Optical Excitation and Electron Relaxation Dynamics at
Semiconductor Surfaces

A combined Approach of Density Functional and Density Malreory
applied to the Silicon (001) Surface

vorgelegt von
Diplom-Physiker Norbert Biicking
aus Filderstadt

der Fakultat Il — Mathematik und Naturwissenschaften
der Technischen Universitat Berlin zur Erlangung des ek@gchen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Mario Dahne
1. Gutachter: Prof. Dr. Andreas Knorr
2. Gutachter: Prof. Dr. Matthias Scheffler

Tag der wissenschatftlichen Aussprache: 5. November 2007

Berlin 2007
D 83






Zusammenfassung

In dieser Arbeit wird ein neuer theoretischer Formalismogefiihrt mit dem Ziel, die phonon-
induzierte Relaxation einer Nicht-Gleichgewichts-Veuteg zu einer Gleichgewichtsvertei-
lung an einer Halbleiteroberflache numerisch zu simulieiie Nichtgleichgewichts-Vertei-
lung wird dabei durch eine optische Anregung erzeugt. Desa#ndieser Arbeit besteht in der
Kombination zweier bewahrter, herkdommlicher Verfahreéneinem neuen, umfassenderenden
Zugang: wahrend Halbleiteroberflachenstrukturen isier Dichtefunktionaltheorie prazise
beschrieben werden kdonnen, kommt fur dynamische Prezedseterostrukturen die Dichte-
matrixtheorie zum Einsatz. In dieser Arbeit werden die Remtar fur die Dichtematrixtheorie
aus den Ergebnissen von Dichtefunktionalrechnungennbexti

Die Arbeit gliedert sich in zwei Teile. In Teil | werden allgeine theoretische Grund-
lagen erortert, von den Grundlagen der kanonischen (uienthg bis zur Diskussion von
Dichtefunktional- und Dichtematrixtheorie in zweiter Becher Naherung. Wahrend der Dich-
tefunktionalformalismus zur Strukturbestimmung langabéert ist und fertige Programme
existieren, gehen die Erfordernisse an den Dichtematrixdtismus beziglich der zugrunde-
liegenden Geometrie und der Anzahl der einbezogenen Béihée das gewdhnlich in diesem
Gebiet erforderliche Mafl3 hinaus. Ein besonderes Augenmigtkbeim Dichtematrixforma-
lismus daher auf Erweiterungen bestehender Formulierungeer Ausnutzung geometrischer
Symmetrien der Halbleiterstruktur und der Gleichungemrgfel

In Teil Il wird der Einsatz des entwickelten Formalismus agidiel einer Silizium (001)
Oberflache in Z 1-Rekonstruktion diskutiert. Zunachst werden dazu Baokgir-Rechnun-
gen mit Dichtefunktionaltheorie und dem LDA-Funktionafdugefiihrt, wovon dann di€ohn-
ShamWellenfunktionen und Eigenwerte zum Einsatz bei der Bamaog von Wechselwir-
kungsmatrixelementen fur die Elektron-Phonon-Kopplumgl die optische Anregung kom-
men. Diese Matrixelemente werden fiir optistHeergange von den Valenzbandern in die Lei-
tungsbander und fur die Elektron-Phonon-Prozesse halterder Leitungsbander bestimmt,
wobei die Kopplung an Phononen mittels Deformationspadtart realisiert wird. Von be-
sonderem Interesse ist dabei das Zusammenspiel von dem&bhandern und spezieller
Oberflachenbander, die von der Rekonstruktion an derfl@bbe herrihren und teilweise die
Bandlicke ausfullen. Im Anschlul3 an die Bestimmung detridelemente wird die dynami-
sche Entwicklung mit den oben abgeleiteten Gleichungenlsnh

Den Abschlu3 der Arbeit bildet ein Vergleich mit experinadlen Daten. Hierbei wird
eine gutéJbereinstimmung erzielt, sowohl was die zeitliche Abfoligs Relaxationsprozesses
betrifft, als auch in Hinblick auf die entsprechenden Ratens-Zeitskalen.



Abstract

In this work a new theoretical formalism is introduced in@rdo simulate the phonon-
induced relaxation of a non-equilibrium distribution taudidprium at a semiconductor surface
numerically. The non-equilibrium distribution is effedtby an optical excitation. The ap-
proach in this thesis is to link two conventional, but apgawnethods to a new, more global
description: while semiconductor surfaces can be invat@jaccurately by density-functional
theory, the dynamical processes in semiconductor hetaobstes are successfully described
by density matrix theory. In this work, the parameters farsiy-matrix theory are determined
from the results of density-functional calculations.

This work is organized in two parts. In Part I, the generaldamentals of the theory
are elaborated, covering the fundamentals of canonicaitquagions as well as the theory of
density-functional and density-matrix theory if@rder Born approximation. While the for-
malism of density functional theory for structure inveatign has been established for a long
time and many different codes exist, the requirements fosithe matrix formalism concerning
the geometry and the number of implemented bands exceedula¢possibilities of the exist-
ing code in this field. A special attention is therefore htited to the development of extensions
to existing formulations of this theory, where geometrigatl fundamental symmetries of the
structure and the equations are used.

In Part II, the newly developed formalism is applied to acsifi (001) surface in a 2
1 reconstruction. As first step, density-functional cadtiohs using the LDA functional are
completed, from which th&ohn-Shamwave functions and eigenvalues are used to calculate
interaction matrix elements for the electron-phonon-diogpan the optical excitation. These
matrix elements are determined for the optical transitivom valence to conduction bands
and for electron-phonon processes inside the conductiodshahere the coupling to phonons
is realized by a deformation potential approach. A speniairéest is attributed to the interplay
of bulk and surface bands originating from the surface rsitantion, which partly reach into
the band gap. From these matrix elements, the dynamicalitémolof the initial electron
distribution is calculated using the derived equations.

The thesis is completed by a comparison to experimental ddéme, a good agreement
is found, both for the temporal evolution of the electron yapon, and for the relaxation
timescales that can be extracted from the simulated data.
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Chapter 1

Introduction

The material properties of semiconductors have been ofdinigdechnological importance,
as the they are the basis of modern electronics and theredsemntial fotelecommunications
computer technigoptoelectronicsand many other applications. While the technical develop-
ment of the past decades was mostly based on macroscoptalbiured material, the evo-
lution has proceeded over the microstructured (integratexits in microcomputers) to the
nano-scaled materials (quantum dots, nano wires, quanteiis, megative index materials).
This miniaturization is a great challenge to the design afi¢ation of new devices, but it
also requires new theoretical approaches for the desamipfi the physical properties, as both
the electronic and the optical properties enter a new regindescription: While for the elec-
trons, nanostructures can lead to a confinement and thudicatidin of the quantum wave
function, the interaction of the nano-structured matdnaihe light can be controlled to a so
far unreachable level, such that completely new effectdeattesigned ([Sch06]).

Besides these technological developments, nano-stagchave been in the focus of a wide
academic interest for the past years. This is not only calbigedde technological impact of the
new techniques, but also by the fact that new investigatchriques have become available
is the recent years. For experimental investigation, tlalahility of pulsed coherent laser
light with a fs-period, and a high intensity at a so far untedate frequency range (THz) has
opened new avenues of analysis, while improved scannimgetiand force-field microscopy
on the one hand and miniaturization in material conditignflike lithography) on the other
hand allow a better manufacturing of the samples. On therdtieal side, a great improve-
ment is achieved due to the still increasing computer powbitch allows the calculation of
increasingly complex systems with more and more paramebetsalso an important effort
in developing dedicated formalisms both by combining angpédg known approaches and
deriving completely new algorithms is ventured.

As a side effect to this miniaturization challenge, alsda®ots attracted to some aspects
of long established fundamental research, which can beegiigated by improved modern
techniques, or which have an effect on nanostructuresidictimtext, some aspects of the study
of surfaces are very important for various reasons: on tees@te, surfaces or at least interfaces
are a basic ingredient of nanostructures, as these ar@metthy assembling layers of different
materials. The ratio of interfaces to volume increasesvoue of the interface by decreasing
the structure — it is likely that surface effects are of graypvimportance by miniaturization. As
an extreme example, some nanomaterials are build up by camunctional molecules to a
surface. On the other side, relaxation phenomena on sechictors, e.g. as a consequence of
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phonon scattering, have come into the focus, as fs-ressiyedroscopy allows a resolution of
these phenomena on the genuine timescale [Sha99], whidbreydnown to have effects on
the line shape in the spectra of hano structures (e.g. quanglls). For ordinary spectroscopy,
the effect of such scattering is out of reach, and the hitheearch was only able to consider
this only on a phenomenological level. For surfaces, theiBpelectronic structure (which has
a great influence on the the optical properties) can effagt particular coupling mechanisms
to phonons, forming specific modes at the surface.

Among the semiconductors, silicon has always had an oulistguposition due to its phys-
ical properties and also its practically unlimited availigh Although it has been widely used
for various kinds of electronic devices, an accurate themeinvestigation of the band struc-
ture is quite difficult due to the non-parabolic charactethaf bandstructure, which prevents
the application of a simple, low ordds- p approach [Kit91]. Another consequence of the
bandstructure is the theoretical description of the opgzaitation. Here, thendirect tran-
sitions which assure the transitions at a low level of energy, difecdit to handle, as they
are a second-order process involving multi-particle scay with phonons. In addition, a
feature of the electronic band structure of silicon whick h#iracted interest for a long time
are the various surface reconstructions, in particularegenstructions of the (001) surface.
By these reconstructions, specific surface bands emerge imaind structure, partly inside the
semiconductor-bandgap, and thus influence the opticalrpiiso [GP94, Hai95, HGIE97]
and also the phonon scattering [JB99, TT03, WKFRO04].

1.1 Aim of this work

In this thesis, two focuses are discussed. As first subjeptuit I, the development of a new ap-
proach is in the center. This new approach is based on theipatidn of two long established
methods, which have, however, developed independentdyistitomprehensible from the fact
that they focus on different fields of semiconductor physiks a consequence of the difficul-
ties modelling phonon relaxation in a semiconductor sarfatvironment mentioned above, it
is obvious that enhancements have to be made to existingetieed descriptions. The dynam-
ics in bulk semiconductors (as in Gallium-Arsenide [SMB6, LFL"96, HGB00a, HGBOOb,
HGBO01, HGBO03]) and nano-structured systems of various dgiomalities (as for quantum
dots [FWDKO03, FSKKO06] or quantum wells [WFKO03, WFD4, But07]) has been very suc-
cessfully investigated by using thiensity-matrix formalismfKHSK96, AM98, KSM™99].
While the density-matrix formalism is a general framewakding to differential equations
to describe the dynamics of a quantum system, the dimeniipremergetical properties and
transition rates figure inside these equations as quasinextparameters, in the form of an
electronic band structure and transition matrix elememtshe interactions. Here, usually, as
a good approximation for many applications, simple assiomgffor the electronic band struc-
ture (parabolic bands) and for the matrix elements (rexyttiom slowly varying envelope
wave functions (SVEA) with constant microscopical matri@neents) are used, which allow,
due to further internal symmetries, often an analyticalmification of the scatter equations
[FWDKO03, WFK03, WFL04].

For surface structures, however, a description withindghlthese assumptions is at least in
principle dubious — from the fact, that such a system can@otasonably interpreted as a bulk-
structure or a confined two-dimensional structure [JRMAa]pbvious characterization of en-
velope functions or confined parameter restrictions ef#$SKO07b]. As a matter of fact, re-




1.1 AIM OF THIS WORK

bulk bands

& bulk—bulk

| scattering
51.5; ‘
C \

OEY\#% band

X M X

)

=

Figure 1.1: Schematical Overview of the expected relaxation procegsesilicon (001) surface.

In the background, the bulk bandstructure (grey) and t4&*Psurface band (black) are shown.

While the bulk-bulk scattering (blue) yet occurs in a bulktsgn, the bulk-surface (red) and
surface surface processes (green) are directly relatetiecstirface reconstruction.

cent investigations with an Indium-Phosphide model systawe shown that the application of
such approximations in this context can lead to a qual@btigood description of the dynami-
cal evolution of a system (cmp. Sec. 1.3) [RWK04b, RWK04aHT@4, ZBG'04, ZBFKO05],
while a quantitative agreement fails in the first instancleusl, a more realistic description us-
ing a density-matrix formalism can only be expected by eniptp more realistic parameters
for the relaxation equation [BKSK07b, BKSK07a]. The firdeint of this thesis is to provide
a method to implement structure calculations for surfageddmsity-functional theoryDFT)
into the density-matrix framework [RMKRO03]. Density-fuianal theory is one of the leading
methods for theoretical analysis of microscopic struduranging from clusters to periodical
systems, and has proved its applicability in numerous ststé he basic idea of our approach
is to perform structure calculations to obtain an accurdeti®nic bandstructure, which is
based on the correspondif@hn-Shamwvavefunctions and the self-energy correction by the
GW-formalism and using the resulting wavefunctions to calculate ttemmsimatrix elements
for several interactions (in this thesis, the interactionfie dynamics are however restricted to
optical excitation and phonon-induced relaxation). As &emsion, one should also think of
additional calculations for phonon modes [FP95], this, &asv, is not elaborated in this work.

The second part of this thesis consists of an applicatiomefewly derived formalism.

To this end, phonon-induced relaxation processes arestieduas a consequence of optical
excitation for a silicon (001) surface. An overview over thessible processes, which are
related to theD9°"" surface band in such a structure (cmp. Sec. 5.2), are showiyirl.1.
While ordinary density-functional calculations for thécsin (001) 2x 1 surface are discussed
in Chapter 5 for several parameters, the calculations afhrix elements and electronic band
structure for use in the density-matrix calculation arespreéed in Chapter 6. The dynamical
calculation is finally done in Chapter 7, where the effectthefrelaxation processes are widely
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Figure 1.2: The various surface reconstructions of silicon (001). ke Bigures, the two topmost

layers of the surface are shown. The top-level atoms arectigpin green where they are all at

the same height or in red (higher level atom) and blue (loweel atom) where they form a tilted

dimer, the second level atoms are shown in yellow. The sadiad cells for the structure are
symbolized by a black rectangle.

discussed for various initial conditions. A comparisonte tew experimental findings in this
field is also discussed.

1.2 Physical aspects of the silicon (001) surface

Besides the known crystallization behaviour in the bulkeveh due to its 4-valence, silicon
condenses in a diamond structure, the silicon (001) sutfasded to controversial arguments
for a long time. The usual surface reconstruction geonsetire shown if Fig. 1.2 [DMOO,
DS92, FP95, RBK95]: The & 1 surface is the basic unit cell of the (001) surface without
reconstruction. More realistic configurations for the olearface are 1 reconstructions,
where the bulk lattice has been dissolved at the surfacean & the formation of a dimer. This
dimer formation is a characteristic of the diamond-likeistures and has been experimentally
confirmed since a long time. The symmetric and asymmetsicl2econstructions differ in
the tilting of the dimer, in the symmetric case, the dimer & €in the surface, while in the
asymmetric case, an angle to the surface is found. Eneafjgtinore favorable than the:21
case are the 2 and 4x 2 reconstructions. These differ from thex4 case by the orientation
of the dimers: the asymmetricalx21-reconstruction consists of rows of parallelly oriented
dimers, while at the Z 2 reconstruction, the dimers are alternating, but the teighg rows
are equally oriented. At the» 2 reconstruction, finally, the dimers are alternating intthe
directions.

At room temperature (300 K), the differences in the fornra@mergy for the asymmet-
rical dimers are too low to allow a clear distinction of thegominant dimer phase at the
surface [DMO0O0]. At low temperature (below 90 K), however,isccepancy was deduced from
the experimental and theoretical findings concerning ttiagiangle: while the most favor-
able reconstruction was theoretically found to be the2dreconstruction and a definite result
was that it is energetically unfavorable to have a flat dintlee 6ymmetric Z 1 case), at this
surface, there was no experimental evidence for an asynemetonstruction. As this devia-
tion could not be explained by thermodynamical reasons,tiday related to the interplay of
the measurement device (often a STM-tip with a certain gelt® the surface) and the dimer
tilting potential [SSB04, SS06]. As a consequence, it isgbeepted position today that at
low temperature the 4 2 dimer reconstructions prevails. Still the effects of thifecent re-
constructions for the band structure is a topic of resedegg(5], which requires theoretical
techniques beyond the density functional approach, alidth8 results are not coherent. In
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this thesis, due to the example character of the discustfiergalculations are performed for
an asymmetric Z 1 reconstruction.

The tilting of the dimer is dominated by a potential as illattd in Fig. 1.3, where the min-
imum of the potential is shifted to a non-zero angleSuch a potential gives rise to a surface-
localized phonon modewith a strong coupling to surface-related electronic baedpecially
the states of th®!? and DI°"" bands (cmp. Chapter 5). It is likely that the strong coupling
to the surface attributes an important role in a surfacated|relaxation process to this phonon
mode, especially in combination with an optical exposuréhefsurface. In the present work,
however, the phonon spectrum is not calculated microsatipibdut only schematically by an
approximated phonon spectrum. Thus the dimer tilting ¢&gfece neglected in the phononic
relaxation.

1.3 Optical excitation and phonon induced relaxation at thedndium-
Phosphide (001) surface

One approach to describe the relaxation involving surftaies has been formulated by adapt-
ing the specialized density-matrix theory used for the &tan of quantum-heterostructures
to a generalized multiband system and using basically theesassumptions as in the for-
mer case. A surface structure whose electronic properteg@proximatively described by
a two-dimensional parabolic band structure has found tdedridium-Phosphide (100) sur-
face [HBS"86, SB98, SBE98, FVV"00, SEE00]. A model [ZBG"04, ZBFKO05] has been
developed for a simulation of a Two Photon Photoemissioreexgent [HSK™93, THE'03,
TGE"05].

In the first step of [ZBFKO5], the band structure is describgd model of four parabolic
bands, which are interpreted as two-dimensional or thieetsional according to their char-
acter (Fig. 1.4): A bulk valence band, a bulk conduction handurface band with a lower
effective mass, intersecting the bulk conduction band aradalitional vacuum band to model
the emission process with quasi-free electrons. For ewvaamy fa set of wave functions is intro-
duced, for the bulk bands, these are ordinary bulk wave iometased on three-dimensional
Bloch waves (cmp. Eq. (2.25)), while for the two-dimensidmands (the surface and vacuum
bands), a two-dimensional Bloch description in the suraaellel direction is combined with
an exponential decay in tieedirection (rhs of Fig. 1.4). To allow a simple analytic agbttion

1The description in term of phonons (which are a linear appration for small elongation in a parabolic
potential, cmp. Sec. 2.3.3), might however break down fdghli non-parabolic potential.
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Figure 1.4: Band structure and simplified z-component of the wave fongtior the Indium-
Phosphide (100) surface.

of the matrix elements, the surface @t 0) is modelled by an abrupt decay at the surface
for the bulk bands and the surface band (which means for theldands that the effect of
surface is neglected) and by coupling to an external plane wea the formulation of trans-
mission and reflection rates for the vacuum band. For a %tlichoice of parameters, the
exponential decay rates used in this model are introducedshieally by extracting a decay
factor from the presumed surface states in a correspondingitgl-functional theory calcu-
lation [ZBG" 04, ZBFKO5] for the surface band or by a reasonable choichepenetration
depth of free-electron states into a solid for the vacuundljZBFKO05]. For this direct semi-
conductor, all wave functions of the bands (with a two-disienal dependency ok for the
surface and vacuum bands and a three-dimensional depgnolekdor the other bands) are
approximated by the wave functionlkat= 0, as it is a common choice in nanostructure physics
of two-dimensional systems (as in quantum wells [But07]).

From these definitions, matrix elements for the opticaltaticn and for the relaxation (via
LO-phonons and Frohlich-coupling) can be derived. WHile €lectron-phonon interaction
between the two bulk bands evaluates to standard matrixeetesB}3;°c" which are known
from bulk parameters, the situation is more complicatedterttwo-dimensional bands. For the
matrix elements from the surface band to the vacuum bane,(lbety the optical interaction
is relevant, as phononic relaxation does not occur into asiflé the vacuum states), also
simple expressions are found. For the transitions from tmgurface and to vacuum however,
the formulation of a coherent expression is not possibledas the given assumptions, as the
wave functions are defined for different dimensionaliti8g.interpreting the exponential decay
shapes as an envelope to an underlying three-dimensioflaiMawre, analytical expressions
based on the bulk matrix elements and the decay rates cardbeatk e.g. the matrix element
for a transition from the bulk conduction band to the surfaaed reads:

2R o iny2
Dcon/d/surf: dk’ K S _ Dcond/surf 1.1
ki.q 2V &oEphon a 0, — k. + ”\TS (1-1)

Here,w o is the optical phonon frequencssnon the effective permittivity due to the Frohlich-




1.3 OPTICAL EXCITATION AND RELAXATION AT THE INP SURFACE

cbm sbm +0fs i M\
+75 fs : M W= 75t |

+250 fs t,= 250 fs]

\

+500 fs

2PPE-intensity [a. u.]

/K(K
i,(f

‘ t—SOOfs

2PPE - intensity I [a.u.]
S

+1000 fg

0 01 02 03 0.4 05 0.6 0.6 0.7 08 09 10 1.1 12 13 14
energy [eV] kinetic energy E, [eV]

td: 100 ps

Figure 1.5: Comparison of theoretical and experimental relaxatiorhat inP (100) surface. The
theoretical data are simulated with the simplified four mauedel (Fig. 1.4), the experiment is
performed with a two-color-two-photon-photoemissionpefrom [TGE 05].

coupling,V the unit cell volume and\ the surface state decay rate towards theuMnalo-
gous to the models used in density-matrix theory [ButO @ rttatrix element constapcond/surf
is given by the three dimensional overlap of the Bloch waweegte conduction bulk and sur-
face bands:

peonst_ [ o). 12)
Q

With respect to surface theory, this is a dubious assumpéerthe decay of the states near
the surface needs not necessarily extend to multiple butkcefts. It is also obvious that the
suppression of surface effects in the bulk wave functiomslead to a strong deviation from
the realistic values even if the exponential decay of théasarstate is a good approximation.
As result, the theoretical photoemission spectrum can loelleéed time resolved by draw-
ing the population of the vacuum state on an energy axis.dnkb, the relaxation simulated
with the four-band model is compared to the experimentailt®&om [TGE05]. It is obvious
that the qualitative features of the relaxation are in a gagetement: the shape and position
of the peaks and the temporal evolution are quite congruardiscrepancy is found in this
superficial comparison for the first timesteps (while in ekpent, the peak at lower energy,

2The following material parameters are used for this catima valence band min. 0 eV, conduction band min.
1.339eV, surface band min. 1.589eV, vacuum band min. 7 &§#&¢tive massesn‘éffszAS Me, rngﬁ=0.078 Me,
M=0.2 me, m;ﬁzl.o me, surface band dampintys = 0.5nm 1, vacuum band penetration depth = 2.4nm 1,
£0=9.52, £,=12.35, T=300K, Phonon energy 43meV, dipole matrix elements: \adc Q3 e nm, val./surf. 2/0.0
e nm, cond./vac.=3 e nm, surf./vac.=09 e nm . Cmp. [ZBFKO05].
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corresponding to the conduction bulk band minimum, is pomreed for every timestep, it ap-
pears only after 250 fs of relaxation in the simulation), anthe relation of the heights of the
two peaks (here, in the experiment, the higher energy peakiis pronounced, while this holds
for the lower energy peak in the simulation). The biggestdiaap in this comparison is how-
ever the fact that the same timescale in the theoretical gmelienental relaxation can only be
found by artificially augmenting the size of the wave funataverlapD"¥suf(Eq. 1.1, which
are theoretically limited by th€auchy-Schwartz-equatiprestricting the scalar product of two
wave functions to one) to a value of 4. This is far from a phgifjcreasonable choice, as the
value of this matrix element is rather expected to be faidipty one.

As a conclusion, we can state that the “classical” modellorgquantum-heterostructures
is insufficient for the description of surface structures.re@son for this is that while in a
quantum well, the band structure is accurately defined bywaprameters (as the reduced
bulk masses of the compound materials and the thicknesg tdybrs) and a lot of information
about an electron state can be extracted from the same perarflike the envelope function
in the confinement direction), nothing is known about thetetmic structure at a surface from
pure bulk data, and even if the bandstructure could be pdraew, no coherent information
could be extracted from it for the electronic wave functi@ml without a time-consuming
solution of the Hamiltonian. As a consequence, it appeaadble to persecute an approach
of calculating the electronic band structure and the cpmeding wave functions by aab-
initio method, as it was proposed in Sec. 1.1 and in the followints dithis thesis.

1.4 Other approaches for the investigation of optical excdtion or
phonon-induced relaxation

In this section, we will present two methods which have besaduio model similar processes
as presented in Sec. 1.1 and Sec. 1.3. Most methods are haskemhgty-functional calcu-
lations. We can however state that none of the methods inst#don provides a general
framework open for the inclusion of additional interac8ain a truly quantum-physical basis,
or a coherent connection of the relaxation processes toasempical temperatures (which im-
plies the unambiguousness of the final state after relaXatichis doesn'’t put the applicability
of the presented methods for specific situations into qouiesti

1.4.1 Quasi-particle corrections to the band structure

While formally higher order correlation effects are delsed within the theoretical formulation
of density-functional theory, most practically used fuoeals (in particular the local-density
approximation, cmp. Sec. 3.3) combined with ghn-Sham-equationack an appropriate
description of such effects. For semiconductors, wherevéifence and conduction bands are
separated by the band gap, one effect of this somewhat r@dacaulation manifests in an
often underestimatelohn-Shanbandgap energy as a result of the DFT calculation. This is
mainly due to neglecting polarization effects, which canrieduced as energy corrections
stemming from quasi-particles formed of an excited elecirothe conduction bands and a
missing electron (hole) in the valence bands having a higHibg due to their complemen-
tary charges (it should be mentioned that basically alltedas can form quasi-particles with
electron (or holes) in other states, however, they are mgsarily strongly bound).
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An alternative to the standard density-functional theohjaol is able to to introduce such
quasi-particle corrections has been formulated inGNé-approach by [Hed65]. In their ap-
proach, which is based onGreen’s function formalisirthey introduce a variational principle
to formulate equations for the microscopical permittivatyd the self-energy of the electrons
in a structure. For the resulting equations, a perturbagxpansion usindgpyson’s equation
is derived. As an input to theW-formalism, Kohn-Shaneigenvalues and the corresponding
eigenfunctions as a result of a density-functional catoatacan be used. The result of3W-
calculation is an adjustment of thk®hn-Sham eigenvalugis the the first order approximation
this is usually denoted &5\, as the correction to the eigenvalues are directly compubea
the Green’s functiondased on the initigdkohn-Shaneigenfunctions.

The GW-approach is one of the standard methods of structure aaq@yRR02], widely
used for the calculation of optical spectra [DG93, ARSO%] aften very accurate [RQND5].
For surface structures the application of the formalisrotsatways possible, especially if they
are metallic. The relatively high computational effort essary for th&W-calculation makes
it furthermore impossible to use the formalism in slab dtriees with too many layers (cmp.
Sec. 5.2), so often, in such a context, it has to be decidedhehi is more desirable to have
a calculation with a small slab, but an accurate band strei¢tr only a few bands (what can
make the bandstructure too unprecise for the descriptidheo$urface) or a calculation with a
big slab and an uncorrected band structure for many bands. (€igs. 5.6-5.11).

A drawback of this statical form of quasi-particle correatis that the implicit dynamical
properties of quasi-particles, especially of the enecgéi relevant excitons, are neglected in
favor of the computation of aa final state after long-timdé&xation” of the quasi-particles.
This is doubtlessly very useful for the derivation of theiogit spectra, but in the context of
this thesis, with the aim to discuss the phonon-inducedadilan on a picosecond timescale, a
discussion of the electron-phonon interaction leadingytmathical processes is needed in the
time domain. Additionally, the dynamics might depend onitexcformation. While exciton
formation and dynamics can be discussed in the energy dossiinilar to theGW-formalism
— by employing theBethe-Salpeter-equatiofWwRKPO05], it is likely that it interacts with the
phonon relaxation and thus must be discussed dynamicailywéthin density-matrix theory
by an appropriate Hamiltonian. On the other hand, no metlasddeen found to implement
a phononic relaxation beyond phenomenological theory tiocombined DFT&W/Bethe-
Salpeter-approach, so an discussion of dynamics on anbéses cannot be avoided in this
context.

In silicon, calculations on the basis of tk&V-formalism have been performed in various
contexts, different works have been published about the)(40rface [KP95, FP95, RBK95,
SSB04, Egg05, SS06] and its reconstructions. For silicarofeyst other semiconductors), it
has been found that the corrections of the bandgap are yuasistant throughout the whole
Brillouin zone, theGW-correction falls back to a simple augmentation of all cartitun band
energies about a certain constant value. As a consequdaogha corrections to thikohn-
Sham-stateare usuallyk-independent (or even vanish). This procedure is usualpie as
scissors-shifof the band structure. In the calculations described in @maf we apply such a
scissors shift, as there is no known alternative methoddess full implementation of dynam-
ical quasi-particle interaction) to obtain a fairly retiisband structure from the demonstrably
incorrect result of a density functional calculation withhelocal-densityapproximatios.

3The local-density approximation cannot generally giveeotresults for the bandstructure calculation, as some
features are unrealistic, e.g. the lack of self-interactiothe functional and the missir®/ /dn-discontinuity.
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1.4.2 Time-dependent density-functional theory

A different extension to density-functional theory is theegration of dynamical evolution of
the electron state into the formalism [RG94]. A time-depah@nt of the electron distribution
can only expected in a non-equilibrium environment, thiis, approach requires the adaption
the ground state formulation in DFT towards a non-equiliribehaviour. While optical exci-
tation can be considered by dipole coupling to a classidal, filee strength of this approach lies
in the consistent dynamical calculation of electronic aattide properties: Through the elec-
tronic density distribution known at every timestep, als® $ystem of ions can be dynamically
evolved on the basis of the classical forces. By this, it issfiile to trace the lattice vibrations
without the need to apply a phonon formalism, such that tmaudycs is not restricted to linear
approximations. This formalism is used in various contextg. for molecular vibrations, and
has also been applied to the time-evolution of the silic@ijGurface [vHLPO5].

In comparison to the dynamical formalism in this thesis,dhiglence of a time-dependent
density-functional approach is based on a different IeW#iile the dynamical evolution in the
energy-space, based on the population of particular eledfates based on a pure quantum-
dynamical description, is in the foreground in the densiigtrix formalism, the calculation of
the dynamical development of an electron distribution amdose or less classical evolution
of the lattice is performed in TDDFT. While the integratiohquantum-coherence effects is
one of the central points in DMT, this is not directly possiih TDDFT. On the other hand,
TDDFT allows a much more detailed analysis of the naturett€tavibrations, which can be of
interest for the investigation of surface dimer vibratiols necessarily in a harmonic potential
(cmp. Fig. 1.2). However, the dissipation process to finedigl the lattice vibrations into an
equilibrium distribution is still unsatisfactory for TDDOF-while it is an intrinsic property of
the density-matrix formalism through the bath hypothesisf. Sec. 4.2.3).
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Chapter 2

Time dependent quantum theory

The electronic properties of a solid state material underemuilibrium conditions have to
be described in many-particle quantum theory due to theéemds and interaction of many
electrons and nuclei. In this chapter, the basic concepgsiafitum theory incorporating non-
equilibrium dynamics are presented. The basic idea of oproagh is to use a two step ap-
proach by dividing the statical contributions of the Haomitan (which then can be calculated
using amab-initio approach, Chapter 3) from the dynamical non-equilibriumtgbutions (us-
ing density-matrix theory, Chapter 4).

2.1 Schibdinger picture vs. Heisenberg picture

A quantum system is described by a HamiltoniiSch02, SW93, CTDLO7]. The Hamilto-
nian incorporates a kinetic energy tefimand a potentiaV/:

H=T+V. 2.1)

While T is generally time independent, might explicitly depend on time. The statgs(t) of
the quantum system is found by solving the fundamental tiegendenSchibdinger equation

iﬁ%q)s(t) = chs(t) +Vdg(t). (2.2)
Contributions toV can usually be obtained by taking a classical potential Bstiébing all
contained observables (e.g. electron density or positmguantum mechanical operators.
A physically identical formulation of a quantum system candehieved by transforming
the operators and wave functions with an unitarian opetaitrty). By applying the time-
development operator

Ut tg) = e Mo (2.3)

we obtain an alternative description, where the quantute €tg = U (t,to)®s(t) is no longer
time dependent. The temporal development of the quantutarayis now uniquely determined
by the operators. Corresponding to ehibdinger-equatior(2.2), the dynamical evolution of
the operators is determined by tHeisenberg-equationf motion for an operato®:

d .0
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By now, no special assumptions about the many-particle tgoasystem have been used
to develop the equations. The kinetic energy operdtaf an n-particle quantum system is
usually decomposed into a sum of single-particle kinetiergy operators:

ﬁZ
T=Y ——A;. 25
> ~ml (2.5)
The potential energy operatdf, however, can generally not be treated in a similar way, as
all inter-particle potentials are also described by thid pAthe Hamiltonian. Nevertheless, it
can be split into a decomposable part (e.g. a static extemiaackground potential) and an
interaction part:
V= ZVI +\/II"It Fi,...,fn )7 (26)

where thev;(r;) now only depend on the coordinate of a single particle. Funtore, the
interaction potentiaVin; can be interpreted in terms of a statical pégf** and a dynamical

partV®". The idea of splitting-up the potential is to separate thesghat contribute to the
equilibrium state of the system from those which only havestiect in the case of a non-
equilibrium electron population. The latter can be eithedarstood in terms of an excitation
potential (e.g. coupling to an electromagnetic field) orlax&tion potential which tends to
restore the equilibrium state. The Schrodinger equatfdheostatical part can then be solved

by an adapted method (cmp. Chapter 3) using the statical lkdeuiain
H¥ =T+ S vi(ri) + Vi 2.7)
|

whereas in the dynamical part, the remaining dynamicalritmritons to the Hamiltonian are
treated as a perturbation to the statical part by an apgtepaipproach (cmp. Chapter 4):

Hdyn _ Hstat_i_vdyn. (2.8)

In addition to those potential related assumptions, alspldications are applied to the
wave functions. Corresponding to the decomposition of thgcal potential in (2.6), we ap-
proximate the many-particle wave functidir,,..rn) by a totally antisymmetric product func-
tion, where the wave functiorg(r) of the single-particle states of an effective single phatic
Hamiltonian occur. This can be expressed in terms ofthger-determinant

o(ry) - @(r)
D(ry,..,r)=——| : (2.9)
@(rn) - @(rn)

It is obvious that this simplification is no constraint for @agptum system that only contains a
potential which can be split into single contributions degiag on a single coordinate without
interaction terms. Within the interaction contributiontbé potential, on the other hand, this
approximation has to be justified for the particular system.

2.2 Quantum field theory — canonical quantization procedure

The formalism introduced in Sec. 2.1 suffices to describeaaium system with a fixed particle
number and a given set of quantum states. If, however, a gumastatistical discussion is
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necessary or the number of particles varies, the formaliastt be extended. The canonical
way to find a many particle description is to apply a canoniedtl quantization procedure
to the quantum fields in the Hamiltonian, which also provittes possibility to treat quasi-
particles (like excitons, phonons) or massless partidiks photons) quantum mechanically
(usually this is referred to aecond quantizatign The canonical prescript to quantize a system
is as follows:

1. From a known wave equatiod(é;, éi, [&;,t) = 0 (this can be for example@chibdinger
equation an electromagnetic wave equation, a phonon dispersidragengedensity
- [BDB65, Blic04] is constructed to fulfill the variational exjion

0% 3 0L £

W(E & DED) =d—— + S 0; = 2.10
(G808 =a55a " 2.%508) & (2.10)
2. A canonical momentum for the field varialfeis defined by
A

=, 2.11
5@ @11)

Using this momentum, we can formulate a Hamiltonian density
I = Zn,ratfi—.,iﬂ (2.12)

|
and a Hamilton-Function

H = / 3.z 2.13)

The field variablest; are now interpreted as field operatats which is achieved by
introducing fundamental commutation relations for thedfigberators, which correspond
to classical Poisson-brad¢egisson bracesor the field functions [BD65]. The character
of the particle described by; determines the choice of a commutaiorO'] - = 00 —
O'O for bosons or an anticommutatf®, 0’| . = OO0 + O'O for fermions:

[=i,N]+ = & (2.14a)
[5i,Zj]+ =0 (2.14b)
M;,Mj]l= =0 (2.14c)

By this step, the Hamilton-function is transformed into antléon-operator. The time-
development of observables can then be evaluated usirldeisenberg-equatiof2.4),
as the field operators; are now canonically in theleisenberg-picturéSec. 2.1).

A usually more convenient representation of the quantundgiean be obtained by per-
forming a mode expansion. The field functiérit,r) and the corresponding field operatas
depend on time and location. On the other hand, solving tie diguation (2.10) for a field
variableé into a complete set of complex modes, the mode operahb(@ andm,(t) can be
defined

200 = 3 (e Om (& (Om) (2.159)
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ar

Figure 2.1: Example of a two dimensional hexagonal unit cell (Ihs) anel ¢brresponding
reciprocal lattice vectors and first Brillouin zone (rhs)

Mi(r,t) = Z(fffik(r)kar f2(E%)* (r)m)) (2.15b)

and the new commutation relations for the mode operatortharegiven by
Meme =&, [M,m].=0, [m,m].=0. (2.16)
The choice of the factor§?!, f!, f? and f? depends on the character of the fiefis For a
classical real field for example, we ha¥g = 1, f1 =1, f2 =i and f2 = —i. The correct

commutator depends, as in Eqgs. (2.14), on the nature of tielpafor fermions, the choice is
the anticommutator, for bosons the commutator.

2.3 Quantum physical properties of a regular solid state madrial

The quantum mechanical properties of periodical system$ealescribed on a different level
of abstraction with respect to a free system [AM81, CzyO@}idicity in a solid state material
can be expressed through the lattice axgsa, andaz. Inside the parallelepiped spanned by
the axesai, ap, as, the unit cell of the structure is located, which is repeatethe specific
directions with a period of the corresponding lattice vec@onsequently, a lattice vector

Ri € {mas + npaz + nzag} (2.17)

points to the identical origins of the lattice. The quantuesaiption of the periodical system
with the Schibdinger equatiorcan be entirely derived from a single unit cell. Correspogdi
to this restriction in real space, the area in the accordmgiEr (ork-) space is limited by the
reciprocal lattice{bs, by, b3}, which is given by the definition

_2na2><a3 b_2na3><a1 b_2na1><a2

=T =_=" = == 2.18
! a1><a2-a3’ 2 a1><a2-a3’ 3 a1><a2-a3’ ( )

and the reciprocal lattice vectors are then — similarly to dL7) — defined by
G e {nlbl +noby + n3b3}. (219)
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Thefirst Brillouin zonecan be constructed from the reciprocal lattice vectorsesphace which
is bound by the condition
2k -G < G? (2.20)

for all G;. The relations between the real space krgpace representations are illustrated in
Fig. 2.1.

The periodicity of the structure implies a translationainsyetry in space by the lattice
vectorsa;, ap andasz and their multiples. This property can be expressed by duoicmg a
translation operator.gg

Irf(r)=1f(r+R) (2.21)

which can be defined by
Tr =, (2.22)

such that periodicity is established whéh, andH commute, and for normalization, all valid
eigenfunctions oH must also be eigenfunctions olg, to an eigenvalue with a modulus of
one.

2.3.1 Two dimensional systems

The three-dimensional definitions in Eq. (2.18) can in pplecbe formulated for a system
where phase space of the electrons is of lower dimensigr{&®ES88, Lit93, Bec03, DS96].
This can be either a restricted system (like a quantum wellgqarantum dot) or a naturally low
dimensional system (like a graphene-sheet). In this corttexsurface structures have a special
status, because although the symmetrical properties@se tf a two-dimensional system, itis
in fact three-dimensional, as the third dimension extenda whole half-space. In numerical
calculations, this situation is usually described bglab approach the surface structure is
specified in three dimensions, where the directions péaral¢éhe surface are given in their
genuine surface symmetry and the periodicity is used foctmesponding coordinates. The
direction perpendicular to surface is described to a aedapth by specifying a finite number
of layers and a vacuum layer.

In this thesis, to make a clear distinction between the dgioeralities of differents systems,
we introduce a two-dimensional vector

V1
v=1 v |. (2.23)
0

In the surface structures, it is assumed that the threerdiimeal lattice vectors is always
parallel to thez-direction and oriented perpendicular to the surface. thmeines the extension
of the slab perpendicular to surface, while the other ve@panda, are given by the geometry
of the surface elementary cell. Although a three-dimeradi@millouin zone can be defined by
these three vectors (using Eq. (2.18)), the discussioregbilysical properties is only based on
the two reciprocal lattice vectors

_ 2map x & b, — 21, X g

= = 2.24
1 a X ay- e 2 a X ay e ( )

wheree, is the unit vector ire-direction.
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2.3.2 General considerations on electronic properties

A formulation of the staticabchbdinger-equation(2.2) with a periodic potential allows to re-
strict the possible solutions the unimodular eigenfumdiof the translational operator (Eq. (2.21))
[Czy00, AMB81]. This is fulfilled by introducing the so-cafldBloch-functions

G (1) = € U (r), (2.25)

whereun (r) = upk (r +R;) is a lattice-periodic function. The-vector is an element of the first
Brillouin zoneQ (Eg. (2.20)) and constitutes a continuous quantum numbtiawklly to the
band indexn. It is convenient to describe the periodicity wk (r) by a Fourier series, where
the reciprocal lattice is exploited:

Unk (1) = 5 Uk (G)€®™. (2.26)
G

For obvious reasons, orthonormality of these wave funstismo longer constituted on the
whole spaceR?, but can be defined on the volume of the unit &l |a; x ap-ag|. The
corresponding orthogonality relation is

/QUnkUn’k = Onn, (2.27)
or, in terms of the Fourier representation 2.26,

gUnk(G)un’k(G) =S (2.28)

Together with the representation of the electronic waves, at follows the orthogonality rela-
tion

/Q BBk = GO (2.29)

Also the corresponding energy eigenvalues ofSabibdingerequation are defined by the
two quantum numbeng andk:
Ex, keQ. (2.30)

2.3.3 Vibrations (Born-Oppenheimer approximation)

In principle, the dynamics of both electrons and nuclei amedrtant for the quantum mechani-
cal description of a solid. Nevertheless, the masses ofitlotrensm and the nucleM; and the
corresponding kinetic energies are fairly differemt< M;). The impact of the nuclear motion
on the electrons is much bigger than vice-versa, and the waations of the nuclei are much
more localized than those of the electrons. The dynamickeohticlei can be described on a
classical basis without restricting the quantum mechéamuieacription of the electrons. This
approach is called thBorn-Oppenheimer approximatid@zy00, SW02]. On the other hand,
the nuclear coordinates can be decomposed into

Rit) = Ri| +a(1), (2.31)
0

where theci(t) denote a small deviation from the minimum position of totaérgy R;|o. A
perturbation expansion of thabrationsc;(t) is used to express the potential. Although they
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are in principle a discrete set of nuclear elongation coatdis, it is useful to interpret the vi-
brations as continuous fieldgr,t), where the index now counts the different atomic positions
in the unit cell. With this declaration, a quantization prdare (Sec. 2.2) can be applied and
they can be described as vibrational quastianons

The potential which acts on a nucleus originates mostly f@oalomb interaction (cmp.
Sec. 2.3.4). The core electrons are usually bound to thesinstich that it is better to refer
to the ions as the oscillating particles, although the sbast have practically no effect on the
mass. By a series expansion of the ion-ion potential by theatibnal fields at the ion posi-
tions, the first order of;(r,t) vanishes due to the placement of the ions near their equitibr
positions (where the total energy reaches is minimum vakigh that the first non-vanishing
order is the second. As a consequence, the forces on ther@dstarmined by a superposition
of Hooke’s law for the neighbouring ions, and the corresrogndynamical equations yield for
the ion at positiorR; with massvi;:

Mi& (r,t) = ZDRiRJCj(RJ-—i—r,t). (2.32)
J

The dynamical matri>D'F‘{iRj is given by the second derivatives of the potential betwhendn
at positionR; and the ion at positioR; in the elementary cell.

While the vibrational fields;(r,t) are useful for classical interpretation of the elongations
it is more convenient for quantization and calculus to idtroe the normalized complex modes

by
c(r,t) = %(w/ﬁs(r,twq/wims(r,t)), (2.333)

6010 = 5 (\/mrs 0~ | mr S D). (2.330)

Due to the translational invariance of the periodical dtriresand the homogeneity of the dif-
ferential equation (2.31) , the normalized modes have fdlfile ansatz

s(r,t) =974, (2.34)

where€ is the polarization vector for modeandq is a vector from the first Brillouin zone.
By inserting this into the dynamical equations (2.31), flseular equatiorfor the phonon
dispersion can be obtained, and by choosincgtlas eigenvectors of the dynamical matrix, the
phonon dispersion can be calculated from the eigenvaluBgmf

—o =¢-D(q)e. (2.35)

The number of phonon modes can be calculated from the nunfib@rin the unit cellN
as N, where a degeneracy of some modes is usual, according tertireetry of the structure.
The first 3 modes, which havg (0) = 0, are called acoustical modes, while the oth& 3 1),
with a (0) # 0, are the optical modes. For a sn@glthe acoustical modes can be approximated
by a linear dispersion with the sonic spega@s wxcoust= Ci|q|, While optical phonons have a
more or less flat dispersion and can often be approximatedcbhpstaniu,pt = wo.
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2.3.4 Coulomb interaction

Due to the nature of the electrons and ions in a solid statenabas charged patrticles, the most
important interaction is the Coulomb interaction. Insidecéid state material, the classical
Coulomb energy for a classical charge distributgdn) is cast into several contributions which
take into account the many-particle nature of a solid [SVWB&93]:

!/
V, — d3 /d3 / p(r )
coul ™ / 4meg \r —r/|

iZj / 2 Zipcore(r) /d3 /d3 / e Pcore(r ) Pcore(r’)
2247TEO|R| Rj| 2Z 4mey |Ri—r| 4718 [r—r/|

nucleus-nucleus pOtential nucleus-core electron potentia| Core electron-electron pOtentiaI

independent of shell electroas constant

—|—%Z/d e Zp(r /d3 /d3 , € Pcore(r)P(r") (2.36)

47T£0|R.—r| Aty |r —r’|

nucleus-electron potential Core electron-electron potential

Vs

oo g emd

electron-electron potential

TheZz; refer to the charges of the nuclei, which are assumed as-id@nparticles, due to their
limited extension with respect to the valence electrgis) corresponds to the electron-related
charges, which can be delocalized in a solid. Usually, andistlescription of core electrons
and valence electrons is desirable, as the chemical lditinding is mainly related to the va-
lence charges, while the core charges are strongly attaohina@ nuclei. To this end, a core
chargepcore(r) is introduced for the non-valence electrons. Bwn-Oppenheimer approxi-
mation(Eq. (2.31)) is used to separate nuclear and electronicomtiy inserting Eq. (2.31).
As a consequence, an interaction term of phonons and eleatem be derived by performing
a series expansion of the phonon modés;t) using a functional derivative (cmp. Sec. B.2.2):

0
~ 3 '
Vs NVS‘S:O—I—/d PXIRFREIC (2.37)
The overall Coulomb energy is then given by
Viat
3 ! 3 3 ! P( ) ( )
@y e [Ervemetr s [ o [ @ g ERT
electron-phonon-coupling electron-electron-coupling

whereV, 4 is the effective lattice potential including core-electiiateraction and nuclear in-
teraction. Using Eqg. (B.11), the electron-phonon couptimgn can be expressed in terms of
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the following formula [SWO02]:

Veren= [ oy (a(r,0DP(m) + aci;[’t) DH(r))(r). (2.39)

The electron-phonon potentiBl (r) can in some cases be derived microscopically, but can also
be treated as parameter.
The transcription of the interaction energy contributitmgjuantum mechanical quantities
is achieved by replacing the electron density funcpgn) by the electron density operator for
a many-particle system

r)=e) o(r—ri), (2.40)

where ther; are the coordinates for the electrons. The energy expectation value is then
obtained by calculating the expectation value withhparticle wave functions (2.9):

Ecoul = (P|Vcoul|P). (2.41)

The evaluation of this expression for the particular elemém Eq. (2.38) yields, by making
use of the orthonormality of the one-particle wave functigrir):

ELat:EO+Z/d3rVCore(r)ai(r)§q(r)a (2.42a)

aen=3 3 [ (o000 + L0k oot @a20)

B 3 [ e, € GHAaMe()e(r)
EE|.E|_|Z;/d r/d i e , (2.42¢)

Hartree-term

, & on)ar)e;(re(r)
é/d?) /d3 4rteg |r—rjl| .

exchange term

While the existence of multiple electrons in the system hasignificance for thde 5 and
Eg..ph contributions, it has an effect for tHe: g interaction. Here, the term consists of two
parts: theHartree-termrefers to classical interaction of single electrons, wastbeexchange
termis due to the fact that Pauli’s principle requires a totalyisymmetric wavefunction (Eg.
(2.9)). For a single-particle theory, all terms besidesdkehange term can be described by
a local (multiplicative) interaction teri(r) in the Hamiltonian, while the latter is cast into a
non-local (integrative) expression.

2.3.5 Electron-Light coupling

In contrast to the inherent statical Coulomb interactionhef charged particles, the coupling
to an external electromagnetic field is included by (@ )dnvariance of the wave function into
the Hamiltoniarh [BD65, AE75, SW93]. The electromagnetic field is expressgthie vector

1An exact description of the particle-electromagnetic fiefttraction would require a coherent solution of
electromagnetic field equations (Maxwell-equations)daghe material with the boundary conditions given by the
external field. Keeping in mind that the light pulse shoulddeiaa short, weak exposure, our approximations seem
tolerable.
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potentialA(r,t), which is set into Coulomb gauge [Jac99]:
0-A=0, (2.43)

and the electrostatic potentM(r,t), which can be cast to zero without loss of generality. The
vector potential enters th&chibdinger equation through the replacement of the momentum
operatom by

p:TﬁD—>i—ﬁD—qA(r,t), (2.44)

effecting several contributions to the original equations

= d 1 h 2 2
|ﬁa(p(r,t)_ 2m<h_A 2qA(r,t)iD+q |A(r,t)] )(p(r,t). (2.45)

Two approximations are now used with regard to this equatkirst, due to the long wave-
length of the optical light compared to the typical size otroscopic structures, the spatial
dependence of the vector potential can be neglected,(sd) is expressed a&(t). This is
usually called thedipole approximation As a second approximation tha(t)|2-contribution

in Eq. (2.45) is neglected, as the fields used in our discnssie rather small and are therefore
of minor influence due to the quadratic order.

The use of the vector potentidl(t), which is only given indirectly by the physical ob-
servables electrical and magnetical field, is often incoier for the description of the optical
interaction. An equivalent form of the coupling based ondleetrical field can be obtained by
applying a U1)-phase transformation to the wave function in the Schigelirequatiofi by

U(r,t) = endA ), (2.46)

The transformed Schrodinger equation then reads

_d R
|Ha(p(r,t) = —?nﬁ A@(r,t) +arE(t)e(r,t). (2.47)
The most significant difference to Eq. (2.45), besides thergence of the electrical field
E(t) = —d/dtA(t), is the appearance of tidgpole operatord = gr. It can be shown that under
normal conditions, the two formulations (2.45) and (2.4/8 quasi identic. To this end, if we
look at a matrix element of two arbitrary statgs) and|¢;), which corresponds to an optical
transition from statéq) to state|¢;), it can be seen that

(@lir.Hllg) iR |
Ej—EiJ _m(Ej—Ei)<m|p|(pj>' (2.48)

(alrlgy) =
While the pulse is now sufficiently long to ensure a sharpsitam (E; — E = hw, wherew
denotes the frequency of the light), the two formulationsg{acting theA>-term in (2.45))
yield exactly the same expression, as the electrical fietdleged by derivative to the vector
potential.

2This also implies a gauge transformation of the vector pizkA(t) such that(t) = 0.
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2.3.6 Statical and dynamical system Hamiltonian

By combining the interaction terms in sections 2.3.4 andb2a8th the kinetic energy contribu-
tion, the overall Hamiltonian (2.1) can be obtained. As enésd in Eg. (2.6), this Hamiltonian
is then divided into a statical and a dynamical part. The detapexpression for the Hamilto-
nian is given by

H =T + V& + Vehon+ VEl-opt + VEI-Phon+ VELEI- (2.49)

In our approach, the static contribution to the Hamiltonmequivalent to the ground state,
as we will assume that the final state after relaxation doeédgliffer significantly from the
ground state. In the ground state discussion, we will asshat¢he system is neither perturbed
through vibrations nor by optical excitations. The Coulemtgraction between the electrons,
on the other hand, is of course important, but only betweeretbctrons in the ground states,
while other electrons are not affected. Consequently, thergl-state Hamiltonian reads:

Heq =T +VE| +Veq,E|-EI- (2-50)

The remaining terms in Eq. (2.49) are treated in a non-daitilin approach by second quanti-
zation of the electron and vibrational (phonon) fields. Timgle-particle description of the
ground-state theory enables us to interpret the entirengratiate Hamiltonian (2.50) as a
single-particle Hamiltonian usable for the quantizatioogedure (Sec. 2.2):

Hnoneq: Heq + VPhon+ VEI-Opt + VEI-Phon+ Vnoneq,EI-El (2-51)

The quantization will be performed in Sec. (4.1). While th&alation of the ground state will
be elaborated in Chapter 3, the dynamical theory incorjpgrahe non-equilibrium contribu-
tions (Eg. 2.51) is discussed in Chapter 4.
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Chapter 3

Basic aspects of Density-Functional
Theory

Although there are known numerical approaches to find thetisok of the single particle
Hamiltonian (2.50) in an iterative and self-consistent whg numerical effort is considerable
and often too high. Based on the decomposition of the wavetiturs by a slater determi-
nant (2.9), the electron-electron interacthfe in the Schrodinger equation, is given by two
contributions (cmp. Eq. (2.42c)) [Czy00]:

)

$ /q’J ) &r /‘pJ .
Ver-ei(r ~ 4ms, z/ 47'[80 Z/ o). @1

Hartree-term exchange-term

While the Hartree-term can be calculated with justifiabferefue to its dependency from the
overall electron density
f(r)=(®lp(r) Z\cn (3.2)

the exchange term requires a numerical integration foryewewe functiong(r). Apart from
the high cost through this calculation step, the scalingejpethdence of the size of the system
(number of electronic states, discretization) is bad. ltespf the highly increased computa-
tional potential in comparison to the past, the systemsdéuatoe investigated by thidartree-
Fock-approachare still very limited in size.

In 1964, Hohenberg and Kohn [HK64] developed a differentrapgh. Their basic idea
was that the ground state of a quantum system is injectieddyead to the electron densifyr).
In the Hohenberg-Kohn-Theorenthey have shown that the ground state endigys an one-
to-one mapping of the ground state electron denfjty). The proof of this theorem is based
on the facts that different ground state energies in a ngeErate system require different
Hamiltonians and that furthermore a difference in Hamilos of the form (2.50) with equal
electron density can only affect the single-particle ptiéénbecause all other contributions
rely on the density. The single particle potential, on theeothand, is not influenced by the
electronic structure and is non-ambiguous for a sySterence, the task is to derive a set of

1t should however be noted that there exist a trivial exceptb that statement. The minimum value of the
energy has no physical relevance and can be chosen atpjtitagrefore the ground state energy is only fixed up to
a constant. This exception is mentioned in the original Hbleeg-Kohn theorem [HK64].
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equations that no more rely on the exchange-term of singtelgawave functions, but on the
particle densityf (r).

3.1 \Variational principle

From the fact that the ground state energy is un-ambigubfalaws by the Hohenberg-Kohn
theorem that this also holds for the electron density. Omther hand, as the densifyr) can
be chosen from a continuous configuration space, the miniofuthe ground state functional
Ecround f(r)] can be found using a variational principle. The electrorsdgrat this minimum
is then the ground state density. The density can howeveoachosen fully independently,
but it must reflect the fixed particle numkgrof the system through

/d3rf(r) _N. (3.3)

The variation can now be performed by using the functionaivdgve (B.3) with the this
constraint by introducing Lagrange multiplicators for tteastraint conditions:

5777y (Eorowd ()] — 1 [drim) Lo (3.4)
By now, no assumptions have been made with respect to thedbthe ground state energy
Ecround@nd the electron densit(r). In the spirit of a Hartree-Fock approach, it is now self-
evident to propose a partition of the energy in the followwey:

Ecround f(r)] = Ts[f(r)] 4+ ELat[f(r)] + En[f(r)] + Exc[f(r)]- (3.5)

Ts[f(r)] stands for the kinetic energy of the system of non-intemgcélectronsE ,; denotes
the statical Lattice potential, ariel[f (r)] andExc[f(r)] represent the Hartree and exchange-
correlation energy terms (Eg. (2.42c)). The “correlati@®@notes an extension to the pure
“exchange” term based on the fact that the product wave ifumdq. (2.9) is not exact and
doesn’t take many-particle effects into account. Suchemtions to the one-particle description
can be numerically calculated by a many-particle theowy. (@reen’s functions [Hed65]). The
first two of those contributions can be expressed by

Eiat _—/d3rV|_atf(r) (3.6)
and
' / f(r/)f(r)
3 3 3
EH_/d rva(r)_/d r/d r _Bemo = (3.7)

The electron densityf (r) can be interpreted corresponding to Eq. (3.2). By this step,
implicitly assume that the electronic states can be caledlay solving a statical single particle
Schrodinger equation for the single particle state§(ir), namely

Ea(r)=Ta(r)+Vsa(r). (3.8)

Following Eq. (2.5), the one-particle kinetic enerfy= —ﬁz/ZmeA, where all statical contribu-
tions and contributions from other electrons are now coeubiim the single-particle potential
Vs.
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3.2 Kohn-Sham equations

By executing the variations of Eq. (3.5), a set of serviceaduations can be found. This
derivation was first performed by W. Kohn and L. Sham in 19656K], who gave the name
to the resulting equations. From Eqgs. (3.5) and (3.4), wetgetelation

5EGr0und oT 5EXC
5t M= e P VKD + 5 -

0= (3.9)
While the conversion fronk 5 to V| 4t IS @ more or less trivial calculation following Egs. (3.6)
and (3.7), no explicit expression for the relation betw&eand f (r) on the one hand arixc
and f(r) on the other hand is known in advance. Otherwise, by theti@miaf Es, under the
constraint/ drf (r) = 1, we obtain

OEs oT

ZW—HS 5f()+ S— Hs. (3.10)

By subtracting Egs. (3.9) and (3.10), the kinetic enefggan be eliminated and a definite
expression foks is obtained:

OExs
V( ) Viat+VH+

T )+M Hs. (3.11)

The two constant Lagrange parametgrand pis cannot influence a wave function calulated
with Vs and are suppressed. By this equation, a direct connectiwebe the single particle
wave functionsg@ and the density-dependent Hartree potenfjaland exchange-correlation
potentialdExs/d f(r) is found. The electron density, however, is related to theawanctions
by Eg. (3.2). On this basis it is now possible to express acgglsistent algorithm by a con-
secutive evaluation of the electron density and the singiégbe Schrodinger equations (3.8).
The conception of such an algorithm is shown in Fig. 3.1.

The ground state energy from these calculations is finalipdousing Eqg. (3.5). We find

Eorouna= Y B~ [ V() 10)+ [ Maln) () +Eu+Bxe.  (3.12)

By inserting Eq. (3.11), this finally results in

6EXC
()

The Kohn-Shamequations are generally only valid for the ground state itlerasmd the as-
sociated lowest single-particle electron states. It isdwaw possible to calculate more states
than needed for the ground state in the single particledsiagér equation (3.8), but as no
Coulomb and exchange interaction is taken into account in(Eq1) for these states (only
the ground state density is incorporated), their value®algapproximative. In this spirit, is
also possible to use a thermal distribution functibartmi-functior) for the occupation of the
electronic states, this can be important for the investigatf temperature related effects at the
Fermi-level For excited states, generally also many-particle-effethigher order (beyond
the exchange-correlation functional), namely quasiglarinteractions (for examplexciton3,

are important for the determination of the energy structure

EGround= Z Ei— EH - / o f(r)+ Exc. (3.13)
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Test wave functiong (r) ‘

Calculate densityf (r) = 3 |@(r)|? ~—

‘ Calculatevs(f(r),r) ‘

Solve single electron Schrodinger equation
2
Eiq(r) = —oAa(r) +Vsa(r)

EcroundN) — Ecround N — 1) small? )
®(n)—d(n—1) small ?
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| atomic forces smallP no J| Change atomic positiojs
y}as
‘ Ei, a(r), atomic position$

Figure 3.1: Flow diagram for a typical density-functional calculationn. The initial test
functions are usually chosen according to the specific géacak requirements of the sys-
tem [BKNS97].

3.3 Exchange-Correlation functional

While all “classical” interactions for the electrong ;, V) are implemented exactly in the
Kohn-Sham-equations, the crucial point of the theory is forenulation of the exchange-
correlation functionaExc. Although theexchangepart of this functional is conceptionally
based on the exchange part in Eqg. (3.1), there is no direbttena transcription of the depen-
dency on the wave functiong(r) to a dependency on the electron dendity).

By specific, simplifying assumptions on the electronic eystit is however possible to find
approximated expressions fBgc. In the so calledlellium modelwhere the positive charges
are introduced as a constant homogenous background cliasgmssible to derive an analytic
expression for the exchange term [CzyO0O]:

Ex :/dr(—%zgoﬁnzf(r)%)f(r). (3.14)
The E¢ contribution can only be solved analytically for the speciasesf — 0 andf — oo.
Usually, interpolations of numerical simulations of théeimediate densities are used for the
calculation. This approach is referred to asltiwal-density approximatio(LDA).

We should mention that there are also more elaborated éstsni® the local-density ap-
proximation. In thegeneralized gradient approximatig@®GA), also the dependency aif (r)
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is parametrized in the simulation of the functional. For ezolar physics, various functionals
are used depending on the purpose.

3.4 Structure relaxation

Although in the derivation scheme of density-functionadty (sections 3.1 and 3.2) the lattice
enters as an external statical potential, it is possiblakoutate the classical forces on the ions
induced by both ionic and electronic forces. If the Groumadiesenergy (depending implicitly on
the ionic coordinates through the lattice and core eleqiaiantial) is interpreted as a classical
potential [Hel37, Fey39], the force on an ioat positionR; is defined as

Fi=—-0Ur, (Eionic + EGround)- (3.15)

The energyEionic is the classical potential energy of the ion-ion interactfomp. Eqg. (2.36)).
Apart from the discussion in terms of the density in Sec.tB&e is also a description in terms
of a “Ground state Hamiltonian” as

EGround: <¢’HGround’¢>, (3-16)

which can be constructed using Egs. (3.11) and (3.13). Withitentity, we can express the
gradient of the ground state energy as follows:

Or;Ecround=UR; (®P|Hground P) (3.17)
:<CD| (DRi HGround) |CD> + (DRi <CD|) HGrounch> + <¢|HGround(DRi |(‘D>)

After applying the Hamilton operator {&) and(®|, the last two terms can be combined:

=(P| (DRi HGround) |®P) + Eground R, (P|P).

By the normation of the electronic wave functioj®), the second term vanishes. Mg ouna
only theV_g-contribution has an explicit dependencyRnso we finally conclude the follow-
ing expression:

Fi = —Or,Eionic — / oBrOr Veac (1) (3.18)

Note that the application of the Hamiltonian in Eq. (3.17pidy valid for an electronic sys-

tem in an eigenstate. Therefore it is important at this pthiat the electron density entering
Eg. (3.18) is well converged towards the ground state cordtgun. From the knowledge of

the forces, ionic moves can be parametrized, leading toaxagbn of the structure towards
the ground state equilibrium position. This is only reasi@as an outer loop to an ground
state calculation (as in Fig. 3.1). Another applicatiorhis tomputation of a “frozen phonon”
spectrum, where the ions are explicitly put into a non-déguilm position to evaluate their

force constants.

3.5 Pseudopotentials

As introduced in Eq. (2.38) the core and valence electronsheadescribed separately due to
the properties of chemical bonding. Hence, it is a convéni&ry and a good approximation
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Figure 3.2: Schematic description of the pseudopotential approxiomafi he nuclear potential

(bottom, black, dashed) is replaced by an effective corergiatl (red), where the interaction of

core electrons incorporated. Outside a cutoff radius, tioéeptials are equal. This procedure

reduces the number of knots of a valence wave function (tlgtkbdashed: valence wave
function for nuclear potential, red: valence wave functioncore potential.

[Ham89] to drastically reduce the computational effortéplace the potentials of the nuclei
(which form the basic background lattice potential) by afective pseudopotentialwhere
also the effects of the core electrons are included (Fig. 332 important feature of such a
substitution is that the number of knots of a valence wavetfan is also reduced, as the core
electrons are no more considered as solutions of the umigi8chrodinger equation (this, of
course, induces an additional reduction of the numeridatt®f

The derivation of such pseudo-potentialhowever, is a non-trivial task, as some require-
ments are imposed on the type of such a potential functiorartfpom the basic request that
the potential and the valence wave functions should beixinb the preliminary nuclear so-
lutions outside of a certain cutoff radius, it is also ddsligahat the charge contained inside the
cutoff radius is conserved, or the integral of the valenceesanctions over the cutoff radius
should remain the same (referred to as “norm conservingdogpetential”).

For the use of a pseudopotential within a density-funcli@aéculation, the interaction of
the valence electrons can be subtracted. The transfer frerspherical symmetry of the ionic
subsystems to a Cartesian symmetry of a lattice requiréseiumore a non-local integration of
the pseudopotential which can be treated in a combined/tagalocal description [Ham89].

3.6 Calculational aspects of density-functional theory irperiodical
systems

While so far no assumptions about the nature of the underlyiaterial system are included
into the equations, another aspect of using a densityifumadt algorithm is the choice of the
numerical description of the wave functions, densities poténtials. The most significant
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feature of a solid state system is its periodicity (cmp. $e8), the wave functions can be
expressed explicitly by a form as in Eq. (2.25). The natuhalice for the basis of the wave
functions in a periodical system is therefore to expresswine functions in terms of the lattice
periodic Bloch-wavesiy (G) (Eg. (2.26)), where

Z Unk (G )€(CFRT (3.19)

The phase facto€"" is only relevant in the description of the wave functions,ileviall po-
tentials and the electron density are truly lattice pedaaiid can, as the Bloch-waves (2.26),
be described by a fourier series @ Consequently all equations besides the one-particle
Schrddinger equation (3.8) can be entirely formulatedh wie Bloch-wavesiy (G), while the
latter can be transformed by explicit evaluation of the pHastors into

R2 )
EnicUnk (1) = ~om (K2 2iK 0 4 A) Unic (1) + VUi (1) (3.20)

The two great advantages of the Fourier-series repregantate now that some operators
used in this Schrodinger equation comply very well with kkgpace picture, as they can be
expressed much simpler in Fourier space, e.g.itend A operators in Eq. (3.20) become
multiplicative, and that the transformation from real sp&zk space can by implemented very
efficiently by Fast-Fourier-TransformationHence it is possible to maintain the real space and
the k-space representations of the wave functions and the aengitparallel and use for all
specific potential contributions the representation thatuitable. With it, the Schrodinger
equation (3.20) is again transformed and finally yields

2

EnkUnk (G) = —=—

5 (k + G)2 + Vrealspacél ) Unk (I') + ka-spaCE{G — G)u (G). (3.21)
Me G

The diagonalization of this equation can be performed bypgmagriate algorithm, usually an
iterative approach is used in this context.

For the use of the Fourier-series in a numerical computattoa choice of a cutoff con-
dition, which limits the number of frequency contributiottsthe series, is crucial. The most
coherent method is to define a cutoff eneEyiof, SO that

R 2
me (G + k) < Ecutoff (3.22)
holds, e.g. only thé&-vectors satisfying the condition are considered in théeserBy this
setting, the shortest wavelength of the spatial osciltatifor the wave functions in real space
is limited homogeneously for all spatial directionsXo= /2meEcyiori/N. Another great ad-
vantage of the Fourier description is clarified by the follogvconsiderations: the number of

G-vectors inside the “energy sphere” ((3.22)) can be esdthhy the relation

4 /2 Ecuto

n 3.23
S = 3 Wb xby ba|’ (3:23)

where the range; of G-vectors in the first lattice coordinate is with{r-Ecytoft/ |01, Ecutoft/
|b1|} and similarly for the other lattice coordinates (cmp. Eql9}). In the corresponding
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Figure 3.3: lllustration of the relations between the k-space and r@ace representations. In

k-space, only the points fulfilling the energy condit{823) (indicated by the black circle) are

used for the expansion of the basis, while in real space, @ilitp are required. The energy

condition also ensures an equidistant mesh in all diretionreal space, whereas in k-space,
not the mesh, but the extension is equidistant.

real space representation with a corresponding numberpgfosting points, the number of
necessaryr-vectors is given by
E3
n, > 8 cutoff__ (3.24)
"~ "[ba|by|[bg]
as basically all real-space points have to be used. Thet rgsolvs that the description in
k-space can help to save a considerable amount of memory.

3.7 Structure calculations for surfaces

The calculation of a surface structure according to therslatiel (Sec. 2.3.1) affects a breaking
of the periodicity in the surface-perpendicular directidhis is in contradiction to the Fourier-
series representation of Eq. (3.19), where an explicippigity is implied also in that direction.
This disaccord can be resolved by thepercell approachThe basic idea of this approach is
to enlarge the slab unit cell artificially in thedirection to create a vacuum layer of a certain
depth above or below the structure. If the vacuum layer isehsufficiently thick, the bound
states in the structure (which are the only ones of interest)hdecline to zero inside the
vacuum. Consequently, no coupling (tunneling) of the ebecstates can occur between several
periodical slabs, and the wave functions are entirely kxtatz-direction inside a single slab. A
direct consequence of this is that the dependency of the fuaeéion on thek-vector vanishes
in the zdirection: due to the vacuum, the electron problem for theemptial Vsiap(z) in z-
direction can be solved inside the slab without taking theogecity into account. First, we
consider the Hamiltonian in one isolated slab. As the wanetfansq(z) of this problem are
bound, a discrete enerdyy spectrum, independent from a continuous wave vector Jariap

is expected:
2

EA(D) =~ 00(2) + Vel D0 (2) (3.25)
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Figure 3.4: Schema of the supercell model.

On the other hand, for the repeated slabs, the description Eq. (3.20) for a Bloch wave
functionup, (z) must also be valid because of the imposed periodicity by thei€r expansion:

R ,, . 02 >
Engthe =~ o (kz + 2o+ ﬁ> Unig + k_z Vsiab(Z — Klag|)Unk.. (3.26)

Now, as the wave functions are localized and bound to onlyobtiee potentials in the sum in
Eqg. (3.26), the energy values in Egs. (3.25) and (3.26) maigitdd same. This is only possible
by choosingunk, according to

U (2) = & ({22 MOl 0] ) (3.27)

whereay,c is az-coordinate of a location in the vacuum where the wave fonat(z) vanishes

— hence the discontinuity of the exponential does not ma@tensequently, the two represen-
tations (3.25) and (3.26) fall back to the same energy valndgepresent, up to a phase factor
which is constant on one slab, the same wave functions. &untbre, thek,-dependency has
been factored out. As a conclusion, it can be stated thaughersell approach is an extension
to the standard density-functional approach for periddigstems. It does not require a change
of the code.

The implications of the geometry of the slab, however, regeome additional thoughts.
Besides the choice of a certain surface orientation, thees dot need to be any relation be-
tween the symmetries of the underlying bulk system and the SThe symmetries of the slab
mirror the symmetries at surface @randy direction), which is often reconstructed and there-
fore only matches the bulk lattice symmetry by specific iatdgctors in the lattice directions.
This effect, of course, is irrelevant for the lower atom &y the slab. In the-direction,
there is obviously no symmetry at all under normal condgioAt the “back end” of the slab
(denoted as “rear surface” in Fig. 3.4), no surface with nstmction should be modeled, but it
is intended to simulate a preferably smooth transition ¢tk material (cmp. sec 2.3.1). To
this end, chemical bondings (which arise from the cut of thecture at the back end) are not
left open (as it is the case at the surface — this allows forgébenstruction), but passivated by
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Figure 3.5: lllustration of the link between atomic positions, elecimpotential and particle

density fr in the supercell approach for a Silicon (100%2 reconstruction. The atomic posi-

tions are indicated by the yellow circles (Silicon) and btureles (passivating Hydrogen). The

electronic potential for four different cuts along the zsas shown in black, the partially inte-

grated electron density is depicted in red. At the surfahs)(Ithe tilted dimer reconstruction is

clearly observable. In the vacuum zones left and right oftab, the potential converges to the
vaccum level, while the electron density approximates.zero

geometrically placed protons=(Hydrogen ions), which counterbalance the electrical awrg
and effect a consistent fading out of the wave functions atréar side. As an example the
positions of the atoms, the potentialzmlirection and the total electron distribution are shown
for a silicon (001) 2< 1 surface slab calculation of seven layers in Fig. 3.5.




Chapter 4

Density-Matrix Theory

While the density-functional theory presented in Chaptear3 be employed to investigate the
equilibrium properties of a surface system, we will devedgjuations to examine the dynam-
ical properties in this Chapter [RK02, HJ98]. The approactussed within density-matrix

formalism is based on a canonically quantized descriptanp( Sec. 2.2) of the expecta-
tion values of the microscopic population and polarizagioifhe non-equilibrium dynamics

is driven by those parts of the total interaction potenti&d.((2.49)) which are not contained
in the ground state Hamiltonian (Eq. (2.51)). The solutiohthe ground state are evaluated
using density-functional theory, consequently, the sdagurantization here will be based on
the DFT-solutions of th&ohn-Shanequations.

4.1 Canonical Quantization of the system variables

There are three fields occurring in the Hamiltonian whichcaedidates for a canonical field
quantization procedure (Sec. 2.2, [BD65, Hak73, Mah81jg ¢lectronic waveg(r), the
phonon fieldc' (r,t) and the vector potentig(r,t). Nevertheless, only the first two of these
will be treated in a quantum mechanical way, whereas therlatill be kept in the classical
picture.

The global Lagrange-density’ for an interacting single-particle system with electrons
obeying the Schrodinger equation and phonons as classirakions coupled to electrons is
given by

_ 0— . 0 R — _ _
Z :|H¢E(P+ |H(PE§0— %D(PDQ’—Veqq)q)—Vel-el,nonecfpﬁv—Vel-lightq)q) (4.1)
M; 7]

0 ;0 ; ijkl j 0
+? I E§ ats'—lzzURj §K3Ri§ —IZVeI-phonS'(P(Pa

where the phonon potentig 3 ; U}{‘:" s.7r S incorporates the translational operator Eq. (2.21).
By applying the generalized Lagrange formalism (Sec. Bt#,Schrodinger equation for the
electron fieldsg, the adjoint Schrodinger equation for the fielgsand the phonon motion
equation Eqg. (2.32) is obtained again.

The canonical momenta (Eq. (2.11)) for the fields are theergby

1, =ihg (4.2a)
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1, =ifig (4.2b)
% =M o (4.20)

and we can calculate the Hamilton density (Eqg. (2.12)) as

R __ _ R — _
I :_DQDDQH‘Veqq)qH‘ -_A(pD(P‘|‘VeI-eI,none(fP(P (4-3)

2m
o 377 Y Y U+ 3 D'Yge
|
After transforming the fields to the field operators

¢— @ =9 — @
d »¢g m — Mg, (4.4)

the Hamiltonian in second quantization can be written down:
P [ st 3 t 3 N 3 t
+3 i/dg’rﬂg Mg +3 Z/dg’rugk' Sk + Z/dg’rDiSiCDT(D.
AL T ! I |
Now, mode expansions are applied for the three fields. Foeldwrons, the mode expansion

consists of the ground state wave functions that solve thed8mger equation for the ground
state Hamiltonian (2.50) and can be obtained as discusgelapter 3:

d(r,t) :Zei“’“kt%k(r)ank (4.6a)
o(r,1) =Ze*“*hk%nk<r>a$k (4.6b)

so that the commutation relations for those fermiarneation andannihilation operators are
then given corresponding to Eq. (2.16):

[a'nTkaqq'k/]-ﬁ- = Onry O k- 4.7)

For the bosonic phonon modes, the expansion is slightly miatgorate. The complex modes
are the same as in Eq. (2.33). The link between these modekerehl field operators is then:

22 5(N)€9etbl, +8,(r)e ') (4.8)
z g (s(r)€'bly — 5y(r)e ity
In this case, the commutators apply for the phonon crebf&)md annihilatord;)iq:

[b;rq> i/ q =8 0q,q- 4.9

24]
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Ay

phonon phonon
destruction creation

Figure 4.1: lllustration of the processes
treated by the Hamiltoniaf4.11) Besides
optical excitation, electronic redistribution
ank — a;g,[k, by phonon emission;por ab-
sorption t{fu is considered.

optical
excitation

The time-dependence of the modes can be released by switchine Heisenberg picture and
applying a unitary transformation (2.3) to the electronicl @hononic modes and operators.
As a result, the operators are now time dependent, while taemare not. By inserting these
complete mode expansions into the Hamiltonian (4.5), tHd Bguations (the Schrodinger
equation (2.2) for the equilibrium part and the vibratiomalve equation (2.32)) and the com-
pleteness can be used and a commonly known simplified fortmedfiamiltonian is derived:

— h
H :ZEnka;kank—i_Z % /dSV‘Pnk(r)TD%’k’(r)A(t)agkan/k/+Vel-el,n0neq
n "k "K' ——
—_——

e neglected
Eq. electrons Prik

electron-light coupling

+%ﬁmq(bﬁqbiq+ é I 3D SO0 0) alanb, @10

const. energy —_pnK
neglected ~ ok
1q

Eq. phonons

phonon destruction
+Z % Z/d3rDi§;q(r)E(r)(p(r)a:,kagq/k,b?q.
nk Wk’ 1q

_pn'k’
_D_ nk
,—q

phonon creation

Two contributions in this Hamiltonian are not discussedfamher. First, the coulomb interac-
tion between the electrons is neglected during the dyndmgdution of the non-equilibrium
system. It is known from the physical properties of quantwetetostructures that the corre-
sponding dynamical effects are rather slow, and furtheemtire deviation from the equilib-
rium is small, and for an relaxation well above the band edgeijtonic effects can be ne-
glected [Bin92, SK$96, HKKO03]. This behaviour can not be expected for a silicorface
structure, as excitonic effects are visible in the surfageadchics [WKFRO04]. Nevertheless, in
the current formulation of our theory, we do not considerdbglomb interaction at the surface.
The second suppressed term in (4.10) isfitug, contribution inside the phonon Hamiltonian.
Although it supplies a constant contribution of2haw, to total the energy and usually affects
the lattice constant by a factor of about 0.05% due to anhaicityp effects of the phonon po-
tential, it has no influence on the dynamics discussed in&S2@nd can therefore be neglected
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for this part of the discussion.

The interaction matrix elemenp< anank i g are entirely determined by the one-particle
wave functions. The final goal of this work is the descriptimina surface structure in the
slab geometry (cmp. Sec. 2.3.1), consequently, the thireergionalk-vectors occuring in
Eg. (4.10)) can be replaced by two-dimensional ofigs (

With these declarations and after regrouping the last twos®f Eq. (4.10) (Wherd:1
s q(r) due to an internal symmetry of Eq. (2.35)), the resulting Hamian is finally

H= % Erica A + % Req b by, + Z Z PR At)al 8y

k Nk

3> Dglﬂikla;:kan’k'( iq biT,—u))' (4.11)

nk 'k ilg 'd

This Hamiltonian is furtheron used to derive the dynamigal@ion of the system, which will
be outlined in the next section.

4.2 Dynamical equations

In second quantization, all observables are expressednistef the creation and destruction
operators of the involved quantized fields, notably thetesedic operators', anda , and the
phononic operator‘s;[u andbiu. The observables that give an insight in the dynamical ¢iaoiu
of the system in our case are the electronic density (cmp3E2))(

=5 Y O (r)alay, (4.12)

nk n'k’
and the macroscopic polarization, which can be relatedetctreidynamical Maxwell-material
equations,

PI) = 5 Bu(r) e (1) o g (4.13)
nk n'l’

with the dipole matrix elemerd™ , which is bound to the momentum matrix elemef’

by Eg. (2.48). Measurable quantities are given by the eatiect values(@|O|y) of these
operators. The quantum statg) is not known, it can only be described statistically in terms
of the density operator

p= Zp | ac) (@ (4.14)

Here, the population polarizatiormﬁgkk’ describe the probability to find an electron in the super-
position of the two single particle stateg,) and|@y). Forn=n" andk = K/, this signifies
the population probability of the state ), So we make the additional definition

fre = Pox (4.15)

In an unperturbed system, only these diagonal parts of theitgematrix are non-vanishing
(pure states). The expectation value of an oper@tizrthen given by

(O) = tr(pO) (4.16)
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with the trace tO = ¥;(@|O|@). For the operatora|, a., anda’, a_,,, one obtains the expec-
tation values

<a1:r|u<anu<> = fre and <a1:rm<an/|]</> = pﬂﬁE(/. (4.17)

As a consequence, the physically investigatable quastaa be totally expressed in terms of
the statistical population densitidg. and pﬂt.

4.2.1 General construction scheme and hierarchy problem

The actual dynamics of a second-quantized system in Hasgmnépresentation can be investi-
gated by evaluating the Heisenberg equations of motion.(Byithis, the dynamical evolution
of operators can be calculated [HK90, Kuh98].

To find the temporal evolution of the electronic density &,we apply Eq. (2.4) with
the Hamiltonian (4.11) to the polarization operaﬂqﬁ[gah,[k, and make use of the commutation
relations (4.7):

_d
1P 55 (Bey) = (8 H]
=(Em — Em“')a;ﬂa‘rﬁ[l/ +A(t) z <pﬂ“ﬁq:kamu, - pﬂi"%%)

nk

+3y <D%a§1u/an[k(b{_q +by ) — D%"'a:;ﬂan[k(b;f_q + biﬂ)) . (418

nk Ig

This set of equations is not closed, as these dynamicaliegesatepend on the phonon-assisted
density matrices;a, b/, andal;a, b .. The dynamics of these quantities can again be
found by evaluating the corresponding Heisenberg equaittdmotion (2.4):

.d
Iﬁa (a':-Ti]a’r‘rY[I’bI—q) = [arTri]ar‘rY[I’bI—q’ H]
—(Em — Eny + iadg) alya b + AW S (Phalanbl_, — pH'ahabl )
nk

+ z Z (D%q}u,anu( (biT.frq biT,fq + biqbi‘r.fq) - D%U/%Tr‘ﬂank (biT.frq biT,fq + biqbi‘r.fu)>

nk Ig
1N T
T Zk > D;g Ay By B By (4.192)
nk n'lk’

and
_d
'ﬁa(awtﬂamwbi,q) = [artﬂamu’bi,qa H]
—(Em — B — e) i big + AD) Y (Phahanb, — PHakaybi )
nlk

t Z Z (D%aﬁ‘(ﬂ’%k (bim bit—u + biubit—u) - D%u,artﬂanfk (bI—u bI—u + biubI—ﬂ)>

nk Iqg
'K T t
+5y D’igékfk a8y g By (4.19b)
nk n'l’
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Here, again, we can see that the resulting system of eqadsamt closed and couples now
to products of four operators. The dynamical equationsHerfour-order-terms would, them-
selves, couple to contributions containing even moredipes-terms. The only way to solve
this hierarchy of equations is to introduce a method to tmthe series and to obtain a closed
set of differential equations, which can possibly be salvEde order of truncation, however,
has to be justified by the plausibility of the results.

4.2.2 Correlation expansion

A reasonable approach to an infinite-order problem is to usean-field method. The idea
behind this is that usually, the higher an order gets, thdlenthe effects of the dynamical
evolution are. However, the expectation value oNanperator product (calleM-order corre-
lation) is not independent from e.g. two-operator products, asmgdyy, theN operators can
be approximatively split inttN expectation values (one operator is thus inrttean-fieldof the
others). Similarly, also products of more operators whiehantained in the original set bf
operators can make a contribution, and basically everyilessombination of operators has
to be considered.

A general scheme to expand &Rhorder correlation into all possible sub-correlations is
illustrated by the following equations [AS94, Fri96]: fosat of operator®;, the first 3 orders
can be separated according to

(O1) =(0y)°
(0102) =(0102)° + (01)¢(02)* (4.20)
(010203) =(010203)° + sig(F1)(0102)°(O3)°
+5ig(£72)(0103)(O2) + sig( F3) (0203)°(01)° + (01)(02)(O3) .

The sig-operator depends on the nature of the particlemi@es or bosons) and on the number
of permutations?” using appropriate commutation relations (which, in faatedmine the
sign); for bosons, sig equals always one, for fermions, ssighien by(—1)7%. Following the
prescriptions indicated in Egs. (4.20), the correlatiopagsion can be performed to any order.
For the correlationg)® on the rhs of Eq. (4.20), we can now assume that their cotiibto
the dynamical evolution is reduced by increasing ordert $® rieasonable to neglect higher
order correlations starting from a certain order.

In the case of a system with electronic and phononic operatdt contributions up to
second order can be calculated explicitly. For electrossoag as particle conservation is
expected, only pair of creators and annihilators are naisting, for phonons, correspond-
ing assumptions can not be made at this level, but will be dasefurther assumptions in
Sec. 4.2.3. The correlations mentioned in Egs. (4.18) ari®)4re:

(@) =(@lay)°
( Tq> :<b.1;q>
(b, .q/> =(bf by ) + (bl *(by ) (4.21)
<an[l<a‘n’[k/ >:<a$k'3\q/w |q> <aTJEU<8H"|/[k/>C< 'T>C
<an[kan/[k’ iqDyrey ) :<a'r)2[kan/[k’ i |q> <an[kan’[k’> (b i |u> <aTTlﬂ<an’ﬂ</b?q>C<bi’q’>C

+ (@l a0 ) (b S+ (@l an) (BT )y )
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<agu<awtﬂan/u</amw> :<agka1:ﬂan/k/an/k’>c + <a]:ﬂ<an,u<,>°<agﬂan,k/>c - (agu(an,u(,f(a;ﬂamu,f.

These prescriptions can now be used inside Egs. (4.18) at@) (Al contributions with more
than three operators are then neglected, so a new and cltsef#fferential equations for the
correlation terms is obtained.

4.2.3 Bath hypothesis

While a complete evaluation of the phonon dynamics is ired)vit is usually a good ap-
proximation for systems with weak excitation and weak cimgpunder thermal conditions to
describe the phonons by a thermal distribution functiore @sumption of thermal phonons is
valid for most calculations in nanostructured materialmf2, But07], although the quality of
the approximation can generally not be shown in detail. lloasi, the bath hypothesis should
at least lead to a good description for the bulk phonon mo#lesninsequence of applying this
approximation is that the phonon operators are not coresidas dynamical variables and are
not calculated in the differential equations. As a resulthef assumption of equilibrium, all
expectation values besides the phonon occupation

Nig = (b1, bi,) (4.22)

vanish, as the phonons remain in a pure state. This appjiesiefly for the expectation values
of single phonon operators Iil(daw, which appear numerously in Eq. (4.21). The distribution
function used is, due to the bosonic nature of the phonoe8dke-distribution

whereT is the temperature of the systeky the Boltzmann constarénd haw, the phonon
energy.

By applying now the correlation expansion and the bath Hyg®is in the expectation val-
ues of the dynamical equations (4.18) and (4.19) and imge(4.17), we obtain a simplified
system of differential equations, where

. d / / / /
i P = (Em—Ev) PR +AM)Y (PPE — P P ) (4.24)
nlk

+ Z Z (DE<£WU’%kb;.q'> + DFIL/ <arTrY[I'anﬂ<bi'q’> - Di'r;ﬂ' <a;rri]anﬂ<bi-r’,—q’> - D:;L[l, <aTJrri]an|]<bi’q'>>
q q q

nk I"'gf 1

yields for the polarization densities and

d
I (@@l _q) =(Em — By + Pg) (@l ayubl )
FAWY (P (Al anb o)~ P (el ) (4.258)

nlk
+3 5 (DR pisvmig (T) — Dt P (Mig(T) +1))
i'g

nk I'g i'of
Nk 'K 'l Nk 1" K
+> > Dy P Pric — > > D Ph Pric
nk "k’ g nk "k’ g
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and

d
N (@38 Dr) = (Emi — Enty — i) (8D
AlD) Z(Pﬂﬂ (BBt o) —pnk’<a$ﬂan[kbi,q>) (4.25b)
nk

+3 S (D P (mo(T) + 1) — DY pliig(T))
nk I'q I'g I'g
_|_Z Z Dﬂ[ik/pﬂﬂ[k/ nrrfﬂ(l/ Z Z Dnlk/ |l n[I</
kWK g nk W'k’ "q
for the expectation values for the phonon assisted densityices. The very last terms in
(4.25a) and (4.25b) can be neglected, as the non-diagolzlzations that occur inside these
are always zero. With these equations, all requirementmade for a solvable problem. Nev-
ertheless, a huge quantity of variables is contained irethédferential equations: in addition
to the densitiesf, and polarizationspﬂﬁkw, all phonon assisted quantities have to be evolved
dynamically. In a system dfl bands and k-points, the numerical effort scales with a factor of
aboutN?K?. This is usually too cumbersome foparsonal computein a system witiN ~ 10
andK > 100, as it is required for a surface slab.

4.2.4 Markov Approximation

It is well known that the effect of the phonon assisted dgnsiatrices is of minor importance
in systems with many scattering channels and weak phonowigliag. This property can be
can be exploited in the so calldtiarkov approximatiofSKM94, But07]. The idea behind this
approximation is that the “memory” of the phonon-assistadniities, e. g. their dependency
on the dynamics of past, is negligible. The first assumpt@mnttis approach is that in the
Egs. (4.25), the influence of the light coupling is of minopontance an can be neglected (as
it is, for the polarization equations (4.24), of second oideA(t)). With it and by choosing
an initial condition 0f<a,‘;ﬂamu,b$_q>\ = 0 att = —oo, which can be justified by the fact that a
t = —oo, no deviation from the equilibrium occurs and consequealdp no phonon-assisted
density matrices, we can integrate Eqgs. (4.25) formally:

(a:mamu,bI / dteﬁ (Emi—Eqyy —htag)t (ZZDn[knlu )p%u/(t—t/) (4.268.)
nk Ig g
5 R (na(T) + DRG0+ 35 Dol - OR -
nk Ig nk n'l’
(@ anbg) / it/ e (Em—Eny+icag)t (ZZDgﬁ(niq(T)Jrl) phy (t—t) (4.26b)
nk Ig 'd

5 O ma(TRRy(t 1)+ 3 5 DR Al (€~ 01 ).
nk ig 9 nk "k g

The “memory” of those equations is now carried by the dynanoicthe polarizations',)ﬂgk[k/.
Therefore, the next step is to neglect the dynamical effgfcse interactions inside the polar-
izations in Egs. (4.26). This is achieved by setting allratgéon terms in Eq. (4.24) to zero
(7K =0, DM = 0) and perform a “free” integration of the polarization dymies, which

nk;i,qg
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gives us a description of the unperturbed evolution of thanmation duringt’ of the “real”
polarizationpf" (t):

P (t—t) = Em B gt ) (4.27)
If these relations are reinserted into the phonon-assibfadmical equations (4.26), the tem-
poral integration can be carried out, giving an analyticaht of the dynamics, where only an
explicit dependency on the equal-time polarizatiqnﬁﬁ’(t) occurs. Now, the so-found equa-
tions are again inserted into the polarization dynamic&4{/to totally eliminate the phonon-
assisted quantities. The result is a system of differeetipiations depending purely on the
polarizations:

d ,
P’ = (Em—En) PR +AM) Y (PhPR — PR P ) (4.28)

nk
i i B
OPPPLLI

" |q
A(Enne — Ene— eaq) (g + VPt (GuvGser — PEE) — g (mar 80 — PR ) PR

+A<Emk'—Emk+ﬁ%>(%pw (B B) (14 1) (B o))

i
EOPPPL L

" |C|

A(Eppe — Engc— ﬁmu) ((niu +1) pmuﬁ// (5n” nOk [k — n”[k”) Nig (dﬂ w O — pmuﬁ//) pﬂg/(w)
+A(Erie — Enc + Rag) (niu P (S G s — Bivier) — (Mig 1) (G O v — PiY) pﬂ%)) :

The integralA(w), stemming from the previous integration, can be expressddrins of a
Cauchy principle value?:

/ dte = fim — — () +12(w). (4.29)

w2 + c!(ITo a2+ w?
The principle value part of this equation makes only a compldued contribution td\(w).
The effect of this in view of equation (4.28) is, contrarily the other parts of the phonon
coupling, a shift of the energies with respect to the fregesgsas it can be seen in line with
the other energieEny. For quantum heterostructures tiiglaron shiftis usually expected to
be small and therefore neglected [But04]. For the silicdijGurface, the effect is generally
non-negligible. However, in the present formulation of theory, polaronic effects are not
discussed. Whence, the imaginary part of Eq. (4.29) is ntgle and we assumi w) =
A(w) = o (w).

Moreover, in Eq. (4.28), we notice that the dynamics dependwon-diagonal polarizations
in quadratic order. Usually, these contributions are akpeeted to be very small, as the order
of magnitude for non-diagonal polarizations is below tHahe diagonal densities. Hence, we
neglect all quadratic polarization terms by setting in BER8)

m=n’ n=n" (4.30)
1 = k =Kk".
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Figure 4.2: The possible scattering channels of £4.32)

The result of these additional approximations is a much Kfieg set of equations, where
especially the number of summations is drastically reduEedthe non-diagonal polarizations
(m=# ' andl # 1), the insertion into Eq. (4.28) yields:

d wv 1 1
giPm =ir (Bm— Em) PR + A0 (p”m% oh’ —pri o) (4.31)
(rm + T+ T + ) -
For the diagonal parts of the polarizations (densities®, dhrresponding equations are even
simpler:
%fmﬂ ﬁA ZD (P pL) + 2 (1 — frg) — 20 35ty (4.32)

In these equations, new symbcflﬁ‘“{"“t have been introduced. These quantities denote the
scattering rateswhich give evidence of the scattering into and out of a gtate They are

given by
. 2
=YY |Dhi (5(Em] — Eni — Rtg) (Nig + 1) + 8(Em — Ene + ﬁmq)niq) fruc  (4.332)
Kk T Iq
ni q (_n
Z /\mﬂ nk
k
and

2
=y Z‘D% (5(Emﬂ — Enk + Rodg)Nig + O (Emy — Enie — R (Nig + 1)) (1— f)

= Zk A (1 fg). (4.33b)
n

The scattering matrices are entirely expressed in termieofiénsitiesf, without the non-
diagonal polarizations. The physical explanation of the-d@agonal equations (4.32) is ob-
vious. Scattering in this equation relies on the two cootidms containind” at the end of
the rhs. The scatter-in part (wifi") depends oril — fy.), the more this state is populated,
the less it is possible to scatter into it. The scatter-out, plepending orfy;, on the contrary,
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behaves in the opposite way: the more it is populated, the glectrons scatter out again. Fur-
thermore, scattering depends on temperature through theopkdistribution in the scattering
matrices, and, due to thg, + 1-terms (which are related to spontaneous phonon emission)
is always more probable to scatter to a state of lower endrgy to a state of higher energy.
The scattering events are always energy-conserving, aexpiged by the delta-distributions in
Egs. (4.33): the energy differenégy andE of the two electronic statgsl) and|nk) must
match the phonon enerdyu,,.

The dynamics of the polarizations (Eq. (4.31)) is mainlyuaficed by the optical excita-
tion. The scatter matrices (4.33) (which are positive defjndbccur only as damping terms.
Without light field, the polarizations cannot be augmented fade out.

4.2.5 Fundamental symmetries

The most obvious symmetry in the equations is contained enntltrix elementsp”[k and

Dﬂ[&km Due to construction, the following relations hold:

PR =P (4.34a)
D’i,}aq _D|” lk/ (4.34b)
In the framework of an electronic many-particle systemtipiarconservation is required.

For the dynamic of the electronic densities (Eq. (4.32)is tmplies implicitly, that the sum
over all densities must equal zero at all times, or its te@lpaerivation must vanish:

dtzmﬂ Z—fmﬂ 0. (4.35)

EqQ. (4.32) can now be inserted with the scattering matr}'_(\;)% and</_\% (cmp. Egs. (4.33)),
effecting a direct condition for the involved variables:

1
:#(t)%%(p%pﬂ—pﬂpm +ZZ< - fnﬂ< fml]+ /\n[kfnlk(l_ fmﬂ)) (436)

The first term (proportional té(t) is obviously zero, as the two negated contributions to the
sum are the same. From the second term, a condition for thteisgatrices can be derived, as
Eqg. (4.36) must hold independent of the densifigs

AL AM o, (4.37)

This result complies with a direct comparison of the explgdattering rates (4.33). Never-

theless, it has a significance a numerical compution of taesing rates, where, if the rates

can only be calculated approximatively, a symmetrizatian loe sensible to ensure a density-
conserving relaxation.

4.2.6 Slow relaxation approximation

As it can be seen by comparing Egs. (4.31) and (4.32), theipalens pﬂ{f’ are exclusively
coupled to the dynamics of the densitikg in Eq. (4.32) through the vector potentia(t)?.

1we note that important light polarization effects can ocatithe surface. While diffraction and reflection
(Fresnel law$ are not important for a perpendicularly incident light,réhe field strength of the vector potential
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Under experimental conditions where relaxation behavisimvestigated, the system is usu-
ally excited by a very short laser pulse (00 fs). If the subsequent relaxation time can now
be estimated significantly longer(1 ps), it is possible to separate the excitation dynamics
through the light fieldA(t) from the relaxation dynamics: A short pulse is only non-shirig
during the pulse lengtlt and therefore zero for most of the time when relaxation a2cur
Consequently, the polarizations are only coupled for a gbigrt time to the densities in the
relaxation equation (4.32) at the beginning of the relaxatOn the other hand, the relaxation
influences the polarization dynamics (Eq. (4.31)) only bsndimg throughrir?ﬂ and Fﬁ;ﬂt. For

the duration of the light pulse, this damping can be negteces a result of these considera-
tions, the dynamical equations can be formulated for twidtiligp cases:

1. The optical excitation is determined for an undampedesysising both Eq. (4.31) and
(4.32) without damping ™°ut = 0. These equations are valid during the pulse. It is
convenient to set the pulse immediately before0O (but it must be assured thattat O,
the pulse has sufficiently vanished). Then, through theepagistribution of densities
fri is provided.

2. The relaxation process is totally independent of therpatons pﬂ{kk’, and therefore
described by Eq. (4.32) witA(t) = 0. The optical excitation is introduced by taking the
resulting density distribution of 1) as initial conditioarfthe relaxation.

By utilizing the band gap property of the semiconductor bstndcture, the optical excita-
tion can be integrated analytically.

4.2.6.1 Optical excitation

In a semiconductor, the bandgap separates the valence fsandthe conduction bands. The
population distribution is given by theermi-Dirac-distribution At zero temperaturel(= 0K),
this behaviour can be formulated by introducing a distrdutunction according to

foc = 6(EF - Enl]<)7 (4-38)

whereEg denotes the Fermi-level (in the band gap) @&1dv) the unit-step function. This
distribution is still a good approximation at room temparatfor the real distribution. We
assume a weak excitation with low intensities, so the pajoulds always close to one or zero.
If we neglect the temporal evolution of the densities andpthiarizations, and insert Eq. (4.38),
we obtain:

d —
NP = (Ema — Enr) PRy + A(D) (PR 8(Eo — Em) — PRy O(Eo—Em))  (4.39)

This equation can be integrated formally:

t i ’
Phiv = / dtA(t') (i 6(Eo — Em) — Py O(Eo — Eny) )& HEmEn)1) (4.40)

A(t) can be modified by a significant factor due to the differentaefon indices of the silicon material and the
vacuum. Due to the example character of this discussioh, effiects are neglected.

2|t should be noted that iA(t)p-coupling, we cannot assume that the vector potedtial vanishes for both
limits t — —o0 andt — co. It can be stated, however, thatt) tends to a constant ait= +o (at the other boundary,
it can be set to zero), an this effect is eliminated in Egsl 43 (4.32). Still, the equivalence in (2.48) holds.




4.2 DYNAMICAL EQUATIONS

For the densities (Eq. (4.32)), the equation of motion utidese circumstances is given by
d e . /
g fm =AW > (prpiy — P PR ) = 2iA () > O(pht o )- (4.41)
Here, the formal integration yields, after expanding thagmary operators:
2 t / / /
fu— [ _dtAt) Y (O(pm")0(P) + 0eE) DR
/o T
Now, the formal solution Eq. (4.40) can be reinserted:
2 t / rr.{[l/
-5 /_ _dt'y (O(pg") (4.42)
m
(D(P")O(EF — Eny) + D(pIY)6(Ex — En) ) / dt'A(t")er Ente—En)C-1))
~ (05)0(Er — Enme) - DE)0(Er —Em))0( [
+oep)(

(D(p5™)6(Er — Enr) + D(PE™)0(Er — Em) ) O

dt//A( //)eﬁ(Emlul Em)(t'— t”)))

!

dt’A (t//)elﬁ(Em(u/ —En)(t'—t"))

/ / t' i 141
n (D (P™)8(Er — Enyy) + 0 (p™" )0 (Er — Em])) 0 (/_m Ot A (" )eh Erte—Em) (¢t >)> :

The essential investigations of this thesis are aboutaélax processes in the conduction band
of a semiconductor. Therefore, we focus on the bands formiig > Er holds. After joining
the complex exponentials to a cos-function, the distrdsufiunction for these excited states
reads:

fml

1
u// dtA(t \pmﬂ“|/ dt"A( t”)cos(ﬁ(Emu,_Emu)(t’—t”)>

Em]>E|:

For a pair function, wherd (x) = f(—x), it is now possible to transform the two entangled
integrals into two independent integrals. After subsetyeaexpanding the cos, this yields:

1 : t o ot - ”
R Z‘pln‘2</ dt’A(t’)eﬁ(E"En)t/ dt’A(t")e h(E—Enk
| —® P
t _ ‘ .
+ / dvA(t)e r(E-EX / dt”A(t”)e'ﬁ(EiEn)t”>

which is finally equivalent to

Z‘pnﬂ

Ty
Hence, after the pulse, the distribution of the populatiothie conduction band is given by

g‘ r‘d[l'
R2
Emi>Er ﬁ

whereA (w) is the temporal Fourier transform of the vector potential.

2
(4.43)

/ dUA(t')eh En—En)

frm (4.44)

(Emu/ﬁ—Emu)r
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4.2.6.2 Phonon relaxation

Without considering the electron-light coupling dynantligathe relaxation equations (4.32)
are independent of the polarizations:

d

dt
This equation can not be solved by an analytical integragiep, so a numericaitial-value-
problemsolving algorithm (like aRunge-Kutta-methgdhas to be used. With Eq. (4.45), it
is however not necessary to perform the calculation of thar'mationsp "k’ This is a great
reduction of computational hardware requirements, as d1m[znat|onsp”[k are defined for
every pair of bands and are thus much more numerous than tiséidef,y,..

The initial conditions for the temporal evolution have to di@sen reasonable, e.g. by

using Eq. (4.44).

fo = 20 (1~ fg) — 20 %4 g (4.45)

4.3 Coupling matrix elements

The derived equations are generally valid for a two-dimamai multiband system. The spe-
cialization of the dynamical equations (4.44) and (4.4%) specific material system is achie-
ved by the definition of the matrix elemengi for the optical excitation an(ﬂ)n[kl for
the phonon relaxation (cmp. Eg. (4.10)). Into these matl&ments, the system proper-
ties enter through the single particle wave functiogg ), which appear as solutions of the
ground state Hamiltonian (2.50) and which are calculatéchapter 5, and through the phonon
modes (2.33). In this section, the final link between the tvathadsdensity-functional theory
for the ground states artensity-matrix theoryor the dynamical evolution is drawn.

4.3.1 Electron-phonon coupling matrix elements

The electron phonon coupling is described in Eq. (4.10) bythle coupling matrix element for
a two-dimensional system

2[5— / d*r D° )+ DPOS, (1) @y (1) @yee (7). (4.46)

The electron-phonon Potentiio/l(r) can be derived as in Eqg. (2.38). A general property
(which holds, due to the supercell approach, for all dicewd) is that it is lattice periodic, so
D'(r) = D'(r +R) for a lattice vectoR. Thus, a convenient way to express the potential is in
terms of a Fourier series (cmp. sec 2.3):

D/*(r) =y D/ H(G)e®". (4.47)
G
The phonon modes are influenced by the slab symmetry, so tieéidoal form is given by

éu( ) =5 (2€% = 35,8 (G,)e@+C2 Inserting this, the Bloch wave representation Eq. (2.26)
and Eqs. (4.47) into Eq. (4.46), we get

O = ¥ 2 2 2 0u(Glume (6 (DP(G")+DH(E")(@.G2) S (G) (4.48)




4.3 COUPLING MATRIX ELEMENTS

/d3rei(—(G+[k)r+(G’+u<')r+G”r+aqr+Gzz)

5G'+G"+Gz+|k'+q‘G+[k

The spatial dependency of the electron-phonon potentialelier, is difficult to investigate,
as an explicit calculation of the spatially dependent etecphonon potential is laborious. In
principle, an electron phonon interaction is mainly defead by either the dependency on the
phonon modes' (r,t) or, if the latter vanishes, by the dependence on the firstataré of the
modesCIs (r,t). In our case, we only consider the direct dependency on thieatiee of the
mode D) as this is expected in a non-polar material and a purelyitodigal phonon mode,
consequentlyD;1(r) is non-vectorial. FoFrohlich-coupling the other case would hold.

Furtheron, we assume that the spatial variation of thereleqgthonon potential is not too
important and neglect the spatial dependencif ). This drastical assumption that can not
be justified by the material properties. With these dedlamat the delta-condition in the matrix
element (4.48) can be expressed much simpleG aganishes:

Dﬂfik' = g g gUnlk(G)Un’[k/(G/)Dil(Qa GZ) : § (Gz)éG/+Gz+|]</+q.G+U<' (4-49)

Iq

The evaluation of the Kronecker-delta reveals a momentumsewation condition for thi-
vectors. Nevertheless, there are two different cases tnad to be discussed. First, if the
sumk’ + g remains inside the first Brillouin zone (2.20), the scatigris truly momentum
conserving, and the conditions

K +q =k (4.50a)
G +G,=G

hold. By this, only the sums ové& andG; are left over in Eq. (4.49).

If k' + g points outside the first Brillouin zone, the determinatidrthe matrix elements
is more complicated. In this case, the vector is at most a3 ésnone of the firsG-vectors
(which are composed as a sum of the lattice vedbpesd a factor of —1,0,1}). However it
interferes in the Kronecker delta with the otl@ivectors, so, if<' +q— Gq is again in the first
Brillouin zone, the following conditions can be extractednh the delta:

K +q=k+ G (4.50Db)
G’ + G, =G + Co.

This means for thesemklapp-processethat for all possibleGo-vectors, special matrix ele-
ments have to be provided. For a two-dimensidhglas it is discussed in this thesis, there are
basically eight different possible umklapp vectors.

While it is possible to calculate a set of realistic phononde®(e.g. by evaluating the
atomic forces as in Sec. 3.4) and also the phonon-electropling constant®!, the compu-
tational requirements to calculate all matrix elementfaitnode dependency as in EqQ. (4.49)
are still very high. A further simplification for the matrixeenents can be achieved by replac-
ing the explicit dependency on the slab modes by an apprégdrdependency on bulk modes.
The main issue on this approach is that the special surfagmepres of the phonons are not
included. The bulk modes can be transferred to the supdrgelltting the vacuum space at
both sides and applying an adequate coordinate transfiormat single mode in the bulk will
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Figure 4.3: Ihs. lllustration of the possible scattering processes: witttie Brillouin zone

(black) or over the zone boundary (blue) with an umklappae€t (red). The reduced zone

is shaded in greyrhs: lllustration of the bulk approximation. The Brillouin zowé the bulk

(colored tetrahedron) is entirely covered by repeated|8uin zones of the slab (brick mesh),
such that allk-points of bulk modes can be represented by a slab mode.

be mapped to several modes with different = Q*;t’l'k"qbulk, where a new pair dfi, q) is assigned
from the bulk mode by the transformation in the slab becalsdtillouin zone of the bulk is

always bigger. By using the bulk mode expansion (2.34), £49) can be expressed by

n/[k/ _ ﬁ
i 2Mayq

Y S Unic(G) Ui (G')Dli4(0) - €86+ 110, G 1 (4.51)
G

G/

This form of the coupling element corresponds to a macrasabgefinition in terms of

j h aEGround AV
Dig€% = \% —
\/ 2oV, ov V

i
DDefPot

(4.52)

ig

In this representation, the ener®y ., describes the relative change of the ground state en-
ergy by deformation through volume chandy¢ /V. This is the reason why this approach is
often denoted aBeformation potential representatiorParameters fob} ¢, Can in princi-
ple be calculated by ab-initio approaches, but are alsosailie to experimental investiga-
tion [LB87].

4.3.2 Optical matrix elements

The electron light coupling in Eq. (4.10) depends mainly o nomentum matrix element
pT¥'. This matrix element can be calculated by

/.t — ﬁ
Pl = [ rom(n)F 0 (). (459




4.4 BEVALUATION OF THE SCATTER MATRICES

By inserting Eq. (2.26), this simplifies according to

] 1 " H ﬁ 1 ! /
P —ZT S U(G)u (6 [ e+ Cr gl e
G,G’

2 ZUn[k G +k Un'[k(G) (4.54)

as the integral evaluates to a Kronecker-delta which as§ure G’ andk = k’. Consequently,
only diagonal excitations with momentum conservation caimtuced by this interaction (This
is, besides the classical nature of this interaction, alsongequence of the dipole approxima-
tion, where theA (t)-field is interpreted as spatially homogenous). Furthettemtransitions to
the equal staten(= ') cancel out in the dynamical equations (4.31) and (4.32jiusoto the
orthogonality relation (2.28), the matrix elements aregiby

P
P = 5= gG Orik (G) Ui (G). (4.55)

4.4 Evaluation of the scatter matrices

In the scattering equations (4.45), the scatter mat%ﬁ% and W”m% are independent of the
dynamics, but determine the relaxation process. The sicagfteonditions (4.50) are exploited
by the elimination of the phonon wave vector sum and the dég@nwave vectotg, = k —

1+ Go, whereGp can now also equdl. According to Egs. (4.33), the matrices are determined
by the following equations:

ATk ‘D”k (5(Emﬂ — Eni— Aag, ) (Mg, +1) + 8 (Emy — Enc + ﬁm%o)niqoo) (4.56)
196,

u< Z ‘Dn[k

] 196,

( (Emi — Enie — Pige )Migg, + O(Emi — Enic+ Nttlgg, ) (n"%o + l)>

These equations clarify that the scattering matrices hawed vanishing entries. Only those
entries, where now the energyeonditions are fulfilled, contribute to the scattering. eTh
energy-variables in thé-function can be transformed from a td-dependency by inverting
the kernel of the delta function

-1
I(m,n, k) = [Emu —Ey+ ﬁm%o} (4.57)

and replacing the energy-by a condition fo:

1
_;\Du(Emuiﬁ%oo)!

&(Emi — Eny = Mg, ) 3(1—1;). (4.58)

Thel; are the zeros obtained by condition (4.57). The evaluatfdhese zeros is, of course,
non-trivial, and has to be performed numerically on a discraesh ofl. Still, [; is a two-
dimensional vector, and the condition flocan be interpreted as a one-dimensional curve (or
a set of curvesf . (s) in the Brillouin zone, which depends on all free parametdrtie
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OO 000 ON OO Figure 4.4: lllustration of the interpola-
tion process for the evaluation of the energy-
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equation, including the signH) of the phonon energy. The summation ovér Eq. (4.33) is
therewith expressed by an integration over the curve:

+

de i
y — / kg (4.59)

T S

For givenm, n, k, i and +, the vectordl(s) pointing to the non-vanishing elements of the
— —
scattering matriceg\ " and A are given by

I(s) = C= 44 (9), (4.60)

while their magnitude is set according to

- 2
Ao =3 D (G;mki (8) (e +1) + G (9 niqo()) (4.61a)
| IQGO
— 2
Am=3 - DI (Ginrea (IMiec, + G (9) (M, + 1)) (4.61b)
1 Go
with the size parameters
1 dct ..
G ..(s) = mrkd g (4.62a)
M |0 (B + Atgg, )| s
dc_ ..
G () ! mid g (4.62D)

BEICTEELZ NI

The mapping of the curve to the discrete supporting pointthefunderlying mesh of in
Eqg. (4.60) must be done using a method of interpolation (ckig. 4.4). Although the cal-
culation of the mapping and the interpolation is quite gpstlis only required once for a
dynamical calculation run, while the multiplication of theatrix is done in every dynamical
time step. Thus, due to the high number of vanishing entriethe matrix, it is also a big
advantage to implement a method to perform the summatioBsl.iti4.45) exclusively on the
non-vanishing entries.
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Chapter 5

Density-Functional Calculations at the
Silicon (100) 2<1 surface

After presenting the basics of theory, we now proceed to ipdiGtion of the methods in-
troduced in Part I. As first step, we thus perform densityetiomal calculations for a spe-
cific surface system. As surface system, the silicon (0Offase is chosen for investigation
(cmp. Sec. 1.2). At this surface, various locally identiemlonstructions appear, and according
to the size of the reconstruction unit cell, a number of aoid#l surface bands occurs in the
band structure. For temperatures of about 90 K, the predorhireconstruction is the %42
reconstruction. In our simulations, we will use the asymineét x 1 reconstruction, which is
energetically close to thex42 reconstruction and already contains most features.

The first step in calculating a surface structure, howesdaq investigate the corresponding
bulk structure. For silicon, this is a diamond lattice wittwe-atom basis in a tetrahedral unit
cell. The main purpose of these investigations is, bestieadjustment of parameters for the
applied computer program, the derivation of a theoreticitt kattice constant. A good agree-
ment of the experimental and the theoretical lattice constis a prerequisite for a trustworthy
calculation.

The DFT calculations have been carried out with the prograckage hi 98nd [BKNS97],
which has a long reputation for structure calculations.alk been programmed Fortran 90
and is particularly adapted for the use in solid state sigllezomputation.

5.1 Calculations on bulk silicon

For the band structure calculation with thei 98nd package, several steps are necessary. The
first step consists of the calculation of the pseudopotenfanp. Sec. 3.5) using the program

f hi pp. In the atomistic nomenclature, the silicon nucleus hasrbdops and has thus an
atomistic charge of 1&. The first ten electrons are the core electrons, they areidedcy

the s, s> and p? orbitals. The pseudopotential is build up on a calculatibthese ten core
electrons. Then, with the pseudopotentials, the ground stdculation can be started, where
the Kohn-Sham-statefer the electrons are determined for the ground state. Agtlhdustep, a
band structure can be evaluated by using the electron gdrmih the ground state calculation
(Sec. 5.1.2).




Figure 5.1: The silicon diamond lattice structure. The top plane reprds a (100) cut of the
structure. The bulk unit cells for the diamond structuredjrand an orthorhombic (21) cell
(blue) are indicated.

5.1.1 Ground state calculation

The calculation of the bulk structure is then achieved usipdane wave basis defined by the
cutoff radius (Eqg. (3.22)), the lattice basis (Eg. (2.1 &s reciprocal counterpart (Eq. (2.19)).
The lattice basis in diamond geometry is influenced by thke latiice constana, which can be
understood as a isotropic stretch factor (although it sraed at the underlying cubic supercell,
rhs. of Fig. 5.2). For the ground-state calculation, a ra@gmesh lonkhurst-Pack-me$tof
k-points on the first Brillouin-zone is chosen in order to sidntly describe the different fea-
tures of the wave functions at differektpoints. The number d€-points is also a parameter to
these calculations. Due to the high symmetry of the diamatité, only a fraction of the mesh
points have to be included in the calculation, as many of tamEmgeometrically equivalent and
the others can be mapped by symmetry operations. The Koam-&lguations (Sec. (3.2)) for
this reduced-point set are then evaluated using the iterative approashritbed in Fig. 3.1.
The algorithm continues looping until the ground state gydras reached a total minimum,
which can be investigated by looking at the variation of thergy per time step. For the di-
agonalization of the Hamiltonian in the single particle @clinger equation (3.8), an iterative
approach\Yilliams-Soleror damped Joannopoulpss used which is possible for a self-adjoint
Hamiltonian. In spite of the disadvantages of such an algorildependency on parameters
for solving algorithm, required orthogonalization of eigectors after each iteration step), the
numerical effort compared to a polynomial solving scalethwai more favorable dependency
on the size of the structure. The choice of good parameterthéoalgorithm decides about
the number of iterations required for convergence (or, @wtlorst case, about the divergence),
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Figure 5.2: lhs: Brillouin zone of the diamond lattice structure (black E)eand of the or-

thorhombic 21 bulk structure (colored brick) in the same geometry. Thezmundaries fulfill

condition(2.20) rhs: lllustration of the diamond structure inside a cubic laéicThe edge of
the cubic superstructure (a) is used as lattice constantiferdiamond structure.

these parameters depend mainly on the particular lattigetate.

Additionally to the diamond-Ilattice bulk calculationsgethilicon bulk is calculated within
another superstructure. With regard to the futurd Zurface-structure calculations, itis useful
for comparison to perform a computation in the same surfacengtry. To this end, a single
orthorhombic (001) X 1 cell (containing eight atoms) is investigated. A silicaidkdstructure,
the diamond unit cell (red) and the orthorhombic unit cellié¢) are presented in Fig. 5.1. The
corresponding first Brillouin zones for tkevectors, given by condition Eq. (2.20), are shown
for those two geometries in Fig. (5.2). The orthorhombid, aghich is bigger in real space
(Fig. 5.1), supplies a smaller Brillouin zone in the reci@bspace (lhs of Fig. (5.2)). Some
high symmetry points and lines are indicated in the two Buith zones.

The check on the dependency of the diamond bulk calculationestain computational
parameters is summarized in Figs. 5.3 and 5.4. The coursetioh&do investigate the bulk
lattice minima and the total energy minima with respect ® density of thek-point mesh
and the cutoff energy (Eqg. (3.22)) is as follows: first, sangplalues are chosen for the lat-
tice constant and the cutoff energy around the estimatedhmam value. For the mesh, only
a few choices are possible for the discretization (like 4x 4 or 8x 8 x 8). Calculations
are then performed for all combinations of the values fardatminimum, the cutoff energy
and the mesh, allowing to extract ground state energy vdtoes these. The most evident
conclusion from these calculations if Fig. 5.3 is that a mafsth x 4 x 4 is sufficient for this
bulk description, as there is no apparent difference to idpeeh discretized computations. The
second conclusion from this Figure is that the energy mininmustill influenced by the cutoff
energy, though the energy change is smallQ.05 Ry between 8 Ry and 20 Ry cutoff). A
convergence is however seen for the highest cutoff enerdie§ig. 5.4, the lattice minima
and corresponding ground state energies of Fig. 5.3 artegloThese minima are found by
fitting the previously calculated lattice-energy curveshva thermodynamical state equation
(Murnaghan equatiop from which the minimum can be derived analytically. Tiaschieved
using the programur n, which is also a part of thiehi nd package. Both ground state energy
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Figure 5.3: Determination of the lattice constant minimum with resgedhe cohesive energy

per atom and investigation of someconvergence criteridtferdiamond bulk lattice. The differ-

ent markers signify a difference of the cutoff energies.@rilts, the calculations are performed

with a mesh ofl x 4 x 4, on the rhs, fol8 x 8 x 8. No significant changes are found between the
two pictures

and lattice constant finally converge at a cutoff radius of2@vhile the ground state energy
shrinks monotonously, the lattice constant has a non+wootis behaviour. In contrast to the
variational principles used to derive the Kohn-Sham-dqnat no equivalent approach holds
for thek-point sets, so a global minimum can not be found in any casedogasing the density
of the mesh.

5.1.2 Band structure calculation

The band structure of the two bulk geometries can be themleddd using a second run of
the f hi nd program. A band structure run typically needs only pointssome symmetry
lines with a relatively high discretization with respectthe discretization needed to perform
a converging ground state calculation. The execution obargt state calculation on a mesh
containing all necessary points for the band structureaisefiore a waste of computer resource
requirements. An easy way to avoid this relatively high disization is to insert an electron
density from another calculation with low discretizatidsui high enough to assure a proper
convergence) into band structure calculationwhere only theék-points which are to be shown
in the band structure are included. The electron densithigirun is not changed during the
iterations, so the only task of the program is to diagonalimeHamiltonian at the chosda
points, without any self-consistent iterations. A justfion of this procedure is that the results
for the electron density for a converged calculation is ngmificantly changed by applying
a denser mesh with molepoints. This technique is particularly useful if condoatiband
states are calculated, as these are irrelevant for theaiedensity and the ground state energy.
Another advantage is the fact that there are no restrictatrmit thek-points chosen in the
second run. Consequently, it is possible to calculate a musesubsets d-points in parallel
within totally independent calculations. This featurel\l# used extensively in Chapter 6.

The band structures for the two bulk geometries are showngings. For the diamond

lattice (Ihs), a true three-dimensional path through thédsiin zone is taken. The nature of
silicon as semiconductor is pointed out by the bandgap lmtwee valence bands-the lowest
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Figure 5.4: Convergence test for the cutoff energy. The minimum buikdatonstant (black)
and the associated cohesive energy per atom (red) are géiioeda fit with a murnaghan state
equation, as shown in Fig. 5.3.

four bands) and the conduction bands (the higher bandspwAidmperatures, only the valence
bands are populated. It is clearly visible that the band gamly indirect, the maximum of the
highest valence band is located at anotkigroint as the minimum of the lowest conduction
band. Consequently, for an optical excitation with band gragrgy & 1.1 eV), a scattering of
the photon via an auxiliary phonon is necessary. A direcit&aon, as it is described by the
optical Hamiltonian (2.45) or (2.47), is only possible fonoh higher energies{ 2.5 eV).

For the orthorhombic bulk structure (rhs of Fig. 5.5), théhpa oriented at the surface ge-
ometry. To this end, only thig andky parts of the vector are non-zero. In this two-dimensional
cut of the Brillouin-zone, the indirect band gap of the diammhdattice is not visible any more.
The selection rules on the participating electron statesweler, still forbid optical transitions
by these channéls Furthermore, the number of bands has increased accordlitige taug-
mentation of the number of atoms in the unit cell, while, oa tither hand, the bands in the
band structure are related by a folding at the symmetry .liffdss is clearly an effect of the
reduced Brillouin zone with respect to the diamond lattisete that no new physical effects
can be expected by just augmenting the bulk unit cell. A cammpa to surface structures can
be achieved by also varying tlkg-coordinate of the orthorhombic bulk cell. This allows to
evaluate a range of possible energies for a spekipoint and band in the surface geometry,
on which the surface band structure can be mapped lateroap@lication of this technique is
shown in Figs. 5.6-5.11.

1This can be seen by reminding that the wave functions of #tesare not changed by switching only the geom-
etry. Thus, a wave functioe" un (r) in the diamond structure is replaced by a wave func#e*e'u, ;.\ (r)
in orthorhombical symmetry, whefe, is the constant lattice vector difference originating frtima reducing of the
zone and, while nonzero, constitutes a new band. While lzding momentum matrix elements (Sec. 4.3,
annihilates all matrix elements which are not non-zero teeiio the diamond lattice.
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Figure 5.5: Bulk band structure for the ground states and the lowest gotidn states for silicon.

On the |hs, the band structure along the high symmetry liieélseodiamond unit cell is shown.

On the rhs, the bandstructure along & 2 (100) unit cell (for k = 0) is depicted. The indirect
band gap in the |hs picture is no more visible in the rhs.

5.2 Supercell calculations for the %1 surface

After discussing the bulk structure, we will now investigidhe 2x 1 reconstruction of a
silicon (100) surface by the supercell approach. In contrast to the atpositions of the bulk
cells, which are determined by the underlying symmetry grewhich only leaves the lattice
constant as an open parameter), the geometrical strudtarsuoface reconstruction is given in
a orthorhombical cell with a two-dimensional symmetry. Bl@mic positions are not precisely
known beforehand, and at surface, huge deviations fromdiresponding bulk positions can
be expected. The atomic positions are however determindgtiebinteratomic forces on the
ions, which can be calculated using the method introducegem 3.4. Nevertheless, the use
of this technique is numerically much costlier than the garlk calculations, as not only the
lattice structure is much bigger for a reasonable slab syéihich increases both the number
of bands by the number of atoms and the number of plane w&e®¢tors) by the energy
condition (3.22) in the discretization), but also an addiéil loop over the ground state mini-
mization has to be implemented (cmp. Fig 3.1). In this sedoad, the atomic positions can
be modified and slowly converge to the equilibrium positiseg Sec. 3.4). While this method
is applicable by a physical point of view to find the positi@isll atoms of the structure, the
algorithm is often numerically instable if the number of degs of freedom is too high, and
also the need of CPU time is highly influenced by that fact. Seguently, it is usually required
to constrict the motion of atoms to those which are close ¢éarélzonstructed surface and are
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Figure 5.6: Band structure, atomic structure and Brillouin zone of Eayer supercell.

therefore subjected to perform big changes. The decisibowimany atoms should be moved,
is based on the calculation and analysis of the force cotsstanall atoms and can be assisted
by test calculations.

In the case of a silicon (100)>21 surface, the most important effect of surface reconstruc-
tion is the formation of dilted dimer It is obvious that this requires a huge deformation of the
first atomic layers with respect to the bulk. In our calcuas, the three first layers are allowed
to move. One measure for the quality of the Density Functioakulation in this context is
the comparison of the experimental to the calculated dimglea In silicon, thep-orbitals of
the dimer atoms cause the appearance of the new surface bahoth partly reach energet-
ically into the band gap. A consequence of this is that thétipasof the atoms is not only
influenced by known program parameters (cutoff energy)jshatso highly dependent on the
occupation of the surface states, which is, due to the redoaad gap, much more sensitive to
temperature changes than the bulk material. fhined code allows a temperature dependent
population of the conduction band states.

5.2.1 Ground state calculation

The procedure to calculate the electronic band structuse dmin the case of the bulk, two
steps: First, the energy is minimized, the electron densitgalculated and supplementally
the structure is optimized by moving some atoms, all this r@iatively low discretization of

thek-point mesh. The initial electron density is generated feiomic orbitals of the valence
electrons, these are stronger bound to the core atoms artti@te the convergence of the
Kohn-Shanwave functions towards the ground state, including thestat the surface bands.
A structure optimization step can be applied after convergeof the ground state energy for
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Figure 5.7: Band structure, atomic structure and Brillouin zone dflayer supercell.

given atomic positions, whereby a damped dynamical forcagan @damped verlet algorithin

is exploited. After the moving, the formerly gained eleataensity is reused and taken as an
initial condition for the new ground state energy minimiaat The parameters governing the
atomic move (the “mass”, the “damping” and the “timestepdyé to be adapted in order to
assure find the global minimum. Allin all, the density-fuool calculations for the supercell
with structure relaxation are much more elaborate thanherbulk and the convergence de-
pends on numerous parameters, however, the convergerncgatiahs for the bulk give hints
about the cutoff energy and the lattice constant to use.

Ground state calculations have been realized for differetuff energies ranging from 8 Ry

no. of layers

[°] 7 10 15 22 30 40

8.0 | 18.369 17.092 17.071 * 17.071 18.175
10.0| 18.369 18.184 18.156 18.150 18.160 18.143
12.0| 18.369 18.231 18.218 * 18.192 18.187
14.0| 18.369 18.123 18.212 * 18.100 18.095
16.0| 18.369 18.096 18.212 * 18.071 18.069
18.0| 18.369 18.110 18.212 * 18.086 *
20.0| 18.369 18.124 18.212 * 18.098 18.096

cutoff energy [Ry]

Table 5.1: The dimer tilting angle in dependency of the number of lagaedcutoff energy. For
the starred table entries, data is incomplete.
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Figure 5.8: Band structure, atomic structure and Brillouin zone dfsalayer supercell.

to 20 Ry and for a different number of layers ranging from 7 @ #he temperature for the
occupation of the states has been fixed at 300 K, and four ctindibands is included into
this calculation, which is necessary to allow a statistaiatribution for this temperature. In
Figs. 5.6-5.11, the resulting structures of these calianatfor a cutoff energy of 10 Ry are
depicted in the middle. The extension of the unit cell, idahg the vacuum of the supercell,
is indicated by the red brick, the yellow spheres repredmmtsilicon ions, whereas the blue
spheres symbolize the passivating hydrogen atoms at theidacof the slab (bottom). The
tilted dimer and the reconstruction of the first layers isadie observable on top of the struc-
tures. The corresponding Brillouin zones in reciprocakspand their size with respect to the

no. of layers
[eV] 7 10 15 22 30 40
= 8.0 | -64.999 -88.629 -127.866 * -246.168 -324.935
X, 10.0| -65.265 -88.982 -128.509 -183.845 -247.087 -326.141
5 12.0| -65.434 -89.203 -128.671 * -247.654 -326.879
Q@ 14.0| -65.531 -89.328 -128.842 * -247.965 -327.283
§ 16.0| -65.581 -89.391 -128.926 * -248.110 -327.470
% 18.0| -65.605 -89.419 -128.962 * -248.169 -327.544
© 20.0|-65.618 -89.434 -128.978 * -248.195 -327.575

Table 5.2: The ground state energy in dependency of the number of lapdrsutoff energy. For
the starred table entries, data is incomplete.
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Figure 5.9: Band structure, atomic structure and Brillouin zone dtZlayer supercell.

bulk Brillouin zone are shown on the rhs of the pictures. Tdiation between the dimer tilt-
ing angle and the cutoff energy and the number of layers iwshno table 5.1. Obviously,
the changes with respect to the cutoff energy are quitenifgignt, whereas the variation de-
pending on the layer number has slightly more effect. As aanaff fact, both the need of
CPU time and of hard disk space for the storage of the eldctmgave functions (which are
not problematic for single band structure runs) for a big banofk-points (up to 1089, cmp.
Chapter 6), which will be needed in later steps of our catmna are increasing fast with the

cutoff energy (as the number @-vectors is increased approximately by a factongtzoﬁ,
cmp Eq. (3.23)). We conclude therefore that for the giveousses, it is a minor limitation
to the surface properties to use a cutoff energy of 10 Ry, evtlee dimer angle has yet the
right magnitude, but the other parameters are not fully eayed. In table 5.2, the ground state
energies for the different cutoff energies and number oéigyare indicated. Although only
each row of the table can be compared, it can be seen that énalladifference is below one
percent of the total value of a row. This error seems tolerabliew of the increase in CPU
efficiency. A final decision about the cutoff energy, howewuld only be investigated by
performing parallelly all subsequent steps of calculafimndifferent cutoff energies, which
requires storing most intermediate data from densityfonal calculation runs. The storage
system is therefore the limiting factor of the entire cadtians, and at the time the simulations
where started, only a single calculation could be estatudisin the hard disk.
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Figure 5.10: Band structure, atomic structure and Brillouin zone @@&layer supercell.

5.2.2 Band structure calculation

In contrast to the time consuming structure relaxatiorattens for the ground state, the band
structure calculations for a supercell structure are natneomplex than the band structure
calculations for the bulk. However, as we intend to descailggeat portion of the conduction
bands where phononic relaxation processes take placeane sumber of conduction bands
as of valence bands is calculated in the band structure rgnn e bulk case, the electron
density is not updated and inserted from a beforehand adisimag ground state calculation.
Of course, in addition to this, the modified atomic positifnaen the structure relaxation have
to be considered in place of the idealized starting posti@s the electron density is now
oriented at the new, more realistic positions. Due to thesgll approach (and in contrast to
the rhs pictures in Figs. 5.6-5.11, where the volume of thgrecal lattice vectors is shown),
the Brillouin zone is now truly two dimensional (cmp. Sed)3as the third dimension does
not imply a new continuous quantum number. The path in théoBim zone (which is the
same as introduced for the<2 orthorhombic bulk cell in Sec. 5.1) is oriented at the bowfe
the irreducible part of the surface Brillouin zone. Thedueible part of the zone is in principle
half of the whole zone (e.dgk, > 0), this is related to the inversion symmetry along thez-
plane. From the time reversal invariance of the Schrodiegeation, an additional inversion
symmetry at the -point can be extracted, which holds at least for the energgnealues
(whereas the wave functions are complex conjugated — tHigvgever no limitation to the
later steps of our calculatioh) Consequently, the irreducible part of the Brillouin zose i

2The main reason for this property is the fact that the paaémti the Schrodinger equation are real and thus,
the energies are not influenced by complex conjugation oétfuation — but thé&-vectors are transformed tek.
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Figure 5.11: Band structure, atomic structure and Brillouin zone afGlayer supercell.

represented by only a quarter of the original zone, like e pf Q wherek, > 0 andk, > 0
(as indicated in Fig. 4.3). The symmetry path in the Briltombne is indicated by the red points
and lines in the rhs pictures of Figs. 5.6-5.11.

The band structures of calculations for structures with @, 115, 22, 30 and 40 layers

are shown on the lhs of Figs. 5.6-5.11. In the background esdlpictures, the projection
of the bulk states obtained from the orthorhombical bulkdosinucture (Fig. 5.5) by varying
the k; component (cmp. Sec. 5.1) is drawn. By this, a direct corsparbf the bands in the
surface structure to the bulk bands is possible. It is glealbservable how the size of the
structure influences the number of resulting bands in trautation. By increasing the number
of layers, the continuouk,-dispersion in the bulk is replaced by discrete energy egers
of the particular bands. While for seven layers in Fig. 5t 68 single bands are clearly
separated and there exists a wide energy spacing betweendlgy values, as it is similarly
the case in a nano-confined system (like a quantum well stejctand also big areas of the
bulk bands are not covered by the slab bands, the situatopritis different for 40 layers. Here,
in Fig. 5.11, the slab bands are a fairly good approximaticthe bulk, all regions of the bulk
band structure are represented in the slab band structulleatasome places, the slab bands
are even sufficiently dense to prevent a clear distinctiothefseparate bands. At the same
time the number of bands has increased to 332. The processngition from a tonfined
system to abulk like systerhis illustrated in the intermediate figures 5.7, 5.8, 5.9 &ntD.
Of course, a clear classification is impossible, as it dep@mach on the actual problem which
surface properties are outstanding and most importanthleuiater dynamical investigations
in Chapter 7 show that bulk properties are much better ajppaird by slabs of 30 layers and
more than with less than 20 layers.
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In all of the figures, however, the main difference to the kudiads is concordantly given
by two additional bands which reach into the band gap betwaksmce and conduction bands
(at 0 eV). These bands are related to the dimer surface reaotisn of the slabs, so it is
evident that no corresponding feature can be contained urelplk description of the band
structure. These two bands are classified&and D" surface bands, which are related
to the dangling bonds of thg-orbitals of the dimer atoms at the surface. While f& band
is a valence band and reaches deeply into the zones wherailth®dnds exist (it is only
clearly inside the band gap betweEn- M — X'), the D9°%" band is a conduction band and
only touches the bulk a1 —X'. These bands are found in any of the calculations, the pasiti
is only slightly changed throughout the augmentation ofldlyer number. A certain difficulty
lies in the fact that for the calculations with lower layemmher (7-15 layers), the trend of
the surface bands is definitely distinguishable from thé Ibainds in the regions where they
overlap. This, however, is an artificial feature due to tmeittd number of bulk bands in
those calculations and is therefore not visible in the hidhger calculations (22-40 layers).
A non-ambiguous assignment of the calculated eigenvatuéiset bands is only possible by
geometrical investigation of the symmetry of the assodiaiectron state, e. g. by projection
on the surface orbitals [Egg05]. This part of the study hasren accomplished in this thesis:
the dynamical investigations in Chapter 7 are uniquelyredée on the conduction bands, and
the involvedD"" surface band is much better separatable from the bulk bhadstteDUP.

In Fig. 5.12, the location and extension of th&° and DY°"" surface states is exemplarily
shown for ak-point on theX — M-line, where the surface bands are well defined and separated
from the bulk bands. The square moduls.(r)|? of the wave functions is shown for any of
the slab calculations with different slab layers. For anyhef two wave functions show, two
isosurfaces are plotted: one at an electron density d02* (solid fill), whereas the maximum
is at 3- 104, and the other at an electron density oft®° (hollow fill). By the solid filled
isosurfaces, it can be seen that the orientation of the wawetibns is still influenced by the
p-orbitals of the dimer atoms; thB“? band is built up from the highest level dimer atoms
(red), while theD9"" band is related to the lower level dimer atoms (green). Thiempert
of the wave functions is located in the first three layers efgtabs. Furthermore, the optical
appearance of the surface wave functions is fairly simibardil different calculations with
different layers, even at the seven layer calculation, thmrieatures of the electron distribution
are reproduced. Nevertheless, in the seven layer calon)atie a certain electron density of
the surface states still reaches the backside atoms ofahgy&t at ten layers, the decrease of
the surface state leads to a total vanishing of the statesaiitth layer.

We can conclude from these considerations that seven lagers fact sufficient to investi-
gate principle features which stem from the surface recoctidn (like the surface reconstruc-
tion, dimer tilting angle, dispersion of the surface bandte extension of the surface states)
and also most properties of the bulk. If however an accuraseription of the band structure
with a dense discretization of the bands on the energy ssadgjuired for subsequent calcula-
tions, the slab has to be expanded to at least 20 to 30 layethislcase, we can also expect
that the bulk band structure and the interplay of bulk anfbserstates is mapped sufficiently
precise by the supercell band structure. These obsersatianich are purely empiric at this
level of examination, will be confirmed be the dynamical aidtions in Chapter 7, where the
interaction of bulk and surface is a part of the discussion.
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Figure 5.12: Location of the BP (red) and D' (green) surface states ak —=

(8.20nnm1,8.20nnT1). At this point on theéX — M-line, the surface bands are clearly sepa-

rated from the bulk bands (see band structures in Figs 51835.The isosurfaces are plotted at

an electron density &f- 10~* (solid) and at2- 10~° (hollow). The p-orbital shape of the surface

states is obvious. No significant difference is visible e éxtension of the surface states in the
slabs (7 — 40 layers)




Chapter 6

Calculation of Matrix elements

After solving the quantum mechanical ground state problensilicon (100) % 1 surface prob-
lem, we will now proceed to the dynamical properties of thermmn induced relaxation pro-
cesses of the conduction band. The link between the twoide@@FT and DMT, Chapter 4)
is essentially based on the implementation of the bandtsteiand the matrix elements (4.49)
and (4.53) which enter in the scattering equations (4.45).

In this chapter, the numerical requirements and the pracgdd calculate these matrix
elements from the density-functional theoretical resaftChapter 5 is presented. For the
evaluation of dynamical equations like Eq. (4.45), the bstnacture and matrix elements must
be present on a mesh covering the irreducible part of thdoBitil zone, as it is important
for a realistic dynamical calculation that principally &latures of the band structure enter
the equations. For the evaluation of the phonon scatteningegses (to fulfill the scattering
conditions in Egs. (4.33)), itis moreover required to havegular, equidistant mesh in bdth
andky directions. The calculation of matrix elements is achiewetivo steps: first, the mesh
is set up and the band structure is calculated on that meisingéssh contains generally much
more points than in a simple band structure calculation oynanrgetry path as in Sec. 5.2.2).
In a second step, all energy eigenvalues and wave functitiisoband structure are collected
together, and the matrix elements (4.49) and (4.53) are otaddrom these wave functions.
The matrix element values and the merged energy eigenvatedben stored in a separate file,
so the evaluation of the dynamical equations can then beutecttotally independent of the
previous calculations by reading from this file. Though tlesiBility of this approach is very
high, as it also allows many dynamical calculations witliedtént initial conditions at the same
time, the main disadvantage is the huge amount of hard diskgs space (up to 100 GB for the
calculations in this work) which has to be kept accessibli#dmperations (and as the matrix
elements can not be considered as intermediate resultarédquite costly to calculate (for the
thickest slab in the highest discretization the accumdI&U time amounts to 14,000 hours),
they should be even stored on a file system with a backupytiitvhence, the need of disk
space is momentaneously the primary limiting factor of thehle approach.

6.1 Band structure calculations for matrix elements

The main issue in performing band structure calculatiorieersupercell approach on a regular
and relatively dense mesh (up 401000 points in the reduced part of the Brillouin zone) is
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Figure 6.1: Selection of the mesh for thkepoint sampling of the Brillouin zone. Only the points

in the irreducible part of the Brillouin zone of silicon (0p2 x 1 (bright colors) is computed,

while the rest of the sampling points is geometrically egigint (pale colors). The different

strides (red, green and blue points) refer to several leeélapproximation fronb x 5 effec-

tive points tol7 x 17 effective points. The lower discretized meshes are a patiehigher
discretized meshes.

that the memory requirements of these mesh points and theslelly not allow a calculation
within a single run (where all mesh points are computed irstimae time). Although it is con-
ceptually no problem to split the calculations into seveuals (as in the band structure mode,
the differentk-points are considered as totally independent on each etloerp. Sec. 5.1),
the special requirements of our problem for the choice aitidlization of thek-points exceed
the capabilities of the tools included in the thhi nd program package, and consequently,
extensions are needed at this point.

As a consequence, all program parts from this point of inyatbn on have to be devel-
oped from scratch. It is obvious that for debugging and tateonvergence tests very different
discretizations for the Brillouin zone mesh are neededed@afly because the scaling relation
of CPU-time requirements to the numberkepoints is of at leasO(N(k)?). By choosing a
well factorizable mesh discretization, it is possible te usesh points of lower discretization
density also in a mesh of higher discretization: if, for epdan the discretization is chosen
according to powers of two, the points of a eight-times-diszation are all contained in a 16-
times-discretization and those are contained in a 32-tidimsetization. The Brillouin zone
can be entirely described by its irreducible part, but ittdtide assured that high symmetry
points and -lines are represented in the discretizationtpoas they might play a crucial role
in relaxation processes. In Fig. 6.1, a discretization Hergilicon 2<1 unit cell which fulfills
these requirements is shown: theX, M andX' points are all mesh points. The discretiza-
tion in this plot is 32x 32, but by symmetry, the irreducible part of the first Brilloone
is covered by a discretization of X717. Lower discretizations with 55 (8 x 8) and 9x 9
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Figure 6.2: Distribution of the different strides (Fig. 6.1) on mul@pband structure calculation

runs. While the first stride (lhs, the 25 r&eboints in Fig. 6.1) usually can be achieved in a single

run, the subsequent strides are split as indicated by thekidalges (middle and rhs, green and

red points). By this selection of points, the runs for thedowiscretizations are independent
from the higher discretized runs.

(16 x 16) points are also comprised: in the picture, we have the paints (5x 5), the green
points (9% 9) and the red points (1¢ 17).

Another gain in flexibility can be reached by intelligentigtibuting the mesh points to the
particular band structure runs. The total number of runesegary is limited by the available
memory, however, the relation between numbek-gioints and memory consumption is non-
trivial. In addition, as the computation speeds up for rurih Wessk-points, it can make
sense to take more runs, if a lot of machines are accessilte aame time. In the current
implementation, the number &fpoints is estimated by the numberlepoints in the previous
band structure run, which is usually*40rhe easiest way to share tkgoints on the particular
runs would be to just count the points along the rows and cotuand put an equal number
of them in each run parameter file. This, on the other handal@eat disadvantage: every
discretization level of the matrix elements would depenah thie worst case — on all band
structure runs, as the points can appear anywhere in theleusefup. Not only this is quite
unflexible (at least as long the debugging phase of new cadésf®, but also, it would require
that the highest discretization is known in advance (it camécessary to enhance the density
of points due to numerical instabilities), and, at last,dktraction of matrix elements will be a
much costlier process, as, even if only dapoint of a whole run is needed, the whole wave-
function information of the run will have to be read in. As ansequence, another method
comes to exercise in this context: &Hpoints of a specific discretization level are grouped
together in subsequent runs, callddes In Fig. 6.1, the lowest level is symbolized by the
blue points. In Fig. 6.2, these 25 points form the first runtanlhs. The next stride, the green
points of Fig. 6.1, then consists of 56 points. In Fig. 6.2dgte), this is indicated, where the
“missing” points are the 2k&-points from the first stride. The 56 points are distributedwo

1in the 40-layer calculation, however, this exceeds the ctietfs capacity, yet the band structure run has to be
split in two runs of 20 points.
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runs of 28, which is signified by the black edges. The competeof points of the second
stride is then obtained by combining the points from the firsd the second stride. For the
third stride, the procedure is similar, now, the first and ¢beond stride are missing in the
corresponding picture (rhs of Fig. 6.2), and 208 points axe shared by 6 runs (34 or 35 per
run). In the calculations there is also a final discretizatevel of 64x 64, or 33x 33 in the
reduced Brillouin zone, which owns then a total of 800 poartd distributes them on 20 runs
of 40 points.

The major task of this application is thus to the control & #pproved hi nd program —
no interference with the intrinsic band structure calcatat is required. This functionality can
be satisfied by modifying the parameter files for the nd run and starting the several runs.
As this comprises basically copying of directories andraitgtext files, the natural choice of
the programming environment for this part of the project &apt oriented language, which
also brings along the big advantage of being very flexibleppliaation. In our case, this
is achieved by using the interpreter langugmyg hon [vR06], which has also wide spread
abilities in numerical computation (which are of use for #sup of atomic coordinates and
k-points). The setup of a calculation is then accomplishetivinsteps: by a first script, the
standard parameters are read in from a sample band strgetatgation (as the calculation on
a symmetry path in Sec. 5.2.2). The several strides are npadethe script, whereas the dis-
cretization level is provided as an input parameter. Theondral file is written for each stride
(which is used lateron for the matrix element calculatiamjhis file, besides some information
on the discretization level, the several runs of the strigd eventually the lower discretized
strides which have to be included for the complete set ofimnatements are referenced. Fi-
nally a run directory is created for every run, in which thanstard parameter files from the
standard run are inserted and ipoint set for the run is adapted. A second script then allows
to start the runs belonging to a specific stride selectivglygading the corresponding control
file and inserting the specific runs into the queueing sys#ihTuns are then executed totally
independent from the others in their run directory. It is impiple also possible to augment
the discretization level after the runs of the lower levets iaitialized, as in the hierarchy of
the control files, the files for the lower discretizations @b contain any information about the
higher levels (so each stride is “self consistent”), butairse the higher discretizations need
to know about their predecessor, as they depend on some jpbitte lower discretized strides
(Fig. 6.2).

6.2 Aspects of the matrix element calculations

By here, the raw wave functiongy (r) and the electron dispersidfy, have been computed
on a regular mesh in a predefined discretization (cmp. Sgg. & this section, the principles
of calculation of the electron-optical matrix elemepﬂﬁ‘k (4.53) and electron-phonon matrix

elementsi)ﬂ{k’[qkig“ms0 (4.49) are elucidated. It is obvious from the definitionst the compu-
tation of electron-optical matrix elements is a lot lesstlgahan the electron-phonon matrix
elements: although the former depend on a pair of baratsdr’, they are based on only one
k-vector, while the latter also comprise a dependency on ensdecvector (cmp. Sec. 4.3.2
and Sec. 4.3.1). While the eigenvalues belonging to diffebands at the saniepoint are
always contained in the same bandstructure run (as thisingrarsic feature of the plane wave

density functional algorithm, Sec. 3.6), the differ&mpoints belonging to a band, according to
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Sec. 6.1, are not necessarily. Although is is possible tateran algorithm where subsequently
all combinations of pairs of the different wave function dilare read in and thus a complete
covering of all matrix elements is reached in the end, suchlgaorithm is difficult to handle
(as it has also to account for the different strides) and teeaficess is normally a very slow
process, especially for data on storage systems. It is nooresnient to pursue a slightly more
elaborate technique by using the computer system’s scditebtory (or temporary storage
directory). Such an explicit scratch directory is avaiabh most computing clusters and is
generally optimized for access speed by a fast network atione This scratch directory can
at this point be used to rearrange the wave function datd nirad of a stride and save them in
direct access mode, which allows to access all entries ifilthiedependently of each other by
an indexX. Through this direct access, this intermediate storageditebe used like a classical
array in the RAM memory, and allows therefore a much more blexihandling of the wave
functions.

A further difficulty in the evaluation dk-k’ matrix elements is the fact that through the cut-
off of the underlyingG-vectors by the cutoff energy (Eq. (3.22)), the variety & @rvectors
differs for thek-points. As a consequence, he order of @wectors in the plane-wave im-
plementation of hi nd is also different for eack-point. As for the electron-phonon matrix
elements, also umklapp processes are considered (Eq))(4t48n not be avoided to map the
condensed set @-vectors which is saved in the wave functions file to an expdrsit, where
the G-vectors are ordered by their location along the three dgioes of reciprocal space to
enable the direct access to a specificly oriented wave véetoke all vectors not represented
in the condensed set are set to zero). When performing axneddrnent calculation, it suffices
to do this expansion for only one of the to wave functionshasather one can be multiplied in
situ. For umklapp processes in the form of (4.48), @eectors of one of the two wave func-
tions has to be increased or decreased by reciprocal la#erGg in the umklapp-direction.
Due to the expanded wave vectors, this is nothing more thaimttreasing or decreasing the
index for a specific dimension in th@-vector table for the wave function.

While the calculation momentum matrix element for the etatioptical coupling can be
implemented without further complications, as all necgsgarameters (as reciprocal lattice
vectors) are contained in the wave function file, the situafor the electron-phonon matrix
elements is more complex. In the simplified form of the maglements which will be used
here, matrix eIementBQEk[k;;u as in Eq. (4.51) consist of two parts: first a phonon mode depen

2Mwiq
56 Y6 Unik(G)Uri (G')de/1w+g64k- IN the current implementation, only the second part is
actually done in the matrix element calculation. Besidesfétt, that the parametebs and
wq are not extracted from calculations, but by heuristicadp@aters, the pure matrix elements
in bulk approximation can be used be multiple phonon modesiothing mode specific en-
ters the calculation. It is in principle feasible to perfophonon mode calculations for the
given silicon structure, in this case, a more generdépendency of the modes as in (4.49)
would be necessary, and hence, the matrix elements wouldthde calculated with an addi-
tional explicitz-dependency of the mod§%; S o' ¥ 6, Unk(G) Ui (G') .8 (G2) /4Gyt K +0,G+k-
It should however be noted that both the CPU time and the higkdrdquirements for this
enhanced matrix element calculation are momentaneousbBeeing the possibilities.

dent part, / D! g - € and the principally phonon independent electron matrirelet part

2Yet, as the employed computer system in based on an 32dfit@cture, it is necessary to use multiple direct
access files, as the total size of all wave functions exce®dsy?es for some configurations.
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Figure 6.3: Calculation of optical (Ihs) and phonon-electron matrierlents (rhs). Due to

symmetry relations (Eq$4.34), only the black-filled circles do actually have to be coneplut

While the optical matrix elements are only defined for diffem and fy the phonon-electron

matrix elements have to be calculated for all pairs df and f, k. It is obvious from this sketch
that the number of electron-phonon matrix elements caneygthuge.

As the wave function output from thiehi nd package is only available in the intrinsic
Fortran 90file format and there is no standard representation of thimdbin alternative pro-
gramming languages, the most convenient way is to implethentatrix element calculation
program in the same Fortran 90 dialect asfthé nd code. The calculation is achieved in two
phases: first, after parsing the stride control files for iifferént discretization strides (where
the control file for the highest discretization is given asia-time parameter and the lower
discretization control files are then read recursively friim@ former as a link in the control
file), the necessary band structure matrix element filesee in and immediately reordered
and rewritten into the direct access scratch file. The eneiggnvalues are also reordered, but
can be kept in memory. In the second phase, all combinatiowae functions are iterated by
two nested loops, the momentum matrix elements are cadclifat every combination of two
bands using Eg. (4.55) and the electron-phonon matrix eiesradso for every combination of
k-points. Due to the symmetry relations (4.34), basicallly @anhalf of the elements has to be
computed, for the momentum matrix elements, this can beemehted by only considering
matrix elements witm > n’, for the electron-phonon matrix elements, this is slighmigre
complicated, but can be achieved by computing the elementallfk andk’ if n > r/, but
only thek >= K for n=n'. This technique is illustrated in Fig. 6.3. While for the mem
tum matrix elements, all bands can be considered becausertigutational effort is relatively
limited, it is crucial for the electron-phonon matrix elemt® to preselect a subrange of the
available bands, because, again, both time and disk spadd e exceeded otherwise. With
regard to the relaxation processes in the conduction bahdshvare the topic of this thesis,
the usual selection are a few bands at the conduction batmhb¢including theD%" band)
which cover the energy range sensitive to optical excilaiiba given laser frequency (cmp.
Sec 7.4). Hence their number depends on the number of layéhng islab, as this influences
the number and the energetical spacing of the bands (cmpt&Hs.

During the looping, the matrix elements are immediatelyttemi into the output file. To
allow a further investigation of the results in a platfornmdgprogramming environmental in-
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dependent way, the output file is used in tret cdf format [Uni36], which is accessible in
numerous programming languages and can be used indepesfdiet system architecture.
Not only the matrix elements and the total band structurened in the file, but basically all
information that is important for the future handling in thgamical evaluation, as lattice vec-
tors, symmetry operations &rpoint positions. By this, only one file will be necessaretan
to accomplish the dynamical evaluation.

6.3 Investigation of optical and electron phonon matrix elenents

Having accomplished the numerical calculation of the matiements, we now proceed to
the examination of the results. Although a general invasitg of all matrix elements is, due
to their generally huge number, impossible, some exemjladycumulative comparisons can
be however accomplished. The purpose of this analysis f&sgtto check the influence of
the discretization and the number of layers in the band tstreccalculations. It is obvious
that this is only one aspect of the convergence behavioureofrtatrix elements, a final study
has to include the characteristics of the dynamical relematvhich is induced by the matrix
elements. A side effect is that the optical matrix elememats loe related to macroscopical
quantities like the optical absorption coefficient. Thixg, tesults can in principle be compared
to experimental findings, this is however inhibited by thet filnat excitonic interactions are
very significant for optical absorption, and cannot be neglé in the spectra, as it is the case
in our theory (which has the focus not on the optical specifence, the comparison has to
appear on a qualitative level.

6.3.1 Dipole matrix elements

While our theory is on the evaluation Af- p-coupling (Sec. 2.3.5), the equivalent formulation
in terms ofd - E-coupling (Eq. (2.48)), better adapted to macroscopicalyais of data. The
dipole matrix elementd are investigated in two ways. The linear macroscopic alieorpoef-
ficient a(w) can be related to the macroscopical polarization (4.13)tlaadhcident electrical

field by
_ P(w)
a(w) _caﬂ<m>. (6.1)
Herec, is a constant. The Fourier transform of the macroscopicirization can be derived
by solving Eq. (4.39) for the microscopical polarizationg=ourier space, whereby a spectral
distribution function with Lorentzian shape is found, wheiheuristical damping factor is
introduced into the differential equation (4.39):

/ y y
a(w) =c¢ d7kep|? 2 i ) : (6.2)
a %%/‘ nk | y2 + (Lﬁk _ w)Z y2 + (En|k ﬁEn/[k + w)z

whereep is the polarization vector of the light fielH(t). w can be interpreted as the vari-
able frequency of the incident light. The second term in theepthesis can be neglected,
as it is only relevant for negative frequencies (which cgpond to induced emission). The
linear absorption spectrum based on this elementary etedptical interaction is therefore a
superposition of Lorentzian peaks with a weight accordmghe transition matrix elements.
However, for a realistic spectrum, more effects have to sidered in the equations: Apart
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Figure 6.4: DFT-LDA Absorption spectra plot for a polarization of thecident field along
the x-direction for silicon (0012 x 1-supercell calculations of various numbers of layers for a
discretization 0f32 x 32 points in the Brillouin zone and for Silicon bulk (diamondusture.
The normalization is according to the size of the unit cefi.the top level figure, the spectra
are shown for the range 0-5 eV. For energies greater than caV,4he spectra are not reliable
for the slab data, as the number of points depends on the nuofitmnsidered bands in the
band structures (cmp. Figs. 5.6-5.11). At the bottom, awufior 0.5-1.3 eV is shown. The
peaks represent the energetical positionk-gioints to allow a comparison of the transitions for
different slab calculations. In this part of the spectrumlyotransitions from the valence bands
to the '°""-band are present, thus the intensity of the spectrum deeseaith increasing layer

number.
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Figure 6.5: Analogous DFT-LDA absorption spectra (as in Fig. 6.4) for@asization of the

incident field along the y-direction. While the shape of thec$ra is similar to Fig. 6.4, the

different extension of the unit cell in y-direction resufts different normalization of the spectra
with respect to the bulk spectrum. In the detailed plotstbo}, bigger differences occur.
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Figure 6.6: DFT-LDA absorption spectra plot for a polarization of theident field along the x-

direction for silicon (001 x 1-supercell calculations of various discretizations of Brdlouin

zone for a layer number of 7 and for silicon bulk (diamondustare. The normalzation is

according to the size of the unit cell. Only slight differea@ppear between the different plots,

also the position of the peaks for the transitions into thézge band (cmp. Fig. 6.4) are more
or less invariant.
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Figure 6.7: Distribution of the optical absorption over the Brillouinze. The sum of all relevant

transition dipole matrix elements (all transition from eakte to bulk bands) are shown for a

polarization of the incident light in x-direction (top) ard y-direction (bottom) for a supercell

of 7 layers (left) and 40 layers (right) are shown. No sigmifitdifferences occur between the 7
and 40 layer plots.

from a homogenouscissors shifof the band gap in the band structure (cmp. Sec. 1.4.1), also
the appearance of additional excitonic peaks (as a restilteoformation of excitons at the
band edge) is expected. In this presented spectra, thepquide and excitonic effects are
not discussed at all, thus the energies in the spectra caenmimpared directly to measured
data. Nevertheless, some effects of the silicon dimer seiffaconstruction on the spectra can
be discussed at this level.

In Fig. 6.4 and Fig. 6.5, the absorption spectra are plotiethtident light polarized along
the x and they-direction, respectively, for calculations with a diffatenumber of slab layers
for a k-point discretization mesh of 88 (5x 5 in the reduced zone). The bulk spectrum is
indicated as a reference by the light-blue lines. In thegwpllpictures of Fig. 6.4 and Fig. 6.5,
an overall spectrum up to 5 eV is shown. Only slight diffeesare obvious for the spectra
with a higher number of layers (the blue, yellow and magentslfor the 22, 30 and 40 layer
calculations), so a convergence of the spectra is achi@reallayer number of above 22. For
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lower layer number, however, the differences are more aisyiand some of the peaks which
also appear in the other calculations are shifted to highlemeer energies, so we can conclude
that below 22 layers, the calculations are not inspiringfidemce. This convergence with
respect to the layer number is found independently foixtrendy-polarized light. Although
the spectra are similar for the two polarizations, the giferof the excitation is on average
about 2 times larger in the-direction. In the bottom pictures, a cutout of this spattnis
shown for an energy range of 0.5 - 1.3 eV. In this range, thexea contributions in the bulk
spectrum, as the direct optical transitions which are dised here only appear above 1.6 eV.
The effects in these pictures are consequently uniquelyced by the surface reconstruction,
in the first order, the transitions from valence band bulkestéo theD9"" surface band are the
cause. An obvious fact is that the relative strength of tlsosace band transitions is reduced
with increasing layer number. This is a consequence of tmigg number of bulk bands with
respect to the surface banB¥” andD%"", or, in other words, by increasing the structure into
the bulk (cmp. Figs. 5.6-5.12), the influence of the surfaodeicreased. As in the case of the
full spectrum, it appears that the number of considérgmbints is sufficiently high and thus
the positions of the peaks are quite stable above a layer@uofi22, while big differences are
visible for the lower layer calculations. However, with ieasing layer number, still particular
additionalk-points and the related peaks are occuring in the specta, dbntribution to the
shape of the curves is limited.

In Fig. 6.6, the absorption spectra of calculations with gnat layer number of 7, but
different discretizations ranging from>88 to 64x 64 are shown. While in the 8 8 (or
5 x 5 in the reduced Brillouin zone, cmp. to Fig. 6.1) plot, theveuis highly influenced by
singular peaks (top, black lines), the curve is much moressimior the higher discretizations.
Nevertheless, the shape of the curve is not changed by arldigioeetization. This behaviour is
also visible in the cutout range picture at the bottom of Bif: the total size of the single peaks
decreases by increasing the discretization size, but #ygesbf the curve remains unchanged.
In conclusion we state that obviously, all important featuof the optical absorption within
our approximations are reproduced by a relatively low @ization, whereas the number of
layers in the supercell influences the shape of the spectnaintha position of the peaks much
more. A qualitative comparison to the bulk spectra alsoaksva high accordance to the higher
layer calculations, with exception of the low energy tréines (< 2.5 eV), where the surface
bands come to play.

A different form of investigation is illustrated by Fig. 6.Mow, the plotted matrix elements
are not chosen by the energetical selection through thedrery of the incident light, but by
the location inside the first Brillouin zone. For each poifttwe discretization (where the
highest available discretization of 6464 is selected), the square modulus of all dipole matrix
elementsclﬂ&k going from valence to bulk (e.aqnis a valence band amd is a conduction band
or vice versa), in the light polarization direction, is susamAlthough no specific conclusions
about the excitation of particular electron states in thedigtructure can be made by this con-
struction, the main destination of the transitions of antedight excitation can be read out
from these images. Two parameters are varied inside thesg flirst, the number of layers
in the supercell structure which is the origin of the dipolatrix elements is changed, and sec-
ond, the polarization direction is selectedxiandy-directions. While only slight changes are
visible by the variation of the layer number in the picturkest @nd right row of Fig. 6.7), the
orientation of the absorption maxima in the Brillouin zoseompletely altered by the change
of orientation of the polarization vector: while feipolarized light, absorption is mainly found
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Figure 6.8: Size of the matrix element of electronic Bloch wave funstja?®rtn (r ) Uy (1) for

intraband transitions on the symmetry pdth- X —M — X —T (cmp. Fig. 5.2, 5.6-5.11) from
a statek to a statek’ inside the I°"" surface band (top) and inside the lowest bulk-like band
(bottom) for a seven layer slab (lhs) and a forty layer slalsjr At the upper left side of the
plots, the matrix elements of umklapp processes are shoha blbck-like structures in the 40
layer slab picture for the surface band can be identified @szbnes in the band structure where
the surface band enters into the bulk (Fig. 5.11) and caneatlbarly identified. Similarly, the
the first bulk band for the 40 layer slab is obviously build mmf several states of different
symmetry.

along theky-direction, it is found along the-direction fork,-polarized light. Obviously, most
features of the spatial distribution are yet contained édipole matrix elements of the super-
cell calculations with low number of layers (7), but in alkea, the matrix elements are highly
inhomogeneous with respect to the polarization direction.

6.3.2 Phonon matrix elements

In contrast to the optical transition matrix elements, medilink to a macroscopical quantity
exists for the electron-phonon coupling. Furthermore,rthimber of electron-phonon matrix
elements is not diagonal with respect to khpoint (Fig. 6.3). Consequently, the high number
of parametersr(, ', k, ', i) makes it impossible to draw the relations between the paiens

in a simple graphical representation. Thus, only some el@amfransitions will be discussed
here. As the electron-phonon coupling is represented bypswts (Sec. 6.2), where only




6 CALCULATION OF MATRIX ELEMENTS

7 layer - ™" o duikk - 40 layer - 0™ o Uik

Up(1) Upy (1)

0.4 5

x|

7 layer - ™" .. Hulk((umritéemm) 40 layer - ™" . Houkk(umiddamm))

>s|

x|

= — = = L re
r X '\lél X r

X M X' r

Figure 6.9: Size of the matrix element of electronic Bloch wave funstja?®rtn (r ) Uy (1) for

interband transitions on the symmetry p&ith X — M — X —T (cmp. Fig. 5.2, 5.6-5.11) from a

statek of the surface band to a staké of the lowest bulk-like band (top) for a seven layer slab

(Ihs) and a forty layer slab (rhs) and the corresponding wapkl processes (bottom). As in the

case of intraband scattering (Fig. 6.8), the attributiorstdites to the bands is not definite for the
40 layer calculation, thus a block structure occurs in thetpies.

the second part is gained from the electronic wave functiorthe current implementation,
the discussion will be limited to the matrix element of theattonic Bloch wave functions

[ Brtng(r)uywe (r) (Eg. (4.51)). Those matrix elements have to be treatedreliffty for the
direct scattering and the different umklapp processes (&E§0)). Yet, the full discussion of
two two-dimensional wave vectoksandlk’ already exceeds the possibilities of commonly used
graphical representions in printed form (as still anothmrdinate is needed to represent the
dependency), we simplify this by discussing only theandk’ points on the symmetry path
introduced in Sec. 5.2 (Fig. 5.2).

Two bands and two situations are presented in Figs. 6.8 &nhdl6.Fig. 6.8, the square
modulus of size of the matrix elements of the intraband ttiams (wheren=n') for the surface
band and for the first bulk band are shown. By evaluation ofrthtrix elements, a basic result
for these intraband transitions is that for= I/, the matrix elements must yield one, as in and
out states are identical. Additionally, due to the symmefryhe matrix elements (Sec. 6.2),
only one half of these matrix elements has to be calculattheaother half can be mapped to
the same points. Thus, the matrix elements for one of the eighuring umklapp-processes
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with Gg = b, are plotted in the upper-left half of these intraband pestirThe matrix elements
are plotted for the calculation with a seven layer slab amdhe calculation with the 40 layer
slab. In Fig. 6.8, for the seven layer slab, the matrix elédserpress a smooth dependency
with a well defined maximum of one at the diagonal both for tindase band and for the bulk
band, as it is expected from the analytical evaluation. leréan range ofk — k| of about
20% ofl — X, depending on the location &f around the diagonal, the matrix elements are still
above . This complies with estimations which have been done fangum dots [Ahn06].
For the 40 layer calculation, however, the plots are not @ite for transitions originating
from ak point between th&’ andT points, a block-like hole inside the plot occurs, where
the size of the matrix elements is not smoothly connectetidadst of the plot. This hole can
however be understood by looking at the band structure inFid.: At thek-points where the
hole occurs, the surface band enters the region of the bulisband can not be distinguished
any more by energetical comparison. Although it could havéie possible to identify the
surface states by projection on the surface atom orbitais,hias not been implemented in
the current calculations (as the affiliation to specific lsahds no significance to the later
dynamical calculations), and thus the states representdteitop-rhs picture of Fig. 6.8 are
not all states with a surface geometry as in Fig. 5.12, but eibulk geometry. Consequently,
the matrix elements for those wrongly identified states,oif on the diagonal, appear much
smaller. For the first bulk band (bottom-rhs picture), théh@viour is even more pronounced,
here, inside the bulk bands, the affiliation of the statesfferént bands is purely arbitrary, so
the significance of this picture is quite reduced — a sensitaigparison can only be done at or
near the diagonal inside one block. As a consequence, thisdfiinvestigation of particular
bands is only sensible if the states in the bands can becldaritified and affiliated — as it is
the case for the seven layer calculation. Another resuhiede analysis is that for the intraband
scattering, the umklapp processes are negligible, asgizeiiis at least an order of magnitude
below the corresponding normal scattering processes.

In the top of Fig. 6.9, a similar discussion is led for the ithtnd scattering between the
surface band and the first bulk band. Now, the upper left Half@matrix transitions is impor-
tant, the bands are not diagonak£ '), and the evaluation for the umklapp processes is shown
at bottom of Fig. 6.9. Both integral and maximum size for tloenmal scattering processes
is smaller than in the intraband case7(haximum cmp. to D maximum), furthermore, the
scattering at the diagonal is not prioritized, but occuitsveen selected points on the symmetry
lines. The umklapp processes, however, are much more sigmifivith respect to intraband
scattering and in relation to normal scattering. For thermmalements of the 40 layer slab,
the same limitations as in the intraband-case apply, thariar of a linear structure in the
scattering pattern leads to the assumption that the wawidumnat a singlek-point is out of
the common symmetry of the othirpoints. Again, the investigation is more or less useless
for the 40 layer slab, as a coherent comparison of the scggtsrimpossible.

However, we should note that the matrix elements analyzesl dre only one component
of the real scattering treated in the dynamical equatiornts§4 The energy conditions (4.57)
which are contained in the scattering matrices (4.33), laat theg-dependent form factor of
the electron-phonon coupling (4.51), can have a greattaffethe strength of the scattering.
Especially for the intraband processes, scattering ishhighprobable for small, as either

3|t should be noted that the classification of in and out statpsrely academic, as this only influences the phase
of the matrix elements and is therefore irrelevant for theasg modulus of the matrix elements in the relaxation
equations. For the umklapp processes, the correct assignvoeld be(nk) as out state an(h'k’) as in state.
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the form factor vanishes at= 0 (acoustical phonons), or the energy condition makeseseatt
ing impossible (optical phonongi ,—o # 0). At those points, on the other hand, the matrix
elements are close to one (Fig. 6.8).




Chapter 7

Relaxation dynamics at the
Silicon 2x 1 (100) surface

After the presentation of the numerical implementation tnelresults of the calculations of
the interaction matrix elements and the band structures)omemove on to the discussion of
the final step in our calculations: the supercell struct@®tb be integrated into the dynamical
equations (4.45) by embedding the matrix elements, the bimadture and the phonon disper-
sion into the equations of motion, with the final goal to siatalthe relaxation processes in the
conduction band. First, we will give and idea of some aspetthe involved programming
methods. The main task, the calculation of the band stra@nd the matrix elements has been
completed in Chapter 6, so the remaining open questionsbaxg ¢he implementation of the
scatter matrices (Sec. 4.4) and the subsequent dynamilaladen. Then, some results of
a testing procedure using an isotropic standard systemasighparabolic band and constant
matrix elements, without externally considering a strugtuare realized. The main purpose
of this step is to check the homogeneity of the relaxatiorcgss, as the proposed approach
from Sec. 4.4 is a great source of errors. Finally we predentasults of the relaxation in
the silicon 2x 1 (100) surface supercell for different initial conditiortbe general relaxation
behaviour for a high-frequency excitation is simulated l6yaaissian energy distribution of the
initial population at the upper limits of the investigatean structure, and, finally, a realis-
tic scattering process is computed by implementing expntal optical excitation conditions.
The relaxation timescales from this process are then ficalfgpared to the experimental val-
ues.

7.1 Implementation of the dynamical evaluation

As indicated in Sec. 4.4, a big gain in efficiency can be olethiby evaluating the delta con-
ditions of the energy conditions (4.57) before the starthef dynamical relaxation loop. It
is therefore consequent to organize the program code in ams:pfirst, the initialization is
performed, where mainly the scattering matrices are bpilthut also the initial conditions
are set up. The second step comprises then the computatitwe pbpulation dynamics up
to a predefined time step. The initialization procedure aqaizshes several tasks: first, some
parameters are read in from a separate file. Parameters aafaple the system bath temper-
ature, the maximum timestep and the timestep discretizafiienames for the matrix element
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file and output file, information for the initial distributip and, due to the reduced bulk mode
model (cmp. Sec. 4.3.1), also the bulk phonon mode dispe(giothe form of sonic speed
and optical phonon frequency) and deformation potenti@seferred to in the parameter file.
Then, the band structure of the system is read in, wherebgfafination related to the actual
structure (including the discretization level) is extextfrom the matrix element file. Now,
from this band structure information, we can proceed to trestruction of the scattering ma-
trices: first, the inversion of the energy dispersion by thepping (4.60) is exploited, this is
achieved by basically evaluating the energy conditiony.%ith the bulk phonon energies
w(q) atg =k — k' + Gy, for all combinations oh, k andn’, k’. Due to the various scattering
processes, the whole Brillouin zone of the system has to bsidered at this point, it doesn't
suffice to use the reduced part. Therefore, an zone unfolthsgo be performed for the band
structure. The zeros of the mappitig) are identified by a sign change of the corner points of
the involved mesh, and also the path lengiliscevaluated from the actual zero points between
the mesh points (but on the mesh edges) by using a lineapaiétion of the corner point
differences (cmp Fig. 4.4). For every combinationnpfc andn’, I/, the zeros, path lengths
and strength factor@nim (s) (Eq. (4.62a)) for all different umklapp processes, phonaues
and for all identical points in the unfolded Brillouin zon#s, the zone is refolded at this
point) are added cumulatively for thew, and the—w, branch separately. Finally, for the
meshes of the underlying mesh discretization where zerogrothe matrix elements are read
in from the matrix element file (it is, however, not possileréad the whole matrix element
file at one time due to the limitations of computer memory, alsd not all matrix elements are
finally needed), and the scattering equations can be assdrabtording to Eqg. (4.61a) from
the different contributions of the Bose distributing(T) and the size parameters.

As only a small fraction of the elements of the scatteringrixare non-vanishing, a spe-
cially dedicated matrix structure can help to reduce theamgal effort by preventing the mul-
tiplication of all zero elements in the evaluation of thetsring equations (4.45). The special
requirement of the matrix is that the non-zero elements eadigiributed totally randomly on
all elements. An obvious choice to meet this requirementsis aalledindex-oriented matrix
representation Only the non-zero matrix elements are stored, and eacheaf thith its own
column index. An additional row index references the staftsach row in the column index
list. A matrix multiplication with a vector can then be pearfeed by adding all components
of the vector referenced by elements of the column indexfdiseach row separately. The
results of each addition row are then composed to the raguitictor. This approach is surely
faster as full multiplication of all matrix elements, as dpas the rate of non-zero elements
to total elements is low, and it surely consumes a lot less ongifthe quantification of the
memory consumption is highly influenced by the employed astempsystem, as additionally
to the size of the floating point numbers for matrix elemetits, size of the index variables
play a crucial role). The main issue of this technique shdwldever also come to mention:
While it is possible (by the row index) to directly access aafic row, it is very costly to find a
particular element of the matrix, as in the worst case, dllroa indices in a specific row have
to be checked for equality with the required column, esgigcithe element is zero and no
column index exists. Thus, the effort to read out a speciément is of the order of the num-
ber of columns in the matrix (and the order to randomly readtelements is about (humber
of rows)x (number of columng). Furthermore, elements can only be added row-by-row,
is extremely costly to add elements later, after all rowsehaeen completed, as basically all
indices have to be recalculated and the later entries hake tmpied. As a consequence, a

t
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symmetrization step according to Eq. (4.37), which hasgmde highly improve the numeri-
cal stability of the calculation, is quite costly and onlyspible by completely rebuilding new,
symmetrized matrices. Although the computation of thetsdag matrices is a singular step,
it can take a considerable portion of the whole computafioe bf the dynamics — so, if only
a few timesteps have to be calculated, it can even take Idhgarthe dynamical calculation.
Nevertheless, it is inevitable for this kind of simulati@s, otherwise, the scattering rates would
have to be derived from the band structure in every time stép, basically the same effort
that is applied once in our algorithm (and furthermore, tladrin element file would have to be
reloaded after every time step). This is an elementaryréiffee to the common application of
these scattering equations (4.45) on spatially homogesysiems with parabolic band approx-
imation, where the scattering rates can be simplified aicalist and the resulting equations are
sufficiently simple to evaluate them in every time step.

The initialization step is completed by the composition fué fnitial population. There
are two principle modes implemented in the program: oneipitissis to set the population
from different features of the band structure, like the gypesr thek-vector. This can for
example be done to test special features of dynamical nadexaxplicitly, for example, all
states above a certain energy can be populated or all statekecpopulated by a Gaussian
distribution with the peak at a certain energy. The secondearis based on the principles
of optical excitation discussed in Sec. 4.2.6.1. In this eydte optical field is assumed as a
harmonic wave of frequencg with an amplitude modulated by a Gaussian shape of width
1!, the total amplitude, the frequency and the pulse width ef@aussian are defined in the
input parameter file. Then, the states are populated by imgpBQg. (4.44), where the Fourier
transform of the field is again given by a Gaussian distrilbufunction centered at the optical
frequency, and the required momentum matrix elements acefrem the matrix element file.

After initialization, the numerical computation of the dmical evolution is performed.
For the implementation of this initial value problenRange-Kutta methoadf order four [SBOO]
is used with a constant timestep. Although no convergeneekchnd variable timestep con-
trol can be easily included in this algorithm, the convergenrder is generally sufficient for
this kind of calculation. As all statical information is culated in the scattering matrices
A and K) the required steps to evaluate a timestep in the relaxatjoiation (4.45) are two
matrix multiplications of the dynamical population vectuith the scattering matrices in index-
oriented representation, then two vector-vector additeomd finally a vector-vector multiplica-
tion. These operations can be implemented highly effigrearil most computers and are often
optimized versions can be found in special libraries.

The results of the dynamical evaluation are written intodbgput file in by copying pre-
defined timesteps of the population. Additionally, the batdicture information, the shape
and symmetry of the Brillouin zone and other information i jmto this file. By this, a direct
interpretation of the results from the data in this single f possible. For this part of the
project, the programming langua@s+ is used. The main advantage of tligject-oriented
framework is that, while excellent interfaces to the eletapnsystem services exist on the one
hand, a high level of abstraction can be used to define newtyjzea (like the index-oriented
scattering matrices) and polymorphal structures (likéedgihtly implemented initial condi-

1A realistic implementation would require a Gaussian shapede wave for thé&(t) field and the integral of
this expression for the vector potenti&(t) (cmp. Sec. 2.3.5). However, this integral can be approxchély
At) = flz)E(t), if the lengtht of the pulse is fairly bigger then/tv. Then, the shape of the vector potential is
also Gaussian.




7 RELAXATION DYNAMICS AT THE SILICON 2x1 (100)SURFACE

Figure 7.1: Isotropic parabolic band structure of the test system foriscietization of5 x 5

points (Ihs) and5 x 25 points (rhs). All dimensions are unitless, the energy amdetktension

of the “Brillouin zone” are normed to one at the boundary. @l forth of the Brillouin zone is
shown.

tions). Furthermore, the language is highly standardizetithere exist goo@++-compilers
for nearly any system architecture. For the output filesniecdf format is used [Uni36], as
it yet is the case for the matrix element file. Thus, in priteiphe calculation of thematrix el-
ements, the evaluation of the dynamics and the investigatithe results could be performed
on different system architectures. This feature is howeetused in the calculations of the
present thesis.

7.2 Relaxation in a test system

Although the relaxation program collection has been desigor the use with externally ob-
tained matrix elements from two dimensional structures, useful to implement a test routine
for a highly simplified standard system to check the functiiy of the relaxation mechanism.
A convenient test system is an isotropic parabolic singledbsystem (Fig. 7.1). A big ad-
vantage of this system is, apart from the simple applidgbdf a parabolic function, that a
band minimum is genuinely contained and no discontinuityhi function or its derivatives

has to be handled. Additionally, parabolic band structaesthe most widely used model
system in the world of semiconductor physics (although,onirse, this model is not of use in
the case of silicon), it can be applied, for example, in twaahsional (multi-) quantum well

structures [ButQ7].

Within this test setup, no realistic physical units arecitéa to the variables, the Brillouin
zone boundaries and the energy maximum are set to a valuesofTdre same applies to the
electron-phonon coupling, where the coupling parambtand the electron matrix elements
are set to one (this is, at last, a quite unphysical assunjptié single optical phonon mode
with an energy ohw = 0.15 governs the relaxation. With respect to the Silicon (1D8)1
structure, the same geometrical arrangement is used,satil, only a quarter of the total
Brillouin zone is sampled, while the rest of the Brillouinreois mapped on this reduced part
by thex, y and inversion symmetries, which naturally exist in an igpic radial symmetric
system. It should be mentioned that these symmetries arexhatustive for this system, as
for the description, a single radial coordinate would seffitéNevertheless, the discussion of
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the isotropic system in a Cartesian system enables us tosdismisotropic initial conditions
(although cylindrical coordinates might be more apprdpriar this kind of discussion). By
these test conditions, however, we can check some of therésaof the relaxation program
which are relevant for the later realistic relaxations ungpleysical conditions. To illustrate
the convergence of the program, two different parametersliacussed within this test inves-
tigation: the Brillouin zone discretization is chosen dfaiient levels of 5< 5 and 25x 25
points, and two initial conditions are arranged: first arriguic distribution which is located
with a Gaussian shape around an energy of 0.4 is relaxed t& the isotropicity of the relax-
ation mechanism, and second, an anisotropic distributionralk = (0.75,0.75) is chosen to
illustrate the relaxation into an isotropic final state.

7.2.1 Isotropic relaxation

The relaxation behaviour for a relaxation with isotropittiah condition is shown in Figs. 7.2
and 7.3. Though the discretization is very low in Fig. 7.2 iotropicity is quite well main-
tained throughout the whole relaxation process — both aétigegy scale (lhs), where devia-
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/

Brillouin zone diagonal

timesteps

Figure 7.3: Relaxation in the test system for an isotropic initial cdiwdi and a discretization of
25 x 25points. While no anisotropic behaviour is found on the epaple (Ihs), weak phonon
replica peaks can be observed in the Brillouin zone plot)(rhs

tions are visible in the different cut direction for the dptants (where the red curve is related
to points inkg-direction and the blue curve for points on diagonal, while black curve con-
tains all points), but these are related to the discretimaind on the Brillouin-zone distribution
(rhs), where single points are pronounced due to the magdfithe discretization of energy.
Nevertheless, the discretization in Fig. 7.2 is too low toumately describe all features of the
relaxation process, as can be seen by comparing to Fig. hie im the 5x 5-discretization,
the relaxation is mostly terminated alreadyt at 30.0, significant changes are still visible for
later timesteps in the 2b 25-discretization. In Fig. 7.3, the isotropicity is eveeater pro-
nounced. It can be observed that the relaxation of a paaticthte takes place in several steps,
which are separated by the energy of the optical phonon. Béhswviour is expressed in the
occurrence of concentrical distribution peaks is the 8uilh zone picture (rhs), usually re-
ferred to agphonon replica In the present Figure 7.3, those rings are only weakly prooed
atk = (0.5,0.5) andk = (0.25,0.25). Att= 1.0, a step has formed in the population distri-
bution at an energy of a phonon energy. This is a typical hiehavn a relaxation by purely
optical phonons in Markovian (energy conserving) scattegnvironment: below the phonon
energy, the electron states can no more relax, as the minimlaxation jump is in steps of the
phonon energyw. Only through the slight weakening of the energy consesumationdition




7.2 RELAXATION IN A TEST SYSTEM

Brillouin zone diagonal
o o
Nt

| KAAALARRALARRE AL B AU R

0. 2Bk H—S—~ —

I
1.0

timesteps
8 [
o =)
T xﬂ ? T
1
3
K
0] (0]

100.0

t

100.0 % °

500_3&
5.&103& % o

oK K

*
0]

5000.0

t

pevn b brven b b bl i
0 01 02 03 04 05 06 07
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(Eq. (4.57)) due to discretization and the non-zero tentpezathe scattering to lower states
by intermediate scattering into an higher energy state $sipte att = 5000. This is a good
illustration of the limits of the Markovian approximationnip. Sec. 4.2.4), as this is clearly a
consequence of the energy conservation, which originates f4.29). The timescales for the
relaxation are not reliable in this case. For our invesibgabf silicon (001) however, these
considerations are not relevant, as scattering also iesoacoustical phonons which do not
allow for a similar bottleneck-behaviour.

7.2.2 Anisotropic relaxation

While the stability of the implementation with respect totrepical relaxation was investigated
in Sec. 7.2.1, we now address the case of a highly anisotiopial condition. As the entire
system is isotropic, also the final state after relaxatiosukhshow no signs of anisotropic-
ity. The initial condition distribution is chosen as a biw@aian function irk-space, the initial
peak is located dt = (0.75,0.75). In Figs. 7.4 and 7.5, the relaxations of those distribigion
is shown for discretizations of 5 and 25x 25. For both discretizations, a mostly isotropic
distribution after a relaxation time of 1.0, and in both cagbe later step are very similar to
the steps of the isotropic relaxation (Figs. 7.2 and 7.3)s @thows us to draw two conclusions
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Figure 7.5: Relaxation in the test system for an isotropic initial cdiwdi and a discretization of
25x 25points.

from these simulations: first, the relaxation implemeptatallows the calculation of a relax-
ation process who is insensitive to the initial conditiont(taking into account, of course, the
overall electron density, which depends from the initiahdition), and second, in contrast to
the timescales (Sec. 7.2.1), the restitution of the isatiyps independent from discretization
in the given range. However, while at thex%-discretization, the resolution of the distribu-
tion function is too low to feature all details of the relarat much more can be seen in the
25x 25 case. The phonon replica, which show up as concentricisiin Sec. 7.2.1, are now
expected to be more concentrated around the initial pedleekh at a timestep ofLat the rhs
of Fig. 7.5, two single peak-formed phonon replica can beentesl outside the concentrical
isotropic distribution. The process of establishing tlogrigpicity can be understood by assum-
ing that while the initial distribution can be quite anisidic, the system will tend to a more
isotropic state by every timestep. On the energy scale {Ir&go7.4 and 7.5), the anisotropic-
ity is indicated by the very different distributions kg-direction (blue) and diagonaky( = ky)
direction (red), and the discontinuity of the total distition (black). The “new” states at lower
energy, which are increasingly populated, however, atis@lopic — no difference occurs from
the three curves. In other words, for the given initial cdiodi, we can state that isotropicity is
accomplished when the initial distribution states are authsignificant population.

The isotropic relaxation aftér= 1.0 comprises basically the same features as discussed in
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Sec. 7.2.1. This means that especially dlpécal-phonon bottlenecdls also formed.

7.3 Relaxation in silicon for a Gaussian initial condition

After investigating the principle applicability of the eadation equations under simplified con-
ditions, we can now proceed to the simulation of a distrioutinder realistic conditions in
the silicon (001) surface system. The most realistic ditttahat can be investigated by our
program is, of course, the simulation using initial coratig of optical excitation (Eq. (4.44)).
Nevertheless, the optical initial condition has only a vimyited range of population at se-
lected points of the band structure, which makes the irgatstin of relaxation quite difficult.
Thus, as first approach, we choose a different initial céordiby an energetical “gauss-pulse”
(as in the test system in Sec. 7.2.1), while we will discugssajptical excitation in Sec. 7.4.

The matrix elements and the band structures that have béaurlated in Chapter 6 are
read into the dynamic file, whereby only the electron-phonmatrix elements are relevant
for the relaxation. For the phonons, a simplified two-modwedel is used (cmp. Sec. 4.3.1)
which comprises one acoustical and one optical mode (F&). 7The modes are chosen in
order to interpolate the phonon spectrum from literaturd TR, PV81, GdAGPB91, LB87] with
heuristical parameters. The dependency on the kutieordinate is neglected. The acoustical
mode is approximated by a linear dispersion with a sonicépee

wi=clal, (7.1)

whereas the optical mode has a constant dispersion:

W = . (7.2)

Parameters for the corresponding deformation potentaisitso be found in literature [MCFF78,
BPC84, vdW89, LB87]. The functional form of this dependersdyowever quite complex. For
the acoustical mode, the electron-phonon coupling in EﬁlM)‘l(q) is expressed in terms of
a longitudinal mode: _ _

Di(q) = D'o. (7.3)

This is justified by the fact that in bulk semiconductors, ¢bapling to the longitudinal modes
is much stronger than to all other modes [YC96, SWO02]. If dmsl the dispersion (7.1) is
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Figure 7.7: Relaxation dynamics of a supercell with 7 layers and a diszagon of 8x8 points
in the complete Brillouin zone for an initial condition with Gaussian peak 4.7 eV above
conduction band minimum.
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points in the complete Brillouin zone for an initial conditi with a Gaussian peak &7 eV
above conduction band minimum.
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Figure 7.9: Relaxation dynamics of a supercell with 40 layers and a diszation of8 x 8
points in the complete Brillouin zone for an initial conditi with a Gaussian peak &7 eV
above conduction band minimum.
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Figure 7.10: Relaxation dynamics of a supercell with 40 layers and a diszation of32 x 32
points in the complete Brillouin zone for an initial conditiwith a Gaussian peak®a7 eV above
conduction band minimum.
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reinserted into Eq. (4.51), we find an overall dependency qf|q] for the overall matrix el-

ementDﬂuik: [YC96]. For the optical mode, however, the coupling corismﬂ ) can not be

approxmated in a similar manner, as an optical mode aldodes an oscillation inside the
unit cell. Apart from the fact that the coupling to this kinflascillation is much stronger, the
only possible and reasonable approximation is a constantjependent coupling, as the dif-
ference of elongation of the single atom coordinates in tiieaell (which, at last, determines
the coupling strength at this level of approximation) istquinchanging throughout the whole
Brillouin zone. As also the phonon energy (7.2) is indepehdég, the matrix elemerir)ﬂ[ik:‘q
for the optical mode from Eq. (4.51) is completely constamtiwe Brillouin zone in this ap-
proximation. The employed values are taken from [LB87] dri8d7] and yield a sonic speed
of 6.1 meV/nm and a total deformation matrix elem@ﬁﬁu = D2, /|g] with a D3 of

7.37 eVnni/2 for the acoustical phonons and a phonon energy@§DeV with a deformation
matrix element oDﬂ{k”jl = D°Pt=40.0 eV for the optical phonons.

With these parameters for the phonons, we can now investigatdynamical evolution of
the system. The initial condition is defined by a Gaussiasgat an energy of 1.7 eV above the
conduction band minimum. In Figs. 7.7-7.10, the dynamicthisf initialization is illustrated
for slabs of 7 and 40 layers and fierdiscretizations of & 8 and 32« 32 for selected timesteps,
including the initial population. At the Ihs, the populatidistribution over the Brillouin zone
is depicted for thed9%“" band, while in the middle, the population is resolved on thergy
scale, with the corresponding band structures of the reteegions of the conduction bands
plotted at the top level. On the rhs, finally, the populatiaresshown energy and time resolved,
basically, this corresponds to a combination of the othetupés in this figure.

The choice of the initial condition as a Gaussian peak atahergy makes it possible to
discuss the relaxation process in different phases, astilegnergy and the width of the gauss-
pulse are selected in order to assure a practically exelesigitation of bulk states, because the
maximum energy of thB%"" surface state is located energetically below. In all Figg-7710,
this is visible from the fact that the initial population dretBrillouin zone is negligible low in
the surface bandy{ 1038, left hand row of the Ihs pictures) and the extension of thagsian
can be regarded in the energy resolved plot (middle row).t@imperature for the phonon bath
(cmp. Sec. 4.2.3) is fixed at 90 K.

The classification of the relaxation process into phasearig ¢h the following way: in the
first phase which lasts until ca. 200 fs, the relaxation oalyches bulk bands. Nevertheless,
the relaxation is not homogenous, the initial peak is dsgeito a much wider (approx.x9
distribution below the initial peak energy, but still abotre surface band maximum. The
extension of this first-phase distribution varies only I#lig within the different figures, and
seems to be mostly independent from slab thickness ancetmation. Although obviously the
relaxation timescales are very sensitive to the differessjble channels (and the emergence of
peaks implies that some channels are more probable tharsptttés bulk-related relaxation
is in average on a time scale ©f100 fs.

After 200 fs, the second phase of the relaxation begins. NueD%"" band is also in-
volved in the process. At 500 fs, the relaxation clearlytsptito two distinct timescales: On the
one hand, the relaxation inside the bulk slows down witheesip the first phase and merges
with a relaxation from bulk to surface band. On the other han@laxation inside the surface
band evolves. This surface-bound relaxation is on a mudhrfamescale: at 1.0 ps, the surface
band minimum is already entirely relaxed to a Fermi-likerisition function. This behaviour
is at best visible in Fig. 7.8 (middle row), where the rangewrlap of surface and bulk bands
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is limited to higher energies. In Figs. 7.7 and 7.9, howetean now be clearly stated that the
discretization is insufficient: the final state of the rek&o@ has no shape as in the equilibrium
(Fermi-distribution Eq. (B.1)). In Fig. 7.10, the Fermi-shape is shadowed byptmilations of
the bulk-like bands, which reach down to 0.05 eV above thiasartband minimum. The effect
of the two-timescale relaxation is at most pronounced in Fig at 1.0 ps: at the minimum of
the lowest bulk band (0.3 eV), additionally to the peak atsindace minimum, a second peak
has formed with a Fermi-like shape (while other peaks reraginigher energies). Here, we
can definitely conclude that the relaxation from bulk bandimum to surface is much slower
than parts of the relaxation inside the bulk: apart from alkfrection which is transferred
from bulk to surface band at a higher energy, relaxationslénbulk and surface are quasily
independent and thus form their separated local distdhutinctions. The relaxation down to
the “total” equilibrium state acts then on the slower tinsdsgwhich is obviously of the same
order as the slowest processes in bulk relaxation), sudhatHeD.0 ps, relaxation is more or
less completed. In Fig. 7.10, this process is not clearlyohlds Here, the final population of
electrons in the surface band reaches energetically upetbulk bands, especially the bulk
band minimum is completely populated (1.0) at 1.0 ps, so nihdu interaction between the
bands is necessary for the relaxation at the bulk band mminamd no separated distributions
form. As we will see in Sec. 7.4, this so callBduli-blockinghas not only visible effects as in
this case, but also influences the relaxation behaviouratuhface band minimum.

Within the Brillouin zone, the relaxation does not happeraihomogenous manner. In
Figs. 7.8 and 7.10 on the lhs, it can be seen that while thelatiui is initially more or less
concentrated at the center of the reduced Brillouin zone gtiape of the distribution reflects
the band structure at the energy of initial excitation) hifts to the edges (500 fs) and finally
proceeds to th&-point (or thel-X-line, respectively). The surface band is not significantly
populated until 500 fs, but is then strongly populated infihal state. While this principal
evidence is yet visible in Figs. 7.7 and 7.9, the resolutibthis discretization is too low to
allow an accurate interpretation. However, the picturemfthe first timesteps in Figs. 7.8 and
7.10 differ significantly. Hence, we can conclude that nundfdéands in the seven layer slab
is insufficient to sample the bulk band structure in the negiiresolution, while a convergence
with respect to this sampling is achieved with a higher layenber (see Appendix C.2 for a
summary of all calculations). A second effect of a thickabsk a volume-surface effect with
respect to the final population of the surface band: as théaal of the number of states in the
surface band decreases with respect to the total numbetes st the bulk bands and also more
states are populated initially due to the higher number afiban the bulk, a higher fraction
of the surface band is populated in the final state. This caxbyacted from the fact that the
extension of the population (red zone) is much bigger in FitQ (lhs) than in Fig. 7.8, and also
the “pseudo-Fermi energywhich is defined as the energy at which the Fermi-like distion
function of the final population of the conduction bands i8.&tshifts from 0.15 eV in Fig. 7.8
(middle row) to 0.3 eV in Fig. 7.10. This effect is only parphysical, it should be expected
that in a realistic materical, the absorption limits the ttepf penetration into the bulk and
consequently the population of the bulk bands also decseaih increasing slab thickness.
The modelling of light absorption [Mah90, H3@3, LSS 97, MPO0OQ] is, however, beyond the
scope of this thesis, especially as the usual penetratipti aé light in silicon (~ 1 pm) is of
a much bigger order as the depth of our calculated supefeell®.0 nm).

An overview of the relaxation process including all so fasatissed features can be ob-
served on the rhs pictures of Figs. 7.7-7.10. While at O fsndrrow energetical range of the
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Figure 7.11: Momentum matrix transitions in the range 0.9-1.25 eV fofed#nt slabs and

k-discretizations. The black curve indicates the shape®frdquency distribution (the Fourier

transform) of the optical pulse. While for the transitiortloé low discretizedq x 8) calculations

only a few single peaks within the range of the pulse appéartiansitions quasily form a

continuum in the high discretize@4 x 64) calculations. Note that in contrast to Figs. 6.4-6.6,

the spectra are only normed on thkepoint number in order to avoid the surface-volume effect
which applies to transitions to the surface band.

initial population around the excitation energy of 1.7 eWisible, the population is spread
over a wider range at 200 fs, and then populatedtheline relatively fast from 500 fs on.
Later, the populations of the higher states all relax to ti@mum.

7.4 Relaxation after optical excitation

In this section, we will now finally examine a relaxation at gilicon (001) 2< 1 surface with
initial conditions from optical excitation determined ngiEq. (4.44). Following the experi-
mental boundary conditions described in [WKFRO04], the diexty of the optical excitation
is chosen as 1.69 eV with an amplitude of Gaussian shape ofadiau of 50 fs. Due to
the known deficiencies of the DFT-LDA-bandstructure, whiglknown to underestimate the
bandgap energy, a so called scissors-shift is applied texbtigation frequency by decreasing
the frequency by a certain value (cmp. Sec 1.4.1). The jestifin for this scissors shift is
the known fact that in silicon, the bandgap energy of the RBA calculation is reduced for
all k-points by the same value with respect to a real band stejcivliich can be investigated
by experiments or calculations with quasi-particle caroes (for example the GW method)
[Egg05]. The value of this necessary shift is fixed to 0.62 g\¢amparison of the calculated
indirect bulk bandgap energy from Sec. 5.1 to the experiaiémilirect bandgap value.

In a realistic system, mechanisms exist to depopulate thdumtion band states, e. g. by
recombination with valence band holes. In [WKFRO04], a sratt process via excitonic states
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Figure 7.12: Initial distribution within the Brillouin zone for 7, 22 andO0 layer slabs and

for discretizations 0B x 8, 32x 32 and 64 x 64. While the8 x 8 discretization is obviously

insufficient to describe the distribution, good agreeman¢sfound for all slabs with the higher
discretizations. Nevertheless, an accurate accordanoalisfound for64 x 64 k-points.

in the bandgap is assumed, which acts on a slower, but forgpherattering relevant timescale.
In our relaxation model, no electron hole recombinationassidered, the electrons initially
inserted in the conduction bands have to relax to the commubaand minimum. On the other
hand we have seen in Sec. 7.3 hoRaalli-blockingmechanism can exclude some states at the
conduction band minimum from taking part in the relaxatignamics. In order to investigate
the phonon-inducedimescales involving the states at the conduction bandmim, we have

to guarantee that the population at the minimum remainsTdus can be achieved by limiting
the total conduction band population through applying &dahtly weak optical pulse, which

is also an implicit requirement of tr&ow relaxation approximatioSec. 4.2.6) within linear
optics in order to neglect the polarization dynamics.

The initial distribution after optical excitation is highkensitive to the discretization and
the slab thickness of the underlying calculation. In ordecdver the different aspects of the
optical excitation inx-direction (Fig. 6.4) and iy-direction (Fig. 6.5), the polarization of the
incident light is chosen along the diagonal=f y). In Fig. 7.11, a cutout of the spectrum
around the light frequency is shown. The Fourier transfofth@initial pulse, which can, due
to its form as plane wave with a Gaussian envelope functiercdst into a Gaussian in energy
space with a variance of 0.075 eV, is symbolized by the blackec To allow a consistent
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comparison, the different spectra of slabs with 7 (red), @24n) and 40 (blue) layers and
discretizations with & 8 (dashed) and 64 64 (solid) are now only normed on the number
of k-points, in contrast to the figures in Sec. 6.3.1. The reaspihfs is that excitation with
a pulse of that energy always ends in the surface band, asext Bulk transition exists in
silicon below the direct bandgap of 2.4 eV. The weight of thdagze band with respect to the
bulk bands, however, falls with increasing total number afids (cmp. 6.3.1), as the surface
band remains a single band in all calculations. Consequéhd number of transitions should
be independent of the number of layers in the slab calculatio

While the form and the position of the peaks for thex684 layer calculations is very
similar for the 22 and 40 layer calculation, the differenttethe 8x 8-discretized calculations
are significant. Here, the peaks appears really as singuilastwres, while in the 64 64
discretization, the peaks are at reproduceable positiot®merge from a continuum. Again,
we conclude that the 8 8 discretization is insufficient to describe the system andquired
accuracy. Also layer number is however an important pararad€or the convergence of the
spectrum structure, as in the 7 layer calculation, the haifjthe peaks differs from the 22
and 40 layer calculations even at the>6864 discretization. On the other hand, for 8464
points, all peaks are principally found in the 7 layer slalewaation, which is not the case in
lower discretizations. In Fig. 7.12, the distribution oétinitial population within the Brillouin
zone is shown. At a discretization of88, the differences of the distributions are obvious,
especially as their size differs by an order of magnitude32x 32, similar peaks are found
for the 22 and 40 layer calculations, while the 7-layer daliton has a completely different
peak structure. At 64 64 k-points, the distributions look quite similar for all slakes high
discretization is obviously required for an adequate rggmi of the excitation process.

After initialization by the optical excitation, the relai@n calculations are performed for
two different bath temperatures (cmp. Sec. 4.2.3) of thesysThe experimental investigation
in [WKFRO04] is effected at a temperature of 90 K. A similar ekment has been performed
at room temperature [TT03]. Our simulations are thus peréat at temperatures of 90 K
and 300 K, and a few examples of the numerous calculationdifferent layer numbers and
discretizations are presented on the following pages.

7.4.1 Relaxation for optical excitation at 90 K

The relaxation for different slabs of the optical initialnzhtions are shown in Figs. 7.13-7.15.
The frequency of the light after the application of the smissshift is at 1.07 eV, whereas
the unadjusted bandgap extracted from the band structlocelations (Sec. 5.2) is at 0.56.
A pronounced peak at 0.45 eV is visible for all slabs, thiskpearresponds to an optical
excitation from the valence band top to th&°" surface band. Single additional peaks exist
for all calculations. While the surface band (the leftmaamtdbin the top picture of the middle
row) is very similar for all slabs, the bulk is representedabyarying number of bands: At the
seven layer slab, only a single bulk band covers the energgeran which excitation occurs.
At the 22 layer slab, the number of relevant bulk bands irsgedo 7, and at the 40 layer
slab, about 15 bands can be found between 0.0 and 0.6 eV abogaation band minimum.
Consequently, the average spacing between the bands rfaoge6.6 eV for the 7 layers to
0.04 eV for the 40 layer slab. This value has a significancéhiorelaxation process, as a bulk-
like relaxation can be expected when the average energgretiite between twk-points of
two neighboring bands is of the same order as the averaggyediffierence of twdk-points of
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Figure 7.13: Relaxation dynamics for a slab of 7 layers at a discretizatid 32 x 32 points

in the complete Brillouin zone and for a temperature of 90 teraén excitation with a opti-

cal 1.69 eV pulse. Only two bands reach into the consideredggnregion (middle row, top

level). The energy resolved population (middle row) is éased by a factor of 25 with respect

to Figs. 7.7-7.10. The bottleneck formation at the bulk baricimum (0.25 eV) can be clearly
observed.
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Figure 7.14: Relaxation dynamics for a slab of 22 layers at a discretmatf 32 x 32 points

in the complete Brillouin zone and for a temperature of 90 terafn optical excitation with a

1.69 eV pulse. The energy resolved population (middle rewr)dreased by a factor of 25 with

respect to Figs. 7.7-7.10. Now, a few bands are present imettygired region. The bottleneck
and the bulk band minimum shift towards a lower energy (0)8 eV
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Figure 7.15: Relaxation dynamics for a slab of 40 layers at a discretmatf 32 x 32 points

in the complete Brillouin zone and for a temperature of 90 terafn optical excitation with a

1.69 eV pulse. The energy resolved population (middle revr)dreased by a factor of 25 with

respect to Figs. 7.7-7.10. The bands are now in an averagardie of ca. 0.05 eV. The bulk
band minimum with the bottleneck has shifted to 0.05 eV.
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the same band. Otherwise, intraband relaxation insideghesbrand might be privileged with
respect to interband relaxation. Furthermore, the inggrplf optical and acoustical phonons
is dependent on the energies of the states, if the statesiargetically close, a scattering by
optical phonons might be impossible, while scattering daustical phonons occurs — on a
slower time scale.

After the optical pulse, a structure with pronounced pealeft. While in Fig. 7.13, a
Gaussian envelope function which limits the single peaésembling to the optical envelope
function, around the maximum at 0.45 eV is observable, thidution is more focused on a
single, narrow peak at 0.45 eV in the thicker slabs (Figst arid 7.15). The strong transition
at 0.45 eV is obviously not accurately described in the séaxgr slab calculation, as it extends
on multiple states with different energy. Furthermore,ltdoation of the initial peak within the
Brillouin zone (lhs of Fig. 7.13) differs significantly frotle positions of peaks of the other
slabs.

In consecution of the initial excitation, the relaxatioarss. As in the case of relaxation
of a Gaussian initial condition, the distribution is broadé in a first phase. Nevertheless, a
clear decoupling of bulk- and surface relaxation cannot leeosed: due to excitation into
the surface band (cmp. Fig. 7.12), the bulk band(s) are ptguilafter the surface band, and a
fraction of the population directly relaxes inside the auéf band to the surface band minimum.
Thus, a peak forms at the minimum quasi immediately (20-3after excitation). During
relaxation, the shape of the distribution remains a pdakstructure, consequently, only some
of the states at a given energy are involved in the relaxatims is plausible, as scattering
depends on th&-vectors and the matrix element between the in and out state450 fs
(7 layer calculation, Fig. 7.13) - 500 fs (40 layer calcwati Fig. 7.15), a peak forms at the
particular bulk band minimum of the band structure — in casitto the calculations in Sec. 7.3,
these peaks do not interfere with the final equilibrium dstion for the calculations with a
thicker slab. This is a consequence of the very low excitadigtribution.

Inside the Brillouin zone, the initial distribution relexaot immediately to the surface
band minimum, but by a sequence of processes. Initiallyp#ak lies on a line parallel to the
I — X-direction, at the seven layer slab (Fig. 7.13, |hs), theimar is close to the left edge
(T — X'-line), while at the 22 and 40 layer slabs (Figs. 7.14 and, 7, the peak is found at
the right edge. In the first steps of relaxation (0 fs-30 3)effects can be observed: On one
hand, the population extends parallel to the X, on the other hand, a part of the population
is transferred to the bulk bands, where, for energeticaares (as the gap between bulk and
surface band shrinks), the population is very low for the yetaslab and temporarily even
higher than in the surface band for the 40 layer slab (at 30Adilitionally, at 30 fs, a part of
the population is trapped in a local minimum of the band s$tngcat the>_('-point. At the later
steps of the relaxation, these local peaks of populatiomanetransfered to the surface band
minimum without the occurrence of new local minima pattémthe plots.

7.4.2 Relaxation for optical excitation at 300 K

The beginning of the relaxation at a temperature of 300 Ksiithted in Figs. 7.16-7.18 cannot
be distinguished from the beginning of the 90 K-relaxati®ad. 7.4.1. However, as soon as the
distribution reaches the surface band minimum and formsmiH&e shape, the effect of the
higher temperature becomes obvious by the existence of & fooger tail of the population
distribution, which reaches up to 0.15 eV. For the sevepfl@alculation (Fig. 7.16, middle
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Figure 7.16: Relaxation dynamics for a slab of 7 layers at a discretizatid 32 x 32 points

in the complete Brillouin zone and for a temperature of 300ftéraan optical excitation with

a 1.69 eV pulse. Only two bands reach into the consideredggnegion (middle row, top

level). The energy resolved population (middle row) is éased by a factor of 25 with respect

to Figs. 7.7-7.10. The bottleneck formation at the bulk baricimum (0.25 eV) can be clearly
observed.
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Figure 7.17: Relaxation dynamics for a slab of 22 layers at a discretmatf 32 x 32 points

in the complete Brillouin zone and for a temperature of 300ft€raan optical excitation with a

1.69 eV pulse. The energy resolved population (middle rewr)dreased by a factor of 25 with

respect to Figs. 7.7-7.10. Now, a few bands are present imettygired region. The bottleneck
and the bulk band minimum shift towards a lower energy (0)8 eV
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Figure 7.18: Relaxation dynamics for a slab of 40 layers at a discret@matf 32 x 32 points

in the complete Brillouin zone and for a temperature of 300ft€raan optical excitation with a

1.69 eV pulse. The energy resolved population (middle revr)dreased by a factor of 25 with

respect to Figs. 7.7-7.10. The bands are now in an averagardie of ca. 0.05 eV. The bulk
band minimum with the bottleneck has shifted to 0.05 eV.
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Figure 7.19: Integrated logarithmic plot of the integrated populatioreo the energy scale for 7
layers at 90 K and 300 K.

column), also the later steps of relaxation are fairly simib the 90 K calculation apart from
this obvious deviation and a faster relaxation timescdilis (5 an expected effect at a higher
relaxation temperature), especially the population attli& band minimum (at 1 ps) is still
significant. For the 40 layer calculation (Fig. 7.18), hoarethe bulk band minimum is pop-
ulated by the final distribution, as it was the case in the Gausnitial condition (Sec. 7.3),
and, as a consequence, no distinguishable population farthe minimum. The effect of this
behaviour on the timescales in contrast to the 90 K case witlibcussed in Sec. 7.4.4. In the
Brillouin zone distribution (Ihs of Fig. 7.18), it is clargd that also the bulk band minimum is
finally populated at th& point, while at the 7 and 22 layer calculations (lhs of Figd67and
7.17), only a broadening of the population at the surfacel lmaimimum is visible. All in all,
the relaxation at 300 K occurs on a significant faster timlesca

7.4.3 Phonon relaxation bottleneck

The formation of a particular non-equilibrium distributiat the specific bulk band minima in
the calculations for the different slabs in Sec. 7.4.1 |esad bottleneck effect, as a part of the
population is formally trapped in the bulk band minimum st&dmp. Sec. 7.3) and can only
leave it on a much longer timescale. While the fast timesfaléhe relaxation to the surface
band minimum appears very similar for all slabs (cmp. Set4J.the timescale related to the
bottleneck depends on the thickness of the slab. Due to dig/perm of the distribution (mid-
dle column of Figs 7.13 and 7.15) and the high number of ireaistates, a definite comparison
of the populations is not possible. To facilitate the cornguar, an alternative presentation is
now chosen for the distributions: In Figs. 7.19-7.21, thergw-integrated population distribu-
tion for selected timesteps are shown on a logarithmic goalg, 22 and 40 layer slabs and for
temperatures of 90 K and 300 K, respectively. The integnaiiogperformed by energetically
broadening the discrete states with a Gaussian of 0.01 e&fhwa and subsequently summing
all obtained peaks, this corresponds approximatively tesictering the density of stategE)
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Figure 7.20: Integrated logarithmic plot of the integrated populatioven the energy scale for
22 layers at 90 K and 300 K.

in the distribution function:
fintegrate({E) = /dEg(En[k)f(E) = z frc&(E — Eng)- (7.4)
nk

In principle, the shape of the integrated distributionsti@r different slabs can be described
in the same manner as it was done for the Figs. 7.13-7.18 nited distribution (red curves)
relaxes through some intermediate states (at 2 ps, gregasjunto the equilibrium distribu-
tion and the additional bottleneck states (10 ps, blue a)metil finally, only the equilibrium
distribution is left over. However, the number, form andsgth of the different states differs
significantly: While at the seven layer slab (Fig. 7.19), mttleneck states appears at 10 ps
and the relaxation is quasily equilibrated at this timestemobserve two (22 layers, Fig. 7.20)
or three (40 layers, Fig. 7.21) distinguishable bottlensteltes at the other slabs. In all cases,
the bottleneck states have evolved from the intermediatespf the 2 ps-timesteps. Corre-
sponding to the decrease of the gap between surface and &udkrhinima with increasing
slab thickness, the bottleneck states are shifted verg ¢tothe surface band minimum (0 eV)
for the 40 layer slab, such that a small final population resma the lowest bottleneck state.
An explication of this strong layer dependency of bottléntrmation and breakup is the in-
terplay of acoustical and optical phonons within the refimxaprocess: While at seven layers
(Fig. 7.19), the energy gap of the intermediate state atahliedand minimum (ca. 0.25 eV)
at 2 ps (green curve) and the surface band minimum is still lipteuof the optical phonon
energy (0.057 eV), this is not the case at the 22 and 40 layeulationg. Consequently, for
the thicker slabs, a growing fraction of the population ltasetax by acoustical phonon cou-
pling (by which also very small energy differences can belowe) using a smaller coupling
deformation potential (cmp. Sec. 7.3), which accumulatiéis tive higher number of scattering
steps to overcome an energy distance in contrast to opticaign scattering to a much slower

2Relaxation cannot occur directly from the bulk band miniminsurface band minimum for several reasons:
On the one hand, the matrix element of two Bloch-states ishas for different bands at the saf@oints (cmp.
sec 6.3.2), on the other hand, at least acoustical phongalingus zero for a vanishing.
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Figure 7.21: Integrated logarithmic plot of the integrated populatioven the energy scale for
40 layers at 90 K and 300 K.

relaxation timescale. A discussion of the resulting tinaéss will be elaborated in Sec. 7.4.4.
Although the employed phonon model is partly heuristic aigtilly simplified (cmp. Sec. 7.3),
the main bulk features are doubtlessly included in form efltimiting cases for high-energy
optical phonons and low energy acoustical phonons. Oneapestion, which is unfortunately
beyond the possibilities of theode presented in this thesis, is the influence of surface-bound
phonon modes, in special the so-called dimer-tilting-madgich are also suspected to induce
a polaronic effect at high excitation and induce a dynamargyrenormalization on the band
structure (Sec. 1.2).

The relaxations at 300 K (lhs of Figs. 7.19-7.21) exhibit sosignificant differences to
the 90 K-pictures: The final state extends to a much higherggnga. 0.18 e\d, and the
relaxation is much faster. At 7 layers, (Fig. 7.19), the fistalte is already almost reached at
2 ps, at the other slabs, the 10 ps curve is indistinguishiatie the equilibrium distribution.
All bottleneck states of the 90 K distributions interferettwthe equilibrium distribution at
300 K, and the quite low final population of the surface bandimum states together with
the broadness of the distribution obviously inhibit an éfit formation of bottleneck states.
Additionally, the higher temperature usually enables ptfaster relaxation channels, as high-
energy phonon modes are more probable through the Fertribditon (cmp. Sec. 4.2.3).

7.4.4 Time constants

In this section, we will discuss the timescales that can hmdofrom the calculations in
Sec. 7.4. The extraction of time constants in a quantitatia@ner is not a clearly defined
procedure, as, as we have seen within the discussion of ldxatien processes in Secs. 7.3,
7.4.1 and 7.4.2, the time of relaxation depends on numeracterk, especially the initial
condition has a crucial importance. In experiments, uguatlly the decay rate of a signal
can be analyzed, and normally, in the Two-color-two-phgibntoemission-experiments as in

SNote that in this integrated representation, the shapeefittal state needs not to correspond to a Fermi-
distribution on the energy scale.
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Figure 7.22: Population of the [°"" surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 90 K. The time axis is lodamic. The numerically extracted

timescales are indicated by the dashed lines.

[TTO3, WKFRO04], the signal corresponds to a specific electtate, as here, the minimum of
theDY9""_pand. Consequently, to allow a comparison to the expetisnéme population of the
minimum surface band state is a convenient choice as a datafor the determination of the
relaxation timescale. It is not possible to extract the gpa@asons for an accelerated or de-
layed relaxation from such a single-scale investigatiam.tkis kind of examination, particular
processes and selected states involved in the specifiat@axvould have to be investigated.
With the given representation, an interpretation is onlggilnle in an overall approach.

In Figs. 7.22 and 7.23, the temporal evolution of B#"™ minimum state is drawn for a
temperature of 90 K and 300 K. Due to a logarithmic time axiss possible to investigate
the relaxation on several decades of picoseconds. At tlvelatibns at 90 K, the relaxation
is still not completely equilibrated at 1000 ps (for a forgyér slab), while at 300 K, the
final state is reached after 10 ps of relaxation. The big ddgrecy on the slab thickness that

[os] No of layers exp.
7 10 15 22 30 40 | value
90 K long | 2.47 691 237 9.62 41.73 58.4722¢"
short| 0.83 0.78 098 0.93 0.94 1.001.5"
300 K long | 0.47 0.16 0.23 152 183 1.70 19C°F
short| 0.094 0.096 0.12 0.097 0.094 0.086 5°
3[WKFR04]

bIn [WKFRO4], this is the overall relaxation time

¢[TTO3]

Table 7.1: Numeric values for the relaxation timescales extractedhftbe calculations and
comparison to experimental values.
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Figure 7.23: Population of the [°"" surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 300 K. The time axis is lodpanic. The numerically extracted
timescales are indicated by the dashed lines.

is expected as a consequence of the results found in Se8.cad.now be quantified: At
90 K, for seven layers, the relaxation is finished at 10 psh witreasing layer number, also
the relaxation takes longer. Numerical values for the timestants are now extracted from
these population evolution functions by fitting parts of thiection with an exponential. It is
obvious that especially for the fast short term time scélis, it a quite ambiguous task, as in
the beginning of relaxation, the shape of the function is-egmonential. Therefore, to impose
a certain clarity, the timescale is not fit at the beginningetdixation, but after an initialization
time, when the relaxation function has approximated to goe&ntial shape. The long-term
timescale is much easier to find, as here, the asymptotiovtmehieof the system towards the
equilibrium state is investigated and the asymptotic dimtuof a Boltzmanrike system at
low population density always approaches to an exponeméiedy. In Fig. 7.22 and 7.23, the
fitted timeconstants are indicated by the dashed lines. éNfbil 90 K, there is an excellent
agreement of the fit-exponentials to the population digtigm at a certain specific range, the
agreement is worse for the 300 K relaxation.

The resulting values of the relaxation are resumed in Taldleidd a logarithmic plot of
these timescales is realized in Fig. 7.1 (Ihs). The relesgmilts of the experiment [WKFR04]
are shown on the (rhs) of the same figure. In this publicatlmee timescales have been found:
a surface-surface scattering timescale of 1.5 ps, a bufkeRiscattering timescale of 220 ps,
and an exciton formation timescale of 5 ps. While the first awe related to phononic pro-
cesses and thus can be compared to our simulations, thetithedcale involves processes
neglected by our dynamical equations. From our data andahmparison to experiment, two
conclusions can be drawn: First, while the qualitative sifaation of the relaxation processes
is feasible, the quantitative interpretation is only reléafor the short-term timescale, as the
strong dependency on the layer number with an monotone ggotrend implies that the reso-
lution of the band structure points in the energy space {tbeage distance between two bands)
is still too low to resolve the phonon relaxation processimecurate way. Due to the nature of
the band structure and the location of the bottleneck-péads. 7.4.3), itis likely that the short
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Figure 7.24:1hs. Graphical representation of the relaxation timescaledxTal). The triangles
refer to the long term timescales, the circles to the shorescales, the red symbols are at a tem-
perature of 90 K, while the blue symbols are for the calcolagiat 300 Krhs: the interpretation

of experimentally observed results. From [WKFRO04].

time scale is associated to relaxation via optical phonatéle the long time scale is bound
to acoustical phonon processes. The short timescale porrds very well to the experimental
findings (as the accuracy of the experimental resolutioWKIFR04] is also limited for this
kind of timescale, and the number given from the experimemather the overall duration of
the fast relaxation than the exponential growth factor)e lamg timescale differs still by a fac-
tor of 3.5 from the experiment. Other open questions abauptionon relaxation timescales
are the effect of surface-related phonon processes, thesoaever expected to effectuate a
rather fast relaxation and the influence of quasi-partinkb@olaronic effects on the optical and
electron-phonon matrix elements, which are currently extgld, as well as the discussion of
other, perhaps more realistic surface reconstructions.

The second conclusion concerns the calculations at 300 ke, Hee experimental results
[TTO3] imply a relaxation on two timescales of basically 8@me magnitude as in the 90 K-
case, while we find in our simulations a much faster relaxadiod practically no slow relax-
ation timescale. A possible explanation of this discregasdhat at this temperature level,
the approximations made for our model system are no londigk. \Especially the broadening
of the distribution function with respect to the 90 K functibas a significant effect on the
relaxation dynamics of the bottleneck states, as, as it wasissed in Sec. 7.4.3, these states
are neither particularly populated, nor do they play a speoie in the relaxation process at
300 K: At room temperature, the lower bottleneck states apujated within 10 ps for sta-
tistical reasons, while the higher bottleneck states avéably depopulated fast through new
deexcitation channels. At last, this effect is a consegai@hthe focusing on the phonon relax-
ation inside the conduction band, which ends up in a moressru@physical final distribution
with a fixed number of electrons inside the conduction bartus Tould only be resolved by
also considering recombination processes to allow a ddatimu of the conduction band, e.g.
by excitonic scattering, or by spontaneous emission of.liBly such a depopulation, which is
expected on a 5 ps timescale, the bottleneck states wouldmportance as intermediate, slow
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scattering states, and it is likely that the timescalesd:bel reproduced. The extremely high
numerical effort to calculate a dynamical excitonic inti@n in a consistent way (using den-
sity matrix theory) makes it however actually very diffictdtimplement such a recombination
interaction in the given system.

Nevertheless, as the 90 K calculation leads to a fairly g@ydeanent of theoretical and
experimental data, we can conclude that we have shown assiictapplication of the whole
approach, although some of the approximations are quisgidral he strength of this method
of combining Density Functionaland Density Matrix Theonyis that other interactions (like
excitons or optical recombination) can in principle be ¢deaed in the dynamical equations,
and also some of the approximations have only been madedb eehigh level of simplicity
in this first-approach work. Therefore, it seems that theckasf the underlying processes
are already understood and can be explained by the integblagoustical and optical bulk
phonons, while a higher level of accuracy can only be reatlyetdking the electron-phonon
interactions more precisely (e.g. by applying a surfaceaph spectrum from an integrated
ab-initio calculation) and additional scattering meckaninto account.

7.4.5 Relaxation in real space

While the discussion of the relaxation process of the optigtal condition in Sec. 7.4 has
been elaborated mostly on the distribution of the poputatia thek and energy space, the
question about the initial and final distributions in reahep has been left open so far. By
performing a sum over the square modulus all conduction le@ctronic wave functions,
weighted by their specific population factor from the reti@ dynamics calculation, a dy-
namical picture of the non-equilibrium electron distribatin the real space can be calculated.

In Figs. 7.25 and 7.26, the real space distribution of forgeratures of 90 K and 300 K
is drawn for selected timesteps. As a basic result, thegrettion of the relaxation processes
introduced in Sec. 7.4.1 and 7.4.2 is confirmed: Initiallyf€Q) the electrons populate states
that are complete inside ti2#°"" band, and consequently, the electron distribution is elgtir
located in the within the first layers (on the Ihs in Figs. 7a2i6l 7.26). Then, when relaxation
proceeds (50 fs-2 ps), a fraction of the population is trenesf to bulk states and the electron
population reaches down to deeper parts of the structuehiing the back-end atoms. The
gravity of the population remains however centered at sarfas the biggest part of the pop-
ulation obviously scatters intraband. After 2 ps, the 90 kg (F.25) and 300 K (Fig 7.26)
pictures start to differ significantly: while at 90 K, the kuk depopulated quasi entirely at
10 ps (there still remains a population, which is below threghold of the isosurface) and the
electron distribution shifts back to surface along with progulation of the surface minimum
state, a part of the population remains in bulk for the 300 $ritiution. This is the effect of
the broader Fermi-distribution at the higher temperatwigich also leads to a population of
the bulk band minimum in equilibrium. At 90 K, very small difences are still observable
between 10 ps and 200 ps, here the slow relaxation timesocalesinto play, while all other
effects are rather determined by the faster relaxation.
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Figure 7.25: Isosurface plot of the electron density distribution foe #onduction band states

for a relaxation process after optical excitation. The ed#tion is achieved for a slab with 40

layers at a discretization @32 x 32 points at 90 K. The red isosurface corresponds to a density
of 10-%. In the background, the ground state population is showrhbygrey isosurface.
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of 108, In the background, the ground state population is showrhbygtey isosurface.




Chapter 8

Conclusion and outlook

From the application of the combined density-functional dansity-matrix theory formalism,
we have seen in Chapter 7 that a fairly good agreement of @aryhto the experiment is
obtained. Both the gualitative picture of the relaxatioradw/o-timescale process, where the
relaxation is influenced by intraband surface scatterirrgttie fast timescale and by bulk-
surface scattering via acoustical phonons, and a goodspamelence of the fast time-scale
is found. The divergence of the longer timescale betweeoryhand experiment needs not
necessarily to be a principal problem of the theory, as ttemgtdependency of the number of
layers implies that bulk effects are not sufficiently coesetl in the calculation and an even
bigger slab structure is needed to obtain a converged aiathleelong-term timescale. Under
the given conditions (90 K), also the negligence of the s@rjshonon modes appears to be a
constraint of secondary order, as the speed of the intfaegivand-scattering is quite similar
to the experimental value.

For 300 K, the results are not so coherent. While no big difiee is seen experimen-
tally to the measurements at 90 K, all timescales are mucérfasour simulation. While the
provenience of the faster timescales in theory can be utmdelrsas an effect of the broader
Fermi-distribution(which inhibits scattering to energetically low statesyl éime higher proba-
bility in the of the optical phonon due to tigose-distributionthe discrepancy to experiment
is probably based on the same effects: the formation drai-distributiondistribution is a
direct consequence of neglecting the recombination of wctiwh band electrons with the (in
this thesis not investigated) holes in the valence bandWKFRO04], a scattering channel via
a surface exciton is described. While at 90 K, the recomlzinatan be neglected due to the
sharp Fermi-distribution, this cannot be expected at 308nid,the complete dynamical picture
would only be seen by depopulating th&“"-surface-minimum state. The simplified phonon
spectrum can lead to similar effect in this context: whileapproximated the total spectrum
by two pure bulk modes, a detailed view might be importantterbulk-surface processes at
room temperature, as many phonon modes of the slab are fydbested between modes of
our two-mode model and are then activated by the higher teahpe.

All in all, the combination of density-functional and deysmatrix theory is successful
even with the given assumptions, as, in contrast to the algeroaches (Sec. 1.3, [ZBFKO05])
the results are physically reliable. A big advantage of ilmet and energy resolved simulation
is the big number of analyses that can be effected on the hugetity of information that
can be won from the timesteps, i.a. a time, energy lamnesolved interpretation (cmp. e.g.
Figs. 7.13-7.15) and even a retransformation to real spagessible. This allows especially a
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detailed investigation of the different phases of a saatjgorocess from the initial to the final
distribution.

In addition to the reapplication of an identical theory tmter material or to a different
surface reconstruction (e.g. ax4& reconstruction for the silicon (001) surface), there are
several possible avenues that a potential enhancemens dfidory can take:

* The implementation of a realistic surface phonon spectraaid be achieved by using
the frozen-phonorcalculation capabilities of th€hi nd-code or other codes. In the
same step, the calculation of corresponding deformatitenpials could be done. While
the technical implementation could be reached g@am c code has the ability to
cope with numerous phonon modes and deformation potentibésnumerical effort is
considerable for a structure of this size (40 layer slab).

« The consideration of quantum-correlation effects by dyically evolving the polariza-
tions (Eq. (4.15)). If this is understood to allow inducedigsion of light, it requires a
complete dynamical treatment of the valence band (holerdigsg). The polarizations
can also be coupled to higher order phonon relaxation psesesUnfortunately, the
numerical effort is very high.

e The integration of electron-electron interaction in thaamical part of the approach,
at least for an excitonic interaction, would probably allawieeper investigation of the
final relaxation, as in the silicon (001) case, this is sugEbto interact with phonon
relaxation [WKFRO4]. This is only useful in combination tvian implementation of
hole dynamics, but it would introduce a genuine relaxati@cthanism from conduction
to valence bands. However, the high number of summatiorcésdin this interaction
provokes an unbearable effort, such that this could be aefippmed cumulatively.

< Dynamical treatment of phonon modes (in contrast to th@lkog to a bath) is in princi-
ple a possible extension to the dynamical equations. Inlibers(001) surface structure,
the implementation of such a mechanism would probably give insights, as the dimer
surface phonon mode is suspected to perform a hot, nondaquih vibration at high op-
tical excitations. Again, the high complexity of the regdtdynamical equations would
require to focus on single modes (as the expected dimergtiftiode at silicon (001)).
Another point of this technique is the unresolved thernadilan behaviour (as the dy-
namical evolution of the modes is primarily energy consegyi

< One could also think of approaches with a electron-pojmiadependent phonon poten-
tial. The density-matrix formalism is capable to cope witHamiltonian depending on
higher (> 1) order terms of the electronic polarizations, but the etgukresulting equa-
tions are accordingly complex with multiple sums on the sd&f the polarizations,
such that it is not likely that a analogous system of equat@@m be successfully derived
for a rather complex surface structure problem. Anothenapeestion is the deduction
of the interaction term in the dynamical Hamiltonian (Eq5@), as currently, no the-
ory exists to derive or model these interactions or at leastrhulate them by structure
investigation methods (e.g. density-functional theory).

* The phonon potential and the electron-phonon interaatimmd also be described by
a non-linear interaction of the phonons (e.g. dependingighen orders ofb,,). Of




course, even if this is more question of principle about thglieability of the (linear)
phonon mode theory, this could help to describe non-linffacts for the vibrations,
which is especially of interest for highly excited phonondes, e.g. for a dimer-tilting
mode. While the parametrization of such a potential usifigzen phonorcalculation
seems possible, the resulting equations are probablyy,dgatoo complex to be treated
with an arguable resource consumption.

As a final conclusion, we hope that we have convinced the reafdihe high potential
lying in this combination of theories and yet in the presdntesults. To move on, however,
it should be mentioned that, in addition to the time for inmpéatation and testing, any of the
points above requires at least a doubling of the computatipawer and of the disk space
consumption, at the current state of the art, the accumiltatee for a single run (of all steps)
in the highest discretization amounts to ca. 6 months of @Rid-and requires more than
100 GB of always accessible disk space.
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Appendix A

Summary of the employed physical
constants and parameters

symbol value description
a 10.21 bohr theoretical lattice constant
a 10.26 bohr experimental lattice constant
Egap 0.65 eV DFT-LDA indirect bandgap energy of Si
Egap 1.17 eV experimental indirect bandgap energy of Si
0.52 eV scissors shift
Ecut 10 Ry plane-wave cutoff energy
haePt 57 meV optical phonon energy (Si)
hc 6.1 meV/nm sonic speed (Si)
Dopt 40 eV optical deformation potential (Si)
Dacou | 7.37 eVA/nm acoustical deformation potential (Si)
hay 1.69 eV optical excitation frequency (experimental)
hax 1.07 eV optical excitation frequency (adjusted by scissors shift)
T 50 fs optical pulse duration
v two-dimensional vector
% three-dimensional vector
R; real-space lattice vectors
Gj reciprocal space lattice vectors
O imaginary part
K Cauchy principal value
Enx [eV] energy eigenvalue
fric [1/nm?] microscopical electron density
pk [1/nm?] microscopical polarization
prx [kgm] momentum matrix element
dnK [em] dipole matrix element
D [eV] electron-phonon coupling element
A(t) [Vs/inm] electromagnetic vector potential (Coulomb gauge)
E(t) [VIinm] electrical field (Coulomb gauge)
P(t) [V/inm] macroscopical polarization
a(w) [] optical absorption coefficient
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Appendix B

Tools for calculus

B.1 Equilibrium distributions

The equilibrium state of a quantum system is determinedgrdawgy to the nature of the in-
volved patrticles agermionsor bosons by the Fermi-Dirac-distributionor the Bose-Einstein-
distribution resp. Examples for fermions are the electrons, the holassemiconductor and
most elementary nuclear particles, while bosons are modiyaction particles as photons,
phonons and others. The two distributions are given by

fi=——e— Fermi-Dirac-distribution (B.1)
Bose-Einstein-distribution (B.2)

whereE; is the energy of the quantum statkg the Boltzmann constant afidthe temperature.
The chemical potential is a normation constant determinethé total number of particles
described by a distributiofy or n; for a given quantum system with the stafé¢is} of energies
E;. It can be interpreted as the energy necessary to add ampaittete to the system, and thus,
it only makes sense in systems where the particles have a mass

B.2 Functional Derivative

The functional derivative is an extension to the derivativdth respect to variables. At the
place of variables, its arguments are functions and it actsimctionals.

B.2.1 Definitions

The derivatived /d=(x) of a functionalF[=(x)] is given by

o [::(g)] — jim FEW) a0 X FE)] (©.3)
For a functional of the form
FIEM) = [y (=) ©.4)
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this expression can be simplified to

J(1EW) +asly-x) =)+ 0(a?) - [dyiE)
I|m = P
_ ‘9;(5;(5())), (B.5)
For a functional of the form
- [aiEw) (©.6)
this yields
7}
dy(f(E W) +ad (y—x)-= F(E W) +0(a%) - [ dyf(E(y)
%(X) [aviEm) = ygwo/ o= /

= —/dyé(y—x)aiy%f(?(y)) + boundary term

9 9FE ()

% 3200 (B.7)

B.2.2 Series expansion of functionals

Similar to theTaylor expansion series functionalF [=(y)] can be expanded into a series of
the function=(x), if the =(x) is assumed to be small. The basic derivation is in line wit th
definition of the Taylor expansion:

FI=X)]=F ‘ +/dx_ 5FX

::+ /dx_ /dx’ (x’) O+...
(B.8)

For an expansion of a functional of form

=) = [ ayf(=0).2 ), ®.9)

the expansion up to first order yields:

JEUEUEIEEYE ).

By reintegration and negligence of the boundary term of g#wsd term in the parentheses,

we finally obtain:
:F‘E +/dx_ ‘z /d_’ d’

The expressions for functionals of vectorial fields can bevdd accordingly.

(B.10)

(B.11)
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B.3 Lagrange Formalism for higher (infinite) order

The Lagrange equations for a fieldare derived by applying a variational principle to the imggd@f the Lagrange densit¥’ over a reference
volumeQ, which is also denoted as tlaetion integral

4 0y 4 4 0% 4 4 07
4 4 j j z . —
O 5/ d Xg /d —6_ E aall 6a|l_ Ell El ) illal 50,1(9|2_+ ++ I 1—(90'1 ilz an 6a|l(9|2 (9,2_] . (812)

i1=1io=1

By performing some partial integrations (note tha= = d;0=), this can be evaluated to

. oy n & ¥ _
AR TP B LT DB .Z h:- 5 502 19
+/ d4x[ z ail(—_esz) + Z a ( Z ﬁaaiz Z a, ( Z a.9%Z } (B.14)
Q i1=1 00i1: i1=1 ir=1 00ilai2: ir=1 i1=1 aa‘

Although in Eq. (B.14) only the very first terms of the parfiatiegration procedure are given, essentially all partsdbanot figure in Eq. (B.13)
can be brought into a “divergence-kind” form similar to tleents in Eq. (B.14). If we impose now that all variations of fied and its

derivations derivations at least to order 1 vanish on the boundary of the integrada{( ...d;, ,=|sq = 0), we can make use @aul?’ law, and

(B.14) vanishes completely.
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Eqg. (B.13) must be valid independently for alE, consequently théagrange equations
must hold:

oy & 07 0 4 4 0%
0="= -5 0,—+ 5Dy - ¥ 8,..0,—————. (B.15)
0= i;l Iladil: kZZ iZl ikzl . Ikaail"'aik:
For the usually used field equations, only the first two of #rens on the rhs of this equation
are employed, as the corresponding Lagrange densfieé® not contain field derivatives of
a higher order than 1. Nevertheless, for our consideraijphsnons in a periodic solid state
material), higher derivatives are used.




Appendix C

Summary of the computer programs
and results from the dynamical

calculation

C.1 Program structure

Pseudopotentials
f hi 98pp

fort.11
fort.12

Band structure on symmetry line

fhi98start
f hi 98md
start.inp coord. out
i np. nod fort.71
fort.11
fort.12
fort.72

Ground state run

fhig8start
f hi 98nd
start.inp coor d. out
i np. nod fort.71
fort.11
fort.12

Matrix element run control
scan.set up
scanstart

band structure run
no. of discretizations (4)

scaninfo. 1

scaninfo. 4
Scan_00??/ (28dirs.)

Band structure for matrix elements

fhi98start
f hi 98nd
start.inp coord. out
i np. nod fort.71
fort.11
fort.12
fort.72

Band structure for matrix elements
\ fhi98start
f hi 98nd

start.inp coord. out

i np. nod fort.71
fort.11

fort.12

fort.72

Matrix elements
matrix

scaninfo. 1 mat ri x. 8x8. nc
start.inp

fort.71

Matrix elements
matrix

start.inp

scani nfo. 4 nmat ri x. 64x64. nc
fort.71 (mult.)

Dynamic calculation
dynani ¢

mat ri x. 8x8. nc dynami c. data
phonon parameters|

Dynamic calculation
dynani ¢

nmat ri x. 64x64. nc dynami c. data
phonon parameters




C SUMMARY OF PROGRAMS& RESULTS

Description
progr am name
input file(s) output file(s)
input parameters

On the previous page, the programs used for the entire ingultation are illustrated with
their dependency. For each program, an overview of the mnpdibutput files is given (see top).
For the programs that have been developed from scratchnvitifs thesis, the description tag
is in boldface and the program name is underlined.

C.2 Summary of the computational results

On the following pages, an exhaustive collection of theltedar the simulation of the relax-
ation processes from the optical initial conditions is showhe plots are similar to Figs. 7.13-
7.18 for temperatures of 90 K and 300 K.




C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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90 K, lower discretizations




C SUMMARY OF PROGRAMS& RESULTS
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90 K, higher discretizations




C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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90 K, lower discretizations
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