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Chapter 1

Introduction

1.1 Problem

1.1.1 Computer Languages - What Are They Good For?

Computer languages are used foremost as a means of communicating the demands
of the computer programmer to the machine that is supposed to process those de-
mands. For this purpose, they need to be formal and unambiguous, as well as
mechanically or automatically processable. High-level computer languages are also
used as a more or less abstract way of formulating algorithms, i.e. descriptions of
processes that solve certain problems to be used both by humans and machines.
Towards this purpose, computer languages have been developed which allow ab-
straction from the underlying architecture of the machine and to focus more on the
process description and program architecture, leaving the machine-specific details
to the automatic interpreter of the program. Modern programming languages even
include constructs that allow re-usability of existing programs to avoid constant
repetition of the same work by the programmers, and formal automatic or semi-
automatic reasoning about programs to ascertain specific properties they need to
fulfils to meet their purpose, e.g. that the number of computation steps needed
by the program is no larger than a certain amount to ensure that the program
terminates before the computation result is needed.

1.1.2 Documentation: Formal vs. Natural Language

Normally, computer programs are often not easily readable1, and thus not easily
understandable. In the modern world of computers, computer programs have be-
come so large and complex that it is imperative they are well documented, using
natural language, so that they can be understood by the human reader. But they
should also be well documented/specified for the machine, e.g. for automatically
finding errors in the program.

However, the problem with natural language documentation is that in general it
lacks the aforementioned properties of formality and unambiguity, therefore often
being a source of confusion to human readers, even if the documentation is in their
mother-tongue. The problem of course becomes even worse when natural language
barriers have to be crossed between writer and reader2.

To avoid such confusion, these properties of computer languages could make
them ideal as a means of communication between programmers as well, easing re-

1because of lots of parentheses, strange and arbitrary precedences between different operators,
etc.

2e.g. when everybody uses English, although it is not their mother-tongue
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use or refactoring of programs for new goals or new programming environments and
finding of errors.

The reasons for the unreadability of common computer languages, even though
they resemble natural languages in some respects superficially, are mostly of a tech-
nical nature, stemming from restrictions imposed upon computers in the early days
of computer language development like very limited memory and slow processing
speed.

1.2 Solution

1.2.1 Natural-Language-Like Computer Language

The ideal solution for the understandability problem of computer programs would
be a computer language that is as close as possible to natural language, and thus
better understandable, but is still formal, unambiguous and efficiently processable
by machines. This would make the language both useful as a tool for communication
between humans as well as between human and machine. Such a language would
have to resemble natural language more closely than common computer languages,
or at least allow using those formal constructs normally used by the programmers
in their specific domains, and thus would be easier to read, write and understand3.

1.2.2 Different Approaches To Parsing

Parsing Natural Language

A lot of the understandability problems of computer languages come from the dif-
ferent ways that languages are processed by humans and machines. In natural
languages, parsing, i.e. syntactic analysis and disambiguation, is often guided or
helped by semantic analysis and heuristic inferences from the context.

Parsing Common Computer Languages

In contrast, syntactic analysis of a computer program is normally done without
reference to context or semantics whatsoever, but instead simply uses rules de-
scribed by a context-free grammar. If that were not enough restriction already,
this grammar has to be syntactically unambiguous (i.e. allowing only one syntactic
interpretation of each sentence), or given additional rules to allow at most one syn-
tactic interpretation (like precedence rules between infix operators). Certain classes
of these grammars allow the automatic construction of efficient parsers using a for-
mal method, implemented by a computer program (e.g. yacc), that way largely
avoiding human programming errors during this task.

Parsing Natural-Language-Like Computer Languages

Taking the idea of the processes to parse natural languages, this thesis proposes
a different way of automatically parsing a computer language which allows user-
defined natural-language-like constructs, called mixfix operators. By tightly cou-
pling the syntactic and semantic analysis, using semantic and context information
for syntactic disambiguation4 purposes, we will show that natural-language-like
computer languages are possible which have all the necessary properties and for
which there exist, nevertheless, efficient parsing methods.

3e.g. by allowing mathematicians or physicists to write down their formulae the same way they
would write them on paper

4i.e. parsing
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1.3 Motivation

Many computer languages have built-in natural-language-like constructs. This in-
dicates that their designers agree that such constructs make a language more read-
able. Following this train of thought, a language where the users can decide which
natural-language-like constructs to include into their programs could have even
greater readability, at least to the users themselves. Supposing that people with
similar backgrounds speak the same language (i.e. use the same domain-specific
nomenclatures etc.), it is conceivable that such programs are likely to be more un-
derstandable to other people with a similar background, as well, even without a lot
of additional documentation.

We introduce a programming language which gives the users the freedom to
design their own dialects of the language, hoping that this will make reading, un-
derstanding, but also writing of computer programs easier, thus heightening pro-
ductivity of software development and support, as well as re-usability of computer
programs.

Many software engineering tasks have been proposed to minimize the cost of
development and support of software. Readable programming languages could be
an important aspect to further this effort. Instead of taking the state-of-the-art in
computer languages as a given that cannot be made better, then introducing lots of
methods to deal with the problems caused by the hard-to-understand programming
languages used, we propose to use languages that cause fewer of these problems by
being hopefully less hard to understand to begin with.

1.4 Algorithmic Approach

1.4.1 Integration of Parsing and Checking Phase

Instead of the classical pipe-line approach5, where there can be no feedback from the
semantical analysis toward the syntactical analysis, we propose to split the parsing
phase into a coarse parsing phase, where built-in meta constructs are parsed6, fol-
lowed by a fine parsing phase which is integrated with the checking phase, thereby
being able to use inferred semantic properties for syntactical disambiguation.

The fine parsing phase is split again into two parts: a context-free parsing phase
where all purely syntactical disambiguation is taken care of, and a type and prece-
dence dependent7 parsing phase, where types and user-defined precedence relations
are taken into account for resolving any further ambiguity.

1.4.2 Efficiency

We will show that this approach is efficient enough for normal programming pur-
poses, especially in the positive case that there is only one type-correct syntactical
interpretation for each parsed expression. We will also point out factors which make
the algorithm — understandably — less efficient, developing some guide-lines for
the usage of the features of our language.

5lexical analysis – scanning, syntactical analysis – parsing, semantical analysis – type and
context checking

6like declaration keywords fun , var and prec
7i.e. context-sensitive
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1.5 Outline

In chapter 2, we will introduce our concept of mixfix operators informally and give
many examples of mixfix operators common in existing programming languages to
show their usefulness, acceptance and expressiveness in general. Afterwards, we
will also informally explore the different causes for ambiguity in mixfix expressions.
Finally, we will summarize the goals we want to pursue with our language and the
means necessary to achieve them.

In chapter 3 we will formally introduce the tools to describe the solutions to
the ambiguity problems, namely the concepts of mixfix operator signatures, back-
bone grammars, operator fixities, precedence relations, unification and two-level
grammars.

Chapter 4 will define the mixfix expression language together with its type
system and its integration into a functional language that allows the introduction
of mixfix operators.

Chapter 5 formally explores the problem of ambiguity and discusses common
approaches to its solution. Furthermore, the different causes of ambiguities for
mixfix expressions and how they can be dealt with are discussed.

Chapter 6 defines the mapping of the given mixfix operator signatures and ad-
hoc precedence relations into two-level grammars with grammar constraints incor-
porating our language restrictions.

Chapter 7 generalizes common grammar transformations to our concept of two-
level grammars, allowing the automatic derivation of top-down parsers for the mixfix
expression language for such grammars.

Chapter 8 discusses an implementation of our approach using a one-level Earley
parser and type-driven top-down disambiguation of the resulting parse tree repre-
sentation. We show the results of experiments supporting our thesis and discuss
several optimizations that we find useful. We also add some guidelines for the usage
of the features of the mixfix expression language to avoid less efficiently parsable
programs.

11



Chapter 2

Overview

To make a language more flexible and more readable, the idea of mixfix operators
that can be introduced into the language by the user comes to mind.

However, this can cause a lot of problems, mainly by the introduction of possible
ambiguities into the language which cannot be allowed in programming languages.

This thesis explores the possibilities of how these problems can be dealt with
efficiently, especially during syntactic analysis, i.e. parsing of the language.

2.1 Notes on Notation

In the following section, we give a little overview of some notations to make the
following chapters more understandable.

2.1.1 Mixfix Operator Declaration

We follow the classical algebraic approach to declare mixfix operators in signatures
where every operator is given a type.

Because they are mixfix operators, we also have to give a pattern that defines
the form of the operator declaring the places of the operands in the operator by use
of placeholders.

Example 1 In the signature in figure 2.1 which describes operators for expressions
for the natural numbers, we declare

• the sort nat as a nullary mixfix operator,

• the constant 0, also as a nullary mixfix operator of type nat,

• the successor function succ as a unary prefix operator,

• the addition function + as a binary infix operator on natural numbers,

• the identity function ( ) as a unary closed operator on natural numbers.

Declaring the variables x and y, we can then give a pattern based definition of the
addition operator.

12



fun nat : SORT
fun 0 : nat
fun succ : [nat]→ nat
fun + : [nat , nat]→ nat
fun ( ) : [nat]→ nat
var x : nat
var y : nat
def x + 0 == x
def x + succ y == succ(x + y)

Figure 2.1: Signature of example 1

We use mixfix operators to both describe the type language and the value lan-
guage. So, mixfix expressions can be used both on the right hand side of declarations
of mixfix operators and on both sides of their definitions.

2.1.2 Built-In Mixfix Operators

To be able to declare mixfix operators for types, we need the predefined sort symbol
SORT (a nullary operator), as well as the infix arrow operator → to describe
function types.

Since the operand types in the type declarations can also be complex mixfix
expressions (which are normally sequences of more than one symbol), we need to
distinguish them syntactically from each other, denoting them as operand lists like
[nat , nat] (which are basically products of types). Thus, there must be other built-
in mixfix operators that allow us to denote such lists of terms, i.e. the operators
[ ] and , and the empty operator for denoting the empty list.

2.1.3 Mixfix Operator Variables

Finally, we need to be able to distinguish the variables in any declaration from the
other operators. But we do not want an implicit variable declaration because this is
a too limited approach which would allow only single-symbol variables. Therefore,
we enforce the separate declaration of variables which allows them to be complex
mixfix operators as well.

Again, there are type variables for generic type declarations, but also variables
for value parameters to be considered. We declare variables syntactically like other
mixfix operators with a pattern and a type, but using the distinguishing keyword
var instead of fun at the beginning of the declaration. All operator declarations
and definitions in a scope are considered quantified over the variables that occur
in them. Thus, every variable can have a different binding in each declaration or
definition. This saves us from having to repeat the same variable declaration for
every generic declaration.1

Example 2 In the signature in figure 2.2, we declare a sort variable A.
We also declare a generic sequence type operator seq to be able to describe the

types of the sequence operators.
All the following declarations are generic over the variable A, but it can have a

different binding for every one of these declarations.
1This approach mimics the use of variables in PROLOG with the difference that in that language

variables are distinguished from other operators syntactically via their capital first letter.
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The indexing operator [ ] that is supposed to select the indexed element from
a sequence is a full-fledged mixfix operator as it is neither purely prefix, infix nor
postfix in any classical sense.

var A : SORT
fun seq : [SORT]→ SORT
fun <> : seq A
fun :: : [A , seq A]→ seq A
fun + + : [seq A , seq A]→ seq A
fun [ ] : [seq A , nat]→ A

Figure 2.2: Signature of example 2

But why do we want to be able to declare variables also as mixfix operators? In
our view, it can be useful in different ways.

Example 3 To define the reduce operator / | (see figure 2.3) that reduces
a list x1 :: . . . :: xn :: <> over an infix operator ⊕ with a start element e to
x1 ⊕ . . .⊕ xn ⊕ e, we need to declare several variables.

First of all, all operators and variables used in the definitions are generic over
the type variables A and B.

Since we want the definition of the reduce operator parameterized with the oper-
ator ⊕ , it also has to be declared as a variable. As we can see, this allows us to
use it mixfix fashion on the right-hand-side of the definition of the reduce operator.

Finally, declaring the rest list as the very complex nullary mixfix variable x2 ::
. . . :: xn :: <> lets us denote the definition of the reduce operator in a way that is
very close to our intuition.

var A : SORT
var B : SORT
var e : B
var x1 : A
var x2 :: . . . :: xn :: <> : seq A
var ⊕ : [A , B]→ B
fun / | : [seq A , [A , B]→ B , B]→ B
def <> / ( ⊕ ) | e == e
def x1 :: x2 :: . . . :: xn :: <> / ( ⊕ ) | e == x1 ⊕ x2 :: . . . :: xn :: <> / ( ⊕ ) | e

Figure 2.3: Signature of example 3

Summarizing, we enforce the declaration of variables outside of the declarations
and definitions they are used in for the following reasons:

1. to allow them to be mixfix operators which can also be used syntactically like
other mixfix operators,

2. to distinguish them from other mixfix operators

3. to be able to easily re-use them in different declarations (as a shorthand
notation for ∀-quantification of these declarations).
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Also, this way of declaration is more robust against later change of the signa-
ture.2

2.2 Mixfix Operators — General Motivation

Mixfix operators ranging from simple ones like those in figure 2.4 to more complex
ones like in figure 2.5 are built into almost every programming language because
they heighten the readability of programs.

fun int : SORT
fun 0 : int
fun + : [int , int]→ int
var A : SORT
fun ( ) : [A]→ A

Figure 2.4: Simple Mixfix Operators

fun [ ] : [array A , nat]→ A
fun if then else : [bool , A , A]→ A
fun for := to do : [var int , int , int , stmt]→ stmt

Figure 2.5: Complex Mixfix Operators

However, while every programming language allows the definition and use of
prefix operators and of variable or constant identifiers by the user, very few pro-
gramming languages allow the definition of operators, much less variables, of other
fixities. Even if they do, the freedom to do so is always either very restricted or the
language analyzation tools deal very poorly with them, both of which is unsatisfac-
tory.

This thesis shall explore how it can be possible to give users the ability to define
and use their own powerful mixfix operators in a full-fledged functional program-
ming language. The concepts we develop are, however, not restricted to functional
languages. Our explorations using a functional language can be seen as only an
example to introduce mixfix operators into any kind of textual programming lan-
guage.

We deem a language incorporating user-defined mixfix operators to have greater
expressive power and possibly a more natural feel to it than standard programming
languages, functional or otherwise. User-defined mixfix operators can help to cus-
tomize the language, and hopefully this shall allow easier writing and reading of
programs for the non-computer-scientist, if used carefully.

Unfortunately, introducing mixfix operators without any restrictions can cause
similar problems in parsing the language as those encountered when trying to parse
natural languages. But while natural languages inherently have ambiguities that
humans resolve heuristically, having to deal with possible misunderstandings, pro-
grams must not be ambiguous. A compiler, unlike a human, cannot safely make

2In functional languages like Opal and Haskell where all undeclared names in definitions are
seen as variables, later introduction of a constant operator with the same name into the program
changes the semantics of the definition.
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probabilistic decisions to assign meaning to a program. There should be no misun-
derstanding possible between the compiler and the programmer. Consequently, the
compiler needs to be able to find all ambiguities in a program and either resolve
them deterministically or revoke the program as (possibly) ambiguous, helping the
user to resolve the (possible) ambiguities.

Because of this problem, we will focus mainly on the issue of ambiguities that
user-defined mixfix operators might introduce into the language, especially the dif-
ferent causes of ambiguities that exist and how they can be found, avoided and
controlled efficiently.

Efficiency will be treated both in respect to parsing and from the viewpoint
of the user. The amount of information that needs to be provided in addition to
the actual program by the user shall be kept as small as possible to make mixfix
operators a useful tool.

We will critically discuss common approaches to parsing programming languages
which use unambiguous context-free grammars to describe the language and derive
parsers for it. We will give reasons why these approaches are ill-fitted for dealing
with user-defined mixfix operators and thus are the main reason why such operators
have not been incorporated with great success into programming languages.

Motivated by this and inspired by the success of using two-level grammars in
dealing with the parsing of natural languages, we will give an approach using such
grammars derived from the mixfix operator declarations and the ad-hoc precedence
relations given by the user. These grammars shall be unambiguous by construction
as long as certain properties in regard to the information given by the user are
satisfied.

The restrictions on the mixfix operators also shall be as natural as possible,
i.e. easy to understand by users that are not experts in programming language
theory. Thus, they shall be largely independent of the parsing scheme or type
system to be used, instead following only from the natural causes of ambiguity that
we will discuss. We will try to avoid all idiosyncratic design decisions that favour
one approach over another, when different approaches to a problem are possible,
leaving the path to all possibilities open.

Instead, we will give the users of the language tools to make these decisions – if
necessary – themselves, either locally or globally. One such tool is the introduction
of user-defined precedence relations on the user-defined operators. Such so called
ad-hoc precedence relations will only describe a preference of the user how the
operators shall be used when several semantically valid syntactic interpretations
might be possible. This is different from the normal approach where precedences
always enforce a certain syntactic interpretation, regardless of the actual existence of
ambiguity or semantic validity of that interpretation, often making the programmer
use a lot of syntactic structuring where none should be necessary.

2.3 Motivations for Mixfix Operators

Mixfix operators are present in almost every programming language and therefore,
obviously useful in general.

This section shall give some examples on how user-defined mixfix operators could
help to introduce such normally built-in operators into a language that does not
have them built in.

2.3.1 Common Types of Mixfix Operators

Most programming languages allow the programmer to introduce parametric oper-
ations only as some kind of functions or procedures. But the possibilities as to how
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to use these functions syntactically, i.e. denote expressions involving their applica-
tion or instantiation, are often very limited. In most cases, either only prefix or,
sometimes, also postfix applications (OPAL/Haskell) are allowed.

Binary Infix Operators

In more advanced scenarios, it is also possible to define binary infix operators and
restrict their usage syntactically (Prolog [34] / OPAL [31] / Haskell [18]) by associat-
ing them with precedence levels or precedences. More restrictively, some languages
allow the overloading of the built-in infix operators (C++).

Example 4 Something like the specification for sequence operators in figure 2.6
could be written in Opal.

Here, the definitions for L1 and L2 are equivalent because of the RIGHT BRACKET
precedence declarations (given as pragmas) which signify that any occurrence of the
different binary operators should be seen as bracketed to the right.

sort A
sort seq[A]
fun <> : seq[A]
fun :: : A**seq[A]→ seq[A]
fun ++: seq[A]**seq[A]→ seq[A]

/$ RIGHT BRACKET[ :: ][ + +] / $
/$ RIGHT BRACKET[ + +][ :: ] / $

fun x : A
fun L1 : seq[A]
fun L2 : seq[A]
def L1 == x :: x :: <> + +x :: <> + +x :: x :: <>
def L2 == x :: (x :: (<> + +(x :: (<> + +(x :: (x :: <>))))))

Figure 2.6: Signature of example 4

Arithmetic Operators

However, most programming languages also already have some built-in infix oper-
ations for the built-in types.

Example 5 Using a language that can define operator patterns with placeholders
and add precedences for them like in 2.7 (via prec and eqprec declarations, as
defined in definition 30 on page 53), we can declare the standard precedence for
arithmetic operators.

The one we are giving here allows disambiguation of the usual arithmetic ex-
pressions without parentheses, but it also allows additional unambiguous ones like
4 ∗ −5.
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fun + : [int , int]→ int
fun − : [int , int]→ int
fun ∗ : [int , int]→ int
fun / : [int , int]→ int
fun ∧ : [int , int]→ int
fun − : [int]→ int

eqprec ( + )( − ) -- same precedence for + and -
eqprec ( ∗ )( / ) -- same precedence for * and /
prec ( + ) + -- + is left associative
prec ( ∗ ) ∗ -- * is left associative
prec ( ∧ ) ∧ -- ∧ is left associative
prec ( ∗ ) + ( ∗ ) -- * is precedent to +
prec ( ∧ ) + ( ∧ ) -- ∧ is precedent to +
prec ( ∧ ) ∗ ( ∧ ) -- ∧ is precedent to *
prec (− ) + -- prefix - is left precedent to +
prec (− ) ∗ -- prefix - is left precedent to *
prec (− ) ∧ -- prefix - is left precedent to ∧

Figure 2.7: Signature of example 5

Common Built-in Real Mixfix Operators

We call operators that do not have to be either prefix or postfix, mixfix operators
of which the prefix and postfix operators (as well as the infix operators ) are just
special cases.

But there are operators even more complex than infix operators, some of which
are very common in most programming languages.

Example 6 Operators that build number or string expressions could be expressed
by mixfix operators like the ones in figure 2.8 on the lexical level (with the restriction
that there is no white-space allowed in between the different tokens). The terminal
symbols digit and stringchar represent character classes, digit containing all
digit characters and stringchar containing all characters that can occur in a string
literal. They are thus a shorthand notation saving us from having to write down a
declaration for every possible character in these classes.

As we can see, we define empty operators (those with pattern ε) for both con-
structions which contain neither terminal symbols nor operands. Such operators
in general are very useful for optional parts of expressions and allow us to have
single-digit numbers and empty string literals. We also define the string-denotation
operator ” ” which is both prefix and postfix.

fun digit : [digits]→ digits

fun ε : digits
fun digit : [digits]→ number

fun stringchar : [chars]→ chars

fun ε : chars
fun ” ” : [chars]→ string

Figure 2.8: Signature of example 6
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Invisible Mixfix Operators

Apparently, some mixfix operators do not even contain any terminal symbols, but
only operands (if any), making them neither prefix, postfix nor infix. We call these
operators invisible. Several of these are common in most programming languages.

Of special interest to us are those invisible operators that are nullary (i.e. empty
operators for optional expression parts), unary (i.e. converter operators for implicit
coercion) and binary (i.e. concatenation operators for juxtaposition), because these
occur most often. That is why we do not want to forbid them in general as user-
defined operators.

Example 7 In programming languages, where there are primitive types with in-
clusion relations, there exist unary invisible converter operators for implicit type
coercion. These can be mimicked with operators like the ones in figure 2.9.

fun int : SORT
fun long : SORT
fun float : SORT
fun double : SORT

-- int ⊆ long ⊆ float ⊆ double
fun : [int]→ long
fun : [int]→ float
fun : [int]→ double
fun : [long]→ float
fun : [long]→ double
fun : [float]→ double

Figure 2.9: Signature of example 7

To avoid problems of circular application of invisible operators, we will introduce
restrictions on their applicability in the course of this thesis which prevent the
occurrence of these problems.

The invisible operators can also be used for other purposes like in the following
example.
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Mixfix Operators for Container Types

Example 8 The mixfix operator signature in figure 2.10 would allow the denotation
of comma-separated display or comprehension expressions like {1 , 5 + 3 , 7} or
{a|a > 5}3. This is achieved by combining several different kinds of mixfix operators,
including converters and empty operators.

The indexing operation [ ] to be used on array or map expressions is another
example of a full-fledged mixfix operator.

We introduce the type variable operators A and B which allows us to introduce
type constructor operators generic over these variables.

var A : SORT
var B : SORT
fun ∗ : [SORT]→ SORT
fun + : [SORT]→ SORT
fun ε : A∗
fun : [A + ]→ A∗
fun , : [A , A + ]→ A+
fun , : [A , A]→ A+
prec , ( , )

fun | : [A , bool]→ A∗

fun seq : [SORT]→ SORT
fun array : [SORT]→ SORT
fun set : [SORT]→ SORT
fun bag : [SORT]→ SORT
fun map to : [SORT , SORT]→ SORT
fun maplet from to : [SORT , SORT]→ SORT

fun < > : [A ∗ ]→ seq A
fun { } : [A ∗ ]→ array A
fun { } : [A ∗ ]→ set A
fun { } : [A ∗ ]→ bag A
fun 7→ : [A , B]→ maplet from A to B
fun { } : [(maplet from A to B) ∗ ]→ map A to B

fun [ ] : [array A , nat]→ A
fun [ ] : [map A to B , A]→ B

Figure 2.10: Signature of example 8

3Such expressions might look strange in a functional language at first, but here we are not
concerned with the semantics or implementation details of such constructions, but only with their
parsing. We are aware that the denotation of set comprehensions necessitates mechanisms to
identify the variables the set is quantified over.

20



Application and Tupling Operators

Most languages allow the definition of functions that can be applied to tuples. Both
these constructions, application and tupling can be treated as mixfix operations.

Example 9 Tuples are similar to arrays in form, but more complex in typing,
because they require structures over types to describe them. Since we allow the
introduction of mixfix operators also as type constructors, this leads us to the multi-
level mixfix signature in figure 2.11.

We declare an auxiliary type constructor commalist over sequences of types
which we can use to describe all comma lists where the types of the individual el-
ements correspond to the types in the type-sequence. For example, the expression
3 , ”foo” would be of type commalist(nat , string).

The type constructor product in turn describes the tuples, i.e. comma-lists
inside parentheses, corresponding to a sequence of types.

Finally, the application operator allows the denotation of prefix application
of a function to an argument of its domain type. If the domain type is a product
type, the function can be applied to tuple expressions, as expected.

fun seq : [SORT]→ SORT
fun <> : seq SORT
fun :: : [SORT , seq SORT]→ seq SORT

fun commalist : [seq SORT]→ SORT
var A : SORT
var B : SORT
var L : seq SORT
fun ε : commalist <>
fun : [A]→ commalist(A :: <>)
fun , : [A , commalist(B :: L)]→ commalist(A :: B :: L)

fun product : [seq SORT]→ SORT
fun ( ) : [commalist L]→ product L

fun : [A→ B , A]→ B

fun int : SORT
fun long : SORT
fun float : SORT
fun double : SORT
var i : int
var l : long
var f : float
fun d : double
fun g : product(int :: long :: float :: <>)→ double
def g(i , l , f) == d

Figure 2.11: Signature of example 9
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Programming Statements

Finally, most built-in programming statements can not be characterized as only
prefix or postfix or even infix operations, but could be easily defined as mixfix
operations.

Example 10 The imperative programming statements of Pascal could be declared
using the mixfix operator signature in figure 2.12.

The boolean operand of the type stmt has been introduced because of the so-
called dangling else ambiguity caused by the operators if then and if then else .
If the operand is true, the statement does not have the operator if then at the
end. Only those statements which have that property are allowed between then and
else. This is why there is only one correct interpretation for the right-hand-side of
statement P. Thus, the ambiguity is solved by the typing of the statement operators.

fun int : SORT
fun bool : SORT
fun stmts : SORT
fun stmt : [bool]→ SORT
fun var : [SORT]→ SORT
var A : SORT
var m : bool
fun if then : [bool , stmt m]→ stmt false
fun if then else : [bool , stmt true , stmt m]→ stmt m
fun while do : [bool , stmt m]→ stmt m
fun for := to do : [var int , int , int , stmt m]→ stmt m
fun := : [var A , A]→ stmt true
fun repeat until : [stmt m , bool]→ stmt true
fun begin end : [stmts]→ stmt true
fun ε : stmts
fun : [stmt m]→ stmts
fun ; : [stmt m , stmts]→ stmts

fun P : stmt m
var S : stmt true
def P == if m then while m do if m then S else S

Figure 2.12: Signature of example 10

Conclusion

Apparently, the declaration of mixfix operators is closely related to the definition of
grammars and type systems on the resulting parse trees which is one of the reasons
for the approach we will take with dealing with user-defined mixfix operators.
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2.3.2 Why User-Defined Mixfix Operators

Naturally, there could be multitudes of applications where a user-defined mixfix
operator would be much more expressive than the given ones of a language, since
they can resemble natural language constructs and common complex mathematical
constructs more closely than a simple prefix function application expression. The
readability of programs could thus be greatly enhanced by their usage with all
advantages that this entails from a software engineering standpoint.

Especially in non-computer-science communities which nevertheless use a lot of
programming (like physics, mathematics, engineering, economics or psycholinguis-
tics), but do not necessarily share the same nomenclatures or denotation styles in
their theoretic work, it could greatly benefit both the programming process as well
as the understanding of the program for others in the same field, if those nomen-
clatures and styles could be introduced into the used programming language by the
users themselves and consequently freely used.

We can go even further and say that programming languages incorporating
user-defined mixfix operators could be customized to fit the native language used
by the programmers, as that is probably the language they tend to think in and
understand best. Such customizations could lead to very literate programming
(in one language) instead of the usual possibilities the users are stuck with, i.e.
using only the programming language’s host language, e.g. English, or mixing the
constructs of the host language with identifiers from the native language or using
some sort of preprocessing outside of the language to mimic the host language
constructs with native ones, basically adding the need for another compiler.

However, programmers don’t want to have to write compilers to make their
programs more readable — most of them wouldn’t know how or want to —, they
want to get on with solving the problems at hand and to do that use a language
that gives them the possibility to write readable programs from the start.

It should be noted that such language-customizations can also lead to situations
where programs from one community (or individual) are totally unreadable to other
people (outside this community). But the same is true for domain-specific language-
solutions anyway (and possible in any all-purpose programming language), so we do
not see a drawback in this. As long as the syntactic libraries used by a community
are accessible by those that want to read their programs, processes of making such
programs understandable to them should be possible (for instance by mapping the
operator set of a program into another operator set and then using an according
automatic program transformation).

2.3.3 Common Practices

Domain Specific Languages

Almost no general programming language allows the definition of mixfix operators
by the user. Thus, if a programming community opts for more readable programs,
they often have to design a programming language dedicated specifically for their
domain of interest. The result, not very surprisingly, is often less than acceptable
from a compiler constructor’s point of view, because it cannot be efficiently parsed
or compiled4.

On the other hand, if compiler construction experts are involved in the language
design process, common practices that are mostly aimed at deriving an efficient
compiler often restrict the language so much that readability is greatly hampered
for the actual users.

4The author of this thesis has had to deal with these kinds of problems designing the first TTCN-
3[12] compiler, TTCN-3 being a language designed and standardized by the telecommunication
industry and ETSI[13] for the specification of test cases
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So, there seems to be a dichotomy between readability and parsing efficiency,
even though that sounds like a contradiction. The easier readable a text is, the
easier it should be parsable.

All-Purpose Programming Languages

The other choice open for the users is to use a general all-purpose programming
language that is not specifically tailored to any domain and thus suited equally
(badly) to most of them regarding readability. The established general programming
languages force their syntactic idiosyncrasies and restrictions on the user, only so
that the compiler is able to efficiently parse and compile the programs. A lot of
design decisions taken by the language-designers serve this purpose, so that in effect
the compiler or at least the parsing algorithm to be used for a language influences
the language itself, instead of the other way around.

This has very undesirable side-effects. If the language is not so restricted that
every program is easily parsable5, the programmers need to understand the parsing
process to write efficiently parsable programs. They have to add a lot of formal
noise (parentheses, annotations, etc.) to the essence of their program which leads
to distortion and unreadability, clouding the actual intention of the programmer.
Also, when the compilation process changes for the language, for whatever reason,
formerly easily parsable programs might suddenly be less easily parsable because
the parsing algorithm was not part of the language specification6.

Context-Free Grammars and LR Parser Generators

Normal compiler architectures use parsers for unambiguous context-free grammars
as the tool for the syntactic analysis of the program. This means that every program
should only have one syntactic interpretation describable by such a grammar. If this
syntactic interpretation obeys certain semantic constraints (like type- correctness)
imposed by the semantics of the language, the program is accepted by the compiler
and can be processed further. Otherwise, it is rejected.

To make a context-free language unambiguous, it is often restricted in such a way
that it belongs to the class of languages which are LR(k)-parsable (which is known
to be unambiguous). For these languages, comfortable bottom-up parser generators
exist which make the actual implementation of the parser easy. Mostly only the
grammar has to be provided and actions added to it that the parser should take
on recognising the different language constructs (normally constructing an abstract
syntax-tree that is the basis for further analysis).

One restriction aimed at unambiguity of context-free grammars is the use of
precedence levels for the different operators that are built into the language. If such
an operator has a higher precedence than another, then it should be applied first
in an expression which uses a combination of both operators.

Example 11 If ∗ has a higher precedence than + , then a ∗ b+ c ∗ d should be
interpreted as (a ∗ b) + (c ∗ d).

Such merely syntactic restrictions often result in behavior which seems very
strange to users which do not know all of the reasons behind them, especially
when combinations of operators not known from basic algebra are involved. Ex-
pressions which are completely type-correct and semantically unambiguous in the
unrestricted language are nonetheless rejected by the parser. Adversely, seman-
tically unambiguous, but syntactically ambiguous expressions in the unrestricted

5most are that restricted
6which it almost never is
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grammar are accepted by the restricted grammar, but with the wrong syntactic
interpretation, which leads to their rejection by the semantics check, afterwards.

Example 12 Take any of the possible precedence level relations for the operators
in the signature in figure 2.13. Even though the definitions of E1 , E2 , E3 , E4 are
all unambiguous, no precedence level relation satisfies all of them and E4 cannot be
satisfied by any precedence level relation.

fun 1 : nat
fun + : [nat , nat]→ nat
fun <> : seq nat
fun :: : [nat , seq nat]→ seq nat
fun # : [seq nat]→ nat

def E1 == # 1 :: <> + 1
-- (# (1 :: <>)) + 1
-- ( :: ) > (# ) > ( + )

def E2 == # 1 + 1 :: <>
-- # ((1 + 1) :: <>)
-- ( + ) > ( :: ) > (# )

def E3 == # <> + 1 :: <>
-- ((# <>) + 1) :: <>

-- (# ) > ( + ) > ( :: )
def E4 == # <> + 1 :: # 1 + 1 :: <> :: <>

-- ((# <>) + 1) :: (# ((1 + 1) :: <>)) :: <>

Figure 2.13: Signature of example 12

Even if typing is not considered, there are nevertheless many context-free lan-
guages which are not in LR(k) and still unambiguous. Also, even in most ambiguous
languages, as we know from natural languages, lots of expressions are still unam-
biguous. Allowing the users to freely define their own mixfix operators can easily
and will in most cases make the language generally ambiguous. Those are some
reasons why normal programming languages don’t allow it and restrict the mixfix
operators built into the language so much. However, this approach to disallow all
constructs that introduce the possibility of ambiguity restricts the languages more
than necessary, excluding not only all the pathological ambiguous cases, but also
many perfectly valid unambiguous ones. Thus, the main goal of this work is to
find ways of dealing efficiently with the latter kind of expressions without having
to restrict the language in general on a purely syntactic level.

Generalized Parsers and Semantic Filters

Because of their inherent ambiguities, user-defined mixfix operators demand differ-
ent parsing algorithms as the grammar or the parser of the language must change
according to the operators defined to recognize them. This is not easily incorporated
into the classical parser generator framework, another reason why these operators
are normally avoided.

Even if generalized parsers are used that can deal with arbitrary, possibly
context-free grammars by computing all syntactically correct interpretations, the
ambiguity problem still arises and cannot be dealt with efficiently in general as
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mixfix expressions can have an exponential or even infinite7 number of syntactic
interpretations.

Example 13 If we take the ambiguous variant of the dangling else problem, as
introduced by the operators in the signature in figure 2.14, and an expression with
2n if-statements but only n else-clauses (which has length ω(n)) there are ω(3n)
syntactic interpretations possible.

fun if then : [bool , stmt]→ stmt
fun if then else : [bool , stmt , stmt]→ stmt
fun S : stmt
fun B : bool
def E == (if B then)2n S (else S)n

Figure 2.14: Signature of example 13

Example 14 If we have a binary operator ⊕ and nullary operators xi then an
expression x0 ⊕ . . . ⊕ xn has close to 4n syntactic interpretations.

To find a single unambiguous syntactic interpretation amongst these myriads of
possible ones, so-called semantic filters can be used. This technique is explored by
Visser [19], [45] and Thorup [40], [39].

If such filters are employed after parsing, in most cases they cannot be efficient
and their integration with the parsing algorithm to make them more efficient is
complicated (and very close to our two-level grammar approach), especially in a
parser with a changing grammar during parse-time8.

We can conclude that the state-of-the-art approaches to parsing do not seem to
be adequate for dealing with user-defined mixfix operators.

2.3.4 The Problems to Solve

Obviously, the main problem caused by freely user-definable mixfix operators is
the possible ambiguity of the expression language. Thus, if the programmer can
introduce mixfix operators, several questions arise.

• How can we ensure that expressions using these operators remain syntactically
unambiguous, i.e. have exactly one type-correct syntactic interpretation?

• How can we ensure that, if several syntactic interpretations are possible, the
one intended or preferred by the programmer is chosen by the compiler?

• How can we provide efficient parsing means for possibly ambiguous expres-
sions?

• How can we resolve the ambiguities that may arise between the mixfix opera-
tions introduced by the programmer and those of the built-in core language,
i.e. the meta operators for annotations and introduction of operators?

All these problems shall be addressed in this thesis and we will try to solve
them in a satisfactory manner, yielding a very expressive language that is still
efficiently parsable in the positive case that there actually is an acceptable type-
correct syntactic interpretation for every expression to be parsed. Searching for such

7if invisible operators without restrictions are allowed
8due to local introduction of operators
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an interpretation of an expression which has none or several of them can still be
very inefficient in some cases and can be solved only heuristically and pragmatically
(e.g. by using a parsing timeout and rejecting some expressions as too complex to
parse).

The key to our solution is the use of two-level grammars that are derived from
certain kinds of given mixfix operator sets, called mixfix operator signatures and so
called ad-hoc precedences for these operators in such a way that these grammars,
together with a few restrictions, are unambiguous by construction. This is a very
small, but nevertheless very powerful, subclass of the class of two-level grammars.
It is known that for arbitrary two-level grammars there cannot be efficient parsing
algorithms dealing with their languages in general.

Therefore, we will characterize those signatures and precedence relations for
which it is possible to find such efficient algorithms. We will give these characteri-
zations as efficiently computable properties and discuss them formally. We also will
discuss the possibilities of parsing the languages of this class of two-level grammars
efficiently.

2.4 A Functional Mixfix Expression Language

Before exploring the possibilities for ambiguity in mixfix expressions, let us envision
the kind of functional mixfix expression language we want to develop.

We want to be able to integrate the following constructs into a functional mixfix
expression language:

• user-definable mixfix operators with ad-hoc precedences

• higher-order functions and built-in application and composition

• type and scope annotations

• overloading and genericity

• partially instantiated operators (called sections)

The functional host-language itself must provide additional means to declare
and define the actual mixfix operators to be used and their ad-hoc precedences, as
well as mechanisms for modularization, export and import.

2.4.1 Goals

Let us summarize the goals that we want to achieve with our functional mixfix
expression language.

• unambiguous expressions

All accepted expressions of the language shall be type-correct, as well as syn-
tactically unambiguous. When there is an ambiguity, the parser shall detect
and report it. The set of unambiguous accepted expressions shall be as large
as possible.

• efficient analyzation and parsing

The techniques employed to cope with the language, i.e. acceptance and rejec-
tion of expressions, shall be efficient, preferably as efficient as normal parsing
approaches. It is our view that by early, local disambiguation the efficiency
of the parsing of otherwise ambiguous grammars is greatly heightened as op-
posed to global filtering of the set of parse trees, though the latter might be
able to recognize more unambiguous expressions.
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• independence of parser paradigm

Since ambiguity is a concept that is independent of the paradigm which is
used to parse the language, the users should only be required to understand
the ways their introduced operators could cause ambiguity, but not necessarily
the parsing algorithm, to be able to denote efficiently parsable, unambiguous
expressions.

Thus, all ambiguities are treated from the viewpoint of the user-defined oper-
ators instead of the viewpoint of the parsed grammar.

• freedom and power of expressiveness

By allowing the definition of almost arbitrary mixfix operators, the freedom
for the denotation of expressions is greatly enhanced. By adding the abil-
ity to mix these operations with high-level functional language constructs,
greater readability can be achieved in such a language. Also, domain-specific
notations can be introduced more easily.

• composability for modularization

Since the grammars should be derivable from different modules of the program,
they shall be fully compositional, allowing for easy integration.

2.4.2 Means

What means will we use to arrive at the above goals?

• mixfix operator signatures and ad-hoc precedences

The means for the programmer to describe the mixfix operators are mixfix op-
erator signatures where each mixfix operator is assigned a functionality, i.e. a
type, describing the types of the operands and the result of the operator. Ad-
ditionally, the user can give ad-hoc precedences between operators, describing
preferred syntactic interpretations, if necessary or desirable.

• composable two-level grammars

From these signatures and precedence relations, specific kinds of unambiguous,
composable two-level grammars and grammar constraints are generated that
allow the efficient parsing of expressions containing these operators.

• two-staged parsing

The parsing process becomes two-staged, where the first stage parses the
coarse structure of the host language and collects the user-defined operators
and precedences for a scope, and the second stage parses the unparsed frag-
ments inside that scope as mixfix expressions with the help of the grammars
derived from the signatures.

2.5 Causes of Ambiguity

The restrictions on the mixfix operator signatures and precedences imposed by our
language shall be as few and as natural as possible to make them as understandable
as possible to the users. We will examine all causes for ambiguity following naturally
from the form and functionality of the given operators and the type system. Every
restriction we impose shall be motivated directly by these causes of ambiguity.

Unlike in classical language design approaches, the restrictions shall not be dic-
tated by restrictions of the possible parsing algorithms to be used for the grammars.
Though the grammars can be optimized for different parsing algorithms, this should
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not matter to the user. The user should not have to know about the parsing algo-
rithm to be able to write efficiently parsable programs.

Since our grammars only recognize a subset of the unambiguous expressions, we
would have to use the more general and possibly inefficient approaches to include
the rest of the unambiguous expressions into our recognized language. However, if
we want to remain efficient, this should be avoided.

Some possible causes for ambiguity are only syntactic in nature, while others also
depend on typing/semantics which is why ignoring typing completely in describing
an unambiguous grammar does not seem sensible.

2.5.1 Ambiguity of Mixfix Expressions in General

In this section, we will describe our concept of user-defined mixfix operators and
the mixfix expressions that can be formed using such operators.

Mixfix Operator Patterns: Operand Separators and Placeholders

Definition 1 Every mixfix operator pattern is a sequence of n separators, inter-
leaved by n− 1 operand placeholders s0 s1 . . . sn.

Definition 2 A separator is a (possibly empty) sequence of token symbols which
is produced from the actual input by lexical analysis9 before parsing. Each separator
separates either:

• two operand placeholders,

• the first placeholder from the beginning of the operator,

• the last placeholder from the end of the operator.

Definition 3 If a separator between two operand placeholders is the empty se-
quence, these operands are called adjacent.

We refer to the placeholders inside an operator by the index of the separator
after that placeholder. So, they are numbered 1 .. n.

Definition 4 If separators si−1 and si are both non-empty the i-th placeholder is
called enclosed.

Syntactic Operator Categorizations: Fixity, Openness, Visibility, Arity

Definition 5 If a separator at the beginning of a pattern is empty, the operator is
called left-open, otherwise it is called left-closed. An operator with an empty last
separator is called right-open, if the last separator is non-empty, the operator is
called right-closed.

Definition 6 Left-closed operators are also called prefix operators, while right-
closed operators are also called postfix operators. Operators which are both prefix
and postfix are called closed operators.

Example 15 The built-in parentheses operator ( ) : [A] → A is an example of a
closed unary operator.

9The lexical token analysis is outside the scope of this thesis. We assume that an input sequence
of characters is translated by the lexical analysis into a sequence of token symbols by grouping the
character symbols together into token symbols
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Definition 7 Operators where all separators are the empty token sequence are
called invisible. All other operators are called visible.

Definition 8 The arity of a mixfix operator pattern is equal to the number of place-
holders in the pattern.

Definition 9 The outer operands of a mixfix operator pattern are those operand
placeholders which appear before the first non-empty separator and after the last
non-empty separator in that pattern.

The inner operands of a mixfix operator pattern are those operand placeholders
which appear after the first non-empty separator, but before the last non-empty
separator in that pattern.

Example 16 The operator pattern if then else has the four separators if,
then, else and ε. It is a visible prefix operator which is right-open and has no
adjacent operands. Its arity is 3. It has two inner operands (after if and after
then) and one outer operand (after else).

Mixfix Expressions

A mixfix expression in general is either a pattern of a nullary mixfix operator (i.e.
one with no operand placeholders) or the substitution of the operand placeholders
in a non-nullary mixfix pattern with expressions which again are mixfix expres-
sions.10 An expression is thus a sequence of the separators of the operator pattern
interspersed with operand expressions between the separators.

This constructive top-down point of view already implies a syntactic interpre-
tation of such an expression, i.e. the application of the instantiated operator to its
operands. It thus also is closely linked to the notion of parse tree, as a parser tries
to find such an interpretation for an expression. Only those expressions which are
type-correct11 are of real interest to us. This means that typing can not be ignored
in parsing mixfix expressions.

Unfortunately, an expression, before parsing takes place, is just a sequence of
token symbols which can potentially have several of the above-mentioned type-
correct interpretations. A parser should assign an interpretation to such a sequence
of symbols. In our approach, this assignment should depend also on the context of
the expression, specifically, its demanded type, i.e. the expected result type for the
expression.

Ambiguous Mixfix Expressions

If there exist several interpretations of an expression which have the same type we
call the expression ambiguous. Such ambiguity comes in two flavours.

If we can find several structurally different parse trees for an expression, we have
a syntactic ambiguity.

If a single parse tree can have different meanings (i.e. type annotations inside
the tree that do not influence the type of the whole tree), we have a semantic
ambiguity.

In parsing, we are mostly interested in finding a unique type-correct parse tree
for every expression in any given demanded type where we ignore the possible
semantic ambiguities occurring in that tree. The semantic ambiguities should be
dealt with afterwards by a semantic analysis of the syntactically unambiguous tree
found by the parser.

10The case of the nullary operator is obviously just a special case of the instantiated operator,
since all operands in a nullary operator are already instantiated — there are none.

11i.e. where the types demanded for the operands of the instantiated operator match the inferred
types of the operand expressions it is applied to
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Operator Backbones

Another helpful syntactical characterization of expressions is the segmentation into
expression parts which we call operator backbones (which are not necessarily proper
expressions themselves). An operator backbone is the inner part of a visible operator
pattern where the operand placeholders are replaced by expressions (which again
can be segmented into backbones). The inner part of an operator pattern is the
sub-pattern that starts with the first token of the first non-empty separator and
ends with the last token of the last non-empty separator (i.e. everything except
the outer operands). It is obvious that only visible operators can have backbones,
because all invisible operators have only empty separators.

Example 17 The backbone of the operator pattern if then else is
if then else. The backbone of pattern + is +.

2.5.2 Ensuring Syntactic Unambiguity

Steps toward Syntactic Unambiguity

Our road-map of ensuring syntactic unambiguity of the expressions to be parsed
are the following three steps:

1. Find a unique segmentation of the token sequence into operator backbones of
visible operators. If more than one such segmentation is found, reject the
expression as backbone ambiguous. Also, find a unique segmentation of the
token sequence of each operator backbone into its separator and operand parts.
This means that it should be determined for every token of the backbone
sub-sequence which specific separator token of the instantiated operator it
corresponds to. Thereby, also the operand parts between the found separators
are uniquely identified. If no such segmentation can be found for one backbone
sub-sequence, then also reject the expression as backbone ambiguous.

2. Find a unique segmentation of the operand parts of adjacent inner operands
of the operator of each backbone to find out which sub-expression token se-
quence corresponds to which inner operand of the operator, respecting several
restrictions pertaining to adjacent operands12. If more than one possible seg-
mentation can be found, reject the expression as adjacent-operand ambiguous,
i.e. ambiguous because of violated adjacent operand restrictions.

3. Find a unique precedence ordering of the operator backbones towards each
other into a type-correct parse tree respecting natural and ad-hoc precedence
relations between operator instantiations, and also taking restrictions on in-
visible operators and adjacent outer operands into account. If more than one
such type-correct precedence ordering can be found, reject the expression as
ambiguous because of precedence conflicts.

Since inner and outer operands are again expressions, these steps must also be
applied recursively to the operand expressions to ensure that the whole expression
is syntactically unambiguous.

Parsing Methods

• We achieve step 1 by backbone parsing of the expression. This determines,
as long as there is no backbone ambiguity, both the unique segmentation of
an expression into backbones, as well as the unique mapping of each token
symbol to its place inside the backbone it occurs in.

12introduced in section 5.5
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• Step 2 is achieved by finding a unique left-weighted interpretation via left-
weighted parsing13 of the expression, we also find the unique segmentation of
the operand parts of the expression, if it exists. Actually, this achieves already
more than is necessary for step 2, i.e. it also assigns expression parts to outer
adjacent operands.

• Finally, we can achieve step 3 by finding a unique re-ordering of the operator
instantiations in the left-weighted parse tree (found in step 3) into a different,
type-correct parse tree consistent with the precedence relations, which yields
a syntactically unambiguous parse tree for our expression.

Example 18 Take the right-precedent operators

• a b : [T , T , T , T , T , T]→ T

• c : []→ T

• ε : []→ T

Determining the correct syntactic interpretation for the token sequence
c c a b c c c c a c c b a a c c b c c c c a b b c c c a b would be done in the
following steps:

1. backbone parsing would yield the following backbone structure:
c c (a b) c c c c (a c c b) (a (a c c b) c c c c (a b) b) c c c (a b)

2. left-weighted parsing would yield the following parse tree14:
((c c a b c c) (c c a c c b) a (a c c b c c) (c c a b) b c c) c a b

3. finally, reordering the nodes of the tree according to right-precedence of the
operators, we get:
(c c a b c c) (c c a c c b) a (a c c b c c) (c c a b) b c (c c a b)

Actually, since all unambigous mixfix expressions must have exactly one left-
weighted interpretation15, we could also first try left-weighted parsing of the ex-
pression. If this parsing process yields no ambiguity, then no backbone ambiguity
can exist, either. But, if there is an ambiguity, we have to use backbone parsing
to determine whether it is backbone ambiguity or ambiguity caused by adjacent
operands.

Proof of Unambiguity

• Once we have found a unique backbone segmentation of an expression, we only
have to resolve precedence ambiguity issues between these backbones in step
3. The ambiguity issues inside the backbones can be addressed separately for
each backbone, using step 2.

• Once we have found a unique segmentation of one backbone into its separator
and its operand parts, we only have to resolve ambiguity between adjacent
inner operands of that backbone, which is addressed in step 3.

• After having found for each inner backbone operand a unique segmentation
into the adjacent inner operands of the original operator pattern of that
backbone, we can apply the disambiguation process recursively on each in-
ner operand, because each operand must be a proper mixfix expression.

13see section 5.5.1
14the ε operator is not shown
15as we will show in section 5.5.1
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• After we have found a unique precedence order of the backbones, finding out
for each sub-expression, which backbone is the backbone of the root operator
and which backbone concatenation corresponds with which outer operand of
that operator (the same way as for inner operands), we have found a unique
parse tree. This means that there cannot be any syntactic ambiguity present.

If all of these tasks can be completed successfully, there is no more room for
ambiguity in the interpretation of the expression and parsing is thus successfully
completed. Therefore, we must identify those situations where one of the above
tasks cannot be (efficiently) completed and find the causes of the ensuing ambiguity.

Special care must be taken of the segmentation of adjacent operands and the
topological ordering of operator backbones into parse trees when invisible operators
are involved. Unfortunately, these operators introduce a lot of pathological ambi-
guity situations. But since there are very common and useful applications of such
operators, forbidding them cannot be the answer. That is why we have to devote
some effort to deal with invisible operators, even though it might seem pointless
from a cursory observation of these matters.

Since all of these kinds of ambiguity are independent from each other,
we will treat them separately in the rest of this section, assuming for each
of them that the other kinds of ambiguity do not arise simultaneously.

2.5.3 Fixity and Precedence

Precedence-related ambiguity is of a syntactic nature, causing an expression to have
different syntactic interpretations if conflicting precedences between operators are
defined. This can be the case if for any subexpression, it can not be unambiguously
determined, which operator is the root of the parse tree of that subexpression.

Right-Open vs. Left-Open Operators

Lemma 1 Precedence-related ambiguity can only occur if more than one open op-
erator instantiation is present in an expression. One of these instantiations must
be of a left-open operator and one must be of a right-open operator. The right-open
operator instantiation must occur to the left of the left-open operator instantiation
in the expression.

Proof 1 Assume that there occurs no backbone ambiguity and no ambiguity in re-
gard to adjacent operands.

• If there is no left-open operator instantiation present in the expression, then
all instantiated operators are prefix operators and thus, the root must be the
leftmost prefix operator and all its rightmost descendants (if it is a right-open
operator) also must be prefix operator instantiations. None of these descen-
dants can be the root of the expression, because then the leftmost operator
instantiation could not have a root operator above it, since it would have to
be a leftmost descendant of that root. Thus, the root of every subtree can
unambiguously be determined.

• Analogously, if there is no right-open operator instantiation present in the ex-
pression, then the rightmost postfix operator must be the root of the expression.

• If at least one left-open operator instantiation and at least one right-open
operator instantiation is present and all right-open operators appear to the
right of all left-open operators in an expression, then the root must be the
leftmost right-open operator and also the rightmost left-open operator, i.e. an
infix operator. If there were no such infix operator present, then the rightmost
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left-open operator could not have a root above it (as all operators to its right
are not left-open), neither could the leftmost right-open operator have a root
above it (as all operators to its left are not right-open). No ambiguity of its
rightmost operand can occur because there are no left-open operators present
and no ambiguity of the leftmost operand can occur as there are no right-open
operators present in it. Hence, the root of the tree and the roots of all subtrees
can unambiguously be determined.

• Thus, we need at least one right-open operator instantiation to the left of at
least one left-open operator instantiation to get a possible precedence-related
ambiguity, i.e. where both the left-open and the right-open operator could be
the root of an interpretation of a subexpression.

A common special case here is that an infix operator (i.e. one that is both
left-open and right-open) is instantiated twice in an expression.

Type-Related Precedence Ambiguity

Another condition for this ambiguity to occur is that the two operator instantiations
must both have the same result type, meaning that in the same context demanding
that type, both of them could be the topmost operator in an interpretation of
the expression. Because of this type-related issue, resolving precedence
ambiguities cannot be done reasonably without using type information.

Example 19 The situations that can occur can become quite complex, even if no
polymorphism occurs. The same expression can be ambiguous in one type and un-
ambiguous in another, as shown in figure 2.15. Here, the expression abs n − n! is
ambiguous for type nat, but it is unambiguous for type int.

fun abs : [int]→ nat
fun − : [nat , nat]→ int
fun ! : [nat]→ nat
fun n : nat
fun E1 : nat
def E1 == abs n − n!

-- abs(n − (n!))
-- (abs(n − n))!

fun E2 : int
def E2 == abs n − n!

-- (abs n) − (n!)

Figure 2.15: Signature of example 19

Such typical precedence-problems can be solved by letting the user add so called
ad-hoc precedence relations, stating the user’s preferred precedence of possibly am-
biguous operator instantiations. If one of the possibly ambiguous variants is pre-
ferred by the user, this variant will be accepted if it is type-correct. Otherwise,
both variants will be rejected for being possibly ambiguous.

Example 20 As can be seen in figure 2.16, no infix operators have to be involved so
that precedence-ambiguity can occur between non-prefix and non-postfix operators.

As these examples show, the programmer must be given a means to describe
ad-hoc precedence relations, as shown in example 5 on page 17. These user-given
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fun a : [B]→ A
fun b : [C]→ B
fun c : [A]→ C
fun e : [A]→ A
fun d : A
fun E : A
def E == a b c d e

-- a (b (c (d e)))
-- (a (b (c d))) e

Figure 2.16: Signature of example 20

relations must then also be checked for consistency, since they must fulfil several
criteria to be acceptable as a disambiguating tool. We will give a full account of
these conditions in section 5.6.2.

2.5.4 Converter Operators

We call unary invisible operators converters because that is what they are most
useful for — implicit type conversion. Unfortunately, these operators can cause
both syntactic and semantic ambiguities. For completeness sake, we still do not
want to forbid them entirely, since their usefulness is widely known from normal
programming languages. We thus have to restrict them in a manner that prevents
the above-mentioned ambiguity.

How does this ambiguity manifest itself? Since the result of an application
of a converter operator looks exactly like its operand, it is not clear how many
such instantiations take place. The number of such instantiations could even be
infinite. While typing might help sometimes in disambiguating such situations, it
is still prudent to generally forbid multiple applications of converters to the same
expression.

Example 21 If multiple applications of converters were allowed, there are infinitely
many parse trees for the expression a existent as shown in figure 2.17.

fun : [A]→ seq A
fun : [seq A]→ A
fun a : A
fun E : seq A
def E == a

-- ( )a
-- ( )(( )(( )a))
-- . . .

Figure 2.17: Signature of example 21

We must also take care with all converters where the operand type is unifiable
with its result type (which could be useful for normalization purposes). For such op-
erators, whenever they are applicable, it is not clear, whether or not an instantiation
should take place.

Hence, pragmatically, we declare that exactly one converter is applied to every
non-converted expression. For every type where no normalization operator is defined
by the user, we must assume that the identity normalization operator exists.

35



2.5.5 Backbone Ambiguity

As explained before, there is another cause of possible ambiguity unrelated to prece-
dence. It is purely syntactic in nature and is more related to the concepts of conflicts
occurring in the construction of unambiguous LR-parsers.

Operator Backbones

Abstracting from precedence between operators and of typing, every expression can
be seen as a sequence of so-called operator backbones (or operator backbone instan-
tiations). An operator backbone is the sub-sequence of tokens of an instantiated
visible operator, starting from the beginning of its leftmost visible separator up to
the end of its rightmost visible separator.

If an expression is split into such a sequence, the hierarchy between the operator
instantiations inside the expression is forgotten.

We call concatenations of backbones backbone expressions. The set of back-
bone expressions is a superset of the set of type-correct mixfix expressions, ignoring
precedence, typing and problems caused by adjacent operands.

A more formal definition of backbones can be found in section 3.2 on page 47.

Example 22 If v1, v2 and v3 are backbone expressions, the list of terminal symbols
of the form [for]++ v1 ++[ := ]++ v2 ++[to]++ v3 ++[do] is a possible
backbone of the operator with pattern for := to do .

We can derive a (generally ambiguous) context-free backbone grammar which
describes all such concatenations for a given set of mixfix operators (cf. 3.2.1). The
language recognized by this grammar is the set of backbone expressions.

In essence, this grammar abstracts from typing, precedences between operators
and adjacent operands inside operators in the following way:

• All left-open or right-open operands (and those directly and indirectly adja-
cent to them) are ignored (by stripping them from the operator patterns) and
the parse trees thus are flattened, causing the inner parts of the operators to
stand beside each other instead of being put into a hierarchy.

• The problems caused by adjacent operands between non-empty separators are
ignored by subsuming adjacent inner operands into a single operand. This
does not cause our backbone language to change, because adjacent operands
are already a concatenation of expressions. Therefore, since every expression
is a sequence of backbones, sequences of adjacent instantiated operands can
already be seen as a backbone expression.

It should be easy to see how a mapping from parse trees to backbone interpre-
tations (which is a sequence of sequence of tokens) can be defined (cf. definition 17
on page 47).

Thus, if an expression does not have an interpretation in the backbone language,
it cannot have an interpretation in the expression language.

Moreover, if an expression is unambiguous in the backbone language, all possible
syntactic ambiguity in the expression can only be related to precedence (which is
influenced by typing) or adjacent operands.

If, on the other hand, there is more than one backbone interpretation for an
expression we have an ambiguity in the expression language that can not in general
be resolved by use of precedences or by the restrictions on adjacent operands.

Therefore, we must reject expressions which have this so-called backbone am-
biguity as ambiguous during parsing, as we have no means to disambiguate them
(other than letting the user add parentheses).
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Backbone Ambiguity Caused By Overlap

The cause of backbone ambiguity are so-called overlapping expressions. Keep in
mind that every expression can be seen as a concatenation of separators.

There are two cases of overlap:

• A backbone expression can be the prefix of a suffix of another expression.
This situation we call full overlap.

• A backbone expression has a suffix (which must be a concatenation of sepa-
rators) which can also be the prefix of a backbone expression. This situation
we call partial overlap.

More generally, partial overlap occurs if there exist operators that can build both
the backbone expression u v and the backbone expression v w where u, v, w are all
separator concatenations. Then, the backbone expression u v u v w v exists and has
the two backbone grammar interpretations (u v) (u v w v) and u (v (u v) w) v .
Likewise, v u v w v w has the interpretations (v (u v) w) (v w) and v (u (v w) v) w
.

Example 23 Ignoring the ambiguities caused by precedences, the signature in figure
2.18 allows two type-correct interpretations of the expression | a | a | a |, either
abs(a) ∗ a ∗ abs(a) or abs(a ∗ abs(a) ∗ a) .

fun | | : [real]→ real -- abs
fun : [real , real]→ real -- ∗
fun a : real
def a == −1
def E == |a|a|a|

-- | (a (| a |) a) | == 1
-- (| a |) a (| a |) == − 1

Figure 2.18: Signature of example 23

Full overlap occurs if there exist operators that can build backbone expression
u v w where u and w are separator concatenations and v is a backbone expression.
In that case, the backbone expression u v v w exists and has the interpretations
u (v) v w and u v (v) w.

Example 24 Consider the backbones of the operators of the signature in figure
2.19. The backbone expression if B then is a prefix to the separator suffix
if B then S else of backbone expression if B then if B then S else. Therefore,
there are two backbone concatenations for expression if B then if B then S else S
possible, (if B then) (if B then S else) S and (if B then ((if B then) S) else) S.
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fun if then else : [bool , stmt , stmt]→ stmt
fun if then : [bool , stmt]→ stmt
fun B : bool
fun S : stmt
fun E : stmt
def E == if B then if B then S else S

-- (if B then) (if B then S else) S
-- (if B then ((if B then) S) else) S

Figure 2.19: Signature of example 24

Dealing with Backbone Ambiguity

Determining ambiguity of context-free grammars is undecidable in general (see [4]),
but we can try to find satisfying conditions for unambiguous backbone grammars. If
these conditions hold, all syntactic ambiguities that can occur must thus have to do
with precedences, as long as the restrictions for adjacent operands and converters
are adhered to.

Deterministic Parser Construction

The existence of a deterministic parser is one satisfying condition for unambigu-
ity. Therefore, we could try to construct such a parser, e.g. an LL(1), LR(1) or
LALR(1) parser. Constructing such a parser can be very costly, though.

Generalized Parsing

The most straightforward, still somewhat costly approach is the construction of a
generalized parser16 for the backbone grammar of the given operator set. Such a
parser normally has a worst-case time efficiency of O(n3) and yields a representation
of all syntactically valid derivations in a space of O(n2), where n is the length of
the expression.

After constructing such a parser from the given operator set, the mixfix expres-
sion in question can be parsed with this parser. If only one parse tree is yielded, the
grammar is unambiguous for that expression. The resulting parse tree then could
be used to find the right precedence by other parsing means17. If possible, such a
parser does not have to find all solutions, but can stop as soon as more than one is
found.

As a rule of thumb, we can assume that most mixfix expressions will either be
very short or highly regular and repetitive, as otherwise, a human reader would
seldom be able to understand them. Also, almost no programmer will explicitly try
to lead the parser up the garden path18. If the programmer has an unambiguous
understanding of an expression in mind, then the ambiguities actually occurring
are probably few. That is why such a general approach will make sense for most
programs.

Deterministic Operators

Yet another solution could be to analyze the operator set itself, finding satisfying
conditions that the construction of a deterministic parser would succeed without

16see [29] for a treatise on generalized parsers
17This approach was taken in our implementation, discussed in chapter 8
18except to test its capabilities which is pathological
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actually constructing it, or finding the reasons why it would not succeed, giving the
user hints why the operator set might be syntactically ambiguous.

A big help in making an operator set deterministic is the use of identifying
terminal symbols, i.e. terminals that only occur in one (possibly overloaded) oper-
ator. This is not surprising — the same trick is used to make normal programming
languages deterministic by using keywords for different constructions.

Operator Filtering

If the actual operator set is filtered for every expression as to the operators that can
actually occur in it by looking at the terminal symbols present in that expression,
this can greatly improve performance.

This approach might make sense especially for very long expressions where the
set of actually occurring operators is usually very small in comparison to the length
of the expression, so that the cost of analyzing the operators might be much lower
than the cost of actually backbone-parsing the expression.

Assertion

If the operator set and then the expression is found to be possibly syntactically am-
biguous, but the user knows that the expression is unambiguous anyway, they have
to be provided with means to assure the parser of unambiguity (i.e. by annotation).
If thus unambiguity can be taken for granted by the mixfix parser, it has to find
at most one correct solution and can then terminate instead of continuing a costly
search for other solutions which do not exist.

One should be aware, though, that this can be very risky, as the user can then
also write down ambiguous expressions and declare them as unambiguous which will
never be checked by the parser. If the user was wrong in assessing an ambiguous
expression as unambiguous, this could lead to serious problems if the parser chooses
a different interpretation as the one intended by the user.

Thus, a prudent programming environment should present, for every expression
annotated as unambiguous, the interpretation found by the parser to the user so
that the user can check their interpretation against the one found. Unfortunately,
such an approach is probably not useful in general practice. But it could safely
be applied to programs which already have been parsed and all expressions found
unambiguous to speed up re-parsing time if that should become necessary.

2.5.6 Adjacent Operands

Our general mixfix operator pattern definition allows for two phenomena uncom-
mon in most programming languages, non-unary invisible operators 19 and invisible
separators between operand placeholders.

We recall that two operands are called adjacent if the separator between them
is the empty sequence.

Again, for completeness sake, we do not want to generally forbid the occurrence
of these phenomena, but, since they can cause ambiguities in their interaction, we
must find restrictions that prevent these ambiguities.

Of course, first the question arises what invisible operators could be useful for
in general.

19Unary invisible operators do not clash with adjacent operands.
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Application Operator

Most importantly in our view, the absence of the application operator
: [A → B , A] → B which is an example of a binary invisible operator

would be very inelegant in a functional language with higher-order functions (i.e.
where operations can result in functions). But since this operator also has adjacent
operands, forbidding the concept of adjacent operands altogether but allowing this
special case would seem idiosyncratic at best.

Optional Expression Parts

Likewise, we can think of useful applications of nullary invisible operators, called
empty operators, especially as a possibility to leave out parts of expressions which
are optional.

Example 25 In the mixfix operator signature in figure 2.20, we introduce the empty
operator ε : A∗ to gain the possibility of denoting the empty sequence <> without
having to introduce the operator <> : seq A which should be avoided because it would
cause an backbone ambiguity with the operator < >: [A ∗ ]→ seq A.

var A : SORT -- type variable

fun + : [SORT]→ SORT -- non-empty commalist type
fun : [A]→ A+ -- type inclusion
fun , : [A , A]→ A+ -- commalist constructor
fun , : [A , A + ]→ A+ -- commalist constructor

fun ∗ : [SORT]→ SORT -- possibly empty commalist type
fun ε : A∗ -- empty comma sequence
fun : [A]→ A∗ -- type inclusion
fun : [A + ]→ A∗ -- type inclusion

fun seq : [SORT]→ SORT -- polymorphic sequence type
fun < > : [A ∗ ]→ seq A -- sequence bracket operator

Figure 2.20: Signature of example 25

Operator Name Expressions

The use of operator patterns stripped of all their operand placeholders, like
if then else instead of if then else , (which we call operator name expres-
sions), i.e. where all placeholders are instantiated with empty placeholder expres-
sions, is another sensible and useful one in a language where functions and operators
can be passed as parameters. We can allow such expressions because the lack of
backbone ambiguity between operator patterns ensures also the unambiguity of such
operator name expressions.

Prefix and Postfix Expressions

Unfortunately, beside these useful applications, there are myriads of unuseful or
downright stupid ones that the user could introduce with the help of our general
operator pattern concept. Lots of pathological ambiguity situations could arise
which must be prevented by either disallowing certain kinds of operator patterns
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containing adjacent operands or by rejecting expressions where these ambiguities
actually occur. Therefore, we must identify the situations where adjacent operands
can have ambiguities, i.e. where it is not clear where the first operand ends and the
next one begins.

Fortunately, our concepts of fixity help us in that respect. They allow us to
introduce the notions of prefix expression and postfix expression. A prefix expression
in our context is either an instantiation of a prefix operator (i.e. a visible, non left-
open operator) or of a left-open operator with a prefix expression as its leftmost
operand. A postfix expression can be defined analogously with the help of postfix
operators.

We will see that we arrive at a useful and unambiguous subset of our mixfix
expression language if we restrict the instantiation of adjacent operands with non-
empty expressions such that

• the left operand must be a postfix expression (it shall not have ε as its root
or one of its rightmost operands), while

• the right operand must be a prefix expression (it shall not have ε as its root
or one of its leftmost operands), and

• both operands shall not be concatenation expressions.

Example 26 If the above restrictions are adhered to, the instantiation of the op-
erator f with the postfix expression x + x as its left adjacent operand and the
prefix expression x + x as its right adjacent operand is unambiguous in the mixfix
operator signature in figure 2.21.

fun + : [nat , nat]→ nat
fun f : [nat , nat]→ nat
fun x : nat
fun E : nat
def E == f x + x x + x

-- unambiguous: f(x + x)(x + x)

Figure 2.21: Signature of example 26

While this might seem confusing at first glance because normally no such con-
structions exist in established programming languages, it significantly enlarges the
expression language where otherwise a lot of parantheses would have to be used
instead.

Of course, the notion of adjacent operands (with the exception of the concatena-
tion operator) could be abolished altogether to avoid such confusion, but since this
feature is manageable with a few sensible restrictions, we don’t deem this necessary.

However, it would not be a problem to leave this feature out of the expression
language altogether. This decision will be up to the language designers who try to
incorporate the ideas of this thesis into a programming language as fits their needs.

Empty Operands

We shall see that in case of visible operators with adjacent operands, we can also
allow these operands to be instantiated with empty operators. But to this end, we
must add the restriction that either both or none of the adjacent operands must be
instantiated with an empty expression so that it remains unambiguous.
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Instantiation of invisible operators with empty expressions must thus be dis-
allowed in general, as such instantiations would then yield the empty expression
which would lead to confusion with the empty operator.

Concatenation Operands

Finally, we have to relax our restrictions somewhat in regard to concatenation
operators, so that we can allow them to be left-precedent towards each other. Also,
it is only possible to have concatenation operators of one arity in one context, as
mixing concatenation operators of different arities can always introduce ambiguities.

2.5.7 Polymorphism and Semantic Ambiguity

There are two prominent kinds of polymorphism present in different functional
languages and as such, they might be interesting to incorporate into our framework,
as well.

One is so called parametric polymorphism, sometimes called genericity or simply
polymorphism, the other is ad-hoc polymorphism, also called overloading.

Genericity allows operators with a single definition to have types with type
variables, possibly allowing infinitely many instantiations of different type for these
operators, which nevertheless all have the same implementation.

Overloading, in turn, allows the same operator to have several definitions with
different implementations. That is why overloading can cause semantic ambiguities
in such a way that an expression can have two syntactically equal interpretations
of the same type which still have different semantics.

Example 27 There are no purely syntactic means (except type annotation) to dis-
ambiguate the expression | v | in the signature in figure 2.22.

fun | | : [real]→ real
fun | | : [vector]→ real
fun v : real
fun v : vector

fun E : real
def E == | v |

-- | (v : real) | : real
-- | (v : vector) | : real

Figure 2.22: Signature of example 27

The same is true for converter operators as they can have effects very similar
to those of overloading and can be seen as a shorthand way of defining a lot of
overloaded operators.

Example 28 Again, there are no purely syntactic means to disambiguate the ex-
pression | v | in the signature in figure 2.23. The converter operator has the same
effect as if there were two operators v : seq nat and v : seq seq nat.
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fun | | : [seq A]→ nat
fun : [seq nat]→ seq seq nat
fun v : seq nat

fun E : nat
def E ==| v |

-- | (v : seq nat) | : nat
-- | ((v : seq nat) : seq seq nat) | : nat

Figure 2.23: Signature of example 28

As we have already stated, we deal with the problem of converters by restricting
their use in such a way that exactly one converter is applied to every non-converted
expression, yielding a converted expression. To this end, we must introduce the
default identity converter which is applied when no other converter operator is
applicable. But this would still not help us dissolve the ambiguity in the above
example.

Fortunately, overload ambiguity cannot happen when only generic and no con-
verter or overloaded operators are used. Though differently typed interpretations
for the same parse tree are possible in the presence of genericity, these different
interpretions would still be mapped to the same implementation, i.e. they have in
essence only one semantics because every generic operator has only one implemen-
tation, regardless of its different instantiations20.

Unfortunately, while genericity does not introduce overload ambiguity, it often
introduces precedence ambiguity and thus should be handled very carefully, as well.

In general, it can be said that all three concepts, overloading, genericity and
converters can lead to a very fast explosion of ambiguity and thus should be used
only with great care.

Pragmatically, the following guidelines should be followed by the users to avoid
such explosion.

• import only those operators that are actually used

• use mostly only fully instantiated import of generic operators

• use converter operators and overloading sparsely

While this forces some additional workload onto the user, the amount of work
is comparable with other programming languages, and, as such acceptable.

20This is, of course, only true as long as the implementation cannot take the type information
into account.
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Chapter 3

Description Tools

In this chapter, we will formally introduce the concepts of mixfix operator signa-
tures, fixities, precedence relations and two-level grammars.

We will use OPAL-like functional programs to help define some of the concepts.

3.1 Signatures

Definition 10 A signature Σ is a pair (S , OP) where

• S is a set of sort symbols and

• OP is a set of operators op : t1 . . . tn → t0 where

– op is the operator name,

– t1 . . . tn ∈ S? are the operand types, and

– t0 ∈ S is the result type of the operator.

We will adhere to this classical approach, but we will also enlarge it somewhat
towards usability for mixfix expressions.

Definition 11 A mixfix operator signature is a signature with the following addi-
tional characteristics:

• There is a given set of separator token symbols and a special placeholder
token symbol . These symbols together make up the set token. Each operator
name is a sequence of token symbols called pattern of the form s0 s1 . . . sn
where each separator si ∈ token? is a sub-sequence with /∈ si.

• the sort symbols are represented by expressions of a type expression language
L (which in turn may be an expression language induced by another mixfix
operator signature). Therefore, we use the list denotation [t1 , . . . , tn] to
denote the operand types instead of t1 . . . tn because we need a way to find the
right segmentation of these expressions into the respective operand types.

• the set of operators OP = ( FUN∪ VAR ) is divided into two disjoint subsets.
The set VAR contains the variable operators, while the set FUN contains the
function operators.

For op : t1 . . . tn → t0 ∈ FUN we write:

fun op : [t1 , . . . , tn]→ t0
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For op : t1 . . . tn → t0 ∈ VAR we write:

var op : [t1 , . . . , tn]→ t0

For convenience sake we allow to write t instead of []→ t.

Example 29 A classical signature which only allows the declaration of prefix func-
tions and constants would look like the one in figure 3.1, declaring operators for
natural numbers, list expressions and boolean expressions.

fun nat : SORT
fun list : SORT
fun data : SORT
fun bool : SORT

fun zero : [] → nat
fun succ : [nat] → nat
fun plus : [nat , nat] → nat

fun empty : [] → list
fun cons : [data , list] → list
fun first : [list] → data
fun rest : [list] → list
fun concat: [list , list] → list

fun true : [] → bool
fun false : [] → bool
fun not : [bool] → bool
fun and : [bool , bool] → bool
fun or : [bool , bool] → bool
fun equals: [data , data] → bool
fun cond : [bool , data , data] → data

Figure 3.1: Signature of example 29

Now, using mixfix signatures, we can give more readable patterns for these
operators, as shown in the following examples.

Example 30 Suppose, that we have a given type expression language L0 with the
expression SORT ∈ L0, then we can define the mixfix operator signature Σ1 = (L0 ,
OP1 ) where OP1 is characterized by the declarations in the signature in figure 3.2.
The operators nat, bool and list are type constructor functions, while the op-
erator data is a type variable. This allows the denotation of generic types like
list data.
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fun nat : SORT
fun list : [SORT]→ SORT
fun bool : SORT
var data : SORT

Figure 3.2: Signature of example 30

Example 31 Suppose, the signature Σ1 induces the language L1 with {nat , bool ,
data , list data} ⊆ L1, then we can define the mixfix operator signature Σ2 =
(L1 , OP2 ) where OP2 is characterized by the declarations of the signature in figure
3.3. We declare the same operators as in the classical examples, but this time as
mixfix operators.

fun 0 : nat -- zero
fun succ : [nat] → nat
fun + : [nat , nat] → nat -- plus

fun <> : list data -- empty
fun :: : [data , list data] → list data -- cons
fun first : [list data] → data
fun rest : [list data] → list data
fun + + : [list data , list data]→ list data -- concat

fun true : bool
fun false : bool
fun ¬ : [bool] → bool -- not
fun ∧ : [bool , bool] → bool -- and
fun ∨ : [bool , bool] → bool -- or
fun = : [data , data] → bool -- equals
fun ⇒ | : [bool , data , data] → data -- cond

Figure 3.3: Signature of example 31

We will see in chapter 4 how an expression language is induced by a given mixfix
signature.

By combining different signatures where some operators describe the type lan-
guage of others, we get a so called multi-level signature. Unfortunately, the foun-
dation of multi-level signatures is outside the scope of this thesis. They have been
successfully used with mixfix operators by Visser [42] in the context of SDF+ASF
([41], [17], [45]).

Definition 12 The arity arity(op) of an operator op = (p : [t1 , . . . , tn]→ t0)
is equal to the number of operand placeholders in the operator pattern p.

A mixfix signature (S , OP) is well-formed if the arity of every operator op ∈ OP
is equal to the number of operands in its type, i.e the following property holds:

Property 1

∀i ∈ 0..n : ∃si ∈ (token \{ })? : op = (s0 s1 . . . sn : [t1, . . . , tn] → t0)
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3.2 Separators, Identifiers and Backbones

Definition 13 The separator tokens separatorTokens(s) of a token sequence s
are all tokens that are not the placeholder symbol .

fun separatorTokens : seq token→ seq token
def separatorTokens ==filter(λ x . x 6= ” ”)

Definition 14 A unique identifier (or short identifier) of an operator signature
Σ is a token that occurs only in one operator pattern in Σ. It thus identifies the
operator pattern it belongs to in regard to that signature.

Definition 15 The separators of an operator pattern are the sequences of separator
tokens before and behind placeholder tokens.

Thus, every n-ary operator pattern can be characterized as a sequence s0 s1 . . . sn
with /∈ si where all si are the separators.

fun separators : seq token→ seq seq token
def separators(<>) ==<> :: <>
def separators(” ” :: s) ==<> :: separators(s)
def separators(t :: s) ==(t :: S) :: R

WHERE (S :: R) ==separators(s)

Definition 16 The operator backbone pattern of a visible operator pattern is the
the sub-sequence of tokens starting with the beginning of the first non-empty sepa-
rator continuing to the end of the last non-empty separator of the operator pattern.
The separators of this sub-sequence are called the inner separators.

Example 32 The operator backbone pattern of the an operator pattern ⇒ |
would be ⇒ |.

The operator backbone pattern of if then else is if then else.
The operator backbone pattern of a b c is a b c.

Definition 17 An operator backbone instantiation (or short operator backbone
) is an operator backbone pattern where all placeholder symbols are replaced by
expressions.

We can define a function backbones which maps the parse tree of every expres-
sion to its corresponding sequence of operator backbones.

1. Suppose we have the operator instantiation op(T1 , . . . , Tn) where op =
s0 . . . sn

2. let Si be the sequence of operator backbones for each operand Ti and let Fi be
the flattened sequence of Si.

3. if slm is the leftmost non-empty separator, i.e. s0 , . . . , slm−1 are all empty
separators, then let L be the concatenation of the sequences S1 , . . . , Slm

4. if srm is the rightmost non-empty separator, i.e. srm+1 , . . . , sn are all empty
separators, then let R be the concatenation of the sequences Srm+1 , . . . , Sn

5. let M be the sequence slm Flm+1 slm+1 . . . Frm srm, i.e. where every inner
placeholder before separator si is replaced by Fi,

6. then, the resulting sequence of operator backbones for the overall exression is
L + +[M] + + R.
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3.2.1 Backbone Grammar

Since our mixfix expressions will be operator patterns where all placeholders are
replaced by expressions, we can interpret every mixfix expression also as a sequence
of backbone instantiations. We can describe these sequences with the following
construction.

Definition 18 A backbone grammar of an operator set is a context-free grammar
(VT , {E} , P , E) which describes all concatenations of backbone instantiations that
can be constructed with the help of the operator set. The function backboneRules
computes the set of production rules P of this grammar. The set of production rules
contains one rule for every operator pattern in the operator set. We arrive at such
a rule in the following way:

1. take the sequence of visible separators of the pattern

2. insert the nonterminal symbol E before every visible separator

3. take the resulting sequence of symbols as the right-hand-side of the production
rule, where the left-hand-side is the nonterminal E.

The set of production rules also contains at least the rule E ::= ε.

Example 33 The operator pattern if then else is mapped to the production
rule E ::= E if E then E else.

The operator pattern a b c is mapped to the production rule
E ::= E a E b E c.

We have chosen to make each backbone rule left-recursive, i.e. starting again
with the nonterminal E, because that way, the resulting grammar can be more
easily processed by generalized bottom-up parsers, which are less efficient for right-
recursive grammar rules. However, if one were to choose to derive a top-down parser
for a backbone grammar, it would be wiser to put the E after each visible separator
instead of before it.

The concept of the backbone grammar is useful to determine the occurrence of
backbone ambiguity. All expressions which only have one derivation in the backbone
grammar do not have a backbone ambiguity.

3.3 Fixities

Fixities are a tool to characterize mixfix operators (and in extension mixfix expres-
sions) syntactically.

Definition 19 The three characterizing features that we will need to restrict our
mixfix expression language are, whether an operator is empty, prefix or postfix.1

• An operator with pattern ε (where ε is the empty sequence) is called empty.

• An operator with pattern s0 s1 . . . sn is called prefix if s0 6= ε, i.e the
operator pattern is not empty and does not start with a placeholder symbol.

1Our characterizations of prefix and postfix operators is taken from [1]. It might seem unusual
at first glance. Classically, an operator is called prefix if written in front of its operand and postfix
if written behind its operand. Instead, we are only interested in whether or not operators start or
end in non-empty separators to see them as prefix or postfix. Of course, these characterizations
will coincide in most cases with the classical ones, but also include others, since we are much more
free in the declaration of operator patterns.
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• An operator with pattern s0 s1 . . . sn is called postfix if sn 6= ε, i.e the
operator pattern is not empty and does not end with a placeholder symbol.

Definition 20 Additional operator pattern characterizations are:

• We call an operator closed if it is prefix and postfix.

• We call a non-empty operator infix if it is neither prefix nor postfix.

• We call an operator invisible if it has a pattern s0 s1 . . . sn where all si = ε.

• We call an operator that is not invisible visible .

• We call an invisible operator of arity 1 converter .

• We call an invisible operator of arity greater than 1 concatenation.

• We call a non-empty non-postfix operator right-open .

• We call a non-empty non-prefix operator left-open .

3.4 Syntactic Interpretations and Parse Trees

Definition 21 A syntactic interpretation of an expression s0 E1 s1 . . . En sn is a
parse tree (s0 s1 . . . sn)(T1 , . . . , Tn) where Ti is a syntactic interpretation of
Ei and s0 s1 . . . sn is an operator pattern.

Sometimes, we write s0 (T1) s1 . . . (Tn) sn as the syntactic interpretation of
s0 E1 s1 . . . En sn.

Definition 22 A type-correct syntactic interpretation of an expression is a syn-
tactic interpretation op(T1 , . . . , Tn), with op : [t1 , . . . , tn] → t0, where each Ti
is type-correct and the inferred type of operand parse tree Ti is compatible with ti.2

Definition 23 A syntactic interpretation of an expression E in type τ is a type-
correct syntactic interpretation of expression E for which type τ can be inferred.

3.5 Unification

Our mixfix expression language can include generic operators, i.e. operators whose
types are quantified over type variables.

The types in our language are also expressions of the language itself, i.e. mixfix
expressions, where mixfix variable expressions can occur. We assume for every
definition which refers to a set of declared variables, that it is ∀-quantified over
these variables. Normalization which removes the quantor then yields types which
contain only free variables.

As is well known (i.e. from polymorphic functional languages like ml [26]), a
type-universe with polymorphic or generic types necessitates unification of type
expressions during the type inference process to determine whether or not two
generic types can stand in for the same type.

To that end, a unification algorithm must compute a substitution function which
can be applied to the types. Such a substitution function maps the free type vari-
ables to type expressions. To be a unification substitution for two types, it must,
if applied consistently to all occurrences to the substituted variables in both types,
yield the same result.

2The inferred type of Ti and compatibility will be discussed in section 4.4.
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Definition 24 A unification substitution for the types T1 and T2 is written [T1 :=
T2]3

If the substitution [T1 := T2] is applied to the type T, we write T[T1 := T2].
If there exists a substitution which applied to the types T1 and T2 yields the same

type T′, T1 and T2 are called unifiable.
If two types T1 and T2 are not unifiable, i.e. there exists no substitution function

to make them equal, the substitution [T1 := T2] is defined as λT . ⊥, i.e. the
function that returns undefined for every type it is applied to.

A simultaneous substitution computed by simultaneously unifying all the pairs
(Ti , T′i) for all i ∈ 1 . . . n is written [Ti := T′i]

n
i=1 or [T1 := T′1 , . . . , Tn := T′n].

It is the same as the normal substitution [(T1 , . . . , Tn) := (T′1 , . . . , T′n)], where
we must assume that the comma operator exists.

The first requirement for unification to work is that our types must be structures,
which means terms where an operator is applied to an operand list. Thus, we view
the types as their unambiguous interpretations, i.e. parse trees, which always consist
of a constructor, which is the root operator, applied to a sequence of operands which
again are parse trees. The leafs of the trees thus have to be nullary operators.

However, we shall write down the respective types by using mixfix expressions
where possible to facilitate reading.

Instead of [seq [seq [A[]]] := seq [B[]]], we would write [seq seq A :=
seq B].

Definition 25 A substitution is type-consistent if all variables are substituted by
expressions whose type is unifiable with the type of the variable4.

In our multi-level type universe, we are only interested in type-consistent sub-
stitutions when inferring types.

Algorithms for computing term unification substitutions can be found in [3] or
[27].

3.5.1 Unification and Higher-Order-Functions

Even though we are dealing in our functional language with higher-order functions
which may appear both as value and as type expressions, both on the value as well
as the type level, we are not faced with the undecidability problems of higher-order
unification, as treated in [8].

The reason for this is, that we only unify first-order type terms (with the restric-
tion that the type annotations of the terms must also be unifiable without need for
type-consistency), disregarding semantic equalities of these terms, an undertaking
for which E-Unification would be necessary. Enlarging our unification algorithm to
include also type equations, as in [43] would be a topic for further research.

3.6 Precedence Relations

Definition 26 Precedence relations describe allowed syntactic combinations of op-
erators, i.e whether an instantiation of an operator op1 can be used syntactically
as an operand to another operator op2. If so, op1 is said to be precedent towards
op2 and op2 is called the dominant operator over op1.

3We have chosen the assignment symbol := rather than an equality symbol to show that
in case of a variable-variable unification, the variable from the left term is substituted with the
variable of the right term. In our experience, this yields much fewer fresh variables in the resulting
substituted terms during our type-inference algorithm.

4For this unifiability of types, we do not demand type-consistency, as this could lead to an
infinite process.
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More specifically, we are interested in the following: which operators can be
allowed syntactically as rightmost operands to right-open operators and which ones
can be allowed as leftmost operands to left-open operators.

We call relations which describe such operator combinations right-precedence
relations or left-precedence relations, respectively.

Definition 27 A right-precedence Right is a subset of RightOpen ×Op where
Op is a set of operator patterns and RightOpen = Op ∩ {s0 s1 . . . sn|n > 0 ,
sn = ε} is the subset of right-open operator patterns.

If op1 Right op2, op2 is called right-precedent to op1 in respect to Right.
If op2 = s0 s1 . . . sn and op1 = s′0 s′1 . . . s′n′ , then op1 Right op2

allows expressions of the form s′0 E′
1 s′1 . . .E′

n′−1 s′n′−1 s0 E1 s1 . . .En sn with
interpretation op1(T′

1 , . . . , T′
n′−1 , op2(T1 , . . . , Tn)) where all Ti are allowed

interpretations of Ei and T′
i are allowed interpretations of E′

i.
A left-precedence Left is a subset of Op × LeftOpen where Op is a set of

operator patterns and LeftOpen = Op ∩ {s0 s1 . . . sn|n > 0 , s0 = ε} is the
subset of left-open operator patterns.

If op1 Left op2, op1 is called left-precedent to op2 in respect to Left.
If op2 = s0 s1 . . . sn and op1 = s′0 s′1 . . . s′n′ , then op1 Left op2 al-

lows expressions of the form s′0 E′
1 s′1 . . .E′

n′ s′n′ s1 . . .En sn with interpretation
op2(op1(T′

1 , . . . , T′
n) , T2 , . . . , Tn) where all Ti are allowed interpretations of

Ei and T′
i are allowed interpretations of E′

i.

We distinguish between natural and ad-hoc precedence relations.
Natural precedence relations are restricted by the types of the operators in-

volved. They are used to describe semantically sensible syntactic interpretations of
expressions.

Example 34 A typical example for a natural precedence relation is the precedence
of the length operator # : [seq nat] → nat towards the faculty operator ! :
[nat] → nat. Since # can appear as left operand to !, but ! cannot be the right
operand of # , we have the natural precedence relations (Left,Right), constrained
by the following properties:

{(# , !), ( !, !)} ⊆ Left

{(# ,# ), (# , !)} ∩Right = ∅

Ad-hoc precedence relations are only restricted by the definition of precedence
relations. They are used to describe the user-preferred syntactic interpretations of
expressions, if several are naturally possible.

Example 35 A typical example for an ad-hoc precedence relation is the precedence
of the arithmetic operators + : [nat , nat] → nat and ∗ : [nat , nat] → nat.
To achieve that ∗ has a general precedence towards + , we could constrain
the ad-hoc precedence relations (LeftA,RightA) by the following properties:

{( + , + ), ( ∗ , + ), ( ∗ , ∗ )} ⊆ LeftA

{( + , ∗ )} ⊆ RightA

A combination of both kinds of precedence-relations can be used for disam-
biguation of expressions which might have both left- and right-precedent syntactic
interpretations.
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Definition 28 A pair of precedence relations (Left,Right) is said to have a con-
flict for an expression e in type τ , if it allows two type-correct syntactic interpreta-
tions, in type τ i1 = op1(T1 , . . . , Tn) and i2 = op2(T′

1 , . . . , T′
m) where

• op1 is right-open and

• op2 is left-open and

• op2 is the root operator of a rightmost descendant of i1 (while all its ancestors
are right-open) and

• op1 is the root operator of a leftmost descendant of i2 (while all its ancestors
are left-open)

, i.e. such that (op1 , op2) ∈ Left? ∩Right?.

Definition 29 A pair of precedence relations (Left,Right) is conflict-free, if for
all expressions e there is at most one type-correct syntactic interpretation of e in
every type τ .

Example 36 The pair of the largest possible natural precedence relations (Left,Right)
for the arithmetic operators op1 = + : [nat , nat] → nat and op2 = ∗ :
[nat , nat] → nat would be constrained by the following properties:

{ + , ∗ } × { + , ∗ } ⊆ Left

{ ∗ , + } × { ∗ , + } ⊆ Right

All left-precedent and all right-precedent syntactic interpretations of expressions
using combinations of op1 and op2 are type-correct.

Thus, these natural precedence relations have a conflict for every such expression.

Conflict-freeness of precedence relations ensures that only one syntactic inter-
pretation can be derived for every expression5. If, on the other hand, the used
precedence relations are not conflict-free, we cannot ensure that there is only one
type-correct syntactic interpretation for every expression which is our general aim.
Thus, we are interested in conditions that make precedence relations conflict-free,
but are as least restrictive as possible (i.e. cause the fewest rejections of expressions
as precedence-ambiguous).

Proposition 1 A pair of precedence relations (Left,Right) is not conflict-free if
Left ∩Right 6= ∅.

Proof 2 If Left ∩Right 6= ∅, then there exists a pair of operators (op1 = p1 ,
op2 = p2) such that op1 Left op2 and op1 Right op2.

This would mean that, according to (Left,Right), both (p1 (E)) p2 and p1 ((E) p2)
would be allowed syntactic interpretations for expression p1 E p2 .

We call a situation as in proposition 1 a direct conflict of the precedence relations.
However, while this condition is easily checked and avoided, not all conflicts that
can occur need to be direct. We will go into further detail on that topic in section
5.6.2.

Proposition 2 A pair of precedence relations (Left,Right) is conflict-free , if both
Left and Right are transitive, i.e. Left = Left? and Right = Right?, and do
not have a direct conflict, i.e. Left ∩Right = ∅.

5as long as no other cause for ambiguity is present
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Proof 3 This is a special case of fully hierarchical precedence relations as described
in section 5.6.2. Since these do not have conflicting operator pairs, they cannot
have a conflict.

This condition which guarantees conflict-freeness is used in the classical precedence-
level approach and can, of course, still be used in our approach. But it is unsat-
isfactory in general because it is too restrictive, not allowing enough unambiguous
expressions.

Therefore, we will introduce a less restrictive condition for conflict-freeness that
takes demanded types and the actual occurrence of operators in the expression to
be disambiguated into account. The precedence relations we use will be conflict-free
by construction, but will — unfortunately — still not allow all expressions which
are unambiguous in regard to precedence.

Definition 30 If we have two operator patterns op1 = p1 and op2 = p2 we
can write prec (p1) p2 to declare op1 LeftA op2, where LeftA is the ad-hoc
left-precedence relation.

If we have two operator patterns op1 = p1 and op2 = p2 we can write
prec p1 (p2) to declare op1 RightA op2, where RightA is the ad-hoc right-
precedence relation.

If two operator patterns op1 and op2 shall have the same ad-hoc precedence
towards all operator patterns, we can write eqprec (op1)(op2).

Example 37 For the use of precedence declarations, refer to example 5 on page
17.

3.7 Two-Level Grammars

Definition 31 A two-level grammar is a tuple (VN , VT , VA, VV , P,L(Γ)).

• VN is the set of nonterminal symbols.

• VT is the set of terminal symbols.

• VA is the set of action symbols (i.e. null-nonterminals that describe semantic
actions on the parser state).

• VV is the set of variable symbols.

• P is a set of production rules.

• L(Γ) is the annotation language which is generic over the set of variables VV

(and Γ is a subset of VV ).

VN , VT , VA and VV must be pairwise disjoint and the set of all grammar symbols
V is the union of VN , VT and VA.

Definition 32 An annotated symbol is a pair (s, a) ∈ (V × L(Γ)?). We write
s(a1, . . . , an) for the annotated symbol (s, (a1, . . . , an)).

Definition 33 A production rule of a two-level grammar (VN , VT , VA, VV , P,L(Γ))
is a tuple (Γ, C, N,w), written ∀Γ | C.N ::= w, where

• N ∈ VN × L(Γ)? is an annotated nonterminal symbol,

• w ∈ (V × L(Γ)?)? is a sequence of annotated grammar symbols,

• Γ ⊆ VV and
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• C is a boolean predicate over the variables in Γ, also called a constraint.

If the constraint C is true, then we can also write ∀Γ.N ::= w.
If Γ is non-empty and N or w contains variables from Γ, the production rule is

called generic.
If Γ is empty, i.e. the rule is not generic, it is a one-level grammar production

and can be written N ::= w.
Therefore, one-level context-free grammars are a special case of two-level gram-

mars which only contain non-generic productions.

Definition 34 A generic grammar is a two-level grammar that contains generic
production rules.

Example 38 In a two-level grammar the nonterminal symbols can be attributed.
To allow disambiguation by type, our attributes must consist of at least the

inferred type of the parse tree generated for each nonterminal symbol.
Hence, if a type of one nonterminal in a production is generic, then the produc-

tion rule is also generic.
One such generic two-level grammar representing constructor and selector operands

for generic sequence types could look like this:

∀{A}. E(seq A) ::= <>
∀{A}. E(seq A) ::= E(A) :: E(seq A)
∀{A}. E(A) ::= ft E(seq A)
∀{A}. E(seq A) ::= rt E(seq A)

Definition 35 A sentential form is a pair (Γ, v), written ∀Γ.v where v ∈ (V ×
L(Γ)?)? is a sequence of annotated grammar symbols.

A constrained sentential form is a sentential form together with a constraint C
over its variables Γ, i.e. a tuple (Γ, C, v) written ∀Γ | C.v.

Definition 36 A derivation step is a consistent application of a production rule to
a nonterminal symbol in a sentential form, by substituting the nonterminal on the
left-hand side of the production with its right-hand side and unifying the annotation
parts of the nonterminal to be substituted and the nonterminal on the left-hand side
of the production.

If we have the sentence s1 and the production rule p, then s1 ⇒ s2 is a derivation
step if and only if there exists an injective variable renaming σ ∈ VV → VV (lifted
to a substitution function σ) such that:

s1 = ∀Γ1 | C1.u N(T1) w
p = ∀Γ2 | C2.N(T2) ::= v

σ(Γ2) ∩ Γ1 = ∅
s2 = ∀Γ1 ∪ σ(Γ2) | σ(T2) = T1 ∧ σ(C2) ∧ C1.u σ(v) w

Definition 37 A sentence of the language of the grammar is a sentential form
∀Γ | C.w with w ∈ (VT × L(Γ)?)?.

Example 39 Suppose, we have the grammar from example 38 with the additional
rule:

∀{A}. E(seq seq A) ::= s

Then, the following is a derivation step:

∀{A} . ft E(seqA) :: <> ⇒ ∀{A,A′} | seq A = seq seq A′ . ft s :: <>
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Chapter 4

A Functional Mixfix
Expression Language

This chapter will define the mixfix expression language together with its type system
and its integration into a functional language that allows the introduction of mixfix
operators.

4.1 Mixfix Expressions

4.1.1 Phrases

All expressions are interpretations of sequences of phrases. A sequence of phrases
is called a sentence.

One kind of phrase is the token phrase which represents a word made up of
alphanumeric symbols (i.e. foo4 ), sequences of graphemic symbols (i.e. + + ) or
denotations of arbitrary characters (i.e. ”foo + +4” ). A screener takes care of
grouping symbols together as tokens.1

Another kind of phrase that we use is the group phrase which is a sequence of
declarations enclosed by parentheses and looks like (fun op : T def op==E).
Each group introduces a scope.

The declarations that interest us here are either variable declarations or operator
declarations, both describing the pattern of the declared operator and its type. Also,
precedence declarations between operator patterns are used for disambiguation.

Definition 38 A scope contains a set of operator declarations, a set of definitions,
as well as ad-hoc precedence relations over the declared operators. An operator
declaration consist of an operator pattern and a declared type.

4.1.2 Meta Operators

We need some built-in meta-operators to provide means to disambiguate expressions
by annotating them with a type (E : T) or a different scope (S . E) than the one
they appear in syntactically.

Also, some additional operators must be predefined to allow for the actual de-
notation of types for the newly introduced operators ([E1 , E2] → E0).

These operators at least must be recognizable by the mixfix parser in every scope
so that declarations can be parsed.

1Again, this is outside the scope of this thesis.
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However, we allow the use of the meta-operators only in specific places inside our
mixfix expressions, so they do not cause more syntactic ambiguities than necessary.

4.1.3 Mixfix Parser

The mixfix parser in general takes a sentence and a scope and tries to find a syn-
tactically unambiguous interpretation of the sentence as a mixfix expression in that
scope. It also can identify erroneous and possibly ambiguous sentences (i.e. those
that have no type-correct syntactic interpretation or more than one).

4.2 Meta Operators

Some meta operators are needed for disambiguation purposes. They allow the user
to constrain the interpretation of a sentence by annotation with a type or scope.

Other predefined mixfix (meta-)operators allow the convenient denotation of
type expressions, so it is possible for the users to declare their own mixfix operators.

The built-in operations are:

• group structuring — (fun op : T def op == E . . . )
The parentheses are used to make a record out of a list of declarations.

• type annotation — E : T
Some expressions are only unambiguous in a certain type. Therefore, type
annotation is sometimes necessary for disambiguation.

• interpretation — S . E
We generalize the selection operator so that the expression S . E is the value of
E interpreted in the scope induced by structure S, overriding the declarations
in the current scope.

This makes several things possible:

– normal selection — Seq . nil

– let-in-like expressions2— (fun x : A fun y : B . . . ) . x + y

– interpretation — (use Nat) . 3 + 4 ∗ n

• brackets — [E] Brackets are used in the description of sections3.

Every section has a list of operands which is denoted as a bracketed comma-
separated list of expressions.

• comma — E1 , E2 The comma separator can be used to build arbitrary
comma-separated lists. It is always interpreted as right-precedent and in
essence only used for building pairs of expressions. They are not associative,
i.e. (a , b) , c 6= a , (b , c) = a , b , c.

• arrow — E1 → E2

Mapping one expression E1 to another expression E2 is done with the arrow
operator. It can used for denotation of:

– function types — nat → nat,

– section types — [nat , nat] → nat, and

2Since the selection operator has weaker precedence than all user-defined mixfix operators, the
whole expression to the right of the . is interpreted in the scope to its left.

3described in sections 4.2.3 and 4.2.4
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– lambda function expressions with pattern matching — succ n → m →
succ add n m .

• syntactic structuring — (E)
Since it is not always possible to disambiguate everything by typing or given
precedences, it is possible to give syntactic structure to an expression by
adding a parenthesis around it.

• tupling — (a , b) If there is a comma-expression inside a parenthesis, the
resulting expression is interpreted as a tuple.

We also use tuples to represent products, i.e. (nat , bool) is both the tuple
of the two types nat and bool, as well as the product of all tuples where the
components have the respective types.

• section lifting — ( + )
Sometimes a section expression should be interpreted as a higher-order func-
tion, e.g. allowing ( + ) to be used as a fully instantiated function value
of type (nat , nat) → nat instead as a binary operator section of type
[nat , nat] → nat .

This is also made possible by the parentheses operator, additional to its pur-
pose for syntactic structuring.

We shall see that the different tupling operators, though closely related have
slightly different semantics which makes them useful for different purposes.

These expressions are identified by a so-called meta parser that knows how to
recognize the built-in meta-operators. We will describe them in the rest of this
section, both in regard to their precedences to other expressions, as well as their
typing relations.

4.2.1 Meta Type Expressions

There are some meta type constructor operators, for instance SORT and LIFT
that are useful for denoting type expressions. They are needed because the type
language itself is to be defined by the user with mixfix operators.

Definition 39 The type SORT is the topmost type of the type universe and is its
own type, i.e. SORT : SORT.

It can be used to declare anything that doesn’t have a more specific type.

Definition 40 The type LIFT E is a type expression that describes only the value
E, i.e. E : LIFT E.

It is useful when we want to refer to the value of an operand inside the type universe.
Basically, the value E is lifted to the type universe. For example, this can help us
in describing the type annotation operator : : [A , LIFT A] → A.

Example 40 The generic structure Seq data is described by using a type variable
for the actually given type data. Inside the structure, the type of that type-variable
is not really interesting, but its value is.

var data : SORT -- type variable
fun Seq : [LIFT data] → ( fun :: : [data , seq] → seq . . . )
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4.2.2 Enclosed Expressions

For the sake of syntactic structuring, we have a built-in parenthesis operator which
serves (among other things) as an identity function.

fun ( ) : [A] → A

This way, we can enclose expressions, thereby enforcing natural precedence.

Example 41 In the signature in figure 4.1, the operator − is declared as left
precedent. To enforce a right-precedent interpretation of the expression 10− 5− 3,
we have to use the parenthesis operator.

fun − : [nat , nat] → nat
prec ( − ) −
fun 3 : nat
fun 5 : nat
fun 10 : nat
fun E : nat
def E ==10 − (5 − 3)

Figure 4.1: Signature of example 41

4.2.3 Built-In Type Constructors

Section Expression Constructors

Every declaration of an n-ary operator shall have as its type a section expression
[T1 , . . . , Tn] → T0 where it is allowed to write simply T0 instead of [] → T0 for
nullary operators.

To this end, we introduce the following type constructor operators which exist
on every level of the type-universe.

var A
var B
fun , : [A , B] → SORT
fun [ ] : [A] → SORT
fun → : [A , B] → SORT
fun ε : SORT
fun , : [A , B] → (A , B)
fun [ ] : [A] → [A]
fun → : [A , B] → (A → B)
fun ε : ε

Tupling Constructor

Combining the comma-operator with the parenthesis operator we automatically get
tuple expressions. We treat a tuple made up of types as the product of these types.

Union Constructor

We also introduce union expressions
⋃

[V1 , . . . , Vn] to describe overloading.
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fun
⋃

: [[A]] → SORT
fun

⋃
: [[A]] →

⋃
[A]

If an operator is overloaded, it can be seen as a union of its definitions. The
type of such a union can again be seen as the union of the types of the definitions.

Example 42 In the signature in figure 4.2, the operator + is overloaded.
Therefore, it has the type

⋃
[[nat , nat] → nat , [real , real] → real]. It also has

two definitions which can also be seen as a union.

fun + : [nat , nat] → nat
def + ==addNat
fun + : [real , real] → real
def + ==addReal
law + =

⋃
[addNat , addReal ]
-- + :

⋃
[[nat , nat] → nat , [real , real] → real]

Figure 4.2: Signature of example 42

4.2.4 Placeholders and Sections

Like in every higher-order functional language, the operators shall be first-class
citizens and therefore shall also be usable uninstantiated as operands to other op-
erators.

To this end, we define two placeholder operators that help us denote uninstan-
tiated operator instantiations: the underscore operator and the empty operator .

fun ” ” : [] → [A] → A
fun ε : [] → [A] → A

Even though both operators are nullary, they yield a section type as their result.
Thus, we will allow them also to be used as if being of type [A] → A.

By instantiating a non-nullary operator only with underscore operators, we get
an expression that looks exactly like the operator pattern itself. Also, we can
infer exactly the type declared for that operator pattern for this expression. Thus,
operator patterns are already mixfix expressions.

Example 43 If we want to pass operators (like = ) as arguments to higher-
order functions like compared by in the signature in figure 4.3, we can do this
by either instantiating the operator pattern with underscore placeholder expressions
or, for shortness sake, with empty placeholder expressions.

In the signature, the operator = is also lifted from a section to a full-fledged
function by enclosing it in parentheses, as explained in 4.2.5.
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fun = : [A , A] → bool
fun compared by : [seq A , (A , A) → bool] → seq seq A
fun E1 : seq seq nat
def E1 == [1 , 3 , 5 , 1] compared by( = )
fun E2 : seq seq nat
def E2 == [1 , 3 , 5 , 1] compared by( = )

Figure 4.3: Signature of example 43

Even better, this approach is compositional in such a way that operators can
also be partially instantiated , i.e. some of their operands are instantiated with
placeholders while other operands are instantiated with other expressions.

Definition 41 We call an operator instantiation partially instantiated or operator
section expression when at least one of its operands is either a placeholder expression
or a partially instantiated expression.

We call an operator instantiation fully instantiated if it is not partially instanti-
ated, i.e. all placeholders have been instantiated with fully instantiated expressions.

The empty placeholder operator in turn is useful to arrive at expressions which we
call operator name expressions . These expressions are useful for passing operators
as operands to higher-order functions without having to write down the full operator
pattern.

Definition 42 An operator name expression is an instantiation of an operator with
only empty placeholder operands, yielding the sequence of the separator tokens of
that operator, which we call the operator name.

Example 44 In the signature in figure 4.4, both expressions S1 and S2 have the
same semantics, but the first is defined with the help of the underscore placeholder
operator while the second is defined using the empty placeholder operator, using the
operator name if then else.

fun while do : [bool , stmt] → stmt
fun if then else : [bool , stmt , stmt] → stmt
fun S1 : [bool , bool , stmt , stmt] → stmt
def S1 == while do if then else
fun S2 : [bool , bool , stmt , stmt] → stmt
def S2 == while do if then else

Figure 4.4: Signature of example 44

4.2.5 Lifted Sections

Section expressions can be lifted to function values by enclosing them in a paren-
thesis.

fun ( ) : [[A] → B] → (A) → B

Such a lifting is necessary because of the distinction between the inhomogeneous
operand type lists [T1 , . . . , Tn] of section types and the product types (T1 , . . . ,
Tn).
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With its help, every mixfix expression, if enclosed in a parenthesis, can be used
as a function, e.g. applied to other expressions via the apply operator or given to
higher-order functions that demand such a function as their operand.

Example 45 In the signature in figure 4.5, we import the type constructors seq
and nat from the structures Seq and Nat to be able to declare the map operator
∗ . It can then be used to map expression E1 which is a sequence of triples of

type nat to a sequence of elements of type nat by lifting the expression + +
to the type (nat , nat , nat) → nat via the lifting operator.

use Seq
use Nat
var A : SORT
var B : SORT
fun ∗ : [A → B , seq A] → seq B
fun E1 : seq(nat , nat , nat)
fun E2 : seq nat
def E2 ==( + + ) ∗E1

Figure 4.5: Signature of example 45

Although section lifting could possibly be allowed at any point in an expression
where an operand of an operator is instantiated, this could lead to very confusing
expressions, which is why we only allow it in this limited fashion.

Example 46 Given the application operator as declared in the signature in figure
4.6, every mixfix expression (if enclosed in parentheses) can be used in prefix appli-
cation to a tuple of its uninstantiated operands. The same arity is maintained so it
is clear which argument instantiates which operand.

fun : [A → B , A] → B
fun fst: (A , B) → A

-- ( + fst + ) : (nat , (nat , B) , nat) → nat
law ( + fst + )(3 , (4 , 5) , 6) = 3 + fst(4 , 5) + 6

Figure 4.6: Signature of example 46

Example 47 With the help of an additional currying converter operator as in the
signature in figure 4.7, the same can even be achieved without the use of tuples. If
there is such a converter present that takes a function as its operand and yields its
curried version, application of former uncurried functions can take place without
the use of parentheses.

4.2.6 Annotation Expressions

Scope Annotation

If the user wants to interpret an expression inside a different scope than the one the
expression is syntactically present in, they can do so by using the selection operator

. which can also be seen as a prefix scope annotation .
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fun : [(A , B) → C] → A → B → C
-- ( + fst + ) 3 : ((nat , B) , nat) → nat
-- ( + fst + ) 3 (4 , 5) : nat → nat

law ( + fst + ) 3 (4 , 5) 6 = 3 + fst(4 , 5) + 6

Figure 4.7: Signature of example 47

fun . : [LIFT S , A] → S . A

Type Annotation

Likewise, the user can annotate an expression postfix via the : operator to
constrain the type the expression should be interpreted under.

fun : : [A , LIFT A] → A

These annotations can be especially useful in environments where overloading
is present to determine which of the different versions of an operator is meant by
the user.

4.2.7 Precedences of the Meta Operators

The infix meta-operators are ordered precedence-wise in the following transitive
ordering relation (where o1 < o2 means that o2 is both left- and right-precedent
towards o1): ( , ) < ( : ) < ( → ) < ( . )

The operators ( , ) , ( : ) and ( → ) are right-precedent, while the
operator ( . ) is left-precedent.

This is achieved by the following precedence relation:

prec , ( , )
prec ( : ) , ( : )
prec ( → ) , ( → )
prec ( . ) , ( . )
prec : ( : )
prec ( → ) : ( → )
prec ( . ) : ( . )
prec → ( → )
prec ( . ) → ( . )
prec ( . ) .

The meta-operators and other mixfix operators are treated separately by the
parser because the meta-operators (i.e. the selection operator) might change the
scope for part of the expression while the scope must be considered fixed for any
real mixfix sub-expression.

Also, the type annotation operator must first evaluate its right operand before
the mixfix parser can be applied to its left operand, if top-down type information
is to be used in the mixfix parsing process.

Mixfix expressions shall only contain meta-expressions in place of enclosed operands,
i.e. placeholders that have a token directly to their left and right. Thus, such a
meta-expression can and must be syntactically separated via such enclosing opera-
tors as [ ] or ( ).
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4.2.8 Context-Free Meta Grammar

We can describe the meta expressions also with the help of an (unfortunately am-
biguous) context-free grammar .

Definition 43 The context-free meta grammar is defined as follows:

COMMA::= COLON , COMMA
COMMA::= COLON
COLON ::= ARROW : COLON
COLON ::= ARROW
ARROW ::= DOT → ARROW
ARROW ::= DOT
DOT ::= DOT . MIXFIX
DOT ::= E
MIXFIX ::= phrase?

E ::= GROUP

The nonterminal COMMA will be used for enclosed operands inside mixfix
expressions while the COLON nonterminal is the start symbol for every expression
appearing on the right-hand-side of a declaration (and both on the left-hand-side
and the right-hand-side of every definition).

The nonterminal symbol MIXFIX represents the actual mixfix expressions
which can contain any phrase, even the group phrases as well as the token symbols
of the meta operators. This is because the operator set may change according to the
rule DOT . MIXFIX where the MIXFIX part will be parsed by the mixfix parser
in the scope represented by the DOT part which might introduce new operators or
override old ones.

Remark 1 It could also be possible to let the left-hand-side of the arrow-expressions
introduce variable operators that can be used on the right-hand-side, thereby getting
a lambda-like expression (?x ,?y) → x + y so we do not have to use the clumsy
version (var x var y).((x, y) → x+ y) or introduce an additional lambda-operator.

Thus, we cannot parse the right operands of the arrow or scope annotation
expressions without first evaluating the parse result of the left operands.

The rule E ::= GROUP is added so that group phrases are accepted as expres-
sions4.

Example 48 If we would not include the token , under the terminal symbol phrase,
the expression in the signature in figure 4.8, (use Nat).(use Set nat).{1, 2, 3} could
only be interpreted as (((use Nat).(use Set nat).{1), (2, (3}))) which has no viable
interpretation and is clearly not the intended use.

The benefit of this approach, thus, is that we can use — without using any
built-in parentheses — comma-separated lists of type- and scope-annotated mixfix
expressions that introduce any number of new operators in place of every enclosed
operand, for instance inside the built-in operator [ ] which is used to describe our
operator types.

As can be seen in the above example, it should also be possible to overload the
built-in operators like , to give them additional semantics.

4E being the start symbol for all mixfix operator instantiations
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var A : SORT
fun Set : [LIFT A] → (

fun set : SORT
fun commalist : SORT
fun , : [A , commalist] → commalist
fun , : [A , A] → commalist
fun { } : [commalist] → set
fun { } : [A] → set
fun { } : [ε] → set

)

fun S : ( use Nat) . ( use Set nat) . set
def S == (use Nat) . ( use Set nat) . {1 , 2 , 3}

Figure 4.8: Signature of example 48

4.3 Mixfix Expression Language

Given the meta-operators, we can now define the language of mixfix expressions as
all those mixfix operator instantiations that can be formed using an operator set in
a given scope.

4.3.1 Mixfix Expressions

Definition 44 The mixfix expression language L(Σ) for a given mixfix signature
Σ is the set of all meta operator instantiations inside Σ, all mixfix operator instan-
tiations inside Σ and all group expressions that are valid in Σ.

A mixfix operator instantiation inside a mixfix signature Σ is a sequence
s0 E1 s1 . . .En sn where s0 s1 . . . sn is a mixfix operator pattern from Σ with
si ∈ token?, and Ei ∈ phrase?, with

• Ei is a mixfix operator instantiation inside Σ or a group expression that is
valid in Σ, if si−1 = ε or si = ε, or

• Ei ∈ L(Σ), otherwise.

A meta operator instantiation inside a mixfix signature Σ is an operator instan-
tiation of a meta operator inside Σ where the non-enclosed operands can also be
instantiated with meta operator instantiations inside Σ according to the precedences
between the meta operators.

A group expression that is valid inside a mixfix signature Σ is a group symbol,
representing a list of parsable declarations in parentheses that can use operators
from Σ. Every group expression represents its own operator signature .

Example 49 In the signature in figure 4.9, the expression if x = 0 then 1 else (x −
1) ! ∗ x is a mixfix operator instantiation of the mixfix operator pattern if then else
with the mixfix expressions x = 0, 1 and (x − 1) ! ∗ x.

The language L(Σ) only constrains the token sequences that are recognizable
as mixfix expressions syntactically.

But of course, many of these expressions might still be syntactically ambiguous.
For instance, the number of viable syntactic interpretations can be infinite if invisible
operators are present in the given operator set.
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fun if then else : [bool , nat , nat] → nat
fun = : [nat , nat] → bool
fun 0 : nat
fun 1 : nat
fun − : [nat , nat] → nat
fun ∗ : [nat , nat] → nat
fun ! : [nat] → nat

var x : nat
fun fac : [nat] → nat
def fac x == if x = 0 then 1 else (x − 1) ! ∗ x

Figure 4.9: Signature of example 49

Restricting operand instantiation with the help of operator fixities, precedence
relations and type compatibility will help us restrict the language to an unambiguous
subset.

But as we shall see, the possible operator sets must also be restricted syntacti-
cally because not all syntactic ambiguities can be removed with the above-mentioned
means.

4.3.2 Context-Free Mixfix Grammar

The context-free grammar for a given mixfix operator signature describing the mix-
fix operator instantiations inside that signature is very straightforward.

Definition 45 The context-free mixfix grammar for mixfix operator signature Σ is
defined as follows:

• There is one nonterminal symbol E representing the mixfix operator instanti-
ations.

• There is one rule for E for every operator pattern inside Σ. The right-hand
side for that operator pattern is derived as follows:

– map every separator token to its respective terminal symbol

– map every enclosed placeholder token5 to nonterminal COMMA

– map every left-open, right-open or adjacent placeholder token to nonter-
minal E

Adhering to definition 44, we treat enclosed operands differently from open or
adjacent ones, because COMMA would make the grammar ambiguous if used in
place of an adjacent, left- or right-open operand, but does not for enclosed operands.
We want to be able to use comma-separated lists and concatenation expressions in
as many places as possible, so we do not restrict enclosed operands more than
necessary while applying the necessary restrictions to other operands.

Example 50 The context-free mixfix grammar for the operator signature from ex-
ample 49 would look like the one in figure 4.10.

5a placeholder symbol which appears between two non-empty separators
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E ::= if COMMA then COMMA else E
E ::= E = E
E ::= 0
E ::= 1
E ::= E − E
E ::= E ∗ E
E ::= E !
E ::= x
E ::= fac E

Figure 4.10: Grammar of example 50

4.4 Mixfix Language Type System

In a language like our mixfix expression language, a lot of ambiguities can occur
that are only resolvable by use of typing information.

4.4.1 Types and Values

In our multi-level scenario, the type language of a mixfix expression language de-
scribing the values is also a mixfix expression language. However, there are usually
some restrictions what kind of constructions are allowed for the values of the type
language6.

If we want to talk about type inference for a mixfix expression language, we view
the types not as mixfix expressions, but as already interpreted expressions, i.e. their
unambiguously parsed parse trees. This entails, of course, that type annotations
have to be parsed and unambiguously interpreted before it is possible to use that
annotation for the disambiguation of the annotated expression.

4.4.2 Type-Correctness and Ambiguity

All expressions can be characterized by their types and we can distinguish between
type-correct and type-incorrect expressions.

Type-incorrect expressions are syntactically valid mixfix operator instantiations
where the types of the operand expressions do not agree with the corresponding
operand-types of the instantiated operator.

If an expression has no type-correct interpretation for a given result type, it is
considered erroneous and should be rejected by the parser.

But an expression might have type-correct and type-incorrect interpretations at
the same time, even for the same result type. It also might be erroneous for one
result type and have only type-correct interpretations for another type.

If an expression has more than one type-correct interpretation, for a given result
type, it is called ambiguous for that type.

The parser should be able to reject syntactically ambiguous expressions. But by
use of precedence relations a preferred type-correct syntactic interpretation might
be unambiguously chosen for an otherwise syntactically ambiguous expression and
therefore accepted by the parser.

Example 51 Taking only type information to disambiguate, the operator + will
yield ambiguous interpretations for all mixfix expressions that contain several oc-
currences of it.

6even though this is outside the scope of this thesis
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However, by use of ad-hoc left precedence for this operator, the left-precedent of
the two possible variants is chosen among the type-correct ones, making the expres-
sions unambiguous.

fun nat : SORT
fun + : [nat , nat] → nat
fun a : nat
fun E : nat
prec ( + ) +
def E == a + a + a + a

-- chosen: ((a + a) + a) + a
-- not chosen: (a + (a + a)) + a
-- not chosen: (a + a) + (a + a)
-- not chosen: a + ((a + a) + a)
-- not chosen: a + (a + (a + a))

4.4.3 Multi-Level Signatures

Following this chain of reasoning, our type system must be powerful enough to
describe all those expressions which should be denotable and help us to find as
many type-errors as possible as well as distinguish the different interpretations for
an ambiguous expression.

We want to be able to introduce our own types, define generic and overloaded
operators and use types, functions, sections, products and groups as first-class cit-
izens. This shall allow us to write multi-level specifications without the need to
invent new terminology for every new meta-level, as it is done in most program-
ming languages. The values of all levels above level n can be used as the types of
level n.

Since every actual mixfix expression in a scope lives only on one level, we can
clearly distinguish between values and types in that level and do not have to cope
with different type levels for any one expression. Thus, the type system we introduce
can be considered to exist separately for every level. Though this is only true if it
can be determined for every expression on which level it lies, this is possible via an
inference algorithm7.

Besides the built-in type constructors, the user can introduce other mixfix op-
erators as type constructors, using types of higher levels for their declaration.

The distinction into levels is actually an artificial one. In essence, we simply need
to establish a topological order between the different declarations. Each declaration
is dependent on the operators used on its right-hand side. If the declarations of all
operators on the right-hand side have parsable declarations, then it is also possible
to parse the declaration.

It is even possible to overload type and value operators, as long as one does
not use the other in its declaration (as that would violate the topological order
condition). In such a case, the operators have to be introduced in different scopes,
so they can be distinguished by scoping annotation.

7see [37])
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Example 52 The multi-level signature in figure 4.11 has 4 levels 0 to 3.

1. Level 3 only declares the type SORT to be used for the declarations of the
type constructors on level 2.

2. On level 2, we declare

• the normal simple types nat, bool as well as

• the type constructor seq , and

• a type class ord for orderable types and a type class constructor container
for container types

• two type variables A and B allowing us to declare the type constructors
on level 1 and the operators on level 0 in a generic way

3. On level 1, we declare

• again, the types nat and seq , this time as instances of orderable types
and container types, respectively8

• a container type constructor map to for mappings where the contained
elements are indexable by key-elements of an orderable type

• the container type variables C1, C2 and the orderable type variable O
which enable us to declare the operators on level 0 in a generic way

4. On level 0, we declare

• a comparison operator < for any pair of values of the same orderable
type

• the value s as a sequence of natural numbers which in turn is a container
type for natural numbers

• the value m as a mapping from natural numbers to sequences of natural
numbers which is a container type for sequences of natural numbers

• the function sort which takes a sequence of any orderable type and yields
a (sorted) sequence of elements of the same type

• the map operator ∗ which takes a function of type A → B and
applies it to a container of elements of type A, yielding a container of
elements of type B (with the same structure).

8This is necessary to allow type-consistent unification of these types with type variables of type
ord or container respectively.
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fun SORT : SORT
-- level 2

fun bool : SORT
fun nat : SORT
fun seq : [SORT] → SORT
fun ord : SORT
fun container : [SORT] → SORT
var A : SORT
var B : SORT

-- level 1
fun nat : ord
fun seq : [LIFT A] → container A
fun map to : [ord , LIFT A] → container A
var O : ord
var C1 : container A
var C2 : container A

-- level 0
fun < : [O , O] → bool
fun s : seq nat : container nat
fun m : map nat to seq nat : container seq nat
fun sort : seq O → seq O
fun ∗ : [A → B , C1 : container A] → (C2 : container B)

Figure 4.11: Signature of example 52

Since it is not really relevant to our problems with disambiguation, we consider
further explorations of this topic outside the scope of this thesis.

A scoping and type-level inference algorithm for multi-level signatures can be
found in [37].

In [42], Visser explores the topic of multi-level specifications, given quite a few
examples of their usefulness and expressive power, while he tackles the problems of
type unification in [43].

Comparison with Haskell’s Type Classes

In Haskell [18], there exists a construction for categorizing (i.e. typing types of
values) by declaring type classes [16] which are predicates over a type, asserting
the existence of certain operators for that type and then explicitely declaring given
types as instances of such type classes, supplying the actual implementation of the
demanded operators. Thus, a kind of overloading can be achieved in Haskell.

We can achieve the same in our multi-level specification approach by introducing
a sort for every such type class and then declaring different types to be of that sort
so they become instances of that class.

By declaring a type variable to be of different type classes, we can achieve the
same as is done by type contexts of generic type schemes ∀u.π ⇒ τ which is a type
generic over the type variables u where for all instantiations of the variables u in
τ the property π must hold. A similar construction exists in our language. Using
C . t where C is a group declaring type variables with their type constraints, we
get a type t which is generic over these variables.

But, obviously, we have a greater freedom of expression since we can also cate-
gorize type classes, etc. .

A different approach to implementing type classes in multi-level specifications
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can also be found in [42].

4.4.4 Bottom-Up Type Inference

We could describe our type system by bottom-up inference rules, using predicates
like S ` E : [L] → τ which signifies that expression E can have section type [L] → τ
in scope S.

Even though this algorithm does not provide us with an efficient disambiguation
tool, it is more easy to understand than the actually needed top-down bottom-
up inference algorithm, presented thereafter. The latter algorithm is basically a
refinement of the former.

Mixfix Instantiation

The type of an operator instantiation can be inferred from the type the operator is
declared with and the inferred types of the operand expressions.

∀i ∈ 1, . . . , n : S ` Ei : [Li] → τi

S ` s0(Ei si)n
i=1 : ([L1] . . . [Ln] → T0)[Ti := τi]ni=1

s0( si)n
i=1 : [T1, . . . , Tn] → T0 ∈ S

We build a section type [L1] . . . [Ln] → T0 which has the concatenation of the
operand-type lists [Li] of the inferred section types of all operand expressions as its
operand-types and the result type T0 of the declared section type of the operator
as its result type. Then, we apply a substitution [Ti := τi]ni=1 to that section type
which is computed by unifying each operand type Ti in the operator declaration
with the result type τi of the inferred section type for the corresponding operand
expression.

Nullary Operator Unlifting

For nullary operators s0 : [] → [L] → T which yield a section type, like our
placeholder operators ” ” : [] → [A] → A and ε : [] → [A] → A, we need a
rule that lets us use these nullary operator instantiations , as if they were partially
instantiated section expressions.

S ` s0 : [L] → T
s0 : [] → [L] → T ∈ S

This way, the user can introduce his own placeholder symbols or achieve similar
effects with other nullary operators resulting in section types.

This behavior could probably be generalized to automatically unlift other fully
instantiated expressions that yield a section type as their result,i.e. all expressions
of an inferred type like [] → [L] → T. But we are not sure, whether this feature
would not be too confusing to use.

Section Lifting

Another useful feature is the lifting of partially instantiated section expressions to
fully instantiated function expressions by putting a parenthesis around the expres-
sion to be lifted.

S ` E : [L] → T

S ` (E) : [] → (L) → T

Again, this rule could be generalized to apply to non-parenthesized expressions,
but we deem this a too confusing concept.
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LIFT construct

The bottom-up inference rule for the LIFT construct is very simple, following
directly from the law that every expression E should be interpretable as a fully
instantiated expression of type LIFT E which is just the shorthand notation for
[] → LIFT E.

S ` E : [] → LIFTE

Type Annotation

For type-annotated expressions E : T, the type-annotation T has the inferred type
[] → LIFT τ2. The type τ2 is more special than T and must agree with the inferred
type τ1 of the annotated expression E.

S ` T : [] → LIFT τ2 S ` E : τ1

S ` E : T : τ1[τ1 := τ2]

Therefore, we apply the substitution [τ1 := τ2] to the inferred type τ1 and take
this as the inferred type of the whole expression.

Non-Empty-Section Type Annotation

We assume that every type-annotation is meant as a section type by the user, so it
is possible to describe section expressions via type-annotation.

However, since it should also be allowed to use non-section expressions as an-
notations to describe fully instantiated section expressions, we treat these as if the
user had given a fully instantiated section expression as annotation.

Also, it should be possible to annotate an expression which results in a section
type [L] → T without having to annotate it with [] → [L] → T.

Both these shortcut-notations are made possible by the following rule. The
inferred type τ2 of the annotation expression T is treated as the result type of an
empty section expression of type [] → τ2. If τ1 agrees with this type, we get the
overall inferred type by unifying them.

S ` T : [] → LIFT τ2 S ` E : τ1

S ` E : T : τ1[τ1 := [] → τ2]
τ2 6= [] → T ′

Scope Annotation

Finally, for scope annotation, we must evaluate the scope S′ the exression E is
annotated with, add it to the scope S, using some scoping rules in the process, and
infer the actual type of the expression E in the new scope S⊕ S′.

S ⊕ S′ ` E : τ

S ` S′ . E : τ

4.4.5 Top-Down Bottom-Up Type Inference

Inherent Deficiency of the Bottom-Up Inference

Unfortunately, pure bottom-up type inference as described above is not sufficient as
an efficient disambiguation tool. An expression might have an exponential number
of syntactic interpretations, all of which have different types, where the selection of
the right interpretation can only be a filtering process over this exponential set.
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Example 53 The generic type-constructor pair can be used to describe any kind
of binary structure. For each of the three different structures, given by the types of
E1, E2 and E3, the same expression a & a & a & a has a different interpretation.

var A : SORT
var B : SORT
fun pair : [SORT , SORT] → SORT
fun & : [A , B] → pair A B
fun a : nat
fun E1 : pair (pair nat nat) (pair nat nat)
def E1 == a & a & a & a

-- (a & a) & (a & a)
fun E2 : pair nat (pair nat (pair nat nat))
def E2 == a & a & a & a

-- a & (a & (a & a))
fun E3 : pair(pair (pair nat nat) nat) nat
def E3 == a & a & a & a

-- ((a & a) & a) & a

Top-Down Approach Using Demanded Result Types

If the demanded result type for an operator instantiation is taken into account,
much better disambiguation can be achieved using a top-down bottom-up inference
algorithm.

We give this algorithm using statements of the form S, τ ` E : [L] → T , meaning
that E can be inferred to be of section type [L] → T in scope S, if τ is the demanded
result type of E.

For instance:

{ + : [nat, nat] → nat, ” ” : [] → [A] → A}, nat ` + + : [nat, nat, nat] → nat

We additionally demand that, if S, τ ` E : [L] → T , then T is more special than
τ , i.e. there is a substitution σ for the variables in τ so that σ(τ) = T .

Operator Instantiation

The operator instantiation inference rule works much like in the bottom-up ap-
proach. However, the demanded types for the operands are computed by unifying
the demanded type of the overall expression τ0 with the topmost operator’s result
type T0 and applying the resulting substitution to each respective operand type Ti.

Finally, also agreement between T0 and τ0 is enforced so that the result type of
the inferred section is definitely more special than the demanded result type.

∀i ∈ {1, . . . , n} : S, Ti[T0 := τ0] ` Ei : [Li] → τi

S, τ0 ` s0 (Ei si)n
i=1 : ([L1] . . . [Ln] → T0)[Ti := τi]ni=0

s0 ( si)n
i=1 : [Ti]ni=1 → T0 ∈ S

It should be noted that here we do not take inferred type information from one
operand expression as a demanded type for another operand into account. Such
an influence from one operand to another would have to be arbitrarily chosen (e.g.
from left to right) which could be confusing to users as to why some expressions
can be correctly inferred and some very similar ones can not.

However, the built-in prefix application operator should behave differently in
that respect, which is why we treat it specially.
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Special Operator Instantiation: Application

For the prefix application operator : [T2 → T0 , T2] → T0, the type T2 of the
right operand of the application does not directly depend on the result type T0.
This dependence is only established via the type of the left operand T2 → T0.

Thus, if we used the type inference as for every normal operator, we would use
the demanded type T2[T0 := τ0] = T2 where T2 is a type-variable which does not
restrict the demanded type for the right operand at all.

Using T2[T0 := τ0 , T2 → T0 := τ1], instead, where τ1 is the result type of the
inferred section type of the left operand of the application, we have a very good
restriction for the right operand.

This is one of the few cases where the order of type inference for the operands
of an expression actually matters while it is normally insignificant in our approach.

S, T1[T0 := τ0] ` E1 : [L1] → τ1 S, T2[Ti := τi]1i=0 ` E2 : [L2] → τ2

S, τ0 ` E1 E2 : ([L1][L2] → T0)[Ti := τi]2i=0

T1 = T2 → T0

It would be interesting to find denotational means in the language itself to
describe such type-dependencies between the operands, and how they are allowed
to influence each other during type-inference, as this could again lead to more
unambiguous expressions. Unfortunately this is outside the scope of this thesis.

LIFT Construct

The type-inference for the LIFT construct for lifting a value to the type language
is as straightforward in the top-down bottom-up approach as in the pure bottom-up
approach.

Of course, because the inferred result type must be more special than the de-
manded type, this rule can only be applied in instances where the demanded type
is of the form LIFT T.

S, τ ` T : [] → τ1 S, τ1 ` E : [] → τ2

S, LIFT T ` E : [] → LIFT E[E := T ]

Type Annotation

Using the inference for LIFT constructs, we can change our type annotation ex-
pression inference rule for expressions of the form E : T to top-down bottom-up
behavior the following way.

First, we infer the type of T with demanded type LIFT τ0 where τ0 is the
demanded type of the whole expression. The inferred type [] → LIFT ([L] → τ2)
then contains [L] → τ2 which is more special than τ0 and it is also more special
than T.

Taking the result type τ2 as the demanded type for expression E and afterwards
enforcing agreement between the inferred type τ1 with the inferred type [L] → τ2,
we get the inferred type for the whole expression: τ1[τ1 := [L] → τ2].

S, LIFT τ0 ` T : [] → LIFT([L] → τ2) S, τ2 ` E : τ1

S, τ0 ` E : T : τ1[τ1 := [L] → τ2]

Thus, the type annotation operator is another operator where the inferred type
of one operand is used to determine the demanded type of the other. But in this
case the dependency is from right to left.

While we could take the demanded type τ0 also as the demanded type for the left
operand, and check agreement with the annotation afterwards, the above approach
is more sensible.
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The annotation expression is usually more special than the actually demanded
type, therefore having better disambiguation quality. We can argue, that if no dis-
ambiguation were necessary, the user would not have given an annotation. There-
fore, naturally, the user’s annotation should be taken into account for disambigua-
tion.

Non-Empty-Section Type Annotation

The rule for type annotation with non-empty-section types works exactly the same
as for the bottom-up inference.

S, LIFT τ0 ` T : [] → LIFT τ2 S, τ2 ` E : τ1

S, τ0 ` E : T : τ1[τ1 := [] → τ2]
τ2 6= [] → T ′

Nullary Operator Unlifting

Unlifting of nullary operators almost works the same as for the bottom-up inference,
but it also ensures the agreement between the inferred and the demanded result
types.

S, τ ` s0 : ([L] → T )[T := τ ]
s0 : [] → [L] → T ∈ S

Section Lifting

Because we have to ensure the agreement between demanded type τ0 and the result
types of the inferred types, we unify these to get the actually inferred type of a
lifted section expression.

S, T ′ ` E : [L] → τ1

S, (L′) → T ′ ` (E) : ([] → (L) → τ1)[(L) → τ1 := (L′) → T ′]

Basically, we only take the result type of the demanded function type and try
to infer a section type with that result type for E. If the tuple made from the
contents of the section-operands (L) is then unifiable with the domain type (L′) of
the demanded function type, E can be lifted to a section of the appropriate type.

4.4.6 Relationship between Bottom-Up and Top-Down Type
Inference

As already mentioned, the top-down bottom-up algorithm is a refinement of the
simple bottom-up algorithm.

Every rule of the top-down algorithm is a refinement of a rule of the bottom-
up algorithm which is done by converting every statement S ` E : [L] → T into
S, τ ` E : [L] → T and adding additional constraints on the applicability of each
rule using the newly introduced variables.

Thus, the applicability of each rule is reduced, depending on the demanded
result type of an expression. Whenever a type can be inferred with the top-down
algorithm, a more general type can also be inferred by the bottom-up algorithm.
The reverse is not true. There can be cases where the bottom-up algorithm can
infer a type for the expression where the top-down algorithm can not, dependent
on the given overall demanded result type of the expression.

If the bottom-up algorithm can infer a type for an expression and this inferred
type can be unified with the overall demanded result type, then the top-down
algorithm can also infer a more special type for the same expression.
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The top-down algorithm has two advantages over the bottom-up algorithm. It
yields more exact inferred types, and it allows for earlier disambiguation of the
expression as operator applications whose result type does not agree with the de-
manded type need not be considered for rule application during the algorithm,
therefore, pruning the paths the algorithm can actually take, thus making it more
efficient.

If we had only operators where the demanded type of one operand is never
influenced by the inferred type of another operand (like function application, type
and scope annotation), only a top-down pass would be necessary.

4.4.7 Sufficiency of Top-Down Bottum-Up Inference for Pars-
ing

One might wonder why two inference passes (top-down and bottom-up) are sufficient
for such a complex type system such as ours while other languages which incorporate
genericity and overloading need at least three passes.

The reason for that is that we only do as much type-inference as we need for syn-
tactic disambiguation of expressions in the parsing phase. All semantic ambiguity
remaining after the parsing phase needs still to be treated in the normal semantic
analysis phase, where it is very probable that another top-down pass, using the
demanded and inferred types, is necessary.

However, since the scope of our thesis is the syntactic analysis phase, we consider
the semantic analysis of our mixfix expressions out of its scope.
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Chapter 5

Ambiguity

After informally investigating the normal approaches to ambiguity in existing pro-
gramming languages, this chapter formally explores the different causes of ambigu-
ities and the restrictions and tools necessary to deal with them.

5.1 Kinds of Ambiguity

First, we have to determine what ambiguity of an expression actually means: An
expression is ambiguous in a language, if there exist multiple interpretations of that
expression in the language.

We differentiate between two kinds of ambiguity: syntactic and semantic.

Definition 46 An expression is syntactically ambiguous for a given type, if two or
more different syntactic structures (parse trees stripped of their type annotations)
can be derived from it for that type.

While this seems to be confusing syntactic and semantic information, this defini-
tion makes sense in our context because we use the type information to syntactically
disambiguate an expression, i.e. to find the only type-correct parse tree which has
the demanded result type. Thus, even if an expression might be syntactically am-
biguous in general, it is still possible to be syntactically unambiguous for a specific
given type.

Example 54 Under the generic type α (a type variable), both given interpretations
of the expression #<> :: <> would be type correct in the signature in figure 5.1.

fun <> : seq A
fun :: : [A , seq A] → seq A
fun # : [seq A] → nat
fun E1 : nat
fun E2 : seq nat
def E1 == #<> :: <>

-- # ((<> : seq A) :: (<> : seq seq A) : seq seq A) : nat
def E2 == #<> :: <>

-- (#(<> : seq A) : nat) :: (<> : seq nat) : seq nat

Figure 5.1: Signature of example 54

If there are different unambiguous interpretations for an expression for different
types, this can still lead to syntactic ambiguities if generic types are involved.
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Definition 47 An expression is semantically ambiguous for a given type, if two
or more different semantic structures (type-annotated parse trees) with the same
syntactic structure can be derived from it for that type.

Example 55 There are no purely syntactic means to semantically disambiguate
the expression |v| in the signature in figure 5.2. It has two parse trees which have
the same structure, but different type annotations at the inner node v.

fun | |: [real] → real
fun | |: [vector] → real
fun v : real
fun v : vector

-- | v |== | (v : real) | : real
-- | v |== | (v : vector) | : real

Figure 5.2: Signature of example 55

Obviously, we need type analysis to determine if there occurs either of these
kinds of ambiguity.

While syntactic ambiguity can always be circumvented by adding parentheses
or type annotations to the expression, semantic ambiguity can sometimes only be
circumvented by using type annotations for inner parts of the expression or by other
means like scope restriction, i.e. overriding an overloaded operator in the scope of
the ambiguous expression to exclude the other declarations of that operator from
the scope.

5.2 Normal Approaches to Ambiguity

Before we present our own approach to disambiguation, let us examine the state of
the art. How is the ambiguity problem tackled in practice in existing programming
languages?

There are three standard approaches to cope with these ambiguities. We will
give examples of these approaches in the rest of this section.

5.2.1 Syntactic Language Restrictions

The predominant solution is to restrict the syntax.

• Most programming languages do not allow the definition of true mixfix op-
erators additional to the ones built into the grammar of the language to be
defined at all.

• The precedences between the predefined mixfix operators are hard-coded into
the grammar of the language by precedence levels (e.g. in [3]), also called
priorities (e.g. in [45]).

• For most repetitive constructions, longest or shortest match rules are added
to the grammar to avoid so-called shift/reduce conflicts for the generated LR
parser ([3], [5]).

• Even if the language allows the use of prefix, infix or postfix operators that
can be defined by the user in the language itself, often rules are added as to
how they can be combined.
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Example 56 In OPAL [31], where every function can be used as prefix, post-
fix or, if it has multiple arguments, as infix operator, it is not possible to mix
different usages in one expression without using parentheses.

• Another approach is to use different application syntaxes for different fixities.

Example 57 In Haskell [18], all functions can either be used in prefix or in
postfix applications, but identifiers that are used for postfix application have to
be written in back-ticks, while graphemes that are used in prefix applications
have to be put in a parenthesis.

Precedence Restrictions

In some languages that do allow to add infix operators or even mixfix operators,
the user has to restrict their use by giving precedences between them if they shall
be mixable in one expression. These precedences then have to be adhered to in all
those expressions.

Example 58 The language SDF21, defined in [46], allows the introduction of ar-
bitrary mixfix operators together with precedences and associativities between these
operators.

Example 59 The language OBJ3 ([14]) also allows the introduction of operator
patterns. Associativity and precedence level can be given for each operator and for
every operand it can be defined whether it must have a lower precedence level, or
can have an equal precedence level to the operator or any precedence level.

Unfortunately, even the least restrictive of these purely syntactic approaches
have huge drawbacks. They forbid some semantically unambiguous expressions
while allowing semantically nonsensical expressions that have to be filtered out by
the semantic analysis.

Example 60 Consider the operator signature in figure 5.3. if we assign the prece-
dences ! > + > :: > # , then

• # 1 ! + 1 :: <> is allowed as #(((1!) + 1) :: <>), but

• 1 + # 1 ! :: <> is forbidden, even though there is only one type correct
possibility: 1 + (#((1 !) :: <>)), and

• # 1 + 1 :: <> ! + <> is allowed as # ((1 + 1) :: ((<> !) + <>)) which is
clearly not type-correct.

Any other arbitrarily chosen operator precedence would cause similar problems.

5.2.2 Semantic Language Restrictions

Other approaches to avoid ambiguities in the first place are restrictions of the power
of the language itself by not allowing the use of polymorphism, overloading or higher-
order functions.

This is clearly undesirable in the field of modern high-level functional languages
which derive their power of expressiveness from these constructions.

1Syntax Definition Formalism 2
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fun 1 : nat
fun ! : [nat] → nat
fun + : [nat , nat] → nat
fun <> : seq nat
fun :: : [nat , seq nat] → seq nat
fun # : [seq nat] → nat

Figure 5.3: Signature of example 60

Example 61 In [1], the author defines distfix grammars as something very sim-
ilar to our mixfix grammars, i.e. as describing operator instantiations where the
operator words are distributed amongst the operands. However, the operator set of
the distfix grammar is restricted in several ways:

• All operands of any one operator are separated by at least one non-empty
operator word, i.e. no adjacent operands are allowed.

• An initial operator word cannot be used as a subsequent operator word.

• No whole sequence of operator words of one operator is allowed to be an initial
sequence of operator words of another operator.

This can be seen both as a syntactic restriction as well as a restriction on the
overloading of operator words. It is – in part – akin to our properties to avoid
operator overlap, as described in section 5.4.2 on page 82.

5.2.3 Semantic Filters

If the syntax is not restricted and the grammar is ambiguous, the set of possible
parse trees resulting from the parsing of an expression can be filtered to allow only
the ones that are type-correct. If exactly one such parse tree remains at the end of
the filtering process, the expression was unambiguous.

However, if the grammar is ambiguous, every expression has potentially an ex-
ponential (if not infinite2) number of parse trees assigned by the parser. Thus
the filtering algorithm would be of exponential (or non-terminating) worst-case-
complexity dependent on the length of the expression.

In case that the ambiguity is only a syntactic one, such behavior is clearly very
undesirable.

Example 62 In [46], the language SDF allows the definition of operators with ar-
bitrary patterns where the types of the operands are used as grammar nonterminals.
These patterns are not otherwise restricted and every expression in the induced lan-
guage is interpreted as having all possible type-correct interpretations. Therefore,
a semantic filtering process must be employed to filter out type-incorrect and also
type-correct but otherwise undesired interpretations.

Example 63 In OBJ3, the first parse tree found by the parser is selected, even
though there might be several type-correct interpretations of an expression. Indeed,
sometimes the parser fails, according to [14], to find any type-correct parse tree
because of initial assumptions, even though one exists.

2because of invisible operators
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5.2.4 Conclusion

Concluding our survey of the standard approaches, we can say that in all of them
it is often necessary for the programmer to use a lot of parentheses or split up the
expressions into very small syntactically unambiguous chunks to get unambiguous,
efficiently parsable expressions.

They must also be aware of the parsing technique of the language, even if they
have possibilities to influence the disambiguation process. Thus, the parsing tech-
nique influences the specification technique.

Otherwise, the programmer may need to wait a long time for the parser to parse
even correct programs.

All these approaches are thus – in our view – in some way inappropriate for
solving the ambiguity problem for freely definable mixfix operators.

5.3 Causes of Ambiguity

In our mixfix expression language, there are four causes of ambiguity, three of which
are more syntactic in nature while the last one can only be dealt with semantically.
We will show in this chapter that elimination and proper restriction of these causes
yields an unambiguous subset of our expression language.

cause possible effect
shared separator tokens backbone ambiguity
adjacent operands vs. non-unary invisible adjacent-operand
operators ambiguity
left-open vs. right-open operators precedence-related

ambiguity
polymphism or converter operators type ambiguity

Table 5.1: causes for different kinds of ambiguity

As we have already motivated in section 2.5.2, if none of the first three kinds
of ambiguity arises, we can determine at most one type-correct syntactic interpre-
tation via backbone parsing, adjacent-operand-restricted left-weighted parsing and
precedence reordering of the resulting left-weighted interpretation. Thus, the list of
causes is closely related to our disambiguation process where any of the causes can
have the effect of letting this process fail.

In the rest of this chapter, we shall explore each of these formally, showing in
what way they actually do cause ambiguity and giving solutions as to how this can
be prevented in the least restrictive ways.

Since all of these causes are more or less separate from each other, they can
be surveyed and dealt with independently, leaving room for different unambiguous
sub-languages of our mixfix expression language.

Example 64 A mixfix expression language

• where every separator token occurs only once in the whole operator set,

• that has no invisible operators,

• which allows only left-open, but no right-open operators and

• where also no polymorphism is allowed

would automatically be unambiguous.
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However, such an approach is far from being the least restrictive. We have found
much better solutions to the problems above that are still efficiently computable.

5.4 Shared Separator Tokens

In general, if a separator token can be shared by3 two different separators4 or if it
can appear in the same separator multiple times, it can cause a syntactic ambiguity
that we call backbone ambiguity .

Of course, this is just a necessary condition for that kind of ambiguity to occur.
Most situations are much more complicated than that and there can be languages
with shared separator tokens which do not have backbone ambiguity.

Definition 48 A mixfix expression has a backbone ambiguity if there exists more
than one derivation for it with the backbone grammar.

It is not possible in general to determine for an arbitrary grammar whether
any of the words belonging to the language of that grammar have a backbone
ambiguity, as that is equivalent to the problem of determining ambiguity of the
backbone grammar. This problem is undecidable for arbitrary grammars [4]. It
is necessary to find one word in the language that contains a backbone ambiguity.
If the set of expressions in the language is infinite, the searching process could be
non-terminating.

However, we have found some satisfying conditions that imply that no back-
bone ambiguity can occur in the mixfix expression language induced by a given
operator set. But in our approach it is not really necessary to find out whether the
whole language induced by an operator set contains no backbone ambiguity, but
only whether or not each expression that actually occurs in a program does. This
approach is described in the following section.

5.4.1 Avoiding Backbone Ambiguity by Backbone Parsing

Lemma 2 An expression contains no backbone ambiguity, if the backbone parser
finds only one derivation for that expression using the backbone grammar of the
operator set of the given scope.

The backbone parser must be a generalized parser which can deal with left-
recursion (since all rules of the backbone grammar are left-recursive) and finds all
parse possible backbone parse trees for a given token sequence. Since the backbone
grammar contains no right-recursion, it can, for instance, be dealt with by an Earley
parser or a generalized LR parser (see [29]).

The proof of this is self-evident. If more than one derivation is found by backbone
parsing, there is an ambiguity.

Efficiency

The effort to build a backbone parser out of a given operator set is linear to the
sum of the lengths of the operators, since every operator must be mapped into a
backbone grammar rule of maximally the same length plus one.

Parsing an arbitrary grammar with a generalized parser that recognizes multiple
derivations for the same expression, e.g. an Earley parser, takes in the worst case
cubic effort dependent on the length of the expression to be parsed.

3i.e. appear in
4in either the same or a different operator pattern
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To make the resulting parser more efficient, it is advisable to filter the oper-
ator set before building the parser by using the tokens actually occurring in the
expression. This filtering process needs to count the occurrence of each token in the
expression and in each operator and leaves only those operators in the operator set
that contain no extra tokens.

Example 65 Take the operator patterns | | and | . Even though they are
overlapping in general, the backbone parser would not find a backbone ambiguity for
expression a | b, if a and b have no backbone ambiguity and do not contain the
token |.

This is because the operator | | causing the potential backbone ambiguity could be
filtered out of the operator set given to the backbone parser. It has more occurrences
of the token | than the expression itself.

We need the following definitions to describe the subset operators(OP , E).

Definition 49 Let bag A be the type of finite multisets {e1 , . . . , en} of elements
ei : A, i.e. sets where the number of occurrences of an element is significant, but
not its position. That means, for instance, {1 , 2 , 2} = {2 , 1 , 2} 6= {2 , 1} .

Every such multiset can be seen as a function of type A → nat.

var A : SORT
fun ∅ : bag A
fun { } : [A] → bag A
fun ∪ : [bag A , bag A] → bag A
fun : [bag A] → (A → nat)

Definition 50 count(s)(e) is the number of occurrences of an element e in the
sequence s. The function count forgets the position of each element, thus yielding
a bag.

var e : A
var s : seq A
fun count : seq A → bag A
def count(<>) ==∅
def count(e :: s) =={e} ∪ count(s)

Definition 51 Now, we can be define the subset of occurring operators operators(Op ,
E) of the given operator set Op for the expression E:

def operators(Op , E)=={op ∈ Op|count(tokens(op)) ⊆ count(E)}

The effort to compute this subset is linear to the sum of the lengths of the
operator patterns to be filtered and the length of the expression.

This effort can be worth spending when the operator set in a given scope is very
large. Both the construction of the generalized parser as well as its computation are
more efficient if only a potentially very small subset of rules has to be considered.

5.4.2 Avoiding Backbone Ambiguity by Separator Analysis

A different approach for avoiding backbone ambiguity is analyzing properties of
the separators in the operators possibly occurring in the expression to determine if
overlap of operators can actually take place.
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Proposition 3 If it can be determined for every pair of operators in operators(OP ,
E) that they cannot possibly overlap then an expression made up of these operators
can contain no backbone ambiguity.

Unfortunately, while we have found several restrictions to be imposed on the
operator set which we believe to be sufficient to entail its overlap-freeness, we have
found no proof of this.

The idea is to impose restrictions like unique identifiers (identifiers which occur
only once in only one operator pattern) for every operator pattern or unique prefixes
or suffixes of operator patterns which can be used to check whether or not an overlap
between different operators could be possible.

However, since this is only conjecture, we leave the specifics of these restrictions
out of this thesis.

5.5 Adjacent Operands vs. Invisible Operators

The next problem we are faced with in our mixfix expression language is ambiguity
caused by adjacent operands. In conjunction with invisible operators, we can have
situations where it is not exactly clear where the left one of the adjacent operand
expressions ends and where the right one starts.

However, it is possible to find restrictions that allow us to prefer some syntactic
interpretations for expressions which are ambiguous because of adjacent operands.
These preferred interpretations are then seen as unambiguous in our mixfix expres-
sion language while the other interpretations are rejected. Although this is mainly
a matter of taste, and it could be argued that such expressions should also be
rejected, this would mean that only closed operators could be used for adjacent
operand instantiations which we deem too much of a restriction.

We will show that these preferred syntactic interpretations are syntactically un-
ambiguous, thus enlarging our class of unambiguously parsable mixfix expressions.

In this context, we will abstract both from typing of operators as well as their
natural or ad-hoc precedences. We will deal with the real precedences amongst
expressions with such unambiguous interpretations in the next section.

We also assume that no backbone ambiguity exists in the expressions to be
restricted that way.

5.5.1 Left-Weighted Interpretations

To describe ambiguity that is dependent only on adjacent operands, we introduce
another syntactic interpretation of mixfix expressions which abstracts from natural
precedence and type-correctness, called left-weighted expression interpretation , by
supposing a fixed left-precedence of all operators to each other and ignoring type-
correctness, thereby gaining the possibility to reason about the adjacent operand
parts without interference of precedence- or type-related ambiguity issues.

The idea behind this concept is to take every visible or empty operator as being
left-precedent towards every left-open operator and no left-open operator as being
right-precedent towards any left-open operator. The binary concatenation operator
(which is sufficient to derive all possible concatenation expressions) is taken as
only left-precedent only towards itself, while all other operators are left- and right-
precedent to it.

Basically, we impose a pair of precedence relations (LeftL,RightL) with LeftL =
(Visible∪ {ε})×LeftOpen∪ {( , )} and RightL = RightOpen× (Visible∪
{ε} \ LeftOpen) where Visible is the set of visible operators.

Simply put, this precedence relation ignores all other natural or ad-hoc prece-
dence relations by always assuming left-precedence. All ambiguity that occurs in
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such left-weighted interpretations cannot be precedence related. Since we assume
that also no backbone ambiguity is present, ambiguity can only occur in the map-
ping of sub-expressions to adjacent operands. By imposing several restrictions on
expressions allowed as adjacent operands, we arrive at an unambiguous expression
language, i.e. where all expressions have at most one acceptable syntactic interpre-
tation.

Reordering that single parse tree according to the actually present natural and
ad-hoc precedence relations, we will later arrive at a single type-correct parse tree,
if one exists and also no precedence conflicts occur in the expression.

Basic and Concatenation Expression Interpretations

To become able to partition expression concatenations into adjacent operands, we
want to avoid problems caused by concatenation operators. We do this by restricting
adjacent operand instantiations to non-concatenation expressions. Therefore, we
need a characterization of such expressions.

Definition 52 A basic expression interpretation is an operator instantiation of a
visible or empty operator.

A concatenation expression interpretation is an operator instantiation of a con-
catenation operator.

Lemma 3 Every mixfix expression can be interpreted as a basic expression or a
concatenation expression interpretation.

Proof 4 Since every expression interpretation is always a mixfix operator instan-
tiation, it can be either

• an instantiation of a visible or empty operator, which makes it a basic expres-
sion interpretation

• an instantiation of a concatenation operator, which makes it a concatenation
expression interpretation

• an instantiation of a converter operator, which can also be interpreted as its
operand expression, which, by induction, must be either a basic or a concate-
nation expression interpretation.

Because there do not exist other operators, thus, all mixfix expressions have either
a basic expression interpretation or a concatenation expression interpretation.

Left-Weighted Expression Interpretations

Using this further characterization of expressions, we can now introduce the concept
of left-weighted expression interpretations formally.

Definition 53 A left-weighted expression interpretation is either

• a basic expression interpretation where all operands are instantiated with left-
weighted expression interpretations, or

• a concatenation expression interpretation where all but the leftmost operand
must be instantiated with basic left-weighted expression interpretations, while
the leftmost operand can be instantiated with any left-weighted expression in-
terpretation.

If the root operator of a left-weighted expression interpretation is right-open, its
rightmost operand must be instantiated either with an empty or a prefix operator
instantiation.
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For left-weighted expression interpretations, we assume that in our mixfix ex-
pression language, all right-open operators can be seen as left-precedent towards all
left-open operators (by allowing only prefix and empty operators as instantiations
of right-open operands) with the exception of concatenation operators which are
defined as left-precedent to each other and which all other operators are defined as
both left and right-precedent to.

We need this interpretation to prove that the restrictions imposed on instantia-
tions of adjacent operands lead to unambiguity in regard to these operands which
is independent of the ambiguity issues induced by precedence and typing.

We can describe the language of left-weighted expressions also with a special
context-free mixfix grammar. To arrive at this grammar, the usual grammar trans-
formations for resolving operator precedence ambiguity must be applied to the nor-
mal context-free mixfix grammar5.

Definition 54 The left-weighted mixfix grammar is a context-free grammar where
the set of rules is constructed as follows:

• take the rules of the meta-grammar

• add rule E ::= B

• add rule E ::= E B

• add rule B ::= P

• map every visible or empty operator pattern to a mixfix rule with the following
properties:

– all separator tokens are mapped to their respective terminal symbols inside
the right-hand-side

– if the operator is left-open, the left-hand side of the rule is B

– if the operator is a prefix or empty operator, the left-hand side of the rule
is P

– map all right-open placeholders to nonterminal P inside the right-hand
side

– map all enclosed placeholders to nonterminal COMMA inside the right-
hand side

– map all left-open or adjacent placeholders to nonterminal B inside the
right-hand side

Example 66 Take the signature of example 49 on page 64, the induced left-weighted
mixfix grammar (apart from the meta-grammar) is the one in figure 5.4.

Since we abstract from typing, all concatenation operators are described by
the same rule E ::= E B to avoid ambiguity introduced by mixing concatenation
operators of different arities. This can safely be done because every concatenation
instantiation of a concatenation operator of arity greater than two can also be
interpreted as multiple applications of a binary concatenation operator.

Now, we still have to make sure that the language described by the left-weighted
expression interpretations include all unambiguous expressions of the mixfix expres-
sion language.

5see [3]
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E ::= B
E ::= E B
B ::= P
P ::= if COMMA then COMMA else P
B ::= B = P
P ::= 0
P ::= 1
B ::= B − P
B ::= B ∗ P
B ::= B !
P ::= x
P ::= fac P

Figure 5.4: Grammar of example 66

Proposition 4 Every mixfix expression has a left-weighted interpretation.

Proof 5 1. Instantiations of nullary operators are trivially left-weighted.

2. By induction, instantiations of postfix operators have a left-weighted interpre-
tation, if all their operands have a left-weighted interpretation.

3. By induction, instantiations of right-open operators where the rightmost operand
is empty or a prefix operator instantiation, have a left-weighted interpretation,
if all their operands have a left-weighted interpretation.

4. Suppose we have an expression s0 E1 s1 . . .En sn En+1 sn+1 . . .En+m sn+m

where all Ei have left-weighted interpretations and where s0 s1 . . . sn−1 is
the pattern of a right-open operator and sn sn+1 . . . sn+m is the pattern
of a left-open operator.

This expression can be seen as an instantiation of operator sn sn+1 . . . sn+m.
Since by induction s0 E1 s1 . . .En has a left-weighted interpretation,
s0 E1 s1 . . .En sn En+1 sn+1 . . .En+m sn+m also has a left-weighted interpre-
tation where either sn sn+1 . . . sn+m is the topmost instantiated operator
or sn+m = ε and the expression En+m is also of the form
E′

n+m sn+m+1 . . .E′
n+m+k sn+m+k, which is the same case as above.

Prefix and Postfix Expressions

We need an additional characterization of non-empty expressions into prefix and
postfix expressions to describe, what kind of expressions can be adjacent to each
other without ambiguity.

Definition 55 A prefix expression is an operator instantiation of either a prefix
operator or of a left-open operator where the leftmost operand is instantiated with a
prefix expression.

Basically, this characterization ensures that such an expression does not have
an empty operator instantiation at the very beginning.

Definition 56 A postfix expression is an operator instantiation of either a postfix
operator or of a right-open operator where the rightmost operand is instantiated with
a postfix expression.
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Analogously, this characterization ensures that such an expression does not have
an empty operator instantiation at the very end.

The rest of this section will describe specific causes for ambiguities caused by
adjacent operands and introduce restrictions that must be hence-with imposed on
instantiations of such operands.

Following that, we will use these restrictions to prove the unambiguity of the
language of left-weighted interpretations.

5.5.2 Adjacent Empty Operands

Obviously, the instantiation of an empty operator which just constitutes the empty
token sequence has only one left-weighted interpretation, since it is a nullary op-
erator. So, for every two adjacent operands that are instantiated with one empty
and one non-empty expression, it could be syntactically ambiguous whether the
non-empty expression instantiates the left or the right operand. In both cases, we
could still get left-weighted interpretations for the expression.

Example 67 In the signature in figure 5.5, the expression a b c as an instantiation
of the operator a c is ambiguous as it is not clear which of the operands is
instantiated with b.

On the other hand, the expression a c is unambiguous.

fun A : SORT
fun B : SORT
fun a c : [A , A] → B
fun b : A
fun ε : A
fun E1 : B
def E1 == a b c

-- a b ε c
-- a ε b c

fun E2 : B
def E2 == a c

-- a ε ε c

Figure 5.5: Signature of example 67

This leads us to our first restriction regarding adjacent operands:

Restriction 1 In an unambiguous expression, one operand that is adjacent to an-
other operand can be instantiated with an empty expression if and only if the adjacent
operand is also instantiated with an empty expression.

5.5.3 Adjacent Concatenation Operands

A similar problem arises for concatenation operators , i.e. expressions that have a
syntactic interpretation as the instantiation of an invisible operator of arity greater
than 1.

A concatenation expression is one which can always be partitioned into more
than one expression. Thus, for adjacent operands, if one of them is instantiated
with a concatenation expression, part of that concatenation could also belong to a
concatenation of the other adjacent operand.
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Example 68 In the signature in figure 5.6, the expression a b b c as an instanti-
ation of the operator a c is ambiguous as it is not clear how the token list b b
is to be distributed between the adjacent operands.

fun A : SORT
fun B : SORT
fun : [A , A] → A
fun a c : [A , A] → B
fun b : A
fun ε : A
fun E1 : B
def E1 == a b b c

-- a (b) (b) c
-- a (b b) ε c
-- a ε (b b) c

Figure 5.6: Signature of example 68

This leads us to our second restriction regarding adjacent operands:

Restriction 2 In an unambiguous expression, no operand that is adjacent to an-
other operand (except the leftmost operand of a concatenation operator) can be in-
stantiated with a concatenation expression.

In concatenation operators, all operands are adjacent to each other. If we would
not allow concatenation operands in any of these, it would not be possible to have
nested concatenation expressions. Since relaxing the overall restriction in that in-
stance does not introduce ambiguity, we do it to be able to define the application
operator as a concatenation operator with the usual left-associativity.

Of course, we could relax the condition in such a way that the leftmost of any
list of adjacent operands can contain a concatenation expression, but we think that
would be more confusing than beneficial. Whatever restriction is chosen, it must
ensure that it is clear which part of which expression belongs to which adjacent
operand.

5.5.4 Adjacent Postfix and Prefix Operands

Empty operators can cause another ambiguity in conjunction with left-open or
right-open operators.

If an operand that is left-adjacent to another operand is instantiated with a non-
postfix expression, and the right-adjacent operand is instantiated with a left-open
operator instantiation, the leftmost operand of that expression could possibly also
be seen as the rightmost operand of a rightmost sub-expression of the left-adjacent
operand expression.

If an operand that is left-adjacent to another operand is instantiated with a non-
postfix expression which is a right-open operator instantiation where the rightmost
operand is again a right-open operator instantiation, it is unclear, where the left-
adjacent operand expression ends and the right-adjacent operand expression starts.

Example 69 In the signature in figure 5.7, the expression
begin pre closed post end is ambiguous as it is not clear whether closed is the
right operand of pre or the left operand of post.
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Likewise, the expression begin pre pre closed end still is ambiguous, even
when we take restriction 1 into account.

The expression begin pre closed end would be unambiguous, though.

fun begin end : [A , A] → A
fun pre : [A] → A
fun post : [A] → A
fun closed : A
fun ε : A

fun E1 : A
def E1 == begin pre closed post end

-- begin (pre ε) (closed post) end
-- begin (pre closed) (ε post) end

fun E2 : A
def E2 == begin pre pre closed end

-- begin (pre ε) (pre closed) end
-- begin (pre pre ε) closed end

fun E3 : A
def E3 == begin pre closed end

-- begin (pre ε) closed end

Figure 5.7: Signature of example 69

These reasonings lead us to our third restriction regarding adjacent operands:

Restriction 3 In an unambiguous expression, if two adjacent operands are in-
stantiated with non-empty expressions, the left operand must be instantiated with a
postfix expression and the right operand must be instantiated with a prefix expres-
sion.

Closed Expressions as Adjacent Operands

Definition 57 A closed expression is an operator instantiation of a closed operator,
i.e. an operator that is both prefix and postfix .

As can be seen in example 69, there is a special case where a non-postfix expres-
sion as left-adjacent operand is not syntactically ambiguous (if restrictions 1 and 2
are adhered to).

When the left operand is the instantiation of a right-open operator with the
empty expression as its rightmost operand, there is no ambiguity towards the right-
adjacent operand if that is instantiated with a closed operator instantiation.

The analogous case for non-prefix expressions as right-adjacent operands exists,
of course, as well.

However, we are not sure whether or not relaxing our restriction 3 towards these
unambiguous expressions would not be too confusing for the user of our language
and thus have refrained from doing so.

5.5.5 Empty Operands in Concatenations

One more special case deserves our attention. If we were to allow adjacent operands
in concatenation operators to be instantiated with empty expressions (which be-
cause of restriction 1 would mean that all operands or none would have to be
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instantiated with empty expressions, we arrive at infinitely many left-weighted in-
terpretations for the empty expression.

Therefore, we introduce our fourth restriction regarding adjacent operands:

Restriction 4 In unambiguous expressions, operands of concatenation operators
shall not be instantiated with empty expressions.

5.5.6 Unambiguity

With the help of these restrictions, we can now prove that adjacent operands do
not cause ambiguity in left-weighted interpretations.

Lemma 4 If the restrictions regarding adjacent operands are adhered to, every ex-
pression has at most one partition e1e2 so that e1 and e2 are not empty, have exactly
one left-weighted interpretation where e1 is a postfix expression while e2 is a basic
prefix expression.

Proof 6 Let us assume, there exists another partition e′1e
′
2 for expression e1e2 with

e′1 = e1v and e2 = ve′2 (with v 6= ε) with the same restrictions as those for e1 and
e2.

Because there is no backbone ambiguity, v must be a mixfix expression, too. This
expression either excludes the root of the left-weighted interpretation of e2 (i.e. is
part of the left subtrees) or includes it (i.e. e′2 is part of the right subtrees).

• If the root of e′2 is the same as the root of e2, one of its left subtrees now misses
at least one leftmost operand, which would make e′2 a non-prefix expression,
contradicting that e′2 is supposed to be a prefix expression.

• If the root of e′2 is different from the root of e2, then e′2 must be a rightmost
operand of a rightmost subtree of e2 to be a basic prefix expression.

But in that case v now misses at least one rightmost operand. Since e1 is a
postfix expression, all its operators have all their rightmost operands instanti-
ated with non-empty expressions. Also, in v, all operators have their leftmost
operands instantiated with non-empty expressions, because e2 was a prefix ex-
pression and there is no other left-weight interpretation possible for v than
that for the left part of e2.

Additionally, since e1 was a postfix expression, v must also be a postfix ex-
pression, i.e. all its rightmost operators are not empty. Therefore, ve′2 must
be a concatenation expression which contradicts e2 being a basic expression.

Proposition 5 The left-weighted interpretations of expressions in which no back-
bone ambiguity occurs are syntactically unambiguous, if the restriction properties 1,
2, 3 and 4 are met for all expressions.

Proof 7 Because of lemma 4, there is at most one partition into basic expressions
possible for every non-empty concatenation of expressions.

Thus, for every list of adjacent operands, the unambiguous partition of the con-
catenation expression instantiating these operands can be found and then each of
the resulting sub-expressions disambiguated separately using precedence. Since we
allow only basic expressions as instantiations for adjacent operands, we only accept
expressions where the operation-concatenation can be partitioned into exactly the
same number of basic expressions as there are adjacent operands.

We still must distinguish two cases for each adjacent operand list:

90



1. If the list of adjacent operands occurs in front of a terminal symbol in the
instantiated operator, the rest of the operator cannot overlap the operands,
therefore it can be unambiguously determined, whether or not all operands are
instantiated with the empty expression.

2. If the list of adjacent operands is not in front of a terminal symbol of the in-
stantiated operator, then the whole expression either ends after these operands
(in which case we can determine whether they must all be empty or not) or
there is an outer operator which had this operator as an operand. Again, we
have to distinguish the two different cases for the operand list containing that
operand.

If the root of the left-weighted interpretation of an expression is a concatena-
tion operator, it can still be unambiguously partitioned into the rightmost operands
(which are all basic expressions) and the leftmost operand. If the leftmost operand
is again a concatenation expression, it can be handled the same way.

Therefore, all expressions containing operators with adjacent operands have at
most one left-weighted interpretation adhering to the restrictions governing adjacent
operands.

5.6 Left-Open vs. Right-Open Operators

In the section about shared separator tokens, we only explored expression overlap
caused by overlapping separators. However, it is also possible that expressions only
overlap in their operand parts when left-open operator instantiations are mixed with
right-open operator instantiations to their right in one mixfix expression.

The restrictions in the previous section about adjacent operands ensure that
such operand overlap can only occur between the left-open operand of one operator
and the right-open operand of an operator.

But even with these restrictions expressions can have different syntactic inter-
pretations. To disambiguate such expressions, a unique topological order between
the backbones of the operators of that expression must be found which orders the
operators into a parse tree.

Precedence relations between operators can help us find such a topological order
on operators. Thus, we want to develop some precedence relations in this section
that allow no syntactic ambiguity inside mixfix expressions, as long as no backbone
ambiguity occurs and the adjacent operand restrictions are adhered to.

The two kinds of precedence we want to describe we will call natural precedence
and ad-hoc precedence 6.

The first of these precedence kinds determines precedence between operators
depending on their types, while the second precedence uses precedence preferences
given by the user.

Both kinds of precedence take the fixities of the operators and the presence of
other operators in the mixfix expression into account to determine unambiguity. We
only must consider left-precedence towards left-open operators and right-precedence
towards right-open operators. During the actual precedence test, it is also only
necessary to test precedence between operator pairs where the precedent operator
can be an operand to the dominant one according to typing.

6which could also be called unnatural precedence, because it does not follow from the nature
of the operators involved
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5.6.1 Natural Precedence

As was already mentioned, naturally syntactically unambiguous expressions have
at most one syntactic interpretation in every type. But this can lead to situations
where, dependent on the type of the expression, operator pairs can be naturally
right-precedent and/or naturally left-precedent for the same expression (in different
types).

Example 70 Under three different types, the operator pair (# , :: ) in the
signature 5.8 can be naturally left-precedent, right-precedent or both. In the first two
cases, the resulting expression is unambiguous, in the latter, it is ambiguous.

fun <> : seq A
fun :: : [A , seq A] → seq A
fun # : [seq A] → nat

fun E1 : nat
def E1 == # <> :: <>

-- #(<> :: <>)
fun E2 : seq A
def E2 == # <> :: <>

-- ((#<>) :: <>) : seq nat
fun E3 : A
def E3 == # <> :: <>

-- (#(<> :: <>)) : nat
-- ((#<>) :: <>) : seq nat

Figure 5.8: Signature of example 70

Weak Natural Precedence Relations

To be able to describe situations where this natural ambiguity cannot occur, we
define the natural, type-dependent, left- and right-precedence relations LeftT (S)
and RightT (S)7 in definition 58.

Now, these relations describe for all operator pattern pairs (op1, op2), whether
op1 may be the root of the leftmost left-open operand of op2 (i.e. (op1, op2) ∈
LeftT (S)) or whether op2 may be the root of the rightmost right-open operand
of op1 according to scope S by simple type compatibility (i.e. if the types are
unifiable).

If the result type of the left operator is compatible with the leftmost left-open
type of the right operator, then there could be expressions where the right operator
dominates the left operator directly.

Since this relation only describes the possibility of precedence between operators
which could be ambiguous, we call it the weak natural precedence relation.

If (op1, op2) ∈ LeftT (S) and (op1, op2) ∈ RightT (S), there is obviously potential
for ambiguity. But disjointness of LeftT (S) and RightT (S) is a too strong criterion
to avoid this ambiguity as too many naturally unambiguous expressions would then
be rejected if both precedences were excluded in such a case from the grammar.
Also, this criterion would only imply unambiguity, if both LeftT (S) and RightT (S)
are transitive which is seldom the case.

7The subscript T here stands for type-dependent, while the operand S is a signature.
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But the weak natural precedence relations will help us in describing the strong
natural precedence relations we aim for.

Definition 58 We define LeftT (S) as those pairs of operator patterns from signa-
ture S, where the type of leftmost operand of the dominant left-open operator can be
returned by the possibly precedent operator. The analogous construction determines
the relation RightT (S).

type pattern == seq[token]
type operator == ( : )(pattern : pattern , type : type)
type scope == set[operator]

var S : scope
var p1 , p2 : pattern

fun LeftT(S) : P(Op(S)× LeftOpen(S))
fun RightT(S) : P(RightOpen(S)×Op(S))
def LeftT(S)=={(p1 , p2)|p1 returnsS leftmostS (p2)}
def RightT(S)=={(p1 , p2)|p2 returnsS rightmostS (p1)}

var op : operator
var p : pattern
var T , T0 , T1 , T2 , T3 ,..., Tn : type

fun compatible : [type , type] → bool
def T1 compatible (T2 ∪T3)==

(T1 compatibleT2)or(T1 compatibleT3)
def (T1 ∪T2) compatibleT3==

(T1 compatibleT3)or(T2 compatibleT3)
def T1 compatibleT2==T[T1 := T2] 6= ⊥

WHERE T== copy (T1 , T2)
fun returns : [pattern , scope , type] → bool
def p returnsS T==

IF (p : T1 → T2) ∈ S and
(T2 compatibleT)

THEN true
IF (T = LIFT T0) and

(separators(p) = [s0 , . . . , sn]) and
(p : T1 → T2) ∈ S and
(T0 compatible s0 T1 s1 . . .Tn sn)

THEN true
ELSE false
FI

fun leftmost : [scope] → pattern → type
def leftmostS (p)==⋃

{ T1| (p : [T1 , . . . , Tn] → T0) ∈ S}
fun rightmost : [scope] → pattern → type
def rightmostS (p)==⋃

{ Tn| (p : [T1 , . . . , Tn] → T0) ∈ S}

The following definitions of leftmostS (op , T) and rightmostS (op , T)
are used in definitions 67 (on page 96) and 66 (on page 96) . They compute the
leftmost or rightmost operand type for operator op, if the demanded type for the
instantiation of that operator is T.

Definition 59
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fun leftmost : [scope] → pattern× type → type
def leftmostS (p , T1 ∪T2)==

leftmostS (p , T1) ∪ leftmostS (p , T2)
def leftmostS (p , T)==⋃

{ T1[T0 := T]|
op ∈ S ,
pattern(op) = p ,
[T1 , . . . , Tn] → T0 = copy(type(op) , T) }

fun rightmost : [scope] → pattern× type → type
def rightmostS (p , T1 ∪T2)==

rightmostS (p , T1) ∪ rightmostS (p , T2)
def rightmostS (p , T)==⋃

{ Tn[T0 := T]|
op ∈ S ,
pattern(op) = p ,
[T1 , . . . , Tn] → T0 = copy(type(op) , T) }

For the above definitions, we need an auxiliary function copy. The function
copy creates a fresh copy of its first argument, not containing variables from its first
or second argument. It is used for compatibility checks. This copying is necessary
since the variables used in types of declarations can be the same, although all these
variables are free for every declaration.

The auxiliary function Free computes all free type variable of a type.
The function rename computes a substitution function for types function which

renames all variables in its first arguments injectively to variables which are not in
its first and not in its second argument.

Definition 60

fun copy : type× type → type
def copy (T1 , T2)== rename ( Free (T1) , Free (T2))(T1)
fun Free : type → set[type]
fun rename : set[type]× set[type] → (type → type)

Natural Precedence Ambiguity

Let us now look at the different scenarios where natural syntactic ambiguities in
operator expressions can occur.

Basically, this is the case if at least two operators could be the root operator of
the same operator expression with the same type.

Let τ be an arbitrary given type, op1 a right-open operator and op2 a left-open
operator in Op with op1 = s0 . . . sn−1 , op2 = sn+2 . . . sm.

Suppose further, we have an operator expression
e = {si ei}n−2

i=0 sn−1 v sn+2 {ei−1 si}mi=n+3 with e ∈ L(Σ), ei ∈ L(Σ), and both
el = {si ei}n−2

i=0 sn−1 v ∈ L(Σ) and
er = v sn+2 {ei−1 si}mi=n+3 ∈ L(Σ) are also operator expressions.

Obviously, e could be ambiguous for a type τ , if both op1 and op2 can return
something of type τ and er has at least one type correct interpretation for the type
of the rightmost operand of op1 and also el has at least one semantically correct
interpretation of the type of the leftmost operand of op2.

Now, let us have a look at the different scenarios where it is possible for er

to have a syntactically and semantically correct interpretation for the type of the
rightmost operand of op1. The analogous scenarios are possibilities for el.
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1. v is also an expression in L(Σ) and op2 may be the root operator of er .

2. op2 is a postfix operator (i.e. m > n ∧ sm 6= ε ). Then, there must be an
operator op3 ∈ Op which can be the root operator of er and op2 can be the
root of a rightmost subtree of op3 .

3. op2 is also a right-open operator (i.e. an infix operator with m = n∨ sm = ε
). Then, there must be an operator op3 ∈ Op which may be the root operator
of er and op2 can be the root of any subtree of op3 .

This leads us to the following definitions that will help us formalize the above
conditions. They characterize different relations between operator, namely whether
an operator can appear as a direct or indirect rightmost or leftmost child of another
right- or left-open operator or can be a descendant reachable only over leftmost
left-open or rightmost right-open operands.

They are used to describe possibly precedent situations between operators which
again helps describing conflicts between such situations.

Definition 61 An operator op2 may appear as the rightmost child of a right-open
root operator op1 in an expression of type τ according to the right-precedence relation
Right if (op1, op2) ∈ DirectlyRightτ (S,Right).

DirectlyRightτ (S,Right) ==
Right ∩ {(op1, op2) | op2 returnsS rightmostS(op1, τ)}

Definition 62 An operator op1 may appear as the leftmost child of a left-open root
operator op2 in an expression of type τ according to the left-precedence relation Left
if (op1, op2) ∈ DirectlyLeftτ (S,Left).

DirectlyLeftτ (S,Left) ==
Left ∩ {(op1, op2) | op1 returnsS leftmostS(op2, τ)}

Definition 63 The postfix operator op2 may appear as a rightmost descendant of
the right-open root operator op1 in an expression of type τ according to the right-
precedence Right, if (op1, op2) ∈ RightmostDescendantτ (S,Right).

RightmostDescendantτ (S,Right) ==
RightOpen(S)×PostfixOp(S) ∩
{ (op1, op2) |
∃ op3 :

(op1, op3) ∈ DirectlyRightτ (S,Right)∧
(op3, op2) ∈ Right?

}

Definition 64 The prefix operator op1 may appear as a leftmost descendant of the
left-open root operator op2 in an expression of type τ according to the left-precedence
relation Left, if (op1, op2) ∈ LeftmostDescendantτ (S,Left).
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LeftmostDescendantτ (S,Left) ==
PrefixOp(S)× LeftOpen(S) ∩
{ (op1, op2) |
∃ op3 :

(op3, op2) ∈ DirectlyLeftτ (S,Left)∧
(op1, op3) ∈ Left?

}

Definition 65 The infix operator op1 may appear as a descendant of the left or
right-open root operator op2 in an expression of type τ according to the pair of
precedence-relations (Left,Right), if (op1, op2) ∈ Descendantτ (S,Left,Right).

Descendantτ (S,Left,Right) ==
InfixOp(S)× (LeftOpen(S) ∪RightOpen(S)) ∩
{ (op1, op2) |
∃ op3 :

op2 ∈ LeftOpen(S) ∧
(op3, op2) ∈ DirectlyLeftτ (S,Left)∧
(op1, op3) ∈ (Left ∪Right−1)?

∨
op2 ∈ RightOpen(S) ∧
(op2, op3) ∈ DirectlyRightτ (S,Right)∧
(op1, op3) ∈ (Left ∪Right−1)?

}

Now, we are able to define the possibly ambiguous situations between left-open
operators to the right of right-open operators (as described above) formally:

Definition 66 If (op1, op2, op3) ∈ PossiblyRightPrecedentτ (S,Left,Right), then
op2 may be the right child of the root op1 in expressions of type τ (according to the
pair of precedence-relations (Left,Right)) where op3 might both be in the the right
subtree of op2 or the root operator of the whole expression.

We call this a possibly right-precedent situation .

PossiblyRightPrecedentτ (S,Left,Right) ==
RightOpen(S)×Op(S)× LeftOpen(S) ∩
{ (op1, op2, op3) |

(op1, op2) ∈ DirectlyRightτ (S,Right) ∧
op3 returnsS τ ∧
(

op3 = op2 ∨
(op2, op3) ∈ RightmostDescendantrightmostS(op1,τ)(S,Right) ∨
(op3, op2) ∈ DescendantrightmostS(op1,τ)(S,Left,Right)

)
}

Definition 67 If (op1, op2, op3) ∈ PossiblyLeftPrecedentτ (S,Left,Right), then
op2 may be the left child of the root op3 in expressions of type τ (according to the
pair of precedence-relations (Left,Right)) where op1 might both be in the the left
subtree of op2 or the root operator of the whole expression.

We call this a possibly left-precedent situation .
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PossiblyLeftPrecedentτ (S,Left,Right) ==
RightOpen(S)×Op(S)× LeftOpen(S) ∩
{ (op1, op2, op3) |

(op2, op3) ∈ DirectlyLeftτ (S,Left) ∧
op1 returnsS τ ∧
(

op1 = op2 ∨
(op1, op2) ∈ LeftmostDescendantleftmostS(op3,τ)(S,Left) ∨
(op1, op2) ∈ DescendantleftmostS(op3,τ)(S,Left,Right)

)
}

Naturally Unambiguous Precedence

With the help of these relations, we now are able to define two strong natural prece-
dence relations LeftPrecτ and RightPrecτ according to the pair of precedence-
relations (LeftT (S),RightT (S)) which are unambiguous.

Definition 68
RightPrecτ (S,Left,Right) ==
DirectlyRightτ (S,Right) ∩
{ (op1, op2) |
∀ op3, op4 :

(op1, op2, op3) ∈ PossiblyRightPrecedentτ (S,Left,Right) =⇒
(op1, op4, op3) /∈ PossiblyLeftPrecedentτ (S,Left,Right)

}

LeftPrecτ (S,Left,Right) ==
DirectlyLeftτ (S,Left) ∩
{ (op1, op2) |
∀ op3, op4 :

(op3, op1, op2) ∈ PossiblyLeftPrecedentτ (S,Left,Right) =⇒
(op3, op4, op2) /∈ PossiblyRightPrecedentτ (S,Left,Right)

}

If (op1, op2) ∈ LeftPrecτ (S,LeftT (S),RightT (S)), we can safely – without
fear of loss of ambiguity – allow op1 as the leftmost child of the root operator op2

of an expression of type τ .
Likewise, if (op1, op2) ∈ RightPrecτ (S,LeftT (S),RightT (S)), we can safely

allow op2 as the rightmost child of the root operator op1 of an expression of type τ .
This pair of precedence relations is used in constraints of our two level grammar

in section 6.2.2.

Efficiency

The most inefficient part of computing these strong precedence relations is comput-
ing the transitive closures of the given weak precedence relations which is a cubic
algorithm in its worst case.

It depends on the number of declared operators occurring in the backbone list
of the expression multiplied by the number of declared converter operators in the
scope of the expression.

But again, the number of different operators occurring in an expression is usually
very small, so that the computation remains efficient in practice.
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If backbone parsing is actually used to determine the exact set of the operators
involved, this could very well be the dominant effort to be taken for long expressions
since it depends on the length of the expression instead of the size of the operator
set.

Restrictiveness

The set of expressions allowed by these natural precedence relations is a subset of
the syntactically unambiguous, type-correct expressions.

However, while the natural precedence approach finds a lot of precedent situa-
tions that are usually ignored in most programming languages, it does not help in
most of the standard operator scenarios like the arithmetic operators, since they are
naturally ambiguous precedence-wise. Here, we will have to use ad-hoc precedences
to resolve the syntactic ambiguity inherent in these operators.

5.6.2 Ad-Hoc Precedence

We want to allow the user to give preferred precedences for operator pairs that
can have different natural precedences in different contexts, so that the parser can
choose this preferred precedence whenever it finds a possible natural ambiguity.

In this section, we want to explore the restrictions that have to be imposed on
such user-given ad-hoc precedence relations so that they agree with the natural
precedence relations in such a way that no syntactic ambiguity is introduced into
the language.

In general, the set of trees should be only enlarged by given ad-hoc precedence
relationships, so that all expressions that were accepted as unambiguous without
them are still accepted and some additional expressions (that are only ambiguous
in regard to the given ad-hoc precedence) are accepted, as well.

Conflicting Operators

First of all, we have to define what possibly conflicting operator pairs are and how
they can be found.

Definition 69 The possibly conflicting operator pairs that can cause ambiguity are
those which can occur both in a possibly left precedent situation and a possibly right
precedent situation according to a given precedence-relation pair (Left,Right).

Conflictingτ (Left,Right) ==
Left×Right ∩
{ ((op′1, op2), (op1, op

′
2)) |

(op1, op
′
1, op2) ∈ PossiblyLeftPrecedentτ (Left,Right) ∧

(op1, op
′
2, op2) ∈ PossiblyRightPrecedentτ (Left,Right)

}

Thus, according to the weak precedence relations LeftT (S) and RightT (S), an
operator pair (op′1, op2) ∈ LeftT (S) is in conflict with the operator pair (op1, op

′
2) ∈

RightT (S) when there is a possibly left precedent situation between op1, op′1, and
op2 (i.e. (op1, op

′
1, op2) ∈ PossiblyLeftPrecedentτ (LeftT (S),RightT (S))) and

also a possibly right precedent situation between op1, op′2, and op2, (i.e. (op1, op
′
2, op2) ∈

PossiblyRightPrecedentτ (LeftT (S),RightT (S))).
But this categorization does not help us much since for instance all operator pairs

of the arithmetic operators are conflicting according to the natural weak precedence
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relations. Thus, we can not exclude these pairs from our ad-hoc precedence relations
because there would be no gain in the parsable expressions.

What we definitely need is to find those operator pairs which are in conflict
according to the ad-hoc precedences, because these would be the naturally conflicting
ones not rejected by the parser. Thus, these definitely conflicting operator pairs
can be excluded from the ad-hoc precedence relations by ensuring the following
restriction:

Restriction 5

LeftA ×RightA ∩ Conflictingτ (LeftA,RightA) = ∅

It is obvious that conflicts between such situations are real conflicts and must
be forbidden. Unfortunately, it is not so easy to see whether generally conflicting
operator pairs that are not in Conflictingτ (LeftA,RightA) introduce an actual
ambiguity in an expression.

Example 71 In the signature in figure 5.9, the expression a b c d could be seen as
having two preferred interpretations because of the given ad-hoc precedence pairs,
even though they are not definitely in conflict. If operator a is chosen as the
root, the rest expression is syntactically unambiguous because it contains no prefix
operators. If, on the other hand d is chosen as the root, the rest expression is
naturally unambiguous for type T1.

fun a : [T2] → T2

fun d : [T1] → T2

fun c : [T2] → T1

fun b : [T1] → T2

prec a ( d)
prec ( c) d
fun E : T2

def E == a b c d
-- ((ab) c) d
-- a((b c) d)

Figure 5.9: Signature of example 71

Thus, we need to find some additional restrictions that prevent conflicts of nat-
ural precedence inside partial expressions of formerly ambiguous trees to conflict
with the ad-hoc precedences.

Hierarchical Ad-Hoc Precedence Relations

Definition 70 We call a pair of ad-hoc precedences (LeftA,RightA) hierarchical,
if the following condition holds:

Property 2
LeftA

+ ∩ RightA
+ = ∅

In a hierarchical pair of precedence relations, no pair of operators can both be
in the left precedence hierarchy and the right precedence hierarchy.
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Fully Hierarchical Ad-Hoc Precedence Relations

Definition 71 We call these precedences fully hierarchical if they are hierarchical
and also the following additional conditions hold:

Property 3
∀op1, op2 ∈ (LeftOpen ∪RightOpen) :

(op1, op2) ∈ (LeftA ∪RightA
−1)+ ∨

(op2, op1) ∈ (LeftA ∪RightA
−1)+

∀op1, op2 ∈ (LeftOpen ∪RightOpen) :
(op1, op2) ∈ (LeftA ∪RightA

−1)+ ∧
(op2, op1) ∈ (LeftA ∪RightA

−1)+ =⇒
(op1, op2) ∈ LeftA

+ ∨
(op2, op1) ∈ RightA

+

This means that for every pair of operators, one must be reachable by the other
via the ad-hoc precedence relations, i.e. there must be a precedence defined (directly
or indirectly) between every two operators. Also, if each operator can reach the
other one, i.e. they have the same precedence level, then they should be reachable
only using one of the left or the right ad-hoc precedence relations, meaning they
should only be left- or right-associative.

We say that op1 has a higher precedence level than op2, if (op1, op2) ∈ (LeftA∪
RightA

−1)+ and (op2, op1) /∈ (LeftA ∪RightA
−1)+.

We say that op1 has the same precedence level as op2, if (op1, op2) ∈ (LeftA ∪
RightA

−1)+ and (op2, op1) ∈ (LeftA ∪RightA
−1)+.

Classical precedence level hierarchies which additionally assign either left- or
right-associativity among the operators of equal precedence level are examples of
fully hierarchical ad-hoc precedence relations.

Conflict-Freeness in Fully Hierarchical Ad-Hoc Precedence Relations

Using the above definitions, we can now proceed to prove that fully hierarchical
ad-hoch precedence relation pairs cannot have conflicting operator pairs.

Lemma 5 For fully hierarchical ad-hoc precedence relations, there can only be a
definite conflict between the left-precedent operator pair (op1, op2) and the right-
precedent operator pair (op3, op4), if op2 and op3 have the same precedence level.

Proof 8 If op3 has a higher precedence level than op2, then there cannot exist an op4

so that (op3, op4, op2) ∈ PossiblyRightPrecedentτ (LeftA,RightA). The analo-
gous is true if only op2 has a higher precedence level than op3.

Lemma 6 For fully hierarchical ad-hoc precedence relations, all operators on the
path between op2 and op3 in every possibly left-precedent situation (op3, op1, op2)
have the same precedence level, if op2 and op3 have the same precedence level.

Proof 9 If (op3, op1, op2) is a possibly left-precedent situation, then op3 can be a
descendant of op1 and op1 can be a direct descendant of op2. If op2 and op3 have
the same precedence level, op2 can also be a descendant of op3. Therefore, op1 can
be a descendant of op3 and also op2 can be a descendant of op1.

The analogous is true for possibly right-precedent situations.
If op3 6= op1, there must either be a possibly left-precedent situation (op3, op4, op1)

or a possibly right-precedent situation (op1, op4, op3), if (op3, op1, op2) is a possibly
left-precedent situation.

It follows that (since there can be no infinite paths between op2 and op3) every
operator on the path from op2 to op3 must have the same precedence level.
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Lemma 7 For fully hierarchical ad-hoc precedence relations, every possibly left-
precedent situation (op3, op1, op2) where op2 and op3 have the same precedence level
involves only left-precedent operator pairs on the path from op2 to op3.

The analogous is true for possibly right-precedent situations (op3, op4, op2).

Proof 10 Suppose there is a right-precedent operator pair (op4, op5) on the path
from op2 to op3. Let us further assume that there are no right-precedent opera-
tor pairs between op2 and op4, so that (op4, op2) ∈ LeftA

+ and (op4, op5) is the
outermost right-precedent operator pair (i.e. (op4, op5) ∈ RightA).

Because op2 and op3 have the same precedence level, op4 and op5 also have the
same precedence level as these.

Now, because the precedence relations are fully hierarchical, there are two possi-
bilities:

1. (op5, op2) ∈ RightA
+, which implies that also (op4, op2) ∈ RightA

+. This
contradicts the relations being hierarchical, because obviously (op4, op2) ∈ LeftA

+.

2. (op2, op5) ∈ LeftA
+, which implies that also (op4, op5) ∈ LeftA

+. This also
contradicts the relations being hierarchical, because also (op4, op5) ∈ RightA

+.

Thus, there can be no such right-precedent operator pair which implies that all
operator pairs involved must be left-precedent.

Proposition 6 Fully hierarchical ad-hoc precedence relations have no definitely
conflicting operator pairs.

Proof 11 If fully hierarchical ad-hoc precedence relations had definitely conflict-
ing operator pairs (op1, op2) and (op3, op4) there should exist an expression which
has a possibly left-precedent situation (op3, op1, op2) and a possibly right-precedent
situation (op3, op4, op2) according to the ad-hoc precedence relations.

Because of lemma 6, op1, op2, op3 and op4 must all have the same precedence
level.

Because of lemma 7, (op3, op2) ∈ LeftA
+ in the possibly left-precedent situation

and (op3, op2) ∈ RightA
+ in the possibly right-precedent situation. This contradicts

the precedence relations being hierarchical.

It could be argued that users that introduce naturally ambiguous operators
always (should) have a hierarchy between these operators in mind (i.e. their pre-
ferred precedence for expressions involving these operators) if they shall be used in
combination without parentheses. Following that, we should forbid those natural
precedences inside normally ambiguous expressions that are included because of
ad-hoc precedence which contradict that given hierarchy.

This means that as soon as a precedence of an operator pair is chosen during
syntactic disambiguation according to ad-hoc precedence which is not the natural
precedence between these operators, in all left- or right-open sub-expressions of the
chosen dominated operator, only ad-hoc precedence should be respected. (This is
implemented in the FollowsHierarchy constraint in section 6.2.2).

Example 72 In the above example 71 on page 99, the naturally unambiguous ex-
pression (a b) c would be such a case where the natural precedence of a towards
c contradicts the hierarchy, because a is above d which is above c.

Using only fully hierarchical ad-hoc precedence relations, it is easy to find a
restriction for the natural precedences inside naturally ambiguous expressions. We
simply remove all naturally precedent operator pairs where the dominant operator
has a higher ad-hoc precedence than the naturally precedent operator.
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Unfortunately, this approach can be seen as too restrictive because it demands
fully hierarchical ad-hoc precedence relations. These forbid operators being non-
associative towards each other and it forces the user to add precedences for operator
pairs that are naturally precedent everywhere, just in case that they occur inside
an otherwise naturally ambiguous expression.

But we can also just use simple hierarchical precedence relations (i.e. relations
that can have several unrelated hierarchies) and restrict those natural precedences
that involve operators from the same hierarchy. Additionally, we restrict natural
precedence of operators that are ad-hoc dominant to at least one operator because
that could be enough to cause an ambiguity.

Example 73 In the signature in figure 5.10, the natural precedence of c towards
d is still valid, while the natural precedence of a towards c is invalid because

the operator e is precedent to a .

fun a : [T1] → T1

fun b : [T1]
fun c : [T1] → T2

fun d : [T2] → T3

fun e : [T3] → T1

prec a ( e)
prec ( d) e
fun E : T2

def E == a b c d e
-- (((a b) c) d) e would be rejected
-- a (((b c) d) e) would be allowed

Figure 5.10: Signature of example 73

Now, we can safely use all operator pairs as left-precedent which are given as left-
precedent by the user or which are naturally left-precedent and not contradicting
the ad-hoc hierarchies.

Natural vs. Ad-Hoc Precedence

Sometimes, this still might lead to situations where the given ad-hoc precedence
contradicts the natural precedence. In that case, only one of the two possible parse
trees can be type-correct, so at most one of them can be derived.

This follows from the conflict-freeness of both kinds of precedence-relations.

Example 74 In the signature in figure 5.11, the precedence of operator :: has
been chosen as left-precedent, even though in the example it is only used as naturally
right-precedent. Since there is no type given for E, we assume that the expression
would be rejected as possibly ambiguous without the ad-hoc precedence between #
and :: .

Because there exists no left-precedent derivation of type nat for 0 :: 0 :: <>, the
natural right-precedent derivation is chosen. It does not contradict hierarchy since
the operator :: has the same precedence level as itself.

Thus, if using the natural precedence relations does not yield a definite answer,
then the ad-hoc precedence, if it exists, is taken as the preferred precedence.

We find it prudent to warn the user whenever there might be a conflict between
the chosen precedence and a given ad-hoc precedence.
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fun 0 : nat
fun <> : seq nat
fun :: : [nat , seq nat] → seq nat
fun # : [seq nat] → nat
prec # ( :: )
prec ( :: ) ::
def E == # 0 :: 0 :: <>

-- # (0 :: (0 :: <>))

Figure 5.11: Signature of example 74

Obviously, it can be very complex to define ad-hoc precedence relations and
therefore, lots of mistakes can be made.

Also, the user should be warned about conflicting operator pairs in the given
ad-hoc precedences.

Efficiency

Computing the hierarchies of the operators from the given ad-hoc precedences is
a cubic algorithm dependent on the number of operator patterns used in these
precedences.

Checking the hierarchy and full hierarchy conditions takes quadratic time de-
pendent on the number of open operators in the worst case.

Finally, the computation of definitely conflicting operator pairs is quadratic and
depends on the number of given ad-hoc precedence operator pairs. We can re-use
the descendant relationship between operators already computed for the hierarchy
tests.

Computing the precedence level relations between operators has a very great
additional benefit. It can be used as a heuristic by the parser to determine which
of the possible operators should be tried first in the matching process for a given
subexpression.

This can greatly reduce the effort to find the first type-correct derivation for an
expression, which should be the only one if the expression is unambiguous.

How this heuristic can benefit the parser depends a lot on the parsing algorithm
used. In our experiments, we used a top-down matching approach on a parse-tree-
representation produced by an Earley parser.

Here, we identified the possible top-items for each subexpression to be matched
and first selected those that had the lowest precedence level according to the given
ad-hoc precedences. We then sorted the possible rightmost children of this item
according to their associativity, taking longest items for right-associative operators
and shortest items for left-associative operators first.

This resulted in a linear number of matching operations for arithmetic expres-
sions involving mixes of the usual arithmetic operators + , − , ∗ and / ,
dependent on the number of operator instantiations in the expression. Since the
actual number of possible syntactic derivations is exponential depending on the
number of operator instantiations, this is a very good result.

Restrictiveness

The ad-hoc precedence approach does not restrict the mixfix language recognized
by only using natural precedence, but only enlarges it.

Some unambiguous expressions which are rejected because of possible natural
precedence ambiguity are accepted by use of ad-hoc precedences.
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Also, some actually really naturally ambiguous expressions are accepted as un-
ambiguous according to the ad-hoc precedence by singling out the parse-tree most
preferable to the user.

Even our most restrictive approaches to ad-hoc precedences yield at least as
good results as the classical precedence level method.

5.6.3 Ad-Hoc Precedence of Concatenation Operators

We have already claimed that not allowing concatenation operators to be precedent
to each other would make them next to useless. Therefore, we have relaxed our
restriction that adjacent operands may not contain concatenation expressions in
case of concatenation operators.

We assume that concatenations of the same arity are always left-precedent to
each other and that all visible operators are both left and right precedent to the con-
catenation operators. This assumption saves the user from having to declare these
precedences. It also saves us from including these operators into our precedence
analyses.

However, there is an ambiguity problem which arises between concatenation
operators of different arity which is similar to the backbone ambiguity problem.

Example 75 In the signature in figure 5.12, the binary and the ternary concate-
nation operators have the same precedence level, i.e. they are left-precedent towards
each other. This causes the expression t t t t to be ambiguous because of a prece-
dence conflict as it is unclear which of the concatenations is the dominant one.

Even when the operators do not share the same precedence level, both possible
precedences ( ) as well as ( ) would still leave the expression ambiguous.

fun : [T , T] → T
fun : [T , T , T] → T
eqprec ( )( )
fun t : T
fun E : T
def E == t t t t

-- (tt) t t
-- (tt t) t
-- ((tt) t) t

Figure 5.12: Signature of example 75

Thus, we cannot allow concatenation operators of different arity in the same
scope, since no ad-hoc precedence could possibly remove all possible ambiguities
between them.

Efficiency

Checking for the presence of concatenation operators of different arities takes linear
time dependent on the number of declared operators.

Restrictiveness

Though forbidding concatenations of different arities sounds like a severe restriction,
concatenations of arity greater than 2 are pretty pathological. This is probably due
to the ambiguity described.
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Also, since we allow the overloading of the useful binary concatenation operator,
it is possible to simulate operators of greater arity with its help, so that we do not
really lose any amount of expressiveness.

Therefore, it is not a great loss to forbid concatenation operators of arity greater
than 2 in the presence of the built-in application operator.

5.7 Polymorphism and Converter Operators

5.7.1 Semantic Ambiguity caused by Polymorphism

Polymorphism is the possibility for the programmer to introduce the same operator
pattern with generic or different types. This can lead to semantic ambiguity of the
expressions to be parsed.

However, if we can find a syntactically unambiguous interpretation for every
type which might still be semantically ambiguous, this ambiguity can be dealt with
by normal semantic analysis after the parsing process in the common way. Thus,
we do not have to deal with such semantic ambiguity during parsing.

But since the precedence disambiguation takes type information into account we
have to deal with polymorphism already on that level to find out which operators
are type-compatible8. This is necessary for the weak precedence relations LeftT (S)
and RightT (S) as described in section 5.6.1.

5.7.2 Converter Operators

There is one syntactic problem related to polymorphism, though: converter opera-
tors.

Converter operators are unary invisible operators and as such have several in-
teresting properties that make them unique in our mixfix operator framework.

Lack of Fixity

In our normal fixity categorization, converter operators would be left-open, right-
open and non-empty, i.e. infix. However, it is better to treat them differently from
other operators by saying that they have no fixity whatsoever and that an instan-
tiation of a converter operator with an expression inherits all fixity categorization
from its operand, since the syntactic properties of the expression do not change by
converter instantiation.

Since converter operators are only relevant for typing anyway, and because they
are invisible, they can be ignored for backbone ambiguity analysis and they also do
not play a role for the restrictions pertaining to adjacent operands.

But they have a big effect on compatibility between non-converter operator
instantiations.

Lack of Precedence

If we were to treat converter operators like other left-open or right-open operators,
we would be faced with difficult problems.

Converter operators defy hierarchicality. To be practical, they should be ap-
plicable everywhere where necessary, both left- and right-precedent to the same
operator. Also, all operators which would be left-precedent to a converter operator
would automatically also be right-precedent to it because the leftmost left-open
operand is also the rightmost right-open operand.

8See sections 6.1.4 and 6.2.2
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All this leads us to the conclusion that there should be no precedence restrictions
on converter operators towards other non-converter operators.

Another rationale to support this notion is the following. If the user wants to be
able to control conversion of expressions syntactically, they can choose a syntactic
means to do so, i.e. a visible converter operator for which they can define ad-hoc
precedences, if necessary.

Converter Instantiation Ambiguity

Even though a converter instantiation looks the same as its operand, it is still a
different syntactic interpretation of the same expression. In general, it would thus be
possible to have multiple, stacked converter instantiations to the same expression.

If such converter compositions of different length can yield the same type, we
could thus have multiple syntactic interpretations for the same expression type, i.e.
a syntactic ambiguity for that type. If such a converter composition has the same
result type as its operand type, this could even lead to infinitely many syntactic
interpretations.

To prevent this ambiguity, we restrict our mixfix expression language so that no
converter operator can be instantiated with an expression that is already a converter
operator instantiation, i.e. converter instantiation can be done at most once to an
expression.

Remains the question of whether or not a converter operator should be applied
once to an expression or not. There could be expressions that have one converted
and one unconverted syntactic interpretation, again yielding a possible syntactic
ambiguity.

We deal with this problem the following way. We declare that in every context,
an identity-converter operator of type [A] → A (whose semantic is the identity
operation, A being a type variable) is present and that every expression has only
syntactic interpretations which are converter operator instantiations. Thus, if no
other converter operator is applicable because of the demanded type for the expres-
sion, but there existed a syntactic interpretation that is not an instantiation of a
user-defined converter operator, the identity-converter can be applied as a default
to arrive at a converted interpretation of the same type.

This way, the question of whether or not a single converter-operator is applied
to an expression never arises because it always is.

To avoid semantic ambiguity with the identity-converter, converters where the
operand type is equal or compatible to the result type should be disallowed as they
would also be applicable everywhere.

With these restrictions in mind, we can pair off all non-converter operators
with all converter-operators (including the identity-converter) inside each scope and
combine them to a single converted operator . The set of converted operators is
then treated as our operator set for the precedence analysis, treating the operators
as if they were simply overloaded and no converter operators existed.

For this purpose, we replace the relation returns used by our natural
precedence relations by the following definition:
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Definition 72

fun returns : [pattern , scope , type] → bool
def p returnsS T==

IF ( : [A] → B ∈ S) and
(B compatible T) and
(p : [T1 , . . . , Tn] → T0) ∈ S and
(T0 compatibleA[B := T])

THEN true
IF (T = LIFT T0) and

(separators(p) = [s0 , . . . , sn]) and
(p : [T1 , . . . , Tn] → T0) ∈ S and
(T0 compatible s0 T1 s1 . . .Tn sn)

THEN true
ELSE false
FI

Efficiency

Building all converted operators is in the order of the product of the number of non-
converter operators with the number of converter operators in any context. Thus,
the actual size of the operator set to be dealt with by precedence analysis is in the
worst case quadratic to the number of declarations given by the user.

Restrictiveness

Allowing converter operators gives us a powerful language with a coercion semantics,
if so desired by the user.

Multiple coercion between different types for one expression is not allowed in
most languages that have coercion semantics for their built-in types, either, proba-
bly because of the same ambiguity reasons that we stated here. But the user can
feel free to define converter operators that are implemented as compositions of other
converter operators.

Disallowing converters where the operand type is compatible to the result type
is prudent as such operators that actually carry a semantics (i.e. do something)
would have a detrimental effect on the understandability of the programs written
with the help of the mixfix expression language.

Since such implicitly present operators as the converter operators can lead easily
to semantic ambiguity, and even in unambiguous cases also can lead to confusing
programs, they should be used with caution. Also, the more converter operators
are defined, i.e. the more compatibility exists between operators, the fewer natural
precedences can be found which means that the user has to declare more ad-hoc
precedences.

Finally, converter operators can easily lead to an exponential number of semantic
interpretations of an expression for the same type, presenting a similar problem as
that of mixfix parsing to the latter semantic analysis phase.

Example 76 In the signature in figure 5.13, the converter operators result in an ex-
ponential number of semantic interpretations for expressions of the form id . . . id x
for type nat dependent on the length of the expression.
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fun nat : SORT
fun int : SORT
fun id : [nat] → nat
fun id : [int] → int
fun : [nat] → int
fun : [int] → nat
fun x : nat
fun E : nat
def E == id id x

-- id(id(x : nat) : nat) : nat
-- id(id(x : nat) : int) : nat
-- id(id(x : int) : nat) : nat
-- id(id(x : int) : int) : nat

Figure 5.13: Signature of example 76

This problem could probably be solved by having the user give preferences be-
tween different overloaded versions of the same operator pattern. Using the means
of our expression language, it can only be overcome syntactically by type annotation
for the inner parts of the expression.

All in all, converter operators seem dangerous in multiple ways in regard to
semantic ambiguity. However, forbidding them is too restrictive and also would
not solve such semantic problems in general as the user could decide to declare
a multitude of overloaded non-invisible converter operators including an identity
operator and get the same disastrous effects if these operators are used everywhere.

5.8 Proof of Unambiguity

We will now prove that, given the introduced restrictions regarding adjacent operands,
precedence relations and invisible operators, the resulting accepted expression lan-
guage is unambiguous, i.e. that at most one type-correct parse tree for every mixfix
expression for every demanded type is accepted by the mixfix parser.

We assume that there is no backbone ambiguity for the expression to be parsed,
meaning that the expression can unambiguously be partitioned into inner operator
parts, which in turn can be partitioned into separator and operand parts according
to the backbone grammar.

We further assume that only one acceptable left-weighted interpretation exists
for the expression, meaning that all token sequences of adjacent operand parts can
be partitioned into basic expressions.

Now, it only needs to be shown that only one type-correct parse tree can be
derived for every sentence established as a basic expression for every given demanded
type for the expression.

Proposition 7 Given a mixfix operator signature S and a fully hierarchical pair of
ad-hoc precedence relations LeftA(S) and RightA(S), for every type-correct mix-
fix operator instantiation E involving only operators from S where no backbone or
adjacent-operator ambiguity occurs in E, there exists at most one type-correct parse
tree for any given demanded type τ which respects all adjacent-operand restrictions,
restrictions on converter operators and both the ad-hoc and natural precedence re-
lations.

108



Proof 12 We prove this by induction on the maximal depth of the parse tree for
expression E.

induction begin For nullary operators, i.e. operators which have no operands, their operator
instantiation is the same token sequence as the operator pattern which is the
first (and last) separator of the operator.

Therefore, if there is no backbone ambiguity in E, there can only be one syn-
tactical interpretation of E, regardless of the demanded type.

If the result type of the nullary operator is not compatible with the demanded
type, no type-correct interpretation of E for that type can be found.

induction step Suppose we have expressions E1 , . . . , En which are all unambiguous for any
given demanded types τ1 , . . . , τn and whose parse trees have a maximal depth
of n.

Let E be the instantiation of a non-visible non-nullary operator
op = s0 . . . sn :

⋃
{T|T = [T1 , . . . , Tn] → T0 , s0 . . . sn : T ∈ S}

instantiated with the operands E1 , . . . , En, i.e. E = s0 E1 s1 . . . sn−1 En sn.

The demanded type τi for every expression Ei can be determined from the
demanded type τ and the declared types of op.

If there exists one type-correct interpretation Pi for every Ei in type τi with
maximal depth n, then clearly P = op(P1 , . . . , Pn) : τ is a type-correct
interpretation of E for type τ of maximal depth n + 1.

According to our precondition, we assume that there is no backbone or adjacent-
operand ambiguity in E, so that all Ei which instantiate open or adjacent
operands of op must be basic expressions. Thus, E is a basic expression as
well.

If op is a closed operator, then it cannot be involved in any precedence-related
ambiguity.

Let us assume that op is a right-open operator9 and P is an acceptable in-
terpretation of E for type τ according to the ad-hoc and natural precedence
relations.

Let the root operand of the rightmost operand expression Pn be opn. Then
(op , opn) ∈ RightA(S) ∪RightPrecτ (LeftT(S) , RightT(S)) because P
is acceptable according to precedence.

Because of the definition of RightPrec10 and proposition 611 and the given
full hierarchicality of LeftA(S) and RightA(S), there can be no left-precedent
situation possible between a left-open operator op′ which is either opn or a left-
most or right-most descendant thereof and op, since this would make another
parse tree P′ for E with op′ as its root and op as the root of a subtree of its
leftmost operand also acceptable.

Therefore, P must be the only acceptable syntactical interpretation of E.

If at most one acceptable parse tree exists for every basic expression for every
type and all non-basic expressions can be unambiguously partitioned into separators
and basic expressions, then no further syntactic ambiguity exists in the mixfix
expression language.

9The following reasoning can be done analogously for left-open operators.
10see definition 68 on page 97
11see page 101
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Chapter 6

Two-Level Mixfix Grammars

As a description tool, two-level grammars have been used successfully both in the
field of linguistics and artificial intelligence, as they bridge the gap between syntax
and semantics while allowing to use arbitrary context-free grammars, as in those
fields, ambiguity must be allowed and thus has to be dealt with differently than in
the field of computer languages.

Although we want to define an unambiguous mixfix expression language, we still
think that the two-level grammar formalism is also very useful for incorporating our
restrictions on the language into the grammar, thereby yielding an unambiguous
two-level grammar for a the underlying context-free grammar.

In this chapter, we will introduce the two-level grammars for our expression lan-
guage derived from the given mixfix operators and parameterized with the ad-hoc
precedence relations. As can be seen, it is simply an annotated version of the pos-
sibly ambiguous context-free grammar describing our mixfix expression language.
No other grammar transformation needs to take place.

Most definitions in this chapter are simply implementations of the restrictions
and properties described in the previous chapter.

6.1 From Context-Free Mixfix-Grammar to Two-
Level Mixfix-Grammar

Each nonterminal symbol in the grammars (i.e. COMMA, COLON, ARROW,
DOT, MIXFIX, E and GROUP is annotated with a variable representing its
attributes.

With the help of these attributes, we can describe constraints for the expressions
to arrive at an unambiguous grammar. Every rule is annotated with a such a
constraint and quantified with both the attribute variables and the other variables
in the respective constraint1.

The following definition yields a shorthand-notation for the variable-quantification.

Definition 73 Γk is the short-hand notation for the variable set {Ai}ki=0.

1Ideally, all equations we give here in constraint-form should be implicit, hidden in the annota-
tions of the symbols with their attribute structures, so later on, during derivation, only unification
needs to take place. However, this notation would make even the most simple grammar rules too
long to remain readable. But it can be derived by unfolding the different constraints.
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6.1.1 Two-Level Meta-Operator Grammar

The meta-operator grammar is the annotated version of the grammar in section
4.2.8 on page 63.

∀Γ2 | Expr([Ai]2i=0 , , ) . COMMA(A0) ::= COLON(A1) , COMMA(A2)
∀Γ0 . COMMA(A0) ::= COLON(A0)
∀Γ2 | Expr([Ai]2i=0 , : ) . COLON(A0) ::= ARROW(A1) : COLON(A2)
∀Γ0 . COLON(A0) ::= ARROW(A0)
∀Γ2 | Expr([Ai]2i=0 , → ) . ARROW(A0) ::= DOT(A1) → ARROW(A2)
∀Γ0 . ARROW(A0) ::= DOT(A0)
∀Γ2 | Expr([Ai]2i=0 , . ) . DOT(A0) ::= DOT(A1) . MIXFIX(A2)
∀Γ0 . DOT(A0) ::= E(A0)
∀Γ0 . E(A0) ::= GROUP(A0)

6.1.2 Two-Level Mixfix-Operator Grammar

Finally, we modify the derivation of rules from mixfix patterns of the operators
signature Σ described in section 4.3.2 in the following way:

• For every operator pattern op inside Σ, we derive one rule with the following
properties:

– it is quantified over the set Γk where k is the arity of the operator pattern
op.

– it has the constraint Expr([Ai]ki=0 , op)

– it has the left-hand-side nonterminal E(A0)

– The right-hand side for operator pattern op is derived as follows:

∗ map every separator token to its respective terminal symbol
∗ map very enclosed placeholder token2 to nonterminal COMMA(Ai),

where i is the index of placeholder symbol inside op (counting from
1).

∗ map every left-open, right-open or adjacent placeholder token to
nonterminal E(Ai), where i is the index of placeholder symbol inside
op (counting from 1).

Example 77 The context-free mixfix grammar for the operator signature from ex-
ample 49 on page 64 would look like the one in figure 6.1. As can be seen by
comparison with example 50 on page 65, every nonterminal in the context-free mix-
fix grammar is simply annotated with an attributes variable and a constraint over
these variables is added to each rule.

2a placeholder symbol which appears between two non-empty separators
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∀Γ3 | Expr([Ai]3i=0 , if then else ) .
E(A0) ::= if COMMA(A1) then COMMA(A2) else E(A3)

∀Γ2 | Expr([Ai]2i=0 , = ) .
E(A0) ::= E(A1) = E(A2)

∀Γ0 | Expr([Ai]0i=0 , 0) .
E(A0) ::= 0

∀Γ0 | Expr([Ai]0i=0 , 1) .
E(A0) ::= 1

∀Γ2 | Expr([Ai]2i=0 , - )
E(A0) ::= E(A1) − E(A2)

∀Γ2 | Expr([Ai]2i=0 , * ).
E(A0) ::= E(A1) ∗ E(A2)

∀Γ1 | Expr([Ai]1i=0 , !) .
E(A0) ::= E(A1) !

∀Γ0 | Expr([Ai]0i=0 , x) .
E(A0) ::= x

∀Γ1 | Expr([Ai]1i=0 , fac ) .
E(A0) ::= fac E(A1)

Figure 6.1: Grammar of example 77

We will cover the constraints in greater detail in this section. The operator rules
are added for every converted operator, not for the converter operator, so there is
no rule ∀Γ1 | Expr([Ai]1i=0 , ) . E(A0) ::= E(A1) in the grammar.

We will describe the constraints as Prolog-like clauses over the expression at-
tributes.

6.1.3 Expression Attributes

What attributes do we need to describe the constraints on the expressions?
We can divide the attributes into two general categories:

• input-attributes, i.e. those attributes the parser needs to parse and disam-
biguate the expression, and

• output-attributes, i.e. the parsing results for each expression, parts of which
can also be used as input-attributes for other expressions.

Input Attributes

For every rule derivation, the parser needs to know several things about the expres-
sion to be derived for disambiguation:

• the operator pattern to be instantiated,

• the demanded result type,

• the token sequence to be parsed,

• the scope in which the expression is parsed,

• the ad-hoc precedence relations in that scope, and

• the precedence status of the expression, i.e. whether anti-hierarchical natural
precedences shall be rejected.
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From these input-attributes, we can compute:

• the declared types of the operator pattern to be instantiated,

• the declared converter types,

• the subset of visible operator patterns that can be present in the expression.

• the backbone list of the expression, i.e. the operators that potentially have to
be ordered via precedence relations,

• the set of those concurrent operators which could also be the root of the
expression.

Output Attributes - The Annotated Parse Tree

The output of the parse process is an annotated parse tree.
This tree is a conglomerate of several inferred attributes for the parsed operator

instantiation:

• the pattern of the root operator,

• the list of operand parse trees,

• the inferred type,

• the scope in which the parse tree was inferred.

Thus, if the operator pattern op = s0 s1 . . . sn and the inferred type T =⋃
{Li → τi}i∈I, we represent an operator instantiation of op with the operands

t1 , . . . , tn in scope S as S . op[t1 , . . . , tn] : T with the help of the following
type definition.

type parseTree == ( . : )
(scope : scope ,

operator : pattern ,
operands : seq[parseTree] ,
type : type)

From these attributes, it is easy to infer, whether or not an expression is:

• empty,

• a concatenation,

• prefix,

• postfix,

• a variable, or

• type-erroneous.

These secondary attributes are mainly needed to implement the restrictions
concerning adjacent operands, but also to mark expressions as variable so that this
can be taken into account in the unification process involving parsed expressions.

An expression is empty only if it is an instantiation of the empty operator (cov-
ering the empty sentence, obviously). Likewise, an expression is a concatenation,
if the root operator is a concatenation operator. An expression is a variable if the
root operator is declared variable in the scope of the expression.
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The only one of these secondary output attributes where it makes sense to
store them additionally to the result are the prefix and postfix characteristics which
might depend on the leftmost or rightmost operands of instantiations of left-open
or right-open operators und thus need to be inferred bottom-up.

Finally, an expression is type-erroneous when the inferred type is the empty
union, as then there is no type-correct interpretation of that sentence for the given
demanded result type.

Attribute Representation

type attributes ==
attributes(scope : scope ,

checkHierarchy : bool ,
sentence : seq[phrase] ,
operator : pattern ,
demanded : type ,
result : parseTree ,
prefix : bool ,
postfix : bool)

6.1.4 Type Inference

Up to now, we have described the type inference only in terms of single demanded
and single inferred types.

However, in the face of overloading and converter operators, we have to general-
ize the algorithm from section 4.4 in such a way that it can deal also with a union of
demanded types and can infer a corresponding union of inferred types for an oper-
ator instantiation, as soon as there are overloaded operators present in the scope of
the expression. This allows us to delay treatment of any semantic ambiguity until
after the parsing phase.

To that end, we define functions that compute the set of demanded types of each
operand from the set of demanded type for an operator instantiation. Likewise, we
define functions that take the demanded types of the instantiation, the sets of
inferred types of the operands and the declared types of the instantiated operator
and infer the possible types of the instantiation. As can be easily verified, these
functions are in accord with the top-down bottom-up single type approach given in
chapter 4.

The following definitions are used in section 6.2.

Normal Operator Instantiation

The demanded types for an operand at the i-th position in a normal operator
instantiation depend on the demanded type of that instantiation and the declared
types of the instantiated operator.

The inferred types for such an instantiation additionally depend on the inferred
types of all operand expressions.
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Definition 74 The function demand computes the demanded types for the i-th
operand of an operator instantiation which has the demanded result types Demanded
and the declared types Declared.

fun demand : set[type]**nat**set[type] → set[type]
def demand(Demanded , i , Declared)

{ Ti[T0 := τ0]|
τ0 ∈ Demanded ,
[T1 , . . . , Tn] → T0 ∈ Declared}

Definition 75 The function infer computes the inferred result types of an operator
instantiation from the demanded result types Demanded, the declared types of the
operator Declared and the inferred types of the operands [Inferredi]ni=1.

fun infer : set[type]**seq[set[type]] → set[type]
def infer(Demanded , Declared , [Inferredi]ni=1)==

{([L1] . . . [Ln] → T0)[Ti := τi]ni=0|
τ0 ∈ D ,
[T1 , . . . , Tn] → T0 ∈ Declared ,
∀ i ∈ 1 .. n : [Li] → τi ∈ Inferredi}

Nullary Operator Inference

For nullary operators, the nullary section unlifting operation is also invoked which
is similar to the normal inference operation, but takes only those declarations into
account which result in a section type.

Definition 76 The function inferNullary infers the result types of a nullary op-
erator instantiation where the demanded result type is Demanded and the declared
types of the operator are Declared.

fun inferNullary : set[type]**set[type] → set[type]
def inferNullary(Demanded , Declared)==

{([L] → T)[T := τ ]|
τ ∈ Demanded ,
[] → [L] → T ∈ Declared}

Section Lifting

For lifting section expressions in parentheses to fully instantiated function expres-
sions, the following two functions are employed.

Only the result type of the demanded section type is taken as demanded type for
the expression. Later on, the inferred section operand types are lifted and unified
with the actually demanded result type.

Definition 77 The function demandSection computes the demanded section re-
sult types from a set of demanded section types.

fun demandSection : set[type] → set[type]
def demandSection(Demanded)==

{ T0|[T1] → T0 ∈ Demanded}
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Definition 78 The function inferSection computes the inferred empty section
types from a set of demanded result types Demanded and a set of inferred types
Inferred. In essence, each inferred section type is lifted to a function type.

fun inferSection : set[type]**set[type] → set[type]
def inferSection(Demanded , Inferred)==

{([] → T)[T := τ ]|
τ ∈ Demanded ,
[L] → T0 ∈ Inferred ,
T = (L) → T0}

LIFT conversion

Definition 79 The function demandLIFT computes a set of demanded result
types from demanded LIFT types.

def demandLIFT(Demanded)==
{ T|LIFT E ∈ Demanded , [] → T ∈ type(E)}

Definition 80 The function inferLIFT takes a set of demanded LIFT types and
an inferred result type and infers the LIFT type for that result type.

def inferLIFT(Demanded , T)==
{[] → LIFT E[E := T]|LIFT E ∈ Demanded}

Type Annotation

Definition 81 The function demandTypedRight computes the demanded type
(which is simply the LIFT type) for the right-hand side of the type annotation
expression.

fun demandTypedRight : set[type] → set[type]
def demandTypedRight(Demanded)==

{ LIFT T|T ∈ Demanded}

Definition 82 The function demandTypedLeft computes the demanded type for
the left-hand side of the type annotation, using the inferred types of the right-hand
side Inferred.

fun demandTypedLeft : set[type] → set[type]
def demandTypedLeft(Inferred)==

{τ |
[] → LIFT([L] → τ) ∈ Inferred}∪
{τ |
[] → LIFT τ ∈ Inferred ,
τ 6= [] → τ ′}
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Definition 83 The function inferTyped infers the type of the type annotation
expression, using the inferred types of both the left-hand and the right-hand sides.

fun inferTyped : set[type]**set[type] → set[type]
def inferTyped(Inferred1 , Inferred2)==

{τ1[τ1 := τ2]|
τ1 ∈ Inferred1 ,
[] → LIFT τ2 ∈ Inferred2}∪
{τ1[τ1 := [] → τ2]|
τ1 ∈ Inferred1 ,
[] → LIFT τ2 ∈ Inferred2 ,
τ2 6= [] → τ ′}

Binary Concatenation — Apply Operator

Definition 84 The function demandConcatLeft computes the demanded type of
the left operand of a concatenation expression by using the demanded result types
of the concatenation expression Demanded and the declared types of the concate-
nation operator Declared. The built-in application functionality is also taken into
account in that respect.

fun demandConcatLeft : set[type]**set[type] → set[type]
def demandConcatLeft(Demanded , Declared)==

demand(Demanded , 1 , Declared ∪ { ApplyDecl})
WHERE ApplyDecl==[T2 → T0 , T2] → T0

Definition 85 The function demandConcatRight computes the demanded type
for the right operand of a concatenation expression from the demanded result types
of the concatenation expression Demanded, the declared types of the concatenation
operator Declared as well as the inferred types of the left operand of the concate-
nation operator. The latter is only used for the built-in application functionality.

fun demandConcatRight : set[type]**set[type] → set[type]
def demandConcatRight(Demanded , Declared , InferredLeft)==

demand(Demanded , 2 , Declared)∪
{ T2[T0 := τ0]|
τ0 ∈ Demanded ,
[L] → T2 → T0 ∈ InferredLeft}

6.2 Mixfix-Grammar Constraints

In this section, we will describe the constraints on the attributes of the rules in our
two-level grammar, using the definition from the previous section.

6.2.1 Operator Kinds

We have six kinds of different operators and for each we have different constraints,
some of which of course overlap in part:

• normal, simple operator instantiations, including

– all visible non-meta operators,

– the operator , ,

– the operator → , as well as

– the empty operator,
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• the type annotation operator : ,

• the scope annotation operator . ,

• the parenthesis operator ( ),

• the binary concatenation operator , and

• the concatenation operators of arity greater than 2.

The only missing operator is the converter operator whose restricted behavior
is integrated into the constraints of the other operators.

Definition 86

TypeAnnotation( : ) .
ScopeAnnotation( . ) .
Paren(( )) .
Normal(Op) ⇐

visible(Op) ,
¬TypeAnnotation(Op) ,
¬ScopeAnnotation(Op) ,
¬Paren(Op) .

Normal(ε) .
BinaryConcat( ) .
MultiConcat(Op) ⇐
¬visible(Op) ,
arity(Op) > 2 .

6.2.2 Normal Operator Instantiations

For a normal operator instantiation to be a valid mixfix expression, its type and
fixity must be inferrable from the demanded result types and the inferred types and
fixities of the operand expressions. Also, for all adjacent operands it must hold that
they are either both empty or both non-empty.

Definition 87

Expr([Ai]ni=0 , Op) ⇐
Normal(Op) ,
Op = s0 s1 . . . sn ,
sentence(A0) = s0 sentence(A1) s1 . . . sentence(An) sn ,
– type inference and precedence checks Inference([Ai]ni=0 , Op) ,
– check for restriction 1 AdjacentEmptyOperands([si]n−1

i=1 , [Ai]ni=1) .

118



Top-Down Bottom-Up Inference

According to our top-down bottom-up type inference algorithm, the declared types
of the operator to be matched are combined with the demanded result types to infer
the demanded result types of the operand expressions.

The inferred types of the operand expressions are then used to infer the actual
type of the overall expression.

Also, fixities are computed from the operator shape and for open operators from
the fixities of the leftmost left-open or rightmost right-open operand expressions.

Definition 88

Inference([Ai]ni=0 , Op) ⇐
operator(result(A0)) = Op ,
operator(A0) = Op ,
ComputePrefix(Op , [Ai]ni=1 , prefix(A0)) ,
ComputePostfix(Op , [Ai]ni=1 , postfix(A0)) ,
demanded(A0) =

⋃
Dem0 ,

– get the converter operator types
types(scope(A0))( ) =

⋃
CDecl) ,

– compute the demanded types with converters
CDem = Dem0 ∪ demand(Dem0 , 1 , CDecl) ∪ demandLIFT(Dem0) ,
– get the declared types of Op
types(scope(A0))(Op) =

⋃
Decl) ,

– check restrictions for operands and precedences
InferenceForAllOperands(A0 , Decl , CDem , [Ai]ni=1 , [Infi]ni=1) ,
– infer the unconverted types from the inferred operand types
CInf = infer(CDem , Decl , [Infi]ni=1) ∪ inferNullary(CDem , Decl) ,
S = scope(A0) ,
Operands = [result(Ai)]ni=1 ,
CResult = S . Op Operands :

⋃
CInf ,

– infer the converted types
Inf0 = CInf ∪ infer(Dem0 , CDecl , [CInf]) ∪ inferLIFT(Dem0 , CResult) ,
result(A0) = S . Op Operands :

⋃
Inf0 .

InferenceForAllOperands(A0 , Decl , Dem , [Ai]A , [Infi]Inf) ⇐
InferenceForOperands(A0 , Decl , Dem , 1 , [Ai]A , [Infi]Inf) .

InferenceForOperands(A0 , Decl , Dem , i , [Ai]A , [Infi]Inf) ⇐
– compute the demanded type of the i-th operand
demanded(Ai) =

⋃
demand(Dem , i , Decl) ,

– check the i-th operand’s fixity/precedence restrictions
CheckOperand(A0 , Ai , Op , i) ,
type(result(Ai)) =

⋃
Infi ,

CheckOperands(A0 , Decl , Dem , i + 1 , A , Inf) .
InferenceForOperands(A0 , Decl , Dem , i , [] , []) .
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Computing Fixity

The following constraints describe prefix and postfix expressions according to re-
striction 3.

An empty expression is neither prefix nor postfix.
An non-empty expression is prefix if its first separator is non-empty or if its

leftmost operand expression is prefix.
An non-empty expression is postfix if its last separator is non-empty or if its

rightmost operand expression is postfix.

Definition 89

ComputePrefix(ε , [] , false) .
ComputePrefix(s0 . . . sn , [Ai]ni=1 , p) ⇐

– not left-open?
(s0 = ε) = false ,
p = true .

ComputePrefix(s0 . . . sn , [Ai]ni=1 , p) ⇐
(s0 = ε) = true ,
p = prefix(A1) .

ComputePostfix(ε , [] , false) .
ComputePostfix(s0 . . . sn , [Ai]ni=0 , p) ⇐

– not right-open?
(sn = ε) = false ,
p = true .

ComputePostfix(s0 . . . sn , [Ai]ni=0 , p) ⇐
(sn = ε) = true ,
p = postfix(An) .

Adjacent Empty Operands

All adjacent operands must either both be empty or both be non-empty. To
operands are adjacent if the separator between them is empty.

Definition 90

AdjacentEmptyOps([si]S , [Ai , Ai+1]A) ⇐
– are Ai and Ai+1 adjacent?
(si = ε) = true ,
– both must be empty or both non-empty
(operator(Ai) = ε) = (operator(Ai+1) = ε) ,
AdjacentEmptyOps(S , [Ai+1]A) .

AdjacentEmptyOps([si]S , [Ai , Ai+1]A) ⇐
– not adjacent, then no restriction (si = ε) = false ,
AdjacentEmptyOps(S , [Ai+1]A) .

AdjacentEmptyOps([] , A) .
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Operand Restrictions

To be able to express the different constraints on operand expressions, we have to
distinguish between the different possible situations an operand expression can occur
in. For that we need to know what the corresponding placeholder has directly to
its left and right. Each placeholder can have either another placeholder, a terminal
symbol or the end of the operator there.

Definition 91

type situation==
open -- end of operator
closed -- terminal symbol
ph -- placeholder

fun leftSituation :
pattern**nat → situation

fun rightSituation :
pattern**nat → situation

The constraint PH describes the situation of the I-th placeholder in an operator
Op. This information can then be used for further restrictions on the operand
expression.

Definition 92

PH(Op , I , L , R) ⇐
L = leftSituation(Op , I) ,
R = rightSituation(Op , I) .

We introduce some constraints to describe the kind and fixity of an operand in
a short fashion.

Definition 93

Pre(A) ⇐ prefix(A) = true .
Post(A) ⇐ postfix(A) = true .
Closed(A) ⇐ Pre(A) , Post(A) .
Basic(A) ⇐ visible(operator(A)) = true .
Empty(A) ⇐ (operator(A) = ε) = true .

The actual constraints on an operand depend on its actual situation of its place-
holder in the operator.

• Left-open operands shall be left-precedent

• Right-open operands shall be right-precedent

• Left-Adjacent operands shall be empty or postfix.

• Right-adjacent operands shall be empty or prefix.

• Adjacent operands shall either both be empty or both be basic.

• Operands enclosed between terminal symbols are allowed to be any kind of
expression, while other operands must be basic.

These conditions derive from the restrictions imposed in sections 5.5 and 5.6.
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Definition 94

Operand(A0 , Ai , N , I) ⇐
PH(N , I , open , R) , LP(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , L , open) , RP(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , ph , ph) , Basic(Ai) , Closed(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , ph , ph) , Empty(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , closed , ph) , Basic(Ai) , Post(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , closed , ph) , Empty(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , ph , closed) , Basic(Ai) , Pre(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , ph , closed) , Empty(Ai) , CH(A0 , Ai) .

Operand(A0 , Ai , N , I) ⇐
PH(N , I , closed , closed) , CH(A0 , Ai) .

Finally, we have to introduce the constraints LP and RP describing left- and
right-precedence of operands, as well as the constraint CH which passes down the
checkHierarchy flag.

A left-open operand will be allowed as left-precedent LP if one of the following
conditions is met:

• It is ad-hoc left precedent, but not naturally left precedent. If so, the ad-
hoc precedence hierarchies must be checked for natural precedences in the
sub-expression.

• It is ad-hoc left precedent and also naturally left precedent.

• It is not ad-hoc left precedent, but naturally left precedent and the ad-hoc
precedence hierarchy must not be checked.

• It is not ad-hoc left precedent, but naturally left precedent, the ad-hoc prece-
dence hierarchy must be checked and is followed by the two operators.

The analogous constraints can be defined for right precedence RP.
These conditions ensure that there is never any doubt as towards the precedence

of the different involved operators in an expression.

Definition 95

PRECHELP(A0 , Ai , Op , S , L , R , T) ⇐
Op = operator(Ai) , S = scope(A0) , T = demanded(A0)
L = LeftT(S) , R = RightT(S).

CH(A0 , Ai) ⇐
checkHierarchy(A0) = checkHierarchy(Ai) .

FollowsHierarchy(Op1 , Op2 , S) ⇐
– Op1 must be reachable from Op2 in the ad-hoc precedence hierarchy
(Op1 , Op2) ∈ (LeftA(S) ∪RightA(S)−1)+.
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Definition 96

LP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
(Op , operator(A0)) ∈ LeftA(S) ,
(Op , operator(A0)) /∈ LeftPrecT (L , R) ,
checkHierarchy(Ai) = true .

LP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
(Op , operator(A0)) ∈ LeftA(S) ,
(Op , operator(A0)) ∈ LeftPrecT (L , R) ,
CH(A0 , Ai) .

LP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
checkHierarchy(A0) = false ,
(Op , operator(A0)) /∈ LeftA(S) ,
(Op , operator(A0)) ∈ LeftPrecT (L , R) ,
CH(A0 , Ai) .

LP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
checkHierarchy(A0) = true ,
FollowsHierarchy(Op , operator(A0) , S) ,
(Op , operator(A0)) /∈ LeftA(S) ,
(Op , operator(A0)) ∈ LeftPrecT (L , R) ,
CH(A0 , Ai) .

RP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
(Op , operator(A0)) ∈ RightA(S) ,
(Op , operator(A0)) /∈ RightPrecT (L , R) ,
checkHierarchy(Ai) = true .

RP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
(Op , operator(A0)) ∈ RightA(S) ,
(Op , operator(A0)) ∈ RightPrecT (L , R) ,
CH(A0 , Ai) .

RP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
checkHierarchy(A0) = false ,
(Op , operator(A0)) /∈ RightA(S) ,
(Op , operator(A0)) ∈ RightPrecT (L , R) ,
CH(A0 , Ai) .

RP(A0 , Ai) ⇐
PRECHELP(A0 , Ai , Op , S , L , R , T) ,
checkHierarchy(A0) = true ,
FollowsHierarchy(Op , operator(A0) , S) ,
(Op , operator(A0)) /∈ RightA(S) ,
(Op , operator(A0)) ∈ RightPrecT (L , R) ,
CH(A0 , Ai) .
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6.2.3 Type Annotation

We use the type inference rules introduced for type-annotation expression for the
operator : .

Also, the resulting parse tree is the parse tree for the left operand expression,
annotated with the type inferred for the whole expression.

Definition 97

Expr([A0 , A1 , A2] , Op) ⇐
TypeAnnotation(Op) ,
sentence(A0) = sentence(A1) : sentence(A2) ,
demanded(A0) =

⋃
Dem0 ,

demanded(A2) =
⋃

demandTypedRight(Dem0) ,
type(result(A2)) =

⋃
Inf2 ,

demanded(A1) =
⋃

demandTypedLeft(Inf2) ,
result(A1) = S . Op′Ops :

⋃
Inf1 ,

Inf0 = inferTyped(Inf1 , Inf2) ,
result(A0) = S . Op′Ops :

⋃
Inf0 .

6.2.4 Scope Annotation

For a scope annotation expression, the expression to the left side of the dot is parsed
in the same scope as the whole expression. The parse result is then added to that
scope to yield the scope in which the expression to the right side of the dot is to be
parsed.

The demanded type of the annotated expression is equal to the demanded type
of the whole expression and the parse result of the whole expression is equal to the
parse result of the annotated expression.

Definition 98

Expr([A0 , A1 , A2] , Op) ⇐
ScopeAnnotation(Op) ,
sentence(A0) = sentence(A1) . sentence(A2) ,
scope(A1) = scope(A0) ,
scope(A2) = scope(A0)⊕ result(A1) ,
demanded(A2) = demanded(A0) ,
result(A0) = result(A2) .

6.2.5 Parenthesis Operator

The parenthesis operator has two built-in functionalities, identity and section lifting,
but could also be overloaded to possess additional ones. All these must be taken
into account for the type inference of instantiations of that operator.
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Definition 99

Expr([A0 , A1] , Op) ⇐
Paren(Op) ,
sentence(A0) = (sentence(A1)) ,
demanded(A0) =

⋃
Dem0 ,

types(scope(A0))( ) =
⋃

CDecl) ,
CDem = Dem0 ∪ demand(Dem0 , 1 , CDecl) ∪ demandLIFT(Dem0) ,
types(scope(A0))(Op) =

⋃
Decl) ,

Dem1 = demand(CDem , 1 , Decl) ∪ demandSection(CDem) ,
demanded(A1) =

⋃
Dem1 ,

type(result(A1)) =
⋃

Inf1 ,
CInf = infer(CDem , Decl , [Inf1]) ∪ inferSection(CDem , Inf1) ,
S = scope(A0) ,
Ops = [result(A1)] ,
R = S . OpOps :

⋃
CInf ,

Inf0 = CInf ∪ infer(Dem0 , CDecl , [CInf]) ∪ inferLIFT(Dem0 , R) ,
result(A0) = S . OpOps :

⋃
Inf0 .

6.2.6 Binary Concatenation Operator

Like with adjacent operands of an operator, we impose some restrictions on all built-
in binary invisible (concatenation) operators. They shall not be empty (restriction
4), so both their operands shall not be empty. They shall be left-precedent to each
other. Their left operand shall be a non-empty postfix expression, and their right
operand shall be a non-empty non-concatenation prefix expression (restriction 3).

Definition 100

Expr([A0 , A1 , A2] , Op) ⇐
BinaryConcat(Op) ,
prefix(A0) = prefix(A1) ,
postfix(A0) = postfix(A2) ,
operator(A0) = ,
Post(A1) ,
Pre(A2) , Basic(A2) ,
types(scope(A0))( ) =

⋃
Decl) ,

demanded(A0) =
⋃

Dem0 ,
types(scope(A0))( ) =

⋃
CDecl) ,

CDem = Dem0 ∪ demand(Dem0 , 1 , CDecl) ∪ demandLIFT(Dem0) ,
Dem1 = demandConcatLeft(CDem , Decl) ,
demanded(A1) =

⋃
Dem1 ,

type(result(A1)) =
⋃

Inf1 ,
Dem2 = demandConcatRight(CDem , Decl , Inf1) , demanded(A2) =

⋃
Dem2 ,

type(result(A2)) =
⋃

Inf2 ,
S = scope(A0) ,
Op = operator(A0) ,
Ops = [result(A1) , result(A2)] ,
CInf = infer(CDem , Decl , [Inf1 , Inf2]) ,
R = S . Op Ops :

⋃
CInf ,

Inf0 = CInf ∪ infer(Dem0 , CDecl , [CInf]) ∪ inferLIFT(Dem0 , R) ,
result(A0) = S . Op Ops :

⋃
Inf0 ,

AllNotEmpty([Ai]ni=1) .

125



6.2.7 Multi Concatenation Operators

For concatenation operators with greater arity than 2, if they are allowed (i.e. no
concatenation operators of other arities are allowed), the inference is done as normal,
but additionally the restriction that all operands are not empty is enforced.

Definition 101

Expr([Ai]ni=0 , Op) ⇐
MultiConcat(Op) ,
sentence(A0) = sentence(A1) . . . sentence(An) ,
Inference([Ai]ni=0 , Op) ,
AllNotEmpty([Ai]ni=1) .

AllNotEmpty([Ai]A) ⇐
(operator(Ai) = ε) = false ,
AllNotEmpty(A) .

AllNotEmpty([]) .
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Chapter 7

Two-Level Grammar
Transformations

Commonly used language-preserving grammar transformation schemes [3] exist to
remove left-recursion from context-free grammars (CFGs). This makes straightfor-
ward automatic derivation of (efficient) top-down parsers or transducers for these
languages possible. However, the transformations are normally not applied to the
two-level grammars [21] used in the context of parsing natural languages, but only
to the underlying CFG, leaving the integration with the second level to the imple-
mentor of the actual transducer.

To remedy this, we generalize the common CFG transformations of left-recursion
elimination, left factorization, unfolding and also the left corner transformation [28]
to the concept of two-level grammars with semantic actions. We do this in a very
simple way by using the two-level annotation mechanism itself, an approach which
we have not found in such a straightforward way in existing literature in regard
to the above transformations. For grammars that contain semantic actions [20] [5]
at the beginning of right-hand sides of rules we introduce the language-preserving
grammar transformation of action shifting which is not possible in CFGs without
changing the semantic actions. We also show further uses of this transformation
in regard to avoidance of backtracking in ambiguous grammars. By canonically
introducing only auxiliary nonterminal symbols which are built out of the symbols
of the original grammar, all the grammar transformations can be related to each
other and possibly even reversed. We hope that this will help readability of the
transformed grammar and thus make it better manageable.

With the generalized transformations, we can automatically derive top-down
transducers for originally left-recursive two-level grammars. This can be useful
both for parsing arbitrary user-defined mixfix operator expressions in programming
languages as well as for parsing natural languages with left-recursive constructs
efficiently.

7.1 Motivation for Generalizing Grammar Trans-
formations

7.1.1 Why Grammar Transformations?

Grammar transformations for context-free grammars (CFGs) are a well-known and
accepted tool in the field of compiler construction for artificial languages as well
as natural language recognition in the field of linguistics. They can be used to
automatically derive more efficient top-down parsers or transducers for grammars
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that are designed with the semantics of the language and not so much the parsing
paradigm in mind, and as such may sport such features as left-recursion.

7.1.2 Why Top-Down Transducers?

The generalization of top-down parsers to two-level grammars is straightforward.
But a preliminary grammar transformation approach to make an arbitrary gram-
mar top-down parsable is often warranted or even needed. Efficiently top-down
parsable grammars are for the most part unwieldy, very large, and hard to under-
stand in regard to their semantics, while semantics oriented grammars tend to be
much smaller and much easier to understand by the programmer. To work with
understandable grammars is important from a software engineering point of view.
It allows easier further development of the grammars and keeps them manageable.

Because of their straightforward implementation and in many settings better av-
erage performance as opposed to more general parsing algorithms, top-down parsers
or transducers derived from grammars can be very useful for prototyping. Also, if
the derivation is automatic from the original grammar, only this grammar has to
be maintained when the language is developed further.

7.1.3 Why Two-Level Grammars?

In the field of linguistics and artificial intelligence, the concept of two-level gram-
mars ([23], [33]) have had great success for both description purposes as well as for
disambiguation purposes in natural languages.

This approach was deemed unnecessary for programming languages as they tend
to be designed with unambiguity in mind which makes disambiguation unnecessary
as opposed to the situation with natural languages.

Because parsing of natural languages becomes ever more important, the different
deterministic parsing approaches have been generalized to deal with ambiguities as
efficiently as possible1, but only in regard to CFGs.

Thus, two-level grammars are mostly only used as a description tool for artificial
languages [48]. For the actual parsing, other approaches are taken, leaving open
the question of equivalence of the implementation with the originally given two-level
grammar.

Where two-level grammars are actually used for generation of parsers or pro-
gramming environments, the grammar writer, though with the help of tools, has
to provide the already transformed grammar instead of the original (e.g. [25]).
Thus, they are highly dependent of the parsing paradigm of the tool. This, of
course, makes it harder to work with two-level grammars and hence makes them
less acceptable.

7.1.4 What about Semantic Actions?

The same approach is taken for the semantic actions in attribute grammars used by
parser generator tools like yacc [5].2. The attributation is done only after the actual
grammar transformation process on the CFG. Again, the grammar transformations
don’t have to deal with the semantic actions, but the programmer.

The equivalent grammar transformations of left-recursion elimination, unfolding
and left factorization can deal with semantic actions in a large class of context-free

1An interesting survey over generalizations of parsing techniques to ambiguous grammars is
given by Nederhof [29].

2The relation between attribute grammars and affix grammars is explored by [23]

128



grammars without change of the input/output semantics of the grammar3. But
there are also grammars, for instance containing hidden left recursion, where such
transformations are simply not possible without changing the original semantic
actions or the parsing algorithm. Because of this, such constructions are normally
avoided in language design by restricting the languages to those syntactic constructs
that can be dealt with automatically.

For all cycle-free CFGs, where this problem cannot be solved statically, this
flaw can be remedied by using a two-level grammar approach and the concept of
spine-annotations together with the additional action shifting transformation which
requires a second parsing phase for the transduction.

We generalize all needed transformations to pay respect to the two-level aspect
of the grammars. In doing so, we become able to deal with almost all kinds of
two-level grammars, not only those attributed with spines.

7.1.5 Usability

As has been shown in the field of parsing of natural languages, by interweaving
parsing and type checking through the annotation mechanism, disambiguation and
rejection of type-incorrect or ambiguous parse trees can often be done during parsing
locally, as soon as possible. If the grammar is known to be unambiguous (in the
sense that it yields at most one type correct parse tree for every token stream),
backtracking can be kept to a minimum. This is even more so the case, since the
type attributes often can be used for directing the parsing process when a mere
fixed look-ahead is not sufficient.

The transformations shown here, though motivated by the need to parse mix-
fix expressions, could of course also benefit the prototyping of parsers for natural
languages derived from left-recursive two-level grammars given for those.

Additionally, since LR-parsers or other tabular parsing algorithms cannot deal
well with hidden left-recursion, our given transformations could help to remove
hidden left-recursion from grammars intended for such algorithms.

7.2 Generalized Transformations

In the following section, we will first show the usual CFG variant of each transfor-
mation and then generalize it to be usable for our two-level grammars.

To be equivalent transformations, the generalized transformation schemes have
to take the variable sets, as well as the annotations and constraints of the production
rules to be transformed into account.

7.2.1 Unfolding

Unfolding of nonterminals is sometimes needed both for elimination of indirect and
hidden left-recursion and left factorization.

The transformation is a derivation for a nonterminal on the right-hand side of a
rule with all its right-hand sides, respectively, yielding a new set of unfolded rules.

Say, u, v, wi ∈ (V × TΣ(VV )?)?, N1, N2 ∈ VN . Then, the unfolding trans-
formation scheme for unfolding the nonterminal N2 with rules N2 ::= wi in rule
N1 ::= u N2 v works as follows in the underlying one-level CFG:

3This is a fact often used in combinator parsing where the original grammar is automatically
decorated with semantic actions that build the parse trees.
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N1 ::= u N2 v
N2 ::= wi

=⇒
N1 ::= u wi v
N2 ::= wi

By carefully annotating the above scheme with the needed corresponding quan-
tifiers, annotations and constraints from the definition of derivation, we arrive at
the following (where Γ′i = Γ ∪ σi(Γi) and C ′

i ≡ C ∧ σi(Ci) ∧ σi(Ti) = T ′):

∀Γ|C. N1(T ) ::= u N2(T ′) v
∀Γi|Ci. N2(Ti) ::= wi

=⇒
∀Γ′i|C ′

i. N1(T ) ::= u σi(wi) v
∀Γi|Ci. N2(Ti) ::= wi

7.2.2 Direct Left-Recursion Elimination

Left-recursion (N ⇒+ N w) should be eliminated from grammars to make the
language top-down parsable and avoid termination problems. All indirectly or hid-
den left-recursive rules can be transformed into directly left-recursive rules by un-
folding and action shifting, so it suffices to give only a transformation for direct
left-recursion elimination.

As a side-note, it must be taken care that the unfolding process to arrive at
only directly left-recursive rules can terminate. To achieve this, the rules must
be unfolded in topological order, meaning that a rule for nonterminal N1 must be
unfolded before N2, if N2 ⇒+ N1 w. If also N1 ⇒+ N2 w′, the two nonterminals
are cyclically dependent and the respective order of their unfoldinig is irrelevant.4

Suppose we have a set of production rules of nonterminal N (where all vi are
not of the form N w). Then, the following transformation scheme eliminates the
directly left-recursive rules for N from the grammar. Towards this end, we have to
introduce a new auxiliary nonterminal symbol [N,N ]5 (representing the rest of an
N after an N at the beginning):

N ::= vi

N ::= N wj

=⇒
N ::= vi [N,N ]
[N,N ] ::= wj [N,N ]
[N,N ] ::= ε

In our two-level grammar setting, the annotations seem to pose a difficult prob-
lem as the first derivation step which also takes care of the first variable substitution
on the substituted nonterminal, now becomes the last derivation step and vice versa.
Thus, the annotations inside the vi at the beginning is determined by the occurrences
of wj at the end.

Example 78 Take the following simple grammar:

∀{α} . E(seqα) ::= s 0(seqα)
∀{α} . E(α) ::= E(seqα) ft 1(α)

4Basically, we need to compute the strongly-connected-components and sort these topologically
according to the above relation between nonterminals.

5which is traditionally used in the description of left corner parsing [38]
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This makes the following derivation possible:

∀{α}.E(α) ⇒? ∀{α}.s 0(seqnα) (ft 1(seqn−iα))n
i=1

So, the number of occurrences of ft at the end decides about the annotation of
the action 0 at the beginning.

We achieve this by annotating the auxiliary nonterminal symbol [E,E] with the
two annotations corresponding to the two Es in it 6. In the ε-production of [E,E],
these two annotations must of course be equal as the left corner is already the whole
tree.

This generalizes the CFG transformation to the following (where Γ′i = Γi ] {τi}
and Γ′j = Γj ] {τj}):

∀Γi|Ci. N(Ti) ::= vi

∀Γj |Cj . N(Tj) ::= N(T ′
j) wj

=⇒
∀Γ′i|Ci. N(τi) ::= vi [N,N ](τi, Ti)
∀Γ′j |Cj . [N,N ](τj , T

′
j) ::= wj [N,N ](τj , Tj)

∀{τ}. [N,N ](τ, τ) ::= ε

As we can see, the transformation is done for each rule separately without taking
annotation information from other rules into account.

Example 79 In our example grammar, this transformation looks as follows:

∀{α}. E(seqα) ::= s 0(seqα)
∀{α}. E(α) ::= E(seqα) ft 1(α)

=⇒
∀{τ, α}. E(τ) ::= s 0(seqα) [E,E](τ, seqα)
∀{τ, α}. [E,E](τ, seqα) ::= ft 1(α) [E,E](τ, α)
∀{τ}. [E,E](τ, τ) ::= ε

Since combinator parsers will normally implement each of the rules as a se-
quence of function calls, the resulting right-recursive calls can be optimized with
tail-recursion, minimizing call-stack-depth.

7.2.3 Left Factorization

The most efficient top-down parsers are those that are deterministic for a minimal
look-ahead, so the look-ahead necessary to decide which production rule to use for
the derivation of next nonterminal should be minimized which can be done via left
factorization.

Unfolding, left-recursion elimination and also action shifting might be necessary
before the left factorization is applicable on rules that derive strings with the same
prefix.

Also, the iterative application of left factorization and unfolding can lead to
non-termination if N ⇒+ v N w. Therefore, no further unfolding (and subsequent
left factorization) should be done for the nonterminal N in derived rules of the form
[N, s1, . . . , sn] ::= N w.

6We give the annotations the same order as the symbols in the composite nonterminal symbol
– this will make sense when looking at the other transformations. Basically, [N, s](T1, T2) should
be read as [N(T1), s(T2)], i.e. the rest of an N with annotation T1 after the beginning s with
annotation T2.
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Again, we orient ourselves towards the normal left factorization transformation
scheme on CFGs (which introduces the new auxiliary nonterminal [N, s] for symbols
N and s):

N ::= s vi

=⇒
N ::= s [N, s]
[N, s] ::= vi

We can generalize this scheme to:

∀Γi|Ci. N(Ti) ::= s(T ′
i ) vi

=⇒
∀{τ, τ ′}. N(τ) ::= s(τ ′) [N, s](τ, τ ′)
∀Γi|Ci. [N, s](Ti, T

′
i ) ::= vi

In case of not annotated factorized symbols, we can use the following simplifi-
cation:

∀Γi|Ci. N(Ti) ::= s vi

=⇒
∀{τ}. N(τ) ::= s [N, s](τ)
∀Γi|Ci. [N, s](Ti) ::= vi

However, this simplification might make the grammar less readable as then it is
not so obvious anymore, how the annotations relate to the symbols.

7.2.4 Action Shifting

Because semantic actions are allowed anywhere in our grammar formalism, it is
possible that there are rules, either already in the original or in the transformed
grammar, that have leading semantic actions before any other symbol.

This, obviously, hinders the further necessary transformation process both for
left-recursion elimination as well as left factorization.

Example 80 Consider the following, albeit artificial, one-level grammar, contain-
ing hidden left-recursion:

A ::= 0
B ::= a 1
B ::= A B b 2
B ::= A B c 3

Because A is basically an epsilon-production, B is hidden left-recursive which is
yielded by unfolding A in the productions of B.

A ::= 0
B ::= a 1
B ::= 0 B b 2
B ::= 0 B c 3

Clearly, if B is the starting symbol, action 0 must occur as many times at the
beginning (without consuming any terminal symbols) as there are terminal symbols
b and c occurring at the end.

Simply removing the leading actions or shifting them elsewhere would change
the order in which the actions would appear, thereby destroying the input/output
semantics of the grammar.

To cope with this situation, we can introduce an attribute for all the nontermi-
nals and actions: the position where the corresponding node will appear in the parse
tree, called its spine. It can be encoded as the path from the root of the tree to the
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respective node as a list of numbers, each number representing the child-position
in regard to its parent node. This attribute must be introduced into the original
grammar before all other transformations take place and can then be treated just
like an additional, normal attribute alongside others, if any.

By merit of this attribute, we can safely change the position of semantic actions
(without further need of changing any of their attributes) inside the rules, as they
carry their final position information with them.

Although the semantic actions would not appear in their proper order during
transduction, if the resulting grammar is interpreted by a simple top-down trans-
ducer, they can be accumulated from the result and sorted lexically by their position
attribute, making it possible to reconstruct the order intended by the original gram-
mar.

Example 81 In our example, we would first introduce the position annotation by
numbering the nonterminal symbols in the right-hand-side of each rule from left to
right:

∀{π}. A(π) ::= 0(π)
∀{π}. B(π) ::= a 1(π)
∀{π}. B(π) ::= A(π.1) B(π.2) b 2(π)
∀{π}. B(π) ::= A(π.1) B(π.2) c 3(π)

Unfolding yields the following grammar:

∀{π}. A(π) ::= 0(π)
∀{π}. B(π) ::= a 1(π)
∀{π, π′}|π′ = π.1. B(π) ::= 0(π′) B(π.2) b 2(π)
∀{π, π′}|π′ = π.1. B(π) ::= 0(π′) B(π.2) c 3(π)

Whenever the annotations of the nonterminals to be unified don’t yield mutually
recursive equations all new constraints can be removed by using variable substitution
according to these constraints. 7

∀{π}. A(π) ::= 0(π)
∀{π}. B(π) ::= a 1(π)
∀{π}. B(π) ::= 0(π.1) B(π.2) b 2(π)
∀{π}. B(π) ::= 0(π.1) B(π.2) c 3(π)

Shifting these leading actions behind the terminal symbol in the left-recursive
rules, we get:

∀{π}. A(π) ::= 0(π)
∀{π}. B(π) ::= a 1(π)
∀{π}. B(π) ::= B(π.2) b 0(π.1) 2(π)
∀{π}. B(π) ::= B(π.2) c 0(π.1) 3(π)

Now, the normal left-recursion elimination scheme can be applied again.

∀{π}. A(π) ::= 0(π)
∀{π, π′}. B(π′) ::= a 1(π) [B,B](π′, π)
∀{π, π′}. [B,B](π′, π.2) ::= b 0(π.1) 2(π) [B,B](π′, π)
∀{π, π′}. [B,B](π′, π.2) ::= c 0(π.1) 3(π) [B,B](π′, π)
∀{π}. [B,B](π, π) ::= ε

It is interesting to note that the spine-attribute is actually not necessary if the
semantic actions explicitly refer to their input and output states (as would be the

7So, when this condition holds, we always remain with constraint-free production rules if we
started with them in the first place.
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case in DCGs of PROLOG, for instance) as then the input/output semantics of
the grammar is immune to action shifting already. In our grammar formalism, we
also could use constraints on the rules (which have no position) to formulate such
relationships between the different constituents of a rule.

7.2.5 Left Corner Transformation

As noted by Moore [28], the normal left-recursion elimination transformation (and
in conclusion our generalized version of it) does not always yield optimal (or even
very acceptable) grammars in case of very large grammars for natural languages.
Instead, he proposes the use of the left corner transformation on the left-recursive
rules of the grammar which, in combination with left factorization yields much more
acceptable grammars.

To understand the transformation, we need the following definitions.

Definition 102 A retained nonterminal symbol is a nonterminal symbol reachable
from the nonterminals of the original grammar, i.e. {N |N ′ ∈ VN ∧N ′ ⇒+ v N w}
(where VN is the set of nonterminal symbols in the original grammar).

Definition 103 A symbol s is a left corner of a nonterminal symbol N if N ⇒+

s v.

Thus, not hidden left-recursive nonterminals are always left corners of them-
selves. Hidden left-recursive nonterminals are only left corners of themselves, if
they are not hidden by semantic actions.

The transformation scheme given by Moore, can also easily and naturally be
generalized to apply to our generic grammars, yielding the following scheme:

1. If a terminal, action or non-left-recursive nonterminal symbol s is a left corner
of a retained left-recursive nonterminal symbol N in the original grammar,
add:

∀{τ, τ ′}.N(τ) ::= s(τ ′) [N, s](τ, τ ′)

2. If N2 is a left-recursive left corner of a retained left-recursive nonterminal
symbol N1, production ∀Γ|C.N2(T ) ::= s(T ′) v is in the original grammar,
add (where τ /∈ Γ):

∀{τ} ∪ Γ|C.[N1, s](τ, T ′) ::= v [N1, N2](τ, T )

3. If a symbol s is a left corner of a retained left-recursive nonterminal symbol
N and ∀Γ|C.N(T ) ::= s(T ′) v is a production of the original grammar, add:

∀Γ|C.[N, s](T, T ′) ::= v

4. Keep all productions of non-left-recursive nonterminals of the original gram-
mar.
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Example 82 We will show this alternative approach on (part of) our example
grammar (where the necessary action shifting has already taken place):

∀{π}. A(π) ::= 0(π)
∀{π}. B(π) ::= a 1(π)
∀{π}. B(π) ::= B(π.2) b 0(π.1) 2(π)

=⇒
1.
∀{τ, τ ′}. B(τ) ::= a [B, a](τ, τ ′)
2.
∀{π, τ}. [B, a](τ, ()) ::= 1(π) [B,B](τ, π)
∀{π, τ}. [B,B](τ, π.2) ::= b 0(π.1) 2(π)

[B,B](τ, π)
3.
∀{π}. [B, a](π, ()) ::= 1(π)
∀{π}. [B,B](π, π.2) ::= b 0(π.1) 2(π)
4.
∀{π}. A(π) ::= 0(π)

Obviously, this grammar transformation also is combinable with the other trans-
formations presented in this paper, and, thus can also deal with hidden left-recursion
by use of action shifting.

It is interesting to note, that the left corner transformation combines left fac-
torizations, unfoldings, foldings and left recursion elimination into one complex
transformation by using the left-corner relationship.

For directly recursive nonterminal symbols, almost the same grammar is pro-
duced (where, e.g. [B,B] plays even the same role in both), but the left corner
transform handles mutually left-recursive nonterminals better.

7.3 Optimizations

Using the above generalized transformation schemes, some optimizations come to
mind.

For instance, we can avoid some backtracking in the top-down parsing process
by delaying semantic actions through unfolding of mutually recursive rules and
shifting.

Because unfolding generally can lead to an exponential explosion of the grammar
(and often at least to a quadratic amount of rules), a grammar transformation which
we would call partial unfolding can be beneficial.

7.3.1 Partial Unfolding

Using nonterminal disjunctions (N1| · · · |Nn), a construct which is a subset of EBNF,
we can express partial unfolding of nonterminals. Nonterminal disjunctions are
treated like nonterminals. They have implicit rules of the form (· · · |Ni| · · · ) ::= Ni.
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Partial unfolding of the jth rule of a nonterminal E looks like this:

E ::= vi

N ::= u E w
=⇒

Ei ::= vi

E ::= (E1| · · · |En)
N ::= u E w

=⇒
Ei ::= vi

E ::= (E1| · · · |En)
N ::= u (E1| · · · |Ej−1|Ej+1| · · · |En) w
N ::= u Ej w

First, the rules of the partially to be unfolded nonterminal each get their own
new specialized nonterminal and we add a rule for the original nonterminal with a
disjunction of the specialized nonterminals as its right-hand side.

Then we can replace the nonterminal to be unfolded by rules that instead contain
only partial disjunctions of these specializations. If every one of the specializations
appears in exactly one of the resulting rules, we have a language-preserving trans-
formation. 8

Generalizing this scheme is a simple replacement task. Whenever an annotated
nonterminal is replaced by a disjunction, this disjunction is instead annotated with
the same annotation the replaced nonterminal had.

7.3.2 Avoiding Backtracking by Action Shifting

Whenever the underlying CFG of the original grammar has a nonterminal N that
is both left-recursive (N ⇒+ N w 1) and right-recursive (N ⇒+ v N 2), the CFG
is ambiguous (N ⇒+ N w 1 ⇒+ v N 2 w 1 and N ⇒+ v N 2 ⇒+ v N w 1 2) so
the two-level grammar might be ambiguous as well if the annotations do not resolve
the ambiguity.

Shifting the semantic actions in the above case to the end and ordering them
the same way during parsing we can avoid backtracking over w by factoring out the
common part v N w 1 2.

Without action shifting, we obviously could only have factored out the common
part v N .

7.4 Cyclic Grammars

Left-recursion elimination can only be successfully applied to grammars that do not
contain a cycle (N(T1) ⇒+ N(T2)). Otherwise, the algorithm would not terminate.
If a grammar contains a cycle, infinite ambiguities might be possible. This is why
the converter operators in our mixfix expression language are restricted in such a
way that they do not cause such cyclic rules to be introduced into the grammar.

Even though rules that contain a cycle are nonsensical in CFGs (as they don’t
add any information) and thus can be safely removed from the grammar, unfortu-
nately, this is not necessarily true for general two-level grammars as the left-hand
side can carry a different annotation from the right-hand side and also the right-
hand side may contain semantic actions.

Though top-down backtrack parsers can cope with such grammars, too, their
termination cannot in general be guaranteed unless such rules are not present in
the grammar.

8This approach is similar to character class grammars of [44].
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Simple cyclic rules of the above form, can, if the annotations are the same, of
course, still be safely removed from our two-level grammars.

7.5 Conclusion

We have generalized the common grammar transformations of unfolding, left-recursion
elimination, and left factorization on CFGs, as well as the left corner transformation
[28] towards two-level grammars [48], [21], [22], [23].

This allows the automatic generation of top-down parsers for languages defined
by arbitrary two-level grammars (e.g. for natural languages or left-associative mixfix
operators).

We dealt with the problem of leading semantic actions of otherwise (hidden)
left-recursive rules by using spine attributes and action shifting, thereby abolishing
the need of changing the semantic actions.

We only introduce equations as constraints which can be solved by use of unifica-
tion. Hence, the DCGs [33], [34], of PROLOG [7] would be the natural candidate for
the efficient generation of parsers from such two-level grammars. Using combinator
parsers in a functional language environment would be just as easy.

The transformations introduce canonically derivable nonterminal symbols from
the symbols of the original grammar, thereby ensuring disjointness with the ex-
isting set (or, if the same symbol is used, automatic merging), allowing for some
modularity in the transformation approach.

Since our auxiliary nonterminal symbols carry the semantics of the original gram-
mar, even the transformed grammar will probably remain humanly readable and
thus better manageable.

7.6 Related Work

One prominent approach to tackling two-level grammars from a parsing point of
view is AGFL (Affix Grammars over Finite Lattices) [2]. There, left-recursion is
dealt with by using left corner or bottom-up parsers [30]. Grammar transformations
are only performed on the underlying CFG and the integration with the second level
is left to the imagination of the reader.

If at all, even if annotation of the underlying grammar is to take place, the prob-
lem of left-recursion removal is mostly solved by referring to the standard approach,
letting the programmer first transform the underlying CFG and then worry about
the combination with the annotation techniques. How this combination has to be
carried out is left to the imagination of the reader by the respective authors.

Nederhof [29] solves the left-recursion problem for top-down parsers of attributed
DCGs dynamically by enhancing the given DCG with checks for cyclic calls and
continuations, deriving a so called cancellation parser. This approach is only aimed
at (and suited for) top-down parsers, and so can’t be seen as a generalization of
standard grammar transformations9.

Ridoux [36] has formally generalized grammar transformations for two-level
grammars by transforming them into λ-Prolog clauses, splitting the two-level rules
into their context-free part and a constraint on the attributes of the constituents.
The result seems much more complicated than ours. The problem of leading se-
mantic actions is not explicitly addressed by him.

Dymetman [9] generalizes the transformation of a CFG into the Greibach Nor-
mal Form for DGCs. There, the term-annotations have to be changed into variables

9Our transformation schemes can be employed in any kind of parser environment.
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and the original terms must be transferred into the definition of their respective se-
mantic predicates. In [10], Dymetman proposes grammar transformations for DCGs
closer to ours, introducing meta-nonterminal symbols that implement a general goal-
corner transformation and transforming the DCG into a generic grammar where the
former nonterminals become the attributes of the meta-nonterminals. However, this
approach for some reason makes epsilon removal necessary which is not true in our
approach. The leading semantic action problem is also ignored.

Grootjen [15] maps the AGFL formalism into ATNs (Augmented Transition Net-
works), but uses grammar transformations on the corresponding affix grammar as
an explanatory device, using the same left-recursion elimination scheme as Dymet-
man without formalization and also ignoring the leading semantic action problem.

Finally, Lohmann et. al [24] consider automatic semantic action migration for
left recursion removal in attribute grammars. Since the semantic actions are treated
separate from the context-free part10, their position is irrelevant and no action
shifting has to take place. The transformation process only uses the normal left
recursion elimination approach and focusses more on the change of the semantic
actions in a seemingly more complicated way. The finally resulting grammars look
very similar, though.

10like our constraints
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Chapter 8

Implementation Results

8.1 Mixfix Parsing Algorithm

We have implemented the parsing process for mixfix expressions according to the
two-level grammars described in chapter 6 with the help of an Earley parser. For
each expression to be parsed, such a parser is instantiated with the underlying pos-
sibly ambiguous context-free grammar. This grammar corresponds to the operator-
set of the expression, determined from the scope of the expression and the backbones
occurring in the expression.

8.1.1 Earley Backbone Parsing

Thus, before the actual parsing of a sub-expression, we invoke a backbone parser
which is also implemented via an Earley parser with the appropriate backbone
grammar on that sub-expression.

This is also done to determine whether or not there are possible backbone am-
biguities and to find out which operators have to be ordered topologically for that
sub-expression. These so-called sibling operator backbones are used to restrict the
operator set in all precedence related constraints.

8.1.2 Top-Down Backtrack Parsing

Derivation

The result of the Earley mixfix parser is a representation of all possible derivations
of the start symbol given to that parser to the sentence to be parsed. This represen-
tation allows us for each sub-expression to iterate over all operators the expression
can be an instantiation of. For every such possible instantiation, all segmentations
of the sentence of the sub-expression that match the corresponding rule of the op-
erator can be iterated over. Every such segmentation corresponds to a node in a
possible parse tree.

We start to iterate over possible root-nodes for the mixfix expression (using
start symbol COLON), working our way down to their children until finally we
find nullary operator nodes or group phrases which have no children. We reject all
nodes that do not fulfil the constraints of the corresponding two-level grammar rule
and those which have no acceptable children for at least one nonterminal.

Look-Ahead

This algorithm implements in essence a recursive descent backtrack parser. We
traverse the node-space in the same fashion as such a parser would. But the look-
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ahead is not made of tokens. Instead we determine the possible sub-nodes which
are consistent both type-wise and precedence-wise and do not violate the adjacent-
operand restrictions.

We do not have the same termination problems as a normal recursive descent
parser would have with our grammars, because our restrictions ensure that the
sentence of every sub-node is always at least one symbol shorter than the sentence
of its parent node or it is the sub-node of an acyclic chain-production rule. All
segmentation possibilities are already available from the Earley mixfix parse tree
representation.

Groups and Scoping

Whenever a scope-annotation node is matched, first the scope subexpression is
parsed and evaluated. From that, the scope in which the annotated expression is
to be parsed is computed. The parsing of the annotated expression is done with a
new mixfix parser in that scope with start symbol E.

Whenever a group phrase is to be parsed, a group parser is invoked which in
turn invokes mixfix parsers for all the declarations inside the group. We will not
go into further detail how this is achieved as this is beyond the scope of this thesis.
Suffice it to say that a powerful scope inference algorithm including group import
has been successfully integrated with our mixfix parser. For further details, see [37].

Performance of the Earley Parser

It is a well-known fact that Earley’s parsing algorithm has a worst case performance
that needs a cubic amount of computation steps and a quadratic amount of space
dependent on the length of the expression to be parsed.

Thus, our use of such a parser limits us in such a way that our parsing algorithm
in general can never be better (in the worst case) than the Earley algorithm. Our
choice of parser thus might appear questionable, but all generalized parsing algo-
rithms that can deal with arbitrary context-free grammars like the ones we have to
deal with suffer from the same defects as the Earley parser (see [29]), though they
might be more efficient in some cases.

In accordance with this, we have found that – using all the optimizations covered
in the remainder of this chapter – the Earley parsing phase to find the possible
matches takes up the bulk amount of computation time for longer expressions.

In our implementation, we used a very simple, straightforward version of the
Earley parser although there are surely heuristic optimizations available for the
algorithm in general the addition of which our general parsing algorithm could
benefit from.

Also, by integrating the parsing and the matching phase more tightly, using type
and precedence information already to restrict possible top-down restrictions of the
Earley parser itself, we could probably gain another significant performance boost.

Using memoization of the Earley parsing results for sub-expressions is an opti-
mization that has been implemented successfully, so that this parsing effort at least
only occurs at most once.

8.2 Mixfix Parsing Optimizations

8.2.1 Top-Down Restrictions for Adjacent Operators

Whenever we try to find a match for an operator instantiation that has adjacent
operands, we can exclude all matches delivered by the Earley parser which violate
the restrictions on adjacent operands, i.e.
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• all matches where an empty operand expression would be adjacent to a non-
empty one,

• all matches of a concatenation operator where one of the operand expressions
would be the empty expression.

This way, we do not only restrict the matches to be tried by a significant number,
but also avoid a termination problem that we would be faced with if such restrictions
were not applied.

Consider concatenation expressions where the left operand expression would
be allowed to be empty. Then, the right operand expression could again be a
concatenation expression, spanning the whole expression, and could again be split
into an empty and a non-empty one, ad infinitum.

8.2.2 Allowed Operand Operators

Because of our top-down bottom-up type inference algorithm, we always know the
possible demanded result types of the expression to be matched. If we try to match
an instantiation of an operator, we can thus compute the possible demanded result
types for all operand expressions to be matched.

This allows us to filter the set of known operands occurring as possible top-level
operator of every operand tree in question (which we have determined via backbone
parsing) so that only those operators remain that have the respective demanded
result type.

Once we have entered a subtree where precedence is only determined via ad-
hoc precedence (because some operator on the path to the root was chosen by
ad-hoc precedence because natural precedence couldn’t be established), we can also
filter the operator set of leftmost and rightmost operands by consulting the ad-hoc
precedence relations. Only those operators allowed by these relations need to be
tried as roots of the respective operand expressions.

If for one operand this filtered set of allowed operand operators is empty, the
whole match for that operator instantiation is impossible and we do not need to try
to derive any of the operand trees.

8.2.3 Operator Hierarchies

In any normal mixfix operator environment, there is a high probability that ad-hoc
precedences are given by the user for most the operators. As we know from section
5.6.2, such ad-hoc precedence relations should be hierarchical to avoid ambiguities
with the natural precedence relations.

We assume that the information given by the user describes the expressions
that will occur in his program in such a way that the operators that have a high
precedence level normally occur higher in any given parse tree than the ones with
a lower precedence level.

Therefore, it makes sense, whenever we have to choose between different oper-
ators as roots of a (sub)expression, to try them in order of their precedence level
(from highest to lowest).

Once we have chosen an infix operator as the root of the expression, we can
also order the possible matches of instantiations of that operator using the operator
hierarchy information.

• If the operator is left-precedent towards itself, we will start with the match
which has the longest leftmost operand expression and the shortest rightmost
operand expression.
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• If the operator is right-precedent towards itself, we will start with the match
which has the shortest leftmost operand expression and the longest rightmost
operand expression.

Good Results

The unoptimized algorithm, where operator matches are tried in an arbitrary order
needs in the order of nk matching operations in the worst case for some expressions
that contain n infix operator applications with operators from k different operator
precedence hierarchy levels.

However, with the optimization the number of present operator precedence hi-
erarchy levels loses its significance and the number of matches becomes linear to
the number of present operators if all operator pairs that occur in the expression
have ad-hoc precedences.

Example 83 Assuming the operator set and precedences defined in figure 2.7 on
page 18, we have measured the amount of top-down matching operations for the
different expressions in figure 8.1 both with this optimization and without it. The
measurements can be found in table 8.1.

From example 83, it can be seen that this optimization yields very good results.
In the optimized version, the amount of matching operations where only ad-hoc
precedences are involved is exactly the number of instantiated operators in the
expression (keeping in mind that for every visible operator instantiation, there is
exactly one instantiation of the invisible conversion operator present).

fun x : int
fun E1: x ∗x ∗ x ∗ x ∗ x ∗ x ∗ y ∗ y ∗ y ∗ y ∗ y

∗x ∗ x ∗ x ∗ x ∗ x ∗ y ∗ y ∗ y ∗ y ∗ y
∗x ∗ x ∗ x ∗ x ∗ x ∗ y ∗ y ∗ y ∗ y ∗ y
∗x ∗ x ∗ x ∗ x ∗ x ∗ y ∗ y ∗ y ∗ y ∗ y

fun E2: x ∗x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x
/x/x/x/x/x/x/x/x/x/x
+ y + y + y + y + y + y + y + y + y + y
−y − y − y − y − y − y − y − y − y − y

fun E3: x + y + y + y + y + y + y + y + y + y + y
−y − y − y − y − y − y − y − y − y − y
∗x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x
/x/x/x/x/x/x/x/x/x/x

fun E4: x ∗x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x
+ y + y + y + y + y + y + y + y + y + y
/x/x/x/x/x/x/x/x/x/x
−y − y − y − y − y − y − y − y − y − y

fun E5: x ∗x + y ∗ x + y ∗ x ∗ x + y ∗ x + y ∗ x
/x− y/x− y/x/x− y/x− y/x
∗x + y ∗ x + y ∗ x ∗ x + y ∗ x + y ∗ x
/x− y/x− y/x/x− y/x− y/x

fun E6: x ∗x + y ∗ x + y ∗ x ∗ x ∧ y ∗ x ∧ y ∗ x
/x− y/x− y/x/x ∧ y/x ∧ y/x
∗x + y ∗ x + y ∗ x ∗ x ∧ y ∗ x ∧ y ∗ x
/x− y/x− y/x/x ∧ y/x ∧ y/x

Figure 8.1: Signature of example 83
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expr optimized unoptimized
E1 162 569
E2 162 922
E3 162 1647
E4 162 17081
E5 162 57920
E6 162 194917

Table 8.1: Matching Operations with and without Optimization

Bad Results

Unfortunately, the optimization can also have a detrimental effect in the pathologi-
cal case that the user has given ad-hoc precedences for operators which are used in
expressions where they are naturally precedent, but differently so from their given
ad-hoc precedences. Here, the precedence information which is supposed to guide
the backtrack parser into the right direction is instead misleading it, thereby causing
a lot of backtracking.

We have found no expressions, yet, though, where this increased the amount
of matching operations to more than the square of the number of occurring infix
operator instantiations.

Example 84 In the signature in 8.2, we have introduced two list construction op-
erators, :: and ::: the first with a given right-precedence and the second with
a given left-precedence. We have measured the amount of matching operations for
two long list expressions E1 and E2, both with and without the optimization. Both
expressions have only one right-precedent interpretation. The measurements can be
found in table 8.2.

From example 84, we can see that the hierarchy optimization is still an opti-
mization for the case that the user has given the proper ad-hoc precedence for the
concatenation operator, but the performance worsens if the wrong ad-hoc prece-
dence is given in comparison with the unoptimized case.

fun nat : SORT
fun seq :[SORT] → SORT
var A : SORT
fun <> : seq A
fun :: :[nat , seq nat] → seq nat
fun ::: :[nat , seq nat] → seq nat
prec :: ( :: )
prec ( ::: ) :::
fun a : nat
fun + :[nat , nat] → nat
fun ∗ :[nat , nat] → nat
fun ! :[nat] → nat
fun E1 : a + a :: a + a :: a ∗ a :: a ∗ a :: a + a :: a! :: a! ::

a + a :: a + a :: a ∗ a :: a ∗ a :: a + a :: a! :: a! :: <>
fun E2 : a + a ::: a + a ::: a ∗ a ::: a ∗ a ::: a + a ::: a! ::: a! :::

a + a ::: a + a ::: a ∗ a ::: a ∗ a ::: a + a ::: a! ::: a! ::: <>

Figure 8.2: Signature of example 84
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expr optimized unoptimized
E1 118 225
E2 1391 286

Table 8.2: Matching Operations with and without Optimization

Solution: Adaptive Parsing with Implicit Ad-Hoc Precedences

The bad effect could probably be countermanded by the following further optimiza-
tion.

If the precedences that are actually chosen by the mixfix parser for an expression
are not the ones given by the user, the parser records the number of occurrences of
each precedence.

If the non-ad-hoc precedence occurs consistently, then instead of using the ad-
hoc precedence, the parser shall use this other precedence instead to build an implicit
ad-hoc precedence hierarchy to use as a guideline for matching.

This approach could also be beneficial in scenarios where only naturally prece-
dent operators exist and thus the user does not actually need to give ad-hoc prece-
dences other than to guide the parser faster to the sole interpretation.

Since users tend to have their own style of writing down expressions, this could
lead to a behavior of the parser which adapts to this style, so the parser becomes
better at recognizing expressions written in that style.

Of course, for the human reader, ad-hoc precedences given also for naturally
precedent non-standard operators can have a documentary effect and thus heighten
readability.

Obviously, such an optimization enters the realm of artificial intelligence and
thus we have chosen not to pursue it in depth.

Concatenations

In our experiments, we found that the concatenation operator again must be treated
differently from the other operators.

We remember that it is defined as being ad-hoc left precedent because of the
built-in function application operator. It also has the highest precedence level since
it cannot occur as a rightmost or leftmost operand to other left open or right open
operators.

Hence, we would assume that we should always try to match the concatenation
operator applications first before trying to match any other operators.

However, this seems to be a pessimization because a concatenation could occur
potentially everywhere, but in reality does not occur that often.

Trying to match the concatenation operator as the root of an expression only
after finding no other matching root operator yields much better results in the
mixfix operator scenarios we have experimented with.

8.2.4 Maximal Application Depth

We have found another worrying effect that ties in with the same problems encoun-
tered for concatenation operators mentioned in section 8.2.3, especially the built-in
application operator.

Even adhering to the top-down restrictions for concatenations, there are still a
quadratic amount of interpretations to be considered for matching.

To decrease that amount dramatically, we consider the operators that occur in
an expression before the matching process starts.
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We look at the leftmost operator backbone to see whether it can be a higher-
order function and how many arguments it can be applied to via the application
operator maximally. If this number is smaller than the length of the expression,
then we have found the maximal application depth which we can use to further
restrict our concatenation matching in a top-down fashion, decreasing the allowed
depth for every layer of application until it drops to zero which is when no more
application instantiations are allowed.

Example 85 In the signature in figure 8.3 on page 146, we have introduced three
kinds of prefix operators on natural numbers, namely f , g and h. All of these
operators can be applied to two natural numbers, either by operand instantiation or
by using the built-in application operator.

We have measured the parsing time for the differently parenthesized expressions
involving these operators in figure 8.3, both with the maximal application depth
optimization and without it. The results of these measurements can be seen in table
8.3.

The third row of this table are the parsing time measurements for the same kind
of expressions, but where each operand x + x + x is replaced with x + x + x +
x + x + x + x + x + x + x + x. We give only the results for the optimized
version since the unoptimized version took too long to parse in our experiments.

expr unoptimized short optimized short optimized long
f1 0.8 s 0.8 s 3.6 s
f2 0.2 s 0.2 s 0.3 s
f3 0.1 s 0.1 s 0.5 s
f4 0.3 s 0.1 s 0.6 s
g1 38.7 s 0.7 s 9.3 s
g2 0.7 s 0.2 s 1.7 s
g3 90.6 s 0.5 s 4.9 s
g4 0.1 s 0.1 s 0.3 s
g5 0.1 s 0.1 s 0.3 s
g6 0.1 s 0.1 s 0.4 s
h1 33.0 s 0.4 s 6.5 s
h2 0.5 s 0.2 s 1.3 s
h3 76.9 s 0.6 s 6.0 s
h4 0.1 s 0.1 s 0.3 s
h5 0.3 s 0.2 s 1.0 s
h6 0.6 s 0.1 s 0.6 s

Table 8.3: Parsing Time Measurements

The results of the previous example show that this optimization is sensible and
very necessary. Unfortunately, it only remains valid as long as no other higher-order
function application concatenation operator (like, e.g. the currying application
operator) is introduced into the operator set by the user.

Therefore, the user should not be allowed to introduce generic higher-order
function concatenation operators.

The most interesting result of this experiment, though, is probably the fact that
in the unoptimized case, it takes longer to parse the parenthesized expressions g3

and h3 than their unparenthesized counterparts g1 and h1, respectively. This is of
course a very confusing behavior as one would expect the parentheses to help the
parser instead of hampering its performance. Fortunately, as we also can see in table
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fun f : [nat , nat] → nat
fun g : [nat] → nat → nat
fun h : nat → nat → nat
fun x : nat
fun + : [nat , nat] → nat
prec ( + ) +
prec f ( + )
prec g ( + )
fun f1 : f x + x + x + x x + x + x + x : nat
fun f2 : f (x + x + x + x) x + x + x + x : nat
fun f3 : f (x + x + x + x) (x + x + x + x): nat
fun f4 : f x + x + x + x (x + x + x + x): nat
fun g1 : g x + x + x + x x + x + x + x : nat
fun g2 : g (x + x + x + x) x + x + x + x : nat
fun g3 : (g x + x + x + x) x + x + x + x : nat
fun g4 : g (x + x + x + x)(x + x + x + x): nat
fun g5 : g x + x + x + x (x + x + x + x): nat
fun g6 : (g x + x + x + x)(x + x + x + x): nat
fun h1 : h x + x + x + x x + x + x + x : nat
fun h2 : h (x + x + x + x) x + x + x + x : nat
fun h3 : (h x + x + x + x) x + x + x + x : nat
fun h4 : h (x + x + x + x)(x + x + x + x): nat
fun h5 : h x + x + x + x (x + x + x + x): nat
fun h6 : (h x + x + x + x)(x + x + x + x): nat

Figure 8.3: Signature of example 85

8.3 the optimization also corrects this behavior so that parenthesized expressions
are parsed faster than their unparenthesized counterparts.

However, we can still see that mixing the concatenation application operator
with other operator instantiations does not yield as good results as when only
concatenation or only operator instantiations are used.

This optimization works especially well if no generic operators are present in
the scope that are not fully instantiated in the result-type, i.e. all operators with a
type like T → A where A is a type variable countermand this optimization.

8.2.5 Conclusions

The experimental results in this chapter lead us to the following conclusions.
We think that we have found optimizations for the mixfix parsing process that

make mixfix parsing usable, but there are some recommendations that the user
should adhere to when writing down programs with long mixfix expressions with as
few as possible parentheses.

• Import only what you need! That is, import only those operators that
are actually used in the program.

• Import generic operators fully instantiated! If you introduce your own
generic operators, do so in a separate module and use fully instantiated import
for them, as well.

• Give ad-hoc precedences for all pairs of open operators! This helps
the parser assign a hierarchy to the operators which it can make use of in
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the hierarchy optimization. For different operator sets like the arithmetic
operators, you will probably import the precedences, already, so it is only
necessary to add their precedences to other imported operators they should
be combined with.

• Give ad-hoc precedences that reflect the usage of the operators in
the program! If an imported precedence does not reflect your usage, either
change this precedence or use parentheses.

• Introduce higher-order functions only when absolutely necessary!
Use prefix operators with multiple adjacent right-open operands, instead.
Through section lifting and empty placeholders, these can be used as higher-
order functions, if necessary.

• Refrain from overloading! Especially the invisible operators should not
be overloaded too often.

• Don’t mix concatenation with normal operator instantiation too
often!

It should be noted that these are only guidelines that make mixfix expressions
more easily parsable. However, it is clear that following these recommendations
makes the programs more human-readable, as well.
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Chapter 9

Conclusion

The aim of this thesis was to show that it is possible to integrate almost arbitrary
user-defined mixfix operators into programming languages without losing the ability
to efficiently parse programs written in such languages.

Such a language has the power to be more readable than common programming
languages, as it allows the introduction of constructs which have a more natural
feel to the user. It also becomes possible to customize the programming language
to specific domains of users which have common nomenclatures and other common
ways of writing things down formally or semi-formally, but are not programming
languages experts. Thereby, the usability and understandability of the language can
be heightened, leading to higher productivity and better maintainability of software,
which in turn could reduce production costs for large-scale software architectures.

Of course, we are aware that there is potential for obfuscation of programs
written in this language, but this cannot be denied for any programming language
known to us, so we are not worse off, but still have the potential for being better.

9.1 Approach

By identifying the natural causes of ambiguity in mixfix expressions posed by user-
defined mixfix operators, we have been able to introduce natural restrictions re-
garding the mixfix operators to be defined, as well as their combined usage. These
restrictions are specifically designed to counteract the causes of ambiguity, allowing
us to define a two-level grammar which describes an unambiguous mixfix expression
language. They are not implied by the algorithm to be used to parse the language.

While this language does not include all unambiguous expressions, it includes
many expressions which are unambiguous which nevertheless would be rejected by
most other languages. This can only be possible by using type and user-preferred
precedence information in the parsing phase as described in the second-level part
of the two-level grammar.

To remain efficient in parsing, we have to integrate the parsing phase with
(parts of) the semantic analysis phase to allow for early semantics-driven syntactic
disambiguation.

9.2 The Functional Mixfix Language

We have taken a functional OPAL-like language with features like overloading, poly-
morphism, higher-order functions and operator sections, where every expression can
also be annotated with a demanded type and a declaration scope for semantic disam-
biguation purposes, and added the possibility to declare all operators using mixfix
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patterns. Also, it is possible to declare precedence relation preferences between all
declared operators. The types of the language are again mixfix expressions, creating
a multi-level type-universe.

9.3 Language Restrictions

The operator patterns are described by a sequence of separator tokens and operand
placeholders. We have refrained from allowing more complicated constructions like
optional parts or repetitions because they do not add to the expressivity of the
language, but can easily be simulated using the simple operator patterns. Therefore,
we considered them more as ”syntactic sugar”, which means that such pattern
descriptions could also easily be added to the language.

Although it is allowed for two different operator patterns to share the same
separator tokens, this can only be allowed in a restricted manner because otherwise,
the so-called backbone ambiguity can occur in mixfix expressions containing the
tokens of these operators.

Special care must also be taken with invisible operators, especially in conjunction
with adjacent operands.

The conversion operators can create ambiguity in conjunction with operator
overloading which also has to be taken care of.

Finally, the user-defined preferred precedence relations must be conflict-free for
every expression to be parsed.

9.4 Parsing Efficiency

All these restrictions must be ensured to allow for efficient parsing and disallow
ambiguity of the mixfix expressions to be parsed. We have given efficient algorithms
to check for these restrictions and for parsing mixfix expressions.

Unfortunately, only the parsing of type-correct expressions is guaranteed to be
efficient, while for type-incorrect expressions, such efficiency cannot be guaranteed
by our algorithm. However, by introducing a computation threshold (dependent on
time or number of computation steps) after which the parser rejects an expression
as too complicated to be parsed and giving the user hints as to the possible prob-
lems encountered, we could still remain efficient in parsing in general while also
maintaining usability.

9.5 Implementation

We implemented the algorithms described in this thesis in Java. A simple unop-
timized implementation of an Earley parser, used both for backbone parsing and
context-free parsing of the grammars induced by the mixfix operator sets was im-
plemented, as well. Its result is fed into a backtracking matching algorithm which
implements the top-down bottom-up type inference and precedence checks. Several
optimizations have been added to make this algorithm more efficient by reduction
of backtracking. Some more optimizations have been envisioned.

Experiments using this implementation have shown some interesting results in
regard to the combinations of language features that should be used.
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9.6 Related Work

9.6.1 Inspiration

The idea for this thesis, i.e. of embedding mixfix expressions with user-defined
mixfix operators into another programming language, was conceived from a sketch
of such ann application in [32]. There, the idea of splitting the parse phase into two
parts, the coarse parsing and the mixfix parsing is already considered, but only as
a matter for further research.

9.6.2 Comparison with Other Approaches to Mixfix Opera-
tors

While our approach can never be as efficient as the state-of-the-art parsing meth-
ods for programming languages using LALR-parsers with unambiguous context-free
grammars, due to the fact that it is much more powerful and also does more work
during the parsing phase, we are still confident that it is efficient enough for most
common programming purposes. Expressions written by hand are seldom very large
in practice, and if so, have a very repetitive character, i.e. use a very small number
of operators.

We are not as restrictive as Annika Aasa [1] in our possibilities to define oper-
ator patterns. Also, while she introduces ways of ensuring the absence of so-called
R-Ambiguity in grammars derived from more general mixfix operators, other ambi-
guity issues are ignored, or at least, not treated.

We also are more free in letting the user define precedences between operators
as Visser [46], leaving the possibility open to have no ad-hoc precedences between
operators.

The method of grammatical disambiguation filters that are applied to all parse
trees only on a syntactic level as Visser [45] or Thorup [40], [39] propose is not
sufficient to accept all unambiguous expressions that are possible in our mixfix ex-
pression language, because they are working on the context-free grammar level,
while we remain on the declarative level and use type-information for disambigua-
tion. Of course, it could be possible to add declarative parts to our language such
that similar filtering mechanisms could also be added to our language. This could
still heighten the efficiency of our approach.

The mixfix parsing approach in CASL [47] uses the general ASF+SDF [41]
approach, allowing the definition of arbitrary mixfix operator patterns. They in-
troduce a mixfix disambiguation algorithm which uses precedences based on the
length (i.e. number of tokens and placeholders) of the different user-defined mixfix
operators. In essence, they describe a disambiguation filtering mechanism on the
set of all possible parse trees of an expression, which of course, leads to inefficiencies
in general, because all the parse trees have to be enumerated to avoid ambiguities.
The ambiguity caused by invisble converter operators is dealt with by introducing
the same restriction on it (namely that it can only applied at most once to any ex-
pression). But, as far as we can see, similar ambiguity situations that can be caused
by empty and concatenation operators are not treated at all. Also, the parsing and
disambiguation algorithm does not make use of the type information, leading to the
common unsatisfactory results.

Finally, we are also less restrictive in letting the user define multi-level signa-
tures as Visser [44], by not explicitly categorizing the operators into different levels,
instead inferring this information. Thus, in our approach it is not necessary to lift
any signature onto a different level if need be.
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9.6.3 Programming Languages

Since we have designed a functional programming language, we have included a lot
of features which can be found in other such programming languages.

The basic syntax and structure of our language is owed to the language OPAL
[31], since it was designed as a draft for a possible new version of that language.

But, the ideas of type-classes and generic polymorphism of Haskell are also
present in our language, although in a slightly generalized way.

9.6.4 Two-Level Grammars

An overview over different sorts of Two-Level Grammars can be found in [23].

9.6.5 Type System

Our type-system is basically a Hindler/Milner [27] type system. Our type-inference
algorithm is closely related to that introduced by Damas and Milner in [6].

9.6.6 Parsing

Both, the formalisms of LR(k) and LL(k) parsing ([5], [3]) of context-free grammars
are not powerful enough for the problems we needed to solve for parsing our mixfix
expression language. These parsing algorithms need unambiguous grammars to
succeed in deriving an unambiguous parse tree. Their generalized counterparts
via generalized LR parsing [29], or grammar transformations and LL parsing with
backtracking [32] which can deal with arbitrary context free grammars, have the
general problem of ignoring the typing information of the operators involved or being
only applicable to languages without generic types. If generic types are present, only
parsers which can deal with two-level grammars can use the type-information during
parsing, as unification on the type annotations needs to take place for restricting
the applicable rules for the backtrack parser.

Because of its simplicity, we have chosen Earley’s bottom-up parsing algorithm
[11] for generating the parse tree representation which is then again parsed by a
top-down backtrack parsing algorithm for the two-level part of the grammar.

We could also try to adapt the approach described by Pepper [32], using our
generalizations on grammar transformations to two-level grammars. Because our
two-level grammars are unambiguous by design, the LL backtrack parser would need
to find only one parse tree. Unfortunately, the transformation of the optimizations
in our present algorithm is still a matter for further research.

9.7 Outlook

In our opinion, following this thesis, user-definable mixfix operators could very well
be integrated into new or even existing programming languages, not only functional,
but also imperative ones and derivatives thereof.

Of course, all keywords and predefined graphemes must disallowed as valid sep-
arator tokens in the operator pattern declarations, but the same restriction already
applies to all other identifiers that can be declared in programming languages.

If some features like higher-order functions, overloading, polymorphism, or multi-
level type-systems do not exist in the host language, it is no problem to remove those
concepts from the mixfix expression language, as well.

Also, it is very probable that the expression constraints on our two-level grammar
could still be enlarged so that the mixfix expression language can contain even more
unambiguous expressions.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Thema Mixfix Operatoren, einem
Konzept, welches eine Verallgemeinerung der in gängigen Programmiersprachen
üblichen Operatoren, Funktionen, Prozeduren und sonstigen Konstrukte darstellt.
Insbesondere geht es darum, zu zeigen, daß es möglich ist, dem Nutzer von Program-
miersprachen zu erlauben, solche Operatoren in fast beliebiger Form selbst inneralb
dieser Sprachen zu definieren, um diese dann in sogenannten Mixfix Ausdrücken
benutzen zu können. Dies soll zur besseren Schreib- und Lesbarkeit von Program-
miersprachen beitragen und damit zur ihrer besseren Benutzbarkeit sowie erhöhter
Wartbarkeit von darin geschriebenen Programmen aus softwaretechnischer Sicht.
Sprachen mit solchen Ausdrücken können außerdem besser an die Bedürfnisse der
sie benutzenden Kreise angepasst werden.

Es werden notwendige Einschränkungen der definierbaren Operatoren vorgestellt,
so daß die Sprache der Mixfix Ausdrücke syntaktisch eindeutig wird und effiziente
Verfahren der syntaktischen Analyse solcher Ausdrücke möglich werden, welche
ebenfalls erläutert werden.

Die Gründe für diese Einschränkungen werden motiviert durch die möglichen
Ursachen für syntaktische Mehrdeutigkeit in Mixfix Ausdrücken, namentlich

• in mehreren Operatoren vorkommende Separator Teile,

• aneinander angrenzende Operanden und unsichtbare Operatoren,

• natürliche und benutzerdefinierte Präzendenz von Operatoren,

• Konverter Operatoren und Polymorphie von Operatoren.

Es werden bewußt keine Einschränkungen auf die Sprache der Mixfix Ausdrücke
eingeführt, die auf das Verfahren der Parsierung zurückzuführen sind und für den
Nutzer, der von diesen Verfahren nichts weiß, verwirrend sein könnten, sondern nur
solche, die aus den oben genannten Gründen zwingend notwendig sind.

Die Arbeit diskutiert die bisherigen etablierten Ansätze, mit Mixfix Operatoren
in Programmiersprachen umzugehen, kritisch und legt Gründe offen, warum diese
Ansätze für eine so mächtige Sprache von Mixfix Ausdrücken wie der hier vorgestell-
ten nicht angemessen sind.

Als Gegenvorschlag wird ein anderer Ansatz diskutiert, der von der klassis-
chen Vorgehensweise abweicht und basierend ist auf aus den vom Nutzer definierten
Mixfix Operatoren hergeleiteten Zwei-Stufen-Grammatiken sowie einem Verfahren,
diese algorithmisch zur Implementation des Parsierungsvorgangs zu verwenden, in-
dem die syntaktische Analyse mit Teilen der semantischen Analyse derart verquickt
wird, daß die Typ-Inferenz auf die Parsierung Einfluß nehmen kann.

Das ganze Verfahren wird am Beispiel einer modernen funktionalen Program-
miersprache geschildert, da solche nach Meinung des Autors die meisten und aus-
drucksmächtigsten Programmierkonzepte besitzen. Es sollte gezeigt werden, dass
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so gut wie keine Einschränkungen dieser Konzepte notwendig sind, wenn benutzer-
definierte Mixfix Operatoren in eine solche Sprache eingeführt werden. Es wäre dem-
entsprechend ebenso möglich, solche Operatoren auch in weniger ausdrucksmächtigen
Sprachen einzuführen.

Die Arbeit ist wie folgt untergliedert.
In Kapitel 1 wird die Motivation und das Problem der Arbeit sowie deren

Lösungsansatz kurz umrissen.
Kapitel 2 gibt einen Überblick über Mixfix Ausdrücken und Operatoren ähnliche

Konstruktionen in gängigen Programmiersprachen und motiviert deren Verallge-
meinerung zum Begriff der Mixfix Operatoren. Anhand vieler Beispiele werden
bekannte Konstruktionen mit Hilfe von Mixfix Operatoren beschrieben. Weiterhin
wird informell auf das Problem der Mehrdeutigkeit von Mixfix Ausdrücken einge-
gangen.

In Kapitel 3 werden einige Begriffe formal eingeführt, die als Grundlage der
formalen Behandlung der Probleme in den darauffolgenden Kapiteln dienen sollen.

Die funktionale Mixfix Ausdruck Sprache mitsamt ihrem Typsystem wird in
Kapitel 4 eingeführt.

Kapitel 5 behandelt ausführlich und formal die verschiedenen Ursachen von
Mehrdeutigkeit und begründet die daraus folgenden Einschränkungen der vom Be-
nutzer definierbaren Operatoren sowie der Sprache der Mixfix Ausdrücke, um sowohl
deren Eindeutigkeit als auch die Möglichkeit der effizienten Parsierung zu erhalten.

Die aus den vom Nutzer definierten Operator-Mengen abzuleitenden Zwei-Stufen
Grammatiken einschließlich der aus Kapitel 5 folgenden Einschränkungen werden
in Kapitel 6 vorgestellt.

Kapitel 7 verallgemeinert die bekannten Grammatik-Transformationen für kon-
textfreie Grammatiken auf kontextfreie Zwei-Stufen Grammatiken, welches die Mög-
lichkeiten für die automatische Generierung von Parsern für solche Grammatiken
eröffnet.

Die Implementierung unseres Parsierungsverfahrens wird in Kapitel 8 beschrie-
ben. Zudem werden Ergebnisse von Experimenten mit dieser Implementierung
sowie daraus motivierte Optimierungen und ihre Auswirkungen auf die Effizienz
vorgestellt. Andere mögliche Optimierungen werden angedacht.

In Kapitel 9 finden sich einige abschließende Bemerkungen.
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