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Zusammenfassung Raman studies on individual nanotubes and nanotube ensembles –

vibrational properties and scattering efficiencies

Die vorgelegte Dissertationsschrift befasst sich mit den optischen Eigenschaften von
Kohlenstoffnanoröhren. Kohlenstoffnanoröhren (KNR) sind Nanometer dicke hohle Zylin-
der, deren Wände aus Kohlenstoffatomen aufgebaut sind. Das große Interesse an KNRs
beruht unter anderem auf den vielversprechenden elektronischen Eigenschaften wie etwa
dem ballistischem Transport und einer großen Anzahl möglicher Bandlücken. Die Cha-
rakterisierung von KNRs geschieht meist mithilfe der Raman-Spektroskopie. So lässt sich
anhand der radialen Atmungsmode (RAM) die atomare Struktur – gegeben durch die
chiralen Indices (n1, n2) – der in einer Probe vorhanden Röhren bestimmen. Anhand der
hochenergetischen Moden lässt sich überprüfen, ob eine Probe metallische Röhren enthält.

Die Arbeit besteht aus zwei Teilen. Im ersten Teil wird die maximale Raman-Intensität
der RAM für unterschiedliche (n1, n2) untersucht. Diese Intensitäten lassen Rückschlüsse
auf die Elektron-Phonon-Kopplung zu, welche wiederum relevant für das Verständnis von
Transporteigenschaften ist. Außerdem verspricht man sich, die Häufigkeiten der einzelnen
(n1, n2) in einer Probe mithilfe der RAM-Intensitäten bestimmen zu können. Wir beob-
achten große Unterschiede zwischen den Raman-Intensitäten der verschiedenen (n1, n2),
welche wir entweder auf Unterschiede der natürlichen Linienbreiten oder auf Variationen
der Elektron-Phonon-Kopplung zurückführen können.

Der zweite Teil der Arbeit behandelt die Form und den Ursprung der Moden im hoch-
energetischen Bereich des Raman-Spektrums von KNRs. Wie oben erwähnt, kann dieser
Bereich des Spektrums zum Nachweis von metallischen Röhren in einer Probe benutzt
werden. Entspricht die Anregungsenergie der Resonanzenergie einer metallischen Röhre,
so verschiebt und verbreitert sich der sogenannte G− Peak. Hierzu gibt es zwei Theori-
en, welche das Phänomen auf sehr unterschiedliche physikalische Prozesse zurückführen.
Gewöhnliche Nanoröhrenproben enthalten viele verschieden Röhrensorten, metallische so-
wie halbleitende, sodass sich die Raman-Signale überlagern und daher keine der genannten
Theorien zu favorisieren ist. In den letzten Jahren sind zunehmend Experimente an schein-
bar einzelnen Röhren durchgeführt worden, deren Interpretationen sich je nach zurate
gezogener Theorie widersprachen.

In dieser Arbeit werden Raman-Experimente an einem winzigen Bündel von einer
metallischen und einer halbleitenden Nanoröhre präsentiert. Wir zeigen, dass der verbrei-
terte und verschobene Peak in metallischen Röhren dem durch eine sehr starke Elektron-
Phonon-Kopplung verschobenen und verbreitert LO Phonon zuzuordnen ist. Die Beob-
achtung eines weiteren Peaks bei der unveränderten Frequenz des LO Phonons ist folglich
nur durch die Anwesenheit einer halbleitenden Röhre zu erklären. Außerdem bestätigen
unsere Messungen, dass der verschobene und verbreiterte Peak ein intrinsisches Merkmal
von metallischen KNRs ist, er resultiert also nicht aus der Bündelung von Röhren.

Des Weiteren können wir durch Raman-Experimente an Proben, die alle denkba-
ren (n1, n2) enthalten, die Durchmesserabhängigkeit der TO Phononen in halbleitenden
Röhren zu kleineren Röhrendurchmessern erweitern.
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Chapter 1

Introduction

In recent years the progress in the field of device-miniaturization and crystal growth in-

creased the interest in low dimensional materials. The confinement of the crystallinity to

two, one or even zero dimensions offers applications beyond miniaturization. The low di-

mensional materials reveal new and promising optical, electronic and transport properties.

Since their discovery in 1991 by Iijima et al. [1] the interest in carbon nanotubes has

constantly grown. The reason for the large number of scientific groups and recently also

Figure 1.1: Metallic (left) and semiconducting

(right) carbon nanotube. Minor differences in

the atomic structure result in significant dif-

ferences in the electronic properties.

companies practicing research on carbon nan-

otubes can be found in the large number of imag-

inable application in the microscopic as well as in

the macroscopic scale. While some people dream

about a space elevator tenth of thousand kilome-

ters in length others design electronic nanometer-

sized devices [2]. The idea of an space eleva-

tor is based on the enormous strength of the sp2

bonds which connect the carbon atoms in a nan-

otube and which is even stronger than the sp3

bonds in diamond. In addition to the strength

nanotubes have a very low density. The promis-

ing properties of nanotubes for electronic devices

is the ballistic transport which is maintained

over large distances and their electronic bandgap

which strongly varies for different atomic struc-

ture (n1, n2). Figure 1.1 shows two carbon nanotubes with very similar atomic structure

(n1, n2). However, this apparently minor difference results in large differences in the elec-

tronic properties, with the left tube being metallic and the right tube having a bandgap

of Eg = 1.36 eV.
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Chapter 1. Introduction

The probably most established characterization method for carbon nanotubes is the

Raman spectroscopy. [3, 4] While the defect induced D-mode offers a tool to estimate the

quality of a nanotube sample, the diameter distribution can be obtained from the diameter

dependent radial breathing mode (RBM). Due to the unique electronic bandstructure of

carbon nanotubes the exact atomic structure (n1, n2) can be obtained from the RBM in

conjunction with the excitation energy. [5] Even without a detailed (n1, n2) assignment,

the presence of metallic nanotubes in a sample can be detected on the basis of the shape

of the high-energy modes (HEM) in the Raman spectrum [6–8].

The electronic properties, therefore the width of the bandgap, of carbon nanotubes

vary for different environments due to screening of the electron-hole and electron-electron

interactions in the tube. This property, which makes nanotubes suitable for gas sensor

applications [9], is still under debate and controversial results can be found in the litera-

ture [10–13]. In Sect. 3.6 we present resonant Raman scattering experiments on nanotubes

dissolved in aqueous solution. By using two different types of solvents we show how tran-

sition energies and RBM frequencies are effected by different environments.

One of the major challenges in nanotube chemistry was and will be in the future the

growth or subsequent sorting of particular (n1, n2) [6, 14, 15]. This, in turn, demands a

technique to probe (n1, n2) abundances in a sample, which does not exist yet. One idea to

probe (n1, n2) abundances is to use the Raman intensities of the RBM [16–18]. However,

the RBM scattering efficiency strongly depends on the particular (n1, n2) [5, 19–22]. In

Chap. 4 we present a detailed study of the RBM Raman intensities of nanotubes dispersed

in solution. We discuss variations of the intensities between different (n1, n2) with respect

to the scattering efficiency, the influence of the lifetime of the optical transitions, the

electron-phonon coupling and (n1, n2) abundances.

As mentioned above the high-energy mode (HEM) in the carbon nanotube Raman

spectrum is widely used in the nanotube community to probe the presence of metallic

nanotubes in a sample. A broadened and downshifted HEM indicates the presence of

metallic nanotubes in resonance. The origin of this effect was described by two conflicting

theories [23–25]. On the one hand experiments on nanotube ensembles are not capable

of solving this conflict. On the other hand this conflict does not interfere with the inter-

pretation of the experimental results regarding the presence of metallic nanotubes in the

sample. Recently there is an increasing number of experiments performed on presumably

individual nanotubes [26–30]. For individual nanotubes the conflicting theories lead to

contradicting interpretations. An answer to this problem is essential in order to show

from a Raman spectrum if the sample consists of an individual metallic nanotube or a

bundle of nanotubes including semiconducting tubes. To address this issue we present in

Chap. 5 resonant Raman experiments performed on nanotube dispersed in solution and

2



on a tiny bundle of one metallic and one semiconducting nanotube. Consulting the RBM

frequencies we assign the different features of the HEM to particular (n1, n2). Based on

the assignment we discuss the physical origin of the different HEM features.
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Chapter 2

Experimental method

2.1 Raman scattering

When light travels through a medium with no optical transition which could lead to

absorption, the light will still loose intensity due to scattering. Most of the scattered

light is due to Rayleigh scattering, a process where the light is elastically scattered – the

energy of the light is preserved – by small imperfections of the medium. However, a tiny

fraction of the light is inelastically scattered and therefore looses or gains energy during

the scattering process.

In this work we will mainly focus on Raman scattering, an inelastic scattering process

which describes the scattering of light by phonons. As light can be regarded as a stream of

photons or as an electromagnetic wave there are two ways to describe the process of scat-

tering. For a better understanding of the process we will describe Raman scattering from

both perspectives. As discussed later this approach is especially useful for the comparison

between theoretical predictions and experimental observations.

When an electro-magnetic wave with frequency ωi and wave vector ~ki travels trough

a medium a polarization ~Pi(~r, t) of the electron cloud will be induced, with an amplitude

depending on the polarizability χ (susceptibility). At non-zero temperatures the atoms in

the medium will vibrate and are therefore periodically displaced with frequency ω0 and

wave vector ~q. When such a displacement ~Q(~r, t) changes the polarizability of the medium

(dχ/d ~Q|0 6= 0), the propagating sinusoidal polarization ~Pi(~r, t) induced by the light will be

modulated by the vibration of the atoms. The modulated wave ~P (~r, t) can be described

as a superposition of three waves, ~Pi(~r, t) the polarization wave moving in phase with the

incident light and two waves ~P±

ind(~r, t) with frequencies and wave vectors as ~Pi increased

or decreased by the frequency and wave vector of the atomic vibration,

5



Chapter 2. Experimental method

~P (~r, t) = ~Pi(~r, t) + ~P+
ind(~r, t) + ~P−

ind(~r, t)

= ~Pi(~ki, ωi) cos(~ki · ~r − ωit)

+ ~Pind(~ki, ωi, ~Q) cos[(~ki + ~q) · ~r − (ωi + ω0)t]

+ ~Pind(~ki, ωi, ~Q) cos[(~ki − ~q) · ~r − (ωi − ω0)t] . (2.1)

While the first term in Eq. 2.1 represents the unscattered light traveling through the

medium, the second and third terms lead to radiation with higher (anti-Stokes) and lower

frequency (Stokes), respectively. The shift of the Stokes and anti-Stokes radiation with

respect to the unscattered light is given by the eigenfrequency of the studied atomic

vibration.

It is well known that the atomic vibrations are quantized into phonons and the electro-

magnetic field into photons. Therefore, speaking from the microscopic point of view, the

process described above refers to a photon being scattered by a phonon intermediated by

an electron. During the process the phonon is either generated (Stokes) or annihilated

(anti-Stokes).

In the Raman scattering process energy and momentum has to be conserved. Therefore

the momentum q of the phonon can not exceed 2~ki (backscattering). As a consequence

only zone-center phonons can be observed in a Raman experiment with the incident light

in the visible, since the momentum of the light is 2-3 orders of magnitude smaller than

the Brillouin zone of the crystal.

2.1.1 Scattering efficiency

To calculate the scattering efficiency dS/dΩ for Raman scattering we need to calculate the

power of the electro-magnetic field induced by the polarizations ~P±

ind(~r, t) as a function of

the power of the incident light. In a semiclassical approach this leads to the power Raman

scattering efficiency given in Ref. [31]. As we will use a detector which is based on photon

counting we rather need a quantum scattering efficiency. This is obtained by multiplying

the power efficiency by ωi/ωs, where ωi and ωs refer to the incident and the scattered

6



2.1 Raman scattering

light, respectively [32]. Therewith the quantum Raman scattering efficiency reads,

dS

dΩ
=

1

V

dσs

dΩ
=

ω3
s ωi

(4 π)2 c4

ηs

ηi

η2
out

η2
in

R |eees · χR · eeei|2 Λ (2.2)

where R = (1 − Ri) (1 − Rs)

Λ =
~

2 ωph
(n(ωph) + 1) (Stokes)

Λ =
~

2 ωph
n(ωph) (anti − Stokes)

n(ωph) =
1

e
~ωph

kT − 1
(Bose − Einstein factor)

where c is the speed of light and ωph the eigen-frequency of the phonon. eeei and eees are the

polarization vectors of the incident and the scattered light, respectively. The expression

including the refractive indices in the sample ηi for the incident light and ηs for the

scattered light and the refractive indices ηin inside and ηout outside the sample account

for influence of these values on the effective angle of collection. R refers to the loss of

light due to the reflection when the light enters (Ri) and leaves (Rs) the sample. The

Raman susceptibility χR is a second rank tensor which is given by the sensitivity of the

optical susceptibility χo to the displacement of the atoms related to the particular phonon.

Λ represents the thermodynamical average over the ground states of the material. It

therefore considers the probability of a photon being created or annihilated in the presence

of thermal phonons.

Unlike the Raman cross section dσs/dΩ the scattering efficiency dS/dΩ is independent

from the scattering volume V . When deriving the cross section the incident beam is

assumed to cover all of V . Since the Raman intensity depends on the flux rather than the

flux density of the incident light – simple Raman scattering is a linear optical process –

dropping V is reasonable and avoids misunderstandings. Therefore Eq. 2.2 represents the

ratio between incident and scattered photons per unit length within the sample.

The scattering efficiency given in Eq. 2.2 does not consider absorption of light in the

sample, since the absorption depends on the length of the scattering path. Absorption

is considered in the next section (Eq. 2.3) when discuss the Raman intensity actually

observed in the experiments.

7



Chapter 2. Experimental method

2.1.2 From the measured Raman intensity to the Raman suscept i-
bility

In the experimental section of this work we present Raman spectra of carbon nanotubes.

On the one hand we are interested in the positions of the varies features. On the other

hand we want to discuss the intensity variations between different peaks with respect to the

properties of particular nanotubes. Therefore we have to strip down the measured Raman

intensities to the Raman susceptibility χR, since it is independent from the experimental

conditions and thus exclusively represents the properties of the nanotube. The Raman

intensities collected by a Raman setup (Sect. 2.2) are basically the scattering efficiency

given by Eq. 2.2 for a particular solid angle and multiplied by the integration time t, the

laser power Pi, and the scattering length L. Additionally the intensities are scaled by the

response IR(ωs) of the experimental setup and, since we are measuring on an ensemble of

nanotubes in solution, the nanotube density ρ. Therefore, the measured Raman intensity

I(ωs) is given by

I(ωs) =
dS

dΩ
∆Ω Pi t

Lα

~ ωi
IR(ωs) (2.3)

Lα =
1 − e−(dS/dΩ+αi+αs) L

dS/dΩ + αi + αs

As mentioned above, the scattering efficiency in Eq. 2.2 gives the probability for an in-

cident photon being inelastically scattered by the sample involving a particular phonon.

Therefore the laser power has to be transfered to the number of photons per unit time.

This is reflected in Eq. 2.3 by dividing by ~ωi. Lα is the scattering path length consider-

ing absorption of the light, with the absorption coefficients αi and αs for the incident and

scattered light, respectively. L is the path length usually given by the sample thickness

or by the depth of field defined by the setup. For our experiments we assume the latter

since most of our samples are much thicker than the depth of field. Note that the depth

of field depends on the wavelength, therefore we will use Lα(ωs) in the following.

In order to obtain the Raman susceptibility from measurements, we need to normalize

the observed Raman intensity to 1/32, ρ, π−2, c−4, ~, ηs/ηi, ∆Ω, ω3
s , IR(ωs), Lα(ωs),

η2
out/η

2
in, R, ω−1

ph , (n + 1), t and Pi. Since we do not know the density ρ of nanotubes in

our sample, we can not determine absolute Raman susceptibilities. However, since ρ is

constant we can still compare the relative Raman susceptibilities for the different types

of tubes (this is discussed in more detail in Sect. 4). Not being interested in absolute

values we can ignore all constants, which are marked in blue in the list above. ηs/ηi can

be treated as one because the observed nanotubes are in low concentration surrounded by

media (water, air) with small dispersions in the region of interest.

8



2.1 Raman scattering

The list of variables, to which we have to normalize I(ωs), can further be shortened

when the observed Raman intensity I(ωs) is normalized to the intensity of calcium fluoride

ICaF2
(ωs)(ωph = 320 cm−1), taken at identical experimental conditions. Since for all mea-

surements we are far off resonance (bandgap: Eg(CaF2) ≈ 8 eV), the Raman susceptibility

of CaF2 can be treated as constant [33]. When we normalize the Raman intensity I(ωs)

to ICaF2
(ωs) the result obviously becomes independent from ωs and the system response

IR(ωs). Both the nanotube samples as well as the CaF2 are totally transparent. Assuming

very small values for αi and αs, Lα(ωs) approximates L(ωs) which is solely determined by

the experimental conditions and therefore also drops out by normalizing I(ωs) to ICaF2
(ωs).

This procedure also makes the the result independent from η2
out/η

2
in and R, which

both depend on ωs and have different values for the nanotube sample and CaF2. Most

measurements presented in this work are conducted on nanotubes in solution contained

in a glass cell. Due to the very similar properties of water, glass and CaF concerning the

dependence on the frequency of light, η2
out/η

2
in and R lead to a constant value when I(ωs)

is normalized to ICaF2
(ωs). Deviations in the optical properties between water, glass and

CaF lead to a deviation in the resulting Raman susceptibility χR of about 1 %. Only in

case of nanotubes in air this error becomes larger.

Note that usually the phonon frequency ωph of the studied Raman mode differs from

that of CaF2, ωph,CaF2
. Therefore the excitation frequencies ωi also vary between I(ωs) and

ICaF2
(ωs). For very large differences between studied Raman modes (∆ωph > 1000 cm−1)

this has to be taken into account.

After dividing I(ωs) by ICaF2
(ωs) we only have to normalize I(ωs) to the ω−1

ph , (n + 1),

t and Pi to finally determine the square of the Raman susceptibility χR.

In summary, after normalizing the Raman spectra to t, Pi, (n + 1), ω−1
ph and ICaF2

(ωs)

the observed Raman intensities are proportional to |eees · χR · eeei|2, the square of the Raman

susceptibility.

9



Chapter 2. Experimental method

2.1.3 Resonant Raman scattering

Figure 2.1 depicts how an electron is excited, scattered and relaxed during the Raman

process. Three cases are distinguished: the non-resonant case, where the energy of the

excitation energy (~ωi) is far away from a optical transition; the incoming resonance,

where the excitation energy ~ωi matches the transition energy of an intermediate state;

and the outgoing resonance, where the excited electron is scattered by the phonon into

the real intermediate state from which it radiatively relaxes emitting a photon ~ωs. When

a resonance condition is met, the Raman signal is strongly enhanced. In fact, in individ-

ual nanotubes, Raman scattering can only be observed with considerable signal strength

when excited resonantly. Therefore we will ignore the non-resonant contributions to the

scattering efficiency in the following.

For resonant Raman scattering in carbon nanotubes we assume an individual interme-

diate excitonic state and the initial and final electronic states to be the same. Therefore

the Raman susceptibility close to the resonance can be described by [34–37]

|χR|2 =
2 ωph V

ω2
i

K (2.4)

where K =
M2

R
(

(~ ωi − Eii)2 +
(

γ
2

)2
) (

(~ ωi − ~ ωph − Eii)2 +
(

γ
2

)2
) (2.5)

where Eii is the energy of the optical transition and MR the Raman matrix element.

γ refers to the lifetime and therefore the natural linewidth of the optical transition. In most

samples the optical transitions are additionally broadened by imperfections. Therefore we

will refer to γ as the broadening parameter.

K describes the convolution of two Lorentzian curves of width γ and distance ωph. Due

to ωi in Eq. 2.4 the maximum of the two Lorentzians is slightly different. For phonons

with small ωph, as for the radial breathing mode in nanotubes, this difference is rather

Figure 2.1: Three scenarios of the
first order Raman process. Re-
garding to resonant Raman scat-
tering, there are two resonance
conditions which have to be con-
sidered, incoming and outgoing
resonance. Incoming (outgoing)
resonance takes place when the
energy of the incoming (outgoing)
light ~ωi (~ωs) matches the energy
of the electronic transition.

ωi

ωiωi

ωs

ωs
ωs

E(k)

ωph

ωph

ωph
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2.1 Raman scattering

small. We will mainly use the expression of the resonance profile in order to obtain the Eii

and γ from collected Raman intensity profiles. As we assume changes on Eii and γ due

to ωi to be negligible we will fit the Raman intensity profiles by Eq. 2.5. However, when

the aim is to compare experimental results to theoretical predictions on MR for different

modes with different resonance conditions the influence from ωi on MR might be relevant.

The Raman matrix elements consists of two times the absorption strength Mabs and

the electron-phonon coupling Me−ph and is therefore given by MR = M2
abs Me−ph [36].

Some theoretical models only provide Me−ph. Therefore we will sometimes compare our

results solely to the electron-phonon coupling assuming the effects due to Mabs to be

small.
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Chapter 2. Experimental method

2.2 Experimental setup

In a Raman experiment it is essential to suppress the elastically scattered light of the ex-

citing laser. This is either achieved with a notch filter, a very narrow band-stop filter, or,

as in our experiments, with a triple monochromator. In the triple monochromator setup

the first two monochromators (pre-monochromators) are coupled in a subtractive config-

uration. The slit between the pre-monochromators is rather large and defines the part of

the spectrum which can pass the monochromators. In this way the pre-monochromators

solely act as a bandpass filter, very efficiently suppressing the rest of the spectrum. The

final diffraction is done by the third monochromator (spectrograph).

Figure 2.2: Experimental setup for Raman experiments.
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2.2 Experimental setup

While the notch-filter gives a better signal to noise ratio and enables a more compact

setup, the triple-monochromator setup can be used for tunable laser systems. Since our

aim was to collect intensity profiles of the Raman modes, we used a tunable Raman setup

including a triple-monochromator.

The excitation energy was varied between ≈ 1.13 eV and ≈ 2.17 eV using tunable

lasers, a titanium-sapphire laser (≈ 1.13 - 1.80 eV) and a dye laser running with DCM-

special (≈ 1.80 - 2.05 eV) and Rhodamin 6G (≈ 2.00 - 2.17 eV), respectively. For the

signal detection the spectrograph was equipped with two silicon charge-coupled devices

(CCD) and an indium gallium arsenide photodiode array, each of the three having its par-

ticular operating range [Si(LN-cooled): visible; Si(Peltier-cooled): visible – near-infrared;

InGaAs(LN-cooled): near-infrared].

In our setup the Raman spectroscopy is performed in backscattering geometry. It is

possible to choose between a macro and a micro configuration. Compared to the micro

configuration, the focus-spot and the scattering length is larger in the macro setup, due

to the smaller numerical aperture in macro. A larger focus-spot and scattering length is

useful for transparent volume-samples (see Sect. 4 and 5.1), since it leads to smaller power

densities and therefore less local heating of the sample. The small focus-spot of the micro

setup is useful for the observation of small areas or single objects as in Sect. 5.2.
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Chapter 3

Basic properties of single-walled
carbon nanotubes

Nanotubes are hollow cylinders made of carbon atoms. They can be understood as

graphene sheets – a single layer of graphite – rolled up to a seamless tube. Therefore

many of the properties of nanotubes are inherited or can be derived from graphene, at

least to a certain level of approximation.

The sp2 hybrid bond, which connects the carbon atoms in graphene, is probably the

strongest bond found in chemistry. In carbon nanotubes this bond is only slightly weakened

by the deformation due to the curvature of the wall; this is most pronounced in very small

diameter tubes. These strong bonds make nanotubes extremely stiff and more than 100

times stronger than steel [38,39]. Therefore nanotubes are interesting for applications like

probes in atomic force microscopes and electromechanical memories [40, 41].

Also inherited from graphene, nanotubes reveal a high carrier mobility and ballistic

transport, which makes them future candidates for replacing silicon in electronic devices

[42,43]. A further reason to apply nanotubes in electronic devices is the very high thermal

conductivity which is due to the rigidity of the sp2 bonds and the weak coupling between

phonons [44].

However, most of these fascinating properties depend on the atomic structure of the

studied nanotube. In the first section of this chapter (Sect. 3.1) we will show how a

nanotube can be constructed by rolling up a sheet of graphene. We will show how the

infinite number of different nanotubes structures are named by their chiral indices (n1, n2)

and how to determine characteristic structural properties such as the diameter d and chiral

angle θ.

In Sect. 3.2 we show how the electronic bandstructure of a nanotube can be derived

from the bandstructure of graphene and from the atomic structure of the particular nan-

otube (n1, n2). It turns out that nanotubes can be either metallic or semiconducting.
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Chapter 3. Basic properties of single-walled carbon nanotubes

Symmetry considerations in addition to the bandstructure will lead to the optical prop-

erties of carbon nanotubes regarding the allowed optical transitions which will lead to

resonance enhancement of the Raman signal. Furthermore we will introduce two more

ways to classify carbon nanotubes, the family ν and the band index b.

In section 3.3 we will give an introduction to the phonon bandstructure of carbon

nanotubes. Here we also introduce the Raman spectrum of nanotubes with focus on the

diameter dependence of the radial breathing mode.

As mentioned above, most of the nanotube properties depend on the atomic structure

of the particular nanotube (n1, n2). Therefore it is crucial to know which nanotube(s)

is (are) present in the studied sample. In Sect. 3.5 we introduce a technique to assign

nanotubes to their particular structure (n1, n2) by resonant Raman scattering [5].

Table 3.1: Collection of nanotube properties and classifications which are frequently used in this work.

name formula
chiral indices (n1, n2) = n1 ~a1 + n2 ~a2

diameter d = ~a0/π
√

n2
1 + n1n2 + n2

2

chiral angle θ = arccos
(

(n1 + n2/2)/
√

n2
1 + n1n2 + n2

2

)

family index1 ν = (n1 − n2) mod 3

metallic ν = 0

semiconducting ν = ±1

branch index b = 2 n1 + n2

next neighbor within a branch (m1, m2) = (n1 ± 1, n2 ∓ 2)

ωRBM versus diameter ωRBM = c1
d

+ c2 c1 = 215 nm
cm

, c2 = 18 cm−1

1 Instead of the branch index we usually name a branch by (n1, n2) of the first nanotube within the
branch, the tube with the smallest d.
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3.1 Atomic structure

3.1 Atomic structure

In figure 3.1 we depict how a nanotube can be be constructed by rolling up a sheet of

graphene. To actually result in a seamless tube, the vector ~ch = n1 · ~a1 + n2 · ~a2, which

will represent the circumference of the particular nanotube, has to be a multiple (n1, n2)

of the graphene basis vectors ~a1 and ~a2. Additionally the side of the sheet which will be

parallel to the axis of the tube has to be perpendicular to ~ch, that is to say the sheet has

to be a rectangle. The resulting tube will describe a one dimensional crystal with the only

basis vector T .

In this way an infinite number of different nanotubes can be constructed solely differ-

ing by the index (n1, n2) which therefore they are named by. In graphene there exist two

distinguishable direction along which the graphene lattice shows the most obvious period-

icity and which are named in Fig. 3.1 by zig-zag and armchair. These are also the names

which nanotubes are called by when they are rolled up along vectors ~ch parallel to these

directions. Both kind of nanotubes zig-zag and armchair, which are given by nanotubes

with n2 = 0 and n1 = n2, respectively, are also called achiral. All other tubes are called

chiral. Achiral tubes distinguish themselves by their very small basis vectors T , for which

their are preferred in theoretical studies.

In section 4 we show that the Raman intensity strongly depends on particular char-

acteristic of nanotubes, which are the diameter d the chiral angle θ and the family ν [3].

The diameter of the nanotube can be calculated from the vector ~ch,

d =
|~ch|
π

=
~a0

π

√

n2
1 + n1n2 + n2

2 . (3.1)

~ex

~ey

ac-c

~a1

~a2

~ch
= 4 · ~a1 + 2 · ~a2

zig-zag

arm
cha

ir

θ

~T

Figure 3.1: Lattice structure of graphene
with basis vectors ~a1 = (1, 0) · a0 and
~a2 = (0.5, 0.5

√
3) ·a0; a0 =

√
3 ·ac−c with

the distance ac−c between neighboring
carbon atoms. Rolling up the highlighted
area to a cylinder along the vector ~ch

forms the unit cell of a (4,2) tube.
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Chapter 3. Basic properties of single-walled carbon nanotubes

The chiral angle is defined by the angle between ~ch and the zig-zag direction and is thus

given by

θ = arccos

(

n1 + n2/2
√

n2
1 + n1n2 + n2

2

)

. (3.2)

For chiral angles larger than 60◦ the nanotubes structures (n1, n2) repeat. However, already

for angles larger than 30◦ almost identical nanotubes can be fond with θ < 30◦. They only

differ in the order of n1 and n2, therefore in the chirality in terms of right or left handed.

As we can not distinguish (n1, n2) from (n2, n1) in the experiment we will only distinguish

tubes with chiral angles between 0◦ and 30◦ with θ = 0◦ for zig-zag tubes and θ = 60◦ for

armchair tubes.
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3.2 Electronic bandstructure - optical transitions

3.2 Electronic bandstructure - optical transitions

From the “Theoretical Solid state Physics’ classes we know that there are several ways to

approximate the electronic bandstructures of a solid, such as free electron, tight-binding,

ab-initio and density matrix formalism. For this work the relevant information we want

to gain from the nanotube bandstructure is predetermined by the method by which we

perform a (n1, n2) assignment of the different nanotubes. As this method is based on

pattern recognition, it is more important for us to know the bandstructure of as many

nanotubes as possible than to know the accurate energy values. A theory which provides

the bandstructure of all nanotubes with a – for our purposes – sufficient precision is the

zonefolding approximation on the basis of a tight binding description of the bandstructure

of graphene (Sect. 3.2.1). The so obtained bandstructures lead, under consideration of

selection rules, to the optical transition energies forming the characteristic Eii versus d

pattern, known as the Kataura plot (see Sect. 3.2.2) [45]. In Sect. 3.2.3 we will discuss

deviations from the zonefolding approximation when taking the curvature of the tube-wall

and many-particle interactions into account.

3.2.1 The zonefolding approximation

The bandstructure of carbon nanotubes obtained from the zonefolding approximation is

given by the bandstructure of graphene under the consideration of a limitation of the

~kx

~ky

E(~kx, ~ky)

Γ

M

K
Figure 3.2: Electronic bandstructure of
graphene described by a third-neighbor
tight-binding model [3]. The plot shows
the crossing of the valence and the
conduction band at the K points.
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Chapter 3. Basic properties of single-walled carbon nanotubes

Figure 3.3: (left) Lines of allowed states
for (a) the (4,4) armchair tube and (b)
the (8,0) zig-zag tube both plotted on
top of the bandstructure contour plot
of graphene. (right) Bandstructure for
the particular tube resulting from the
graphene bandstructure along the lines
in the contour plot. In (a) for each band
the band index m is given. The cross-
ing of the valence and the conduction
bands in case of the (4,4) tube results in
a metallic nanotube. The bands of the
(8,0) do not cross which makes it a semi-
conducting tube.
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available states due to the confinement to 1D [3]. The graphene bandstructure is usually

obtained from tight-binding approximations including the first or, as in Fig. 3.2, the third

nearest neighbors [46]. What makes graphene rather exceptional is the fact that the Fermi

surface consists of exactly two points K and K ′. Thus the valence and the conduction

bands touch only at six points in the Brillouin zone, three sets of the two inequivalent

high-symmetry points K and K ′, which makes graphene a semimetall.

Regarding nanotubes, we have an extended (infinitely large) system solely parallel to

the tube axis. Therefore we can assume a continuum of allowed wave vectors ~k solely

along this direction. Waves which travel along the circumference ~ch of the tube interfere

destructively unless they fulfill the periodic boundary condition

~ch · ~k = 2π m (m ∈ N). (3.3)

This leaves the k-space with lines of allowed states with a distance depending on |~ch|, thus

the diameter d of the particular tube, |∆~k| = 2/d. The length of the lines with respect to

the Brillouin zone is given by the length of the nanotube unit cell T (2π/T ).

On the left of figure 3.3 we show the lines of allowed ~k plotted on top of a contour plot

of the bandstructure of graphene. The actual bandstructure of the particular tube, shown
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3.2 Electronic bandstructure - optical transitions

on the right of Fig. 3.3, is given by the bandstructure of graphene along the lines. Since

each band in the nanotube bandstructure is related to a particular line and therefore to a

particular index m in Eq. 3.3, each band is named by m (band index).

In case of the (4,4) tube in Fig. 3.3 (a) the zonefolding results in a zero bandgap, while

the bandstructure of the (8,0) tube in Fig. 3.3 (b) reveals a bandgap. Obviously some

nanotubes are metallic while others are semiconducting, depending if the graphene K-

point is among the allowed ~k or not. Whether a nanotube is metallic or semiconducting

can be answered by calculating ν,

ν = (n1 − n2) mod 3 . (3.4)

ν can either be −1, +1 or 0. In the latter case the tube is metallic, while in the other

cases the tube is semiconducting.

3.2.2 Optical transitions

In the previous section we showed that the bandstructure of nanotubes consists of many

sub-bands. However, an incident photon can only lead to transitions between particular

bands m. On the one hand only light polarized parallel to the tube axis can interact with

the nanotube due to the so called antenna effect [47]. On the other hand the band index

m can only be changed by light polarized perpendicular to the tube axis. Therefore optical

transitions Eii are solely expected between bands with the same m [47, 48]. The indices i

give the number of the involved sub-band starting to count with the sub-band closest to

the Fermi level.

Fig. 3.4 (left) shows optical transition energies Eii obtained by the zonefolding ap-

proximation based on a tight-binding description of graphene including the third nearest

neighbors [46]. The representation of Eii as a function of the tube diameter d – the so called

Kataura plot – is very useful when it comes to identifying particular nanotubes (n1, n2)

in a sample (Sect. 3.5) due to its characteristic pattern. The right of Fig. 3.4 shows a

Kataura plot which we obtained experimentally by resonant Raman spectroscopy [17,20].

Differences between theory and experiment will be discussed below in Sect. 3.2.3.

Each data point in the Kataura plot represents a transition energy of a particular

nanotube (n1, n2). Basically the pattern of the data points show three characteristics

which are related to the optical transition Eii, the nanotube family ν and the branch

b. The most obvious characteristic is the overall 1/d dependence given by the optical

transitions Eii, here ES
ii and EM

ii are transitions of semiconducting and metallic tubes,

respectively.

A second characteristic feature is the formation of branches pointing towards both sides

away from the 1/d dependence. Tubes within a particular branch have the same branch
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Figure 3.4: (left) Kataura plot based on the zone-folding approximation [3]. For semiconducting nan-
otubes (open gray circles) the first (ES

11), second (ES
22), and third (ES

33) optical transitions are shown. For
metallic nanotubes only the first optical transition EM

11 is contained. The red lines show the 1/d relation of
transition energies obtained when assuming an isotropic bandstructure around the K point. In the inset
a highlighted section of the Kataura is shown. It contains two branches which are related to the different
nanotube families ν = ±1. (right) experimental Kataura plot obtained by resonant Raman scattering on
HiPCO nanotubes in solution [20]. Circles are transitions of semiconducting nanotubes excited into ES

11

(filled circles) and ES
22 (open circles). Semiconducting nanotubes with ν = +1 are given in red, while

tubes with ν = −1 are black. Diamonds are the fist optical transition EM
11 of metallic tubes.

index b, given by

b = 2 n1 + n2 . (3.5)

Sometimes we name a particular branch by the nanotube (n1, n2) with the smallest diam-

eter within the branch. For a given branch, the tube (m1, m2) next to the tube (n1, n2)

can be calculated by

(m1, m2) = (n1 ± 1, n2 ∓ 2). (3.6)

Another characteristic of the pattern in the Kataura plot is that branches of the the

same nanotube family ν are bent towards the same direction. This is clearly visible in the

experimental plot on the right of Fig. 3.4 where points related to nanotubes with ν = +1

are colored in red while tubes with ν = −1 are given by black circles. It is furthermore
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3.2 Electronic bandstructure - optical transitions

noteworthy that for a given family the direction in which the branches are bent alternates

when going from one transition to the next. In this way the branches with ν = +1 are

bent downwards in case of ES
11 and upwards for ES

22.

3.2.3 Overview of theoretical models

Although the introduced description of the optical transitions in nanotubes is sufficient

for our purposes we want to mention some more sophisticated theories, which describe a

more realistic model of the electronic properties of carbon nanotubes.

A rather plausible weakness of the zonefolding approximation is the fact that it ne-

glects the curvature of the tube walls, which would force the naturally flat sp2 bonds to

bend. This was addressed in a symmetry-adapted non-orthogonal tight-binding model

developed by Popov et al. [49]. By considering the curved wall of the nanotubes they

could improve the predictions of the optical transition energies. As this theory provides

the transition energies of all nanotubes (n1, n2), we also applied results from Ref. [49].

Although this theory considers changes in the electronic bandstructure due to the curved

walls, it neglects deviations from the idealized atomic structure due to curvature induced

weakening of the bonds. This relaxation of the atomic structure can be addressed by

ab-initio calculations. However, for chiral nanotubes with unit cells containing more than

100 atoms, this technique is too time consuming to be applied to all (n1, n2) [50].

All above mentioned theories neglect electron-electron and electron-hole interaction.

Recently it was predicted by theory and shown in experiments that, in fact, the optical

excitations have to be treated as excitons rather than as free electron-hole-pairs [51–55].

However, theories which include many particle interactions are still quite rare and time

consuming. Therefore no complete Kataura plot has been provided so far which includes

curvature effects, electron-electron and electron-hole interaction. [13].
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Chapter 3. Basic properties of single-walled carbon nanotubes

3.3 Vibrational properties and Raman effect

3.3.1 The phonon bandstructure

The phonon bandstructure of carbon nanotubes can be obtained by the zonefolding ap-

proximation based on the phonon bandstructure of graphene, in a equivalent procedure as

introduced in Sect. 3.2 for the electronic bands. However, this method without any fur-

ther adjustments gives rather unsatisfying results concerning the acoustic phonons. The

acoustic out-of-plane vibration for instance becomes in nanotubes an optical phonon with

non-zero frequency at the Γ point, which would not be obtained by simple zonefolding.

In figure 3.5 we show the phonon dispersion for the (10,10) and the (5,0) nanotube

obtained from force-constant calculations [56]. Each plot contains the non-degenerate

phonon branches (thick lines m = 0) and all subbands m 6= 0 (thin lines) (Eq. 3.3).

As discussed above (Sect. 3.2.2) we only consider electronic transitions with ∆m = 0.

Therefore, the phonon involved in the first-order Raman spectrum must conserve m, why

we only consider the Raman-active phonons with m = 0.

Since we do not expect to see the infrared-active phonon (IR) and the acoustic phonons

in the first order Raman spectrum there remain three phonons which should be observed in

the Raman spectrum. The two phonon branches at high energies, TO and LO, correspond

to the E2g (G-mode) in graphite, with the atoms vibrating parallel to the tube axis in

case of the LO phonon, and perpendicular to the axis in case of the TO phonon. Due to

their high energies the Raman modes corresponding to these two vibrations are also called

high-energy modes (HEM) or, following their relationship to the G mode in graphite, G−

and G+. The phonon mode at low frequencies corresponds to the out-of-plane vibration,

Figure 3.5: Phonon bandstructure of
the (10,10) and (5,0) nanotubes ob-
tained from force-constant calcula-
tions. The RBM as well as the
TO phonon mode strongly differs be-
tween the two tubes. Both differences
are due to diameter dependences of
the particular modes (see Sect. 3.3.1
and 5) Phonon wave vector
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3.3 Vibrational properties and Raman effect

Figure 3.6: Raman spectrum taken from an ensemble of nanotubes (HiPCO) containing all (n1, n2) in the
diameter range between 0.5 and 1.4 nm. The insets demonstrate the atomic displacement corresponding
to the particular Raman mode. For the high-energy mode the inset refers to the TO-phonon which
corresponds to the smaller of the two peaks.

an acoustic phonon in graphite. In nanotubes this phonon is an radial breathing-like

vibration of the atoms, the so-called radial breathing mode (RBM). In nanotubes this

phonon has a non-zero frequency at the Γ point and is therefore an optical phonon. Its

frequency scales inversely with the nanotube diameter, see Sect. 3.3.1.

Concerning first-order Raman spectroscopy we expect to observe phonons restricted

to wave vectors with q ≈ 0. Therefore, we would expect three peaks in the nanotube

Raman spectrum, the two HEM peaks near 1600 cm−1 and the RBM in the low energy

region. Figure 3.6 shows a Raman spectrum collected from an ensemble of nanotubes,

containing all nanotubes (n1, n2) between 0.5 and 1.5 nm. Four peaks and peak series,

respectively, are distinguished. Two are the RBM and HEM at frequencies similar to

those predicted by the force constants calculation. While we give a short introduction

to the RBM below, there is a major discussion concerning the HEM in Sect. 5. A third

mode is the defect induced mode which is correlated to a double-resonant Raman process

involving phonons with q 6= 0 [57, 58]. Moreover, there are the intermediate frequency

25



Chapter 3. Basic properties of single-walled carbon nanotubes

Figure 3.7: RBM frequencies as a function of inverse
tube diameter 1/d. The black line is a linear fit result-
ing in the parameters c1 and c2. Taken from Ref. [5]

modes (IFMs), a series of peaks which are still under debate and which will be further

discussed in Sect. 5.1.3 [59, 60].

Radial breathing mode

In figure 3.6 a whole series of peaks appears in the low-energy regime, where we expect the

RBM. The reason for this is that the RBM frequency ωRBM strongly varies for different

nanotubes (n1, n2). This strong variation is also seen in the theoretical data shown in

Fig. 3.5.

The breathing like vibration of the RBM can be described by the harmonic oscillation

of a cylinder. Solving the equation of motion for a cylinder yields an eigen frequency ω0

of the breathing like vibration,

ω0 =
c

r

√
κ , (3.7)

where c contains, in case of a nanotube, the lattice constant of graphene and the mass of

the atoms per graphene unit cell. One might expect that the force constant κ depends on

the nanotube chiral angle. But in fact, the force constant is independent of the chiral angle,

thus it does not matter along which direction a graphene lattice is stretched, the repulsive

force is always the same. Therefore ωRBM solely depends on the nanotube diameter d [61].

Figure 3.7 shows experimental results for the radial breathing mode frequency as a

function of tube diameter [5]. It turns out that next to the constant c = c1 mentioned

above we need a further parameter c2 which includes interactions with the environment,

like the van der Waals interaction with other tubes within a bundle or with an underlying

substrate. Therefore, the relation of the RBM frequency and the tube diameter is given

by [5]

ωRBM =
c1

d
+ c2 c1 = 215

nm

cm
, c2 = 18 cm−1 . (3.8)

Due to different conditions in different types of samples the values for c1 and c2 might

vary in the literature [3, 62, 63].
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3.4 Resonance enhancement

3.4 Resonance enhancement

We assume that most, probably all, Raman modes of carbon nanotubes are only observed

when they experience resonance enhancement (Sect. 2.1.3). However, full resonance pro-

files have so far only been collected for the RBM [19,20,64]. As discussed above, an optical

excitation in carbon nanotubes is an exciton. Therefore except for the ground state there

is only one discrete state involved in the resonant Raman process. Therefore a Raman

resonance profile of carbon nanotubes can be described by Eq. 2.5.
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3.5 Chiral-index assignment
Parts of this sections were published in Ref. [5]

There are many reasons why there is a need for a reliable way of performing an (n1, n2)

assignment in a nanotube sample. One reason is that almost all nanotube properties

which we introduced in the previous sections vary for different (n1, n2). We can expect

that other properties, as thermal conduction [65], transport properties [66], spin orbit

coupling [67] or electron-phonon coupling (Sect. 4), to name just a few, also vary with

(n1, n2). Furthermore, separation and selective functionalization methods depend on a

reliable method to verify their success [6, 7, 68].

There are basically three techniques to identify the nanotube structure (n1, n2), photo-

luminescence excitation spectroscopy (PLE) [69], resonant Raman scattering [5,20,64] and

electron diffraction [70]. While the latter method is destructive and only suitable for freely

suspended isolated nanotubes or small bundles, the other two methods are nondestructive

and can be applied to nanotube ensembles containing many different kinds of nanotubes

(n1, n2). Strictly speaking also PLE experiments are destructive, since the sample has to

undergo a separation procedure, which is irreversible – till now there is now way to com-

pletely remove the surfactant [71]. Another disadvantage of PLE compared to the other

two methods is that it is impossible to detect metallic nanotubes. A disadvantage of the

Raman method is the experimental effort. To identify all nanotubes present in a sample,

Raman spectra have to be taken at many different excitation energies, which implies the

availability of tunable laser systems.

In this Section we show how to assign a particular nanotube (n1, n2) to an observed

radial breathing mode. The reliability of the final assignment strongly depends on the

sample type, the experimental capabilities and the accuracy of reference data. While the

assignment of the nanotubes in a sample containing all different kinds of tubes (Sect. 4)

is very reliable, there is always some uncertainty when assigning an isolated nanotube

(Sect. 5.2). Regarding the experimental setup, it has to be capable of detecting low Raman

shifts and of resolving the RBMs of different tubes. Therefore a triple monochromator

is necessary as described in Sect. 2.2 or a setup with a Notch-filter with a low cut-off

frequency. The monochromator and detection device, respectively, have to be capable to

resolve two peaks separated by ≈2 cm−1. Furthermore the quality depends on the available

laser lines, since only those tubes can be detected which are in resonance with the laser.

The reference used for the assignment is a Kataura plot which is given by the optical

transition energy Eii as a function of the nanotube diameter d (see Fig. 3.4 in Sect.3.2.2).

To compare an observed RBM to the Kataura plot we either have to transfer the diameter

scale in the Kataura plot to ωRBM or the observed ωRBM to d. This is achieved by using
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3.5 Chiral-index assignment

Eq. 3.8, keeping in mind that the coefficients c1 and c2 in Eq. 3.8 might vary for different

samples (Sect.3.3.1).

The assignment of ωRBM to (n1, n2) is achieved either by pattern recognition or by

simply looking for the reference data point which matches the experimental data the best.

Pattern recognition is by far the more reliable method but only possible if the Raman

spectrum shows a set of different RBMs. This is only the case for samples containing

different kinds of nanotubes, i.e. ensembles of nanotubes. When all observed Raman

spectra show only one RBM, e.g. when the sample consist of one single tube or contains

only one kind of chiral indices (n1, n2), the quality of the assignment depends on the

chosen Kataura plot. As we discussed in Sect. 3.3.1, the RBM can slightly vary for

different samples. However, much more pronounced is the effect of different environments

on the the electronic transition Eii (Sect. 3.6). Therefore the best choice for the reference

Kataura plot is an experimental plot taken under the same conditions as the RBM peak

one wants to assign. If a theoretical Kataura plot is used, it usually has to be shifted with

respect to the energy scale to account for environmental effects (Sect. 3.6).

In the following we will demonstrate, how to perform an (n1, n2) assignment supported

by pattern recognition [5]. An assignment of a single nanotube is discussed in Sect. 5.2.

The top of Fig. 3.8 shows an RBM spectrum obtained from a HiPCO nanotube sample at

an excitation energy of 1.96 eV. Nanotubes produced by the HiPCO method contain all

types of nanotubes (n1, n2) within ≈ 0.5 and ≈ 1.5 nm (Sect. 4.1.5). The Kataura plot

in Fig. 3.8 which we use for the assignment is obtained from the same type of sample.

Therefore we assume identical RBM frequencies and transition energies Eii for the tubes

in the spectrum and the Kataura plot.

In the Kataura plot the excitation energy is marked by the dashed gray line. In

addition we marked an energy region ∆E around the laser line where we expect to find

the nanotubes (n1, n2) which are associated with the RBMs in the spectrum. The width of

the resonance window ∆E is estimated by the sum of the width of the electronic transition

linewidth (≈ 60 meV) and the energy of the RBM phonon (≈ 30 meV). If the Kataura

plot is obtained from nanotubes in a different environment, the energy region has to be

enlarged by the assumed energy deviation.

The pattern in the Kataura plot shows groups of nanotubes with close-by transitions

and ωRBM, which are due to the branches (see Sect. 3.2.2). These groups are also visible in

the Raman spectrum. Therefore we can assign in Fig. 3.8 the RBMs highlighted in blue to

the metallic tubes in the (15,0) branch. The first and the last tubes of the (15,0) branch

are not within the resonance window ∆E. Therefore we can assign the peaks within the

group of RBMs, going from left to right, to the (11,8), (12,6) and (13,4) tube. From

the Kataura plot we know that also the (14,2) tube should be observed. Therefore it is
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Chapter 3. Basic properties of single-walled carbon nanotubes

Figure 3.8: (top) RBM spectrum excited
at El = 1.96 eV. The shaded regions in-
dicate groups of metallic and semicon-
ducting tubes; the chiral indices at the
bottom give the first element of the cor-
responding branch in the Kataura plot
below. The chiral indices at the top
show the assignment of the strongest
peaks. (bottom) Experimental Kataura
plot: transition energies versus RBM fre-
quencies [5]. The shaded area marks
the energy region ∆E (resonance win-
dow), where we expect to find the nan-
otubes which correspond to the RBMs in
the spectrum above.

worth adding a forth peak when fitting the spectrum. Having found a branch of tubes in

the Raman spectrum is extremely useful, if the remaining RBMs do not show a branch

pattern or if the Eii in the Kataura plot and the sample under study are expected to

deviate. Because after having found a branch, the energy region ∆E where to look for the

remaining nanotubes in the RBM spectrum can be pinned down to the Eii of the identified

branch.

All RBMs highlighted in red in Fig. 3.8 can be assigned to semiconducting nanotubes

due to the large ωRBM gap to the metallic tubes, also visible in the Kataura plot. However,

it might be confusing that the intensity of the (10,3) tube, which has its Eii exactly at

the laser energy, is smaller than the intensity of the (7,5) tube, which is hardly inside the

resonance window ∆E. The reason is that the (7,5) tube belongs to the ν = −1 family

which shows much larger Raman intensities than the ν = +1 family to which the (10,3)

tube belongs (Sect. 4). Such information is especially useful when the laser line is just
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3.5 Chiral-index assignment

between the transition energy of nanotubes with similar ωRBM like e.g. the (7,5) and the

(9,2) tubes. An assignment can therefore further be improved when we know the expected

maximum Raman intensities, which can vary due to variation in the scattering efficiency

in different nanotubes (see Sect. 4).
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Chapter 3. Basic properties of single-walled carbon nanotubes

3.6 Environmental influences on the Kataura plot
Parts of this sections were published in Ref. [5]

The experimental Kataura plot and therefore a possible assignment can be affected in two

ways, both due to changes in the nanotube environment. First, the RBM frequency and

therefore the parameters c1 and c2 in Eq. 3.8 slightly varies for different nanotube envi-

ronments [3, 62, 63]. Second, the environment causes a screening of Coulomb interactions

in the tubes. This has a dramatic effect on the renormalization due to the electron-

electron interaction and exciton binding energy. Therefore the measured Eii differ by up

to 100 meV between different samples [11, 64, 72]. Although both effects, the change in

ωRBM and Eii, depend somewhat on the chiral indices (n1, n2), the characteristic pattern of

the Kataura plot remains and so does the validity of the assignment procedure introduced

in the previous section.

In the following we demonstrate how the choice of surfactants influences Eii and ωRBM.

Therefore we studied HiPCO nanotubes in aqueous solution stabilized by two different sur-

factants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) [73].

To analyze the surfactant-induced changes in the Raman spectra, we recorded resonance

profiles for both surfactants with excitation energies between 1.85 eV and 2.2 eV, see

Fig. 3.9. In this region, the laser energies are in resonance with both metallic and semi-

Figure 3.9: Resonance profiles of the
RBM for surfactants SDS (open red
dots) and SDBS (filled black dots). The
chiral indices, chiral angle θ, and fam-
ily ν are given. Semiconducting tubes,
(a) and (b), show a small upshift of the
position of the resonance maximum in
case of SDS. In metallic tubes, (c) and
(d), the shift of the transition energies is
in opposite direction. The RBM intensity
of metallic tubes is stronger in the SDBS
sample, while the intensity of semicon-
ducting tubes is stronger in the SDS
sample. Since the nanotube concentra-
tion is unknown for both solutions only
relative intensities can be considered.
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3.6 The influence of the environment on the Kataura plot

SDBS SDS

tube ωRBM Eii ωRBM Eii ∆ω ∆E

(cm−1) (eV) (cm−1) (eV) (cm−1) (meV)

metallic nanotubes

(15,0) 200 1.91 203 1.91 −3 0 ± 20

(14,2) 196 1.93 199 1.93 −3 0 ± 10

(13,4) 193 1.94 196 1.93 −3 10±10

(12,6) 189.4 1.948 191.1 1.938 −1.7 10±6

(11,8) 183.2 1.936 184.1 1.906 −0.9 30±8

semiconducting nanotubes

(8,3) 297.5 1.857 297.5 1.877 0.0 −20±13

(7,5) 283.3 1.915 283.2 1.919 0.1 −4±4

(7,6) 264.2 1.909 263.6 1.917 0.6 −8±6

(10,3) 252.1 1.945 252.1 1.953 0.0 −8±6

Table 3.2: Comparison of transi-
tion energies and RBM frequen-
cies for different surfactants (SDS
and SDBS). All transition ener-
gies are obtained from resonance
profiles. The experimental errors
for the first three tubes of the
(15,0) branch are larger than for
the majority of our data.

conducting tubes. We observe changes of (i) the transition energies, (ii) the Raman

intensities, and (iii) the RBM frequencies.

In case of semiconducting tubes [Fig. 3.9 (a) and (b)], the transition energies are ≈
5−10meV larger for the solvent SDS (open red circles) compared to SDBS (black circles).

Furthermore the Raman signal is stronger from the SDS samples. In case of metallic

nanotubes the variations between the two solvents are the other way around, with larger

transition energies and stronger signal from the SDBS sample, see table 3.2. However, the

transition energy variation are small and for several tubes in particular from the metallic

(15,0) branch within the experimental error.

In Fig. 3.10 (a) and 3.10 (b) we compare the RBM spectra for both surfactants at the

same laser energy in the region of semiconducting and metallic tubes, respectively. The

RBM frequency of semiconducting tubes is the same in both surfactants within experimen-

tal error (red and black curves in Fig. 3.10 (a)). The relative RBM intensities, in particular

from the (8,3) and the (7,5) tube, are different in these spectra, reflecting the small tran-

sition energy shift. The original intensity ratio in the SDS sample at El = 1.916 eV can be

recovered if the SDBS sample is excited at a slightly lower energy (El = 1.908 eV, dashed

curve). This shift of the laser energy compensates the shift in the optical transition energy

of semiconducting tubes.

The dependence of the RBM frequency and intensity in metallic and semiconducting

tubes on the type of surfactant agrees with the observation by Strano et al. [7] of selective

functionalization of metallic tubes. They found a decrease of the absorption strength for

the metallic EM
11 transitions, resulting from functionalization with tetrafluoroborate salt
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Chapter 3. Basic properties of single-walled carbon nanotubes

(a) (b)

(c)

Figure 3.10: (a)RBM spectra of nanotubes dispersed in D2O using SDBS (black) and SDS (red; gray)
as surfactants at excitation energy 1.916 eV (solid lines) and 1.908 eV (dashed lines). The spectra are
normalized to the RBM amplitude of the (7,5) tube. (b) Metallic part of the RBM spectrum. Red: SDS
sample; black: SDBS sample. Thin lines show the fit of the RBM peaks by Lorentzians. The peaks are
shifted to higher frequencies in the SDS sample. (c) Section of the Kataura plot showing the transition
energy versus inverse RBM frequency of nanotubes in SDS (open dots) and SDBS (closed dots). Semi-
conducting tubes (gray, red) show a uniform shift of the transition energies. Metallic tubes (dark, blue)
are shifted in energy and RBM frequency.

and formation of covalent bonds. Simultaneously, the RBM shifted to larger frequency.

We can thus interpret our results as due to an interaction between the surfactant and the

nanotube, which is stronger for SDS than for SDBS. Although it is unlikely that a covalent

bond forms as in the case of Ref. [7], an electron transfer from the metallic tubes to the

surfactant might occur. The Raman intensity decreases in SDS as the resonant absorption

becomes weaker, simultaneously the interaction leads to a larger RBM frequency. From

our data we cannot detect such a difference in the interaction for semiconducting tubes,

as the RBM is constant when changing the surfactant.

The small shift in transition energies might be to first approximation assigned to a

change in the dielectric environment. It is for several tubes within the range of experi-

mental error. We have no explanation yet for the shift in opposite direction for metallic
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3.6 The influence of the environment on the Kataura plot

and semiconducting tubes.

Izard et al. [74] studied the development of RBM spectra from bundled tubes to bundles

wrapped by SDS and to individual tubes in SDS. They also observed an upshift of the

RBM due to wrapping by SDS which they assigned to pressure induced by the surfactant.

The metallic tubes appear to be more sensitive to the surfactant, as the RBM shift is

in general larger than for semiconducting tubes, in agreement with our results. Izard et

al. [74] observed changes in the relative RBM intensities as well, which they ascribed to a

selective exfoliation process. From our data, we rather suggest a small change in resonance

condition.

Figure 3.10 (c) shows a small section of the Kataura plot with data from SDS (open

dots) and from SDBS (closed dots). The differences in transition energies and RBM

frequencies are minor on the scale of the Kataura plot. However, we can expect larger

differences for other environments, e.g. nanotubes (bucky-paper), air or Si-substrate.

Assuming a mono-chiral dispersion of nanotubes – sample containing only one (n1, n2)–

the variations of ωRBM in metallic tubes between the two solvents is large enough to cause

uncertainty in the assignment, unless the Kataura plot used for the assignment is based

on the same sample type. Fig. 3.10 (b) shows that for instance the (13,4) tube could easily

be assigned to the (14,2) tube if there were no other RBMs enabling a pattern recognition.

On the other hand, even if the (13,4) and the (14,2) tube were confused in the assignment,

this would in most cases not effect conclusions drawn about other physical properties. As

these tubes are neighboring tubes in the same Kataura branch, the physical properties are

expected to be similar.
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Chapter 4

Raman intensities of the radial
breathing mode:
scattering efficiency versus
(n1, n2) abundance

Large effort is devoted to controlling the atomic structure - the chiral index (n1, n2) [3] -

of carbon nanotubes either during the growth process [75–77] or by sorting the tubes by

subsequent chemical treatment [8], electrophoresis [6], density gradient [78], selective sol-

ubility [79] or chromatography of DNA-wrapped tubes [14]. In spite of constant progress,

most nanotube samples contain a large variety of different chiral indices (n1, n2). Common

techniques to probe the chiral indices in a nanotube ensemble are photoluminescence exci-

tation (PLE) [69] and resonance Raman spectroscopy (RRS) [5,20,64] (Sect. 3.5). In order

to check if a growth or separation process favors a certain type of nanotube, a technique

is needed to probe the abundances of different nanotube (n1, n2) in a sample. In principle

this can be achieved by studying the signal intensities from PLE or RRS experiments.

Theoretical predictions show that the signal strength in PLE and Raman spectra de-

pend on nanotube properties like the diameter d, chiral angle θ, family ν and the optical

transition Eii [21, 22, 50]. Therefore the intensities in PLE and RRS spectra obtained

from a sample with uniform (n1, n2) abundances can give information on (n1, n2) specific

properties. The absorption and emission efficiency for example, which can be obtained

from the PLE intensities, are important parameters for the use of nanotubes as a light

emitter or in conducting transparent films. The Raman intensities give, in addition to the

absorption efficiency, information about the electron-phonon (e-ph) coupling. The e-ph

coupling in turn plays an important role in the understanding of relaxation processes,
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Chapter 4. RBM intensities: abundance versus e-ph coupling

Figure 4.1: Raman spectra of the ra-
dial breathing mode of HiPCO carbon
nanotubes in solution. The spectra are
normalized to the integration time t, the
laser power Pi and the system responds
(see Sect. 2.1.2).
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which influence emission efficiencies, and scattering processes in electron transport.

In this chapter we show that the maximum Raman intensities observed from different

(n1, n2) nanotubes in a nanotube ensemble strongly vary from tube to tube. The problem

we face is that we can not tell if these variations are due to different (n1, n2) abundances or

due to different scattering efficiencies of different (n1, n2) nanotubes. In Sect. 4.1 we will

discuss the behavior of the scattering efficiency based on the assumption that the sample

has a uniform (n1, n2) distribution [5, 17, 18, 20, 80]. In Sect. 4.2 we will discuss the issue

of how to determine differences in the abundances for different (n1, n2) nanotubes.

4.1 Raman susceptibility

Resonant Raman spectroscopy (RRS) of the radial breathing mode (RBM) in carbon

nanotubes is an established method to determine the nanotubes species in a sample [5].

To assign each observed RBM to a particular (n1, n2), the RBM frequency is correlated

with the transition energy, obtained from the RBM intensity as a function of excitation

energy, as described in Sect 3.5. From the perspective of fundamental research as well as

sample characterization it is of interest to further study the Raman intensities of the RBMs.

When the Raman signal is processed as described in Sect. 2.1.2 the signal is proportional

to the Raman susceptibility χR. The Raman susceptibility as a function of excitation

energy gives information on basic material properties as the absorption efficiency, the

coupling-strength between carriers and phonons, and the lifetime of excited states.
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Figure 4.2: Raman intensity profile of the first and second optical transition, ES
11 and ES

22, of the (9,1)-
tube. Eii, MR and γ are fit parameters obtained from fitting Eq. 2.4 to the intensity profile (solid lines).
The intensity of the ES

22 profile is multiplied by 16.

In order to study these material properties for different (n1, n2) nanotubes we performed

Raman experiments on an ensemble of nanotubes. The sample was produced by the

HiPCO method which provides all different (n1, n2) within a diameter range between ≈ 0.5

and ≈ 1.5 nm. To avoid tube-tube interactions, which broaden resonance windows and

therefore lower the signal strength [72], the tubes were ultrasonically dispersed in D2O and

stabilized in sodium dodecyl sulfate (SDS) micelles [71, 73]. Furthermore, in comparison

to aggregated nanotubes, dissolved tubes allow the use of much higher laser powers than

bundled tubes without effecting the properties of the sample. While the Raman spectra of

nanotubes in solution show no observable change up to at least 50 mW excitation power,

in aggregated tubes the peaks start to broaden and downshift already above 1 mW, which

indicates heating of the sample.

Spectra of the RBMs were collected at excitation energies between 1.15 and 2.15 eV at

intervals of 5-15 meV and laser power Pi up to 40 mW. Therefore we used the setup de-

scribed in Sect. 2.2 in macro configuration and backscattering geometry. Figure 4.1 shows

a selection of spectra excited with laser energies between 1.41 and 1.65 eV. All spectra are

normalized to the integration time t, the laser power Pi and the system responds. In order

to obtain data which are proportional to the square of the Raman susceptibility |χR|2 we

further processed the RBM peak intensities – the area of a Lorentzian fit – by normal-

izing to the inverse Raman shift ω−1
ph,RBM and the Bose occupation number according to

Sect. 2.1.2.

Figure 4.1 shows how each of the RBMs has its maximum intensity at a certain laser
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Chapter 4. RBM intensities: abundance versus e-ph coupling

Figure 4.3: Experimental Kataura plot, where the maximum Raman susceptibility |χmax
R | is given by

the diameter of the circles. The first and second electronic transition, ES
11 and ES

22, of semiconducting
tubes and the first electronic transition of metallic tubes are highlighted in gray. Red and blue symbols
represent semiconducting nanotubes of the different nanotube families ν = +1 (red) an ν = −1 (blue).
Raman intensities of ES

11 are scaled by a factor 0.3. Branches are labeled by the tube with the smallest
diameter within the branch. The members of each branch are connected by dashed lines.

energy which corresponds to the fact that the origin of the RBM is a resonant Raman

process (Sect. 2.1.3). Plotting the square of the Raman susceptibility |χR|2 as a function

of excitation energy yields a intensity profile as shown in Fig. 4.2. From fitting the formula

for the resonance profile (Eq. 2.5) to the experimental data we get for each observed RBM

the optical transition energy Eii, the broadening γ of this transition and the value MR

which is proportional to the Raman matrix element, see Sect. 2.1.3.

Correlating Eii with the nanotube diameter, which we obtain from the RBM frequency

ωRBM using Eq. 3.8, we can produce a Kataura plot (Sect. 3.2) shown in Fig. 4.3. In

addition Fig. 4.3 contains the maximum Raman susceptibility |χmax
R | for each RBM. |χmax

R |
is proportional to the symbol diameter. Therefore the area of the symbols is proportional

to the square of |χmax
R | which is similar to the maximum Raman intensity of the particular
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RBM as it is observed in the experiment. 1 According to Sect. 3.5 we assigned each data

point to a particular (n1, n2) nanotube. Based on the assignment we can distinguish

between the first and second optical transitions of semiconducting nanotubes, ES
11 and

ES
22, and the first optical transition of metallic tubes EM

11. Furthermore we distinguish

between the nanotube families ν = +1 (red symbols) and ν = −1 (blue symbols). For

some branches we give (n1, n2) of the nanotube with the smallest diameter within the

branch. The (n1, n2) of other nanotubes within a branch can be calculated using Eq. 3.6.

Fig. 4.3 shows strong differences of |χmax
R | between the different (n1, n2) nanotubes.

However, these differences refer more to the nanotube groups rather than the particular

(n1, n2) of a nanotube. Therefore we discuss below the dependence of |χmax
R | on the optical

transitions Eii, the nanotube family ν = ±1, the chiral angle θ, whether a nanotube is

metallic or semiconducting and the nanotube diameter d.

4.1.1 Dependence of |χmax
R | on the Optical Transition Eii

In Fig. 4.3, the maximum Raman susceptibility |χmax
R | of the first optical transition in

semiconducting nanotubes ES
11 is scaled by a factor of 0.3. Therefore the most obvious

difference in |χmax
R | is seen between the first and second optical transitions of semicon-

ducting nanotubes ES
11 and ES

22, respectively. This difference is even more pronounced

in Fig. 4.2 where we compare the intensity profiles of the ES
11 (left) and the ES

22 (right)

transitions of the (9,1) nanotube. The maximum Raman intensity of the ES
11 transition

is ≈ 16 times larger than the intensity of the ES
22 transition. From this result one might

be tempted to deduce a stronger electron-phonon coupling or absorption strength in case

of ES
11. An indication that this is not the case is given by the slopes of the resonance

profiles. Obviously the slope of the ES
11 intensity profile is much steeper than that of the

ES
22 profile (the relative scale of the energy axes is the same for ES

11 and ES
22 in Fig. 4.2).

This corresponds to a change in the broadening parameter γ of the underlying electronic

transition.

In Fig. 4.2 we also show the graph of the resonance profile Eq. 2.5 fit to the experimental

data. The fit results MR and γ, also given in Fig. 4.2, show that in fact the Raman matrix

elements MR are similar for ES
11 and ES

22. The strong intensity difference is mainly due to

the change in γ, which is for ES
22 approximately twice as large as for ES

11. γ is the imaginary

part of the electronic transition energy ES
11 and thus related to the lifetime of the transition.

The observed change in γ can be interpreted as longer lifetimes of excitations in the first

excitonic state - a result which is also known from time resolved measurements [81]. We

1In Fig. 4.3 We show the maximum susceptibility |χmax
R | instead of the matrix elements MR, because

MR is very sensitive to changes in γ. Therefore the use of MR in Fig. 4.3 would introduce significant
errors. Variations of γ and the matrix element MR are discussed in the text.
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Figure 4.4: Ratio of the Raman matrix elements
MS

11 and MS
22 for tubes within the (9,1) branch

(stars). Matrix elements where obtained by fitting
Eq. 2.4 to RBM intensity profiles of the particular
tubes. Circles are results from Ref. [21].
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do not give absolute values for the lifetime since γ is affected by inhomogeneities in the

sample like the formation of small bundles and varying tube length. Differences in the

sample quality might also be the reason for deviations between our results and result from

Satishkumar et al. [82]. They observed intensity ratios I11/I22 twice as large as ours and

an accordingly smaller line width of ES
11. Interestingly, their values for γ of the second

optical transitions do not differ significantly from our results. Apparently the (shorter)

lifetime of the ES
22-exciton is much less affected by environmental changes.

As discussed in the introduction of this chapter all presented experimental Raman

intensities are possibly affected by variations of the (n1, n2) abundances. However, the

ratio between the matrix elements MR of the different optical transitions in a particular

tube are not affected by the abundance of the tube. Therefore to study the ratio MS
11/MS

22

is a useful tool to check the validity of a theoretical model.

In Fig. 4.4 we show the ratio MS
11/MS

22 as a function of chiral angle of our experimental

results and predictions from Popov et al. [21]. Matrix elements published in Ref. [21] are

based on a non-orthogonal tight binding model, which does not include electron-electron

and electron-hole interactions. However, the theoretical values show the same trend as the

experimental values. But the predicted values underestimates the experimental findings

by a factor of ≈ 2. Unfortunately, published theoretical work, which include electron-

electron and electron-hole interactions, does not report values for both the first and the

second optical transitions [22].
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(a) (b) (c)

Figure 4.5: (a) Section of the Kataura plot in Fig. 4.3 showing the second optical transitions ES
22 of the

(11,0) (ν = −1) and the (11,1) (ν = +1) branch. Tubes referring to these two branches are labeled by
their particular (n1, n2). (b) Contour plot of the graphene bandstructure around the K point. The lines
show the allowed states of the particulate (n1, n2) which are related to the second optical transition. The
position of the nanotube band minima and thus the places where the optical transitions take place are
given by the black dots. (c) Deformation potential (∝ electron-phonon coupling) of the RBM in the (10,0)
(ν = +1) and (14,0) (ν = −1) tube as a function of the position in k-space. Circles are results from
ab-initio calculations, dashed lines from zone-folding on the tight-binding description of graphene [83].

4.1.2 Dependence of |χmax
R | on the Family ν

The second most noticeable difference of the Raman susceptibility |χmax
R | is observed

for the different nanotube families ν = (n1 − n2) mod 3= ±1. When semiconducting

nanotubes are excited resonantly into the second optical transition ES
22, the maximum

Raman susceptibility |χmax
R | of nanotubes belonging to the family with ν = −1 (open

blue circles in Fig. 4.3) is by a factor of ≈ 3 larger than that of nanotubes with ν = +1

(open red circles). Fig. 4.5a shows a section of Fig. 4.3 including the (11,0) and the (11,1)

branch representing branches with ν = −1 and ν = +1, respectively.

The reason for the intensity difference between the families can be understood when

plotting the lines of the allowed states of each tube in the Brillouin zone of the electronic

band structure of graphene as it is done in the zone folding approximation (Sect. 3.2).

In Fig. 4.5b we show a contour plot of the band structure of graphene in the vicinity

of the K point. In addition we plot the lines of allowed states of ES
22 for the (11,0)

branch (ν = −1) and the (11,1) branch (ν = +1). Note that these tubes have similar

diameters, for which reason we can exclude effects due to diameter related variations in

the abundances, the electron-phonon coupling or absorption strength.

In Fig. 4.5b we see that the transitions of the tubes with ν = +1 and ν = −1 are located

on opposing sides with respect to the K point. The ES
22 transitions of ν = +1 nanotubes

are located closer to the K-Γ direction while nanotubes with ν = −1 are located closer
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Chapter 4. RBM intensities: abundance versus e-ph coupling

to the K-M direction. Ab-initio calculations of the electron-phonon coupling reported by

Machón et al. [50] show a significant difference between electronic states located on the

K-Γ and those located on the K-M symmetry direction of graphene. Fig. 4.5c shows the

results from Ref. [50] for the electron-phonon matrix elements of the (19,0)-tube, which

has ν = +1, and the (17,0)-tube, which has ν = −1. As for the (11,0) and the (11,1) in

our example, the positions for a given transition of the (19,0) and (17,0) tubes are located

on opposing sides of the K point. As the electron-phonon coupling strongly differs on the

two sides we can expect in case of ES
22 weaker signal from ν = +1 nanotubes than from

ν = −1 nanotubes, which is in agreement with our results.

The positions of two consecutive transitions of a particular nanotube, e.g. ES
22 and

ES
11, are on opposing sides of the K point. Therefore tubes with ν = −1, which have

strong signal when excited into ES
22, are expected to have weak signal when excited into

ES
11. In case of tubes with ν = +1 it is the other way around. Fig. 4.3 shows that in case

of ES
11, the branches which are bent downwards have stronger signal than branches which

are pointing upwards, which in fact is the same finding as for ES
22. However, as indicated

by the colors of the symbols, branches which are pointing downwards have ν = +1 in case

of in ES
11 and ν = −1 in ES

22. Therefore we see the expected change of signal strength

between the tube families ν = ±1 when going from ES
22 to ES

11.

Furthermore, in Fig. 4.3 we see that the intensity difference between the families ν = ±1

is much weaker in case of ES
11 compared to ES

22. This can be understood when studying

the calculations by Machón et al. [50], shown in Fig. 4.5c. Since transitions for a particular

ii of two tubes, one with ν = +1 the other with ν = −1, are located on opposing sides of

the K point, the difference in electron-phonon coupling between the two tubes increases

with increasing distance to the K point. As the distance to the K point increases with

increasing ii, the deviations of the electron-phonon coupling between the two families

ν = ±1 is expected to be smaller for ES
22 than for ES

11, as observed in the experiment.

4.1.3 Dependence of |χmax
R | on the Chiral Angle

Within a branch of semiconducting nanotubes the chiral angle θ of the tubes changes from

& 0◦ to . 30◦ when going from the small diameter end, which is bent away from the

1/d relation, to the large diameter end, where the ν = ±1 families almost touch the 1/d

relation. In Fig 4.6a we show the dependence of |χ|max
22 on the chiral angle θ for tubes

from four branches. Two of them, the (11,0) and (12,1) branches, belong to the ν = −1

family, the other two, the (11,1) and (13,0) branches, to the ν = +1 family. Besides the

deviation of |χ|max
22 between the nanotube families ν = ±1, discussed above, a dependence

on the chiral angle is seen. The branches with ν = −1 show an increase of the signal when

going from large to small θ with a sudden decrease for zig-zag tubes (θ = 0). In case of
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Figure 4.6: Maximum Raman susceptibility |χmax
R | as a function of chiral angle θ. (a) |χmax

R | for tubes
of four nanotube branches excited into ES

22. Tubes with ν = −1 are on the left, tubes with ν = +1 on the
right of the vertical dashed line. The dotted line marks the chiral angle where |χmax

R | is at minimum. (b)
Comparison of |χmax

R | to predictions on the electron-phonon coupling Me−ph and absorbtion strength
Mabs from Ref. [21].

the ν = +1, |χ|max
22 appears to be rather independent of θ with one exception. Nanotubes

with θ ≈ 20◦ have ≈ 3 times weaker |χ|max
22 than tubes with other chiral angles.

In order to understand this finding we again consider the picture of the positions of

the transitions in the graphene Brillouin zone with respect to the K point, Fig. 4.5b. In

this picture going from θ = 0◦ to θ = 30◦ within a ν = −1 branch implies a change of the

position of the transition from the K-M to the K-K direction. Within a ν = +1 family

this means a change of the transition from the K-Γ to the K-K directions. Therefore the

dependence of |χ|max
22 as a function of the chiral angle θ in Fig. 4.6a can be understood

as |χ|max
22 as a function of the position of the transition in the graphene k-space going

from the K-M to the K-Γ direction. Fig. 4.5b shows that the (9,5) tube (ν = +1 and θ

= 20.6◦), which represents the minimum in Fig. 4.6a, has its ES
22 transition very close to

the K-K direction. Calculations presented by Popov et al. [21] show that in case of ES
22

the matrix element Me−ph changes sign within a ν = +1 family for nanotubes close to

≈ 20◦. Therefore our results suggest that the change of sign happens exactly at the K-K

direction.

Assuming the band structure of graphene to be symmetric around the K point, we

would expect armchair tubes to have transitions exactly on the K-K direction. In Sect. 3.2

we showed that the band structure actually undergoes a trigonal warping, which is the

reason why the transitions of all tubes except for zig-zag tubes are shifted towards the

K-M direction. Therefore the transitions of nanotubes with θ ≈ 20◦ with either ν = +1

45



Chapter 4. RBM intensities: abundance versus e-ph coupling

Figure 4.7: (a) simple photoluminescence process
in nanotubes: exciton is excited into ES

22 (eh22) ab-
sorbing hν22. The exciton first relaxes into ES

11, than
into the ground state emitting a photon hν11. (b) no
difference to (a), when eh22 < 2·eh11 (ES

11). (c) when
eh22 < 2 · eh11 eh22 can decay into two eh11. (Taken
from Ref. [84].)

ore ν = −1 are shifted onto the K-K direction. Whether the particular nanotube belongs

to ν = +1 or ν = −1 depends on the optical transition and alternates between consecutive

transitions. In case of ES
11 the tube with the smallest |χ|max

11 has ν = −1 while the tube

with the smallest |χ|max
22 has ν = +1.

In figure 4.6b we compare our results on the Raman susceptibility |χ|max
22 of the (11,0)

(ν = −1) and (11,1) (ν = +1) to predictions from Popov et al. [21].2 The predicted

data already represent the general trend of |χ|max
22 as a function of θ and ν when only

the electron-phonon coupling is taken into account (solid lines). The agreement between

theory and experiment slightly improves when also the absorbtion strength is taken into

account, which shows a weak dependence on θ and ν (dashed lines). It is noticeable, that

the theoretical data strongly deviates from the experimental results in case of small chiral

angled tubes. Also results from Jiang et al. [22], which in contrast to Ref. [21] include

electron-hole interactions, do not reproduce our experimental results either.

A possible explanation of the strong deviation is given by Reich et al. [84]. They

suggested the weak |χ|max
22 (and PLE signal) of small chiral angle tubes with ν = +1 to be

due to exciton-exciton interactions. They introduced an additional decay channel for the

ES
22 excitons of tubes with ES

22 ≥ 2ES
11. These excitons may decay into two ES

11 excitons

(Fig. 4.7), which causes a decrease of the absorbtion strength and therefore the Raman

signal.

4.1.4 Metallic versus Semiconducting Nanotubes

Although all metallic nanotubes belong to the same family ν = 0, they show in the Kataura

plot the same pattern of upwards and downwards bent branches as semiconducting nan-

otubes (Sect. 3.2). However, in contrast to semiconducting nanotubes the lower and upper

branches belong to the same tubes. Therefore each metallic nanotube contributes with

a pair of transition, one in the lower branch and one in the upper branch, both at the

2Note that due to the uncertainty regarding the nanotube concentration in the experiment, experimen-
tal data can not be compared to theoretical data in terms of absolute values.
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Figure 4.8: Broadening parameter γ as a function of
1/ωRBM, thus d, for semiconducting nanotubes ex-
cited into ES

22 and metallic tubes excited into ES
11. γ

is obtained from fitting 2.5 to RBM intensity profiles.
Dashed lines are linear fits.

same RBM frequency (diameter), of course. Similar to semiconducting nanotubes metallic

tubes have larger |χmax
R | for tubes in the branches which are bent downwards (Fig. 4.3).

In fact, we did not observe the upper branches at all. Doorn et al. [85] presented results on

the upper branches of metallic nanotubes. They used tubes produced by the so-called su-

pergrowth method [86] which are presumed to have very little tube-tube interactions [63].

Therefore they attribute the observation of the upper branches to the absence of tube-tube

interactions. However, we do not assume to have tube-tube interactions in our samples,

since we used tubes separated in solution.

In Fig. 4.3, the Raman susceptibility |χ|max
11 of metallic nanotubes appear to be weaker

than the susceptibilities of semiconducting nanotubes excited into the second optical tran-

sition ES
22. Similar to the intensity difference between the ES

11 and ES
22 transitions of

semiconducting nanotubes, the origin of this difference is mainly due to differences in the

broadening parameter γ of the underlying electronic transition rather than due to changes

in the transition matrix elements (MR). In Fig 4.8 we show the broadening γ as a function

of nanotube diameter3 for the ES
22 transition of semiconducting nanotubes (stars) and the

EM
11 transition of metallic nanotubes (circles). In average the broadening parameter of

metallic nanotubes is ≈ 1.5 times larger than that of semiconducting nanotubes excited

via ES
22. This change in γ leads to a decrease of |χmax

R | by a factor of approximately

two, which is the average difference between |χ|max
22 of semiconducting tubes ν = −1 and

|χmax
R |11 of metallic nanotubes. In conclusion, there is no significant difference between

the Raman matrix elements MR of metallic nanotubes, referring to the lower branches,

and semiconducting nanotubes.

3(1/ωRBM is proportional to the diameter)
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Chapter 4. RBM intensities: abundance versus e-ph coupling

Figure 4.9: Diameter dependence of |χmax
R | for

semiconducting tubes excited into ES
22 ( |χ|max

22 ). In
order to compare our results to predictions on the
Raman matrix elements MR |χ|max

22 has been cor-
rected to the influence of the diameter dependence
of γ (see Fig. 4.8 and ωRBM, see text. The solid line
is a linear fit to the data, thus represents the diame-
ter dependence of the Raman matrix element MR.
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4.1.5 Diameter Dependence of |χmax
R |

Next to the difference between metallic an semiconducting nanotubes figure 4.8 shows

that there is a significant diameter dependence of the broadening parameter γ which is

especially pronounced for metallic nanotubes. As mentioned above, γ is related to the

carrier lifetime which was calculated in Ref. [87] for a large number of (n1, n2). Consid-

ering solely the electron-phonon coupling of the particular nanotube they get a diameter

dependence of γ similar to our results. However, for large diameter tubes there is an

increasing deviation between our results [γ(d = 1.5 nm) = 60 meV] and results published

in Ref. [87] [γ(d = 1.5 nm) = 30 meV]. The reason for this deviation could be the fact,

that in real nanotubes, thus our experiments, the transitions are additionally broadened

due to sample inhomogeneities.

In case of metallic nanotubes the deviations between our results and results published

in Ref. [87] are even more apparent. Similar to experimental results by Doorn et al. [85],

we observe much larger values of the broadening parameter γ. This deviation indicate the

presence of decay channels, which were not considered in Ref. [87], e.g. the influence of

the Kohn anomaly on the electron-phonon coupling in metallic nanotubes [25].

Regarding the Raman susceptibility we must consider the values to be effected by the

dependence of the broadening parameter γ as a function of the tube diameter d. Further-

more we are interested how the Raman matrix element MR varies with d. Therefore we

plot the |χmax
R | where we eliminated effects due to the diameter dependence of γ. In order

to compare our results to MR we furthermore have to correct |χmax
R | to ωRBM and the

excitation energy ~ωi, see Eq. 2.4.

In the diameter range of the observed nanotubes this causes |χmax
R | to appear 20%

stronger for the largest diameter tubes compared to the smallest tubes. In Fig. 4.9 we

show |χmax
R | normalized to influences by γ and the phonon energy. Therefore, the solid
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Figure 4.10: Raman susceptibility |χmax
R | of semi-

conducting nanotubes excited into ES
22 normalized

in oder to represent the (n1, n2) abundance super-
imposed by the dependence of |χmax

R | on the chiral
angle θ (see text). The solid line shows the diameter
distribution in the sample, assuming a Gaussian di-
ameter distribution. The curve has a mean diameter
of 1.0 nm and a full width at half maximum of 0.5 nm.

line gives the average dependence of the matrix element on the nanotube diameter. As

mentioned above, the data in Fig. 4.9 are affected by the diameter distribution of the

nanotubes. Assuming the diameter distribution to be symmetric, we expect effects of the

distribution to cancel out.

Fig. 4.9 shows that the matrix elements decrease with increasing diameter. The same

radial displacement results in a larger change of the carbon-carbon bonds in smaller tubes.

A stronger change of the bonds corresponds leads to a larger electron-phonon coupling

Me−ph. Therefore our result is in agreement with theory.

4.2 (n1, n2) abundances

In the previous section we assumed a uniform diameter distribution and attributed all dif-

ferences in the Raman intensities to (n1, n2) specific variations of the scattering efficiency.

Of course our sample does not contain all imaginable (n1, n2). First we need to consider

a diameter distribution, primarily determined in the growth process by the size of the

catalyst particles [88].

In Fig. 4.10 we show |χmax
R | of the semiconducting nanotubes excited into ES

22 as a

function of nanotube diameter. In the presented data we eliminated diameter dependent

variations of |χmax
R | caused by γ and the phonon energy (see Sect. 4.1.5). Furthermore

we normalized the data to the diameter dependence discussed in Sect. 4.1.5. Therefore

we assume the intensities given in Fig. 4.10 to represent the diameter distribution and

(n1, n2) abundances, respectively, superimposed by the dependence of MR on the chiral

angle, discussed in Sect. 4.1.3.

To estimate the diameter distribution we fit we fit the data by a Gaussian distribution

and obtain a mean diameter of 1.0 nm and a full width at half maximum of 0.5 nm.
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Chapter 4. RBM intensities: abundance versus e-ph coupling

In addition to the diameter distribution we might assume that our sample has vari-

ations in the abundances of the different (n1, n2) tubes. To observe possible variations

one can compare the experimentally obtained Raman intensities to theoretical predic-

tions. The (n1, n2) abundance will then be given by the deviations between experiment

and theory. Therefore a theory is needed which fully describes the scattering efficiency

for each (n1, n2). A comprehensive calculation of |χmax
R |, which includes electron-phonon,

electron-hole, electron-electron, and exciton-exciton interactions has not yet been reported.

Even if a potentially perfect theoretical description is achieved, one would not know if re-

maining deviations actually describe abundances or if there are further effects which are

not included in the theory. A possible solution to this dilemma might be the additional

study of the intensities observed in photoluminescence excitation experiments on the same

sample [89].

4.3 Summary

In this chapter we presented the dependence of the Raman susceptibility |χmax
R | of the

radial breathing mode in carbon nanotubes on the optical transition (ES
11 and ES

22), the

nanotube family ν, the chiral angle θ, the metallicity (semiconducting or metallic) and the

nanotube diameter d.

We found that |χmax
R | in semiconducting nanotubes is much larger when the particular

tube is excited into the first electronic transitions ES
11 compared to an excitation into ES

22.

Based on the lineshape of the resonance profiles we showed that this is mainly due to the

much smaller broadening γ of ES
11 compared to ES

22.

As well the dependence of |χmax
R | on the family ν and the chiral angle θ we could

associated to the position of the optical transition in the k-space with respect to the

K point of the graphene Brillouin zone. Our results suggest that the electron-phonon

coupling of the RBM is close to zero when the electronic transition of the particular

nanotube is close to the K-K direction. This is the case for nanotubes with a chiral

angle θ ≈ 20 ◦and either ν = −1 or ν = +1 depending whether exciting into ES
11 or ES

22,

respectively.

Similar to the overall deviation of |χmax
R | between ES

11 and ES
22 we found larger |χmax

R |
for semiconducting nanotubes compared to metallic nanotubes. Again we we associated

this to differences in the broadening parameter γ of the electronic transitions Eii with

larger γ in metallic nanotubes. Additionally we found γ to have a different diameter

dependence in metallic and semiconducting tubes. The larger γ and the larger diameter

dependence of γ in metallic nanotubes suggest an additional relaxation process in metallic

nanotubes compared to semiconducting nanotubes.
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4.3 Summary

Furthermore we found a diameter dependence of |χmax
R | which is an agreement with the

idea that the larger a nanotube gets the more the wall of the tube approaches a flat sheet

of graphene which has no radial breathing mode. Therefor |χmax
R | decreases gradually

with increasing diameter.

In the last section of this chapter we discussed a possible study of (n1, n2) abundances

in a nanotube sample based on the RBM intensities. Concerning the diameter distribution

we found a mean diameter of 1.0 nm and a full width at half maximum of 0.5 nm in case

of our particular HiPCO sample.
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Chapter 5

The high-energy modes

In the previous chapter (Chap. 4) we discussed the determination of the different (n1, n2)

nanotubes in a sample on the basis of the radial breathing mode. In some growth, sep-

aration and selective functionalization methods, on the other hand, focus is solely put

on the question whether a sample has more or less metallic or semiconducting nanotubes

compared to another sample [6–8, 90]. The success of such a methods can be monitored

by studying the high-energy modes (HEM) rather than doing a full (n1, n2) analysis from

the RBM [5,20, 64].

Between 1540 and 1600 cm−1, the Raman spec-

trum of a typical carbon nanotube sample – con-

taining a large variety of chiral indices – shows

two characteristic HEM features which are com-

monly referred to as G− (lower frequency) and

G+ (higher frequency). Compared to the RBM,

the high-energy modes are less diameter depen-

dent and the resonance windows are up to an or-

der of magnitude wider. Therefore, the HEM is

often formed by overlapping signal of many dif-

ferent tubes. While both features appear as rea-

sonably sharp peaks when mainly semiconducting

nanotubes are resonantly excited (full width at half

maximum: FWHM ∼ 10 cm−1), the G− peak is broadened and downshifted when mainly

metallic nanotubes are in resonance. [91] In the following we use the terms “metallic” G−

and “semiconducting” G−, when referring to a broad and a narrow G− peak, respectively.

In case of semiconducting nanotubes, G+ and G− are attributed to the LO and TO

phonon, respectively, where LO refers to the axial (longitudinal optical) and TO to the

circumferential (transverse optical) displacement of the atoms. [24, 92] For metallic nan-
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Chapter 5. The high-energy modes

otubes, the assignment of the G− and G+ Raman peaks to the TO and LO phonons is still

under debate with contradicting conclusions appearing in the literature. [23–25,29,92–95]

Two different models have been developed for the description of the peculiar lineshape

of the high-energy Raman modes (G− and G+) in metallic carbon nanotubes. The first

model [23] proposed phonon-plasmon interactions as the origin of the metallic lineshape.

According to this model, the linewidth increases with the thickness of the nanotube bundle.

The G− and G+ features were assigned in Ref. [23] to the TO and LO phonon, respectively,

as in semiconducting tubes. More recent models attribute the broadening of the “metallic”

G− to strong coupling between the LO phonon and electronic excitations. [24,25,93] This

coupling causes a dramatic softening of the LO frequency and a broadening of the Raman

line. As a result, the frequency of the LO phonon drops below the frequency of the TO

phonon in metallic nanotubes. [24, 25, 93] This theory explains the “metallic” G− and, in

particular, the large Raman linewidth as an intrinsic property of a single metallic tube

and is consistent with recent experiments on free-standing metallic nanotubes and on

graphene. [94, 96] In this model – due to the strong electron-phonon coupling – the LO

frequency is below the TO frequency, and consequently the G− peak is assigned to the

LO phonon. In some Raman measurements on what were presumed to be single metallic

nanotubes, the G+ peak has been reported at 1590 cm−1. [26–28] Consequently this peak

would have to be assigned to the TO phonon in metallic tubes. However, the TO phonon

in metallic tubes is expected to have a similar frequency to that of the TO mode in

semiconducting tubes, which is below 1590 cm−1 [24, 93]. The question therefore arises

how to assign the G+ peak at 1590 cm−1.

In Section 5.1 we present results from resonant Raman experiments of the high-energy

mode in isolated nanotubes separated in solution. By comparison of the Raman intensities

of the different features of the HEM to the intensities of the RBM we assign the HEM-

features to particular nanotubes or groups of tubes. Subsequent comparison to theoretical

data allows us to assign most of the peaks to the particular phonons involved in the Raman

process [95]. In this way we show that the characteristic broadened and downshifted G−

peak, which appears when metallic nanotubes are in resonance, is an intrinsic feature of

metallic nanotubes, although it is weaker than in bundled tubes. Based on comparison to

theoretical predictions we assign the broad and downshifted G− peak to the LO-phonon

in metallic nanotubes.

In addition to the major features, mentioned above, we observe a series of small peaks

on the low and on the high-energy side of the HEM. Considering the RBM intensities

we can assign the minor peaks on the low-energy side to the TO-phonons of particular

semiconducting nanotubes or groups of tubes. Therefore we present the first experimental

data of TO-phonon frequencies below 1.3 nm. For the peaks of the high-energy side of
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the HEM we give a tentative assignment. We propose a second-order scattering process

involving the infrared-active phonon as the origin of these peaks.

In the second section of this chapter (Sect. 5.2), we study a tiny bundle of one metallic

and one semiconducting nanotube with Rayleigh scattering and resonant Raman scattering

experiments. We show that the presence of a G+ peak at ∼ 1590 cm−1 in a typical

“metallic” Raman spectrum, with a broad G− and a narrow G+, often indicates the

presence of an additional semiconducting nanotube. By varying the excitation energy we

observed a changing lineshape for the high-energy G+ and G− Raman modes. We see

a broad “metallic” G− peak at 1540 cm−1 and a narrow G+ peak at 1590 cm−1 with

maximum Raman intensities at different excitation energies. Considering results from

Rayleigh scattering experiments and radial breathing mode Raman spectra, we can relate

the peak at 1540 cm−1 to the longitudinal mode of the metallic tube which is broadened

due to the strong electron-phonon coupling, while the peak at 1590 cm−1 originates from

the semiconducting tube [97].
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5.1 Nanotubes in solution
Parts of this sections were published in Ref. [95]

Data presented in this section are obtained from single-walled carbon nanotubes pro-

duced by the HiPCO method [98]. Therefore the observed nanotubes have diameters

between ≈ 0.5 and ≈ 1.5 nm and include all chiral indices (n1, n2) contained in this di-

ameter range (Sect. 4.2). The tubes were ultrasonically dispersed in D2O and stabilized

in surfactant micelles using sodium dodecyl sulfate (SDS) and sodium dodecylbenzene

sulfonate (SDBS). [73, 99] Raman measurements were performed in backscattering geom-

etry at room temperature on a macro-Raman setup as described in Sect. 2.2. We varied

the excitation energy between 1.88 and 2.15 eV using a tunable dye laser. Spectra were

normalized to laser power and integration time and were corrected for the system response

(see Sect. 2.1.2).

Figure 5.1 shows the high-energy Raman spectra excited with different laser lines. The

spectra show the characteristic features of the high-energy mode (HEM), a relatively sharp

peak at 1590 cm−1 (G+) and a broader peak at ≈1560 cm−1 (“metallic” G−) with a full

width at half maximum of 9 cm−1 and 30 cm−1, respectively. The main peak (G+) is

Figure 5.1: Raman spectra of the high-
energy modes from a carbon nanotube
ensemble excited at different laser en-
ergies. The spectra are vertically off-
set for clarity. Spectra are truncated in
order to enhance variation of the less
intense peaks. The characteristic fea-
tures, a sharp peak at 1590 cm−1 (G+)
and the broad “metallic” G− peak at
≈1560 cm−1 are seen (Sect. 5.1.1).
Additionally we observe a series of
small peaks on the low and high-energy
side of the HEM (sem. TO) and a
group of peaks on the high-energy
side (super-HEM) which will be dis-
cusses in Sect. 5.1.2 and Sect. 5.1.3,
respectively.

sem.TO
Excitation
energy(eV)

super − HEM

“metallic”G−

G+
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5.1 Nanotubes in solution

observed at all excitation energies (Elaser), while the smaller, broad peak (“metallic” G−)

is not visible at lower Elaser. It becomes apparent only for excitation energies above 2 eV.

In addition, several peaks are seen below the “metallic” G− and above the G+ peak, with

strongly varying resonance conditions.

In the following we will correlate the different features of the HEM to the transition

energies Eii of the different (n1, n2) nanotubes. As the transition energies are obtained

from resonance profiles of the RBM our approach is solely based on experimental data,

thus independent of theoretical prediction. Based on an experimental Kataura plot, the

observed RBM frequencies can be uniquely identified with a particular chiral index (n1, n2),

as described in Sect. 3.5 [5]. Given this assignment, we analyze the HEM features on the

basis of their strength in the Raman spectrum. This procedure is justified as long as the

electron-phonon coupling matrix elements are similar for the RBM and the HEM. Indeed,

the diameter and family dependence of RBM and HEM are similar, as was shown in recent

ab-initio calculations [50, 100].

Note, that the terms G− and G+ evolved on the basis of a rather simple picture of the

high-energy modes, in which all nanotubes contribute to both features. In this chapter we

will show that the HEM is a multi-peak feature in the Raman spectrum from a nanotube

ensemble, and that different nanotubes contribute to the different peaks. Therefore the

terms G− and G+ can be rather confusing. As this problem occurs most particularly in

case of G−, we will always distinguish between “metallic” and “semiconducting” G−.

5.1.1 The LO phonon modes

In Fig. 5.2 (a) and Fig. 5.2 (b) we show on the left contour plots of the RBM intensity

as a function of excitation energy and the inverse RBM frequency, thus the nanotube

diameter (see Sect. 3.3.1). The contour plots show the resonances of numerous RBMs

which we assigned to the particular (n1, n2) (see Sect. 3.5). In the contour plot of Fig. 5.2

(a) we labeled some of the assigned peaks by their chiral indices (n1, n2). Apparently

semiconducting tubes are well separated from metallic nanotubes. Therefore we plot a

line, which separates the second optical transition ES
22 of semiconducting nanotubes from

the first transition EM
11 of metallic tubes.

On the right of of Fig. 5.2 (a) and (b) we plot the intensities of the G+ and the

“metallic” G− peak as a function of excitation energy. In order to correlate the HEM

intensities to the RBM intensities we used the same energy scaling for both the contour

plot on the left and the intensity plot on the right. The intensity of “metallic” G− peak in

Fig. 5.2 (b) clearly goes through a maximum at 2.05 eV. This energy matches the transition

energies of a number of RBMs highlighted by an ellipse in the contour plot. All RBMs

inside the ellipse originate from metallic nanotubes from the (13,1) branch. Therefore, we
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Chapter 5. The high-energy modes

“metallic”
G−

(a)

G+

(b)

Figure 5.2: [(a) and (b) left] Colored contour plot of the Raman cross section of the RBM as a function
of excitation energy and reciprocal RBM frequency (taken from Ref. [20]). The top axes gives the tube
diameter according to ωRBM = c1/d + c2 (Sect. 3.3.1). Dashed lines separates the EM

11 optical transitions
of metallic from the ES

22 transitions of semiconducting tubes. Dotted lines connect tubes of the same
branch. [(a) and (b) right] Raman cross section of the G+ peak (a) and G− peak (b) vs. excitation energy
(with the same scaling as the energy axes in the contour plot). Dashed line on the G+ intensities is a
guide to the eye (spline). G− intensities are fit by a resonance profile. (b) The ellipse emphasizes the
(13,1) branch assigned to G−. The apparent weak intensity of the (13,1) branch compared to that of the
(15,0) branch is an artifact due to different samples, which changed at ≈ 2 eV [5].

assign the “metallic” G− peak to the (13,1) branch of metallic tubes [(13,1), (12,3), (11,5),

(10,7) and (9,9)].

In contrast, the intensity of the G+ peak in Fig. 5.2 (a) decreases with increasing exci-

tation energy [right of Fig. 5.2 (a)]. The contour plot shows that the number and intensity

of RBMs from semiconducting tubes decreases with increasing laser energy. The resonance

maximum of G+ is apparently below 1.85 eV. Therefore, we assign G+ to semiconducting

nanotubes.

In Fig. 5.3 we show HEM spectra with (red line) and without (black line) metallic

tubes in resonance. Nanotubes produced by the HiPCO method do not contain metallic

tubes with optical transition energies below 1.8 eV. [20] Therefore we used an excitation

energy of 1.69 eV to obtain Raman spectra exclusively from semiconducting nanotubes

(black line). In order to also match transition energies of metallic tubes we used a laser

energy of 2.12 eV (red line). As mentioned in the introduction to this chapter the broad

and downshifted “metallic” G− peak is enhanced in bundled nanotubes, as can be seen in

Fig. 5.3 (b). However, figure 5.3 (a) shows that also in case of separated tubes spectra with

and without metallic nanotubes in resonance can well be distinguished by the intensity of

the broad and downshifted G−. Therefore we show that also for isolated nanotubes the
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5.1 Nanotubes in solution

(a) (b)

Figure 5.3: HEM with (red) and without (black) metallic tubes in resonance. (a) Separated HiPCO tubes
in solution. (b) bundled HiPCO tubes.

lineshape of the HEM is suitable to detect metallic nanotubes and that the broadened and

downshifted G− is an intrinsic feature of metallic nanotubes.

The observation of the downshifted and broadened G− peak in separated metallic nan-

otubes excludes the phonon-plasmon coupling as the origin of the ”metallic” lineshape,

since this theory is based on the formation of plasmon bands in bundled nanotubes [23].

However, the enhanced peak intensity of the G− peak due to bundling is apparent in

Fig. 5.3. Although the phonon-plasmon coupling is not the origin of the shift and broad-

ening of the “metallic” G− peak, it still might cause the intensity increase in bundled

nanotube, see discussion below.

In the following we want to compare our results to theories which give a strong electron-

phonon coupling (Kohn anomaly) as the reason for the “metallic” lineshape [24,93]. There-

fore we plot in Fig. 5.4 the predicted Γ point phonon frequencies of the LO and TO phonons

of metallic and semiconducting nanotubes as a function of tube diameter. Figure 5.4 (a)

shows the Γ point LO phonon frequencies of semiconducting tubes obtained from the-

ory (black solid line and black circle) and experiment (black stars) [24, 93, 101]. The

red solid line and open circles are theoretical predictions for the LO phonon frequencies

of metallic nanotubes. Positions from our measurements for the G+ and “metallic” G−

peaks are given by dashed lines. The position of G+ is in good agreement with the nearly

diameter independent frequencies of the LO phonon in semiconducting nanotubes. The

position of the “metallic” G− peak matches the softened LO phonon frequencies of large

diameter metallic tubes. However, the predicted frequencies of the tubes we assigned the

“metallic” G− to – the tubes from the (13,1) branch, which have diameters between the
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Figure 5.4: Frequencies of (a) the LO phonons in metallic and semiconducting nanotubes and (b) the TO
phonons in metallic nanotubes as a function of tube diameter. Horizontal dashed lines give the observed
positions of G+ and “metallic” G−. The diameter range of the tubes assigned to the “metallic” G− peak
is marked by the largest [(13,1)] and smallest [(9,9)] tube of the (13,1) branch.

(13,1) (d =1.06 nm) and (9,9) (d =1.22 nm) tubes – are slightly lower than our results.

The reason for this might be doping of the tubes by the surfactant. Doping weakens

the electron-phonon coupling, caused by the Kohn anomaly. Therefore the LO phonon

in metallic nanotubes is less softened in the surfactant-wrapped tubes compared to the

pristine tubes assumed in the theory.

In summary, our results support the theory of a Kohn anomaly at the Γ point in the

phonon dispersion of the LO phonon, which causes a strong electron-phonon coupling of

phonons to electrons close to the Fermi level [24, 25].

Having assigned “metallic” G− to the LO phonon in metallic nanotubes the question

arises, whether the metallic tubes also contribute to G+ or whether this peak originates

exclusively from semiconducting nanotubes. In the first case, the TO phonon of metallic

nanotubes would have to be at the same position as the LO phonon of semiconducting

nanotubes, namely at 1590 cm−1. Figure 5.4 (b) shows that predictions of the TO fre-

quencies in metallic nanotubes deviate between data from Dubay et al. [24] and Piscanec

et al. [93]. Dubay et al. predict the TO frequencies to be distinctly below 1590 cm−1, i.e.

the G+ peak would be related to the LO phonon in semiconducting tubes. In contrast

Piscanec et al. predict a TO frequency in metallic tubes similar to the frequency of the

LO phonon in semiconducting tubes. We can therefore not tell from the experiments pre-

sented in this section whether in addition to the semiconducting tubes metallic nanotubes

contribute to the G+ peak. This point will be discussed in more detail in Sect. 5.2 on the
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5.1 Nanotubes in solution

Figure 5.5: RBM spectra from
bundled (blue) and separated
(black) nanotubes taken at
≈ 1.7 eV. Due to wider res-
onance windows more tubes
are in resonance and more
RBMs appear at a given ex-
citation energy in bundled
tubes compared to separated
tubes.

basis of the HEM from a single metallic nanotube.

Despite the fact that our results support the theory of a Kohn anomaly as the origin

of the broadened and downshifted G− in metallic nanotubes, the lineshape of the HEM is

effected additionally by bundling, see Fig. 5.3. Figure 5.3 shows spectra with (red) and

without (black) metallic tubes in resonance. Compared to the spectra of separated tubes

in (a), the spectra of bundled tubes in (b) show much broader peaks and an increase of

the G− intensity relative to the G+ intensity.

Before we start interpreting this finding we want to point out that the two samples –

bundled and separated tubes – can be compared only to a limited extend. Although both

samples are identical in terms of the growth process, the separated tubes were substan-

tially treated in order to separate the tubes and to stabilize them in solution. We can

expect that dirt, like amorphous carbon, is removed during these treatments. Since most

carbon related materials give Raman signal at energies similar to that of the HEM in nan-

otubes, the broadening of the HEM peaks in the bundled sample might solely be related

to impurities in the sample. In the following discussion we assume all observations to be

based solely on the bundling of the tubes, while there is no effect induced by impurities.

Assuming that the broadening of the peaks in the HEM spectrum of bundled tubes in

comparison to the separated tubes (Fig. 5.3) is related to plasmon-phonon interactions,

as proposed by Kempa et al. [23], it is very surprising to see a broadening of the peaks in

bundled tubes when only semiconducting tubes are in resonance. Semiconducting tubes

have by definition no electrons close to the Fermi level and therefore can not generate

plasmons.

Another interpretation which could explain also a broadening of the semiconducting

HEM features is the diameter dependence of the frequencies of the HEM phonons. It is

known that the resonance window of bundled nanotubes is by up to 50 meV larger than
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Chapter 5. The high-energy modes

in separated tubes [72]. Therefore in bundled tubes more nanotubes are in resonance at

a particular excitation energy. This is nicely seen in the low energy part of the nanotube

Raman spectrum. Figure 5.5 shows the RBM spectra of separated nanotubes in solution

(black) and of bundled nanotubes (blue), both excited at 1.69 eV. The larger number

of RBMs from the bundled nanotubes is solely the result of larger resonance windows

in nanotube bundles. Therefore also the HEM is the superposition of a larger number

of nanotubes (n1, n2) when nanotubes are bundled compared to separated nanotube in

solution. Figure 5.4 (a) shows that the frequencies of all HEM phonons depend on the

nanotube diameter. As there are more nanotubes in resonance in case of the bundled tubes

the diameter dependence might lead to a broadening of the peaks. However, by simply

superpositioning all HEM spectra taken at the different excitation energies, and therefore

covering the whole diameter range in our sample, we do not see a broadening which is

comparable to that seen in bundled tubes. To solve this issue, further experimental studies

are needed in which separated tubes are rebundled. Unlike in our sample the separated

tubes should not be stabilized by the use of solvents, since the solvent remains around the

tube and prevents the tubes from rebundling.
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5.1 Nanotubes in solution

5.1.2 The TO phonon modes

In the previous section we assigned the major features of the observed HEM, G+ and

“metallic” G−, to LO phonons in semiconducting and metallic nanotubes. For semicon-

ducting nanotubes we expect to see the modes of the TO phonons on the low energy side

of the LO phonon mode [24, 92]. In fact, we observe three small peaks at 1526 cm−1,

1541 cm−1, and 1551cm−1 (Fig. 5.1). Since each of these peaks is in resonance at different

resonance condition, we can perform an (n1, n2) assignment in the same way as we did for

the major peaks in the last section.

In figure 5.6 we compare the excitation energy dependence of the peak intensities of the

three small peaks to the intensities of RBMs. Obviously the resonances of the peaks match

the resonance of a large variety of RBMs. However, due to the diameter dependence of the

TO, see below, and the different diameters of metallic and semiconducting nanotubes in

our excitation regime, we will show now that these peaks originate from semiconducting

nanotubes.

The intensity profile of the peak at 1541 cm−1 [Fig. 5.6 (b)] covers almost the whole

resonance profile including incoming and outgoing resonance. Fitting equation 2.5 – the

equation for a resonance profile – to the intensity profile yields the transition energy Eii

(dashed, black line) of the corresponding nanotube (n1, n2). The comparison to the RBMs

on the left of Fig. 5.6 shows that this energy matches nicely the transition energy of

the (7,5) nanotube. However, there are nanotubes with similar resonance energies as the

Figure 5.6: (left) Contour plot of the RBM intensities as a function of excitation energy and tube diameter.
(right) intensities of the three observed modes which we assigned to TO phonons in semiconducting
nanotubes. To the intensities of the peak at 1541 cm−1 we fit a resonance profile which yields the
transition energy given by the dashed, black line.
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Chapter 5. The high-energy modes

(7,5) tube, mainly the (7,6) with a slightly larger diameter and the (8,3) with a slightly

smaller diameter. As discussed above we can assume that the HEMs show similar intensity

behavior as the RBMs regarding the dependence on the nanotube family ν = ±1 [50,100].

Therefore we expect the TO phonon mode of the (7,6) tube (ν = +1) to be weaker than

the TO mode from the (7,5) nanotube (ν = −1). The (8,3) nanotube also belongs to the

ν = −1 family and shows an RBM with a similar intensity as the (7,5), therefore the (8,3)

should as well give rise to a TO mode. In fact, the observed peak position shifts with the

excitation energy. Therefore the peak at 1541 cm−1 is most probably a superposition of

the TO phonon modes of the (8,3) and the (7,5) nanotube.

In case of the peaks at 1551 and 1526 cm−1, the observed excitation energy range does

not cover the whole resonances of the peaks. Therefore we can not determine the exact

transition energies of the corresponding nanotubes. However, the peak at 1526 cm−1 comes

into resonance when the RBM of the (8,0) tube comes into resonance. The TO phonon

in zig-zag tubes, thus the (8,0) tube, is forbidden by symmetry [48]. Therefore we do

not assign the peak at 1526 cm−1 to the (8,0) nanotube but to the nanotubes of the same

branch, (7,2) and (6,4), which have slightly larger diameters. Because they also have larger

transition energies than the (8,0) their RBM signal becomes strong outside the observed

energy range and we do not see them in the contour plot of Fig. 5.6. From the peak at

1551 cm−1 we only observe the high-energy tail of the outgoing resonance, which makes it

even harder to assign it to a particular tube. Tentatively we assign this peak to the tubes

from the next ν = −1 branch below the (9,1) branch, which is the (11,0) branch including

the (10,2), (9,4), and (8,6) tubes. We exclude the (11,0) tube of this branch as a possible

candidate, because it is a zig-zag tube again.

Figure 5.7: Frequencies of the TO phonons in
semiconducting nanotubes. Horizontal dashed
lines give the position of the observed peaks. Di-
ameters of the tubes which we assigned to the
particular peaks are marked. Our results are
in excellent agreement with the predictions from
Ref. [93].
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5.1 Nanotubes in solution

In Fig. 5.7 we compare our results of the assigned TO phonon modes to theoretical

predictions by Dubay et al. [24] (circles) and Piscanec et al. [93] (black solid line) and to

previous results from individual semiconducting nanotubes by Paillet et al. [102] (stars).

The plot shows the TO phonon frequencies as a function of tube diameter. The positions of

the peaks from our measurements are given by the horizontal dashed lines. In addition we

give the diameters of the nanotubes which we assigned to the particular peaks. Our results

nicely match the predictions by Piscanec et al. [93] and extend the range of experimentally

assigned TO phonon modes to much smaller tube diameters. This result on the one

hand supports our assignment of the peaks at 1551, 1541, and 1526 cm−1 to the TO

phonons in semiconducting nanotubes. On the other hand it suggests that regarding

the TO phonons of semiconducting tubes the predictions from Ref. [93] are in better

agreement with experimental results from HiPCO tubes in solution than the predictions

from Ref. [24].

Having assigned the three small peaks to the TO phonons of semiconducting nanotubes

the questions arises, at which frequencies are the TO phonons of the metallic nanotubes.

Assuming that the position of the TOs in metallic nanotubes are at the same frequencies

as in semiconducting nanotubes of same diameters, as predicted by Dubay et al. [24], we

would expect the TOs of the metallic nanotubes to be between ≈1560 and ≈1565 cm−1.

One reason for the absence of the metallic TOs might be, that the intensity is too weak

compared to the strong LO of metallic tubes in the same frequency range. This is con-

ceivable, assuming the relative intensities of the TO phonon modes to be similar to that

of the RBMs, which are weak for metallic nanotubes. On the other hand, Piscanec et

al. [93] predicts the frequency of the TOs in metallic nanotubes to be very different to

those of semiconducting nanotubes [93]. They predict a frequency which is rather com-

parable to that of the LO phonons in semiconducting nanotubes. In fact, till now no

systematic experimental work has been published regarding the diameter dependence of

the TO phonon modes in metallic nanotubes. Further discussions about the TO phonons

in individual metallic nanotubes can be found in section 5.2.
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Chapter 5. The high-energy modes

5.1.3 Infrared active phonon

In this section we want to discuss the origin of the remaining peaks in Fig. 5.1 which are

located between ≈ 1650 and ≈ 1720 cm−1. Because these peaks have larger wavenumbers

than the main features of the high-energy modes we will refer to them as super-HEM

(sHEM). The fact that these peak are rather asymmetric and that their resonances profiles

are unusually narrow supports the assumption that these peaks are not the origin of a

simple first order Raman process. A combination mode of the HEM and the RBM can be

excluded, since this would lead to frequencies about 100 cm−1 higher than the frequencies

observed. A feasible process would be the second-order overtone of the infrared-active

mode with a expected frequency of ≈ 850 cm−1.

In figure 5.8 (a) we plot the intensity of four super-HEMs versus the RBM intensities

as described in the previous sections. The following assignment of the peaks is based on

results from a tiny bundle of one metallic and one semiconducting nanotube, presented

in the next section (Sect.5.2). There we show that a peak at 1677 cm−1 originates from

the metallic (12,3) tube [(13,1) branch]. Therefore we also assign the peak at 1677 cm−1

which we observed in the measurements presented here to the (12,3) or at least to one

of the nanotubes in the (13,1) branch. Assuming the origin of the super-HEMs to be

the second-order overtone of the infrared-active mode, we would expect the frequency to
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Figure 5.8: (a) (left) Contour plot of the RBM intensities as a function of excitation energy and tube
diameter. (right) intensity of the observed super-HEMs as a function of excitation energy. (b) Raman
shift of the sHEMs as a function of the diameter of the assigned tube(s). When we assigned the peak to
more than one tube, a diameter range is given. The red line is Eqn. 5.1 fit to our results. The black line
is two times the predicted frequency of the IR-mode as a function of diameter [56].
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5.1 Nanotubes in solution

increase for larger diameter tubes [56]. We therefore have to look for smaller diameter

tubes to assign the 1651 cm−1 peak to. The tubes with resonances matching the best

are tubes from the (15,0) branch. Based on likewise considerations we assign the peaks

at 1715 and 1690 cm−1 to tubes of the (12,0) branch and the (13,1) tube, respectively.

Although we assigned in some cases the whole branch to one peak, it is probable that the

particular peak originates from the small-chiral angle tubes within this branch, because

the IR-mode in armchair tubes is forbidden by symmetry [56].

Figure 5.8 (b) shows the peak positions as a function of the diameter of the assigned

nanotubes. In addition we plot two times the frequency of the IR-active phonon frequency

(black line) predicted by Dobardžić et al. in Ref. [56]. Apparently, there is a strong

deviation between the predicted data and our results. However, our data can nicely be fit

by

ωsHEM =
c1

d2
+ c2 , (5.1)

the relation proposed in Ref. [56]. The additional third order term given in Ref. [56] is

negligible in the diameter regime of interest here. Assuming the diameter dependence

of the peak position given by the red line in Fig. 5.8 (b) to be correct, we have an easy

explanation why we do not observe peaks from all the other tubes in resonance. Due to

the small diameter their IR-mode is at much larger frequencies and therefore outside of

the observed spectral range.

Our assignment of the sHEM peaks to the second order IR-phonon could further be

supported if we found a mode with a similar diameter dependence as the super-HEM but
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Figure 5.9: Nanotube Raman spectra as a func-
tion of excitation energy. In contrast to all other
other spectra presented in this chapter, these
spectra were obtained from bundled nanotubes
(HiPCO bucky paper) instead of isolated tubes in
solution. The displayed spectral range covers the
part of the spectrum where the IR-mode is ex-
pected. Dashed lines marke half the frequency of
the super-HEMs of Fig. 5.1. The color of the lines
give the estimated transition energy of the nan-
otube related to the particular sHEM. The scaling
of the color of the dashed lines is the same as the
color of the spectra.
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with half the frequency. Of course, the first order IR-mode is not Raman active, however,

it might be observed if there are enough defects present in the sample. Figure 5.9 shows

the region of the Raman spectrum which covers ω1/2 of the sHEMs.1 In Fig. 5.9 we marked

the expected positions of the first order Raman modes ω1/2 by dashed lines. The color of

the particular line marks the guessed resonance energy, assuming Eii to be downshifted by

≈ 100 meV. Although, no unambiguous assignment is possible, the observed peaks seam

to have a similar diameter dependence.

Further studies are necessary to clarify the origin of the super-HEMs. Therefore we

will perform measurements including larger Raman shifts in order to study the sHEMs

of smaller diameter tubes. On the same sample we will study the region of the Raman

spectrum covering ω1/2 and determine the tube diameter dependence of the observed

modes.

1The spectra were taken from another kind of sample which also contained HiPCO nanotubes but in
the form of bucky paper. Therefore we have to take tube-tube interactions into account. On the one hand
this is a lowering of the transition energies Eii in the tubes [73]. On the other hand the frequency of the
IR-mode might be effected.
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5.2 Isolated nanotubes

5.2 Isolated nanotubes
Parts of this sections were published in Ref. [97] and [103].

One of the biggest questions which was left open in the previous Section is, do the metal-

lic nanotubes contribute to the G+ peak of the high-energy modes. This question could

not be answered since for nanotube ensembles there are energies where only semiconduct-

ing nanotubes are in resonance, but no energy where solely metallic nanotubes are in

Figure 5.10: Single nanotube or small bun-

dle across trench; similar to the sample

used in this work. Taken from Ref. [104].

resonance. Therefore there is no way to obtain from

such sample a HEM spectrum which shows signal

exclusively from metallic tubes. To know the ex-

act lineshape of a metallic nanotube is of interest

for measurements on individual nanotubes. Know-

ing the expected lineshape would help to distinguish

individual nanotubes from small bundles. To ad-

dress this question we performed measurements on

a tiny bundle of one metallic and one semiconduct-

ing nanotube, as shown in Fig. 5.10. With this

kind of measurements we can furthermore confirm

and strengthen the conclusion from the previous sec-

tion regarding the LO phonon in metallic nanotubes

as the origin of the downshifted and broadened G−

peak.

Rayleigh and resonant Raman scattering experiments were performed on a pair of one

metallic and one semiconducting nanotube a side-product of single-nanotube growth. The

nanotubes were grown in a CVD process using CoMo-doped mesoporous silica catalyst

particles. To minimize possible interactions with the environment [30] tubes were grown

across a 100 µm wide slit with the growth direction defined by the gas flow in the furnace

[105]. A further advantage of freely suspended tubes, compared to tubes on substrate, is

that there is no background signal generated from the substrate.
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5.2.1 Rayleigh experiments
Rayleigh experiments presented in this section were performed by Yang Wu at the

Columbia University New York.

Rayleigh scattering, elastic scattering of light, is as well as Raman scattering enhanced

when the scattered light matches an optical transition in the sample. Therefore when the

sample is irradiated by with-light each optical transition in the sample results in a peak

in the spectrum of scattered light. Rayleigh scattering experiments are very useful for

samples which are much smaller than the focus of the incoming light. On this kind of

samples absorption spectroscopy would be impossible.

Rayleigh scattering measurements were performed using a white-light source and de-

tected in a dark field geometry as described in Ref [104]. The detection range was between

1.24 and 2.76 eV. The tubes where located by scanning the white light focus along the slit

until a bright scattering spot was seen, indicating the presence of freely suspended tubes.

In Fig. 5.11 we plot the Rayleigh spectrum of our nanotube sample. The spectrum

shows three peaks at 1.937, 2.055 and 2.206 eV indicating either a bundle of three tubes,

a bundle of two tubes from which one tube contributes with two transitions or one tube

with three transitions. Considering a tube diameter between 1 nm and 2.5 nm, there is

no single nanotube with three transitions predicted in the detection range of our system.

Therefore our sample must consists of a small bundle of two or more nanotubes. Assuming

two nanotubes in the sample there is a good chance of having one metallic nanotube since

metallic nanotubes show pairs of closed by transitions. We will show below by resonant

Raman experiments that it is indeed a pair of nanotubes, one semiconducting and one

metallic.

Figure 5.11: Rayleigh scattering spec-
trum of a pair of nanotubes. Peaks at
1.937 and 2.206 eV are assigned to the
lower EM−

11 and upper EM+
11 transition of

the first optical transition in the metal-
lic (12,3) tube. The peak at 2.055 eV
originates from the third optical transi-
tion ES

33 in a semiconducting tube.
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5.2.2 Raman experiments

Raman measurements were performed on a micro-Raman setup as described in Sect. 2.2 in

backscattering geometry at room temperature. The Raman excitation energy was varied

between 1.87 and 2.15 eV using a tunable dye laser. To prevent laser induced heating, we

limited the laser power to ≈ 200 µW . [106, 107]. Similar to the Rayleigh experiments we

located the tubes by scanning the laser focus along the slit until a bright spot indicated

the presence of a nanotube. All spectra were normalized to laser power and integration

time. In order to correct the Raman intensities for the system response, we normalized

each spectrum to the intensity of the Raman signal of CaF2 (Sect. 2.1.2).

Figure 5.12 (a) shows the HEM Raman spectra for all excitation energies. The spectra

show two peaks, a broad peak (metallic G−) at 1540 cm−1 (FWHM= 48.5 cm−1) and a

Figure 5.12: (a) High-energy mode Raman spectra for excitation energies in the range of the Rayleigh-
scattering maxima of Fig. 5.11 (1.87 to 2.12 eV). G− and G+ show different resonance conditions. We
observe an additional peak at 1677 cm−1 with the same resonance condition as G−. (b) Spectrum
obtained at 2.04 eV excitation energy; such a spectrum would typically be called a “metallic” Raman
spectrum. Peaks are labeled by the associated phonons, LO or TO, where the superscript S indicates
the semiconducting and M the metallic nanotube. (c) At an excitation energy of 1.94 eV the G− but no
G+ peak is observed.

71



Chapter 5. The high-energy modes

125 150 175 200 225 250
Raman shift (cm−1)

In
te

ns
ity

 (
ar

b.
 u

.)

2.12 eV

2.04 eV

1.94 eV

1.85 eV

RBM 1

RBM 2

(a) (b)

Figure 5.13: (a) RBM spectra excited ad varying excitation energies. Two RBMs are observed corre-
sponding to two nanotubes in the sample. RBM1 (RBM2) shows similar resonance conditions as the G−

(G+) peak. (b) (top) Raman intensities of the radial breathing modes RBM1 (circles) and RBM2 (trian-
gles) as a function of excitation energy. Fitting a Raman resonance profile (Eq. 2.5) to the data yields
the transition energies marked by vertical dashed lines. The transition energies are slightly on the low-
energy side of the profiles due to incoming and outgoing resonance, see Sect. 2.1.3. (bottom) Rayleigh
spectrum of the sample. Transition energies obtained from Raman are in excellent agreement with the
peak positions in the Rayleigh spectrum.

narrow peak (G+) at 1590 cm−1 (FWHM= 5.6 cm−1). In addition, a small shoulder at

1580 cm−1 and an asymmetric peak at 1677 cm−1 is seen. In the Raman spectrum excited

at 2.039 eV [Fig. 5.12 (b)] both G− and G+ are present. Due to the metallic G− peak

this spectrum would typically be assigned to a metallic nanotube. [26, 28, 91, 101] While

the broad peak (G−) has its maximum intensity at 1.94 eV excitation energy, the narrow

peak (G+) appears only at excitation energies above this energy. This implies that the

G− and G+ peaks originate from different nanotubes with different resonance energies,

confirming the conclusion from the Rayleigh experiment that we have at least two tubes.

In the following we show that the spectrum in Fig. 5.12 (b) can easily be explained if

only the broad peak (G−) is related to a metallic tube, whereas G+ originates from a

semiconducting tube.

72



5.2 Isolated nanotubes

Figure 5.14: Kataura plot containing theoretical data by Popov et al. [21] (open and closed circles) and
experimental data (x-symbols) from Ref. [20]. Theoretical data are upshifted by ≈ 300 meV according to
Ref [21]. Results from this work, RBM1 and RBM2, are given by crosses. Considering screening effects
RBM1 is assigned to the metallic (12,3) tube. RBM2 cannot be assigned to a particular nanotube but
certainly originates from a semiconducting tube excited resonantly into the third ES

33 or forth ES
44 optical

transition.

In addition to the HEM spectra, we collected Raman spectra of the radial breathing

mode at the same excitation energies, shown in Fig. 5.13 (a). We observed two RBM peaks

at 217 cm−1 (RBM1) and 140 cm−1 (RBM2), corresponding to the two nanotubes. Both

RBM features go through resonance, with RBM1 (RBM2) having its maximum intensity at

excitation energy similar to that of the G− (G+) mode. From the correlation of resonance

energies we conclude that the G− feature originates from the same tube as RBM1 and G+

from the same as RBM2. In the top plot of Fig. 5.13 (b) we plot the intensities of both

RBM peaks as a function of excitation energy. Fitting a Raman resonance profile (Eq. 2.5)

to the data yields transition energies Eii of 1.937 eV for RBM1 and 2.04 eV for RBM2.

In Fig. 5.13 (b) we show how the resonance energies from the RBM intensity profiles

(top) nicely match the peak positions in the Rayleigh spectrum (bottom). Note that the

transition energies (dashed green line) in the Raman intensity profiles are slightly on the

low-energy side of the profiles due to incoming and outgoing resonance, see Sect. 2.1.3.

In order to assign the RBMs, and thus the high-energy G− and G+ peaks, to particu-
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Figure 5.15: Phonon frequencies as a function of nanotube diameter. Our results for the G+ peak
(semiconducting tube) and the G− peak (metallic tube) are given by the red and blue filled circles. (a)
Further data are exclusively LO phonons in semiconducting (red) and metallic (blue) tubes, given in
Ref. [24, 93, 102]. (b) As (a) for TO phonons. We also give the result for the shoulder on the low-energy
side of G+ (triangle). TO frequencies from Dubay et al. are the same for semiconducting and metallic
tubes. (a) and (b) Note that Ref. [24] and [93] are theory work while Ref. [102] presents results from
experiment.

lar chiral indices (n1, n2), we identify the RBM frequency and its corresponding Raman

resonance energy in an experimental or theoretical/empirical Kataura plot. [4, 5, 20, 108]

The Kataura plot in Fig. 5.14 shows theoretical data based on a non-orthogonal tight

binding model from Ref. [21] and experimental values (×-symbols) from Ref. [20]. Our

results for RBM1 and RBM2 are marked by crosses in Fig. 5.14. The transition energies

of nanotubes depend on the nanotube environment, whereas the RBM frequencies hardly

change [5, 64, 72]. Assuming negligible deviation of the RBM frequency and a red-shift

(159meV) of the transition energies in our sample compared to the data in Fig. 5.14, we

assign RBM1 to the metallic (12,3) tube. Although we cannot assign the second nanotube

to a specific (n1, n2) chirality, its RBM frequency and resonance energy clearly show that

it is semiconducting (see Fig. 5.14).

As a consequence of the (n1, n2) assignment, we can relate the high-energy modes G−

and G+ to a metallic and a semiconducting tubes, respectively, independent of assumptions

concerning the lineshape of G− and G+. This result supports previous experimental results

and theoretical predictions about a strongly broadened and downshifted LO phonon in

metallic nanotubes due to a Kohn anomaly [24,29,93,94]. As shown in Figure 5.16 5.16 we

can also confirm the observation of an asymmetric lineshape of the G− of isolated metallic

nanotubes [94].
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Figure 5.16: G− peak of the metallic nanotube excited
at 1.937 eV. To clarify the asymmetric lineshape we plot
a Lorentzian (dashed black line) and a Fano (red line)
lineshape on top of the data.

Concerning the G+ peak at 1590 cm−1 (G+) we can exclude that this peak originates

from the TO phonon of the same metallic tube as the G− mode because of the different

resonance conditions for the G− and G+ features. Furthermore the frequency of the G+

peak is higher than expected for the TO phonon in a metallic nanotube with a diameter

as the one we observed. Next to our results figure 5.15 (b) shows TO-phonon frequencies

as a function of nanotube diameter. While predictions from Ref. [93] show a large dif-

ference of the TO frequencies between metallic and semiconducting nanotubes, there is

no difference predicted in Ref. [24]. In addition we plot experimental results of the TO-

frequencies in semiconducting nanotubes from Ref. [102]. Regarding to the theoretical

predictions we would expect the TO of the metallic nanotube to be between ≈ 1570 and

≈ 1580 cm−1 (blue bare in Fig. 5.15 (b)). Assuming the same frequencies of TOs in metal-

lic and semiconducting nanotubes the frequency would be even lower at ≈ 1560 cm−1.

Only for nanotubes with large diameters (d > 5 nm) does the TO frequency approach

1590 cm−1.

Therefore, a lineshape like that of Fig. 5.12 (b) with both a broad and downshifted

metallic G− and an additional G+ peak located at 1590 cm−1 can best be explained by

the presence of at least one metallic and one semiconducting tube. Even if only the

metallic lineshape as shown in Fig. 5.12 (c) is observed and the experiment is limited to a

small number of excitation wavelengths, we cannot exclude the possibility that the sample

contains an additional semiconducting nanotube that does not benefit from resonant en-

hancement. It seems that often a ”metallic“ spectrum like that in Fig. 5.12 (b) arises from

a small bundle instead of a single metallic nanotube. [26, 28, 29, 101] In larger diameter

metallic tubes, the G− is less downshifted, and the spectrum will be more similar to that

75



Chapter 5. The high-energy modes

of semiconducting tubes. [24, 93]

After assigning the observed high-energy modes to LO vibrations, the question arises

whether we can observe the TO phonons as well. In fact, the G+ peak (LO of the semicon-

ducting tube) shows a small shoulder [see Fig. 5.12 (b)], which we fit to a weak peak lying

9 cm−1 below the principal G+ feature. For a semiconducting nanotube with a diameter

of 1.8 nm, as in our experimental sample, theory and experiment predict the TO phonon

frequency 10 to 20 cm−1 below the LO frequency (see Fig. 5.15 (b)) [24,93,102]. Therefore

we assign the shoulder of the G+ peak to the TO phonon in the semiconducting nanotube.

When only the metallic nanotube is in resonance [Fig. 5.12 (c)] we cannot resolve a TO

peak next to the G− peak. The reason for the absence or very weak intensity of the TO

peak might be that the (12,3) tube is close to a zig-zag tube for which the TO phonon is

Raman forbidden by symmetry. [48]

The high-energy mode spectra in Fig. 5.12 shows an additional feature at 1677 cm−1

which was also observed in nanotube ensembles and which we refer to as the super-HEM

(Sect. 5.1.3). As this peak has the same resonance condition as the G− peak, we can assign

it to the metallic (12,3) nanotube. An assignment of the different super-HEMs (sHEM)

observed on a nanotube ensemble in Sect.5.1.3 is rather difficult due to the large number

of tubes in resonance. But with the exact (n1, n2) assignment of one sHEMs in this section

we are able to assign also sHEMs observed in Sect. 5.1.3. Based on these assignments we

proposed these tubes to be the second-order overtone of the IR-active mode. Furthermore

we found a diameter dependence of the sHEM which might explain, why we do not observe

a sHEM from the semiconducting nanotube in Fig. 5.12. Fig. 5.17 shows the diameter

dependence of the sHEM (black line) found in Sect. 5.1.3. Although the error of the graph

is very large, we expect the sHEM of the semiconducting tube to be at a similar frequency

as the LO phonon mode (G+). Therefore the sHEM might be outshined by the strong

signal of the G+ peak.

Finally we want to make a remark on the defect induced Raman mode (D-mode) which

has not been investigated systematically in this work. We recorded the D-mode spectrum

at an excitation energy of 1.999 eV where both nanotubes are observed [Fig. 5.12 (a)].

This spectrum showed no signal of the D-mode, which agrees with our general experience

on separated nanotubes in solution.

5.3 Summary

The presence of metallic nanotubes in a sample is usually probed by Raman experiments

on nanotube bundles. It was assumed that the broadening and downshift of the G− peak

– the so called metallic lineshape – is correlated to the bundling and that this peak is
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Figure 5.17: Frequency of the super-HEM as a func-
tion of tube diameter found in Sect. 5.1.3. With in-
creasing diameter the frequency of the sHEM ap-
proaches the position of the LO phonon mode of
semiconducting nanotubes. The sHEM signal of
semiconducting tube is probably at the same posi-
tion as the G+ peak.

therefore not observed in nanotubes separated in solution. We show that the metallic

lineshape of the HEM is observed also in nanotube ensembles separated in solution, al-

though, the intensity of the metallic G− is weaker in separated tubes compared to bundles.

By correlating the resonance profiles of the HEM and the RBM, we could assigned the

broad and downshifted G− to metallic nanotubes. From Raman and rayleigh experiments

on a small bundle of one semiconducting and one metallic nanotube we can furthermore

conclude that the appearance of a G+ peak at 1590 cm−1 in addition to the broad and

downshifted metallic peak indicates the presence of a semiconducting nanotube next to the

metallic tube. This implies that also the G+ peak in the Raman experiments on nanotube

ensembles originates exclusively from semiconducting tubes.

By comparison of our data to theoretical predictions with respect to the diameter

dependence of the peak positions we assign the broad downshifted metallic peak (G−)

as well as the sharp semiconducting peak (G+) to LO phonons. In metallic tubes the

frequency of the LO phonon is downshifted due to a strong electron phonon coupling to

electrons close to the Fermi level (Kohn anomaly).

On the low energy side of the HEM for nanotube ensembles in solution we observe a

series of small peaks with different resonance conditions. Based on a similar comparison

as used in case of G− and G+ we can assign these small peaks to the TO phonons of small

diameter semiconducting nanotubes.

Furthermore we can assign peaks which are observed on the high-energy side of the

HEM to particular (n1, n2) or groups of tubes. Tentatively we assign these peaks to the

second-order Raman process of the infrared-active phonons.
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Chapter 6

Conclusions

In this work we present Raman scattering experiments on ensembles of nanotubes in

solution and individual suspended nanotubes.

In the first part of this work (Chap. 4) we study the maximum Raman intensities for a

large number of (n1, n2) including semiconducting and metallic nanotubes. We show that

the strong differences between the RBM Raman intensities of the first and second optical

transition of semiconducting nanotubes can be related to a larger broadening parameter of

the second transition compared to the first transition. This is in accordance with a shorter

live times of carriers excited into the second optical transition compared to carriers in the

first transition. Also intensity differences between metallic and semiconducting nanotubes

can be related to a stronger broadening of metallic transitions rather than differences in

the electron-phonon coupling.

On the other hand intensity variations as a function of nanotube family, chiral angle and

diameter are related to variations in the Raman matrix elements, primarily the electron-

phonon coupling. The dependence of the RBM intensity on the family and the chiral angle

can be correlated to the position of the electronic transition with respect to the K point.1

We find a small maximum of the electron-phonon coupling for tubes with the transition

close to K-Γ symmetry line and a large maximum for tubes with the transition close to

the K-M direction. Close to K-K line we find a minimum, where the electron-phonon

coupling is close to zero. Due to the trigonal warping of the graphene bandstructure

the minimum electron-phonon coupling is obtained for nanotubes with a chiral angle of

≈ 20◦ and with a family index of either ν = +1 or ν = −1 depending on the electronic

transition. Surprisingly, the Raman intensities of nanotubes with transitions exactly on

the K-M symmetry line are extremely weak. In order to clarify whether this is due

1Therefore the line of allowed states which is involved in the particular transition has to be plotted on
top of the graphene bandstructure in according to the zonefolding approximation.
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to the broadening of the optical transition or a weak electron-phonon coupling further

experiments are necessary.

The dependence of the RBM Raman intensity on the nanotube diameter is related to

three effects. First, with increasing diameter the broadening of the electronic transitions

decreases which causes the intensity to rise. Second, with increasing diameter the RBM

frequency decreases, which reduces the distance between incoming and outgoing resonance.

This again causes the intensity to rise with diameter. The observed overall decrease of

the intensities with diameter can therefore only be explained by a decrease of the electron

phonon coupling.

In the second part of this work (Chap. 5) we study the lineshape of the high-energy

mode. From experiments on a tiny bundle of one metallic and one semiconducting nan-

otube we conclude that the broad and downshifted G− peak is related to the LO phonon

in metallic nanotubes. We show that the observation of a sharp peak at 1590 cm−1 in-

dicates the presence of an additional semiconducting nanotube. The peak at 1590 cm−1

in semiconducting nanotubes is again related to the LO phonon. The energy of the LO

phonon in metallic nanotubes is broadened and downshifted in comparison to the LO in

semiconducting nanotubes due to the effect of a Kohn anomaly. The fact that we see

the downshifted and broadened G− peak of metallic nanotubes in the tiny bundle as well

as in the nanotube separated in solution clarifies that this peak is an intrinsic feature of

metallic carbon nanotubes.

On nanotube ensembles dispersed in solution we observe several features in addition

to the major G− and G+ features. We can assign a serious of peaks on the low energy

side of the HEM to particular (n1, n2) or groups of nanotubes. This leads to a diameter

dependence of this feature. By comparison to theoretical prediction we assign this peak

to the TO phonon in semiconducting nanotubes. In order to strengthen this assignment

the measurements should be extended to higher and lower excitation energies.

Furthermore we find peaks on the high energy side of the HEM which we tentatively

assign to the second-order Raman modes of the infrared-active phonon. To clarify this

assignment a detailed study of this feature and the intermediate frequency modes is nec-

essary. The frequency of the first-order phonon falls into this region and might be visible

due to imperfections in the nanotubes.
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