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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Einfluss induzierter dipolarer
Wechselwirkungen auf die nichtgleichgewichts Strukturbildung in quasi
zweidimensionalen kolloidalen Systemen. Einerseits werden konkrete
experimentell realisierte Systeme theoretisch modelliert und mit Hilfe
von Computersimulationen der Brownschen Dynamik untersucht. Zur
Abschätzung von Phasenübergängen werden weiterhin Methoden der
Dichtefunktionaltheorie angewandt. Andererseits werden generische
Modelle entwickelt um grundlegende Mechanismen der Strukturbildung
zu indentifizieren. Die zugrundeliegenden experimentellen Systeme
entsprechen dabei zwei prototypischen nichgleichgewichts Prozessen:
einmal der Bahnenbildung (lane formation) und einmal der diffusions-
beschränkten Aggregation (diffusion limited aggregation).

Im Falle der Bahnenbildung werden Januspartikel in einem elektrischen
Wechselfeld betrachtet, die, je nach Feldfrequenz, entweder kettenartige
Strukturen oder einen Schwimmmechanismus ausbilden. Die theoretis-
che Untersuchung einer explizit dipolaren Modellierung zeigt sowohl die
Kettenbildung als auch neuartige Bahnenbildung im Schwimmerregime.
Zusätzlich wird ein abstrakteres Referenzsystem behandelt, welches es er-
stmalig erlaubt eine Verbindung zwischen spinodialer Entmischung und
Bahnenbildung herzustellen. Weiterhin wird hier zum ersten mal Bah-
nenbildung in Systemen mit attraktiven Teilchenwechselwirkungen un-
tersucht.

Der zweite Teil der Arbeit behandelt die feldgesteuerte Aggregation kol-
loidaler Teilchen im diffusionsbeschränkten Regime. Hier werden eben-
falls zwei Modellsysteme untersucht. Zunächst werden experimentell
beobachtete Strukturen analysiert und mit Ergebnissen aufwendiger
Computersimulationen verglichen. Zu diesem Zweck wird eine neue
Methode der Strukturanalyse eingeführt und angewandt. Die Experi-
mente wurden von Dr. Bhuvnesh Bharti an der North Carolina State
University durchgeführt und von mir analysiert. Die theoretischen
Betrachtungen erlauben hierbei, im Gegensatz zu den Experimenten,
das Aggregationsverhalten in Abhängigkeit der Partikeldichte zu un-
tersuchen. Ergänzend dazu wird ein zweites Modellsystem betrachtet,
welches auf generische Eigenschaften der feldgesteuerten Aggregation
ausgerichtet ist. Hier liegt besonderes Augenmerk auf dem Verhalten im
diffusionsbeschränkten Aggregationsregime. Letzteres ist ein ausgiebig
untersuchter nichtgleichgewichts Prozess, der hier um neue Facetten, also
feldinduzierete dipolare Wechselwirkungen, ergänzt wird.
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Abstract

This work investigates the influence of induced dipolar interactions on the
non-equilibrium structure formation in quasi-two dimensional colloidal
systems. On the one hand, theoretical models for certain experimentally
realized systems are developed and investigated by means of Brownian
Dynamics Simulations. To estimate phase transitions, basic density func-
tional theory methods are applied. On the other hand, also generic models
are developed with the aim to unveil the underlying mechanisms of struc-
ture formation and particle aggregation. The experimental systems moti-
vating this work correspond to two prototype non-equilibrium processes,
which are lane formation and diffusion limited aggregation.

In the case of lane formation it is Janus particles in AC electric fields
which are considered. These particles form either chain-like aggregates or
yield a self-propulsion mechanism, depending on the field frequency. The
investigation of an explicitly dipolar model shows chain formation as well
as lane formation in the self-propulsion regime. Additionally, a generic
system is considered, which allows for the first time to make a connec-
tion between lane formation and spinodal decomposition. Furthermore,
this is the first study on lane formation in systems with attractive particle
interactions.

The second part of this work investigates the field directed assembly
of colloidal particles in the diffusion limited aggregation regime. Again,
two model systems are developed and investigated. First, experimentally
observed structures are analyzed and compared to results from extensive
computer simulations. To this end, a new method for structure analysis is
introduced and applied. Experiments were performed by Dr. B. Bharti at
North Carolina State University and analyzed by myself. The theoretical
considerations allow, in contrast to experiments, to investigate the depen-
dency of the aggregation behavior on the particle density. Additionally, a
second model system, aiming on the generic features of particle aggrega-
tion is investigated. Here, special attention is paid on the diffusion limited
aggregation. The latter is an extensively studied non-equilibrium process,
which is extended by new features, namely the influence of field induced
dipolar interactions.
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1
Introduction

Controlling colloidal self-organization processes is nowadays a

promising route towards the design of new functional materials

and research aiming on unveiling the underlying mechanisms is a

rapidly developing discipline. The scientific understanding of col-

loidal self-assembly processes is mostly based on statistical physics,

thermodynamics and chemistry. Together, these fields of science pro-

vide great knowledge about the nature of particle interactions and

fundamental theories for the equilibrium phase behavior of particle

ensembles. However, the interplay between more complex particle

interactions and the out-of-equilibrium collective behavior lacks a

general understanding. In this introductory chapter, we review cer-

tain aspects of the present status of the scientific understanding of

complex collective colloidal behavior.

1.1 Complex Colloids

Colloidal suspensions are soft matter systems, consisting of nano to mi-
crometer sized solid particles, so called colloids, which are suspended in
a carrier liquid. A single colloid in a fluid of temperature T is subject to
thermal fluctuations and undergoes Brownian motion. Furthermore, the
thermal energy (≈ kBT with kB being Boltzmann’s constant) also results in
a threshold for the influence of interactions between colloids. It is only
colloidal interactions associated with energies ϵ ≳ kBT which are able to
dominate over thermal fluctuations.

An important strategy in exploiting colloidal self-assembly is based on
manipulating the way colloids interact and the variety of possible col-
loidal interactions is enormous. A simple categorization is given by their



1.1 Complex Colloids

Figure 1.1: (a) Microscopic photographs of rod-, pyramid and cube-like
colloids [1]. (b) Aggregation of permanent dipole particles in
an external field [2]. (c) Particles with an off-centered mag-
netic inlay forming reversible doublet and triplet aggregates
[3]. (d) Multivalent colloidal ’super-atoms’ with various num-
ber of patches [4]. (e) Experimental image of a magnetic Janus-
particles. Differences in the brightness of the hemispheres cor-
respond to different surface materials [5]. (f) and (g) tube-
like aggregates of magnetic Janus-particles in precessing fields
field conditions [6].

origins. There exist forces exerted on the colloids by the solvent, e.g.,
depletion forces, by pair interactions between the colloids, e.g., electro-
static interactions, and by external fields e.g., gravitation or electromag-
netic fields. An important example is the van der Waals interaction, which
results from the instantaneous microscopic polarization of colloids. Im-
portantly, van der Waals forces are present in every colloidal suspension
and the presence of these short-ranged attractive forces can lead to parti-
cle aggregation. However, many colloidal particles are negatively charged,
often by purpose, and repel each other due to electrostatic interactions.
This counter acts the attraction due to the van der Waals interaction and
can prevent aggregation. Thus, the stability of the homogeneous phase is
governed by the interplay between attractive and repulsive forces. Control
over this interplay can be achieved by screening the electrostatic interac-
tions via the concentration of electrolytes in the liquid [7].

2



1 Introduction

Anisotropic interactions

Of special interest however are particles with anisotropic interactions as
they allow an even richer phase behavior [8]. These anisotropies can be
introduced in different ways. One major example is changing particle
shapes towards elongated, rod-like objects. At high packing fractions, en-
sembles of such particles are named liquid crystals and form the basis for
many daily life technologies [9]. But also other shapes like stars [10], pyra-
mids or cubes have gathered attention [11, 1, 12]. Microscopic images of
such colloids are shown in Fig. 1.1(a).

Interaction anisotropies can also be achieved by functionalizing dis-
crete parts of the particle surface. An important approach is here to
build Janus-particles [13, 14], where a certain part of the particle sur-
face is coated by a material different from the particle body. Partially
metal-coated polystyrene spheres are one example [15] but also carbon-
coated [16] or amphiphilic [17, 18] and hydrophobic [19] Janus-particles
have been studied. In Fig. 1.1(e) a microscopic image of a cobalt coated
magnetic Janus-particle is shown [5]. Also functionalizing the particle
surface via polymers, i. e. via DNA, allows to introduce selective particle
interactions [20, 21, 8].

Such efforts also follow the idea to mimic the valency of atoms by col-
loids [4]. In Fig. 1.1(d) we show microscopic images of complex colloids
with DNA functionalized patches, which results in different interaction
valencies. Additionally, images of ’colloidal molecules’ assembled from
these particles are shown. Such systems are still accessible by microscopes
and easy to handle at room temperature but may be able to undergo ag-
gregation in analogy to atoms.

Dipolar interactions

Directional or anisotropic interactions can also be realized by introducing
magnetic and/or electric dipole and/or multipole moments which allow
selective particle bonding [22, 11, 5, 23, 24, 13]. In Fig. 1.1(b), a computer
simulation result showing chain formation in a system of permanent mag-
netic particles is presented [2]. Here, fine particle chains are oriented
along an external magnetic field, which is an example for the general
property of dipolar particles to orient along fields and to form chains [22].
Additionally, colloids with a dislocated permanent magnetic interaction
site are shown in the microscopic image Fig. 1.1(c). These particles are
able to form reversibly self-assembled non-linear aggregates, which addi-
tionally can be tuned by external fields [3].

Such complex dipole particles allow a variety of self-assembled struc-
tures [11], from field directed networks [25, 26], staggered chains and
pseudo-crystalline states [15] to compact clusters with strange magnetiza-
tion properties [5, 27], or magnetic tubes [6] as shown in Fig. 1.1 (f) and (g)
for magnetic Janus particles in experiment and simulation, respectively.

3



1.2 Active Matter

Within this class, particles with field-induced dipolar interactions [10,
24, 28, 25, 15, 26] are especially interesting because switching the fields on
and off can be equivalent to switching the particle interactions on and off.
This means that aggregation mechanisms [29, 30] can be ’dialed in’. Fur-
thermore, the orientation of inductive fields may be used to direct particle
aggregation [31, 25, 28, 15, 26, 32, 33]. Exemplary, we show in Fig. 1.3
microscopic images of metallo dielectric Janus particles (a). Under the
presence of an external electric field pointing vertically here the particles
are (b) aggregated into staggered chains at low density [15] and (c) form
percolated networks at higher density [26].

In general, recent experimental progress in the synthesis and directional
binding of nanometer to micrometer sized patchy and anisotropic parti-
cles makes possible the assembly of colloidal structures with multiple di-
rected bonds [14, 13, 4, 34]. In consequence, such directed self-assembly
processes may be exploited for the formation of new functional materi-
als with specific and/or adjustable properties. Hence, understanding the
interplay between externally induced particle properties, external fields
and thermodynamic conditions, e.g., temperature, is of fundamental in-
terest in modern material science, but also from a statistical physics point
of view.

1.2 Active Matter

In recent years the design of active self-propelling colloidal particles has
attracted a lot of attention [35]. Literature partially uses the terms ’self-
propelling’ and ’active’ as synonyms [36]. However, self-propelling par-
ticles are a subcategory of active particles. Generally speaking, active
particles transform and dissipate energy to pertain some sort of (complex)
non-equilibrium behavior, while self-propelling particles generate trans-
lational motion. The energy fueling the self-propulsion can be harvested
from the environment or stored inside the particle. An example for har-
vesting active systems is protein machines [37, 38], which consume adeno-
sine triphosphate (ATP) from the solvent and catalyze a chemical reaction.
The energy associated with this reaction can then be used to perform con-
trolled motion.
Of special interest here are self-propelling colloids which perform a run
and tumbling motion [39], where the direction of motion is subject to
(rotational) diffusion. This in contrast to the case of other motile non-
equilibrium systems [40] e.g., field driven particles [29, 41], particles with
enhanced diffusion in external fields [2, 42] or colloids under shear [43].
Here it is not the colloids which consume energy and transform it into mo-
tion by some internal mechanism; rather the colloids are passive subjects
to external conditions.
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Figure 1.2: (a) Magnetically self-assembled single flagella swimmer [44].
(b) Complex ’snake-swimmer’ composed of magnetic chains
attached to a gold bead [45]. Both swimmers (a) and (b) require
an external actuation of the flagella-like parts via alternating
magnetic fields. (c) Phase separation into a clustered and a di-
lute phase in a system of self-propelling repulsive spheres in
two-dimensions. Left computer simulation, right microscopic
image from experiment [16]. (d) Simulated transition towards
a laned state in two-dimensions [46]. Darker particles move
downwards with increasing velocity from left to right.

1.2.1 Colloidal self-propulsion

Several colloidal self-propulsion mechanisms have been proposed and in-
vestigated in experiment [47]. Some of the presented micro swimming
devices are larger aggregates of i.e., magnetic colloids (see Fig. 1.2(a) and
(b)), which propel by means of a periodical mechanical deformation of
flagella like sub structures [48, 44, 45]. The mechanical deformation is
fueled by external fields and requires explicit control by humans. Also
active liquid crystals have gather attention [49, 50].

Other swimmers are essentially Janus particles, where a certain part
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of the colloid surface is influencing the solvent and generating some sort
of gradient. This can be done by an asymmetric chemical reaction [51,
16, 47] of e.g., a metal coated surface part, which locally catalyzes the
decomposition of a dissolved fuel. This chemical reaction and the energy
associated with it pertains a chemical gradient at the particle surface and
fuels the propulsion.

Also light induced chemical reactions [52] or localized heating (self-
thermophoresis) [53, 16] of the coated hemisphere have been used to pro-
pel Janus-particles; In the latter setup, the temperature gradient induces
complex asymmetric solvent flows around the particle which effectively
exert a force on one of its hemispheres. Another microswimming Janus
particle, which will be investigated in detail in Chapter 4, is fueled by an
uni-axial electric field inducing dipole moments of different strength in
its two hemispheres [15]. Again, this results in complex solvent flows ef-
fectively propelling the particle [54]. In the investigated two-dimensional
set up, the external field orientates these particles, thereby restricting the
propulsion to the directions perpendicular to the field vector [55].
Importantly, many of these experimental studies are concerned with the
propulsion mechanism of a single particle rather than with the collective
behavior of large numbers of these particles.

1.2.2 Collective behavior of active colloids

From a theoretical point of view, the collective behavior of active colloids
has been studied extensively [56, 57, 35, 58]. Basic model systems of ac-
tive particles [59, 57, 60, 61] have gathered a lot of attention. The fa-
mous Vicsek-model [59] and its derivatives [62], where the particles have
a mechanism which tries to align their propulsion directions, lead to the
idea of a motility induced non-equilibrium pseudo-phase transition [63]
as an analogue to the ferromagnetic transition in the Ising model. Also
motility induced crystallization phenomena [64, 65, 66], swarm forma-
tion [60], turbulence and vortex arrays [67] have been reported. Very re-
cently, experimental and theoretical evidence of motility induced phase
separation processes in systems of self-propelled rods, so called active ne-
matics [49], and discs without an alignment mechanism [68, 16, 69, 70,
71, 72] and even without attractive forces has been found [73, 58]. Im-
portantly, such phase separation is unknown in equilibrium systems of
hard discs. In Fig. 1.2(c) experimental and simulated phase separated
states of solely repulsive spheres in an quasi two-dimensional setup are
shown [16].

Approaches to describe such phenomena often try to map the non-
equilibrium behavior onto the equilibrium behavior of an effective refer-
ence system. This is done by incorporating the self-propulsion mechanism
into effective potentials [69, 74] or by extensions of thermodynamic theo-
ries i.e., an effective Cahn-Hillard equation [75] or non-equilibrium equa-
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tions of states [76]. Still, a well founded theory for the (pseudo) phase
behavior of active particles has not been established by now [77] and the
effective thermodynamic descriptions and/or mappings onto passive pair
potentials have been challenged recently [78]. For particles with more
complicated interactions i.e., dipole-dipole interactions [79], theoretical
studies are rare. The above mentioned dipolar Janus swimmers [55] are
therefore of special interest; as they are able to change their direction of
motion, although only perpendicular to the external field, they can be seen
as self-propelling particles with complex anisotropic dipolar interactions.
In principle, they form a binary mixture of dipolar self-propelling parti-
cles, whereas particles of different species are moving in opposite direc-
tions. This general set up has previously been investigated for repulsive
spheres and shows another motility induced non-equilibrium phase tran-
sition known as laning [80].

1.2.3 Lane formation

Lane formation is a prototype of a non-equilibrium self-organization pro-
cess, where an originally homogenous mixture of particles (or other types
of ”agents”) moving in opposite directions segregates into macroscopic
lanes composed of different species. This ubiquitous phenomenon occurs,
e.g., in driven binary mixtures of colloidal particles [81, 82, 80], migrat-
ing macro-ions [83] or in binary plasmas [84, 85, 86]. The latter have
been investigated under microgravity conditions on board of the Inter-
national Space Station [87, 88]. In addition, also self-propelling systems
with aligned velocities such as bacteria in channels [89] and humans in
pedestrian zones [66] or swarms of ants [90] undergo lane-formation. In
Fig. 1.2 (d) the transition towards a laned state in large scale computer
simulations of soft discs driven in opposite directions is shown. With in-
creasing propulsion velocities, from left to right, lane formation becomes
more and more pronounced.

In particular, studies of charged colloids have revealed many funda-
mental aspects of laning such as the impact of density [91], the occurrence
of a freezing process [65], the role of hydrodynamics [92], the accompa-
nying microscopic dynamics (particularly, the so-called dynamical lock-
ing) [82], and the impact of anisotropic friction [93].

All of these models involve isotropic and repulsive interactions between
the colloidal particles. Then, the laning transition in two-dimensions is a
smooth crossover and subject to finite-size effects [46].

Also lattice models have been investigated from a solely theoretical
point of view [94]. Furthermore, the laning transition seems to bear some
similarities to equilibrium decomposition processes in binary mixtures of
(attractive) colloidal particles. In Chapter 3, results establishing a connec-
tion between lane formation of dipolar Janus swimmers and equilibrium
phase separation processes are discussed.
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Figure 1.3: Experimental image of (a) metallo-dielectric Janus-particles.
Differences in the brightness of the hemispheres correspond
to different surface materials. (b) Microscopic photograph of
staggered chains and (c) percolated networks. Images taken
from [26].

In general, recent progress in colloidal chemistry has generated a va-
riety of complex, anisotropic particles (see, e.g., [14, 13, 3]), which can
perform controlled translational motion in an external field [55, 26], like
simple charged colloids, but display complex self-assembly behavior al-
ready in equilibrium [26, 95]. In driven ensembles of such particles one
may therefore expect a wealth of new phenomena induced by the interplay
between self-assembly due to pair-interactions, on the one hand, and dy-
namical self-organization processes such as laning, on the other hand. The
consequences are so far only poorly understood, contrary to the widely
studied case of active (self-propelled) particles [40, 16, 70] with more
simple isotropic interactions. Hence, dipolar microswimmers are impor-
tant model systems for the interplay between laning and non-trivial self-
assembly.

1.2.4 Self-propelling metallo-dielectric Janus particles

The experimental dipolar Janus swimmers considered here consist of a
polystyrene sphere with radius ≈ 5µm and one hemisphere partially cov-
ered by a gold patch (see Fig. 1.3(a)). Dispersed in weakly ionized water
and confined between two glass plates a quasi two-dimensional geometry
is realized. Application of an in plane AC-electric field Eext induces effec-
tively multipolar moments in the metallo-dielectric colloids and aligns the
plane between their hemispheres along the external field, which has been
observed in experiment and shown theoretically by electrostatic calcula-
tions of a single particle in an electric field [15, 55]. Interestingly, under
reasonable experimental field conditions, the energy difference between
an field aligned orientation and an orientation rotated by 90°around the
out-of-plane axis (perpendicular to Eext) is in the order of ≈ 100kBT [15].
This large energy difference effectively suppresses any rotations of the par-
ticles around the out-of-plane axis. In a truly two-dimensional setup this
means that particles have a fixed orientation, with the gold patched part
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Figure 1.4: Self-propulsion of Metallo-dielectric Janus-particles: (Left)
Sketch of a single particle and the distribution of charges on
its surface. The solvent flows generated by these distributions
and indicated by arrows result in a propulsion force perpen-
dicular to the external field E. (Right) Photograph from exper-
iment visualizing how particles with opposite orientation of
the gold-patched hemisphere move under presence of the ex-
ternal electric AC-field E. Images taken from [55].

pointing either to the left or to the right, as depicted on the left side of
Fig. 1.4. Depending on the frequency f and strength Eext of the exter-
nal field different structures and particle behaviors can be observed. At
high frequencies (f > 10kHz) and low field strengths particles form stag-
gered chains (see Fig. 1.3(b)). Also colloidal network formation has been
reported for the high frequency regime in experiment [26] and theory [95]
(see Fig. 1.3(c)). Here, particles arrange into chains along and perpendicu-
lar to the electric field. Most important to us, increasing the field strength
and keeping f < 50kHz leads to the appearance of a phenomenon called
induced-charge electro-phoresis (ICEP) [55]. There particles become self-
propelled by converting field transmitted energy into kinetic energy. An
explanation for this mechanism is given in [54, 55] and assumes that Eext
induces electric dipole moments in the particles and polarizes the electri-
cal double layer around them (see Fig. 1.4). The polarized charge distri-
bution in the electrical double layer becomes inverted in each half cycle
of the alternating external field and forms, for a homogeneous particle,
a quadrupolar flow pattern [96]. This pattern pertains an inflow of fluid
along the field orientation and an outflow perpendicular to the field. How-
ever, here it is Janus-particles which are considered, and as the induced
charge in the gold covered hemisphere is stronger (due to the higher po-
larizability of the gold patch), a larger amount of fluid is flowing around
the metallic hemisphere. Therefore a larger net ejection of fluid is present
at the metallic side of the particle and in consequence, a net force is act-
ing on the gold covered hemisphere. These complex solvent flows effec-
tively generate a propulsion force orthogonal to the external field in the
direction of the dielectric hemisphere. The theoretical derivation of the
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1.3 Non-Equilibrium Aggregation of Colloids

velocity of such a dielectric Janus particle undergoing ICEP results in a
velocity [55, 54]

v =
9
64

ϵσE2ext
η(1− δ)

(1.1)

whereas the parameter δ relates to the capacitance of the double layer, Eext
is the amplitude of the external field, σ is the particle diameter, and ϵ and
η are the permittivity and the viscosity of the bulk fluid, respectively.
Compared to other self-propelling particles these are high velocity parti-
cles moving with up to 30µm/s quadratically depending on the external
field strength and linear on the particle size, as determined from exper-
iments and in semi-quantitatively agreement with theory [55]. Interest-
ingly, we can see that the dipolar coupling energy is proportional to E2ext
and thus also v.

Finally, these particles can be seen as active microswimmers because
they transfer externally supplied energy into kinetic energy while being
able to change their direction of motion by rotations around the field ori-
entation Eext.

1.3 Non-Equilibrium Aggregation of Colloids

Besides the equilibrium aggregation of complex colloids and the collec-
tive behavior in active systems, also the non-equilibrium aggregation of
colloidal particles is of major interest. In contrast to active systems, par-
ticles do not consume energy to pertain their motility, but rather un-
dergo aggregation processes which prevent relaxation into the equilib-
rium state [97]. Several non-equilibrium situations are possible, for exam-
ple uni-directional field controlled assembly [26, 95, 40, 98] or particle de-
position of colloids [99] and/or macromolecules [100] on surfaces. Inter-
estingly, permanent magnetic particles in rotating magnetic fields [6, 41]
bear some similarities to active systems, as here the particles are able to
synchronize their rotational motions to each other without following the
rotation of the field directly. This synchronization then leads to aggrega-
tion of complex structures like layers [41] or tubes in case of Janus parti-
cles [6].

1.3.1 Disordered solids - glasses and gels

Of special importance to the understanding of non-equilibrium aggre-
gates are disordered solids like glasses and gels. Glasses are high den-
sity arrested states, where an effect called caging traps the particles in,
from equilibrium statistical physics point of view, unfavorable disordered
configurations [97]. The arrested state is a result from a ’historical’ pro-
cess (quench), where a liquid is cooled fast enough to avoid crystalliza-
tion and particles get stuck in liquid-like arrangements. The caging is
reflected by tremendously slow relaxational dynamics. For example, the
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time a particle needs to travel a distance equal to its diameter can be in-
creased up to 15 orders of magnitude by only slightly decreasing temper-
ature [97]. Glasses are realizable in systems of solely repulsively interact-
ing discs. However, there exists also a re-entrance effect of the glass phase
by increasing temperature [97] if short-ranged attractive interactions are
present.

Another important subset of the many classes of self-assembled non-
equilibrium structures are gels. Although there is an ongoing debate on
how to define a gel properly [101], it is generally assumed that the forma-
tion of a gel requires some sort of attractive particle interactions. Here, the
term gel is used for colloidal systems in a disordered state at low volume
fractions, with very slow relaxational dynamics. Additionally, stable per-
colated colloidal networks are generally considered to be the underlying
micro-structures of gels. Such system-spanning cross-linked particle clus-
ters may already result from simple isotropic attractive interactions, like
the well known Lennard-Jones interaction. However, many patchy parti-
cle models strongly favor chaining and branching [102, 103, 104, 105] of
aggregates and therefore structures which are occupying larger parts of
the accessible space. This increases the systems capability to form cross-
linked particle networks already at low volume fractions and hence gela-
tion. Importantly, in the basic model for a two-dimensional ferrofluid [22]
(dipole-dipole interaction due to centered point dipole moments in hard-
discs), particles favor chain and ring-like structures rather than branch-
ing. In consequence, it is unclear whether such ferrofluids undergo gela-
tion [106, 107, 108, 109]. Nevertheless, more complex dipolar models [26,
95, 105, 108] form gels. Interestingly, many generic models for patchy par-
ticles have been proposed [110, 8, 105, 103, 111]. Such approaches often
aim on a conceptional understanding of network formation and gelation
of patchy particles and allow a theoretical understanding of the compe-
tition between condensation and chaining/branching e.g., via Wertheim
theory [105, 101]. In fact, the formation of a (non-equilibrium) gel1 is
intimately related to the equilibrium phase behavior of the system and of-
ten seen as an arrested phase separation process created by a quench into
the coexistence region. Instead of undergoing the full liquid-gas phase
separation or a spinodal decomposition, initially formed (chain-like) con-
densates undergo a freezing process [112]. This is because interactions
become much stronger than kBT , preventing particles from dissociating
due to thermal fluctuations. In Fig. 1.5 (b) and (c) experimental images
of polyethylene (PMMA) polymer mixtures in a state of arrested phase
separation are shown [112]. On the right (Fig. 1.5 (c)), discrete frozen
clusters are not able to percolate, while on the left (Fig. 1.5 (b)) a single
percolated cluster exists at slightly higher volume fraction and forms a
gel. Still, single PMMA-particles are present, corresponding to the par-

1This holds only for non-equilibrium gels. For a discussion of ’equilibrium routes’ to-
wards gelation see [101].
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ticle poor phase. The phase separation process is arrested and therefore
irreversible. It leads to a pronounced hindrance of structural reconfigu-
ration and, given the volume fraction of colloids is not too small, perco-
lation becomes possible but is mediated by clusters rather than by single
particles [101, 113]. Finally, such gels undergo aging processes and the
micro-structures may collapse over long times [101, 114, 115].

Figure 1.5: (a) Tunable field directed assembly of chain-like and network-
like fractal aggregates in binary mixtures of magnetic colloids
and the corresponding fractal Dimension Df as function of an
effective field-strength. [98] (b) Percolated cluster of a chemical
gel at slightly higher volume fraction than (c) where discrete
frozen clusters are not able to percolate [112]. Fractal Particle
aggregates from computer simulations of (d) classical DLA and
(e) slippery DLA [116].

1.3.2 Diffusion limited aggregation

An ideal route towards gelation is described by the concept of diffusion
limited cluster aggregation (DLCA), where each particle or cluster colli-
sion leads to the formation of a rigid and essentially (on the timescale of
the experiment) unbreakable bond with fixed spatial orientation. Clas-
sically, single particles undergoing Brownian motion (DLCA) are consid-
ered but also the aggregation of ballistically moving particles [117, 118]
has gathered attention. Systems with DLCA undergo irreversible dynam-
ics and form fractal aggregates with specific fractal dimension Df ≈ 1.71
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in continuous two-dimensional space [119, 120]. Such colloidal systems
are considered to be ’chemical gels’, while at higher temperatures these
systems become ’physical gels’ where single particles and larger substruc-
tures start to connect and disconnect frequently. This strongly affects (in-
creases) the fractal dimension [121, 122] and finally allows the system
to achieve its equilibrium state. Interestingly, it turned out that the ag-
ing properties of a chemical gel, an ongoing compactifaction with time,
can be mapped onto the temperature dependence of the compactness of a
physical gel, at least for low valency patchy particles [121].

A recently introduced new type of DLCA, which accounts for local re-
arrangements via flexible bonds, is slippery diffusion limited cluster ag-
gregation (sDLCA) [123, 116]. Slippery bonds allow particles to move or
rotate around each other as long as they stay in contact, meaning that
bonds are still unbreakable but can change their orientation. This addi-
tional degree of freedom generates, at least in three-dimensional simu-
lations [123, 116], aggregates of the same fractal dimension as classical
DLCA but with a larger coordination number. The latter means, that the
local structure of aggregates is more compact while the global structure
on large length scales remains in principle the same. In Fig. 1.5 (d) and
(e), simulated slippery and classical DLA fractals are shown, together with
images of their local structure in the insets.

DLCA processes have been studied extensively in systems with isotrop-
ically attractive particles [124, 119] but also in systems with patchy parti-
cles bearing permanent and/or locally restricted interaction sites on their
surfaces [121, 125, 126, 127, 128, 129]. In the latter, the spatial orien-
tations of interaction sites can either be free to rotate [127, 121, 129] or
fixed in space [130, 131, 98, 95]. When the orientations of interaction
sites are fixed in space, the associated ’chemical gels’ undergo anisotropic
diffusion limited aggregation which yields a fractal dimension of Df ≈
1.5 [132, 130, 131, 98, 129], lower than for the isotropic case. This situa-
tion occurs, e.g., in lattice models [132, 130, 131], where motion is natu-
rally restricted to certain directions. However, there is also the possibility
to direct the DLA process by e.g., external fields [98, 33]. In Fig. 1.5 (a),
microscopic images of fractal structures stemming from a field directed
diffusion limited aggregation process are shown. In this system it is a
mixture of para and diamagnetic colloids immersed in a ferrofluid and
exposed to an uniform external magnetic field. The red curve gives the
dependency of the fractal dimension on an effective field strength, which
is controlled by the concentration of the ferrofluid. Here, the shape of the
two-dimensional aggregates can be tuned, but only in one direction. A
similar situation is given for the networks formed by the metallo-dielectric
Janus-Particles presented in Fig. 1.3(c), where chaining along the field is
tunable by the field strength, while chain formation and percolation per-
pendicular to the field is determined by the same field strength. Starting
from these systems it is of great interest to design and investigate a system
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allowing individual control over the chaining properties in several direc-
tions. In the following we will present an experimental setup allowing
field controlled bi-directional chain and network formation.

1.3.3 Aggregated networks of superparamagnetic
colloids

An experimental quasi two-dimensional system of suspended colloidal
particles, each composed of super-paramagnetic iron-oxide aggregates
embedded in a polymer matrix, was designed to undergo field directed
colloidal aggregation and has been investigated experimentally by Dr. B.
Bharti [25, 133] at North Carolina State University in the Group of Prof.
Dr. O. D. Velev.

The experimental setup is shown in Fig. 1.6(d) and consists of two gold
electrodes for the application of an AC-electric field (E) and a pair of elec-
tromagnets capable of generating an uniform magnetic field (H). The rel-
ative angle between the external electric and magnetic fields is kept at
constant 90◦ such that the electric field is orthogonal to the magnetic field
(E ⊥ H) and both lay in the assembly plane. The change in the spatial
distribution of the particles upon the application of fields was monitored
perpendicular to the assembly plane by a bright field microscope (Olym-
pus BX-61). The directional assembly of colloids in external electric and
magnetic field was performed using an aqueous dispersion of electromag-
netoresponsive microparticles. The microspheres (COMPEL TM , Bangs
Labs Ltd.) were composed of superparamagnetic nanoparticles embed-
ded in a matrix of polystyrene with diameter σ = 5.7±0.2µm. The particles
were strongly negatively charged (pH < 2) because of surface functional-
ization with -COO - groups and hence stable in their aqueous dispersion.
The superparamagnetic microparticle dispersion was transferred to the
assembly chamber on the experimental set-up and different field configu-
rations were applied.

The external field driven assembly of colloids is then governed by the
field-induced dipolar interactions between the particles. Here, two non-
interacting independent electric and magnetic dipoles are induced in each
particle. This configuration of the particles can be termed as double-
dipolar state, where each dipole selectively interacts with the dipoles of
same kind belonging to different particles (electric with electric and mag-
netic with magnetic). The crossed external electric and magnetic fields,
oriented in plane but perpendicular to each other, enforce a directed self-
assembly process of two-dimensional single-particle chain networks along
the field directions. Experimental photographs of the resulting network
structures are shown in Fig. 1.6 (b) and (e). Additionally, chain like aggre-
gates when only the electric (Fig. 1.6(a)) or magnetic (Fig. 1.6(c)) field is
present are shown. Interestingly, chain formation due to the presence of
only the magnetic field is different to the case when only an electric field is
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Figure 1.6: Field directed aggregation of superparamagnetic polymer par-
ticles under the presence of (a)/(c) electric/magnetic, (b) and
(e) crossed electric (vertical direction) and magnetic fields (hor-
izontal direction). Then, particles form rectangular network-
like structures. (d) Sketch of the experimental setup used
for assembling superparamagnetic microspheres by orthogo-
nal AC-electric and constant magnetic field.

present. In general, magnetically assembled chains are more compact and
partially staggered. This phenomenon will be discussed in more detail in
Sec. 3.4 and Sec. 5.1.3.

1.4 Outline of this Thesis

The overall goal of this work is to enhance the understanding of how direc-
tional interactions in general, and induced dipolar interactions in partic-
ular, effect prototype non-equilibrium self-organization processes. In de-
tail, the interplay between complex self-assembly due to anisotropic pair
interactions and lane formation as well as diffusion limited aggregation
is investigated. In both cases, extensive Brownian dynamics simulation
studies are performed to understand the self-assembly processes. Using
models of different complexity we are able to establish quantitative con-
nections to experimental results as well as conceptional explanations of
the observed assembly processes. Besides that, simple tools from density
functional theory are applied to estimate the onset of spinodal decom-
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position. This is of special interest as the non-equilibrium pseudo-phase
behavior turns out to be tightly related to the equilibrium phase behavior
of the systems.

The rest of this work is organized as follows.
First, basic concepts of the theory of simple fluids are briefly intro-

duced in Chapter 2. In Chapter 3 we develop several different models
to describe and investigate particular colloidal systems in experiment. We
start with the dipolar microswimmers presented in Sec. 1.2.4 and intro-
duce the double dipolar particle model (DDP-model), which is a complex
model with anisotropic (dipole-dipole) interactions. Additionally, we in-
troduce a model of reduced complexity for which the equilibrium phase
behavior is well known. Then we turn towards models for superparam-
agnetic particles in crossed fields as described in in Sec. 1.3.3. Again, we
first present a complex model treating the anisotropic dipole-dipole in-
teractions in detail and then turn towards a complexity reduced generic
model, which allows to tune the anisotropy in pair interactions. Addi-
tionally we introduce a new technique which allows structural analysis
of colloidal network structures on a particle resolved level. In Chapter 4,
lane formation of dipolar microswimmers is investigated. Special atten-
tion is given to the connection between lane formation under the presence
of dipolar interactions and phase separation in the equilibrium system.
Chapter 5 investigates the diffusion limited aggregation of superparam-
agnetic colloids in crossed magnetic and electric fields. The main ques-
tion here is how the induced anisotropies change the structural properties
of the networks. Besides, a close connection of the simulated data with
experimental data is presented which allows to map out a state diagram
for different field conditions. Finally, Chapter 6 is giving a summary and
an outlook and in the appendix methodological details on the computer
simulations are presented.
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2
Theoretical Concepts and

Methods

In this chapter we first start with a microscopic/particle based de-

scription of colloids dispersed in a liquid. This description results

in a system of coupled differential equations, the so called Langevin

equations. Due to the complexity of the considered many-particle sys-

tems, our investigations are based on computer simulations, which are

a powerful tool to study colloidal systems on a single particle re-

solved level. To this end we introduce the methodology of so called

Brownian Dynamics (BD) Computer simulations in the appendix.

A second approach towards a description of colloidal ensembles is

given by Density Functional Theory (DFT). This method yields a way to

find the equilibrium density distribution of a colloidal system, which

allows analysis of its equilibrium phase behavior. In detail, we intro-

duce some basic concepts and methods from DFT, which are necessary

to understand the occurrence of phase transitions and phase coex-

istence. This chapter ends with an approximated expression for the

isothermal compressibility, which later serves as a tool to estimate

the occurrence of phase instability.



2.1 Langevin Equation

2.1 Langevin Equation

A material of micron-sized particles dispersed in a liquid is usually called
a colloidal suspension. Each of the colloidal particles is subject to several
forces which are imposed on it by the solvent and by other colloids. The
forces emerging from the solvent are two-fold and result in dissipation
due to frictional forces and in diffusion due to thermal fluctuations.

First, solvent molecules hitting a colloid transfer momentum on it. This
happens according to their mean kinetic energy d × 1/2kBT , where kB is
Boltzmann’s constant, d the spatial dimension of the system and T its
temperature. Usually it is not necessary to resolve the momentum trans-
fer from each solvent particle onto each colloid explicitly. A statistical
description turns out to be sufficient. The widely used approach is to de-
scribe the momentum transfer onto the colloid i by an effective random
force FDi and an effective torque TD

i , which can be seen as vector sums over
all forces and torques resulting from single hitting events. Secondly, the
solvent leads to a frictional force FFi and a frictional torque TF

i opposing
translation and rotation of the colloid, respectively. Finally, the colloids
also interact with each other according to some forces Fi and torques Ti

stemming from pair interactions, e.g., magnetic interactions. Note that
these forces can also incorporate external influences stemming from, e.g.,
an electric field. Adding all these forces to newton’s equations of motion
yields for a particle i of mass m the so called Langevin equations

mr̈i = Fi −γT ṙi +FD (2.1)

Iω̇i = Ti −γRωi +TD (2.2)

whereas γT and γR are the translational and rotational friction coeffi-
cients, respectively. The stochastic contributions obey Gaussian distribu-
tions with mean

< FD(t) >= 0 (2.3)

< TD(t) >= 0 (2.4)

and with variance

< FDi (t) ·FDj (t′) >= 2kBT γT δijδ(t − t′)1 (2.5)

< TD
i (t) ·TD

j (t′) >= 2kBT γRδijδ(t − t′)1. (2.6)

Usually Eqs. [2.1,2.2] are written in terms of translational and rotational
diffusion coefficients DT and DR. These coefficients are defined by a fluctu-
ation dissipation theorem (FDT) relating temperature and friction via

DT = kBT /γT (2.7)

DR = kBT /γR. (2.8)
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and can easily be substituted in Eqs. [2.1,2.2,2.5,2.6]. Due to the cou-
pling between random forces and torques to the friction coefficients in
Eqs. [2.5,2.6], thermal fluctuations effectively compensate for energy
losses due to dissipation in this framework. The natural timescale on
which a single colloid diffuses a distance equal to its own diameter σ is
then given by the so called Brownian time scale

τb = σ2/DT . (2.9)

2.1.1 Ovderdamped limit

The Langevin equations (Eqs. [2.1,2.2]) are second order differential equa-
tions accounting for inertial effects. In colloidal systems however, dissipa-
tion of kinetic energy due to friction is usually so strong that once a mov-
ing particle experiences no force its (translational) motion with respect to
the solvent will stop on a very short time scale τm = m/γT [7]. Relating the
time τm, during which momenta of particles relax, to the Brownian time
τb allows to estimate the influence of inertia on the particle dynamics. To
this end, the translational Langevin equation1 can be rewritten

τm
τb

r̈i =
1

γT τb
{Fi −γT ṙi +FD} (2.10)

As τm is proportional to the mass and hence to the particle volume V ∝ σ3
it decreases faster with smaller particle diameter than the Brownian time
scale τb, which is proportional to the particle surface S ∝ σ2. It turns out,
that for typical colloidal systems the coefficient on the left hand side of
Eq. [2.10]

τm
τb
≪ 1 (2.11)

becomes very small2. This situation corresponds to the so called over-
damped limit of the Langevin equation, where the inertial parts in
Eqs. [2.1,2.2] become very small and can be neglected. Please note, that in
this limit (O([τmτb ]0)) the equations of motion are not able to describe the
particle behavior on time scales smaller than the time τm. The overdamped
equations then read

γT ṙi = Fi +FD (2.12)

γRωi = Ti +TD , (2.13)

whereas γT and γR are again the translational and rotational friction coef-
ficients and the stochastic contributions obey again Gaussian distributions
according to Eqs. [2.3,2.4,2.5,2.6].

1For simplicity, this consideration is restricted to the translational part. A analogous
argument holds however for the rotational dynamics.

2For example, for a SiO particle with σ = 1µm at room temperature suspended in water
is found τm ≈ 10−7s and τb ≈ 2s [7].
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2.3 Phase Coexistence

The solutions of Eqs. [2.12,2.13] are the trajectories of the colloidal par-
ticles. However, an analytical solution for a many particle system is in
general not possible. An alternative is to integrate Eqs. [2.12,2.13] nu-
merically; a procedure which is usually called Brownian dynamics (BD)
computer simulation [134, 135]. Large parts of this work are based on
these computer simulations. In the appendix a detailed description of
these methods is presented.

2.2 Phase Transitions

A phase transition is the transformation of one thermodynamic equi-
librium state of matter towards another one because of a change in the
thermodynamic conditions. Thereby certain macroscopic properties of
the system, such as magnetization, change. From a theoretical point of
view, phase transitions are categorized by the occurrence of a discontinu-
ity in the first derivative of the thermodynamic free energy F with respect
to some thermodynamic variable. For instance, when water is heated up
to its boiling point its density decreases instantly. Hence, the vapor-liquid
transition is an example for a (discontinuous) first-order phase transition.
The set of all phase points which yield such a discontinuity separates dif-
ferent phases and is called the phase boundary. Phase transitions without
a discontinuity in any first derivatives of the free energy are called (con-
tinuous) higher-order transitions. Importantly, there exists a critical point
(with the critical temperature Tc) defining the end of the phase bound-
ary. Consequently, a path leading from vapor to liquid at or above the
critical temperature yields a continuous change in density. Furthermore,
decreasing temperature leads towards the triple point representing the in-
tersection of the phase boundaries between solid, liquid and vapor phases.
At the triple point the vapor-liquid phase boundary and the liquid-solid
phase boundary merge and form a lower temperature limit for the liquid
phase.

2.3 Phase Coexistence

In general, a thermodynamic system is in its equilibrium phase if the
Helmholtz free energy

F = U − T S (2.14)

is minimized, whereas U is the internal energy due to pair interactions
and/or external fields and S is the entropy. For a mono-disperse system of
Hard-Spheres, meaning that all particles and interactions between them
are equal and solely repulsive, holds U > 0 and it is only the entropy S by
which F can be minimized3. Hence, the system seeks to achieve a homoge-

3The temperature T serves only as a scaling factor here
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Figure 2.1: Prototype phase diagram of a simple fluid. Coexistence line C,
and spinodal S indicating the occurrence of meta and instabil-
ity of the homogenous phase. The critical temperature is the
upper boundary of the coexistence region.

neous state, where the mean density is the same everywhere in the system.
In addition to systems forming such homogeneous phases there exist ther-
modynamic systems where two phases, such as liquid and vapor coexist at
the same time. Such a situation is the result of a phase separation process
and characterized by spatial inhomogeneities, meaning that domains of
different densities are present in the system. In a mono-disperse system,
phase coexistence requires in any case attractive particle interactions such
that the internal energy can become U < 0 and starts to compete with the
entropy S and temperature T in minimizing F.
Interestingly, phase boundaries are the sets of phase points where the ho-
mogeneous phase is either metastable or unstable. Here, density fluctu-
ations can cause the system to phase separate. In Fig. 2.1 a schematic
temperature-density phase diagram for a one component fluid is shown.
The homogeneous liquid and vapor phases are separated by the coexis-
tence curve C enclosing the region of phase coexistence. Within the co-
existence curve lies the spinodal line S, defining the region of instability;
here, infinitesimal density fluctuations are sufficient to induce phase sep-
aration. Between the spinodal and the coexistence curve the system is
metastable and finite fluctuations are needed to induce the phase separa-
tion process.
Finally, the simplest theoretical understanding of first-order phase tran-
sitions and phase separation processes is given by the van der Waals the-
ory [136], which yields an equation of state for a simple fluid expressing
the relation between pressure P , volume V , temperature T and particle
number N . The solutions PT (V ) of the van der Waals equation at fixed
T > Tc are monotonously decaying, while they oscillate for temperatures
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T < Tc. These oscillations are usually called the van der Waals loops and
result in positive slopes of the isotherms PT (V ). Consequently, the isother-
mal compressibility, given by

χT = − 1
V

(
∂V
∂P

)T , (2.15)

becomes negative inside these loops. As this means that an increase in
pressure results in an expansion of the fluid, this is an unphysical result
and indicates the instability of the homogeneous phase. In this frame-
work, the unstable region inside the coexistence region is characterized
by χT < 0. This provides a way to determine the spinodal line S by cal-
culating the thermodynamic parameters at which χt changes its sign. In
the following we will shortly present a way to determine χT via basic den-
sity functional theory methods. We start with an expression for the direct
correlation function in the random phase approximation. Then we relate
the direct correlation function to the isothermal compressibility via the
Ornstein-Zernike Equation.

2.4 Pair Correlation Function

In a system of N particles, the one and two particle densities ρ(1)(r) and
ρ(2)(r,r′) can be defined in terms of delta functions

ρ(1)(r) =<
N∑
i=1

δ(r− ri) > (2.16)

ρ(2)(r,r′) =<
N∑
i=1

N∑
j=1

δ(r− ri)δ(r′ − rj) > (2.17)

whereas the brackets indicate an ensemble average. These functions are
normalized via ∫

ρ(1)(r)dr =< N > (2.18)

∫ ∫
ρ(2)(r,r′)drdr′ =< N2 > − < N > (2.19)

Eq. [2.18] gives in principle the mean number of particles N̄ and (except
of proper normalization) the quantities ρ(n)(r)drn can be interpreted as the
probability to find n particles in the volume element drn, irrespective of all
other particles. From this follows directly that the two-particle correlation
function is given by

g(2)(r,r′) =
ρ(2)(r,r′)

ΠN
i=1ρ

(1)(ri)
(2.20)
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which reduces for an homogenous and isotropic fluid to the radial distri-
bution function

g(2)(r) =<
1
ρN

N∑
i=1

N∑
j=1

δ(r+ ri − rj) >, (2.21)

here expressed in terms of δ-functions and with the overall number den-
sity ρ and a particle distance r = |r − r′ |. The radial distribution func-
tion g(2)(r) = g(r) is of special importance for the understanding of fluids.
First, g(r) quantifies how much the structure of a fluid deviates from com-
plete randomness at distance r. This can be seen by writing Eqs. 2.20 as
ρ(2) = ρ2g(r) where g(r) corrects the homogenous density of the ideal gas
ρ for particle correlations. Secondly, it can be measured by scattering ex-
periments, which allows direct insight into the real structure and gives
straight forward possibilities for comparison with results from computer
simulations. In the later, its representation via δ-functions is exploited to
calculate a histogram H(r) counting all pair distances r falling into cer-
tain bins of width ∆r. The normalized ensemble average of H(r) is then
compared to the corresponding histogram of the ideal gas

Hideal(r) =
4
3
πρ[(r +∆r)3 − r3] (2.22)

which yields

g(r) =
< H(r) >
NHideal(r)

. (2.23)

Note that in a two-dimensional setup, the histogram Hideal = πρ[(r+∆r)2−
r2] has to be used for comparison.

Finally, the knowledge of g(r) allows to calculate many thermodynamic
properties, e.g. the isothermal compressibility or the total correlation
function introduced in the next section.

2.5 Direct Correlation Function

In Density Functional Theory (DFT), the Helmholtz free energy F is
treated as a functional of the particle density ρ(1)(r) and can be separated
into an ideal part and an excess part [136]

F[ρ(1)(r)] = Fid[ρ(1)(r)] +Fex[ρ(1)(r)] (2.24)

accounting for contributions from configuration and interaction, respec-
tively. The ideal part is given by

Fid = kBT

∫
ρ(1)(r)(ln[λ3T ρ

(1)(r)]− 1)dr (2.25)

with λT =
√
h2/2πmkBT being the thermal wavelength and h the Planck

constant.
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The definition of the direct correlation function is related to the second
functional derivative of the excess part of the free energy functional with
respect to the single particle density

c(2)(r,r′) = −β
δ2Fex[ρ(1)(r]

δρ(1)(r)δρ(1)(r′)
. (2.26)

In general, the excess part of the free energy functional is unknown
and has to be approximated, but there exist explicit expression for the

direct correlation function c
(2)
HS of the Hard-Sphere system in three dimen-

sions [137]. However, for the two-dimensional Hard-Disc system exist
only approximated expressions [138].

In this work the (quite accurate) expression of Guo and Riebel [139]

c
(2)
HS,2D(r,η) =Θ(1− r)[−

1− qη2

(1− 2η + qη2)2
]

{1− a2η + η
2
π

[arccos(r/a)− r/a(1− r2/a2)
1
2 ]}

(2.27)

with

η = ρπσ2/4

q =(4
√
3π − 12)/π2

a =0.3699η4 − 1.2511η3 + 2.0199η2 − 2.2373η + 2.1

(2.28)

will be used. More complicated pair interactions can be treated by certain
approximations, like the random phase approximation.

2.5.1 Random phase approximation

The random phase approximation is based on the idea to separate the inter-
action potential u(r,r′) into a reference part ur (e.g., hard sphere interac-
tion) and a perturbation part up (short ranged attraction)

uλ(r,r′) = ur(r,r
′) +λup(r,r′) λ ∈ [0,1] (2.29)

where λ controls the strength of the perturbation. Then, the pair density
ρ(2)(r,r′) is related to the excess part of the free energy functional [136] via
a functional derivative

ρ(2)(r,r′) = 2
δFex[ρ(1)(r]
δuλ(r,r′)

(2.30)

with respect to the interaction potential u(r,r′).
Integration of Eq. [2.30] allows to express the excess free energy func-

tional as

Fex[ρ(1)(r)] = Fexr [ρ(1)(r)]

+
1
2

∫ ∫
ρ(1)(r)ρ(1)(r′)up(r,r′)drdr′ +Fcorr [ρ

(1)(r)]
(2.31)
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with

Fcorr [ρ
(1)(r)] =

1
2

∫ 1
0
dλ

∫ ∫
ρ(1)(r)ρ(1)(r′)h(2)((r,r′);λ)up(r,r′)drdr′ (2.32)

being the contribution to Fex from perturbations. In a mean field ap-
proximation this part can be neglected and forming the second functional
derivative with respect to ρ(1)(r) defines the direct correlation function in
the random phase approximation

c(2)(r,r′) = −β
δ2Fex[ρ(1)(r]

δρ(1)(r)δρ(1)(r′)

≈ c(2)
r (r,r′)− βup(r,r′)

(2.33)

where c(2)
r is the reference part for which we use c(2)

HS,2D(r,η) from Eq. [2.27].
It is well accepted that the expression −βup(r,r′) is a good approximation
of the direct correlation function c(2)(r,r′) for large distances. Hence, the
perturbation contains the long-range part of the potential.

2.6 Ornstein-Zernike Equation

The Ornstein-Zernike equation

h(2)(r,r′) = c(2)(r,r′) +
∫
c(2)(r,r′′)ρ(1)(r′′)h(2)(r′′ ,r′)dr′′ (2.34)

relates the pair distribution function to the direct correlation function c(2)

via the definition of the total correlation function

h(2)(r,r′) = g(2)(r,r′)− 1. (2.35)

The idea behind the Ornstein-Zernike equation is that the total correlation
between two particles can be split into a direct correlation between them
and ’higher order contributions’ mediated by a third, fourth and so on
particle. Therefore, the Ornstein-Zernike equation has in principle to be
solved recursively. For a uniform and isotropic fluid Eq. [2.34] simplifies
to

h(2)(r) = c(2)(r) + ρ

∫
c(2)(|r− r′ |)h(2)(r ′)dr′ (2.36)

and the indirect correlations appear as a convolution integral. Finally,
applying a Fourier transformation on Eq. [2.36] and using the convolution
theorem yields the relation

H(k) = C(k) + ρC(k)H(k) (2.37)

with H(k) and C(k) being the Fourier transforms of h(2)(r) and c(2)(r), re-
spectively. In the long wavelength limit (|k| = 0), the Fourier transforma-
tion reduces to

H(0) =
∫

[g(r)− 1]dr. (2.38)
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2.7 Kirkwood-Buff Equation

The isothermal compressibility in a statistical ensemble is defined by [140]
the change of volume V with pressure P at constant temperature T via

χT = − 1
V

(
∂V
∂P

)T . (2.39)

In the Grand canonical ensemble, fluctuations < (∆N )2 > in the mean
particle number N̄ can be related to the isothermal compressibility

ρkBT χT =
< (∆N )2 >

N̄
. (2.40)

using the thermodynamic relation − 1V (∂V∂P ) = 1
N̄ρ

(∂N̄∂µ ) [140].

Again we see, that χT > 0 has to be fulfilled, because < (∆N )2 > /N̄ is
a positive quantity. Using Eqs. [2.16,2.17,2.18,2.19] allows to reformu-
late the mean square deviation of the mean particle number < (∆N )2 > in
terms of the particle densities∫ ∫

ρ(2)(r,r′)− ρ(1)(r)ρ(1)(r′)drdr′ =< N2 > − < N > −N̄2 (2.41)

and for a homogenous fluid then follows with Eqs. [2.40,2.20] that the
isothermal compressibility can be expressed as an integral over the radial
distribution function g(r) yielding the compressibility equation

1+ ρ

∫
[g(r)− 1]dr =

< (∆N )2 >
< N >

= ρkBT χT . (2.42)

Together with Eqs. [2.37,2.38] a connection to the Fourier transform of the
direct correlation function is given by

ρkBT χT = [1− ρC(0)]−1, (2.43)

which is the Kirkwood-Buff Equation for an one-component system. For
the isothermal compressibility calculated from the Kirkwood-Buff equa-
tion must hold χT > 0 according to Eq. [2.40]. Note that this result was
deduced from Eq. [2.36] which assumes a homogenous fluid. Hence neg-
ative compressibility indicate a thermodynamical instability of the homo-
geneous phase and using the direct correlation function in the random
phase approximation allows to calculate χT .

The Kirkwood-Buff equation can be generalized towards multi-component
systems with n different particle species. The equation then reads [136]

kBT χT = [
n∑
α,β

ραρβ[δαβ/ρα −Cαβ(0)]−1, (2.44)
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whereas α and β indicate the considered species, ρα is the number density
of particles of species α and Cαβ(0) is the Fourier transform in the long
wave-length limit of the approximated direct correlation function

c
(2)
αβ(0) ≈ c(2)

HS − 1/kBT uαβ(r,r′) (2.45)

with the particle type specific interaction potential uαβ and the reference

part c(2)
HS , which is independent of the particle species in a mono-disperse

system.
In case of a two-component system with particle species A and B and

the corresponding densities ρA and ρB fulfilling ρ/2 = ρA = ρB, we find

ρkBT χT = [1− ρ/2(CAA(0) +CAB(0))]−1, (2.46)

because for pair interactions reasonably must hold uαβ = uβα, which im-
plies Cαβ(0) = Cβα(0) in the random phase approximation.

In contrast to an one component system, where the instability of the
homogeneous phase results in phase separation of i.e., liquid and vapor,
one can find demixing processes in thermodynamically unstable multi-
component system. These different types of instabilities can not be dis-
tinguished by considering solely the isothermal compressibility according
to Eq. [2.44]. However, there exist more general theoretical descriptions
allowing such characterization of different instabilities [141].
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3
Theoretical Models of

Complex Dipolar Colloids

In this chapter we introduce common interaction potentials used

for modeling colloidal particles. Based on these potentials we con-

struct more complex models for dipolar particles under the presence

of external inductive fields. In total, it is four different models.

First the DDP model for dipolar microswimmers and a related model

of reduced complexity. Secondly, we model superparamagnetic par-

ticles under the presence of crossed electric and magnetic fields

(CDP model), but also introduce a generic model for colloids with

mutidirectional induced interactions. Additionally, we discuss visu-

alization and structure analysis techniques which we developed to

understand structures formed by dipolar colloids.

In general, colloidal particles are subject to a large variety of forces and
pair interactions e.g., Van der Waals forces, depletion forces or electro-
static forces. Throughout this work we will consider different particle
models, most of them related to dipolar interactions. In all of these
models, it is assumed that the particles interact sterically and bear some
additional (dipolar) interaction properties. However, influences of van der
Waals forces or electrostatic repulsion are not considered, unless stated
otherwise. This is because we want to isolate and analyze the influence
of the dipolar interactions. This approach is justified by the fact that
we can always assume a stable homogeneous phase of solely repulsive
non-dipolar particles as the initial state of our system. Exposing these
particles to external fields and inducing relatively strong dipolar interac-
tions then allows to investigate the influence of the dipolar interactions
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without being superimposed by other forces e.g., van der Waals. However,
hydrodynamic interactions are not considered here, although they might
influence the systems behavior significantly [7].

3.1 Colloidal Interaction Potentials

In this section we shortly discuss basic models for pair-interactions be-
tween colloidal particles, which are frequently used in computer simula-
tions. The introduced interactions will be used, extended and recombined
in the following parts of this Chapter, where more complex particle mod-
els are constructed. The present section serves as a brief overview of the
basic constituents of these more complex models.

The Lennard-Jones potential

The Lennard-Jones (LJ) potential is an isotropic pair potential with repul-
sive and attractive parts. It is given by

ULJ = 4ϵ[(σ/r)12 − (σ/r)6)], (3.1)

whereas r is the particle center-to-center distance and σ the particle di-
ameter. The potential depth, controlling the interaction strength, is given
by ϵ. The r−6 dependence is used to model attractive van-der-Waals inter-
actions between neutral atoms, while the r−12 dependence results in very
rapid increase of repulsion for distances r < σ .

The soft-sphere potential

Based on the Lennard Jones potential ULJ (r) a so called Soft-Sphere USS(r)
(or Soft-Disk in two-dimensions) potential can be defined by truncating
ULJ at rc = 21/6σ and shifting it by ϵ. The resulting interaction

USS(r) = 4ϵ[(σ/r)12 − (σ/r)6)] + ϵ for r < 21/6σ (3.2)

is then solely repulsive and can be used to mimic sterical interactions be-
tween colloidal particles (as done throughout this work). An important
feature of this Soft-Sphere potential is that it decays continuously and
vanishes at the truncation distance rc. This is of special importance for its
utilization in Brownian dynamics computer simulations where the force

FSSij (rij ) = −∇riUSS(rij ) with rij = ri − rj (3.3)

imposed on particle i at position ri by particle j at position rj is then well
defined and yields no ’jump’ at the truncation distance rcij = 21/6σ .
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The Yukawa interaction potential

A point-charge Q or an uniformly charged spherical shell with diameter
σ and total charge Q generates an electric field according to the coulomb
potential

Ucou(r) =
1
4πϵ0

Q
r

for r > σ, (3.4)

with ϵ0 being the electric constant. Such an uniformly charged shell can
be seen as a basic model for a colloidal particle in a fluid. The specific
mechanisms by which the colloidal surface becomes charged are manifold,
e.g. dissociation of surface molecules, and depend on the material and
solvent properties [7].

Importantly, once the particle surface is charged, ionized solvent par-
ticles of opposite electrical charge are attracted towards it. They form
a cloud of counter-ions, the so called the electrical double layer (EDL),
around the colloid and partially screen the Coulomb potential Ucou(r).
The resulting effective potential is then given by the functional form of
the Yukawa interaction [7]

Uyu(rij ) = q2
exp(−κrij )

rij /σ
, (3.5)

with the inverse length κ−1 describing the strength of the screening and
the interaction strength parameters qi = qj = q ∝Q. In experiment, strong
screenings with κ ≈ 10σ−1 can be achieved via increasing counter-ion con-
centrations by externally introduced electrolytes [7].

The dipole-dipole interaction

The dipole-dipole interaction between two point dipoles µi and µj at po-
sitions ri and rj and distance rij = ri − rj is given by [142]

Udip(rij ,µi ,µj ) =
µi ·µj
r
3
ij

− 3
(µi · rij )(µi · rij )

r
5
ij

(3.6)

and is an example for an anisotropic long-ranged pair interaction. Due to
its anisotropy, the dipole-dipole interaction results in torques between the
two dipoles. It can be used to describe magnetic or electric dipoles and is
a standard expression used in models of dipolar colloids.

In these models, the dipole moments µi can either be seen as induced
by external fields or as being permanent. Torques are usually neglected
for induced dipole moments while the orientation of permanent dipole
moments is fixed to the geometry of the particles carrying them. Then
torques act on the particle itself. The later means that phenomena like
the Neel relaxation are neglected, which is reasonable for not too small
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particles [143]. Finally, in computer simulations one usually defines the
so called dipolar coupling strength (here for a two-dimensional system)

λ = µ2/kBT (3.7)

giving the ratio between the strength of dipolar interactions and thermal
energy. Once this ratio becomes λ ≈ kbT , the dipole-dipole interactions
start to influence the collective particle behavior significantly.

3.1.1 Representations of anisotropic pair interactions in
two-dimensions

In the following, the dipole-dipole interaction, as presented in Eq. [3.6],
will be used to model complex dipolar colloids. Before presenting more
complex models, we want to introduce a simple visualization technique,
which allows to understand intuitively the interaction patterns between
dipolar particles. To this end, we start with a hard sphere of diameter σ
in the center of a two-dimensional coordinate frame with position vector
r1 = (0,0). We place a dipole moment of strength µ =

√
σ3ϵ in the center of

this sphere, whereas ϵ is an arbitrary unit of energy. The dipole moment
has a fixed orientation and points along the y-direction. Hence, the dipole
moment is given by µ = µey .

Figure 3.1: A dipolar disc of diameter σ (solid circles) in the center of the
two-dimensional x-y plane. The particles dipole moment is in-
dicated by an arrow in its center and points along the y-axis.
The energy Udip is calculated according to Eq. [3.6] for a ficti-
tious second particle of equal kind at various positions r and
given in units of ϵ. This probing particle is indicated by a gray
circle and arrow at an arbitrary position. The color code gives
the interaction energy ’landscape’. The white circle around the
central particle indicates the excluded area.
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The dipolar interaction energy between this particle and another parti-
cle of equal kind at arbitrary positions r2 can be calculated from Eq. [3.6].
The set of energies Udip(r12) can be visualized as a color map in the x-y
plane. This results in an energy ’landscape’ as shown in Fig. 3.1. In this
representation, it is easy to see the preference of dipolar particles to form
head-tail arrangements by the low energy regions around the head and
bottom of the central particle.

Such an energy ’landscape’ might seem trivial when considering a dipo-
lar particle with one central dipole moment, but may help a lot in under-
standing interaction patterns between particles carrying several dipole
moments. Please note that such a representation becomes less powerful
in case the orientations of dipole moments are free to rotate or three-
dimensional quantities. However, in this work we are investigating sys-
tems effectively confined to two dimensions with induced, orientationally
fixed, dipolar interactions.
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3.2 The DDP Model for Dipolar
Microswimmers in Experiment

In the present section we introduce the double dipole particle (DDP)
model. The experimental particles motivating this work are gold-patched
dielectric spheres confined between two glass plates, forming a quasi-2D
geometry [55]. Application of an in-plane AC electric field induces dipole
moments in both, the gold and the dielectric part of the particles, with
the gold’s dipole being significantly larger due to its larger polarizability.
Additionally, the plane between gold patched and dielectric part become
aligned along the field. At low frequencies these two induced dipoles have
the same orientation (along the field). Placed into an aqueous solution,
one observes [55] a spontaneous motion of each particle in the direction
orthogonal to the field and away from the particle’s gold patch. The un-
derlying mechanism is an asymmetric flow of solvent charges, usually
called induced-charge electrophoresis [55, 54]. To examine the collective
behavior of these driven particles, we perform BD simulations in a 2D
quadratic cell of size L2 with periodic boundary conditions. The cell con-
tains N = 800 spherical particles with equal diameter σ defining a unit
length. Particle positions are denoted by ri = xiex + yiey (i = 1, ..,N ) with
the unit vectors ex and ey defining a 2D coordinate frame. The external,
electric field Eext points along the y-axis. Sterical interactions are modeled
by a soft-sphere (SS) potential

USS(rij ) = 4ϵSS
(
(σ/rij )

12 − (σ/rij )
6 + 1/4

)
(3.8)

truncated at rcij = 2
1
6σ , where rij = |rj − ri | is the particle distance. The

strength of repulsion is set to ϵ∗SS = ϵSS /kBT = 10 where kB is Boltzmann’s
constant and T is the temperature. To mimic the impact of the propulsion
force we randomly assign to each particle a fixed vector si = siex which
points either to the ’right’ (s = 1) or to the ’left’ (s = −1) with probability
0.5, respectively. Thereby a random fifty-fifty mixture of two different
particle ’species’ is created. Each particle is then subject to a constant
but orientation-dependent driving force fd,i = fdsi . Changes of particle
orientation (si) are not considered here.

To incorporate the dipolar interactions we assume that each particle i

bears two point dipole moments µ(1)
i and µ

(2)
i whose orientation is fixed

along the external field , i.e. µ
(α)
i = µ

(α)
i ey , α = 1,2. Moreover, the two

dipole-moments are shifted out of the particle center by δ
(1)
si = δsi and

δ
(2)
si = −δsi with δ = 0.25σ . The values of µ(α)

i are hold constant (that is, we
neglect variations of the local field) and set differently in order to mimic
the strong asymmetry of the metallo-dielectric Janus-particles. Specifi-

cally, we choose µ
(2)
i = 2µ(1)

i and set the dimensionless dipole strength to

µ∗ ≡ µ(2)
i

∗
= µ

(2)
i /
√
σ3kBT . Test simulations revealed that the system’s be-
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3 Theoretical Models of Complex Dipolar Colloids

Figure 3.2: Potential energy ’landscape’ due to the total dipolar interac-
tion (see color code) for two DDPs of diameter σ (solid circles)
with (a) si = sj = −1 and (b) si = 1, sj = −1 in a top-view perspec-
tive for (µ1)∗ = 1.58. The particle dipole moments are indicated
by arrows with a white [black] head for µ(1) [µ(2)]. The white
circle around the centered particle indicates the excluded area.
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3.2 The DDP Model for Dipolar Microswimmers in Experiment

havior is only weakly sensitive to the ratio µ2/µ1, whereas changing the
shift parameter δ has a strong effect. Here we stick to a value of δ already
used in Ref. [95] for the case of oppositely oriented dipoles. The distance

between two arbitrary dipole moments µ(α)
i and µ

(γ)
j of different particles

is given by
rαγsisj = rj + δγsj − (ri + δαsi ). (3.9)

The dipolar interaction between the two of them is calculated via the 3D
point dipole potential

Udip(rij ,µ
(α)
i ,µ

(γ)
j , si , sj ) = µ

(α)
i ·µ

(γ)
j (rαγsisj )

−3

− 3(µ(α)
i · r

αγ
sisj )(µ

(γ)
j · r

αγ
sisj )(r

αγ
sisj )
−5,

(3.10)

and the total dipolar interaction between two particles is given by the sum

UDD(rij , si , sj ) =
2∑

α,γ=1
Udip(rij ,µ

(α)
i ,µ

(γ)
j , si , sj ). (3.11)

We use the standard 2D Ewald summation method to handle the long-
range character of the dipole interactions [144]. Combining UDD and
the formerly introduced SS potential defines the ’double-dipole particle’
(DDP) model

UDDP = UDD +USS . (3.12)

The angle dependency for distances rij > σ is illustrated in Fig. 3.2. It
is seen that two identical DDPs (si = sj ) prefer a head-to-tail configura-
tion similar to ”single-dipole” particles with one dipole in their center. In
contrast, for DDPs with si , sj , the most attractive configurations are stag-
gered in the sense that one DDP is shifted towards the gold-patched ’back’
of the other particle. The corresponding minimum energy Umin

DD (si , sj ) is
roughly 4kBT larger than in the head-to-tail configuration Umin

DD (si = sj ).
The overdamped BD equations of motion are given by

γ ṙi =
N∑
j=1

∇UX(ij) + fsd,i +ζi (3.13)

where γ is the friction constant, UX(ij) is a specific pair potential (with
X = SS, DDP , or LJ), and ζi is a Gaussian noise vector which acts on par-
ticle i and fulfills the relation ⟨ζi⟩ = 0 and ⟨ζi(t)ζj(t′)⟩ = 2γkBT δijδ(t − t′).
Hydrodynamic interactions (HI) are neglected, in accordance with earlier
studies [92] revealing that HI do not alter lane formation qualitatively.
The BD equations are solved via the Euler scheme [135] with an integra-
tion step width ∆t = 10−5τb, where τb is a Brownian timescale defined by
τb = σ2γ/kBT .
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Figure 3.3: Angle-averaged DDP potential for s1 = s2 and s1 , s2 at µ∗ =
1.58. Included is the LJ potential at ϵ∗ = 2.3.

3.2.1 The driven Lennard Jones fluid - A generic model
for attractive microswimmers

Besides the anisotropy, another main feature characterizing the DDP in-
teractions is that they are effectively attractive. This is seen from the angle-
averaged potential

uDD(r12) =
1
2π

∫ 2π
0

UDD (r12, s1, s2) dΩ12, (3.14)

with Ω12 being the angle of the connecting vector r12 relative to the x-
axis. Numerical data for the cases s1 = s2 and s1 , s2 are shown in Fig. 3.3.
Clearly both angle-averaged potentials display a pronounced, attractive
potential well with nearly identical depths. In fact, the angle-averaged
potential somewhat resembles that of an LJ fluid (also plotted in Fig. 3.3),
disregarding differences in the width of the attractive well and the decay
of the potentials with r12. Hence, we also consider a driven LJ fluid char-
acterized by the pair potential ULJ = 4ϵ((σ/rij )12 − (σ/rij )6) with cut-off at
2.5σ and dimensionless interaction strength ϵ∗ = ϵ/kBT . Except of the In-
teraction potential, the general set up is the same as in the DDP model.
Specifically, the equations of motion (Eqs. [3.13]), the distribution of ori-
entations si and the driving fd acting on particle i. In the following the
reduced units used in this chapter are summarized.

Tabular representation of reduced units.

reduced density ρ∗ = ρσ2

reduced driving force f ∗d = fdσ/kBT

reduced dipole moment µ∗ ≡ µ(2)
i

∗
= µ

(2)
i /
√
σ3kBT

reduced LJ coupling strength ϵ∗ = ϵ/kBT
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3.2 The DDP Model for Dipolar Microswimmers in Experiment

3.2.2 Target quantities

To quantify the degree of laning we introduce for every particle i a slice
in x-direction with lateral width σ centered around yi . We then assign
a variable Φi which equals 1 if the slice contains no particle of opposite
driving direction and 0 otherwise. The ensemble-averaged laning order
parameter then follows as

Φ = ⟨
N∑
i=1

Φi/N ⟩, (3.15)

where the brackets denote a time average. Non-laned states are char-
acterized by Φ ≈ 0 whereas perfectly laned states correspond to Φ = 1.
However, the system can visually appear as being laned already at much
smaller values of Φ (e.g., Φ ≈ 0.2), especially at high densities.

To characterize the local structure in x-direction we calculate the radial
distribution function between particles of the same type

gs(x) =
2
ρN
⟨
N∑
i=1

N∑
j,i

δ(x − |xij |)Θ(σ − |yij |)Θ(sisj )⟩ (3.16)

with xij (yij ) being the x (y)-component of rij , and δ and Θ are the delta-
and the Heavyside step function, respectively. By normalization, gs(x)
decays to 2 for x → ∞ in a single-species fluid and to 1 in a completely
mixed binary fluid. By interchanging x and y in Eq. [4.2] we additionally
define the correlation function gs(y) in y-direction.
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3.3 Colloids in Crossed Fields

In this section we are particularly interested in modeling the field-directed
aggregation of colloids with field-induced dipolar interactions. A previ-
ously studied example for such systems is capped (metal-coated) dielec-
tric particles under the presence of an uni-axial electric field inducing
quadrupolar-like interactions [26, 95]. Also mixtures of para- and dia-
magnetic colloids under the presence of an uni-axial magnetic field sus-
pended in a ferromagnetic carrier fluid [98] have been considered. In these
studies, it is one external field which allows to tune the aggregated struc-
tures with respect to one direction. Here we consider even more complex
interactions caused by crossed (orthogonal) fields, allowing bi-directional
tuning of particle aggregation.

Before discussing the experimental system presented in see Sec. 1.3.3we
briefly mention another example of a possible experimental realization of
tunable bi-directional aggregation. which is a quasi two-dimensional sys-
tem of suspended dielectric colloidal particles under the influence of two
in-plane orthogonal AC electric fields with a phase shift of π. The fields
will polarize the particles’ ionic layer and/or dielectric material periodi-
cally but at different times due to their phase shift. We assume that by
adjusting the field frequencies and phases to the relevant timescales gov-
erning particle diffusion and the relaxational dynamics of the polarized
ionic layer, two decoupled orthogonal dipole moments in each particle
can be generated by this setup.

The actual experimental setup we are modeling is a quasi two di-
mensional system of suspended colloidal particles, each composed of
super-paramagnetic iron-oxide aggregates embedded in a polymer ma-
trix, which has been investigated experimentally by Dr. Bharti [25, 133].
In this case, crossed external electric and magnetic fields, oriented in
plane but perpendicular to each other, can be used to induce independent
electric and magnetic dipole moments in the colloids, which leads to a
directed self-assembly process of two-dimensional single-particle chain
networks. An experimental photograph of the resulting structures is
shown in Fig. 1.6 (e) and experimental details are described in Sec. 1.3.3.
Please note that the oscillation of the AC electric field does not induce a
magnetic field in the assembly plane. Thus, magnetic and electric inter-
actions are decoupled in this setup. This follows directly from the fourth
Maxwell equation (Ampere’s circuital law)∫

∂Σ
H · dl =

∫
Σ

(j+∂tE) · ds (3.17)

where E is the oscillating electric field, j is the electric current density and
ds denotes the differential vector element of the assembly plane (surface)
Σ. As ds is normal to the surface and thus also to the electric field E
and the current density j, the right hand side of Eq. [3.17] vanishes inside
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3.3 Colloids in Crossed Fields

the plane. In fact, the experimental setup corresponds to a current sheet,
and it can be shown that the strength of the induced magnetic field grows
linear with increasing lateral distance from the plane [145]. Thus, for a
quasi two-dimensional experimental assembly chamber of lateral size in
the range of a few micrometers the magnetic field which is induced by the
oscillation of the external electric field can be neglected.

In the following, two different models for field-directed aggregation are
presented. But before, we shortly comment on general properties of the
induced dipole moments.

Interaction potential of crossed point dipoles

The crossed orthogonal external fields induce orthogonal dipole moments
µm = µem and µe = µee, which we term for simplicity as ’magnetic (m)’
and ’electric (e)’ dipoles (although one might also think of two electric mo-
ments). The coordinate frame is adjusted to coincide with the directions of
these moments so that em = ex and ee = ey . In general, these moments can
have different absolute values, but for simplicity they are assumed to be
equal in this preliminary consideration. The two types of dipole moments
are also assumed to be independent from each other, meaning that they
interact only with dipole moments of the same type on other particles.

Intuitively, one would model the interaction energy between dipoles of
particles 1 and 2 by the point-dipole potential

Uα
dip(r12) =

µα1 ·µα2
r
3
12
− 3

(µα1 · r12)(µα2 · r12)
r
5
12

, (3.18)

where α indicates the dipole type as being either e or m. Due to the con-
straint µα1 ∥ µα2 it follows that

Uα
dip(r12) =

µα1µ
α
2

r
3
12

(1− 3 (r12 · eα)2

r212
). (3.19)

The resulting total dipolar interaction between two particles is the sum of
the dipolar potentials stemming from the magnetic and electric dipoles,
respectively. Using µ = |µαi | and the relation (r12 · ee)2 + (r12 · em)2 = r212
(which holds since µe and µm are orthogonal) we obtain

U e
dip(r12) +Um

dip(r12) = −
µ2

r
3
12
. (3.20)

The resulting interaction on the right side of Eq. [3.20] is an isotropic,
purely attractive interaction that lacks any kind of directional character.
Therefore, the potential defined in Eq. (3.20) can not generate any directed
and/or rectangular structures as observed in experiments (see Fig. 1.6(a)-
(d) and [25, 133]). Underlying reasons for the more complex character
of the true interactions might be many-body effects like mutual depolar-
ization [146, 147, 148], and/or nonuniform intra particle properties e.g.,
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3 Theoretical Models of Complex Dipolar Colloids

the distribution of magnetic material inside particles [149]. Hence, the
following parts of this chapter are concerned with more complex models.
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3.4 The CDP Model for Superparamagnetic
Particles in Experiment

In the present section we introduce the crossed dipole particle (CDP)
model, to describe the superparamagnetic particles of the experimental
setup introduced in Sec. 1.3.3. There, superparamagnetic polymer parti-
cles in a quasi two-dimensional setup are exposed to crossed electric and
magnetic fields. In Fig. 1.6(a) and (c) it can be seen that the influences
of the magnetic and electric fields on the self-assembly processes differ
strongly. While the presence of an electric field ( Fig. 1.6(a) ) results in
straight single particle chains oriented along the electric field, the exter-
nally induced magnetic interactions result in more compact (staggered)
chain-like aggregates pointing along the magnetic field ( Fig. 1.6(c) ) when
no electric field is applied.

On the origin of induced magnetic interactions

The bidirectional assembly of particles in external fields is governed by
induced dipolar interactions and results in the formation of a variety of
particle structures. In the case of AC-electric field driven assembly of mi-
croparticles in aqueous dispersions, the dipoles are induced by partial po-
larization i.e redistribution of ions in the ionic double layer around the
particles. Therefore the particles can be assumed to have a single dipole
which overlaps with the center of mass of the particles. These dipole-
dipole interactions lead to assembly of particles into linear chains. How-
ever, in an uniform magnetic field, dipoles are induced by polarization
of local magnetic domains. In our case of composite microspheres, the
magnetic domains are the superparamagnetic nanoaggregates embedded
in the particles. Hence, the net magnetic dipole moment in a particle
is the vector sum of all the individual dipoles induced in the embedded
nanoparticles. Depending upon the spatial distribution of the individual
magnetic domains, the geometric center of the sum over single magnetic
moments may not overlap with the center of mass of the particles. This
has been shown experimentally for similar superparamgentic beads [149].
The dislocation of the net magnetic interaction site from the center of the
particle may result into partially staggered chain configurations instead of
linear ones. We believe that this is the case with our superparamagnetic
microparticles, where linear chains are formed in external AC-electric
field and partially staggered chains are formed in an uniform magnetic
field (see Fig. 1.6).

The theoretical model

To this end, the electric interactions are modeled by placing a point dipole
moment µeli oriented along the electric field in the center of each particle
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i, whereas a shifted and truncated (12,6) Lennard-Jones Potential is used
to model sterical interactions between particles i and j

USS(rij ) = 4ϵ
(
(σ/rij )

12 − (σ/rij )
6 + 1/4

)
. (3.21)

Here, rij = ri − rj is the center to center distance, ϵ and σ set the units

of energy and length, respectively and a spherical cut off rc,SSij = 21/6σ
is applied. This setup corresponds to the well established dipolar soft
sphere model [22]. To account for magnetic interactions, each particle
bears additionally a magnetic dipole moment µmgi which is pointing along
the magnetic field. In contrast to the electric case, the magnetic dipole
moments are shifted out of the particle centers: For each particle this shift
is given by a vector δi with an orientation taken from an uniform ran-
dom distribution and a constant absolute value δ = 0.2σ . Furthermore,
the absolute value of each magnetic moment is chosen from a Gaussian
distribution with mean µ̄mg and variance σmg = µ̄mg /2 under the condition
that µmgi ∈ [0,2µ̄mg ]. The latter interval is chosen to prevent unphysical
negative moments and to avoid the occurrence of very strong moments,
which is important for computational efficiency.
This model is motivated by the fact that experimental particles consist of
polymer droplets incorporating numerous superparamagnetic iron-oxide
aggregates. The underlying assumption is that different particles carry
different amounts of magnetic material and that this magnetic material
is inhomogeneously distributed throughout the particle1 and forms local-
ized magnetic interaction centers. The underlying reasons might be vari-
ations in the production process and polydispersity of the particles. Note
that the increase of magnetic material goes cubic with the particle diam-
eter σ , which makes larger differences in the particles magnetic response
rather reasonable, even if the the distribution of particle sizes is relatively
sharp. Also (localized) loss of magnetic material through the particle sur-
face during the experiment or in storage could be considered; a process
which was observed during Dr. Bharti’s experiments. These assumptions
are reflected in the distribution of the absolute magnetic moments µmg

and in the random spatial shift δ of the magnetic interaction site, respec-
tively. However, the actual values for the particle parameters were not
optimized or derived from experimental or theoretical insights. Instead,
their choice was done by intuition. Please note that we are not aiming on
the most accurate description of single particles but rather on an accurate
description of the many particle system. Hence, we do not claim that the
magnetic material is in reality distributed throughout the particles in ex-
actly the way we model them. Furthermore, an accurate description of the
magnetic properties of various interaction sites would in principle require

1 Recently, an experimental study concluded that the magnetic properties of similar
particles result from an inhomogeneous internal distribution of the magnetic mate-
rial [149].
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Figure 3.4: Direction-dependent pair interaction U (rij ) [see Eq. 3.24] be-
tween a particle with horizontal (a) and vertical (b) shift of
magnetic interaction in the center of the coordinate frame
and a second (reference) particle at various positions rij with
no shift of the magnetic moment. Positions of the mag-
netic/electric dipole moments are indicated by red/blue dots
and corresponding arrows. In both cases holds δ = 0.2σ and
µel = µmg =

√
ϵσ3. Sterically excluded areas are indicated by

white circles while the color code gives the interaction energy
U (rij ) in units of ϵ. These are two realizations for the random
position of the magnetic moment yielding different anisotropic
interaction patterns.

to calculate the magnetization self-consistently, which is again not feasi-
ble in the many particle systems we are interested in. Instead, we provide
a physically motivated and reasonable model, which is reproducing the
structures observed in experiment and allows to overcome the difficulties
associated with the control of global and local particle density in the ex-
periments.

Finally, both moments are induced and have therefore a fixed orien-
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tation. For simplicity, we neglect torques due to off-centered magnetic
interaction sites. With this particle setup, the distance between dipole
moments µαi and µαj of species α = (el,mg) is given by

rij = rj − ri + δj − δi (3.22)

whereas α = el corresponds to the electric case with δi,j = 0. The dipolar
interaction between particles i and j is then calculated via the usual three-
dimensional point dipole potential

Uα
dip(rij ,δi ,δj ) = µiµjr

−3
ij − 3(µirij )(µjrij )r

−5
ij (3.23)

and the total interaction potential is given by

U (rij ) = USS(rij ) +U el
dip(rij ) +U

mg
dip(rij ,δi ,δj ). (3.24)

Standard two-dimensional Ewald summation method is used to handle
the long-range character of the dipole interactions [150, 144]. In Fig. 3.4,
the interaction energy map for to random realizations of such particles
is shown. Clearly, the model result in anisotropic interactions which are
different for different particle pairings. In consequence, we consider a
multi-component system of particles with anisotropic attractive interac-
tions.

We perform overdamped Brownian dynamics simulations in a two-
dimensional quadratic simulation box at reduced number density ρ∗ =
ρ/σ2 with N particles of equal diameter σ . The equations of motion are
given by

γ ṙi =
N∑
j=1

∇rijU (rij ) +ζi (3.25)

where γ is the friction constant and ζi is a Gaussian noise vector acting
on particle i fulfilling ⟨ζi⟩ = 0 and ⟨ζi(t)ζj(t′)⟩ = 2γT ∗δijδ(t − t′) with
T ∗ = kBT /ϵ being the temperature times Boltzmann’s constant in units
of ϵ. All simulations are performed at the same constant temperature
T ∗ = 0.01. The Eqs. [3.25] are solved via the Euler scheme (see Sec. 6) with
an integration step width ∆t = 10−5τb, where τb is a Brownian timescale
defined by τb = σ2γ/ϵT ∗. In the following the reduced units used in this
chapter are summarized.

Tabular representation of reduced units.

reduced density ρ∗ = ρσ2 = 0.35
reduced temperature T ∗ = kBT /ϵ = 0.01
reduced dipole moment µ∗ = µ/

√
σ3ϵ
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3.5 Characterization of Network Structures -
Energy Histograms

Under the presence of both, magnetic and electric fields, the superpara-
magnetic particles described in the previous section form network-like
structures as shown in Fig. 1.6. These structures can be thought of as ag-
gregates of basic building blocks, each consisting of a central particle with
a specific arrangement of nearest neighbors at distance ≈ σ . In Fig. 3.5 all
rectangular and linear configurations with field aligned connection vec-
tors between nearest neighbors are shown. Note that this means that the
number of neighbors is restricted, Nb ≤ 4. These configurations corre-
spond to basic building blocks for chains, end of chains/dimers and junc-
tions (yellow, magenta light blue and black central particle). In the fol-
lowing, a method which allows to identify these building blocks in the ex-
perimentally observed colloidal networks is presented. To this end, each
particle is associated with two fictitious dipole moments mα of absolute
value mα =

√
ϵσ3 placed in its center. Here ϵ is again an arbitrary unit

of energy. One moment points along the electric field (α = el), and one
along the magnetic field (α = mg). Note that these moments are not phys-
ical; Being fictitious quantities these moments serve in the following as

Figure 3.5: Different local arrangements of particles with nearest neigh-
bor distances σ in rectangular network structures and in lin-
ear chains. The legend gives the fictitious energies uel (umg )
in units of an arbitrary energy ϵ for particles with dipole
strengths mα =

√
ϵσ3. Note that horizontal chains have posi-

tive electric energies uel (red frame), while vertical chains have
positive magnetic energies umg (blue frame).
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’tools’ for structure analysis only. Introducing these moments allows to
calculate corresponding fictitious electric and magnetic energies between
the central particle of a building block, denoted by i, and all its nearest
neighbors j via the summed dipole-dipole potential

uαi =
Nb∑
j=1

mα
i m

α
j e
−3
ij − 3(m

α
i eij )(m

α
j eij )e

−5
ij (3.26)

with eij = rij /rij . Hence, each particle i can be associated with two ficti-
tious energy values, the electric one ueli and the magnetic one u

mg
i . Cer-

tain energy pairs correspond to certain basic building blocks as it can be
seen in in Fig. 3.5. In fact, knowledge of both values, ueli and u

mg
i , allows

unique identification of the building block belonging to particle i: knowl-
edge of one energy contribution is insufficient to distinguish between end
of chains (dimers) and junctions (configurations with four neighbors).

Applying this identification scheme to network structures from sim-
ulation or experiment requires to define a cut off distance for nearest
neighbors, which is chosen here to rc = 1.15σ . Because σ ≲ rc the ener-
gies uα can reasonably be calculated by using the unit distance vector eij
(see Eq. [3.26]) instead of the true distance. Here we assume that nearest
neighbors are (almost) in contact. A certain rectangular network struc-
ture is properly characterized by the distributions of the energies ueli and
u
mg
i , which means by the distribution of the basic building blocks. In

Fig. 3.6(d), the distributions of ueli and u
mg
i are shown for the experimen-

tal network given in Fig. 3.6(a) as well as for a network resulting from
simulation, which is shown in Fig. 3.6(e). The histograms are normalized
by the number of particles in aggregates A. Certain (integer valued) peaks
of these distributions correspond to the populations of certain building
blocks, which are placed as cartoons beneath these peaks. Closer inspec-
tion of Fig. 3.5 shows that both energies are negative or equal zero( uα ≤ 0
and uγ,α ≤ 0) for particles in junctions or more compact structures. In
contrast to that, chain-like configurations generally yield positive values
of one energy type and negative energies of the other type (uα > 0 and
uγ,α ≤ 0). In fact, particles in horizontal chains have positive electric in-
teraction energies uel > 0, while particles in vertical chains have positive
magnetic energies umg > 0. This can also be seen in Fig. 3.6(b), where each
particle i is color-coded according to its electric energy ueli .

Hence it is straight forward to determine the ’role a particle plays’. In
the following, particles in horizontal chains (uel > 0) are colored in red,
particles in vertical chains are colored in blue (umg > 0) and node particles
are colored in black (uel < 0 and uel < 0). Particles without nearest neigh-
bors are indicated by black circles. Applying this identification scheme to
the network structure from experiment (Fig. 3.6(a)) results in a re-color
coded representation given in Fig. 3.6(c). This scheme works surprisingly
well and allows proper identification of horizontal and vertical chains as
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Figure 3.6: Colloidal network in experiment at E = 37V and H = 3.5V
and simulation at µel = 0.4, µ̄mg = 0.4 and density ρ∗ = 0.35.
Experimental microscopic image (a) in natural colors, (b) with
particles colored according to the distribution uel and (c) col-
ored according to the ’role’ a particle plays in the network. (d)
Distributions of uel (blue) and umg (red) for the experimental
structures in (a) and for a simulated network colored according
the ’role a particle plays’ in (e).
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well as nodes or clustered aggregates.
In addition, once the role a particle pays in the aggregate is found, statis-

tics of populations of node or chain particles can be collected. In the
following, the number of particles in vertical chains is denoted by v, in
horizontal chains by h and in nodes by n. By A we denote the number of
particles with at least one neighbor and it holds

v + h+n = A. (3.27)
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3.6 The EDP Model - A Generic Approach
towards Mutidirectional Field Induced
Dipolar Interactions

In the present section we introduce the extended dipole particle (EDP)
model. Our aim is to construct a model which captures essential features
of the interactions between colloids in crossed fields. However, we do not
claim to model one specific (electric and/or magnetic) system in its details,
but rather provide a generic and computationally convenient model. To
this end, we consider a two-dimensional system of N soft spheres of equal
diameter σ . The soft sphere interactions are repulsive and are modeled by
a shifted and truncated (12,6) Lennard-Jones Potential

USS(rij ) = 4ϵ
(
(σ/rij )

12 − (σ/rij )
6 + 1/4

)
(3.28)

which is cut off at rc,SSij = 21/6σ . Here, rij = |rj − ri | is the particle center-to-
center distance and ϵ sets the unit of energy.

The crossed orthogonal external fields induce orthogonal dipole mo-
ments µm = µem and µe = µee, which we term for simplicity as ’magnetic
(m)’ and ’electric (e)’ dipoles (although the model is also appropriate for
two electric moments). The coordinate frame is adjusted to coincide with
the directions of these moments so that em = ex and ee = ey . In general,
these moments can have different absolute values, but for simplicity they
are assumed to be equal in this preliminarily consideration. The two types
of dipole moments are also assumed to be independent from each other,
meaning that they interact only with dipole moments of the same type on
other particles. The occurrence of rectangular particle arrangements in
experiments [25] suggests an effective ’four-fold valency’ of pair interac-
tions, irrespective of other details.

Here we want to take into account the four-fold valency but also the
overall attractiveness (no repulsion) of the crossed point-dipole setup [see
Eq. (3.20)]. We thus introduce, as detailed below, artificial ’dipole mo-
ments’ composed of charges with short-ranged interactions. Note that the
fixed orientation of dipole moments and the overall attractiveness con-
trasts the ’classical’ theoretical concepts of patchy particles [4, 103, 102,
105, 151], which are able to rotate and are characterized by localized at-
tractive and repulsive interactions.

To be specific, each dipole moment µα (with α = e,m) is replaced by two
opposite charges −qα1 = qα2 which are shifted out of the particle center by
a vector δαk = (−1)kδeα, with k = 1,2. The vector δαk points either par-
allel (k = 2) or anti-parallel (k = 1) along the corresponding point dipole
moment µα. Independent of their type, all charges have the same abso-
lute value q = |qαk | = 2.5(ϵ/σ )−1/2 and shift |δ| for the sake of simplicity. In
principle though, this ’extended’ dipole model allows also to vary the val-
ues of q and δ for different interaction types. Also, the choice of the value
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3 Theoretical Models of Complex Dipolar Colloids

Figure 3.7: Distribution of externally induced fictitious ”charges” q inside
a particle. Positions of charges are determined by the vec-
tors δαk ∈ [−δex,δex,−δey ,δey]) pointing either parallel or anti-
parallel to the corresponding fields.

q = 2.5 is essentially arbitrary, as we will later normalize the interaction
energy to eliminate the dependence of its magnitude on the charge sepa-
ration δ [see Eq. (3.32) below]. A schematic representation of the model
with its internal arrangement of ’charges’ is shown in Fig. 3.7. Mimicking
magnetic dipoles via spatially separated ’charges’ is clearly artificial from
a physical point of view, but in the spirit of the generic character of our
model. Charges k and l on different particles i and j interact via a Yukawa
potential

U
αkαl
ij (rij ) = −q2

exp(−κrαkαlij )

r
αkαl
ij

(3.29)

with r
αkαl
ij = |rj − ri + δαl − δαk |. The inverse screening length is chosen

to κ = 4.0σ−1 and a radial cutoff rc = 4.0σ is applied, which ensures in-
teraction energies smaller than 10−6 at cut-off distance. Using a screened
potential between the charges has mostly computational reasons; correct
treatment of the true, long-ranged coulomb potential requires specific
simulation methods [144]. In the present model the effort is enhanced
by the fact that each particle has four charges. Still, the directional depen-
dence of the interactions does not change due to the screening. We also
note that previously similar models with comparable interaction ranges
have been used to describe dipolar colloids in the framework of discon-
tinuous molecular dynamics simulations [108, 152]. The arrangement of
charges inside particles then results in a pair-interaction UDIP (rij ) given
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3.6 The EDP Model - A Generic Approach towards Mutidirectional Field
Induced Dipolar Interactions

Figure 3.8: Normalized direction-dependent pair interaction U (rij ) [see
Eq. (3.34)] between a particle in the center of the coordinate
frame and a second particle (indicated as black circle in (a))
at various positions rij for three different charge separations
δ = 0.1,0.21,0.3σ corresponding to (a), (b), (c). Sterically ex-
cluded areas are indicated by white circles. (d) Interaction
energy at distance rij = σ as function of φ, the angle mea-
sured in multiples of π against the x-axis, for δ = 0.1σ (yellow),
δ = 0.21σ (purple) and δ = 0.3σ (black).

by

UDIP (rij ) =
2∑

k,l=1

[U ekel
ij (rij ) +U

mkml
ij (rij )]. (3.30)

In principle, UDIP (rij ) is a function of q and δ. To facilitate the compar-
ison between the interactions at different δ (q is chosen to be constant), we
normalize UDIP (rij ) according to

ŨDIP (rij ) = UDIP (rij )×u/UDIP (σeα) (3.31)

where the constant u = −2.804ϵ is calculated from the non-normalized
energy UDIP (σeα) with model parameters δ = 0.3σ and q = 2.5(ϵ/σ )−1/2.
This procedure ensures that the normalized energy between two particles
at contact (rij = σ ) and direction rij = σeα (pointing along one of the fields)
has the constant value u for all δ, that is

ŨDIP (σeα) = u. (3.32)

52



3 Theoretical Models of Complex Dipolar Colloids

Therefore we can reformulate the dipolar coupling strength in Eq. [3.7]
for this model towards

λ = u/kBT . (3.33)

The full pair interaction of our model is then given by

U (rij ) = USS(rij ) + ŨDIP (rij ). (3.34)

The resulting potential is illustrated in Fig. 3.8(a)-(c) for a particle in
the center of the coordinate frame and a second particle at various dis-
tances rij and angles φ = arccos(r12 · ex/r12) with ’charge’ separations δ =
0.1,0.21,0.3σ . The value δ = 0.21σ is motivated by our simulation re-
sults presented in Sec. 5.2.2. Sterically-excluded areas are shown in white
and energy values are color coded in units of ϵ. The weak anisotropy
of the resulting particle interactions at small δ (where one essentially
adds two dipolar potentials, (see Eq. [3.20]) transforms to a patchy-like
pattern [103, 102] by increasing δ. Energy minima become more and
more locally restricted and interactions reveal an increasing four-fold (i.e.,
’patchy’) character, although remaining their attractiveness in general.
This is also seen in Fig. 3.8(d) which gives the energy between two par-
ticles in contact as function of φ for different δ. From Fig. 3.8(d) we also
see that, independent of the ’charge’ separation δ, the minima of the full
interaction potential (see Eq. [3.34]) occur for connection vectors rij = σee
and rij = σem (i.e., pointing along the fields). Note that this already holds
for the non-normalized energy given in Eq. [3.30].

Tabular representation of reduced units.

reduced density ρ∗ = ρσ2

reduced temperature T ∗ = kBT /ϵ
reduced interaction strength u∗ = u/ϵ = −2.804
Brownian time scale τb = σ2γ/kBT

Simulations are performed with N = 1800 to 3200 particles at a range
of reduced number densities ρ∗ = ρσ2 and temperatures T ∗ = kBT /ϵ, in
a square-shaped simulation cell with periodic boundary conditions. The
equations of motion

γ ṙi = −
N∑
j=1

∇U (rij ) +ζi(t) (3.35)

are solved via the Euler scheme with an integration step width ∆t =
10−4τb, where τb = σ2γ/kBT is the Brownian timescale, γ is the friction
constant and ζi(t) is a Gaussian noise vector which acts on particle i and
fulfills the relations ⟨ζi⟩ = 0 and ⟨ζi(t)ζj(t′)⟩ = 2γkBT δijδ(t − t′) [135]. We
perform simulations for up to 103τb.
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4
Lane Formation of Dipolar

Microswimmers

Using Brownian Dynamics (BD) simulations we investigate the non-

equilibrium structure formation of a two-dimensional (2D) binary

system of dipolar colloids propelling in opposite directions. Despite

of a pronounced tendency for chain formation, the system displays a

transition towards a laned state reminiscent of lane formation in sys-

tems with isotropic repulsive interactions. However, the anisotropic

dipolar interactions induce novel features: First, the lanes have

themselves a complex internal structure characterized by chains or

clusters. Second, laning occurs only in a window of interaction

strengths. We interpret our findings by a phase separation process

and simple force balance arguments.

4.1 Background

In the present chapter we present results previously published in [153].
Based on particle-based Brownian Dynamics (BD) simulations, we investi-
gate a prototype of field-propelled complex colloids, that is, spheres with
dipolar interactions. Our model is inspired by real systems of metallodi-
electric ”Janus” spheres with two dielectric parts acquiring different (in-
duced) dipole moments in an external electric field [15]. Previous exper-
imental studies in a quasi-two dimensional (2D) setup with an in-plane
field have shown that these particles perform straight motion perpendicu-
lar to the field [55], with two possible directions depending on the orien-
tation of the hemispheres. Ensembles of such particles therefore should



4.1 Background

exhibit lane formation, with the additional feature of strongly anisotropic
interactions favoring the formation of staggered chains. Based on a suit-
able model system, we find indeed several new phenomena: First, de-
spite a pronounced tendency to aggregate into chains perpendicular to
the driving force, the dipolar interactions can induce laning at densities
where purely repulsive systems are mixed. At larger interaction strengths,
however, we observe a breakdown of lane formation. Moreover, by com-
paring the lane formation with that in a much simpler system governed
by isotropic, attractive Lennard-Jones (LJ) interactions, we show that the
main laning mechanism is, in fact, the effective (angle-averaged) attraction
between the dipoles. Indeed, for both systems the onset of laning roughly
occurs at coupling strengths related to equilibrium phase separation. Fi-
nally, lanes disappear when the maximum pair attraction corrected by the
thermal energy exceeds the work done by the driving force.

Tabular representation of reduced units.

reduced density ρ∗ = ρσ2

reduced driving force f ∗d = fdσ/kBT

reduced dipole moment µ∗ ≡ µ(2)
i

∗
= µ

(2)
i /
√
σ3kBT

reduced LJ coupling strength ϵ∗ = ϵ/kBT

Target quantities To quantify the degree of laning along the driving
force fsd,i = sifdex, we introduce for every particle i a slice in x-direction
with lateral width σ centered around yi . We then assign a variable Φi
which equals 1 if the slice contains no particle of opposite driving direc-
tion and 0 otherwise. The ensemble-averaged laning order parameter then
follows as

Φ = ⟨
N∑
i=1

Φi/N ⟩, (4.1)

where the brackets denote a time average. Non-laned states are char-
acterized by Φ ≈ 0 whereas perfectly laned states correspond to Φ = 1.
However, the system can visually appear as being laned already at much
smaller values of Φ (e.g., Φ ≈ 0.2), especially at high densities. To charac-
terize the local structure in x-direction we calculate the radial distribution
function between particles of the same type

gs(x) =
2
ρN
⟨
N∑
i=1

N∑
j,i

δ(x − |xij |)Θ(σ − |yij |)Θ(sisj )⟩ (4.2)

with xij (yij ) being the x (y)-component of rij , and δ and Θ are the delta-
and the Heavyside step function, respectively. By normalization, gs(x)
decays to 2 for x → ∞ in a single-species fluid and to 1 in a completely
mixed binary fluid. By interchanging x and y in Eq. (4.2) we additionally
define the correlation function gs(y) in y-direction.
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Figure 4.1: Laning order parameter as function of driving force for (a) the
DDP system (µ∗ = 1.58) and (b) the SS system (ϵ∗SS = 10kBT ) at
different densities.

4.2 Lane Formation of Dipolar Microswimmers

In Fig. 4.1(a) we plot the laning order parameterΦ of DDP systems for dif-
ferent densities ρ∗ = ρσ2 as functions of the dimensionless driving force
f ∗d = fdσ/kBT . At low driving forces (f ∗d ≤ 10) the order parameter is essen-
tially zero for all densities considered, reflecting the absence of lanes. The
corresponding local structure at f ∗d = 0 and ρ∗ = 0.2 is illustrated by the
simulation snapshot shown in Fig. 4.2(a). One observes the formation of
’staggered’ chains, consistent with the most attractive pair configurations
illustrated in Fig. 3.2(b), and in qualitative agreement with experiments of
metallo-dielectric particles under field conditions where self-propulsion
is absent [15]. At very small driving forces (f ∗d < 10) staggered chains are
driven against each other and form one large aggregate consisting of both
species. This corresponds to a jammed state.

Increasing f ∗d to larger values, all of the systems considered in Fig. 4.1(a)
display laned ’states’ characterized by non-negligible values of Φ . For
small densities (ρ∗ < 0.4) this lane formation occurs gradually and signif-
icant values of Φ are reached only at high driving forces f ∗d > 50. In con-
trast, dense systems display a rather steep laning ”transition” at a driving
force f ∗d ≈ 15. A visualization of exemplary laned states at f ∗d = 80 and two
densities is given in fig. 4.2(b) and (c). Here, the driving force fsd,i = sifdex
points horizontally either to the left, for ’yellow’ particles (si = −1) or to
the right for ’purple’ particles (si = 1). To elucidate the impact of dipolar
forces on the functions Φ(f ∗d ) we plot in Fig. 4.1(b) corresponding data for
the driven SS system. At low densities ρ∗ ≤ 0.4 the systems behave similar
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4.2 Lane Formation of Dipolar Microswimmers

Figure 4.2: Snapshots of the DDP system in the x-y plane at (a) f ∗d = 0,
ρ∗ = 0.2, (b) f ∗d = 80, ρ∗ = 0.2 (Φ ≈ 0.2) and (c) f ∗d = 80, ρ∗ = 0.5
(Φ ≈ 0.75). The driving force acts horizontally to the right (left)
on dark (bright) particles: s = 1 (−1), µ∗ = 1.58.
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Figure 4.3: Pair correlation functions between double dipolar particles of
the same species along the x-direction (main plot) and the y-
direction (inset). The data pertain to f ∗d = 80 and different
densities. In the inset, curves for different densities have been
shifted by one σ to enhance visibility.

to their DDP counterparts. However, at high densities (ρ∗ > 0.4) there is
no lane formation in the (purely repulsive) SS system, in striking contrast
to the behavior of the DDP systems. We will come back to this point be-
low. Here we first consider the internal structure of the lanes in the DDP
systems.

4.2.1 Complex lanes - Internal structure

Visual inspection of Figs. 4.2(b) and (c) suggests that lanes consist of clus-
ters of particles of the same type.

At low densities (see Fig. 4.2(b) ) we find mostly short chains oriented in
y-direction, which reminds of the equilibrium structure of single dipole
particles in external fields [22]. Clearly, such chains are absent in sim-
pler (isotropic) lane-forming systems. At higher densities (see Fig. 4.2(c))
the particles tend to form clusters along the driving force but the local
arrangement is not crystalline in the sense of i.e., a hexagonal Bravais lat-
tice. However, the corresponding (hexagonal) translational order param-
eter [65] (see Eq [5.5]) is larger than that observed at low f ∗d .

For a more quantitative characterization we consider the correlation
functions gs(y) and gs(x) plotted in Fig. 4.3 at a high driving force f ∗d = 80
and at different densities ρ∗ ∈ [0.2,0.6]. For the lowest density considered
(ρ∗ = 0.2) gs(y) reveals a pronounced peak at y = 1σ and a second, smaller

59
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one at y = 2σ , indicating chains of up to three particles along the field di-
rection. Furthermore, we observe a ’hump’ appearing directly before the
first peak. This ’hump’ results from bended and perturbed chains as well
as from a few clusters elongated in x-direction (see Fig. 4.2(b)). Increasing
the density the hump transforms into a pronounced peak, which finally
overtakes the peak at y = 1σ at ρ∗ = 0.4. At this density, linear chains
in y-direction have lost their dominance as structural elements. Instead,
clusters spread out in x-direction.

This interpretation is supported by the behavior of the function gs(x)
which displays a similar qualitative change at ρ∗ = 0.4. At densities ρ∗ ≤
0.3, gs(x) reveals only one relatively small peak at a distance of x = 1σ
showing that a minor fraction of chains is bended, staggered or has ad-
ditional particles attached in x-direction. Increasing ρ∗ results in an in-
crease of this first peak and the emergence of a second peak at x ≈ 2σ .
Again this peak reaches relevant values (> 2) for ρ∗ = 0.4 and indicates
thereby cluster growth in x-direction and finally a change from linear
chains in y-direction to horizontally elongated clusters. At even higher
density ρ∗ = 0.5,0.6 elongation of clusters in x-direction becomes compa-
rable to the system size.

We conclude that there are two qualitatively different regimes for lane
formation in the DDP-system. The first one (chain regime) is characterized
by short chain-like aggregates inside lanes and occurs for relatively high
driving forces f ∗d > 50 and low densities ρ∗ ≤ 0.3. These parameters are
comparable to the parameters under which lane formation is observable
in the HS-model and SS-model (see Fig. 4.1(b) and [91, 80]). The second
one (cluster regime) is characterized by in x-direction elongated clusters
arranged in lanes and is restricted to larger densities ρ∗ > 0.4. A similar
intra lane structure has been reported by Menzel in [89] for a confined
two-dimensional setup of active particles with an alignment mechanism.
However, once the density is larger than 0.4 and f ∗d > 20, the degree of lane
formation is more or less independent of ρ∗ and f ∗d . The fact that at very
small driving forces the system undergoes a transition towards a laned
state for all densities ρ∗ > 0.3 at the same driving force is qualitatively
different to the reentrant behavior of the HS-model [91].

We note that these structural details are quite sensitive to the shift pa-
rameter δ characterizing the position of the dipole moments inside the
particles: Indeed, as revealed by test simulations, smaller values of δ tend
to suppress the lane formation in the ”chaining regime” and enhance the
occurrence of chains in the ”cluster regime”.

4.2.2 Complex lanes - Characteristic lane widths

The fact that lanes in the DDP-system reveal certain internal structures,
raises the question whether these internal structures translate into charac-
teristic lane widths.
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4 Lane Formation of Dipolar Microswimmers

Figure 4.4: Pair-correlation functions , g(y) (black) and gs(y) (red), of the
double dipolar system in y-direction for laned states at den-
sities ρ∗ = 0.2 (a) and ρ∗ = 0.5 (b) and common driving force
f ∗d = 80.

Figure 4.5: Pair-correlation functions gs(y) in y-direction for laned states
of the DDP-Model at density ρ∗ = 0.5 and various driving
forces f ∗d ∈ [10,70]. First ’long-ranged’ minima of gs(y) are in-
dicated by dots. The different functions gs(y) are subsequently
shifted by 4σ in vertical direction for better illustration.
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4.2 Lane Formation of Dipolar Microswimmers

To answer this question we show in Fig. 4.4 (a) and (b) the particle type
specific pair distribution functions in y-direction gs(y) as well as the usual
pair distribution function in y-direction g(y) at f ∗d = 80 for the two den-
sities ρ∗ = 0.2,0.5, corresponding to the snapshots in Fig.4.2 (b) and (c).
The presence of particle type specific lanes is reflected in the long-range
oscillation of gs(y ≥ 5σ ) whereas the periodicity corresponds roughly to
the widths of lanes. In contrast to that, the pair distribution function in
y-direction g(y) yields no long-ranged oscillations because it can not dis-
tinguish between particle species and particle type specific lanes. In con-
sequence, the position of the first minimum of gs(y ≥ 5σ ) can be used to
estimate an averaged lane width.

In Fig. 4.5 we show gs(y) for the intermediate density ρ∗ = 0.5 at differ-
ent driving forces whereas all of these cases represent laned states. The
first long-ranged minima of gs(y) is indicated by a dot. The different func-
tions gs(y) are subsequently shifted by 4σ in vertical direction for better
illustration. Clearly, a tendency to form thinner lanes at higher driving
forces can be observed ranging from 10σ at the lowest driving force to
5σ at the highest driving force (see also Fig. 4.4(b) for the first minima of
g∗s(y) at f ∗d = 80.). Only, the minima for f ∗d = 40 does not fit properly to
this trend which might be the case because of too short simulation times.

Interestingly, also the local structure varies with the strength of the
driving force. While at low driving forces there exist up to five peaks in
g∗s(y) this reduces to two or three peaks at the higher driving forces. This
means, that aggregates forming the ’backbone’ of the lane become smaller
(in y-direction) in the same way as lanes themselves become thinner. Also
the absolute peak heights decrease with f ∗d . In analogy to the how melt-
ing process of a solid by increasing temperature it appears here that the
internal structure of lanes ’melt’ by increasing the drive.

However, results are subject to large statistical variations and the func-
tional form of the dependency of the lane width on the driving force re-
mains unclear. Importantly, test simulations with a fully phase separated
initial state consisting of two homogenous lanes revealed that these states
are stable, at least for f ∗d > 20. Therefore, the lane width depends not only
on the driving force but also on the initial conditions. As we are consid-
ering a non-equilibrium system here it is not surprising that the system
can be trapped in several meta-stable states depending on the initial con-
ditions. Also the exceptional behavior of g∗s(y) at f ∗d = 40 in Fig. 4.5might
result from such meta-stable initial conditions.

Therefore it remains an open question whether there exist characteris-
tic lane widths (in the DDP-system). Previous work on lane-formation in
solely repulsive systems did also not report on characteristic lane widths.
To our best knowledge there is only Liu et. al.[93] who briefly states that at
very high densities ρ∗ ≈ 1 of repulsive spheres there occurs a full separa-
tion of particle species into two lanes, which corresponds to a lane width
of half the system size. Therefore we shortly want to comment on these
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4 Lane Formation of Dipolar Microswimmers

Figure 4.6: Pair-correlation functions in y-direction, g(y) (black) and gs(y)
(red), for a laned state of the SS-Model at density ρ∗ = 0.2 and
driving force f ∗d = 80.

solely repulsive HS- and SS-models.
The particle type specific pair correlation function in y-direction gs(y)

for a laned state of the SS-model at ρ∗ = 0.2 and f ∗d = 80 is shown in
Fig. 4.6. In the SS-system particles are organized in lanes, but not in clus-
ters. This can be seen by the fact that there is no local structure inside
lanes but only one peak (y ≈ 1σ ) of gs(y) for distances smaller than the ac-
tual lane width (≈ 6σ in Fig. 4.6). Furthermore, gs(y) shows a less regular
long-range order than in the DDP system (see Fig. 4.4(a)). Importantly,
this lack of clear periodicity of gs(y) contrasts the idea of a characteristic
lane width in SS-systems. At low densities (ρ∗ ∈ [0.2,0.4]), we find that
states with a clear periodicity of gs(y) do not occur systematically. This
means that, under fixed conditions (f ∗d , T ∗, ρ∗), lanes have significantly
different widths inside and between different simulation runs.

In the DDP-system, aggregates are assumed to form (due to their own
rigidity) supportive intra lane structures, similar to a backbone. In con-
trast to that, the SS-system reveals no aggregation, which might reduce its
capability to pertain certain lane widths. At least, the presence of such
structures is a major difference between lanes in the SS-model and in the
DDP-model.

4.3 Mechanisms of Lane Formation

In the following we concentrate on the question why the dipolar interac-
tions strongly enhance lane formation compared to the purely repulsive
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SS model, as revealed by the order parameter plots in Fig. 4.1. We con-
centrate on the density ρ∗ = 0.5, where the differences are particularly
pronounced.

4.3.1 Lane formation in the isotropic model

To understand the role of the effective attraction in our DDP system on the
lane formation we therefore consider, as a first step, the corresponding be-
havior of a LJ fluid. For simplicity, we choose the same attraction strength
ϵ∗ for both, different and same species. Results for the order parameter Φ
of a driven LJ system as function of ϵ∗ at fixed f ∗d are shown in Fig. 4.7(a).
For very small values of ϵ∗ the order parameter is negligible, consistent
with the behavior of the pure SS system in Fig. 4.1(b). Upon increase of ϵ∗,
lanes first appear at a certain value and then disappear again at a substan-
tially larger coupling. A similar reentrance of the non-laned (mixed) state
occurs at other driving forces, as seen from the laning ”state diagram” (for
ρ∗ = 0.5) presented in Fig. 4.7(b). The state diagram moreover reveals that
the onset of lane formation occurs at a coupling strength of ϵ∗ ≈ 2.5 (see
dotted green lines in figs. 4.7(a)-(b)) quite independent of f ∗d (taking the
value Φ = 0.02 as a lower limit for laning), while the coupling related to
the disappearance of lanes appears to be a linear function of f ∗d . Given
the lower boundary ϵ∗ ≈ 2.5, it is interesting to make a connection to the
equilibrium phase diagram of the 2D LJ fluid: This system has a critical
point (gas-liquid condensation) at ρ∗c = 0.35 and T ∗c ≈ 0.46, correspond-
ing to a critical coupling strength ϵ∗c ≈ 2.17 [154, 155]. The triple point
(gas-liquid-solid) coupling strength is given as ϵ∗t ≈ 2.5 (with correspond-

ing liquid density ρ
liquid
t ≳ 0.6 [154]). From this we can conclude that the

non-driven LJ system at ρ∗ = 0.5 and ϵ∗ = 2.5 is in a strongly correlated
state which is, in fact, thermodynamically unstable, i.e., it lies within the
coexistence curve of the gas-liquid transition. Moreover, revisiting again
Fig. 4.7(a)-(b) we see that ϵc provides a lower limit of laning. These obser-
vations suggest that the equilibrium phase separation is a prerequisite for
lane formation in the driven LJ system.

We now turn to the breakdown of laning at large coupling strengths.
Here, the external force driving two unlike particles (si , sj ) away from
one another competes with the attractive LJ forces.

To quantify this competition we construct an effective pair interaction
ULJ
ef f (xij ) between unlike particles, which are initially in contact and then

driven apart in x-direction. A schematic sketch of this setup is shown in
Fig. 4.8. In this configuration particles are initially in contact (|r12| = σ )
but displaced in y-direction. To account for different vertical positions yij ,
we first average the x-component of the LJ force

FLJ,x = −∂xiULJ (4.3)
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Figure 4.7: (a) Laning parameter versus coupling strength for the LJ sys-
tem at f ∗d = 7, ρ∗ = 0.5. Inset: Enlarged view for small ϵ∗. (b)
Laning ”state diagram” of the LJ system. In (a) and (b), red,
dotted green and black lines correspond to ϵ∗c, ϵ

∗
t , and ϵ∗max,

respectively.
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4.3 Mechanisms of Lane Formation

Figure 4.8: Schematic sketch for a yellow particle moving to the left and
a purple particle moving to the right. In this configuration
particles are initially in contact (|r12| = σ ) but displaced in y-
direction.

, over the angle φ between rij and ey (at fixed distance) yielding

F̄LJ,x = π−1
∫ π

0
sinφFLJdφ = 2FLJ /π (4.4)

with FLJ = −∂rULJ . Integration (setting now yij = 0) yields the potential

ŪLJ (xij ) = 2/πULJ (xij ) (4.5)

. Adding the linear potential associated to the external force yields

ULJ
ef f (xij ) = ŪLJ (xij )− fdxij (4.6)

. For small driving forces, ULJ
ef f displays a local minimum Umin and max-

imum Umax, and thus a potential barrier ∆U = |Umax − Umin| as shown
in Fig. 4.9. Unlike particles tend to stick together (against the drive) if
the mean kinetic energy per particle 2 × kBT /2 is smaller than ∆U (fd ,ϵ).
Solving numerically the equation ∆U = kBT for various f ∗d we obtain val-
ues ϵ∗max(f ∗d ) indicated by the dotted black line in Fig. 4.7(b). Clearly, our
simplified model describes the breakdown of lane formation very well.
Moreover, having introduced ULJ

ef f , we can also understand the fact that
the onset of laning occurs at coupling strength slightly larger than the crit-
ical coupling in equilibrium, ϵc. The driving force effectively reduces the
attraction between unlike particles, yielding a shift of phase separation.
A similar effect of a shifted onset of phase separation induced by activity
has recently been described by Schwarz-Linek et. al. [69] for swimming
bacteria in polymer suspensions.
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4 Lane Formation of Dipolar Microswimmers

Figure 4.9: Effective interaction at different driving forces f ∗d for the LJ-
system. The LJ-interaction strength is chosen to ϵ = 4kBT and
minima and maxima of the potential barrier opposing lane for-
mation are indicated by triangles and dots.

4.3.2 The laning state diagram for dipolar swimmers

Given this background, we now consider in Fig. 4.7(c) the state diagram of
the full, anisotropic DDP fluid (ρ∗ = 0.5) in the parameter plane spanned
by driving force and coupling strength. The latter is now given by µ∗ (the
soft-sphere repulsion is fixed). Clearly, the structure of the state diagram
resembles that of the LJ system. In particular, the onset of laning depends
only weakly on f ∗d , and there is an upper boundary for µ∗ beyond which
laning disappears.

This prompts the question whether the onset of laning in the driven
DDP system can be related to an equilibrium fluid-fluid phase separation,
as in the LJ system. We note that already the equilibrium DDP system
is a true binary mixture, since the full pair interactions depend on si ,
see Fig. 3.2. Therefore the possible fluid-fluid transitions (if existent at
all) are, in general, combinations of condensation and demixing. In the
present study we did not carry out simulations to explore these questions
properly. Still, one can perform some estimates based on mean-field den-
sity functional theory (DFT). We focus on the occurrence of condensation
(rather than demixing), because the angle-averaged (i.e. mean-field) in-
teraction between unlike DDPs is nearly the same as that between like
particles (see Fig. 3.3). The corresponding stability condition of the ho-
mogeneous, mixed phase is that the isothermal compressibility, χT , has
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4.3 Mechanisms of Lane Formation

to be positive. According to Kirkwood-Buff theory [156] one has (for a
symmetric binary mixture composed of species A and B)

χ−1T ∝ 1− (ρ/2) (c̃AA(0) + c̃AB(0)) (4.7)

, where c̃AA(AB)(0) are the Fourier transforms of the direct correlation func-
tions (DCFs) cAA(AB)(r12) in the limit of long-wavelengths (k→ 0). In our
case, AA (AB) corresponds to s1 = s2 (s1 = −s2). Furthermore, we approxi-
mate the DCFs according to a random phase approximation, that is,

cs1s2(r12) = cHS(r12)θ(σ − r12)− (kBT )−1UDD(r12, s1, s2)θ(r12 − σ ) (4.8)

, where cHS is the Percus-Yevick DCF of a pure hard-sphere fluid [139].
The Fourier transforms of the second, mean-field like contribution to the
DCFs yield essentially the spatial integral over the effective potentials de-
fined in Eq. (3.14). Numerical investigation of the resulting expression
for χT at ρ∗ = 0.5 reveals that, upon increasing µ∗ from zero (where χT
reduces to the hard-sphere compressibility), χT becomes indeed negative
at µ∗s = 1.31, indicating an instability (”spinodal point”) related to conden-
sation. Thus, simple mean-field DFT predicts the existence of a conden-
sation transition in the equilibrium DDP fluid. Further, for ρ∗ = 0.5, the
transition should occur at a coexistence value µ∗coex ≲ µ∗s; its actual value
is, however, more elaborate to determine. BD test simulations of the non-
driven system at ρ∗ = 0.5 and dipole moments larger than µ∗s reveal indeed
a phase separated structure consisting of thick columns (involving both
particle species) and large voids in between. The question now is, does
µ∗s play a decisive role for the driven DDP system? Considering Fig. 4.10
we find that µ∗s (indicated by a white line) yields indeed a good estimate
for the onset of laning at low values of the driving force (f ∗d ≲ 30). This
suggests that, similar to the LJ system, equilibrium phase separation is a
prerequisite of laning at the density considered. Only for larger driving
forces (f ∗d ≳ 30) the estimate worsens (this effect was not observed in the
LJ system where, however, calculations where restricted to small f ∗d ).

The breakdown of laning at large µ∗ can be estimated, similar to the
LJ system, by constructing an one-dimensional (x-dependent) potential,
in which the DDP interaction between unlike particles competes with the
driving force. We consider exemplary configurations yij = y0 (a simple
force average over different configurations yij is not appropriate due to
the interaction anisotropy) and obtain the potential

UDDP
ef f (xij ) = UDDP (x;y0)− fdxij (4.9)

which displays a barrier ∆U (y0, fd ,µ). Figure 4.10 includes the numeri-
cal solution µ∗max(f ∗d ) (dotted red line) of the equation ∆U = kBT at y0 =
0.645σ , corresponding to the most attractive, ”staggered” configuration at
contact (see Fig. 3.2(b)). Clearly, this line describes the breakdown qualita-
tively, but overestimates the influence of attraction. Quantitatively better
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Figure 4.10: State diagram for lane formation in the DDP system. The dot-
ted white line indicates the spinodal ’dipole strength’ µ∗s. Red
and black lines indicate the breakdown condition for lane for-
mation with µ∗max(f ∗d ) at y0 = 0.645(0.9)σ , framing the true
breakdown of lane formation.

results are obtained with y0 = 0.9σ (dotted black line in Fig. 4.10, cor-
responding to a less attractive initial configuration. The ”true” potential
should be seen as a (weighted) average over different y0. Interestingly, the
reduction of attraction expressed in the effective potential also explains
the shift of the onset of laning with larger f ∗d .

Finally, we briefly want to comment on how the parameter combina-
tions (f ∗d ,µ

∗) and the associated complex phase behavior (onset and break-
down of lane formation) discussed here relate to experimentally accessi-
ble combinations of swimming speed v and external field strength Eext.
This is important because the swimming speed v of the particles is pro-
portional to E2ext and therefore it is also proportional to the strength of the
dipolar interactions (see Eq. [1.1] and the discussion below in Sec. 1.2.4).
Hence, the quantities f ∗d and µ∗ are not independent for a given particle
type. In fact, it holds fd ∝ µ2. Thus, the accessible state points and the
corresponding laning behavior are in principle given by a parabola in the
state diagram shown in Fig. 4.10. Hence, it remains an open question
whether the onset and/or breakdown of lane formation can be observed
in experiment, as this parabola may remain inside or outside the region of
lane formation. The answer to this latter question will of course strongly
depend on the different parameters, e.g., permittivity and viscosity of the
fluid, or particle diameter, relating the strength of the external field with
the strength of the dipole moment and the swimming velocity.
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4.4 Summary

In the present section we investigated a system of colloidal microswim-
mers under the presence of an external electric field. The experimental
setup motivating this work has been introduced in Sec. 1.2.4. The complex
model used for this study is a double dipolar Janus particle with two in-
duced dipole moments of different strengths and an orientationally fixed
propulsion direction (see Sec. 3.2). In a two-dimensional setup this means
that the system is effectively binary; there exist two particle species with
opposite orientations and propulsion directions. Such configurations are
generally assumed to undergo lane formation if the propulsion force is
strong enough. We have shown that this is indeed the case for our dipo-
lar model and that the induced dipolar interactions stabilize the forma-
tion of lanes over a wide range of interaction strengths. This is surpris-
ing, as the anisotropic interactions show a strong tendency of the parti-
cles to self-assemble into chains which, in the present model, are oriented
perpendicular to the force. These self-assembly processes result in com-
plex staggered chains, when no driving force is present and the observed
structures are in qualitative agreement with experimental observations.
The underlying mechanisms for lane formation were then identified by
investigating a simple binary Lennard-Jones fluid with oppositely driven
particle species. Here, the onset of lane formation is closely related to the
phase separation of the corresponding , well known, equilibrium system.
By simple theoretical considerations we could also estimate the spinodal
point in the double dipole model and show that the same connection is
present there. Importantly, the (effective) attractiveness of the particle in-
teractions in both models enables the system to undergo lane formation
at propulsion speeds approximately one order of magnitude smaller than
in previously known systems. In addition, the presence of attractive inter-
actions can also suppress lane formation. Using force balance arguments,
the breakdown of lane formation due to ’freezing’ was estimated in very
good agreement with the simulation results.
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5
Mutidirectional Colloidal

Assembly

In this chapter, we are particularly interested in the field directed

aggregation of complex dipolar colloids into chain and network

structures. To this end we consider particles with two different

kinds of dipolar interactions caused by crossed (orthogonal) fields.

Based on a complex double dipolar model we establish a quantita-

tive comparison between simulation and experiment and a theoretical

state diagram for different field conditions.

Furthermore, a detailed analysis of a generic model with a tunable

anisotropy of the pair interactions reveals a transition in the systems

aggregation behavior from an anisotropic DLA regime towards a slip-
pery DLA regime by decreasing the anisotropy. The latter transition is

accompanied by a strange compactifaction phenomena, which we also

find for the more complex model. Hence, it is the non-equilibrium

assembly of transient aggregates which is investigated here.

Outline

A previously studied example for network forming systems is the metallo-
dielectric Janus particles under the presence of an uni-axial electric field
inducing dipolar interactions [26, 95]. These structures are shown and
discussed in Fig. 1.3(c) and Sec. 1.2.4. In Chapter 4 we investigated the
collective behavior of these particles in the swimmer regime.

In this Chapter we are also interested in field directed network forma-
tion but investigate a different setup of superparamagnetic particles in



crossed magnetic and electric fields (see Sec. 1.3.3). The results presented
in the first Section (Sec. 5.1) of this Chapter are part of a dominantly ex-
perimental study and are based on the model presented in Sec. 3.4. Hence,
this section has a strong emphasis on the comparison between simulated
structures and experimental ones. To this end, a simple method which
allows to determine the ’role’ a particle plays in the observed networks
(see Sec. 3.5) is applied. This method can be used for experimental as well
as simulation data and is based on the fundamental symmetries of the
point-dipole potential. The overall aim is to provide a theoretical non-
equilibrium state diagram for different field configurations at constant
density, because this is not achievable from the experimental side.

The second section (Sec. 5.2) of this Chapter is a purely theoretical study
of the generic model introduced in Sec. 3.6. In principle, this section al-
lows a connection to network formation of the metallo dielectric Janus
particles, but here we focus on conceptional aspects of the aggregation
process for the crossed dipole setup. We identify different diffusion lim-
ited aggregation regimes and connect them to the anisotropy of the inter-
actions. Finally we discuss connections in the aggregation and compacti-
faction behavior between the generic and the complex model (see Sec. 5.3).

72



5 Mutidirectional Colloidal Assembly

5.1 Field Controlled Assembly of Colloidal
Networks - Experiment and Simulation

Using Brownian dynamics simulation we investigate the aggregation

behavior of superparamagnetic polymer particle under the presence

of crossed magnetic and electric fields. The concurrent application

of electric and magnetic fields is an unusual method to organize col-

loids into bidirectional chains and clusters. We find that the mor-

phology of the assembled structures in bi-axial fields is highly depend

on the number density of particles and their initial spatial distribu-

tion. However, in experiments, the number density of the assembling

particles is subject to stochastic variations between different samples.

In the present study, computer simulations allow us to overcome this

difficulty and investigate the state of assembly at a given time with a

precise control over the particle density. Hence, we are able to con-

struct a theoretical non-equilibrium state diagram of the assembled

morphologies under various field configurations.

5.1.1 Background

The experimental data and photographs presented in this section have
been produced by Dr. Bhuvnesh Bharti in the group of Prof. Dr. Or-
lin D. Velev at the North Carolina state university. Theoretical calcula-
tions and evaluation of simulated and experimental data were done by
my self. This Section is based on the double dipolar model for superpara-
magnetic particles in crossed external fields (CDP model) introduced in
Sec. 3.4. Externally induced dipolar interactions are model by two decou-
pled point dipoles, whereas the magnetic dipole moment is shifted out of
the particle center in a random direction. The overall aim is to establish
a close connection between the experimental observations and simulation
results and to provide a theoretical non-equilibrium state diagram for dif-
ferent field configurations. The latter is done by means of extensive Brow-
nian dynamics simulations at constant temperature T ∗ = 0.01 and density
ρ∗ = 0.35 but at various dipole strengths corresponding to dipolar cou-
pling strengths λ ∈ [0,50]. The rest of this section is organized as follows:
First, experimental observations are described. Then, a detailed compari-
son of quantitatively comparable structures in simulation and experiment
is performed. Finally, the full field controlled state diagram is presented,
and analyzed. The section ends with concluding remarks.

Tabular representation of reduced units.

reduced dipole moment µ∗ ≡ µ(2)
i

∗
= µ

(2)
i /
√
σ3ϵ

reduced density ρ∗ = ρσ2

reduced temperature T ∗ = kBT /ϵ = 0.01
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5.1.2 Structure formation in experiment

In experiments we find that at very low electric and/or magnetic field
strengths, the thermal energy in the system overcomes the dipolar inter-
action energy and restricts the formation of colloidal assemblies. Upon in-
creasing the strength of one of the fields, the formation of predominantly
linear chains aligned in the direction of the respective field takes place.
These states can be regarded as linear string fluids, where the assembly is
solely dominated by the single type dipole-dipole interaction (either elec-
tric or magnetic). At intermediate field strength of both fields, a bidirec-
tional chain formation is observed, which results into the formation of fine
networks or cross-linked particle chains. Upon increasing the absolute
magnitude of both field strengths further, these fine networks transform
into coarser networks with partially crystallized colloidal domains. This
formation of particle networks in bi-axial electric and magnetic fields is
a non-equilibrium process and the initially formed metastable structures
dynamically reconfigure with prolonged exposure to the fields. Thereby
they undergo an aging process characterized by ongoing compactifaction.

The analysis of experiments is accompanied by complications. First, ex-
traction of particle positions from microscopic images was automatized.
To this end we used the functionalities of Origin (TM), which requires im-
ages of high contrast. Large-scale images as shown in Fig. 1.6(e) turned
out to be of insufficient quality for this procedure. Our analysis of the
structure formation processes is based on single particle positions and
therefore only small scale images will be considered as they yield higher
contrasts. Secondly, controlling the area fraction or number density in ex-
periment was difficult. Even for a given sample of constant global area
fraction (usually φ ≈ 0.23), we found that the particle density was signif-
icantly higher or lower in its different regions. Besides the fact that the
system is subject to density variations between different samples, this also
means that it is characterized by quite large internal density variations.
The latter is a consequence of the size of the considered particles. They
are relatively large (≈ 6µm in diameter) and at the given room temper-
ature, they are not homogeneously distributed throughout the samples.
Finally, this means that the observed experimental structure formation
depends on the initial local density of the investigated region. As we are
interested in the formation and structure of particle aggregates, we focus
on regions where particles assemble. Hence, the local density presented
in the microscopic photographs is usually higher than the mean density
in the sample.

5.1.3 Comparing simulation and experiment

In simulations we therefore restrict our considerations to an intermediate
density ρ∗ = 0.35, which is slightly higher than the mean number den-
sity in experiment (ρ∗exp ≡ 4/πφ ≈ 0.3). Occasionally we consider systems
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of number density ρ∗ = 0.3 when comparing with microscopic images of
obviously low particle density.

Importantly, an one-to-one comparison between simulation and exper-
iment could not be established. Although a ’master curve’ mapping the
experimental parameters (e.g., current in the coils) onto dipole strengths
in simulations would be of great help in understanding the systems dy-
namics, the uncertainties associated with the internal structure (distri-
bution of dipole moments) of the particles and the imperfect control of
density in the experimental setup made this unfeasible. Instead, we show
in Fig. 5.1 the ’extreme cases’ of states corresponding to vertical chaining
(a), horizontal chaining (b) and coarse network formation (c) in order to
investigate the validity of our simulations. These results are compared be-
tween simulation and experiment by microscopic images, snapshots from
simulation and the previously (see Sec. 3.5) introduced distributions of
fictitious energies uel and umg . The results from simulation are tempo-
ral averages in the range of 8τB to 12τB, while experiments are evaluated
between 8s and 15s after applying the fields.

In the presence of solely the electric field the dominant structural el-
ements are fine linear particle chains oriented along the electric field as
can be seen in Fig. 5.1(a). The distributions of uel and umg show two dis-
tinct peaks, corresponding to particles within vertical chains (uel = −4 and
umg = 2) and corresponding to particles forming ends of vertical chains
(uel = −2 and umg = 1). Here, the agreement between simulation and ex-
periment is very good, although the theoretical peak at uel = −4 is higher
and hence indicates a tendency to overestimate the amount of particles
within chains at the given simulation parameters. In principle, a system-
atic search for values of the dipole strength µel and density ρ∗ would allow
to optimize the mapping between experiment and simulation. However,
as stated previously, this procedure would have to be performed sepa-
rately for each experimental image (due to the lack of a ’master curve’)
and would yield no further insights.

In contrast to the electric case we show in Fig. 5.1(b) particle chains
formed under the presence of solely the magnetic field. These aggregates
are in general more compact and partially staggered, which we assume
to be the consequence of dislocations of dipole moments from the parti-
cles centers of mass. Here, the distributions of uel and umg yield only one
distinct peak at uel = 1 and umg = −2, respectively. These peaks are as-
sociated with particles forming the end of chains and appear pronounced
and sharp. In contrast to the electric case, simulations underestimate the
frequency of ’chain ends’. However, the distributions are in general signif-
icantly broader than in the electric case and yield significant contributions
for perturbed configurations, which is the frequency of states around the
major peaks. Interestingly, there is an surprisingly accurate agreement be-
tween simulation and experiment with respect to these perturbed particle
configurations. This indicates that the deviations from linear chaining are
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captured properly by our model. Furthermore we want to note that the
model parameter (δ = 0.2σ ) defining the dislocation of the magnetic inter-
action center and the simulation parameters ρ∗ and µ̄mg have not been op-
timized systematically. This is important, because it means that the novel
feature of our model, namely the unusual treatment of magnetic interac-
tions, describes the general properties of the real particles, irrespective of
the actual values. Besides being a justification for the idea of analyzing the
real systems behavior via the theoretical model, these results also support
our assumptions about the nature of the real particles (see Sec. 3.4).

The third case of strong electric and magnetic field presented in Fig. 5.1
(c), shows the formation of coarse particle networks. Here the distribu-
tions of the fictitious energies uel and umg become very broad and flat and
yield only minor peaks at uel = −2 and umg = 1 indicating chaining along
the electric field. In addition, an even less pronounced peak at uel = 1
and an associated region of relatively high frequency at umg = −2 indicate
perturbed chaining along the magnetic field. Note that the peak heights
are two orders of magnitude smaller here than in the previous examples.
Again, a quite accurate agreement between simulation and experiment is
given by these distributions, although the theoretical curve overestimates
magnetic energies umg in [−1.5,0.5]. This means that the real system has
less staggered or perturbed magnetic (horizontal) aggregates than struc-
tures from simulation.

Finally, Fig. 3.6 gives the same information for network formation at
smaller strengths of both fields. Here, the microscopic image of the col-
loidal network formed in experiment (see Fig. 3.6) is re-color coded on the
basis of particle roles and is compared to the particle assembly formed in
the simulations. The distributions of the fictitious energies uel and umg ap-
pear similar to the ones of the coarser network in Fig. 5.1(c), although the
minor peak at umg = −2, which is associated with chaining along the mag-
netic field, is slightly more pronounced and higher in its absolute value.
Hence, this network structure is less compact than the one at higher field
strengths, although the difference may appear small. In the next section,
the difference between these two network types will be discussed in more
detail.

In general we can state that the novel way of modeling magnetic in-
teractions presented here results in simulated colloidal structures which
are visually indistinguishable and quantitatively comparable to the exper-
imental observations. Furthermore, the characteristics of all qualitatively
different states in experiment are also found in simulations. In the next
section we will present a state diagram generated from simulations which
yields the dependency of the assembly process on the field configuration
at constant density and temperature.
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(I) h > A−n− v horizontal chain regime

(II) v > A−n− h vertical chain regime

(III) h+ v > A−n fine network regime if neither (1) nor (2)
(IV) n > A− h− v compact network regime

Table 5.1: Definitions of the criteria for states presented in Fig. 5.2. The

number of aggregated particles (having at least neighbor) is de-

noted by A.

5.1.4 State diagram

The limitations in control over local and global density make it impossi-
ble to extract the influence of the field strengths on the self-assembly of
the colloidal aggregates from experimental side. The surprisingly realis-
tic behavior of our model allows to overcome these difficulties by means
of BD-simulations. According to the identification scheme introduced in
Sec. 3.5 each particle can be associated with a ’role’ and sorted into the
populations of node particles n, vertical chain particles v or horizontal
chain particles h, which are properly defined in the text above Eq. 3.27.
These populations sum up to the total amount of aggregated particles A

A = h+ v +n. (5.1)

Based on this equation, four categories for different types of networks and
chain-like structures can be defined. These states correspond to (I) vertical
(electric) string fluid , (II) horizontal (magnetic) string fluid, (III) networks
of fine single particle chains and (IV) networks of more compact clusters
interconnected by chains. The idea is that if either h or v dominate the sys-
tem we consider it to be string fluid. This is the case when the population
h or the population v correspond to more than 50% of all aggregated par-
ticles. The actual threshold of 50% is arbitrary, but chosen for simplicity
here. Accordingly, Eq. [5.1] can be reformulated and yields the definitions
h > A − v − n and v > A − h − n for the magnetic and electric string fluid
respectively. A compact network or isolated cluster phase corresponds to
a dominant population of node particles (n > A−v −h). The finer network
structures require the string fluid structures to dominate (h + v > A − n).
But they are also combinations of different string fluids and hence the
cases when either horizontal h > A− v −n or vertical chaining v > A−h−n
dominates have to be excluded. The precise definitions of these states are
summarized in Table. 5.1

According to these criteria, Fig. 5.2 shows four sketches of particle ag-
gregates whereas particles belonging to different populations (h,v,n) are
occasionally indicated. In addition, the non-equilibrium state diagram
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for chain and network aggregation at ρ∗ = 0.35 is shown for various elec-
tric and magnetic field strengths. Only states with more than 70% of the
particles being aggregated (A > 0.7N ) are presented. Different colors cor-
respond to the four different states. The presence of these four types of

Figure 5.2: Non-equilibrium state diagram for the aggregation of super-
paramagnetic particles in crossed fields at density ρ∗ = 0.35.
Only states in which more than 70% of particles are members
of dimers or larger aggregates are considered.

particle states is governed by the relative and absolute electric and mag-
netic field strengths. At small dipole moments µα ≤ 0.25 (or very low field
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strengths), no significant assembly was observed. In the borderline case,
where one of the fields is much stronger than the other one, the assembled
configuration is a string fluid phase (States I or II) oriented in direction of
the dominating field. However, as discussed previously the local particle
assembly in these states is not the same in external electric and magnetic
fields. In the former, aggregates are rather linear and in the latter partially
staggered.

A more versatile behavior is observed when the two moments are simi-
lar in magnitude (µel ≈ µmag ). When the absolute values of both moments
are comparable but obey µα < 0.4, a fine bidirectional low-density net-
work or gel-like structure is obtained (state III). Interestingly, the region
of fine network states in the state diagram is not symmetric. If the electric
moment remains sufficiently small, fine networks can be realized even at
relatively strong magnetic interactions. We assume this is the case because
the magnetic interaction prefer staggered arrangements and prevent par-
ticles from strong compactifaction.

However, if both moments are increased in their absolute magnitudes
µα > 0.4, a more coarse structure with compact particle packing is ob-
served (state IV). In this state, small domains of colloidal clusters are in-
terconnected via (short) particle chains.

Here it should be mentioned that the distinction between the fine and
compact network structures is given by a gradual change in the popula-
tions of particles with different roles. The actual position of this transition
depends on the arbitrary definitions of populations given in Table 5.1.
Nevertheless, our characterization is sufficient to show the existence of
different states. Moreover, the state boundaries shown in Fig. 5.2 are not
very distinct and interchange between the states is gradual. Hence, detec-
tion of this smooth crossover in experiment is not possible, especially as it
is very sensitive to (local) density variations.

The network states might be regarded as gel-like structures. However,
the percolation transition, which is in principle a prerequisite for gela-
tion [101], was not systematically evaluated. Nevertheless, many of the
simulated networks turned out to be percolated. Also, the relaxational
dynamics, which are needed to identify gelation [101], have not been in-
vestigated; still, the presented network structures are transient in charac-
ter and undergo subsequent compactifaction in time. In Fig. 5.3 the tem-
poral evolution/collapse of the coarse network from Fig. 5.1 (c) is shown.
The number of particles in nodes n (black curve) continuously increases
with time. At these strong interaction strengths, nearly all particles are
aggregated A ≈ 1 (yellow curve). Interestingly we see that the number of
particles in vertical chains dominates the one in horizontal chains. In fact,
this is the case in most of the network structures observed, also in the fine
networks from experiment and simulation (see Fig. 3.6 (c) and (e)). The
population of particles in horizontal chains becomes dominant, only for
significantly stronger magnetic fields. Importantly, the categorization of
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Figure 5.3: Collapse of a network structures in simulation at ρ∗ = 0.35 and
µel = 0.45,µmg = 0.45. Shown is the time evolution of the num-
ber of particles in nodes n (black), the number of particles in
horizontal/vertical chains h (red/blue) and the number of par-
ticles in aggregates A (yellow). This state point corresponds to
a coarse network.

certain state points is therefore time dependent.
Such aging processes are known in systems undergoing diffusion lim-

ited aggregation, which makes an interpretation as a (chemical) gel rea-
sonable. A final conclusion on whether this system undergoes gelation
can not be given here. It is mostly computational reasons why the ques-
tion on gelation can not be addressed. Calculating percolation transitions
as well as temporal correlation functions requires large particle numbers
and very long simulation times, which are not accessible with this model.

Importantly, the compactifaction of network structures with increasing
field strength is counter intuitive from a conceptional point view. In gen-
eral, increasing the interaction strength is equal to decreasing the temper-
ature. This relation is usually expressed in the definition of the dipolar
coupling strength

λ = µ2/kBT . (5.2)

In this study, the compactifaction is observed at λ ≈ 20-50. At such strong
couplings, the system should turn towards some sort of diffusion limited
aggregation and form less compact fractal structures. And indeed, visual
inspection of the large scale assembly in experiment ( Fig. 1.6(e)) makes it
reasonable to interpret the structures as fractals. However, locally we find
compactifaction by increasing the coupling strength.

In Sec 5.2.4- 5.2.5 and in Sec. 5.3 the relaxational behavior and com-
pactifaction processes will be discussed with respect to results of a com-
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putationally more convenient generic model allowing deeper insights into
the underlying mechanisms of these assembly processes.
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5.2 Diffusion Limited Aggregation in
Mutidirectional Fields

Based on Brownian Dynamics computer simulations in two dimen-

sions we investigate aggregation scenarios of colloidal particles

with directional interactions induced by multiple external fields.

To this end we propose a model which allows continuous change in

the particle interactions from point-dipole-like to patchy-like (with

four patches). We show that, as a result of this change, the non-

equilibrium aggregation occurring at low densities and temperatures

transforms from conventional diffusion-limited cluster aggregation

(DLCA) to slippery DLCA involving rotating bonds; this is accompa-

nied by a pronounced change of the underlying lattice structure of

the aggregates from square-like to hexagonal ordering. Increasing

the temperature we find a transformation to a fluid phase, consistent

with results of a simple mean-field density functional theory.

5.2.1 Background

In this Section we present results previously published in [111]. Here,
we turn towards general properties of the structure formation in colloidal
systems with externally induced mutidirectional interaction anisotropies.
This is done in a conceptional fashion by means of two-dimensional Brow-
nian dynamics (BD) simulations of a generic particle model, the extended
dipole particle model (EDP model), which is inspired by the general setup
of the previously presented system and presented in Sec. 3.6. However,
the model does not aim on a specific system e.g., magnetic and electric
interactions or two temporarily present electric interactions as described
in Sec. 3.3, but rather on unveiling the underlying mechanisms of directed
aggregation in colloidal systems. Furthermore, the model is designed to
be rather simple. The aim is to be able to perform large-scale computer
simulations with reasonable effort while still capturing certain character-
istic features of the real system. The EDP model does not aim on being a
replacement for the crossed dipole particle (CDP) model discussed in the
previous section. Rather it is an additional approach

• to investigate large-scale structures (fractal dimension of aggre-
gates),

• to investigate long-time behavior (stability of bonds over long times)

• to analyze the influence of the anisotropy of pair interactions.

• and to identify conceptional aggregation regimes (slippery and
anisotropic DLCA)
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Indeed, of special interest to us is the interplay between diffusion
limited aggregation and interaction anisotropies.

To this end, externally-induced dipole moments are mimicked via
pairs of screened Coulomb potentials. The two charges associated
with each dipole are shifted outward from the particle center, one
parallel to its corresponding field and the other one anti-parallel.
A sketch of the internal arrangement of interaction sites in such a
particle is shown in Fig. 3.7 for the case of two orthogonal (decou-
pled) fields. In general, this model allows to investigate also the
influence of a third or fourth field. For simplicity, we restrict our
considerations here to the case of two decoupled fields. By chang-
ing the charge separation, we systematically investigate the (tran-
sient) structural ordering and aggregation behavior predicted by this
model. Our large-scale Brownian dynamics simulations show that
the system is very sensitive to changes in temperature T ∗, number
density ρ∗, and charge separation δ. In this large parameter space
we find a variety of different states ranging from small fractal ag-
gregates and single-chain structures at low temperatures to coarser,
isolated or interconnected clusters at higher temperatures.

Highlights of our results are the following: At very high interac-
tion energies and large charge separations we find that the parti-
cles undergo anisotropic diffusion limited cluster aggregation with
rectangular local particle arrangements. Lowering the charge sepa-
ration shifts the model behavior to a slippery diffusion limited ag-
gregation (sDLCA) regime accompanied by a sharp transition of the
lattice structure from rectangular to hexagonal. In the proximity
of this transition we observe long-lived or arrested frustrated struc-
tures consisting of strongly interconnected hexagonal and rectangu-
lar lattice domains connected with each other. We also show that,
upon increase of the temperature, the systems enter a fluid state.
The corresponding ’fluidization’ temperature turns out to be very
close to the spinodal temperatures obtained from a mean-field den-
sity functional theory.

The rest of this section is organized as follows. First we present our
model and explain different target quantities which will be calcu-
lated from the simulations. Secondly, the numerical results are de-
scribed. In the sections 5.2.2 - 5.2.4 we first discuss the local and
global structures and the temporal stability of aggregates at a low
temperature and an intermediate density, focusing on the impact of
the model parameter δ. In section 5.2.5 and 5.2.6we then turn to the
impact of temperature and density. Finally, the conclusions summa-
rize the results.
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Target quantities To characterize the structure of the systems
we consider several quantities. The first one is the mean coordina-
tion number

z̄ =
1
N

N∑
i=1

zi , (5.3)

where zi is the number of neighbors of particle i and the sum is over
all particles. In the following, two particles are considered to be
nearest neighbors if their center-to-center distance is smaller than
rb = 1.15σ .

To identify local particle arrangements, the orientational bond order
parameter is of special importance. For particle k it is given by

φn
k =
1
zk

zk∑
l=1

|exp(inθklλ )| (5.4)

with zk being the number of neighbors and θklλ = arccos(rkl ·rkλ/(rklrkλ))
being the angle between the bond of particle k and its neighbor l
measured against a randomly chosen bond of particle k to one of its
neighboring particles λ. Hence, φn

k = 0 for zk < 2. The integer value
n determines the type of order which is detected by this parameter.
We concentrate on φ4 and φ6 to identify square (rectangular) and
hexagonal lattice types. Its ensemble average is calculated via

Φn =
1
N

N∑
i=1

φn
i . (5.5)

The reversibility of ’bond’ formation and slipperiness of existing
bonds can be characterized by the bond and the bond-angle auto-
correlation functions cb(t) and ca(t). To evaluate cb(t) we assign a
variable bij(t) to each pair of particles at each time step which is 1
if the particles i and j are nearest neighbors or zero otherwise. The
bond auto-correlation function is then defined as

cb(t, t0) = ⟨bij(t0)bij(t)⟩, (5.6)

where the brackets indicate an average over all pairs that are bonded
at time t0. The bond-angle auto-correlation function ca(t, t0) is de-
fined similarly by defining the unit vector

aij(t) = rij(t)/rij(t), (5.7)

such that
ca(t, t0) = ⟨1− arccos(aij(t) · aij(t0))/π⟩ (5.8)

where we average again over all pairs. While cb gives the information
on how stable bonds are over time, ca tells how stable their direction
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is over time. Note that in contrast to the typical definition of corre-
lation functions for stationary systems [134, 136], here the functions
cb(t) and ca(t) are not independent of the time origin t0, although
this dependency will not be denoted in the following.

Finally, we consider the fractal dimension Df of particle clusters,
which is particularly important in the context of DLCA. Clusters are
defined as a set of particles with common next neighbors. The size
of a cluster is then quantified by its radius of gyration

R2g =
1
Ncl

Ncl∑
i=1

(ri − r̄)2, (5.9)

where Ncl is the number of particles in the cluster, and r̄ is the po-
tion of its center-of-mass. By plotting lnRg against lnNcl for differ-
ent clusters, we extract the fractal dimension Df via the relationship

Rg ∼N
1/Df

cl (see Ref. [124, 98]).

Tabular representation of reduced units.

reduced density ρ∗ = ρσ2

reduced temperature T ∗ = kBT /ϵ
reduced interaction strength u∗ = u/ϵ = −2.804
Brownian time scale τb = σ2γ/kBT

5.2.2 The interaction anisotropy - Effect on local
order

At first we study the system at low temperature T ∗ = 0.05 and
intermediate density ρ∗ = 0.3 for different charge separations δ.
In Fig. 5.4 simulation snapshots for δ = 0.1σ,0.21σ,0.3σ at t =
300τb [see. Eq. (3.35) below] are shown, where τb is the Brownian
timescale. The color-code reflects the orientational bond order pa-
rameter φ4i of each particle i. All three cases are characterized by
clusters with irregular shapes. However, local particle arrangements
differ strongly. While for δ = 0.1σ the particles aggregate in a hexag-
onal fashion, at δ = 0.3σ they aggregate into rectangular structures.
At the intermediate charge separation δ = 0.21σ , hexagonal order
dominates the system; however, some clusters also reveal subsets
of particles in rectangular arrangements. A more quantitative de-
scription is given by the orientational bond order parameters Φ4(6)
shown in Fig. 5.5(a) as functions of δ. By increasing δ, one observes
a sharp transition at δ ≈ 0.21σ from hexagonal towards rectangular
(square) order.
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5 Mutidirectional Colloidal Assembly

Figure 5.4: Simulation snapshots at ρ∗ = 0.3 and T ∗ = 0.05 for (a) δ = 0.1σ ,
(b) δ = 0.21σ and (c) δ = 0.3σ . Particles are colored according
to their value of φ4i .
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Figure 5.5: Results for simulations with N = 1800 at temperature T ∗ =
0.05 and density ρ∗ = 0.3. (a) Orientational bond order param-
etersΦ4 for square (black) andΦ6 (yellow) for hexagonal parti-
cle arrangements. (b) Mean coordination number z̄ as function
of charge separation δ at times t = 100,200,300τb.
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Figure 5.6: Minimum energy of a particle with six neighbors in hexagonal
arrangement as function of δ (black) and energy for a particle
in rectangular arrangement with 4 neighbors (red).

This transition turned out to be independent of the considered par-
ticle numbers as test simulations revealed. Physically, it can be inter-
preted as a reduction in valency of a ’patchy’ particle from six-fold
(isotropic interaction) to four-fold.

The very presence of such a sharp transition can be explained via
energy arguments based on the δ-dependent pair potential plotted
in Figs. 3.8(a)-(d). To this end, we calculate the energy Uhex

i (δ) =∑6
j=1U (rij ) of a particle i with six neighbors j, which are located in

a hexagonal arrangement at ’contact’ distance σ around i. Note that
not all hexagonal configurations do have the same contact energy.
This is due to the anisotropy of interactions, see Fig. 3.8(d). There-
fore we consider a hexagonal configuration in which the contact en-
ergy is as low as possible (this configuration was found numerically).
The dependence of this lowest contact energy Uhex

i (δ) on the charge
separation parameter is plotted in Fig. 5.6. Also shown is the corre-
sponding energy U

sq
i (δ) =

∑4
j=1U (rij ) = 4 × u of a particle with four

neighbors j located at distance σ in a rectangular arrangement, i.e.,
in the energy minima around i (the quantity u was defined below
Eq. (3.31)). Note that the energy U

sq
i (δ) does not depend on δ ac-

cording to Eq. (3.32). As shown in Fig. 5.6, the two curves intersect
at a ”critical” value of δ = 0.24σ . Thus, the simple energy arguments
already suggest a transition between states with local hexagonal and
square order, even though the predicted critical value is somewhat
larger than the value of δ = 0.21σ seen in the actual simulations at
finite temperature and density [see Fig. 5.5(a)].

Further information is gained from the behavior of the mean coor-
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dination number as a function of δ plotted in Fig. 5.5(b) for three
different times t = 100τb, 200τb and 300τb. At all times considered,
z̄ undergoes a steep decrease at δ ≈ 0.21σ from a nearly constant
value, z̄hex ≈ 4.5, to a value z̄sq ≈ 3.5. This behavior reflects, on
the one hand, again the presence of a sharp transition; on the other
hand, the actual values of z̄hex(z̄sq) reveal the ”non-ideal” character
of the aggregates in terms of coordination numbers. For example,
for δ > 0.21σ we find that z̄ and Φ4 decrease with δ, while Φ6 in-
creases. However, this does not indicate a decline of the rectangular
order; it rather results from an increasing amount of particles resid-
ing in chains oriented either in x- or y-direction. The coordination
number zi of a particle i in such a chain is ≤ 2, leading to a mean
coordination number z̄ < 4. Furthermore, the parameters φ4i and φ6i
[see Eq. (5.4)] become unity for a particle forming exactly two bonds
under an angle of π (straight chain). This does not affect Φ4, which
is already large at δ > 0.21σ , but significantly increases Φ6. Finally,
the counter-intuitive decrease of Φ4 with δ results from the increas-
ing amount of particles with only one neighbor (e.g., ends of chains
appearing white in Fig. 5.4(c)). These particles yield no contribution
to Φ4 [see Eq. (5.4)].

The ”non-ideal” values of z̄hex and z̄sq also explain why our energy
argument for the location of the hexagonal-to-square transition,
which was based on ideal arrangements with six and four neigh-
bors, respectively, does yield the transition value δ = 0.24σ rather
than δ = 0.21σ obtained from simulation. We can now reformulate
the argument by using the actual mean coordination numbers ex-
tracted from our simulations, z̄sq = 3.5 (instead of 4) and z̄hex = 4.5
(instead of 6). Following the calculations for the ideal arrange-
ments described before, the energy of the square-like arrangement
is U sq = 3.5× u. For the hexagonal arrangement, we use the average
minimum energy with either zi = 4 or zi = 5 neighbors, yielding
Ūh(z̄hex,δ) = (Uhex(4,δ) +Uhex(5,δ))/2. The resulting critical value of
the charge separation is δ ≈ 0.21σ , which coincides nicely with the
transition value observed in our simulations.

5.2.3 Transient character of aggregates

Although the local structures characterized by z̄ and Φ4(6) persist, in
general, over the simulation times considered, we are still facing a
transient (out-of-equilibrium) structure formation as seen, e.g., from
the slight increase of z̄ with time in Fig. 5.5(b). This raises a question
about the typical ”lifetime” of the aggregates.

To this end we now consider dynamical properties, namely the bond
and bond-angle auto-correlation functions, cb(t) and ca(t). It is not
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Figure 5.7: Time correlation functions obtained from simulations with
N = 1800 at temperature T ∗ = 0.05 and density ρ∗ = 0.3.
(a) [(b)] Time evolution of the bond [angle] auto-correlation
function cb(t) [ca(t)] for three different charge separations
δ = 0.1σ,0.21σ and 0.3σ colored in yellow, purple and black
respectively.

reasonable to extract decay rates from these functions (as it is usually
done) because in transient states, decay rates are, strictly speaking,
functions of time themselves. Still, it is interesting to see whether
the temporal correlation of bonds (bond angles) for different δ al-
lows us to distinguish between qualitatively different aggregation
regimes.

Numerical results for cb(t) and ca(t) are plotted in Figs. 5.7(a) and (b),
respectively, where we consider a large time range up to t ≈ 103τb.
The time axis starts at the finite time when all the systems have
formed stable aggregates. The data in Figs. 5.7(a) and (b) pertain
to three representative values of the charge separation parameter re-
lated to the hexagonal structures (δ = 0.1σ ), rectangular structures
(δ = 0.3σ ), and to the transition region (δ = 0.21σ ). In the square
regime (δ = 0.3σ ) the decay of both cb(t) and ca(t) is almost identical
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and very slow. From this we conclude that the square regime is char-
acterized by almost unbreakable bonds with fixed orientations. This
is different in the hexagonal regime (δ = 0.1σ ) where cb(t) remains
nearly constant even after long times (meaning that bond-breaking
is very unlikely), while ca(t) decays much faster. Thus, the direc-
tions of bonds are less restricted. We interpret this behavior as evi-
dence that two particles, though being bonded, are still able to rotate
around each other to some extent. This is a characteristic feature of
slippery bonds. Finally, in the transition regime (δ = 0.21σ ) both
functions cb(t) and ca(t) decay significantly faster than in the other
cases, with the decay of the bond-angle correlation function being
even more pronounced. In that sense we may consider the bonds in
the transition region also as slippery (although less long-lived than
in the other cases).

We conclude that the different structural regimes identified in the
preceding section are indeed characterized by different relaxational
dynamics. Moreover, all of the observed aggregates have lifetimes of
at least several hundred τb. Such long-lived bonds are indicative of
diffusion limited cluster-cluster aggregation. In the next section we
therefore consider the fractal dimension.

5.2.4 The interaction anisotropy - Effect on
large-scale fractal structure

In Fig. 5.8 the fractal dimension Df is shown as a function of δ at
time t = 250τb, density ρ∗ = 0.3 and temperature T ∗ = 0.05. We find
that Df increases slightly with δ but remains in a range between 1.4
and 1.5, except at δ = 0.21σ . There, the fractal dimension exhibits a
bimodal distribution, taking values between Df ≈ 1.48 and Df ≈ 1.6
(dashed line in Fig. 5.8).

Despite these variations and taking into account the error range, the
values of Df found here are significantly smaller than the fractal
dimension Df = 1.71 observed in earlier studies of DLCA in two-
dimensional continuous (off-lattice) systems [124, 119]. Except for
the case δ = 0.21σ , the values in Fig. 5.8 are comparable with previ-
ous findings for DLCA in two-dimensional lattice systems and sys-
tems with spatial or interaction anisotropies [130, 131, 132]. The
present system is indeed anisotropic in the sense that the external
fields impose preferences on the directions of particle bonds and
therefore also on the orientations of aggregates. This effect is most
pronounced in the rectangular regime (δ = 0.3σ ). Therefore, it is
plausible that our system undergoes a special case of anisotropic
DLCA, in (quantitative) accordance with experimental results [98]
and theoretical predictions [120, 130, 131, 127]. We should note
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Figure 5.8: Fractal dimensionDf as a function of charge separation at ρ∗ =
0.3 and T ∗ = 0.05. At δ = 0.21σ we find a bimodal distribution
of fractal dimension with peaks at Df = 1.48 (solid line) and
1.6 (dashed line).

that, due to our simulation method, the cluster sizes (typically in-
volving 101−103 particles) are relatively small compared to the par-
ticle numbers considered in the literature (106 particles) [119, 157,
120] and therefore most probably subject to finite size effects. A
more accurate study of (the impact of anisotropic interactions on)
the fractal dimension is beyond the scope of this study. Still, our
results do indicate a non-typical diffusion limited aggregation be-
havior.

We also relate our findings to the newer concept of slippery DLCA [123,
116], where the bonds are essentially unbreakable but able to rotate.
Indeed, as discussed in section 5.2.3, bonds are slippery in nature
for small δ in the hexagonal regime. For three-dimensional systems
it has been reported [123, 116] that the fractal dimension Df re-
mains the same for slippery and classical DLCA, while the mean
coordination number z̄ differs. Specifically, z̄ is significantly higher
for sDLCA [123, 116]. The same observation emerges when we con-
sider our values of z̄ plotted in Fig. 5.5(b), from which one sees a
pronounced decrease of z̄ upon entering the square (DLCA) regime.
However, in contrast to earlier studies we find Df to slightly in-
crease with δ, especially in the hexagonal regime. We interpret this
behavior as a consequence of the fact that binding energies in the
hexagonal regime decrease with increasing values of δ, while they
remain constant in the square regime (see Fig. 5.6). The correspond-
ing stability of bonds should be correlated to the binding energies
which explains the slightly increasing values of Df in the hexagonal
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regime. Note that the increase of Df with δ turns out to be larger
(but still comparable) than the error range in Fig. 5.8. Hence, the
interpretation given above remains somewhat speculative.

Finally, in the transition region (δ = 0.21σ ) we found a bimodal dis-
tribution of the fractal dimensions Df with maxima at Df ≈ 1.48 and
Df ≈ 1.6. This second maximum corresponds to only ≈ 25% of the
considered cases (twelve independent simulation runs). The first
maximum at Df ≈ 1.48 therefore clearly dominates and fits nicely
to the functional dependence of Df on δ (see Fig. 5.8). We assume
that the less frequent peak results from a ’switching’ of the local
structures between hexagonal and rectangular arrangements, which
is accompanied by a significantly larger bond-breaking probability
(see Fig. 5.7(c)). Again this allows compactifaction of aggregates and
increases the fractal dimension in the transition regime.

5.2.5 Beyond DLCA - Higher temperatures

Diffusion limited aggregation is restricted to systems with attrac-
tive particle interactions much stronger than kBT . By increasing
the temperature sufficiently, thermal fluctuations become able to
break bonds which results in a faster decay of the the bond auto-
correlation functions and a compactifaction of aggregates. Indeed,
for square lattice models it was found that Df is a monotonically in-
creasing function of temperature [132, 129]. In Fig. 5.9(a) the fractal
dimension Df of the present model is plotted as a function of tem-
perature T ∗ for charge separations δ = 0.1σ,0.21σ and 0.3σ .

We first concentrate on the case δ = 0.3σ , corresponding to the
square regime at low T ∗. In the range of very low temperatures
T ∗ < 0.25, the fractal dimension is small and stays essentially con-
stant. Increasing T ∗ towards slightly larger values then leads to
an increase of Df , reflecting the (expected) compactifaction. This
increase of Df is accompanied by an increase of the mean coor-
dination number z̄ [see Fig. 5.9(b)] within the temperature range
considered, indicating the growing number of bonds due to local
and global structural reconfigurations. The corresponding changes
in the stability of the bonds are illustrated in Fig. 5.10, where we
have plotted the time evolution of cb(t) for several temperatures (at
δ = 0.3σ ). Clearly, the decay of cb(t) becomes faster for higher tem-
peratures. This is the reason why structural reconfigurations and, in
consequence, compactifaction of aggregates becomes possible.

These trends persist until T ∗f ,sq ≈ 0.375, beyond which the system
at δ = 0.3σ starts to behave in a qualitatively different way. The
mean coordination number z̄ displays a maximum and subsequently
a rapid decay. We also find that the fractal dimension has not yet
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Figure 5.9: Temperature dependence of the system properties at density
ρ∗ = 0.3 for charge separations δ = 0.1,0.21,0.3σ colored in yel-
low, purple and black, respectively. (a) Fractal dimension Df

evaluated at t ≈ 250τb, (b) Mean coordination number, (c) Ori-
entational order parameters Φ4 and Φ6.
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Figure 5.10: Bond auto correlation function cb(t) for different tempera-
tures T ∗ at charge separation δ = 0.3σ and density ρ∗ = 0.3.

reached its maximum value at T ∗f ,sq; this maximum occurs at the
slightly larger temperature T ∗ ≈ 0.42 (see Fig. 5.9(a)). This ’delay’ of
Df can be understood from the fact that, upon the entrance of bond-
breaking, filigree parts of the aggregates are more likely affected
than more compact ones. Hence, the fraction of ’compact’ small
aggregates still grows. Even more important, the function Φ4(T ∗)
in Fig. 5.9(c) displays a pronounced decay of rectangular order for
T ∗ > Tf ,sq. From the sum of these indications we conclude that, at
temperatures higher than T ∗f ,sq ≈ 0.375, the system transforms into
a (stable or metastable) fluid phase. In this fluid phase, the over-
all structure starts to become homogeneous and isotropic, while the
local structures involve only a small number of bonds with short
bond-life times.

For the system at δ = 0.1σ (hexagonal structure at low T ∗), an esti-
mate of the ”fluidization” temperature T ∗f ,hex based on the behavior
of order parameters, coordination number and fractal dimension is
more speculative. Nevertheless, the data suggest that T ∗f ,hex > T ∗f ,sq.
This is indicated, first, by the fact thatΦ6(T ∗) decays only very slowly
with temperature until T ∗ ≈ 0.6 (see Fig. 5.9(c)). Second, the mean
coordination number shows only a weak maximum (and no fast de-
cay after-wards) compared to the case δ = 0.3σ . Third, the fractal
dimension keeps increasing with T ∗ for all considered temperatures
T ∗ < 0.6. Therefore we conclude that T ∗f ,hex > 0.6. We understand this
higher fluidization temperature at δ = 0.1σ from the fact that bind-
ing energies in hexagonal structures are larger; therefore, higher
coupling energies must be overcome.

To further justify these interpretations, particularly the emergence
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Figure 5.11: Simulation snapshots at ρ∗ = 0.3 with δ = 0.21σ at (a) T ∗ =
0.15, (b) T ∗ = 0.3, and (c) T ∗ = 0.45. Particles are colored
according to their value φ4i .
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of fluid phases, we performed a stability analysis of the homogenous
isotropic high temperature state based on mean-field density func-
tional theory (DFT). Specifically, we consider the isothermal com-
pressibility χT . Positive values of χT imply that the homogeneous
(fluid) phase is stable, whereas negative values indicate that this
phase is unstable. Specifically, the instability arises against long-
wavelength density fluctuations, i.e. condensation. According to
Kirkwood-Buff theory [156] one has

χ−1T ∝ 1− ρc̃(k = 0), (5.10)

where c̃(0) is the Fourier transform of the direct correlation function
(DCF) c(r12) in the limit of long-wavelengths (k → 0). We approx-
imate the DCF for distances rij > σ according to a mean field (MF)
approximation, that is

cMF(r12) = −(kBT )−1U (r12), r12 > σ, (5.11)

and use the Percus-Yevick DCF cHS(r12) of a pure hard-sphere
fluid [139] for |r12| ≤ σ . The full DCF is then given by

c(r12) = cHS(r12) + cMF(r12). (5.12)

In Fig. 5.12 we present numerical results for the expression 1−ρc̃(0)
at ρ∗ = 0.3 as function of temperature. At low T ∗, all systems are
characterized by negative values of 1 − ρc̃(0). This indicates that the
homogeneous isotropic phase is unstable, consistent with the results

Figure 5.12: Numerical solutions to Eq.5.10 as function of T ∗ for density
ρ∗ = 0.3 and charge separations δ = 0.1,0.21,0.3σ colored in
yellow, purple and black, respectively.
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of our simulations. Upon increasing T ∗ the mean-field compress-
ibility χT then becomes indeed positive for all charge separations
considered. Specifically, for δ = 0.3σ the change of sign (related to
a ”spinodal point”) occurs at T ∗f ,sq = 0.325 and for δ = 0.1σ at the
much higher temperature T ∗f ,hex = 0.6. These values are in surpris-
ingly good agreement with our estimates for the ”fluidization” tem-
peratures based on the order parameter plots.

The case δ = 0.21σ is again different. Here we find [see Fig. 5.9(b)]
that, starting from low temperatures inside the DLCA regime, the
mean coordination number monotonically decreases. However, this
does not indicate ”fluidization” but rather a gradual transition from
a state with dominant hexagonal order towards a mixed state com-
prised of coexisting clusters with local hexagonal and square-like
order. Indeed, [see Fig. 5.9(c)], the orientational order parameters
Φ4 and Φ6 reveal that the fraction of particles bound in square clus-
ters increases with T ∗ and finally overtakes the fraction of particles
involved in hexagonal clusters at T ∗ ≈ 0.35. Corresponding snap-
shots of simulation results are shown in Fig. 5.11. At all tempera-
tures considered one observes separated clusters. With increasing
temperature their shape becomes more regular, while the local rect-
angular order becomes more pronounced. Finally, at T ∗ = 0.45 the
fractal dimension Df and the square order parameter Φ4 reach their
maximum values, suggesting a ”fluidization” similar to the behavior
observed at other values of δ. Interestingly, our stability analysis [see
Eq. (5.10)] indicates an instability at the same temperature T ∗f = 0.45.
With this surprisingly accurate agreement between theory and sim-
ulation, we conclude that in the transition regime (δ = 0.21σ ), in-
creasing thermal fluctuations first push the system from a domi-
nantly hexagonal state into a rectangular one, which then enters a
metastable fluid phase after passing the ”spinodal point”.

5.2.6 Spotlight on higher densities

In this section we revisit the systems behavior at the low tempera-
ture T ∗ = 0.05, but consider different densities in the range ρ∗ ≤ 0.7.
Whereas low-density systems at T ∗ = 0.05 display DLCA as dis-
cussed in section 5.2.4, this aggregation mechanism is expected to
disappear at higher densities: here, the particles are just unable to
diffuse sufficiently freely. Rather, the particles will very frequently
collide and then immediately form rigid bonds. A typical structure
at the highest density considered, ρ∗ = 0.7, and separation param-
eter δ = 0.21σ is shown in Fig. 5.13. Clearly, the system is perco-
lated, that is, the particles form a single, system-spanning cluster.
Interestingly, this cluster is composed of extended regions charac-
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Figure 5.13: System at T ∗ = 0.05, density ρ∗ = 0.7 and δ = 0.21σ . The
color-code gives the orientational bond-order parameter φ4i
of each particle i.

terized by either square-like order or hexagonal order. We note that,
at δ = 0.21σ , simultaneous appearance of clusters with both types of
order also occurs at low densities and higher temperatures (see sec-
tion 5.2.5). However, at the high density considered here the regions
of each type are larger and the particle arrangements are much more
regular (i.e., there are less defects).

To better understand the impact of the density on the cluster struc-
tures we plot in Fig. 5.14(a) the orientational bond order parameters
Φ4 and Φ6 as functions of ρ∗ for δ = 0.21σ (at δ = 0.1σ and δ = 0.3σ
the order parameters are essentially independent of the density).

From Fig. 5.14(a) it is seen that the amount of rectangular (hexago-
nal) order sharply increases (decreases) at a density of ρ∗ ≈ 0.45. This
is a surprising result as one would expect that, upon compressing
the system, close-packed, hexagonal structures rather become more
likely. However, at the low temperature considered here, structural
reorganization is strongly hindered.

We also note that all of the systems investigated at densities ρ∗ >
0.45 turned out to be percolated (suggesting that the value ρ∗ = 0.45
is indeed related to the percolation transition). It thus seems that
the percolation tends to stabilize the initially formed square-lattice
symmetry, as the subsequent reorganization is hindered by the lack
of mobility. In effect, we are faced with quenched states that could
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5 Mutidirectional Colloidal Assembly

Figure 5.14: (a) Orientational bond order parameter Φ4 and Φ6 as func-
tion of density ρ∗ for δ = 0.21σ at T ∗ = 0.05. (b) Mean coor-
dination number z̄ as function of ρ∗ at T ∗ = 0.05 for different
δ = 0.1σ,0.21σ and 0.3σ colored in yellow, purple and black,
respectively.
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not density within the time domain studied. This interpretation is
also consistent with the decrease of the mean coordination number
once the system is percolated (ρ∗ > 0.45) as shown in Fig. 5.14(b).

5.3 Small and Large-Scale Structures

In this final section we discuss the connection between our find-
ings on field directed network formation in simulation studies of
the extended dipole particle model (EDP) and the crossed dipole
particle model (CDP). To this end, we first want to mention the vi-
sual similarity between the aggregates found in simulations of the
EDP model in its rectangular regime (see Fig. 5.15(a)) and the large
scale structures found in experiment (see Fig. 5.15(b)). However, it
is clear that the local structures differ strongly between these two
cases. Considering the CDP model, we find that it properly repro-
duces the local structure of the true experimental network structures
as shown in Fig. 5.15 (c) and (d) and discussed (quantitatively) in
Sec. 5.1.3. Hence, both models seem to be reasonable approaches to-
wards a theoretical description of the real system, although on dif-
ferent length scales.

Interestingly, we found that the network structures formed by the
CDP model undergo compactifaction by increasing the coupling
strength. As discussed, from the ideal concept of diffusion limited
aggregation the opposite behavior is expected, where an increase
in the coupling strength results in less compact large-scale fractal
aggregates [122]. However, it is not clear whether the observed com-
pactifaction affects the fractal dimension on large length-scales. Our
analysis was based on local properties, and the observed compacti-
faction is therefore a local one. Please note that it is well known that
gels with long-ranged interactions and formed by a quench into the
two-phase region undergo aging dynamics [114]. However, in this
work we were investigating network structures at constant given
times and it is not the temporal compactifaction which is discussed
here. Revisiting the EDP model, we see that the global structure
of the aggregates does not undergo compactifaction with increas-
ing coupling strength, which is reflected in the constant values of
the fractal dimension Df by varying T ∗ (see Fig. 5.9(a)). Consider-
ing the local structure, which can be done via the mean coordination
number z̄, we find that structures become less compact with increas-
ing coupling strength as z̄ continuously decreases (see Fig. 5.9(b)).
Hence, the EDP model behaves as it is expected from diffusion lim-
ited aggregation processes (but different than the CDP model).
The remaining question is why these models yield different behavior
regarding compactifaction?
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5 Mutidirectional Colloidal Assembly

Figure 5.15: Small- and large-scale images of network structures in exper-
iment and Simulation. Large-scale image from (a) Simulation
of the EDP-model at ρ∗ = 0.3, T ∗ = 0.05 and (b) Experiment
at field strengths E = 20V /mm,H = 90A/m. Local network
structures in (c) Simulation of the CDP-Model at ρ∗ = 0.35,
µel = µmg = 0.4 and (d) microscopic image at the same condi-
tions as in (b). Particles in (c) and (d) are color-coded accord-
ing to the method introduced in Sec. 3.5
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Unfortunately, a general answer to this question can not be given
here. Nevertheless, the following arguments and interpretations
might provide an explanation, although a somewhat speculative
one.

5.3.1 Strange compactifaction - A hybrid of
anisotropic and slippery DLA?

The EDP model undergoes either anisotropic or slippery diffusion
limited aggregation depending on the interaction anisotropy param-
eter δ (at strong coupling strengths λ > 10 or low temperatures T ∗ ≤
0.2). The transition between these aggregation regimes is very steep
and solely controlled by δ. This is because the EDP model forms
an one-component system of identical particles. In case the charge
separation δ would be different for different particles, one would ex-
pect a different behavior. For example, if δ is distributed around
the hexagonal-square transition parameter δsqhex ≈ 0.21σ , some parti-
cles would clearly prefer rectangular arrangements, while other ones
would prefer hexagonal arrangements. Building on our previous
analysis, this means that some particles will form slippery bonds
with their nearest neighbors, while other particles form orientation-
ally fixed bonds. Hence, the system should reveal an hybrid aggrega-
tion process composed of anisotropic and slippery DLA. This means,
that locally one could observe slippery DLA as well as anisotropic
DLA, depending on the actual particles one is looking at. However,
on large length-scales, it is uni-directional chains along one of the
fields, which are the dominant structural elements. Inside the chains
bond rotations are strongly suppressed, because such bond rotations
involve massive structural reconfigurations and even bond-breaking
events. For example, two particles connected by a slippery bond and
forming a chain which is connecting two compact aggregates can
only rotate around each other if either the chain breaks, or the ag-
gregates move against each other. Hence, on larger length-scales the
system should look like anisotropic DLCA.

However, one might expect that for stronger interaction energies
these two particles might be able to induce or guide the motion of
larger aggregates, bend the chain and maybe form more compact
structures.

Coming back to the crossed dipole particle (CDP) model we find in-
deed a similar situation. The ’energy landscapes’ for two random re-
alizations of particles with randomly shifted magnetic moments are
shown in Fig. 3.4 and reveal different interaction patterns. In a many
particle system (simulation), various pairings of particles with dif-
ferent interaction patterns will be present. Therefore the CDP model

104
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corresponds in principle to a multicomponent system, similar to the
EDP-model variation discussed above. The irregular assembly of
magnetic chains (see Fig. 5.1(c)) results from that multi-component
character. This becomes obvious when comparing the magnetically
assembled chains with the linear electrically assembled chains.

In consequence, it appears to us that the observed local compacti-
faction behavior with increasing interaction strength results from
the ’multicomponent’ character of the system. The underlying ag-
gregation mechanism can be interpreted as a hybrid of slippery and
anisotropic diffusion limited aggregation. While the EDP-model
serves as a conceptional model which allows to identify the influ-
ence of anisotropic pair interactions on diffusion limited aggrega-
tion, it is not able to capture (in its present status) all features of the
true system. Still, it allows to interpret them.

5.4 Summary

In this Chapter we presented the computer simulated aggregation
of complex superparamagnetic colloids in crossed external fields.
A detailed comparison between experiments and simulations of
crossed dipole particle (CDP) model introduced in Sec. 3.4 was per-
formed and yielded surprisingly similar structures. This analysis
was done by a simple but powerful method previously introduced
in Sec. 3.5. The central result of this section was a state diagram
for the aggregation behavior under various field conditions but con-
stant density. Our simulations revealed, that the system undergoes
counter-intuitive local compactifaction by lowering the temperature
and demonstrated the usefulness of using computer simulations as
supporting tools for understanding experiments, where certain pa-
rameters (here the number density) can not be controlled properly.

In addition to the CDP model, our theoretical study of the extended
dipole particle (EDP) model focused on understanding the forma-
tion of transient aggregates at low-temperatures. Performing large-
scale BD simulations we found that, depending on the patchiness of
particles (which is governed by the distribution of the field-induced
attractive ”sites” in the particles) different aggregation mechanisms
arise. These have been analyzed via appropriate structural order pa-
rameters, bond time-correlation functions as well as by the fractal
dimension. Our BD results demonstrated that by varying the patch-
iness of pair interactions, that is, the distribution of attractive sites,
the systems transform from DLCA (essentially rigid bonds) towards
sDLCA (slippery bonds). Moreover, we showed that the change of
aggregation behavior is accompanied by significant changes of the
local cluster structure.
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Indeed, the cluster structure can be easily manipulated by exploiting
the interplay between temperature, density and model parameter
δ. This allows formation of unexpected structures e.g., pronounced
rectangular packing instead of closed packed hexagonal structures
by increasing density. This unusual behavior appears to be dictated
by the inability of the originally formed lattices with hexagonal sym-
metry to rearrange into less dense square lattices.

Finally, the two models were compared with respect to the small and
large-scale structures they form. The local compactifaction of net-
work structures with decreasing temperature was then interpreted
as a hybrid of slippery and anisotropic diffusion limited aggrega-
tion although these final comments remained speculative and fur-
ther studies are needed for definite conclusions.

106



6
Conclusion and Outlook

In this work, we have used computer simulations to study the

non-equilibrium self-assembly of complex colloidal particles

with field induced dipolar interactions. The actual systems in-

vestigated are motivated by recent experimental observations in

quasi two-dimensional setups of colloids confined to a surface.

Theoretical models for the experimental particles and systems

have been developed and compared to results from experiments.

But also more generic models have been designed to allow in-

sights into the underlying mechanisms of the colloidal assembly.

After giving a general introduction to non-equilibrium colloidal sys-
tems and presenting in detail two experimental examples in Chapter
1, we briefly reviewed some basic theoretical descriptions of simple
fluids in Chapter 2. Special attention was paid to the concept of
phase separation.

In Chapter 3 we then developed and discussed four different mod-
els for the two experimental systems presented in Chapter 1. To
this end, we used ’energy landscapes’ to represent two-particle in-
teraction patterns, which allows an intuitive understanding of the
complex dipolar character of our models. Furthermore, we took ad-
vantage of the basic symmetry of the dipole-dipole interaction and
introduced an method to analyze colloidal networks on a single par-
ticle level. This method was exemplary applied to an experimental
and a simulated network structure and turned out to be a simple but
powerful tool.



In this method, two decoupled types of fictitious dipole moments
are associated with each particle and are used to calculate fictitious
energy spectra of the considered structures, which allows a proper
characterization of the systems state. Furthermore, the energy spec-
tra allow to identify for each particle the ’role’ it is playing inside the
network, which is either an edge or a node. Given this information
it is in principle possible to deduce the adjacency matrix of the col-
loidal networks. From a mathematical point of view, this means that
the topological properties of the network become accessible [158]
and it is an interesting question how true physical properties (e.g.,
thermal and electrical conductivity) are related to topological prop-
erties (e.g., scale freeness or bipartiteness and of course percolation).
Although designed to analyze rectangular real space network struc-
tures in two-dimensions this method can be extended towards other
types of structures, which do not necessarily correspond to Bravais
lattices i.e., non-Bravais clusters as formed by the dipolar Janus-
particles and described in Sec. 4.2.1.

In the following Chapters we investigated the self-organization and
self-assembly processes of the different particle models by means of
Brownian dynamics computer simulations, basic concepts of density
functional theory and heuristic theoretical considerations.

Lane formation of dipolar microswimmers

In Chapter 4 we investigated a system of colloidal microswimmers
under the presence of an external electric field. The experimental
setup motivating this work has been introduced in Sec. 1.2.4. The
complex model used for this study is a double dipolar Janus par-
ticle with two induced dipole moments of different strengths and
an orientation ally fixed propulsion direction (see Sec. 3.2). In a
two-dimensional setup this means that the system is effectively bi-
nary; there exist two particle species with opposite orientations and
propulsion directions. Such configurations are generally assumed to
undergo lane formation if the propulsion force is strong enough. We
have shown that this is indeed the case for our dipolar model and
that the induced dipolar interactions stabilize the formation of lanes
over a wide range of interaction strengths. This is surprising, as the
anisotropic interactions show a strong tendency of the particles to
self-assemble into chains which, in the present model, are oriented
perpendicular to the driving force. These self-assembly processes re-
sult in complex staggered chains, when no driving force is present
and the observed structures are in qualitative agreement with exper-
imental observations. The underlying mechanisms for lane forma-
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tion were then identified by investigating a simple binary Lennard-
Jones fluid with oppositely driven particle species. Here, the onset
of lane formation is closely related to the phase separation of the
corresponding , well known, equilibrium system. By simple theoret-
ical considerations we could also estimate the spinodal point in the
double dipole model and show that the same connection is present
there. Importantly, the (effective) attractiveness of the particle inter-
actions in both models enables the system to undergo lane formation
at propulsion speeds approximately one order of magnitude smaller
than in previously known systems [91]. In addition, the presence of
attractive interactions can also suppress lane formation. Using force
balance arguments, the breakdown of lane formation due to ’freez-
ing’ was estimated in very good agreement with the simulation re-
sults. Finally, our observation of lane formation should be directly
measurable in real systems of field-propelled metallo-dielectric par-
ticles, for which the model has been designed.
Starting from the present study, there is several further intriguing
questions to be explored.

Outlook on lane formation

The model we were investigating contains several parameters, the
dislocation of the dipole moments δ and the ratio between the dipole
strengths µ1/µ2 which have not been varied systematically. As the
values chosen in this work are ’educated guesses’ but have not
been derived quantitatively from microscopic particle properties,
it would be of interest to investigate their influence on the lane for-
mation process. Importantly, the dipole moments are symmetrically
shifted out of the particle center. Decreasing the shift parameter δ
strongly influences the anisotropy of interactions and increases the
systems tendency to form chains perpendicular to the drive, as test
simulations revealed. At smaller dipole shifts, the competition be-
tween lane formation and (perpendicular) chain formation should
be more pronounced and the internal structure of lanes might be
tuned.

Importantly, as the intra lane structures serve as ’backbones’ of
lanes, tuning these structures would most probably affect the width
of lanes. Unfortunately, it is and remains unclear whether there
exists a characteristic lane width at all. It would be of great interest
to answer this question. Due to the more pronounced competition
between laning and chaining it might become possible to quantify
lane widths.

Also, is the behavior observed here related to a Raleigh-Taylor (RT)
instability occurring in driven, macroscopically phase-separated
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mixtures? In the context of RT, the critical wavelength [159] can
be estimated by a simple criterion involving the surface tension be-
tween the phases; this might provide an additional way to quantify
the lane width of our system and in general.

Our results on lane formation in attractively interacting systems
may open up the door towards a deeper understanding of the lan-
ing transition as they show that laning in systems with attractive
interactions is intimately related to phase separation, irrespec-
tive of the detailed form of the interaction potential. In recent
years, the study of pseudo-phase separation processes in ’classi-
cally self-propelling’ systems, where the propulsion direction is
subject to rotational diffusion, has become a very lively field of
research [69, 16, 58]. Especially hard sphere systems, which do
not undergo phase separation in equilibrium, undergo a separation
process into high and low density pseudo-phases if the propulsion
forces are strong enough. A deeper understanding of this process
is based on mimicking the influence of self-propulsion by an ef-
fectively attractive potential [69]. Interestingly, adding attractive
interactions to the active hard-sphere system can enhance as well as
suppress pseudo-phase separation [70, 71] similar to the effect on
lane formation presented here. And the same behavior has also been
reported for driven magnetic mixtures [42]. Obviously, it would be
of major interest to have a general theory for pseudo-phase transi-
tions in active systems, which, as our study indicates, should then
connect pseudo-phase transitions to true equilibrium phase transi-
tions in a conceptional way. A promising approach towards such an
understanding might be based on the driven Lennard Jones fluid.
This simple system allows large scale computer simulations which
can be accompanied by standard methods from (dynamical) density
functional theory. First studies using such techniques have been
performed [91, 42] on soft-sphere systems. However, the (binary)
Lennard Jones system presented here has not been investigated so
far, but may serve as a generic model. In fact, in collaboration with
Christopher Wächtler and Sabine H. L. Klapp at TU Berlin, an ex-
tensive study on lane formation in the binary driven Lennard-Jones
fluid has been performed and will be published soon [160].

Accordingly, we expect our findings to be transferable to other
driven colloidal systems with direction-dependent interactions,
examples being ”patchy” particles which, similar to our system,
display both equilibrium aggregation and condensation [103], or
dipolar colloids under shear flow [43]. In this context it is an in-
teresting question whether lane formation can be interpreted as a
directed spinodal decomposition. Here, an effective Cahn Hillard
theory might be a reasonable approach [75]. The latter then would
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Figure 6.1: Simulation snapshots at ρ∗ = 0.3, T ∗ = 1 and µ∗ = 3.5 for driv-
ing forces (a) f ∗d = 1, (b) f ∗d = 3 and (c) f ∗d = 5. Brighter dots in
particles indicate the particle orientation.

raise again the question about dynamical characteristic length scales
(lane widths) usually found in decomposing systems.

Finally, we shortly want to propose an interesting model system
for an active dipolar fluid or one might call it an active ferrofluid. In
experiment, self-propelling Janus Particles (e.g., metal coated) are
often activated by light or localized chemical reactions [53, 52, 16].
Then the propulsion direction is fixed to the particle orientation,
which itself is subject to rotational diffusion. Additionally, the
metal-coated surface part might be made of a magnetic material
e.g., iron oxide. Hence, a system of active magnetic/dipolar par-
ticles is realized and applying an external magnetic field should
in principle allow to orientate these particles and their propulsion
directions as the propulsion direction is fixed with respect to the
particle body. Starting from the soft-sphere dipole fluid [22] (soft-
sphere particles with centered dipole moments µi), one possibility
of modeling activity is to associate a driving force fi = fiµi/µi with
each particle i. Thus, the particle moves along its dipole moment,
although other geometries are also of interest. In fact, we performed
two dimensional test simulations allowing the dipoles to rotate in
three dimensions according to the equations of motion for a dipolar
particle with constant propulsion force fd and interaction potential
Ui =

∑N
j=1USS(rij ) +Udip(rij ) (see Eq. [3.6])

ṙi = − D
T

kBT
∇iUi + fd

µi
µi

+ζTi (6.1)

µ̇i = − D
R

kBT
(µi ×∇µiUi) +ζRi (6.2)

with rotational and translational diffusion coefficients DR and DT

and white noise fulfilling the Eqs. [2.5,2.6]. In Fig. 6.1, we show
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Figure 6.2: Mean square displacement in the active dipole fluid at ρ∗ =
0.6, T ∗ = 1 and f ∗ = 2 for different dipole strengths.

simulation snapshots at constant density and dipole strength for dif-
ferent driving forces.

The overall scenario these test simulations indicate is the following.
Given the dipolar coupling is strong enough, the self-propulsion
enhances the systems ability to form a quasi-ferromagnetic state,
where dipole moments mostly point in the same direction. Further-
more, this transition enhances the diffusion properties and allows
the system to be super-diffusive in the long-time limit. Correspond-
ing results showing the mean square displacement [134] for differ-
ent dipole strengths are shown in Fig. 6.2. Despite the details of
this transition, we want to note that in equilibrium there is no fer-
romagnetic transition of the two-dimensional dipole fluid [22]. The
general interest of this system is given by its connection to various
other model systems. On the one hand, it yields an alignment mech-
anism similar to the Vicsek-model [59, 57] (which also shows the
motility induced ferromagnetic transition) but it is based on true
physical interactions (steric and dipole-dipole interaction). On the
other hand, it is closely connected to non-equilibrium structure for-
mation of dipole fluids as it can be tuned by external fields. In gen-
eral, external fields allow a tremendous variety of structure forma-
tion in passive dipole fluids, e.g., chaining [2] or layering [41]. The
interplay between these phenomena and active motion most proba-
bly opens the door towards a new field of research concerned with
tunable active dipole fluids.
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Field directed aggregation

The effect of anisotropic pair interactions on colloidal self-assembly
processes is itself an interesting question and in Chapter 5 a sys-
tem of double dipolar (patchy) particles has been investigated. The
corresponding experimental setup and the observed self-assembled
structures have been introduced in Sec. 1.3.3 and a paper publica-
tion is preparation [161].

Here, the assembly of chain and network structures under the pres-
ence of crossed magnetic and electric fields was tunable by the re-
spective field strengths. Importantly, it is not Janus particles which
were considered here, but polymer particles with an unknown inter-
nal distribution of superparamagnetic (nanometer scale) iron-oxide
aggregates. Again, a complex model (CDP-model) with explicit
dipole-dipole interactions has been developed in Sec. 3.4. The
model is based on the assumption that different particles carry
different amounts of magnetic material and that the distribution
of the magnetic material inside the particles is not homogenous
but rather characterized by an off-centered effective magnetic in-
teraction site. Based on a new and rather simple method to an-
alyze colloidal networks, a detailed comparison of simulated and
experimental colloidal aggregates was performed. The simulated
structures turned out to be in surprisingly good agreement with the
experimental ones. A precise control of the local and global density
was not possible in experiment and no clear understanding of the
non-equilibrium state diagram at different external field strengths
could be established. The advantage of the theoretical approach was
that it allowed to close this gap in the experimental understanding.
Simulations revealed that at fixed intermediate density there exist in
principle four different states, corresponding to magnetic and elec-
tric field aligned string fluids and fine and coarse colloidal networks.
The main result here is the non-equilibrium state diagram from sim-
ulation and the newly developed method to characterize colloidal
networks. We found that there exists a smooth crossover from fine to
coarse networks by increasing both field strengths, which could not
be explained at this point. It also remained unclear whether these
network states do undergo gelation. This is mostly due to computa-
tional reasons because the analysis of the prerequisites of gelation,
namely very slow relaxational dynamics and percolation, requires
very long simulation times and large particle numbers (finite size
scaling). Such procedures were not feasible with this model.

In addition, a generic model (EDP model) with tunable direction-
ality of effective dipole-like interactions was developed in Sec. 5.2.
In an extensive study of its aggregation behavior we investigated the
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influences of temperature and of the ’degree’ of patchiness of pair in-
teractions. The focus of the study of the generic model was to under-
stand the formation of transient, aggregated structures appearing at
low-temperatures. Performing large-scale BD simulations we have
found that, depending on the patchiness of particles, which is gov-
erned by the distribution of the field-induced attractive ”sites” in the
particles, different aggregation mechanisms arise. These have been
analyzed via appropriate structural order parameters, bond time-
correlation functions as well as by the fractal dimension. Our BD
results demonstrate that by varying the charge separation param-
eter, that is, the distribution of attractive sites, the systems trans-
form from DLCA (essentially rigid bonds) towards sDLCA (slippery
bonds). Moreover, we show that the change of aggregation behavior
is accompanied by significant changes of the local cluster structure.
Based on our understanding of these ideal aggregation regimes of a
one component system, we interpret the strange compactifaction ob-
served on the local scale in CDP model as a hybrid of slippery and
anisotropic DLA in a multi component system.

Outlook on field directed aggregation

Although this interpretation remains somewhat speculative, as dis-
cussed in Sec. 5.3, we assume that it can be tested by introduc-
ing a random distribution of the shift parameter δ in the generic
model such that different particles have different charge separations.
This will most probably result in a smoother transition between the
hexagonal and rectangular regime and lead to a situation, where
rectangular chaining and branching persist while the local order
is already hexagonal and the generic (EDP) model could be related
much more closely to the complex (CDP) model. Then, its compu-
tational and conceptional advantages could be exploited more ef-
ficiently. For example, it remained an open question whether the
system undergoes gelation. Computationally it should be possible
to determine the percolation transition and characterize the relax-
ational dynamics in the generic model. These results should then be
transferable to the complex model and to the real system. Besides,
it remains an open question whether it is the range of interactions
which governs the compactifaction process. Finally, having access
to large-scale network structures allows to extract topological infor-
mation (adjacency matrix of the underlying graph) via the structure
analysis method discussed above. A large zoo of potentially interest-
ing correlations emerges here. For instance, the interplay between
fractal dimension and graph connectivity [158].

From a technological point of view the presented multi-directional
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field approach yields strong potential for the design of adjustable
materials. In fact, the cluster structures can be easily manipulated
(except of particle density) by exploiting the interplay between dif-
ferent fields of different strengths and orientations. This allows for-
mation of unexpected structures e.g., pronounced rectangular pack-
ing instead of closed packed hexagonal structures by increasing den-
sity, as observed in the generic model.

It has potentially important consequences for colloidal assembly,
as is points out the ability to use mutidirectional field-driven as-
sembly for the making of lower-density, yet highly interconnected,
phases. The formation of particle networks with multiple percola-
tion directions can find application in a range of new materials with
anisotropic electrical and thermal conduction, magnetic or electric
polarizability or unusual rheological properties. The aggregated
clusters can be dispersed in liquid, while the percolated networks
can be embedded in a polymer or gel medium [162]. The key to
the fabrication of such novel classes of materials containing particle
clusters and networks is the control of the process parameters to
obtain the desired inter-connectivity, density and structure. In addi-
tion, the general setup allows also to change the angle between the
electric and magnetic field which should result in new interaction
patterns and exotic structures. Future research should also focus on
a more detailed investigation of the interplay between the aggrega-
tion mechanisms observed here (anisotropic and slippery DLCA),
and the equilibrium phase behavior, particularly the location of a
condensation transition. This includes investigation of the influence
of entropy which we did not discuss but may strongly influence the
aggregation behavior [163]. Furthermore, connections to transient
and directional cluster formation mediated by DNA-links [164],
long-ranged repulsion [165], anisotropic particle shapes [10, 1, 12]
or other non-equilibrium mechanisms such as activity [68, 166]
and/or hydrodynamics [167] are of interest.

In this work, two types of non-equilibrium processes have been
considered, namely ’Hit and Stick’ aggregation and lane formation,
which are characterized by strong anisotropic interactions and self-
propulsion, respectively. The combination of these particle proper-
ties is a next step towards colloidal systems of increased complexity.
Such systems might result in a ’super-diffusion limited aggrega-
tion’ process, meaning that particles are able to self-propel and to
undergo field directed aggregation. By now, ’Hit and Stick’ aggrega-
tion of ballistically moving particles has been considered [117, 118],
but the interplay of self-propulsion and ’Hit and Stick’ aggregation
remains an open question. However, our findings on lanes formed
by dipolar microswimmers point in this direction.
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Appendix

Brownian Dynamics Computer Simulations

The solutions of Eqs. [2.12,2.13] are the trajectories of the col-
loidal particles. However, an analytical solution for a many par-
ticle system is in general not possible. An alternative is to integrate
Eqs. [2.12,2.13] numerically; a procedure which is usually called
Brownian dynamics (BD) computer simulation [134, 135].

Numerical Integration

The overdamped Eqs. [2.12,2.13] are of first order which allows to
use the Euler integration-scheme [134, 135]. Throughout this work,
directional pair interactions with fixed orientations have been con-
sidered. Therefore, torques and rotational motion of particles has
not been calculated. For completeness we present here the full so-
lution of the translational and rotational equations of motion. The
numerical integration of Eqs. [2.12,2.13] then reads

ri(t +∆t) = ri(t +∆t) +
DT

kBT
Fi∆t + F̃Di (6.3)

ei(t +∆t) = ei(t) +
DR

kBT
Ti∆t × ei(t) + T̃D

i × ei(t), (6.4)

with an integration step width∆t and orientational unit vectors ei(t).
In this numerical integration scheme, the stochastic contributions
F̃Di and T̃D

i obey again Gaussian distributions with mean

< F̃Di (t) >= 0 (6.5)

< T̃D
i (t) >= 0 (6.6)

and with variance

< F̃Di (t) · F̃Dj (t +∆t) >= 2DT δij∆t1 (6.7)

< T̃D
i (t) · T̃D

j (t +∆t) >= 2DRδij∆t1. (6.8)



The forces and torques Fi and Ti are stemming from interactions
with other colloidal particles or might result from external poten-
tials e.g., an electric field exerting the force Fext and torque Text) on
particle i. Therefore the total force and torque on particle i due to
all other particles (j , i) is given by the superposition of the forces
Fij and torques Tij imposed on particle i by the particles j

Fi = ΣNj=1Fij +Fext . (6.9)

Ti = ΣNj=1Tij +Text (6.10)

whereas N is the number of particles in the system.

Accordingly, their calculation (in a computer simulation) requires
knowledge about the pair interactions between two specific colloids.
In fact, these interactions define the colloidal models and important
examples have been considered in Sec. 3.1.

Importantly, in case the pair interactions are long-ranged special
methods have to be utilized to overcome difficulties related to the
periodic boundary conditions and computational efficiency.

Long-range interactions

In single particle resolved computer simulations, pair interactions
are calculated for particle separations smaller than a certain, in-
teraction dependent, cut-off distance rc. Under periodic boundary
conditions, this cut-off has to be smaller than half the size of the
central simulation box. However, there are certain types of interac-
tions which decay very slow with the particle separation: Examples
for such long-ranged interactions are the Coulomb potential or the
dipole-dipole interaction. Hence, these potentials cannot be simply
truncated because otherwise major errors would be introduced. In
the following we present a common approach to handle this diffi-
culty via the Ewald-summation method.

Ewald summation of the Coulomb potential

In this section we introduce the Ewald summation technique for
ionic systems in three dimensions, which then will allow a straight
forward generalization for dipolar systems in the next section.
Thereby we follow closely the derivation of Klapp and Schön in [150].
A detailed review of special aspects of the two-dimensional Ewald
summation is found in [144].
The pair-interaction Ucou(r) between two charged particles is given
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6 Conclusion and Outlook

by Eq. 3.4. By scaling prefactors into the charges q, the total energy
due to the Coulomb interaction between N particles is given by

Uc =
1
2

N∑
i=1

qiΦ(ri) with Φ(ri) =
N∑
j=1

qj
|ri |

. (6.11)

In the following we assume that the system is neutral, meaning that∑N
i=1 qi = 0, and that it is a three dimensional bulk system con-

structed of a (cubic V = L3) central simulation cell of size L with
periodic boundary conditions. The later condition allows to write
the electrostatic potential as

Φ(ri) =
∑
{n}

′ N∑
j=1

qj
|rij +n|

, (6.12)

with rij = rj−ri and {n} being the set of lattice vectors naming the pe-
riodic images of the central cell, meaning that n = (nx,ny ,nz)L with
nα ∈ Z. In the central cell, denoted by n = 0, the contribution j = i
is excluded from the summation, which is indicated by the prime
in the summation over n in Eq. 6.12. In this general setup we now
derive the Ewald summation technique.
To this end, we consider the charge density ρi(r) which is connected
to the electrostatic potential Φ(ri) via Poisson’s equation [142]

Φ(ri) =
∫
dr′ρi(r

′)|ri − r′ |−1. (6.13)

The distribution of charges seen by particle i can be written a sum
of delta-functions

ρi(r
′) =

∑
{n}

′ N∑
j=1

qjδ(r′ − rj +n). (6.14)

Importantly, the decay of the potential Φ resulting from this charge
density is rather slow (proportional to the inverse distance). Hence,
also the lattice sum converges (for a given ordering) slowly. Fur-
thermore, the sum is only conditionally convergent, meaning that the
order of summation determines the result. The idea of Ewald sum-
mation is now to split the charge distribution ρi(r′) into three parts
ρai (r′), ρbi (r′), ρci (r

′) which generate a electrostatic potential converg-
ing in a more favorable way. This is done by superimposing each
δ-function in Eq. 6.14 with a continuous distribution of opposite
point-charges qj . Usually, one uses a Gaussian distribution

ρj,n(r′) = −qj(α/
√
π)3 exp[−α2(r′ − rj +n)2]. (6.15)

Here, α acts as a parameter controlling the width of the distribution,
similar but inverse to the variance. The overall number of charges
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in the system thereby increases because the artificially introduced
distributions are normalized by

− qj =
∫
dr′ρj,n(r′). (6.16)

Adding Eq. 6.15 to Eq. 6.14 results in the artificial charge density

ρ
(a)
i (r′) =

∑
{n}

′ N∑
j=1

qjδ(r′ − rj +n+ ρj,n(r′)) (6.17)

which can be interpreted as a density of ’screened’ charges. The as-
sociated potential [150]

Φ (a)(ri) =
∑
{n}

′ N∑
j=1

qjerfc(α|rij +n|)/ |rij +n| (6.18)

shows a much more rapid decay than Φ(ri), because of the mono-
tonically decreasing complementary error function erfc(). Here, α
controls the decay or screening. And indeed, the expression for
Φ (a)(ri) reminds of the yukawa interaction, whereas the screening
constant κ corresponds to α and the exponential decay is replaced
by the erfc().

By now, we have artificially introduced further charges into system.
Therefore we now reformulate the charge density ρj,n(r′)) of these
fictitious charges to increase its convergence properties and add it
later as an effectively negative charge density to Φ (a). Hence, we will
finally pertain the original setup. From Eq. 6.17 we see that

ρi(r
′)− ρ(a)

i (r′) = −
∑
{n}

′ N∑
j=1

ρj,n(r′) (6.19)

where again the prime in the lattice sum indicates that the terms i =
j are excluded for n = 0, which is also the reason why ρi(r′) depends
on i. Now we introduce the charge density

ρ(b)(r′) = −
∑
{n}

N∑
j=1

ρj,n(r′)

= −
∑
{n}

N∑
j=1

qjα
3√π−3 exp[−α2(r′ − ri +n)2].

(6.20)

Note that the lattice sum is carried out here without any restric-
tions (no prime). Therefore ρ(b)(r′) is independent of i and peri-
odic in space and contains the contribution from the central cell
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(i = j when n = 0). The later is given by

ρ
(c)
i (r′) = ρi,0(r

′) = −qiα3
√
π
−3

exp[−α2(r′ − ri)2]. (6.21)

This is an important difference to the right hand side of Eq. 6.19,
and allows the charge density ρ(b)(r′) to be calculated in reciprocal
space. The later is spanned by the lattice vectors

k = 2π/L(mx,my ,mz) with mα ∈ Z. (6.22)

It can be shown [150] that the (discrete) Fourier transform of the
charge density ρ(b)(r′) results in the potential

Φ (b)(ri) =
4π
V

∑
k,0

N∑
j=1

qj
k2

exp[−k2/4α2]exp[−ik · rij ] +Φ (b)
LR(ri). (6.23)

The term Φ
(b)
LR(ri) is the contribution for zero wave vectors k = 0 and

given by

Φ
(b)
LR(ri) = 4π/(V (2ϵ′ + 1))

N∑
j=1

qjri · rj (6.24)

if the system is seen as a large sphere surrounded by a dielectric
continuum with dielectric constant ϵ′. The advantage of this repre-
sentation is, that damping is controlled by the wave-number k = |k|
and sufficient convergence is already achieved for relatively small
wave-numbers k ≈ 20 − 30 if α is chosen in such a way, that only
the central simulation cell n = 0 has to be evaluated in Φ (a)(ri) (see
Eq. 6.18).
The potential according to ρ

(c)
i (r′) compensates for the unphysical

self-interaction hidden in Φ (b)(ri) and is given by [150]

Φ (c) = −qi2α/
√
π. (6.25)

At this point, we have split up the original electrostatic potential
Φ(ri) (see Eq. 6.12) into various contributions with controllable con-
vergence properties. Making use of Eq. 6.11 allows to write down
the corresponding parts of the Ewald potential energy UEW

cou as:

· the contribution from real space

U real
cou =

1
2

N∑
i=1

qiΦ
(a)(ri)

=
1
2

N∑
i=1

∑
{n}

′ N∑
j=1

qiqj
erfc(α|rij +n|)
|rij +n|

(6.26)
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· contribution from the Fourier sum

U
f ourier
cou =

1
2

N∑
i=1

qi[Φ
(b)(ri)−Φ

(b)
LR(ri)]

=
2π
V

N∑
i=1

∑
k,0

N∑
j=1

qiqj
k2

exp[−k2/4α2]exp[−ik · rij ]
(6.27)

· contribution from long-range interaction

U
long
cou =

1
2

N∑
i=1

qiΦ
(b)
LR(ri) =

2π
V (2ϵ′ + 1)

|
N∑
j=1

qjri · rj |2 (6.28)

· the contribution from self-interaction

U
self
cou =

1
2

N∑
i=1

qiΦ
(c) = −α/

√
π

N∑
i=1

q2i . (6.29)

The total potential energy is then given by

UEW
cou = U real

cou +U
f ourier
cou +U

long
cou +U

self
cou . (6.30)

Ewald summation of the dipole-dipole potential

With this background, we are now able to formulate the Ewald sum
for dipolar systems. Interestingly, the dipole-dipole potential Udip

(see Eq. 3.6) is related to the functional form of the Coulomb poten-
tial of a unit point charge

Ψ (rij ) = r−1ij (6.31)

via
Udip(rij ,µi ,µj ) = (µi ·∇i)(µi ·∇j )Ψ (rij ). (6.32)

Formally, this means nothing more than replacing the charges qγ in
Ucou by the operators µγ · ∇γ results in the dipole-dipole potential
Udip. Applying this transformation to the explicit expressions inin
Eqs. 6.26, 6.27, 6.28 and 6.29 allows to write down the correspond-
ing parts of the Ewald dipole-dipole energy UEW

dip as:

· the contribution from real space

U real
dip =

1
2

N∑
i=1

∑
{n}

′ N∑
j=1

(µi ·µj )B(|rij +n|,α)

− [µi · (rij +n)][µj · (rij +n)]C(|rij +n|,α)

(6.33)
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· the contribution from Fourier space

U
f ourier
dip =

2π
V

∑
k,0

1
k2

exp[−k2/4α2]F(k)F∗(k) (6.34)

· the contribution from long-range interaction

U
long
dip =

2π
V (2ϵ′ + 1)

(
N∑
j=1

µi)
2 (6.35)

The functions B(|rij +n|,α),C(|rij +n|,α) and F(k) are defined as:

B(|rij +n|,α) =
1
r3

[
2αr
√
π

exp−α2r2 + erfc(αr)] (6.36)

C(|rij +n|,α) =
1
r5

[
2αr
√
π

(3+ 2α2r2)exp−α2r2 + 3erfc(αr)] (6.37)

F(k) =
N∑
i=1

(µi ·k)exp(−ik · ri). (6.38)

The self-part of the dipolar Ewald sum does not follow directly by
applying the transformation qγ → µγ ·∇γ . For details see Ref. [150].

U
self
dip = − 2α

3
√
π

N∑
i=1

µ2i . (6.39)

The total potential energy is then given by

UEW
dip = U real

dip +U
f ourier
dip +U

long
dip +U

self
dip . (6.40)

Ewald summation for quasi two-dimensional dipoles

Most of this work is concerned with the behavior of complex dipo-
lar colloids at interfaces. Such quasi two-dimensional systems are
treated by restricting translational motion to a plane of area A = L2,
while allowing the dipole moments to rotate in three dimensions.
The Ewald summation for dipolar interactions has to be adapted
to these geometrical restrictions. To distinguish between the three-
dimensional and quasi two-dimensional cases, the lattice vectors
of the Fourier contributions are denoted by g = 2π(mx,my)L here,
with mx, my ∈ Z. Specifically, the total energy can be split up in
contributions [22, 144]
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parallel

U ∥dip(rij ,µ
∥
i ,µ
∥
j ) = − 1

2

N∑
i,j=1

[Bq2d(rij )µ
∥
i ·µ

∥
j +Cq2d(rij )(µ

∥
i · rij )(µ

∥
j · rij )]

+
π
A

∑
g,0

erfc(g/2α)
g

F∥(g)F∗∥(g)− 2α
3

3
√
π

N∑
i=1

|µ∥i |
2

(6.41)

and perpendicular

U⊥dip(rij ,µ
⊥
i ,µ

⊥
j ) = − 1

2

N∑
i,j=1

[Bq2d(rij )µ
⊥
i ·µ

⊥
j

+
π
A

∑
g,0

[
2α
√
g

exp−
g2

4α2
− gerfc(g/2α)]Fq2d⊥ (g)Fq2d⊥

∗
(g)

− 2α
√
π

A

N∑
i,j=1

µ⊥i ·µ
⊥
j −
2α3

3
√
π

N∑
i=1

|µ⊥i |
2

(6.42)

to the plane, whereas µ⊥γ and µ∥γ denote the perpendicular and par-
allel components of dipole moment µγ , respectively.

(6.43)

The functions Bq2d(|rij+n|,α),Cq2d(|rij+n|,α) and F
q2d
⊥,∥ (g) are defined

as:

Bq2d(|rij +n|,α) = − erfc(αr)
r3

− 2αr√
π

exp−α2r2

r2
] (6.44)

Cq2d(|rij +n|,α) = 3
erfc(αr)

r5
+
2αr
√
π

(3/r2 + 2α2)
exp−α2r2

r2
(6.45)

F
q2d
⊥ (g) =

N∑
i=1

µ⊥i exp(ig · ri) (6.46)

F
q2d
∥ (g) =

N∑
i=1

(µ∥i · g)exp(ig · ri). (6.47)

In Brownian Dynamics computer simulations, it is not the interac-
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tion energy but rather the forces

f
q2d
i = −∇ri (U

∥
dip +U⊥dip)

=
N∑
j=1

∑
{n}

′
{Cq2d(rij )[(µi ·µj )rij + (µi(µj · rij ) + (µj(µi · rij )]

−Dq2d(rij )(µi · rij )(µj · rij )rij}

+
2π
A

∑
g,=0

erfc(g/2α)
g

(g ·µ∥i )g

× [sin(g · ri)ReN (g)− cos(g · ri)ImN (g)]

+
2π
A

∑
g,0

[
2α
√
π

exp(−g2/4α2)− erfc(g/2α)g]g

× [sin(g · ri)ReO(g)− cos(g · ri)ImO(g)]
(6.48)

which are or interest. Here we have defined the functions

Dq2d(rij ) =
1
r
7
ij

[
2αrij√
pi

(15+ 10α2r2ij

+ 4α4r4ij )exp(−α2rij2) + 15erfc(αrij )]
(6.49)

N (g) =
N∑
j=1

(g ·µ∥j )exp(ig · rj ) (6.50)

O(g) =
N∑
j=1

(µ⊥j )exp(ig · rj ) (6.51)

In this work, explicit expressions for torques are not needed, as only
induced dipole moments are simulated.

Computational aspects of Ewald Summation

As previously stated, Ewald summation is a technique used to over-
come difficulties associated with the interaction range, system size
and convergence of interaction sums in many-particle computer
simulations. These difficulties are also closely related to the compu-
tational efficiency. Here we shortly comment on these aspects.

The convergence of the Ewald sum is controlled by the parameter α,
which is usually chosen in such a way that only interactions between
particles with distances smaller than half the central simulation cell
rEWc = L/2 have to be calculated in real space. The actual value
α = 6.5/L we are using also determines the maximum number of lat-
tice vectors mmax =

√
m2x +m2y we had to take into account. Including
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lattice vectors up to mmax ≈ 30 (depending on the studied particle
numbers N ∈ [512,1024]) ensures, that the dipole-dipole interaction
decays to values smaller than 10−6kBT .

Transferring parts of the summation into reciprocal space is, in
addition to the absolute convergence, also much faster than calcu-
lating everything in real space. In the two-dimensional setups we
are considering, one can additionally take advantage out of certain
symmetries. For example, the periodic image with g = (1,0)2π/L
yields the same contribution to the Ewald sum as the one with
g = (0,1)2π/L.

Furthermore, the quantities N (g) and O(g) defined in Eqs. 6.50 and
6.51 are single particle sums, meaning that its is only 2N terms
which need to be calculated instead of N2. This results in a tremen-
dous speed up of the simulation and allows larger systems sizes
and/or particle numbers.

Finally, the fact that the Fourier contributions are essentially single
particle sums allows to use simple and straight forward paralleliza-
tion methods like OpenMP when using the programming languages
C or C++. Especially on quad-, hex- or octa-core computer systems
with shared memory such methods are easy to apply and show sig-
nificant reduction in simulation time.
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mut Löwen. Effective cahn-hilliard equation for the phase
separation of active brownian particles. Phys. Rev. Lett.,
112:218304, May 2014.

[76] Félix Ginot, Isaac Theurkauff, Demian Levis, Christophe
Ybert, Lydéric Bocquet, Ludovic Berthier, and Cécile Cottin-
Bizonne. Nonequilibrium equation of state in suspensions of
active colloids. Phys. Rev. X, 5:011004, Jan 2015.

[77] S. C. Takatori and J. F. Brady. Towards a thermodynamics of
active matter. Phys. Rev. E, 91:032117, Mar 2015.

[78] Julian Bialké, Jonathan T. Siebert, Hartmut Löwen, and
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[95] Heiko Schmidle, Sebastian Jäger, Carol K. Hall, Orlin D. Velev,
and Sabine H. L. Klapp. Two-dimensional colloidal networks
induced by a uni-axial external field. Soft Matter, 9(9):2518–
2524, 2013.

134



Bibliography

[96] Martin Z. Bazant and Todd M. Squires. Induced-charge elec-
trokinetic phenomena: Theory and microfluidic applications.
Phys. Rev. Lett., 92:066101, Feb 2004.

[97] Sciortino Francesco. Disordered materials: One liq-
uid, two glasses. Nat Mater, 1(3):145–146, nov 2002.
10.1038/nmat752.

[98] Julie Byrom and Sibani Lisa Biswal. Magnetic field directed
assembly of two-dimensional fractal colloidal aggregates. Soft
Matter, 9(9):9167–9173, 2013.

[99] Rajesh Ganapathy, Mark R. Buckley, Sharon J. Gerbode, and
Itai Cohen. Direct measurements of island growth and step-
edge barriers in colloidal epitaxy. Science, 327(5964):445–448,
2010.

[100] Bommel S., Kleppmann N., Weber C., Spranger H., Schäfer P.,
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