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Introduction

A bounded selfadjoint operator A in a Krein space (H, [·, ·]) is called
definitizable if there exists a polynomial p 6= 0 such that [p(A)x, x] ≥ 0 for
all x ∈ H. A definitizable operator A has real spectrum with the possible
exception of a finite number of nonreal eigenvalues, and it has a spectral
function defined for all real intervals the boundary points of which do not
belong to some finite set of real points, the so-called critical points ([18], see
[20] and also [6]).

With the help of the spectral function E the real spectral points of
A can be classified in points of positive and negative type and critical points:
If a point λ ∈ σ(A) ∩R is contained in some open interval δ such that E(δ)
is defined and (E(δ)H, [·, ·]) (resp. (E(δ)H,−[·, ·])) is a Hilbert space, it is
called of positive (resp. negative) type. A point λ ∈ σ(A)∩R which is neither
of positive nor of negative type is called a critical point.

In [19] H. Langer studied a class of compact perturbations of fun-
damentally reducible selfadjoint operators in a Krein space. It was proved
in that paper that the restrictions of the perturbed operator to the spectral
subspaces corresponding to those open intervals which contain no critical
points of the unperturbed operator, are definitizable. Such locally definitiz-
able operators have been studied in connection with perturbation problems
in [7], [8], [9], [13]. For locally definitizable operators, due to the finite order
growth of the resolvent near to some open subset of the real axis, a local
variant of the functional calculus for generalized spectral operators (see [1])
can be established. In [7] and [8] spectral points of positive and negative type
are introduced with the help of this functional calculus or by making use of
some properties of the resolvent, and a local spectral function is constructed.

In [17], for a bounded selfadjoint operator A in a Krein space, the
points of positive and negative type were introduced with the help of approx-
imate eigenvector sequences (in [17] these points are called of plus type and of
minus type). In [21] H. Langer, A. Markus and V. Matsaev, leaning on that
definition, constructed a local spectral function which is defined for all real
intervals which do not contain accumulation points of the nonreal spectrum,
and the spectral points of which are of positive type (or of negative type).
In the same paper this approach was applied to investigate the behaviour of
sign types under perturbations.

The main objective of the present paper is to prove that the sign
type definitions of [7], [8] and [21], and some variations of them, are equiva-
lent. All definitions and the results will be given for selfadjoint linear relations
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in a Krein space. At the same time we give the versions for unitary oper-
ators, which are connected with selfadjoint linear relations by the Cayley
transform. For the problems we are dealing with, it is often convenient to
prove the unitary versions and translate the results to the selfadjoint case.

The construction of a functional calculus suitable for sign type def-
initions will be included in this paper. In view of an application in a forth-
coming paper we will give this functional calculus in a more general setting:
the resolvent is replaced by an operator function with similar properties.

The second objective of this article is to give necessary and suffi-
cient conditions for definitizability and local definitizability, which is closely
connected with the description of sign types.

In Section 1 we give the definition of the spectra of positive and
negative type for a selfadjoint linear relation and a unitary operator in a Krein
space with the help of approximate eigenvector sequences; and we show that
these parts of the spectra behave covariantly with respect to the elementary
functional calculus. In Section 2, after some preliminaries on the extension of
functional calculi (Sections 2.1 and 2.2), we recall the definition of open sets
of positive and negative type with respect to an operator function and an
operator, and we describe these sets in different equivalent ways (Section 2.3).
Local spectral functions are introduced in Section 2.4; we recall an extension
procedure for such spectral functions. In Theorem 2.15 we characterize open
sets of positive and negative type in different ways. In Section 3 the properties
of local definitizability for operator functions and operators are introduced.
The definitions in the present paper slightly differ from the definitions in [7]
and [8]. In Theorem 3.7 it is shown that locally definitizable relations can be
characterized by (spectral) decompositions into two relations one of which is
definitizable.

1. The spectra of positive and negative type

Let (H, [·, ·]) be a Krein space. Recall that a closed linear relation T
in H is a closed linear subspace of H2; a closed linear operator in H is viewed
as a closed linear relation via its graph in H2. For the usual definitions of
the linear operations with closed linear relations and the inverse we refer to
[2]. The linear span of two linear subspaces of H2 will be denoted by ++++ .

The resolvent set ρ(T ) of a linear relation T is the set of all z ∈ C

such that (T − z)−1 ∈ L(H), the spectrum σ(T ) of T is the complement of
ρ(T ) in C. The point spectrum σp(T ) of T is the set of all z ∈ C such that
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(
f

zf

)
∈ T for some f 6= 0. We define

ρ̃(T ) := ρ(T ) ∪ {∞} if 0 ∈ ρ(T−1),
σ̃(T ) := σ(T ) ∪ {∞} if 0 ∈ σ(T−1),
σ̃p(T ) := σp(T ) ∪ {∞} if 0 ∈ σp(T

−1),

ρ̃(T ) := ρ(T ) if 0 /∈ ρ(T−1),
σ̃(T ) := σ(T ) if 0 /∈ σ(T−1),
σ̃p(T ) := σp(T ) if 0 /∈ σp(T

−1).

The following definition was introduced in [17] for the case of a
bounded operator T .

Definition 1.1. We say that λ ∈ C belongs to the approximate
point spectrum of T , denoted by σap(T ), if there exists a sequence

(
xn

yn

)
∈

T − λ, n = 1, 2, . . . , such that ‖xn‖ = 1, limn→∞ ‖yn‖ = 0. We define the
extended approximate point spectrum σ̃ap(T ) of T by σ̃ap(T ) := σap(T )∪{∞}
if 0 ∈ σap(T

−1), and σ̃ap(T ) := σap(T ) if 0 /∈ σap(T
−1).

Definition 1.2. A point λ ∈ σap(T ), is said to be of positive
type (negative type) with respect to T , if for every sequence

(
xn

yn

)
∈ T − λ,

n = 1, 2, . . . , with ‖xn‖ = 1, limn→∞ ‖yn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

If ∞ ∈ σ̃ap(T ), ∞ is said to be of positive type (negative type) with respect
to T if for every sequence

(
xn

yn

)
∈ T , n = 1, 2, . . . , with limn→∞ ‖xn‖ = 0,

‖yn‖ = 1 we have

lim inf
n→∞

[yn, yn] > 0 (resp. lim sup
n→∞

[yn, yn] < 0).

The set of all points of positive type (negative type) with respect to T will
be denoted by σ++(T ) (resp. σ−−(T )).

In the following lemmas it is convenient to make use of a so called
transformer of a linear relation (see [23], [3]): If M =

(
α β

γ δ

)
is a matrix with

complex entries and T a linear relation, we define the relation MT by

MT =

{(
αx+ βy

γx+ δy

)
:

(
x

y

)
∈ T

}
.

Evidently, (
1 0

γ δ

)
T = δT + γ,

(
0 1

1 0

)
T = T−1

and, for two 2 × 2 matrices M1 and M2, it holds

M1(M2T ) = (M1M2)T
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(see [3]).
We assign to every matrix M =

(
α β

γ δ

)
with detM 6= 0 the frac-

tional linear mapping ΦM of C onto itself defined by

ΦM (z) =
δz + γ

βz + α
.

If β 6= 0 and −αβ−1 ∈ ρ(T ), then ΦM is locally holomorphic on σ̃(T ) and
MT coincides with the operator ΦM(T ) defined by extension of the Riesz-
Dunford-Taylor functional calculus to closed linear relations (see [3, Section
3]). If M1 and M2 are two regular matrices, we have ΦM1M2 = ΦM1 ◦ ΦM2 .

Lemma 1.3. Let T be a closed linear relation and M a regular
2 × 2 matrix. Then

(1.1) σap(MT ) = ΦM(σap(T )).

Proof. It is sufficient to prove that

(1.2) ΦM (σap(T )) ⊂ σap(MT ),

since (1.2) and the analogous relation for M replaced by M−1 implies (1.1).
Moreover we have to verify (1.2) only for matrices M of the form

(
1 0
b a

)
,

a 6= 0, and
(
0 1
1 0

)
, since every 2 × 2 matrix can be written as a product of

matrices of that form and regular diagonal matrices.
Let λ ∈ σap(T ), λ 6= ∞. Then there exists a sequence

(1.3)

(
xn
yn

)
∈ T with ‖xn‖ = 1, ‖yn − λxn‖ → 0.

If M =
(
1 0
b a

)
, a 6= 0, then MT = aT + b and ΦM(λ) = aλ + b. By

aT + b− (aλ+ b) =

{(
x

a(y − λx)

)
:

(
x

y

)
∈ T

}

and (1.3) we have aλ+ b ∈ σap(aT + b).
If M =

(
0 1
1 0

)
, then MT = T−1 and ΦM (λ) = λ−1. For λ 6= 0, we

have

T−1−λ−1 =

{(
y

x− λ−1y

)
:

(
x

y

)
∈ T

}
=

{(
y − λx+ λx

−λ−1(y − λx)

)
:

(
x

y

)
∈ T

}
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which along with (1.3) gives λ−1 ∈ σap(T
−1). If λ = 0, then ∞ ∈ σap(T

−1).
Let now ∞ ∈ σap(T ). Then there exists a sequence

(
xn
yn

)
∈ T with ‖yn‖ = 1, ‖xn‖ → 0.

We have

aT + b =

{(
x

ay + bx

)
:

(
x

y

)
∈ T

}

which shows that ∞ ∈ σap(aT + b). Furthermore, 0 ∈ σap(T
−1), and the

lemma is proved.

Lemma 1.4. Let T be a closed linear relation and M a regular
2 × 2 matrix. Then

σ++(MT ) = ΦM (σ++(T )), σ−−(MT ) = ΦM(σ−−(T )).

Proof. We shall prove only the first relation. The second one can
be proved in an analogous way. It is sufficient to prove

ΦM (σ++(T )) ⊂ σ++(MT )

for M =
(
1 0
b a

)
, a 6= 0, and M =

(
0 1
1 0

)
, similarly to the proof of Lemma

1.3.
Let λ ∈ σ++(T ), λ 6= ∞, and let

(
xn

yn

)
be a sequence in aT + b −

(aλ+ b) = a(T − λ) with ‖xn‖ = 1, ‖yn‖ → 0. Then, since
(

xn

a−1yn

)
∈ T − λ,

we have lim infn→0 [xn, xn] > 0, i.e. aλ + b ∈ σ++(aT + b).
If, in addition, λ 6= 0 and if

(
xn

yn

)
is a sequence in T−1 − λ−1 with

‖xn‖ = 1, ‖yn‖ → 0, then
(
yn+λ−1xn

−λyn

)
∈ T−λ which implies lim infn→0 [xn, xn]

> 0, i.e. λ−1 ∈ σ++(T−1). If λ = 0 and
(
xn

yn

)
is a sequence in T−1 with ‖yn‖ =

1, ‖xn‖ → 0, then
(
yn

xn

)
∈ T and lim infn→0 [yn, yn] > 0, i.e. ∞ ∈ σ++(T−1).

Now let ∞ ∈ σ++(T ). If
(
xn

yn

)
is a sequence in aT + b with ‖yn‖ = 1,

‖xn‖ → 0, then
(

xn

a−1(yn−bxn)

)
∈ T and lim infn→0 [yn, yn] > 0, i.e. ∞ ∈

σ++(aT + b).
If

(
xn

yn

)
is a sequence in T−1 with ‖xn‖ = 1, ‖yn‖ → 0, then

(
yn

xn

)
∈ T

and lim infn→0 [xn, xn] > 0, i.e. 0 ∈ σ++(T−1). This proves Lemma 1.4.
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2. Locally definite operators in Krein spaces

2.1. First we introduce the main objects of our considerations and
some notation. We denote by C+ and C− the open upper and the open
lower half plane, respectively. D denotes the open unit disc and T denotes
the unit circle. For every subset M of C we set M∗ := {λ̄ : λ ∈ M} and
M̂ := {λ̄−1 : λ ∈ M}. For a function f defined on a set M ⊂ C with

M = M∗ (M = M̂) we set f ∗(λ) := f(λ̄) (resp. f̂(λ) := f(λ̄−1)).
Let in this and the following sections Ω be a domain in C which is

symmetric with respect to R, Ω = Ω∗, such that Ω∩R 6= ∅, and Ω∩C+ and
Ω ∩ C− are simply connected.

Let A be a selfadjoint linear relation in the Krein space (H, [·, ·])
such that σ(A) ∩ (Ω \ R) consists of isolated points which are poles of the
resolvent of A, and no point of Ω∩R is an accumulation point of the nonreal
spectrum σ(A) \ R of A.

Let λ0 ∈ Ω ∩ ρ(A) ∩ C+. Then the function ψ, ψ(λ) := −(λ −
λ0)(λ− λ0)

−1 is locally holomorphic on σ̃(A), and the operator

U := ψ(A) = −1 + (λ0 − λ0)(A− λ0)
−1

is a unitary operator in (H, [·, ·]). Evidently, the domain ψ(Ω) is symmetric
with respect to T, ψ(Ω) ∩ T 6= ∅, and ψ(Ω) ∩ D and ψ(Ω) ∩ D̂ are simply
connected domains of C. By the spectral mapping theorem for closed linear
relations (see e.g. [3, Section 3]) σ(U) ∩ (ψ(Ω) \ T) consists of isolated
points which are poles of the resolvent of U , and no point of ψ(Ω) ∩T is an
accumulation point of σ(U) \ T.

Evidently, a function g is locally holomorphic on σ(U) if and only
if g ◦ψ is locally holomorphic on σ̃(A). The Riesz-Dunford-Taylor functional
calculi for A (see e.g. [3, Section 3]) and U are connected by

(2.1) (g ◦ ψ)(A) = g(U).

Let ∆ be an open subset of Ω ∩ R. We shall say that A belongs
to the class Sm(∆), m ≥ 1, if for every closed subset ∆′ of ∆ there exist a
constant M and an open neighbourhood U of ∆′ in C such that

(2.2) ‖(A− λ)−1‖ ≤ M(|λ| + 1)2m−2|Imλ|−m

for all λ ∈ U \ R.
We shall say that A belongs to the class S∞(∆) (cf. [8, Section

1.2]), if for every closed subset ∆′ of ∆ there exist m ≥ 1, M > 0 and an
open neighbourhood U of ∆′ in C such that (2.2) holds for all λ ∈ U \ R.
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Let Γ be an open subset of ψ(Ω) ∩T. We shall say that U belongs
to the class Sm(Γ) (cf. [7, Section 1.2]), if for every closed subset Γ′ of Γ
there exist a constant M and an r0 ∈ (0, 1) such that

(2.3) ‖(U − reiΘ)−1‖ ≤ M |1 − |r||−m

for all eiΘ ∈ Γ′ and r ∈ [r0, 1) ∪ (1, r−1
0 ]. We shall say that U belongs to the

class S∞(Γ), if for every closed subset Γ′ of Γ there exist m ≥ 1, M > 0 and
r0 ∈ (0, 1) such that (2.3) holds for all eiΘ ∈ Γ′ and r ∈ [r0, 1) ∪ (1, r−1

0 ].
With the help of the relation

(2.4) 2i(Imλ0)ψ(λ)(U − ψ(λ))−1 = λ− λ0 + (λ− λ0)(λ− λ̄0)(A− λ)−1

and the fact that, for all λ outside of a neighbourhood of {λ0, λ̄0}, we have

(2.5) m′|Imλ|(1 + |λ|)−2 ≤ ||ψ(λ)| − 1| ≤M ′|Imλ|(1 + |λ|)−2

with some positive constants m′, M ′, one easily verifies that

(2.6) A ∈ Sm(∆) ⇐⇒ U ∈ Sm(ψ(∆)), m = 1, 2, . . . ,∞.

If A and U fulfil the conditions (2.2) and (2.3), respectively, the
Riesz-Dunford-Taylor functional calculi for A and U can be extended by
continuity to some classes of functions which are not locally holomorphic on
the spectrum. We recall this fact in the following subsection within a more
general setting: we replace the resolvent by a holomorphic operator function.

2.2. Extensions of the functional calculi of A and U , and extensions
of some analytic functionals connected with operator functions. Let G be an
L(H)-valued meromorphic function in Ω\R which is symmetric with respect
to the real line, that is

(2.7) G(λ̄) = G(λ)+

for all points λ of holomorphy of G, such that no point of Ω ∩ R is an
accumulation point of nonreal poles of G. Here G(λ)+ denotes the Krein
space adjoint of G(λ). Assume that λ0 ∈ Ω ∩ C+ is a point of holomorphy
of G.

In the following, if M is a closed subset of C, the linear space of all
locally holomorphic functions on M will be denoted by H(M).

Let O+ be a bounded C∞ domain (not necessarily simply con-

nected) with O+ ⊂ Ω ∩ C+ and λ0 ∈ O+ such that O+ is contained in
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the domain of holomorphy of G. Then by (2.7) G is also locally holomorphic

on O−, O− := (O+)∗. For every g ∈ H(C \ (O+ ∪ O−)) we define

(2.8) SG.g := 2i (Imλ0)

∫

C

G(λ)g(λ)(λ− λ0)
−1(λ− λ0)

−1 dλ,

where C = ∂O+ ∪ ∂O−. Evidently, for every function g locally holomorphic
on

(C \ Ω) ∪ R ∪ {poles of G}

we may find some domain O+ as above and such that g ∈ H(C\(O+∪O−)).
Then the operator SG.g is defined, and it does not depend on the choice of
O+. It is easy to see that SG.g

∗ = (SG.g)
+.

Let F be the L(H)-valued meromorphic function in ψ(Ω \ R) =
ψ(Ω) \ T, ψ(λ) :== −(λ− λ0)(λ− λ̄0)

−1, defined by

(2.9) F (ψ(λ)) = −iG(λ).

The function F is skew symmetric with respect to the unit circle T:

F (z̄−1) = −F (z)+

for all points z of holomorphy of F . No point of ψ(Ω)∩T is an accumulation
point of non-unimodular poles of F . Moreover, F is holomorphic at 0 and
∞. If O+ is as above, then for every f ∈ H(C \ ψ(O+ ∪ O−)) we define

TF .f :=

∫

ψ(C)

F (z)f(z)(iz)−1dz,

where ψ(C) = ∂ψ(O+) ∪ ∂ψ(O−). We have TF .f̂ = (TF .f)+.
Similarly to the functional SG, the functional TF is defined for every

function f locally holomorphic on

(2.10) (C \ ψ(Ω)) ∪T ∪ {poles of F}.

A simple calculation shows that

(2.11) TF .f = SG.(f ◦ ψ)

for every function f locally holomorphic on (2.10).
If λ ∈ Ω \ R and ζ ∈ ψ(Ω) \ T are points of holomorphy of G and

F , respectively, and if we set

gλ(w) := (4π)−1(Im λ0)
−1

(
λ− Re λ0 + (λ− λ0)(λ− λ̄0)(w − λ)−1

)
,

hζ(z) := (4π)−1(z + ζ)(z − ζ)−1,(2.12)
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then
(2.13)

G(λ) = SG.gλ+ 1
2
(G(λ0)+G(λ0)

+), F (ζ) = TF .hζ + 1
2
(F (0)−F (0)+).

If U and A are as in Section 2.1, we define

(2.14) FU(z) := (4π)−1(U + z)(U − z)−1, z ∈ ρ(U),

GA(λ) :=(2.15)

= (4π)−1(Imλ0)
−1{(λ− Reλ0) + (λ− λ0)(λ− λ0)(A− λ)−1}, λ ∈ ρ(A),

then we have

(2.16) FU(ψ(λ)) = −iGA(λ), λ ∈ ρ(A),

and a little calculation shows that f 7→ TFU
.f and g 7→ SGA

.g are the
Riesz-Dunford-Taylor functional calculi for U and A, respectively, that is,
TFU

.f = f(U), SGA
.g = g(A). In this case the relation (2.11) follows from

the functional calculus of A: f(U) = f(ψ(A)) = (f ◦ ψ)(A).
Now let again G be as at the beginning of Section 2.2 and F as in

(2.9). Let ∆ be an open subset of Ω ∩ R, and let m ≥ 1. We shall say that
the order of growth of G near ∆ is ≤ m, if for every closed subset ∆′ of ∆
there exists a constant M and an open neighbourhood U of ∆′ in C such
that

‖G(λ)‖ ≤ M(1 + |λ|)2m|Imλ|−m

for all λ ∈ U \ R. We do not exclude the case when Ω = C and ∆ = R.
Analogously, if Γ = ψ(∆) we shall say that the order of growth of

F near Γ is ≤ m, if for every closed subset Γ′ of Γ there exists a constant M
and an r0 ∈ (0, 1) such that

‖F (reiΘ)‖ ≤ M |1 − |r||−m

for all eiΘ ∈ Γ′ and r ∈ [r0, 1) ∪ (1, r−1
0 ]. It is easy to verify that the order of

growth of G near ∆ is ≤ m if and only if the order of growth of F near Γ is
≤ m.

We have, on account of (2.6) and (2.16),

A ∈ Sm(∆) ⇐⇒ the order of growth of GA near ∆ is ≤ m⇐⇒

U ∈ Sm(ψ(∆)) ⇐⇒ the order of growth of FU near ψ(∆) is ≤ m .
(2.17)

With the help of the topology which we introduce now the functional
TF will be extended in Theorem 2.1 below. Let Γ0 be the union of a finite
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number of pairwise disjoint open arcs of T, Γ0 6= T, and let δ0 ∈ (0, 1) be
such that for

(2.18) Q0 := {reiΘ : eiΘ ∈ Γ0, r ∈ (δ0, 1) ∪ (1, δ−1
0 )}

the function F is locally holomorphic on Q0 \ Γ0.
We denote by D(p)(C \Q0), p nonnegative integer, the linear space

of all continuous complex functions f on C \Q0 such that f is locally holo-
morphic on C \ (Q0 ∪ Γ0) and the restriction f |T is a Cp function. We
introduce a locally convex topology on D(p)(C \Q0): Let ǫ0, 0 < ǫ0 < 1− δ0,
be such that for 0 < ǫ < ǫ0 every component of Γ0 contains a point of

Γǫ := {eiΘ ∈ Γ0 : dist (eiΘ,T \ Γ0) > ǫ} ⊂ Γ0,

and set

Qǫ := {reiΘ : eiΘ ∈ Γǫ, r ∈ (δ0 + ǫ, 1) ∪ (1, (δ0 + ǫ)−1)}.

Let (ǫn) ⊂ (0, ǫ0) be a decreasing null sequence and let D
(p)
n be the subspace

of D(p)(C \Q0) of all f ∈ D(p)(C \Q0) which can analytically be continued
to C \ (Qǫn ∪ Γǫn) such that f is continuous on C \ (Qǫn ∪ Γǫn). We have

D(p)(C \Q0) =
⋃∞
n=1D

(p)
n . On the space D

(p)
n we consider the norm

‖f‖(p)
n := sup

{
|f(z)| : z ∈ C \ (Qǫn ∪ Γǫn)

}
+

+ sup
{∣∣ dν

dΘν f(eiΘ)
∣∣ : eiΘ ∈ Γ0, 0 ≤ ν ≤ p

}
, f ∈ D(p)

n .

(D
(p)
n , ‖f‖

(p)
n ) is a Banach space. On the space D(p)(C \Q0) we consider the

topology of the inductive limit of the spaces D
(p)
n , n = 1, 2, . . .. One verifies

as in [16, §27,4.(2)] that this topology is separated. By well-known properties
of the Abel-Poisson integral, H(C \Q0) is dense in D(p)(C \Q0).

The following theorem shows that under the growth condition on
F considered above, the functional TF can be extended by continuity to a
larger class of functions (see also [11, Proposition 1.1]).

Theorem 2.1. Let F be as in (2.9) and let Γ be an open subset
of ψ(Ω) ∩ T. Assume that the order of growth of F near Γ is ≤ m, m some
positive integer. Let Γ0 be the union of a finite number of open arcs of T

such that Γ0 ⊂ Γ, Γ0 6= T, and let Q0 be as in (2.18).
Then the functional TF is a continuous linear mapping of H(C\Q0)

equipped with the topology of D(m+1)(C \Q0) into L(H). Therefore, TF can

10



be extended by continuity to D(m+1)(C \ Q0). Moreover, if the support of
f ∈ D(m+1)(C \Q0) is in Γ0, we have

(2.19) TF .f = lim
r↑1

∫

S0

f(eiΘ){F (reiΘ) − F (r−1eiΘ)} dΘ,

where S0 := {Θ ∈ [0, 2π) : eiΘ ∈ Γ0}.

Proof. Let H be a locally holomorphic function in Q0 such that
H [m+1](z) = F (z), where

(2.20) H [0](z) := H(z), H [j](z) := iz(dH [j−1]/dz)(z), j = 1, 2, . . . .

For every component Q0,k of Q0 we have

H [j−1](z) = Hkj +

∫ z

zk

H [j](ζ)(iζ)−1dζ, j = 1, 2, . . . , m+ 1, z ∈ Q0,k,

where zk ∈ Q0,k and Hkj ∈ L(H). By these relations and the assumption on
F , H has continuous boundary values on Γ0.

Let f ∈ D(m+1)(C \ Q0). There exists an n0 such that f ∈ D
(m+1)
n

for all n ≥ n0. We set C+
n := ∂(Qǫn ∩D), C−

n := ∂(Qǫn ∩ D̂), n ≥ n0 + 1, and
define

(2.21) T̃ (f) :=

∫

C+
n ∪C−

n

(−1)m+1H(z)f [m+1](z)(iz)−1dz.

The right hand side of (2.21) does not depend on n ≥ n0 + 1. Evidently, the

restriction of T̃ toD
(m+1)
n0 is continuous with respect to ‖·‖

(m+1)
n0 . Therefore, T̃

is continuous with respect to the topology of inductive limit ofD(m+1)(C\Q0).
If f ∈ H(C \ Q0), integration by parts applied to the right hand

side of (2.21) shows that T̃ (f) = TF .f , and the first assertion of Theorem 2.1
is proved.

If f ∈ D
(m+1)
n0 and supp f ⊂ Γǫn0

, then (2.21) gives

T̃ (f) = (−1)m+1 lim
r↑1

∫

Γǫn0

(H(rz) −H(r−1z))f [m+1](z)(iz)−1dz.

By integration by parts we obtain

T̃ (f) = lim
r↑1

∫

Γǫn0

(F (rz) − F (r−1z))f(z)(iz)−1dz.

which proves (2.19).
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Remark 2.2. The topology with respect to which TF is extended
in Theorem 2.1 is finer than the topology considered in [11, Section 1.1]. The
extension of TF with respect to the latter topology contains the extension
considered here.

The following theorem, which is a variant of Theorem 2.1 for the
case Ω = ψ(Ω) = C, Γ = T, is well known ([15]). For completeness we shall
give a proof here.

Theorem 2.3. Let F be a meromorphic function in C \T, F =
F̂ . Assume that the set P of all poles of F in C \T is finite, 0,∞ /∈ P , and
that the order of growth of F near T is ≤ m, m some positive integer.

Then TF ∈ L(H(T ∪ P ),L(H)) is continuous with respect to the
topology of Cm+1(T) × H(P ). Therefore, TF can be extended by continuity
to Cm+1(T) ×H(P ). Moreover, if f ∈ Cm+1(T) × {0} then

TF .f = lim
r↑1

∫ 2π

0

(F (reiθ) − F (r−1eiθ))f(eiθ)dθ.

Proof. Let χ0 ∈ H(T ∪ P ) be equal to one (zero) in some
neighbourhood of P (resp. T). For ζ ∈ C \ (T ∪ P ) we define with hζ as in
(2.12)

F0(ζ) := TF .χ0hζ + 1
2
(F (0) − F (0)+),

F(0)(ζ) := TF .(1 − χ0)hζ , F̃ (ζ) := F(0)(ζ) − F(0)(∞).

It is easy to see that F0 is locally holomorphic on C \P and that F(0) and F̃
are locally holomorphic on C \ T. By (2.13) we have

(2.22) F (ζ) = F0(ζ) + F(0)(ζ) = F0(ζ) + F(0)(∞) + F̃ (ζ).

Define

F̃ [−1](ζ) :=

{ ∫ ζ

0
F̃ (z)(iz)−1dz if |ζ | < 1∫ ζ

∞
F̃ (z)(iz)−1dz if |ζ | > 1.

Repeating this construction m times we obtain a function H := F̃ [−m−1]

locally holomorphic on C \ T such that H [m+1](ζ) = F̃ (ζ). Since the order
of growth of F near T is ≤ m, H has continuous boundary values on T:

Hi(e
iθ) := lim

r↑1
Hi(re

iθ), Ha(e
iθ) := lim

r↑1
Hi(r

−1eiθ).
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Let f ∈ H(T∪P ) and assume that f is zero on some neighbourhood
of P . If f is holomorphic on the closure of Ar := {z : r < |z| < r−1} we
have

TF .f = −

∫

∂Ar

F (z)f(z)(iz)−1dz

and, therefore,

(2.23)

TF .f = −

∫

∂Ar

F̃ (z)f(z)(iz)−1dz =

= −

∫

∂Ar

H [m+1](z)f(z)(iz)−1dz =

= −(−1)m+1

∫

∂Ar

H(z)f [m+1](z)(iz)−1dz =

= (−1)m+1

∫

T

(Hi(z) −Ha(z)) f
[m+1](z)(iz)−1dz.

This implies the continuity statement of Theorem 2.3. Moreover, if f ∈
Cm+1(T) × {0} then, by (2.23),

TF .f = (−1)m+1 lim
r↑1

∫

T

(H(rz) −H(r−1z))f [m+1](z)(iz)−1dz =

= lim
r↑1

∫

T

(F̃ (rz) − F̃ (r−1z))f(z)(iz)−1dz =

= lim
r↑1

∫ 2π

0

(F (reiθ) − F (r−1eiθ))f(eiθ)dθ,

which proves Theorem 2.3.

In the following, when we consider a functional TF as in Theorem
2.1 and Γ and m are as in that theorem, the linear space of all functions
f defined on T ∪ Uf , where Uf is some neighbourhood of (C \ ψ(Ω)) ∪
{poles of F in ψ(Ω) \ T} ∪ (T \ Γ), such that f |Uf = 0 and f |Γ belongs
to Ck

0 (Γ), k ≥ m + 1, will be denoted by Ck
0 (Γ), for the simplicity of nota-

tion.
The following lemma, which will be used below, is a consequence of

Theorem 2.1.

Lemma 2.4. Let F be as in (2.9) and let Γ1 and Γ be open
subsets of ψ(Ω)∩T such that Γ1 ⊂ Γ. Assume that the order of growth of F
near Γ is ≤ m.
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Let χ ∈ C∞
0 (Γ) be equal to one on a neighbourhood of Γ1 and let

F1(z) := TF .χhz + 1
2
(F (0) − F (0)+),

F2(z) := TF .(1 − χ)hz

(see (2.12)). Then F1 and F2 are L(H)-valued meromorphic functions in
ψ(Ω) \ T with

Fj(z
−1) = −Fj(z)

+, z ∈ ψ(Ω) \ T, j = 1, 2,

and F = F1+F2. F1 is locally holomorphic on C\Γ, F2 is locally holomorphic
on Γ1 and the order of growth of F1 near T is ≤ m+ 2.

Proof. By the continuity properties of TF proved in Theorem
2.1 F1 is complex differentiable in some neighbourhood of any point of C \
supp χ. Similarly, F2 is locally holomorphic on Γ1. Therefore, F1 and F2 are
meromorphic functions in ψ(Ω) \ T. F = F1 + F2 follows from the second
relation of (2.13). By Theorem 2.1, (2.19), we have

F1(z) = (4π)−1 lim
r↑1

∫ 2π

0

χ(eiΘ)
eiΘ + z

eiΘ − z
{F (reiΘ) − F (r−1eiΘ)}dΘ

+1
2
(F (0) − F (0)+).

This implies that F1 is skew-symmetric with respect to T. Then the same is
true for F2.

Let K be a compact subset of C \ {0}. Then by the definition of F1

and the local Cm+1-continuity of TF there exist constants M and M ′ such
that z ∈ K \ T implies

‖F1(z)‖ ≤ M sup {|
dk

dΘk
hz(e

iΘ)| : Θ ∈ [0, 2π], k = 0, . . . , m+ 1}

≤ M ′|1 − |z||m+2.

That is, the order of growth of F1 near T is ≤ m+ 2.

If we set F (z) = FU(z), Theorems 2.1 and 2.3 imply the following

Corollary 2.5. Let Γ be an open subset of ψ(Ω)∩T, and assume
that U ∈ Sm(Γ), m some positive integer.

Let Γ0, Γ0 6= T, be the union of a finite number of open arcs of
T such that Γ0 ⊂ Γ, and let Q0 and S0 be as in (2.18) and (2.19) with
Q0 \ Γ0 ⊂ ρ(U). Then the Riesz-Dunford functional calculus of U can be
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extended by continuity to D(m+1)(C\Q0). If the support of f ∈ D(m+1)(C\Q0)
is in Γ0, we have

[f(U)x, y] = lim
r↑1

∫

S0

f(eiΘ)[{FU(reiΘ) − FU (r−1eiΘ)}x, y] dΘ =

= (2π)−1 lim
r↑1

∫

S0

f(eiΘ)[U{U − reiΘ)−1 − (U − r−1eiΘ)−1}x, y] dΘ.(2.24)

If Ω = C and U ∈ Sm(T), then the Riesz-Dunford functional calcu-
lus of U is continuous with respect to the topology of Cm+1(T)×H(σ(U)\T)
and can, therefore, be extended to this space. For f ∈ Cm+1(T)× {0} (2.24)
holds with S0 = [0, 2π).

Remark 2.6. Compared with the functional calculus of [7] the
domain of this functional calculus is smaller. On the other hand it is sufficient
for the characterization of sign types.

If the order of growth of G near ∆, ∆ open subset of Ω ∩ R, is
≤ m, we define the extension of the functional SG by SG.(f ◦ ψ) := TF .f
(see (2.11)), where f belongs to the extended domain of TF . If we regard R

as a real-analytic manifold in the usual way, then the restriction of ψ to R

is a real-analytic diffeomorphism of R onto T, and therefore, f ◦ ψ is Cm,
m = 0, 1, . . . ,∞, on the open subset ∆ of Ω ∩ R if and only if f is Cm on
ψ(∆). In connection with the functional SG we will use the notation Cm

0 (∆),
∆ ⊂ Ω ∩R, in a way analogous to the notation Cm

0 (Γ) introduced above.

2.3. Open sets of positive and negative type with respect to operator
functions. Let, as at the beginning of Section 2.2, G be an L(H)-valued
meromorphic function in Ω \ R with G(λ̄) = G(λ)+ such that no point of
Ω ∩R is an accumulation point of nonreal poles of G and G is holomorphic
at λ0. Now we take over a definition from [14, Section 3.1] to our slightly
more general situation. Observe that if λ ∈ Ω∩C+ is a point of holomorphy
of G and if x ∈ H, we have

−i [(G(λ) −G(λ̄))x, x] = 2 Im [G(λ)x, x].

Definition 2.7. An open subset ∆ ⊂ Ω∩R is said to be of positive
type with respect to G, if the following conditions are fulfilled for every x ∈ H.

(i) lim infǫ↓0{−i[(G(t + iǫ) − G(t − iǫ))x, x]} ≥ 0 for almost every t ∈
∆ \ {∞}.
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(ii) For every bounded closed subset ∆0 of ∆ and sufficiently small ǫ0 > 0,

inf{−i[(G(t+ iǫ) −G(t− iǫ))x, x] : t ∈ ∆0, 0 < ǫ ≤ ǫ0} > −∞.

If ∞ ∈ ∆, then, in addition, for sufficiently small δ0 > 0, ǫ0 > 0,

inf{−i[(G(−(t+iǫ)−1)−G(−(t−iǫ)−1)x, x] : −δ0 ≤ t ≤ δ0, 0 < ǫ ≤ ǫ0}

> −∞.

An open subset ∆ ⊂ Ω∩R is said to be of negative type with respect
to G if ∆ is of positive type with respect to −G. ∆ is said to be of definite
type with respect to G if ∆ is of positive type or of negative type with respect
to G.

Lemma 2.8. If G is as above and ∆ is an open subset of Ω∩R

the following assertions are equivalent.

(a) ∆ is of positive type with respect to G.

(b) (a) holds, and, for every x ∈ H, the angular limit l̂imImλ>0, λ→t [G(λ)x, x]
exists and belongs to C+ ∪ R for almost every t ∈ ∆.

(c) If x ∈ H and if (λn) is a sequence of points of holomorphy of G in
Ω ∩ C+ which converges in C to a point of ∆, then

lim inf
n→∞

{−i[(G(λn) −G(λn))x, x]} ≥ 0.

(d) If x ∈ H, ∆1 is an open subset of ∆ with ∆1 ⊂ ∆, and if α > 0, there
exists an open set O in C, ∆1 ⊂ O, such that

inf{−i[(G(λ) −G(λ))x, x] : λ ∈ O \ R} > −α.

If (a) - (d) are true, then for every open subset ∆1 of ∆ with ∆1 ⊂ ∆, there
exists an open set O in C, ∆1 ⊂ O, such that

sup {‖G(λ)‖|Imλ|(1 + |λ|)−1 : λ ∈ O, Imλ 6= 0} <∞.

We shall prove this lemma with the help of a similar lemma for
L(H)-valued meromorphic functions F in ψ(Ω) \ T with F (z̄−1) = −F (z)+

such that no point of ψ(Ω) ∩ T is an accumulation point of poles of F in
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ψ(Ω)\T and F is holomorphic at 0. For these functions, which are connected
by (2.9) with those considered in Definition 2.7, we introduce similar notions
(cf. [12, Lemma 1.7]). Observe that if z ∈ ψ(Ω)∩D is a point of holomorphy
of F and x ∈ H, we have

[(F (z) − F (z̄−1))x, x] = 2 Re [F (z)x, x].

Definition 2.7′. An open set Γ ⊂ ψ(Ω)∩T is said to be of positive
type with respect to F if the following conditions are fulfilled for every x ∈ H.

(i′) lim infr↑1 [(F (reiΘ) − F (r−1eiΘ))x, x] ≥ 0 for almost every eiΘ ∈ Γ.

(ii′) inf {[(F (reiΘ) − F (r−1eiΘ))x, x] : eiΘ ∈ γ, r ∈ (1 − δ, 1)} > −∞ for
every closed subarc γ of Γ and sufficiently small δ > 0.

An open set Γ ⊂ ψ(Ω)∩T is said to be of negative type with respect
to F if Γ is of positive type with respect to −F . Γ is said to be of definite
type with respect to F if Γ is of positive type or of negative type with respect
to F .

Lemma 2.8′. Let F be as above and Γ an open subset of ψ(Ω)∩T.
Then the following assertions are equivalent.

(a′) Γ is of positive type with respect to F .

(b′) (a′) holds, and, for every x ∈ H, the angular limit l̂im|z|<1, z→s [F (z)x, x]
exists and has nonnegative real part for almost every s ∈ ψ(∆).

(c′) If x ∈ H and if (zn) ⊂ ψ(Ω) ∩ D is a convergent sequence of points of
holomorphy of F with limn→∞ zn ∈ Γ, then

lim inf
n→∞

[(F (zn) − F (z̄−1
n ))x, x] ≥ 0.

(d′) If x ∈ H, γ′ is a closed subarc of Γ and if α > 0, there exists a δ ∈ (0, 1)
such that

inf{[(F (reiΘ) − F (r−1eiΘ))x, x] : eiΘ ∈ γ′, r ∈ (1 − δ, 1)} > −α.

If these assertions hold, then for every closed subarc γ′ of Γ and every r0 ∈
(0, 1) such that 1 − r0 is sufficiently small,

(2.25) sup {‖F (reiΘ)‖|1 − r| : eiΘ ∈ γ′, r ∈ [r0, 1) ∪ (1, r−1
0 ]} <∞.
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Proof of Lemmas 2.8 and 2.8′. 1. We first prove Lemma 2.8′. It is
easy to see that (c′) and (d′) are equivalent. Evidently, (c′) and (d′) imply
(a′). In order to prove Lemma 2.8′ it is sufficient to show that (a′) implies
(b′), (d′) and (2.25).

Assume that (a′) holds. Let γ′ be a compact subarc of Γ, and let
γ0 and γ1 be open arcs in Γ such that γ′ ⊂ γ0, γ̄0 ⊂ γ1 and γ̄1 ⊂ Γ. We fix
some ǫ0 > 0 such that

V1 := {reiΘ : r ∈ [1 − ǫ0, 1) ∪ (1, (1 − ǫ0)
−1], eiΘ ∈ γ̄1}

consists of points of holomorphy of F . The function f(z) := [F (z)x, x],
z ∈ V1, satisfies the relation f(z̄−1) = −f(z), z ∈ V1. By (a′) there exists an
M ∈ R such that

Re {f(z) +M} =

= 1
2
[(F (z) − F (z̄−1))x, x] +M ≥ 0, z ∈ V1 ∩D.(2.26)

Let now O0 be a simply connected C∞ subdomain of V1 ∩ D such that γ0

is contained in the boundary of O0. Let χ be a conformal mapping of D

onto O0. Then, by (2.26), f ◦ χ + M is a holomorphic function on D with
nonnegative real part. This implies that there is a positive measure µ on
[−π, π], µ({−π}) = 0, and β ∈ R such that

(f ◦ χ)(w) +M = iβ +

∫ π

−π

eit+w
eit−w

dµ(t), w ∈ D.

As a consequence,

(2.27) (f ◦ χ)(w) = iβ +

∫ π

−π

eit+w
eit−w

dν(t), w ∈ D,

where dν(t) = dµ(t)−M(2π)−1dt. Therefore, the function f ◦χ has angular
limits at almost every point of T. Then, by well-known differentiability
properties of χ, f(z) = [F (z)x, x] has angular limits at almost every point of
γ0. In view of (a′), these angular limits have nonnegative real part at almost
every point of γ0, which implies (b′). For almost every point w0 of the open

arc
−1
χ (γ0) we have

(2.28) l̂im
w→w0

Re (f ◦ χ)(w) ≥ 0.

Let g be a nonnegative continuous function on T with supp g ⊂
−1
χ (γ0). By

Re(f ◦ χ)(w) =

∫ π

−π

Re
{
eit+w
eit−w

}
dν(t)
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and a well-known result (see e.g. [5, Chapter 3]) we have

(2.29) lim
r↑1

(2π)−1

∫ π

−π

g(eit) Re (f ◦ χ)(reit)dt =

∫ π

−π

g(eit) dν(t).

As Re (f ◦χ) is bounded from below, and by (2.28) the left hand side of (2.29)
is nonnegative. Therefore, the measure dν(t) is positive on {t ∈ [−π, π] :

eit ∈
−1
χ (γ0)}.

Define h(eit) to be equal to one if eit ∈
−1
χ (γ0) and equal to zero if

eit ∈ T\
−1
χ (γ0). Then the real part of the first term on the right hand side

of

(f ◦ χ)(w) =

∫ π

−π

eit+w
eit−w

h(eit)dν(t)+

+

∫ π

−π

eit+w
eit−w

(1 − h(eit))dν(t), w ∈ D.

is nonnegative for all w ∈ D. The last term is locally holomorphic on
−1
χ (γ0)

and has zero real part on
−1
χ (γ0). This implies (d′).

From (2.27) we derive, for every x ∈ H and γ′ and ǫ0 as above,

sup {|[F (reit)x, x]||1 − r| : eit ∈ γ′, r ∈ [1 − ǫ0, 1) ∪ (1, (1 − ǫ0)
−1]} <∞.

Then the principle of uniform boundedness gives the last assertion of Lemma
2.8′.

2. In order to prove Lemma 2.8 we define an L(H)-valued mero-
morphic function F on ψ(Ω) \ T by i F ◦ ψ = G and set Γ := ψ(∆). Then,
evidently, (b) ⇔ (b′), (c) ⇔ (c′), (d) ⇔ (d′), (b) ⇒ (a). It is sufficient to
show that (a) implies (b). Assume that (a) holds. Then condition (ii) of
Definition 2.7 implies condition (ii′) of Definition 2.7′, which implies, by part
1 of this proof, that the angular limits of [F (z)x, x], x ∈ H, exist at almost
every point of Γ. It follows that the angular limits of [G(λ)x, x] exist for
almost every point of ∆. Hence (a) implies (b).

Let, in the rest of Section 2.3 F be the L(H)-valued meromorphic
function on ψ(Ω) \ T defined by iF ◦ ψ = G. As a consequence of Lemmas
2.8 and 2.8′ we obtain the following

Lemma 2.9. The open set ∆ ⊂ Ω ∩ R is of positive type with
respect to G if and only if ψ(∆) is of positive type with respect to F .
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With the help of Definition 2.7′ we can characterize the local posi-
tivity of the functional TF considered in Section 2.1:

Lemma 2.10. If Γ is an open subset of ψ(Ω) ∩T, the following
conditions are equivalent.

(α) Γ is of positive type with respect to F .

(β) The order of growth of F near Γ is ≤ m for some integer m, and
[(TF .f)x, x] ≥ 0 for every nonnegative function f ∈ C∞

0 (Γ) and any
x ∈ H.

Proof. 1. Assume that (α) holds. Then by the last assertion
of Lemma 2.8′ the order of growth of F near Γ is ≤ 1. Let x ∈ H and
let f ∈ C∞

0 (Γ) be nonnegative. If S := {Θ ∈ [0, 2π) : eiΘ ∈ Γ}, then, by
Theorem 2.1,

[(TF .f)x, x] = lim
r↑1

∫

S0

f(eiΘ)[{F (reiΘ) − F (r−1eiΘ)}x, x] dΘ,

and Lemma 2.8′, (d′) implies [(TF .f)x, x] ≥ 0.
2. Assume that (β) holds. We show that F satisfies condition (d′)

of Lemma 2.8′. By Lemma 2.4 with Γ1 = γ′ and a nonnegative function χ
it is sufficient to prove that for every x ∈ H, α > 0 there exists a δ ∈ (0, 1)
such that

(2.30) inf {[TF .χ(hreiΘ − hr−1eiΘ)x, x] : eiΘ ∈ γ′, r ∈ (1 − δ, 1)} > −α.

A simple calculation shows that hreiΘ(z) − hr−1eiΘ(z) is nonnegative for r ∈
(0, 1) and z ∈ T. Then (β) implies that the left hand side of (2.30) is
nonnegative and Lemma 2.10 is proved.

2.4. Local spectral functions. Here and in the following Ω, ∆, Γ,
A and U are as in Section 2.1. We denote by B(∆) the Boolean ring of all
finite unions of connected subsets of ∆ whose boundary points (in R) belong
to ∆.

Definition 2.11. We shall say that A has a spectral function on ∆
if there exists a strongly σ-additive homomorphism E of B(∆) into a Boolean
ring of selfadjoint projections of H such that the following holds for every
δ ∈ B(∆).

(i) If T (A−z)−1 = (A−z)−1T for a bounded operator T and some z ∈ ρ(A)
(hence, for all z ∈ ρ(A)), then TE(δ) = E(δ)T .
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(ii) σ̃(A|E(δ)H) ⊂ σ̃(A) ∩ δ and σ̃(A|(1 − E(δ))H) ⊂ σ̃(A) \ δ0, where δ0

is the interior of δ with respect to the topology of R.

The uniqueness of the spectral function on ∆ can be shown in the
same way as for a bounded operator A. For the convenience of the reader we
give a proof here.

Lemma 2.12. The operator A cannot have more than one spec-
tral function on ∆.

Proof. Assume A has the spectral functions E and E ′ on ∆.
Let δ, δ1, δ2,. . ., be closed sets in B(∆) such that the sequence (δn) is de-
creasing,

⋂
{δn : n = 1, 2, . . .} = δ, and δ ⊂ δ0

n holds for every n. By (i)
the spectral functions E and E ′ commute. By (ii) for any n the spectra of
ψ(A)|E(δ)H and ψ(A)|(1 − E ′(δn))H are disjoint. It follows that the spec-
trum of ψ(A)|E(δ)(1−E ′(δn))H is empty and, hence, E(δ)(1−E ′(δn)) = 0.
By the σ-additivity of E ′ we obtain E(δ)E ′(δ) = E(δ). In the same way we
show E(δ)E ′(δ) = E ′(δ), and it follows that E(δ) = E ′(δ).

We shall extend this local spectral function, in three consecutive
steps, to larger classes of Borel subsets of C.

First we extend E to the Boolean ring B̃(∆) of all Borel subsets δ
of ∆ such that δ̄ ⊂ ∆: For any x, y ∈ H, [E(·)x, y] has a unique extension

to B̃(∆) which is σ-additive (see [4, Corollary III.5.9]). Making use of the
weak sequential completeness of the Hilbert space we find (with the help
of transfinite induction) that even the operator function E has a unique

extension to B̃(∆). It is well known that the extended spectral function is
strongly σ-additive (see e.g. [4, Theorem IV.10.1]), and it is easy to see that
all the properties of the spectral function mentioned above are preserved
under this extension. For Borel sets δ with δ̄ ⊂ ∆ we have E(δ) = E(δ ∩
σ̃(A)).

The second extension is only a formal one: We extend E from a
Boolean ring of Borel subsets of ∆ to some Boolean algebra of Borel sets in
C: Consider the Boolean algebra

D0(σ̃(A) \ ∆) :=

= {b Borel set in C : b̄ ∩ (σ̃(A) \ ∆) = ∅ or b0 ⊃ σ̃(A) \ ∆}.

The sets of D0(σ̃(A) \ ∆) contain either the whole set σ̃(A) \ ∆ or no point
of σ̃(A) \ ∆. Let b ∈ D0(σ̃(A) \ ∆). If b̄ ∩ (σ̃(A) \ ∆) = ∅, we set

E(b) := E(b ∩ σ̃(A)),
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and if b0 ⊃ σ̃(A) \ ∆, we have (C \ b) ∩ (σ̃(A) \ ∆) = ∅ and we set

E(b) := 1 − E((C \ b) ∩ σ̃(A)).

Evidently, E defined on D0(σ̃(A)\∆) is a strongly σ-additive homomorphism
of D0(σ̃(A)\∆) to a Boolean algebra of selfadjoint projections of H with the
properties (i) and (ii).

With the help of the Riesz-Dunford-Taylor projections the spectral
function E can be further extended to a Boolean algebra of Borel sets which
may contain only a part of the set σ̃(A)\∆ of “possible spectral singularities”.
The following theorem was proved by B. Nagy in [22] for a closed operator
A. The proof in [22] is also valid for a closed linear relation, and it is easy
to see that condition (i) of Definition 2.11 is preserved under this extension.

Theorem 2.13. The spectral function E on ∆ of A can be ex-
tended to a strongly σ-additive homomorphism of the Boolean algebra

A(σ̃(A) \ ∆) :=

= {b Borel set of C : ∂(b ∩ σ̃(A)) ∩ (σ̃(∆) \ ∆) = ∅1}

to a Boolean algebra of projections of H such that the conditions (i) and (ii)
of Definition 2.11 are fulfilled. This extension is unique.

Moreover, b = b∗ ∈ A(σ̃(A) \ ∆) implies that E(b) is selfadjoint.

The uniqueness statement can also be verified along the lines of
Lemma 2.12. The fact that b = b∗ implies the selfadjointness of E(b) is a
consequence of the construction in [22].

Remark 2.14. Let ∆′ be a connected open subset of Ω∩R and
e a subset of ∆′ which has no point of accumulation in ∆′. Assume that A
has a spectral function E on ∆ := ∆′ \ e. Then all connected subsets δ′ of ∆′

whose boundary points (in R) belong to ∆′ \ e are elements of A(σ̃(A) \∆),
i.e. E(δ′) is defined.

In the same way, replacing A, R and ∆ by U = ψ(A), T and
Γ = ψ(∆), the notion of a spectral function of U on Γ can be defined. For
the convenience of the reader we repeat the definition. Let B(Γ) be the
Boolean ring of all finite unions of connected subsets of Γ whose boundary
points (in T) belong to Γ.

Definition 2.11′. We shall say that U has a spectral function
on Γ if there exists a strongly σ-additive homomorphism F of B(Γ) into a

1Here ∂b
′ denotes the boundary of b

′ ⊂ σ̃(A) with respect to the relative topology of
σ̃(A).
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Boolean ring of selfadjoint projections of H such that the following holds for
every γ ∈ B(Γ).

(i′) If TU = UT for a bounded operator T , then TF (γ) = F (γ)T .

(ii′) σ(U |F (γ)H) ⊂ σ(U) ∩ γ and σ(U |(1−F (γ))H) ⊂ σ(U) \ γ0, where γ0

is the interior of γ with respect to the topology of T.

A spectral function of U on Γ is uniquely determined. This is proved
in the same way as in Lemma 2.12.

The selfadjoint relation A has a spectral function E on ∆ if and
only if U has a spectral function F on Γ, and we have

F (ψ(δ)) = E(δ)

for all δ ∈ B(∆). This is an immediate consequence of the spectral mapping
theorem for linear relations.

2.5. Local definiteness. The following theorem is the main result of
this paper.

Theorem 2.15. Let Ω, A, ψ and U be as at the beginning of Sec-
tion 2.1 and let ∆ be an open subset of Ω∩R. Then the following assertions
are equivalent.

(1) ∆ ⊂ ρ̃(A) ∪ σ++(A).

(1′) ψ(∆) ⊂ ρ(U) ∪ σ++(U).

(2) ∆ is of positive type with respect to the function

λ 7−→ λ− Reλ0 + (λ− λ0)(λ− λ0)(A− λ)−1.

(2′) ψ(∆) is of positive type with respect to the function

z 7−→ (U + z)(U − z)−1 = −1 + 2U(U − z)−1.

(3) A ∈ S1(∆) and (2) holds.

(3′) U ∈ S1(ψ(∆)) and (2′) holds.

(4) A ∈ S∞(∆) and for every nonnegative g ∈ C∞
0 (∆) we have [g(A)x, x] ≥

0, x ∈ H.
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(4′) U ∈ S∞(ψ(∆)) and for every nonnegative f ∈ C∞
0 (ψ(∆)) we have

[f(U)x, x] ≥ 0, x ∈ H.

(5) A has a spectral function E on ∆, and for all δ ∈ B(∆) we have
[E(δ)x, x] ≥ 0, x ∈ H.

(5′) U has a spectral function F on ψ(∆), and for all γ ∈ B(ψ(∆)) we have
[F (γ)x, x] ≥ 0, x ∈ H.

(6) For every open subset ∆0 of ∆ which is a finite union of connected sub-
sets of ∆ with ∆0 ⊂ ∆, there exists a nonnegative selfadjoint projection
E0 in H which commutes with every bounded operator that commutes
with the resolvent of A, such that the diagonal representation of A,

A = A ∩ (E0H)2 ++++ A ∩ ((1 − E0)H)2

has the following properties.

(i) σ̃(A∩ (E0H)2) ⊂ σ̃(A)∩∆0, σ̃(A∩ ((1−E0)H)2) ⊂ σ̃(A) \∆0.

(ii) The boundary points of ∆0 (in R) are no eigenvalues of A ∩
(E0H)2.

(6′) For every open subset Γ0 of ψ(∆) which is a finite union of arcs with
Γ0 ⊂ ψ(∆), there exists a nonnegative selfadjoint projection F0 in H
which commutes with every bounded operator that commutes with U ,
such that the diagonal representation

U =

(
U0 0
0 U(0)

)

with respect to the decomposition H = F0H+(1−F0)H has the following
properties.

(i′) σ(U0) ⊂ σ(U) ∩ Γ0, σ(U(0)) ⊂ σ(U) \ Γ0.

(ii′) The boundary points of Γ0 (in T) are no eigenvalues of U0.

Similar equivalences hold for all positivity and nonnegativity conditions in (1)
- (6′) replaced by the corresponding negativity and nonpositivity conditions.

Proof. (1) ⇔ (1′): This equivalence follows from the spectral
mapping theorem for linear relations (see [3, Section 3]) and Lemma 1.4 with

M =


 −λ0 1

λ0 −1


.

24



(1′) ⇒ (2′): Assume that (2′) is not true. Then there exist an x ∈ H,
a β < 0 and two convergent sequences (eiΘn) ⊂ ψ(∆) and (rn) ⊂ (0, 1) such
that rne

iΘn ∈ ρ(U), limn→∞ eiΘn =: eiΘ ∈ ψ(∆), limn→∞ rn = 1 and

(2.31) [U{(U − rne
iΘn)−1 − (U − r−1

n eiΘn)−1}x, x] ≤ β.

We have

(2.32)

[U{(U − rne
iΘn)−1 − (U − r−1

n eiΘn)−1}x, x] =

= (rn − r−1
n )eiΘn [U(U − rne

iΘn)−1(U − r−1
n eiΘn)−1x, x] =

= (rn − r−1
n )eiΘn [(U − rne

iΘn)−1x, (1 − r−1
n e−iΘnU)−1x, x] =

= (1 − r2
n)[(U − rne

iΘn)−1x, (U − rne
iΘn)−1x].

Hence (2.31) implies αn := ‖(U − rne
iΘn)−1x‖ → ∞ for n → ∞

and, hence, eiΘ ∈ σ(U).
If xn := α−1

n (U − rne
iΘn)−1x, then ‖xn‖ = 1 and

‖(U − eiΘ)xn‖ = α−1
n ‖x+ (rne

iΘn − eiΘ)(U − rne
iΘn)−1x‖ → 0.

By (2.31) and (2.32) we have

lim inf
n→∞

[xn, xn] ≤ 0.

Therefore, (1′) is not true.
(2) ⇔ (2′): We have

(U + ψ(λ))(U − ψ(λ))−1 =

= −i(Im λ0)
−1{λ− Reλ0 + (λ− λ0)(λ− λ0)(A− λ)−1}

for every λ ∈ ρ(A) ∩ Ω. By Lemma 2.9 this relation implies the equivalence
(2) ⇔ (2′).

(2′) ⇒ (3′): Assume that (2′) holds. Then the last assertion of
Lemma 2.8′ applied to

F (z) = (U + z)(U − z)−1 = −1 + 2U(U − z)−1

gives U ∈ S1(ψ(∆)).
(3) ⇔ (3′): That A ∈ S1(∆) is equivalent to U ∈ S1(ψ(∆)) was

shown at the end of Section 2.1.
(3′) ⇒ (4′): By Lemma 2.10 applied to F (z) = FU(z) condition

(2′), which is equivalent to (3′), implies (4′). Or, more directly, if x ∈ H,
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f ∈ C∞
0 (ψ(∆)) and Γ0 is the union of a finite number of closed subarcs of

ψ(∆) such that supp g ⊂ Γ0, then Lemma 2.8′ applied to FU(z) shows that
for every α > 0 there exists a δ ∈ (0, 1) such that

inf {[U{(U − reiΘ)−1 − (U − r−1eiΘ)−1}x, x] : eiΘ ∈ Γ0, r ∈ (1− δ, 1)} > −α.

Then (2.24) gives [f(U)x, x] ≥ 0.
(4) ⇔ (4′): It was proved at the end of Section 2.1 that A ∈ S∞(∆)

and U ∈ S∞(ψ(∆)) are equivalent. If f runs through all nonnegative func-
tions in C∞

0 (ψ(∆)) then g = f ◦ ψ runs through all nonnegative functions in
C∞

0 (∆)), and for these functions we have f(U) = g(A).
(4′) ⇒ (5′): Assume that (4′) holds. Let fn ∈ C∞

0 (ψ(∆)), n =
1, 2, . . ., such that supp fn ⊂ K, where K is some compact subset of ψ(∆),
and assume that the sequence (fn) converges uniformly to a continuous func-
tion f . Let χ ∈ C∞

0 (ψ(∆)) be a positive function and equal to one on a
neighbourhood of K. Then for any ǫ > 0 there exists an N such that for
n,m ≥ N we have

−ǫ [χ(U)x, x] ≤ [(fn(U) − fm(U))x, x] ≤ ǫ[χ(U)x, x]

for all x ∈ H. Hence fn(U) converges with respect to the operator norm.
Therefore the functional calculus for U can be extended to C0

0 (ψ(∆)).
Let (hn) be a sequence of uniformly bounded functions belonging

to C0
0(ψ(∆)) with supphn ⊂ K, n = 1, 2, . . ., for some compact subset K

of ψ(∆), and assume that the sequence (hn) is pointwise convergent. Then
(hn(U)) converges to a bounded operator in the weak sense. In this way
we extend the functional calculus of U to the linear set B0(ψ(∆)) of all
bounded functions h which are zero outside of a compact subset of ψ(∆) and
which can be approximated by continuous functions with respect to pointwise
convergence. It is easy to see that this extension of the functional calculus
remains linear, multiplicative and positive. Moreover, it is continuous with
respect to pointwise convergence of uniformly bounded functions and the
weak operator topology.

If γ0 ∈ B(ψ(∆)) then the indicator function χγ0 of γ0 belongs to
B0(ψ(∆)), and we define

F (γ0) := χγ0(U).

Then we have [F (γ0)x, x] ≥ 0 for every x ∈ H. From the linearity and
multiplicativity of the extended functional calculus it follows that F fulfils
the homomorphism property of the spectral function. The strong σ-additivity
of F is a consequence of the continuity of the extended functional calculus
mentioned above and the fact that weakly convergent monotone sequences of
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bounded selfadjoint operators in a Krein space converge in the strong sense.
That F satisfies condition (i′) of Definition 2.11′ follows immediately from
the definition of F .

That (ii′) (in Definition 2.11′) holds can be verified in the following
way, which is well known: If z0 /∈ γ0, then the function h defined by h(z) :=
(z − z0)

−1χγ0(z) belongs to B0(ψ(∆)) and we have

(U − z0)h(U) = h(U)(U − z0)F (γ0) = F (γ0).

Therefore, z0 /∈ σ(U |F (γ0)H).
Let now z0 be a point of γ0 but no boundary point of γ0 (in T), and

let k be a function from C∞
0 (ψ(∆)) with support contained in the interior of

γ0 such that k is equal to one in some neighbourhood of z0. Then h(z) :=
(1 − k(z))(z − z0)

−1 belongs to the domain of the functional calculus of U
and we have

(U − z0)h(U)(1 − F (γ0)) = h(U)(U − z0)(1 − F (γ0)) = 1 − F (γ0)

and, therefore,
z0 /∈ σ(U |(1 − F (γ0))H).

(5) ⇔ (5′): See end of Section 2.4.
(5′) ⇒ (6′): If (5′) holds and Γ0 is as in (6′), then F0 := F (Γ0) has

the required properties.
(6) ⇔ (6′): Assume that (6) holds. If Γ0 is as in (6′) we set F0 := E0

where E0 is a selfadjoint projection associated with ∆0, ψ(∆0) = Γ0. Then
(6′) follows from

U = ψ(A) = −1 + (λ0 − λ̄0)(A− λ̄0)
−1

and the spectral mapping theorem.
If (6′) holds and if ∆0 is as in (6), we set E0 := F0 where F0 is a

selfadjoint projection associated with ψ(∆0). Then (6) follows from

A =

{(
(U + 1)x

(λ̄0U + λ0)x

)
: x ∈ H

}

and the spectral mapping theorem.
(6′) ⇒ (1′): Assume that (6′) holds. Let z0 ∈ ψ(∆) belong to σ(U),

and choose Γ0 in (6′) so that z0 ∈ Γ0. Then there exists a sequence (xn) ⊂ H,
n = 1, 2, . . ., with xn = un+vn, un ∈ F0H, vn ∈ (1−F0)H, ‖un‖

2+‖vn‖
2 = 1

and
lim
n→∞

‖(U0 − z0)un‖ = 0, lim
n→∞

‖(U(0) − z0)vn‖ = 0.
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By the second relation of (i′) we have limn→∞ ‖vn‖ = 0 and, therefore,
limn→∞ ‖un‖ = 1. (F0H, [·, ·]) is a Hilbert space and there exists an α > 0
such that [u, u] ≥ α‖u‖2 for all u ∈ F0H. This implies

lim inf
n→∞

[xn, xn] = lim inf
n→∞

([un, un] + [vn, vn]) ≥

≥ α lim
n→∞

‖un‖ + lim
n→∞

[vn, vn] ≥ α,

and Theorem 2.15 is proved.

Remark 2.16. Let assertion (6) of Theorem 2.15 be true, and let
E0(·) be the spectral function of the selfadjoint linear relation A∩ (E0H)2 in
the Hilbert space (E0H, [·, ·]). Define, for any connected subset δ of R with
δ̄ ⊂ ∆0,

E(δ) := E0(δ)E0.

It is easy to see that E(·) possesses all characterizing properties of the local
spectral function of A on ∆0 and, hence (see Lemma 2.12), coincides with
the local spectral function of A on ∆0. The local spectral function of U and
the spectral function of U0 (see condition (6′)) are related in a similar way.

In the case when ∆ in Theorem 2.15 is finite the function in condi-
tion (2) can be replaced by the resolvent of A.

Theorem 2.17. Let Ω and A be as at the beginning of Section
2.1 and ∆ be an open subset of Ω ∩ R such that ∞ /∈ ∆. Then any of the
conditions (1) - (6′) of Theorem 2.15 is equivalent to ∆ being of positive type
with respect to the resolvent of A.

Proof. We prove that ∆ is of positive type with respect to the
resolvent of A if and only if condition (2) of Theorem 2.15 holds. Let x ∈ H.

Then for t ∈ ∆ the angular limit l̂imIm>0, λ→t [(A − λ)−1x, x] exists and
belongs to C+ ∪ R if and only if the angular limit

l̂imIm>0, λ→t [{λ− Reλ0 + (λ− λ0)(λ− λ̄0)(A− λ)−1}x, x]

exists and belongs to C+ ∪ R.
Assume that either ∆ is of positive type with respect to the resolvent

of A or with respect to

λ 7→ λ− Reλ0 + (λ− λ0)(λ− λ̄0)(A− λ)−1.

We set g(λ) := (λ− λ0)(λ− λ̄0). Then, by the last assertion of Lemma 2.8,
for t in a compact subset of ∆ and ǫ ∈ (0, ǫ0] for sufficiently small ǫ0 > 0,
the expressions

‖(g(t+ iǫ) − g(t))(A− (t+ iǫ))−1‖
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and
‖(g(t− iǫ) − g(t))(A− (t− iǫ))−1‖

are uniformly bounded. Therefore, if t+ iǫ runs through that points,

inf
{
−i

[(
g(t+ iǫ)(A− (t+ iǫ))−1 − g(t− iǫ)(A− (t− iǫ))−1

)
x, x

]}

is finite if and only if

inf
{
−ig(t)

[(
(A− (t+ iǫ))−1 − (A− (t− iǫ))−1

)
x, x

]}

is finite. Then applying Lemma 2.8, (a) ⇔ (b), completes the proof of
Theorem 2.17.

Definition 2.18. If A and U are as in Theorem 2.15 and ∆ is an
open subset of Ω∩R, then ∆ (ψ(∆)) is said to be of positive type with respect
to A (resp. U) if one of the equivalent conditions (1) - (6′) is satisfied. Open
sets of negative type are defined in an analogous way. ∆ (ψ(∆)) is said to be
of definite type with respect to A (resp. U) if ∆ (resp. ψ(∆)) is of positive
type or of negative type with respect to A (resp. U).

3. Locally definitizable operators in Krein spaces

3.1. Definitizable and locally definitizable operators and operator
functions. We recall that a selfadjoint linear relation A (a unitary operator
U) in the Krein space H with ρ(A) 6= ∅ is called definitizable if there exists
a rational function r = r∗ (resp. q = q̂) all poles of which belong to ρ̃(A)
(resp. ρ̃(U)), such that

[r(A)x, x] ≥ 0 (resp. [q(U)x, x] ≥ 0) for all x ∈ H.

In the case of a selfadjoint relation this definition is equivalent to that in [3,
Section 4].

The functions r and q are called definitizing functions for A and U ,
respectively. If λ0 ∈ ρ(A)∩C+, and U = ψ(A), ψ(λ) := −(λ−λ0)(λ− λ̄0)

−1,
then A is definitizable if and only if U is definitizable. The rational function
r is definitizing for A if and only if the function q with q◦ψ = r is definitizing
for U .

We also recall the corresponding notions for operator functions. Let
G be an R-symmetric function meromorphic in C\R and let F be a T-skew-
symmetric function meromorphic in C \ T such that 0 and ∞ are points of
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holomorphy of F . G is called a Nevanlinna function if G is holomorphic in
C \ R and, for every x ∈ H and every λ ∈ C+, Im [G(λ)x, x] ≥ 0 holds. F
is called a Caratheodory function if F is holomorphic in C \T and for every
x ∈ H and every z ∈ D, Re [F (z)x, x] ≥ 0 holds. G (F ) is called definitizable
if there exists a rational function r = r∗ (resp. q = q̂) such that the poles
of r (resp. q) are points of holomorphy of G (resp. F ) and rG (resp. qF )
is the sum of a Nevanlinna function (resp. a Caratheodory function) and
a meromorphic function in C. r and q are called definitizing functions for
G and F , respectively. If λ0 ∈ C+ is a point of holomorphy of G and ψ is
as above then by the definitions given above G is definitizable if and only if
F := −iG ◦ ψ−1 is definitizable. For more details on definitizable operator
functions see [12] and [14].

For operators local versions of definitizability were introduced in [7]
and [8]. The definition of local definitizability in Definition 3.3 below will
slightly differ from that in [7] and [8]: Here we include a condition on the
nonreal or non-unimodular spectrum. Definition 3.3 will be formulated with
the help of the resolvent. It is natural, similarly to the considerations of
Section 2, to introduce first locally definitizable operator functions with the
help of the characteristic “local definitizability properties” of the resolvents of
definitzable operators. The concept of locally definitizable operator function
(Definitions 3.1 and 3.1′ below) is also a localization of the notion of defini-
tizable operator function (see Proposition 3.2 below). Let Ω, λ0 ∈ Ω ∩ C+

and ψ be as in Section 2.1.

Definition 3.1. An L(H)-valued meromorphic function G in Ω\R

symmetric with respect to R is called definitizable in Ω if the following holds.

(α) No point of Ω ∩ R is an accumulation point of nonreal poles of G,
and for every finite union ∆0 of open connected subsets of Ω ∩R with
∆0 ⊂ Ω ∩ R there exists a positive integer m such that the order of
growth of G near ∆0 is ≤ m.

(β) Every point λ ∈ Ω ∩ R has an open connected neighbourhood Iλ in R

such that both components of Iλ \ {λ} are of definite type with respect
to G.

Definition 3.1′. An L(H)-valued meromorphic function F in
ψ(Ω) \T skew-symmetric with respect to T is called definitizable in ψ(Ω) if
the following holds.

(α′) No point of ψ(Ω) ∩ T is an accumulation point of non-unimodular
poles of F , and for every finite union Γ0 of open arcs of ψ(Ω)∩T with

30



Γ0 ⊂ ψ(Ω) ∩T there exists a positive integer m such that the order of
growth of F near Γ0 is ≤ m.

(β ′) Every point z ∈ ψ(Ω) ∩ T has an open connected neighbourhood Iz
in T such that both components of Iz \ {z} are of definite type with
respect to F .

In Theorem 3.6 below we shall make use of the following proposition
from [12, Proposition 2.2]. For the convenience of the reader we will give a
direct proof here.

Proposition 3.2. An L(H)-valued meromorphic function F in
C \ T skew-symmetric with respect to T which is holomorphic at 0 and ∞,
is definitizable in C if and only if it is definitizable.

Proof. 1. Let F be definitizable, q = q̂ a rational function and H
a Caratheodory function such that the poles of q are points of holomorphy
of F and qF −H can be continued analytically to an L(H)-valued function
meromorphic in C. Evidently, F has only a finite number of poles in C \T.
By the integral representation of Caratheodory functions (see also Lemma
2.8′, (2.25)) the order of growth of H near T is ≤ 1. Hence there exists an
integer m such that the order of growth of F near T is ≤ m.

Assume that γ0 is an open arc of T such that q has no pole in
γ := γ0 and q is positive on γ. Let x ∈ H. In order to verify that condition
(ii′) of Definition 2.7′ is fulfilled it is sufficient to show that

inf {|[(p(reiΘ)H(reiΘ) − p(r−1eiΘ)H(r−1eiΘ))x, x] :

eiΘ ∈ γ, r ∈ (1 − δ, 1)} > −∞
(3.1)

with p = q−1 and for some δ > 0.
We have

[(p(reiΘ)H(reiΘ) − p(r−1eiΘ)H(r−1eiΘ))x, x] =

=(p(reiΘ) − p(eiΘ))[H(reiΘ)x, x]−

−(p(r−1eiΘ) − p(eiΘ))[H(r−1eiΘ)x, x]+

+p(eiΘ)[(H(reiΘ) −H(r−1eiΘ))x, x].

(3.2)

There is a δ > 0 such that the first two terms on the right hand side of (3.2)
are uniformly bounded for eiΘ ∈ γ and r ∈ (1 − δ, 1). The third term on
the right hand side of (3.2) is nonnegative for eiΘ ∈ γ and all r ∈ (0, 1).
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Therefore, (3.1) holds. Let µ be a positve measure on [−π, π] and β ∈ R

such that

[H(z)x, x] = iβ +

∫ π

−π

eit + z

eit − z
dµ(t), z ∈ D.

If µ has no mass at eiΘ ∈ γ then the first two terms on the right hand side
of (3.2) converge to zero if r ↑ 1. Therefore condition (i) of Definition 2.7′ is
fulfilled, and γ0 is an arc of positive type with respect to F . If q is negative
on γ a similar reasoning applies. Then it follows that F is definitizable in C.

2. Let F be definitizable in C and let P be the finite set of all poles
of F in C \ T, 0,∞ /∈ P . We decompose F as in (2.22): F = F0 + F(0). Let
g0 = ĝ0 be a rational function with the following properties.

(i) The set P (g0) of all poles of g0 is contained in C \ (T ∪ P ).

(ii) g0 is positive on T.

(iii) g0F0 is locally holomorphic on P .

F(0) is locally holomorphic on C \ T. Let the order of growth of F(0) near
T be ≤ m. We denote by e a finite subset of T such that all connected
components of T \ e are of definite type with respect to F(0). Let g(0) = ĝ(0)

be a rational function with the following properties.

(i′) The set P (g(0)) of all poles of g(0) is contained in C \ (T ∪ P ).

(ii′) All points of e are zeros of g(0) at least of order m+ 2.

(iii′) For any component γ of T \ e the following holds: If γ is of positive
type with respect to F(0), then g(0) is positive on γ, otherwise g(0) is
negative on γ.

Let (φn) be a sequence of functions in C∞(T) which converges to g(0)

in Cm+1(T) such that for every n = 1, 2, . . ., φn is nonnegative (nonpositive)
on those components of T \ e where g(0) is positive (resp. negative) and φn is
zero in a neighbourhood of e. Then, by Lemma 2.10, for every nonnegative
function f ∈ C∞(T) we have

[(TF(0)
.φng0f)x, x] ≥ 0, x ∈ H,

and, therefore,
[(TF(0)

.g(0)g0f)x, x] ≥ 0, x ∈ H.

Then the operator function K defined by

K(z) := TF(0)
.ghz with g = g0g(0), z ∈ C \ T,
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is a Caratheodory function.
For ζ ∈ T and all points z of holomorphy of g, we have

g(ζ)hz(ζ) =
1

4π
g(ζ)

ζ + z

ζ − z
=

= g̃(ζ, z) +
1

4π
g(z)

ζ + z

ζ − z
,

(3.3)

where

g̃(ζ, z) :=

{
1
4π

g(ζ)−g(z)
ζ−z

(ζ + z) if ζ 6= z
1
2π
g′(ζ)ζ if ζ = z.

It is easy to see that
z 7−→ g̃(·, z) ∈ Cm+1(T)

is complex differentiable in C \ (P (g0) ∪ P (g(0))).
Applying TF(0)

to both sides of (3.3) gives

(3.4) K(z) = TF(0)
.g̃(·, z) + g(z)F(0)(z).

This shows that z 7−→ TF(0)
.g̃(·, z) is meromorphic in C. Every pole of this

function is a pole of g. It follows that

gF = gF0 + gF(0) = K + g0g(0)F0 − TF(0)
.g̃(·, z).

Since g0g(0)F0−TF(0)
.g̃(·, z) is a meromorphic function in C the poles of which

are contained in P (g0) ∪ P (g(0)) ⊂ C \ (T ∪ P ), F is definitizable.

Definition 3.3. The selfadjoint relation A (the unitary operator
U) is called definitizable over Ω (resp. ψ(Ω)), if σ(A)∩ (Ω\R) (resp. σ(U)∩
(ψ(Ω) \ T)) consists of isolated points which are poles of the resolvent and
the function

λ 7−→ λ− Re λ0 + (λ− λ0)(λ− λ0)(A− λ)−1 =: GA(λ)

(resp. z 7−→ (U + z)(U − z)−1 =: FU(z))

is definitizable in Ω (resp. ψ(Ω)).

Remark 3.4. By (2.17) the growth conditions for GA and FU
contained in Definition 3.3 are equivalent to A ∈ S∞(Ω ∩ R) and U ∈
S∞(ψ(Ω) ∩ T), respectively. Conditions equivalent to the “sign” conditions
for GA and FU are expressed in Theorem 2.15 in terms of A and U . That the
isolated spectral points mentioned in Definition 3.3 are poles of the resolvent
is also a consequence of the last condition.
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Remark 3.5. Let ∆ be an open subset of R and let A be a
selfadjoint operator such that σ(A) \R has no more than a finite number of
nonreal accumulation points. Then A is definitizable over ∆ in the sense of
[8] if for every R-symmetric domain Ω with Ω ∩R = ∆ such that Ω ∩C+ is
simply connected and σ(A) ∩ (Ω \ R) = ∅, A is definitizable over Ω. This is
a direct consequence of the definitions and Remark 3.4.

We first consider selfadjoint linear relations definitizable over C and
show that these relations are just the definitizable ones.

Theorem 3.6. Let A be a selfadjoint relation in H with ρ(A) 6=
∅, let λ0 ∈ ρ(A) ∩C+ and let U = ψ(A) = −1 + (λ0 − λ̄0)(A− λ̄0)

−1. Then
the following assertions are equivalent.

(1) A is definitizable.

(1′) U is definitizable.

(2) A is definitizable over C.

(2′) U is definitizable over C.

(3) The function GA (see Definition 3.3) is definitizable.

(3′) The function FU (see Definition 3.3) is definitizable.

Proof. The assertions (1) and (1′) are equivalent, see the begin-
ning of this section. In view of FU ◦ψ = −iGA it follows from Theorem 2.15
and the considerations of Section 2 that (2) and (2′) are equivalent. That
(3) and (3′) are equivalent is an immediate consequence of the definitions. It
was shown in Proposition 3.2 that (2′) is equivalent to (3′). That (1′) implies
(3′) is a consequence of [14, Theorem 1.7]. By [14, Theorem 1.9] (3′) implies
(1′).

3.2. Let H be the orthogonal sum of two Krein spaces H1 and
H2, H = H1[+]H2, and let Ω be as above. If A1 and A2 are selfadjoint
linear relations in H1 and H2, respectively, such that A1 is definitizable,
ρ(A2) 6= ∅ and the resolvent of A2 is meromorphic in Ω, then by Theorem
3.6 the selfadjoint linear relation A1[+]A2 is definitizable over Ω. Such an
orthogonal sum is not far away from the most general case of a selfadjoint
linear relation definitizable over Ω. With the help of Theorem 3.6 it is easy
to characterize locally definitizable relations:
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Theorem 3.7. Let Ω, λ0, ψ, A and U be as at the beginning of
Section 2.1. Then the following assertions are equivalent.

(1) A is definitizable over Ω.

(1′) U is definitizable over ψ(Ω).

(2) For every closed set K ⊂ Ω∩R there exist an open subset ∆0 of Ω∩R

which is a finite union of open connected sets, such that K ⊂ ∆0,
∆0 ⊂ Ω∩R, and a selfadjoint projection E0 in H which commutes with
every bounded operator that commutes with the resolvent of A such that
the corresponding diagonal representation of A,

A = A ∩ (E0H)2 ++++A ∩ ((1 − E0)H)2,

has the following properties.

(o) A ∩ (E0H)2 is definitizable.

(i) σ̃(A∩ (E0H)2) ⊂ σ̃(A)∩∆0, σ̃(A∩ ((1−E0)H)2) ⊂ σ̃(A) \∆0.

(ii) The boundary points of ∆0 (in R) are no eigenvalues of A ∩
(E0H)2.

(2′) For every closed set K ′ ⊂ ψ(Ω) ∩ T there exist an open subset Γ0 of
ψ(Ω) ∩ T which is a finite union of open arcs, such that K ′ ⊂ Γ0,
Γ0 ⊂ ψ(Ω) ∩ T, and a selfadjoint projection F0 in H which commutes
with every bounded operator that commutes with U such that the cor-
responding diagonal representation of U ,

U =

(
U0 0
0 U(0)

)
,

with respect to the decomposition H = F0H+(1−F0)H has the following
properties.

(o′) U0 is definitizable.

(i′) σ(U0) ⊂ σ(U) ∩ Γ0, σ(U(0)) ⊂ σ(U) \ Γ0.

(ii′) The boundary points of Γ0 are no eigenvalues of U0.

Proof. That the assertions (1), (1′) are equivalent follows from
what was proved in Section 2. Evidently, (2) is equivalent to (2′) with E0 =
F0. It remains to prove that (1′) and (2′) are equivalent.
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Assume that (1′) holds. In the following, subarcs of the unit circle
will be denoted similar to real intervals: If α = eiθ, β = eiΘ, 0 < Θ− θ < 2π,
we define (α, β) := {eit : t ∈ (θ,Θ)}.

Let Γ0 be the union of open arcs (αj, βj) ⊂ ψ(Ω) ∩T, j = 1, . . . , k,
with pairwise positive distance from each other such that K ′ ⊂ Γ0, Γ0 ⊂
ψ(Ω) ∩T and there are open arcs γ(αj), γ(βj), j = 1, . . . , k, of definite type
with respect to U such that αj ∈ γ(αj), βj ∈ γ(βj). Assume, in addition, that
the arcs γ(αj), γ(βj), j = 1, . . . , k, are pairwise disjoint. In view of Theorem

2.15 it is easy to see that U has a spectral function F on
⋃k

j=1(γ(αj)∪γ(βj).
We choose ǫ > 0 so small that

αje
iǫ ∈ γ(αj), βje

−iǫ ∈ γ(βj), j = 1, . . . k,

and set

γ̃ =
k⋃

j=1

(αj, αje
iǫ) ∪ (βje

−iǫ, βj).

Then
σ(U |F (γ̃)H) ⊂ γ̃, σ(U |(1 − F (γ̃))H) ⊂ σ(U) \ γ̃.

The sets (αj, βj)\ γ̃, j = 1, . . . , k, are Dunford spectral sets of U |(1−F (γ̃))H.
Let Pj, j = 1, . . . , k, be the corresponding Riesz-Dunford projections in
(1 − F (γ̃))H, which are selfadjoint. The selfadjoint projection

F0 := F (γ̃) +

k∑

j=1

Pj(1 − F (γ̃))

commutes with every bounded operator that commutes with U . This follows
from an analogous property of F . Then U can be written as a diagonal matrix
as in (3′). The properties (i′) and (ii′) are consequences of the definition of
F0.

The local finite order growth of the resolvent of U near ψ(Ω) ∩ T

implies growth of finite order of the resolvent of U0 near T. Every subarc of
ψ(Ω) ∩ T of definite type with respect to U has the same definite type with
respect to U0 (Theorem 2.15, (1′)). Then σ(U0) is contained up to a finite
subset in a union of a finite number of open arcs of definite type with respect
to U0. Hence by Theorem 3.6 U0 is definitizable.

Assume that (2′) holds. Let s0 be an arbitrary point of ψ(Ω) ∩ T.
We choose Γ0 as in (2′) so that s0 ∈ Γ0. If U0 is as in (2′), then the resolvent
of U0 and, hence, the resolvent of U has finite order of growth near Γ0.

Assume that a one-sided neighbourhood U0 of s0 in Γ0 belongs to
σ++(U0)∪ρ(U0). Let s ∈ U0∩σ(U0) = U 0∩σ(U) and let (xn)

∞
n=1 be a sequence
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in H with ‖xn‖ = 1 and limn→∞ ‖(U − s)xn‖ = 0. Then limn→∞ ‖(U −
s)F0xn‖ = 0 and limn→∞ ‖(U−s)(1−F0)xn‖ = 0, which implies limn→∞ ‖(1−
F0)xn‖ = 0. Therefore, by s ∈ σ++(U0),

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[F0xn, F0xn] ≥ 0

and U0 ⊂ σ++(U) ∪ ρ(U). A similar reasoning applies for σ++(U0) ∪ ρ(U0)
replaced by σ−−(U0) ∪ ρ(U0), and (1′) is proved.

Remark 3.8. Let A be a selfadjoint linear relation definitizable
over Ω and let δ be a closed subset of Ω ∩ R which is a finite union of
connected sets such that all boundary points of δ in R belong to σ++(A) ∪
σ−−(A) ∪ ρ(A). If in assertion (2) we set K = δ, and ∆0 and E0 are as in
(2), then for the extended local spectral function E(·) (see Theorem 2.13)
we have E(δ) = E0(δ)E0, where E0(·) is the spectral function of A∩ (E0H)2.
This is a consequence of Remark 2.16 and the uniqueness of the extension of
the local spectral function.
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[15] Köthe, G.: Die Randeigenschaften analytischer Funktionen, Math. Z.
57 (1952/53), 13 - 33.
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