction of a
silicon (100) surface by the supercell approach. In contrast to the atomicpositions of the bulk
cells, which are determined by the underlying symmetry group (which only leaves the lattice
constant as an open parameter), the geometrical structure of a surface reconstruction is given in
a orthorhombical cell with a two-dimensional symmetry. Theatomic positions are not precisely
known beforehand, and at surface, huge deviations from the corresponding bulk positions can
be expected. The atomic positions are however determined bythe interatomic forces on the
ions, which can be calculated using the method introduced inSec. 3.4. Nevertheless, the use
of this technique is numerically much costlier than the purebulk calculations, as not only the
lattice structure is much bigger for a reasonable slab system (which increases both the number
of bands by the number of atoms and the number of plane waves (G-vectors) by the energy
condition (3.22) in the discretization), but also an additional loop over the ground state mini-
mization has to be implemented (cmp. Fig 3.1). In this secondloop, the atomic positions can
be modified and slowly converge to the equilibrium position (see Sec. 3.4). While this method
is applicable by a physical point of view to find the positionsof all atoms of the structure, the
algorithm is often numerically instable if the number of degrees of freedom is too high, and
also the need of CPU time is highly influenced by that fact. Consequently, it is usually required
to constrict the motion of atoms to those which are close to the reconstructed surface and are
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Figure 5.6: Band structure, atomic structure and Brillouin zone of a7 layer supercell.

therefore subjected to perform big changes. The decision ofhow many atoms should be moved,
is based on the calculation and analysis of the force constants for all atoms and can be assisted
by test calculations.

In the case of a silicon (100) 2×1 surface, the most important effect of surface reconstruc-
tion is the formation of atilted dimer. It is obvious that this requires a huge deformation of the
first atomic layers with respect to the bulk. In our calculations, the three first layers are allowed
to move. One measure for the quality of the Density Functional calculation in this context is
the comparison of the experimental to the calculated dimer angle. In silicon, thep-orbitals of
the dimer atoms cause the appearance of the new surface bands, which partly reach energet-
ically into the band gap. A consequence of this is that the position of the atoms is not only
influenced by known program parameters (cutoff energy), butis also highly dependent on the
occupation of the surface states, which is, due to the reduced band gap, much more sensitive to
temperature changes than the bulk material. Thefhimd code allows a temperature dependent
population of the conduction band states.

5.2.1 Ground state calculation

The procedure to calculate the electronic band structure has, as in the case of the bulk, two
steps: First, the energy is minimized, the electron densityis calculated and supplementally
the structure is optimized by moving some atoms, all this at arelatively low discretization of
thek-point mesh. The initial electron density is generated fromatomic orbitals of the valence
electrons, these are stronger bound to the core atoms and accelerate the convergence of the
Kohn-Shamwave functions towards the ground state, including the states in the surface bands.
A structure optimization step can be applied after convergence of the ground state energy for
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Figure 5.7: Band structure, atomic structure and Brillouin zone of a10 layer supercell.

given atomic positions, whereby a damped dynamical force equation (damped verlet algorithm)
is exploited. After the moving, the formerly gained electron density is reused and taken as an
initial condition for the new ground state energy minimization. The parameters governing the
atomic move (the “mass”, the “damping” and the “timestep”) have to be adapted in order to
assure find the global minimum. All in all, the density-functional calculations for the supercell
with structure relaxation are much more elaborate than for the bulk and the convergence de-
pends on numerous parameters, however, the convergence calculations for the bulk give hints
about the cutoff energy and the lattice constant to use.

Ground state calculations have been realized for differentcutoff energies ranging from 8 Ry

no. of layers
[°] 7 10 15 22 30 40

cu
to

ff
en

er
gy

[R
y] 8.0 18.369 17.092 17.071 * 17.071 18.175

10.0 18.369 18.184 18.156 18.150 18.160 18.143
12.0 18.369 18.231 18.218 * 18.192 18.187
14.0 18.369 18.123 18.212 * 18.100 18.095
16.0 18.369 18.096 18.212 * 18.071 18.069
18.0 18.369 18.110 18.212 * 18.086 *
20.0 18.369 18.124 18.212 * 18.098 18.096

Table 5.1: The dimer tilting angle in dependency of the number of layersand cutoff energy. For
the starred table entries, data is incomplete.
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Figure 5.8: Band structure, atomic structure and Brillouin zone of a15 layer supercell.

to 20 Ry and for a different number of layers ranging from 7 to 40. The temperature for the
occupation of the states has been fixed at 300 K, and four conduction bands is included into
this calculation, which is necessary to allow a statisticaldistribution for this temperature. In
Figs. 5.6-5.11, the resulting structures of these calculations for a cutoff energy of 10 Ry are
depicted in the middle. The extension of the unit cell, including the vacuum of the supercell,
is indicated by the red brick, the yellow spheres represent the silicon ions, whereas the blue
spheres symbolize the passivating hydrogen atoms at the backside of the slab (bottom). The
tilted dimer and the reconstruction of the first layers is clearly observable on top of the struc-
tures. The corresponding Brillouin zones in reciprocal space and their size with respect to the

no. of layers
[eV] 7 10 15 22 30 40

cu
to

ff
en

er
gy

[R
y] 8.0 -64.999 -88.629 -127.866 * -246.168 -324.935

10.0 -65.265 -88.982 -128.509 -183.845 -247.087 -326.141
12.0 -65.434 -89.203 -128.671 * -247.654 -326.879
14.0 -65.531 -89.328 -128.842 * -247.965 -327.283
16.0 -65.581 -89.391 -128.926 * -248.110 -327.470
18.0 -65.605 -89.419 -128.962 * -248.169 -327.544
20.0 -65.618 -89.434 -128.978 * -248.195 -327.575

Table 5.2: The ground state energy in dependency of the number of layersand cutoff energy. For
the starred table entries, data is incomplete.

71



5 DENSITY-FUNCTIONAL CALCULATIONS AT THE SILICON (100) 2×1 SURFACE

[e
V

]

-10

-5

0

5

10

Γ X M X’ Γ

X

W

LK

U

X
���

M
���

X
���

’

22 layers
188bands
46silicon atoms

1.226nm3 unit cell
volume

Figure 5.9: Band structure, atomic structure and Brillouin zone of a22 layer supercell.

bulk Brillouin zone are shown on the rhs of the pictures. The relation between the dimer tilt-
ing angle and the cutoff energy and the number of layers is shown in table 5.1. Obviously,
the changes with respect to the cutoff energy are quite insignificant, whereas the variation de-
pending on the layer number has slightly more effect. As a matter of fact, both the need of
CPU time and of hard disk space for the storage of the electronic wave functions (which are
not problematic for single band structure runs) for a big number ofk-points (up to 1089, cmp.
Chapter 6), which will be needed in later steps of our calculation, are increasing fast with the
cutoff energy (as the number ofG-vectors is increased approximately by a factor∼ E3/2

cutoff,
cmp Eq. (3.23)). We conclude therefore that for the given resources, it is a minor limitation
to the surface properties to use a cutoff energy of 10 Ry, where the dimer angle has yet the
right magnitude, but the other parameters are not fully converged. In table 5.2, the ground state
energies for the different cutoff energies and number of layers are indicated. Although only
each row of the table can be compared, it can be seen that the overall difference is below one
percent of the total value of a row. This error seems tolerable in view of the increase in CPU
efficiency. A final decision about the cutoff energy, however, could only be investigated by
performing parallelly all subsequent steps of calculationfor different cutoff energies, which
requires storing most intermediate data from density-functional calculation runs. The storage
system is therefore the limiting factor of the entire calculations, and at the time the simulations
where started, only a single calculation could be established on the hard disk.
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Figure 5.10:Band structure, atomic structure and Brillouin zone of a30 layer supercell.

5.2.2 Band structure calculation

In contrast to the time consuming structure relaxation iterations for the ground state, the band
structure calculations for a supercell structure are not more complex than the band structure
calculations for the bulk. However, as we intend to describea great portion of the conduction
bands where phononic relaxation processes take place, the same number of conduction bands
as of valence bands is calculated in the band structure run. As in the bulk case, the electron
density is not updated and inserted from a beforehand accomplished ground state calculation.
Of course, in addition to this, the modified atomic positionsfrom the structure relaxation have
to be considered in place of the idealized starting positions, as the electron density is now
oriented at the new, more realistic positions. Due to the supercell approach (and in contrast to
the rhs pictures in Figs. 5.6-5.11, where the volume of the reciprocal lattice vectors is shown),
the Brillouin zone is now truly two dimensional (cmp. Sec. 3.7), as the third dimension does
not imply a new continuous quantum number. The path in the Brillouin zone (which is the
same as introduced for the 2×1 orthorhombic bulk cell in Sec. 5.1) is oriented at the border of
the irreducible part of the surface Brillouin zone. The irreducible part of the zone is in principle
half of the whole zone (e.g.ky > 0), this is related to the inversion symmetry along thex− z-
plane. From the time reversal invariance of the Schrödinger equation, an additional inversion
symmetry at theΓ-point can be extracted, which holds at least for the energy eigenvalues
(whereas the wave functions are complex conjugated – this ishowever no limitation to the
later steps of our calculation)2. Consequently, the irreducible part of the Brillouin zone is

2The main reason for this property is the fact that the potentials in the Schrödinger equation are real and thus,
the energies are not influenced by complex conjugation of theequation – but thek-vectors are transformed to−k.
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Figure 5.11:Band structure, atomic structure and Brillouin zone of a40 layer supercell.

represented by only a quarter of the original zone, like the part of Ω wherekx ≥ 0 andky ≥ 0
(as indicated in Fig. 4.3). The symmetry path in the Brillouin zone is indicated by the red points
and lines in the rhs pictures of Figs. 5.6-5.11.

The band structures of calculations for structures with 7, 10, 15, 22, 30 and 40 layers
are shown on the lhs of Figs. 5.6-5.11. In the background of these pictures, the projection
of the bulk states obtained from the orthorhombical bulk band structure (Fig. 5.5) by varying
the kz component (cmp. Sec. 5.1) is drawn. By this, a direct comparison of the bands in the
surface structure to the bulk bands is possible. It is clearly observable how the size of the
structure influences the number of resulting bands in the calculation. By increasing the number
of layers, the continuouskz-dispersion in the bulk is replaced by discrete energy eigenvalues
of the particular bands. While for seven layers in Fig. 5.6, the 68 single bands are clearly
separated and there exists a wide energy spacing between theenergy values, as it is similarly
the case in a nano-confined system (like a quantum well structure), and also big areas of the
bulk bands are not covered by the slab bands, the situation isquite different for 40 layers. Here,
in Fig. 5.11, the slab bands are a fairly good approximation of the bulk, all regions of the bulk
band structure are represented in the slab band structure, and at some places, the slab bands
are even sufficiently dense to prevent a clear distinction ofthe separate bands. At the same
time the number of bands has increased to 332. The process of transition from a “confined”
system to a “bulk like system” is illustrated in the intermediate figures 5.7, 5.8, 5.9 and5.10.
Of course, a clear classification is impossible, as it depends much on the actual problem which
surface properties are outstanding and most important, butthe later dynamical investigations
in Chapter 7 show that bulk properties are much better approximated by slabs of 30 layers and
more than with less than 20 layers.
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In all of the figures, however, the main difference to the bulkbands is concordantly given
by two additional bands which reach into the band gap betweenvalence and conduction bands
(at 0 eV). These bands are related to the dimer surface reconstruction of the slabs, so it is
evident that no corresponding feature can be contained in a pure bulk description of the band
structure. These two bands are classified asDup andDdown surface bands, which are related
to the dangling bonds of thep-orbitals of the dimer atoms at the surface. While theDup band
is a valence band and reaches deeply into the zones where the bulk bands exist (it is only
clearly inside the band gap betweenX−M−X

′
), the Ddown band is a conduction band and

only touches the bulk atM−X
′
. These bands are found in any of the calculations, the position

is only slightly changed throughout the augmentation of thelayer number. A certain difficulty
lies in the fact that for the calculations with lower layer number (7-15 layers), the trend of
the surface bands is definitely distinguishable from the bulk bands in the regions where they
overlap. This, however, is an artificial feature due to the limited number of bulk bands in
those calculations and is therefore not visible in the higher layer calculations (22-40 layers).
A non-ambiguous assignment of the calculated eigenvalues to the bands is only possible by
geometrical investigation of the symmetry of the associated electron state, e. g. by projection
on the surface orbitals [Egg05]. This part of the study has not been accomplished in this thesis:
the dynamical investigations in Chapter 7 are uniquely extended on the conduction bands, and
the involvedDdown surface band is much better separatable from the bulk bands than theDup.

In Fig. 5.12, the location and extension of theDup andDdown surface states is exemplarily
shown for ak-point on theX−M-line, where the surface bands are well defined and separated
from the bulk bands. The square modulus|φnk(r)|2 of the wave functions is shown for any of
the slab calculations with different slab layers. For any ofthe two wave functions show, two
isosurfaces are plotted: one at an electron density of 2·10−4 (solid fill), whereas the maximum
is at 3·10−4, and the other at an electron density of 2·10−5 (hollow fill). By the solid filled
isosurfaces, it can be seen that the orientation of the wave functions is still influenced by the
p-orbitals of the dimer atoms; theDup band is built up from the highest level dimer atoms
(red), while theDdown band is related to the lower level dimer atoms (green). The major part
of the wave functions is located in the first three layers of the slabs. Furthermore, the optical
appearance of the surface wave functions is fairly similar for all different calculations with
different layers, even at the seven layer calculation, the main features of the electron distribution
are reproduced. Nevertheless, in the seven layer calculation, the a certain electron density of
the surface states still reaches the backside atoms of the slab, yet at ten layers, the decrease of
the surface state leads to a total vanishing of the state at the sixth layer.

We can conclude from these considerations that seven layersare in fact sufficient to investi-
gate principle features which stem from the surface reconstruction (like the surface reconstruc-
tion, dimer tilting angle, dispersion of the surface bands or the extension of the surface states)
and also most properties of the bulk. If however an accurate description of the band structure
with a dense discretization of the bands on the energy scale is required for subsequent calcula-
tions, the slab has to be expanded to at least 20 to 30 layers. In this case, we can also expect
that the bulk band structure and the interplay of bulk and surface states is mapped sufficiently
precise by the supercell band structure. These observations, which are purely empiric at this
level of examination, will be confirmed be the dynamical calculations in Chapter 7, where the
interaction of bulk and surface is a part of the discussion.
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7 layers

10 layers

15 layers

22 layers

30 layers

40 layers

Figure 5.12: Location of the Dup (red) and Ddown (green) surface states atk =

(8.20nm−1,8.20nm−1). At this point on theX−M-line, the surface bands are clearly sepa-
rated from the bulk bands (see band structures in Figs 5.6-5.11). The isosurfaces are plotted at
an electron density of2·10−4 (solid) and at2·10−5 (hollow). The p-orbital shape of the surface
states is obvious. No significant difference is visible for the extension of the surface states in the

slabs (7 – 40 layers)
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Chapter 6

Calculation of Matrix elements

After solving the quantum mechanical ground state problem the silicon (100) 2×1 surface prob-
lem, we will now proceed to the dynamical properties of the phonon induced relaxation pro-
cesses of the conduction band. The link between the two theories (DFT and DMT, Chapter 4)
is essentially based on the implementation of the band structure and the matrix elements (4.49)
and (4.53) which enter in the scattering equations (4.45).

In this chapter, the numerical requirements and the proceeding to calculate these matrix
elements from the density-functional theoretical resultsof Chapter 5 is presented. For the
evaluation of dynamical equations like Eq. (4.45), the bandstructure and matrix elements must
be present on a mesh covering the irreducible part of the Brillouin zone, as it is important
for a realistic dynamical calculation that principally allfeatures of the band structure enter
the equations. For the evaluation of the phonon scattering processes (to fulfill the scattering
conditions in Eqs. (4.33)), it is moreover required to have aregular, equidistant mesh in bothkx

andky directions. The calculation of matrix elements is achievedin two steps: first, the mesh
is set up and the band structure is calculated on that mesh (this mesh contains generally much
more points than in a simple band structure calculation on a symmetry path as in Sec. 5.2.2).
In a second step, all energy eigenvalues and wave function ofthis band structure are collected
together, and the matrix elements (4.49) and (4.53) are computed from these wave functions.
The matrix element values and the merged energy eigenvaluesare then stored in a separate file,
so the evaluation of the dynamical equations can then be executed totally independent of the
previous calculations by reading from this file. Though the flexibility of this approach is very
high, as it also allows many dynamical calculations with different initial conditions at the same
time, the main disadvantage is the huge amount of hard disk storage space (up to 100 GB for the
calculations in this work) which has to be kept accessible tofile operations (and as the matrix
elements can not be considered as intermediate results, butare quite costly to calculate (for the
thickest slab in the highest discretization the accumulated CPU time amounts to 14,000 hours),
they should be even stored on a file system with a backup utility). Whence, the need of disk
space is momentaneously the primary limiting factor of the whole approach.

6.1 Band structure calculations for matrix elements

The main issue in performing band structure calculations inthe supercell approach on a regular
and relatively dense mesh (up to≈ 1000 points in the reduced part of the Brillouin zone) is
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Figure 6.1: Selection of the mesh for thek-point sampling of the Brillouin zone. Only the points
in the irreducible part of the Brillouin zone of silicon (001) 2× 1 (bright colors) is computed,
while the rest of the sampling points is geometrically equivalent (pale colors). The different
strides (red, green and blue points) refer to several levelsof approximation from5× 5 effec-
tive points to17× 17 effective points. The lower discretized meshes are a part ofthe higher

discretized meshes.

that the memory requirements of these mesh points and the slab usually not allow a calculation
within a single run (where all mesh points are computed in thesame time). Although it is con-
ceptually no problem to split the calculations into severalruns (as in the band structure mode,
the differentk-points are considered as totally independent on each other– cmp. Sec. 5.1),
the special requirements of our problem for the choice and initialization of thek-points exceed
the capabilities of the tools included in the thefhimd program package, and consequently,
extensions are needed at this point.

As a consequence, all program parts from this point of investigation on have to be devel-
oped from scratch. It is obvious that for debugging and lateron convergence tests very different
discretizations for the Brillouin zone mesh are needed, especially because the scaling relation
of CPU-time requirements to the number ofk-points is of at leastO(N(k)2). By choosing a
well factorizable mesh discretization, it is possible to use mesh points of lower discretization
density also in a mesh of higher discretization: if, for example, the discretization is chosen
according to powers of two, the points of a eight-times-discretization are all contained in a 16-
times-discretization and those are contained in a 32-times-discretization. The Brillouin zone
can be entirely described by its irreducible part, but it should be assured that high symmetry
points and -lines are represented in the discretization points, as they might play a crucial role
in relaxation processes. In Fig. 6.1, a discretization for the silicon 2×1 unit cell which fulfills
these requirements is shown: theΓ, X, M andX

′
points are all mesh points. The discretiza-

tion in this plot is 32× 32, but by symmetry, the irreducible part of the first Brillouin zone
is covered by a discretization of 17× 17. Lower discretizations with 5× 5 (8× 8) and 9× 9
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Figure 6.2: Distribution of the different strides (Fig. 6.1) on multiple band structure calculation
runs. While the first stride (lhs, the 25 redk-points in Fig. 6.1) usually can be achieved in a single
run, the subsequent strides are split as indicated by the black edges (middle and rhs, green and
red points). By this selection of points, the runs for the lower discretizations are independent

from the higher discretized runs.

(16×16) points are also comprised: in the picture, we have the blue points (5×5), the green
points (9×9) and the red points (17×17).

Another gain in flexibility can be reached by intelligently distributing the mesh points to the
particular band structure runs. The total number of runs necessary is limited by the available
memory, however, the relation between number ofk-points and memory consumption is non-
trivial. In addition, as the computation speeds up for runs with lessk-points, it can make
sense to take more runs, if a lot of machines are accessible atthe same time. In the current
implementation, the number ofk-points is estimated by the number ofk-points in the previous
band structure run, which is usually 401. The easiest way to share thek-points on the particular
runs would be to just count the points along the rows and columns and put an equal number
of them in each run parameter file. This, on the other hand, hasa great disadvantage: every
discretization level of the matrix elements would depend – in the worst case – on all band
structure runs, as the points can appear anywhere in the run file setup. Not only this is quite
unflexible (at least as long the debugging phase of new code persists), but also, it would require
that the highest discretization is known in advance (it can be necessary to enhance the density
of points due to numerical instabilities), and, at last, theextraction of matrix elements will be a
much costlier process, as, even if only onek-point of a whole run is needed, the whole wave-
function information of the run will have to be read in. As a consequence, another method
comes to exercise in this context: allk-points of a specific discretization level are grouped
together in subsequent runs, calledstrides. In Fig. 6.1, the lowest level is symbolized by the
blue points. In Fig. 6.2, these 25 points form the first run on the lhs. The next stride, the green
points of Fig. 6.1, then consists of 56 points. In Fig. 6.2 (middle), this is indicated, where the
“missing” points are the 25k-points from the first stride. The 56 points are distributed on two

1In the 40-layer calculation, however, this exceeds the computer’s capacity, yet the band structure run has to be
split in two runs of 20 points.
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runs of 28, which is signified by the black edges. The completeset of points of the second
stride is then obtained by combining the points from the firstand the second stride. For the
third stride, the procedure is similar, now, the first and thesecond stride are missing in the
corresponding picture (rhs of Fig. 6.2), and 208 points are now shared by 6 runs (34 or 35 per
run). In the calculations there is also a final discretization level of 64×64, or 33×33 in the
reduced Brillouin zone, which owns then a total of 800 pointsand distributes them on 20 runs
of 40 points.

The major task of this application is thus to the control of the approvedfhimd program –
no interference with the intrinsic band structure calculations is required. This functionality can
be satisfied by modifying the parameter files for thefhimd run and starting the several runs.
As this comprises basically copying of directories and altering text files, the natural choice of
the programming environment for this part of the project is ascript oriented language, which
also brings along the big advantage of being very flexible in application. In our case, this
is achieved by using the interpreter languagepython [vR06], which has also wide spread
abilities in numerical computation (which are of use for thesetup of atomic coordinates and
k-points). The setup of a calculation is then accomplished intwo steps: by a first script, the
standard parameters are read in from a sample band structurecalculation (as the calculation on
a symmetry path in Sec. 5.2.2). The several strides are made up in the script, whereas the dis-
cretization level is provided as an input parameter. Then a control file is written for each stride
(which is used lateron for the matrix element calculation),in this file, besides some information
on the discretization level, the several runs of the stride and eventually the lower discretized
strides which have to be included for the complete set of matrix elements are referenced. Fi-
nally a run directory is created for every run, in which the standard parameter files from the
standard run are inserted and thek-point set for the run is adapted. A second script then allows
to start the runs belonging to a specific stride selectively by reading the corresponding control
file and inserting the specific runs into the queueing system.All runs are then executed totally
independent from the others in their run directory. It is in principle also possible to augment
the discretization level after the runs of the lower levels are initialized, as in the hierarchy of
the control files, the files for the lower discretizations do not contain any information about the
higher levels (so each stride is “self consistent”), but of course the higher discretizations need
to know about their predecessor, as they depend on some points of the lower discretized strides
(Fig. 6.2).

6.2 Aspects of the matrix element calculations

By here, the raw wave functionsφnk(r) and the electron dispersionEnk have been computed
on a regular mesh in a predefined discretization (cmp. Sec. 6.1). In this section, the principles
of calculation of the electron-optical matrix elementspn′k

nk (4.53) and electron-phonon matrix

elementsDn′,k+q+G0
nk,iq (4.49) are elucidated. It is obvious from the definitions that the compu-

tation of electron-optical matrix elements is a lot less costly than the electron-phonon matrix
elements: although the former depend on a pair of bandsn andn′, they are based on only onek-vector, while the latter also comprise a dependency on a second k-vector (cmp. Sec. 4.3.2
and Sec. 4.3.1). While the eigenvalues belonging to different bands at the samek-point are
always contained in the same bandstructure run (as this is anintrinsic feature of the plane wave
density functional algorithm, Sec. 3.6), the differentk-points belonging to a band, according to
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Sec. 6.1, are not necessarily. Although is is possible to create an algorithm where subsequently
all combinations of pairs of the different wave function files are read in and thus a complete
covering of all matrix elements is reached in the end, such analgorithm is difficult to handle
(as it has also to account for the different strides) and the file access is normally a very slow
process, especially for data on storage systems. It is more convenient to pursue a slightly more
elaborate technique by using the computer system’s scratchdirectory (or temporary storage
directory). Such an explicit scratch directory is available on most computing clusters and is
generally optimized for access speed by a fast network connection. This scratch directory can
at this point be used to rearrange the wave function data of all runs of a stride and save them in
direct access mode, which allows to access all entries in thefile independently of each other by
an index2. Through this direct access, this intermediate storage filecan be used like a classical
array in the RAM memory, and allows therefore a much more flexible handling of the wave
functions.

A further difficulty in the evaluation ofk-k′ matrix elements is the fact that through the cut-
off of the underlyingG-vectors by the cutoff energy (Eq. (3.22)), the variety of the G-vectors
differs for thek-points. As a consequence, he order of theG-vectors in the plane-wave im-
plementation offhimd is also different for eachk-point. As for the electron-phonon matrix
elements, also umklapp processes are considered (Eq. (4.48)), it can not be avoided to map the
condensed set ofG-vectors which is saved in the wave functions file to an expanded set, where
the G-vectors are ordered by their location along the three dimensions of reciprocal space to
enable the direct access to a specificly oriented wave vector(while all vectors not represented
in the condensed set are set to zero). When performing a matrix element calculation, it suffices
to do this expansion for only one of the to wave functions, as the other one can be multiplied in
situ. For umklapp processes in the form of (4.48), theG-vectors of one of the two wave func-
tions has to be increased or decreased by reciprocal latticevectorG0 in the umklapp-direction.
Due to the expanded wave vectors, this is nothing more than the increasing or decreasing the
index for a specific dimension in theG-vector table for the wave function.

While the calculation momentum matrix element for the electron optical coupling can be
implemented without further complications, as all necessary parameters (as reciprocal lattice
vectors) are contained in the wave function file, the situation for the electron-phonon matrix
elements is more complex. In the simplified form of the matrixelements which will be used
here, matrix elementsDn′k′

nk;iq as in Eq. (4.51) consist of two parts: first a phonon mode depen-

dent part
√

h̄
2Mωiq Di

1q ·ei
0 and the principally phonon independent electron matrix element part

∑G ∑G′ unk(G)un′k′(G′)δG′+k′+q,G+k. In the current implementation, only the second part is
actually done in the matrix element calculation. Besides the fact, that the parametersDi

1 and
ωiq are not extracted from calculations, but by heuristical parameters, the pure matrix elements
in bulk approximation can be used be multiple phonon modes, as nothing mode specific en-
ters the calculation. It is in principle feasible to performphonon mode calculations for the
given silicon structure, in this case, a more generalz-dependency of the modes as in (4.49)
would be necessary, and hence, the matrix elements would have to be calculated with an addi-
tional explicitz-dependency of the modes∑G ∑G′ ∑Gz

unk(G)un′k′(G′) ·si(Gz)δG′+Gz+k′+q,G+k.
It should however be noted that both the CPU time and the hard disk requirements for this
enhanced matrix element calculation are momentaneously exceeding the possibilities.

2Yet, as the employed computer system in based on an 32-bit-architecture, it is necessary to use multiple direct
access files, as the total size of all wave functions exceeds 232 bytes for some configurations.
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Figure 6.3: Calculation of optical (lhs) and phonon-electron matrix elements (rhs). Due to
symmetry relations (Eqs.(4.34)), only the black-filled circles do actually have to be computed.
While the optical matrix elements are only defined for different n and n′, the phonon-electron
matrix elements have to be calculated for all pairs of n,k and n′,k′. It is obvious from this sketch

that the number of electron-phonon matrix elements can get very huge.

As the wave function output from thefhimd package is only available in the intrinsic
Fortran 90file format and there is no standard representation of this format in alternative pro-
gramming languages, the most convenient way is to implementthe matrix element calculation
program in the same Fortran 90 dialect as thefhimd code. The calculation is achieved in two
phases: first, after parsing the stride control files for the different discretization strides (where
the control file for the highest discretization is given as a run-time parameter and the lower
discretization control files are then read recursively fromthe former as a link in the control
file), the necessary band structure matrix element files are read in and immediately reordered
and rewritten into the direct access scratch file. The energyeigenvalues are also reordered, but
can be kept in memory. In the second phase, all combinations of wave functions are iterated by
two nested loops, the momentum matrix elements are calculated for every combination of two
bands using Eq. (4.55) and the electron-phonon matrix elements also for every combination ofk-points. Due to the symmetry relations (4.34), basically only a half of the elements has to be
computed, for the momentum matrix elements, this can be implemented by only considering
matrix elements withn > n′, for the electron-phonon matrix elements, this is slightlymore
complicated, but can be achieved by computing the elements for all k andk′ if n > n′, but
only thek >= k′ for n = n′. This technique is illustrated in Fig. 6.3. While for the momen-
tum matrix elements, all bands can be considered because thecomputational effort is relatively
limited, it is crucial for the electron-phonon matrix elements to preselect a subrange of the
available bands, because, again, both time and disk space would be exceeded otherwise. With
regard to the relaxation processes in the conduction bands which are the topic of this thesis,
the usual selection are a few bands at the conduction band bottom (including theDdown band)
which cover the energy range sensitive to optical excitation at a given laser frequency (cmp.
Sec 7.4). Hence their number depends on the number of layers in the slab, as this influences
the number and the energetical spacing of the bands (cmp. Chapter 5).

During the looping, the matrix elements are immediately written into the output file. To
allow a further investigation of the results in a platform- and programming environmental in-
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dependent way, the output file is used in thenetcdf format [Uni36], which is accessible in
numerous programming languages and can be used independentof the system architecture.
Not only the matrix elements and the total band structure is saved in the file, but basically all
information that is important for the future handling in thedynamical evaluation, as lattice vec-
tors, symmetry operations ork-point positions. By this, only one file will be necessary lateron
to accomplish the dynamical evaluation.

6.3 Investigation of optical and electron phonon matrix elements

Having accomplished the numerical calculation of the matrix elements, we now proceed to
the examination of the results. Although a general investigation of all matrix elements is, due
to their generally huge number, impossible, some exemplaryand cumulative comparisons can
be however accomplished. The purpose of this analysis is, atfirst, to check the influence of
the discretization and the number of layers in the band structure calculations. It is obvious
that this is only one aspect of the convergence behaviour of the matrix elements, a final study
has to include the characteristics of the dynamical relaxation, which is induced by the matrix
elements. A side effect is that the optical matrix elements can be related to macroscopical
quantities like the optical absorption coefficient. Thus, the results can in principle be compared
to experimental findings, this is however inhibited by the fact that excitonic interactions are
very significant for optical absorption, and cannot be neglected in the spectra, as it is the case
in our theory (which has the focus not on the optical spectra). Whence, the comparison has to
appear on a qualitative level.

6.3.1 Dipole matrix elements

While our theory is on the evaluation ofA ·p-coupling (Sec. 2.3.5), the equivalent formulation
in terms ofd ·E-coupling (Eq. (2.48)), better adapted to macroscopical analysis of data. The
dipole matrix elementsd are investigated in two ways. The linear macroscopic absorption coef-
ficient α(ω) can be related to the macroscopical polarization (4.13) andthe incident electrical
field by

α(ω) = cα ℑ
(

P(ω)

E(ω)

)
. (6.1)

Herecα is a constant. The Fourier transform of the macroscopical polarization can be derived
by solving Eq. (4.39) for the microscopical polarizations in Fourier space, whereby a spectral
distribution function with Lorentzian shape is found, whena heuristical damping factorγ is
introduced into the differential equation (4.39):

α(ω) = cα ∑
nk ∑

n′k′∣∣dn′k
nk eP

∣∣2
(

γ
γ2 +(

Enk−En′k
h̄ −ω)2

+
γ

γ2 +(
Enk−En′k

h̄ + ω)2

)
, (6.2)

whereeP is the polarization vector of the light fieldE(t). ω can be interpreted as the vari-
able frequency of the incident light. The second term in the parenthesis can be neglected,
as it is only relevant for negative frequencies (which correspond to induced emission). The
linear absorption spectrum based on this elementary electron-optical interaction is therefore a
superposition of Lorentzian peaks with a weight according to the transition matrix elements.
However, for a realistic spectrum, more effects have to be considered in the equations: Apart
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Figure 6.4: DFT-LDA Absorption spectra plot for a polarization of the incident field along
the x-direction for silicon (001)2×1-supercell calculations of various numbers of layers for a
discretization of32× 32 points in the Brillouin zone and for Silicon bulk (diamond) structure.
The normalization is according to the size of the unit cell. In the top level figure, the spectra
are shown for the range 0-5 eV. For energies greater than ca. 4eV, the spectra are not reliable
for the slab data, as the number of points depends on the number of considered bands in the
band structures (cmp. Figs. 5.6-5.11). At the bottom, a cutout for 0.5-1.3 eV is shown. The
peaks represent the energetical positions ofk-points to allow a comparison of the transitions for
different slab calculations. In this part of the spectrum, only transitions from the valence bands
to the Ddown-band are present, thus the intensity of the spectrum decreases with increasing layer

number.
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Figure 6.5: Analogous DFT-LDA absorption spectra (as in Fig. 6.4) for a polarization of the
incident field along the y-direction. While the shape of the spectra is similar to Fig. 6.4, the
different extension of the unit cell in y-direction resultsin a different normalization of the spectra

with respect to the bulk spectrum. In the detailed plots (bottom), bigger differences occur.
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Figure 6.6: DFT-LDA absorption spectra plot for a polarization of the incident field along the x-
direction for silicon (001)2×1-supercell calculations of various discretizations of theBrillouin
zone for a layer number of 7 and for silicon bulk (diamond) structure. The normalzation is
according to the size of the unit cell. Only slight differences appear between the different plots,
also the position of the peaks for the transitions into the surface band (cmp. Fig. 6.4) are more

or less invariant.
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Figure 6.7: Distribution of the optical absorption over the Brillouin zone. The sum of all relevant
transition dipole matrix elements (all transition from valence to bulk bands) are shown for a
polarization of the incident light in x-direction (top) andin y-direction (bottom) for a supercell
of 7 layers (left) and 40 layers (right) are shown. No significant differences occur between the 7

and 40 layer plots.

from a homogenousscissors shiftof the band gap in the band structure (cmp. Sec. 1.4.1), also
the appearance of additional excitonic peaks (as a result ofthe formation of excitons at the
band edge) is expected. In this presented spectra, the quasiparticle and excitonic effects are
not discussed at all, thus the energies in the spectra cannotbe compared directly to measured
data. Nevertheless, some effects of the silicon dimer surface reconstruction on the spectra can
be discussed at this level.

In Fig. 6.4 and Fig. 6.5, the absorption spectra are plotted for incident light polarized along
the x and they-direction, respectively, for calculations with a different number of slab layers
for a k-point discretization mesh of 8× 8 (5× 5 in the reduced zone). The bulk spectrum is
indicated as a reference by the light-blue lines. In the top level pictures of Fig. 6.4 and Fig. 6.5,
an overall spectrum up to 5 eV is shown. Only slight differences are obvious for the spectra
with a higher number of layers (the blue, yellow and magenta lines for the 22, 30 and 40 layer
calculations), so a convergence of the spectra is achieved for a layer number of above 22. For
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lower layer number, however, the differences are more obvious, and some of the peaks which
also appear in the other calculations are shifted to higher or lower energies, so we can conclude
that below 22 layers, the calculations are not inspiring confidence. This convergence with
respect to the layer number is found independently for thex- andy-polarized light. Although
the spectra are similar for the two polarizations, the strength of the excitation is on average
about 2 times larger in they-direction. In the bottom pictures, a cutout of this spectrum is
shown for an energy range of 0.5 - 1.3 eV. In this range, there are no contributions in the bulk
spectrum, as the direct optical transitions which are discussed here only appear above 1.6 eV.
The effects in these pictures are consequently uniquely induced by the surface reconstruction,
in the first order, the transitions from valence band bulk states to theDdown surface band are the
cause. An obvious fact is that the relative strength of thosesurface band transitions is reduced
with increasing layer number. This is a consequence of the growing number of bulk bands with
respect to the surface bandsDup andDdown, or, in other words, by increasing the structure into
the bulk (cmp. Figs. 5.6-5.12), the influence of the surface is decreased. As in the case of the
full spectrum, it appears that the number of consideredk-points is sufficiently high and thus
the positions of the peaks are quite stable above a layer number of 22, while big differences are
visible for the lower layer calculations. However, with increasing layer number, still particular
additionalk-points and the related peaks are occuring in the spectra, their contribution to the
shape of the curves is limited.

In Fig. 6.6, the absorption spectra of calculations with an equal layer number of 7, but
different discretizations ranging from 8× 8 to 64× 64 are shown. While in the 8× 8 (or
5× 5 in the reduced Brillouin zone, cmp. to Fig. 6.1) plot, the curve is highly influenced by
singular peaks (top, black lines), the curve is much more smooth for the higher discretizations.
Nevertheless, the shape of the curve is not changed by a higher discretization. This behaviour is
also visible in the cutout range picture at the bottom of Fig.6.6: the total size of the single peaks
decreases by increasing the discretization size, but the shape of the curve remains unchanged.
In conclusion we state that obviously, all important features of the optical absorption within
our approximations are reproduced by a relatively low discretization, whereas the number of
layers in the supercell influences the shape of the spectrum and the position of the peaks much
more. A qualitative comparison to the bulk spectra also reveals a high accordance to the higher
layer calculations, with exception of the low energy transitions (< 2.5 eV), where the surface
bands come to play.

A different form of investigation is illustrated by Fig. 6.7. Now, the plotted matrix elements
are not chosen by the energetical selection through the frequency of the incident light, but by
the location inside the first Brillouin zone. For each point of the discretization (where the
highest available discretization of 64×64 is selected), the square modulus of all dipole matrix
elementsdn′k

nk going from valence to bulk (e.g.n is a valence band andn′ is a conduction band
or vice versa), in the light polarization direction, is summed. Although no specific conclusions
about the excitation of particular electron states in the band structure can be made by this con-
struction, the main destination of the transitions of an white-light excitation can be read out
from these images. Two parameters are varied inside these plots: First, the number of layers
in the supercell structure which is the origin of the dipole matrix elements is changed, and sec-
ond, the polarization direction is selected inx andy-directions. While only slight changes are
visible by the variation of the layer number in the pictures (left and right row of Fig. 6.7), the
orientation of the absorption maxima in the Brillouin zone is completely altered by the change
of orientation of the polarization vector: while forx-polarized light, absorption is mainly found
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Figure 6.8: Size of the matrix element of electronic Bloch wave functions
∫

d3runk(r)un′k′(r) for

intraband transitions on the symmetry pathΓ−X−M−X
′−Γ (cmp. Fig. 5.2, 5.6-5.11) from

a statek to a statek′ inside the Ddown surface band (top) and inside the lowest bulk-like band
(bottom) for a seven layer slab (lhs) and a forty layer slab (rhs). At the upper left side of the
plots, the matrix elements of umklapp processes are shown. The block-like structures in the 40
layer slab picture for the surface band can be identified as the zones in the band structure where
the surface band enters into the bulk (Fig. 5.11) and cannot be clearly identified. Similarly, the
the first bulk band for the 40 layer slab is obviously build up from several states of different

symmetry.

along theky-direction, it is found along thex-direction forky-polarized light. Obviously, most
features of the spatial distribution are yet contained in the dipole matrix elements of the super-
cell calculations with low number of layers (7), but in all cases, the matrix elements are highly
inhomogeneous with respect to the polarization direction.

6.3.2 Phonon matrix elements

In contrast to the optical transition matrix elements, no direct link to a macroscopical quantity
exists for the electron-phonon coupling. Furthermore, thenumber of electron-phonon matrix
elements is not diagonal with respect to thek point (Fig. 6.3). Consequently, the high number
of parameters (n, n′, k, k′, i) makes it impossible to draw the relations between the parameters
in a simple graphical representation. Thus, only some exemplary transitions will be discussed
here. As the electron-phonon coupling is represented by twoparts (Sec. 6.2), where only
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Figure 6.9: Size of the matrix element of electronic Bloch wave functions
∫

d3runk(r)un′k′(r) for

interband transitions on the symmetry pathΓ−X−M−X
′−Γ (cmp. Fig. 5.2, 5.6-5.11) from a

statek of the surface band to a statek′ of the lowest bulk-like band (top) for a seven layer slab
(lhs) and a forty layer slab (rhs) and the corresponding umklapp processes (bottom). As in the
case of intraband scattering (Fig. 6.8), the attribution ofstates to the bands is not definite for the

40 layer calculation, thus a block structure occurs in the pictures.

the second part is gained from the electronic wave functionsin the current implementation,
the discussion will be limited to the matrix element of the electronic Bloch wave functions∫

d3runk(r)un′k′(r) (Eq. (4.51)). Those matrix elements have to be treated differently for the
direct scattering and the different umklapp processes (Eq.(4.50)). Yet, the full discussion of
two two-dimensional wave vectorsk andk′ already exceeds the possibilities of commonly used
graphical representions in printed form (as still another coordinate is needed to represent the
dependency), we simplify this by discussing only thek andk′ points on the symmetry path
introduced in Sec. 5.2 (Fig. 5.2).

Two bands and two situations are presented in Figs. 6.8 and 6.9. In Fig. 6.8, the square
modulus of size of the matrix elements of the intraband transitions (wheren= n′) for the surface
band and for the first bulk band are shown. By evaluation of thematrix elements, a basic result
for these intraband transitions is that fork = k′, the matrix elements must yield one, as in and
out states are identical. Additionally, due to the symmetryof the matrix elements (Sec. 6.2),
only one half of these matrix elements has to be calculated, as the other half can be mapped to
the same points. Thus, the matrix elements for one of the eight occuring umklapp-processes
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with G0 =b1 are plotted in the upper-left half of these intraband pictures3. The matrix elements
are plotted for the calculation with a seven layer slab and for the calculation with the 40 layer
slab. In Fig. 6.8, for the seven layer slab, the matrix elements express a smooth dependency
with a well defined maximum of one at the diagonal both for the surface band and for the bulk
band, as it is expected from the analytical evaluation. In a certain range of|k− k′| of about
20% ofΓ−X, depending on the location ofk, around the diagonal, the matrix elements are still
above 0.9. This complies with estimations which have been done for quantum dots [Ahn06].
For the 40 layer calculation, however, the plots are not coherent: for transitions originating
from a k point between theX

′
andΓ points, a block-like hole inside the plot occurs, where

the size of the matrix elements is not smoothly connected to the rest of the plot. This hole can
however be understood by looking at the band structure in Fig. 5.11: At thek-points where the
hole occurs, the surface band enters the region of the bulk bands and can not be distinguished
any more by energetical comparison. Although it could however be possible to identify the
surface states by projection on the surface atom orbitals, this has not been implemented in
the current calculations (as the affiliation to specific bands has no significance to the later
dynamical calculations), and thus the states represented in the top-rhs picture of Fig. 6.8 are
not all states with a surface geometry as in Fig. 5.12, but with a bulk geometry. Consequently,
the matrix elements for those wrongly identified states, if not on the diagonal, appear much
smaller. For the first bulk band (bottom-rhs picture), this behaviour is even more pronounced,
here, inside the bulk bands, the affiliation of the states to different bands is purely arbitrary, so
the significance of this picture is quite reduced – a sensiblecomparison can only be done at or
near the diagonal inside one block. As a consequence, this kind of investigation of particular
bands is only sensible if the states in the bands can be clearly identified and affiliated – as it is
the case for the seven layer calculation. Another result of these analysis is that for the intraband
scattering, the umklapp processes are negligible, as theirsize is at least an order of magnitude
below the corresponding normal scattering processes.

In the top of Fig. 6.9, a similar discussion is led for the interband scattering between the
surface band and the first bulk band. Now, the upper left half of the matrix transitions is impor-
tant, the bands are not diagonal (n 6= n′), and the evaluation for the umklapp processes is shown
at bottom of Fig. 6.9. Both integral and maximum size for the normal scattering processes
is smaller than in the intraband case (0.7 maximum cmp. to 1.0 maximum), furthermore, the
scattering at the diagonal is not prioritized, but occurs between selected points on the symmetry
lines. The umklapp processes, however, are much more significant with respect to intraband
scattering and in relation to normal scattering. For the matrix elements of the 40 layer slab,
the same limitations as in the intraband-case apply, the occuring of a linear structure in the
scattering pattern leads to the assumption that the wave function at a singlek-point is out of
the common symmetry of the otherk-points. Again, the investigation is more or less useless
for the 40 layer slab, as a coherent comparison of the scattering is impossible.

However, we should note that the matrix elements analyzed here are only one component
of the real scattering treated in the dynamical equations (4.45). The energy conditions (4.57)
which are contained in the scattering matrices (4.33), but also theq-dependent form factor of
the electron-phonon coupling (4.51), can have a great effect on the strength of the scattering.
Especially for the intraband processes, scattering is highly improbable for smallq, as either

3It should be noted that the classification of in and out statesis purely academic, as this only influences the phase
of the matrix elements and is therefore irrelevant for the square modulus of the matrix elements in the relaxation
equations. For the umklapp processes, the correct assignment would be(nk) as out state and(n′k′) as in state.
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the form factor vanishes atq = 0 (acoustical phonons), or the energy condition makes scatter-
ing impossible (optical phonons:ωi,q=0 6= 0). At those points, on the other hand, the matrix
elements are close to one (Fig. 6.8).
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Chapter 7

Relaxation dynamics at the
Silicon 2×1 (100) surface

After the presentation of the numerical implementation andthe results of the calculations of
the interaction matrix elements and the band structures, wenow move on to the discussion of
the final step in our calculations: the supercell structure has to be integrated into the dynamical
equations (4.45) by embedding the matrix elements, the bandstructure and the phonon disper-
sion into the equations of motion, with the final goal to simulate the relaxation processes in the
conduction band. First, we will give and idea of some aspectsof the involved programming
methods. The main task, the calculation of the band structure and the matrix elements has been
completed in Chapter 6, so the remaining open questions are about the implementation of the
scatter matrices (Sec. 4.4) and the subsequent dynamical evaluation. Then, some results of
a testing procedure using an isotropic standard system withone parabolic band and constant
matrix elements, without externally considering a structure, are realized. The main purpose
of this step is to check the homogeneity of the relaxation process, as the proposed approach
from Sec. 4.4 is a great source of errors. Finally we present the results of the relaxation in
the silicon 2×1 (100) surface supercell for different initial conditions: the general relaxation
behaviour for a high-frequency excitation is simulated by aGaussian energy distribution of the
initial population at the upper limits of the investigated band structure, and, finally, a realis-
tic scattering process is computed by implementing experimental optical excitation conditions.
The relaxation timescales from this process are then finallycompared to the experimental val-
ues.

7.1 Implementation of the dynamical evaluation

As indicated in Sec. 4.4, a big gain in efficiency can be obtained by evaluating the delta con-
ditions of the energy conditions (4.57) before the start of the dynamical relaxation loop. It
is therefore consequent to organize the program code in two parts: first, the initialization is
performed, where mainly the scattering matrices are built up, but also the initial conditions
are set up. The second step comprises then the computation ofthe population dynamics up
to a predefined time step. The initialization procedure accomplishes several tasks: first, some
parameters are read in from a separate file. Parameters are for example the system bath temper-
ature, the maximum timestep and the timestep discretization, filenames for the matrix element
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7 RELAXATION DYNAMICS AT THE SILICON 2×1 (100)SURFACE

file and output file, information for the initial distribution, and, due to the reduced bulk mode
model (cmp. Sec. 4.3.1), also the bulk phonon mode dispersion (in the form of sonic speed
and optical phonon frequency) and deformation potentials are referred to in the parameter file.
Then, the band structure of the system is read in, whereby allinformation related to the actual
structure (including the discretization level) is extracted from the matrix element file. Now,
from this band structure information, we can proceed to the construction of the scattering ma-
trices: first, the inversion of the energy dispersion by the mapping (4.60) is exploited, this is
achieved by basically evaluating the energy condition (4.57), with the bulk phonon energies
ωi(q) at q = k−k′+G0, for all combinations ofn, k andn′, k′. Due to the various scattering
processes, the whole Brillouin zone of the system has to be considered at this point, it doesn’t
suffice to use the reduced part. Therefore, an zone unfoldinghas to be performed for the band
structure. The zeros of the mappingl(s) are identified by a sign change of the corner points of
the involved mesh, and also the path length ds is evaluated from the actual zero points between
the mesh points (but on the mesh edges) by using a linear interpolation of the corner point
differences (cmp Fig. 4.4). For every combination ofn, k andn′, k′, the zeros, path lengths
and strength factorsG±mnki(s) (Eq. (4.62a)) for all different umklapp processes, phonon modes
and for all identical points in the unfolded Brillouin zone (thus, the zone is refolded at this
point) are added cumulatively for the+ωiq and the−ωiq branch separately. Finally, for the
meshes of the underlying mesh discretization where zeros occur, the matrix elements are read
in from the matrix element file (it is, however, not possible to read the whole matrix element
file at one time due to the limitations of computer memory, andalso not all matrix elements are
finally needed), and the scattering equations can be assembled according to Eq. (4.61a) from
the different contributions of the Bose distributionniq(T) and the size parameters.

As only a small fraction of the elements of the scattering matrix are non-vanishing, a spe-
cially dedicated matrix structure can help to reduce the numerical effort by preventing the mul-
tiplication of all zero elements in the evaluation of the scattering equations (4.45). The special
requirement of the matrix is that the non-zero elements can be distributed totally randomly on
all elements. An obvious choice to meet this requirement is aso calledindex-oriented matrix
representation: Only the non-zero matrix elements are stored, and each of them with its own
column index. An additional row index references the startsof each row in the column index
list. A matrix multiplication with a vector can then be performed by adding all components
of the vector referenced by elements of the column index listfor each row separately. The
results of each addition row are then composed to the resulting vector. This approach is surely
faster as full multiplication of all matrix elements, as long as the rate of non-zero elements
to total elements is low, and it surely consumes a lot less memory (the quantification of the
memory consumption is highly influenced by the employed computer system, as additionally
to the size of the floating point numbers for matrix elements,the size of the index variables
play a crucial role). The main issue of this technique shouldhowever also come to mention:
While it is possible (by the row index) to directly access a specific row, it is very costly to find a
particular element of the matrix, as in the worst case, all column indices in a specific row have
to be checked for equality with the required column, especially if the element is zero and no
column index exists. Thus, the effort to read out a specific element is of the order of the num-
ber of columns in the matrix (and the order to randomly read out all elements is about (number
of rows)×(number of columns)2). Furthermore, elements can only be added row-by-row, it
is extremely costly to add elements later, after all rows have been completed, as basically all
indices have to be recalculated and the later entries have tobe copied. As a consequence, a
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7.1 IMPLEMENTATION OF THE DYNAMICAL EVALUATION

symmetrization step according to Eq. (4.37), which has proven to highly improve the numeri-
cal stability of the calculation, is quite costly and only possible by completely rebuilding new,
symmetrized matrices. Although the computation of the scattering matrices is a singular step,
it can take a considerable portion of the whole computation time of the dynamics – so, if only
a few timesteps have to be calculated, it can even take longerthan the dynamical calculation.
Nevertheless, it is inevitable for this kind of simulation,as otherwise, the scattering rates would
have to be derived from the band structure in every time step,with basically the same effort
that is applied once in our algorithm (and furthermore, the matrix element file would have to be
reloaded after every time step). This is an elementary difference to the common application of
these scattering equations (4.45) on spatially homogenoussystems with parabolic band approx-
imation, where the scattering rates can be simplified analytically and the resulting equations are
sufficiently simple to evaluate them in every time step.

The initialization step is completed by the composition of the initial population. There
are two principle modes implemented in the program: one possibility is to set the population
from different features of the band structure, like the energy or thek-vector. This can for
example be done to test special features of dynamical relaxation explicitly, for example, all
states above a certain energy can be populated or all states can be populated by a Gaussian
distribution with the peak at a certain energy. The second mode is based on the principles
of optical excitation discussed in Sec. 4.2.6.1. In this mode, the optical field is assumed as a
harmonic wave of frequencyω with an amplitude modulated by a Gaussian shape of width
τ1, the total amplitude, the frequency and the pulse width of the Gaussian are defined in the
input parameter file. Then, the states are populated by applying Eq. (4.44), where the Fourier
transform of the field is again given by a Gaussian distribution function centered at the optical
frequency, and the required momentum matrix elements are read from the matrix element file.

After initialization, the numerical computation of the dynamical evolution is performed.
For the implementation of this initial value problem, aRunge-Kutta methodof order four [SB00]
is used with a constant timestep. Although no convergence check and variable timestep con-
trol can be easily included in this algorithm, the convergence order is generally sufficient for
this kind of calculation. As all statical information is cumulated in the scattering matrices←−
Λ and

−→
Λ , the required steps to evaluate a timestep in the relaxationequation (4.45) are two

matrix multiplications of the dynamical population vectorwith the scattering matrices in index-
oriented representation, then two vector-vector additions and finally a vector-vector multiplica-
tion. These operations can be implemented highly efficiently on most computers and are often
optimized versions can be found in special libraries.

The results of the dynamical evaluation are written into theoutput file in by copying pre-
defined timesteps of the population. Additionally, the bandstructure information, the shape
and symmetry of the Brillouin zone and other information is put into this file. By this, a direct
interpretation of the results from the data in this single file is possible. For this part of the
project, the programming languageC++ is used. The main advantage of thisobject-oriented
framework is that, while excellent interfaces to the elementary system services exist on the one
hand, a high level of abstraction can be used to define new datatypes (like the index-oriented
scattering matrices) and polymorphal structures (like differently implemented initial condi-

1A realistic implementation would require a Gaussian shapedplane wave for theE(t) field and the integral of
this expression for the vector potentialA(t) (cmp. Sec. 2.3.5). However, this integral can be approximated by
A(t) = − 1

iω E(t), if the lengthτ of the pulse is fairly bigger then 1/ω. Then, the shape of the vector potential is
also Gaussian.
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Figure 7.1: Isotropic parabolic band structure of the test system for a discretization of5× 5
points (lhs) and25×25 points (rhs). All dimensions are unitless, the energy and the extension
of the “Brillouin zone” are normed to one at the boundary. Only a forth of the Brillouin zone is

shown.

tions). Furthermore, the language is highly standardized and there exist goodC++-compilers
for nearly any system architecture. For the output files, thenetcdf format is used [Uni36], as
it yet is the case for the matrix element file. Thus, in principle, the calculation of thematrix el-
ements, the evaluation of the dynamics and the investigation of the results could be performed
on different system architectures. This feature is howevernot used in the calculations of the
present thesis.

7.2 Relaxation in a test system

Although the relaxation program collection has been designed for the use with externally ob-
tained matrix elements from two dimensional structures, itis useful to implement a test routine
for a highly simplified standard system to check the functionality of the relaxation mechanism.
A convenient test system is an isotropic parabolic single band system (Fig. 7.1). A big ad-
vantage of this system is, apart from the simple applicability of a parabolic function, that a
band minimum is genuinely contained and no discontinuity inthe function or its derivatives
has to be handled. Additionally, parabolic band structuresare the most widely used model
system in the world of semiconductor physics (although, of course, this model is not of use in
the case of silicon), it can be applied, for example, in two-dimensional (multi-) quantum well
structures [But07].

Within this test setup, no realistic physical units are attached to the variables, the Brillouin
zone boundaries and the energy maximum are set to a value of one. The same applies to the
electron-phonon coupling, where the coupling parameterD and the electron matrix elements
are set to one (this is, at last, a quite unphysical assumption). A single optical phonon mode
with an energy of̄hω = 0.15 governs the relaxation. With respect to the Silicon (100)2× 1
structure, the same geometrical arrangement is used, to this end, only a quarter of the total
Brillouin zone is sampled, while the rest of the Brillouin zone is mapped on this reduced part
by thex, y and inversion symmetries, which naturally exist in an isotropic radial symmetric
system. It should be mentioned that these symmetries are notexhaustive for this system, as
for the description, a single radial coordinate would suffice. Nevertheless, the discussion of
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Figure 7.2: Relaxation in the test system for an isotropic initial condition and a discretization of
5×5 points. At the lhs, the relaxation is shown for all states (black), the states with ky = 0 (red,
black crosses) and the states with kx = ky (blue, black circles). The derivations from the isotropic

distribution (all curves are congruent) is only due to discretization, and not to the dynamics.

the isotropic system in a Cartesian system enables us to discuss anisotropic initial conditions
(although cylindrical coordinates might be more appropriate for this kind of discussion). By
these test conditions, however, we can check some of the features of the relaxation program
which are relevant for the later realistic relaxations under physical conditions. To illustrate
the convergence of the program, two different parameters are discussed within this test inves-
tigation: the Brillouin zone discretization is chosen at different levels of 5× 5 and 25× 25
points, and two initial conditions are arranged: first an isotropic distribution which is located
with a Gaussian shape around an energy of 0.4 is relaxed to check the isotropicity of the relax-
ation mechanism, and second, an anisotropic distribution aroundk = (0.75,0.75) is chosen to
illustrate the relaxation into an isotropic final state.

7.2.1 Isotropic relaxation

The relaxation behaviour for a relaxation with isotropic initial condition is shown in Figs. 7.2
and 7.3. Though the discretization is very low in Fig. 7.2, the isotropicity is quite well main-
tained throughout the whole relaxation process – both at theenergy scale (lhs), where devia-
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Figure 7.3: Relaxation in the test system for an isotropic initial condition and a discretization of
25×25points. While no anisotropic behaviour is found on the energy scale (lhs), weak phonon

replica peaks can be observed in the Brillouin zone plot (rhs).

tions are visible in the different cut direction for the datapoints (where the red curve is related
to points inkx-direction and the blue curve for points on diagonal, while the black curve con-
tains all points), but these are related to the discretization, and on the Brillouin-zone distribution
(rhs), where single points are pronounced due to the matching of the discretization of energy.
Nevertheless, the discretization in Fig. 7.2 is too low to accurately describe all features of the
relaxation process, as can be seen by comparing to Fig. 7.3: while in the 5×5-discretization,
the relaxation is mostly terminated already att = 30.0, significant changes are still visible for
later timesteps in the 25× 25-discretization. In Fig. 7.3, the isotropicity is even clearer pro-
nounced. It can be observed that the relaxation of a particular state takes place in several steps,
which are separated by the energy of the optical phonon. Thisbehaviour is expressed in the
occurrence of concentrical distribution peaks is the Brillouin zone picture (rhs), usually re-
ferred to asphonon replica. In the present Figure 7.3, those rings are only weakly pronounced
at k = (0.5,0.5) andk = (0.25,0.25). At t = 1.0, a step has formed in the population distri-
bution at an energy of a phonon energy. This is a typical behaviour in a relaxation by purely
optical phonons in Markovian (energy conserving) scattering environment: below the phonon
energy, the electron states can no more relax, as the minimumrelaxation jump is in steps of the
phonon energȳhω . Only through the slight weakening of the energy conservation condition
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Figure 7.4: Relaxation in the test system for an anisotropic initial condition and a discretization
of 5×5 points.

(Eq. (4.57)) due to discretization and the non-zero temperature, the scattering to lower states
by intermediate scattering into an higher energy state is possible att = 5000. This is a good
illustration of the limits of the Markovian approximation (cmp. Sec. 4.2.4), as this is clearly a
consequence of the energy conservation, which originates from (4.29). The timescales for the
relaxation are not reliable in this case. For our investigation of silicon (001) however, these
considerations are not relevant, as scattering also involves acoustical phonons which do not
allow for a similar bottleneck-behaviour.

7.2.2 Anisotropic relaxation

While the stability of the implementation with respect to isotropical relaxation was investigated
in Sec. 7.2.1, we now address the case of a highly anisotropicinitial condition. As the entire
system is isotropic, also the final state after relaxation should show no signs of anisotropic-
ity. The initial condition distribution is chosen as a bi-Gaussian function ink-space, the initial
peak is located atk = (0.75,0.75). In Figs. 7.4 and 7.5, the relaxations of those distributions
is shown for discretizations of 5×5 and 25×25. For both discretizations, a mostly isotropic
distribution after a relaxation time of 1.0, and in both cases, the later step are very similar to
the steps of the isotropic relaxation (Figs. 7.2 and 7.3). This allows us to draw two conclusions

99



7 RELAXATION DYNAMICS AT THE SILICON 2×1 (100)SURFACE

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
B

ril
lo

ui
n 

zo
ne

 d
ia

go
na

l
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

energy
0 0.2 0.4 0.6 0.8 1

energy
0 0.2 0.4 0.6 0.8 1

tim
es

te
ps

310×5.0

500.0

100.0

20.0

1.0

0.4

0.2

0.0

0

0.2

0.4

0.6

0.8

t =
 0

.0

0.2

0.4

t =
 0

.2

0.1

0.2

t =
 1

.0

0

0.2

0.4

0.6

0.8

t =
 1

00
.0

0

0.2

0.4

0.6

t =
 5

00
0.

0

Figure 7.5: Relaxation in the test system for an isotropic initial condition and a discretization of
25×25points.

from these simulations: first, the relaxation implementation allows the calculation of a relax-
ation process who is insensitive to the initial condition (not taking into account, of course, the
overall electron density, which depends from the initial condition), and second, in contrast to
the timescales (Sec. 7.2.1), the restitution of the isotropicity is independent from discretization
in the given range. However, while at the 5× 5-discretization, the resolution of the distribu-
tion function is too low to feature all details of the relaxation, much more can be seen in the
25×25 case. The phonon replica, which show up as concentrical circles in Sec. 7.2.1, are now
expected to be more concentrated around the initial peak. Indeed, at a timestep of 1.0 at the rhs
of Fig. 7.5, two single peak-formed phonon replica can be observed outside the concentrical
isotropic distribution. The process of establishing the isotropicity can be understood by assum-
ing that while the initial distribution can be quite anisotropic, the system will tend to a more
isotropic state by every timestep. On the energy scale (lhs of Fig. 7.4 and 7.5), the anisotropic-
ity is indicated by the very different distributions inkx-direction (blue) and diagonal (kx = ky)
direction (red), and the discontinuity of the total distribution (black). The “new” states at lower
energy, which are increasingly populated, however, are allisotropic – no difference occurs from
the three curves. In other words, for the given initial condition, we can state that isotropicity is
accomplished when the initial distribution states are without significant population.

The isotropic relaxation aftert = 1.0 comprises basically the same features as discussed in
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optical mode

acoustical mode

Figure 7.6: Illustration of the
effective two-mode-model: the
total bulk phonon spectrum is ap-
proximated by two isotropic linear
modes with acoustical (green)
and optical (red) signature.

From [LB87].

Sec. 7.2.1. This means that especially theoptical-phonon bottleneckis also formed.

7.3 Relaxation in silicon for a Gaussian initial condition

After investigating the principle applicability of the relaxation equations under simplified con-
ditions, we can now proceed to the simulation of a distribution under realistic conditions in
the silicon (001) surface system. The most realistic situtation that can be investigated by our
program is, of course, the simulation using initial conditions of optical excitation (Eq. (4.44)).
Nevertheless, the optical initial condition has only a verylimited range of population at se-
lected points of the band structure, which makes the investigation of relaxation quite difficult.
Thus, as first approach, we choose a different initial condition by an energetical “gauss-pulse”
(as in the test system in Sec. 7.2.1), while we will discuss the optical excitation in Sec. 7.4.

The matrix elements and the band structures that have been calculated in Chapter 6 are
read into the dynamic file, whereby only the electron-phononmatrix elements are relevant
for the relaxation. For the phonons, a simplified two-mode-model is used (cmp. Sec. 4.3.1)
which comprises one acoustical and one optical mode (Fig. 7.6). The modes are chosen in
order to interpolate the phonon spectrum from literature [NN72, PV81, GdGPB91, LB87] with
heuristical parameters. The dependency on the bulk-kz-coordinate is neglected. The acoustical
mode is approximated by a linear dispersion with a sonic speed c:

ωac
q = c|q|, (7.1)

whereas the optical mode has a constant dispersion:

ωopt
q = ω0. (7.2)

Parameters for the corresponding deformation potentials can also be found in literature [MCFF78,
BPC84, vdW89, LB87]. The functional form of this dependencyis however quite complex. For
the acoustical mode, the electron-phonon coupling in Eq. (4.51)Di

1(q) is expressed in terms of
a longitudinal mode:

Di
1(q) = Diq. (7.3)

This is justified by the fact that in bulk semiconductors, thecoupling to the longitudinal modes
is much stronger than to all other modes [YC96, SW02]. If thisand the dispersion (7.1) is
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Figure 7.7: Relaxation dynamics of a supercell with 7 layers and a discretization of 8x8 points
in the complete Brillouin zone for an initial condition witha Gaussian peak a1.7 eV above

conduction band minimum.
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Figure 7.8: Relaxation dynamics of a supercell with 7 layers and a discretization of32× 32
points in the complete Brillouin zone for an initial condition with a Gaussian peak a1.7 eV

above conduction band minimum.
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Figure 7.10: Relaxation dynamics of a supercell with 40 layers and a discretization of32×32
points in the complete Brillouin zone for an initial condition with a Gaussian peak a1.7 eV above

conduction band minimum.
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reinserted into Eq. (4.51), we find an overall dependency of∼
√
|q| for the overall matrix el-

ementDn′k′
nk;iq [YC96]. For the optical mode, however, the coupling constant Di

11(q) can not be
approximated in a similar manner, as an optical mode also includes an oscillation inside the
unit cell. Apart from the fact that the coupling to this kind of oscillation is much stronger, the
only possible and reasonable approximation is a constant,q-independent coupling, as the dif-
ference of elongation of the single atom coordinates in the unit cell (which, at last, determines
the coupling strength at this level of approximation) is quite unchanging throughout the whole
Brillouin zone. As also the phonon energy (7.2) is independent of q, the matrix elementDn′k′

nk;iq
for the optical mode from Eq. (4.51) is completely constant on the Brillouin zone in this ap-
proximation. The employed values are taken from [LB87] and [LB87] and yield a sonic speed
of 6.1 meV/nm and a total deformation matrix elementDn′k′

nk;iq = Dacou·
√
|q| with a Dacou of

7.37 eVnm1/2 for the acoustical phonons and a phonon energy of 0.057 eV with a deformation
matrix element ofDn′k′

nk;iq = Dopt = 40.0 eV for the optical phonons.
With these parameters for the phonons, we can now investigate the dynamical evolution of

the system. The initial condition is defined by a Gaussian pulse at an energy of 1.7 eV above the
conduction band minimum. In Figs. 7.7-7.10, the dynamics ofthis initialization is illustrated
for slabs of 7 and 40 layers and fork-discretizations of 8×8 and 32×32 for selected timesteps,
including the initial population. At the lhs, the population distribution over the Brillouin zone
is depicted for theDdown band, while in the middle, the population is resolved on the energy
scale, with the corresponding band structures of the relevant regions of the conduction bands
plotted at the top level. On the rhs, finally, the populationsare shown energy and time resolved,
basically, this corresponds to a combination of the other pictures in this figure.

The choice of the initial condition as a Gaussian peak at thisenergy makes it possible to
discuss the relaxation process in different phases, as the peak energy and the width of the gauss-
pulse are selected in order to assure a practically exclusive excitation of bulk states, because the
maximum energy of theDdown surface state is located energetically below. In all Figs. 7.7-7.10,
this is visible from the fact that the initial population on the Brillouin zone is negligible low in
the surface band (∼ 10−36, left hand row of the lhs pictures) and the extension of the Gaussian
can be regarded in the energy resolved plot (middle row). Thetemperature for the phonon bath
(cmp. Sec. 4.2.3) is fixed at 90 K.

The classification of the relaxation process into phases is done in the following way: in the
first phase which lasts until ca. 200 fs, the relaxation only touches bulk bands. Nevertheless,
the relaxation is not homogenous, the initial peak is dispersed to a much wider (approx. 5×)
distribution below the initial peak energy, but still abovethe surface band maximum. The
extension of this first-phase distribution varies only slightly within the different figures, and
seems to be mostly independent from slab thickness and discretization. Although obviously the
relaxation timescales are very sensitive to the different possible channels (and the emergence of
peaks implies that some channels are more probable than others), this bulk-related relaxation
is in average on a time scale of∼ 100 fs.

After 200 fs, the second phase of the relaxation begins. Now,the Ddown band is also in-
volved in the process. At 500 fs, the relaxation clearly splits into two distinct timescales: On the
one hand, the relaxation inside the bulk slows down with respect to the first phase and merges
with a relaxation from bulk to surface band. On the other hand, a relaxation inside the surface
band evolves. This surface-bound relaxation is on a much faster timescale: at 1.0 ps, the surface
band minimum is already entirely relaxed to a Fermi-like distribution function. This behaviour
is at best visible in Fig. 7.8 (middle row), where the range ofoverlap of surface and bulk bands
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is limited to higher energies. In Figs. 7.7 and 7.9, however,it can now be clearly stated that the
discretization is insufficient: the final state of the relaxation has no shape as in the equilibrium
(Fermi-distribution, Eq. (B.1)). In Fig. 7.10, the Fermi-shape is shadowed by thepopulations of
the bulk-like bands, which reach down to 0.05 eV above the surface band minimum. The effect
of the two-timescale relaxation is at most pronounced in Fig. 7.8 at 1.0 ps: at the minimum of
the lowest bulk band (0.3 eV), additionally to the peak at thesurface minimum, a second peak
has formed with a Fermi-like shape (while other peaks remainat higher energies). Here, we
can definitely conclude that the relaxation from bulk band minimum to surface is much slower
than parts of the relaxation inside the bulk: apart from a small fraction which is transferred
from bulk to surface band at a higher energy, relaxations inside bulk and surface are quasily
independent and thus form their separated local distribution functions. The relaxation down to
the “total” equilibrium state acts then on the slower timescale (which is obviously of the same
order as the slowest processes in bulk relaxation), such that at 10.0 ps, relaxation is more or
less completed. In Fig. 7.10, this process is not clearly visible: Here, the final population of
electrons in the surface band reaches energetically up to the bulk bands, especially the bulk
band minimum is completely populated (1.0) at 1.0 ps, so no further interaction between the
bands is necessary for the relaxation at the bulk band minimum, and no separated distributions
form. As we will see in Sec. 7.4, this so calledPauli-blockinghas not only visible effects as in
this case, but also influences the relaxation behaviour at the surface band minimum.

Within the Brillouin zone, the relaxation does not happen ina homogenous manner. In
Figs. 7.8 and 7.10 on the lhs, it can be seen that while the population is initially more or less
concentrated at the center of the reduced Brillouin zone (the shape of the distribution reflects
the band structure at the energy of initial excitation), it shifts to the edges (500 fs) and finally
proceeds to theΓ-point (or theΓ-X-line, respectively). The surface band is not significantly
populated until 500 fs, but is then strongly populated in thefinal state. While this principal
evidence is yet visible in Figs. 7.7 and 7.9, the resolution at this discretization is too low to
allow an accurate interpretation. However, the pictures from the first timesteps in Figs. 7.8 and
7.10 differ significantly. Hence, we can conclude that number of bands in the seven layer slab
is insufficient to sample the bulk band structure in the required resolution, while a convergence
with respect to this sampling is achieved with a higher layernumber (see Appendix C.2 for a
summary of all calculations). A second effect of a thicker slab is a volume-surface effect with
respect to the final population of the surface band: as the relation of the number of states in the
surface band decreases with respect to the total number of states in the bulk bands and also more
states are populated initially due to the higher number of bands in the bulk, a higher fraction
of the surface band is populated in the final state. This can beextracted from the fact that the
extension of the population (red zone) is much bigger in Fig.7.10 (lhs) than in Fig. 7.8, and also
the “pseudo-Fermi energy”, which is defined as the energy at which the Fermi-like distribution
function of the final population of the conduction bands is at0.5 shifts from 0.15 eV in Fig. 7.8
(middle row) to 0.3 eV in Fig. 7.10. This effect is only partlyphysical, it should be expected
that in a realistic materical, the absorption limits the depth of penetration into the bulk and
consequently the population of the bulk bands also decreases with increasing slab thickness.
The modelling of light absorption [Mah90, HSC+93, LSS+97, MP00] is, however, beyond the
scope of this thesis, especially as the usual penetration depth of light in silicon (∼ 1 pm) is of
a much bigger order as the depth of our calculated supercells(∼ 10.0 nm).

An overview of the relaxation process including all so far discussed features can be ob-
served on the rhs pictures of Figs. 7.7-7.10. While at 0 fs, the narrow energetical range of the
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Figure 7.11: Momentum matrix transitions in the range 0.9-1.25 eV for different slabs andk-discretizations. The black curve indicates the shape of the frequency distribution (the Fourier
transform) of the optical pulse. While for the transition ofthe low discretized (8×8) calculations
only a few single peaks within the range of the pulse appear, the transitions quasily form a
continuum in the high discretized (64×64) calculations. Note that in contrast to Figs. 6.4-6.6,
the spectra are only normed on thek-point number in order to avoid the surface-volume effect

which applies to transitions to the surface band.

initial population around the excitation energy of 1.7 eV isvisible, the population is spread
over a wider range at 200 fs, and then populates theΓ-X-line relatively fast from 500 fs on.
Later, the populations of the higher states all relax to the minimum.

7.4 Relaxation after optical excitation

In this section, we will now finally examine a relaxation at the silicon (001) 2×1 surface with
initial conditions from optical excitation determined using Eq. (4.44). Following the experi-
mental boundary conditions described in [WKFR04], the frequency of the optical excitation
is chosen as 1.69 eV with an amplitude of Gaussian shape of a duration of 50 fs. Due to
the known deficiencies of the DFT-LDA-bandstructure, whichis known to underestimate the
bandgap energy, a so called scissors-shift is applied to theexcitation frequency by decreasing
the frequency by a certain value (cmp. Sec 1.4.1). The justification for this scissors shift is
the known fact that in silicon, the bandgap energy of the DFT-LDA calculation is reduced for
all k-points by the same value with respect to a real band structure, which can be investigated
by experiments or calculations with quasi-particle corrections (for example the GW method)
[Egg05]. The value of this necessary shift is fixed to 0.62 eV by comparison of the calculated
indirect bulk bandgap energy from Sec. 5.1 to the experimental indirect bandgap value.

In a realistic system, mechanisms exist to depopulate the conduction band states, e. g. by
recombination with valence band holes. In [WKFR04], a scattering process via excitonic states
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Figure 7.12: Initial distribution within the Brillouin zone for 7, 22 and40 layer slabs and
for discretizations of8× 8, 32× 32 and 64× 64. While the8× 8 discretization is obviously
insufficient to describe the distribution, good agreementsare found for all slabs with the higher

discretizations. Nevertheless, an accurate accordance isonly found for64×64k-points.

in the bandgap is assumed, which acts on a slower, but for phonon scattering relevant timescale.
In our relaxation model, no electron hole recombination is considered, the electrons initially
inserted in the conduction bands have to relax to the conduction band minimum. On the other
hand we have seen in Sec. 7.3 how aPauli-blockingmechanism can exclude some states at the
conduction band minimum from taking part in the relaxation dynamics. In order to investigate
thephonon-inducedtimescales involving the states at the conduction band minimum, we have
to guarantee that the population at the minimum remains low.This can be achieved by limiting
the total conduction band population through applying a sufficiently weak optical pulse, which
is also an implicit requirement of theslow relaxation approximation(Sec. 4.2.6) within linear
optics in order to neglect the polarization dynamics.

The initial distribution after optical excitation is highly sensitive to the discretization and
the slab thickness of the underlying calculation. In order to cover the different aspects of the
optical excitation inx-direction (Fig. 6.4) and iny-direction (Fig. 6.5), the polarization of the
incident light is chosen along the diagonal (x = y). In Fig. 7.11, a cutout of the spectrum
around the light frequency is shown. The Fourier transform of the initial pulse, which can, due
to its form as plane wave with a Gaussian envelope function, be cast into a Gaussian in energy
space with a variance of 0.075 eV, is symbolized by the black curve. To allow a consistent
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comparison, the different spectra of slabs with 7 (red), 22 (green) and 40 (blue) layers and
discretizations with 8× 8 (dashed) and 64× 64 (solid) are now only normed on the number
of k-points, in contrast to the figures in Sec. 6.3.1. The reason for this is that excitation with
a pulse of that energy always ends in the surface band, as no direct bulk transition exists in
silicon below the direct bandgap of 2.4 eV. The weight of the surface band with respect to the
bulk bands, however, falls with increasing total number of bands (cmp. 6.3.1), as the surface
band remains a single band in all calculations. Consequently, the number of transitions should
be independent of the number of layers in the slab calculation.

While the form and the position of the peaks for the 64× 64 layer calculations is very
similar for the 22 and 40 layer calculation, the differencesto the 8×8-discretized calculations
are significant. Here, the peaks appears really as singular structures, while in the 64× 64
discretization, the peaks are at reproduceable positions and emerge from a continuum. Again,
we conclude that the 8×8 discretization is insufficient to describe the system in the required
accuracy. Also layer number is however an important parameters for the convergence of the
spectrum structure, as in the 7 layer calculation, the height of the peaks differs from the 22
and 40 layer calculations even at the 64× 64 discretization. On the other hand, for 64× 64
points, all peaks are principally found in the 7 layer slab calculation, which is not the case in
lower discretizations. In Fig. 7.12, the distribution of the initial population within the Brillouin
zone is shown. At a discretization of 8× 8, the differences of the distributions are obvious,
especially as their size differs by an order of magnitude. At32×32, similar peaks are found
for the 22 and 40 layer calculations, while the 7-layer calculation has a completely different
peak structure. At 64× 64 k-points, the distributions look quite similar for all slabs: a high
discretization is obviously required for an adequate resolution of the excitation process.

After initialization by the optical excitation, the relaxation calculations are performed for
two different bath temperatures (cmp. Sec. 4.2.3) of the system. The experimental investigation
in [WKFR04] is effected at a temperature of 90 K. A similar experiment has been performed
at room temperature [TT03]. Our simulations are thus performed at temperatures of 90 K
and 300 K, and a few examples of the numerous calculations fordifferent layer numbers and
discretizations are presented on the following pages.

7.4.1 Relaxation for optical excitation at 90 K

The relaxation for different slabs of the optical initial conditions are shown in Figs. 7.13-7.15.
The frequency of the light after the application of the scissors shift is at 1.07 eV, whereas
the unadjusted bandgap extracted from the band structure calculations (Sec. 5.2) is at 0.56.
A pronounced peak at 0.45 eV is visible for all slabs, this peak corresponds to an optical
excitation from the valence band top to theDdown surface band. Single additional peaks exist
for all calculations. While the surface band (the leftmost band in the top picture of the middle
row) is very similar for all slabs, the bulk is represented bya varying number of bands: At the
seven layer slab, only a single bulk band covers the energy range in which excitation occurs.
At the 22 layer slab, the number of relevant bulk bands increases to 7, and at the 40 layer
slab, about 15 bands can be found between 0.0 and 0.6 eV above conduction band minimum.
Consequently, the average spacing between the bands rangesfrom 0.6 eV for the 7 layers to
0.04 eV for the 40 layer slab. This value has a significance forthe relaxation process, as a bulk-
like relaxation can be expected when the average energy difference between twok-points of
two neighboring bands is of the same order as the average energy difference of twok-points of
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Figure 7.13: Relaxation dynamics for a slab of 7 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 90 K after an excitation with a opti-
cal 1.69 eV pulse. Only two bands reach into the considered energy region (middle row, top
level). The energy resolved population (middle row) is increased by a factor of 25 with respect
to Figs. 7.7-7.10. The bottleneck formation at the bulk bandminimum (0.25 eV) can be clearly

observed.
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Figure 7.14: Relaxation dynamics for a slab of 22 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 90 K after an optical excitation with a
1.69 eV pulse. The energy resolved population (middle row) is increased by a factor of 25 with
respect to Figs. 7.7-7.10. Now, a few bands are present in therequired region. The bottleneck

and the bulk band minimum shift towards a lower energy (0.8 eV).
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Figure 7.15: Relaxation dynamics for a slab of 40 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 90 K after an optical excitation with a
1.69 eV pulse. The energy resolved population (middle row) is increased by a factor of 25 with
respect to Figs. 7.7-7.10. The bands are now in an average distance of ca. 0.05 eV. The bulk

band minimum with the bottleneck has shifted to 0.05 eV.
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the same band. Otherwise, intraband relaxation inside a single band might be privileged with
respect to interband relaxation. Furthermore, the interplay of optical and acoustical phonons
is dependent on the energies of the states, if the states are energetically close, a scattering by
optical phonons might be impossible, while scattering via acoustical phonons occurs – on a
slower time scale.

After the optical pulse, a structure with pronounced peaks is left. While in Fig. 7.13, a
Gaussian envelope function which limits the single peaks, resembling to the optical envelope
function, around the maximum at 0.45 eV is observable, the distribution is more focused on a
single, narrow peak at 0.45 eV in the thicker slabs (Figs. 7.14 and 7.15). The strong transition
at 0.45 eV is obviously not accurately described in the sevenlayer slab calculation, as it extends
on multiple states with different energy. Furthermore, thelocation of the initial peak within the
Brillouin zone (lhs of Fig. 7.13) differs significantly fromthe positions of peaks of the other
slabs.

In consecution of the initial excitation, the relaxation starts. As in the case of relaxation
of a Gaussian initial condition, the distribution is broadened in a first phase. Nevertheless, a
clear decoupling of bulk- and surface relaxation cannot be observed: due to excitation into
the surface band (cmp. Fig. 7.12), the bulk band(s) are populated after the surface band, and a
fraction of the population directly relaxes inside the surface band to the surface band minimum.
Thus, a peak forms at the minimum quasi immediately (20-30 fsafter excitation). During
relaxation, the shape of the distribution remains a peak-like structure, consequently, only some
of the states at a given energy are involved in the relaxation. This is plausible, as scattering
depends on thek-vectors and the matrix element between the in and out states. At 150 fs
(7 layer calculation, Fig. 7.13) - 500 fs (40 layer calculation, Fig. 7.15), a peak forms at the
particular bulk band minimum of the band structure – in contrast to the calculations in Sec. 7.3,
these peaks do not interfere with the final equilibrium distribution for the calculations with a
thicker slab. This is a consequence of the very low excitation distribution.

Inside the Brillouin zone, the initial distribution relaxes not immediately to the surface
band minimum, but by a sequence of processes. Initially, thepeak lies on a line parallel to the
Γ−X-direction, at the seven layer slab (Fig. 7.13, lhs), the maximum is close to the left edge
(Γ−X

′
-line), while at the 22 and 40 layer slabs (Figs. 7.14 and 7.15, lhs), the peak is found at

the right edge. In the first steps of relaxation (0 fs-30 fs), to effects can be observed: On one
hand, the population extends parallel to theΓ−X, on the other hand, a part of the population
is transferred to the bulk bands, where, for energetical reasons (as the gap between bulk and
surface band shrinks), the population is very low for the 7 layer slab and temporarily even
higher than in the surface band for the 40 layer slab (at 30 fs). Additionally, at 30 fs, a part of
the population is trapped in a local minimum of the band structure at theX

′
-point. At the later

steps of the relaxation, these local peaks of population arenow transfered to the surface band
minimum without the occurrence of new local minima patternsin the plots.

7.4.2 Relaxation for optical excitation at 300 K

The beginning of the relaxation at a temperature of 300 K, illustrated in Figs. 7.16-7.18 cannot
be distinguished from the beginning of the 90 K-relaxation (Sec. 7.4.1. However, as soon as the
distribution reaches the surface band minimum and forms a Fermi-like shape, the effect of the
higher temperature becomes obvious by the existence of a much longer tail of the population
distribution, which reaches up to 0.15 eV. For the seven-layer calculation (Fig. 7.16, middle
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Figure 7.16: Relaxation dynamics for a slab of 7 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 300 K after an optical excitation with
a 1.69 eV pulse. Only two bands reach into the considered energy region (middle row, top
level). The energy resolved population (middle row) is increased by a factor of 25 with respect
to Figs. 7.7-7.10. The bottleneck formation at the bulk bandminimum (0.25 eV) can be clearly

observed.
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Figure 7.17: Relaxation dynamics for a slab of 22 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 300 K after an optical excitation with a
1.69 eV pulse. The energy resolved population (middle row) is increased by a factor of 25 with
respect to Figs. 7.7-7.10. Now, a few bands are present in therequired region. The bottleneck

and the bulk band minimum shift towards a lower energy (0.8 eV).
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Figure 7.18: Relaxation dynamics for a slab of 40 layers at a discretization of 32× 32 points
in the complete Brillouin zone and for a temperature of 300 K after an optical excitation with a
1.69 eV pulse. The energy resolved population (middle row) is increased by a factor of 25 with
respect to Figs. 7.7-7.10. The bands are now in an average distance of ca. 0.05 eV. The bulk

band minimum with the bottleneck has shifted to 0.05 eV.
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Figure 7.19: Integrated logarithmic plot of the integrated population over the energy scale for 7
layers at 90 K and 300 K.

column), also the later steps of relaxation are fairly similar to the 90 K calculation apart from
this obvious deviation and a faster relaxation timescale (this is an expected effect at a higher
relaxation temperature), especially the population at thebulk band minimum (at 1 ps) is still
significant. For the 40 layer calculation (Fig. 7.18), however, the bulk band minimum is pop-
ulated by the final distribution, as it was the case in the Gaussian initial condition (Sec. 7.3),
and, as a consequence, no distinguishable population formsat the minimum. The effect of this
behaviour on the timescales in contrast to the 90 K case will be discussed in Sec. 7.4.4. In the
Brillouin zone distribution (lhs of Fig. 7.18), it is clarified that also the bulk band minimum is
finally populated at theΓ point, while at the 7 and 22 layer calculations (lhs of Figs. 7.16 and
7.17), only a broadening of the population at the surface band minimum is visible. All in all,
the relaxation at 300 K occurs on a significant faster timescale.

7.4.3 Phonon relaxation bottleneck

The formation of a particular non-equilibrium distribution at the specific bulk band minima in
the calculations for the different slabs in Sec. 7.4.1 lead to a bottleneck effect, as a part of the
population is formally trapped in the bulk band minimum state (cmp. Sec. 7.3) and can only
leave it on a much longer timescale. While the fast timescalefor the relaxation to the surface
band minimum appears very similar for all slabs (cmp. Sec. 7.4.4), the timescale related to the
bottleneck depends on the thickness of the slab. Due to the peaky form of the distribution (mid-
dle column of Figs 7.13 and 7.15) and the high number of involved states, a definite comparison
of the populations is not possible. To facilitate the comparison, an alternative presentation is
now chosen for the distributions: In Figs. 7.19-7.21, the energy-integrated population distribu-
tion for selected timesteps are shown on a logarithmic scalefor 7, 22 and 40 layer slabs and for
temperatures of 90 K and 300 K, respectively. The integration is performed by energetically
broadening the discrete states with a Gaussian of 0.01 eV variance and subsequently summing
all obtained peaks, this corresponds approximatively to considering the density of statesg(E)
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Figure 7.20: Integrated logarithmic plot of the integrated population over the energy scale for
22 layers at 90 K and 300 K.

in the distribution function:

fintegrated(E) =

∫
dEg(Enk) f (E) = ∑

nk fnkδ (E−Enk). (7.4)

In principle, the shape of the integrated distributions forthe different slabs can be described
in the same manner as it was done for the Figs. 7.13-7.18 : the initial distribution (red curves)
relaxes through some intermediate states (at 2 ps, green curves) into the equilibrium distribu-
tion and the additional bottleneck states (10 ps, blue curves) until finally, only the equilibrium
distribution is left over. However, the number, form and strength of the different states differs
significantly: While at the seven layer slab (Fig. 7.19), no bottleneck states appears at 10 ps
and the relaxation is quasily equilibrated at this timestep, we observe two (22 layers, Fig. 7.20)
or three (40 layers, Fig. 7.21) distinguishable bottleneckstates at the other slabs. In all cases,
the bottleneck states have evolved from the intermediate states of the 2 ps-timesteps. Corre-
sponding to the decrease of the gap between surface and bulk band minima with increasing
slab thickness, the bottleneck states are shifted very close to the surface band minimum (0 eV)
for the 40 layer slab, such that a small final population remains in the lowest bottleneck state.
An explication of this strong layer dependency of bottleneck formation and breakup is the in-
terplay of acoustical and optical phonons within the relaxation process: While at seven layers
(Fig. 7.19), the energy gap of the intermediate state at the bulk band minimum (ca. 0.25 eV)
at 2 ps (green curve) and the surface band minimum is still a multiple of the optical phonon
energy (0.057 eV), this is not the case at the 22 and 40 layer calculations2. Consequently, for
the thicker slabs, a growing fraction of the population has to relax by acoustical phonon cou-
pling (by which also very small energy differences can be overborn) using a smaller coupling
deformation potential (cmp. Sec. 7.3), which accumulates with the higher number of scattering
steps to overcome an energy distance in contrast to optical phonon scattering to a much slower

2Relaxation cannot occur directly from the bulk band minimumto surface band minimum for several reasons:
On the one hand, the matrix element of two Bloch-states is vanishes for different bands at the samek-points (cmp.
sec 6.3.2), on the other hand, at least acoustical phonon coupling is zero for a vanishingq.
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Figure 7.21: Integrated logarithmic plot of the integrated population over the energy scale for
40 layers at 90 K and 300 K.

relaxation timescale. A discussion of the resulting timescales will be elaborated in Sec. 7.4.4.
Although the employed phonon model is partly heuristic and highly simplified (cmp. Sec. 7.3),
the main bulk features are doubtlessly included in form of the limiting cases for high-energy
optical phonons and low energy acoustical phonons. One openquestion, which is unfortunately
beyond the possibilities of thecode presented in this thesis, is the influence of surface-bound
phonon modes, in special the so-called dimer-tilting-mode, which are also suspected to induce
a polaronic effect at high excitation and induce a dynamic energy renormalization on the band
structure (Sec. 1.2).

The relaxations at 300 K (lhs of Figs. 7.19-7.21) exhibit some significant differences to
the 90 K-pictures: The final state extends to a much higher energy (ca. 0.18 eV)3, and the
relaxation is much faster. At 7 layers, (Fig. 7.19), the finalstate is already almost reached at
2 ps, at the other slabs, the 10 ps curve is indistinguishablefrom the equilibrium distribution.
All bottleneck states of the 90 K distributions interfere with the equilibrium distribution at
300 K, and the quite low final population of the surface band minimum states together with
the broadness of the distribution obviously inhibit an efficient formation of bottleneck states.
Additionally, the higher temperature usually enables other, faster relaxation channels, as high-
energy phonon modes are more probable through the Fermi-distribution (cmp. Sec. 4.2.3).

7.4.4 Time constants

In this section, we will discuss the timescales that can be found from the calculations in
Sec. 7.4. The extraction of time constants in a quantitativemanner is not a clearly defined
procedure, as, as we have seen within the discussion of the relaxation processes in Secs. 7.3,
7.4.1 and 7.4.2, the time of relaxation depends on numerous factors, especially the initial
condition has a crucial importance. In experiments, usually only the decay rate of a signal
can be analyzed, and normally, in the Two-color-two-photon-photoemission-experiments as in

3Note that in this integrated representation, the shape of the final state needs not to correspond to a Fermi-
distribution on the energy scale.
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Figure 7.22: Population of the Ddown surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 90 K. The time axis is logarithmic. The numerically extracted

timescales are indicated by the dashed lines.

[TT03, WKFR04], the signal corresponds to a specific electron state, as here, the minimum of
theDdown-band. Consequently, to allow a comparison to the experiments, the population of the
minimum surface band state is a convenient choice as a data input for the determination of the
relaxation timescale. It is not possible to extract the specific reasons for an accelerated or de-
layed relaxation from such a single-scale investigation. For this kind of examination, particular
processes and selected states involved in the specific relaxation would have to be investigated.
With the given representation, an interpretation is only possible in an overall approach.

In Figs. 7.22 and 7.23, the temporal evolution of theDdown minimum state is drawn for a
temperature of 90 K and 300 K. Due to a logarithmic time axis, it is possible to investigate
the relaxation on several decades of picoseconds. At the calculations at 90 K, the relaxation
is still not completely equilibrated at 1000 ps (for a forty layer slab), while at 300 K, the
final state is reached after 10 ps of relaxation. The big dependency on the slab thickness that

No of layers exp.
[ps]

7 10 15 22 30 40 value

90 K
long 2.47 6.91 2.37 9.62 41.73 58.47220a

short 0.83 0.78 0.98 0.93 0.94 1.00 1.5ab

300 K
long 0.47 0.16 0.23 1.52 1.83 1.70 190c

short 0.094 0.096 0.12 0.097 0.094 0.086 5c

a[WKFR04]
bIn [WKFR04], this is the overall relaxation time
c[TT03]

Table 7.1: Numeric values for the relaxation timescales extracted from the calculations and
comparison to experimental values.

121



7 RELAXATION DYNAMICS AT THE SILICON 2×1 (100)SURFACE

time [ps]
-110 1 10 210 310

m
in

f

0

0.02

0.04

0.06

0.08

0.1

0.12

300 K 
7 layers
22 layers
30 layers
40 layers

time [ps]
1 10 210

m
in

f

0.09

0.1

0.11

0.12

300 K 
7 layers
22 layers
30 layers
40 layers

Figure 7.23: Population of the Ddown surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 300 K. The time axis is logarithmic. The numerically extracted
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is expected as a consequence of the results found in Sec. 7.4.3 can now be quantified: At
90 K, for seven layers, the relaxation is finished at 10 ps, with increasing layer number, also
the relaxation takes longer. Numerical values for the time constants are now extracted from
these population evolution functions by fitting parts of thefunction with an exponential. It is
obvious that especially for the fast short term time scale, this is a quite ambiguous task, as in
the beginning of relaxation, the shape of the function is non-exponential. Therefore, to impose
a certain clarity, the timescale is not fit at the beginning ofrelaxation, but after an initialization
time, when the relaxation function has approximated to an exponential shape. The long-term
timescale is much easier to find, as here, the asymptotic behaviour of the system towards the
equilibrium state is investigated and the asymptotic evolution of a Boltzmann-like system at
low population density always approaches to an exponentialdecay. In Fig. 7.22 and 7.23, the
fitted timeconstants are indicated by the dashed lines. While for 90 K, there is an excellent
agreement of the fit-exponentials to the population distribution at a certain specific range, the
agreement is worse for the 300 K relaxation.

The resulting values of the relaxation are resumed in Table 7.1 and a logarithmic plot of
these timescales is realized in Fig. 7.1 (lhs). The relevantresults of the experiment [WKFR04]
are shown on the (rhs) of the same figure. In this publication,three timescales have been found:
a surface-surface scattering timescale of 1.5 ps, a bulk-surface scattering timescale of 220 ps,
and an exciton formation timescale of 5 ps. While the first twoare related to phononic pro-
cesses and thus can be compared to our simulations, the thirdtimescale involves processes
neglected by our dynamical equations. From our data and the comparison to experiment, two
conclusions can be drawn: First, while the qualitative classification of the relaxation processes
is feasible, the quantitative interpretation is only reliable for the short-term timescale, as the
strong dependency on the layer number with an monotone growing trend implies that the reso-
lution of the band structure points in the energy space (the average distance between two bands)
is still too low to resolve the phonon relaxation process in an accurate way. Due to the nature of
the band structure and the location of the bottleneck-peaks(Sec. 7.4.3), it is likely that the short
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Figure 7.24: lhs: Graphical representation of the relaxation timescales (Tab. 7.1). The triangles
refer to the long term timescales, the circles to the short timescales, the red symbols are at a tem-
perature of 90 K, while the blue symbols are for the calculations at 300 Krhs: the interpretation

of experimentally observed results. From [WKFR04].

time scale is associated to relaxation via optical phonons,while the long time scale is bound
to acoustical phonon processes. The short timescale corresponds very well to the experimental
findings (as the accuracy of the experimental resolution in [WKFR04] is also limited for this
kind of timescale, and the number given from the experiment is rather the overall duration of
the fast relaxation than the exponential growth factor). The long timescale differs still by a fac-
tor of 3.5 from the experiment. Other open questions about the phonon relaxation timescales
are the effect of surface-related phonon processes, these are however expected to effectuate a
rather fast relaxation and the influence of quasi-particle and polaronic effects on the optical and
electron-phonon matrix elements, which are currently neglected, as well as the discussion of
other, perhaps more realistic surface reconstructions.

The second conclusion concerns the calculations at 300 K. Here, the experimental results
[TT03] imply a relaxation on two timescales of basically thesame magnitude as in the 90 K-
case, while we find in our simulations a much faster relaxation and practically no slow relax-
ation timescale. A possible explanation of this discrepancy is that at this temperature level,
the approximations made for our model system are no longer valid. Especially the broadening
of the distribution function with respect to the 90 K function has a significant effect on the
relaxation dynamics of the bottleneck states, as, as it was discussed in Sec. 7.4.3, these states
are neither particularly populated, nor do they play a special role in the relaxation process at
300 K: At room temperature, the lower bottleneck states are populated within 10 ps for sta-
tistical reasons, while the higher bottleneck states are obviously depopulated fast through new
deexcitation channels. At last, this effect is a consequence of the focusing on the phonon relax-
ation inside the conduction band, which ends up in a more or less unphysical final distribution
with a fixed number of electrons inside the conduction band. This could only be resolved by
also considering recombination processes to allow a depopulation of the conduction band, e.g.
by excitonic scattering, or by spontaneous emission of light. By such a depopulation, which is
expected on a 5 ps timescale, the bottleneck states would gain importance as intermediate, slow
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scattering states, and it is likely that the timescales could be reproduced. The extremely high
numerical effort to calculate a dynamical excitonic interaction in a consistent way (using den-
sity matrix theory) makes it however actually very difficultto implement such a recombination
interaction in the given system.

Nevertheless, as the 90 K calculation leads to a fairly good agreement of theoretical and
experimental data, we can conclude that we have shown a successful application of the whole
approach, although some of the approximations are quite drastic. The strength of this method
of combiningDensity Functionaland Density Matrix Theoryis that other interactions (like
excitons or optical recombination) can in principle be considered in the dynamical equations,
and also some of the approximations have only been made to reach a high level of simplicity
in this first-approach work. Therefore, it seems that the basics of the underlying processes
are already understood and can be explained by the interplayof acoustical and optical bulk
phonons, while a higher level of accuracy can only be reachedby taking the electron-phonon
interactions more precisely (e.g. by applying a surface-phonon spectrum from an integrated
ab-initio calculation) and additional scattering mechanism into account.

7.4.5 Relaxation in real space

While the discussion of the relaxation process of the optical initial condition in Sec. 7.4 has
been elaborated mostly on the distribution of the population on thek and energy space, the
question about the initial and final distributions in real space has been left open so far. By
performing a sum over the square modulus all conduction bandelectronic wave functions,
weighted by their specific population factor from the relaxation dynamics calculation, a dy-
namical picture of the non-equilibrium electron distribution in the real space can be calculated.

In Figs. 7.25 and 7.26, the real space distribution of for temperatures of 90 K and 300 K
is drawn for selected timesteps. As a basic result, the interpretation of the relaxation processes
introduced in Sec. 7.4.1 and 7.4.2 is confirmed: Initially (0fs), the electrons populate states
that are complete inside theDdown band, and consequently, the electron distribution is entirely
located in the within the first layers (on the lhs in Figs. 7.25and 7.26). Then, when relaxation
proceeds (50 fs-2 ps), a fraction of the population is transfered to bulk states and the electron
population reaches down to deeper parts of the structure, touching the back-end atoms. The
gravity of the population remains however centered at surface, as the biggest part of the pop-
ulation obviously scatters intraband. After 2 ps, the 90 K (Fig 7.25) and 300 K (Fig 7.26)
pictures start to differ significantly: while at 90 K, the bulk is depopulated quasi entirely at
10 ps (there still remains a population, which is below the threshold of the isosurface) and the
electron distribution shifts back to surface along with thepopulation of the surface minimum
state, a part of the population remains in bulk for the 300 K distribution. This is the effect of
the broader Fermi-distribution at the higher temperature,which also leads to a population of
the bulk band minimum in equilibrium. At 90 K, very small differences are still observable
between 10 ps and 200 ps, here the slow relaxation timescale comes into play, while all other
effects are rather determined by the faster relaxation.
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Figure 7.25: Isosurface plot of the electron density distribution for the conduction band states
for a relaxation process after optical excitation. The calculation is achieved for a slab with 40
layers at a discretization of32×32 points at 90 K. The red isosurface corresponds to a density

of 10−6. In the background, the ground state population is shown by the grey isosurface.
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Figure 7.26: Isosurface plot of the electron density distribution for the conduction band states
for a relaxation process after optical excitation. The calculation is achieved for a slab with 40
layers at a discretization of32×32points at 300 K. The red isosurface corresponds to a density

of 10−6. In the background, the ground state population is shown by the grey isosurface.
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Chapter 8

Conclusion and outlook

From the application of the combined density-functional and density-matrix theory formalism,
we have seen in Chapter 7 that a fairly good agreement of our theory to the experiment is
obtained. Both the qualitative picture of the relaxation asa two-timescale process, where the
relaxation is influenced by intraband surface scattering for the fast timescale and by bulk-
surface scattering via acoustical phonons, and a good correspondence of the fast time-scale
is found. The divergence of the longer timescale between theory and experiment needs not
necessarily to be a principal problem of the theory, as the strong dependency of the number of
layers implies that bulk effects are not sufficiently considered in the calculation and an even
bigger slab structure is needed to obtain a converged and reliable long-term timescale. Under
the given conditions (90 K), also the negligence of the surface phonon modes appears to be a
constraint of secondary order, as the speed of the intra-surfaceband-scattering is quite similar
to the experimental value.

For 300 K, the results are not so coherent. While no big difference is seen experimen-
tally to the measurements at 90 K, all timescales are much faster in our simulation. While the
provenience of the faster timescales in theory can be understood as an effect of the broader
Fermi-distribution(which inhibits scattering to energetically low states) and the higher proba-
bility in the of the optical phonon due to theBose-distribution, the discrepancy to experiment
is probably based on the same effects: the formation of aFermi-distributiondistribution is a
direct consequence of neglecting the recombination of conduction band electrons with the (in
this thesis not investigated) holes in the valence band. In [WKFR04], a scattering channel via
a surface exciton is described. While at 90 K, the recombination can be neglected due to the
sharp Fermi-distribution, this cannot be expected at 300 K,and the complete dynamical picture
would only be seen by depopulating theDdown-surface-minimum state. The simplified phonon
spectrum can lead to similar effect in this context: while weapproximated the total spectrum
by two pure bulk modes, a detailed view might be important forthe bulk-surface processes at
room temperature, as many phonon modes of the slab are probably located between modes of
our two-mode model and are then activated by the higher temperature.

All in all, the combination of density-functional and density-matrix theory is successful
even with the given assumptions, as, in contrast to the olderapproaches (Sec. 1.3, [ZBFK05])
the results are physically reliable. A big advantage of the time- and energy resolved simulation
is the big number of analyses that can be effected on the huge quantity of information that
can be won from the timesteps, i.a. a time, energy andk-resolved interpretation (cmp. e.g.
Figs. 7.13-7.15) and even a retransformation to real space is possible. This allows especially a
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detailed investigation of the different phases of a scattering process from the initial to the final
distribution.

In addition to the reapplication of an identical theory to another material or to a different
surface reconstruction (e.g. a 4× 2 reconstruction for the silicon (001) surface), there are
several possible avenues that a potential enhancement of this theory can take:

• The implementation of a realistic surface phonon spectrumcould be achieved by using
the frozen-phononcalculation capabilities of thefhimd-code or other codes. In the
same step, the calculation of corresponding deformation potentials could be done. While
the technical implementation could be reached (thedynamic code has the ability to
cope with numerous phonon modes and deformation potentials), the numerical effort is
considerable for a structure of this size (40 layer slab).

• The consideration of quantum-correlation effects by dynamically evolving the polariza-
tions (Eq. (4.15)). If this is understood to allow induced emission of light, it requires a
complete dynamical treatment of the valence band (hole dynamics). The polarizations
can also be coupled to higher order phonon relaxation processes. Unfortunately, the
numerical effort is very high.

• The integration of electron-electron interaction in the dynamical part of the approach,
at least for an excitonic interaction, would probably allowa deeper investigation of the
final relaxation, as in the silicon (001) case, this is suspected to interact with phonon
relaxation [WKFR04]. This is only useful in combination with an implementation of
hole dynamics, but it would introduce a genuine relaxation mechanism from conduction
to valence bands. However, the high number of summation indices in this interaction
provokes an unbearable effort, such that this could be only performed cumulatively.

• Dynamical treatment of phonon modes (in contrast to the coupling to a bath) is in princi-
ple a possible extension to the dynamical equations. In the silicon (001) surface structure,
the implementation of such a mechanism would probably give new insights, as the dimer
surface phonon mode is suspected to perform a hot, non-equilibrium vibration at high op-
tical excitations. Again, the high complexity of the resulting dynamical equations would
require to focus on single modes (as the expected dimer tilting mode at silicon (001)).
Another point of this technique is the unresolved thermalization behaviour (as the dy-
namical evolution of the modes is primarily energy conserving).

• One could also think of approaches with a electron-population-dependent phonon poten-
tial. The density-matrix formalism is capable to cope with aHamiltonian depending on
higher (> 1) order terms of the electronic polarizations, but the expected resulting equa-
tions are accordingly complex with multiple sums on the orders of the polarizations,
such that it is not likely that a analogous system of equations can be successfully derived
for a rather complex surface structure problem. Another open question is the deduction
of the interaction term in the dynamical Hamiltonian (Eq. (2.51)), as currently, no the-
ory exists to derive or model these interactions or at least to simulate them by structure
investigation methods (e.g. density-functional theory).

• The phonon potential and the electron-phonon interactioncould also be described by
a non-linear interaction of the phonons (e.g. depending on higher orders ofbnk). Of
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course, even if this is more question of principle about the applicability of the (linear)
phonon mode theory, this could help to describe non-linear effects for the vibrations,
which is especially of interest for highly excited phonon modes, e.g. for a dimer-tilting
mode. While the parametrization of such a potential using afrozen phononcalculation
seems possible, the resulting equations are probably, again, far too complex to be treated
with an arguable resource consumption.

As a final conclusion, we hope that we have convinced the reader of the high potential
lying in this combination of theories and yet in the presented results. To move on, however,
it should be mentioned that, in addition to the time for implementation and testing, any of the
points above requires at least a doubling of the computational power and of the disk space
consumption, at the current state of the art, the accumulated time for a single run (of all steps)
in the highest discretization amounts to ca. 6 months of CPU-time and requires more than
100 GB of always accessible disk space.
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Appendix A

Summary of the employed physical
constants and parameters

symbol value description
a 10.21 bohr theoretical lattice constant
a 10.26 bohr experimental lattice constant

Egap 0.65 eV DFT-LDA indirect bandgap energy of Si
Egap 1.17 eV experimental indirect bandgap energy of Si

0.52 eV scissors shift
Ecut 10 Ry plane-wave cutoff energy

h̄ωopt 57 meV optical phonon energy (Si)
h̄c 6.1 meV/nm sonic speed (Si)

Dopt 40 eV optical deformation potential (Si)
Dacou 7.37 eV/

√
nm acoustical deformation potential (Si)

h̄ω0 1.69 eV optical excitation frequency (experimental)
h̄ω0 1.07 eV optical excitation frequency (adjusted by scissors shift)

τ 50 fs optical pulse durationv two-dimensional vector
v three-dimensional vector
Ri real-space lattice vectors
Gi reciprocal space lattice vectors
ℑ imaginary part
P Cauchy principal value
Enk [eV] energy eigenvalue
fnk [1/nm3] microscopical electron density

pn′k′
nk [1/nm3] microscopical polarization

pn′k′
nk [kgm] momentum matrix element

dn′k′
nk [em] dipole matrix element

Dn′k′
nk;iq [eV] electron-phonon coupling element

A(t) [Vs/nm] electromagnetic vector potential (Coulomb gauge)
E(t) [V/nm] electrical field (Coulomb gauge)
P(t) [V/nm] macroscopical polarization

α(ω) [ ] optical absorption coefficient
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Appendix B

Tools for calculus

B.1 Equilibrium distributions

The equilibrium state of a quantum system is determined, according to the nature of the in-
volved particles asfermionsor bosons, by theFermi-Dirac-distributionor theBose-Einstein-
distribution, resp. Examples for fermions are the electrons, the holes ina semiconductor and
most elementary nuclear particles, while bosons are mostlyinteraction particles as photons,
phonons and others. The two distributions are given by

fi =
1

1+e
Ei−µ
kBT

Fermi-Dirac-distribution (B.1)

ni =
1

1−e
Ei−µ
kBT

Bose-Einstein-distribution (B.2)

whereEi is the energy of the quantum statei, kB the Boltzmann constant andT the temperature.
The chemical potential is a normation constant determined by the total number of particles
described by a distributionfi or ni for a given quantum system with the states{|i〉} of energies
Ei. It can be interpreted as the energy necessary to add anotherparticle to the system, and thus,
it only makes sense in systems where the particles have a mass.

B.2 Functional Derivative

The functional derivative is an extension to the derivatives with respect to variables. At the
place of variables, its arguments are functions and it acts on functionals.

B.2.1 Definitions

The derivativeδ/δΞ(x) of a functionalF[Ξ(x)] is given by

δF[Ξ(y)]
δΞ(x)

= lim
α→0

F[Ξ(y)+ αδ (y−x)]−F[Ξ(y)]
α

. (B.3)

For a functional of the form
F[Ξ(x)] =

∫
dy f(Ξ(y)) (B.4)
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this expression can be simplified to

δ
δΞ(x)

∫
dy f(Ξ(y)) = lim

α→0

∫
dy
(

f (Ξ(y))+ αδ (y−x)
∂

∂Ξ
f (Ξ(y))+O(α2)

)
−
∫

dy f(Ξ(y))

α

=
∂ f (Ξ(x))

∂Ξ(x)
. (B.5)

For a functional of the form
F[Ξ(x)] =

∫
dy f(Ξ′(y)) (B.6)

this yields

δ
δΞ(x)

∫
dy f(Ξ′(y)) = lim

α→0

∫
dy
(

f (Ξ′(y))+ αδ ′(y−x)
∂

∂Ξ′
f (Ξ′(y))+O(α2)

)
−
∫

dy f(Ξ′(y))

α

=−
∫

dyδ (y−x)
∂
∂y

∂
∂Ξ′

f (Ξ′(y))+boundary term

=− ∂
∂x

∂ f (Ξ′(x))
∂Ξ′(x)

. (B.7)

B.2.2 Series expansion of functionals

Similar to theTaylor expansion series, a functionalF[Ξ(y)] can be expanded into a series of
the functionΞ(x), if the Ξ(x) is assumed to be small. The basic derivation is in line with the
definition of the Taylor expansion:

F[Ξ(x)] = F

∣∣∣∣
Ξ=0

+
∫

dxΞ(x)
δF

δΞ(x)

∣∣∣∣
Ξ=0

+
1
2

∫
dxΞ(x)

∫
dx′Ξ(x′)

δ 2F
δΞ(x)δΞ(x′)

∣∣∣∣
Ξ=0

+ ...

(B.8)
For an expansion of a functional of form

F[Ξ(x),Ξ′(x)] =
∫

dy f(Ξ(y),Ξ′(y)), (B.9)

the expansion up to first order yields:

∫
dy f(Ξ(y),Ξ′(y)) =

∫
dy f(Ξ(y),Ξ′(y))

∣∣∣∣Ξ=0
Ξ′=0

+
∫

dxΞ(x)
( ∂ f

∂Ξ
− ∂

∂x
∂ f
∂Ξ′

)∣∣∣∣Ξ=0
Ξ′=0

. (B.10)

By reintegration and negligence of the boundary term of the second term in the parentheses,
we finally obtain:

=F

∣∣∣∣Ξ=0
Ξ′=0

+

∫
dxΞ(x)

∂ f
∂Ξ

∣∣∣∣Ξ=0
Ξ′=0

−
∫

dxΞ′(x)
∂ f
∂Ξ′

∣∣∣∣Ξ=0
Ξ′=0

. (B.11)

The expressions for functionals of vectorial fields can be derived accordingly.
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B.3 Lagrange Formalism for higher (infinite) order

The Lagrange equations for a fieldΞ are derived by applying a variational principle to the integral of the Lagrange densityL over a reference
volumeΩ, which is also denoted as theaction integral:

0 =δ
∫

Ω
d4xL =

∫
d4x
[∂L

∂Ξ
δΞ +

4

∑
i1=1

∂L

∂∂i1Ξ
δ∂i1Ξ +

4

∑
i1=1

4

∑
i2=1

∂L

∂∂i1∂i2Ξ
δ∂i1∂i2Ξ + ...++

4

∑
i1=1

4

∑
i2=1

· · ·
4

∑
in=1

∂L

∂∂i1∂i2 · · ·∂inΞ
δ∂i1∂i2 · · ·∂i2Ξ

]
. (B.12)

By performing some partial integrations (note thatδ∂iΞ = ∂iδΞ), this can be evaluated to

=
∫

Ω
d4x
[∂L

∂Ξ
−

4

∑
i1=1

∂i1
∂L

∂∂i1Ξ
+

4

∑
i1=1

4

∑
i2=1

∂i1∂i2
∂L

∂∂i1∂i2Ξ
+

n

∑
k=3

(−1)k
4

∑
i1=1

4

∑
i2=1

· · ·
4

∑
ik=1

∂i1∂i2 . . .∂ik
∂L

∂∂i1∂i2 · · ·∂ikΞ

]
δΞ (B.13)

+

∫

Ω
d4x
[ 4

∑
i1=1

∂i1

( ∂L

∂∂i1Ξ
δΞ
)
+

4

∑
i1=1

∂i1

( 4

∑
i2=1

∂L

∂∂i1∂i2Ξ
δ∂i2Ξ

)
−

4

∑
i2=1

∂i2

( 4

∑
i1=1

∂i1
∂L

∂∂i1
δΞ
)
+ ...

]
(B.14)

Although in Eq. (B.14) only the very first terms of the partialintegration procedure are given, essentially all parts that do not figure in Eq. (B.13)
can be brought into a “divergence-kind” form similar to the terms in Eq. (B.14). If we impose now that all variations of thefield and its
derivations derivations at least to ordern−1 vanish on the boundary of the integrals (δ∂i1...∂in−1Ξ|∂Ω = 0), we can make use ofGauß’ law, and
(B.14) vanishes completely.
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Eq. (B.13) must be valid independently for allδΞ, consequently theLagrange equations
must hold:

0 =
∂L

∂Ξ
−

4

∑
i1=1

∂i1
∂L

∂∂i1Ξ
+

n

∑
k=2

(−1)k
4

∑
i1=1

· · ·
4

∑
ik=1

∂i1 . . .∂ik
∂L

∂∂i1 · · ·∂ikΞ
. (B.15)

For the usually used field equations, only the first two of the terms on the rhs of this equation
are employed, as the corresponding Lagrange densitiesL do not contain field derivatives of
a higher order than 1. Nevertheless, for our considerations(phonons in a periodic solid state
material), higher derivatives are used.
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Appendix C

Summary of the computer programs
and results from the dynamical
calculation

C.1 Program structure

Pseudopotentials
fhi98pp
fort.11
fort.12

��

Ground state run
fhi98start
fhi98md

start.inp coord.out
inp.mod fort.71
fort.11
fort.12

//

ttjjjjjjjjjjjjjjjjjjjjjjjjjjjj

��
Band structure on symmetry line

fhi98start
fhi98md

start.inp coord.out
inp.mod fort.71
fort.11
fort.12
fort.72

%%LLLLLLLLLL

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Matrix element run control
scan setup
scan start

band structure run scaninfo.1
no. of discretizations (4) ...

scaninfo.4
Scan 00??/ (28 dirs.)

}}{{
{{

{{
{{

{

��

""EE
EE

EE
EE

E

Band structure for matrix elements
fhi98start
fhi98md

start.inp coord.out
inp.mod fort.71
fort.11
fort.12
fort.72

��

""FF
FF

FF
FF

FF
FF

FF

))SSSSSSSSSSSSSSSSSSS

...

##GG
GGG

GG
GG

GG
GG

GG
GG

G

Band structure for matrix elements
fhi98start
fhi98md

start.inp coord.out
inp.mod fort.71
fort.11
fort.12
fort.72

��
Matrix elements

matrix
scaninfo.1 matrix.8x8.nc
start.inp
fort.71

��

...

��

Matrix elements
matrix

scaninfo.4 matrix.64x64.nc
start.inp

fort.71 (mult.)

��
Dynamic calculation

dynamic
matrix.8x8.nc dynamic.data
phonon parameters

...
Dynamic calculation

dynamic
matrix.64x64.nc dynamic.data

phonon parameters
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C SUMMARY OF PROGRAMS& RESULTS

Description
program name

input file(s) output file(s)
input parameters

On the previous page, the programs used for the entire implementation are illustrated with
their dependency. For each program, an overview of the inputand output files is given (see top).
For the programs that have been developed from scratch within this thesis, the description tag
is in boldface and the program name is underlined.

C.2 Summary of the computational results

On the following pages, an exhaustive collection of the results for the simulation of the relax-
ation processes from the optical initial conditions is shown. The plots are similar to Figs. 7.13-
7.18 for temperatures of 90 K and 300 K.
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C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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C SUMMARY OF PROGRAMS& RESULTS
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