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Abstract 

The catalytic performance of pristine and modified CNTs for catalytic oxidation of 

butane/butene to corresponding alkenes has been studied in the present work, owing to its 

great potential in petro-industry and considerably growing interest in metal-free catalysis. 

For comparison, the catalytic activity using other materials for catalytic oxidation 

reaction, such as activated carbons, diamond-like carbon and metal oxides, has also been 

investigated under the same reaction conditions. A comparative investigation on the 

catalysts before and after reaction has been performed by using a series of joint 

experimental techniques in catalysis, for example, TEM, TPO, TPD, NH3-TPD, XPS and 

IR. The detailed knowledge on the chemical nature of surface functionalities has been 

achieved and, based on the analysis of activity-surface functionalities relationship, the 

reasonable reaction model has been proposed accordingly. 

 
It has been found that the pristine CNTs display high activity but low selectivity for 

catalytic oxidation of butane to target products, butene and butadiene. The oxidation 

treatment is able to improve the catalytic performance of CNTs. A better catalytic 

performance can be further achieved by using phosphoric modified oxidized CNTs. In 

addition, molecule grafting as a new catalytic modification method has firstly been 

applied to modify CNTs and, significantly, the as-modified CNTs display an active and 

stable catalytic performance even after 40 hours reaction. The grafting modification can 

effectively immobilize small molecules, like 2-furoic acid and methyl cyclopentanone-2-

carboxylate, to the carbon defects on the surface of CNTs. The surface investigation 

suggests that a variety of moieties remain on the surface of CNTs after reaction process, 
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thus indicating that the selective and stable catalytic performance could be attributed to 

the existence of the grafted functional groups.  

 
Two kinds of reaction pathways, i.e., the total oxidation and selective oxidation, 

participate in catalytic oxidation of butane. The former one can be related with the non-

dissociative oxygen molecules, which are chemisorbed and activated on the surface of 

CNTs. The latter one should be correlated with quinone groups, generated via 

dissociative chemisorption of gaseous oxygen. The characterization supports the non-

competitive adsorption model: hydrocarbons molecules are preferably adsorbed by the 

quinone groups and oxygen molecules are adsorbed on the π-electron-rich surface of 

CNTs, forming electrophilic O2
2- and O2

- species. The following dissociation of O2 

species could occur on the carbon defects, resulting in the generation of active sites for 

catalytic oxidation. The oxidation treatment significantly improves the catalytic 

performance by generating the oxygenated surface groups acting as active sites for 

catalytic oxidation of butane. However, the majority of oxygen species generated via 

oxidation do not involve in the catalytic oxidation of butane, which has been removed 

during the reaction process. The improvement in catalytic performance by using the 

phosphoric acid modified CNTs can be attributed to the inhibition of combustion of 

butane. The reasonable elementary steps proposed in present work include the adsorption 

of hydrocarbons and dehydrogenation on the quinone groups, the recombination of 

hydroxyl groups and following regeneration of quinone groups via dissociative 

chemisorption of gaseous oxygen. The carbon oxides form as byproducts from the 

combustion of hydrocarbons.  
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Aufgrund des beträchtlichen Potentials in der Petroindustrie und des steigenden 

Interesses an metallfreien Katalysatoren wurde in der vorliegenden Arbeit die 

katalytische Leistung von unveränderten und modifizierten CNTs für die katalytische 

Oxidation von Butan/Buten zu den entsprechenden Alkenen untersucht. Zum Vergleich 

wurden auch weitere für die katalytische Oxidation genutzte Materialien, z. B.  aktivierter 

Kohlenstoff, diamantähnlicher Kohlenstoff und Metalloxide, unter denselben 

Reaktionsbedingungen auf ihre katalytische Aktivität hin untersucht. Vergleichende 

Untersuchungen wurden an den Katalysatoren vor und nach der Reaktion mit der 

Katalyse verbundenen experimentellen Methoden durchgeführt, z. B.  TEM, TPO, TPD, 

NH3-TPD, XPS und IR. Es wurden detaillierte Kenntnisse über die chemische Natur der 

funktionellen Oberflächengruppen erhalten und ein entsprechendes auf der Analyse der 

Beziehung zwischen diesen Oberflächengruppen und der Aktivität basierendes 

Reaktionsmodell vorgeschlagen.  

 
Es stellte sich heraus, daß die unveränderten CNTs eine hohe Aktivität, aber eine 

geringe Selektivität für die katalytische Oxidation von Butan zu den Zielprodukten Buten 

und Butadien zeigen. Die oxidative Behandlung verbessert die katalytische Leistung der 

CNTs. Eine weitere Steigerung der katalytischen Leistung kann mit phosphorhaltigen 

oxidierten CNTs erreicht werden. Zusätzlich wurde die Funktionalisierung der 

Oberfläche durch Aufbringen von Molekülen („molecule grafting“) als neue katalytische 

Methode zum ersten Mal angewendet, um die CNTs zu modifizieren. Die so 

modifizierten CNTs zeigen eine aktive und dauerhafte katalytische Leistung auch noch 

nach 40 Stunden Reaktionsdauer. Kleine Moleküle, wie 2-Furoesäure und Methyl 

Cyclopentanon-2-Carboxylat, können durch “molecule grafting“ wirkungsvoll an 
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Kohlenstoffdefekten an der Oberfläche der CNTs festgelegt werden, Die 

Oberflächenuntersuchung deutet darauf hin, daß verschiedene Gruppen auf der CNT 

Oberfläche nach dem Reaktionsprozess verbleiben. Dies deutet darauf hin, daß die 

selektive und dauerhafte katalytische Leistung auf die Anwesenheit von funktionalen 

Gruppen durch “molecule grafting“ zurückgeführt werden kann. 

 
Zwei Reaktionswege treten bei der katalytischen Oxidation von Butan auf: die 

Totaloxidation und die selektive Oxidation. Ersterem kann nicht dissoziierten 

Sauerstoffmolekülen zugeordnet werden, die chemisorbiert und aktiviert auf der CNT 

Oberfläche sind. Der zweite Reaktionsweg  sollte mit Chinongruppen korreliert werden, 

die durch dissoziative Chemisorption von gasförmigem Sauerstoff entstanden sind. Das 

nicht-kompetitive Adsorptionsmodell wird durch die Charakterisierung unterstützt: 

Kohlenwasserstoffe werden bevorzugt von den Chinongruppen und Sauerstoffmoleküle 

auf der π−Elektronen reichen Oberfläche der CNTs adsorbiert, wobei sie elektrophile 

O2
2- und O2

- Spezies bilden. Die darauf folgende Dissoziation der O2 Spezies könnte an 

den Kohlenstoffdefekten auftreten, woraus sich aktive Zustände für die katalytische 

Oxidation bilden. Die oxidative Behandlung  verbessert die katalytische Leistung 

wesentlich, indem sie mit Sauerstoff angereicherte Oberflächengruppen als aktive 

Zustände für die katalytische Butanoxidation erzeugt. Der Hauptanteil der durch 

Oxidation erzeugten Sauerstoffspezies ist jedoch nicht die katalytische Butanoxidation 

einbezogen, da diese während des Reaktionsprozesses abgebaut wurden. Die 

Verbesserung der katalytischen Leistung von mit Phophorsäure modifizierten CNTs kann 

der Hemmung der Verbrennung von Butan zugeschrieben werden. Die sinnvoll 

angenommenen Elementarschritte der Reaktion, die in dieser Arbeit vorgeschlagen 
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wurden, beinhalten die Adsorption von Kohlenwasserstoffen und die Dehydrierung an 

den Chinongruppen, die Rekombination von Hydroxylgruppen und die darauf folgende 

Regeneration der Chinongruppen durch dissoziative Chemisorption gasförmigen 

Sauerstoffs. Kohlenstoffoxide entstehen als Nebenprodukte bei der Verbrennung von 

Kohlenwasserstoffen. 
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Chapter 1 Introduction 

Since phrase catalysis was coined in 1835 by Jöns Jakob Berzelius, who was the 

first to note that certain chemicals speed up a reaction, our civilization has been 

irreversibly changed and reconstructed by a variety of catalyzed chemical production. 

The requirement for faster-cheaper-better products pushes the development of civilization. 

So-called natural thing is only a fading dream for the modern homo sapiens, or just 

gimmick travel traps and expensive commercial products. What we do is just keeping 

pace with the rapidly advancing and mighty tide. 

 
1.1. General considerations- Economic aspect of C4 hydrocarbons 

 
n-Butane, which was extracted from crude oil and natural gas by distillation, has a 

variety of industrial uses: steam cracking yields ethylene and propylene, catalytic 

dehydrogenation yields butenes and butadiene, acid-catalyzed isomerization provides i-

butane, and maleic anhydride or acetic acid was obtained through catalytic or non-

catalytic oxidations, respectively.[1] Until 2000, the annual consumption of  n-butane in 

US was about 1 billion cubic meter and the condensate average field gate price of butane 

was about 250 dollars per cubic meter.[1]  

 
Butene is also an important industrial raw material. The worldwide consumption 

of n-butene was about 18×106 ton in 1984 and increased to 44×106 ton in 2004. United 

states are the biggest butene producing and consuming region in the world followed by 

Northeast Asia, Western European and Mideast Asia.[1] More than half of the butene was 

used to manufacture alkylate and polymer gasoline. Around one-third was used without 
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any conversion as fuel gas or blendstock for gasoline. And 10% of the n-butene was used 

in the manufacture of a variety of other chemical products. It plays an important role in 

the production of materials such as linear low density polyethylene (LLDPE): the co-

polymerisation of ethylene and 1-butene produces a form of polyethylene that is more 

flexible and more resilient. n-Butene can be used in the production of butadiene and 

maleic anhydride, polybutene, butylene oxide, secondary butyl alcohol (SBA), methyl 

ethyl ketone (MEK) and a more versatile range of polypropylene resins.[1-4] 2-Butene is 

mainly used as fuel gas, but it can be converted to 2-Methylbutanol and other chemicals. 

[1] In recent study, the isomerization of 2-butene was a potential valuable method to 

produce the important chemical monomers like propene, 1-butene and butadiene.[1]

 
The importance of butadiene production can be attributed to the enormous 

applications of its synthetic products. One of the well-known products is butadiene–

styrene rubber: the major rubber for manufacture of tires. The other synthetic products 

include latex and polybutadiene rubber, plastics with special mechanical properties (i.e. 

polystyrene, ABS polymers), and as raw material in a wide variety of chemical 

synthesis.[1,5] Butadiene consumption in 1987 was estimated at 12 billion pounds 

worldwide (3.3 billion pounds in U.S) and the trend has been for this production to 

increase.[6] For example, the demand for butadiene in U.S grew 2.3% annually from 1995 

to 2001 and consumption of U.S. in 2001 reached 5.1 billion pounds. Butadiene is 

produced by one of two processes: recovery from a mixed hydrocarbon stream and 

oxidative dehydrogenation of n-butene.[3] Almost all butadiene was produced by steam 

cracking from naphtha or liquefied petroleum gas (LPG), but catalytic dehydrogenation 

was also an important process. Essentially two processes were used in the United States 

 9



for butadiene synthesis: a two-phase process departing from n-butane (Phillips process), 

wherein butenes were converted into butadiene in the second phase, or a single-stage 

process using n-butane and n-butene (Houdry Catadiene process). These processes were 

applied to produce synthetic rubber instead of natural rubber in the United States at the 

beginning of the Second World War.  

 
1.2. Catalytic oxidation of hydrocarbons 

 
Although the unsaturated light hydrocarbons (i.e. ethylene, propylene, isobutene, 

butadiene, etc.) are mostly produced via steam cracking of LPG. The low price of light 

alkanes has provided enormous incentives for their use as raw materials in the chemical 

industry.[1] An important example of utilization of alkanes or alkenes is their conversion 

to corresponding unsaturated hydrocarbons. Especially, the present-day chemical industry 

depends heavily on the use of crude oil as starting material, but the world crude oil 

supply would be exhausted in 50 years. The natural gas supply would meet the increasing 

demand for hydrocarbon recourse. In 2004, the estimated worldwide consumption of 

natural gas was 100 trillion cubic feet and butane took 1%. Indeed, the petrochemical 

industry’s tendency seems to be the direct use of alkanes as raw materials, due to the 

great abundance and low price.[2,7-9] In fact, the price of raw materials is an ultimate 

factor for the industrial application. A relevant example concerns styrene production via 

the butane–butadiene process. Till the middle of 1960s, among other large-scale 

catalyzed reactions, dehydrogenations of organic compound became prominent and 9.8% 

chemicals were produced by dehydrogenation among the 147 billion pounds of organic 
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products obtained via catalytic processes by the 50 top chemical industries in the United 

States.[7, 11]   

 
Compared with direct dehydrogenation, it seems that oxidative dehydrogenation 

(ODH) is more promising for conversion of alkanes due to its thermodynamic advantages. 

In reality, for light alkanes (C2 to C4), the DH reaction 

 
C4H10 ↔ C4H8 + H2  ∆H°=126kJ/mol   (1-1) 

is such that the educts are favored by the equilibrium in the low temperatures and at high 

pressure.[1] Reactions are endothermic and in order to shift the equilibrium to aim to 

alkenes, reactions must be carried out at relatively high temperatures (from 773 to 

923K).[2,3] In addition, high operating pressure, which is usually preferred in industrial 

practice, is unfavorable for shifting the equilibrium towards the aiming direction. The 

significant deactivation of catalysts is always observed, attributed to coke formation. 

Specific examples are chromia–alumina catalysts (used in a commercial DH process of 

alkanes), requiring regeneration after a few minutes of operation.[12] For all these reasons, 

dehydrogenations of alkanes with oxygen:  

 
CnH2n+2 + 1/2 O2↔ CnH2n + H2O  ∆H°=-115kJ/mol (1-2) 

is an excellent alternative for the synthesis of alkenes.[1,2] The formation of water is 

thermodynamically favorable for this reaction.[1,8,12] A theoretically complete conversion 

can be attained even at low temperatures and high pressure, bringing advantages from the 

economic and process engineering points of view. The conversion of butane was 

significantly increased due to the existence of oxygen. Catalyst deactivation is also 

further reduced by the possible removal of coke and its precursors by oxygen.[2,8]  It 
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should be stressed, for the conversion of  alkanes to the corresponding alkenes, the 

temperature of ODH processes is about 200 K lower than that of DH process.[13] 

However, despite of those advantages mentioned above, ODH (including other catalytic-

oxidation processes) has some drawbacks: due to its exothermic character it may require 

special care in reactor operation, explosion (explosion limits in air: butane 1.4-8.4%, 

butene 1.6-9.3%, butadiene 2.0-11.5%), and “hot-spot” phenomenon could be observed 

since there might be a distribution of feed composition  of oxygen and in some range the 

feed composition is explosive; the desired product must be sufficiently stable in the 

reaction conditions in order to be removed from the product stream before it decomposes 

or undergoes other subsequent reactions. Indeed, oxygenated carbons, such as CO and 

CO2, are the very thermodynamically favorable products. In general, the by-products in 

the ODH of alkanes have no economic interest when compared to the high value of 

hydrogen that is produced as a co-product in the conventional dehydrogenation process. 

The selective oxidation of alkanes to corresponding alkenes is a great challenging since 

the dehydrogenation products always displayed higher reactivity than educts, leading to 

the further oxidation and low selectivity.[14] An alternative is to operate at low conversion 

levels leading to high selectivity, but removal of alkenes from the products stream needs 

recycling instruments.  

 
Furthermore, it should be mentioned that gaseous oxygen is not the only choice as 

oxidant in the ODH reactions. It is also possible to use bromine, sulfur, or iodine 

compounds as dehydrogenation agents. For example, Shell and Petro-Tex developed 

propane ODH in the presence of iodine with high selectivity.[2] The research on butane 

ODH with iodine is also known as the Idas process.[1] In some cases, the use of nitrogen 
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oxide is also mentioned.[1,2] However, the corrosive nature of the products, environmental 

problems and expensive cost of iodine hindered the commercialization of such processes.  

 

1.3. Metal catalysts for catalytic oxidation of butane to butene and 

butadiene  

 
 The metal catalytic systems mainly applied in the ODH of n-butane are 

unsupported vanadium or molybdenum oxides catalysts. Numerous papers reported that 

the V-Mg-O system is particularly noteworthy (see Tab. 1.1).[15] Nickel molybdate 

catalysts have also been investigated extensively.[16–21] Other systems that were reported 

in the literature include zeolites (containing transition metals), Fe/Zn mixed oxides, Zn 

and Mn ferrites, supported vanadium oxide, vanadates (especially magnesium vanadate), 

molybdates, and nickel-based oxides.[22-25] Supported catalytic systems were also applied 

in the catalytic oxidation, with either silica or alumina as supports, usually containing Ni, 

V, or both metals (see Tab. 1.1). Although the inactive nature of the supported materials 

was reported, the interaction between the active phase and support strongly influences the 

catalytic activity, which was attributed to the change in the size distribution, phase and 

acid-base character.[26-28] More recent study is the use of membrane reactors (with an 

inert ceramic membrane for controlled oxygen distribution to the bed containing V-Mg-O 

catalysts) for catalytic oxidation of butane, displaying more efficient performance than 

the traditional fixed bed reactors (FBRs).[29, 30]  
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Tab. 1.1 Some catalytic systems used for the catalytic oxidation of n-butane  

Catalyst Composition  Temperature (K) Con. (%) Selec (%) Reference 

V-Mg-O 773 6.8 31.8 16 

Ni-Mo-O 698 5.4 11.6 17-21 

Ni-Mo-P-O 810 38.8 72.2 31 

Mg-Ni-Sn-O 810 57.4 11.4 32 

Mg-Ni-SO4 810 17.5 58.0 32 

M4+-P-O 810 42.3 60.5 37, 42 

Ni-Sn-P-K-O 839 37 71.9 34 

V/SiO2 793 22 35 35, 36 

V/Al2O3 808 16.1 45.2 37 

Metal vanadate catalysts 813 50.9 31.5 38 

 

1.3.1. Reaction process 
 

n-Butane is more reactive with gaseous oxygen than other alkanes with fewer 

carbon atoms at lower reaction temperature. Besides the corresponding alkenes (1-butene, 

2-butene and butadiene) formed from the dehydrogenation reaction, other products would 

also be produced, like CO/CO2 from the total oxidation, iso-butene from the 

isomerization and oxygen-containing organic products (acids, ketones or aldehydes). The 

possible reaction functions are listed below: [39]

            C4H10 + 1/2 O2 ↔ 1-C4H8 + H2O ∆ H°=-115kJ/mol             (1-3) 

C4H10 + 1/2O2 ↔ 2-C4H8 + H2O ∆ H°=-126kJ /mol  (1-4) 

C4H8 + 1/2O2 ↔ C4H6 + H2O ∆ H°=-245 kJ /mol  (1-5) 

C4H10 + 9/2O2 ↔ 4CO + 5H2O ∆ H°=-1520 kJ /mol  (1-6) 

C4H10 + 13/2O2 ↔ 4CO2 + 5H2O ∆ H°=-2652 kJ /mol  (1-7) 
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 All the reactions involved are exothermic or even strongly exothermic. However, 

the high selectivity is primarily considered from the economic point of view. How to 

increase the yield of desired products is a hard task, attributing to the absence of empty 

orbitals and low polarity of C-H bonds in alkanes. The method to increase the reactivity 

of reactant would decrease the selectivity to the desired products because the reactivity of 

desired products is increased too and it is a major pathway that the degradation products 

are formed from the desired products in the reaction of butane.[39] Actually the C-H bond 

in the alkanes (390.8 kJ/mol butane) is stronger than that in alkenes (345.2 kJ/mol).[40] 

What determines the upper limitation to selectivity has been studied recently. It was 

observed that, at fixed conversion, the selectivity to desired products was related with the 

function:   

 
D°H C-H (reactant) - D°H C-H (products). 

where D°H is the dissociation enthalpy of the weaker C-H (or C-C) bond in the reactant 

or in the selective oxidation product.[41] Current experimental data revealed that that if the 

difference is smaller than 30 kJ/mol, high selectivities are achievable at any conversion 

levels, whereas for difference larger than 70 kJ/mol low selectivities are always 

obtained.[15] The situation for catalytic oxidation of butane is intermediate, which is 

shown in Fig. 1.1. For the catalytic oxidation of butane over MgO supported V2O5 

catalysts, the higher selectivity of 66% to 69% was obtained associated with the lower 

conversion of butane of 20%. When butane conversion increased to about 65% by using 

different loading, the significant decrease in alkenes selectivity from 68% to 32% was 

observed.[37] As reported in literature, the superior catalytic performance of MgO 
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supported Vanadium oxide was always achieved with about 90% selectivity with respect 

to the 9% butane conversion.[16, 43]  It suggests that the catalytic performance with both 

high conversion and high selectivity for the ODH of butane could not be achieved from 

the thermodynamical point of view. 
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Fig. 1.1 Selectivity-conversion plot for n-butane ODH 

The possible reaction pathway of catalytic oxidation was displayed in Fig. 1.2, 

occurring via parallel and sequential oxidation steps. Butenes are primary products and 

carbon oxides (COx) form as byproducts via butane oxidation and corresponding alkenes 

oxidation.[2]  
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n-butane butenes butadiene

CO,CO2

n-butane butenes butadiene

CO,CO2  

Fig. 1.2 Possible reaction network for catalytic oxidation of n-butane 

 

1.3.2. Factors affecting activity and selectivity 
 

The heterogeneously catalyzed ODH of butane involves complicated kinetics, 

corresponding to the surface adsorption, activation and desorption process. In order to 

describe the kinetic dependence of alkenes formation rate on H2O, O2 and butane for 

metal catalysts, a set of elemental steps used in literature is described below.[2]

1. Non-dissociative adsorption of butane by interaction on active oxygen (O*) 

C4H10 + O*↔ C4H10O*    (1-8) 

2. C-H bond activation by abstraction of H atom from adsorbed butane using 

neighboring active O* atom 

C4H10 O*+ O*→ C4H9O*+ HO*   (1-9) 

3. Formation of butene by cleavage of C-H bond and consecutive desorption 

C4H9O*→C4H8+ HO*    (1-10) 

4. Recombination of OH groups to form water 

HO*+ HO*↔H2O+ O*+*   (1-11) 

5.    Regeneration of active oxygen via dissociative chemisorption of O2  

O2+ *+ *→ O*+ O*     (1-12) 

Although the significant difference was observed between the chemical nature of 

metal catalysts and metal free catalysts, the research on the kinetics and chemical 
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properties of metal oxides still developed the systematic investigation methods for 

surface science and catalysis. The study on the oxygen species on the surface of metal 

oxides suggests the importance of chemical nature of oxygen species for C-H cleavage, 

which is considered as the rate-determining step for the formation of alkenes. The 

abundance of oxygen functionalities on surface of carbon materials will dominate the 

chemical nature of the surface of carbon materials and thus play an important effect on 

the activity and selectivity of carbon catalysts for catalytic oxidation reaction. 

 

1.3.2.1. Surface Basicity 

 
The alkenes molecules with C=C double bonds displayed higher electron density 

(nucleophilicity) than alkanes, corresponding to higher basicity. Although it is difficult to 

evaluate the basicity of light hydrocarbons in liquid phase due to the chemical stability of 

light hydrocarbons. The alternating gas phase basicity and proton affinity could be 

measured by using ionization threshold measurement, bracketing measurement or 

thermokinetic methods associated with quantum chemical calculation.[44-45] The proton 

affinity of butene is 820  kJ/mol, which is higher than that of butane (648.5kJ/mol), with 

respect to the higher basicity.[44-46] The difference of proton affinity between butene and 

butane is about 1.7eV, consistent with a by 1.5eV higher proton affinity of olefins in 

comparison with corresponding paraffins.[47] 

Furthermore, the consecutive reactions, the dehydrogenation of mono-olefins to 

diolefins (Fig. 1.2), are catalyzed on the same active sites as the dehydrogenation of 

paraffins to mono-olefins. It means, for catalysts used in the ODH (V2O5) or DH 

(Cr2O3/Al2O3) of butane, the preferable dehydrogenation of butenes could occur on the 
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surface of catalysts, resulting in the decrease in the selectivity for target products. It also 

suggests that the decreasing in acidity of catalysts should favor the selectivity of target 

products. 

 
Therefore, the surface acidity/basicity has important influence on the catalytic 

activity, which has been discussed in literatures. An increase in the basicity improves the 

desorption of alkenes, resulting in a decrease in deeper oxidation.[12, 48-52] When the 

basicity of catalyst is increased, the adsorption of hydrocarbons at active sites could be 

weakened, resulting in lower reactivity and high selectivity. For example, the alkali earth 

metal promotion in vanadium catalysts decreases the formation of oxygenate products 

(like maleic acid) in the reaction effluent, which is frequently found in un-promoted 

catalysts.[37, 43] The high activity and low selectivity in n-butane ODH at low surface 

coverage can be explained by the high Bronsted acid character of octahedral V(V) 

species.[48, 49] Therefore, the relationship between the desired products and catalyst 

basicity is shown schematically in Fig. 1.3. 

basic acid

1-butene              2-butene           isobutene               maleic acid             CO CO2

butadiene

basic acid

1-butene              2-butene           isobutene               maleic acid             CO CO2

butadiene  

Fig. 1.3 Schematic illustration for the influence of acidity/basicity on products 

Hence, the same evaluation method could be performed for metal-free catalysts 

by measuring their acidity/basicity.  It is possible to relate the acidity/basicity with the 

thermal stability of oxygen functional groups on the surface of carbon by using the TPD 

method. The influence of basicity of oxygenated surface groups on catalytic performance 
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of carbon material could be tested by gradually removing the oxygen functional groups 

with low thermal stability from the surface of catalysts. This could point to identify that 

what kind of oxygen species could be the real active sites in the ODH reaction. The 

pioneering work suggested that quinone groups decomposed at 873 K or more could be 

active sites for ODH of butane.[45]  

 

1.3.2.2. Oxygenated surface groups 

 
Although the pathway of oxygen adsorption and dissociation is not yet defined, 

the details of knowledge achieved from kinetic experiments on the metal catalysts could 

give some suggests about the reaction mechanism over the metal free catalysts. The 

kinetic investigation on Mg/Al supported vanadium catalysts was reported in literature, 

proposing the Langmuir-Hinshelwood adsorption model for the ODH of butane to 

corresponding alkenes.[51] Under the kinetic conditions (low contact time, low 

conversion), it was assumed that butenes and butadiene were primary products and 

combustion of hydrocarbon products could be neglected (Fig. 1.4). Therefore, the 

reduced reaction scheme was proposed, corresponding to the dehydrogenation of butane 

to alkenes and combustion of butane to carbon oxides.  

C4H10

1-C4H8, 2-C4H8 and C4H6

CO and CO2

r1

r2  

Fig. 1.4 Schematic illustration of catalytic oxidation of butane[51]

In this work, it assumed that the controlling step was the reaction between two 

adsorbed reactants. Therefore, the competitive adsorption (CAM) and non-competitive 
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adsorption (NCAM) of butane and oxygen molecules, as well as dissociative adsorption 

(CAM/NCAM, n=1/2) and non-dissociative adsorption (CAM/NCAM, n=1) of oxygen 

were discussed. The reaction rates of CAM and NCAM were list below: 

 

Where ki is rate coefficient, Ki is equilibrium constant and Pi is partial pressure of educt i  

Linear correlation and non-linear correlation were used to fit the experimental 

data to the kinetic models. Based on the calculation of linear correlation, it appeared that 

the non-competitive adsorption (NCAM) and non-dissociative adsorption models were 

more convincing than other models. However, from a non-linear correlation, it suggested 

that the better correlation was obtained with model NCAM-1/2 for the oxidative 

dehydrogenation of butane, and with model NCAM-1 for the combustion of butane to 

carbon oxides.  

The further investigation was performed and the final reaction mechanism was 

proposed: 1) the non-competitive adsorption model was a convincing reaction 

mechanism, meaning there were two kinds of active site for adsorption of butane and 

oxygen, respectively; 2) the dissociated and non-dissociated oxygen were both involved 

in the selective oxidation and deep oxidation, while the non-dissociated oxygen might 

have more contribution to the formation of COx.  

This study is significantly helpful to consider the reaction mechanism in the ODH 

using carbon materials as catalysts. The adsorption of oxygen on the surface of carbon 

CAM            (1-13) 

(1-14) NCAM
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materials has been studied till 1980s due to its significant importance from the industrial 

point of view.[52-56] The study on the role of molecular oxygen on the surface of graphitic 

carbon pointed out that, oxygen molecule was adsorbed on the surface of π-electron-rich 

active site (generally it is big aromatic ring) and activated, forming the O2
2- specie. The 

short-life O2
2- species could dissociate into the O- and react with the neighbour π-

electron-poor active site (defect with more sp3 composition), resulting in a carbon-oxygen 

bond. For activated carbon and CNTs with abundant carbon defects on the surface, the 

adsorption and activation of oxygen molecules could happen extensively, thereby greatly 

influencing the surface chemical properties of carbon materials.  

 
Therefore, we can distinguish two kinds of oxygenated species on the surface of 

carbon material: one is oxygen functional groups and another is weakly adsorbed oxygen 

species, concerning the strength between oxygen and carbon defects. It suggested that the 

chemical nature of oxygen species had influence to catalytic activity, attributed to the 

nucleophilicity or electrophilicity of active sites.  

 
1.4. Carbon catalysts for ODH of butane to butene and butadiene  
 

1.4.1 Feature and surface nature of carbon materials 
 
 The extent of application of carbon materials in 1900s was not bigger than that in 

1500s, although more detailed knowledge was achieved by modern investigation methods. 

More efforts were focused on the fabrication and application of activated carbons from an 

industrial point of view. The discovery of fullerene in 1985 and carbon nanotube in 1991 

was the cornerstone of great revolution of carbon chemistry, revealing an availability of 

rolling and curving of 2D graphene sheet. These materials display a great potential in 
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many fields of industry because of their unique chemical and physical properties. The 

microstructures of various carbon forms are displayed in Fig. 1.5.  

 
In the present work, the attention would be focused on the surface chemical 

properties and functionalization methods of multi-walled CNTs since the nature of 

oxygenated surface groups is the key factor for the oxidative dehydrogenation reaction. 

Fullerene and single-walled carbon nanotubes were not used in this work, owing to the 

thermal stability and commercial feasibility, respectively. In literature, the carbon 

nanofilaments with cavity microstructure could also be called “nanotube”, even with so-

called “herringbone” or “stacked cup” structure. We would not make distinguishment 

between herring-boned microstructure and parallel microstructure and all the nano 

carbons with hollow-tubular microstructure would be labelled as CNTs.[57]. 

a c

f

b

d e
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Fig. 1.5 Morphologies of different carbon materials a) diamond, b) graphite, c) fullerene, d) 

single-walled carbon nanotube, e) multi-walled carbon nanotube, f) herring-boned carbon 

nanofilament 

1.4.2. Carbon materials in catalysis 
 

Carbon materials, including CNTs, are mainly used as supports for the active 

phase in heterogeneous catalysis.[48] The catalytic application of carbon materials could 

be backdated to the use of activated carbons in the treatment of waste water and gas. It 

has been proved those activated carbons display good catalytic performance in the 

dechlorination and desulfation of the waste gases. Other reactions using activated carbons 

as catalysts include elimination of hydrogen halogens, oxidation of SO2 to H2SO4, 

synthesis of COCl2, NO reduction, dehydration and dehydrogenation of 2-propanol and 

ethanol, oxidative dehydrogenation and dehydrogenation of methanol, propanol and 

propanal, H2SO3 oxidation, oxidative dehydrogenation of cyclohexanol, and isoborneol 

oxidation, oxidation of phenol, among others.[58-67] It was assumed that, for carbon 

supported catalysts, there should be a good correlation between the activity of catalysts 

and surface area of carbon supports (mostly activated carbons). However, in most cases, 

the correlation was not found when using activated carbons with different feature for a 

given catalytic reaction.[67] It means that a variety of catalytic performance of carbon 

materials should be related with the chemical nature of surface of carbon catalysts. The 

investigation on the relationship between the chemical properties of carbon materials and 

the catalytic activity has been performed in several decades. Generally, two approaches 

have been widely performed in the surface chemistry of carbon, one is “solid state 

chemistry” approach and another is “organic surface groups” approach. The former one 
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focuses on the crystalline microstructure of carbon materials and the latter one focuses on 

the organic character of the surface groups. In the “solid state chemistry” approach, the 

defects on the surface of carbon materials are considered as active sites since the edge-

side carbon atoms are more chemically reactive. As well the “organic surface groups” 

approach deals with the nature and the functionality of surface complexes of oxygen and 

other compounds chemisorbed at the surface defects.  Obviously, the combination of both 

approaches could lead to a deeper insight to the real reaction process taking place on the 

surface of carbon materials. For instance, the dependence of chemical nature of activated 

carbon on the raw material and preparation history was always observed, suggesting that 

the microstructure should be the key factor for the reaction activity. On the other hand, 

activated carbon annealed in H2 exhibited no activity for the dehydration and 

dehydrogenation of alcohols while the oxidation treatment by nitric acid considerably 

increased the activity of same carbon by two orders of magnitude, suggesting that the 

catalytic activity should be attributed to the surface functionalities.[64]  

 
The use of carbon materials as catalysts in the ODH could be traced to 1970s, as it 

was noted that carbon deposition over the metal catalysts was favorable for the catalytic 

performance in the ODH of ethylbenzene to styrene.[68-71] The observation suggested that 

the active sites were not located on the initial catalyst surface, but on a carbon deposit. 

Later, activated carbons were used as catalysts in the ODH of ethylbenzene, displaying 

the remarkable catalytic performance.[72-78] It was found that the operating temperature 

(623-673Κ) in the ODH of ethylbenzene to styrene over carbon materials could be 100 K 

lower  than those with mixed oxide catalysts (723-823Κ). Figuiredo’s work on the 

thermal treated activated carbons suggested that the catalytic performance could be 
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related to the amount of oxygenated surface groups, especially the thermal stable 

functionalities.[73] The superior catalytic performance of activated carbons than that of 

graphite could be attributed to its mesoporous microstructure and highly functionalized 

surface properties. However, it is difficult to develop activated carbons as industrial 

catalysts since they are not stable during the reaction process. The rapid deactivation 

observed is attributed to the blockage of micropores by coke.[76] We have to mention here, 

activated carbons display a great variety in the chemical nature due to their fabrication 

processing, hindering the investigation and industrial application. The discovery of 

fullerene and its family derivatives, carbon nanotubes (CNTs), stimulated an enormous 

interest in chemical society. The superior stability and ultimate physicochemical 

properties suggest their promising future in material science. In addition, the sp3-like 

bonds were introduced by curvature of graphene layers and acted as electronic promoter, 

resulting in the increase in the reactivity. The homogeneous microstructure, highly 

functionalized surface properties and non-porosity are attractive in the catalysis 

community since they might be good catalysts instead of activated carbons. The use of 

carbon nanotubes/nanofilaments in the ODH of ethylbenzene was reported in the 

literature, displaying a promising catalytic activity and stability.[79-83] The investigation 

confirmed that the quinone groups should be active sites for the oxidative 

dehydrogenation of ethylbenzene to styrene. The possible reaction pathway has been 

proposed that the cleavage of C-H bonds occurred on the quinone groups and 

regeneration of quinone groups followed via removal of water. The elementary steps 

were similar to equation 1-10 to 1-12, wherein quinone groups worked as active sites 

instead of activated oxygen. But it was proposed that formation of water resulted from 
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the oxidation of hydroxyl groups by dissociative chemisorption oxygen species (eq 1-

15).[82] However, this step has never been tested in previous work. 

 
HO*+ HO*+ O*↔H2O+ O*+O*    (1-15) 

It is notable that effort was mostly put on the conversion of ethylbenzene, only 

few works have been done on the conversion of alkanes.[84-86] One possible reason is that 

the intermediate product produced in the ODH of ethylbenzene is much more stable than 

those in the ODH of alkanes, while the radical is stabilized by the delocalized π bonds. 

The catalytic performance of various carbon catalysts were shown in Tab. 1.2. The 

catalytic activities of coals were predominantly related with the reaction temperature and 

the best catalytic performance of about 7% C4 yield was achieved at 973K. The 

combustion of catalyst was also observed in the work, suggesting that the stability of 

carbon catalysts should be carefully considered.[84] The catalytic activity of CNTs was 

also tested for the ODH of propane to propene.[85] It was found that a significant catalytic 

performance could be also achieved at high temperature, associated with the gasification 

of catalysts. However, the phosphoric oxide addition could remarkably decrease the 

reaction temperature with respect to the considerable catalytic performance. Various 

activated carbons were used for ODH and DH of iso-butane to iso-butene, revealing the 

correlation between the catalytic activity and amount of oxygenated surface groups.[86] 

However, the formation of coke was also found in the used catalysts. 
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Tab. 1.2 Catalytic performance of carbon catalysts in the ODH of light hydrocarbons 

Catalysts Reactants Products Temperature 

K 

Conv. 

% 

Selec. 

% 

Yield 

% 

Coal[84] butane butene, 

butadiene 

973 ~40 ~17 7 

CNTs[85]  propane propene 773 42 40 17 

Activated 

carbons[86]

iso-butane iso-butene 648 25 60 15 

 

1.4.3. Modification of carbon materials 
 

 It was proposed that the catalytic performance of carbon materials was attributed 

to the nature of the surface of carbon materials, especially the amount of quinone 

groups.[67] However, less knowledge was obtained about the surface chemical kinetic 

process. Chemistry of graphite and graphene derivatives, like CNTs, have been widely 

developed and various functionalization/modification methods have been reported, 

providing us with a valuable platform to functionalize the surface of carbon materials in a 

controlled manner. It was reported in the literature that the increased amount of stable 

oxygenated surface groups could remarkably favour the catalytic performance. The 

grafted small organic molecules with different oxygen functional groups could also be 

used as molecules probes for mechanism investigation. Phosphoric addition was also 

used since it is a commercial modification method, not only for modification of carbon 

materials, but for preparation of inorganic catalysts.[85, 87] The change in catalytic 

behaviour of carbon materials by using different modification methods could be related 
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with the change in the chemical nature of surface of catalysts, which would be potentially 

helpful on investigating the reaction mechanism. 

1.4.3.1 Oxidative treatment 

The oxidative treatment covers the gaseous oxidative treatment and wet oxidative 

treatment. The gaseous oxidants include oxygen, ozone and N2O. Gaseous oxidation is 

used to remove impurity, open end and create functional groups. It is an efficient but 

rough functional method applied in the laboratory work. It has been used to modify 

activated carbon catalysts in the oxidative dehydrogenation of ethylbenzene to styrene. 

The improvement in the catalytic performance was observed but the catalytic 

performance decreased as a function of reaction time, meaning the oxygen functional 

groups generated by gaseous oxygen were instable.[88] The similar trend was observed 

when N2O was used as oxidant in the pre-treatment.[88] Ozone is a weak but particularly 

efficient oxidant in ozonolysis reaction, which reacts with C=C double bonds and 

fabricates two hydroxyl functional groups on the neighbor carbon atoms. The ozonized 

CNTs were mainly used to fabricate the poly-composite. There is no report about the 

application of ozone in the catalytic modification of CNTs.[92] 

 
In wet chemical approach, the primary oxidant is nitric acid due to its strong 

oxidative ability and convenient post-treatment (no residue after treatment). But it has 

similar situation like gaseous oxygen since the deactivation of catalytic activity was also 

observed in literature.[88] The oxygenated surface groups might be carboxylic acid, 

anhydride, lactone, phenol, quinone and other aromatic carbonyl. H2O2 is also used as a 

weaker oxidant in the functionalization of CNTs. Compared with the oxidation by nitric 
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acid, more alkyl hydroxyl/carboxyl functional group could be achieved under the proper 

conditions due to its weak oxidative ability. The other oxidant, like sulfuric acid, has 

been reported in literature, but the existence of residue could hinder its further 

application.[89-93]  

1.4.3.2 Grafting modification 

 The ordinary method for molecules immobilization was applied by using 

chlorination or fluorination and subsequent substitution of organic molecules (Fig. 

1.6).[94] This method has been widely used in the fabrication of carbon nanotube 

composite since it was very convenient to graft the moieties on the surface of CNTs with 

respect to the low efficiency of directive immobilization. The reaction followed such 

steps: the ends and defects of CNTs were oxidized by HNO3 or other oxidants, forming 

hydroxyl functional groups on the surface of CNTs; the consecutively nucleophilic 

substitution occurred with replacement of hydroxyl by chloride group; the further 

nucleophilic substitution was performed by using identical moieties, resulting in the 

immobilization of grafting materials via covalent linkage with CNTs. The immobilized 

molecular moieties include inorganic molecules such as ammonia, organic molecules, 

polymers, protein and even DNA/RNA. The prevailing advantages of immobilization 

have been proposed that it is a useful method to anchor the expected functional groups on 

the surface of carbon materials. The immobilized carbon materials can be used directly as 

gas sensor and bio-sensor and also be used as precursor for further modifications to 

synthesize polymer and composite mechanical materials.[95-101] Under the proper 

condition, the direct immobilization is also possible, but the requirement for the activity 

of immobilized molecules would limit its fabrication.[102]  
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Fig. 1.6 Chlorination and subsequent substitution in the CNTs 

In this work, we have applied the chlorination method to immobilize the different 

small acid or amine molecules on the surface of carbon materials (shown in Fig, 1.5). The 

as-modified carbon materials with different surface functionalities have been used as 

catalysts for the catalytic oxidation of butane.  

1.4.3.3 Phosphoric acid addition 

The phosphoric modified activated carbons were used as catalysts in the ODH of 

alcohols since the addition of phosphoric compounds could prolong the catalysts life.[103] 

Some works suggested that phosphoric modification of  activated carbon could improve 
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the amount of acid sites, resulting in the better absorbance ability for metal ions.[104-107] 

The microstructure of phosphorus oxide is quite complicated. It was believed that 

polyphosphoric acid was formed during the calcination process and polyphosphoric acid 

was connected with carboxylate group by C-O-P bond, confirmed by IR and XPS 

measurements.[108-110] The chemical bonding was thermally stable even at 800°C.  

 
The acidity of polyphosphoric acid was related with the amount of protons on the 

surface of support using phosphoric acid as precursor, its Ho value (Hammett acidity) 

ranging from -5.0 to 5, as well as the Ho of benzoic acid is only 4.2.[111-113] The acidity of 

phosphoric modified materials was always higher than that of non-modified carbon 

materials. The acidity of modified materials was related with the amount of the relic 

cations, like proton or ammonium, which was determined by the calcination temperature. 

The higher calcination temperature favored higher polymerization degree and decreased 

the amount of cations, resulting in the decrease in the acidity. Thus, it was interesting that, 

in some cases, the promotion of phosphoric acid was unfavorable to improve the surface 

acidity, resulting in a decrease in absorbance of metal ions.[105] The phosphoric  modified 

materials also covered so-called “solid phosphoric acid (SPA)” catalysts by using SiO2, 

TiO2 or other oxides as supports. They were widely used as strong acid catalysts in 

organic chemistry, even in the ODH of ethane.[111-118] Detailed knowledge about 

relationship between reaction mechanism and catalytic behavior was still insufficient. 

The catalytic potential of phosphoric oxide in the ODH reaction has never been 

confirmed by other work.[116]  

 In addition, the inhibition effect of phosphoric  addition to combustion of carbon-

carbon composite has been widely reported.[119] It proposed that there should be two 
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approaches for the inhibition of catalytic oxidation of carbon-carbon composites: (a) 

surface coating (acting as a diffusion barrier), and (b) active sites poisoning. However, 

the reaction mechanism is still in debate. 

 
1.5. Motivation and aim 
 

The unique physical and chemical nature of CNTs, such as the homogenous 

microstructure, the enormous availability of functionalization, the superior thermal 

conductivity and electronic conductivity, the strong mechanical properties, make it a 

promising future as advanced materials and supports. These significant properties also 

favor the catalytic behavior of catalysts. However, less effort was focused in the catalytic 

performance of CNTs. It would be an interesting and valuable attempt to develop the 

industrial application of CNTs. 

 
In the present work, the catalytic behavior of CNTs for the ODH of C4 

hydrocarbons was studied. Various modification methods would be applied to improve 

the catalytic performance of carbon materials. The improvement in catalytic activity by 

using functionalization methods would be related with the alteration of the chemical 

properties of surface functional groups. A series of joint experimental techniques in 

catalysis, including thermal programmed desorption coupled with mass spectroscopy, 

TEM, SEM, XPS and IR, would be used to investigate the change of chemical nature of 

surface of carbon materials during the modification process and catalysis process. In 

particular, the role of oxygen and carbon defects in the catalysis reaction would be 

studied to identify the real active sites for the ODH.  Ultimately, the reasonable reaction 
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model on carbon materials catalysts would be proposed based on the microstructure-

activity analysis. 
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Chapter 2 Experiment and characterization Methods 

2.1. Set-up for the catalytic reaction tests 
 

The catalytic tests were carried out in the set-up, shown schematically in Figure 

2.1. The fix-bed reactor allowed one to perform catalytic tests with full control of all 

reaction parameters, and to conduct the process in the presence of He, O2, hydrocarbons 

or mixtures of these gases. He was always used as purging gas. The gaseous reactants 

were led to the reactor by mass flow controllers (Bronkhorst). The catalytic tests were 

performed in quartz tubular reactors (30 cm length, 8.0 mm i.d.) placed inside of an 

vertical electrical heating oven, which was controlled by an Eurotherm PID temperature 

controller. The diluted or undiluted catalysts were held in the isothermal oven zone 

between two quartz fiber supports, supported by another thinner quartz tube. The 

products stream was sampled in the micro gas chromatography (Micro-GC, Varian 4900) 

with TCD detectors. The molecular sieve column 5A (length of 10 m) with Ar as carrier 

gas was used to separate the oxygen and carbon monoxide. The 19CB column (length of 

10 m) with He as carrier gas was used to separate the hydrocarbons. The PPQ column 

(length of 6 m) with He as carrier gas was used to separate the carbon dioxide.  

 
The reactor was also used as heating apparatus as a part of TPA system. The 

outlet of reactor was connected with vacuum chamber of Mass spectrometer by capillary. 

The details of investigation were described in chapter 2.2.3. 
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Fig.  2.1 Schematic illustration and photo of the reactor set-up used for the catalytic 

experiments and TPD apparatus  
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The parameters of the catalytic performance were defined by the following 

equations, where F is the molar flow rate and subscript i and o mean measured at the inlet 

and outlet: 

Conversion: Con butane = ( F butane(i)  - F butane(o)  ) /  F butane( i)   (2.1) 

Selectivity to product:  S 1-butene= F 1-butene / (F butane(i)  - F butane(o)  )  (2.2) 

S 2-butene= F 2-butene / (F butane(i)  - F butane(o)  )   (2.3) 

S butadiene= F butadiene / (F butane(i)  - F butane(o)  )   (2.4) 

Product yield: Y 1-butene = F 1-butene /  F butane( i)     (2.5) 

Y 2-butene = F 2-butene /  F butane( i)     (2.6) 

Y butadiene = F butadiene /  F butane( i)    (2.7) 

 
 

 The normalized catalytic yield by amount and surface area was calculated by the 

following equation: 

   Rs= F product// (m×s)       

   with m being the weight of the catalyst in grams, and s the BET surface area in 

m2/g of the catalyst measured after reaction. 

 
The carbon balance was calculated from the ratio of sum of the reaction products to 

educt to obtain information about possible carbon deposition or combustion taking place 

during catalytic reaction process. The experimental error in the carbon balance did not 

exceed 5%. 

 
The blank experiments and comparative experiments were hold at 673 K and 723K 

to test if there was contribution from homogeneous reaction. 180mg SiC with 100 mesh 
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particle size used as catalysts showed a very low catalytic activity, with only 1% 

conversion and 0% selectivity. 

 
Generally, 180mg catalyst was filled in the quartz reactor for one catalytic test. The 

length of isothermal zone was about 5 cm and the length of catalysts ranged from 0.5cm 

to 3cm. The reactants were induced into the reactor and consecutively reactor 

temperature was rapidly increased to the set-point. Spontaneously the outlet gas was 

injected into the Micro-GC for analysis. All values were taken at steady state. Higher 

reaction temperature should favor the catalytic performance of carbon catalysts, although 

the combustion of catalysts should feasibly occur. Therefore, the reaction temperature 

was set at 673 to 723 K, lower than the gasification temperature of corresponding CNTs. 

For catalytic oxidation of butene, the same contact time (0.72g·h/ml) was used as that 

used in carbon catalyzing ODH of ethylbenzene in previous work, facilitating the 

comparison. Ratio of concentration of oxygen to that of hydrocarbon, reaction 

temperature and total flow rate were tuned to achieve higher conversion and selectivity, 

combined with low concentration of butane/butene. The details of reaction conditions 

were list in Tab. 2.1. Although it was proposed that the reaction was running during the 

isothermal condition. The mass transfer and heating transfer were still an important 

problem. The outer diffusion and inner diffusion would happen simultaneously in the 

quartz reactor due to the microporous structure of CNTs. Generally, the diffusion could 

not be avoided by using so-called “integral reactor” with a large amount of catalysts, 

resulting in a distribution of concentration of educts and products along the quartz tube. 

Consequently, a significant drawback was: although carbon catalysts displayed different 

catalytic performance, but their conversion or selectivity was similar due to the serious 
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diffusion. Therefore, for kinetic analysis, the less catalysts amount, smaller particle size 

and high flow rate were required to eliminate the influence of diffusion on catalytic 

performance.  

 
Tab. 2.1 Optimal reaction conditions of catalytic oxidation of C4 hydrocarbons 

C4 Hydrocarbons Conc. C4  

vol% 

Conc. O2 

 vol% 

Flow rate 

ml/min 

Temperature 

K 

Catalysts amount   

mg 

n-Butene 0.67 1.32 15 673 180 

n-Butane 2.64 1.32 10 723 180 

 

2.2. Characterization Techniques 

2.2.1. Microscopic Methods (TEM, SEM) 
 
Transmission electron microscopy (TEM) is a very important characterization 

method for the local investigation at atom-scale, uniquely providing detailed information 

about the size, shape and microstructure of carbon materials. Therefore, the change in the 

structure and chemical properties of catalyst during the reaction could be identified by 

TEM. Two TEMs were used in the present work. The normal one is Philips CM 200 

LaB6 operated at an accelerating voltage of 200 kV with an energy dispersive X-ray 

analysis (EDX) detector and another is Phillips CM200 FEG field-emission gun electron 

microscope operated at an accelerating voltage of 200 kV equipped with an energy 

dispersive X-ray analysis (EDX) (DX-4) and electron energy loss spectroscopy (EELS) 

detectors (Gatan 100) for elemental analysis. The samples were prepared by suspending 

the solid powder in ethanol or chloroform under ultrasonic vibration. One drop of the 

thus prepared suspension was brought onto holy carbon films on copper grids.  
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TEM is a powerful characterization method for nano materials. The localized 

information about morphology, microstructure and defects could be obtained using 

imaging technique. However, the disadvantage of TEM is also remarkable since it is not 

suitable method for characterization of oxygenated surface groups. EELS is theoretically 

available for identification of oxygen functional groups, depending on the abundance of 

oxygenated surface groups. However, for multi-walled carbon nanotubes, the signal from 

oxygen element was always covered by the signal from carbon. 

2.2.2. Spectroscopic Methods (XPS, IR-spectroscopy and XRF) 
 

X-ray photoelectron spectroscopy (XPS, also called electron spectroscopy for 

chemical analysis, ESCA) is an electron spectroscopic method that uses X-rays to eject 

electrons from inner-shell orbitals. The kinetic energy of these photoelectrons is 

determined by the energy of the x-ray radiation and the electron binding energy. The 

electron binding energies are dependent on the chemical environment of the atoms, 

making XPS useful to identify the oxidation state and ligands of an atom. XPS is an 

invaluable analytical tool for the identification of the chemical composition of the 

oxygenated surface groups in present work. The C1s and O1s spectra of the carbon 

samples before and after catalysis were recorded and investigated, correlated with the 

change of chemical properties of carbon surfaces. XP spectra were recorded on a 

modified Leybold Heraeus spectrometer (LHS12 MCD) with Mg Kα radiation (1253.6 

eV) and a power of 240 W. The bandpass energy was set to 50 eV. X-ray satellites and 

Shirley backgrounds were subtracted. The peak areas were normalized with the 

theoretical cross-sections to obtain the relative surface compositions. The C1s and O1s 
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peaks were fitted by combined convoluted Gauss Lorentz functions. The quantification of 

concentration of oxygen on the surface of catalysts was calculated following the given 

function: 

no =
Io/δo

Σ(Ii/δi) 
i     (2.4) 

where I is intensity of XPS peak (peak area) and σ is atomic sensitivity factor. 
 
Infra-red (IR) spectroscopy uses electromagnetic radiation of a wavelength longer 

than that of visible light, but shorter than that of radio waves. It is one of the primary 

tools in the organic chemical investigation since it could differentiate the nature of 

different functional groups on the surface of carbon materials. The detailed information 

about the change in the category and amount of oxygenated surface groups could be 

obtained. IR-spectra were obtained using a Fourier transform spectrometer (Perkin-Elmer 

System 2000). The samples were prepared as suspensions by pressing in alkali metals 

halides (KBr).  

Elemental analysis of carbon sample was conducted by X-ray fluorescence 

spectrometry (XRF, Bruker S4 Pioneer, Rh-anode 60kv, 4kW) since the influence of 

metal impurities  should be taken into account. It should be clarified if the difference in 

catalytic performance should be attributed to the concentration of metal impurities, 

2.2.3. Thermal characterization methods with MS (TPD, TPO and NH3-TPD) 

 Thermogravimetry-differential thermal (TGA, TG/DTA) analysis determines the 

temperature- and time-dependent changes in the mass of a sample that occur during a 

specific temperature program and in a defined atmosphere. If analysis is combined with 
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mass spectrometer (MS), it could be used to analyze the outlet gas composition during 

the temperature program. Temperature-programmed Oxidation (TPO) and Temperature-

programmed Desorption (TPD) were used to analyze thermal stability and oxygen 

functional groups of carbon material. The correlation between the size distribution and 

gasification temperature of graphene sheets was reported, investigated by using TPO 

method.[1]  

 
TPD investigation could offer valuable detailed information about the chemical 

nature of catalyst surface, since the desorption temperature of CO and CO2 could be 

associated with the thermal stability of different oxygen functional group. Almost all the 

possible functionalities in the individual graphene sheet were schematically summarized 

in Fig. 2.2. However, inconsistent data were achieved about the chemical desoption 

temperature of oxygen functional groups since the desorption significantly depended on 

the chemical environment and feature. Therefore, the difference of desorption 

temperatures of some functional group in literature could be almost 373K or more (Tab. 

2.2). Generally, only desorption temperature of carboxylic acid and quinone groups was 

undoubtedly identified (the lowest and highest desorption temperature). Therefore, the 

deconvolution of TPD profiles and consequent investigation must be confirmed by other 

characterization methods. 
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Fig. 2.2 Schematic representation of the main chemical features in a graphene sheet, with its 

typical surface functionalities 
 

Tab. 2.2 Desorption temperature of oxygen functional groups in carbon materials 

Oxygen functional groups Desorption products Desorption temperature K 

carboxylic acid CO2 623[2], 373-573[3,4], 473-523[5], 

anhydride CO2+CO 900 [6], 823[4], 523-773[5], 

lactone CO2 900[6], 933[4], 463-923[7], 623-6730[5], 

phenol CO 903[4], 873-973[5]

ether CO 873[6]

quinone and half quinone CO 1073[4], 1073-1173[5], 873-1223[7]

 

 
The TPD and TPO characterization also could be conducted individually using 

vertical heating oven coupled with a QMS200 mass spectrometer (Thermostar, Pfeiffer 

Vacuum) for the investigation of the evolved gaseous oxidation/desorption products as a 

function of temperature (Fig. 2.1). Although the information about thermogravimetry was 

missed during the characterization, the intensity of H2O, CO and CO2 as a function of 
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temperature can also be recorded and analyzed. For TPO, 20mg catalysts were used with 

a linear heating rate of 2K/min and 13.3vol% O2 in He (15ml/min total flow rate). 20mg 

sample was used in TPD investigation, preheated at 473 K for half hour and consequently 

heated with 10 K/min linear heating rate and 15 ml/min He flow rate. 

 
  NH3-TPD is a valuable analytical tool to identify the surface acidity/basicity of 

solid acids. By using the mass spectrometer, the ammonia desorption signal was recorded 

during the temperature-programmed process. 20mg sample was used in NH3-TPD 

investigation, preheated at 473 K and helium atmosphere for half hour and consequently 

cooled down to room temperature. Then the sample was flushed by 33% ammonia with 

30 ml/min total flow rate for 1 hour. Afterward, the saturated sample was purged by He 

with 20ml/min flow rate for 1 hour. 10 K/min linear heating rate was used with 15 

ml/min He flow rate. 

 The well-known technical problem, diffusion, was also taken into account. The 

characterization conditions, like catalysts amount, heating ramp and diluters, were 

changed to obtain the optimum result. The Figure 2.3 showed the NH3 profiles obtained 

from NH3-TPD with different heating ramp and blank experiment.  
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Fig. 2.3 NH3-TPD profiles of oxidized Nanocyl CNTs with different heating ramp 

 
 To achieving the remarkable profiles during TPD performance, the heating ramp 

of 10K /min was also chosen in the characterization. For TPO profiles, a low heating 

ramp was possible for characterization due to the strong intensity of CO2 signal (m/e=44). 

The TPO-CO2 profiles (Fig. 2.4) showed that gasification temperature of CNTs decreased 

from 1099 to 913K when the heating ramp decreased from 10K /min to 2K /min. 

Although the intensity decreased by almost one order of magnitude, the peak shape could 

be identified for further analysis. 
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Fig. 2.4 CO2-TPO profiles of oxidized Nanocyl CNTs with different heating ramp a) 2K/min 

and b) 10K/min 
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Chapter 3 Catalysts preparation and functionalization  

Several kinds of commercial CNTs and other carbon materials were used in this 

work, listed in the Tab. 3.1. Detailed information about the modification of carbon 

catalysts was denoted in this chapter. Effort was mainly focused on two kinds of CNTs 

(PSLD and Nanocyl) with different microstructure (herring-boned nanofilament and 

carbon nanotube).  

 
Tab. 3.1 Carbon catalysts used for the ODH of C4 hydrocarbon 

 Serial Nr BET area 

[m2/g] 

Diameter  

[nm] 

Database Nr label 

PSLD-24 41 50-200 2467 PSLD 

Baytube 286 5-20 3832 Bay 

CNTs 

Nanocyl 313 15 3833 Nanocyl 

Alfar Aesar 836.7  4000 AA 

Palmshell 1011  3721 PS 

AC 

Noritrox 790  4272 Norit 

 
 
3.1 Oxidation treatment 

 The oxidation treatment was applied following such steps: firstly, carbon materials 

were dispersed into concentrated nitric acid with concentration of 1g solid per 100 ml acid 

solution. The mixture was refluxed for hours and subsequently cooled down to room 

temperature. Afterwards, the solution was filtered and washed by deionized water several 

times. Then the obtained black solid was dry at 353K over night. The refluxing time ranged 

from 2 hour to 40 hour. The calcination treatment was hold at helium atomosphere, 
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removing oxgen functional groups with low thermal stability. The detailed information 

about oxidation and calcination conditions was display in Tab. 3.2. The influence of metal 

impurities on catalytic activity has been taken into account since metal residues in carbon 

materials might be active species for the ODH of butane. The elements analysis and HCl 

purification were performed, proving that catalytic activity of metal impurities was 

negligible.  

 

Tab. 3.2 Preparation conditions of oxidized carbon material 

Calcination   time of 

Refluxing 

(hour)  
Temperature (K) Time (min) 

SN 

 

Label 

PSLD-24 4 No  3235 PSLD-4 

 10 No  3236 PSLD-10 

 40 No  3237 PSLD-40 

Nanocyl 2 No  4779 Nanocyl-1 

 2 723 120 4480 Nanocyl-2 

 2 873 30 5346  Nanocyl-3 

 2 973 30 4633 Nanocyl-4 

Alfa Aesar 2 No  4628 AA-1 

 2 973 30 4631 AA-2 

 

3.2 Chlorination and immobilization 

2g oxidized CNTs were dispersed in 40 ml anhydrous tetrahydrofuran (THF) by 

sonication to give a suspension that was then added 20 ml of thionyl chloride (SOCl2) 

and 2 drops of dimethyl formamide (DMF). The suspension was stirred at 338K for 24 h 

at the nitrogen atmosphere. The excess thionyl chloride was removed by filtering under 
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vacuum. Afterwards the resulting black solid (MWNT-Cl) was washed with anhydrous 

THF and consecutively vacuum-dried at 313K for 12 h. A mixture of 500 mg of MWNT-

Cl, 1g moieties and 40 ml anhydrous THF were refluxed for 72 h. After cooled to room 

temperature, the black suspension was filtered and washed, which was subsequently dried 

at 353K in air. The used moities included 3-furoic acid, methyl cyclopentanone-2-

carboxylate, 2-amino pyridine, ethylenediame and pyrrole-2-carboxylic aicd. The 

schematic reaction process was display in Fig. 3.1 and detailed information about 

preparation conditions was shown in the Tab. 3.3. 

OHOH
HNO3HNO3 SOCl2 Cl

 

Fig 3.1 Schematic illustration for chlorification and substitution 

 
Tab. 3.3 Preparation of immobilized carbon material 

Matrix Moieties SN Label 

PSLD-10 3-furoic acid 4880 M-PSLD-1 

 methyl cyclopentanone-2-carboxylate 4879 M-PSLD-2 

 2-amino pyridine 4877 M-PSLD-3 

 ethylenediame 4876 M-PSLD-4 

 pyrrole-2-carboxylic acid 4878 M-PSLD-5 

3-furoic acid 4720 M-Nanocyl-1 Nanocyl-1 

pyrrole-2-carboxylic acid 4721 M-Nanocyl-2 
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3.3 Phosphoric addition 

 Two kinds of phosphoric precursors (ammonium hydrophosphorate and 

phosphoric acid) were used in the preparation. The loading amount of phosphoric acid 

was calculated by weight of P2O5. The loading amount ranged from 2wt% to 20wt%, by 

using PSLD CNTs, Nanocyl CNTs and two kinds of activated carbons as matrix. The 

modified CNTs were prepared by incipient-wetness impregnation method. The 

impregnated samples were hold at room temperature overnight and consecutively 

calcined at Helium atmosphere and 873K for 15 min. The phosphoric modified CNTs 

were labelled in Tab. 3.4.  

Tab. 3.4  Phosphoric acid modified carbon materials 

support precursor P2O5 wt% SN label 

Nanocyl-2 (NH4)2HPO4 2 4504 2%P2O5(N)-Nanocyl 

Nanocyl-2 H3PO4 2 5344 2%P2O5(P)-Nanocyl 

Nanocyl-2 (NH4)2HPO4 5 4505 5%P2O5(N)-Nanocyl 

Nanocyl-2 H3PO4 5 5100 5%P2O5(P)-Nanocyl 

Nanocyl-2 (NH4)2HPO4 10 4506 10%P2O5(N)-Nanocyl  

Nanocyl-2 H3PO4 10 5101 10%P2O5(P)-Nanocyl 

Nanocyl-2 (NH4)2HPO4 20 4507 20%P2O5(N)-Nanocyl 

PSLD-10 (NH4)2HPO4 2 5105 2%P2O5(N)PSLD 

PSLD-10 H3PO4 2 5106 2%P2O5(N)PSLD 

PSLD-10 (NH4)2HPO4 5 5102 5%P2O5(N) PSLD 

PSLD-10 H3PO4 5 5107 5%P2O5(P) PSLD 

PSLD-10 (NH4)2HPO4 10 5103 10%P2O5(N) PSLD  

PSLD-10 H3PO4 10 5108 10%P2O5(P) PSLD 

AA (NH4)2HPO4 5 4513 5%P2O5AA 

AA-1 (NH4)2HPO4 5 4629 5%P2O5AA-1 

PS (NH4)2HPO4 5 4715 5%P2O5PS 
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3.4 Carbon supported metal catalysts 

 For comparison, carbon supported iron(III) phosphorate catalysts were also 

prepared by incipient-wetness impregnation method. The impregnated samples were hold 

at room temperature overnight and consecutively calcined at Helium atmosphere and 

873K for 15 min. The catalysts were labelled in Tab. 3.5. Mg3V2O8 (orthovanadate) and 

Mg2V2O7 (pyrovanadate) catalysts were also used in present work, prepared by wet 

calcination method. 3g Mg(NO3)2 and 0.91g NH4VO3 salts were dissolved in a diluted 

HNO3 solution (5 drops concentrated HNO3 in 250 ml H2O) and then dried at 353K. By 

following calcination at 823K for 6 hours, Mg3V2O8 white powder was obtained. To 

prepare Mg2V2O7 sample, the weight of Mg(NO3)2 and NH4VO3 was 3g and 1.37g, 

respectively. The same preparation method was performed as describe above.  

 
Tab. 3.5  Carbon supported phosphoric iron catalysts 

support precursor P2O5 wt% SN label 

Nanocyl-2 FePO4 5 4517 FePO4Nanocyl 

AA FePO4 5 4514 FePO4AA 

AA-1 FePO4 5 4630 FePO4AA-1 
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Chapter 4 Catalytic oxidation of n-butane over carbon catalysts  

 In this chapter, the catalytic performance of various carbon catalysts, for instance, 

CNTs and activated carbons, for catalytic oxidation of butane was tested. The comparison 

was also hold between the catalytic activity of non-modified and modified carbon 

catalysts. The significant difference in the catalytic performance of carbon materials 

before and after modification was observed. Carbon catalysts displayed superior catalytic 

activity to metal oxides catalysts. The catalytic test combined with TPD investigation was 

performed in present work to identify the role of oxygenated surface groups during the 

reaction process. 

4.1 Catalytic activity of CNTs 

Two kinds of commercial CNTs were conducted as catalysts in the catalytic 

oxidation of n-butane to corresponding alkenes. The pristine PSLD CNTs displayed a 

high activity for the oxidation of butane at 673K and molar ratio of O2:C4 equal to 2, but 

the selectivities to C4 alkenes were no more than 4%. The similar catalytic performance 

was observed using the pristine Nanocyl CNTs, whose selectivities was lower than 5% 

(Fig. 4.1). CO and CO2 took a prevailing percentage in the products. For both catalysts, 

carbon balance kept at 1 during reaction process. It means that the pristine CNTs are 

active, but not selective for the catalytic oxidation of butane.  

 
Two tested CNTs displayed different initial catalytic performance. PSLD CNTs 

initially displayed the highest conversion of butane, which decreased gradually and 

reached the stable state 15 hours later. The same trend was observed on the selectivities 

to corresponding alkenes. Nanocyl CNTs displayed initial catalytic performance with the 
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highest selectivities but lowest conversion. However, a rapid decrease in selectivities was 

observed with respect to increase in conversion as a function of reaction time. Then the 

catalysts reached the stable state after 2 hours reaction. For both samples, the decrease in 

selectivity to corresponding alkenes during the reaction process was observed, suggesting 

that no active sites for ODH of butane were generated during the reaction. 
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Fig. 4.1 a) Catalytic performance of PSLD: left side, butane conversion and alkenes yield; 

right side, selectivites to all main products; b)catalytic performance of Nanocyl: left side, 

butane conversion and alkenes yield, right side, selectivites to all main products; reaction 
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conditions: 673K, O2 vol%=1.32% and ratio of O2:butane=2, 15ml/min, 180mg catalysts. 1-

bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively. 

 
 The catalytic performance of oxidized Nanocyl CNTs (Nanocyl-2) was shown in 

Fig. 4.2. At initial period, catalytic performance with higher conversion but less 

selectivity was observed, probably due to the unequilibrated state. Then selectivity to 

alkenes increased rapidly and following decrease in selectivity to butenes as function of 

reaction time was observed, with respect to the decrease in butane conversion. After 4 

hours reaction, the catalyst reached the steady-state, corresponding to the catalytic 

performance with 17% alkenes selectivity. It means that the oxidation treatment is 

favorable for the catalytic performance.  
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Fig. 4.2 Catalytic performance of Nanocyl-2: left side, butane conversion and alkenes yield, 

right side, selectivites to all main products; reaction conditions: 673 K, O2 vol%=1.32% and 

ratio of O2:butane=2, 15ml/min, 180mg catalysts. 

The reaction conditions were optimized to achieve better catalytic performance 

and eliminate the total oxidation. The optimization process would be described in the 

latter part (chapter 4.7). From above experiments, it was notable that the high butane 
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concentration, low flow rate and high reaction temperature were favourable for the 

selective oxidation. Then the reaction conditions were chosen as 723K, O2 vol%=1.32% 

and ratio of O2:butane=0.5. The amount of catalysts used was 180mg and total flow rate 

was 10ml/min. The catalytic performance of oxidized Nanocyl CNTs (Nanocyl-2) was 

displayed below (Tab. 4.1). 

 
Tab. 4.1 Catalytic performance of the Nanocyl-2 under the optimized conditions 

Selec. % Sample Conv. % 

COx ΣC4=

ΣC4= yield % 

Nanocyl-2 11 79 21 2.4 

 

Butane activation is a complex reaction since butadiene can be produced from 

further dehydrogenation of butane, but also from the following ODH reaction of 1-

butene/2-butene since the catalyst also catalyzes the selective oxidation of unsaturated 

hydrocarbons. In addition, the secondary total oxidation of butenes and butadiene could 

also take place. Re-adsorption and diffusion effect must be considered since a large 

amount of catalysts with remarkable high BET surface area were used in the reaction and 

reaction was conducted in an integral reactor.  

 
To obtain the necessary information about this reaction, the contact time of 

catalyst was changed to decrease the influence of diffusion and consecutive reaction (Tab. 

4.2 and Fig. 4.3). It was observed that the catalytic selectivities to butenes increased from 

24% to 48%, following the decrease in catalysts amount from 180 mg to 10 mg. However, 

the alkenes selectivity was much less than 100%, indicating that the direct butane 

combustion reactions occurred in parallel with ODH.[1] The alkenes selectivity decreased 
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with increasing the contact time, which was contributed to the conversion of products to 

carbon oxides via secondary combustion pathways. Obviously, butenes were the primary 

olefin products and butadiene formed from the further dehydrogenation of butenes since 

the selectivity to butenes increased with respect to the decreasing residence time. 

Therefore, the catalytic oxidation of butane occurred via parallel and sequential oxidation 

steps, which is proposed in Fig. 4.4. 

Tab. 4.2 Catalytic activity of Nanocyl-2 with different residence time 

Selec.  % Formation rate mmol/g h-1Catalyst 

amount (mg) 

W/F 

s g/ml 

Conv 

% ΣC4=
* ba* COx ΣC4=* Ba 

90 0.36 15 24 7 75 0.11 0.031 

40 0.16 8 30 7 70 0.16 0.038 

20 0.08 5 34 7 66 0.24 0.050 

10 0.04 3 48 7 52 0.34 0.052 

*ba is the abbreviation of butadiene, ΣC4= represent all alkenes products 
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Fig. 4.3 Dependence of alkenes selectivities and formation rates on residence time 

n-butane butenes butadiene

CO,CO2

n-butane butenes butadiene

CO,CO2  
Fig. 4.4 Possible reaction network for catalytic oxidation of n-butane 

 
For evaluation of the possible sequential oxidation reaction, the catalytic activities 

of Nanocyl-2 in the catalytic oxidation of 1-butane, 1-butene and butadiene were tested 

under the same reaction conditions (Tab. 4.3). A remarkably catalytic activities of 

Nanocyl-2 catalyst were observed. This confirms the contribution of the catalytic 

oxidation of re-adsorbed species to the catalytic oxidation of butane. Compared to the 

catalytic oxidation of butane, higher catalytic performance with 55% conversion and 54% 

selectivity was achieved by using same catalysts in the catalytic oxidation of butene. It 
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proved that production of butadiene in the catalytic oxidation of butane mainly resulted 

from the consecutive dehydrogenation of butene, in agreement with the kinetic 

measurement (Tab. 4.1), confirming the possible reaction network illustrated in Fig.  4.4. 

 
Tab. 4.3 Catalytic activities of Nanocyl-2 in different reactions  

Reaction W/F 

s g/ml 

Conv. 

% 

alkenes Selec.   

% 

Catalytic oxidation of butane 0.72 38 18 

Catalytic oxidation of butene 0.72 55 54 

Catalytic oxidation of butadiene 0.72 27  

 
 In literature, it was proposed that the carbonyl functional groups were active sites 

for the ODH of ethylbenzene.[2] By using the thermal treatment to remove the oxygenated 

surface groups, the correlation  between the oxygenated surface species and catalytic 

behaviour of carbon catalysts was investigated. The catalytic activity of thermal-treated 

CNTs was tested in present work, displayed in Fig. 4.5 and Tab. 4.4. Firstly, Nanocyl-2 

sample was used in the catalytic oxidation of butane. After six hours, the reaction was 

quenched by rapid decreasing reaction temperature and replacing reactants input with He. 

The catalyst was flushed at room temperature by He for two hours and following TPD 

was performed. After TPD, the reactant gases were injected inside the reactor and the 

catalytic oxidation of butane was performed again under same reaction condition. When 

the reaction reached steady state, it was stopped, following the same process described 

above. Then TPD was performed in sequence. The catalytic test and TPD recycling turn 

were held three times. It is noted that the catalyst has never been taken out of reactor and 
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exposed to atmospheric environment. During the third catalytic test, isotopic oxygen 

(18O2) was used instead of ordinary oxygen (16O2) for 1.5 hours.  

 
After the TPD at maximum temperature of 1123K, the conversion of butane 

decreased slightly from 11% to 10% as well as C4= products selectivity decreased from 

21% to 19%. It means that the thermal treatment did not lead to the deactivation of the 

catalyst. The active sites were not removed from the surface of CNTs or they regenerated 

during the further reaction cycling. In addition, the activation process of TPD-treated 

CNTs was very short, illustrating the quick regeneration process of active sites for 

catalytic oxidation. The less change in the butane conversion and alkenes selectivity 

observed in the second, third and forth catalytic tests suggested that the chemical nature 

of carbon surface should not be changed by further TPD performance. Notably, the 

proportion of butadiene in all alkene products increased almost 2 times after TPD 

treatment. It means that the sequential dehydrogenation is preferable on the surface of 

TPD-treated sample.  
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Fig. 4.5 ODH-TPD cycle of catalytic oxidation of butane catalyzing by Nanocyl-2 

 
 

Tab. 4.4 Catalytic activities of Nanocyl-2 in different reaction runs 

Selec. %  Conv. % 

butenes ba* ΣC4= Sba/ΣSC4=

C4= yield % 

1st 11 13 8 21 0.40 2.3* 

2nd 11 7.4 12 19 0.61 2.0 

3rd 10 5 14 18 0.73 1.9 

4th 10 2 15 17 0.88 1.7 

* *ba is the abbreviation of butadiene, value taken at steady-state  

The kinetic measurements of TPD-treated CNTs (after forth catalytic tests, Fig. 

4.6 and Tab. 4.5) illustrated the increase in C4= products selectivity and decrease in COx 

selectivity with respect to the decrease in residence time. It means that the reaction 

network should be similar to the oxidized CNTs before TPD performance (Fig. 4.4).  
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Fig. 4.6 Dependence of alkenes selectivities on residence time 

 
Tab. 4.5 Catalytic activities of Nanocyl-2 with different residence time 

Selec.  % Catalyst 

amount (mg) 

W/F 

s g/ml 

Conv 

% 
ΣC4= ba* COx 

90 0.36 10 16 14 84 

40 0.16 8 22 16 78 

20 0.08 6 31 19 69 

10 0.04 4 37 18 62 

*ba is the abbreviation of butadiene 

 

4.2 Catalytic activity of phosphoric modified CNTs 

 The catalytic performance of 2%P2O5(N)-Nanocyl as function of reaction time 

was shown in Fig. 4.7a. The catalysts reached steady state after 2 hours reaction and no 

significant deactivation was observed even after 20 hours reaction. The catalytic 
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performance with 40% butane conversion and 33% alkenes selectivity was achieved at 

steady state, with respect to the 30% CO2 selectivity and 37% CO selectivity.  

 
 In addition, the reaction conditions were optimized to achieve better catalytic 

activity (Fig. 4.7 b-d). It was observed that change in the flow rate had less influence on 

the catalytic performance, but increase in temperature and ratio of butane to O2 could 

remarkably improve the catalytic performance. Higher reaction temperature was mainly 

favourable for butane conversion and lower O2:butane ratio could prominently improve 

catalytic selectivity to alkenes from 30% to almost 80%. The highest selectivity was 

achieved at 723K with O:butane ratio equal to 0.5. Therefore, the stoichiometric 

condition has been used as the optimum reaction conditions: 723K, O2 vol%=1.32% and 

ratio of O2:butane=0.5, 10ml/min, 180mg catalysts. 
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Fig. 4.7 a) Catalytic performance of 2%P2O5(N)-Nanocyl as function of time on 

stream, reaction conditions: 673 K, O2 vol%=1.32% and ratio of O2:butane=2, 15ml/min 

flow rate, 180mg catalysts; b) Dependence of catalytic activity on the ratio of oxygen 

concentration to butane concentration; c) Dependence of catalytic activity on the flow rate; 

d) Dependence of catalytic activity on the temperature 

 
 The effect of additive amount was also tested by change phosphoric oxide loading 

amount from 2wt% to 20% (Fig. 4.8). Low loading addition (no more than 5wt%) was 

favourable for catalytic performance. When the loading amount was higher than 5wt%, 

both butane conversion and alkenes selectivities decreased, attributed to the over-loading 

effect.  
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Fig. 4.8 Catalytic performance of phosphoric modified CNTs as a function of P2O5 loading 

amount (reaction conditions: 673 K, O2 vol%=1.32% and ratio of O2:butane=2, 15ml/min, 

180mg catalysts) 
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The influence of precursor was also investigated (Fig. 4.9). It was shown that, 

with low loading amount, modified CNTs prepared by using phosphoric acid as precursor 

had much higher selectivity than that obtained by using (NH4)2HPO4 as precursor, but its 

selectivity decreased rapidly when the loading amount increased to 5wt% or more. 

Obviously, as precursor, H3PO4 was more acidic than (NH4)2HPO4. However, it is 

difficult to draw any concludes since the phosphoric carbon complexes could formed 

during the calcination. A remarkable difference in acidity of phosphoric modified 

materials has been discussed in chapter 1.4.3.3. 

0

20

40

60

80

0 2 4 6 8 10 12

P2O5 loading amount [wt% ]

C
4 

se
le

c 
[%

]

C4 selec (NH4)2HPO4 

C4 selec H3PO4 

 
Fig, 4.9 Comparison between selectivity of phosphoric modified CNTs by using different 

precursors: H3PO4 and (NH4)2HPO4, (reaction conditions: 673 K, O2 vol%=1.32% and ratio 

of O2:butane=2, 15ml/min, 180mg catalysts) 

 
The test for catalytic stability of 5%P2O5(N)-Nanocyl was displayed in Fig. 4.10. 

At the beginning of reaction, the combustion of butane was observed, corresponding to 

the high conversion and low selectivity. Consecutively, the increase in C4= products 
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selectivity as well as decrease in COx selectivity was observed. After 6 hours reaction, 

slightly deactivation was observed. No significant deactivation was observed after 30 

hours reaction with respect to the catalytic performance of 52% C4= products selectivity 

and 9.2% C4= products yield, which was about almost four times higher than that 

obtained over non-modified samples. The catalytic performance was also very stable, yet 

after 100 hours reaction. During the whole reaction process, carbon balance kept at 100%. 
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Fig. 4.10 Catalytic performance of sample 5%P2O5(N)-Nanocyl as a function of reaction 

time (upper right corner: initial period of catalytic reaction), reaction conditions: 723 K, O2 

vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg catalysts 

 
The dependence of catalytic performance of phosphoric modified CNTs (5wt% 

loading) on the residence time was displayed in Fig. 4.11. Compared with Nanocyl-2 

catalyst, the combustion of butane over phosphoric modified CNTs was significantly 

reduced. By using 10mg CNTs and phosphoric modified CNTs, no significant difference 

in alkenes formation rate was observed and ratio of butenes selectivity to butadiene 
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selectivity constantly kept 6. It means the phosphoric addition improves the catalytic 

performance by inhibiting butane combustion, not generating new active sites. 
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Fig. 4.11 Dependence of alkenes and butadiene formation rate on residence time 

 
Tab. 4.6 Catalytic activity of 5%P2O5(N)-Nanocyl with different residence time 

Selec.  % Formation rate mmol/g h-1Catalyst 

amount (mg) 

W/F 

s g/ml 

Conv 

% ΣC4= ba* COx ΣC4= ba 

90 0.36 11 55 20 45 0.18 0.067 

40 0.16 7 62 19 38 0.29 0.087 

20 0.08 4 68 16 32 0.40 0.094 

10 0.04 2 73 12 27 0.38 0.063 

*ba is the abbreviation of butadiene 
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4.3 Catalytic activity of grafted CNTs 

 The catalytic activity of grafted carbon nanotubes at different temperature is 

displayed in Fig. 4.12. The activation process of catalyst was observed at low temperature 

(573K and 673K), corresponding to the increase of C4= products selectivity as a function 

of reaction time. In addition, the increase in reaction temperature favored both butane 

conversion and alkenes selectivity at low temperature (≤673 K). At 673 K, a catalytic 

performance of 5% butane conversion and 52% C4= products selectivity was achieved at 

steady state after 9 hours reaction. However, a decrease in C4= products selectivity with 

respect to an increase in butane conversion was observed as the reaction temperature 

increased from 673 K to 723 K, indicating the loss of active sites for catalytic oxidation 

of butane. The comparison of catalytic performance of grafted CNTs (M-Nanocyl-1 and 

M-Nanocyl-2) and matrix (Nanocyl-1) as a function of reaction time was shown in Fig. 

4.12b and Tab. 4.7. Notably, the carbon balance of three carbon catalysts always kept at 

100% during reaction process. It was observed that grafting modification significantly 

improved the catalytic performance even at high temperature, with respect to the increase 

in catalytic selectivity to alkenes products from 22% to 39% associated with the similar 

butane conversion. No obvious deactivation was observed after 15 hours reaction, 

indicating the remarkable stability of modified catalysts.  
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Fig. 4.12 Upper: catalytic performance of grafted Nanocyl CNTs M-Nanocyl-1 at different 

temperature; lower, comparison of Catalytic performance of non-grafted and grafted 

Nanocyl CNTs at 723 K (SN4720: M-Nanocyl-1, SN 4721: M-Nanocyl-2 and SN4779: 
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Nanocyl-1). For all reactions, O2 vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg 

catalysts 

Tab. 4.7 Catalytic performance of grafted Nanocyl CNTs 

Selec.  %  Moieties Conv. 

% 1-bu 2-bu ba ΣC4=

ΣC4= 

yield % 

Nanocyl-1  13 12 3.9 7.4 23 3.0 

M-Nanocyl-1 3-Furoic acid 11 14 4.0 20 39 4.2 

M-Nanocyl-2 methyl cyclopentanone- 

2-carboxylate 

10 12 3.5 20 36 3.6 

*1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively, 
all values were taken at steady state. 
 

PSLD CNTs were also used as matrix for grafting modification. The catalytic 

performance as a function of reaction time was displayed in Fig. 4.13. A similar 

activation process was observed even at higher temperature, indicating the thermal 

stability of grafted sample. The difference in initial catalytic performance of immobilized 

Nanocyl CNTs and PSLD CNTs should be attributed to the difference in the 

microstructure (Fig. 5.2 and Fig. 5.5). After modification by grafting methyl 

cyclopentanone-2-carboxylate moiety, the catalytic selectivity in steady state increased 

from 33% to 48%. The catalytic activity kept stable even after 10 hours reaction and no 

apparent deactivation was observed. In addition, the carbon balance of three carbon 

catalysts always kept at 100% during reaction process. The remarkable catalytic activity 

and stability suggested that this grafting modification could be a good modification 

method for catalysts preparation. Actually, the grafting modification has been used 

widely for mechanical material, like CNTs composite, but it has never been used for 

catalysts modification. The results here strongly suggest that this method could improve 
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the catalytic selectivity by introducing functional groups. For pyridine grafted CNTs, less 

change in catalytic performance was observed. 
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Fig. 4.13 Catalytic performance of grafted PSLD CNTs (SN4877: M-PSLD-2, SN4879: M-

PSLD-3) and oxidized PSLD CNTs (SN3237: PSLD-10), reaction conditions: 723K, O2 

vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg catalysts 
 

Tab. 4.8 Catalytic performance of grafted PSLD CNTs 

Selec.   %  Moieties Conv.  

% 1-bu 2-bu ba ΣC4=

ΣC4= 

yield % 

PSLD-10  13 18 5.9 9.2 33 4.5 

M-PSLD-2 methyl cyclopentanone- 

2-carboxylate 

11 25 8.0 14 48 5.1 

M-PSLD-3 2-amino-pyridine 12 18 5.6 9.5 34 4.1 

*1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively; 
all values were taken at steady state. 
 
4.4 Catalytic activities of activated carbons 

 Three kinds of activated carbons were used as catalysts in the ODH of butane. AA 

and Norit were commercial acid-washed activated carbons and PS was supplied by 
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University of Malaysia also washed by acid. The catalytic performance of activated 

carbons was displayed in Fig. 4.14. During the initial period, catalytic activities with high 

conversion and low selectivity were observed in both AA and Norit samples due to the 

unequilibrated state. Then selectivity rose to maximum, subsequently decreased as a 

function of reaction time. The corresponding decrease in butane conversion was always 

observed, due to the deactivation of activated carbon. For PS sample, more stable initial 

catalytic performance was observed. The carbon balance of three carbon catalysts always 

kept at 100% during reaction process. Although the steady-state conversion of butane 

obtained from AA and Norit was similar to that from PS, they displayed the opposite 

catalytic performance: the butenes selectivity from either AA or Norit (47% and 45%, 

respectively) was almost one time higher than that from PS (29%); on the contrary, the 

butadiene selectivity from PS (17%) was much higher than that from AA or Norit (5.7% 

and 3.4%, respectively). The total selectivities to alkenes were similar, meaning AA and 

Norit preferred catalyzing formation of butene and PS preferred catalyzing formation of 

butadiene. For three catalysts, the conversion of butane kept stable after 5 hours reaction, 

but the selectivites to alkenes progressively decreased during the reaction process. The 

deactivation of activated carbon was reported in the literature, which was attributed to 

blockage of its porous microstructure.[3] Activated carbon with lower BET  surface area 

(Alfar Aesar, 836 m2/g) displayed better catalytic performance than that with higher BET 

surface area (Palm shell, 1011 m2/g), confirming that it is difficult to relate the catalytic 

performance of activated carbon with its microstructure due to its complicated chemical 

properties. The elemental analysis (XRF) displayed that there was low metal content 

(≤0.08wt%) in activated carbon samples (Tab. 5.2). The difference in catalytic activity of 
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activated carbons should not be attributed to the impurities in activate carbons since PS 

sample with highest impurities had better catalytic performance than Norit sample, but 

AA sample with lowest impurities had best catalytic performance than PS or Norit 

samples .  However, the deactivation suggests it is not a good stable catalyst in the ODH, 

even its catalytic performance is better than that of CNTs. 
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Fig. 4.14 Catalytic performance of activated carbons a) catalytic performance of AA: left 

side, butane conversion and alkenes yield; right side, selectivites to all main products; b) 
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catalytic performance of Norit: left side, butane conversion and alkenes yield, right side, 

selectivites to all main products; c) catalytic performance of PS: left side, butane conversion 

and alkenes yield; right side, selectivites to all main products; reaction conditions: 723K, O2 

vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg catalysts. 

 
Tab. 4.9 Catalytic performance of activated carbons 

Selec.   %  Conv.  

% 1-bu 2-bu ba ΣC4=

 

CO CO2

ΣC4= yield 

 % 

AA 20 37 11 5.7 54 12 34 11 

Norit 21 35 10 3.4 49 11 40 10 

PS 16 23 5.7 17 46 20 34 7.5 

*1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively, 
all values were taken at steady state (after 20 hours reaction) 
 
 The catalytic performance of oxidized activated carbon (AA-1) was displayed in 

Fig. 4.15a. For comparison, the catalytic activity of oxidized activated carbon after 

thermal treatment (AA-2) was also displayed in Fig. 4.15b, which was calcined at 973 K 

in He to remove thermally unstable oxygen functionalities. For sample AA-1, initial 

catalytic performance with high conversion but low selectivity was observed, following a 

long activation process. On the contrary, the catalytic performance of thermal treated 

sample (AA-2) kept stably even at initial point. The carbon balance of two carbon 

catalysts always kept at 100% during reaction process. For both samples, the same 

catalytic performance with about 16% butane conversion and 39% C4= products 

selectivity was obtained in the steady state, lower than that of pristine activated carbon. It 

suggests that oxidation treatment destroyed the active sites for dehydrogenation on the 

activated carbon, resulting in the decrease in the catalytic performance. Although the 
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sample AA-1 has higher amount of oxygenated surface groups than the thermal treated 

sample, a longer activation process was observed in the catalytic performance of AA-1. It 

means that those oxygenated surface groups generated via oxidation do not favor the 

catalytic oxidation reaction.    

However, the oxidation treatment had opposite influence on the catalytic behavior 

of CNTs and activated carbons, the different influence of oxidation on the catalytic 

performance of CNTs and activated carbons could be attributed to their feature and 

chemical nature. Although CNTs could be damaged during the oxidation, they kept the 

graphitic framework and the functionalization only occurred on the end and surface of 

CNTs. For activated carbon, the oxidation could change its porous microstructure.  
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Fig. 4.15 Catalytic performance of oxidized activate carbons before and after thermal 

treatment (a: AA-1 and b: AA-2): left side, butane conversion and alkenes yield, right side, 

selectivites to all main products; reaction conditions: 723K, O2 vol%=1.32% and ratio of 

O2:butane=0.5, 10ml/min, 180mg catalysts. 

 
Tab. 4.10 Catalytic performance of oxidized activated carbons 

Selec.  %  Conv.  

% 1-bu 2-bu ba ΣC4=

ΣC4= yield 

 % 

AA-1 16 22 5 12 39 6.4 

AA-2 17 21 5 12 38 6.4 

*1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively, 
all values were taken at steady state (after 20 hours reaction) 

 
4.5 Catalytic activity of phosphoric modified activated carbons. 

 Phosphoric addition was conducted to modify activated carbon materials. 

Activated carbons (AA and PS) were used as matrix. For comparison, the oxidized 

activated carbon (AA-1) was also used. Both loading amount of phosphoric acid were 

5wt% by using (NH4)2HPO4 as precursor and all the preparation conditions and reaction 

conditions were same. The catalytic activity of phosphoric modified activated carbons in 

steady state was displayed in Tab. 4.11. The carbon balance of three carbon catalysts 

always kept at 100% during reaction process. It showed that, for both pristine and 

oxidized activated carbons, the phosphoric addition slightly improved the C4= products 

selectivity, but significantly eliminated the total oxidation since the selectivity to CO2 

decreased.  
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Tab. 4.11 Catalytic performance of phosphoric modified activated carbons 

Selec. %  Conv.  

% 1-bu 2-bu ba ΣC4=

 

CO CO2

ΣC4= yield 

 % 

5wt%P2O5/AA 21 40 12 10 62 24 14 13 

5wt%P2O5/PS 14 21 7.0 23 52 19 29 7.1 

5wt%P2O5/AA-1 13 16 4.3 13 30 41 29 4 

reaction conditions: 723K, O2 vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg 
catalysts. *1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, 
respectively, all values were taken at steady state (after 15 hours reaction) 

 
 

4.6 Catalytic activity of other carbon materials 

 
 Nano diamond was used as catalyst in this reaction, and its catalytic performance 

as a function of reaction time was shown in Fig. 4.16. It showed that, after 4 hours 

reaction, the catalyst reached stable stage and 10% butane conversion and 56% C4= 

products selectivity were achieved. The carbon balance always kept at 100% during 

reaction process. 1-Butene took main percentage in all C4= products. During the reaction, 

CO2 yield was much higher than CO yield, which was also observed by using activated 

carbons and CNTs as catalysts in this reaction.  
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Fig, 4.16 Catalytic performance of nano-diamond, left side, butane conversion and alkenes 

yield, right side, selectivites to all main products;reaction conditions: 723K, O2 vol%=1.32% 

and ratio of O2:butane=0.5, 10ml/min, 180mg catalysts. 

 
Tab. 4.12 Catalytic performance of nano-diamond 

Selec.    %  Conv. 

% 1-bu 2-bu ba ΣC4=

ΣC4= yield   % 

Nano-diamond 11 32 9.4 15 57 6.0 

*1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, respectively, 
all values were taken at steady state (after 10 hours reaction) 
 
4.7 Catalytic activity of carbon supported metal catalysts 

 The widely use of metal or metal oxide catalysts in the catalytic oxidation of 

butane has been discussed in Chapter 1. As comparison, two kinds of typical metal 

catalysts, FePO4 and V-Mg-O, were used as catalysts under the same reaction conditions. 

The catalytic performance of metal catalysts in the ODH of butane was displayed in Tab. 

4.13. Obviously, the metal catalysts display worse catalytic performance than that of 

modified carbon materials. The best catalytic performance over metal catalysts was 

achieved using activated carbon supported iron catalysts, which was even worth than that 

of support.  

Tab. 4.13 Catalytic performance of activated carbons 

Selec.  %  Conv.  

% 1-bu 2-bu ba ΣC4=

ΣC4= yield 

 % 

FePO4Nanocyl 15 21 6 14 41 3.4 

FePO4AA 19 30 8.4 10 48 5.8 

FePO4AA-1 16 19 4.7 11 35 3.0 

Mg3V2O8 10 26 9.1 6.1 41 4.1 
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Mg2V2O7 19 5.5 1.9 1.3 9.1 1.7 

reaction conditions: 723K, O2 vol%=1.32% and ratio of O2:butane=0.5, 10ml/min, 180mg 
catalysts. *1-bu, 2-bu and ba are the abbreviation of 1-butene, 2-butene and butadiene, 
respectively, all values were taken at steady state (after 8 hours reaction) 
 
4.8 Conclusions 

 The catalytic performance of different carbon catalysts was summarized in Tab. 

4.14. Obviously, nano-diamond displayed a superior catalytic performance to others 

materials. But the highest yield was achieved by using phosphoric modified activated 

carbon (Alfar Aesar Co.). The phosphoric addition was a useful method to prepare 

catalysts with better catalytic performance since the inhibition of total oxidation was 

observed by using phosphoric modified carbon materials. Furthermore, the grafting 

modification could improve the catalytic activity remarkably. Generally, carbon materials 

can unselectively activate butane, and then additional modification is needed to improve 

the selectivity. In addition, the modified carbon materials displayed a superior catalytic 

stability even after 100 hours (in case of phosphoric modified CNTs). 

 
For activated carbons, the decrease in the catalytic performance was observed 

after oxidation treatment with respect to the increase in the functionalization degree. On 

the contrary, the functionalization significantly favored the catalytic performance of 

CNTs. In addition, the removal of oxygenated surface groups of oxidized activated 

carbon had less influence to the catalytic performance in steady state. It means that the 

catalytic activity of activated carbons could not be directly related with the functionalities. 

The microstructure and feature should be the most important factor for catalytic 

performance of activated carbons, which could be easily changed due to the low graphitic 

feature. However, the influence of functionalities on the catalytic performance should be 
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considered since the difference in the initial catalytic performance of oxidized activated 

carbons before and after thermal treatment was observed.  

 
A great diversity in catalytic performance of various carbon catalysts was also 

observed, which has been normalized by surface area. The highest products formation 

rate was achieved by using modified CNTs, which was almost ten times higher than that 

of activated carbons. It suggests that the catalytic performance should not be directly 

related with the microstructure of various carbon catalysts. It means the “solid state 

chemistry” might not be appropriate method in present work.  

 
The reaction network was built up based on the kinetic measurement by using 

CNTs as catalysts, displaying the parallel and sequential oxidation steps. Butenes were 

primary products from the dehydrogenation of butane and butadiene formed from the 

further dehydrogenation of butenes. Carbon oxides formed as byproducts from the total 

oxidation of butanes. However, the combustion of hydrocarbon products had also 

contribution to the formation of carbon oxides. It suggests that there were two reaction 

pathways during the catalytic oxidation of butane over CNTs catalysts, one is selective 

oxidation and the other is total oxidation. The phosphoric addition didn’t change the 

former reaction process, but significantly decreased the total oxidation since the 

phosphoric addition decreased the ratio of CO2 yield to CO yield with respect to the same 

butane conversion and alkenes selectivity in the case of activated carbon. The decrease in 

total oxidation is attributed to the blockage of active sites for total oxidation by 

phosphoric addition, confirmed by kinetic measurement by using phosphoric modified 

CNTs as catalysts. The thermal treatment had less influence on the butane conversion and 
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alkenes selectivity, suggesting that no more active sites generated during the thermal 

treatment. However, the increase in butadiene yield was observed, implying that the 

higher butadiene yield should be attributed to the stronger adsorption and consequent 

dehydrogenation of alkenes molecules at the active sites. 

 
Obviously, activated carbons are not good target catalysts due to their 

complicated microstructure, obvious deactivation and low alkenes formation rate. The 

long range ordering of carbon atoms in CNTs is much higher than that in activated 

carbon, giving the thermal and chemical stability of CNTs. Therefore, the change in the 

microstructure of CNTs during the reaction process could be neglected, which has been 

confirmed in the chapter 5 since no significant difference was observed in TEM images 

of pristine CNTs, oxidized CNTs and CNTs after reaction. The change in catalytic 

performance should be mainly related with the functional nature of CNTs.  

 
The influence of chemical functionalization on the catalytic performance of CNTs 

has been described in this chapter. Both oxidation treatment and phosphoric addition 

remarkably improved the catalytic performance of CNTs. The kinetic measurement 

displays the similar alkenes formation rates of oxidized CNTs under different treatment. 

It assumes that the amount of active sites should be similar. However, the increase in 

butadiene yield should be related with the stronger interaction between the hydrocarbons 

and active sites. 
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Tab. 4.14 Catalytic performance of carbon materials 

Selec.  

 % 

 Conv.  

% 

1-bu 2-bu ba ΣC4=

ΣC4= yield 

 % 

C4= formation 

rate  

μmol/m2 h-1

Nano-diamond 11 32 9.4 15 57 6.0 0.56 

Nanocyl-2 12 10 3 9 22 2.6 0.33 

PSLD-10 13 18 5.9 9.2 33 4.5 4.3 

AA 20 37 11 5.7 54 11 0.52 

Norit 21 35 10 3.4 49 10 0.5 

PS 16 23 5.7 17 46 7.5 0.99 

M-Nanocyl-1 11 14 4.0 20 39 4.2 0.53 

M-Nanocyl-2 10 12 3.5 20 36 3.6 0.45 

M-PSLD-2 11 25 8.0 14 48 5.1 4.9 

M-PSLD-3 12 18 5.6 9.5 34 4.1 3.9 

5wt%P2O5/AA 21 10 12 10 62 13 0.61 

5wt%P2O5/PS 14 21 7.0 23 52 7.1 0.33 

5%P2O5(N)-Nanocyl 17 26 6 20 52 8.8 1.1 
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Chapter 5 Characterization of carbon catalysts before and after 

reaction 

In this chapter, a comparison of the properties of carbon samples before and after 

catalytic oxidation of butane was performed. The difference in chemical properties of 

carbon samples during the reaction process was identified, correlated with their catalytic 

performance. The influence of modification on chemical properties of catalysts and 

corresponding catalytic performance was also investigated. The systematic investigation 

could clarify the role of oxygenated surface groups in the catalytic oxidation of butane.  

5.1 TEM  

5.1.1 Nanocyl CNTs 
 
 The TEM images of pristine Nanocyl CNTs were display in Fig. 5.1. The CNTs 

have been acid-washed by manufacturer. It was shown that Nanocyl CNTs had a quite 

homogeneous morphology and distribution of diameters. The range of diameter is about 

15-20nm and number of walls is about 5-10. CNTs were graphitized, but defects were 

also observed in high-resolution TEM (Fig. 5.1c and d).  
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a b

 

Fig. 5.1 TEM images of pristine Nanocyl CNTs: a and b) over view images; c and d) high 

resolution images  

After two hours oxidation by concentrated nitric acid, no apparent difference was 

observed in the TEM images of Nanocyl-1 (Fig. 5.2b), but the amount of carbon nano 

particle was significantly decreased. The thermal treatment affected less on the 

morphology of oxidized Nanocyl CNTs at temperature of 973K (Fig. 5.2d and f). These 

suggest that the change in the bulk properties could be negligible during the calcination 

process. 
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Fig. 5.2 TEM images of functionalized Nanocyl CNTs: a and b) Nanocyl-1; c and d) 

Nanocyl-2; e and f) Nanocyl-4;  
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The TEM images of phosphoric modified Nanocyl-2 were displayed in Fig. 5.3. 

Phosphate deposit on CNTs with low loading amount (2-5wt%) can not be observed in 

the HRTEM images, although it has been identified by EDX. However, the well 

distribution of phosphorus was observed in image of elemental maps (Fig. 5.3e). The 

phosphoric deposit turned out to be obvious when the loading amount was higher than 10 

wt% (Fig. 5.3g and h, pointed by black arrow).  

b

c d

a
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Fig. 5.3 TEM images of phosphoric modified Nanocyl-2 samples, a and b) 2%P2O5(N)-

Nanocyl, c and d) 5%P2O5(N)-Nanocyl, e) element maps of 5%P2O5(N)-Nanocyl, f-h) 

10%P2O5(N)-Nanocyl 

 

 The TEM images of carbon materials after reaction (Fig. 5.4) displayed less 

difference in morphology and microstructure of CNTs during reaction process, 

confirming the superior stability of CNTs catalysts during reaction process. It also 

suggests that the change in the catalytic performance of modified CNTs should not be 

related with their microstructure. It means that the investigation should be performed 
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using “organic surface groups” approach, corresponding to the chemical properties of 

modified or used catalysts. However, TEM is not a suitable method for this investigation.  

a b

 

Fig. 5.4 TEM images of Nanocyl-2 sample after the catalysis reaction  

5.1.2 PSLD CNTs 
 

The TEM images of PSLD CNTs were displayed in Fig. 5.5. The diameter of 

CNTs ranges from 20nm to 200nm. The high resolution images displayed a composite 

microstructure: CNTs showed the herring-boned structure inside and poorly-graphitized 

layer outside. The thickness of those poorly-graphitized layers ranges from several nm to 

50 nm. The angle between orientation of herring-boned graphene and axial of tube is 

about 30° (Fig. 5.5c and d). Impurities were also observed, like metal particles, carbon 

onion and amorphous carbon. The metal particles comprise of iron and nickel are 

deposited by graphitized carbon layers.  
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Fig. 5.5 a,b) TEM images of pristine PSLD CNTs c,d) HRTEM images of pristine PSLD 

CNTs 

 
 After 4 hours oxidation, less change in microstructure and morphology was 

observed in sample PSLD-4. The gradual removal of poorly graphitized carbon was 

displayed in the TEM images, attributed to further oxidation (Fig. 5.6 a-d). After 40 hours 

oxidation, only herring-boned nanofilaments were observed (Fig. 5.6 e and f). 
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Fig. 5.6 TEM images of PSLD CNTs with different oxidation time, a and b)PSLD-4, c, 

d)PSLD-10, e, f)PSLD-40 

 98



No difference was also observed between the microstructure and morphology  of 

samples before and after grafting (Fig 5.7), which can be attributed to the tiny size of 

moieties (several Ǻ). But the immobilized molecules could also be destroyed by electron 

beams during TEM analysis. The more suitable characterization methods could be IR and 

XPS.  

    

a b

c d

 

Fig. 5.7 TEM images of immobilized CNTs (M-PSLD-3) 

 
 No remarkable difference was observed in the HRTEM images of CNTs (PSLD 

and PSLD-40) before and after catalytic reaction (Fig. 5.8). The poorly graphitized layer 

of CNTs displayed a remarkable stability under the reaction condition. In addition, 
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carbon deposit can not be identified on the surface of either poorly graphitized layer or 

herring-boned carbon nanofilament.  

     

a b

 

Fig. 5.8 HRTEM images of CNTs used in the catalysis reaction a) PSLD, b) PSLD-40 

 
Less difference between morphology of pristine CNTs and modified CNTs was 

observed in the TEM images. The change in the microstructure and morphology of CNTs 

before and after reaction cannot be identified by TEM either. The observation gives the 

explanation of the catalytic stability of CNTs, confirming that there was not either 

combustion of CNTs or serious carbon deposition. It also suggests that the diversity in 

the catalytic performance of modified CNTs should not be related with their 

microstructure and morphology. 

 
5.2 TPO, TPD, NH3-TPD analysis of catalysts 

5.2.1 Pristine Nanocyl CNTs 
 

The pristine Nanocyl CNTs displayed a high activity but low selectivity to 

catalytic oxidation of butane. The TPD profiles displayed poorly functionalized nature of 

pristine Nanocyl CNTs, also confirmed by the NH3-TPD profiles (Fig. 5.9). After 
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reaction, TPD profiles denoted even less functionalized properties of used CNTs with 

respect to a decreased amount of desorption CO and CO2. It suggests that oxygenated 

surface groups were not involved in the reaction and other active sites on the surface of 

pristine CNTs should be mainly responsible for total oxidation. The variety of oxygen 

species at the edge sites and defects of graphene via dissociative or non-dissociative 

chemisorption process has been widely discussed.[1-4] Obviously, the dissociative 

chemisorption didn’t occur during the reaction process since the concentration of 

functionalities decreased after catalysis. The total oxidation could be attributed to the 

non-dissociated O2
- and O2

2- species on graphene sheet, which has been discussed in 

chapter 1.3.2.2.  

 
Furthermore, the characterization proves that CNTs could not be functionalized 

and activated during the reaction process with the gaseous oxygen, hence challenging the 

assumption in literature.[5-7] However, the prominent difference in chemical nature of 

carbon catalysts, reactants and reaction conditions was also observed. These also meant 

that the pre-treatment of catalysts, like chemical functionalization, should be necessary 

for improvement of catalytic activity. Then the further discussion about the chemical 

nature of carbon defects and oxygen functionalities would be denoted in Chapter 5.2.3. 
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Fig. 5.9 TPD and NH3-TPD profiles of pristine Nanocyl CNTs (Nanocyl) before (a) and after 

reaction (b)  
 

A sharp peak with gasification temperature of 873 K was observed in the TPO 

profiles of the pristine Nanocyl CNTs, suggesting the homogenous feature of Nanocyl 

CNTs (Fig. 5.10). After reaction, the gasification temperature of CNTs increased 40 K 

higher. No peak was observed at low temperature in the used sample, suggesting that no 

coke formed during the reaction process.  
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Fig. 5.10 TPO profiles of pristine Nanocyl CNTs (Nanocyl) before and after reaction 

 

5.2.2 Oxidized Nanocyl CNTs 
 

The easiest method to improve the oxygen amount on the surface of CNTs was 

oxidation, which was mentioned in Chapter1.4.3.1. The TPD profiles of pristine Nanocyl 

CNTs and oxidized CNTs were displayed in Fig. 5.11. Apparently, the surface of 

oxidized CNTs (Nanocyl-1) was highly functionalized. In the TPD CO2 profile, three 

peaks were identified at 560 K, 760 K and 970 K, assigned to the decomposition of 

carboxylic acid, anhydride and lactone, respectively.[8] The deconvolution of CO profile 

of Nanocyl-1 displayed two CO desorption peaks at 770 K and 990 K, assigned to the 
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decomposition of anhydride and quinone groups, respectively. After calcination at 723K, 

a CO2 desorption peak at about 630 K was observed, attributed to the remains of 

carboxylic acid groups. Furthermore, a broad CO2 desorption peak observed at range of 

800 to 1100 K should be assigned to co-desorption of anhydride and lactone. The 

calcination at 723 K significantly decreased the percentage of area of peaks at lower 

temperature in CO2 desorption profile, contributed to the removal of thermally unstable 

functionalities. The same decrease was also observed in the CO desorption profile of 

Nanocyl-2 sample since the contribution of decomposition of anhydride to CO desorption 

species could be neglected. When further calcination was performed (≥ 973 K), few 

oxygenated surface groups were anchored in CNTs since relatively tiny peaks were 

observed in the profiles (Nanocyl-4). Notably, the desorption peak of CO assigned to the 

decomposition of quinone groups is quite broad (Fig.5.11b and c), suggesting the 

inhomogeneous nature of oxygenated surface groups on the CNTs. It means that there 

should be diversity in the chemical properties of quinone groups. 
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Fig. 5.11 TPD profiles of pristine and oxidized Nanocyl sample, a) Nanocyl, b) Nanocyl-1, c) 

Nanocyl-2, d)Nanocyl-4 
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The NH3-TPD profiles of Nanocyl CNTs were displayed in Fig. 5.12. Apparently, 

the ammonia adsorption and desorption are related with surface oxygenated groups since 

no ammonia desorption peak was observed in the less functionalized CNTs (Nanocyl, 

and Nanocyl-4).  
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Fig. 5.12 NH3-TPD profiles of pristine Nanocyl CNTs and oxidized Nanocyl CNTs 

 
The oxidation treatment improved the catalytic performance of CNTs (Chapter 

4.1). However, a significant loss in oxygen species was also observed in the catalyst 

(Nanocyl-2) during the reaction, even which has been calcined at 723 K for 2 hours (Fig. 

5.13). Therefore, only a tiny desorption peaks of lactone at 973 K to 1073 K was 

observed in CO2 profile of the used sample associated with the less desorption peak of 

NH3. A similar decrease in amount of quinone groups was also observed. The significant 
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loss in oxygenated surface groups suggests that the majority of oxygen functionalities are 

not active sites for the catalytic oxidation of butane, which were removed during the 

reaction process. 
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Fig. 5.13 TPD and NH3-TPD profiles of oxidized Nanocyl CNTs (Nanocyl-2) before (a) and 

after reaction (b) 

The TPO CO2 profiles of oxidized Nanocyl CNTs (Nanocyl-2) before and after 

the reaction were displayed in Fig. 5.14. Compared with the pristine CNTs, the 

gasification temperature of oxidized CNTs decreased 240 K lower. After reaction, 
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oxygenated surface groups were mostly removed and consequently the gasification 

temperature of used CNTs rose to 854 K. Correlated with TPO profiles of used pristine 

CNTs (Fig. 5.10), it means that the combustion of CNTs preferably occurred on the 

surface functionalization of CNTs.[4]  

 
Notably, carbon contamination was found in the used oxidized sample, as 

assigned to the small CO2 peak at 603 K (circle dot, Fig. 5.14b). The carbon 

contamination could also be easily removed by water washing since the combustion peak 

at 603 K disappeared in the TPO profiles of the used CNTs after washing (Fig. 5.14c). It 

was also observed that the gasification temperature of washed sample increased, which 

might be attributed to the loss of smaller particle during the washing and filtering process. 
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Fig. 5.14 TPO profiles of oxidized Nanocyl CNTs (Nanocyl-2) (a), used oxidized CNTs (b) 

and used sampled washed by water (c) 
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5.2.3 Thermally treated Nanocyl CNTs 
 

It was difficult to attribute the increase in selectivity to identical oxygenated 

surface groups, although oxidized CNTs displayed improved catalytic performance. The 

work done by Figureido revealed that the thermal treatment at low temperature affected 

less on catalytic performance, on the contrary, the thermal treatment at high temperature 

caused deactivation.[12] However, the conclusion was quite questionable since the 

calcination at high temperature could change both of chemical nature and feature of 

activated carbons, resulting in the deactivation.  

 
Therefore, the investigation method must be optimized, which has been 

demonstrated in Fig. 4.4 (P63). The TPD investigation was performed to identify 

oxygenated surface groups as well as to remove oxygenated surface groups out of surface 

of catalysts (Fig. 5.15).  

 
In the first TPD profiles, a broad CO desorption peak at 1000 K and CO2 

desorption peak at 950 K were observed, assigned to the decomposition of quinone 

groups and lactone groups, respectively. Although TPD performance could remove 

almost all oxygen species out of surface of CNTs, the regeneration of oxygen 

functionalities via chemisorption of gaseous oxygen was observed in the CNTs after 

catalytic test corresponding to the desorption of COx species in the second and third TPD 

performance. However, compared with the first TPD profiles, a significant difference was 

observed in the second TPD profiles: firstly, the area of desorption peak of COx species 

remarkably decreased; secondly, the shape of peaks also changed since a sharp peak at 

950 K was observed in the CO desorption profiles. It means that after first TPD 
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performance, a majority of carbon defects resulting from the removal of functionalities 

was less active for chemisorption of oxygen species. In addition, the oxygen 

functionalities regenerated from the chemisorption of oxygen were much different from 

the oxygen functionalities before first TPD performance.  

 
The further TPD performance had less influence on the shape of COx desorption 

peaks (second and third TPD run), meaning there was less change in chemical nature of 

carbon defects during the further thermal treatment. The shape of CO desorption peaks in 

the second and third TPD performance was complicated, it is observed that the intensity 

increased slowly at the range of 650 K to 940 K and rapidly jump to a maximum at 950 K, 

afterward the intensity decreased slowly from 980 K to 1100 K. It could be attributed to 

the different oxygen functionalities. The sharp peak at 950 K should be associated with 

the homogeneity of chemical nature of some oxygen functionalities, resulting from the 

thermal treatment. However, the contribution of surface reaction between carbon oxides 

and surface defects, for instance, Boudouard reaction, should be considered associated 

with the sharp CO desorption peak at 950 K. A tiny water desorption peak at about 940 K 

was observed in all TPD performance due to the weak hydrogenation of oxygen 

functionalities during the catalytic oxidation. The similarity in peak shape and desorption 

temperature of water and CO2 species suggests that the corresponding oxygen 

functionalities were hydrogenated. However, the less water desorption peaks implied that 

the re-oxidation of hydroxyl groups and following removal of water occurred quickly. 

 
The desorption of some species with m/e equal to 44 and 28 was observed at low 

temperature (400 K) in all three TPD profiles, as well as species with m/e equal to 58. 
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The ratio of intensity of various peaks was shown in Fig. 5.15d, compared with the ratio 

of corresponding species in the reference gas (butane in He). It proved that the species 

with m/e equal to 28 and 44 could be attributed to the fragments of C4 hydrocarbons, 

which were adsorbed on the surface of CNTs during the reaction process. It was also 

confirmed by isotopic experiment (Fig. 5.16) since no desorption peak of isotopic carbon 

oxides was observed at the same range of temperature. The mechanism investigation on 

the hydrocarbons adsorption on the CNTs has been reported, identifying the adsorption of 

butane on the different site of CNTs, for instance, interior, grove, and exterior sites.[14] 

However, the identical desorption temperature ranged from 100 K to 200K, much lower 

than that in present work. The enhancement in interaction between hydrocarbon 

molecules with CNTs might be attributed to the functionalities. Notably, less change was 

observed among the three TPD profiles at low temperature (Fig. 5.15e), it means that the 

amount of active sites for adsorption of hydrocarbons should be similar even after TPD 

performance. For catalytic oxidation of hydrocarbons, the adsorption and activation of 

hydrocarbon molecules over active sites should be rate-determining steps. It implies that 

the catalytic performance of CNTs should be associated with the TPD profiles of 

hydrocarbons.  This result supported the proposal that thermal treatment didn’t change 

the amount of active sites for dehydrogenation.  
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Fig. 5.15 TPD profiles of Nanocyl-2 CNTs during catalytic test-TPD cycling process, a) CO 

profiles; b) CO2 profiles; c) H2O profiles; d) desorbed species at low temperature in the 

second TPD performance and e) comparison between desorbed species (m/e= 28 or 58) 

during three TPD performance. In the third TPD profiles, the area of CO, CO2 or H2O 

includes the contribution of all isotopic species. For instance, the area (S) of CO is equal to 

the sum of area of peak with m/e=28 and area of peak with m/e=30. Sco=S28+S30; 

SCO2=S44+S46+S48. SH2O=S18+S20. 

 
Isotopic oxygen (18O2) was used as oxidant instead of 16O2 during the reaction 

process. The TPD performance demonstrated the exchanging of isotopic oxygen with 

oxygen functionalities during the reaction process, confirming that those functionalities 

should be active sites for the catalytic oxidation of butane. It means that the possible 

reaction pathway should include the recombination of hydroxyl groups (chapter 1, eq 1-

13), not oxidation of hydroxyl groups (chapter 1, eq 1-15). Therefore, the regeneration of 

quinone groups occurred via the dissociative chemisorption of gaseous oxygen, wherein 

16O was progressively being replaced by 18O.[15, 16] The isotopic oxygen existed in both 
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CO and CO2 desorption species, suggesting both quinone and lactone functionalities 

involved in the catalytic oxidation of butane. However, the readsorption and exchanging 

of carbon oxide species (isotopic scrambling) should also be considered. 
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Fig. 5.16 Isotopic COx  profiles in third TPD performance: left side CO and right side CO2 

 
The similar butane conversion and alkenes selectivity in the second and third 

catalytic test run were observed in Fig. 4.5 with respect to the significant release of COx 

species during TPD subsequent to catalytic test. It suggests that the catalytic oxidation of 

butane should be correlated with the oxygenated surface groups. However, a remarkable 

decrease in amount of oxygenated surface groups was observed during reaction process 

(Fig. 5.13), meaning that the majority of oxygenated surface groups generated via 

oxidation with acid was not involved in the catalytic reaction. It was confirmed by the 

observation that the CNTs with less oxygenated surface groups (after 1st, 2nd and 3rd TPD 

run) had similar catalytic activity to that with higher amount of functionalities (before 

TPD investigation). Although TPD treatment had less influence to butane conversion and 

C4= products selectivity of oxidized CNTs, a significantly increase in butadiene yield was 

observed. The amount of active sites for the selective oxidation of butane was not 
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improved after TPD since the less change in butane conversion and alkenes selectivity 

was observed, which was supported by the same feature of desorption of hydrocarbon 

species at low temperature (Fig. 5.15e). The kinetic measurements confirmed that the 

butenes should be the primary products during the reaction process. It means that the 

increase in butadiene yield could be attributed to the stronger interaction between the 

hydrocarbon molecules and active sites, resulting in the further dehydrogenation. 

However, it is difficult to correlate the higher butadiene yield with increase in surface 

acidity since the significant decrease in amount of desorbed CO and CO2 species was 

observed in first TPD performance. It implies that it should be attributed to the increase 

in the density of quinone groups in the relatively active site, facilitating the further 

dehydrogenation of butene products since neighbouring free quinone groups favoured the 

adsorption and further cleavage of C-H bond of hydrocarbon intermediate. For oxidized 

CNTs, the density of quinone groups in the active site was relatively lower due to the 

spontaneously generation of other oxygen functionalities via oxidation process. Therefore, 

the thermal removal of oxygenated surface groups facilitated the generation of zigzag or 

armchair carbon defects, wherein the consecutive formation of quinone groups resulting 

from the dissociative chemisorption of oxygen was thermodynamically favourable (Fig. 

5.17).[16] Consequently, the density of quinone in active sites was improved. In addition, 

homogeneity of quinone groups was also increased. 
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Fig. 5.17 Schematic illustration of removal and regeneration of oxygenated surface groups 

during the TPD and following catalytic test  

 
 The following conclusion can be drawn based on the thermal analysis on carbon 

samples. The pristine CNTs with poorly functionalized nature displayed a high activity 

and low selectivity to catalytic oxidation of butane, which should be attributed to the non-

dissociative chemisorption of gaseous oxygen since less functionalization was observed 

during reaction process. After oxidation by nitric acid, the surface of CNTs was highly 

functionalized and its catalytic performance was improved either due to the generation of 

active sites, for instance, quinone groups, for the selective oxidation. However, the 

majority of oxygen species generated via oxidation didn’t involve in the catalytic 

oxidation of butane, while progressively removed during the reaction process. The 

thermal treatment removed the most of oxygen functionalities, facilitating the generation 

of edge-side carbon defects and consecutive regeneration of quinone groups via the 

dissociative chemisorption of gaseous oxygen. The increase in density of quinone groups 

in active sites favored the further dehydrogenation of butane during the reaction process. 

However, the thermal treatment did not increase the amount of active sites. In addition, 
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the adsorption of educt at defects was observed, suggesting the strong interaction 

between hydrocarbon molecule and surface of CNTs. 

 
 The possible elementary steps proposed in chapter 1 (eq 1-8 to eq 1-12) were 

confirmed. The regeneration of quinone groups resulted from the recombination of 

hydroxyl groups and following dissociative chemisorption of gaseous oxygen. The strong 

adsorption of hydrocarbons at active sites and weakly hydrogenated nature of oxygenated 

surface groups suggests that the chemisorption and further cleavage of C-H bonds should 

be rate-determining step. 

5.2.4 Phosphoric modified Nanocyl CNTs 
 

After phosphoric addition, the shape and intensity of desorption peaks of 

oxygenated surface groups changed remarkably (Fig. 5.18). A comparison in TPD 

profiles of Nanocyl-2 and 5%P2O5(N)-Nanocyl displayed a significant decrease in both 

CO and CO2 desorption peaks of phosphoric modified CNTs due to the calcinations of 

phosphoric modified samples. In CO2 profiles, the peak at 1000 K should be assigned to 

the lactone groups. In CO profiles, the deconvolution displayed the contribution of two 

peaks at 980 K and 1100 K, assigned to the quinone groups and other high thermal stable 

functionalities. However, it is difficult to evaluate the contribution of phosphoric addition 

to desorption of COx species, even the shifting in the desorption temperature of CO 

species was observed. Compared to literature, it suggests that the decomposition of 

phosphoric carbon complexes should have contribution to the desorption peak of CO at 

1100 K. 
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Fig. 5.18 TPD profiles of oxidized CNTs (left) and phosphoric modified CNTs (right) 

 
When the loading amount was increased to 10wt%, less desorption amount of 

CO2 and CO species was observed (Fig. 5.19). The decrease could be attributed to the 

calcination treatment after impregnation. We have discussed the contribution of 

phosphoric carbon complex to desorption of COx species at high temperature. It suggests 

that majority of oxygen functionalities of CNTs with high phosphoric loading amount 

(10wt%) was phosphoric carbon complexes. It means that the active sites for 

dehydrogenation were also covered by phosphoric addition in the case of CNTs with 

higher phosphoric loading amount, resulting in the decrease in both butane conversion 

and alkenes selectivity. 
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Fig. 5.19 TPD profiles of phosphoric modified Nanocyl samples, a) CO2 , b) CO, for 10wt% 

and 5wt%P2O5 loading sample, the desorption species were labeled by dark shadow and 

red shadow, respectively 

 
The TPD and NH3-TPD profiles of phosphoric modified CNTs before and after 

reaction were displayed in Fig. 5.20. In CO2 TPD profiles, a peak at 1000 K was 

observed in both TPD profiles, assigned to desorption of lactone. The deconvolution of 

CO TPD profiles displayed that there were two kinds of carbon oxygen complexes on the 

modified CNTs, whose desorption temperature was 1000 K and 1150 K, respectively. 

The former one should be attributed to desorption of quinone groups and the latter one 

should be attributed to the decomposition of phosphoric carbon complexes. No apparent 

water desorption peak was observed in the TPD profile of phosphoric modified sample 

after catalysis. It suggests that the quinone groups were not hydrogenated, in a good 

agreement with the TPD profiles of used oxidized CNTs. Obviously, after reaction, both 

decrease in COx desorption peak and ammonia desorption peak were observed, stating 

the less functionalized nature of catalyst after reaction. It confirmed that the majority of 
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oxygenated surface groups via oxidation did not have contribution to the catalytic 

performance at steady state. In the case of catalysts with higher phosphoric loading, a 

similar change in surface properties during the reaction process was observed in Fig. 5.21.  
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Fig. 5.20 NH3-TPD and TPD profiles of phosphoric modfied Nanocyl CNTs (5%P2O5(N)-

Nanocyl) before (a) and after reaction (b) 
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Fig. 5.21 NH3-TPD and TPD profiles of phosphoric modfied Nanocyl CNTs (10%P2O5(N)-

Nanocyl) before (a) and after reaction (b) 

 
The TPO profiles of phosphoric modified Nanocyl samples with different 

precursors and loading amount were displayed in Fig. 5.22. Obviously, phosphoric 

addition increased the gasification temperature of CNTs from 637 K (Nanocyl-2, Fig. 

5.14) to about 936K (5%P2O5 (N)-Nanocyl). The loading amount had a positive influence 

on the temperature of gasification of CNTs. As can be seen, the gasification temperature 
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of CNTs with lower loading amount (5wt%) was 30 K lower than that with higher 

loading amount (10wt%) since there were still significant amount of oxygen 

functionalities free of phosphoric coverage on the surface of CNTs with lower phosphoric 

addition (5wt%). The change of precursors had less influence on the gasification 

temperature of carbon samples.  

 
The increase in gasification temperature means the oxygen functionalities on the 

surface of CNTs were protected by phosphoric complexes from attacking of activated 

oxygen species.[4, 17] Notably, It also confirmed that the addition of phosphoric acid could 

significantly inhibit the total oxidation of butane, though having no positive influence on 

C4= products selectivity (in the case of activated carbon, chapter 4.5). In addition, the 

kinetic measurement proved that the increase in selectivity of phosphoric modified CNTs 

should also be attributed to the inhibition of total oxidation of butane.  

 
Both inhibition of the oxidation of carbon catalysts (TPO) and total oxidation of 

butane (catalytic test) were observed in the case of phosphoric modified CNTs, 

displaying the correlation between the oxygenated surface groups and adsorbed 

hydrocarbons. It suggests that hydrocarbons should be adsorbed at the oxygenated 

surface groups, oxidized by activated oxygen species.[18] Although it was ambitious that 

the inhibition should be associated with the physical barrier of phosphoric complex or the 

less reactivity of carbon defect strongly linked with phosphoric complexes.[4] The 

improvement in catalytic performance of phosphoric modified CNTs (with low loading 

amount) and activated carbons suggests that the active sites for selective oxidation of 

butane were not poisoned by the phosphoric addition. The formation of phosphoric 
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carbon complexes should be attributed to the rearrangement of phosphoric oxide at high 

temperature. Although higher phosphoric addition amount favoured the inhibition of 

combustion of CNTs, the formation of phosphoric carbon complexes (Fig. 5.19) 

decreased the activity of active sites for selective oxidation of butane, resulting in the 

decrease in alkenes selectivity. 
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Fig. 5.22 TPO CO2 profiles of 5%P2O5 (N)-Nanocyl,  10%P2O5 (N)-Nanocyl,  and 10%P2O5 

(P)-Nanocyl 

 
A tiny peak with gasification temperature of 600 K in the TPO profile of used 

5%P2O5 (N)-Nanocyl should be attributed to the contamination, similar to the TPO 
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profile of used Nanocyl-2 sample (Fig. 5.23). The loss in amount of oxygen 

functionalities was observed, but no significant difference was observed between the 

main gasification temperature of the samples before and after reaction.  
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Fig. 5.23 TPO CO2 profiles of 5%P2O5 (N)-Nanocyl before and after catalytic test  

 
The gasification temperature of various Nanocyl CNTs catalysts before and after 

reaction was listed in Tab. 5.1. Obviously, for non-phosphoric-modified catalysts, the 

gasification temperature was associated with the functionalization degree since oxidized 

CNTs with the most functionality had lowest gasification temperature. The gasification 

temperature of used catalysts rose due to the removal of functionalities during the 

reaction process. Compared with the used pristine CNTs, the lower gasification 

temperature of used oxidized CNTs was observed due to the remains of quinone and 
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lactone groups. For phosphoric modified CNTs, the gasification temperature was less 

influenced by the amount of oxygenated surface groups. The gasification temperature of 

phosphoric modified CNTs was much higher than other non-modified samples, meaning 

that even quinone and lactone groups remained on the surface of used CNTs were also 

protected by phosphoric complexes.  

 
Tab. 5.1 Gasification temperature of Nanocyl CNTs before and after reaction 

Gasification temperature K Catalysts 

Before After 

Pristine Nanocyl CNTs 873 913 

Nanocyl-2 634 854 

5%P2O5 (N)-Nanocyl 936 930 

 
 

 Obviously, it confirmed that the increase in selectivity to alkenes could be 

attributed to the deposition of polyphosphoric acid over the CNTs since the attacking of 

activated oxygen species to carbon defects was hindered. The formation of phosphoric 

carbon complexes was also observed due to the rearrangement of phosphoric complexes 

at high temperature. 

5.2.5 PSLD CNTs 
 
 The TPO CO2 profiles of PSLD CNTs were shown in Fig. 5.24. In the CO2 profile 

of the pristine PSLD CNTs, only one peak at 973 K was observed. The gasification 

temperature of oxidized samples decreased to 873 K due to creation of defects by 

oxidation. The TPO profiles of oxidized CNTs were complicated: the peaks were broad 

and asymmetric, attributed to the inhomogeneous feature of CNTs (Fig. 5.5). The 

existence of the poorly graphitized carbon layer could be one reason. In TPO CO2 profile 
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of PSLD-4, two peaks were observed. One was 873 K and another was about 923 K.  

When the CNTs were further oxidized and the poorly graphitized outer layers were 

gradually exfoliated (Fig. 5.6), the relative intensity of first peak decreased. It means that 

the peaks at 873 K and 923 K could be assigned to the poorly graphitized layers and 

carbon nanofilaments, respectively. Particularly, TPO profile of over-oxidized sample 

(PSLD-40) still displayed asymmetric morphology, attributed to the wide distribution of 

diameter of CNTs. 
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Fig. 5.24 TPO CO2 profiles of pristine and oxidized PSLD CNTs 

 

Obviously, phosphoric addition could increase the gasification temperature of 

carbon materials (Fig. 5.25). It was observed that there were two peaks, whose 

gasification temperature was about 823 K and 993 K, respectively.  The loading amount 
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had slight influence on the gasification temperature, while increase of 20 K was observed 

in the gasification temperature of CNTs with higher loading phosphoric oxide. There was 

a significant difference between the peak shapes of oxidized CNTs and phosphoric 

modified CNTs, partially attributed to the characterization condition (heating ramp). The 

former one was operated with 10 K/min and latter one with 2 K/min. The higher heating 

ramp resulted in the problem of diffusion and shifting the gasification to higher 

temperature. The increase in gasification temperature of phosphoric modified CNTs 

could also be attributed to the surface modification.  
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Fig. 5.25 TPO CO2 profiles of phosphoric modified CNTs 

 

 TPD profiles of pristine and oxidized PSLD samples were illustrated in Fig. 5.26. 

Obviously, pristine PSLD sample was poor functionalized and then there was less carbon 

oxide and water peaks in the profiles. After oxidation, the surface was highly 
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functionalized since remarkable CO2, CO and H2O desorption peaks were observed. In 

CO2 profiles of oxidized samples, three peaks appeared at 573 K, 733 K and 903 K, 

assigned to the decomposition of carboxylic acid, anhydride and lactone, respectively. 

There were three peaks at 530, 748 K and 944 K observed in the CO profiles of oxidized 

PSLD samples, attributed to the decomposition of some carboxylic acid, 

anhydride/phenol and quinone, respectively. Further oxidation (≥ 10h) had less influence 

on the relative intensity of each desorption peak. 
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Fig. 5.26 TPD profiles of pristine and oxidized PSLD sample, a) PSLD, b) PSLD-4, c) 

PSLD-10, d) PSLD-40 

 The phosphoric addition significantly change the morphology of the CO2 and CO 

desorption peaks, displaying no clear desorption peak below 773 K correlated with the 

desorption of carboxylic acid (Fig. 5.27). It means that the carboxylic groups and 

anhydride groups were removed from the surface of CNTs. In both of CO and CO2 TPD 

profiles, two desorption peaks were observed at 973 K and 1123K. The CO2 and CO 

desorption peaks at 973 K should be attributed to the decomposition of lactone and 

quinone, respectively. The desorption peak of COx at 1123 K should be attributed to the 

decomposition of phosphoric carbon complexes, which was also observed in the TPD 

profiles of phosphoric modified Nanocyl CNTs (Fig. 5. 18).  
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Fig. 5.27 TPD profiles of 5%P2O5(N)PSLD sample 

  

5.3 XPS spectrum 

 The O1s XPS spectra of pristine Nanocyl CNTs before and after reaction were 

shown in Fig.5.28. For pristine CNTs, oxygen concentration was about 1.3%, and 

decreased to 1.2% after reaction. It confirms the poor functionalized nature of pristine 

CNTs, which was not improved during the reaction process. It was also observed that the 

intensity of C=O with binding energy of 531 eV increased after reaction.  
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Fig. 5.28 O1s spectra of pristine Nanocyl CNTs before (upper) and after (lower) reaction 

 
 After oxidation treatment, the O mol% on the surface of CNTs increased from 

1.3% to 5.5%, correlated with the highly functionalized nature of oxidized CNTs. The 

deconvolution of oxygen species was shown in Fig. 5.29. The phosphoric addition 

partially removed oxygenated surface groups out of surface of CNTs, resulting in a 

decrease in the surface oxygen concentration (2.6%). The relatively decrease in oxygen 
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species with lower binding energy of 531 eV was also significant, with respect to the 

TPD profiles of phosphoric modified CNTs (Fig. 5.18). 
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Fig. 5.29 O1s spectra of Nanocyl-2 (upper) and 5wt%P2O5(N)/Nanocyl (lower) 

 

5.4 Infrared spectrum 

The IR spectra of oxidized Nanocyl CNTs were shown in Fig. 5.30a. The band at 

1630 cm−1 can be assigned to the absorbed water on the KBr. The peaks ranged from 

1559 to 1509 cm−1 can be assigned to carbon skeleton vibration of aromatic ring.[19] The 

tiny peak at 1460 cm−1 is assigned to CH2 or CH3 bending vibrations.[20] The weak peak 
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at around 882 cm−1 can be assigned to isolated aromatic C-H out-of-plane bending 

vibrations.[20] The 1714 cm−1 band may be associated with the C=O vibrations of 

carboxyl, lactone or ketone groups.[21] The strong peak at 1381 cm-1 could be attributed to 

the combination of O-H deformation vibration and C-O stretching vibration in phenol 

groups.  The peaks at 1260, 1121 and 1046 cm-1 may be associated with C-O or C-O-C 

vibrations of ester, ether, phenol or carboxyl groups. After calcination at 723 K, no 

significant change was observed, except the decrease in intensity of peak at 1370 cm-1. It 

should be attributed to desorption of oxygen functionalities with low thermal stability 

(see TPD profiles in Fig. 5.11). The change in the ratio of intensity of peak at 1121 cm-1 

to that at 1046 cm-1 was also observed, which might be attributed to the dehydration 

process. A peak at 2328 cm-1 could be assigned to the asymmetric stretch of CO2 from 

atmosphere. The O-H stretching vibration at 3441 cm-1 was observed in both samples. 

After reaction, the significant decrease at 1381 cm-1 was observed due to desorption of 

oxygen functionalities (Fig. 5.30b), confirmed by the decrease in the C-O vibration at 

1046 cm-1. Due to the less functionalities and strong light absorbance, signal with much 

noise ranged from 1400 to 1800 cm-1 was observed in the spectrum of used CNTs, even 

the background has been subtracted. The decrease in the C=O vibration in the used 

catalysts was observed in Fig. 5.30b, confirming the removal of functionalities during the 

reaction process.  
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Fig. 5.30 IR spectra of oxidized CNTs: a) Nanocyl-1 and Nanocyl-2; b) Nanocyl-2 

before and after reaction 
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 The significant difference between IR spectra of modified CNTs and matrix was 

observed in Fig. 5.31, demonstrating the highly functionalized nature of modified CNTs. 

It confirms that the moieties have been grafted on the surface of CNTs. A strong peak at 

1720 cm-1 was observed, assigned to the vibration of C=O. The peaks ranged between 

1587 to1500 cm-1 could be assigned to carbon skeleton vibration of aromatic ring. The 

peaks at 1381, 1178, 1121 and 1046 cm-1 were attributed to the vibration of C-O. The 

characteristic double peaks at 1229 and 1178 cm-1 were assigned to the vibration of C-O-

C ring with respect to the immobilized furan ring on the surface of CNTs.[23] The Peak at 

1022 cm-1 should also be assigned to the ring breathing vibration, which was also 

observed in furoyl compounds. The peaks at 2970 and 2790 cm-1 should also be 

attributed to the vibration of O-H bond or heterocycles.  
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Fig. 5.31 IR spectra of oxidized Nanocyl samples before (Nanocyl-1) and after modification 

(M-Nanocyl-1) 
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For pristine CNTs, the active sites for dehydrogenation could not be generated 

during the reaction process, even with existence of gaseous oxygen (Fig. 4.1). The 

oxidation treatment was a useful but low efficient method to create active sites on the 

surface of CNTs. The idea of using grafting modification for catalysts preparation was 

new attempt to seek a new method to improve the catalytic performance efficiently, 

which also facilitates the mechanism investigation. The catalysts prepared by the grafting 

modification displayed a good catalytic activity and stability, although the immobilized 

moieties were significantly removed (Fig. 5.33). Therefore, this method can be used in 

the catalysts preparation with great potential. The peak at about 1200 cm-1 could be 

attributed to the vibration of C-O-C bonding in furan ring, meaning that there still is 

noticeable amount of grafted molecules on the surface of CNTs with respect to higher 

selectivity of modified materials for catalytic oxidation of butane to corresponding 

alkenes.[23] 
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Fig. 5.33 IR spectra of grafted CNTs (M-Nanocyl-1) before and after reaction 

5.5 XRF 

 The elemental analysis of different carbon samples was displayed in Tab. 5.2. 

Obviously, the influence of metal impurities could be neglected since the activated 

carbon with the highest purity (AA) displayed the superior catalytic performance to other 

activated carbon samples. The removal of metal impurities in CNTs by oxidation 

treatment associated with increase in selectivity confirmed that the active sites should not 

be impurities.  

Tab. 5.2 Elemental concentration of carbon catalysts 
 C wt% Fe wt% Ca wt% Si wt% Mg wt% Cl wt% 
AA 99.96 0.006 0.01 0 0  
PS 99.1 0.02 0.01 0.45 0.004 0.36 
Norit 98.6 0.046 0.12 0.7 0.04 0.3 
Nanocyl 99.85 0.11*  0.04   
Nanocyl-2 99.97 0  0 0.024**  
* including Ni ** including Co and Mn 
  

 

5.5 Conclusions 

In present work, the disadvantage of “solid state chemistry” approach was 

observed since the activated carbons with the highest BET surface area displayed the 

lowest alkenes formation rate (Tab .4.14). On the contrary, TPD method combined with 

mass-spectroscopy was widely used in present work to investigate surface complexes of 

CNTs before and after reaction, revealing the correlation between the catalytic activities 

and oxygenated surface groups. The elementary step of regeneration of quinone groups 

was also studied with isotopic method, stating the exchange of oxygenated surface groups 

with gaseous oxygen. 
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 Therefore, conclusions can be drawn in the following: 1) there were two kinds of 

reaction processes on the surface of CNTs, i.e. the total oxidation and selective oxidation 

of butane, respectively; 2) oxygenated surface groups, like quinone, should be active sites 

for the adsorption and dehydrogenation of butane; 3) the total oxidation was attributed to 

the non dissociative oxygen species on the surface of CNTs, resulting from the weakly 

chemisorption; 4) the exchange between oxygenated surface groups and gaseous oxygen 

supported the assumption that the recombination of hydroxyl groups and regeneration of 

quinone groups via the dissociative chemisorption of oxygen were elementary steps, 

wherein quinone groups acted as active sites for dehydrogenation; 5) the phosphoric 

addition favoured the catalytic selectivity by protecting the carbon species (hydrocarbons 

and carbon defects) out of attacking of oxygen species via chemisorption and activation 

of oxygen; 6) initial chemical nature of carbon samples was a dominant factor for 

catalytic activity since no mare active site generated during the reaction process; 7) 

grafting modification can efficiently improve the catalytic performance and significant 

amount of moieties could remain on the surface of CNTs after the catalysis reaction. 
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Chapter 6 Catalytic oxidation of butene to butadiene  

In this chapter, the catalytic performance of various carbon catalysts for catalytic 

oxidation of butene to butadiene was tested. The influence of modification (oxidation and 

phosphoric modification) to catalytic performance was also identified in present work.  

 
6.1 Catalytic performance of carbon materials 

6.1.1 Catalytic activity of pristine carbon materials 
 

Several kinds of as-received carbon materials were applied as catalysts in the 

ODH of butene to butadiene, which displayed a remarkable catalytic performance as a 

function of reaction time (Fig. 6.1). The reaction products were butadiene, water, carbon 

monoxide and carbon dioxide. Trace amount of propene could be negligible. The ratio of 

oxygen to butene was changed to achieve the better performance. Under these reaction 

conditions, no combustion of carbon materials was observed and carbon balance was 

always kept at 100%. Before reaction, the pristine CNTs were washed by concentrated 

hydrochloric acid or nitric acid to remove metal particles. The influence of metal 

impurity on catalytic performance could be negligible. 

 
An initial low activity was observed using the pristine PSLD catalyst for the 

catalytic oxidation of butene, which gradually increased during the activation process of 

20 hours. When the feed was rich in oxygen, the higher conversion and yield were 

obtained, but selectivity decreased slightly. On the contrary, activated carbons exhibited 

the highest initial yield, which decreased as a function of reaction time. After ten hours 

deactivation, the catalysts reached the steady-state with about 30% yield under the richer 
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oxygen atmosphere. The catalytic properties of carbon catalysts in the steady state were 

displayed in Tab. 6.1. The worst catalytic performance with only 3-4% yield was 

obtained by using bay CNTs. 
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Fig. 6.1 Catalytic performance of pristine carbon materials with different ratio of 

oxygen/butene, a) conversion; b) butadiene yield  reaction conditions: 673K, O2 

vol%=1.32%, 15ml/min, 180mg catalysts. 
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Tab. 6.1 Catalytic properties of pristine carbon catalysts with different ratio of 

oxygen/butene 

catalysts PSLD Nanocyl bay AA PS 

ratio of  O2/ 1-bu 1 2 2 1 2 1 2 1 2 

Con. % 45 72 55 21 34 31 45 24 36 

Sbutadiene % 63 60 54 16 12 42 36 46 38 

Ybutadiene % 29 43 30 3.4 4.2 13 16 11 14 

 

Fig. 6.2 illustrated the TPO and TPD profiles of pristine PSLD CNTs before and 

after catalysis reaction. A slight CO2 desorption peak at 1073K was observed in the TPD 

profile of fresh CNTs. After reaction, the intensity of CO2 formation rate increased 

significantly, which was attributed to highly functionalized nature of used CNTs. In TPO 

profiles, the gasification temperature of CNTs shifted from 1023K to 873K after catalytic 

reaction (Fig. 6.2b). The decrease of combustion temperature of carbon materials could 

also be attributed the functionalization of carbon materials. 
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Fig. 6.2 CO2-TPD (a) and TPO (b) profiles of pristine PSLD CNTs before (blue) and after 

(red) catalysis 
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Fig. 6.3 showed the C1s and O1s XPS spectra of pristine and used CNTs. It was 

observed that all the C1s spectra contained a typical graphitic peak at around 284.8 eV.[2] 

There was no significant difference observed in spectra between CNTs before and after 

catalysis reaction, indicating that the intensity from functional groups on surface of used  

CNTs was much weaker than that of excitations of C1s electrons and was difficult to be 

detected in C1s spectra. However, the clear changes in the O1s spectra were observed 

indicating the difference between fresh and used CNTs. The deconvolution of O1s 

spectra was shown in Fig. 6.4b.  The O1s peak mainly had three contributions that were 

able to be interpreted according to the literature on carbon materials, as ketone/C=O in 

carboxyl acids (around 531.1-531.8 eV), alcohol/C-OH in carboxyl acid (around 533.3 

eV) and water (around 536.1 eV).[3] Notably, the peak at 533.8 eV increased after 

catalysis reaction, which was attributed to the hydrogenated nature of oxygenated surface 

groups during the reaction process. It has been discussed in last chapter 5.2.2 (P132) and 

also been reported in literature.[3]  
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Fig. 6.3 XPS spectra of the fresh (■) and used CNT (♦): a) C1s spectra; b) O1s spectra 
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On the contrary, for Nanocyl CNTs, the loss in functionalities was observed 

during the reaction process. It must be pointed out that the difference in the feature and 

chemical nature of two kinds of CNTs was significant. The reaction condition was also 

different (poor oxygen in the catalytic oxidation of butane). Before further 

characterization was done, the diversity in catalytic performance of two kinds of CNTs 

might be attributed to their chemical nature. 

6.1.2 Catalytic activity of oxidized carbon materials 
 
 The influence of oxidation treatment on catalytic behavior has been tested using 

oxidized PSLD CNTs as catalysts (Fig. 6.4). The deactivation was observed in each 

oxidized sample at initial period due to the removal of surface oxygenated groups. 

However, the activation process was observed by using PSLD-4 samples. When the 

oxidation time was longer than 10 hours, no activation process was observed. No 

significant difference in selectivity was observed by using CNTs with different oxidation 

time.  
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Fig. 6.4 Catalytic performance of oxidized PSLD CNTs: reaction conditions: 673K, O2 

vol%=1.32% and ratio of O2:butene=2, 15ml/min, 180mg catalysts. 

 

Tab. 6.2 Catalytic performance of oxidized PSLD CNTs 

catalysts PSLD-4 PSLD-10 PSLD-10 

Con. 47 21 18 

Sbutadiene. 68 55 61 

Ybutadiene 32 12 11 

 

The oxidation time had less influence on chemical nature of surface of CNTs, 

which was observed in the TPD profiles of oxidized CNTs (Fig. 5.26). It meant that the 

change in catalytic behavior could not be attributed to the surface oxygenated groups. 

However, the two-layer-microstructure of PSLD CNTs was observed in the TEM images. 

The HRTEM images displayed that the oxidation could progressively remove the outside 

carbon layer (poorly-graphitized carbon) (Fig. 5.6). The butene conversion of oxidized 

CNTs decreased from 47% to 20%, when the outside carbon layers were totally removed. 

It suggested that the high yield obtained over pristine PSLD and PSLD-4 samples could 

be attributed to the outside layer, poorly-graphitized carbon. 

6.1.3 Catalytic performance of phosphoric modified CNTs 
 
 The catalytic activity of phosphoric modified PSLD CNTs was displayed in Fig. 

6.5. Interesting experimental results were observed that phosphoric addition could 

improve the catalytic performance dramatically. The catalytic performance with 83% 

selectivity and 70% conversion was obtained by using 10wt% phosphoric loading PSLD. 

The high loading amount of phosphoric oxide resulted in the decrease in catalytic 

 147



performance of CNTs for the catalytic oxidation of butane. However, the increase in 

butene conversion and decrease in butadiene selectivity was observed in the catalytic 

oxidation of butene, associated with the increase in loading amount. For CNTs with 

lower P2O5 loading amount (≤5wt%), the conversion reached the maximum at initial 

period and subsequently decreased as a function of reaction time, with respect to the 

same trend observed in the selectivity. The deactivation was significantly reduced by 

increasing the loading amount.  
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Fig. 6.7 Catalytic performance of phosphoric modified PSLD CNTs, 673K, O2 vol%=1.32% 

and ratio of O2:butene=2, 15ml/min, 180mg catalysts. 

 
Tab. 6.3 Catalytic performance of phosphoric modified PSLD CNTs 

 Conv % *ba Selec % CO selec% CO2 selec % Yield % 

2%P2O5(N)PSLD 28 82 7 12 23 

5%P2O5(N)PSLD 53 91 4 5 48 

10%P2O5(N)PSLD 70 83 7 10 58 

*ba is the abbreviation of butadiene 
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The acid precursor, like phosphoric acid, was also used in the addition. It was 

observed that the precursors had less influence on catalytic performance of CNTs (Fig. 

6.8). The similar catalytic performance was observed by using modified CNTs with same 

loading amount. The catalytic activity of modified CNTs was significantly inspiring, 

since it was higher than any other catalysts, even bismuth molybdate catalysts, which was 

well-known in the oxidative dehydrogenation.[1-3]  
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Fig. 6.8 Catalytic performance of phosphoric modified PSLD CNTs using phosphoric acid 

as precursor, 673K, O2 vol%=1.32% and ratio of O2:butene=2, 15ml/min, 180mg catalysts. 

 
Tab. 6.4 Catalytic performance of phosphoric modified PSLD CNTs with phosphoric acid 

as precursor 

 Conv % *ba Selec % CO selec% CO2 selec % Yield % 

2%P2O5(P)PSLD 34 88 4 7 30 

5%P2O5(P)PSLD 57 89 4 7 51 

10%P2O5(P)PSLD 70 85 6 9 59 

*ba is the abbreviation of butadiene 
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The TPO profiles of fresh and used 5wt%P2O5(N)PSLD were display in Fig. 6.9. 

Obviously, no difference was observed between the TPD profiles of modified CNTs 

before and after reaction. It suggested that no coke formed on the used CNTs. 
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Fig. 6.9 TPO profiles of 5wt%P2O5(N)PSLD before and after reaction 

 
6.2 Oxygen order measurement 

 The outer diffusion and inner diffusion were diagnosed by experimental criteria.[5]  

The outer diffusion diagnostic test with constant contact time (0.0067g·h/l) was shown in 

Fig. 6.10. The reaction rate kept constantly as the flow rate increased, demonstrating that 

the outer diffusion was negligible. Therefore, for oxygen order measurement, 6mg CNTs 

with 100mesh particle size was used as catalyst, which has been diluted with 500mg SiC. 
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The reaction temperature was 430°C and total flow rate was 15ml/min with 0.67 mol% 

butene. 
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Fig. 6.10 Experimentally diagnostic test for outer diffusion, 430°C, O2 vol%=1.32% and 

ratio of O2:butene=2 

 The oxygen order was evaluated from the plots of log r again log (PO2/Po). The 

result was shown in Fig. 6.11. The oxygen reaction order was 0.28, keeping a good 

agreement with literature.[5-6] The oxygen order was higher than zero, meaning the 

oxygen adsorption and activation should also be the rate-determining steps for this 

reaction. 
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Fig. 6.11 Estimation of oxygen order 
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6.2 Conclusions 

 The catalytic activities of carbon materials were tested in this chapter. Pristine 

PSLD CNTs displayed low selectivity to dehydrogenation of butane, but high selectivity 

to dehydrogenation of butene. The different catalytic performance should be attributed to 

the chemical nature of educts. The intermediates like alkenyl radicals could be stabilized 

by conjugating π bond. 

 
 The phosphoric modified CNTs displayed a superior catalytic activity and 

stability, even better than that of the best metal catalysts in the literature. No coke 

formation was observed after reaction. The inspiring catalytic performance of modified 

CNTs really develops the industrial application of CNTs. 

Reference: 

1. Jung JC, Kim H, Chung YM, Kim TJ, Lee JS, Oh SH, Kim YS, Song IK, Unusual Catalytic Behavior of 

beta-Bi2Mo2O9 in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene, Journal of Molecular 

Catalysis A: Chemical 2007, 264, , 237–210 

2. Jung JC, Kim H, Choi AS, Chung YM, Kim TJ, Lee SJ, Oh SH, Song IK, Effect of PH in the Preparation 

of γ-Bi2MoO6 for Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene: Correlation Between Catalytic 

Performance and Oxygen Mobility of γ-Bi2MoO6  Catalysis Communications, 2007, 8, 625–628 

3. Portela MF, Oliveira MM, Pires M J, Mechanism of Oxidative Dehydrogenation of 1-Butene Over 

Bismuth Molybdate Polyhedron  1986, 5, 119-121 

4. Ertl G, Knozinger H, Weitkamp J, Handbook of Heterogeneous Catalysis, Vol 3, 1232-1233 

5. Chaar MA, Patel D, Kung HH, Selective Oxidative Dehydrogenation of Propane over VMgO Catalysts. 

J. Catal. 1988, 109, 2, 463–467. 

6. Madeira LM, Portela MF, Catalytic Oxidative Dehydrogenation of n-Butane, Catalysis reviews 2002, 

44(2), 247-286 

 152

http://www.sciencedirect.com/science/journal/02775387


Chapter 7 Reaction mechanism and outlook 

When we talk about “carbon”, somehow, the meaning is complicated and 

ambivalent. Carbon materials display metallic, semi-conductive or dielectric electronic 

properties; they are composed of sp2 hybrid carbons, sp3 hybrid carbons or the 

combination with different ratio of sp2 to sp3 hybridization; they are crystal or amorphous; 

they displayed long-range order or short-range order of crystalline microstructure. 

Furthermore, the surface of carbon materials is always terminated by abundant guest 

elements, especially oxygen and hydrogen. Therefore, when the “chemical properties” 

are taken in to account in the discussion of catalytic performance of carbon materials, it is 

always associated with their microstructure, crystallization degree, raw material and 

previous preparation and functionalization history. Generally, two approaches have been 

widely performed in the surface chemistry of carbon, one is “solid state chemistry” 

approach and the other is “organic surface groups” approach.[1] The former one focuses 

on the crystalline microstructure of carbon materials and the latter one focuses on the 

organic character of the surface groups. 

 
In the “solid state chemistry” approach, the catalytic activity of carbon materials 

should be associated with their microstructure and crystal defects. For activated carbons 

and amorphous carbons, the low crystalline degree and small particle size significantly 

favor the increase in the ratio of number of carbon atoms at edge-side to that in the bulk. 

Consequently, the activity of those carbon materials is remarkably higher than that of 

highly-ordered graphitic materials since those edge-side carbon defects display higher 

reactivity. On the other hand, the difference of chemical properties between anisotropic 
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“basal plane” and “prismatic plane” of graphitic materials has also been observed due to 

the same reason.[1] Furthermore, the increase in the chemical activity could also be 

attributed to the curvature and distortion of graphene with respect to the single-walled  

carbon nanotubes and low-graphitized carbon materials.  

 
The so-called “organic surface groups” approach deals with the nature and the 

functionality of surface complexes of oxygen and other compounds chemisorbed at the 

surface defects. It means that the chemical nature of carbon materials is mainly attributed 

to the surface functionalities and complexes. Obviously, both “solid state chemistry” 

approach and “organic surface groups” approach should be considered in present work, 

corresponding to the great diversity in the catalytic performance of carbon materials. It 

must be emphasized that both factors are not isolated. For instance, the chemical 

properties of oxygen functionalities are notably influenced by the chemical environment, 

as confirmed by the observation of the shifting in the desorption temperature of 

functionalities.[2] Furthermore, the carbon defects are always terminated by other atoms, 

resulting in the formation of surface functionalization of carbon materials. Those 

functionalities have significant influence on the chemical properties of carbon materials 

even with similar microstructure.[3] However, less information has been obtained about 

the chemical state of functionalities on the carbon surface during the reaction process due 

to the absence of a characterization method, and the correlation between the chemical 

state of carbon materials and their reactivity is still under debate. 

 
Fig. 7.1 displays the catalytic performance of carbon materials measured in the 

present work, combined with the catalytic performance of metal catalysts from literature 
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(Fig. 1.1). It is observed that butane conversion of carbon catalysts ranged from about 8% 

to 22%, with respect to the great diversity in alkenes selectivity ranged from 10% to 74%. 

The difference in the catalytic performance of various carbon materials has been 

discussed in chapter 4.  
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Fig. 7.1 catalytic performance of carbon and metal catalysts* and metal catalysts (*from 

reference, Fig. 1.1) 

 
 Obviously, the microstructure has significant influence on the catalytic 

performance. For activated carbon, the decrease in the catalytic performance was 

observed after oxidation treatment with respect to the increase in the functionalization 

degree. On the contrary, the functionalization significantly favored the catalytic 
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performance of CNTs. In addition, the removal of oxygenated surface groups of oxidized 

activated carbon had less influence to the catalytic performance in steady state. It means 

that the catalytic activity of activated carbons could not be directly related with the 

functionalization degree. The microstructure and nature of carbon defects should be the 

most important factor for catalytic performance of activated carbons, which could be 

easily changed due to the low crystalline feature. However, the investigation on the 

microstructure of activated carbons is hindered due to the absence of technique. For 

instance, the remarkable difference in the catalytic performance of three kinds of 

activated carbons has been observed, but it is difficult to be related with the difference in 

the microstructure such as BET surface area. 

 
The microstructure should be also an important factor for the catalytic activity of 

carbon materials. However, the crystalline degree of graphene in the CNTs is much 

higher than that in activated carbons, meaning that the oxidation treatment used in present 

work could not change the microstructure of CNTs. Therefore, the contribution of change 

in the microstructure of CNTs to catalytic activity could be neglected. The thermal and 

chemical stability of CNTs have been confirmed in the chapter 5 since no significant 

difference is observed in TEM images of pristine CNTs, oxidized CNTs and CNTs before 

and after reaction. However, the remarkable availability of CNTs for functionalization 

has been widely reported due to the chemical nature of CNTs with abundant surface 

defects.[8] It proves that the chemical reactivity of CNTs could be associated with the 

surface functionalities. Therefore, the effort should be focused on the edge-side carbon 

defects, for instance, defects and ends of CNTs.  
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The pristine CNTs with poorly functionalized feature display high activity but 

low selectivity for the catalytic oxidation of butane. The surface of pristine CNTs after 

reaction was still absent of oxygen. The various oxygen activation models have been 

proposed, including the non-dissociative chemisorption and dissociative chemisorption of 

oxygen.[9] It implies the absence of dissociative chemisorption of oxygen during the 

reaction process, corresponding to the poorly functionalized nature of used catalysts. 

Therefore, non-dissociative chemisorption of oxygen species on the surface of CNTs 

should have more contribution to the total oxidation of butane. 

 
The oxidation treatment favors the catalytic performance of CNTs, corresponding 

to the highly functionalized surface of catalysts. The increase in catalytic activity should 

be attributed to the surface functionalities. However, the complexity of surface 

functionalities has been described in the literature.[1.2] It is always difficult to value the 

contribution of different oxygenated surface groups to the catalytic activity of CNTs. The 

thermal treatment and in-situ XPS characterization in literature proved the role of 

quinone groups in the catalytic oxidation of ethylbenzene to styrene, as also confirmed by 

theoretical calculation. However, a great diversity in the desorption temperature of 

carbon oxides species in TPD profiles was observed, suggesting the variety of chemical 

nature of functionalities including quinone groups. Therefore, the detailed reaction 

mechanism catalyzed by CNTs is worthy of in-depth clarification. 

 
The catalytic performance of CNTs after TPD investigation has proved that the 

majority of oxygen functionalities, which were generated from the oxidation, does not 

have contribution to the catalytic performance. However, the observation that there was 
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exchange between surface oxygen functionalities and gaseous oxygen confirms that the 

quinone groups should be active sites for the catalytic oxidation of butane. Those quinone 

groups generated via the dissociative chemisorption of gaseous oxygen species at the 

defects of CNTs. Accordingly, the elementary steps of dehydrogenation of butane over 

CNTs are proposed in Fig. 7.2. The strong adsorption of C4 hydrocarbon molecules on 

the surface of CNTs was firstly identified in present work, which should be associated 

with the adsorption and activation of hydrocarbons on active sites. 

a

b
c

d

e
f

 

Fig. 7.2 Schematic illustration of oxidative dehydrogenation of butane to butene: a, b) 

chemisorption of butane at quinone groups, c,d) dehydrogenation and following desorption 

of butene, e) recombination of hydroxyl groups, following desorption of water and f) 
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regeneration of quinone groups via chemisorption of oxygen 

 
Therefore, the possible reaction pathway for the dehydrogenation of butane 

occurred via a set of elemental steps (eq7.1 to eq7.5). Firstly, butane molecule is 

adsorbed on the surface of CNTs by interaction with quinone groups. Then C-H bond 

was activated and followed by abstraction of H atom from adsorbed butane occurred 

by using neighboring quinone groups. The further dehydrogenation happened, 

resulting in the formation and consequent desorption of butene molecule. In sequence, 

water generated via the recombination of OH groups and the dissociative 

chemisorption of O2 occurred afterwards, resulting in the regeneration of quinone 

groups. The adsorption of butane and following cleavage of C-H bonding is rate-

determining step for the dehydrogenation of butane.  

2C4H10 + 2O*↔ 2C4H10O*     (7-1) 

2C4H10 O*+ 2O*→ 2C4H9O*+ 2HO*   (7-2) 

2C4H9O*→2C4H8+ 2HO*     (7-3) 

2HO*+ 2HO*↔2H2O+ 2O*+2*    (7-4) 

O2+ *+ *→ O*+ O*       (7-5) 

The whole reaction network included parallel and sequential oxidation steps has 

been illustrated in chapter 4, reinforced by the kinetic measurement. Butenes are primary 

products and carbon oxides (COx) form as byproducts via butane oxidation and 

corresponding alkenes oxidation. It has been found that the high butadiene selectivity was 

achieved by using carbon nanotube after TPD performance. Notably, the removal of 

oxygenated surface groups could generate carbon defects, like zigzag and armchair 

defects, wherein the dissociative chemisorption of oxygen was thermodynamically 
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favorable (Fig. 7.3). This means that the density of quinone groups in active sites should 

be improved after thermal treatment. Therefore, the transportation and re-adorption of 

butene molecule at the neighboring quinone groups are much easier.  

 

Fig. 7.3 Schematic illustration of removal and regeneration of oxygenated surface groups 

during the TPD and following catalytic test  

 
The different contribution of oxygen species resulting from the dissociative and 

non-dissociative chemisorption of gaseous oxygen was observed. The total oxidation 

could be related with the electrophilic oxygen species (O2
-, O2

2-), which are weakly 

chemisorbed on the surface of CNTs. The electron-rich region of hydrocarbons, like C-C 

bonds, would be attacked by the electrophilic oxygen species, leading to the rupture of 

carbon sketch. The total oxidation could be effectively inhibited by using  phosphoric 

addition, with respect to coverage of carbon surface by phosphoric oxide and, 

consequently, protecting the functionalities out of attacking of activated oxygen species.  

 
 The present work studied the contribution of surface functionalities of CNTs to 

the catalytic oxidation of butane to alkenes. It was found that majority of oxygenated 

surface groups did not have contribution to the catalytic activity of CNTs. The exchange 
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of gaseous oxygen and oxygenated surface groups was firstly identified, confirming that 

the elementary steps should include the dissociative chemisorption of oxygen and 

recombination of hydroxyl groups. It also confirmed that the catalytic behavior should be 

attributed to the quinone groups at active sites. 

 Two modification methods were conducted in the present work to improve the 

catalytic performance of CNTs. The phosphoric addition could efficiently inhibit the total 

oxidation, consequently improving the catalytic selectivity. The molecules grafting could 

improve the catalytic selectivity by immobilizing the molecules moieties on the surface 

of CNTs. A remarkable and stable catalytic performance was achieved by using the 

modified CNTs as catalysts, even better than the best metal catalysts. It displays the great 

potential of carbon materials in catalysis. The modification methods applied in the 

present work smartly develop the knowledge on the fabrication and modification of 

catalysts in a designed manner.  
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