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Introduction

A bounded selfadjoint operator A in a Krein space (H, [+, -]) is called
definitizable if there exists a polynomial p # 0 such that [p(A)x,z] > 0 for
all x € H. A definitizable operator A has real spectrum with the possible
exception of a finite number of nonreal eigenvalues, and it has a spectral
function defined for all real intervals the boundary points of which do not
belong to some finite set of real points, the so-called critical points ([18], see
[20] and also [6]).

With the help of the spectral function E the real spectral points of
A can be classified in points of positive and negative type and critical points:
If a point A € o(A) N R is contained in some open interval ¢ such that E(d)
is defined and (E(0)H,[-,]) (resp. (E(0)H,—[,-])) is a Hilbert space, it is
called of positive (resp. negative) type. A point A € o(A)NR which is neither
of positive nor of negative type is called a critical point.

In [19] H. Langer studied a class of compact perturbations of fun-
damentally reducible selfadjoint operators in a Krein space. It was proved
in that paper that the restrictions of the perturbed operator to the spectral
subspaces corresponding to those open intervals which contain no critical
points of the unperturbed operator, are definitizable. Such locally definitiz-
able operators have been studied in connection with perturbation problems
in [7], [8], [9], [13]. For locally definitizable operators, due to the finite order
growth of the resolvent near to some open subset of the real axis, a local
variant of the functional calculus for generalized spectral operators (see [1])
can be established. In [7] and [8] spectral points of positive and negative type
are introduced with the help of this functional calculus or by making use of
some properties of the resolvent, and a local spectral function is constructed.

In [17], for a bounded selfadjoint operator A in a Krein space, the
points of positive and negative type were introduced with the help of approx-
imate eigenvector sequences (in [17] these points are called of plus type and of
minus type). In [21] H. Langer, A. Markus and V. Matsaev, leaning on that
definition, constructed a local spectral function which is defined for all real
intervals which do not contain accumulation points of the nonreal spectrum,
and the spectral points of which are of positive type (or of negative type).
In the same paper this approach was applied to investigate the behaviour of
sign types under perturbations.

The main objective of the present paper is to prove that the sign
type definitions of [7], [8] and [21], and some variations of them, are equiva-
lent. All definitions and the results will be given for selfadjoint linear relations



in a Krein space. At the same time we give the versions for unitary oper-
ators, which are connected with selfadjoint linear relations by the Cayley
transform. For the problems we are dealing with, it is often convenient to
prove the unitary versions and translate the results to the selfadjoint case.

The construction of a functional calculus suitable for sign type def-
initions will be included in this paper. In view of an application in a forth-
coming paper we will give this functional calculus in a more general setting:
the resolvent is replaced by an operator function with similar properties.

The second objective of this article is to give necessary and suffi-
cient conditions for definitizability and local definitizability, which is closely
connected with the description of sign types.

In Section 1 we give the definition of the spectra of positive and
negative type for a selfadjoint linear relation and a unitary operator in a Krein
space with the help of approximate eigenvector sequences; and we show that
these parts of the spectra behave covariantly with respect to the elementary
functional calculus. In Section 2, after some preliminaries on the extension of
functional calculi (Sections 2.1 and 2.2), we recall the definition of open sets
of positive and negative type with respect to an operator function and an
operator, and we describe these sets in different equivalent ways (Section 2.3).
Local spectral functions are introduced in Section 2.4; we recall an extension
procedure for such spectral functions. In Theorem 2.15 we characterize open
sets of positive and negative type in different ways. In Section 3 the properties
of local definitizability for operator functions and operators are introduced.
The definitions in the present paper slightly differ from the definitions in [7]
and [8]. In Theorem 3.7 it is shown that locally definitizable relations can be
characterized by (spectral) decompositions into two relations one of which is
definitizable.

1. The spectra of positive and negative type

Let (H, [, -]) be a Krein space. Recall that a closed linear relation 7'
in H is a closed linear subspace of H?; a closed linear operator in H is viewed
as a closed linear relation via its graph in H?. For the usual definitions of
the linear operations with closed linear relations and the inverse we refer to
[2]. The linear span of two linear subspaces of H? will be denoted by + .

The resolvent set p(T) of a linear relation T is the set of all z € C
such that (T — 2)~! € L(H), the spectrum o(T) of T is the complement of
p(T) in C. The point spectrum o,(T) of T is the set of all z € C such that



(ZJ}) € T for some f # 0. We define

AT) = p(T) U{oo} if 0€p(T),  A(T) :=p(T) if O¢p(T),
o(T) ==0(T)U{oc} if 0€o(T™h), &(T) =0(T) if 0¢o(T" )
,(T) == 0p,(T)U{oc} if 0€0,(T"), 6,(T) :=0,(T)if 0¢o,(T71).

The following definition was introduced in [17] for the case of a
bounded operator T'.

Definition 1.1. We say that A € C belongs to the approzimate
point spectrum of T, denoted by og,(T), if there exists a sequence (z;‘) €
T -\ n=12,..., such that |z,|| = 1, lim, . ||ys|| = 0. We define the
extended approximate point spectrum Go,(T) of T by G4y (T') 1= 04p(T) U {00}
if 0 € 0p(T71), and 74,(T) 1= 04p(T) if 0 ¢ 00, (T71).

Definition 1.2. A point A € 0,,(T), is said to be of positive
type (negative type) with respect to T, if for every sequence (z:) e T — \
n=12 ..., with ||z, =1, lim,_ ||y.|]| = 0 we have

liminf [x,,2,] >0 (resp. limsup [z,,z,] <O0).

n—0o0 n—oo

If 0o € 64,(T), oo is said to be of positive type (negative type) with respect
to T if for every sequence (Z:) eT,n=12..., with lim, . ||z.] = 0,
|lyn]| = 1 we have

liminf [y,, yn] > 0 (resp. limsup [y, yn] < 0).

n—~o0

The set of all points of positive type (negative type) with respect to 7" will
be denoted by o, (T') (resp. o__(T)).

In the following lemmas it is convenient to make use of a so called
transformer of a linear relation (see [23], [3]): If M = (f‘/ 7) is a matrix with
complex entries and T a linear relation, we define the relation MT by

o {(1)- () )

10 0 1
T = 6T T=T"
G syr=men ()

and, for two 2 x 2 matrices M; and My, it holds
My (M,T) = (M Ms)T

Evidently,



(see [3]).
We assign to every matrix M = (i ?) with det M # 0 the frac-
tional linear mapping ®,; of C onto itself defined by

0zt
- Bz+a’

If 8 #0and —af™! € p(T), then @), is locally holomorphic on o(7T") and
MT coincides with the operator ®,,(7") defined by extension of the Riesz-
Dunford-Taylor functional calculus to closed linear relations (see [3, Section
3]). If My and M, are two regular matrices, we have ®pp,p, = Ppry 0 Py, .

Lemma 1.3. Let T be a closed linear relation and M a reqular
2 X 2 matriz. Then

(1'1) Uap(MT) = (I)M(Uap(T))-

Proof. It is sufficient to prove that
(1.2) Ppr(0ap(T)) C 0ap(MT),

since (1.2) and the analogous relation for M replaced by M~! implies (1.1).
Moreover we have to verify (1.2) only for matrices M of the form (; 2),

a # 0, and ((1) (1)), since every 2 X 2 matrix can be written as a product of

matrices of that form and regular diagonal matrices.
Let A € 04,(T), A # 0o. Then there exists a sequence

(1.3) (x”) €T with |lz,| =1, lyn — Az — 0.

n

IEM=(, 2),a#0,then MT =aT +b and ®);(\) = aX + b. By

b= @ 0 ={ (0, ") () €7

and (1.3) we have a\ +b € o,,(aT + b).
If M=} ) then MT =T and ®y;(A) = A~%. For A # 0, we
have

e ) Qe ()

4



which along with (1.3) gives A" € 0, (T71). If A = 0, then 0o € 0,4,(T 7).
Let now 0o € 04,(T). Then there exists a sequence

(z) €T with |lyall =1, za]l — 0.

w0 {(, 1) () <)

which shows that co € o4,(aT + b). Furthermore, 0 € 04,(T7'), and the
lemma is proved.

We have

Lemma 1.4. Let T be a closed linear relation and M a reqular
2 x 2 matriz. Then

04t (MT) = Par(041(T)), 0 (MT) = Pas(o-—(T)).

Proof. We shall prove only the first relation. The second one can
be proved in an analogous way. It is sufficient to prove

Ppr(044+(T)) C 04y (MT)

iog M = (i 2), a #0,and M = ((1) (1)), similarly to the proof of Lemma

Let A € 0,4 (T), A # oo, and let (z:) be a sequence in a1 + b —
(aX+b) = a(T — X\) with ||z,|| =1, ||y.|| — 0. Then, since (afv{‘yn) eT — ),
we have liminf, ¢ [z,,z,] > 0, i.e. a\+b € o, (aT + D).

If, in addition, A # 0 and if (Z:) is a sequence in T-1 — A\~ with
|lznll = 1, |lyal] — 0O, then (y"f’/\\;z") € T'— X which implies liminf, ¢ [y, z,]
>0,ie. A€oy (T7). If A =0and (}") is asequence in T~ with ||y, || =
L, ||z,|| — 0, then (gz) € T and liminf, .o [yn,yn] > 0, i.e. 00 € o (T71).

Now let oo € 04 (T). If (5;:) is a sequence in a7+ b with |ly,| = 1,
|z,|| — 0, then (a,l(yi”_bmn)) € T and liminf, .o [y,,ys] > 0, ie. o0 €
o (aT + D).

If (Z:) is a sequence in T~ with ||z, || = 1, |lyn|| — 0, then (¥*) € T

and liminf, g [z,,2,] > 0, i.e. 0 € o, (T~1). This proves Lemma 1.4.



2. Locally definite operators in Krein spaces

2.1. First we introduce the main objects of our considerations and
some notation. We denote by C* and C~ the open upper and the open
lower half plane, respectively. D denotes the open unit disc and T denotes
the unit circle. For every subset M of C we set M* := {\: A € M} and
M := {\': XA e M}. For a function f defined on a set M C C with
M = M* (M = M) we set f*(\):= f(A) (resp. f(A) = f(A1)).

Let in this and the following sections € be a domain in C which is
symmetric with respect to R, = *, such that QNR # (), and QN C™ and
QN C™ are simply connected.

Let A be a selfadjoint linear relation in the Krein space (H,|[-,-])
such that o(A) N (Q\ R) consists of isolated points which are poles of the
resolvent of A, and no point of QN R is an accumulation point of the nonreal
spectrum o(A) \ R of A.

Let \p € QN p(A) N C*. Then the function ¥, ¥(A) := —(A —
o) (A — Xg) ™! is locally holomorphic on a(A), and the operator

U .= ¢(A) =-1 + ()\0 - XO)(A - Xo)_l

is a unitary operator in (M, [-,-]). Evidently, the domain () is symmetric
with respect to T, () N'T # 0, and () N D and (Q) N D are simply
connected domains of C. By the spectral mapping theorem for closed linear
relations (see e.g. [3, Section 3]) o(U) N ((22) \ T) consists of isolated
points which are poles of the resolvent of U, and no point of () N'T is an
accumulation point of o(U) \ T.

Evidently, a function g is locally holomorphic on o(U) if and only
if g o1 is locally holomorphic on o(A). The Riesz-Dunford-Taylor functional
calculi for A (see e.g. [3, Section 3]) and U are connected by

(2.1) (g o)(A) = g(U).

Let A be an open subset of Q N R. We shall say that A belongs
to the class S™(A), m > 1, if for every closed subset A’ of A there exist a
constant M and an open neighbourhood U of A’ in C such that

(2.2) 1A =X < M(A[+ D)*" 2 Im Al

for all A e U \ R.

We shall say that A belongs to the class S™(A) (cf. [8, Section
1.2]), if for every closed subset A’ of A there exist m > 1, M > 0 and an
open neighbourhood U of A’ in C such that (2.2) holds for all A € U \ R.
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Let I" be an open subset of ¢(2) N T. We shall say that U belongs
to the class S™(I") (cf. [7, Section 1.2]), if for every closed subset I" of T’
there exist a constant M and an rq € (0, 1) such that

(2.3) (U = re®)7H < ML= |r||™™

for all ¢© € T and r € [rg, 1) U (1,75']. We shall say that U belongs to the

class S°(I"), if for every closed subset I of I' there exist m > 1, M > 0 and

7o € (0,1) such that (2.3) holds for all ¢®® € T” and 7 € [ro, 1) U (1,75"].
With the help of the relation

(2.4) 2i(Tm Ao )Y (A (U = (X)) 7H = X=X+ (A = A)(A = A) (A=)~
and the fact that, for all X outside of a neighbourhood of {\g, \g}, we have
(25)  m/Mm AL+ AN < [[N)] = 1 < M ImA|(1+ [A])~

with some positive constants m’, M’, one easily verifies that

(2.6) Ae SMA) <= U e S"(Y(A)), m=1,2,...,00.

If A and U fulfil the conditions (2.2) and (2.3), respectively, the
Riesz-Dunford-Taylor functional calculi for A and U can be extended by
continuity to some classes of functions which are not locally holomorphic on
the spectrum. We recall this fact in the following subsection within a more
general setting: we replace the resolvent by a holomorphic operator function.

2.2. Extensions of the functional calculi of A and U, and extensions
of some analytic functionals connected with operator functions. Let G be an
L(H)-valued meromorphic function in 2\ R which is symmetric with respect
to the real line, that is

(2.7) GO\ = GO)*

for all points A of holomorphy of G, such that no point of Q N R is an
accumulation point of nonreal poles of G. Here G(A)™ denotes the Krein
space adjoint of G(\). Assume that Ay € QN CT is a point of holomorphy
of G.

In the following, if M is a closed subset of C, the linear space of all
locally holomorphic functions on M will be denoted by H(M).

Let O" be a bounded C* domain (not necessarily simply con-

nected) with O € QN C*T and Ay € OF such that OF is contained in
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the domain of holomorphy of G. Then by (2.7) G is also locally holomorphic
on 07, O = (0O%)*. For every g € H(C\ (O UO7)) we define

2.8) Sawz%ﬂmhﬂéGOMQﬂk—MY%A—EY%M

where C = 90T U 0O~ . Evidently, for every function g locally holomorphic
on

(C\ Q) URU {poles of G}

we may find some domain O as above and such that g € H(C\ (0T UO™)).
Then the operator Sg.g is defined, and it does not depend on the choice of
OT. Tt is easy to see that Sg.g* = (Sg.9)". B

Let F be the L£(H)-valued meromorphic function in ¢(2\ R) =
P\ T, p(A) ;=== —(X — X\g)(A — A\g) !, defined by
(2.9) F(p(\) = —iG(N).
The function F' is skew symmetric with respect to the unit circle T:

F(z')=—-F(2)*

for all points z of holomorphy of F'. No point of /() N'T is an accumulation
point of non-unimodular poles of F. Moreover, F' is holomorphic at 0 and
oo. If OF is as above, then for every f € H(C\ %(O" UO7)) we define

Hf:A©N&WWﬁ%A

where ¥(C) = 0Y(OF) U dY(O7). We have Tp.f = (Tp.f)*.
Similarly to the functional Sg, the functional T is defined for every
function f locally holomorphic on

(2.10) (C\ 9¥(Q))UTU {poles of F}.

A simple calculation shows that

(2.11) Te.f = Sc.(f o ¢)

for every function f locally holomorphic on (2.10).
IfAe Q\Rand ¢ € ¢(2) \ T are points of holomorphy of G and
F, respectively, and if we set
gA(w) = (47r)_1(Im )\0)_1 ()\ — Re )\0 + ()\ - )\0)()\ - 5\0)(21] — )\)_1> s
(2.12) he(z) = (4m) " (z + (= = )7,



then
(2.13)
G(A) = Sa-gr+3(G(Xo) +G (X)), F(C) = Tr.he +5(F(0) = F(0)").

If U and A are as in Section 2.1, we define

(2.14) Fy(2) = (4m) N (U + 2)(U — 2) 7, z € p(U),

(2.15)  Ga(N) =
= (4m) 7 (Im Ao) TH{(A = Re o) + (A = Ao)(A = Xo) (A = N) 7'}, A € p(A),

then we have
(2.16) Fu(b(\) = —iGa(N), A € plA),

and a little calculation shows that f +— Tp,.f and g — Sg,.g are the
Riesz-Dunford-Taylor functional calculi for U and A, respectively, that is,
Tp,.f = f(U), Sa,.9 = g(A). In this case the relation (2.11) follows from
the functional calculus of A: f(U) = f(¢(A)) = (foy)(A).

Now let again G be as at the beginning of Section 2.2 and F' as in
(2.9). Let A be an open subset of Q N R, and let m > 1. We shall say that
the order of growth of G near A is < m, if for every closed subset A’ of A
there exists a constant M and an open neighbourhood U of A’ in C such
that

IGO < ML+ A2 Tm A

for all A € 4 \ R. We do not exclude the case when Q = C and A = R.

Analogously, if I' = ¥(A) we shall say that the order of growth of
F near T is < m, if for every closed subset I of I" there exists a constant M
and an ro € (0,1) such that

1F(re®)|| < ML= |r||™™

for all €® € T" and r € [ro, 1) U (1,75']. It is easy to verify that the order of
growth of G near A is < m if and only if the order of growth of F near I' is
<m.

We have, on account of (2.6) and (2.16),

A € S™(A) <= the order of growth of G4 near A is < m <=

2.17
(2.17) U € S™(¢Y(A)) <= the order of growth of Fy;y near ¢(A) is < m .

With the help of the topology which we introduce now the functional
Tr will be extended in Theorem 2.1 below. Let I'y be the union of a finite
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number of pairwise disjoint open arcs of T, I'y # T, and let §y € (0,1) be
such that for

(2.18) Qo = {re®: e® e Ty, r€ (6, 1)U(1,61)}

the function F is locally holomorphic on Qg \ T.

We denote by D®(C\ @), p nonnegative integer, the linear space
of all continuous complex functions f on C\ Q such that f is locally holo-
morphic on C \ (Qp U I'y) and the restriction f|T is a CP function. We
introduce a locally convex topology on D®)(C\ Qg): Let ¢y, 0 < eg < 1 —dp,
be such that for 0 < € < ¢y every component of I'y contains a point of

[ = {e® €Ty : dist (e°, T\ Tp) > €} C Ty,
and set
Q. = {rei@ ce® el re (6o + 6 1)UL, (6 +e)™H}

Let (e,) C (0, o) be a decreasing null sequence and let D be the subspace
of DP)(C\ Q) of all f € D®(C\ Qo) which can analytically be continued
to C\ (Q., UT,) such that f is continuous on C\ (Q., UT, ). We have
D®(CT\ Qo) = U, DP. On the space DP we consider the norm

119 = sup {|(2)] - =€ T\ (@ey UTe) b+
+sup {| 5 /(e®)] : €© €To, 0< v <p}, fE DY

(DP | £1¥) is a Banach space. On the space D®(C \ Qo) we consider the

topology of the inductive limit of the spaces DY ), n=1,2,.... One verifies
as in [16, §27,4.(2)] that this topology is separated. By well-known properties
of the Abel-Poisson integral, H(C \ Qo) is dense in D®(C \ Qo).

The following theorem shows that under the growth condition on
I considered above, the functional T can be extended by continuity to a
larger class of functions (see also [11, Proposition 1.1]).

Theorem 2.1.  Let F be as in (2.9) and let T be an open subset
of () N'T. Assume that the order of growth of F near T' is < m, m some
positive integer. Let I'g be the union of a finite number of open arcs of T
such that To C T, Ty # T, and let Qq be as in (2.18).

Then the functional Tr is a continuous linear mapping of H(C\ Qo)
equipped with the topology of D™+Y(C\ Qo) into L(H). Therefore, Tr can

10



be extended by continuity to DHD(C\ Qo). Moreover, if the support of
f € DMO(C\ Qo) is in Ty, we have

(2.19) Tp.f = li{{l F(e®OVF(re’®) — F(r'e®)} do,
T SO

where Sy := {O© € [0,27) : €© € ['y}.

Proof. Let H be a locally holomorphic function in (g such that
HI™H(2) = F(z), where

(2.20)  HO2):= H(2), HY(2):=iz(dHV"Y/d2)(2), j=1,2,....

For every component Qo of )y we have

HU_H(Z) :Hk]+/ HM(C)(ZC)_ldCa .] = 1727"'>m+17 z € QO,ka
2k
where zj, € Qo and Hy; € L(H). By these relations and the assumption on
F, H has continuous boundary values on I'g.
Let f € D™)(C\ Qo). There exists an ng such that f € D
for all n > ng. We set C; := 9(Q., ND), C, := 9(Q., ND), n > ng+1, and
define

(2.21) () = /C L THE ) i)

The right hand side of (2.21) does not depend on n > ny + 1. Evidently, the
restriction of 7' to D™ is continuous with respect to ||-||"). Therefore, T
is continuous with respect to the topology of inductive limit of D™+ (C\Qy).

If f € H(C\ Qp), integration by parts applied to the right hand
side of (2.21) shows that T'(f) = Tr.f, and the first assertion of Theorem 2.1

is proved.
If f € DI and supp f C T, , then (2.21) gives

T(f) = (=)™ lim A (H(rz) — H(r"'2)) f"* 1 (2) (i2) ~'dz,

By integration by parts we obtain

T(p)=tim [ (F(rs) = FO™ ) f(2)(62) " d

which proves (2.19).

11



Remark 2.2.  The topology with respect to which T is extended
in Theorem 2.1 is finer than the topology considered in [11, Section 1.1]. The
extension of Tr with respect to the latter topology contains the extension
considered here.

The following theorem, which is a variant of Theorem 2.1 for the
case 1 = () = C, ' =T, is well known ([15]). For completeness we shall
give a proof here.

Theorem 2.3.  Let F' be a meromorphic function in C\'T, F =
F. Assume that the set P of all poles of F in C\ T is finite, 0,00 ¢ P, and
that the order of growth of F' near T is < m, m some positive integer.
Then Tp € L(H(T U P),L(H)) is continuous with respect to the
topology of C™(T) x H(P). Therefore, Tr can be extended by continuity
to C™Y(T) x H(P). Moreover, if f € C™(T) x {0} then
21

Tp.f =lim (F(re'y — F(r='e)) f(e)db.

rTl 0

Proof. Let xo € H(T U P) be equal to one (zero) in some
neighbourhood of P (resp. T). For ( € C\ (T U P) we define with h¢ as in
(2.12)

Fo(¢) = Tp.xohe + %(F(O)N— F(0)"),
Fo(¢) = Tp.(1=x0)h¢, F(C) = F)(C) — Foy(00).

It is easy to see that Fy is locally holomorphic on C\ P and that F| (0) and F
are locally holomorphic on C\ T. By (2.13) we have

(2.22) F(C) = Fo(¢) + Fo)(€) = Fo(¢) + Floy(c0) + F(C).

Define C~
Sl . ) Jo FR)(iz)7Mde it ¢ <1
o {ffoF(z)(z'z)‘ldz if || > 1.

Repeating this construction m times we obtain a function H := Fl=m-1]
locally holomorphic on C \ T such that H™*U(¢) = F(¢). Since the order
of growth of F' near T is < m, H has continuous boundary values on T:

H;(e") .= li%rf Hi(re), Hy(e?) := li%rf Hi(r~e').
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Let f € H(TUP) and assume that f is zero on some neighbourhood
of P. If f is holomorphic on the closure of A, := {z: r < |z| < 7'} we
have

Tp.f:—/aA F(2)f(2)(i2) " dz

and, therefore,

Tp.f = _/M F2) f(2)(i2) " dz =
— [ HG) ) i) e =
OA,

= —(—1)m*! H(2) fmH(2)(i2) tdz =
0A;

= (—1)m+ /(HZ(Z) — Hy(2)) fm*YU(2)(iz)dz.

(2.23)

This implies the continuity statement of Theorem 2.3. Moreover, if f €
C™(T) x {0} then, by (2.23),

Tp.f = (=)™ lim [ (H(rz) — H(r~ ') fm(2) (i2)Ldz =

rTl T
= lim (F(rz) — F(r'2)) f(2)(iz) 'dz =
~tin " (F(re®) — F(re®)) f(e)do),

which proves Theorem 2.3.

In the following, when we consider a functional Tx as in Theorem
2.1 and " and m are as in that theorem, the linear space of all functions
f defined on T U Uy, where U; is some neighbourhood of (C \ ¥(2)) U
{poles of F' in ¢(Q2) \ T} U (T \ I'), such that fldy = 0 and f|I' belongs
to C¥(T'), k > m + 1, will be denoted by C§(T'), for the simplicity of nota-
tion.

The following lemma, which will be used below, is a consequence of
Theorem 2.1.

Lemma 2.4.  Let F be as in (2.9) and let I'y and T' be open
subsets of V() N'T such that I'y C T'. Assume that the order of growth of F
near I' 1s < m.
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Let x € C°(T') be equal to one on a neighbourhood of Ty and let

Fi(2) :== Tr.xh. + 5(F(0) — F(0)"),

(see (2.12)). Then Fy and Fy are L(H)-valued meromorphic functions in
() \ T with

Fj(z ") =-Fi(z)*, zey(@Q\T, j=12

and F' = Fi+Fy. Fy is locally holomorphic on C\I', F, is locally holomorphic
on I'y and the order of growth of Fy near T is < m + 2.

Proof. By the continuity properties of T proved in Theorem
2.1 F} is complex differentiable in some neighbourhood of any point of C\
supp x. Similarly, F; is locally holomorphic on I'y. Therefore, F; and F), are
meromorphic functions in ¥(2) \ T. F = F} + F, follows from the second
relation of (2.13). By Theorem 2.1, (2.19), we have

27

10
Fi(z) = (4m)"" lim i X(e™) e

+3(F(0) = F(0)).

{F(re'®) — F(r~'e®)}do

This implies that F} is skew-symmetric with respect to T. Then the same is
true for Fj.

Let K be a compact subset of C\ {0}. Then by the definition of F}
and the local C™*!-continuity of Tr there exist constants M and M’ such
that z € K \ T implies

d* -
1B G < M oswp {|2g7 ho(e®)]: © € [0,27], k=0,....m+1}

S M/‘l o ‘Z||m+2.

That is, the order of growth of F} near T is < m + 2.
If we set F(z) = Fy(z), Theorems 2.1 and 2.3 imply the following

Corollary 2.5.  Let ' be an open subset of (Q2)N'T, and assume
that U € S™(I'), m some positive integer.

Let Ty, I'y # T, be the union of a finite number of open arcs of
T such that Ty C T, and let Qo and Sy be as in (2.18) and (2.19) with
Qo \To C p(U). Then the Riesz-Dunford functional calculus of U can be

14



extended by continuity to D™D (C\Qy). If the support of f € D™D (C\Qy)
15 1 Iy, we have

Fe) =t [ FE){Folre®) = Folre®)}a. 1] do =
So

(2.24) = (2m)! 17}%111 s f(ele)[U{U —re©)7 = (U — r_lei(a)_l}x,y] do.

IfQQ=C and U € S™(T), then the Riesz-Dunford functional calcu-
lus of U is continuous with respect to the topology of C™ 1 (T) x H(o(U)\T)
and can, therefore, be extended to this space. For f € C™T(T) x {0} (2.24)
holds with Sy = [0, 2m).

Remark 2.6. Compared with the functional calculus of [7] the
domain of this functional calculus is smaller. On the other hand it is sufficient
for the characterization of sign types.

If the order of growth of G near A, A open subset of Q N R, is
< m, we define the extension of the functional Sg by Sg.(f o ¢) = Tp.f
(see (2.11)), where f belongs to the extended domain of Tx. If we regard R
as a real-analytic manifold in the usual way, then the restriction of ¥ to R
is a real-analytic diffeomorphism of R onto T, and therefore, f o is C™,
m = 0,1,...,00, on the open subset A of QN R if and only if f is C™ on
¥(A). In connection with the functional S we will use the notation Cf*(A),
A C QNR, in a way analogous to the notation Cf*(T") introduced above.

2.3. Open sets of positive and negative type with respect to operator
functions. Let, as at the beginning of Section 2.2, G be an L(H)-valued
meromorphic function in  \ R with G(\) = G(\)* such that no point of
QN R is an accumulation point of nonreal poles of G and G is holomorphic
at Ag. Now we take over a definition from [14, Section 3.1] to our slightly
more general situation. Observe that if A € QN C™ is a point of holomorphy
of G and if z € H, we have

i [(G\) = G\)z, z] = 2Im [G(N\)z, z].

Definition 2.7. An open subset A C QNR is said to be of positive
type with respect to G, if the following conditions are fulfilled for every x € H.

(i) lim inf. o {—¢[(G(t + ie) — G(t — i€))x,x]} > 0 for almost every ¢ €

A\ {o0}.

15



(ii) For every bounded closed subset A of A and sufficiently small ¢, > 0,
inf{—i[(G(t + ic) — G(t —ie))z,z] : t € Ny, 0 < e < ¢} > —o0.
If oo € A, then, in addition, for sufficiently small 6y > 0, ¢ > 0,
inf{—i[(G(—(t+ie) ) —G(—(t—ie) Da,z] : =6 <t <8, 0<e<e}
> —0Q.

An open subset A C QNR is said to be of negative type with respect
to G if A is of positive type with respect to —G. A is said to be of definite
type with respect to G if A is of positive type or of negative type with respect
to G.

Lemma 2.8. If G is as above and A is an open subset of QNR
the following assertions are equivalent.

(a) A is of positive type with respect to G.

(b) (a) holds, and, for every x € 'H, the angular limit li/r\nlm x>0, 3=t |[G(N\)z, ]
exists and belongs to CT UR for almost every t € A.

(c) If x € H and if (\,) is a sequence of points of holomorphy of G in
QN CT which converges in C to a point of A, then

liminf {—i[(G(\,) — G(\,))z, 7]} > 0.

n—oo

(d) If z € H, Ay is an open subset of A with Ay C A, and if a > 0, there
exists an open set O in C, Ay C O, such that

inf{—i[(G(\) — Gz, 2] : A€ O\ R} > —a.

If (a) - (d) are true, then for every open subset Ay of A with Ay C A, there
exists an open set O in C, Ay C O, such that

sup { |G [IImA|(T+[A)"": A€ O, Im A # 0} < co.

We shall prove this lemma with the help of a similar lemma for
L(H)-valued meromorphic functions F in ¢(Q2) \ T with F(z7!) = —F(2)"
such that no point of ¢(2) N T is an accumulation point of poles of F in
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»(2)\'T and F is holomorphic at 0. For these functions, which are connected
by (2.9) with those considered in Definition 2.7, we introduce similar notions
(cf. [12, Lemma 1.7]). Observe that if z € (©2) N D is a point of holomorphy
of F and x € 'H, we have

[(F(2) — F(z 1)r, 2] = 2Re[F(2)x, z].

Definition 2.7".  Anopenset I' C (Q)NT is said to be of positive
type with respect to F' if the following conditions are fulfilled for every x € H.

(i) liminf,.q; [(F(re®) — F(r~1e*®))z, 2] > 0 for almost every ¢© € T.

(ii") inf {[(F(re®) — F(r~1e®))z, 2] : ¢®© € 4, r € (1 -6,1)} > —oo for
every closed subarc v of I' and sufficiently small § > 0.

An open set I' C ¢(Q)NT is said to be of negative type with respect
to F if T" is of positive type with respect to —F. T' is said to be of definite
type with respect to F if T is of positive type or of negative type with respect
to F.

Lemma 2.8'. Let F' be as above and I an open subset of (2)N'T.
Then the following assertions are equivalent.

(") T is of positive type with respect to F.

(b") (a') holds, and, for every x € ‘H, the angular limit li/r;1‘2‘<1,z_>s [F(2)x, x]
exists and has nonnegative real part for almost every s € ¥(A).

() If x € H and if (z,) C ¥(Q2) N D is a convergent sequence of points of
holomorphy of F with lim,,_,, z, € I, then

liminf [(F(z,) — F(z,"))z,z] > 0.

n—oo

(d) Ifx € H, 7' is a closed subarc of I and if & > 0, there exists a § € (0,1)
such that

inf{[(F(re’®) — F(r~'e®))z, 2] : ¢© €4/, r € (1-6,1)} > —a.

If these assertions hold, then for every closed subarc 7' of I and every ry €
(0,1) such that 1 —ry is sufficiently small,

(2.25) sup{||F(rei®)]\|1 —r|: e® ey re [ro, 1) U (1,75} < o0.
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Proof of Lemmas 2.8 and 2.8". 1. We first prove Lemma 2.8'". It is
easy to see that (¢/) and (d’) are equivalent. Evidently, (¢/) and (d’) imply
(a). In order to prove Lemma 2.8 it is sufficient to show that (a’) implies
(b'), (d’) and (2.25).

Assume that (a’) holds. Let «' be a compact subarc of ', and let
v and 77 be open arcs in I' such that v C vy, 7% C 71 and 7; C I'. We fix
some €y > 0 such that

Vi={re®:rcl—e, 1)U, (1—-e)"],e® eyl

consists of points of holomorphy of F. The function f(z) := [F(z)z,z],
z € Vi, satisfies the relation f(z7!) = —f(z), z € V4. By (a’) there exists an
M € R such that

Re{f(z) + M} =
(2.26) =(F(2) = F(z Y)x,2] + M >0, zeViND.

1
2
Let now Oy be a simply connected C'**° subdomain of V; N D such that g
is contained in the boundary of Oy. Let x be a conformal mapping of D
onto Op. Then, by (2.26), f o x + M is a holomorphic function on D with
nonnegative real part. This implies that there is a positive measure p on
[—m, 7], u({—7}) =0, and B € R such that

s

(f o x)(w) + M = zﬂ+/ 4w (1), w € D.

—T

As a consequence,

™

(227) (Foxw) =6+ [ & an(e), weD,

where dv(t) = du(t) — M(2m)~*dt. Therefore, the function f o x has angular
limits at almost every point of T. Then, by well-known differentiability
properties of x, f(z) = [F(2)z, ] has angular limits at almost every point of
vo- In view of (a’), these angular limits have nonnegative real part at almost
every point of vy, which implies (b’). For almost every point wy of the open

arc X (70) we have
(2.28) Tim Re(f o y)(w) > 0.

~1
Let g be a nonnegative continuous function on T with suppg C X (7). By

™

Re(fon)(w) = [ Re {5} vt

—Tr
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and a well-known result (see e.g. [5, Chapter 3]) we have

s

(220)  lim (27)"! / " (") Re (f o x)(ret)di = / g(eit) du(t).

r1l _r _r
As Re (fox) is bounded from below, and by (2.28) the left hand side of (2.29)
is nonnegative. Therefore, the measure dv(t) is positive on {t € [—7, 7] :
I
e’ €X ()}
. -1
Define h(e™) to be equal to one if e € X (7) and equal to zero if

e € T\ X (70). Then the real part of the first term on the right hand side
of

(Fox)w) = [ S heavte)+

+ /7r ctw (1 — p(e))dv(t), w e D.

ett—w

—T

—1
is nonnegative for all w € D. The last term is locally holomorphic on X (7o)

-1
and has zero real part on X (7). This implies (d').
From (2.27) we derive, for every € H and 7' and ¢, as above,

sup{\[F(reit)x,x]Hl —r|: etey re [1—e,1)U(l,(1— (—:0)_1]} < Q.

Then the principle of uniform boundedness gives the last assertion of Lemma
2.8

2. In order to prove Lemma 2.8 we define an L£(H)-valued mero-
morphic function " on ¢(2) \ T by i oty = G and set I" := ¢)(A). Then,
evidently, (b) < (b'), (¢) & (¢), (d) & (d'), (b) = (a). It is sufficient to
show that (a) implies (b). Assume that (a) holds. Then condition (ii) of
Definition 2.7 implies condition (ii") of Definition 2.7’, which implies, by part
1 of this proof, that the angular limits of [F(2)z, x], * € H, exist at almost
every point of I'. It follows that the angular limits of [G(\)x, ] exist for
almost every point of A. Hence (a) implies (b).

Let, in the rest of Section 2.3 F' be the £(H)-valued meromorphic
function on ¥(€2) \ T defined by iF o) = G. As a consequence of Lemmas
2.8 and 2.8" we obtain the following

Lemma 2.9. The open set A C QN R is of positive type with
respect to G if and only if Y(A) is of positive type with respect to F.
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With the help of Definition 2.7" we can characterize the local posi-
tivity of the functional Tr considered in Section 2.1:

Lemma 2.10. IfT is an open subset of () N'T, the following
conditions are equivalent.

() T is of positive type with respect to F.

(B8) The order of growth of F' near I' is < m for some integer m, and
(Tp.f)x,z] > 0 for every nonnegative function f € C§°(I') and any
r € H.

Proof. 1. Assume that («) holds. Then by the last assertion
of Lemma 2.8" the order of growth of F' near I' is < 1. Let z € H and
let f € C°(T') be nonnegative. If S := {© € [0,27) : ¢© € '}, then, by
Theorem 2.1,

(Tp.f)z, x| = li{{l FEOV{F(re®) — F(r'e®)}x, 2] dO,
T SO
and Lemma 2.8, (d') implies [(TF.f)z, x] > 0.
2. Assume that (5) holds. We show that F' satisfies condition (d)
of Lemma 2.8'. By Lemma 2.4 with I'; = 4" and a nonnegative function y
it is sufficient to prove that for every € H, a > 0 there exists a 6 € (0,1)
such that

(2.30) inf {[Tr.X(hpeio — hy1pi0)z, 7] €© €4, re(1—-6,1)} > —a.

A simple calculation shows that h,ge(2) — h,-1.e(2) is nonnegative for r €
(0,1) and z € T. Then (f) implies that the left hand side of (2.30) is
nonnegative and Lemma 2.10 is proved.

2.4. Local spectral functions. Here and in the following 2, A, T,
A and U are as in Section 2.1. We denote by B(A) the Boolean ring of all

finite unions of connected subsets of A whose boundary points (in R) belong
to A.

Definition 2.11. We shall say that A has a spectral function on A
if there exists a strongly o-additive homomorphism E of B(A) into a Boolean
ring of selfadjoint projections of H such that the following holds for every

5 € B(A).

(i) HT(A—z)"! = (A—2)"'T for a bounded operator T and some z € p(A)
(hence, for all z € p(A)), then TE(S) = E(0)T.
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(ii) G(A|E(0)H) € 6(A) N é and (A|(1 — E(6))H) C d(A) \ 6°, where &°
is the interior of § with respect to the topology of R.

The uniqueness of the spectral function on A can be shown in the
same way as for a bounded operator A. For the convenience of the reader we
give a proof here.

Lemma 2.12.  The operator A cannot have more than one spec-
tral function on A.

Proof.  Assume A has the spectral functions £ and E’ on A.
Let §, d1, dg,..., be closed sets in B(A) such that the sequence (d,,) is de-
creasing, ({0, : n = 1,2,...} =4, and § C 62 holds for every n. By (i)
the spectral functions E and E’ commute. By (ii) for any n the spectra of
Y(A)|E(0)H and (A)|(1 — E'(0,))H are disjoint. It follows that the spec-
trum of Y (A)|E(5)(1 — E'(5,))H is empty and, hence, E(6)(1 — E'(5,)) = 0.
By the o-additivity of E’ we obtain E(0)E'(0) = E(J). In the same way we
show E(§)E'(0) = E’'(9), and it follows that E(d) = E’'(9).

We shall extend this local spectral function, in three consecutive
steps, to larger classes of Borel subsets of C. B

First we extend E to the Boolean ring B(A) of all Borel subsets o
of A such that § C A: For any z,y € H, [E(-)x,y] has a unique extension
to B(A) which is o-additive (see [4, Corollary I11.5.9]). Making use of the
weak sequential completeness of the Hilbert space we find (with the help
of transfinite induction) that even the operator function E has a unique
extension to B(A). It is well known that the extended spectral function is
strongly o-additive (see e.g. [4, Theorem IV.10.1]), and it is easy to see that
all the properties of the spectral function mentioned above are preserved
under this extension. For Borel sets § with § C A we have E(J) = E(§ N
a(A)).

The second extension is only a formal one: We extend E from a
Boolean ring of Borel subsets of A to some Boolean algebra of Borel sets in
C: Consider the Boolean algebra

Do(a(A)\ A) ==
= {bBorel set inC: bN (5(A)\A) =0ordt’ >5(A)\ A}

The sets of Dy(a(A) \ A) contain either the whole set 7(A) \ A or no point
of 7(A)\ A. Let b € Dy(c(A) \ A). IfbN (d(A) \ A) =0, we set

E(b) := E(bN5(A)),
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and if 8° D 5(A) \ A, we have (C\ b) N (7(A) \ A) = 0 and we set
E(b) = 1— BE((C\ b) N 5(A)).

Evidently, E defined on Dy(c(A)\A) is a strongly o-additive homomorphism
of Dy(c(A)\ A) to a Boolean algebra of selfadjoint projections of H with the
properties (i) and (ii).

With the help of the Riesz-Dunford-Taylor projections the spectral
function E can be further extended to a Boolean algebra of Borel sets which
may contain only a part of the set 7(A)\ A of “possible spectral singularities”.
The following theorem was proved by B. Nagy in [22] for a closed operator
A. The proof in [22] is also valid for a closed linear relation, and it is easy
to see that condition (i) of Definition 2.11 is preserved under this extension.

Theorem 2.13.  The spectral function E on A of A can be ex-
tended to a strongly o-additive homomorphism of the Boolean algebra

A(@(A)\ A) ==
= {bBorel set of C: d(bNac(A))N(F(A)\ A) =0}

to a Boolean algebra of projections of H such that the conditions (i) and (ii)
of Definition 2.11 are fulfilled. This extension is unique.
Moreover, b = b* € A(g(A) \ A) implies that E(b) is selfadjoint.

The uniqueness statement can also be verified along the lines of
Lemma 2.12. The fact that b = b* implies the selfadjointness of E(b) is a
consequence of the construction in [22].

Remark 2.14. Let A’ be a connected open subset of Q@ N R and
e a subset of A’ which has no point of accumulation in A’. Assume that A
has a spectral function E on A := A’\ e. Then all connected subsets ¢’ of A/
whose boundary points (in R) belong to A’ \ e are elements of A(g(A)\ A),
i.e. E(d") is defined.

In the same way, replacing A, R and A by U = ¢(A), T and
I' = ¢(A), the notion of a spectral function of U on I' can be defined. For
the convenience of the reader we repeat the definition. Let B(I') be the
Boolean ring of all finite unions of connected subsets of I' whose boundary
points (in T) belong to T.

Definition 2.11.  We shall say that U has a spectral function
on I' if there exists a strongly o-additive homomorphism F' of B(I') into a

'Here 0b' denotes the boundary of b’ C 7(A) with respect to the relative topology of
a(A).
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Boolean ring of selfadjoint projections of H such that the following holds for
every v € B(I).

(i") If TU = UT for a bounded operator T, then TF () = F(v)T.
(ii") o(U|F(y)H) C o(U)N7 and o(U|(1 — F(y))H) C a(U) \ 7°, where 4°
is the interior of « with respect to the topology of T.

A spectral function of U on I' is uniquely determined. This is proved
in the same way as in Lemma 2.12.

The selfadjoint relation A has a spectral function £ on A if and
only if U has a spectral function F' on I'; and we have

for all 6 € B(A). This is an immediate consequence of the spectral mapping
theorem for linear relations.

2.5. Local definiteness. The following theorem is the main result of
this paper.

Theorem 2.15.  Let Q, A, ¢ and U be as al the beginning of Sec-
tion 2.1 and let A be an open subset of QNR. Then the following assertions
are equivalent.

(1) AcCp(A)Uayi(A).
(1) ¥(A) C p(U) Uosr(U).
(2) A is of positive type with respect to the function
A A—ReXg+ (A=) (A= Ag)(A— AL,
(2") Y(A) is of positive type with respect to the function
zr— (U+2)(U—2)t=-1+200U —2)"1.

(3) A€ SYA) and (2) holds.

(3) U e SY((A)) and (2') holds.

(4) A € S®°(A) and for every nonnegative g € C3°(A) we have [g(A)z, x] >
0,z e 'H.
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(4') U € S®((A)) and for every nonnegative f € C°(Y(A)) we have
[f(U)x, 2] >0, € H.

(5) A has a spectral function E on A, and for all 6 € B(A) we have
[E(§)x,xz] >0, v € H.

(5") U has a spectral function F' on ¥(A), and for all v € B(¢(A)) we have
[F(y)z,2] >0, v € H.

(6) For every open subset Ay of A which is a finite union of connected sub-
sets of A with Ay C A, there exists a nonnegative selfadjoint projection
Eqy in 'H which commutes with every bounded operator that commutes
with the resolvent of A, such that the diagonal representation of A,

A=AN(EH)?*+ AN ((1 - Ey)H)?
has the following properties.

(i) 3(AN (BEyH)?) € 5(A) Dy, FHAN((1— E)H)?) C 5(A)\ Ag.

(ii) The boundary points of AN¢ (in R) are no eigenvalues of A N
(EoH)?.

(6") For every open subset I'g of ¥(A) which is a finite union of arcs with
To C ¥(A), there exists a nonnegative selfadjoint projection Fy in H
which commutes with every bounded operator that commutes with U,
such that the diagonal representation

Uy 0
U pu—
( 0 U )
with respect to the decomposition H = FoH+(1—Fy)H has the following
properties.
(') o(Uy) C a(U) N Ty, o(Uwy) C a(U) \ L.

(ii") The boundary points of I'y (in T) are no eigenvalues of Uy.

Similar equivalences hold for all positivity and nonnegativity conditions in (1)
- (6") replaced by the corresponding negativity and nonpositivity conditions.

Proof. (1) & (1'): This equivalence follows from the spectral
mapping theorem for linear relations (see [3, Section 3]) and Lemma 1.4 with

o 1
M= |70 .
(%4
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(1) = (2'): Assume that (2’) is not true. Then there exist an x € H,
a 3 < 0 and two convergent sequences (¢/©") C ¢(A) and (r,) C (0,1) such
that r,ei®" € p(U), lim,_, €€ =: €© € ¥(A), lim,, o7, = 1 and

(2.31) [U{(U — rpe®©)™ — (U —r ey e, 2] < 5.
We have
[U{(U = 1) = (U =1, 1e®) 2] =
(2.32) = (rp — ;e UU — rpe®) WU — rte®) e 2] =
' = (rp — ;e (U = 1€ e, (1 — 7 e 0 U) e 0] =
= (1 =72)[(U = rpe®) o, (U — 1r,e"°) " 1a].

Hence (2.31) implies oy, = [[(U — 7,e")7'z|| — oo for n — oo
and, hence, ¢© € o(U).

If z,, :== a; (U — r,e®®) "z, then |z,|| = 1 and

(U — eze)an = o, o+ (rnei@” — ei@)(U — rnei@”)_le — 0.
By (2.31) and (2.32) we have

liminf [z,,z,] <O0.

n—oo

Therefore, (1) is not true.
(2) & (2'): We have

(U + W)U = (N) ! =
— —i(Im Ag) " {A = Re g + (A = A)(A — Ag)(A — )71}

for every A € p(A) N Q. By Lemma 2.9 this relation implies the equivalence
(2) & (2).

(2") = (3): Assume that (2') holds. Then the last assertion of
Lemma 2.8" applied to

F(2)=U+2)(U—-2)""=-14+20U —2)""

gives U € SH(y(A)).

(3) & (3): That A € S'(A) is equivalent to U € S*(¢(A)) was
shown at the end of Section 2.1.

(3') = (4'): By Lemma 2.10 applied to F(z) = Fy(z) condition
(2"), which is equivalent to (3'), implies (4’). Or, more directly, if z € H,
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f € C5°(¢(A)) and Iy is the union of a finite number of closed subarcs of
(A) such that supp g C Ty, then Lemma 2.8 applied to Fy;(z) shows that
for every o > 0 there exists a § € (0,1) such that

inf {[U{(U —re®)™ — (U —r"1e®) N, 2] : e© €Dy, re (1-6,1)} > —a.

Then (2.24) gives [f(U)z,z] > 0.

(4) < (4'): It was proved at the end of Section 2.1 that A € S™(A)
and U € S*(¢(A)) are equivalent. If f runs through all nonnegative func-
tions in C§°(¢(A)) then g = f o4 runs through all nonnegative functions in
C°(A)), and for these functions we have f(U) = g(A).

(4') = (5'): Assume that (4') holds. Let f, € C§°(¢(A)), n =
1,2,..., such that supp f, C K, where K is some compact subset of 1(A),
and assume that the sequence (f,,) converges uniformly to a continuous func-
tion f. Let x € C5°(¥(A)) be a positive function and equal to one on a
neighbourhood of K. Then for any ¢ > 0 there exists an N such that for
n,m > N we have

—e X(U)z, 2] < [(fu(U) = fin(U))z, 2] < e[x(U)z, 7]

for all x € ‘H. Hence f,(U) converges with respect to the operator norm.
Therefore the functional calculus for U can be extended to C§(¢(A)).

Let (h,) be a sequence of uniformly bounded functions belonging
to CQ(¥(A)) with supph, C K, n = 1,2,..., for some compact subset K
of ¥(A), and assume that the sequence (h,,) is pointwise convergent. Then
(h,(U)) converges to a bounded operator in the weak sense. In this way
we extend the functional calculus of U to the linear set By(1)(A)) of all
bounded functions h which are zero outside of a compact subset of 1)(A) and
which can be approximated by continuous functions with respect to pointwise
convergence. It is easy to see that this extension of the functional calculus
remains linear, multiplicative and positive. Moreover, it is continuous with
respect to pointwise convergence of uniformly bounded functions and the
weak operator topology.

If v € B(y(A)) then the indicator function y.,, of v belongs to
Bo(1¥(A)), and we define

F(v0) 3= X7 (U)-
Then we have [F(vyy)z,z] > 0 for every x € H. From the linearity and
multiplicativity of the extended functional calculus it follows that F' fulfils
the homomorphism property of the spectral function. The strong o-additivity
of F'is a consequence of the continuity of the extended functional calculus
mentioned above and the fact that weakly convergent monotone sequences of
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bounded selfadjoint operators in a Krein space converge in the strong sense.
That F' satisfies condition (i') of Definition 2.11" follows immediately from
the definition of F.

That (ii’) (in Definition 2.11") holds can be verified in the following
way, which is well known: If 2y ¢ 75, then the function h defined by h(z) :=
(z = 20) x4 (2) belongs to By(¢(A)) and we have

(U - Zo)h(U) = h(U)(U - ZO)F(%) = F(%)-

Therefore, zg ¢ o(U|F(v)H).

Let now zy be a point of 7o but no boundary point of v (in T), and
let k& be a function from C§°(¢(A)) with support contained in the interior of
7o such that k is equal to one in some neighbourhood of zy. Then h(z) :=
(1 — k(2))(z — 20)"! belongs to the domain of the functional calculus of U
and we have

(U = 20)h(U)(1 = F(70)) = MU)(U = 20)(1 = F(70)) = 1 = F(7)

and, therefore,
20 ¢ o(U[(1 = F(y))H).

(5) & (5'): See end of Section 2.4.

(5") = (6"): If (5') holds and I'y is as in (6'), then Fy := F(I'y) has
the required properties.

(6) < (6'): Assume that (6) holds. If I'y is as in (6") we set Fy := Ej
where Ej is a selfadjoint projection associated with Ag, 1(Ag) = I'g. Then
(6') follows from

U=14(A) = =14 (o — Ao)(A— o)™

and the spectral mapping theorem.
If (6) holds and if Ag is as in (6), we set Ey := Fy where Fy is a
selfadjoint projection associated with 1(Ag). Then (6) follows from

[ wene Y.
A= {( (AU + Ao)a ) ' er}

and the spectral mapping theorem.

(6") = (1’): Assume that (6") holds. Let zy € ¥)(A) belong to o(U),
and choose Iy in (6) so that zy € I'g. Then there exists a sequence (z,) C H,
n=1,2,..., with z, = u, +v,, u, € FoH, v, € (1—Fo)H, ||un|]*+||va|]* = 1
and

tin [0 = zo)unll =0l Vi) — z0)n]l =0
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By the second relation of (i) we have lim, .. ||v,|| = 0 and, therefore,
lim, e ||unl| = 1. (FoH,[-,+]) is a Hilbert space and there exists an a > 0
such that [u,u] > «||ul]? for all u € FyH. This implies

liminf [z, z,| = Uminf ([u,, u,] + [vn, vs]) >

n—oo n—oo

> o lim ||u,|| + lim [v,, v,] > «,
and Theorem 2.15 is proved.

Remark 2.16. Let assertion (6) of Theorem 2.15 be true, and let
FEy(+) be the spectral function of the selfadjoint linear relation AN (EyH)? in
the Hilbert space (EgH, [-,+]). Define, for any connected subset ¢ of R with
5 C Ay,

It is easy to see that E(-) possesses all characterizing properties of the local
spectral function of A on Ay and, hence (see Lemma 2.12), coincides with
the local spectral function of A on Ag. The local spectral function of U and
the spectral function of Uy (see condition (6")) are related in a similar way.

In the case when A in Theorem 2.15 is finite the function in condi-
tion (2) can be replaced by the resolvent of A.

Theorem 2.17.  Let Q) and A be as at the beginning of Section
2.1 and A be an open subset of QN R such that co ¢ A. Then any of the
conditions (1) - (6") of Theorem 2.15 is equivalent to A being of positive type
with respect to the resolvent of A.

Proof. We prove that A is of positive type with respect to the
resolvent of A if and only if condition (2) of Theorem 2.15 holds. Let z € H.

Then for t € A the angular limit limpy, o x—: [(A — A\) '@, 2] exists and
belongs to CT UR if and only if the angular limit

I 50, 4wt [{A = Redg + (A — Ag)(A = o) (A — A) ' }a, 2]

exists and belongs to CT U R.
Assume that either A is of positive type with respect to the resolvent
of A or with respect to

A=\ — R€>\0 + ()\ — )\0)()\ — 5\0)(14 — )\>_1.

We set g(A) := (A — Xg)(A — Xo). Then, by the last assertion of Lemma 2.8,
for ¢ in a compact subset of A and € € (0, ¢] for sufficiently small ¢, > 0,
the expressions

I(g(t +i€) — g(#))(A — (t +i€)) |
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and
1(g(t —ie) — g(t))(A — (t — i)~

are uniformly bounded. Therefore, if ¢ + i€ runs through that points,

inf {—i [(g(t +ie)(A— (t+i€)) " — g(t —ie)(A— (t —ie)) ")z, x|}

is finite if and only if
inf {—ig(t) [((A— (t+i€)™" — (A= (t—ie)) ")z z]}

is finite. Then applying Lemma 2.8, (a) < (b), completes the proof of
Theorem 2.17.

Definition 2.18. If A and U are as in Theorem 2.15 and A is an
open subset of QNR, then A (1(A)) is said to be of positive type with respect
to A (resp. U) if one of the equivalent conditions (1) - (6') is satisfied. Open
sets of negative type are defined in an analogous way. A (¢/(A)) is said to be
of definite type with respect to A (resp. U) if A (resp. 1(A)) is of positive
type or of negative type with respect to A (resp. U).

3. Locally definitizable operators in Krein spaces

3.1. Definitizable and locally definitizable operators and operator
functions. We recall that a selfadjoint linear relation A (a unitary operator
U) in the Krein space H with p(A) # 0 is called definitizable if there exists
a rational function r = r* (resp. ¢ = §) all poles of which belong to p(A)
(resp. p(U)), such that

[r(A)x,z] >0 (resp. [¢(U)x,z] >0) forall xe€H.

In the case of a selfadjoint relation this definition is equivalent to that in [3,
Section 4].

The functions r and q are called definitizing functions for A and U,
respectively. If \g € p(A)NC*H, and U = (A), ¥()) := —(A—=Xo)(A— o) 7F,
then A is definitizable if and only if U is definitizable. The rational function
r is definitizing for A if and only if the function ¢ with got) = r is definitizing
for U.

We also recall the corresponding notions for operator functions. Let
G be an R-symmetric function meromorphic in C\ R and let F be a T-skew-
symmetric function meromorphic in C \ T such that 0 and co are points of
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holomorphy of F'. G is called a Nevanlinna function if GG is holomorphic in
C\ R and, for every z € H and every A € C*, Im [G(\)z,z| > 0 holds. F
is called a Caratheodory function if F' is holomorphic in C \ T and for every
x € H and every z € D, Re [F(z)z,z] > 0 holds. G (F) is called definitizable
if there exists a rational function r = r* (resp. ¢ = §¢) such that the poles
of r (resp. q) are points of holomorphy of G (resp. F') and rG (resp. ¢F)
is the sum of a Nevanlinna function (resp. a Caratheodory function) and
a meromorphic function in C. r and ¢ are called definitizing functions for
G and F, respectively. If Ay € C* is a point of holomorphy of G and 1) is
as above then by the definitions given above G is definitizable if and only if
F := —iG o9~ is definitizable. For more details on definitizable operator
functions see [12] and [14].

For operators local versions of definitizability were introduced in [7]
and [8]. The definition of local definitizability in Definition 3.3 below will
slightly differ from that in [7] and [8]: Here we include a condition on the
nonreal or non-unimodular spectrum. Definition 3.3 will be formulated with
the help of the resolvent. It is natural, similarly to the considerations of
Section 2, to introduce first locally definitizable operator functions with the
help of the characteristic “local definitizability properties” of the resolvents of
definitzable operators. The concept of locally definitizable operator function
(Definitions 3.1 and 3.1’ below) is also a localization of the notion of defini-
tizable operator function (see Proposition 3.2 below). Let €, Ay € QN C*
and ¢ be as in Section 2.1.

Definition 3.1. An £(H)-valued meromorphic function G in Q\ R
symmetric with respect to R is called definitizable in €2 if the following holds.

(a) No point of Q@ N R is an accumulation point of nonreal poles of G,
and for every finite union Ay of open connected subsets of 2 N R with
Ay C QN R there exists a positive integer m such that the order of
growth of G near Ag is < m.

(8) Every point A € QN R has an open connected neighbourhood I, in R
such that both components of I, \ {A} are of definite type with respect
to G.

Definition 3.1’.  An L(H)-valued meromorphic function F' in
»(2) \ T skew-symmetric with respect to T is called definitizable in () if
the following holds.

(o) No point of (2) N T is an accumulation point of non-unimodular
poles of F', and for every finite union I'y of open arcs of ¢(2) N'T with
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Ty C 9(Q) N'T there exists a positive integer m such that the order of
growth of I’ near I'g is < m.

(6') Every point z € () N'T has an open connected neighbourhood I,
in T such that both components of I, \ {z} are of definite type with
respect to F'.

In Theorem 3.6 below we shall make use of the following proposition
from [12, Proposition 2.2]. For the convenience of the reader we will give a
direct proof here.

B Proposition 3.2. An L(H)-valued meromorphic function F in
C\T skew-symmetric with respect to T which is holomorphic at 0 and oo,
is definitizable in C if and only if it is definitizable.

Proof. 1. Let F be definitizable, ¢ = ¢ a rational function and H
a Caratheodory function such that the poles of ¢ are points of holomorphy
of F and ¢F — H can be continued analytically to an £(H)-valued function
meromorphic in C. Evidently, F has only a finite number of poles in C \ T.
By the integral representation of Caratheodory functions (see also Lemma
2.8, (2.25)) the order of growth of H near T is < 1. Hence there exists an
integer m such that the order of growth of F' near T is < m.

Assume that vy is an open arc of T such that ¢ has no pole in
v :=7, and ¢ is positive on v. Let x € H. In order to verify that condition
(ii") of Definition 2.7’ is fulfilled it is sufficient to show that
a1 inf {|[(p(re’®)H (re®) — p(r~'e’®)H(r e'®))a, 2] :
(3.1) ©cy, re(l1-461)}>—00
with p = ¢~! and for some § > 0.

We have

(p(re®)H (re’®) — p(r~"e®)H(r™'e"®))z, 2] =
=(p(re'®) = p(¢®) [H(re')a, 2] -
(3:2) —(p(r™e’®) = p(e®))[H (r'e )z, 2]+
+p(e)(H(re'®) — H(r™"e"))z, 2].
There is a 0 > 0 such that the first two terms on the right hand side of (3.2)

are uniformly bounded for ¢® € v and r € (1 — §,1). The third term on
the right hand side of (3.2) is nonnegative for ¢® € ~ and all r € (0,1).
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Therefore, (3.1) holds. Let p be a positve measure on [—m, 7] and § € R

such that S
[H(2)x,z] = iﬁ—l—/ - 2 du(t), zeD.

o ezt —

If 1 has no mass at €© € 7 then the first two terms on the right hand side
of (3.2) converge to zero if r T 1. Therefore condition (i) of Definition 2.7’ is
fulfilled, and v is an arc of positive type with respect to F. If ¢ is negative
on ~ a similar reasoning applies. Then it follows that F is definitizable in C.

2. Let F be definitizable in C and let P be the finite set of all poles
of Fin C\'T, 0,00 ¢ P. We decompose F as in (2.22): F = Fy + F{g). Let
go = Jo be a rational function with the following properties.

(i) The set P(go) of all poles of gq is contained in C \ (T U P).
(ii) go is positive on T.
(iii) goFy is locally holomorphic on P.

Floy is locally holomorphic on C\ T. Let the order of growth of Floy near
T be < m. We denote by e a finite subset of T such that all connected
components of T \ e are of definite type with respect to Fig). Let gw) = (o)
be a rational function with the following properties.

i") The set P(g()) of all poles of g is contained in C\ (T U P).
(0) (0)
ii’) All points of e are zeros of g at least of order m + 2.
(0)

(iii’") For any component v of T \ e the following holds: If « is of positive
type with respect to F{g), then g is positive on v, otherwise g is
negative on -y.

Let (¢,) be a sequence of functions in C*°(T) which converges to g(o
in C"™*1(T) such that for every n = 1,2, ..., ¢, is nonnegative (nonpositive)
on those components of T \ e where g(g) is positive (resp. negative) and ¢, is
zero in a neighbourhood of e. Then, by Lemma 2.10, for every nonnegative
function f € C*°(T) we have

[(TF(O).angof)l’, JI] > 07 T € H,

and, therefore,
[(TF(O)-Q(O)gof)x, x] >0, ze€H.
Then the operator function K defined by

K(z2) == Tg,,.gh. with g = gog), 2 € C\T,
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is a Caratheodory function.
For ( € T and all points z of holomorphy of g, we have

1 C+=z
90 = 102 =
(3.3) 1 (+z
= g(gvz) + Eg(z>c _
where

. LIOIE (( 4 2) if (£ 2
— am —
9162 {iy@x if (=
It is easy to see that
2 g(,2) € C"TH(T)

is complex differentiable in C\ (P(go) U P(g(0)))-
Applying Tr,, to both sides of (3.3) gives

(3.4) K(2) = T -9(-; 2) + 9(2) Flo)(2).

This shows that z —— TF(O).g(-, z) is meromorphic in C. Every pole of this
function is a pole of g. It follows that

gF = gFy + gFo) = K + g0g(0)Fo — T, -9(, 2)-

Since gog(o)Fo— TF(O) g(+, z) is a meromorphic function in C the poles of which
are contained in P(go) U P(g)) C C\ (T U P), F is definitizable.

Definition 3.3. The selfadjoint relation A (the unitary operator
U) is called definitizable over ) (resp. ¥(f2)), if o(A)N(Q\R) (resp. o(U)N
(¥(2) \ T)) consists of isolated points which are poles of the resolvent and
the function

A— A —Re X+ (A=) A=) (A=) = Ga(N)
(resp. z — (U + 2)(U — 2)7! = Fy(2))

is definitizable in Q (resp. 1(12)).

Remark 3.4. By (2.17) the growth conditions for G4 and Fy
contained in Definition 3.3 are equivalent to A € S®(QNR) and U €
S5°(1(£2) N'T), respectively. Conditions equivalent to the “sign” conditions
for G4 and Fy; are expressed in Theorem 2.15 in terms of A and U. That the
isolated spectral points mentioned in Definition 3.3 are poles of the resolvent
is also a consequence of the last condition.
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Remark 3.5. Let A be an open subset of R and let A be a
selfadjoint operator such that o(A4) \ R has no more than a finite number of
nonreal accumulation points. Then A is definitizable over A in the sense of
8] if for every R-symmetric domain 2 with Q "R = A such that QN C™ is
simply connected and o(A) N (2 \ R) =0, A is definitizable over Q. This is
a direct consequence of the definitions and Remark 3.4.

We first consider selfadjoint linear relations definitizable over C and
show that these relations are just the definitizable ones.

Theorem 3.6.  Let A be a selfadjoint relation in H with p(A) #
0, let \g € p(A)NCT and let U = p(A) = =1+ (Ao — Xo)(A — Xo) ™. Then

the following assertions are equivalent.
(1) A is definitizable.

(1) U is definitizable.

(2) A is definitizable over C.

(3

)
)
(2') U is definitizable over C.
) The function G 4 (see Definition 3.3) is definitizable.
)

(3") The function Fy (see Definition 3.3) is definitizable.

Proof. The assertions (1) and (1’) are equivalent, see the begin-
ning of this section. In view of Fiy 0t = —i(G 4 it follows from Theorem 2.15
and the considerations of Section 2 that (2) and (2’) are equivalent. That
(3) and (3') are equivalent is an immediate consequence of the definitions. It
was shown in Proposition 3.2 that (2') is equivalent to (3'). That (1’) implies
(3') is a consequence of [14, Theorem 1.7]. By [14, Theorem 1.9] (3') implies

(1).

3.2. Let H be the orthogonal sum of two Krein spaces H; and
Ha, H = Hy[+] Ha, and let Q be as above. If A; and A, are selfadjoint
linear relations in H; and H,, respectively, such that A; is definitizable,
p(Az) # 0 and the resolvent of Ay is meromorphic in 2, then by Theorem
3.6 the selfadjoint linear relation A;[+]As is definitizable over Q. Such an
orthogonal sum is not far away from the most general case of a selfadjoint
linear relation definitizable over 2. With the help of Theorem 3.6 it is easy
to characterize locally definitizable relations:
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Theorem 3.7.  Let ), A\, ¥, A and U be as at the beginning of
Section 2.1. Then the following assertions are equivalent.

(1) A is definitizable over §).
(1) U is definitizable over ¥(£2).

(2) For every closed set K C QNR. there exist an open subset Ay of QNR
which is a finite union of open connected sets, such that K C Ay,
Ay C QNR, and a selfadjoint projection Ey in H which commautes with
every bounded operator that commutes with the resolvent of A such that
the corresponding diagonal representation of A,

A=AN(EH)?*+AN((1— Ey)H)?,
has the following properties.
(o) AN (EyH)? is definitizable.
(i) d(AN(EyH)?) C7(A)NAy, (AN((1—Ey)H)?) Ca(A)\ Ag.
(ii) The boundary points of AN¢ (in R) are no eigenvalues of A N
(EoH)?.

(2") For every closed set K' C ¥(Q2) N'T there exist an open subset Ty of
»(Q) N'T which is a finite union of open arcs, such that K' C T,
To C ¥(Q)N'T, and a selfadjoint projection Fy in H which commutes
with every bounded operator that commutes with U such that the cor-
responding diagonal representation of U,

Uy O
U= ,
< 0 U )
with respect to the decomposition H = FoH+(1—Fy)H has the following
properties.

(o) Uy is definitizable.
({') o(Uy) C o(U) N Ty, o(Uwy) C a(U)\ L.

(i") The boundary points of Ty are no eigenvalues of Uy.

Proof. That the assertions (1), (1’) are equivalent follows from
what was proved in Section 2. Evidently, (2) is equivalent to (2') with Ey =
Fy. It remains to prove that (1’) and (2’) are equivalent.
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Assume that (1) holds. In the following, subarcs of the unit circle
will be denoted similar to real intervals: If & = €, 3 =¢€©, 0 < © — 0 < 2,
we define (o, 8) :={e" : t € (6,0)}.

Let I'y be the union of open arcs (a;, 3;) C¥(Q)NT, j=1,...,k,
with pairwise positive distance from each other such that K’ c Ty, Ty C
1 (2) N'T and there are open arcs y(«;), v(5;), 7 =1,...,k, of definite type
with respect to U such that a; € v(e;), 5; € v(5;). Assume, in addition, that
the arcs v(«;), v(6;), 7 = 1,..., k, are pairwise disjoint. In view of Theorem
2.15 it is easy to see that U has a spectral function F' on Ule(w(aj) Uvy(6;)-

We choose € > 0 so small that

ajeie € ’Y(O‘j% 6]'6_“ € 7(6])? ] = 17 cee ]{?,

and set
k
U aj, a;e’) U (Bje™", B)).
Then B
o(UIF(MH) €7, o(U[(1 = F@)H) Ca(U)\7.
The sets (o, 5;)\7, j = 1, ..., k, are Dunford spectral sets of U|(1—F(7))H.
Let P, 7 = 1,...,k, be the corresponding Riesz-Dunford projections in
(1-F®))H, Wthh are selfadjoint. The selfadjoint projection
k
Fy=F@)+) K1 -F@)
j=1

commutes with every bounded operator that commutes with U. This follows
from an analogous property of F'. Then U can be written as a diagonal matrix
as in (3). The properties (i) and (ii’) are consequences of the definition of
F().

The local finite order growth of the resolvent of U near () N'T
implies growth of finite order of the resolvent of Uy near T. Every subarc of
»(Q) N'T of definite type with respect to U has the same definite type with
respect to Uy (Theorem 2.15, (1')). Then o(Up) is contained up to a finite
subset in a union of a finite number of open arcs of definite type with respect
to Up. Hence by Theorem 3.6 Uy is definitizable.

Assume that (2') holds. Let sy be an arbitrary point of () N T.
We choose 'y as in (2') so that sy € T'g. If Uy is as in (2’), then the resolvent
of Uy and, hence, the resolvent of U has finite order of growth near I'.

Assume that a one-sided neighbourhood U of sy in 'y belongs to
04++(Up)Up(Up). Let s € UpNa(Uy) = UeNo(U) and let (x,,)5°, be a sequence
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in H with ||z,|| = 1 and lim, o ||(U — $)x,| = 0. Then lim, . ||(U —
s)Fozy,|| = 0 and lim,, o || (U —s)(1—Fp)z,|| = 0, which implies lim,, . ||(1—
Fy)x,|| = 0. Therefore, by s € o, (Up),

liminf [z, z,| = liminf [Fyz,, Fox,] >0
and Uy C 04 (U) U p(U). A similar reasoning applies for o, (Up) U p(Up)
replaced by o__(Uy) U p(Up), and (1) is proved.

Remark 3.8. Let A be a selfadjoint linear relation definitizable
over 2 and let § be a closed subset of N R which is a finite union of
connected sets such that all boundary points of § in R belong to o, (A) U
o__(A)Up(A). If in assertion (2) we set K = §, and Ag and Ej are as in
(2), then for the extended local spectral function E(-) (see Theorem 2.13)
we have E(§) = Ey(8)Ey, where Ey(-) is the spectral function of AN (EyH)?.
This is a consequence of Remark 2.16 and the uniqueness of the extension of
the local spectral function.

This work was supported by the Hochschulsonderprogramm III / 1.6 Land Brandenburg.
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