
 

 

Resource Management and Performance 
Control for Staged design-Based Services 

 

Vorgelegt von 

M.Sc. 

Mohammad Shadi Al-Hakeem 

aus Damaskus – Syrien 

 

von der Fakultät IV – Elektrotechnik und Informatik 

der Technischen Universität Berlin 

zur Erlangung des akademischen Grades 

Doktor der Ingenieurwissenschaften 

-Dr.-Ing- 

 

genehmigte Dissertation 

 

Promotionsausschuss: 

Vorsitzender: Prof. Dr. Odej Kao 

Berichter: Prof. Dr. Hans-Ulrich Heiß 

Berichter: Prof. Dr. Gero Mühl 

 

Tag der wissenschaftlichen Aussprache: 16.12.2010 

 

Berlin 2010 

D 83 





  

  بسم الله الرحمن الرحيم
  

In the name of Allah, the Beneficent, the Merciful.  

  

  

  

  

  

  

To my wife Amani,  

To my daughters Sham and Yamam, 

To my son Mohammad Yamen, 

To my Mother and to the soul of my Father, 

To my Sisters and Brothers, 

To my Friends, 

To those I love and those who love me… 

 





Abstract

The staged architecture has emerged as an approach to implement highly con-
current Internet services. Staging means that the functionality of the server
code is broken down into computational stages with each stage performs some
aspect of request processing. A client request would then be processed along
a pipeline of these stages. This architecture allows services to behave well and
gracefully handle overload, in addition to increase code modularity and sim-
plify service design. However, Staged architecture has introduced other design
challenges related to resource management and performance control.

A bottleneck stage in the work-flow of requests processing will limit the overall
system throughput even though other stages are isolated from this bottleneck
stage and can support a higher performance. For this reason care must be
taken to avoid bottlenecks. A solution to adjust the throughput is to allocate
more resources to a stage if it is becoming a bottleneck, this in turn may force
other stages into becoming a bottleneck. Since all stages are competing for the
same resources additional effects may take place and give rise to instability or
oscillations.

Staged design was originally introduced as a programming abstraction to im-
prove memory accesses behavior of highly concurrent Internet servers by im-
plementing cohort scheduling policies which batch the execution of requests
at each stage. As a result existing scheduling policies in staged design-based
applications are mechanisms to increase the benefit from cache locality within
the individual stages, rather than to balance resource allocation to avoid bot-
tleneck stages and control the system performance. Consequently, dynamic
changes in stages requirements lead to instability and oscillations in perfor-
mance under different load conditions. In addition, achieving a target perfor-
mance in such systems is a hard job and often depends on manual parameters
tuning by expert administrators or benchmarks experiments.

To address these challenges, this thesis suggests a three-layers control ar-
chitecture for resource management and performance control of staged appli-
cations based on the Staged Event Driven Architecture (SEDA), which is the

i



state of the art of the staged design. Then an adaptive resource allocation
policy and a performance control approach are presented, which follow this
three-layers control architecture.

The proposed approach benefits from the advantages of SEDA to support highly-
concurrent demands and makes use of feedback-based controllers to manage
the system resources and control its performance. The resource controller
allocates resources to stages depending on run time observations of stages
load and performance, and the feedback based performance controller adapt
system parameters to achieve performance targets and guarantee the desired
quality of service.

We validate the proposed scheduling policy and compare it with other schedul-
ing policies under different load conditions through a simulation study. Re-
sults demonstrate that our approach can allocate system resources automat-
ically and dynamically to achieve a superior performance while avoid perfor-
mance degradation under overload. We demonstrate also the ability of the
performance controller to adjust the system at run-time dynamically and au-
tomatically to maintain the desired performance target under a variety of dy-
namic changes in the system.

ii



Zusammenfassung

Die Staged-Architektur ist als ein Ansatz für Internet-Dienste mit hoher Neben-
läufigkeit entwickelt worden. “Staging” bedeutet dabei, dass die Funktionalität
des Dienstes in einzelne Stufen zerlegt wird, die jeweils einige Aspekte der
Berechnung ausführen. Eine Client-Anfrage wird dann entlang einer Pipeline
dieser Stufen bearbeitet. Diese Architektur ermöglicht es dem Dienst, Überlast
gut zu behandeln und erhöht zudem die Modularität des Codes und vereinfacht
das Design. Allerdings haben sich mit Einführung der Staged-Architektur neue
Herausforderungen im Design ergeben hinsichtlich der Ressourcenverwaltung
und der Performance-Steuerung.

Eine Engpass-Phase innerhalb des Flusses der Verarbeitung der Anfragen re-
duziert den Gesamtdurchsatz selbst dann, wenn andere Stufen von dieser
Engpass-Phase isoliert sind und eine höhere Leistung ermöglichen würden.
Aus diesem Grund muss beim Design sorgsam darauf geachtet werden, En-
gpässe zu vermeiden. Eine mögliche Lösung ist es, der Engpass-Stufe mehr
Ressourcen zuzuweisen, dies kann allerdings dazu führen, dass wiederum an-
dere Stufen zum Engpass werden. Da alle Stufen um die gleichen Ressourcen
konkurrieren, können zusätzliche Überlagerungen auftreten, die zu Instabil-
ität oder einem Aufschwingen führen können.

Das Staged Design wurde ursprünglich als eine Programmierungs-Abstraktion
vorgestellt zur Verbesserung des Speicherzugriffsverhaltens von hochgradig
nebenläufigen Internet-Servern durch die Umsetzung von "Cohort Scheduling"-
Ansätzen, die die Ausführung von Anfragen der einzelnen Stufen bündeln.
Damit sind die bestehenden Ansätze des Schedulings im Staged Design mehr
darauf ausgelegt, die Vorteile der Cache-Lokalität innerhalb der Stufen zu
nutzen als die Ressourcenzuteilung zwischen den Stufen zu balanzieren und
Engpässe zu vermeiden. Folglich führen dynamische Veränderungen in den
Anforderungen der Stufen zu Instabilität und Schwingungen unter verschiede-
nen Lastbedingungen. Weiterhin ist es kompliziert, in solchen Systemen eine

iii



vorgegebene Performance zu erreichen – dies basiert häufig auf manuellem
Tuning der Parameter durch Experten oder anhand der Ergebnisse aufwendi-
ger Benchmarks.

Um diesen Herausforderungen zu begegnen, schlägt diese Arbeit eine Drei-
Schichten Architektur für Ressourcen Management und Performance Steuerung
von Anwendungen vor, die auf der Stage Event Driven Architecture (SEDA, ak-
tuelle Variante des Staged Design) basieren. Es werden eine adaptive Ressourcen
zuweisung und ein Ansatz zur Performance-Steuerung vorgestellt, die dieser
Drei-Schichten-Architektur folgen.

Der vorgeschlagene Ansatz profitiert von den Vorteilen der SEDA zur Unter-
stützung massiv nebenläufiger Nachfragen und nutzt eine Feedback-basierte
Steuerung zur Verwaltung der System-Ressourcen und der Steuerung der Leis-
tung. Der Ressourcen-Controller weist die Ressourcen den einzelnen Stufen in
Abhängigkeit von zur Laufzeit getätigten Beobachtungen der Last und Perfor-
mance der Stufe zu. Der Feedback-basierte Performance-Controller passt die
Systemparameter dynamisch an, um Performance-Ziele zu garantieren sowie
die gewünschte Qualität der Dienstleistung zu erreichen.

Der vorgeschlagene Scheduling-Ansatz wird validiert und mit anderen An-
sätzen unter verschiedenen Lastbedingungen mittels einer Simulation vergle-
ichen. Die Ergebnisse zeigen, dass der Ansatz Ressourcen dynamisch zuweisen
kann und eine höhere Performance erreichen kann, während eine Herabset-
zung der Performance unter Überlast vermieden wird. Weiterhin wird die
Fähigkeit des Performance-Controller demonstriert, die Systemparameter zur
Laufzeit dynamisch und automatisch anzupassen, um das gewünschte Perfor-
mance Ziel auch unter einer Vielzahl dynamischer Veränderungen im System
zu erreichen.

iv



Acknowledgment

Living in Berlin and doing this PhD has been a wonderful experience for me.
I feel deeply indebted to a number of people who have contributed to my suc-
cess, and I want to express my gratitude to them here.

First and foremost, I would like to thank my supervisor Prof. Dr. Hans-Ulrich
Heiß for giving me the opportunity to be in his research group and for his guid-
ance and patience until finishing this thesis. I hope to be able to emulate him
as a teacher and as a researcher. I am also grateful to Prof. Dr.-Ing. habil. Gero
Mühl, and I would like to thank him for taking interest in my work and provid-
ing valuable comments. Special thanks to Dr.-Ing. Jan Richling for supporting
me in the different phases of this thesis and for the many fruitful discussions.
I owe a great deal of thanks to Prof. Dr. Bernd Mahr. I will not forget our first
meeting in Damascus, which opened the door for me to complete my PhD in
Berlin. I like also to thank all my other colleagues in the Communication and
Operating Systems Group. In particular, I would like to thank Gabriele Wenzel
and Jessica Krueger who are not from the researching stuff, but they was very
kind and helpful to me.

The biggest thank is to my wife and children for supporting me in the many
hard times during my work and encouraging me to pursue. I love you all and
thank you very much.

Mohammad Shadi Al-Hakeem.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Summary and Contributions . . . . . . . . . . . . . . . . . 5
1.3 Dissertation Road Map . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Overview 9
2.1 Internet Services - Characteristics and Trends . . . . . . . . . . . 9

2.1.1 The Growth of Internet and the Rise of its Services . . . . . 9
2.1.2 Internet Services Properties . . . . . . . . . . . . . . . . . . . 11
2.1.3 Internet Servers Design Challenges . . . . . . . . . . . . . . 14

2.2 Server’s Hardware Characteristics . . . . . . . . . . . . . . . . . . . 16
2.2.1 Bottleneck Resources . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Processor-Memory Speed Gap . . . . . . . . . . . . . . . . . 18
2.2.3 Chip Multi-Processing Era . . . . . . . . . . . . . . . . . . . 21

2.3 System Design Techniques . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Thread-Based Concurrency . . . . . . . . . . . . . . . . . . . 24
2.3.2 Event-Driven Concurrency . . . . . . . . . . . . . . . . . . . 27

2.4 Memory Accesses Problem . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Scheduling and Resource Management . . . . . . . . . . . . . . . . 33
2.6 Performance Management . . . . . . . . . . . . . . . . . . . . . . . 36

3 Problem Addressing 39
3.1 Staged Design & SEDA . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Staged Design . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Staged Event-Driven Architecture . . . . . . . . . . . . . . . 41
3.1.3 Advantages of the Staged Design . . . . . . . . . . . . . . . 43

3.2 Challenges in the Staged Design . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Resource Allocation in Staged Internet Services . . . . . . . 47
3.2.2 Cohort Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Parallelism Hierarchy . . . . . . . . . . . . . . . . . . . . . . 49

vii



Contents

3.2.4 Performance Control for Staged Services . . . . . . . . . . . 50

4 Related Work 53
4.1 Staged Design and Similar Design Approaches . . . . . . . . . . . 53
4.2 Resource Allocation and Cache Conscious Scheduling . . . . . . . 55
4.3 Performance Management . . . . . . . . . . . . . . . . . . . . . . . 59

5 A Control Architecture for SEDA-Based Applications 63
5.1 A Three-Layers Control Architecture . . . . . . . . . . . . . . . . . 63

5.1.1 Local Controller . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Global Controller . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Performance Controller . . . . . . . . . . . . . . . . . . . . . 67

5.2 An Overview of The Proposed Approach . . . . . . . . . . . . . . . 68

6 Adaptive Resource Allocation for Staged Services 71
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 The System Model . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Resource Allocation Problem . . . . . . . . . . . . . . . . . . 76
6.1.3 Resource Management Goals . . . . . . . . . . . . . . . . . . 77

6.2 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1 Resource Allocation Policy . . . . . . . . . . . . . . . . . . . 79

6.2.1.1 Simple Pipeline . . . . . . . . . . . . . . . . . . . . . 80
6.2.1.2 Network of Stages . . . . . . . . . . . . . . . . . . . 81

6.2.2 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 The Case of Multiple Processing Units . . . . . . . . . . . . 83

6.3 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.1 Experiments Environment . . . . . . . . . . . . . . . . . . . 87
6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2.1 Evaluation of Cohort Scheduling Effect . . . . . . . 88
6.3.2.2 Unique Processing Unit . . . . . . . . . . . . . . . . 90
6.3.2.3 Model Parameters Effects . . . . . . . . . . . . . . . 98
6.3.2.4 Parallelism hierarchy effect . . . . . . . . . . . . . . 103

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Adaptive Performance Control for Staged Services 109
7.1 Performance Control Challenges . . . . . . . . . . . . . . . . . . . . 109
7.2 The Proposed Performance Management Approach . . . . . . . . . 111

7.2.1 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . 111

viii



Contents

7.2.2 Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . 114
7.2.2.2 Feedback Controller Design . . . . . . . . . . . . . 118

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.1 Maintaining Stable Response Time . . . . . . . . . . . . . . 125
7.3.2 Trace a Dynamic Target Response Time . . . . . . . . . . . 128

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Conclusions and Future Work 131
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix





List of Figures

2.1 Total Sites Across All Domains August 1995 - February 2009 . . 10
2.2 Traffic History Graph for Aljazeera.net . . . . . . . . . . . . . . . . 12
2.3 SSL Certificates on the Web . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The Memory Wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 A Typical Topology for an SMP Server that is based on NUMA. . . 22
2.6 Parallelism Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Thread-Based Concurrency . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Finite state machine for a simple HTTP server request . . . . . . . 28
2.9 Event-Driven Concurrency . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 SEDA Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 SEDA-Based HTTP Server . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Cohort Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Three-Layers Control Architecture. . . . . . . . . . . . . . . . . . . 64

6.1 Different Communication Overheads . . . . . . . . . . . . . . . . . 75
6.2 Staged Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Batches Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Allocating Processing Units to Stages Based on Batches Processing. 85
6.5 Processing Units Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Cohort Scheduling Evaluation Code . . . . . . . . . . . . . . . . . . 89
6.7 Gate & Time Slot Size Effect . . . . . . . . . . . . . . . . . . . . . . 92
6.8 System Throughput vs. Requests Arrival Rate . . . . . . . . . . . . 93
6.9 Average Response Time . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.10System Throughput under Dynamic Load . . . . . . . . . . . . . . 95
6.11"All" Throughput under Dynamic Load . . . . . . . . . . . . . . . . 96
6.12Load Spike Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.13Bottleneck Requests Effect . . . . . . . . . . . . . . . . . . . . . . . 97
6.14Stage Load Time Effect . . . . . . . . . . . . . . . . . . . . . . . . . 99

xi



List of Figures

6.15Processing Units Number Effect . . . . . . . . . . . . . . . . . . . . 100
6.16Parallel Processing Overhead Effect of Same Stage Requests . . . 101
6.17Parallel Processing Overhead Effect of Requests from Other Stages 102
6.18Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.19Parallelism Hierarchy Effect . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Time Slot Size vs. Performance Metrics . . . . . . . . . . . . . . . . 112
7.2 Comparison of the Estimated and the Actual Average Response

Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 The Feedback Control Loop . . . . . . . . . . . . . . . . . . . . . . . 119
7.4 Block Diagram of The Feedback Control System . . . . . . . . . . 120
7.5 Block Diagram of The Feedback Control System With Precompen-

sation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 Block Diagram of The Control System Model . . . . . . . . . . . . 124
7.7 Dynamic Changes in System Workload . . . . . . . . . . . . . . . . 125
7.8 Dynamic Changes in The proportion of Bottleneck Requests . . . 126
7.9 Dynamic Changes in Stage B Service Time . . . . . . . . . . . . . . 127
7.10Tracing a Dynamic Target Response Time. . . . . . . . . . . . . . . 128

xii



1 Introduction

1.1 Motivation

Servers1 are broad class of computer programs, that are combined with a hard-
ware platform in order to provide and manage accesses to special services
and shared resources on behalf of clients; such as file systems, databases,
mail stores, web sites, etc.. Servers receive a stream of clients’ requests, pro-
cess each request and produce a stream of results. The performance of these
servers is very important, as it determines the latency to access the resources
and to reply clients requests, and constrains the server’s ability to serve mul-
tiple clients. For this reason, the performance of commercial servers, such
as database and file servers, has been the focus of considerable research,
which improved the underlying hardware, algorithms, and parallelism of these
servers, as well as considerable development which improved their code.

However, the phenomenal growth of the World Wide Web “the explosion of the
Web”, the rise of modern Internet services and the characteristics of these ser-
vices give network servers performance additional importance and present a
number of new design challenges.

Internet servers demand massive concurrency and have to be well-conditioned
to load, as they are subject to large load oscillations with load peaks that are
multiple of the average. In addition, the critical nature of many on-line services
and the increasing interest of servers administrators to maximize their clients
satisfaction while efficiently using existing resources increases the complexity
of performance requirements. Servers must maintain peak throughput, avoid
degradation of performance and behave predictably even when demands ex-

1This term “server” is also used widely today to refer to the computer that runs the server
(software), although it gets the name from the task of the software not from its special archi-
tecture [178]. To avoid confusion, the term server-machine or server-computer will be used
to explicitly designate the hardware platform used to run the server software.

1



1 Introduction

ceed available resources capacity.

To cope with the high concurrency in Internet services, servers must accom-
modate thousands or even more of simultaneous client connections. Designing
such massively-concurrent systems is difficult especially when high and con-
trolled performance requirements must also be met. These challenges have
made the design of high performance servers a recent research thrust, to meet
the increasing popularity of Internet-based services.

As mentioned, Internet servers have to be designed to handle very large num-
bers of clients connections and even larger numbers of messages or requests
per second. In order to serve these clients simultaneously a server must be
able to process their concurrent requests in parallel on the server hardware re-
sources by time and space sharing the available resources (CPU Cycles, Mem-
ory, Network I/O, etc.) among requests.

Many approaches for building and managing such concurrent systems have
been proposed, which can be broadly categorized as event-driven program-
ming approaches and thread-based programming approaches (also referred to
as thread-per-connection). Event-driven and Thread-based are two traditional
and prevalent implementation strategies which have been successful for build-
ing concurrent systems2. Which of them is “better”, that is a debate which has
waged for many years, with almost no resolution [104, 126, 167].

However, although several techniques have been proposed and adopted to en-
hance both approaches and improve their performance, researchers have ar-
gued that both concurrency models show many drawbacks and limitations.
For this reason, these approaches are unable to supply the requirements and
fail to introduce the controlled performance that are needed in today Inter-
net applications. Both approaches have their advantages and disadvantages;
threads and events are the two opposite ends of a design spectrum, and the
best implementation strategy for today applications is somewhere in between.
This fact gives the rise to hybrid systems which appear in the recent few years
and exploit properties of both approaches. These hybrid approaches operate

2They are called also “Message-oriented System" and “Procedure-oriented System", respectively
[104].

2



1 Introduction

in the middle of the spectrum and utilize both threads and events as a tool
to develop the high concurrency which is required for today Internet services
[107, 173].

In order to provide services, servers have to be combined with a hardware
platform. The structure of this platform is another important issue that must
be considered in the process of servers design, and which has a great influence
on server’s performance. As any application specific design should exploit the
novelty of the architectural trend of the state of the art hardware, the trends in
computer architecture technology have to be taken in account in order to ben-
efit from these new architectures. Hardware systems are only as effective as
the software’s ability to take advantage of these systems. However, the archi-
tecture of today’s servers do not give us what we pay for and do not show the
expected gains in performance [39]. A big gap exists between the theoretical
and the actual performance of server computers, and it is the task of the soft-
ware community to develop techniques that improve resource utilization and
to introduce architectures for server applications which can bridge this gap.

Today, web content is increasingly generated dynamically, secure connections
are required, network bandwidth increases and main memory is becoming
cheaper and large enough to replace disks as the storage unit for active server
data. As a result, processing resources arise as a performance bottleneck in
comparison to network transfer and disk I/O [17, 73, 119]. On the other hand,
the processor-memory performance gap continues to grow and the emergence
of multi-core and multi-threaded processors decreases the efficiency of cache
hierarchy [29, 78, 156]. Altogether, this makes memory accesses one of the
most dominating factors in server performance.

Many researchers have reported about a performance bottleneck related to
memory access behavior in both software architectures; thread-based approach
[51, 78, 103] and event-driven approach [29, 30]. Switching to another thread
in the thread-based concurrency and handling another event from the event
queue in the event-based concurrency, both result in frequent control trans-
fers between unrelated pieces of code which decreases instruction and data
locality and therefore reduces the effectiveness of hardware caches. This re-
sults in limiting scalability and performance of servers as often only a fraction

3



1 Introduction

of modern processor’s computational throughput is utilized. Eliminating these
effects of memory accesses is an important issue to design highly concurrent
and high performance systems for Internet services.

Staged architecture is one of the hybrid approaches that has been presented
as a general purpose design framework for building highly concurrent systems,
which encapsulates the concurrency, performance, and software engineering
benefits of both threads and events. In addition this architecture introduces
a programming abstraction to implement cohort scheduling policies which are
potential to avoid misses in cache hierarchy and eliminate the effect of mem-
ory accesses behavior on the performance of Internet services [103]. Cohort
scheduling policies increase code and data locality by batching the execution
of similar operations arising in different server requests.

In the staged design, a service is implemented as a network of computational
stages connected with explicit queues. Cohort scheduling policies can be im-
plemented in this design by batching the execution of requests at each stage.
Although this combination of the staged architecture with cohort scheduling
policies has the potential to improve the cache behavior, it introduces new
challenges related to resource management and performance control for staged
design-based applications, which make this architecture recently an active re-
search field [70, 109, 110, 172, 173].

A client request in a staged service is processed along a pipeline of stages.
A bottleneck stage in the process flow will limit the overall system throughput
even though other stages are isolated from this bottleneck stage and can sup-
port a higher throughput. For this reason, care must be taken to avoid such
bottlenecks. A solution to adjust the throughput is to allocate more resources
to a stage if it is becoming a bottleneck, this in turn may force other stages into
becoming a bottleneck. Since all stages are competing for the same resources,
additional effects may take place and lead to instability or oscillations.

Another concern is to adapt the system to achieve performance targets, taking
into account the characteristics of the staged design and the target of improv-
ing the behavior of memory accesses. An important aspect here is to control
the dependencies between the number of requests processed as a batch at

4



1 Introduction

each stage and the different performance goals.

However, existing cohort scheduling policies do not take the characteristics
of the staged system and these performance objectives into account. They are
usually heuristic approaches, aimed at increasing the benefit from cache lo-
cality within a stage rather than optimizing the overall system performance
by managing the available system resources to avoid bottleneck stages in the
work-flow.

As a result these policies introduce coarse grained resource allocation ap-
proaches which increase the difficulties related to controlling the system per-
formance. Configuring such systems to generate a target performance requires
experienced administrators to correctly set the control parameters or deter-
mining these parameters experimentally using benchmarks which is a very
difficult, time consuming, and error-prone manual operation.

Motivated by the above comes this thesis...

1.2 Thesis Summary and Contributions

Considering the staged design and the previously mentioned challenges that
appear in this design, the main contribution of this thesis is to present a re-
source management scheme that combines the staged design with a "Cohort
Scheduling" policy, in order to reduce the effects of memory accesses behavior.
The proposed resource management scheme has to take many consideration
that are related to staged design into account. Differentiations in the require-
ments of the individual stages, dynamic changes in these requirements and
other dynamic changes in the system have to be addressed. In addition, the
characteristics of today hardware platforms have to be considered to maximize
the benefit from performance improvements that are presented by the architec-
ture of these platforms. Furthermore, performance control and performance
level guarantees that are required in today services have to be provided.

To address these requirements, the thesis firstly suggests a control architec-
ture that consists of three layers of controllers. After that, the thesis presents
a resource allocation policy and a performance management approach that fol-

5



1 Introduction

low these three-layers control architecture.

The proposed resource allocation policy depends on batch processing to bene-
fit from locality within stages, and allocates the available system resources de-
pending on run-time observations of the requirements of the individual stages.
The policy considers also the characteristics of the parallelism hierarchy in the
underlying hardware platform, in order to optimize the allocation of processing
resources.

The performance management approach depends on a feedback-based con-
troller to adjusts the system at run-time to achieve performance targets and
to guarantee the specified performance levels. We depend on the proposed re-
source allocation policy to present a robust system model, then we implement
this model in a control-theoretic feedback-based controller to adapt system pa-
rameters, in order to achieve performance targets.

We evaluate the proposed approach using a simulation study, by comparing its
performance with other resource allocation policies that have been presented
for staged design based services. We also present performance evaluation re-
sults that demonstrate the ability of our performance controller to maintain
performance targets under a variety of unpredictable changes in the system.

We argue that the proposed approach effectively provides resource manage-
ment and performance control for staged design based services, while reduc-
ing manual operations and off-line management overheads that characterize
existing approaches.

1.3 Dissertation Road Map

The dissertation is organized as follows.

In Chapter 2, we present a background about the characteristics of modern
Internet services, an overview of the characteristics and the trends in today
server machines, a brief explanation of conventional server design techniques
and the challenges that have to be faced by these techniques. Chapter 3 ex-
plains the staged design in details and presents the challenges and limitations

6



1 Introduction

in the staged design that we address throughout this thesis. In Chapter 4,
we review related work on the Staged design and other similar programming
models. In addition, we present a review of Cache Conscious Scheduling, per-
formance control mechanisms for Internet servers and related researches that
have been introduced for staged design-based services.

Chapter 5 presents a general three-layers control architecture for staged design-
based applications, explains the layers of this control architecture and intro-
duces an overview of the proposed approach for resource management and
performance control which follows this three-layers control architecture. In
Chapter 6, we present a strategy to allocate processing resources in staged de-
sign based services, which adapts the resources assigned to each stage based
on observations of the changes in the system. The chapter presents also a
validation and evaluation of the strategy through a simulation study. Chapter
7 demonstrates an adaptive control approach that automatically manages sys-
tem resources in order to control the performance for staged applications, and
finally, Chapter 8 summarizes our results, presents many directions for future
work and a variety of potential implementation areas.

7





2 Background and Overview

Internet has been showing a phenomenal growth in its size and an increasing
popularity of its services. These characteristics, in addition to the increasing
demand for performance and service quality, give rise to unprecedented system
design challenges for service’s providers and designers. This chapter presents
an overview of the characteristics of modern Internet services, an overview of
the characteristics of today server’s hardware platforms, a brief explanation
of conventional server design techniques and the challenges that have to be
considered when such systems are to be employed.

2.1 Internet Services - Characteristics and Trends

2.1.1 The Growth of Internet and the Rise of its Services

After decades of the Internet evolution, and after the advent of the World Wide
Web in the early 1990s, there has been a phenomenal growth of the Internet
in size and use.

Netcraft Web Server Surveys have covered the dramatic increase in the number
of Internet sites since August 1995, see Figure 2.1. A recent survey of February
2009 has reported receiving responses from more than 215 million sites with a
month’s gain of more than 30 million sites [124]. DomainTools statistics have
also shown that more than 110 million active domains exist [57], and Google
reported the existence of more than 1 trillion unique URLs on the web at ones
[16].

The number of Internet users and households with access to the Internet is
also growing at amazing rates worldwide. According to a statistic from Inter-
net World Stats [92], the world Internet users growth since the year 2000 was
more than 340 percent1. The same source reports that currently almost 1,574

1This number increases to 11000 percent in Syria [92].

9



2 Background and Overview
Page 1 of 1

12.03.2009http://news.netcraft.com/archives/2009/02/site_count_history.png

Figure 2.1: Total Sites Across All Domains August 1995 - February 2009

billion people are using the Internet world wide, which is more than 23 per-
cent of the total world population. A study from Parks Associates reported that
homes with broadband connections worldwide had grown by over 18% in 2008
exceeding 400 million. The firm claims that by 2013 the households globally
with broadband Internet access will be over 640 million [130].

In fact, the expansion of the Internet infrastructure and the ease with which
resources on the Internet could be published and accessed increase the pop-
ularity of Internet-based services, causing them to experience extremely fast
growth. Today, business and individuals are increasingly depending on these
Internet services for day-to-day operations. Many of these services, such as
e-mail, on-line news, social networks, on-line auctions, e-commerce, etc., have
become a vital resource and considered indispensable for many people – “as
water and gas” [36]. For instance, Windows Live Hotmail has over 260 mil-
lion users worldwide since February 2008 [147], Facebook has more than 200
million active users, and eBay and Amazon has more than 50 million unique
visitors [150].

10



2 Background and Overview

2.1.2 Internet Services Properties

As a result of this “explosion of the web” and the enormous, continuously in-
creasing popularity of services over the Internet, these services have shown
many characteristics that distinguish their behavior from traditional computer
systems.

The rising huge number of Internet users causes Internet sites to be subjected
to extremely large number of clients visits received per day, which are trans-
lated into an even greater number of concurrent requests and operations. As a
site becomes popular, users accesses increase dramatically, and demands can
reach hundreds of millions of requests a day. For example, in December 2008,
more than 5,4 billion search queries were conducted at Google search [158]. In
the same month, Facebook and MySpace had 80 billion and 43 billion monthly
page views, respectively [21].

Compounded with the randomness associated with the way users visit Inter-
net sites and request Internet services, this huge volume of clients can cause
the incoming service’s workloads to vary significantly and unpredictably, even
within the same business day [41, 50]. The resulting peak workload experi-
enced by a service may be many times that of the average. Figure 2.2, for
example, which is taken from Alexa.com [12], shows how the daily reaches on
the web site of “Aljazeera news channel” have been increasing continuously
over time. The figure shows also large oscillations in load over a variety of time
scales, with a very huge load peak on march-2003, that was caused by the
large number of visitors during the “Iraq occupation war”.

Moreover, the impact of these massively concurrent requests has been magni-
fied even further by many other features and characteristics of today Internet
services.

In the early days, the Web was dominated by the delivery of static contents,
mainly in the form of static HTML pages and images files. Recently, the advent
of new technologies, including on-line banking, on-line trading and more re-
cently Web 2.0 applications [180], gives rise to a variety of new Internet-based
services. The content of these modern services is often generated dynami-
cally on-the-fly, and it may include server side scripting (like CGI, PHP[159],

11



2 Background and Overview

Figure 2.2: Traffic History Graph for Aljazeera.net

ASP[118], Java EE [154], etc.) and/or database accesses. For each request,
a server application executes the service’s corresponding code, generates the
result and assembles the response, which is returned to the client. In com-
parison to static content, dynamic content requires more operations, greater
resources and significant amounts of computation and I/O to be generated.

In addition, the rapid expansion of e-commerce and the corresponding security
concerns give the rise to security requirements when accessing sites contents
and exchanging sensitive information. All information that has market value
or is considered confidential must be carefully protected when transmitted over
the open Internet. Consequently, Internet servers need to provide certain lev-
els of security so that the user feels comfortable when running the applications
that provide the requested services. Although, most of the used solutions2 do
not introduce additional complexity in the applications structure, they increase
the computational demands on the servers resources remarkably [72, 94]. Fig-
ure 2.3 taken from the Netcraft SSL survey [132], shows how the number of

2The most used solution is Secure HTTP (called HTTPS). It uses SSL for security and to protect
sensitive transactions (e.g., order placement, payment).

12



2 Background and Overview

Page 1 of 1

12.03.2009http://news.netcraft.com/archives/2009/01/13/valid_ssl_growth.png

Figure 2.3: SSL Certificates on the Web

SSL certificates has increased since October 1996. The survey reported an av-
erage growth of more than 18,000 certificates per month in the last year.

Another special feature of the Internet is the presence of a large population
of robots that interact with servers and web sites, like crawlers, price-bots and
other autonomous software agents. These robots increase server loads and
consume significant amount of system resources as they dig out the informa-
tion [14, 15]. Search engines, for instance, demand exhaustive crawling work
to maintain and update their indices to the very large collection of documents
on the web. Unfortunately, there are also some malicious robots or spiders.
The most common of these are ones designed to implement Denial-of-Service
(DoS) attacks, that are accomplished by flooding a server with a very large
number of concurrent requests such that the server becomes too busy and the
provided service is no longer available for normal users. Many such attacks
have been recently reported on very popular sites, like Twitter, Facebook, and
the White House website [49, 139].

As a result of these characteristics, demands on Internet servers are unpre-
dictable and exhibit fast growth, which raise a variety of problems in design-
ing, building and operating on-line services. Providers and designers of such

13



2 Background and Overview

services face challenges to meet clients expectations, like availability, reliabil-
ity and trustworthiness, and in recent years many high-profile companies that
provide on-line services have experienced operational failures [23, 58].

2.1.3 Internet Servers Design Challenges

Today, when providing an Internet service, server’s scalability and performance
are key attributes that should be considered. Scalability means the ability of
the server to maintain the service availability, reliability, and performance as
the amount of load, or simultaneous requests, hitting this server increases
[32, 75]. However, as a result of the previously stated characteristics of Inter-
net services and their workloads, meeting these requirements is very difficult
and presents system design problems with unprecedented challenges.

To cope with the rising number of Internet users, servers that host popular
Internet services, have to support large numbers of clients connections and
scale to high levels of concurrency. These servers must have enough resources
capacity in order to handle the massively concurrent requests in a reliable,
responsive and always available manner. In addition, since demands increase
continuously, providers need to adjust their infrastructure periodically in or-
der to accommodate these additional demands. Otherwise, if the available
resources remain unchanged, requests have to be rejected, and corresponding
revenues are lost [13].

At the same time, Internet services are subject to enormous variations in work-
load, which happen over a variety of time scales, making forecasting the needed
resources a difficult task. Although, certain workload variations such as time-
of-day effects could be predicted and handled by appropriate capacity provi-
sioning [82, 115], other variations, such as flash crowds or “Slash-dot Effect”3,
can cause huge load spikes, which cannot be accommodated with traditional
capacity planning practices and may affect the availability of the service. See
for example what happened at the first launch of the Photosynth site [23, 64].

It is not uncommon for a site to experience orders of magnitude increases

3Also known as slash-dotting, the term is often used to describe the phenomenon when a site is
suddenly hit by heavy load. This term refers to the technology news site slash-dot.org, which
is itself very popular and often brings other smaller sites to slow down or even temporarily
close when linking to them from its main page.

14



2 Background and Overview

in demand when it becomes popular. Even popular sites could be subjected to
unexpected load peaks that are orders of the average and usually coinciding
with times, those are the most important to be able to get the service [83]. For
example, the load on e-commerce retail Web sites can increase dramatically
during the final days of holiday seasons [47], and it may be very difficult to ac-
cess a major newspaper or TV site when big news breaks due to site overload.
An important event can cause services to experience huge and unexpected vol-
ume of crowds, like the share market’s black Tuesday on 27 Feb 2007, which
caused many electronic stock trading sites worldwide to clash for hours [143],
and the death of Michael Jackson which caused a record workload on many
news sites and resulting in many problems [131]. Another example is the
heavy snowfall in December 2009, which caused the website of the National
Rail in Great Britain to be unavailable as it has been unable to cope with the
large number of visitors eager to know which train services may be delayed or
canceled [122].

To avoid overload effects which may result from these load variations and
cause the service to behave erratically or even crash, many services rely on
over-provisioning of server resources to handle load peaks. However, it is
clearly infeasible to over-provision a service to handle spikes in load that are
multiple orders of magnitude greater than the average, especially when con-
sidering budget constrains which limit the space of possible solutions.

Moreover, the widespread of services with dynamic contents, like on-line stores,
auction sites, bulletin boards, etc., reduces the server capacity and increases
the time to serve clients. In comparison to servers whose workload is domi-
nated by static files (HTML pages or images), servers with large proportion of
dynamic content perform worse. For this reason, types and compositions of
workloads are also needed to indicate the server load correctly. In addition,
such services are increasingly compounded with mechanisms needed for sup-
porting secure communications between clients and servers, like SSL protocol
which provides communications privacy over the Internet and is widely used in
e-commerce environments. These mechanisms increase the demand on server
computational resources remarkably, due to the use of cryptography to fulfill
their objectives [72, 94]. Taking into account the increasing performance de-
mand, and that security issues rise considerably amongst the world’s busiest

15



2 Background and Overview

services [127], altogether, that magnify the scalability problem and make the
capacity planning task more challenging, as the resource requirements for a
given user load are more difficult to predict. Either under-estimating or over-
estimating a server’s capacity could cause unnecessary expenses, delays or
potentially disastrous consequences.

In summary, Internet services that scale to on-line rates of simultaneous un-
predictable client connections, and accommodate their massively concurrent
requests, are difficult to implement and present a number of unprecedented
system design challenges, especially when other requirements such as perfor-
mance and security issues, must also be met.

2.2 Server’s Hardware Characteristics

Internet services are provided by a combination of software components and
hardware platform. Each of these has a great influence on the scalability and
other performance aspects of a service. From the hardware standpoint, a ser-
vice performance is affected by the number, structure and speed of the under-
lying server machine processors; the amount of its main memory; the capacity
and the bandwidth of its storage sub-system and the bandwidth of its network
connections.

This section presents an examination of the characteristics of today server
computing systems, as they relate to the performance aspects of Internet ser-
vices.

2.2.1 Bottleneck Resources

Serving a request consumes different server resources, such as memory, disk
bandwidth, communication bandwidth, and processing cycles. The ability of
the server to handle multiple of these requests and its performance is limited
by the bottleneck resource in the system.

Today, network bandwidth increases, as a result of the advent of more sophisti-
cated networking technologies [45], and the growing investments in the field of
high-speed communications [22, 133]. Although many experts and observers
warn of potential Internet capacity problem because of certain bandwidth-

16



2 Background and Overview

intensive applications [145], like high-quality video transport, peer to peer file
sharing, massive multi-player on-line games, etc.; Statistics still show good
performance, concerning Internet traffic speed and loss rates [18], and con-
cerning Internet bandwidth utilization [134].

Main memory is becoming cheaper and larger in size [97, 125], modern server
machines can support more memory slots per processor socket [46], and sys-
tems with more number of sockets are presented. Consequently, modern
server platforms can have enough main memory space for active server data
[87], especially when many considerations related to the characteristics of In-
ternet workload are taken in account. The concentration of references [20],
particularly in the case of flash crowds, and the fact that the relative frequency
of clients request accesses to the web content follow Zipf distribution [35], that
decreases the size of active data. For example, although the database of an
auction website itself may be relatively large, the concentration of accesses
to the information in the database causes the active data size to be relatively
small. Clearly, not all the documents of a web site are equal. Some are ex-
tremely popular, accessed frequently and at short intervals by many clients.
Other documents are accessed rarely, if at all. Some documents receive thou-
sands or even more of requests, while others receive relatively few requests. It
have been reported that in average less than 10% of the distinct documents
of a web site are responsible for 80-95% of all requests received by this site
[20, 43, 157].

In addition, as previously stated, web content is increasingly generated dy-
namically, which, in comparison to static HTML pages, uses more processor
cycles [119]. Secure connections are increasingly required, using SSL –for in-
stance, as a mechanism to implement secure connections, which can increase
the processing overhead by a factor of 5-7 [72, 94].

All together that give the rise for processing as a performance bottleneck in
comparison to network transfer and disk I/O, in a variety of Internet applica-
tions, as reported by many studies [17, 72, 121]. For this reason, and in order
to obtain the processing power that is needed to cope with the massive con-
currency and the increasing demands for performance aspects, today’s servers
often employ a variety of hardware techniques, like Multi-Processor systems,

17



2 Background and Overview

Clusters [26], etc.. However, in addition to the budget constrains problem, us-
ing these techniques increases the complexity of system design as other issues,
like parallel processing related challenges, must be taken into account.

2.2.2 Processor-Memory Speed Gap

From 1986 to 2000 micro-processor design had moved rapidly, doubling clock-
speed and performance of CPUs almost every two years. This rate of improve-
ment in micro-processor speed exceeded the improvement rate in Dynamic
Random Access Memory (DRAM) speed, since the memory arena, which had
focused on increasing density and lowering cost, could not achieve the same
performance increases. This disparity resulted in a performance gap between
processor and memory, which causes considerable wait time that execution
threads have to incur when accessing memory, and as a result impacts proces-
sor efficiency and the overall system throughput dramatically. Hence, this pro-
cessor - memory performance gap was considered one of the primary obstacles
to improve computer systems and it was expected that memory latency would
become a bottleneck in computer performance [113, 181]. Currently, CPU
speed improvements have slowed significantly due to many causes that are
summarized by Intel in their Platform 2015 documentation [136], and which
are majorly related to physical barriers. However, this performance gap still
plays a main role in computer systems performance, which is growing now as
a result of the chip multi-processing trend –See the next sub-section 2.2.3.
In Figure 2.4 from [84], the gap in performance between memory and proces-
sors is plotted over time, starting with 1980 performance as a baseline. The
memory baseline in the figure is 64 KB DRAM in 1980, with a 1.07 per year
performance improvement in latency. The processor performance line shows a
1.25 improvement per year until 1986, a 1.52 improvement until 2004, and a
1.20 improvement thereafter.

Many hardware techniques have been implemented, such as caches, trans-
lation look-aside buffer (TLB) [148], branch prediction and out of order execu-
tion, in order to bridge this performance gap and to hide the latency of long
memory access operations. These techniques are based on cache memory and
exploit the principle of locality, which characterizes memory accesses [175].
Cache memory is a smaller, more expensive, but faster memory in compari-
son to DRAM, which stores copies of data from the most frequently used main

18



2 Background and Overview

memory locations. As long as most memory accesses are to the cached mem-
ory locations, the average latency of memory accesses will be closer to the low
cache latency than to the high latency of main memory.

However, benefits of these conventional techniques are limited and they fail
to work well for modern applications, such as application servers, web ser-
vices, and on-line transaction processing systems. These applications usually
include multiple threads of control that execute short sequences of operations,
with frequent dynamic branches. The behavior of these structures decreases
cache locality and branch prediction accuracy and as a result causes fre-
quent processor stalls, resulting in very poor processor resources utilization
and wasting significant processing time [9, 27].

The latency difference between main memory and the fastest cache has become
larger, because of the evolution of cache memory. For this reason, processors
have begun to utilize multiple levels of cache, with each level takes consider-
ably longer to be accessed than previous levels. The multiple level cache has
been also presented as a solution to address the trade off between hit rate and
cache latency. A larger cache may have a better hit rate but it will have a
longer latency. In a system with multiple cache levels, small fast caches will
be backed up with larger but slower caches. Modern processors have as many
as three levels of cache. For example, AMD Opteron has 64+64 KB L1 data
and instruction cache and 512 KB L2-cache (private cache per core) and 12
MB L3-cache (shared between cores) all on chip caches [7, 69]; Intel Xeon has
also three on chip cache levels with 32+32 KB L1-cache and 256 KB L2-cache
(private cache per core) and 12 MB L3-cache (shared between cores) [69, 91];
and IBM Power7 has 32+32 KB L1 instruction and data cache per core, 256
KB L2- cache per core and 32 MB L3-cache that can be used either as shared
cache or separated into dedicated caches for each core [86, 123].

Recently, other techniques have been also developed to cope with modern
applications needs and to improve processors performance even further, like
multi-core chips and hardware multi-threading. Multi-threaded processors
interleave the execution of instructions from different threads, so that if one
thread blocks on a memory access or some other long operation, other threads
can continue execution and make forward progress. Numerous studies have

19



2 Background and Overview

Figure 2.4: The Memory Wall.

demonstrated the performance benefits of these techniques [33, 114, 153,
163]. However, as multi-core and multi-threaded processors include multi-
ple thread contexts on a single chip that are simultaneously active, the com-
petition for shared resources, which typically include shared caches, is more
intensive [63]. As a result, that increases the problem of waiting for memory,
which exists in processors that have a single execution thread.

Although processors are increasingly equipped with larger caches, this growth
in size causes an increase in latency which means slower caches. On the other
hand, as the cache is shared among more contexts (cores and threads) that
means also smaller cache per execution thread. For instance, Intel Core i7 has
8 MB L3-cache shared across four cores with a latency of 35 ns, rather than
6 MB L2-cache shared across just two cores with a latency of 15 ns in Intel
Core2 [155].

Moreover, in multi-processor systems, which are the typical platforms for server’s
machines today, cache misses (data footprint and coherency misses) increase
even further with the number of processing units, and with the advent of sys-
tem growth beyond single system (CPU/memory) boards Uniform Memory Ac-
cess (UMA) could no longer be guaranteed –this issue is discussed in more
details in the next section.

20



2 Background and Overview

2.2.3 Chip Multi-Processing Era

As mentioned earlier, processor’s performance have been doubling approxi-
mately every two years according to Moore’s law [120], by increasing the count
of transistors on a chip. Many other techniques have been also employed
to increase the throughput, improve the efficiency and better utilize the re-
sources provided by the processor architectures. Examples of these techniques
are caches, pipe-lining, super-scalar architectures, and simultaneous multi-
threading technology, which allows multiple threads to execute in parallel on
the same processing unit, with instructions from multiple threads able to be
executed during the same cycle [114, 163, 164].

Recently, as the potential improvement in processors clock speed is achiev-
ing its limits, because of the physical limitations of manufacturing, the con-
cerns of energy consumption and the related heat issues [136], processor chip
manufacturers have turned towards multi-core processors4 [65], like AMD [6],
Intel [89], IBM [85] and Sun Microsystems [152]. Higher-frequency proces-
sors waste a lot of power, generate so much heat and as a result these faster
processors need new, usually more expensive, techniques to properly cool the
systems in which they are running. These concerns are becoming increasingly
very pronounced in green computing campaigns. For these reasons sharing
some of chip resources among multiple core appeared as a necessity for effi-
ciency and economy.

The idea behind multi-core technology is to change from the trend of just in-
creasing the speed of processors to a new design strategy that is to include
two or more processors (processing cores) together on a single chip. This tech-
nique allows more than one thread to be active at a time, which increases on
chip parallelism and creates an on-chip network or an SMP-like system on the
chip. As a result, that improves the utilization of chip resources, obtains fur-
ther performance gains, and reduces energy consumption.

As designers are fast moving towards multiple cores on a chip to achieve new
levels of performance improvements, all processor vendors offer CPU models of

4On October 1989 Intel published a paper with the title “ Microprocessors Circa 2000” [67],
where it previewed that for the end of the year 2000 there will be offered multi-core proces-
sors on the market, which becomes a reality fifteen years later.

21



2 Background and Overview

Local RAMLocal RAM

Core 1Core 0

Shared CacheShared Cache

Shared CacheShared Cache

Local RAMLocal RAM

20 M. Sh. Al-Hakeem

A typical topology for an SMP server that ‘s based on a NUMA architecture.
Figure 2.5: A Typical Topology for an SMP Server that is based on NUMA.

this design, and the majority of newly released CPUs are chip multi-processors.
Consequently, multi-core processors have become the dominant architecture
for a wide spectrum of platforms, especially for server class machines, and
they are expected to be so in the coming years. This trend gives the rise to
a hierarchic parallelism in computing systems, which consists of a number of
processing chips, with each chip contains a number of cores (that are likely to
increase per chip) and maybe multiple hardware threads within each core.

Moreover, the depth of this parallelism hierarchy becomes even larger, by the
Non-Uniform Memory Architecture (NUMA) of today systems. As the number
of processing units increases, chips per machine and cores per chip, memory-
bandwidth utilization increases dramatically, and the scalability of the mem-
ory controller becomes an important issue that limits the performance of these
processing units. NUMA presented a solution for this effect. In modern sys-
tems each socket in a multi-socket system has its dedicated main memory,
and recently memory controllers have been moved on chip, in order to improve
memory accesses for multi-core processors. An integrated on-chip memory
controller is more efficient and more compatible with this NUMA memory ar-
chitecture.

Figure 2.5 shows the typical topology of an SMP server that’s based on the
NUMA architecture and Figure 2.6 shows the corresponding parallelism hier-

22



2 Background and Overview

Server

Node 0 Node 1

Socket 0 Socket 1

Core 0 Core 1 Core 0 Core 1

N d 2 N d 3Node 2

Socket 2

Node 3

Socket 3Socket 2

Core 0 Core 1

Socket 3

Core 0 Core 1Core 0 Core 1 Core 0 Core 1

Figure 2.6: Parallelism Hierarchy

archy. The server here contains four multi-core chips (dual-core in this Figure)
and each socket is connected to a local random access memory (RAM).

A key difference in these systems is that they introduce a non-uniform data
accessing overheads, which differ depending on the physical location of data.
Modern server machines, like those based on AMD Opteron or Intel latest gen-
eration Xeon processors, are NUMA multi-socket systems with a multi-core
processor on each socket that has an on-chip cache which is shared among
the cores (L3-cache – inclusive or exclusive cache), and a per core private cache
(L1- and L2- cache). In this architecture, it is more expensive for a processing
unit to access data that resides on the shared cache than to access data that
resides on the private cache. Furthermore, it is significantly more expensive
to access data that reside in the cache of other chips or in the main memory,
and it is even more expensive to access data that reside in the main memory
of another chip.

Looking in the future, the depth and complexity of this parallelism hierarchy
will continue to increase as future systems are expected to have more proces-
sors, more cores and more threads per core. Examples of these future process-
ing system generations are presented by the “Intel’s 80-core Polaris research
processor”, the “Tera-Scale Computing Research Program” [80, 137] and the
recent 48-core Single-Chip Cloud Computer [90].

23



2 Background and Overview

Considering this trend, the problem is that, to ensure that our systems run
well in the future, it is important that software community develops techniques
to improve resource utilization of these systems and support this kind of par-
allelism.

2.3 System Design Techniques

In order to address the scalability, robustness and other performance chal-
lenges faced by Internet services, servers have to be designed to handle a very
large number of concurrent clients connections and even a larger number of
requests, that changes over time. To serve these clients, a server must be able
to process their concurrent requests simultaneously on the server machine by
time and space sharing the available resources (CPU Cycles, Memory, Network
I/O, etc.) among requests. However, supporting concurrency for a few tens of
clients is fundamentally different than for many thousands of service requests.
A key aspect here is the means by which requests concurrency is represented.

Several different server design approaches have been proposed in the litera-
ture to overlap multiple clients requests and for managing these high levels of
concurrency. The major strategies used to construct high performance servers
can be broadly categorized as event-driven concurrency and thread-based con-
currency. Many researches have compared these different concurrency alter-
natives [8, 96, 104, 126, 129, 167], and the debate over which approach is
better has waged for a long time with almost no resolution.

2.3.1 Thread-Based Concurrency

A thread is a context of execution. Using multiple of execution threads has
emerged from a long time as a leading solution for the development of appli-
cations with demanding performance requirements. This design was primarily
derived from the multi-programming paradigm, which allows multiple appli-
cations each with distinct resource demands to efficiently share a set of re-
sources, by presenting threads as an abstraction of processors.

A large number of popular computing system designs in current use are devel-
oped depending on the thread-based concurrency, and this model is the most
commonly used in today server applications in order to provide the perfor-

24



2 Background and Overview

eq
.1

eq
.2

eq
.3

eq
.4

eq
..

eq
.n

Re Re Re Re Re Re

Scheduler

An Adaptive Scheduling Policy for 
Staged Applications20

Figure 2.7: Thread-Based Concurrency

mance requirements of the highly concurrent Internet services. For instance,
thread-based concurrency form today the basis for conventional web servers
such as Apache [19] and Microsoft Internet Information services (IIS) [116],
which are running on more than 80 percent of the world’s web sites – as re-
ported in the recent Netcraft surveys [124].

In the thread-based concurrency approach (Figure 2.7), a worker thread is
assigned to each accepted request. This thread is consumed by the request
and performs all the steps associated with request processing independently,
with synchronization mechanisms, using locks, condition variables, or other
synchronization primitives, to protect shared resources. Each thread executes
until it either blocks on a synchronization condition, or an I/O operations,
or until a predetermined time quantum has elapsed. Then, the execution
switches to a different thread. Since multiple threads are employed, many
requests can be served concurrently, enabling the system to overlap I/O op-
erations with computations as the operating system switches among threads
transparently. As a result, that increases resources utilization, and gives the
opportunity to fully exploit additional speedup when multi-processor platforms
are used.

Although straightforward to implement and relatively easy to program, as it
is well supported by modern languages and programming environments, like
Java, many researchers argue against the scalability of the thread-per-request
design when handling large concurrent loads. This concurrency model has
severe performance drawbacks due to the overheads associated with resource

25



2 Background and Overview

contention and threading, which include cache and TLB misses, context switches,
scheduling overheads, lock contention, etc. [126, 128, 170, 173]. Given the
extreme degree of concurrency required for Internet services, these overheads
and the overhead caused by the management of a high number of threads
that present in the system will limit the maximum achievable throughput for a
threading-based server. Moreover, these overheads typically lead to an overload
behavior such that as load increases the system performance first increases,
reaches a maximum and then declines. When the number of concurrent
threads in the system increases over a certain degree, application throughput
degrades severely and response time increases dramatically, thereby limiting
the system’s capacity and ability to support highly concurrent requests.

To avoid this effect of the over-use of threads, a number of systems associate a
pool of execution threads with a service that continuously picks requests from
the network queue and adopt a coarse form of load conditioning that serves to
bound the size of this thread pool. When a request arrives, the server uses a
free thread in the pool to serve this request, and returns the thread to the pool
after finishing the request. When the number of requests in the server exceeds
the thread pool size limitation, no more extra threads are allowed to be added
into the thread pool. In this case, additional connections are not accepted and
need to stay in the waiting queue until threads have been released from the
current request processing. By limiting the number of concurrent threads, the
server can avoid throughput degradation, and the overall performance is more
robust than the unconstrained model. As it uses a pool of preliminarily created
threads, this design can also avoid the cost of creating a thread per request ar-
rival. However, setting the thread pool sizes to the number that yields the
optimal performance in advance is usually not possible due to the dynamic
characteristics of the workload, which may change over time. For this rea-
son, server administrators are responsible for adjusting the thread pool size.
A large number of threads may lead to performance degradation as it wastes
resources. On the other hand, too few threads may restrict concurrency, since
all threads may block while there is work the system could perform, resulting
in lower performance.

Another disadvantage of the thread-based concurrency model is that schedul-
ing and resource management decisions are taken by the operating system

26



2 Background and Overview

at thread level, in a way which is transparent to applications. As a result,
applications are rarely given the opportunity to participate in system-wide re-
source management decisions, or given indication of resource availability in
order to adapt their behavior to changing conditions [170]. When each re-
quest is handled by a single thread, it is difficult for the operating system to
identify internal performance bottlenecks in order to perform tuning and load
conditioning.

2.3.2 Event-Driven Concurrency

Limitations that exist in the thread-based approach have led many developers
to favor an event-driven programming approach, which has emerged as a solu-
tion for large loads and massive concurrent demands that arise in the increas-
ingly popular Internet services [25, 28, 128, 183]. Event-driven programming
is a generic term that is used to represent a programming architecture, which
is based on detecting events and then responding to these events using a col-
lection of cooperative tasks that are organized as event handlers.

In a server that follows this design approach, processing each of the concur-
rent requests in the system is implemented as a Finite State Machine (FSM). A
state machine is a collection of states, input events and transitions that map
states and input events to states. It is typically drawn as a directed graph
where the nodes of this graph represent states, the directed arcs represent
transitions and the arc labels represent input events – Figure 2.8 shows the
finite machine of a simple HTTP server request. A state stands for a set of pro-
cessing steps to be performed on the request. Events (messages, or whatever
they might be called in a particular system) are a core concept in the event-
driven concurrency, which are originating from the operating system or within
the application it self, such as a disk I/O readiness, receiving a network mes-
sage or a notification of the completion of some task execution. A special part
of the application should deploy a mechanism to detect or to be notified of the
occurrence of events. The detection could be in form of an approach where a
small piece of software polls and waits for some thing to happen or it could be
based on a notification from the event generator – see [96] for a comparison be-
tween available solutions. For each new request the server creates a new FSM
and associates it with a descriptor. This FSM begins execution in some initial
state, and each input event triggers the execution of a specific event handling

27



2 Background and Overview

“All” Throughput Under Dynamic Load

N t k

Disk Read

Network 

Network 
Read

D D D

Not Finished

DD

Read 
File

Done Done

Accept 
Request

Finish
Read Done Parse 

Request
Find File

Done Prepare 
Reply

Done Send 
Reply

DoneDone
Start

2 M. Sh. Al‐Hakeem

Figure 2.8: Finite state machine for a simple HTTP server request

FSM Req. 1

FSM Req. 2Scheduler q

FSM Req. 3

Events Queue

FSM Req. …

FSM Req. nThreads

An Adaptive Scheduling Policy for 
Staged Applications20

Figure 2.9: Event-Driven Concurrency

routine, and as a result triggers a transition from the current state to the next
state [37].

In this form of concurrency, servers explicitly schedule their own work flows
based on the detected events. A small number of execution threads is used,
typically one or two per CPU in the system. These threads loop continuously
dispatching events of different types from a shared queue, determining which
FSM should be chosen to service each event and processing the correspond-
ing event-handling routines. Then event handlers yield control by returning
the control again to the event scheduler. In contrast to the thread-based ap-
proach, in this design just this small number of threads could attend a high
number of requests simultaneously – see Figure 2.9. A thread is only needed to
handle an event at a state and then move to handle the next event regardless
to which request it belongs, instead of being assigned and responsible for the
processing of the whole request.

28



2 Background and Overview

Servers that depend on the event-driven concurrency model are typically more
scalable in comparison to those of the traditional thread-based model. They
tend to be robust to load variations, as their performance does not degrade
with increased concurrency. In these servers, as the number of incoming re-
quests grows, the server throughput increases until the bottleneck resources
in the system become saturated. If the number of requests grows further, ex-
cess work is absorbed in the server’s event queue. These servers show also
a high flexibility and low operating system overhead, as the event-driven pro-
gramming model can simplify concurrency issues. Because of the small num-
ber of used threads, this concurrency model can reduce opportunities for race
conditions and deadlocks, and can avoid the overheads of context switching
and synchronization among execution threads.

However, an important limitation of this approach is the assumption that
event-handling threads do not block. For this reason non-blocking I/O mech-
anisms have to be employed, which are not well-supported by most environ-
ments and operating systems. Moreover, event-processing threads can block
regardless of the I/O mechanisms used, due to many other reasons, like inter-
rupts, page faults, or garbage collection, which are common sources of thread
suspension that are generally unavoidable [28]. In addition, the primitives
of event-driven programming raise a number of difficulties and challenges for
application developers. Events scheduling and ordering is probably one of
the most important concerns, since the application is responsible for deciding
when to process each incoming event and in what order to process the FSMs
for multiple work-flows. Modularity is also difficult to achieve, as the code im-
plementing each state is directly linked with others in the flow of execution,
and it must be trusted not to block or consume a large number of resources
that can stall the available few threads. Another drawback in this concurrency
model is that in this design applications generally cannot take advantage of
multi-processor systems for performance, unless the needed modifications to
support these systems are made and multiple event-processing threads are
used [182].

29



2 Background and Overview

2.4 Memory Accesses Problem

To meet the increasing demands presented by today systems, especially the
highly concurrent Internet services, processors that power these systems have
to deliver huge improvements in performance and throughput. As stated ear-
lier, a limiting factor is the gap between processor performance and memory
accesses performance. Although many hardware techniques attempt to allevi-
ate the performance mismatch and bridge this gap, as the effects of this gap are
expected to continue growing, an improvement in these techniques is needed
to insure that increases in the performance of processoring resources result
in corresponding increases in system performance. These techniques, such
as caches, TLBs, and branch predictors [84], are based on a hierarchy of high
speed cache memory and exploit the concept of locality, spatial and temporal
reuse of code and data, which is a well-known property of computer programs.
Depending on this locality, the cache hierarchy is used to predict the future
behavior of the program and to keep data, which is likely to be reused quickly,
close to the processing unit, in the fastest possible cache-memory level, in or-
der to avoid memory stalls.

Today’s systems employ larger and deeper cache-memory hierarchies, more
sophisticated branch predictors, in addition to software/hardware prefetching
mechanisms. However, the structure and the requirements of modern applica-
tions decrease the benefits of these techniques. Consequently, only a fraction
of modern processors computational throughput is utilized. A significant part
of CPU time is wasted because of the memory accesses behavior of the imple-
mented designs and concurrency management approaches, and as a result of
the high penalty of a cache miss that is often several tens of cycles in current
machines, wasting CPU time during which many instructions could be exe-
cuted.

Considering server applications, these applications are commonly organized
to execute the code that is necessary to process multiple concurrent requests
from multiple clients, using the event-driven approach (multiplexing a single
execution thread among these requests), or using the thread-based approach
(assigning a thread to execute each request). When a client request resumes
execution, the code, all variables, along with the data structures that are fre-
quently accessed consist the working set of this request. As a piece of data

30



2 Background and Overview

from this working set is referenced for the first time, this data will be loaded
into the cache of the processing unit on which the request is executed, which
may take hundreds of CPU cycles. If it is referenced frequently enough to not
be evicted, each subsequent reference to this data will find it in the cache, and
will take only few cycles. Such data is called “hot in cache data”. However,
the used server’s concurrency models disturb this behavior and fail to reuse
cache contents. They cause frequent context switches from request to request
in a random way, as switching to another thread in the thread based approach
or handling another event from the event queue in the event-driven approach.
This results in frequent control transfers between unrelated pieces of code and
data, which happen during the execution of the different concurrent requests.
Consequently, each request will tend to evict the working set, which was hot in
cache for an other request. When a request is rescheduled again on the same
processing unit and starts execution, it will need to reload its working-set’s
evicted data at the cost of hundreds of cycles for each cache miss. These addi-
tional delays that a resumed request often suffers after each context switch, as
caches have to be repopulated with the memory footprints of this request, are
becoming significantly more expensive, especially when they are viewed in re-
lation to the shortened dispatch time of each request, the deep cache-memory
hierarchy of modern server machines and the higher costs of cache misses.

Since these context switching points tend to occur very frequently in highly
concurrent systems, like Internet servers, this behavior disrupts the operation
of the locality principle, on which cache hits depend, as it causes the loss of
instruction and data accesses locality, and consequently decreases the effec-
tiveness of the cache hierarchy. Considering this structure, cache techniques,
which may improve the locality within each request, have limited effects on
the locality across the multiple concurrent requests. These effects of mem-
ory accesses behavior and the poor cache utilization of server applications
has been reported by many researchers in both software architectures, the
thread based concurrency model [52, 77, 103] and the event-driven concur-
rency model [29, 30, 103].

On multi-processor systems, the memory accesses problem is even worse, as
additional issues come into account. Problems like data sharing and thread
migration emerge in such systems and disrupts locality and cache content

31



2 Background and Overview

even further [156]. Servers, especially for commercial applications such as
databases and Web servers, constitute today the largest segment of the market
for multi-processor systems. In addition, the recent emergence of multi-core
and multi-threaded processors presents a more wide spectrum of these sys-
tems with more complex structures.

In multi-processor systems, applications can execute well only when all pro-
cessors in the system are effectively sharing the presented workload and when
code and data structures that are accessed by an execution thread are located
close to this thread. However, as resource management strategies in these
systems usually promote load balancing in order to insure that all processors
service an equal workload, they frequently migrate the execution of desched-
uled requests onto processors on which they may have not recently executed.
Although this load balancing is commendable to increase utilization, migra-
tions will often cause a performance degradation. During migration there are
phases without normal execution as a newly dispatched request is unable to
find its working set and data footprint in cache, since it is executed on a dif-
ferent processing unit that has a different cache at all [48, 51, 52]. The wait
time that a thread of execution must incur to access the data of a processed
request, coupled with the additional latency required to access memory across
the system interconnect (not physically local to a CPU, but rather on another
CPU board or memory bank) can impact the processor efficiency and the over-
all system throughput dramatically.

These effects are also compounded with data sharing and coherency protocols
overheads [176]. When two or more execution threads are working on a set
of shared writable data structures, these data structures have to be protected
from uncoordinated accesses to prevent race conditions and other effects. In
addition, as the execution threads that share these data structures may run
in parallel in a multiprocessor system the integrity of the accessed data must
be guaranteed as multiple copies of them may exist in different places in the
cache-memory hierarchy. Coherency protocols are responsible for this data
integrity, and as the number of processing units in the system increases the
wait time which is incurred by these protocols increases. Although processor
architectures which depend on an exclusive cache hierarchy rather than an
inclusive cache hierarchy, like AMD processors, can reduce the effect of the

32



2 Background and Overview

coherency protocol, they are affected by the cost of moving the shared data
structures to the cache of the processing unit on which the request is exe-
cuted. The overhead of this effect may increase even further in the case of
false data sharing5 which can cause moving the data structures between pro-
cessing units even they are not really shared.

As future systems are expected to have more processing units and even deeper
memory hierarchies, and as the effects of the processor-memory speed gap
are expected to grow in these systems, more adaptive design and management
solutions become necessary to best utilize available hardware resources and
sustain high performance under massive concurrency.

2.5 Scheduling and Resource Management

Scheduling is a key concept in computing systems that refers to the way tasks
are assigned to be executed by available resources in the system, and it is
carried out by a special software known as scheduler. The set of rules that
are used to determine which tasks would be processed, when to process them,
and where to process these tasks – in the case of multiple processing units, is
called scheduling policy. Typically, a scheduler is mainly concerned with: CPU
utilization (keeping the processing units as busy as possible), throughput (the
number of tasks that complete their execution per time unit), in addition to
other application/service level performance metrics, like response time, fair-
ness (the parties utilizing the resources receive fair service in terms of equal
service time and the equal opportunity to be serviced.), etc. [34].

However, implementation issues and workload characteristics can have a large
impact on these metrics and on the measured performance of a scheduling
policy. Especially in Internet servers, scheduling of requests is a very critical
factor that plays a major role in determining the performance of these servers.
Multiple aspects have to be considered in these systems in order to fulfill the
goals of a specific scheduler, as these goals often tend to conflict. Particularly,
when the view of both clients and service providers have to be taken in ac-
count, the popular scheduling algorithms that are commonly used in Internet

5When threads that execute on separate processors repeatedly write to memory addresses on
the same cache line.

33



2 Background and Overview

servers include round robin, earliest deadline first, weighted fair sharing, etc.,
are not adequate to provide the requirements of these systems.

Considering the discussion in the previous section (Section 2.4), scheduling
policies have to be implemented that avoid cache misses and context switches
effect, in order to increase the system throughput and optimize the utiliza-
tion of the available resources. In conventional scheduling policies, context
switches occurrence typically relies on events that are generated in the system
instead of the current state of the executed program. While this model is in-
tuitive, as these systems depend on the two traditional concurrency models,
it has several shortcomings and it can introduce high performance overheads
[111]. As a result, these scheduling policies affect memory accesses locality
and impact the system’s performance dramatically, especially in the case of
multi-processing systems.

Context switches effect is determined by the frequency of context switches
as well as the number of cache misses that occur after each context switch.
These amounts depend on the level of processor sharing, i.e. the number of
executed tasks that share a single processing unit, how long these tasks are
processed, and how fast they bring in new cache blocks to cause changes in
the current cache content. Considering the massive concurrency in today’s
Internet servers, they are subjected to highly frequent context switches, with
dramatic effects on their performance.

In order to reduce these effects, executed tasks should reuse their cached state
more. One way to encourage that is to schedule each task based on its affin-
ity to individual caches, that is, based on the amount of state that the task
has previously accumulated in the caches of an individual processing unit.
This technique is called cache affinity scheduling. Affinity scheduling explic-
itly routes tasks to processors with relevant data in their caches. However, the
structure and the behavior of server applications reduce the benefit from this
scheduling policy. The frequent switching between different requests, even
if they are for the same service and execute the same program, interleaves
unrelated memory accesses, thereby reducing locality. This gives rise to the
problem of memory performance and improving locality from a single appli-
cation’s point of view, which needs cache-aware scheduling policies at a finer

34



2 Background and Overview

granularity and is difficult to address using existing affinity scheduling poli-
cies.

Furthermore, the previous challenges are more intensive when the parallelism
hierarchy of today’s server machines is considered – see Section 2.2.3. In
these systems, when a cache-aware scheduling policy is to be implemented,
data sharing patterns among the executed tasks have to be considered too, in
order to utilize the available resources optimally. If two tasks are processed on
two processing units that reside on the same CPU core (i.e., hardware execu-
tion threads), communication typically occurs through the core private cache,
with a latency less than 10 cycles. If the two processing units do not reside
on the same CPU core but reside on the same chip, communication typically
occurs through a shared cache level, with a latency of 30 to 50 cycles. If the
processing units reside on separate chips communication will be across chip
with an average latency of hundreds of cycles. As an example, consider the
Intel Xeon (Nehalem EX) latencies [66]. According to that, tasks that commu-
nicate frequently will be better executed on processing units that communi-
cate through a cache-memory level with less latency. At the same time, non-
communicating tasks with high memory requirements may be better placed
onto different chips, helping to reduce potential cache capacity problems. Al-
though today schedulers have become increasingly cache-aware, they do not
take these non-uniform sharing overheads into account.

In addition, as cache-aware scheduling policies traditionally utilize a per pro-
cessing unit run queue, a conflict between load balancing and locality is evi-
dent. Locality conscious scheduling would opt for tasks to spend their entire
execution lifetime on the same processin unit. Fixing tasks onto processing
units, while allowing tasks to reuse more cache state and to benefit from lo-
cality, it could cause load imbalance, as it may neglect that some processing
unit might be lying idle. Conversely, a scheduling algorithm that complies with
the load balancing policy would attempt to migrate tasks to balance work load
evenly, which may disregard the task’s last dispatch locale. For this reason,
ideally, scheduling algorithms should aspire to include both policies.

To be noted here are the differences in static approaches, which make use of
long-term trends and off-line optimizations, versus dynamic approaches which

35



2 Background and Overview

exploit current changes in the system in order to allocate resources and pro-
vide load balancing. System dynamics and the rapid development make static
approaches, which are typically based on worst-case assumptions inadequate
and increasingly conservative. For this reason, research is needed on design
and implementation techniques that allow dynamic run-time flexibility with
respect to variations such as changes in workload and resource utilization
patterns.

2.6 Performance Management

The Web was traditionally considered as a non-critical application for which
no performance guarantees are required. However, with the fast growing num-
ber of Internet users and the increasing pace of information being exchanged,
Internet service providers are increasingly expected to provide the information
with an ever faster speed. A measure of this trend is the “Latency Tolerance”,
which is a measure of how long a user will wait for a web page to load before
taking some action (e.g. hit reload or abandon the web site). For many years,
there was a widely used rule of thumb which says that most users will wait
approximately 8 seconds for a web page to load and after that time they will
start thinking about taking some other action [142]. In 2006, the threshold for
web page loading decreased to 4 seconds, and according to a recent research,
Internet users expect a web page to load in two seconds only [56].

Today, the need for highly reliable and highly available Internet services in-
creases, as businesses, government agencies, and individuals are increasingly
dependent on the Internet resources for their day-to-day operation in order
to satisfy business and personal needs. In addition, the Internet is evolving
rapidly into a provider of new categories of modern, globally accessible, dig-
ital services that require performance guarantees, such as on-line banking,
e-trading, business transactions, real-time databases, on-line games, distance
learning, etc.. As the popularity of these new services grows extremely, there is
an increasing demand for Internet servers to meet customer’s expectations in
terms of the quality of service delivered, in order to increase clients satisfaction
and as a result achieve more profits. Therefore, service providers increasingly
need to control and guarantee the performance of their services to provide a
variety of performance characteristics, such as response time, throughputs,

36



2 Background and Overview

availability, costs, resource utilization, etc., which can be analyzed from differ-
ent viewpoints. For instance, a user’s perception of performance has to do with
fast, predictable user-perceived response time, no connections refused and 24
×7 (24 hours/day, and 7 days/week) up-time. On the other hand, from man-
agement’s viewpoint performance also includes high throughput (the rate at
which the system can perform work) and high availability with low operation
costs.

In such services, what the customer sees is the level of service provided by
the company, and any degradation in this service level can be noted in real
time. Quality of service (QoS) indicators are usually used to define the quality
of service provided by sites. These indicators represent the level of service pro-
vided to customers, may be at a given cost. QoS of a service provider plays a
crucial role in attracting and retaining customers and in determining their sat-
isfaction. Failure to meet performance specifications or desired performance
levels may result in loss of customers, financial damages, or liability viola-
tions. For instance, frustrated customers leave e-commerce sites and do not
return, causing revenue to be lost. Unacceptable performance and availability
can cause serious harm to a company’s bottom line and market value in the
extremely competitive world of the Internet.

However, as these services execute in an unpredictable general-purpose en-
vironment, which is the open Internet, that brings many big challenges. This
environment has many unique characteristics, which have a profound impact
on service performance. As stated earlier, the web community is growing day
after day, increasing exponentially the load that sites must support. In ad-
dition, current sites are subject to enormous variations in demand, often in
an unpredictable fashion, including flash crowds that cannot be processed.
Accordingly, servers that are attending requests from thousands of clients, si-
multaneously, need to perform really efficiently if they want to offer a good
Quality of Service. The more requests a web site gets the higher the probability
that users will wait too long for a response, and in many cases web users or
customers will become frustrated and switch to another site. For this reason,
Internet servers must deal with the Internet load characteristics to achieve
target QoS and performance guarantees in the face of unpredictable server
overload situations (i.e. when the volume of requests for content at a site tem-

37



2 Background and Overview

porarily exceeds the capacity for serving them and renders the site unusable).

Traditional approaches for designing performance guaranteed computing sys-
tems depend on quantifying hardware resources and software execution re-
quirements, then apply an appropriate combination of pre-run-time analysis,
capacity planning and admission control to ensure that the system is not over-
loaded and that the desired performance is achieved. Capacity planning is the
process of predicting when future load levels will saturate the system and de-
termining the most cost-effective way of dealing with system saturation. How-
ever, traditional capacity planning based approaches are not adequate, be-
cause of the exponentially growing demands that the services must support
resulting from their increasing popularity, the huge variations in these de-
mands and the dynamic nature of these services. These approaches rely on a
prior workload and resource knowledge and are therefore inapplicable as both
the processing costs and requests arrival rate are highly unpredicted. Leaving
the management of dynamics to operators is also not acceptable because many
changes occur too rapidly for human to be able to response in a timely manner.
For example, e-commerce sites frequently contend with workloads that change
so rapidly that service degradations and failures result. Instead, the predom-
inant practice for providing QoS assurances today is over-provisioning based
designs. A drawback of this practice is that it results in costly systems with
uncertain assurances regarding performance. For these reasons, automatic
self-management techniques are needed that cope with the dynamics of these
computing systems and adapt the system in a more reliable manner.

38



3 Problem Addressing

Considering the challenges presented in the previous Chapter, Internet ser-
vices must not only support high concurrency, but also provide quality guar-
anteed service, in a dynamic, unpredictable environment. This thesis is based
on the advantages of a recently rising programming paradigm, that is called the
staged design, and improves over this approach to provide services which are
to be qualified to address these challenges. This Chapter explains the staged
design in details and presents the challenges and limitations in the staged
design that we address throughout this thesis.

3.1 Staged Design & SEDA

3.1.1 Staged Design

Modern applications are getting larger and more complex, which is expected to
continue in the future, leading to complicated implementations. As a result,
applications are increasingly difficult to extend, tune or evolve, especially those
applications which have additional requirements related to scalability and per-
formance issues, like Internet services and server applications. To cope with
this increasing complexity, a recent trend is to identify the independent units
of work that construct an application, and to build this application explicitly
from sub-tasks or stages that represent these units. This trend gives the rise
to a shift in the view from traditional event- and thread-centric programming
models to task- or stage-centric programming models [24, 42, 103, 138, 173].

Staging applications explicitly appeared in the seventies as a solution to the
limited size of main memory [151], and recently this design emerges again as a
programming model to provide solutions at hardware and software engineering
levels. Hence, a broad wide spectrum of applications have been implemented
using this design paradigm, like Operating systems [102], data-base manage-
ment systems [77], web servers [70, 173], network applications [101, 121, 160],

39



3 Problem Addressing

etc..

Staged design introduces a hybrid programming abstraction that combines
ideas from the two traditional programming paradigms, event-driven program-
ing and thread-based programing, and presents stages as the constructing
blocks underlying applications. This design offers the best of both worlds,
the ease of use and expressiveness of threads and the flexibility and perfor-
mance of events. In this design model the code of a complex program is broken
down into multiple independent self-contained stages, by introducing queues
as stage’s boundaries. The program is constructed as a graph or a network of
these stages and the stages are connected to each other through the queues.
A stage in this model embodies a robust, reusable software component that
consists of a local state, private exclusively owned (to the degree possible) ex-
ecutable code and data environment, and a group of exported operations that
perform some aspect of the service provided by the program. These operations
are invoked in an asynchronous manner by queuing a message (request, event,
etc.) at the queue of the stage, so that their invocation, execution and reply,
when necessary, are decoupled. Every stage is capable of receiving messages,
performing work on these messages, sending the same or newly created mes-
sages to other stages and controlling its local performance. When the tasks of
a message processing at a stage are finished, a new message is generated and
passed to the next stage, so that communications between stages can be con-
sidered as a matter of data switching between threads, each executes within a
different stage. Each stage is serviced by one or more threads, which can be
part of per stage or shared thread pools.

In comparison to the object oriented programming, we can speak about a
stage oriented programming model [103], to the extent that it is an abstrac-
tion to structure programs that provides local state and operations for a stage.
However, stages still differ from objects in three major aspects. First, oper-
ations within a stage are invoked asynchronously –by enqueuing a message
(event) at the stage’s queue, so that a caller does not wait for the computation
to complete at the called stage. Second, a stage has autonomy to control the
execution of its operations, and this autonomy extends to deciding when and
how to execute the computations associated with the invoked operations. Fi-
nally, stages are a control abstraction used to organize and process work, while

40



3 Problem Addressing

objects are a data representation acted on by other entities, such as functions,
threads, or stages.

Staged design-based computation can support a variety of programming styles,
including software pipelining, event driven state machines, bidirectional pipelines,
and fork-join parallelism. For example, in this design a server application can
be arranged as a pipeline in which requests arrive at one end and responses
flow out from the other. This form of computation is easily supported by rep-
resenting a request as an object passed between stages. Linear pipe-lining
of this sort is simple and efficient, because a stage retains no information on
completed computations.

3.1.2 Staged Event-Driven Architecture

The Staged Event-Driven Architecture (SEDA) is the state of the art of the
staged design, which has emerged as a design framework deployed for sup-
porting the massive concurrency demands of large-scale Internet services, as
well as to exhibit good behavior under heavy load [173, 174]. In SEDA, a com-
plex service logic is broken down into a set of basic event-driven tasks. The
tasks are separated by event queues and a request is processed by a sequence
of these tasks. Each task is implemented within a stage and the whole service
is a network of these stages communicating using the event queues. A stage,
which is the fundamental unit in SEDA (Figure 3.1), consists of an event han-
dler which implements the basic functionality and performs some aspect of
request processing, an incoming event queue and a pool of threads to process
events entering the stage. Threads within a stage operate by pulling a number
of events off the event queue and invoking the event handler which processes
the events and dispatches the results by putting them as events in the event
queues of other stages in the system. Figure 3.2, which is taken from [174],
shows the structure of a simple HTTP server that is based on the staged event-
driven architecture.

SEDA allows stages to have private thread pools or to share thread pools among
stages. These threads are used to handle blocking I/O operations and to uti-
lize CPUs in multi-processor systems. To avoid over-using threads, it is im-
portant that blocking operations be short or infrequent. For this reason, SEDA
provides non-blocking I/O primitives to eliminate the most common sources

41



3 Problem Addressing

Staged ArchitectureStaged Architecture

SEDA: Staged Event-Driven Architecture:
- A hybrid approach that combines threads and events and introduces  
stages as applications building blocks.
A program is a network of stages connected by event queues- A program is a network of stages connected by event queues. 

- Each stage performs some aspect of request processing.

Event Handler

Thread Pool

SEDA Stage

5 M. Sh. Al-Hakeem

Figure 3.1: SEDA Stage

request
HTTP 

cache
miss

I/O
request

packet packet

cache hit

connection

file data

Socket read

Socket listen

PageCache

HttpSend

CacheMiss file I/O

Socket write

HttpParse

packet
parse

cache
check

handle
miss

send
response

file
I/O

write
packet

read
packet

connection
accept

Figure 3.2: SEDA-Based HTTP Server

of long blocking operations [169]. The explicit event queues between stages
prevent demands from overcommiting the resources when they exceed service
capacity. In addition, they separate the stages and act as execution boundaries
between stages and as a mechanism for controlling the flow of requests in the
whole system. Therefore, Stages are isolated from each other and each stage is
responsible only for processing the subset of requests existing in its queue to
avoid holding resources by single request/thread for too long time. Moreover, a
stage has scheduling autonomy, which enables it to control the order and con-
currency with which its operations execute. Each stage can be independently
managed and stages can be run in sequence or in parallel, or a combination of
the two. As a result, this design avoids resource contentions, scalability limits
and other overheads that are associated with thread-based concurrency. It
avoids also the complexity of the standard event-driven programming model,
and allows applications to be well-conditioned to load by making informed de-
cisions based on the inspection of pending requests in the event queues. In
addition, SEDA promotes stage autonomy, data and instruction locality, and
minimizes the usage of global variables.

In a SEDA-based system dynamic resource management, adaptive overload
control and other self-tune control techniques are implemented through con-

42



3 Problem Addressing

trollers that are in each stage. By monitoring the queue length and the service
rate, the resource controller employs a heuristic control approach to adjust
the number of threads in the thread pool of the stage. The overload controller
makes use of admission control at the source of the event queue to control
the number of requests accepted by the system. This approach have been also
extended to perform class-based service differentiation [172, 174].

3.1.3 Advantages of the Staged Design

While the staged design model is conceptually simple, it yields a number of
benefits which directly address the needs of today Internet services. This de-
sign has a number of desirable properties for high-concurrency management
and it is one of the best means for structuring applications that require accu-
rate control. In addition, it provides many solutions at hardware level and at
software engineering level. This Section presents a survey of the benefits of this
design, which have been reported by many researches [77, 108, 141, 170, 174].

At the hardware level the staged design provides many solutions to challenges
that appear in the traditional concurrency models. These solutions can be
outlined as follows:

• Cohort Scheduling: The staged design can optimally exploits the underly-
ing memory hierarchy as it is particularly amenable to cohort scheduling
[103]. Cohort scheduling means to group the execution of multiple re-
quests that have potential to show the same behavior and locality, in
order to benefit from caches content reuse (see Section 3.2.2). In this
design the scheduler can repeatedly execute requests queued up in the
same stage, thereby exploiting stage affinity to the processor caches. The
first request’s execution fetches the common data structures and code
into the higher levels of the memory hierarchy while subsequent request
executions experience fewer cache misses. This type of scheduling cannot
easily apply to existing systems that are based on the traditional program-
ming models, since it would require annotating the execution threads
with detailed application behavior.

• Context Switches: Context-switches that occur in the middle of an oper-
ation evict the working set of this operation from the higher levels of the
cache hierarchy. Each context switch requires that the processor save all

43



3 Problem Addressing

its registers for the previous operation that it was executing and load its
registers for the next operation that it runs. As a result, each resumed
operation often suffers additional delays while re-populating the caches
with its evicted working set and restoring the processor state. The staged
design can reduce the overheads of the frequent context switches that are
existed in the traditional thread-based model through the following mech-
anism: A stage contains code with one or more logical operations. Instead
of preempting the currently executed operation at a random point of the
code (for example, whenever a time quantum elapses), a stage thread that
executes this operation voluntarily yields the CPU at the end of the stage
code execution, as a request’s processing at each stage is typically very
short and runs to completion. When an operation runs to completion,
it does not require its own stack or an area to preserve processor state.
This way the working set, that is evicted from the cache, would be at its
shrinking phase and the time to restore it by the next execution (maybe
at another stage) is greatly reduced, which eliminates much of the cost of
context switches.

• Parallel Processing: The staged design can also take advantage of paral-
lel processing systems, as it uses multiple execution threads and as it is
capable of exploiting irregular parallelism in the presence of complicated
control structures [24]. As stated in the previous section, stages are iso-
lated from each other by event queues, for this reason each stage can be
executed on a separate processing unit, “almost” independently of other
stages execution. Moreover, as it innovates from the event-driven pro-
gramming model and depends on asynchronous operations, the staged
design provides low-cost parallelism and can simplify concurrency issues
by reducing opportunities for race conditions and deadlocks. In addi-
tion, the properties of this design enable the implementation of a staged
design-based application as a distributed system, which also enables the
benefit from the advantages of such systems, like the additional capacity
and the fault-tolerance properties [26].

At the software engineering level, it have been shown too that applications
which are organized as a network of stages connected by event queues offer a
variety of advantages over traditional architectures. The key advantages and
the solutions to software-complexity problems that are presented by the staged
design can be outlined as:

44



3 Problem Addressing

• Code modularity, flexibility and extensibility: The staged design innovates
from the traditional event-driven design patterns. However, in contrast to
the “monolithic” traditional event-driven design, in which the states of
the request-processing state machine are often highly inter-dependent,
the staged design allows stages to be developed and maintained indepen-
dently. An application that is based on this design model consists of a
network of inter-connected stages; each stage can be implemented as a
separate code module in isolation from other stages; and the operation
of two stages is composed by inserting a queue between them, thereby
allowing events to pass from one to the other. As these stages provide a
well-defined functionalities, this design makes it easy to replace a stage
with a new one (e.g. a faster algorithm), or develop and plug stages with
new functionality. The programmer needs only to know the stage func-
tions and the limited list of global variables that are accessed within this
stage. Accordingly, this design will significantly enhance the long-term
value of implemented applications, and will allow implementers to follow
an evolution-upgrade approach, rather than a big-bang approach [141].

• Easy to tune: As stage autonomy eliminates inter-dependencies with
other stages, each stage can provide its own monitoring and self-tuning
mechanism. Each stage is responsible for adjusting all stage related
parameters, such as the number of threads, scheduling policies, buffer
space, slice of CPU time, etc, which make it easier to build auto-tuning
tools. In addition, the utilization of both the system’s hardware resources
and software components at a stage granularity can be exploited during
the self-tuning process.

• Testing and debugging support: Few tools exist for understanding and
debugging a complex event-driven system, as stack traces do not repre-
sent the control flow for the processing of a particular request. The staged
design facilitates debugging and performance analysis, as the decompo-
sition of application code into stages and explicit event delivery mecha-
nisms provide a means for direct inspection of application behavior. For
example, a debugging tool can trace the flow of events through the sys-
tem and visualize the interactions between stages. In addition, using the
staged design, independent teams can test and correct the code of a single
stage without looking at the rest of the code.

45



3 Problem Addressing

• High concurrency and scalability: As with the traditional event-driven
design, the staged design is based on asynchronous facilities to perform
I/O operations and communications between stages [169, 173]. Conse-
quently, that eliminates the need for multiple threads to overlap pending
I/O requests. Staged design-based applications make use of a small num-
ber of threads to process requests within each stage, while the requests
that are waiting to be executed are pending in the queues between stages.
This addresses scalability issues in a very comprehensive manner, and
avoids the performance overhead of using a large number of threads for
managing concurrency. In the Staged Event-Driven Architecture (SEDA)
which is the state of art of the staged design, the number of threads can
be chosen at a per stage level; this approach avoids wasting threads on
stages which do not need them. Each stage is allocated a number of
worker threads based on its functionality and the I/O frequency, not on
the number of concurrent clients. This way there is a well-targeted thread
assignment to the various execution tasks at a much finer granularity
than just choosing a thread pool size for the whole system.

• Application-specific load conditioning: The use of explicit event queues
allows applications to implement load conditioning policies based on the
observation of pending events. A stage can drop, filter, or reorder in-
coming events in its queue in order to implement some policy, such as
event prioritization, for example. During overload, a stage may prioritize
requests requiring few resources over those which involve expensive com-
putation, or a per queue fine-grained rejection can be implemented by
having a queue reject new entries when it becomes full. Alternately, an
application-specific form of service degradation can be implemented, by
routing events to alternative, faster stages (e.g. trading off accuracy for
speed) and thus momentarily increase server capacity. These policies can
be tailored to the specific application, rather than imposed by the system
in a generic way.

3.2 Challenges in the Staged Design

Staged design has been presented as a programming paradigm to implement
high performance Internet services and to support highly concurrent demands.
This design takes benefit from both traditional concurrency approaches – thread

46



3 Problem Addressing

based concurrency and event-driven concurrency. However, although this de-
sign avoids the pitfalls related to conventional concurrency models, it intro-
duces many design challenges. This Section presents challenges and limita-
tions in the staged design which are addressed throughout the thesis.

3.2.1 Resource Allocation in Staged Internet Services

An application that is based on the staged design consists of a network of
stages, so that a client request is processed along a pipeline of these stages.
Considering this structure, the overall performance of the system is limited by
the performance of the bottleneck stage in this pipeline. That means, in order
to increase the system performance we have to increase the performance of this
bottleneck stage, e.g. raising the stage’s service rate, which could be done by
allocating more resources (for example, more CPU time) to this stage. However,
the increase in performance of one stage may cause an increase in requests
accumulation at the queues of other stages, which in turn would result in re-
quest drops at these queues, e.g. because of buffer space or timeouts. This
domino effect disrupts the normal request transition flow into other queues in
the staged service, and eventually leads to an even lower system performance.

In addition, since all stages are competing for the same resources, giving more
resources to one stage will decrease the resources allocated to other stages,
which may result in the creation of a new bottleneck stage. Moreover, the com-
plexity of this problem is increased even further due to the dynamic nature of
both system load and resource requirements of the individual stages.

To solve this problem, we need to allocate the available resources in the system,
so that we balance and coordinate the performance of the different stages in
the staged service. This resource allocation has to take in account the different
demands of the individual stages which are changing during execution in order
to avoid wasting resources and to achieve the optimal system performance.

3.2.2 Cohort Scheduling

Cohort scheduling is a technique for organizing the computations in server
applications to improve program locality [103]. The key insight is that dis-
tinct requests on a server execute similar computations. The server can defer

47



3 Problem Addressing

Staged ArchitectureStaged Architecture

Cohort Scheduling:
A stage provides an abstraction to implement cohort scheduling.

C

A B

C

E F
Req.1
Req.2qu

es
ts

D
Req.3Re

No Cohort Sched.

CPU

A B DC E FA BE F AB FE

With Cohort Sched.

CPU

E F

CPU

A B DC EA B EBA F F

6

CPU

M. Sh. Al-HakeemFigure 3.3: Cohort Scheduling.

the processing of a request until a cohort of computations arrive at a similar
point in their processing and then execute the whole cohort consecutively on
a processor –See Figure 3.3. This policy increases opportunities for code and
data reuse, by reducing the interleaving of unrelated computations which may
cause cache conflicts and may evict live cache lines.

The staged design was originally introduced as a programming abstraction to
implement these cohort scheduling policies in order to improve memory access
behavior of high concurrent servers. In the staged design, a stage facilitates
cohort scheduling because it provides a natural abstraction for grouping opera-
tions with similar behavior and locality and the control autonomy to implement
cohort scheduling. Operations in a stage typically access local data, so that ef-
fective cohort scheduling only requires a simple scheduler that accumulates
the execution of pending operations at a stage to form a cohort.

Therefore, existing cohort scheduling policies for staged applications aim to
increase the benefit from locality and optimize the performance of the individ-
ual stages rather than optimizing the overall system performance. As a result,
these policies introduce coarse grained resource allocation approaches which
increase the difficulties related to controlling the system performance.

Since this cohort scheduling is commendable, a resource allocation scheme
is needed which provides such policies and at the same time takes the require-

48



3 Problem Addressing

ments of the different stages and the whole system in account.

3.2.3 Parallelism Hierarchy

As stated in Section 2.2, today’s Internet services need increasingly more pro-
cessing resources. For this reason, parallel processing techniques are em-
ployed to cope with these increasing demands. In addition, the recent trend
of chip multi-processing and multi-core systems presents a set of new char-
acteristics in today’s server machines. These characteristics, especially the
hierarchic parallelism in these systems, have to be considered when the sys-
tem resources are to be allocated to individual tasks.

Typically, in a multi-processor system, processing multiple requests in par-
allel on different processing units may cause additional CPU time overhead
related to the contention of the concurrently processed requests for shared re-
sources (shared data structure, locks, bus, shared caches etc.). In addition, as
multiple copies of the shared data structures are existed in different places of
the memory hierarchy, coherency protocols have to be used in order to insure
the integrity of these data structures, which increase the time overhead.

In the staged design, this processing time overheads are affected by the type
of requests that are processed in parallel. If the requests that are processed
in parallel are at the same stage, they will share more data structures than
requests that are processed at different stages. For this reason the overhead
of the contention for the shared data structures and the overhead of the co-
herency protocol will be larger. On the other hand, if the requests that are
processed in parallel are at different stages, each request will need to load the
code and data structures of the stage at which it is executing into the caches
of the processing unit. As a result the concurrent requests will content for
the shared cache level, evicting each other working set from the shared cache,
which causes additional processing time per request.

Another aspect that is to be considered in such parallelism hierarchy is that
when requests are processed on different cores at the same chip they share
data that exist in the caches of this chip. While, in the case of processing re-
quests on other chips, requests will need to access data structures that reside
on other chips, which is significantly more expensive.

49



3 Problem Addressing

Considering the previous discussion, as we allocate processing resources to
the individual stages in the staged design, we need to make a trade-off between
processing multiple requests from the same stage and processing multiple re-
quests from different stages in parallel, in order to benefit from locality and
at the same time not to be over-committed by parallel processing overheads.
Processing requests from the same stage in parallel will increase locality as
requests reuse data that exist in the cache, but it will increase the overhead
of locking and coherency protocols, too. On the other hand, running requests
from different stages in parallel will decrease contention for shared data struc-
tures and decrease the effect of coherency, as less data is shared, but this
will cause more contention for shared cache-memory levels and memory band-
width.

3.2.4 Performance Control for Staged Services

There is a growing demand for Internet servers to provide quality-guaranteed
service for highly concurrent requests. To be qualified to meet this require-
ment, a system must not only support high concurrency, but also the perfor-
mance of this system has to be controlled, see Section 2.6 .

As demonstrated by many researches, the staged design has a simple struc-
ture, can greatly benefit the system in massive concurrent loads and is po-
tential to handle dynamics in these loads [108, 110, 172, 173]. However, this
design presents many challenges when the system is to be tuned to achieve
a desired performance target or to guarantee a determined service level. For
many reasons, quality guarantees for requests processing in a staged design-
based system are difficult to maintain. First, requests are continually gener-
ated in large volumes by external and internal sources such as clients and I/O
operations. Second, the processing costs of requests vary dynamically along
the time and are difficult to predict. The last, fluctuations of loads and re-
sources usage of the individual stages may cause overloading that interferes
with the robustness of the system or may under-utilize the available system
resources. To deal with these challenges and such instability, systems that
are based on this staged design model need to automatically adjust the whole
system at run time in order to achieve target performance levels.

50



3 Problem Addressing

Existing approaches are based on managing the resources depending on an
off-line knowledge of the system characteristics to achieve high performance.
Configuring such systems to generate the desired performance levels requires
experienced administrators to correctly set multiple relevant control parame-
ters for multiple stages or to determine these parameters experimentally us-
ing benchmarks. This management technique is a tedious manual operation
which is difficult, time-consuming, error-prone and non-QoS-guaranteed, es-
pecially when it is to be implemented in such highly dynamic computing sys-
tems, like Internet services. In addition, this configuration is not based on any
mathematical relationships between the controlled parameters and the target
performance. As an optimal configuration usually depends on an administra-
tor’s good guess, therefore, parameter configuration can easily result in over
utilizing or under utilizing the available resources.

51





4 Related Work

Before representing the proposed approach, in this Chapter, we review related
work on the Staged design and other similar programming models. In addi-
tion, we present a review of Cache Conscious Scheduling, performance control
mechanisms for Internet servers and related researches that have been intro-
duced for staged design-based services.

4.1 Staged Design and Similar Design Approaches

Many design approaches have appeared recently in order to cope with the in-
creasing complexity of today programs and with the different requirements of
the applications that are based on these programs. This section presents a re-
view of those design approaches which are similar to the staged design SEDA
on which this thesis is based.

The staged event-driven architecture (SEDA) is the state of the art of the
staged-design. In this architecture the service functionality is broken down
into multiple tasks; each task is implemented within an event-driven stage
and is executed using a pool of execution threads. In [173], Welsh et al. have
proposed this staged event-driven architecture, which has also received active
research in the recent few years. For example, in [129], Pariag et al. have
presented a performance oriented comparison of event-driven, thread-based
and staged design-based servers. The comparison has shown a competitive
performance of the staged design-based server to the performance of other ar-
chitectures obtained using the best tuning. Venkatesan et al. [100] proposed
usage of SEDA based event driven service oriented architecture for tackling
the flexibility, and scalability requirements of today’s network management
systems. Bharti et al. [141] have suggested a refinement of SEDA by breaking
each stage into sub-stages in order to account for stages with high load in the
system. The authors of this work argue that this refinement of SEDA architec-
ture, termed as Fine Grained SEDA, can improve certain performance metrics

53



4 Related Work

like scalability of stages, load conditioning etc.

As mentioned in the previous chapter, a recent system design trend is to iden-
tify the independent units of work that construct an application and to build
this application explicitly from sub-tasks or stages that represent these units.
In addition, the different limitations of the traditional design approaches, give
the rise to hybrid design approaches. Hybrid approaches combine ideas from
both the thread-based concurrency and the event-driven concurrency, in or-
der to benefit from the advantages, avoid the pitfalls and get the best of both
worlds. The Staged Event-Driven Architecture (SEDA) belongs to both cate-
gories. For this reason, we begin with an overview of approaches that depend
on dividing applications into multiple work units, and then we present studies
that have introduced hybrid design structures.

Recently, many major system design tools and programming languages have
presented tasks as a new design abstraction. For example, the recent OpenMP
version 3.0 shifts the focus in system design from threads to tasks [24]. Mi-
crosoft has developed Task Parallel Library (TPL) [105, 117], and Intel has
presented Threading Building Blocks (TBB) [88, 138], which is a C++ run-time
library that allows the user to program in terms of tasks too. A task is an ac-
tion that can be executed concurrently with other tasks. The intention behind
these new design techniques is to simplify the process of adding parallelism
and concurrency to applications, and to hide threads (creation, synchroniza-
tion, termination...) and hardware features by focusing on tasks. The run-time
library takes full responsibility for scheduling the tasks for locality and load
balancing. Tasks are similar to stages in that they present the application as
a graph of independent work units.

In [40], the authors have presented a stage-wise request queuing architecture
for web servers, where the stages represent sub-tasks within sessions. Hari-
zopoulos and Ailamaki have proposed to break database systems into modules
and to encapsulate them into stages that are connected to each other through
queues, in order to remedy the weaknesses of database management systems
[77]. This approach is very similar to SEDA, but it focuses more on locality.
Qie et al. have proposed dividing server programs into services, where a ser-
vice is a program component that provide an independent functionality, to im-

54



4 Related Work

prove the robustness of these programs against Denial of Service (DoS) attacks
[135]. In [44], a Pipe-lined web server architecture have been proposed that
is suitable for Symmetric Multi-Processor (SMP) and System-on-Chip (SoC) ar-
chitectures and is similar to the staged design. In [101], a framework has
been presented for designing event-driven staged Internet applications, which
is similar to SEDA, and in [70], Gordon has proposed a framework and a C++
infrastructure for developing Staged design-based servers.

Considering hybrid design models, the programmer would design parts of the
application using threads, where threads are the appropriate abstraction, and
other parts using events, where they are more suitable. All the previous de-
sign architectures can be considered as hybrid approaches as they depend on
the occurrence of some event during the execution to take some response or
to do some action. In addition, many existing systems implement the hybrid
model to various degrees, but most of them have a bias either toward threads
or toward events. For example, Flash is an event-driven web server which
exploits the creation of a set of helper processes (threads) to avoid blocking
operations in the main servicing process [128]. Capriccio is a user-level, co-
operative thread library with a thread scheduler that looks very much like an
event-driven application [168]. In [107], a hybrid approach have been proposed
that is based on tracing the sequence of system calls to simplify the develop-
ment of massively concurrent services. In [8], the authors have also presented
a hybrid design approach that combines the advantages of both programming
styles (threads and events). Zeldovich et al. have presented an approach that
runs N copies of the web server as a means of enabling an event-driven web
server to leverage multiple CPUs in a multi-processor environment [182].

4.2 Resource Allocation and Cache Conscious Scheduling

The expense of repopulating a processor’s cache with a newly dispatched task’s
footprint, the impact of context switches and the impact of cache misses on the
performance have been early reported and studied in multi-programmed sys-
tems [106, 111, 161, 162, 166], in multi-threaded applications [30, 51, 52,
77, 103] and recently the case of chip-multi-processing (CMP) and multi-cores
systems have been considered [48, 62, 63, 95, 156].

55



4 Related Work

Many studies have reported that context switching introduces high overheads
directly and indirectly [61, 106, 162]. Direct overheads include saving and
restoring processor registers, flushing the processor pipeline, and executing
the scheduler. Indirect context switch overheads include the perturbation of
the caches.

In [98], the authors have characterized context switch misses of an applica-
tion for various cache parameters and investigated how to reduce them. Li et
al. [106] have measured both direct and indirect context switching overheads
through simulation and concluded that indirect context switch overheads due
to the cache perturbation effect are much more significant than direct over-
heads. They have also shown that the working set and data access patterns of
an application could significantly affect the context switch overheads. In [111],
the authors have also reported about “reordered” cache misses and the effect of
prefetching on context switches overheads. In addition, they have introduced
an analytical model to characterize how cache parameters and application be-
havior influences the number of context switch misses the application suffers
from.

Vaswani et al. [166] introduced a quantitative study of the effect of pro-
cessor reallocation on the performance of various parallel applications multi-
programmed on a shared memory multi-processor system and concluded that
the benefits of processor reallocation (increased utilization), outweigh the costs
imposed by such reallocation. Torrellas et al. [161] showed that affinity-aware
scheduling, in a similar system, reduces the number of cache misses resulting
in performance improvements of up to 10% (for the workloads they studied).
Although these early works accounted for small benefits of exploiting cache
affinity, as processor-memory speed gap continues to grow and when viewed
in relation to the shortened thread dispatch time in modern multi-threaded
applications, especially, in the highly concurrent server applications, these
benefits become more significant.

Motivated by that, many approaches have been introduced to improve the
memory accesses behavior of these applications in order to reduce cache misses,
by grouping the execution of operations or tasks that have a similar locality.
Debattista et al. [51, 52], introduced “batching” as a technique for reducing

56



4 Related Work

the negative impact of the poor cache utilization in multi-threaded applica-
tions. This technique was implemented by grouping threads that are expected
to share the same data structures and scheduling them on the same processor.
Bhatia et. al [29, 30] introduced an approach based on grouping the execution
of similar tasks in an event-driven server, and could increase the throughput
of the server by up to 40%.

Recently, as chip multi-processing architectures (CMP) are emerging as the
dominant architectures for wide range of platforms, issues like thread migra-
tion, load balancing and managing shared caches have been studied in a finer
granularity levels.

Fedorova et al.[63] determined that the shared L2 cache1 is a critical re-
source on CMT (chip-multi-threading) and they introduced a L2-Cache con-
scious balance-set scheduling approach [54], that separate all runnable threads
into groups such that the combined working set of each group fits in the cache.
Their results showed an improvement in processor throughput by 27-45%.

Thread Clustering [156] described the design of a scheme to group threads
in “clusters” based on detecting sharing patterns on-line using monitoring, in
order to reduce expensive cross-chip cache-accesses. In [38], the authors have
used hardware performance counters to build set of processes to run at the
same time-slice on a Symmetric Multi-Threading processor in order to improve
performance

The staged design [77, 103, 173] takes another way, and presents stages as
the application building blocks. Grouping requests processing at each stage
can reduce cache misses and improve the performance as long as the working
set of the stage fit into the cache. Larus et al. [103] proposed the staged de-
sign as an approach to implement such scheduling techniques, called cohort
scheduling, to exploit the data sharing nature of multiple requests in a work-
load. This approach uses a simple wave-front algorithm to supply processors
to stages. At each stage, a processor executes all the requests that are pending

1In [63] L2 was the last level cache. Recent multi-core processors have a dedicated L1 and
L2 caches to each core and a shared L3 cache and future systems are expected to have
higher cache hierarchies. However, we expect that the shared cache level will continue to be
a critical shared resource in these systems too.

57



4 Related Work

in its queue. After the requests are finished, the processor proceeds to the
next stage. Harizopoulos and Ailamaki used the staged design to implement
cohort scheduling policies in a database management system [76, 77]. This ap-
proach uses an alternative to the requests scheduling policy presented in [103]
by enforcing a threshold on the number of requests processed at each stage
before moving to the next stage. However, these request scheduling policies
are inflexible and not suited to fine-grain resource allocation. In addition, in
these approaches issues related to multi-processing were not studied. Original
SEDA [173] and Li et al. [109] have introduced two approaches which balance
the CPU share of the individual stages by adapting the stages thread pool size
based on load and performance, however both approaches did not regard the
cohort scheduling as a main issue. Kokku et al. [99] introduced an adaptive
processor allocation in pipe-lined packet processing systems, although the sys-
tem is similar to the staged design however they depend on manual setting of
control parameters and on assumptions that are feasible in packet processing
systems but not in generic Internet applications.

The contribution of this thesis is to introduce a resource allocation policy
to allocate processing resources to the individual stages, which uses cohort
scheduling in order to benefit from stage’s locality in addition to balancing
the allocation to the individual stages. Our scheduling policy is comparable
to the Weighted Round Robin, an alternative of Fair Queuing [53], which is a
technique used in network devices to have a fair share of network resources
between data flows. Rather than allocating resources fairly between concur-
rent data flows, our approach introduces a technique to allocate resources to
cooperative tasks to avoid the negative effects of a bottleneck task on the over-
all system performance. The authors of [149] introduced a similar approach
to allocate portions of CPU time periods to threads in applications such as
web servers depending on their estimated progress. However, since the staged
architecture introduces more explicit mechanism to estimate stages progress,
we believe that such an approach is more sophisticated to be implemented in
staged architectures.

58



4 Related Work

4.3 Performance Management

As the need for performance guarantees increases in today Internet services,
performance management in these services has become a research thrust area
in the recent years. Many approaches have been introduced to cope with per-
formance management requirements in such services, like overload control,
quality of service guarantee, service differentiation, etc..

In the highly concurrent services of the open Internet, when the system is over-
loaded maintaining the desired service quality is a difficult problem because
both the processing costs and requests arrival rate are highly unpredictable.
In overload situations the service quality is strongly related to the number of
requests that arrive at the system and those which are waiting to be served [3].
By controlling these numbers many performance metrics can be controlled,
e.g. the response time of each accepted request can be guaranteed. Such
approaches are often referred to as admission control approaches. They are
commonly exploited in providing quality of service guarantees for software sys-
tems, and usually make use of a threshold to decide the acceptance or rejection
of a request. In what follows, we present some examples of these admission
control based approaches.

In [184], Zhou et al. have proposed an approach called selective early re-
quest termination to prevent busy Internet services from being harmed by
long requests. Similarly, Blanquer et al. [31] have exploited sliding window
and selective dropping to ensure the throughput and response time for In-
ternet cluster-based servers. In [41], the authors have proposed a dynamic
weighted fair sharing scheduler to control overload in web servers. The weights
are adjusted to maximize the throughput objective function, partially based on
session transition probabilities from one state to another, in order to avoid
that the requests overwhelm the state capacity. Based on empirical parameter
configuration, Urgaonkar et al. [165] have developed a system for handling the
case of extreme overloads in web application servers. They study an admis-
sion control system that runs on a “sentry” tier and decides in real-time which
requests to admit to ensure that the contracted performance guarantees are
met. In [60], the authors have also presented an admission control mechanism
for e-commerce sites that externally observes execution costs of requests, dis-
tinguishing different requests types.

59



4 Related Work

Another area of research deals with performance control of Internet services
using classical feedback control theory. Abdelzaher et al. [2, 3, 4] have used
classical feedback control to adjust control parameters in the presence of load
unpredictability based on various performance metrics, including utilization
of a bottleneck resources, resource sharing, system loading, etc.. Diao et al.
[55] have presented auto-tune approaches for performance and resource con-
trol by a combination of automatic system modeling mechanism and various
feedback control techniques. Zhou et al. [185] have also presented a similar
approach using a proportional-integral-derivative (PID) controller for queuing
control, however, the controller parameters configuration in this approach is
based on an empirical guess.

Compared with other control approaches, control theoretic-based approaches
demonstrate advantages in their flexibility, stability, accuracy and rate of con-
vergence. Especially for software systems that need fast reaction with good
robustness, such approaches are easy to use in practice. However, to ap-
ply classical feedback control systems the mathematical model of the control
system is needed. Otherwise, if the configuration of the control parameters
depends on the administrator’s experience, the control quality would be unre-
liable and non-guaranteed.

Considering the staged event-driven architecture (SEDA), Welsh et al. have
presented a per stage approach to overload control, based on adaptive admis-
sion control mechanisms in each stage [171, 172]. In this approach, the over-
load controller observes the staged service time and tunes request rate on each
stage to attempt to meet the stage’s percentile response time target. Whenever
the percentile response time of the stage is over the desired target, new re-
quests are rejected. This approach is also extended to perform class-based
service differentiation. However, this design has weaknesses in that it cannot
efficiently achieve the performance target of the whole system in terms of the
stage-based heuristic control algorithm. In addition, requests may be rejected
late in the processing pipeline after it has consumed a great deal of resources
in upstream stages. Li et al. [108, 110] have introduced a feedback-based con-
troller to guarantee fair service in SEDA based applications. A limiting factor
in this approach is that the controller needs a detailed knowledge about the

60



4 Related Work

topology of the network of stages and the behavior of requests in the system
to set a per stage target performance. In [93], the authors have also presented
a feedback control-based framework that adjusts the SEDA system behavior
based on the current system status in order to guide load shedding with the
target of maintaining requests processing delays. The framework uses con-
trol theory and leverages mathematical methods to establish dynamic models
of SEDA systems. However, a weakness in this paper is that the selection of
the system model and its parameter does not depend on real relations in the
staged service.

61





5 A Control Architecture for SEDA-Based
Applications

In this thesis, the Staged Event-Driven Architecture (SEDA) is deployed as the
ground-work to support highly concurrent demands. By implementing the
advantages of this architecture and automatic feedback control, we propose
a new approach for resource management and performance control of SEDA-
based Internet services. This chapter presents a general three-layers control
architecture for SEDA-based applications, explains the layers of this control
architecture and introduces an overview of a proposed approach for resource
management and performance control that follows this three-layers control
architecture.

5.1 A Three-Layers Control Architecture

As discussed earlier, challenges that are presented by today Internet services,
such as variations in workload and resource requirements, cannot be accom-
modated with traditional capacity planning and allocation practices. For this
reason, self-managing techniques are required, which dynamically adapt the
system in response to changes on the basis of short-term demands observa-
tion.

A compelling advantage of the Staged design model is that the performance
of the system is relatively easy to be observed and understood. Each client
request in this design is processed along a staged pipeline. Each stage in
this pipeline is similar to a node in a queuing system. Parameters, such as
average and maximum queue length, average and maximum wait time, and
average and maximum processing time, are easily measured and displayed for
each stage in the system. These measurements can be used to provide a good
overview of system performance and help identifying bottlenecks [103].

63



5 A Control Architecture for SEDA-Based Applications

Proposed Control ArchitectureProposed Control Architecture

8 An Adaptive Scheduling Policy for Staged Applications M. Sh. Al-Hakeem

Figure 5.1: Three-Layers Control Architecture.

Based on these properties of the staged design, we propose a three-layers con-
trol architecture as depicted in Figure 5.1, for resource allocation and per-
formance control in SEDA-based applications. This architecture consists of a
local controller within each stage which is responsible for optimizing the usage
of resources that are allocated to the stage, a global controller which is respon-
sible for allocating the resources to the individual stages, and a performance
controller which is responsible for controlling the overall system performance
and tuning the system parameters to achieve performance targets. Next, we
describe these controllers in details.

5.1.1 Local Controller

In the Staged Event-Driven Architecture (SEDA) each stage embodies an inde-
pendent software component. The explicit event queues between stages sepa-
rate these stages and act as execution boundaries between them. Therefore,
Stages are isolated from each other and each stage is responsible only for pro-
cessing the subset of requests existing in its queue. Moreover, a stage has
scheduling autonomy, which enables it to control the order and concurrency
with which its operations are executed. Each stage can be independently man-
aged and stages can be run in sequence or in parallel, or a combination of the
two.

64



5 A Control Architecture for SEDA-Based Applications

When resources are allocated to a stage to be executed, this stage has to
optimize the utilization of its resources. Fortunately, considering the previ-
ous stage’s properties, each stage has the ability of managing these resources
independently of other stages in the system. For this reason we suggest a
controller within each stage that is called Local Controller. The task of this
local controller is to adjust the stage’s thread pool size in order to optimize the
usage of resources that are allocated to the stage and to achieve the optimal
stage performance using these resources. Each stage has its own charac-
teristics concerning concurrency level and resource usage, which may differ
from other stages in the application. For instance, the thread pool size of a
processor-bounded stage should be equal to the number of processing units
that are allocated to this stage. Having more threads will increase the overhead
of thread management and context switches without adding any improvement
to performance. On the other hand, a stage with a mixture of I/O and compu-
tation operations could have multiple threads per CPU to overcome I/O delays.
For example, a stage that performs file-system accesses can usually handle up
to 50 concurrent read/write requests before saturation [71]. In this case, hav-
ing few threads in this stage may under-utilize the resources, while, there is
no benefit to devoting more than this number of threads to this stage.

Stage’s autonomy enable this controller to implement a stage-specific policy to
manage the resources that are allocated to this stage. One possible approach
is to implement a feedback auto-tune controller that provides a method for
setting the size of the stage’s thread-pool automatically taking in account the
stage’s dynamics, e.g. to achieve a desired utilization [4, 140], or depending
on the stage’s event queue size [173]. However, if the stage is programmed
strictly following the event-driven approach, it will be processor-bounded as
this approach tries to perform I/O operations asynchronously. As a result,
few threads or even a single thread per processing unit that is allocated to this
stage should be used, as it is the case in many applications that are based on
event-driven programming [5, 128]. For example, Zeus Web server [183], which
depends on the event-driven programming model, recommends to launch two
server processes per node. Beltran et al. [28] have concluded that a simple
event-driven Java server that is based on the asynchronous NIO API [169],
which is used in SEDA, can scale as well as the best commercial web servers
using only one or two worker threads.

65



5 A Control Architecture for SEDA-Based Applications

Since the concurrency characteristics of stages differ, as well as the available
resources for each stage, such a controller has to be implemented within the
stage in a way that incorporates as much local knowledge as possible in order
to automatically optimize the stage control parameters at run-time.

Another task of this controller will be to observe, collect, analyze, and report
the stage’s related parameters, such as event queue size, stage performance
metrics, etc., in order to introduce these parameters to the other layers in the
control architecture. That will increase the modularity of the system and will
decrease the management costs, as the control parameters of the stage are
observed and managed locally.

5.1.2 Global Controller

Different stages in a SEDA-based application may have different resource re-
quirements and different workloads. Considering this fact and the resource
allocation problem in the staged design which is presented in Section 3.2.1,
system’s resources have to be allocated to the individual stages taking in ac-
count their different requirements and characteristics.

To perform this task, we propose a second layer in the control architecture
that is called Global Controller. This controller is responsible for allocating re-
sources to stages depending on their different needs and performance. This
controller must be global in respect to stages in order to decide on the resource
allocation so that it avoids bottlenecks in the system by giving more resources
to a stage when it becomes a potential performance bottleneck, and it also
avoids wasting resources by allocating them to a stage that cannot utilize these
resources. Accordingly, the task of this controller is to allocate resources so
that it balances the performance of the stages and solves the resource alloca-
tion problem.

This controller interacts with the individual local controllers of the stages in
a two-way fashion. The global controller gets information about local con-
trollers observations on performance metrics and queues sizes of the individ-
ual stages as input. Depending on these inputs, the output of this controller
is the allocation of resources to stages, which then are managed by the local

66



5 A Control Architecture for SEDA-Based Applications

controllers. The global controller just provides specifications that constrain
the resources that are allocated to an individual stage without dictating which
requests (events) are to be processed at each stage or how to process these
requests. The latter is a separate policy that may be provided by the local con-
trollers in a stage-specific fashion.

The global controller can be considered as a feedback-based scheduler that
distributes the available system resources among the individual stages in such
a way that the whole system performance is maximized by balancing the load
and performance of these stages.

5.1.3 Performance Controller

The task of the global controller is to maximize the performance of the staged
application using the available system resources. However, Internet services
need also to control the performance metrics to guarantee performance levels
and to achieve a variety of performance targets. In our control architecture a
third layer which is called Performance Controller is responsible for this task.

Depending on the targets of the system and by implementing performance
control techniques, the performance controller interacts with the global con-
troller to achieve the desired system performance. This controller uses mea-
surements of the system outputs, such as response times, throughputs, and
resource utilizations, to adjust the parameters used by the global controller to
assign resources to the individual stages. These assigned resources are then
managed by the local controllers. Based on observations of changes in these
measurements the performance controller can adapt the system automatically
at run time to achieve the specified goals.

As the specified system goals are usually at the application/service level, not
at per stage level, having the performance controller in a higher layer in the
control architecture gives it the ability to control the system performance us-
ing simple control algorithms. Using our control architecture the performance
controller can automatically and dynamically tune the system to achieve de-
sired performance targets, without dealing with complications or being lost in
the details of the system.

67



5 A Control Architecture for SEDA-Based Applications

5.2 An Overview of The Proposed Approach

This section presents an overview of the proposed resource management and
performance control approaches that will be presented in the following chap-
ters of this thesis, and maps these approaches to the three-layers control ar-
chitecture. As discussed in Section 2.2, processing resources are increasingly
the critical resources in today Internet services. For this reason the proposed
approach is mainly dedicated to these resources. However, our approach is
capable to take other resources, e.g. I/O bandwidth, into account.

The idea of the proposed approach is based on processing requests at each
stage as batches, which means to consider multiple requests that are queued
at a stage as a unique job unit and processing them consecutively without in-
terleaving their execution with the processing of other requests. The novelty
of our approach is that it depends on the allocation of processing resources in
the system as time slots to create these batches. Within each time slot portions
of the processing time are assigned to the individual stages, depending on the
estimated needs of each stage. At each time slot a feedback-based controller
adjusts these portions dynamically and automatically as the requirements of
the stages change. The controller allocates processing resources to stages in a
way that balances the performance of the stages, as it depends on the stages
needs, and as a result it maximizes the system end performance. This con-
troller represents the Global Controller of the three-layers control architecture
in our approach.

Considering that our approach allocates a processing unit to process a batch
of requests at one stage before moving to process another batch, which may
be from another stage, that means that this processing unit is dedicated to a
single stage during the period of batch processing. That helps isolating stages
from each other, and as a result a Local Controller can be implemented within
each stage that uses more sophisticated approaches to adjust the stage’s thread
pool sizes. For example, the local controller can use an approach that sets an
upper bound on the utilization of the processing unit that is allocated to the
stage (to process the batch) and dynamically adjusts the thread pool size based
on the measured utilization. Such an approach gives the opportunity to a fine-
grained thread-pool size control per stage that corresponds to the concurrency
level of the stage, which will be intuitively more efficient than other considera-

68



5 A Control Architecture for SEDA-Based Applications

tions. In contrast, the thread pool size manager of the original SEDA allocates
resources based on the load of the stage rather than the concurrency char-
acteristics of this stage. As a result, the number of threads in each stage is
not related to the concurrency level of the stage which leads to decreased per-
formance due to increased overhead of threads management within a stage,
context switches and resource contentions – this problem is tackled in SEDA
by setting a maximum threshold on the number of threads in a stage. As
discussed earlier, for scenarios, where the event handler of a stage uses asyn-
chronous I/O primitives, we believe that one or two threads per processing
unit are most suitable for SEDA stages.

A key parameter in our approach is the duration of the time slot that we use
to allocate the processing resources. The value of this parameter determines
batch sizes, determines the time between two assignments of processing units
to a stage, and determines also the utilization of other system resources. As a
result, this value affects the throughput of the system as well as the response
times of the individual requests. Therefore, controlling the size of the time
slot can be used to achieve a variety of performance targets. A Performance
Controller can be implemented that monitors the end to end system perfor-
mance (the performance metric that is to be controlled) and adjusts the time
slot size to achieve externally specified goals. Based on observations of the
relation between the time slot size and the controlled performance metric the
performance controller can dynamically adjust the time slot size at run time to
response to any changes in the system.

Although the proposed approach will delay requests that have to wait for other
requests at the same stage or at other stages, this approach has many benefits
that will be demonstrated throughout this thesis. However, the feasibility of
this approach comes from the fact that the tolerated response time for Internet
services is considerably larger than the needed service time for a single re-
quest. For this reason, techniques that may cause delaying responses in order
to optimize other performance metrics are applicable in Internet services.

69





6 Adaptive Resource Allocation for
Staged Services

As presented in Chapter 3, resource allocation in staged design-based services
presents many challenges. This chapter presents a strategy to allocate pro-
cessing resources in these services, which adapts the resources assigned to
each stage based on observations of the changes in the system. The chapter
presents also a validation and evaluation of the strategy through a simulation
study. Considering the three-layers control architecture which is presented in
Chapter 5, the resource allocation strategy which is introduced in this chapter
represents a global controller.

6.1 Problem Statement

6.1.1 The System Model

We consider a server with N processing chips and a staged application that
consists of M stages. Each processor may be a multi-core chip that has C

cores. In this case, a chip will have a last level cache that is shared among
cores and each core will have its private caches.

A client request arriving into the system is processed by a subset of the stages
prior to departure. Each stage is associated with a set of instructions and data.
When a processing unit resumes processing a request at a new stage, stage A
for example, during the execution of this request the processing unit spends
time loading the code and data of stage A into its caches. Since these data
and code are shared in average between all requests executing in the stage A,
if the processing unit continues processing requests from this stage it avoids
this loading time, and the request will use significantly less CPU time if both
code and data are small enough to fit into the cache memory. We consider
here in our model that a request’s private data is very small compared to the

71



6 Adaptive Resource Allocation for Staged Services

stage code and data, so that we can ignore its load time in comparison to the
stage load time. Allocating the processing unit to process a request from an-
other stage will evict the code and data structures of stage A from the cache
to replace them with the code and data of the new stage. In our model, this
effect is represented by a load time li needed for each stage i to load its data
structures and instructions into the caches of a processing unit that resumes
processing a request at the stage. In real systems, accesses to data structures
that do not exist in the cache take place during execution, not only once at
the begin of the execution, and cause multiple cache misses that need more
time to be handled. This load time is determined by the latency to access other
memory levels in addition to the memory bandwidth. Overlapping loading with
processing can reduce the wasted CPU time, if the needed memory blocks are
known in advance, however, this is not always the case.

In a multi-processor system, processing multiple requests in parallel on differ-
ent processing units may cause additional CPU time overhead related to cache
coherency effects and the contention of the concurrently processed requests
for shared resources (shared data structures, shared locks, bus bandwidth,
etc.). In our model, we categorize these effects as the overhead caused by pro-
cessing requests from the same stage in parallel on other processing units, and
the overhead caused by processing requests from other stages in parallel on
other processing units.

Within each category, we also differentiate between two types of overheads:
the overhead of running requests in parallel on other chips and the overhead
of running requests in parallel on other cores at the same chip. This differen-
tiation is motivated by the fact that when requests are processed on different
cores at the same chip they share data that exist in caches of this chip. While,
in the case of running requests on other chips, requests will need to access
data structures that reside on other chips, which is significantly more expen-
sive.

• Processing requests from the same stage in parallel:
When we allocate more than one processing unit to a stage i to process
requests from its incoming queue, multiple requests from this stage are
processed in parallel. These requests share many data structures and
variables since they are processed at the same stage –see the character-

72



6 Adaptive Resource Allocation for Staged Services

istics of the staged design Section 3.1. For this reason, shared writable
data and critical sections must be protected by mechanisms to prevent
race conditions and other effects. These mechanisms, locking for exam-
ple, may cause degrading concurrency and result in an increase of per
request processing time. As the number of requests that are processed
in parallel increases, contention for shared locks and data structures in-
creases and this processing time overhead increases even more.

In addition, as multiple copies of these shared data structures exist in
different places in the cache-memory hierarchy additional overhead may
result in when accessing writable data structures. This overhead results
from the used cache coherency protocol, which is responsible for the in-
tegrity of data stored in local caches of each processing unit. As the
number of requests that are processed in parallel from the same stage
increases, the number of processing units that have the shared data in
their local caches increases and as a result the overhead of the cache co-
herency increases.

One of the main issues that affect these overheads is the available data
rate of the different levels of cache in the processing units hierarchy.
Considering this and the fact that data rate decreases as we move to the
bottom of the memory/cache hierarchy (from the private core cache to the
main memory), we can see that processing units that share data struc-
tures that are accessed through a lower level in the hierarchy have to
share a smaller available data rate, which increase the overheads of lock-
ing mechanisms and coherency protocols.

In our model, the accumulated overhead of these effects is represented
by two parameters OHLii (OverHead results from requests that are pro-
cessed from the same stage i Locally on other cores at the same chip –e.g.
requests from Stage A that are processed on the two cores at Socket 1
in Figure 6.1) and OHRii (OverHead results from requests that are pro-
cessed from the same stage i on Remote or other chips –e.g. requests
from Stage A that are processed on cores at Socket 1 and Socket 3 in the
Figure), which are additional processing time needed per request. These
overheads increase as requests share more writable data structures and

73



6 Adaptive Resource Allocation for Staged Services

as requests spend more time in their critical sections. However, process-
ing the requests of a stage on the same chip, or more generally as close
as possible in the cache-memory hierarchy, rather than on other chips
can reduce the effect of these overheads, because of the higher speed of
communications between processing units. In addition, this can better
utilize the available data rate and memory bandwidth, since the more ex-
pensive data accesses use the larger data rates. For example, in Figure
6.1, requests from Stage A are processed on the two cores of the chip at
Socket 1. As a result, they communicate using the shared cache level (L3-
cache), which has a data rate of more than 150 GB/s in today systems
[66]. While these requests communicate with requests from Stage A that
are processed on a core at Socket 3 using cross chip communications,
which have a maximum data rate of less than 55 GB/s [177].

• Processing requests from different stages in parallel:
Since different stages may share global variables or some other data
structures and need to use shared resources, the same overheads may
appear when processing requests from other stages in parallel on other
processing units. These effects represented in our model as OHLij which
is the additional processing time needed by a request processing from
stage i as a result of processing requests from stage j in parallel on other
cores at the same chip –e.g. requests that are processed from Stage B
and Stage C on the cores of the chip at Socket 0 in Figure 6.1, and OHRij

which is the additional processing time needed by a request processing
from stage i as a result of processing requests from stage j in parallel on
other chips –e.g. requests that are processed from Stage A at Socket 1
and that are processed from Stage B at the sockets Socket 0 and Socket
2 in the Figure.

As requests from different stages share less data structures than requests
from the same stage, hence, processing requests from different stages in
parallel will cause less overhead of coherency protocols and lock con-
tention than processing requests from the same stage. However, if we
process requests from multiple stages in parallel so that they content for
a shared cache-memory level and each stage evicts the data sets of other
stages this will reduce the performance even further. In this case, mem-
ory bandwidth can be a performance bottleneck too that increases the

74



6 Adaptive Resource Allocation for Staged Services

Local RAMLocal RAM

Core 1Core 0Core 1Core 0

10 AACB

Shared CacheShared Cache

So
ck
et
 1

So
ck
et
 0 AACB

Core 1Core 0Core 1Core 0

ke
t 2

ke
t 3 BEAD

Shared CacheShared Cache

So
ck

So
ck

Local RAMLocal RAM

6 M. Sh. Al‐Hakeem

Figure 6.1: Different Communication Overheads

processing overhead.

Values of the considered overhead parameters are mainly related to the num-
ber of requests that are running in parallel in the system. As this number
increases, those values increase; and as this number decreases the values
decrease too. The values of overhead parameters also vary according to the
several system related aspects that we have already discussed, and depend
on the type of resources on which contentions among the concurrent requests
exist. A detailed study is needed to determine these relations, which is out of
the scope of the thesis and considered as a very important area for future work
in the staged design.

However, shared resources can be modeled as waiting queues [68, 74, 115]. In
our system, each of the shared resources, e.g. a lock or a shared data struc-
ture, can be represented by a queueing model, which has a finite population
size that is the number of requests (or stages) that content for this shared
resource [79]. Motivated by this fact and for simplification in our study, we
approximate the overheads by assuming a linear relationship between these
overheads’ values and the number of requests that are processed in parallel,

75



6 Adaptive Resource Allocation for Staged Services

while considering a constant effect of the other system related aspects, i.e.:

∀i, j;OHLij = OHLij(Xij) = OHLVij .Xij

and

∀i, j;OHRij = OHRij(Yij) = OHRVij .Yij

where Xij is the number of requests from stage j that are processed with the
request from stage i in parallel on cores at the same chip, and Yij is the num-
ber of requests from stage j that are processed with the request from stage i in
parallel but on other chips. OHLVij and OHRVij are system specific constants
that represent the discussed system related aspects. Hence, the total process-
ing time needed by a request at stage i is:

Υi = ei +
∑

j

OHLVij .Xij +
∑

j

OHRVij .Yij (6.1)

considering ei the mean processing time that is needed by a request at stage i
if no requests are processed in parallel.

6.1.2 Resource Allocation Problem

Considering the presented system model, the objective in this chapter is to
introduce an adaptive resource allocation algorithm to allocate the available
processing units in the system to the individual stages at run time. Our tar-
get is an algorithm that balances the performance of the individual stages to
improve the performance of the system, provides cohort scheduling in order to
benefit from locality within stages, avoids the overheads related to parallel pro-
cessing taking into account the hierarchic parallelism of the server machine,
copes with the unpredictable changes in the characteristics of the system and
the workload, and avoids oscillations in performance.

As stated earlier, a staged application is specified as a network (or graph) of
stages, see Figure 6.2. A client request is processed along a pipeline that
consists of a subset of these stages. The overall performance of the system
is limited by the performance of a bottleneck stage in the pipeline. Allocat-
ing less resources to a stage than it needs may result in having a bottleneck
and decreasing the system’s performance. To increase the system’s perfor-

76



6 Adaptive Resource Allocation for Staged Services

A B C E

(a) Simple Pipeline

C

A B E

D

(b) Network of Stages

Figure 6.2: Staged Application

mance, we must allocate more resources to this bottleneck stage. However,
allocating more resources to a stage than it needs will waste these resources.
Moreover, since all stages are competing for the same resources and given the
dynamic nature of both system workload and resource requirements of indi-
vidual stages, this increases the complexity of the problem even further.

In addition, as we allocate these resources we need to make a trade-off between
running multiple requests from the same stage and running multiple requests
from different stages in parallel in order to benefit from locality and at the same
time not to be over-committed by parallel processing overheads. Running re-
quests from the same stage in parallel will increase locality as requests reuse
data that exist in the cache, but it will increase the overhead of locking and
coherency protocols, too. On the other hand, running requests from different
stages in parallel will decrease contention for shared data structures and de-
crease the effect of coherency, as less data is shared, but this will cause more
contention for shared cache-memory levels and memory bandwidth.

6.1.3 Resource Management Goals

Before presenting the proposed resource allocation approach, we list our tar-
gets and show how this approach is related to the three-layers control archi-
tecture, which is presented in Chapter 5.

77



6 Adaptive Resource Allocation for Staged Services

Regarding the problem under consideration and the studied system model,
our approach to allocate processing resources to the individual stages of a
SEDA-based Internet service has the following targets:

1. Cohort scheduling: Staged design introduces a programming abstraction
to implement cohort scheduling policies [103], and our approach must
provide cohort scheduling in order to increase the system’s performance
through the benefit from instruction and data locality within a stage.

2. Avoid parallel processing overheads: As mentioned earlier, in the staged
design requests that are processed from the same stage share more data
than requests that are processed from different stages [77, 103, 173]. For
this reason, when processing requests from the same stage in parallel,
we allocate processing units to these requests so that they communicate
through a path with a large data rate, which means to process them as
close as possible in the processing units hierarchy (on the cores of the
same chip for example). This will reduce the overheads that result from
parallel processing of these requests, like coherency protocols and lock-
ing mechanisms overheads, and decrease their impact on performance,
because of the higher communication speed and the larger bandwidth. At
the same time, requests from different stages are processed on different
processing units that may have a lower data rate communication among
them, but never share a crucial cache-memory level, in order to avoid the
contention for available cache/memory space.

3. Balancing resource allocation to the individual stages in order to avoid
having bottlenecks in the system which can impact the whole system’s
performance, and to avoid wasting resources by giving a stage more re-
sources than it actually needs. From another point of view, this will also
balance the load on the individual processing units so that we do not
leave a processing unit idle while other units are over-loaded.

4. Adapt the allocation dynamically and automatically in order to cope with
changes in system and workload characteristics. Loads on the different
stages in the system may change at run time as will as the resource
requirements of a specific stage, as a result of changes in the behavior of
clients for example. For this reason, the allocation policy has to respond
to these changes automatically at run-time.

78



6 Adaptive Resource Allocation for Staged Services

Chapter 5 presents a three-layers control architecture for resource manage-
ment and performance control of SEDA-based applications. This architecture
consists of a local controller within each stage to optimize the usage of re-
sources that are allocated to the stage, a global controller that allocates the
available resources to the individual stages, and a performance controller that
changes the system parameters to achieve a variety of performance targets. Re-
garding this control architecture, the resource allocation approach presented
in this chapter is a global controller that balances the allocation of the available
processing units in the system to the individual stages.

6.2 The Proposed Approach

6.2.1 Resource Allocation Policy

To maximize the overall throughput of the system for given available resources,
we must balance the performance of the different stages. In the case of a sim-
ple pipeline (Figure 6.2a), the throughput of each stage must be equal to the
throughput of other stages in the pipeline. That can be achieved by a simple
policy that gives CPU time to each stage proportionally to its estimated perfor-
mance. In the general case having a network of stages (Figure 6.2b), different
stages would have different loads depending on the flow of events in the sys-
tem, so load has to be considered when assigning resources.

Additionally, in order to benefit from the staged design and to exploit the lo-
cality within stages, we have to batch the execution of multiple requests at
each stage on a processing unit before moving this processing unit to execute
requests at another stage. The size of these batches must be controlled in
order to achieve two targets: First, the size of the batches must be adjusted
in order to balance the throughput of different stages and as a result optimiz-
ing the overall system throughput. Second, the size of these batches must be
controlled to avoid oscillations in the overall throughput and to satisfy other
performance goals (response time target, resources utilization, etc.).

The idea of the proposed approach is based on this batch processing at each
stage. We consider multiple requests that are queued at a stage as one job
unit and processing them consecutively without interleaving their execution
with the processing of other requests. Our approach depends on the alloca-

79



6 Adaptive Resource Allocation for Staged Services

tion of processing resources in the system as time slots to create these batches
and to determine their sizes. Within each time slot, portions of the processing
time are assigned to the individual stages, based on observations of load and
performance of the stages in the system, which help in estimating the needs of
each stage. At each time slot a controller adjusts these portions dynamically
and automatically, so that they are changed as the requirements of the stages
change. The controller allocates processing resources to stages in a way that
balances the performance of the stages, as it depends on the stages needs, and
as a result it maximizes the end to end system performance.

6.2.1.1 Simple Pipeline

In this simple case, the system is a simple pipeline of stages. A request there-
fore passes sequentially through the M stages as depicted in Figure 6.2a. As
already mentioned, in this case we distribute, the CPU time proportionally to
the performance of the stages.

Let thi(k) be the average throughput of stage i estimated in the last sample
period k and let T be the period of CPU time which we want to allocate to the
stages in the next sample (T is the size of the time slot). To achieve the max-
imum throughput the CPU has to be allocated in the next period so that the
following relation is satisfied:

∀i, j ∈ {1, . . . ,M}; thi(k) · ti(k + 1) = thj(k) · tj(k + 1) (6.2)

where ti(k+ 1) is the CPU time that would be allocated to the stage i during the
next time slot T .

Together with the requirement that

∑
1≤i≤M

ti(k + 1) = T (6.3)

we get a linear equations system from which we can get the values of ti(k + 1)
which are the allocations in the next period T :

ti(k + 1) =
T

thi(k)
· 1∑

j thj(k)−1
(6.4)

80



6 Adaptive Resource Allocation for Staged Services

Our controller uses this formula at each time slot to calculate the CPU time
assignments to the stages during the next period. At each time slot the con-
troller has to read the estimated performance of each stage and then calculate
the new allocations.

6.2.1.2 Network of Stages

In this generic case, a request has an execution path through a subset of stages
depending on the type of this request. For example, in Figure 6.2b requests
enter the system at stage A and after being processed at stage B they go to one
of the two stages C or D depending on the request’s type, then move to stage
E and leave the system.

Let thi(k) be the estimated throughput of stage i in the last sample period,
and Si(k + 1) the number of requests in the queue of the stage i. From these
two values we can calculate the estimated processing time needed by this stage
to process all the requests in its incoming queue:

wi(k + 1) =
Si(k + 1)
thi(k)

; i ∈ {1, ..,M} (6.5)

Depending on these values, we can now calculate the portions of processing
time that are to be given to the stages in the next time slot T :

pi(k + 1) =
wi(k + 1)∑
j wj(k + 1)

(6.6)

The CPU time that is to be allocated to each stage during the next time slot is

ti(k + 1) = pi(k + 1) · T (6.7)

At this point, we have two choices: Either, we allocate these times to stages by
setting a timer which will interrupt the execution of a stage when its allocated
time elapsed, or we calculate a batch size which determines the number of
requests that are processed from the stage’s queue before moving to another
stage, based on the time that we want to allocate to the stage. Since the stages
are based on the event-driven programming model, the latter approach seems
more efficient as it does not interrupt the processing of a request, therefore
using cache locality better. For this reason, we consider this approach from
now on and derive the batch sizes by:

81



6 Adaptive Resource Allocation for Staged Services

Bi(k + 1) = ti(k + 1) · thi(k) (6.8)

Allocating CPU time this way ensures that each stage gets its required process-
ing time in the next period and as a result the throughput of the stages will be
balanced which is potential to increase the overall performance of the system.

6.2.2 Overload Protection

Since the proposed allocation policy depends on the number of requests in
the event queues, it is sensible to overload which is not avoidable in today’s
servers even with careful capacity planning – see for example what happened
to the “Microsoft Photosynth” at its first launch [23]. In overload situations, the
number of requests in the system will over-commit the available resources. In
our case the requests enter the system at the first stage. Since the CPU time
allocated to a stage is proportional to the number of requests in its queue that
means that the first stage will get the majority of CPU time, in the case of
overload. Therefore, the portions of CPU time of other stages decrease, which
will decrease their throughput and as a result decreases the overall system
throughput. To avoid this effect, we have to modify the resource allocation
algorithm so that it avoids this behavior.

At each period we calculate the estimated CPU time wi(k+ 1) needed for stage i
as previously given in equation 6.5 except for the entrance stage (stage A) and
allocate for each stage i:

ti(k + 1) = wi(k + 1); 2 ≤ i ≤M (6.9)

If the sum of these values is less than the size of the used time slot T , we give
the remaining time in the next time slot to the first stage to process requests
from its queue. If not, the first stage will wait until the following time slot to be
executed. Allocating CPU time this way ensures that we only accept requests
at the entrance stage that can be processed in the next time slot, therefore
avoiding over-commitment of the processing resources.

82



6 Adaptive Resource Allocation for Staged Services

Proc.
1

Proc.
3

Proc.
N

Proc.
2

Processing
Batch(2,T)

Batch(4,T)

Batches 
(stage, Processing Time)

Processing 
Unit

Batch(5,τ5)

Batch(3, τ3)

Batch(4, τ4)

Batch(1, τ1)
Requests

Figure 6.3: Batches Processing

6.2.3 The Case of Multiple Processing Units

Up to this point the proposed policy does not consider the existence of mul-
tiple processing units and a parallelism hierarchy in the system. As stated
earlier, the proposed approach is based on allocating the processing resources
as time slots of the size T to the staged service. At each time slot we calcu-
late the processing time that is to be allocated to each stage within this time
slot. After that, we create batches of stages requests (events) and then con-
sider each batch as a job unit to be processed by a processing unit. In the case
of running the staged server on a machine consisting of N processing units
(multi-core system , SMP or a cluster), the available processing time within a
time slot of the size T will be T.N.

As previously, let thi(k) be the estimated throughput of stage i in the last sam-
pling period. As the number of allocated processing units to a stage may
change at each time slot, for this reason, the stage’s throughput considered
here is given by the number of requests processed per time unit per processing
unit. This throughput can be calculated by dividing the number of finished
requests at this stage within the last sampling period by the sum of processing
times allocated to the stage within this period. In addition, let Si(k + 1) be the

83



6 Adaptive Resource Allocation for Staged Services

number of requests that exist in the queue of the stage i. The values wi(k + 1)
and pi(k + 1) can also be calculated from the equations 6.5 and 6.6.

However, the processing time to be allocated to each stage during the next
time slot is:

ti(k + 1) = pi(k + 1).T.N ; 1 ≤ i ≤M (6.10)

and to avoid the impact on performance in the case of overload, allocated pro-
cessor times have to be calculated like in Section 6.2.2.

Depending on these values, we now create batches of stages requests as fol-
lows:

Firstly, for each stage i, we can write:

ti(k + 1) = ciT + τi ; τi < T, ci ∈ N

Then, from the requests in the queue of stage i we create ci batches of the size
(T.thi(k)); each one of these batches will need approximately one processing
unit for the whole period of the next time slot T to be processed. We create also
one batch of the size (τi.thi(k)) which will need approximately τi time units to
be processed. After creating these batches from each stage, we put them in a
run queue that is shared among the processing units, to be processed in the
next time slot –see Figure 6.3. Each job in this queue is a batch of requests
from a unique stage, and we sort these jobs in descending order depending
on the time each job needs to be processed, so that we can easily select the
next batch that needs the most processing time. Each batch is allocated to one
processing unit and the processing unit processes all the requests in the batch
before taking the next batch. Figure 6.4 shows how the processing units are
allocated to the stages at each time slot according to this scheduling policy. If
the batches’ queue (jobs’ queue) is empty, an idle processing unit tries to pro-
cess requests from the batches that are processed by other processing units,
to avoid wasting a very long idle time.

Now, considering the hierarchic parallelism in our model how to allocate this
hierarchy of processing units to the individual stages?

84



6 Adaptive Resource Allocation for Staged Services

T TT
CPU 1 B(2,T)

B(4,T) B(5,T)

B(4,T) B(1,T)

B(4,T)CPU 2

B(5,τ5)

B(3, τ3) B(4, τ4)

B(1, τ1) B(1, τ1)

B(3, τ3)B(2, τ2) B(3, τ3)

CPU 3

CPU 4

B(5,T)

Time

Figure 6.4: Allocating Processing Units to Stages Based on Batches Processing.

As the benefit from locality within a stage is a main target of the staged de-
sign, scheduling decisions are mainly related to the stage’s working set size.
In this context stage’s working set means the code and data that are accessed
by a request that is processed at this stage1. If the stage’s working set fits into
the cache of the processing unit, we can avoid the overhead of cache misses by
processing multiple requests from a stage that has its working set in the cache.

In general, the relation between the stage working set size and the size of
the different levels of memory-cache hierarchy may vary. However, since ap-
plications can use CPUs, cores and threads topology information exported by
the operating system [146], a more sophisticated approach is to combine a
Processing Units Tree (PUT) with our resource allocation approach. The Pro-
cessing Units Tree represents the hardware hierarchy of the processing units
and the scheduling domains in the system [59], and it can be used to guide the
controller during the allocation of batches to the individual processing units
so that we process batches from the same stage as close in the tree as possible
to reduce the overhead resulting from parallel processing. Figure 6.5 shows
a PUT that represents a system which has four chips and each chip has two
cores. More complex tree structures (more levels and more nodes) are possible
that represent more complex hardware architectures, since future system are
expected to have higher memory hierarchy and more parallelism [46, 80, 90].
Allocation policies that consider the stage’s working set size when co-allocating
batches from different stages on a node in the tree are also possible.

1Stage’s working set in this sense is comparable with the term “Task Region” in the OpenMP
terminology [24].

85



6 Adaptive Resource Allocation for Staged Services

However, here we consider two cases regarding the relation between stage’s
working set (SWS) and the cache hierarchy:

1. SWS ≤ Per-Core-Cache:
In this case the stage’s working set fits into the core’s private cache (usu-
ally L2-cache) and we can use the proposed approach without any modi-
fication only by considering each core as an independent processing unit
and taking scheduling decisions at core’s level with replacing N in Equa-
tion 6.10 by N.C, where C is the number of cores per chip. Although in
this case applying the scheduling policy at the chip’s level is possible, ap-
plying it at the core’s level will increase the performance further more. In
this case, the number of requests from the same stage that are processed
in parallel on other cores on the same chip will decrease and as a result
decreases the overhead of accesses to the next cache level (L3) which are
more expensive.

2. Per-Core-Cache < SWS ≤ On-Chip Shared Cache:
In this case the stage’s working set fits into the shared on-chip cache
(usually L3-Cache), and we take the scheduling decision at the chip’s
level (Process a batch by a chip) to avoid the contention among multiple
different stages running on the same chip for the shared cache.

Many other cases are also existed that depend on the hardware architecture
and the different sizes of caches and stage’s working sets. A detailed study of
these different cases and their effects is an area for future work, especially the
effects of the parallelism hierarchy when the stage working set does not fit into
both cache levels.

6.3 Evaluation and Analysis

We validate our proposed scheduling policy by comparing it with other schedul-
ing policies under various load conditions through a simulation study. The
experiments build on the general case of a network of stages (see Figure 6.2)
since this is the generic case that can easily be reduced to simpler cases such
as a pipeline of stages.

86



6 Adaptive Resource Allocation for Staged Services

Server

Chip
1

Chip
2

Chip
3

Chip
41 2 3 4

Core
2

Core
1

Core
2

Core
1

Core
2

Core
1

Core
2

Core
1

Figure 6.5: Processing Units Tree

6.3.1 Experiments Environment

In order to validate our proposed approach and to evaluate its performance, we
apply a simulation study on a prototype of a staged design-based service that
we have implemented using the Möbius environment [1]. In our prototype, the
system consists of five stages as depicted in Figure 6.2b2. Requests enter the
system at the first stage (stage A), with exponentially distributed inter-arrival
times. Then, these requests sequentially pass through other stages until they
leave the system at stage (E). After being processed at stage (B), a request
passes to one of the two stages (C or D) depending on the request type. Re-
quests arriving at each stage are put in a dedicated waiting queue. When a
processing unit is given to a stage to process requests from its queue, the
stage must first load its common data structures and code, which takes a time
li. Next, requests from the queue are processed without further need to load
data. In our implemented model, a single request will have a service time at
stage i which is derived from an exponential distributed value with a mean ei,
and the requests in a queue are processed in a first in first out (FIFO) order. We
distinguish between the two stages (C and D) by giving the stage (C) a larger
mean service time to make it a bottleneck stage in the work-flow.

Here, we consider that a stage’s working set fits into the shared on-chip cache
level but not in the per core private caches, for this reason our approach makes

2We have conducted many of the experiments that are presented in what follows on other
prototypes too (a simple pipeline and a more complex network of stages). The results for
these prototypes was very similar to the results for the prototype that is presented here.

87



6 Adaptive Resource Allocation for Staged Services

scheduling decisions at chip’s level. In addition, we ignore the additional cache
space that is needed as a result of processing multiple requests from the same
stage on a chip, since in the staged design it is very small in comparison to the
stage’s working set size.

6.3.2 Experimental Results

The presented experiments evaluate the ability of the proposed approach to
benefit from stage’s locality, and evaluate the effect of a variety of system’s
characteristics on the performance of our approach. However, we begin with a
simple evaluation of the performance benefit of cohort scheduling policies.

6.3.2.1 Evaluation of Cohort Scheduling Effect

To evaluate the effect of cohort scheduling on performance we have imple-
mented a prototype of an application that consists of two stages. The evalua-
tion is done by executing the first stage once then executing the second stage,
and after that executing the first stage again many times without interleaving
executions of the second stage. In each execution we measure the needed time
to finish the stage execution. At the beginning we execute the first stage then
the second stage once then the execution delayed for one second before taking
measurements. The reason of this action is to avoid unexpected overheads
that can cause the first execution to take a very long time such as the memory
reservations and the initial creation of data structures. Figure 6.6 shows the
code used for our evaluation.

Several experiments with different codes and functionalities of the stages “Stage1”
and “Stage2” have been carried out. The results of these experiments have
shown values of a stage load time which vary from less that 10% up to more
than 200% of the stage execution time. This load time is calculated as the dif-
ference between the time of the first execution of Stage1 after the one second
delay and the average time of the following executions. As can be seen from
Figure 6.6, we have used the Time Stamp Counter [179] to measure how long it
takes for an execution of a stage. Table 6.1 shows examples of our experiments
results3. In the first experiment (Exp.1 in the table) Stage1 reads an array of

3The presented results are the average of three runs, and they are given by the number of the
system clock ticks

88



6 Adaptive Resource Allocation for Staged Services

1C:\Documents and Settings\Shadi\Desktop\TextFile1.c

#include <stdio.h>
#include <unistd.h>
#include "tsc-test.h"
#include <time.h>

int i;

unsigned long long start, stop;

unsigned lo1,lo2,hi1,hi2;

unsigned long long time_Val[25];

int main()
{ 
  i=0;

  Stage1();  

  Stage2();  

  usleep(1000000);

  printf("Starting...\n");

  while(i<25)
    { 
   asm volatile ("rdtsc" : "=a" (lo1), "=d" (hi1));

      Stage1();
 
      asm volatile ("rdtsc" : "=a" (lo2), "=d" (hi2));
  
      start = (unsigned long long) hi1 << 32 | lo1;
      stop = (unsigned long long) hi2 << 32 | lo2;

      time_Val[i]= stop-start;

      i++;
    }
  
   i=0;
  
  
   while(i<25)
    {
      printf("%d\n",time_Val[i]);
     
   i++;
    }
}

Figure 6.6: Cohort Scheduling Evaluation Code

89



6 Adaptive Resource Allocation for Staged Services

Exp.1 Exp.2 Exp.3
SWS Size (KB) 10 374 748

First Run (ticks) 9061397 187597 361531
Next Runs (ticks) 8710881 89037 184247

Table 6.1: Performance Benefit of Cohort Scheduling

characters from the memory and writes them in a file. This experiment shows
a small difference between the time it takes for the first run of the stage and
the next runs. In the other experiments (Exp.2 and Exp.3 in the table), Stage1
also reads an array of characters from the memory and writes them to another
array in the memory. We can see here a large difference between the first and
the next runs of the stage.

A detailed study of the factors that affect the benefit from cohort scheduling,
especially the effect of stage’s code size and stage’s data size combinations, de-
serves more investigations, which is out the scope of this thesis. However, even
with small values of cohort scheduling performance benefit, such scheduling
policies are valuable because of the highly frequent context switches in SEDA-
based server applications, which may happen whenever events pass from one
stage to another. For example, experiments have shown that a web server
which is based on SEDA can cause more than 30, 000 context switches per
second [129, 167].

6.3.2.2 Unique Processing Unit

Now we want to evaluate the efficiency of the proposed approach as a cohort
scheduling policy. Since existing cohort scheduling policies have been evalu-
ated for uni-processor systems [76], and to avoid the effects of other factors in
the system, we consider a uni-processor system in this section.

The presented experiments compare our approach with three basic approaches
called “Random”, “All” and “Gated”. In the “Random” approach, the CPU is
given to one stage selected randomly to execute exactly one request from its
queue. This approach ignores the cache effect and we use it as a base to see
the ability of the compared approaches to exploit the locality within a stage.
This approach can also be considered as a representation of the two tradi-
tional concurrency approaches, event-driven and thread-based concurrency –

90



6 Adaptive Resource Allocation for Staged Services

see Section 2.3. In contrast, “All” is the optimal approach regarding the ben-
efit from locality within stages. In this approach, the processor is supplied
to the stages in a simple front-wave algorithm. At each stage, the processor
executes all the requests pending in its queue as a batch before continuing
to process requests at the next stages. The third approach is the “Gated” ap-
proach, which have been implemented for staged database systems [76] and
staged web servers [103]. This approach is similar to the “All” approach but it
puts a threshold, called the gate size (g), on the number of requests processed
as a batch at each stage. If there are less than g requests in the queue of a
stage, all of them will be processed as one batch, while otherwise the CPU is
given to the next stage after processing only g requests from the stage’s queue.

It is clear that the performance of our approach is affected by the value of T
which is subject to the performance controller, while the performance of the
“Gated” approach is affected by the gate size g. In both cases, these values de-
termine the size of batches which affects the benefit from locality within stages.
Figure 6.7a and Figure 6.7b show the throughput of the “Gated” approach and
the throughput of our approach using different values of g and T . In our ex-
periments, both parameters were independently tuned, and we have chosen
suitable values for T and g which give a high throughput and avoid having a
very large batch size which will penalize response times.

In the presented results of this section, the mean processing time that is
needed by a request at stage i (ei ) takes the values: 1 ms for stages A, B
and D; 2 ms for stage C and 0.5 ms for stage E. For each stage the stage load
time li is equal to 1 ms. T is equal to 200 ms and g is equal to 150. Both values
have been determined experimentally, so that the approaches show high and
comparable performance. Other values of these parameters have shown simi-
lar results – see our previous evaluation results in [11]. The presented results
are the average of multiple simulation runs with relative confidence intervals
of 10% and a confidence level of more than 90%.

1. Throughput and Response Time:
In this experiment we compare the approaches under different load con-
ditions. Figure 6.8 shows how the average system throughput (within a
time of 100 seconds) changes under different request arrival rates as well
as under overload.

91



6 Adaptive Resource Allocation for Staged Services

240

245

250

255

260

265

270

T
h

ro
u

g
h

p
u

t 
R

e
q

./
S

e
c.

Gated

230

235

240

0 20 40 60 80 100 120 140 160 180 200

Gate Size

(a) Gate Size’s Effect

250

255

260

265

T
h

ro
u

g
h

p
u

t 
R

e
q

./
S

e
c.

MDPC

240

245

0 0.05 0.1 0.15 0.2 0.25 0.3

Gate Size

(b) Time-Slot Size’s Effect

Figure 6.7: Gate & Time Slot Size Effect

92



6 Adaptive Resource Allocation for Staged Services

50

100

150

200

250

300
T

h
ro

u
g

h
p

u
t 

R
e

q
./

S
e

c.

DPC

MDPC

Gated

All

Random

0

100 150 200 250 300 350 400 450 500 550 600

Arrival Rate Req./Sec.

Figure 6.8: System Throughput vs. Requests Arrival Rate

We can see that our proposed allocation policy “MDPC”4 can benefit from
cache locality and can achieve almost the same peak throughput as the
optimal approach “All” while avoiding performance degradation in cases
of overload, because it limits the number of requests that are processed
at the first stage to avoid over-committing the system. The “All” approach
suffers from performance degradation when the requests arrival rate in-
creases over the saturation point of the system, because the batch size in-
creases dramatically leading to increasing end-to-end times for requests.
The “Gated” approach behaves similar to our approach, but a limitation
of this approach is the fixed batch size (the gate size g), while in our
approach the batch size changes automatically, according to the system
characteristics. The proposed approach without the modification for over-
load protection, called “DPC” in the Figure, suffers as expected from per-
formance degradation under overload.

Figure 6.9 shows that the average response time using our approach is

4MDPC stands for Modified Demand/Performance Control. We give our approach this name
since it depends on both the demand on the stage and its performance to allocate resources.
The word “Modified” is added here because of the modification in the algorithm that we made
for overload protection – see Section 6.2.2.

93



6 Adaptive Resource Allocation for Staged Services

3.50

4.00

2 00

2.50

3.00

Ti
m
e 
Se
c.

MDPC

1 00

1.50

2.00

Re
sp
on

se
 T MDPC

Gated

All

Random

0.00

0.50

1.00 Random

0.00

0 50 100 150 200 250 300 350

Arrival Rate Req/Sec

Figure 6.9: Average Response Time

slightly larger compared to “All” and “Gated”. This increase is an expected
result of accepting additional requests at each time slot. However, that
results in having requests to be served at each stage rather than only
a front-wave processing which is used in “All” and “Gated” and could
cause negative effects on the utilization of other resources, like I/O sys-
tem. Furthermore, we are able to control this increase in response time
by adjusting the value of the used time slot size T within the performance
controller.

2. Dynamic Changes Effect:
Figure 6.10 shows the system throughput under dynamic load. In this
experiment the system runs for 20 seconds with a fixed arrival rate, then
this arrival rate is doubled for 10 seconds before returning to its original
value. We can see that the throughput of the “DPC” approach first de-
creases as a result to giving the majority of CPU time to the first stage (as
expected), but after returning the request arrival rate to its original value
the throughput increases because the last stages have more requests in
their queue and consequently get more CPU time. In contrast, the per-
formance of “MDPC” increases because the system can process more re-
quests in each time slot. The “Gated” approach is similar to our approach
but as previously mentioned the improvement of the system throughput
under this approach is a subject of the gate size.

94



6 Adaptive Resource Allocation for Staged Services

200

250

300

350
T

h
ro

u
g

h
p

u
t 

R
e

q
./

S
e

c.

MDPC

Gated

DPC

100

150

0 20 40 60 80 100 120

Time Sec.

Figure 6.10: System Throughput under Dynamic Load

In this experiment the “All” approach shows large oscillations in through-
put as can be seen in Figure 6.11. As the requests arrival rate increases,
the batch size increases gradually and when the arrival rate returns to its
original value, the batch size decreases also gradually. As a result, the
observed system throughput depends on the elapsed time between ob-
servations (in our experiment, we measured the throughput in 2 seconds
intervals).

Figure 6.12 shows the system performance under another form of dy-
namic load. In this experiment, we show the effect of load spikes on the
performance of the different approaches. After running the system for
20 seconds, a large number of requests arrive at the system simultane-
ously. We can see that the throughput of “All” sharply decreases and then
sharply increases because of the very big batch size. “DPC” shows a sim-
ilar behavior but the decrease in throughput is less and more controlled
because of using the size of the time slot T to limit the batch size. “MDPC”
and “Gated” show robust throughput as previously. Their throughput in-
creases to the maximum and then decreases after finishing processing

95



6 Adaptive Resource Allocation for Staged Services

0

100

200

300

400

500

600

700

800
T

h
ro

u
g

h
p

u
t 

R
e

q
./

S
e

c.

All

0

0 20 40 60 80 100 120

Time Sec.

Figure 6.11: "All" Throughput under Dynamic Load

the requests which are still in the queue as a result of the load spike.

The previous experiments show the effect of changes of requests arrival
rate in the system. We continue to investigate the performance of “MDPC”
and “Gated” approaches considering another dynamic effect as depicted
in Figure 6.13. Here the ratio of requests that go to the stages (C) and
(D) changes dynamically and therefore influences the demand on the bot-
tleneck stage (C). After running the system for 20 seconds, the ratio of
requests that go to the stage (C) decreases from 50% to 5% (that means,
5% of all requests enter the system go to (C) while 95% go to (D)) for 30
seconds and then this ratio goes back to its original value of 50%. Af-
ter running the system for another 50 seconds the ratio increases to 95%
again for 30 seconds before it returns to 50%. We can see that the sys-
tem throughput for both approaches increases with decreasing number of
bottleneck requests. However, we can also see that our approach “MDPC”
can benefit from this change slightly better than the “Gated” approach
because of the ability to adjust batch sizes dynamically which results in
processing more requests. The same effect is visible for increasing the
number of bottleneck request. While both approaches show decreasing
throughput, the impact on “MDPC” is less than on “Gated”.

96



6 Adaptive Resource Allocation for Staged Services

100

150

200

250

300

350

400

450

T
h

ro
u

g
h

p
u

t 
R

e
q

. 
/S

e
c.

MDPC

Gated

All

DPC

0

50

100

0 10 20 30 40 50 60

Time Sec.

Figure 6.12: Load Spike Effect

220

230

240

250

260

270

280

290

T
h

ro
u

g
h

p
u

t 
R

e
q

./
S

e
c.

MDPC

Gated

200

210

10 30 50 70 90 110 130 150

Time Sec.

Figure 6.13: Bottleneck Requests Effect

97



6 Adaptive Resource Allocation for Staged Services

6.3.2.3 Model Parameters Effects

Returning to the case of multiple processing units, in the following experi-
ments, we use the model to compare our approach to a centralized run queue
approach, a static allocation approach that depends on off-line optimization
and to the wave-front cohort scheduling approach “Gated”. Here we are inter-
ested in the effect of the model parameters on the performance of the proposed
scheduling approach and on the other compared approaches.

The centralized run queue approach imitates the case of standard event driven
model and ignores cache affinity. An idle processing unit processes the first
request in a shared run queue regardless of to which stage it belongs. In the
“Gated” approach, the processing units in the system are allocated to a stage,
process a maximum of g (gate size) requests from its queue before continuing
to process requests from other stages in a wave-front fashion. The off-line opti-
mization based approach, allocates the processing units statically to the stages
depending on the expected requirements of the stages during execution.

In the presented results, the simulated server machine has 16 processing units
organized as eight dual core chips. The mean processing times, which are
needed by a request at the different stages, are like in the previous experi-
ments: 1 ms for stages A, B and D; 2 ms for stage C and 0.5 ms for stage E.
∀i; li = ei, except the first experiment in which we vary this value. T is equal to
100 ms and g is equal to 150.

As we allocate processing units in these experiments at chip level, we set
(∀i, j; OHLVij = 0), except in the last experiment in which (∀i; OHLVii = 1%.ei)
and (∀i, j, i 6= j; OHLVij = 0). The values of (OHRVij) will be specified for each
experiment in what follows.

Like in the previous section, the presented results here are also the average
of multiple simulation runs with relative confidence intervals of 10% and a
confidence level of more than 90%.

1. Stage’s Working-Set Size Effect:
In this experiment, we only consider the overhead of loading the stage’s
working set into the cache when it is allocated a new processing unit to be
executed on it, and we ignore the overheads of parallel processing. (i.e.,

98



6 Adaptive Resource Allocation for Staged Services

3,600

4,100

2 600

3,100

eq
/S
ec

2,100

2,600

ro
ug
hp

ut
 R
e

Static

MDPC

Gated

1,100

1,600Th
r

CQ

600

,

0% 50% 100% 150% 200% 250% 300%

Load Time/Processing Time

Figure 6.14: Stage Load Time Effect

li > 0, ∀i, j;OHLVij = 0 and ∀i, j;OHRVij = 0).

Figure 6.14 shows that as the load time of the stage working set increases
in comparison to the average request processing time, the performance of
the centralized queue approach (CQ in the Figure) which ignore locality
(while favoring load balancing) decreases dramatically. In contrast, the
other three approaches that take data locality in account can benefit from
this locality to increase the system throughput. The figure shows that the
performance of the static allocation approach is almost not affected as
the load time increases, because the stage’s working set is loaded into
the cache of the processing units allocated to this stage only once at the
beginning. When we compare our approach (MDPC in the Figure) to the
Gated approach, we can see that since our approach causes less loads
of a stage’s working set per batch its performance degrades less than the
performance of the Gated approach as the load time increases.

A similar effect of the stage’s working-set size can be seen if we fix the
size of the working set and change the number of processing units in the
system. In Figure 6.15 we set ∀i; li = ei. The figure shows that as the
number of processing units increases both the Static approach and the

99



6 Adaptive Resource Allocation for Staged Services

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000
T

h
ro

u
g

h
p

u
t 

R
e

q
./

S
e

c.

Static

MDPC

Gated

CQ

0

1,000

5 10 15 20 25 30 35 40

Processing Units Num.

Figure 6.15: Processing Units Number Effect

MDPC approach can benefit more from this increase as they cause less
increase in the number of cache loads.

2. Overhead of Concurrent Requests From the Same Stage:
In this experiment, in addition to the stage’s working set load time, ex-
ists an overhead resulting in from processing multiple requests from the
same stage in parallel on different chips, (i.e., li > 0, OHRVii > 0 and
∀i, j, i 6= j;OHRVij = 0).

Figure 6.16 shows that the performance of the centralized queue ap-
proach, which ignores data locality, outperforms the performance of the
Gated approach as the overhead increases in comparison to the average
request processing time. In the Gated approach, the processing units in
the system are allocated to a single stage. This increases the number of
requests processed from the same stage in parallel, which increases the
total processing time needed per request. MDPC and Static favor allocat-
ing less processing units for a longer time to a stage, and for this reason
the benefit from locality still not over-committed by parallel processing
overhead.

3. Overhead of Concurrent Requests From Other Stages:
In this experiment, one more overhead is considered, that is the overhead

100



6 Adaptive Resource Allocation for Staged Services

3,500

4,000

2,500

3,000

/S
ec

2,000

2,500

ug
hp

ut
 R
eq

/

Static

MDPC

1,000

1,500

Th
ro
u

Gated

CQ

0

500

0% 10% 20% 30% 40% 50%

Overhead / Processing Time

Figure 6.16: Parallel Processing Overhead Effect of Same Stage Requests

resulting in from processing requests from other stages simultaneously
on the other chips. Although this overhead should be small in the staged
architecture, as stages are designed to have their private code and data
structures, it is possible that this overhead still exists because of shared
global variables across stages and contention for other resources.

In this experiment li > 0, ∀i, j; OHRVij > 0, so that ∀i;OHRVii = 10% × ei,
and we change the value of OHRVij ; i 6= j. The experiment shows how the
performance of the different policies affected as the relation between the
two values changed – the value of the overhead of concurrent requests
from the same stage and the value of the overhead of concurrent requests
from other stages.

Figure 6.17 shows the result of this experiment. We can see that the
performance of the three approaches, Static, Gated and MDPC, degrades
as (OHRVij ; i 6= j) increases in comparison to (OHRVii). However, the
performance of the Gated approach degrades less than the other two
approaches and the performance of the Static approach degrades even
more than our approach. When the overhead of concurrent requests from

101



6 Adaptive Resource Allocation for Staged Services

3,500

4,000

2,500

3,000

/S
ec
.

2,000

2,500

ug
hp

ut
 R
eq

./

Static

MDPC

1,000

1,500

Th
ro
u

Gated

0

500

0% 50% 100% 150% 200% 250% 300% 350% 400%

Other_Stages_Overhead / Same_Stage_overhead

Figure 6.17: Parallel Processing Overhead Effect of Requests from Other Stages

other stages is almost equal to the overhead of concurrent requests from
the same stage (i.e. OHRVij = OHRVii), our approach and the Gated ap-
proach show almost the same performance, and after this point the Gated
approach show the best performance.

The reason of this behavior is that the Gated approach allocates all the
processing units to process the requests from a single stage and a pro-
cessing unit is moved to process requests from other stages only when
processing the batch of the current stage has been finished. As a result
the overhead of concurrent requests from other stages is the minimum.
In contrast, this overhead is the maximum in the case of the Static ap-
proach.

4. Dynamic Changes Effect:
In this experiment, the characteristics of the workload on the system
change dynamically during the execution, so that the proportion of bottle-
neck requests (requests that go to the bottleneck stage (C) in Figure 6.2b)
changes (increases in Figure 6.18a and decreases in Figure 6.18b) after
running the system for thirty seconds and returns to its original value
after thirty more seconds. The parallel processing overheads are ignored,

102



6 Adaptive Resource Allocation for Staged Services

i.e., ∀i, j; OHRVij = 0 and OHLVij = 0.

In Figure 6.18a, we begin with 50% bottleneck requests that increase to
95%. The figure shows that the performance of all three approaches de-
creases as the number of bottleneck requests increases. However, this
causes more decrease in the performance of the Static approach. The
reason of this behavior, in addition to the extra processing time needed
to serve more bottleneck requests, is that this approach does not change
the resource allocation to the stages dynamically which wastes the idle
time of the processing units that are allocated to stage (D) while stage
(C) needs more processing power. That is not the case in the other two
approaches which balance the allocation at run time.

Similarly, in figure 6.18b we begin with 50% bottleneck requests that de-
crease to only 5%. The MDPC approach and the Gated approach can ben-
efit from the surplus processing power to process more requests and as
a result increase the system throughput. The Static approach, like in the
previous experiment, do not re-allocate idle time of processing resources
that are allocated to stage (C) to stage (D) which have more requests now
to be processed.

6.3.2.4 Parallelism hierarchy effect

In this experiment, we investigate how the performance of our approach is
affected by the processing units hierarchy. We consider here that

∀i; li = ei, OHRVii = 10%.ei, OHLVii = 1%.ei

and all other overheads are equal to zero.

The number of simulated processing units is always 16 processing units, but
we change the organization of these processing units as 16 single-core chips,
8 dual-core chips, 4 quad-core chips, 2 chips with eight cores, and a single
chip with 16 cores, and see how the performance of the system is affected by
these changes. In all organizations caches are as previously – a private cache
per core and a shared cache per chip.

103



6 Adaptive Resource Allocation for Staged Services

4,500

5,000

ec

3 000

3,500

4,000

hp
ut
 R
eq

/S
e

Static

2,000

2,500

3,000

Th
ro
ug
h

MDPC

Gated

1,500

10 20 30 40 50 60 70 80

TimeTime

(a) Increasing Bottleneck Requests

4,500

5,000

ec

3,000

3,500

4,000

hp
ut
 R
eq

/S
e

Static

2,000

2,500

3,000

Th
ro
ug
h

MDPC

Gated

1,500

10 20 30 40 50 60 70 80

TimeTime

(b) Decreasing Bottleneck Requests

Figure 6.18: Dynamic Behavior

104



6 Adaptive Resource Allocation for Staged Services

3500

4000

3000

ec

2000

2500

hp
ut
 R
eq

/S
e

MDPC

1000

1500

Th
ro
ug
h MDPC

Gated

500

1000

0

1X16 2X8 4X4 8X2 16X1

Cores Number X Chips NumberCores Number X Chips Number

Figure 6.19: Parallelism Hierarchy Effect

From Figure 6.19, we can see that the performance of our approach increases
as the number of cores per chip increases. This behavior is a result of avoiding
the more expensive overheads resulting from “remote” processing of requests
from the same stage on other chips. In the case of a single chip with 16 cores,
our approach and the Gated approach are almost similar as they both allocate
all the processing units to a single stage before moving to process other stages,
however, in the experiment we can see that the performance of the Gated ap-
proach outperforms our approach; the reason is that in our approach the cores
of the chip wait until all the requests of the batch from the stage are processed
before being allocated to other stages. We do that to avoid the contention of
the stages for the shared cache level, which can impact the performance even
more, depending on the needed processing time per request and the stage’s
working sets sizes. The Gated approach ignores shared cache contention, and
allocates idle cores immediately to the next stage. As the overhead of this
behavior is not simulated in our model, for this reason, the Gated approach
shows better performance.

The impact of our trade off between allocating idle cores to other stages and

105



6 Adaptive Resource Allocation for Staged Services

avoiding shared cache contention can be seen if we compare the performance
of the case of 4 cores per chip with the case of 8 cores per chip; here we can
see that the performance of our approach in the 4 cores case is slightly better
than the performance of the 8 cores case since in the later case more cores can
stay idle before being allocated to other stages; however even with the impact
of this idle time the performance is still better than the performance of the
Gated approach.

6.4 Discussion

This chapter has introduced an adaptive scheduling policy to allocate process-
ing resources in Internet services that are based on the staged event-driven ar-
chitecture (SEDA). Experimental results have demonstrated that the proposed
policy leads to a better performance under the investigated system charac-
teristics while avoiding performance degradation under overload and dynamic
changes in the system, by adapting the resources allocated to each stage based
on observations of the changes in the stages load and performance.

It has been shown that our approach can benefit from locality within stages
to increase system throughput and it can decrease the effect of parallel pro-
cessing overheads that degrade the performance of existing cohort scheduling
approaches dramatically. In contrast to the approaches that depend on off-
line optimization, our approach can automatically adapt resource allocation
and sustain high performance even in the case of dynamic changes in the sys-
tem, as it adjusts resource allocation among the different stages on the basis
of short-term demand estimates. The experiments have also shown that our
approach can benefit from the chip multi-processing trend in today’s micro-
processor technology, which tends to increase the on chip parallelism (e.g. the
number of cores per chip).

The proposed approach allocates the processing units to the stages by schedul-
ing the requests in the stage’s queue to be processed as batches, which is a
policy that provides many benefits. Firstly, batches present a compromise be-
tween a shared or centralized run queue (among multiple processing units),
which promotes load balancing aims but decreases cache efficiency, and be-
tween traditional cache affinity schedulers which utilize per-processor run

106



6 Adaptive Resource Allocation for Staged Services

queue. Synchronization overheads can also become an issue in large scale
multi-processors systems. A second benefit of scheduling requests as batches
rather than individual requests is that it can reduce these overheads since it
reduces the contention for the shared run queue [51]. Moreover, in addition
to increase the benefit from locality within a stage, batching the execution of
multiple requests from a stage on a processing unit decreases the number
of requests from the same stage that are processed simultaneously on other
processing units and as a result decreases the memory accesses across the
processing units which cause additional processing overheads [156].

In our experiments we have considered that the stages are based on the event-
driven programming model, and they use a single execution thread per pro-
cessing unit. However, even in the case of multi-threaded stages, processing
a batch of requests from the same stage at a processing unit can benefit per-
formance as it causes locating sharing threads onto the same processing unit.
As a result these threads incidentally perform prefetching of shared regions
for each other, and they help to obtain and maintain frequently used shared
regions in the processing unit local caches [156].

As stated earlier, the presented resource allocation policy is a part of a three-
layers control architecture that represent the global controller – see Chapter
5. This global controller depends on a local controller that exists in each of
the different stages. The local controllers collect, analyze, and report a variety
of metrics at a per stage level. The global controller interacts with these local
controllers to get these information, which are required to provide the global
resource management. In the case of our global controller these information
contain an estimation of the stage’s throughput and the size of the stage’s
queue. As a result of this controllers interaction, the accuracy of the local
controllers affects the efficiency of the global controller. For example, in our
experiments local controller have used exponential averaging to estimate the
the throughput of the individual stage. The accuracy of these estimation affect
the portions of processing time that are allocated to each stage. However, a
benefit of our approach is that it depends also on the number of requests in
the stages’ queues, and as a result it can improve the allocations in the subse-
quent time slots even if the local controllers fail to provide accurate estimation
of the stages’ performance.

107





7 Adaptive Performance Control for
Staged Services

Although the Staged design emerges as a programming paradigm to imple-
ment high performance Internet services that support massively concurrent
demands, it presents many challenges when the system is to be tuned to
achieve a desired performance target or to guarantee a determined service
level. This Chapter demonstrates an adaptive control approach that automati-
cally manages system resources in order to control the performance for staged
applications. This approach builds on the three-layers control architecture
(Chapter 5) and is based on a combination of the adaptive resource alloca-
tion policy presented in the previous chapter (Chapter 6) and a feedback based
performance controller.

7.1 Performance Control Challenges

As discussed throughout previous chapters, the staged design has emerged
as a programming paradigm to implement high performance Internet services
that support massively concurrent demands. This design avoids many pitfalls
related to the conventional concurrency models, and presents system design
advantages at hardware- and software engineering level. However, the staged
design introduces also many challenges when the system is to be tuned to
achieve a desired performance target or to guarantee a determined service
level.

In staged design-based Internet services quality guarantees for requests pro-
cessing are difficult to maintain for many reasons. First, requests are con-
tinually generated in large volumes by external and internal sources such as
clients, stages and I/O operations. Second, the processing costs of requests
vary dynamically along the time and are difficult to predict. The last, fluctu-
ations of loads and resources usage of the individual stages may cause over-

109



7 Adaptive Performance Control for Staged Services

loading that interferes with the robustness of the system or may under-utilize
system resources. To deal with these challenges and such instability, systems
that are based on this design model need to be automatically adjusted at run
time in order to be able to achieve target performance levels.

Existing approaches are based on managing the available resources depending
on an off-line knowledge of the system characteristics to achieve high perfor-
mance [108, 110, 172]. Configuring such systems to generate the desired
performance requires experienced administrators to correctly set multiple rel-
evant control parameters for multiple stages, or to determine these parame-
ters experimentally using benchmarks. These management techniques require
tedious manual operations which are difficult, time-consuming, error-prone
and non-QoS-guaranteed, especially when they are to be implemented in such
highly dynamic computing systems, like Internet services. In addition, these
configurations are not based on any mathematical relationships between the
controlled parameters and the target performance. As an optimal configura-
tion usually depends on an administrator’s good guess, therefore, parameters
configuration can easily result in over utilization or under utilization of the
available system resources.

Request processing delay, i.e, the time it takes on the server to serve a client’s
request, is probably the most visible performance metric and the most critical
quality from the perspective of most users. Thus, in this thesis, we consider
guarantees on this request processing delay or what we can call “Sever-side
response time”. With respect to a request, processing delay is defined as the
time elapsed since the request arrives at the network queue of the service until
it leaves the system. The delay seen by a client includes also the time a re-
quest spends in the network in addition to the time it spends on the server.
However, as research in the networking community addressed the problem of
bounding network delays, our approach addresses the complementary prob-
lem of bounding the delay on the server-side.

The consideration here is that the system administrator is allowed to spec-
ify a target sever response time (TRT ), and the goal is to maintain the average
processing delay of requests to be under this target. This specification can
be considered as a part of a service level agreement (SLA) which is a contract

110



7 Adaptive Performance Control for Staged Services

between a service provider and its customers. Such an agreement consists
of one or more service-level objectives (SLOs). An SLO has three parts: the
metric (e.g., average response time), the bound (TRT seconds), and a relational
operator (less than) [81]. Service providers intuitively want to have sufficient
resources to meet their SLOs, but they do not want to have more resources
than required since doing so imposes unnecessary costs. However, a fact that
is to be addressed too is that these objectives must be achieved in the presence
of time-varying loads and changes in hardware and software configurations.

7.2 The Proposed Performance Management Approach

Our contribution is to present an adaptive control approach that automatically
manages resources and adapts the system in dynamic working environments
in order to control the performance for staged design-based Internet services.
Our approach builds on the three-layers control architecture (Chapter 5) and is
based on a combination of the dynamic resource allocation policy presented in
the previous chapter (Chapter 6) and a feedback based performance controller.

7.2.1 The Proposed Approach

In order to guarantee that the average response time is less than a given per-
formance target, both the rate of accepted requests and the departure rate of
the responses need to be balanced, so that the queuing time would not be
so long as to degrade the performance. We build on the proposed three-layers
control architecture (Chapter 5) and on the presented scheduling policy (Chap-
ter 6) to adjust both the system throughput and the rate of accepted requests,
in order to control the performance for staged design-based Internet services.
A property of our scheduling policy is that it presents the value of the time
slot size T as a key parameter to control a variety of performance metrics.
The value of T affects the system throughput, the individual requests response
time, resources utilization, etc. As we here focus on the server response time as
the performance metric we depend on this property to introduce an approach
which guarantees that the average response time of the individual requests is
under the given target, while sustain a high system throughput.

Consider that we have a target response time TRT . Requests that arrive at
the server are accepted to be serviced if the server is able to guarantee that

111



7 Adaptive Performance Control for Staged Services

250

3 00

3.50

Avr. Response Time Avr. Throughput Avr. Rejected

150

200

2 00

2.50

3.00

m
e 
  S
ec
.

Re
c.
/S
ec
.

100

1 00

1.50

2.00

es
po

ns
e 
Ti
m

ro
ug
hp

ut
   
R

0

50

0.00

0.50

1.00

Re Th
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time Slot Size  Sec.

Figure 7.1: Time Slot Size vs. Performance Metrics

the average response time of the accepted requests is under TRT , else they
will be rejected 1. The idea of our control approach is to use the advantages
of the adaptive scheduling policy presented in the previous chapter to optimize
the allocation of system resources at run-time, and to reject these additional
requests. At each time slot, only the requests that are not possible to be pro-
cessed within the time slot are rejected, so that the system can provide the
required quality of service to the maximum number of requests.

As explained in Section 6.2.2, the Equation 6.9 gives the processing times
that are to be allocated to the individual stages at each time slot, except the
entrance stage. The rest of the available processing time that remains after
allocating these times to the stages is to be allocated to the entrance stage in
order to accept requests in the system and to process requests from the arrival
queue. This remaining time can be calculated as2:

t1(k + 1) = T −
∑

2≤i≤M

ti(k + 1) (7.1)

Based on this value (t1(k+ 1)) the number of accepted and rejected requests at
this time slot can be determined. If (t1(k + 1) ≤ 0) then all the requests in the
queue of the entrance stage (the requests that are waiting to be accepted in

1Other policies are also possible like service degradation or forwarding to other servers.
2In the case of multiple processing units, the value T in this relation must be multiplied by the

number of processing units – See Section 6.2.3.

112



7 Adaptive Performance Control for Staged Services

the system) have to be rejected in order to guarantee the desired performance
level for the requests that are currently existed in the system. Elsewhere,
if (t1(k + 1) > 0) we only accept as much requests at the first stage as this
stage can process in this processing time (t1(k + 1)). That means we accept
(t1(k + 1).th1(k)) requests and reject the remaining requests in the queue.

Using this technique makes the average response time of the accepted requests
proportional to the value of the time slot size. Increasing the value of T will
increase the number of accepted requests that will be processed as a batch, as
a result this will increase the response time of the accepted requests since they
will wait for other requests in the batch to be processed before being processed
at the following stages. At the same time increasing T is potential to increase
the system throughput as a result of increasing the benefit from locality within
the stages as the batch size increases. Figure 7.1 shows the linear relation
between the average response time and the time slot size T – how the average
response time increases as T increases and vice verse. It shows also how the
system throughput increases as T increases. Based on this relation we can im-
plement a feedback-based controller that adjusts the size of the time slot size
to keep the average response time for the accepted requests under the desired
target TRT .

A simple heuristic controller that manipulates the time slot size in order to
trace the average response time target, based on observations of the system be-
havior, can easily achieve the control targets [10]. However, a control theoretic-
based approach can adapt the system in a more reliable manner. The following
section explains the implementation of such a feedback controller.

7.2.2 Feedback Control

Feedback control is a technique that has been widely implemented in dynamic
environments to solve the performance control problem under unpredictable
behavior. Since the early 1990s, there has been broad interest in the appli-
cation of this control technique to computing systems [81]. The main idea of
feedback control is to use measurements of a system’s outputs, such as re-
sponse time, throughput, and resource utilization, to achieve externally spec-
ified goals. This is done by adjusting the system control inputs, such as pa-
rameters that affect scheduling policies, concurrency levels or other system

113



7 Adaptive Performance Control for Staged Services

parameters. Since the measured outputs are used to determine the control in-
puts, and the control inputs then affect the outputs, this control architecture
is called feedback or closed loop control.

Today, feedback control techniques offer a robust solution to the server per-
formance control problem and a promising way of achieving desired perfor-
mance in emerging critical Internet applications. However, there are several
areas of challenges in applying feedback control to computing systems, like
constructing models of the target systems and controllers, designing feedback
controllers and developing evaluation criteria for these controllers.

7.2.2.1 System Model

Considering the discussion in the previous section – Section 7.2.1, we can see
that implementing the proposed scheduling policy in staged design-based ser-
vices presents new parameters in the system that simplify the reasoning about
its performance and make the system amenable to feedback control. Using
this policy, the different performance metrics of the staged service are related
to the value of the time slot size and affected by this value. However, design-
ing a feedback control based system requires an ability to quantify the effect
of control inputs on measured outputs, both of which may vary with time.
As previously mentioned, here we are interested in the average end-to-end re-
sponse time, from entry into the first queue in the staged service until exiting
the system, as the performance metric to be controlled. For this reason, and
in order to implement a feedback controller that achieves timing guarantees,
we need to quantify the effect of the time slot size (T ) (the control input in our
system) on the average response time (the measured output that we want to
control).

In general, constructing first principles models that quantify such effects for
complex computing systems may be extremely difficult, as considerable so-
phistication, a detailed knowledge how the system operates and a detailed
knowledge of the relationships between the different system parameters is re-
quired to do so. The complex structure of staged design based services, the ef-
fects of server-hardware architecture and the characteristics of system’s work-
loads increase this difficulty. For this reason, we depend on statistical system

114



7 Adaptive Performance Control for Staged Services

identification techniques to construct a black-box model of the target system3.
In control theory, the term black-box model is used since only the inputs and
outputs of the target system are needed to be known. We employ a first or-
der ARX model to describe the relationship between the time slot size (T ) and
the measured average response time (RT ). ARX models are difference equa-
tions that relate linear functions of outputs history (current and past outputs)
to linear functions of inputs history (current and past inputs). Equation 7.2
shows the general equation of the deployed ARX model:

RT (k) = aRT (k − 1) + b4T (k) (7.2)

In this equation RT (k) and 4T (k) denote the average response time and the
change in the time slot size in the kth sample period respectively; a and b are
system specific scalars which are obtained by system identification and are re-
ferred to as the model parameters [112]. In this model the output RT depends
only on the input 4T values and the output RT values from one time unit in
the past, for this reason it is called a first-order model. The equation is also
an example of a single-input single-output model (SISO Model), since there is
only one input 4T and one output RT .

The equation indicates that whenever the time slot size is varied, the aver-
age response time would be changed immediately in the same sample time
without any delays, and this change in average response time is linear related
to the changing of the time slot size in this sampling period.

Selecting this model is motivated by the results of our experiments which
show a linear relationship between the average response time and the time
slot size even when the system throughput saturates – see Figure 7.1. It is
also motivated by the fact that such linear time varying system models work
surprisingly well for many control applications, as demonstrated by many re-
searchers [81]. For example, a similar model has been implemented to control
the performance of the Apache web server [4], and to control the performance
of a SEDA based HTTP server called Haboob [109]. In [4], the model has been
used to represent the relationship between the utilization of server resources
and the requests arrival rate, and in [109] this model has been used to repre-
sent the relationship between the number of threads in a stage’s thread pool

3We use the term target system to refer to the staged service that is to be controlled.

115



7 Adaptive Performance Control for Staged Services

and the throughput of this stage. The novelty of our approach is that we de-
pend on a new parameter in the system, the time slot size (T ), which enables
us to present a model of the whole staged service, not only of one stage in the
system. A common challenge in this case is the long time it takes for changes
in control input to affect the system output, because of the multiple stages in
the service, which is known in control theory as dead time. However, consid-
ering that the control sampling period is significantly larger than the time slot
size, and considering that, according to the scheduling policy, any changes in
the time slot size will immediately affect the response times of all the requests
in the system at all stages, not only the requests that are accepted at the en-
trance stage, this will eliminate the dead time effect in our controller. We argue
that, as such simple models suffice to achieve the desired control targets, there
is no need to develop more complex models. In addition, using more complex
models, e.g. models with more parameters, is not always better as it can result
in the modeling of nonexistent dynamics.

The model parameters a and b in the Equation 7.2 are needed to be estimated
in order to develop the system model that is to be deployed in our feedback
controller. Least-squares techniques are usually used for such estimations
and here we choose the least mean square (LMS) which is one of these tech-
niques to estimate the values of these parameters. Based on a series of mea-
sured data, the least squares method attempts to find a function which closely
approximates the data, and tries to minimize the sum of the squares of the dif-
ferences between the points generated by the function and the corresponding
points in the data. In our system model, LMS estimates the values of a and b in
Equation 7.2 for minimizing the difference between the estimated and actual
average end-to-end response time.

If the estimated average response time is denoted by R̃T , then

R̃T (k) = aRT (k − 1) + b4T (k) (7.3)

and the kth estimation error is:

e(k) = RT (k)− R̃T (k) = RT (k)− aRT (k − 1)− b4T (k) (7.4)

116



7 Adaptive Performance Control for Staged Services

Least mean squares technique aims to choose a and b values so as to minimize
the sum of the squared errors. In other words, it is to minimize the function:

J(a, b) =
Ω∑

k=2

e2(k) (7.5)

where Ω is the total number of elements in the measured data series.

The values of a and b that minimize J(a, b) can be found by taking partial
derivatives and setting them to zero –Equation 7.6 and Equation 7.7 [81].

∂J(a, b)
∂a

= −2
Ω∑

k=2

RT (k − 1)[RT (k)− aRT (k − 1)− b4T (k)] = 0 (7.6)

∂J(a, b)
∂b

= −2
Ω∑

k=2

4T (k)[RT (k)− aRT (k − 1)− b4T (k)] = 0 (7.7)

For convenience of notation, define the following quantities:

S1 =
Ω∑

k=2

RT (k − 1)RT (k − 1) (7.8)

S2 =
Ω∑

k=2

RT (k − 1)4T (k) (7.9)

S3 =
Ω∑

k=2

4T (k)4T (k) (7.10)

S4 =
Ω∑

k=2

RT (k)RT (k − 1) (7.11)

S5 =
Ω∑

k=2

RT (k)4T (k) (7.12)

So we can achieve the optimal values of a and b for the system model, by
manipulating the equations 7.6 and 7.7.

a =
S2S5 − S3S4

S2
2 − S1S3

(7.13)

117



7 Adaptive Performance Control for Staged Services

Time Slot Size T (ms) Average Response Time RT (Sec.)
10 0.044
50 0.225
100 0.440
150 0.661
200 0.853
250 1.071
300 1.303
350 1.541
400 1.781
450 1.973
500 2.217
550 2.424
600 2.672
650 2.820
700 3.085
750 3.265

Table 7.1: Data Series Elements

b =
S2S4 − S1S5

S2
2 − S1S3

(7.14)

Table 7.1 shows the data elements that we have used to estimate the system
parameters, Equation 7.15 shows the system estimation model, and Figure
7.2 shows a comparison of the actual and the estimated average response time
of the implemented staged service prototype (see Section 6.3) and this system
model. The figure confirms that this system model is valid and demonstrates
that it is reliable to be used in the automatic control system designs. Note that
the above system identification algorithm can be used in off-line or on-line
modeling of the controlled system.

RT (k) = 0.996RT (k − 1) + 4.4644T (k) (7.15)

7.2.2.2 Feedback Controller Design

Based on the developed system model (Equation 7.2), here we demonstrate how
to implement this model into a feedback-based controller in order to achieve
the performance target and to control the system behavior.

The main components of a feedback control system form a feedback control

118



7 Adaptive Performance Control for Staged Services

3.00

3.50
ec
.

2 00

2.50

se
 T
im

e 
Se

1.50

2.00

e 
re
sp
on

s

Estimated

Actual

0.50

1.00

A
ve
ra
ge

0.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ti Sl Si STime Slot Size Sec.

Figure 7.2: Comparison of the Estimated and the Actual Average Response
Time.

Controller Plant
Target 
Value

Error Signal Input Signal Output

Value

O t t Si l
Monitor

Output Signal

Figure 7.3: The Feedback Control Loop

loop, as shown in Figure 7.3. This system consists of: The Plant, which is
the system to be controlled; Monitor, which periodically measures the status
of the plant; and a Controller, which compares the current status of the plant
measured by the monitor versus the desired status that is set by the admin-
istrator. The difference between the output signal and the desired value is
mapped into a control input signal that adjusts the behavior of the plant ac-
cordingly. In such control systems, the goal of the control operations is to
achieve the desired target, despite the effects of system and environment un-
certain disturbances.

Considering our system, this general control model can be translated into a
concrete model as follows. The plant to be controlled is the staged service.

119



7 Adaptive Performance Control for Staged Services

C(z) G(z)TRT(k)
e(k) ΔT (k) RT(k)

( ) ( )

RT(k 1)
1/Z

RT(k‐1)

Figure 7.4: Block Diagram of The Feedback Control System

Plant status is measured by the monitor periodically and output signals are
sent to the controller. We use the average response time (RT ) as the output
signal. The controller compares the output signal with the target average re-
sponse time (TRT ) and depending on the resulted error signal it adjusts the
input signal, which is the change in the time slot size (4T ) in our system. The
fluctuation of arrival patterns, individual stages workload and processing costs
are all disturbances in the system.

Equation 7.2 presents the model of the target system (the Plant). Since our
control is time-discrete, we apply the standard z-transformation on this equa-
tion in order to get its Z-domain representation [81]:

RT(z) =
bz

z − a
4T(z) (7.16)

The system transfer function in the Z-domain, which describes how the input
4T is transformed into the output RT , can also be given as:

G(z) =
RT(z)
4T(z)

=
bz

z − a
(7.17)

Considering these equations, the feedback control system in Figure 7.3 can be
simplified to the block diagram of our control system which is shown in Figure
7.4. In this figure C(z) and G(z) represent the controller and the system model
respectively. The change in the time slot size 4T (k) is the control input to the
plant, which is generated by the controller through computing the error lying
between the reference value TRT (k) and the system output RT (k − 1) in the
last sampling period. When 4T (k) > 0, it means that the time slot size will be
increased; otherwise, when 4T (k) < 0, the time slot size will be decreased.

120



7 Adaptive Performance Control for Staged Services

In this control system, it is the responsibility of the controller to determine
the value of the control input 4T (k) based on the value of e(k). This is done
by specifying a control law that quantifies how to set the control input to the
target system. Here we use the proportional control law, which is formally
given by the Equation 7.18.

4T (k) = Kp e(k) (7.18)

In this equation Kp is a constant that is chosen when designing the propor-
tional controller, and is often referred to as the controller gain. The transfer
function for this controller is:

C(z) =
4T(z)
e(z)

= Kp (7.19)

Feedback control theory provides a series of mathematics tools which allow us
to choose and tune the controller parameters (Kp for our controller) efficiently,
in order to achieve many desirable properties of this controller, e.g. stability,
accuracy, etc.. The closed-loop system transfer function, which relates the
reference input (the target average response time TRT(z)4) to the output RT(z),
is needed to apply these tools. Equation 7.20 gives the closed-loop transfer
function for our feedback control loop. The derivation of this equation requires
a little algebra and it is presented in [81].

F(z) =
RT(z)

TRT(z)
=

C(z) G(z)
1 + C(z) G(z) z−1

(7.20)

In this equation, the numerator of F(z) is the feed-forward transfer function
and the denominator is one plus the loop transfer function. In general, this
relationship holds as long as the feedback signal is subtracted from the refer-
ence input, regardless of the specific blocks in the feedback control system.

By manipulating and substituting Equations 7.17 and 7.19 in Equation 7.20
we get:

F(z) =
Kp

bz
z−a

1 +Kp
bz

z−a z
−1

=
Kp b

1− (a−Kp b)z−1
(7.21)

4Changes in the reference input reflect changes in policy, such as changing a service-level
objective.

121



7 Adaptive Performance Control for Staged Services

C(z) G(z)TRT(k)
e(k) ΔT (k) RT(k)

P(z) ( ) ( )

RT(k 1)

( )

1/Z
RT(k‐1)

Figure 7.5: Block Diagram of The Feedback Control System With Precompen-
sation.

The most basic property of a controller is stability; that is, a bounded input
always produces a bounded output. The stability of the closed-loop system is
determined by the poles of the transfer function in Equation 7.21. The poles
are the values of z for which the denominator is equal to zero, and the system
is stable in closed-loop if all of these poles have a magnitude of less than 1,
i.e.:

1− (a−Kp b)z−1 = 0

The transfer function has only one pole which is:

z = a−Kp b (7.22)

And the feedback control system is stable when:

| a−Kp b |< 1 (7.23)

or:
a− 1
b

< Kp <
a+ 1
b

(7.24)

Therefore, this relation presents a constraint on the choice of the controller
parameter (Kp) values in Equation 7.21. These values must be determined so
that all poles of the system transfer function are placed in the unit circle.

Considering that our feedback control system, given by the transfer function in
Equation 7.20, is stable, the system final output will converge to a final value
RTss, which is called the steady state output of the system. The difference
between this steady state value and the target value TRT , which is called the
steady state control error, determines the accuracy of the closed-loop control
system. Thus, if the steady state output is the desired output value and the

122



7 Adaptive Performance Control for Staged Services

steady state control error (ess) is equal to zero, then the system can perform as
expected and can achieve the performance control target.

It is known from control theory that ess = 0 if, and only if F(1) = 1. F(1) is
called the steady state gain of the system, which quantifies the steady-state
effect of the input on the output. In Equation 7.20 the input is the reference
value TRT(z), which is the target average response time, and the output is the
measured average response time in the system RT(z). Therefore, the steady
state gain for our feedback control system can be given as:

F(1) =
RTss

TRT
(7.25)

As a proportional controller is used in our control system, we can see from
Equation 7.21 and considering the previous discussion that steady state error
can be reduced by using a larger Kp. However, the proportional controller will
result in | ess |> 0, as we need a value of Kp so that:

Kp b

1− (a−Kp b)
= 1 (7.26)

In order to eliminate this steady state error precompensation is usually used
with proportional controllers. In Figure 7.5 the feedback system includes a
block labeled P(z), the precompensator, which provides a way to adjust the
reference signal TRT (k) to correct for the steady-state gain of the closed-loop
system. Using this precompensator, the transfer function from the reference
input to the output is:

F́(z) =
RT(z)

TRT(z)
=

Kp bP(z)
1− (a−Kp b)z−1

(7.27)

We want to make F́(1) = 1 by selecting a constant precompensator and a value
of Kp based on the constraint 7.23 and the relation:

Kp bP(z)
1− (a−Kp b)

= 1 (7.28)

So we let:
1− (a−Kp b) = 1 (7.29)

123



7 Adaptive Performance Control for Staged Services

a/b bZ/(Z‐a)TRT(k)
e(k) ΔT (k) RT(k)

1/a

RT(k 1)
1/Z

RT(k‐1)

Figure 7.6: Block Diagram of The Control System Model

Then we can get:
Kp =

a

b
(7.30)

Putting the value of Kp in Equation 7.28 we get:

P(z) =
1
a

(7.31)

And the control system block diagram is as shown in Figure 7.6.

This controller will be activated automatically to adjust the time slot size in
two cases. First, when the measured average response time of the accepted
requests exceeds the target average response time. Second, when the number
of rejected requests during the last sample period is not equal to zero.

7.3 Experiments

In order to validate the proposed controller and to evaluate its performance,
we use the staged design-based service simulation prototype which we have
implemented using the Möbius environment – See Section 6.3.

In our experiments ei (the mean request’s service time at stage i) takes the
values: 1 ms for stages A, B, D and E; and 2 ms for stage C. For all stages li is
equal to ei. The system starts running with a given value of T (100 ms in our
experiments) and the control sample period is one second.

Like in the experiments of the previous chapter, the presented results here
are the average of multiple simulation runs with relative confidence intervals
of 10% and a confidence level of more than 90%.

124



7 Adaptive Performance Control for Staged Services

300

0.450

0.500

Response Time Target RT Throughput Rejected Arrival Rate

200

250

0.300

0.350

0.400

m
e 
 S
ec
.

Re
q.
/S
ec
.

100

150

0.150

0.200

0.250

es
po

ns
e 
Ti
m

hr
ou

gh
pu

t R

0

50

0.000

0.050

0.100

Re Th

00.000

10 20 30 40 50 60 70 80 90 100

0.110
0.115

Se
c.

0.090
0.095
0.100
0.105

m
e 
Sl
ot
 S
iz
e 
 S

0.080
0.085

10 20 30 40 50 60 70 80 90 100

Ti
m

Time  Sec.

Figure 7.7: Dynamic Changes in System Workload

7.3.1 Maintaining Stable Response Time

These experiments test the ability of our performance controller to keep the
average response time under the desired target TRT during unpredictable dy-
namic changes in the system.

In Figure 7.7 after running the system for 25 seconds the requests arrival-rate
increases from 150 to 250 requests per second, which brings the system in an
overload situation. The figure shows that as the load increases the controller
automatically adjusts the time slot size to accept as much requests into the
system as the system is able to process without violating the service level tar-
get. Additional requests that can not be processed are rejected until the load
returns to 150 requests per seconds after 50 seconds.

In Figure 7.8 the requests arrival-rate does not change but the proportion of
bottleneck requests (requests that go to the bottleneck stage (C) in Figure 6.2b)
changes. After running the system for 20 seconds the proportion of bottleneck
requests decreases from 50% to 5% and after more 20 seconds it increases to

125



7 Adaptive Performance Control for Staged Services

250

300

0.400
0.450
0.500

c.

Response Time Target RT Throughput Rejected

150

200

0 200
0.250
0.300
0.350
0.400

ns
e 
Ti
m
e 
 S
ec

ut
 R
eq

./
Se
c.

0

50

100

0 000
0.050
0.100
0.150
0.200

Re
sp
on

Th
ro
ug
hp

u

00.000

10 20 30 40 50 60 70 80 90 100

0 110

0.120

Se
c.

0.090

0.100

0.110

e 
Sl
ot
 S
iz
e 
 S

0.080

10 20 30 40 50 60 70 80 90 100

Ti
m
e

80%

100%

s

20%

40%

60%

80%

BN
 R
eq

ue
st

0%

10 20 30 40 50 60 70 80 90 100

Time Sec.

Figure 7.8: Dynamic Changes in The proportion of Bottleneck Requests

126



7 Adaptive Performance Control for Staged Services

Se
c.250

300

0.400
0.450
0.500

c.

Response Time Target RT Throughput Rejected

hp
ut
 R
eq

./
S

150

200

0 200
0.250
0.300
0.350
0.400

ns
e 
Ti
m
e 
 S
ec

Th
ro
ug

0

50

100

0 000
0.050
0.100
0.150
0.200

Re
sp
on

00.000

10 20 30 40 50 60 70 80 90 100
0.110

Se
c.

0.080

0.090

0.100

e 
Sl
ot
 S
iz
e 
 S

0.070

10 20 30 40 50 60 70 80 90 100

Ti
m
e

0 003

0 000

0.001

0.002

0.003

Ti
m
e 
B 
Se
c.

0.000

10 20 30 40 50 60 70 80 90 100

S‐
T

Time  Sec.

Figure 7.9: Dynamic Changes in Stage B Service Time

50% again. Then after more 20 seconds it increases to 95% for 20 seconds and
then returns again to 50%. The experiment shows a smaller effect of the per-
formance controller on the time slot size in this case. We argue that in such
dynamic changes which happen within the system (changes in work-flow) the
main responsibility to adjust the system is of the global controller which adapts
the allocation of system resources according to the changes in stages needs
and adjusts the number of accepted requests at each time slot. In this case,
the performance controller adjusts the time slot size only when there is still an
opportunity to process more requests by increasing the time slot size or there
is a need to decrease it in order to avoid the performance target violation.

Figure 7.9 shows the behavior of our performance controller under another
form of dynamic changes in the system. In this experiment the service time
that a request needs to be processed at stage B in our staged service (Figure
6.2b) decreases to 0.5 ms after running the system for 20 seconds and then af-
ter more 20 seconds it returns to its original value (1 ms), after that it increases

127



7 Adaptive Performance Control for Staged Services

250

0 600

0.700

Response Time Target RT Throughput Rejected

150

200

0 400

0.500

0.600
m
e 
 S
ec
.

ut
 R
eq

./
Se
c.

100

0.200

0.300

0.400

Re
sp
on

se
 T
im

Th
ro
ug
hp

u

0

50

0.000

0.100

R

10 20 30 40 50 60 70 80 90 100

0.140
0.160

Se
c.

0.060
0.080
0.100
0.120

m
e 
Sl
ot
 S
iz
e 
S

0.020
0.040

10 20 30 40 50 60 70 80 90 100

Ti
m

Time  Sec.

Figure 7.10: Tracing a Dynamic Target Response Time.

to 2 ms again for 20 seconds. Such changes in a stage service time can repre-
sent many scenarios like changing the algorithm that is implemented within a
stage, rising or degrading the quality of the service at run time, a software or
hardware failure in the system, etc. From the Figure we can see that our con-
troller can respond to these dynamic changes automatically in order to keep
the average response time of the accepted requests under the desired target.
However, like in the previous experiment, the global controller play a main role
here to adjust the number of requests that are accepted at each time slot.

7.3.2 Trace a Dynamic Target Response Time

The goal of this experiment is to test the ability of the controller to guarantee
that the average response time of the accepted requests is below TRT , and its
ability to respond to changes in this target response time TRT at run-time. We
begin with a target response time of 400 ms. After running the system for 25
seconds, we decrease the target to 200 ms for 25 seconds and then again after
25 more seconds we increase it to 600 ms.

128



7 Adaptive Performance Control for Staged Services

Figure 7.10 shows that as the target response time decreases the controller re-
sponds automatically by decreasing the time slot size which results in increas-
ing the number of rejected requests and decreasing the system throughput.
Conversely, as the target response time increases the controller automatically
increases the time slot size to accept more requests per time slot and to de-
crease the number of rejected requests.

7.4 Discussion

In this section we bring it together, and show how our feedback-based perfor-
mance controller works within the three-layers control architectures, which is
presented in Chapter 5.

The system’s administrator determines the target performance of the system,
which is the target average response time. At run-time the performance con-
troller periodically compares this value with the average response time of the
accepted requests that is measured in the system, and adjusts the time slot
size accordingly. The new time slot size will be used by the global controller
as the time slot duration to allocate the available processing resources to the
individual stages within the following sample period. At the entrance stage
only the requests that can be processed within the time slot will be accepted,
while other requests will be rejected, forwarded to other servers or a kind of
service degradation can be done. When the resources are allocated to a stage
to process the waiting requests in its incoming queue, the local controller of
the stage allocates the execution threads to the requests according to the pol-
icy that is used within this stage.

Considering this control architecture, disturbances in the system that result
in from changes in the processing costs of requests at the different stages or
from changes in the requests flow in the staged service are almost hidden for
the performance controller by the local controller which observe these changes
and the global controller which changes the number of accepted requests dy-
namically to fill up the time slot period. For this reason, the system model on
which the performance controller depends to adjust the time slot size will be
robust to such disturbances in the system.

129



7 Adaptive Performance Control for Staged Services

As a result, and according to the experiments, our performance control ap-
proach is able to adapt the system to the dynamic changes in order to achieve
desired performance targets with simple control algorithm and automatic tun-
ing of the system parameters. Even while the system works with unpredictable
loadings with high and different variances, it can still perform as expected, and
can meet the target performance levels.

130



8 Conclusions and Future Work

In this thesis we have proposed a three-layers control architecture for resource
management and performance control of staged design-based Internet ser-
vices. In addition, we have presented an adaptive resource allocation policy
and a feedback based performance controller that follow this control archi-
tecture. This Chapter summarizes our results, presents many directions for
future work and a variety of potential implementation areas.

8.1 Conclusions

The staged architecture has emerged as a programming paradigm to imple-
ment high performance Internet services that support massively concurrent
demands. This design avoids many pitfalls related to the conventional con-
currency models, and presents system design advantages at hardware- and
software engineering level. However, this architecture introduces many chal-
lenges related to resource allocation to the individual stages which have dif-
ferent requirements, and other challenges that appear when the system is to
be tuned to achieve a desired performance target or to guarantee a determined
service level. These challenges are also magnified by the complexity which is
presented by the structure of modern server’s hardware platforms.

To address these challenges, this thesis has proposed a three-layers control ar-
chitecture for resource management and performance control of staged design-
based services. The control architecture consists of three layers of controllers,
local controller within each stage, global controller, and a performance con-
troller.

Based on this control architecture, the thesis has also presented an adap-
tive resource allocation policy to allocate processing resources to the stages
of the staged service, and a feedback-based performance controller for perfor-
mance control and service level guarantees of staged Internet services. The

131



8 Conclusions and Future Work

resource allocation policy represents the global controller in the three-layers
control architecture, that control allocating the system resources according to
the stages needs, and the feedback-based performance controller represents
the performance control layer in the control architecture.

Experimental results of our simulation-based study have demonstrated that
the proposed resource allocation policy leads to a better performance under
different characteristics of the system and under dynamically changing load
conditions. It has been also shown that this policy can benefit from locality
within the individual stages, better utilize the available processing resources,
and avoid the overheads that appear in modern parallel processing systems.

In addition, our experiments have demonstrated the ability of the proposed
performance controller to adjust the system at run-time dynamically and au-
tomatically to maintain the desired performance targets under a variety of dy-
namic changes in the system; and have also demonstrated that this controller
can adjust the system to trace dynamic changes in performance targets at run-
time.

Compared with other approaches, our control approach exhibits many desired
property in automatic control for highly dynamic systems. It provides an effec-
tive way to guarantee service quality under high concurrency. By employing
feedback control theory our performance controller can significantly reduce the
cost of manual system configurations and provide reliable parameter settings,
which enhance the system performance. Additionally, depending on the con-
trol architecture and communications among the three layers of controllers,
we could reduce the needed prior knowledge of the system behavior, which is
a problem that characterizes other approaches in the staged design.

8.2 Future Work

In this thesis, the Staged Event-Driven Architecture (SEDA) has been deployed
as the ground-work to support highly concurrent demands. By combining
the advantages of this architecture with the advantages of automatic feedback
control and control theory, we have proposed a new approach for resource
management and performance control of SEDA-based Internet services. How-

132



8 Conclusions and Future Work

ever, the thesis has presented also many issues that have to be revisited in
order to understand and optimize systems that are based on the staged design.

For example, relations between stage’s structure characteristics and the char-
acteristics of the system hardware platform have to be studied in more details
in order to increase the benefit from performance improvements in modern
computing systems. A more detailed study of the effects of different combi-
nations of the hierarchic parallelism that appear in today’s server platforms
is also very important. To some extent, our resource allocation approach has
considered these issues. However, allocation policies that consider the stage’s
working set size when co-allocating batches from different stages on a shared
node in the processing units tree are also possible, and deserve more investi-
gation.

On the other hand, our global controller depends on investigating the current
state of the staged service in order to take decisions for resource allocation
to the individual stages. Enriching this control layer with a control-theoretic
based controller can increase the accuracy of the approach for long-term al-
locations. Such an approach gives the opportunity to implement our control
policy in higher scales system, like clusters or distributed systems, in a more
effective and reliable manner.

Considering the performance control layers, the proposed approach depends
on adjusting the size of the time slot size at run-time to achieve performance
targets. In this thesis, we have presented a proportional based pre-compensator
controller. We believe that testing and comparing the performance of other
control-theoretic based approaches can be fruitful. In addition, to cope with
cost efficiency and “Green IT” requirements, our approach can be extended to
control the number of used processing units in the system in addition to the
time slot size. That can be achieved depending on many techniques that exist
in today’s processors and enable switching off processing units to save energy
[144], or depending on “pay as you use” computer leasing to save costs.

The approach which is presented in this thesis depends on combining the
resource allocation policy with the feedback-based performance controller to
reject excessive requests that arrive at the system, this approach can be ex-

133



tended to achieve a variety of targets. Today, it is desired to provide individual
performance guarantees to individual client categories; our approach can be
extended to achieve such requirements by using different queues for different
clients categories and applying rejection at each queue depending on perfor-
mance targets. Approaches that are based on service degradation can be also
implemented, depending on a policy that combines the value of the time slot
size with different levels of the service.

Besides this, in the thesis, we have concentrated on the global controller and
the performance control depending on event-driven stages and local controllers
which use as much execution threads as the number of processing units that
are allocated to the stage. The presented approach is more generic, and the
effect of the different implementations of the local controller deserves studying.

Finally, our experimental results have based on a simulation prototype which
has provided the needed flexibility to study the effect of a variety of system re-
lated parameters. However, implementing a case study representing a realistic
scenario may raise other research questions.

134



List of Symbols

Ω Number of elements in the data series that is used for system identifica-
tion.

Υi Total processing time needed by a request at stage i in the existence of
parallelity.

a, b System Model Parameters.

Bi(k) Size of the batch of requests from stage i which is to be processed in the
sample period k.

C(z) Controller Transfer Function in the Z-Domain.

C Number of Cores per Chip.

e(k) Estimation error in the sample period k.

ei Mean processing time that is needed by a request at stage i.

ess Steady State Error.

F(z) Closed-Loop System Transfer Function.

F́(z) Transfer Function of the Closed-Loop System with Precompensation.

G(z) System Transfer Function in the Z-Domain.

g Gate Size in the Gated approach.

J(a, b) Sum of the squared errors.

Kp Proportional Controller Gain.

li Load Time for Stage i working set.

M Number of Stages.

N Number of Processing Chips.

135



OHLij Additional processing time needed by a request processing from stage i
as a result of processing requests from stage j in parallel on other cores
at the same chip.

OHLVij System specific constant that represents the additional processing
time needed by a request processing from stage i as a result of pro-
cessing a request from stage j in parallel on another core at the same
chip.

OHRij Additional processing time needed by a request processing from stage i
as a result of processing requests from stage j in parallel on other chips.

OHRVij System specific constant that represents the additional processing
time needed by a request processing from stage i as a result of pro-
cessing a request from stage j in parallel on another chip.

P(z) Precompensator’s Function.

pi(k) Portion of processing time that is to be given to stage i in the sample
period k.

R̃T (k) Estimated average response time in the sample period k.

RT (k) Measured average response time in the sample period k.

RTss Steady State Average Response Time.

Si(k) Number of requests in the queue of stage i in the sample period k.

4T (k) Change in the time slot size in the sample period k.

T Time Slot Size

ti(k) Allocated processing time to stage i in the sample period k.

thi(k) Average throughput of stage i in the sample period k.

TRT Target Response Time.

wi(k) Estimated processing time that is needed by stage i to process all the
requests in its incoming queue in the sample period k.

Xij Number of requests from stage j that are processed with a request from
stage i in parallel on cores at the same chip.

136



Yij Number of requests from stage j that are processed with a request from
stage i in parallel on other chips.

137





Previously Published Work

• M. S. Al-Hakeem and H.-U. Heiß, “Adaptive scheduling for staged ap-
plications: The case of multiple processing units,” in Fifth International
Conference on Internet and Web Applications and Services (ICIW 2010).
Los Alamitos, CA, USA: IEEE Computer Society, May 2010, pp. 51–60.

• M. S. Al-Hakeem, J. Richling, and H.-U. Heiß, “Performance Guarantees
for Staged Design Based Services,” in Workshop on System Communica-
tion and Engineering in Computer Science, October 2010, invited Paper.

• M. S. Al-Hakeem, J. Richling, G. Mühl, and H.-U. Heiß, “An adaptive
scheduling policy for staged applications,” in Fourth International Con-
ference on Internet and Web Applications and Services (ICIW 2009). IEEE,
May 2009.

139





Bibliography

[1] “The Möbius Tool,” http://www.mobius.uiuc.edu/, 2008, last accessed.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees for
web server end-systems: A control-theoretical approach,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 13, pp. 80–96, 2002.

[3] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feed-
back Performance Control in Software Services,” IEEE Control Systems
Magazine, vol. 23, p. 2003, 2003.

[4] T. Abdelzaher and C. Lu, “Modeling and performance control of inter-
net servers,” in Decision and Control, 2000. Proceedings of the 39th IEEE
Conference on, vol. 3, 2000, pp. 2234–2239 vol.3.

[5] Accoria Networks, Inc., “Rock Web Server,” http://www.accoria.com/,
2008.

[6] Advanced Micro Devices, Inc., “Six-Core AMD Opteron
TM

processor fea-
tures,” www.amd.com, 2009.

[7] ——, “AMD Opteron
TM

6000 series platform,” www.amd.com, 2010.

[8] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur, “Coop-
erative task management without manual stack management,” in ATEC
’02: Proceedings of the General Track of the annual conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX Association,
2002, pp. 289–302.

[9] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
modern processor: Where does time go?” in VLDB ’99: Proceedings of
the 25th International Conference on Very Large Data Bases. Morgan
Kaufmann Publishers Inc., 1999, pp. 266–277.

141

http://www.mobius.uiuc.edu/
http://www.accoria.com/
www.amd.com
www.amd.com


[10] M. S. Al-Hakeem, J. Richling, and H.-U. Heiß, “Performance Guarantees
for Staged Design Based Services,” in Workshop on System Communica-
tion and Engineering in Computer Science, October 2010, invited Paper.

[11] M. S. Al-Hakeem, J. Richling, G. Mühl, and H.-U. Heiß, “An adaptive
scheduling policy for staged applications,” in Fourth International Confer-
ence on Internet and Web Applications and Services (ICIW 2009). IEEE,
May 2009.

[12] Alexa Internet, Inc., “Traffic History Graph for aljazeera.net,” http://
www.alexa.com/, 2009.

[13] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian,
“Resource management in the autonomic service-oriented architecture,”
in IEEE International Conference on Autonomic Computing, 2006. ICAC
’06., June 2006, pp. 84–92.

[14] V. Almeida, D. Menascé, R. Riedi, R. Fonseca, and W. M. Jr., “Character-
izing and Modeling Robot Workload on E-Business Sites,” in Proceedings
of 2001 ACM Sigmetrics Conf. ACM, June 2001.

[15] V. Almeida, D. Menascé, R. Riedi, F. Peligrinelli, R. Fonseca, and W. M.
Jr., “Analyzing Web Robots and Their Impact on Caching,” in Proceedings
of the 6th Web Caching and Content Delivery Workshop, 2001.

[16] J. Alpert and N. Hajaj, “We knew the web was big...” http://googleblog.
blogspot.com/, July 2008.

[17] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani,
W. Zwaenepoel, E. Cecchet, and J. Marguerite, “Specification and im-
plementation of dynamic web site benchmarks,” 2002 IEEE International
Workshop on Workload Characterization, WWC-5, pp. 3–13, Nov 2002.

[18] AnalogX, LLC., “Internet traffic report,” www.internettrafficreport.com,
2009.

[19] Apache Software Foundation, “The Apache Web Server,” http://www.
apache.org/, Last accessed, 2008.

[20] M. F. Arlitt and C. L. Williamson, “Web server workload characteriza-
tion: the search for invariants,” SIGMETRICS Perform. Eval. Rev., vol. 24,
no. 1, pp. 126–137, 1996.

142

http://www.alexa.com/
http://www.alexa.com/
http://googleblog.blogspot.com/
http://googleblog.blogspot.com/
www.internettrafficreport.com
http://www.apache.org/
http://www.apache.org/


[21] M. Arrington, “Facebook now nearly twice the size of MySpace world-
wide,” http://www.techcrunch.com/, January 2009.

[22] AT&T Inc., “AT&T to Invest More Than $17 Billion in 2009 to Drive Eco-
nomic Growth,” www.att.com, March 2009.

[23] J. S. Auckland, “Fryup: Microsoft photosynthed,” http://
computerworld.co.nz, Aug 2008.

[24] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The Design of OpenMP
Tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, 2009.

[25] G. Bangs, P. Druschel, and J. C. Mogul, “Better operating system
features for faster network servers,” SIGMETRICS Perform. Eval. Rev.,
vol. 26, no. 3, pp. 23–30, 1998.

[26] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The
google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28, 2003.

[27] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system char-
acterization of commercial workloads,” SIGARCH Comput. Archit. News,
vol. 26, no. 3, pp. 3–14, 1998.

[28] V. Beltran, D. Carrera, J. Torres, and E. Ayguade, “Evaluating the Scal-
ability of Java Event-Driven Web Servers,” in ICPP ’04: Proceedings of the
2004 International Conference on Parallel Processing. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 134–142.

[29] S. Bhatia, C. Consel, and J. Lawall, “Memory-manager/scheduler co-
design: optimizing event-driven servers to improve cache behavior,” in
ISMM ’06: Proceedings of the 5th international symposium on Memory
management. New York, NY, USA: ACM, 2006, pp. 104–114.

[30] S. Bhatia, J. Lawall, and C. Consel, “Minimizing cache misses in an
event-driven network server: A case study of TUX,” in The 31st IEEE
Conference on Local Computer Networks (LCN). Tampa, Florida: IEEE
Computer Society, Nov. 2006, pp. 47–54.

143

http://www.techcrunch.com/
www.att.com
http://computerworld.co.nz
http://computerworld.co.nz


[31] J. M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski, “Quorum: flex-
ible quality of service for internet services,” in NSDI’05: Proceedings of
the 2nd conference on Symposium on Networked Systems Design & Imple-
mentation. Berkeley, CA, USA: USENIX Association, 2005, pp. 159–174.

[32] A. B. Bondi, “Characteristics of scalability and their impact on perfor-
mance,” in WOSP ’00: Proceedings of the 2nd international workshop on
Software and performance. New York, NY, USA: ACM, 2000, pp. 195–
203.

[33] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel, “A
multithreaded PowerPC processor for commercial servers,” IBM Journal
of Research and Development, vol. 44, no. 6, pp. 885–898, 2000.

[34] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd Edition.
O’Reilly Media, Inc., November 2005.

[35] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” in INFOCOM ’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, vol. 1, Mar 1999, pp. 126–134 vol.1.

[36] G. Brown, “The internet is as vital as water and gas,” http://www.
timesonline.co.uk, June 2009.

[37] R. E. Bryant and D. O’Hallaron, Computer Systems: A Programmer’s Per-
spective. Prentice Hall, 2003.

[38] J. R. Bulpin and I. A. Pratt, “Hyper-threading aware process scheduling
heuristics,” in ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX Association,
2005, pp. 27–27.

[39] J. Burt, “AMD fires back at Facebook,” www.eweek.com, July 2009.

[40] J. Carlström and R. Rom, “Application-aware admission control and
scheduling in web servers,” in INFOCOM, 2002.

[41] H. Chen and P. Mohapatra, “Session-based overload control in QoS-
aware Web servers,” INFOCOM 2002. Twenty-First Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2, pp. 516–524 vol.2, 2002.

144

http://www.timesonline.co.uk
http://www.timesonline.co.uk
www.eweek.com


[42] Y. Chen, X. Fan, W. Yang, K. Chen, and G. Xu, “Stage based parallel
programming model for high concurrency, stateful network services: in-
ternals and design principles,” Int. J. High Perform. Comput. Netw., vol. 3,
no. 1, pp. 33–44, 2005.

[43] L. Cherkasova and M. Karlsson, “Dynamics and evolution of web sites:
Analysis, metrics and design issues,” in Proceedings of the Sixth Interna-
tional Symposium on Computers and Communications, 2001, pp. 3–5.

[44] G. S. Choi, J.-H. Kim, D. Ersoz, and C. R. Das, “A multi-threaded
PIPELINED Web server architecture for SMP/SoC machines,” in WWW
’05: Proceedings of the 14th international conference on World Wide Web.
New York, NY, USA: ACM, 2005, pp. 730–739.

[45] Cisco Systems, Inc., www.cisco.com, 2009.

[46] S. Clara, “Intel Previews Intel Xeon R© ’Nehalem-EX’ Processor,” http://
www.intel.com, May 2009, press Release.

[47] ComScore, Inc., “In australia, online retail sites see traffic surge in de-
cember,” www.comscore.com, January 2010, press Release.

[48] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec, “Per-
formance implications of single thread migration on a chip multi-core,”
SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 80–91, 2005.

[49] DailyTech LLC., “Massive DDOS Attacks on U.S., South Korea, Came
From the UK, Researcher Says,” http://www.reuters.com/, July 2009.

[50] V. Daniel, P. Prashant, and R. Dan, “Provisioning servers in the appli-
cation tier for e-commerce systems,” ACM Trans. Interet Technol., vol. 7,
no. 1, p. 7, 2007.

[51] K. Debattista, K. Vella, and J. Cordina, “Wait-free cache-affinity thread
scheduling,” Software, IEE Proceedings -, vol. 150, no. 2, pp. 137–146,
April 2003.

[52] ——, “Cache-Affinity Scheduling for Fine Grain Multithreading,” in Com-
municating Process Architectures 2002, sep 2002, pp. 135–146.

[53] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in SIGCOMM ’89: Symposium proceedings on

145

www.cisco.com
http://www.intel.com
http://www.intel.com
www.comscore.com
http://www.reuters.com/


Communications architectures & protocols. New York, NY, USA: ACM,
1989, pp. 1–12.

[54] P. J. Denning, “Thrashing: its causes and prevention,” in AFIPS ’68 (Fall,
part I): Proceedings of the December 9-11, 1968, fall joint computer confer-
ence, part I. New York, NY, USA: ACM, 1968, pp. 915–922.

[55] Y. Diao, N. G, J. L. Hellerstein, S. Parekh, and D. M. Tilbury, “Using
MIMO feedback control to enforce policies for interrelated metrics with
application to the Apache Web server,” in Proceedings of the Network
Operations and Management Symposium 2002, 2002, pp. 219–234.

[56] L. Dignan, “E-commerce sites: You have 2 seconds to load your Web
Pages,” http://www.zdnet.com/, September 2009.

[57] DomainTools, http://www.domaintools.com/internet-statistics/, March
2009, last Accessed.

[58] F. Douglis and M. F. Kaashoek, “Guest editors’ introduction: Scalable
internet services,” IEEE Internet Computing, vol. 5, pp. 36–37, 2001.

[59] I. Eklektix, “Scheduling domains,” http://lwn.net/Articles/80911/,
April 2004.

[60] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A method for
transparent admission control and request scheduling in e-commerce
web sites,” in WWW ’04: Proceedings of the 13th international conference
on World Wide Web. New York, NY, USA: ACM, 2004, pp. 276–286.

[61] J. C. F. M. David and R. H. Campbell, “Context Switch Overheads for
Linux on ARM Platforms,” in Proceedings of the 2007 Workshop on Ex-
perimental Computer Science, 2007.

[62] A. Fedorova, M. Seltzer, D. Nussbaum, and C. Small, “Throughput-
oriented scheduling on chip multithreading systems,” Harvard Univer-
sity, Technical Report TR-17-04, August 2004.

[63] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, “Performance
of multithreaded chip multiprocessors and implications for operating
system design,” in ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX As-
sociation, 2005, pp. 26–26.

146

http://www.zdnet.com/
http://www.domaintools.com/internet-statistics/
http://lwn.net/Articles/80911/


[64] K. Fiveash, “Microsoft’s Photosynth falls out of cloud,” http://www.
theregister.co.uk/, August 2008.

[65] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38,
no. 5, pp. 11–13, May 2005.

[66] J. D. Gelas, “High-End x86: The Nehalem EX Xeon 7500 and Dell R810,”
www.anandtech.com, April 2010.

[67] P. Gelsinger, P. Gargini, G. Parker, and A. Yu, “Microprocessors circa
2000,” Spectrum, IEEE, vol. 26, no. 10, pp. 43–47, Oct 1989.

[68] D. C. Gilbert, “Modeling spin locks with queuing networks,” SIGOPS Oper.
Syst. Rev., vol. 12, no. 1, pp. 29–42, 1978.

[69] J. Gorbold, “AMD Opteron 6174 vs Intel Xeon X5650 Review,” www.
bit-tech.net, March 2010.

[70] M. Gordon, “Staged design for highly concurrent web servers,” Master’s
thesis, Technische Universität Berlin, 2005.

[71] S. D. Gribble, “A Design Framework and a Scalable Storage Platform to
Simplify Internet Service Construction,” Ph.D. dissertation, UC Berkeley,
September 2000.

[72] J. Guitart, V. Beltran, D. Carrera, J. Torres, and E. Ayguade, “Character-
izing Secure Dynamic Web Applications Scalability,” 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2005. Proceedings.,
p. 108a, April 2005.

[73] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé, “Session-
based adaptive overload control for secure dynamic web applications,” in
34th International Conference on Parallel Processing (ICPP 05), 2005, pp.
14–17.

[74] A. Hac, “On the modeling of shared resources with various lock granu-
larities using queueing networks,” Performance Evaluation, vol. 6, no. 2,
pp. 103 – 115, 1986.

[75] I. Haddad and G. Butler, “Experimental studies of scalability in clustered
web systems,” Parallel and Distributed Processing Symposium, Interna-
tional, vol. 9, p. 185b, 2004.

147

http://www.theregister.co.uk/
http://www.theregister.co.uk/
www.anandtech.com
www.bit-tech.net
www.bit-tech.net


[76] S. Harizopoulos and A. Ailamaki, “Affinity scheduling in staged server
architectures,” Carnegie Mellon University, Tech. Rep., 2002.

[77] ——, “A case for staged database systems,” in Proceedings of the Confer-
ence on Innovative Data Systems Research (CIDR), Asilomar, CA, 2003.

[78] ——, “Improving instruction cache performance in OLTP,” ACM Trans.
Database Syst., vol. 31, no. 3, pp. 887–920, 2006.

[79] H.-U. Heiß, “Operating system design,” http://www.kbs.tu-berlin.de,
2010, lecture.

[80] J. Held, J. Bautista, and S. Koehl, “From a few cores to many: A tera-
scale computing research review,” www.intel.com, 2006, white Paper,
Intel Corporation.

[81] J. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. John Wiley & Sons, Inc., 2004.

[82] J. L. Hellerstein, F. Zhang, and P. Shahabuddin, “A statistical approach
to predictive detection,” Computer Networks, vol. 35, no. 1, pp. 77–95,
2001.

[83] J. Hennessy, “The future of systems research,” Computer, vol. 32, no. 8,
pp. 27–33, Aug 1999.

[84] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 4th ed. Elsevier, Inc., 2007.

[85] IBM, “IBM unleashes world’s fastest chip in powerful new computer,”
www.ibm.com, May 2007, press release.

[86] IBM, “IBM Unveils New POWER7 Systems To Manage Increasingly Data-
Intensive Services,” www.ibm.com, Feb. 2010, press release.

[87] Intel Corporation, “Intel 4-Processor Server System S7000FC4UR,” http:
//www.intel.com/.

[88] ——, “Intel R© threading building blocks,” www.intel.com, 2007, tutorial.

[89] ——, “Intel R© Microarchitecture, Codenamed Nehalem,” www.intel.com,
2009.

148

http://www.kbs.tu-berlin.de
www.intel.com
www.ibm.com
www.ibm.com
http://www.intel.com/
http://www.intel.com/
www.intel.com
www.intel.com


[90] ——, “Single-chip cloud computer,” www.intel.com, December 2009.

[91] ——, “Intel R© Xeon R© Processor 5000 Sequence,” www.intel.com, 2010,
last Accessed.

[92] Internet World Stats, “Internet usage statistics,” http://www.
internetworldstats.com/, December 2008.

[93] C. Jun, Z. Ming-Tian, and Y. Xiao-Yan, “Feedback control quality adap-
tation framework for seda system,” in Apperceiving Computing and Intel-
ligence Analysis, 2008. ICACIA 2008. International Conference on, Dec.
2008, pp. 255–259.

[94] K. Kant, R. Iyer, and P. Mohapatra, “Architectural impact of secure
socket layer on internet servers,” International Conference on Computer
Design 2000. Proceedings, pp. 7–14, 2000.

[95] V. Kazempour, A. Fedorova, and P. Alagheband, “Performance implica-
tions of cache affinity on multicore processors,” in Euro-Par ’08: Proceed-
ings of the 14th international Euro-Par conference on Parallel Processing.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 151–161.

[96] D. Kegel, “The C10K Problem,” www.kegel.com, September 2006.

[97] G. Key, “Memory Scaling on Core i7 - Is DDR3-1066 Really the Best
Choice? ,” www.anandtech.com, June 2009.

[98] P. Koka and M. H. Lipasti, “Opportunities for Cache Friendly Process
Scheduling,” in Workshop on Interaction Between Operating Systems and
Computer Architecture, 2005.

[99] R. Kokku, U. Shevade, N. Shah, H. M. Vin, and M. Dahlin, “Adaptive
processor allocation in packet processing systems,” University of Texas
at Austin, Tech. Rep., 2004.

[100] V. Krishnamoorthy, N. Unni, and V. Niranjan, “Event-driven service-
oriented architecture for an agile and scalable network management sys-
tem,” in Next Generation Web Services Practices, 2005. NWeSP 2005. In-
ternational Conference on, Aug. 2005, pp. 6 pp.–.

[101] R. Kumar, Y. Maharaj, and E. Torlak, “Squnk: Stages, queues ’n kon-
trollers, a high performance network application toolkit.” December
2001.

149

www.intel.com
www.intel.com
http://www.internetworldstats.com/
http://www.internetworldstats.com/
www.kegel.com
www.anandtech.com


[102] A. Kvalnes, D. Johansen, R. van Renesse, and A. Arnesen, “Vortex: an
event-driven multiprocessor operating system supporting performance
isolation.” University of Tromso, Technical Report 2003-45, June 2003.

[103] J. R. Larus and M. Parkes, “Using cohort scheduling to enhance server
performance (extended abstract),” in LCTES ’01: Proceedings of the ACM
SIGPLAN workshop on Languages, compilers and tools for embedded sys-
tems. New York, NY, USA: ACM, 2001, pp. 182–187.

[104] H. C. Lauer and R. M. Needham, “On the duality of operating system
structures,” SIGOPS Oper. Syst. Rev., vol. 13, no. 2, pp. 3–19, 1979.

[105] D. Leijen and J. Hall, “Optimize managed code for multi-core machines,”
MSDN Magazine, October 2007.

[106] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
ExpCS ’07: Proceedings of the 2007 workshop on Experimental computer
science. New York, NY, USA: ACM, 2007, p. 2.

[107] P. Li and S. Zdancewic, “Combining events and threads for scalable net-
work services implementation and evaluation of monadic, application-
level concurrency primitives,” SIGPLAN Not., vol. 42, no. 6, pp. 189–199,
2007.

[108] Z. Li, “Fair service for high-concurrent requests,” Master’s thesis, The
University of Sydney, August 2007.

[109] Z. Li, S. Chen, D. Levy, and J. Zic, “Auto-tune design and evaluation
on staged event-driven architecture,” in MODDM ’06: Proceedings of the
1st workshop on MOdel Driven Development for Middleware (MODDM ’06).
New York, NY, USA: ACM, 2006, pp. 1–6.

[110] Z. Li, D. Levy, S. Chen, and J. Zic, “Explicitly controlling the fair service
for busy web servers,” in ASWEC ’07: Proceedings of the 2007 Australian
Software Engineering Conference. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 159–168.

[111] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker, “Characterizing and mod-
eling the behavior of context switch misses,” in PACT ’08: Proceedings of
the 17th international conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2008, pp. 91–101.

150



[112] L. Ljung, System Identification Theory for the User, 2nd ed. Prentice-
Hall, Inc., 1999.

[113] N. R. Mahapatra and B. Venkatrao, “The processor-memory bottleneck:
problems and solutions,” Crossroads, p. 2, 1999.

[114] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton, “Hyper-threading technology architecture and microar-
chitecture,” Intel Technology Journal, vol. 06, no. 01, pp. 4–15, February
2002.

[115] D. A. Menascé and V. A. F. Almeida, Capacity Planning for Web Services,
Metrics, Models, and Methods. Prentice Hall, Inc., 2002.

[116] Microsoft Corporation, “Internet Information Services (IIS) 6.0.”

[117] ——, “Task Parallel Library,” www.microsoft.com, last Accessed.

[118] ——, “ASP.NET,” http://www.asp.net/, 2009.

[119] ——, “Estimating Bandwidth Requirements and Connection Speed (IIS
6.0),” http://www.microsoft.com, 2009, last accessed.

[120] G. Moore, “Progress in digital integrated electronics,” in 1975 Interna-
tional Electron Devices Meeting, vol. 21, 1975, pp. 11–13.

[121] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular
router,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231, 1999.

[122] P. Mutton, “National rail website affected by snow,” http://news.netcraft.
com/, January 2010.

[123] NCSA, “Blue Waters computing system,” www.ncsa.illinois.edu, 2010.

[124] Netcraft Ltd., “February 2009 Web Server Survey,” 2009.

[125] J. Ng, “DDR3 Will be Cheaper, Faster in 2009,” www.dailytech.com, Jan-
uary 2009.

[126] J. K. Ousterhout, “Why threads are a bad idea (for most purposes),” in
Invited Talk at 1996 Usenix Technical Conference, 1996.

[127] P. Mutton, “Extended Validation SSL Certificates 2 Years Old,” http://
news.netcraft.com/, February 2009.

151

www.microsoft.com
http://www.asp.net/
http://www.microsoft.com
http://news.netcraft.com/
http://news.netcraft.com/
www.ncsa.illinois.edu
www.dailytech.com
http://news.netcraft.com/
http://news.netcraft.com/


[128] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: an efficient and
portable web server,” in ATEC ’99: Proceedings of the annual conference
on USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 1999, pp. 15–15.

[129] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R. Cheriton,
“Comparing the performance of web server architectures,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 3, pp. 231–243, 2007.

[130] Parks Associates., “Parks associates forecasts over 640 million broad-
band households worldwide by 2013,” www.parksassociates.com, July
2009.

[131] I. Paul, “Jackson’s Death a Blow to the Internet,” http://www.pcworld.
com/, June 2009.

[132] Paul Mutton, “One Million SSL Sites on the Web,” http://news.netcraft.
com/, February 2009.

[133] Press Association, “Broadband investment to grow digital economy,”
www.ukinvest.gov.uk, January 2010.

[134] PriMetrica, Inc., “Global Internet Geography,” http://www.
telegeography.com/, 2009.

[135] X. Qie, R. Pang, and L. Peterson, “Defensive programming: using an
annotation toolkit to build DoS-resistant software,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 45–60, 2002.

[136] R. M. Ramanathan and V. Thomas, “Platform 2015: Intel R© Processor
and Platform Evolution for the Next Decade,” 2005, white Paper, Intel
Corporation.

[137] J. Rattner, “Polaris points the way to terascale computing,” www.zdnet.
com, December 2006.

[138] J. Reinders, Intel Threading Building Blocks. O’Reilly Media Inc., 2007.

[139] REUTERS, “Hacker attacks silence Twitter, slow Facebook,” http://www.
reuters.com/, August 2009.

[140] D. Robsman, “Thread optimization,” http://www.freepatentsonline.
com/, November 2002.

152

www.parksassociates.com
http://www.pcworld.com/
http://www.pcworld.com/
http://news.netcraft.com/
http://news.netcraft.com/
www.ukinvest.gov.uk
http://www.telegeography.com/
http://www.telegeography.com/
www.zdnet.com
www.zdnet.com
http://www.reuters.com/
http://www.reuters.com/
http://www.freepatentsonline.com/
http://www.freepatentsonline.com/


[141] S. Bharti, V. Kaulgud and V. Niranjan, “Fine Grained SEDA Architec-
ture for Service Oriented Network Management Systems,” International
Journal of Web Services Practices, vol. 1, no. 1-2, pp. 158–166, 2005.

[142] A. Savoia, “The science of web site load testing,” www.keynote.com,
2000, White Paper.

[143] I. Schmerken, Can the Market’s Systems Keep Up With Electronic Trad-
ing?, Wall Street & Technology, February 2007.

[144] J. H. Schönherr, J. Richling, M. Werner, and G. Mühl, “Event-driven pro-
cessor power management,” in 1st International Conference on Energy-
Efficient Computing and Networking (e-energy 2010). New York, NY, USA:
ACM, apr 2010, pp. 61–70.

[145] R. J. Shapiro, “The Internet’s Capacity To Handle Fast-Rising Demand
for Bandwidth,” US Internet Industry Association, September 2007.

[146] S. Siddha, “Multi-core and linux kernel,” http://software.intel.com/,
June 2007.

[147] R. Sim, “We heard you loud and clear,” http://mailcall.spaces.live.com/,
February 2008.

[148] W. Stallings, Operating Systems: Internals and Design Principles, 5th ed.
Prentice Hall, 2004.

[149] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole,
“A feedback-driven proportion allocator for real-rate scheduling,” in OSDI
’99: Proceedings of the third symposium on Operating systems design and
implementation. Berkeley, CA, USA: USENIX Association, 1999, pp.
145–158.

[150] Steiner Associates LLC., “Amazon surpasses ebay’s unique traffic in de-
cember,” www.auctionbytes.com, February 2009.

[151] M. Stonebraker, G. Held, E. Wong, and P. Kreps, “The design and im-
plementation of ingres,” ACM Trans. Database Syst., vol. 1, no. 3, pp.
189–222, 1976.

[152] Sun Microsystems, Inc., “Ultrasparc t2 processor,” www.sun.com.

153

www.keynote.com
http://software.intel.com/
http://mailcall.spaces.live.com/
www.auctionbytes.com
www.sun.com


[153] ——, “Multithreaded application acceleration with chip multithreading
(CMT), multicore-multithreaded UltraSPARC processors,” www.sun.com,
August 2008, white paper.

[154] ——, “Java EE,” http://java.sun.com/, 2009.

[155] R. Swinburne, “Intel Corei7 - Nehalem Architecture Dive,” www.bit-tech.
net, November 2008.

[156] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors,” in EuroSys ’07: Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. New York, NY, USA: ACM, 2007, pp. 47–58.

[157] X. Tang, J. Xu, and S. T. Chanson, Web Content Delivery, ser. Web In-
formation Systems Engineering and Internet Technologies Book Series.
Springer Science+Bussiness Media, Inc., 2005, vol. 2.

[158] The Nielsen Company, “Nielsen Online announces december U.S. search
share rankings,” http://www.nielsen-online.com, January 2009.

[159] The PHP Group, “PHP: Hypertext Preprocessor,” http://www.php.net/,
2009.

[160] W. Tianju, B. Koo, L. Zhihong, and H. Ke, “Simsync: A table-based con-
straint processing language for synchronization control,” in Parallel and
Distributed Processing with Applications, 2009 IEEE International Sympo-
sium on, Aug. 2009, pp. 691–695.

[161] J. Torrellas, A. Tucker, and A. Gupta, “Evaluating the performance of
cache-affinity scheduling in shared-memory multiprocessors,” J. Parallel
Distrib. Comput., vol. 24, no. 2, pp. 139–151, 1995.

[162] D. Tsafrir, “The context-switch overhead inflicted by hardware interrupts
(and the enigma of do-nothing loops),” in ecs’07: Experimental computer
science on Experimental computer science. Berkeley, CA, USA: USENIX
Association, 2007, pp. 3–3.

[163] N. Tuck and D. M. Tullsen, “Initial observations of the simultaneous
multithreading pentium 4 processor,” in PACT ’03: Proceedings of the
12th International Conference on Parallel Architectures and Compilation
Techniques. Washington, DC, USA: IEEE Computer Society, 2003, p. 26.

154

www.sun.com
http://java.sun.com/
www.bit-tech.net
www.bit-tech.net
http://www.nielsen-online.com
http://www.php.net/


[164] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: maximizing on-chip parallelism,” in ISCA ’98: 25 years of the inter-
national symposia on Computer architecture (selected papers). New York,
NY, USA: ACM, 1998, pp. 533–544.

[165] B. Urgaonkar and P. Shenoy, “Cataclysm: policing extreme overloads in
internet applications,” in WWW ’05: Proceedings of the 14th international
conference on World Wide Web. New York, NY, USA: ACM, 2005, pp.
740–749.

[166] R. Vaswani and J. Zahorjan, “The implications of cache affinity on pro-
cessor scheduling for multiprogrammed, shared memory multiproces-
sors,” SIGOPS Oper. Syst. Rev., vol. 25, no. 5, pp. 26–40, 1991.

[167] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad idea (for
high-concurrency servers),” in HOTOS’03: Proceedings of the 9th confer-
ence on Hot Topics in Operating Systems. Berkeley, CA, USA: USENIX
Association, 2003.

[168] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer, “Capric-
cio: Scalable Threads for Internet Services,” in Proceedings of the Nin-
teenth Symposium on Operating System Principles (SOSP), October 2003.

[169] M. Welsh, “NBIO: Nonblocking I/O for Java,” www.eecs.harvard.edu,
July 2002.

[170] M. Welsh and D. Culler, “Virtualization considered harmful: Os design
directions for well-conditioned services,” in HOTOS ’01: Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems. Washington,
DC, USA: IEEE Computer Society, 2001, p. 139.

[171] ——, “Overload management as a fundamental service design primitive,”
in EW 10: Proceedings of the 10th workshop on ACM SIGOPS European
workshop. New York, NY, USA: ACM, 2002, pp. 63–69.

[172] ——, “Adaptive overload control for busy internet servers,” in USITS’03:
Proceedings of the 4th conference on USENIX Symposium on Internet Tech-
nologies and Systems. Berkeley, CA, USA: USENIX Association, 2003.

[173] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-
conditioned, scalable internet services,” in SOSP ’01: Proceedings of the

155

www.eecs.harvard.edu


eighteenth ACM symposium on Operating systems principles. New York,
NY, USA: ACM, 2001, pp. 230–243.

[174] M. Welsh, “An architecture for highly concurrent, well-conditioned inter-
net services,” Ph.D. dissertation, 2002.

[175] Wikimedia Foundation, Inc., “Locality of reference,” www.wikipedia.org,
Last accessed, Nov 2009.

[176] ——, “Cache coherence,” http://en.wikipedia.org/, May 2010, last ac-
cessed.

[177] ——, “List of device bit rates,” http://en.wikipedia.org/, August 2010,
last Accessed.

[178] ——, “Server (computing),” http://en.wikipedia.org/, August 2010, last
Accessed.

[179] ——, “Time Stamp Counter,” http://en.wikipedia.org/, August 2010,
last Accessed.

[180] ——, “Web 2.0,” http://www.wikipedia.org/, August 2010, last Accessed.

[181] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of
the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24,
1995.

[182] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazières, and M. F.
Kaashoek, “Multiprocessor support for event-driven programs,” in
USENIX Annual Technical Conference, General Track, 2003, pp. 239–252.

[183] Zeus Technology Limited, “Zeus Web Server,” http://www.zeus.com/,
2008.

[184] J. Zhou and T. Yang, “Selective early request termination for busy inter-
net services,” in WWW ’06: Proceedings of the 15th international confer-
ence on World Wide Web. New York, NY, USA: ACM, 2006, pp. 605–614.

[185] X. Zhou, Y. Cai, J. Wei, and C.-Z. Xu, “A robust application-level ap-
proach for responsiveness differentiation,” in ICWS ’05: Proceedings of
the IEEE International Conference on Web Services. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 373–380.

156

www.wikipedia.org
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://www.wikipedia.org/
http://www.zeus.com/

	Introduction
	Motivation
	Thesis Summary and Contributions
	Dissertation Road Map

	Background and Overview
	Internet Services - Characteristics and Trends
	The Growth of Internet and the Rise of its Services
	Internet Services Properties
	Internet Servers Design Challenges

	Server's Hardware Characteristics
	Bottleneck Resources
	Processor-Memory Speed Gap
	Chip Multi-Processing Era

	System Design Techniques
	Thread-Based Concurrency
	Event-Driven Concurrency

	Memory Accesses Problem
	Scheduling and Resource Management
	Performance Management

	Problem Addressing
	Staged Design & SEDA
	Staged Design
	Staged Event-Driven Architecture
	Advantages of the Staged Design

	Challenges in the Staged Design
	Resource Allocation in Staged Internet Services
	Cohort Scheduling
	Parallelism Hierarchy
	Performance Control for Staged Services


	Related Work
	Staged Design and Similar Design Approaches 
	Resource Allocation and Cache Conscious Scheduling
	Performance Management

	A Control Architecture for SEDA-Based Applications
	A Three-Layers Control Architecture
	Local Controller
	Global Controller
	Performance Controller

	An Overview of The Proposed Approach

	Adaptive Resource Allocation for Staged Services
	Problem Statement
	The System Model
	Resource Allocation Problem
	Resource Management Goals

	The Proposed Approach
	Resource Allocation Policy
	Simple Pipeline
	Network of Stages

	Overload Protection
	The Case of Multiple Processing Units

	Evaluation and Analysis
	Experiments Environment
	Experimental Results
	Evaluation of Cohort Scheduling Effect
	Unique Processing Unit
	Model Parameters Effects
	Parallelism hierarchy effect


	Discussion

	Adaptive Performance Control for Staged Services
	Performance Control Challenges
	The Proposed Performance Management Approach
	The Proposed Approach
	Feedback Control
	System Model
	Feedback Controller Design


	Experiments
	Maintaining Stable Response Time
	Trace a Dynamic Target Response Time

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work




