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Abstract

In this work the nonlinear gain dynamics of electrically injected quantum dot semicon-
ductor optical amplifiers is investigated.

At first the semiclassical modeling ansatz on the basis of Maxwell-Bloch equations
is presented. An important aspect are here the carrier scattering processes between
the confined quantum dot states and the surrounding quasi-2D carrier reservoir states.
Based on a detailed microscopic description of the Coulomb scattering processes density
and temperature dependent scattering rates for the quantum dot-quantum well Auger
scattering processes are calculated.

In the next part of this work the dynamic properties of quantum dot semiconductor
optical amplifiers are investigated. The impact of the different scattering channels on the
gain recovery of the device is investigated. As a main result it is shown that a cascading
relaxation scattering channel drives the ultrafast gain recovery dynamics associated with
quantum dot amplifiers. Furthermore, comparisons with gain recovery measurements
suggest that carrier heating significantly enhances the gain recovery dynamics.

The stability properties of lasers are closely related to the linewidth enhancement
factor, or α-factor. In the next part of this work the impact of the coherent interaction
of the quantum dot states and the 2D reservoir states on the static α-factor is investigated.
As a main result it is shown, that the α-factor of quantum dot based devices is largely
determined by the coherent interaction of the reservoir.

Furthermore, it is shown that the coherent interaction of the reservoir states also has
a huge impact on the phase dynamics and the chirp of ultrashort input pulses.

The last part of this work deals with nonlinear wavelength conversion using non-
degenerate four-wave mixing. Based on the results on Coulomb scattering, it can be
shown that the high bandwidth of nonlinear wavelength conversion in quantum dot semi-
conductor optical amplifiers is linked to the efficient scattering mechanisms between the
reservoir and the quantum dot states.
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Deutsche Zusammenfassung

In dieser Arbeit wird die nichtlineare raum-zeitliche Dynamik von quantenpunktbasierten
Halbleiterverstärkern untersucht.

Im ersten Teil der Arbeit wird das zur Beschreibung und Vorhersage der Dynamik
von Quantenpunktverstärkern entwickelte semiklassische Modell auf Basis von Maxwell-
Bloch Gleichungen vorgestellt. Ein wichtiger Aspekt hierbei beinhaltet die Beschrei-
bung des Ladungsträgeraustauschs zwischen den gebundenen Quantenpunktzuständen
und dem umgebenden Ladungsträgerreservoir. Auf Grundlage einer detaillierten mikro-
skopischen Beschreibung der verschiedenen Coulomb-Streuprozesse werden dichte- und
temperaturabhängige Coulomb-Streuraten für direkte Einfangprozesse vom Reservoir in
den Quantenpunkt sowie für Relaxationsprozesse innerhalb der gebundenen Quanten-
punktzustände berechnet.

Im zweiten Teil der Arbeit wird die Dynamik des Quantenpunktverstärkers unter-
sucht. Hier wird zunächst der Einfluss der einzelnen Streukanäle auf die Gewinnerho-
lungsdynamik des Bauteils analysiert. Als Hauptergebnis wird gezeigt, dass ein kaska-
denartiger Relaxationsprozess maßgeblich die ultraschnelle Gewinndynamik von Quan-
tenpunktverstärkern bestimmt. Durch Vergleiche mit experimentellen Daten zur Gewin-
nerholungsdynamik wird desweiteren gezeigt, dass eine Aufheizung des Bauteils die Ge-
winnerholungsdynamik wesentlich beschleunigt.

Die Stabilitätseigenschaften von Lasern sind eng mit dem linienverbreiternden α-
Faktor verknüpft. Es wird der Einfluss der kohärenten Wechselwirkung der Quanten-
punkte und des Ladungsträgerreservoirs auf den α-Faktor untersucht und als Hauptre-
sultat wird gezeigt, dass der α-Faktor von quantenpunktbasierten Bauteilen maßgeblich
durch die kohärente Wechselwirkung des Reservoirs bestimmt wird.

Weiterhin wird anhand der raum-zeitlichen Dynamik von ultrakurzen Eingangspulsen
gezeigt, dass die kohärente Wechselwirkung im Reservoir auch hier einen erheblichen
Einfluss auf das Phasenverhalten und insbesondere den Chirp der Signale hat.

Im letzten Teil der Arbeit zur nichtlineare Wellenlängenkonversion mittels Vierwel-
lenmischung kann, basierend auf den Ergebnissen zur Ladungsträgerstreuung, bestätigt
werden, dass die hohe Bandbreite der nichtlinearen Wellenlängenkonversion in Quanten-
punktverstärkern auf die effiziente Coulomb-Streuung in Quantenpunktsystemen zurück-
zuführen ist.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The optical and electronic properties of semiconductor based optical devices have been
a subject of intense theoretical and experimental research over the last decades. Besides
the fundamental interest in the underlying physics there is a wide range of possible
applications for example in optical communications.

The possibility to realize a semiconductor laser was first mentioned by John von
Neumann in an unpublished manuscript sent to Edward Teller on September 19, 1953.
In this manuscript entitled Notes on the photon-disequilibrium-amplification scheme, and
later published in IEEE Journal of Quantum Electronics, he calculated the transitions
between two Brillouin zones B1 and B2 and stated ". . . We will actually work with a
setup, where there are few electrons in B1 and there is an excess of holes over electrons, so
that the region E < E in B2 is very nearly filled with holes, and there are few holes with
E > E in B2. . . . " Obviously, he had the idea of a p-n junction in mind. A summary
of the von Neumann manuscript was included in Vol. 5 of the collected works of John
von Neumann, which was published in 1963 [BAR63]. John Bardeen summarized von
Neumann’s ideas concerning a semiconductor laser in the following way: ". . . By various
methods, for example by injection of minority carriers from a p-n junction, it is possible
to upset the equilibrium concentrations of electrons in the conduction band and holes in
the valence band. Recombination of excess carriers may occur primarily by radiation . . .
The rate of radiation may be enhanced by incident radiation of the same frequency in
such a way as to make an amplifier. . . . " This is exactly the concept of a laser1. A year
later the first maser was demonstrated [GOR54] and it took until 1963 before the first
realizations of injection laser diodes took place [HAL62, NAT62, HOL62].

Nowadays, semiconductor lasers are part of optical communication networks, compact
disc players, optical computer mouses. The demand for higher data loads in optical
networks and energy efficient data transmission to reduce the cost per transmitted bit is
one aspect that has led to the development of more and more advanced devices.

The active medium, as the core of any photonic device, where the electrical energy

1Acronym: Light amplification by stimulated emission of radiation.
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3D 2D 1D 0D

Figure 1.1: Schematic illustration of the density of states as a function of energy for bulk
(3D), quantum well (2D), quantum wire (1D) and quantum dot (0D) structures.

is converted into light output, has experienced significant development due to advances
in semiconductor thin film growth techniques. The evolution beginning with the early
bulk devices has led to quantum well (QW) and finally to quantum dot (QD) based
active materials. In bulk devices the electrons and holes can move freely in all directions
within the semiconductor material. By reduction of the extent of the active region
in one direction below the De-Broglie wavelength of electrons and holes, the charge
carriers are confined in this direction and occupy quantized bound states. In practice,
the reduction from bulk (3D) to QW (quasi-2D) is achieved by sandwiching a thin layer
of semiconductor material with a lower band gap energy than the bulk between the
surrounding bulk material. The step from QW (quasi-2D) to QD (quasi-0D) active
regions can be achieved with a special thin film growth technique, the Stranski-Krastanow
growth mode, which leads to the formation of QDs, i.e., small islands of semiconductor
material which confine the electrons and holes in all three spatial directions.

As a direct consequence of the reduced dimensionality the density of states in the
vicinity of the band extrema qualitatively changes as indicated in Fig. 1.1. For bulk
material the density of states shows a square root dependence on energy in the vicinity
of the band extrema. For the 2D case the density of state shows a stepwise behaviour
and in the case of quantum dot structures the density of states is δ-distributed at the
discrete energy levels of the QDs. The application of QD based devices to optical com-
munications in the 1.3 to 1.5 µm wavelength window holds the promise of lower costs
compared to the present InP based technology and also expected superior performance
arising from the reduced dimensionality. Edge emitting InGaAs-based QD diode lasers
have been experimentally demonstrated with low threshold currents and temperature
stable operation. A low linewidth enhancement factor associated with QD lasers leads
to increased stability under optical injection [PAU12, KEL11a] or modelocked operation
[OTT10]. For QD based optical amplifiers broad gain bandwidths and an ultrafast re-
sponse have been reported [BOR00, SUG04] making them ideal candidate in high-speed
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Figure 1.2: Top-view STM image of a sin-
gle InAs quantum dot (from K. Jacobi et
al. [XU05a]).

optical networks. Further applications of QDs include nanophotonic devices [BIM08a]
and QD based single photon sources for the generation of entangled photons for secure
communication purposes.

1.1 Self-assembled Quantum Dots

Quantum dots (QDs) can be regarded as mesoscopic or nanoscaled objects capable of
confining electrons in all three spatial dimensions (quasi-0D). Nowadays, QDs can be
fabricated in several ways, with the major distinction between epitaxial growth methods,
chemical synthesis or state of the art lithography and etching techniques, and exhibit
a wide range of sizes and material compositions [BIM99]. Epitaxially grown QDs are
embedded in a crystalline environment and can therefore easily be integrated into semi-
conductor devices, and are therefore better suited for optoelectronics applications than
chemically synthesized QDs. Among the epitaxially grown QDs, InGaAs/InAs QDs
are probably the most widely investigated systems and this material sysem will be in
the focus of the investigations throughout this thesis. Semiconductor structures with
self-assembled QDs based on the Stranski-Krastanow growth mode [SEI96, JAC03] are
considered. The principle workings of this thin-film growth technique is described in the
following.

The Stranski-Krastanow growth is by now a well established growth mechanism for
self-assembled QD structures. It has been successfully applied to III-V material sys-
tems [LAN87] like InGaAs/GaAs, InP/GaInP, InGaN/GaN, GaN/AlN and IV-IV ma-
terial systems GeSi/Si. The growth techniques are typically heteroepitaxy methods
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(a) (b) (c) (d)

Figure 1.3: Schematic drawing of the Stranski-Krastanow thin fim growth mode. (a):
Substrate and epitaxy layer less than one mono-layer. (b): Substrate and single mono-
layer epitaxy material. (c): Formation of QDs for more than one mono-layer of epitaxy
material. (d): Stacked QD-QW layers.

like molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE).
Schematically, the Stranski-Krastanow growth mode is illustrated in Fig. 1.3 showing
the formation of QDs. It relies on two fundamental mechanisms. First, a material which
is referred to as the substrate is embedded in a surrounding barrier with a larger band gap
thus leading to a confinement of electrons. The second effect is related to the morphol-
ogy of the epitaxial layer. Starting with the substrate, successive mono-layers of epitaxy
material are grown on top of it. The first overgrown layer is commonly referred to as
the wetting layer (see Fig. 1.3(b)). In the Stranski-Krastanow growth mode the epitaxy
material is lattice-mismatched to the substrate material, and the lattice constant of the
epitaxy material is larger than that of the substrate. This leads to compressive strain
in the epitaxy layers. By adding more material on top of the substrate a metastable
state develops at a critical thickness and the epitaxy layer relaxes into a morphology
with a thinner 2D wetting layer and a small 3D island on top. These islands are denoted
as quantum dots (QDs) as illustrated in Fig. 1.3(c). Finally the QDs are overgrown
with the material from the barrier or substrate. One refers to these types of dots as
buried QDs or dot-in-a-well (DWELL) structures. In an actual photonic device such as a
quantum dot laser or a quantum dot semiconductor optical amplifier one usually repeats
this process yielding an active region comprised of stacked layers of QDs as indicated in
Fig. 1.3(d). Each layer adds to the optical gain of the structure and therefore the total
gain of the device is increased. It is important to understand that the transition from
the metastable epitaxy layer into the WL-QD state is triggered by the system itself and
not forced externally. Thus one refers to the process as self-organized or to the QDs
being self-assembled. From intuitive grounds the formation of QDs takes place, because
the build up of internal material strain in the epitaxial layer reaches a point, where it is
energetically favourable to form QDs at the price of additional surface energy, because
the reduction in strain energy is even larger so that the system is driven towards the
QD-QW state.

In Fig. 1.2 a typical scanning tunneling microscopy image of an uncapped InAs QDs
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Figure 1.4: Schematic diagram of the QD energy levels of the ground state and first
excited state within a harmonic oscillator potential. The QW quasi continuum has
larger interband transition energies than the QD states. The labels n and m indicate the
energy level index and the two-dimensional angular momentum quantum number. The
degeneracy m = ±1 is indicated by two separate lines.

grown on a GaAs (001) surface is shown. The depicted QD may be characterized as being
lens-shaped. Depending on the growth conditions the size and shape of the QDs can be
manipulated to a certain degree. QDs formed as lenses, rings, capped or uncapped
pyramids have been reported [GRU95, WOJ96, MIC03]. Throughout this work, lens-
shaped QDs will be assumed, a feature that reflects itself in the form of the single-
particle wave functions that enter in the calculations of Coulomb matrix elements in
later chapters.

1.2 Single-particle states

The calculation of single particle states for a given confinement potential from first princi-
ples is a challenging task on its own. On the basis of tight binding and k ·p models single
and few particle states of QD-QW structures have been investigated in Ref.[SEG05]. The
focus of the present work differs from these investigations in such a way that rather than
calculating the detailed electronic structure and the single-particle wave functions, the
goal of this work is to include carrier-scattering rates and single particle energy renor-
malizations calculated on the basis of given single-particle wave functions in a dynamic
simulation of a QD based semiconductor optical amplifier (QD SOA). At this level the
fundamental properties such as carrier density and temperature dependence of scatter-
ing, while the wave function model itself is used as a starting point in the calculation
and not itself obtained from first principle calculations.
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(a) (b)

Figure 1.5: Graphical representations of carrier scattering processes. (a): Carrier-carrier
scattering processes. The Coulomb matrix element Vq gives the probability amplitude
for a scattering process with initial states |ν1, σ1〉 and |ν4, σ2〉 and final states |ν2, σ1〉
and |ν3, σ2〉. The initial spins σ1 and σ2 are preserved.(b): Carrier-phonon scattering
processes involving the absorption (left) or emission of a phonon (right). The electron
states are indicated by straight lines and the phonon states by curly lines and the coupling
strength gq,λ by a dot.

For lens shaped QDs it hast been shown in Ref. [WOJ96] that the in-plane part of the
single-particle wave functions are in good approximation given by two-dimensional har-
monic oscillator eigenfunctions. These functions allow analytic treatment of e.g. overlap
integrals and will therefore be used for the microscopic theory described later on in this
work.

In Fig. 1.4 the energy diagram for lens-shaped QDs with a two-dimensional harmonic
oscillator confinement potential is shown. For the given energy level spacing sketched in
Fig. 1.4 each QD can confine three electrons and three holes, one in the QD ground state
and two in the double degenerate first excited state. In the scope of this work only the
QD ground state and first excited state will be considered. The in-plane wave function
for the QD ground state has an s-orbital character with angular momentum m = 0, while
the first excited state has a p-orbital character with angular momentum m = ±1. The
QD states are located energetically below the band edge of the surrounding QW which
forms a quasi-continuum indicated by the gray shaded area in Fig. 1.4.

1.3 Carrier scattering processes

The dynamical behaviour of the stimulated emission process that drives a QD laser or
amplifier is to a large extent determined by the underlying charge carrier dynamics.
In an electrically pumped setup the charge carriers are not injected directly into the
QDs. The basic question is therefore how the charge carriers get into the QDs. To
answer this question it is crucial to know the important mechanisms that drive the
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QW-QD scattering processes. This problem has been theoretically addressed on various
levels of sophistication ranging from quantum kinetic approaches [LOR06, LOR07] for
quantum dots and quantum wires [PRE97, PRE99] to simpler perturbative approaches
[INO97, WET04, WET04a]. The two basic interactions leading to a population of the
QDs are carrier-carrier and carrier-phonon collisions sketched in Fig. 1.5.

At low carrier densities the charge carriers can efficiently couple to longitudinal optical
(LO) phonons [INO92, INO97], while Auger type carrier-carrier collisions are relatively
inefficient. Here, the use of perturbation methods leads to a so-called phonon bottleneck.
The reason is, that Fermi’s Golden rule for a carrier scattering process assisted by the
absorption (or emission) of an LO-phonon contains an energy conserving delta-function,
which allows only scattering processes where the LO-phonon energy matches the carrier
transition energy. When the intraband transition energies of localized QD states does not
match multiples of the LO-phonon energy, scattering is prohibited in this framework. On
the contrary, recent results based on full quantum kinetic description predict an enhanced
scattering efficiency for carrier-phonon processes [LOR06, LOR07].

At high carrier densities the accumulation of charge carriers can provide for efficient
Auger type scattering channels between the QW and QD states. In experimental mea-
surements of QD SOAs using heterodyne pump-probe measurements [PIW07] a power
law behaviour of the gain recovery times versus injection current has been observed,
which indicates that Auger capture processes dominate the carrier dynamics. In other
studies of the ground and excited state recovery as a function of the injection current it
was also suggested that the ultrafast relaxation processes are Auger dominated [SCH05d].
The high carrier densities that occur during operation of a QD SOA justifies to neglect
the carrier-phonon processes between QD and QW states.

To ensure the predictive power of the modeling approach, Auger type scattering rates
between QW states and the bound QD ground and first excited state in dependence
of the QW electron and hole density are implemented into the dynamical simulation.
While being complex to calculate a thorough microscopic treatment of carrier-carrier
scattering processes can account for effects such as carrier heating [MAJ11]. Simi-
lar density dependent scattering rates between QW states and the QD ground state
level have been successfully used to describe the turn-on behaviour of solitary QD
lasers [LUE08, LUE09, LUE10, LUE10a] and to investigate the stability properties of
QD lasers subjected to optical feedback [OTT10, OTT11] and to external optical injec-
tion [OTT12, PAU12, LIN12]. For quantum dot optical amplifiers the scattering for-
malism has been extended to include both the ground state and the first excited state
of the QD. Besides direct carrier capture processes from the QW to the QD states this
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Figure 1.6: Geometric structure of a quan-
tum dot semiconductor optical amplifier
with tilted waveguide (from Sugawara et
al.(2005) [SUG05].

extension also includes intradot relaxation processes from the first excited state to the
ground state that have proven to be the essential processes enabling the ultrafast gain
recovery observed in QD SOAs.

1.4 Quantum dot semiconductor optical amplifiers

The main focus of this thesis lies on the investigation of the dynamical properties of of
quantum dot semiconductor optical amplifiers (QD SOAs). Structurally, QD SOAs are
similar to quantum dot Fabry-Perot laser diodes. The major difference between QD lasers
and QD SOAs is the degree of reflectivity of the end facets. For a SOA the reflectivity is
engineered as small as possible, modern designs with tilted waveguides and antireflection
coatings at the end facets allow refectivities as low as 10−5, thus efficiently suppressing
the longitudinal modes. A laser resonator on the other hand requires a high degree of
reflectivity (> 0.99) to operate efficiently. The high optical losses at the end facets of
the SOA prevent it from reaching a lasing state and consequently it is not possible to
define a threshold current. Instead one refers to the transparency current at which a
signal propagates lossless through the device. The geometric structure of a QD SOA is
sketched in Fig. 1.6.

For optical networks, optical amplifiers are of largest importance serving as boosters,
in-line or preamplifiers. From the laser design a reduction of the facet reflectivity has
led to a development of laser amplifiers [SCH88j] to modern day optical amplifiers. The
high degree of optical nonlinearities present in QD SOAs makes them attractive for all-
optical signal processing such as all-optical switching, pulse shaping and pulse control,
chirp compensation and nonlinear wavelength conversion. The advantages of QD SOAs
over conventional QW or bulk SOAs are a broad gain bandwidth originating from the
distribution in size, composition and strain of the QDs [4] , high saturation output power
levels [BER04, USK05], and ultra-fast gain dynamics within the QDs [PIW07, ODR07a,
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Figure 1.7: Eye diagram of a 80 Gb/s wave-
length converted return to zero on-off key-
ing signal. The input and output signals are
at wavelength 1310 nm and 1320 nm (from
Meuer et al.(2005) [MEU11].

GOM08], enabling amplification as well as signal processing at high data rates [SUG05,
CON10]. Figure 1.7 shows an eye diagram of a 80 Gb/s wavelength converted signal from
Meuer et al. [MEU11]. The open eyes indicate successful wavelength conversion with a
distinct separation between the on and off state of the data stream.

From a scientific point of view SOAs can deliver valuable information on internal
processes occurring in the active gain medium. Time integrated four-wave mixing exper-
iments for example allow access to the polarization dephasing times [BOR02, BOR07b]
and pump-probe spectroscopy methods give valuable information on the carrier lifetimes
of the system [BOR00, GOM08].

1.5 Outline of the thesis

The thesis is structured as follows. In chapter 2 a short review of the theoretical concepts
of semiclassical laser theory is given. The first part deals with the electric field dynamics
on the basis of Maxwell’s Equations. Approximation schemes for the spatial (device
geometry) and temporal evolution of the electric field are discussed. The second part
treats the material model on a quantum-mechanical level. In this section quantum dot
semiconductor Bloch equations suitable for the description of QD SOAs are derived.

Chapter 3 describes the microscopic carrier-carrier scattering contributions appearing
in the quantum dot semiconductor Bloch equations. A thorough analysis of the possible
Auger scattering channels present in the combined QD-QW system is given and density
dependent scattering rates for the different processes as input for the dynamic simulation
are calculated.

In chapter 4 the spectral properties of the gain medium is investigated. The linewidth
enhancement factor, or α-factor, which quantifies the amplitude phase coupling of the
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electric field within the QD-QW gain medium. Furthermore, the local ultrafast nonlinear
gain response of QD SOAs is analyzed. With the microscopic input at hand it is possible
to quantify the relevance of different scattering contributions and it could be deduced that
the relaxation channels make the dominant contributions to the ultrafast gain recovery
dynamics of QD-SOAs. The contributions of QW and QD states to the α-factor and the
impact of the QW in the gain and phase response of QD SOAs are discussed in detail in
Chap. 5.

Wavelength conversion properties of QD SOAs using nonlinear four wave mixing
(FWM) is the focus of chapter 6. As in the previous sections the focus lies on the impact
of the QW and QD states on the FWM wavelength conversion efficiency.

A summary of the results of the thesis and an outlook to possible future investigations
on the topic of QD SOAs is given in chapter 7.
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Chapter 2

Theoretical background

In the active medium of a semiconductor laser or amplifier the light interacts with the
medium and is amplified. In it the fundamental processes of absorption, stimulated
and spontaneous emission occur simultaneously and interact with each other. Nonlinear
laser dynamics [LUE11b] based on quantum dots is a field of active research nowadays.
There exists a hierarchy of models ranging from full microscopic models to simple rate
equations. The level of detail of the modeling strongly depends on the physical problem
that is being addressed. Throughout this work a semiclassical ansatz is chosen to describe
the dynamics of QD SOAs. In the spirit of semiclassical laser theory [HAK83a, CHO99,
HAU04] only the classical character of light is accounted for while for the gain medium
the quantum mechanical properties are considered.

For the QD SOA, the combined system of Maxwell’s equations on the one hand and
the quantum dot and quantum well semiconductor Bloch equations on the other hand,
the Maxwell-Bloch equations, constitute the basis for the theoretical description. In the
following a review of semiclassical laser theory is given and the dynamical Maxwell-Bloch
equations for QD SOAs are derived.

The strong optical confinement in transverse direction in an edge emitting QD SOA
and respective approximations of the field variables in terms of spatial averages of the
transverse modes allows one to neglect the transverse field dynamics altogether.

The slowly varying envelope approximation (SVEA) to the (1D) Maxwell Equations
in propagation direction enables a further reduction of the complexity leaving a single
first order partial differential equation for the electric field. The validity of this temporal
approximation in the context of QD SOAs is discussed.

The many-body intraband interactions in the QW are conveniently approximated
in relaxation time approximation in terms of relaxation processes with characteristic
relaxation times (Auger and carrier-phonon processes).

11
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2.1 Electric field dynamics

Within a semiclassical modeling approach the dynamics of the electric field amplitude
within the active region of the QD SOA is described by Maxwell‘s equations

∇ ·D = ρf , (2.1)

∇ ·B = 0, (2.2)

∇×E = −∂B
∂t
, (2.3)

∇×H = Jf +
∂D

∂t
, (2.4)

together with the material equations

D = ε0E + P (2.5)

B = µ0H, (2.6)

where D and E denote the electric displacement field and the electric field, respectively,
and B and H are the magnetic and magnetizing fields, respectively. The above equations
are given for nonmagnetic material s (relative permeability µ = 1). Furthermore, Jf is
the free current density and ρf the free charge density.The macroscopi c spatial average
of the microscopic dipole density of the gain medium is denoted by P and ε0 and µ0

are the free sp ace permittivity and permeability, respectively. Disregarding free charges
(ρf = 0) and taking ∇× of Eq. (2.3) and using Eq. (2.4) one obtains the fundamental
wave equation

∇2E−∇(∇ ·E) =
1

c2
∂2E

∂t2
+ µ0

∂2P

∂t2
+ µ0

∂Jf
∂t

. (2.7)

Solving Maxwell‘s equations is a numerically challenging task and therefore it is useful
to apply spatial and temporal approximations that are well suited to the geometry of the
problem and the spatio-temporal features of the involved fields, which is outlined in the
following.

2.1.1 Geometric approximations

The geometry of the QD SOA is a planar ridge waveguide structure (see Fig. 1.6) and
the width of the waveguide is typically in the µm regime (here 4µm). One can therefore
assume that there exists strong transversal confinement of the electric field and that it
is possible to neglect the transversal field dynamics by using a mean field in transverse
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direction. The orientation of the dipole density is directly related to the orientation of the
microscopic dipoles in the QD-QW system, which depends on the growth and fabrication
process of the device. In the following the electric field and dipole density are assumed
to be parallel. Then, the vectorial character of the fields can be neglected.

For the propagation direction of the incident electric field the z-direction is chosen
and the polarization is taken to be along the x-direction, E(r, t) = Ẽx(z, t) ex. The
spatial orientation of the macroscopic, and thus all microscopic dipoles is parallel to the
electric field, i.e., P = P̃x ex. For the magnetic field then follows H(r, t) = H̃y(z, t) ey.

With the above assumptions Maxwell’s Eqs. can be reduced to the following scalar
set of equations

∂H̃

∂t
= − 1

µ0

∂Ẽ

∂z
(2.8)

∂Ẽ

∂t
=

1

ε0

(
∂H̃

∂z
− Γ

∂P̃

∂t

)
, (2.9)

where the indices of the vector components (x, y) have been omitted. The total polariza-
tion density P̃ can be split into a background and a resonant contribution P̃ = P̃bg + P̃r.
Assuming a linear response of the background contribution, e.g., P̃bg = ε0χbgẼ one can
introduce a background dielectric constant εr = 1 + χbg and replace ε0 with ε0εr and P̃
with P̃r in Eqs. (2.9) and (2.9). The prefactor Γ to the polarization term in Eq. (2.9)
is the transverse optical confinement factor from Eq. (B.22) accounting for the fact that
the transverse mode has a finite overlap with the cross section (perpendicular to the
propagation direction) of the device. The above equations describe the full wave solution
of Maxwell’s equation in one spatial dimension (1D). The dynamic polarization P̃r of
the medium in response to the input light field at each spatial position is given by the
solution of the semiconductor Bloch equations for the combined QD-QW system derived
later on in Sec. 2.2. The resulting coupled Maxwell-Bloch system is the basis for the in-
vestigation of ultrafast, high power pulse excitations in the semiconductor gain medium.
With this approach arbitrary signals in time and frequency domain can be investigated
without restrictions to the electric field signals as the rotating wave and slowly varying
envelope approximations. It includes nonlinearity, dispersion, saturation and resonance
effects. The numerical approach is based on a finite difference time domain (FDTD)
numerical integration scheme described in App. C.
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2.1.2 Slowly varying envelope approximation

Direct integration of Maxwell’s Equations with finite difference time domain methods
has a major drawback due to the high computational demands that are required. In
order to solve the full-field dynamics in a finite difference time domain approach both a
high spatial and temporal resolution is needed in the numerical integration in order to
resolve the fast oscillations of the carrier wave. However, for the case of near resonant and
slowly varying spatio-temporal electric fields, the slowly varying envelope approximation
(SVEA) and rotating wave approximation (RWA) can be applied. These are common
approximations made in the dynamical description of semiconductor lasers. The changes
to the Bloch equations in RWA and SVEA approximations will be discussed in 2.2.1.

The electric field dynamics under RWA and SVEA approximation can be reduced to
the following first order wave equation (see App. B.1):(

∂

∂z
+

1

νg

∂

∂t

)
E(z, t) =

1

2
Γiµ0

ω0c

nb
P (z, t), (2.10)

where νg is the group velocity of the light with central frequency ω0 in the medium and nb
is the background refractive index. Also, E and P are now the slowly varying envelopes
of the full fields Ẽ and P̃ defined as

P̃ (z, t) =
1

2
P (z, t)

(
eiωt + e−iωt

)
, (2.11)

Ẽ(z, t) =
1

2
E(z, t)

(
eiωt + e−iωt

)
. (2.12)

The acquired reduced set of equations neglects group velocity dispersion (GVD) ef-
fects completely. For a QD SOA one can make the assumption that the dispersion length,
e.g. the length scale on which GVD becomes important to be much larger than the non-
linear length, e.g. the length scale on which the nonlinear gain effects come to play a role.
To account for dispersive effects in a slowly varying envelope framework one would need
to solve a nonlinear Schrödinger equation, which includes a dispersive term proportional
to the second time derivative of the electric field ∂2E/∂t2.

The optical transition energies present in the system cover a range beginning with
the lowest optical transition energies of the QD GS around ~ωGS ≈ 1eV and ending with
the highest transition energies of the QW optical transitions ~ω ≥ 1.1eV ). Especially
for ultrashort pulse excitations, where the frequency spectrum of the input pulses can
become very large the QW transitions can be expected to interact significantly with
the signal even when the central frequency of the input signal is located near the QD
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transition frequencies. The full field approach is therefore a good tool to test for the
validity of the reduced dynamical system in slowly varying envelope and rotating wave
approximation.

Differential gain

An expression for the modal differential gain g(z, ω) (in units per length) can be obtained
by Fourier transforming Eq. (2.10) and using the relation P (z, ω) = ε0χ(z, ω)E(z, ω)

∂

∂z
E(z, ω) = i

(
ω

νg
+

1

2
Γ
ω0

cnb
χ(z, ω)

)
E(z, ω). (2.13)

The differential gain is given by the real part of the prefactor in front of E on the right
hand side of Eq. (2.13)

g(z, ω) =
1

2
Γ
ω0

cnb
Im[χ(z, ω)]. (2.14)



16 CHAPTER 2. THEORETICAL BACKGROUND

2.2 The active medium

In this section a review of the quantum mechanical description of semiconductor gain
media is given. The following derivation of the QD semiconductor Bloch equations relies
on the concept of density matrix theory1 [SCH98, WAC02]. The starting point is the
system’s Hamiltonian. The most simple ansatz for the quantum dot active medium
includes the free carrier Hamiltonian H0, describing the energy of the bound electron
and hole states in the QDs, and the carrier-field interaction Hamiltonian Hcf , describing
the light-matter interaction between the light field and the electron-hole pairs of the
QDs. Within the framework of second quantization the free carrier Hamiltonian and the
carrier-field Hamiltonian in dipole approximation are given by

Ĥ = H0 +HC−F =
∑
α

εαa
†
αaα +

∑
β

εβa
†
βaβ

−
∑
α,β

(
µαβa

†
αd
†
β + µ∗αβdβaα

)
Re
[
Ee−iωt

]
. (2.15)

Here, α and β denote the single particle electron and hole states. The electric field in
the dipole interaction Hamiltonian is given by

Ẽ(t) = Re
[
E(t)e−iωt

]
=

1

2

(
E(t)e−iωt + E∗(t)eiωt

)
. (2.16)

The operators a†α and aα (d†β and dβ) are the electron (hole) creation and annihilation
operators of the corresponding single particle state α (β). The dipole matrix element µαβ
quantifies the dipole coupling strength of the optical transition between level α and β.
The operators defined by a†αaα and d†βdβ are particle number operators of the electron
and hole states α and β, respectively and the terms a†αd†β and d∗βa

∗
α are the creation

and annihilation operators of electron-hole pairs in the states α, β. The occupation
probabilities of electron and hole states, fe,α and fh,β , and the microscopic polarization
amplitude pαβ are defined in the following way

fe,α := 〈a†αaα〉, (2.17)

fh,β := 〈d†βdβ〉, (2.18)

p̃αβ := 〈a†αd†β〉∗ = 〈dβaα〉. (2.19)

Assuming non-vanishing polarizations only between common single particle electron and
1An alternative approach would be the use of nonequilibrium Green’s function theory [LOR06]
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QW conduction band edge

QW valence band edge

localized
QD states

Figure 2.1: Schematic diagram of the QD energy structure with two discrete electron
and hole levels.

hole states only, e.g., p̃αβ = 0 for α 6= β the associated single particle density matrix
takes the simple form

ρα =

(
fe,α p̃α

p̃∗α fh,α

)
, (2.20)

where the second index in the polarization term has been dropped for notational simplic-
ity, e.g., p̃αα := p̃α. In the following, such a density matrix will be called diagonal in the
index α. The time evolution of the density matrix elements is governed by Heisenbergs
equations of motion for expectation values of operators ô [MEY91, HAU04, CHO99]

∂

∂t
〈ô〉 =

i

~

[
Ĥ(t), ô(t)

]
. (2.21)

The equations of motion for the density matrix elements from Eq. (2.20) and the Hamil-
tonian from Eq. (2.15) are the well-known semiconductor Bloch equations

∂p̃α
∂t

= −iωαp̃α − i
µα
~

Re
[
Ee−iωt

]
(fe,α + fh,α − 1) (2.22)

∂fe/h,α

∂t
= − i

~
(µ∗αp̃α − µαp̃∗α) Re

[
Ee−iωt

]
. (2.23)

Note that for any diagonal density matrix Eqs. (2.22) and (2.23) are exact. When treating
Coulomb interactions in chapter 3, the appearance of particle-particle correlations will
introduce non-diagonal elements to the density matrix and the evaluation of the equations
of motion does not immediately lead to a closed set of equations.



18 CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Rotating wave approximation

A common approximation of Eq. (2.22) and (2.23) is the rotating wave approximation
(RWA). It relies on near resonant excitation, meaning that the frequency of the electric
field interacting with the two-level medium is close to the optical transition frequency
of the dipole transition. In such a situation it is favorable to transform into a frame
of reference of the electric and dipole fields rotating with the central field frequency ω.
Writing the polarization in the same fashion as Eq. (2.16)

p̃α(t) =
1

2

(
pα(t)e−iωt + p∗α(t)eiωt

)
(2.24)

and inserting Eqs. (2.16) and (2.22) into Eqs. (2.22) and (2.23) one obtains

∂pα
∂t

e−iωt = −i(ωα − ω)pαe
−iωt − iµα

2~
[
E + E∗e2iωt

]
(fe,α + fh,α − 1) (2.25)

∂fe/h,α

∂t
= − i

~
(µ∗αpαe

−iωt − µαp∗αeiωt) Re
[
Ee−iωt

]
. (2.26)

Assuming that the slowly varying envelope of the electric field and the polarization vary
little on timescales of 1

2ω the contributions from the terms oscillating with 2ω will average
to zero and can thus be neglected. Equations. (2.22) and (2.23) then simplify to

∂pα
∂t

= −i(ωα − ω)pα − i
Ωα

2
(fe,α + fh,α − 1) (2.27)

∂fe/h,α

∂t
= − Im[Ωαp

∗
α]. (2.28)

Here, the Rabi frequency Ω = µα
~ E has been introduced. The dipole moment µα appear-

ing in the Rabi frequency quantifies the strength of the dipole interaction.

2.2.2 Many-body Coulomb effects

In order to extend the derivation to also account for Coulomb interaction between charge
carriers in the system the Coulomb interaction Hamiltionian in second quantization is
included

HC =
1

2

∑
a,b,c,d
s,s′

Vabcd

[
a†c,sa

†
d,s′aa,s′ab,s + d†c,sd

†
d,s′da,s′db,s − 2a†c,sd

†
d,s′aa,s′db,s

]
, (2.29)
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where a, b, c, d denote electron and hole states of the QD-QW system and s, s′ ∈ {↑, ↓}
their respective spin. The Coulomb matrix element Vabcd is given by

Vabcd =

∫
d3rd3r′Ψ∗d(r)Ψ∗c(r

′)
e20

4πε0|r− r′|Ψa(r)Ψb(r
′). (2.30)

Here, Ψ denote the single particle wave functions and V =
e20

4πε0|r−r′| is the bare Coulomb
potential. The additional contributions to the dynamics are readily obtained by applying
Heisenbergs equations of motion:

∂pα
∂t

∣∣∣∣
C

=
i

~
〈[HC , dαaα]〉 , (2.31)

∂fe,α
∂t

∣∣∣∣
C

=
i

~

〈[
HC , a

†
αaα

]〉
, (2.32)

∂fh,α
∂t

∣∣∣∣
C

=
i

~

〈[
HC , d

†
αdα

]〉
. (2.33)

As stated earlier, the Coulomb Hamiltonian introduces correlations to the system (man-
ifesting themselves in a non-diagonal density matrix). The evaluation of the equations
of motion given in Eqs. (2.31)-(2.33) couples operators consisting of two single-particle
operators to expectation values of operators consisting of four single-particle operators.
The time evolution of the four-operator term can be evaluated via Heisenbergs equa-
tions of motion again. The four-operator terms then couple to six-operator terms which
couple to even higher orders. Eventually one obtains a hierarchy of coupled differential
equations. A truncation of this hierarchy-problem can be achieved via the Hartree-Fock
factorization.

Hartree-Fock approximation

The Hartree-Fock approximation [CHO99, HAU04] is based on the following factorization
of four operator terms into products of two operator terms in the following way

〈âb̂ĉd̂〉 = 〈âb̂〉〈ĉd̂〉 − 〈âĉ〉〈b̂d̂〉+ 〈âd̂〉〈b̂ĉ〉. (2.34)
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Within this approximation the time evolution of the system with Coulomb effects can be
reduced to a form similar to Eqs. (2.27) and (2.28)

∂pα
∂t

= −i(ω̃α − ω)pα − i
Ω̃α

2
(fe,α + fh,α − 1) (2.35)

∂fe/h,α

∂t
= − Im[Ω̃αp

∗
α], (2.36)

where the renormalized transition energy

~ω̃α = ~ωα +
∑

ν,b,b′,s′

V b,b′
αννα − δb,b′δs,s′V b,b′

νανα, (2.37)

with b ∈ {e, h} and the Coulomb enhanced Rabi frequency

Ω̃α = Ωα +
1

~
∑
ν,µ

V e,h
νµαα pνµ, (2.38)

have been introduced. The summation over ν and µ includes all QD as well as QW states
of the combined QD-QW system. In terms of renormalized single-particle electron and
hole states Eq. (2.37) can be expressed as

~ω̃α = ~ωα + ∆εα,e + ∆εα,h, (2.39)

with

∆εα,e =
∑
ν,b′,s′

V e,b′
αννα − δe,b′δs,s′V e,b′

νανα; ∆εα,h =
∑
ν,b′,s′

V h,b′
αννα − δh,b′δs,s′V h,b′

νανα (2.40)

Often the Hartree-Fock approximation overestimates the Coulomb effects, so additional
corrections such as the screened exchange and Coulomb hole contributions are used.
Chapter 3 provides a detailed description of these first order Coulomb contributions.

2.2.3 Scattering contributions

Within the Hartree-Fock factorization scheme described above intraband and intrasub-
band scattering are not accounted for. Here, two mechanisms play an important role,
namely, carrier-carrier and carrier-phonon collisions. Not only do these scattering pro-
cesses lead to dephasing of the optical polarization and to equilibration of charge carriers
in the considered QD-QW system, also scattering between QW and QD states leads
to population of the QD states. Taking into account scattering one obtains additional
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scattering contributions (∂/∂t)f je/h,α|col and (∂/∂t)pjα|col to the carrier and polarization
equations, respectively. A detailed analysis of these additional scattering contributions
will be the topic of chapter 3 as later on these contributions will be of crucial importance
for the dynamics of QD SOAs. One then obtains the Bloch equations in the general form

∂pα
∂t

= −i(ω̃α − ω)pα − i
Ω̃α

2
(fe,α + fh,α − 1) +

∂pα
∂t
|col, (2.41)

∂fe/h,α

∂t
= − Im[Ω̃αp

∗
α] +

∂f je/h,α

∂t
|col. (2.42)

As stated in the introduction, the calculation of the dephasing processes accounting
for the scattering contribution to the polarization dynamics, (∂pα/∂t)|col, is a cum-
bersome task that requires a quantum kinetic approach to make accurate predictions
[SCH04e, LOR06] and is beyond the scope of this work. Therefore, throughout this
work, a dephasing time T2 is introduced, which sets the time-scale on which the polar-
ization decays and the collision term in the polarization equation, Eq. (2.41) is expressed
as

∂pα
∂t
|col = − 1

T2
pα. (2.43)

The theoretically predicted [LOR06b] and experimentally determined [BOR00a] QD
ground state dephasing times in QD systems lie in the range of 30 − 100 fs, depend-
ing on the excitation (current injection) strength.

2.2.4 Adiabatic elimination of the polarization

The separate degrees of freedom for the polarization dynamics given by Eq. (2.48) can
be neglected in the case of “fast” polarization decay, e.g. when the time scale of the
polarization dynamics is much smaller than the time scale on which the electric field
envelope evolves. Under these conditions all trajectories will approach the hypersurface
given by setting ṗα = 0 in Eq. (2.48). In the case of pulse shaped electric input fields
this holds true if the temporal pulse width ∆FWHM is much larger than the dephasing
time T2 of the polarizazion, e.g. ∆FWHM � T2. Setting ṗα = 0 in Eq. (2.41) and using
Eq. (2.43) one obtains

0 = −i(ω̃α − ω)p0α − i
Ω̃α

2
(fe,α + fh,α − 1)− 1

T2
p0α. (2.44)
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The quasi-stationary value p0α is then given by

p0α =
Ω̃α(fe,α + fh,α − 1)

(ω − ω̃α) + i 1
T2

. (2.45)

Summing over all states α one obtains the macroscopic quasi-stationary polarization
density

P 0 =
1

Vact

∑
α

µαp
0
α, (2.46)

where Vact is the active volume. To reduce the complexity further one can neglect the
polarization dynamics completely and instead introduce a modal gain function and a
linewidth enhancement factor to account for the phase dynamics. This is a common
approach in laser modeling. The final step in a model reduction would consist of also
neglecting the phase of the electric field and to consider only the field intensity (photon
density).

2.3 Quantum dot semiconductor Bloch equations

Up to now the description has been kept general, leaving the single particle states unspec-
ified. In a QD system, α and β are compound quantum numbers including the quantum
numbers of the electronic states of the QD levels, the spin index s, as well as a spatial
index ρi, i = 1, . . . N indicating the in-plane position of each QD of a total of N QDs.
As stated in the introduction and as will be explained in more detail in chapter 3, for
lens-shaped QDs it is valid to make a separation ansatz for the QD wave functions into
an in-plane and a z-component. With the assumption of strong z-confinement the po-
tential in z-direction is approximated by an infinite height barrier potential and only the
energetically lowest state is taken into account. The in-plane potential is approximated
by a 2D harmonic oscillator potential and the in-plane wave functions are thus harmonic
oscillator eigenfunctions with energy level quantum number n and magnetic quantum
number m, respectively. This allows to write the QD single-particle states as

α = {n,m, ρi}. (2.47)

In the process of self-assembled QD growth, fluctuations in the QD geometry, especially
the size, and the material composition has a direct influence on the band structure of
the QD-QW system. As a result the optical transitions of th QD ensemble appear to
be broadened. This effect, referred to as inhomogeneous broadening, is accounted for by
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Figure 2.2: Schematic illustration of the inhomogeneous broadening of the QD transition.
Each QD is assigned to a subgroup with index j with probability f(j) with the central
QD ground or excited state transition indicated by 〈εj〉 . The full width at half maximum
of f(ε) is indicated by δε = ~δω.

probability mass function f(ε) for the transition energies ε = ~ω of the QDs. The QD
ensemble is then divided into subgroups N j = f(ε = εj)N

QD such that
∑

j f(ωj) = 1.
The probability mass function is taken as a Gaussian with full width at half maximum
(FWHM) δε = ~δω around a central transition energy 〈εje/h〉. In Fig. 2.2 the probability
mass function and the discrete subensembles are schematically illustrated. For now, the
spin index s and the spatial index ρi are dropped, and instead index j discriminating QDs
with different transition frequencies is introduced. Furthermore, restricting oneselves
to the two lowest QD energy levels, the ground state and the first excited state, the
energy level quantum number n can be suppressed as well. The dynamical equations
for the QD material system can then be formulated in terms of the angular momentum
quantum number m and the subgroup index j. The dynamics of each QD level (index m)
within each QD subgroup of the inhomogeneously broadened QD ensemble (index j) with
distinct transition frequency ωjm is governed by the following quantum dot semiconductor
Bloch equations

∂pjm
∂t

= −i(ω̃jm − ω)− i Ω̃
j
m

2

(
f je,m + f jh,m − 1

)
− ∂pjm

∂t

∣∣∣∣
col

, (2.48)

∂f je,m
∂t

= − Im
[
Ω̃j
m p

j
m
∗]−Rjsp,m +

∂f je,m
∂t

∣∣∣∣
col

, (2.49)

∂f jh,m
∂t

= − Im
[
Ω̃j
m p

j
m
∗]−Rjsp,m +

∂f jh,m
∂t

∣∣∣∣
col

. (2.50)
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For a homogeneous ensemble of QDs with the same size and two localized states these
are six dynamical equations. However, if a separation into x subgroups is necessary
6x equations need to be solved. The total 2D QD carrier density nb,m is obtained by
summing over all subgroups,

nb,m = 2νm
∑
j

f jb,mN
j ; b = {e, h}, (2.51)

where N j is the 2D QD density of a specific QD subgroup and νm is the degeneracy of
the respective quantum dot state m (1 for GS and 2 for ES). The additional factor of 2
arises due to spin degeneracy of the QD levels. Furthermore, the total 3D macroscopic
polarization density PQD of the QDs is a linear superposition of the microscopic dipole
densities of all QD states and subensembles given by

PQD =
∑
j,m

N j

hQW
µjm p

j
m = NQD

∑
j,m

g(ωj)

hQW
µjm p

j
m (2.52)

where hQW is the height of one QW layer and N j is the 2D density of the j-th subgroup
with transition frequency ωj of the inhomogeneously broadened QD ensemble.

2.3.1 Spontaneous emission

Spontaneous emission contributes to the loss of charge carriers in the QD states. The
rate of spontaneous emission for electrons and holes is given by [SCH84a]

Rjsp,m

(
f je,m, f

j
h,m

)
= W j

mf
j
e,mf

j
h,m, (2.53)

with the Einstein coefficient [CHO94, LUE08]

W j
m =

(µjm)2
√
εbg

3πε0~
(ωjm)3

c3
(2.54)

accounting for the interaction with all resonator modes. Here, µjm is the dipole moment
of the QD transition, εbg the background dielectric constant, e0 the elementary charge ,
and c the vacuum velocity of light.

2.3.2 Quantum well Bloch equations

The dipole interaction of the QW optical interband transitions can be modeled using a
similar ansatz as for the QDs via Bloch equations for the occupation probabilities of the
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QW states and the interband polarizations.

For the case when the QW is far off-resonant and the electric field is of moderate in-
tensity the dipole interaction of the QW states can be lumped into the background adding
to the background refractive index of the material. For high field intensities though, the
contributions of the QW to the gain and phase dynamics can not be neglected even
for the case when the QW states are significantly detuned from the QD transitions. In
situations where the phase information is relevant, e.g. when evaluating the linewidth en-
hancement factor, a parameter describing the amplitude phase coupling in semiconductor
lasers and amplifiers [HEN82], the QW has a significant impact. Therefore, the coherent
QW interaction is taken into account. In order to describe the state dependence of the
QW one needs information about the band structure of the 2D quasi-continuum. For
simplicity, the description is restricted to the lowest conduction and valence bands (two
band approximation) and the conduction and valence bands are modeled as parabolic
bands with effective masses me and mh and the renormalized transition energy is given
in analogy to Eq. (2.37) by

~ω̃k = ~ω0 +
~2k2

2

(
me
−1 +mh

−1)+ ∆εk,e + ∆εk,h. (2.55)

Here, ~ω0 is the band gap energy of the QW, where mb, b = {e, h} are the effective
masses of electrons (e) and holes (h) and εk,b are the energy renormalizations of the QW
states due to Coulomb effects, which are treated in detail in Sec. 3.3. The states are
labeled by the 2D in-plane momentum k. The corresponding QW Bloch equations for
the occupation probabilities of the QW charge carrier states fkb and the corresponding
interband polarizations pk then read

∂pk
∂t

= −i(ω̃k − ω)pk − i
Ω̃k

2

(
fke + fkh − 1

)
− ∂pk

∂t

∣∣∣∣
col

, (2.56)

∂fke
∂t

= ∆b
k − Im

[
Ω̃kpk

∗
]
− ∂fke

∂t

∣∣∣∣
col

, (2.57)

∂fkh
∂t

= ∆b
k − Im

[
Ω̃kpk

∗
]
− ∂fkh

∂t

∣∣∣∣
col

. (2.58)

The terms ~̃ωk and Ω̃k are in analogy to Eqs. (2.48)-(2.50) the renormalized transition
energies and Rabi frequencies, respectively. The term ∆b

k contains all contributions to
the population change of the QW states, which do not contain an explicit dependence
on the QW states fkb , but rather depend on the total charge carrier densities in the QW.

Instead of evaluating the intraband carrier scattering contributions to the QW dy-
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namics on a microscopic basis, a simpler relaxation time approximation for the intraband
QW scattering contributions is used, where the relaxation towards quasi-equilibrium is
given in terms of a relaxation rate γ = 1

TQW2

[CHO05, WAL06]. The carrier collision
contributions then read

∂fkb
∂t

∣∣∣∣
col

= γb

(
fkb − fk,eqb

)
, (2.59)

where fk,eqb denotes the quasi-equilibrium occupation probability for the QW charge
carriers and γb = 1/TQW1 is the relaxation rate. The quasi-equilibrium occupation prob-
abilities of the QW states are given in terms of the 2D quasi-Fermi level as

feqb =

(
1 + e

εk,b−F
QW
b

kBT

)−1
, b ∈ {e, h}. (2.60)

Here, εk,b = ~2k2/(2mb) is the unrenormalized energy of the k-th QW state and FQWb
is the corresponding quasi-Fermi level in the conduction and valence bands. For the 2D
case the quasi-Fermi level can be expressed as a function of the total QW charge carrier
density

wb =
1

A

∑
k

2fkb (2.61)

and temperature T as

FQWb (wb, T ) = kBT log
(
exp

[
(π~2wb)/(kBTmb))− 1

])
. (2.62)

The QW state dependence of current injection, spontaneous emission and carrier-carrier
scattering contributions is neglected and only the total change of the total QW charge
carrier density wb due to these processes is taken into account. The contributions to the
QW occupation dynamics arising from these processes is included in the term ∆b

k. The
state dependence is kept only for the coherent QW interaction with the light field. These
coherent interactions can drive the QW distributions away from quasi-equilibrium. Since
the scattering rates are calculated for quasi-equilibrium distributions between QW and
QD states the this approach is consistent if the deviations from quasi-equilibrium distri-
butions in the QW are small. For the case of fast carrier equilibration processes in the
QW, e.g., efficient carrier-carrier and carrier-phonon scattering processes and sufficiently
weak coherent light-matter interaction with the QW states this assumption can be made.
The calculation of state-dependent scattering rates would be significantly more involved
and numerically challenging as would be the accurate modeling of charge transport be-
tween 3D bulk and 2D QW states (the current injection). Due to the discrete nature
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of the scattering processes the population changes due to global charge carrier density
changes ∆b

k are best expressed in a discrete time formulation of Eqs. (2.57)- (2.58). Re-
placing the time derivative with a difference quotient with time step ∆t one obtains

∆fke = ∆t

[
∆e
k − Im

[
Ω̃kpk

∗
]
− ∂fke

∂t

∣∣∣∣
col

]
, (2.63)

∆fkh = ∆t

[
∆h
k − Im

[
Ω̃kpk

∗
]
− ∂fkh

∂t

∣∣∣∣
col

]
. (2.64)

The product ∆t∆
b
k can now be expressed in the following way

∆t∆
b
k = fk,eqb

(
µb(wb + ∆tW inc

b , T )
)
− fk,eqb (µb(wb, T )) , (2.65)

where the term W inc
b contains all incoherent contributions which change the 2D QW

particle density, e.g., the current injection density j(t), the spontaneous emission rate in
the QW R̃sp, and the QD-QW scattering contributions (∂f jb,m/∂t)|col

W inc
b =

j(t)

e0
− R̃sp − 2

∑
m,j

N j
∂f jb,m
∂t

∣∣∣∣
col

. (2.66)

The spontaneous emission loss rate R̃sp is given by a bimolecular recombination rate

R̃sp = Bswewh (2.67)

with spontaneous emission loss coefficient Bs [SCH87]. The QW polarization decay is
described in terms of a polarization lifetime as

∂pk
∂t

∣∣∣∣
col

= − 1

TQW2

pk = −γpk. (2.68)

In Fig 2.3 the coherent and state independent processes in the QW are illustrated
schematically. In Fig. 2.3(a) the coherent interaction is illustrated. It leads to spectral
hole burning in the QW and thus creates non-equilibrium charge carrier distributions
in the QW. The non-equilibrium distributions then relax towards quasi-equilibrium via
carrier-carrier and carrier-phonon scattering processes (relaxation rate γ). The state in-
dependent processes are sketched in Fig. 2.3(b). They denote processes that leave the
quantum well distributions in quasi-equilibrium and only change the particle number in
the QW.
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coherent
processes

(a)

(b)

thermalization

Energy

EnergyEnergy

Figure 2.3: Schematic illustration of the coherent and incoherent interactions. (a) Co-
herent processes lead to a non-equilibrium distribution of QW charge carriers. Scattering
mechanisms thermalize the non-equilibrium distribution with relaxation rate γ = 1

TQW2

.

(b) Incoherent processes change the particle number and thus the chemical potential
while maintaining a thermal distribution.

As in the case of the QDs, the macroscopic polarization pQW stemming from the
interaction of the light-field with the QW states is given by a summation over all k-
states.

PQW =
1

hQWA
2
∑
k

pk =
2

hQWA

A

(2π)2

∫
d2k pk =

2

4π2hQW

∫
d2k pk, (2.69)

where A denotes the in-plane area of the active region.

2.3.3 Incoherent description

For the case of weak dipole interactions of the QW states with the light field the po-
larization dynamics of the QW can be neglected. In the limiting case of zero dipole
interaction, µk = 0, Eqs. (2.56)- (2.58) reduce to the following rate equations

∂wb
∂t

=
∂

∂t

(
2

A

∑
k

f bk

)
=

2

A

∑
k

∆b
k =

j(t)

e0
− R̃sp − 2

∑
m,j

N j
∂f jb,m
∂t

∣∣∣∣
col

. (2.70)
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The separate incoherent contributions are the electrical injection term is j(t)/e0, the
spontaneous emission rate in the QW R̃sp and the QD-QWAuger scattering contributions
2
∑

m,j N
j(∂/∂t)f jb,m|col.
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CHAPTER 3. COULOMB CORRELATION CONTRIBUTIONS

Chapter 3

Coulomb correlation contributions

A microscopic description of the Coulomb interaction has been proven successfull in
the modeling of bulk and QW semiconductor based laser [CHO99] and amplifier de-
vices [KNO92, KNO93]. Many-body effects in QD-QW systems have been found to play
a crucial role in understanding the turn-on dynamics and modulation response [LUE08,
KIM10a, LIN10, LUE11] as well as the large signal response [LUE10a] and the linewidth
enhancement factor [SCH02j] of QD lasers.

While the optical transitions in QD lasers and amplifiers involve the localized QD
states, the pump process in electrically injected devices generates carriers in the QW.
Hence the carrier dynamics in QD based devices crucially depends on the capture of
carriers from the QW to the discrete QD states as well as on the relaxation of carriers
between the discrete QD states. An important question addressed in Chapter 4 is to
what extent these processes limit the gain recovery speed of a QD based amplifier.

The aim of this chapter is to study the Coulomb effects present in a QD based optical
amplifier. Thus an ensemble of QDs is considered, which is embedded in a surrounding
QW and the in-plane dimensions are assumed to be that of a typical optical device.
In order to cover a broad range of operating conditions of a QD SOA the results are
presented in dependence of the 2D QW density and temperature.

3.1 Matrix elements and wave function model

The matrix elements of the bare Coulomb potential

Vν1ν3ν2ν =

∫
d3rd3r′Ψ∗ν(r)Ψ∗ν2(r′)

e20
4πε0εbg|r− r′|Ψν1(r)Ψν3(r′) (3.1)

involve the single-particle wave functions Ψv(r) of electrons and holes in the confinement
potential of the QD-QW system.

For lens-shaped QDs the wave functions can be separated into an in-plane component
and a perpendicular y-component [WOJ96] Ψν(r) = φbl (ρ)ξbσ(y)ub(r), where ub(r) are the

31
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lattice Bloch functions and l and σ the quantum numbers of the in-plane and y-component
wave functions, respectively, Eq. (3.1) can be expressed as [NIE04]

Vν1ν3ν2ν =
1

A

∑
q

V b,b2
σ1σ3σ2σδb,b1δb2,b3 × 〈φbl |e−iq·ρ|φ

b1
l1
〉〈φb2l2 |e

iq·ρ|φb3l3 〉, (3.2)

where q is the two-dimensional in-plane carrier momentum and

V b,b2
σ1σ3σ2σ =

e20
2ε0εbgq

∫
dydy′ × ξbσ(y)∗ξb

′
σ2(y′)∗e−q|y−y

′|ξb
′
σ3(y)ξbσ1(y′) (3.3)

is the in-plane Coulomb matrix element.

3.1.1 QD wave functions

In a simple approach to the QD confinement we approximate the y-confinement potential
by an infinite-height potential barrier of width L = 2hQW , where hQW is the thickness of
one QW layer [LIU94, WAL04a]. With this ansatz, analytic wavefunctions in y-direction
can be used and also the overlap integral from Eq. (3.3) can be solved analytically. For a
more rigorous treatment one would need to solve a 1D Schrödinger equation for a finite
height potential barrier.

For the in-plane confinement potential of the QDs the model of a two-dimensional
harmonic oscillator is adopted, which allows for an analytic solution of the wave function
overlap integrals in Eq. (3.2). The calculation of realistic single-particle wave functions
is a task of its own and requires detailed knowledge of the QD geometry and the material
composition and is beyond the scope of this work.

The two-dimensional electronic in-plane wave functions of the QD GS and ES labeled
by φn,m with the energy level quantum n and angular momentum quantum number m
are given in polar coordinates (ρ, ϕ) as

φ0,0(ρ) =
β√
π

exp

{
−β

2ρ2

2

}
, (3.4)

φ1,±1(ρ) =
β2√
π
ρ exp

{
−β

2ρ2

2

}
exp(iϕ). (3.5)

The corresponding energy levels and the energy level spacing are given by

En = ~ωH0(n+ 1), (3.6)

~ωHO = ~2β2m∗, (3.7)
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with effective mass m∗ and oscillator strength ωHO .

3.1.2 Orthogonalized plane waves

In a (homogeneous) quantum well devoid of QDs the in-plane component of the QW
wave functions are in good approximation given by plane waves

φ0k(ρ) = (1/
√
A)eik·ρ. (3.8)

In the presence of QDs however, the QW wave-functions are altered in the vicinity of
the QDs due to local changes in the QD-QW potential and the set of plane waves and
QD wave functions does not represent an orthonormal basis of the combined QD-QW
system.

To describe the combined system one can construct QW wave functions by projecting
plane waves onto the subspace orthogonal to the QD wave functions [SCH01d, NIE04,
MAJ10], so-called orthogonalizedplane waves (OPW). A detailed description of the or-
thogonalzation procedure can be found in Refs. [NIE04, MAJ10]. A short outline of the
orthogonalization procedure is presented in the following. For the case of 2D harmonic
oscillator eigenfunctions used as QD wavefunctions all the resulting overlap integrals
appearing in Eq. (3.2) can be solved analytically.

|φk〉 =
1

Nk
(|φ0k〉 −

∑
α

|φα〉〈φα|φ0k〉). (3.9)

Here Nk is the normalization constant ensuring 〈φk|φk〉 = 1. The summation runs over
all localized QD states. Assuming an ensemble of identical QDs located at positions
{ρi} with non-overlapping wave functions φim(ρ) the summation runs over α = (m, i).
By construction, the OPW states are orthogonal to all QD states 〈φα|φk〉. For different
OPW states we evaluate

〈φk|φk′〉 =
1

NkNk′

(
δk,k′ −

∑
α

〈φ0k|φα〉〈φα|φ0k′〉
)

(3.10)

The inner product between a plane wave and and a QD wave function at position ρi gives

〈φα=(m,ρi)|φk〉 =

∫
d2ρ φm(ρ− ρi)eikρ

=

∫
d2ρ φm(ρ)eik(ρ+ρi) = 〈φα=(m,0)|φk〉eikρi (3.11)
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With this Eq. (3.10) can be rewritten as

〈φk|φk′〉 =
1

NkNk′

(
δk,k′ −

∑
m,i

〈φ0k|φ(m,0)〉〈φ(m,0)|φ0k′〉ei(k
′−k)ρi

)
(3.12)

In the large area limit, meaning that both the in-plane area A→∞ and the number of
QDsN →∞ such that the QD density remains constant (N/A = const) the phase factors
in Eq. (3.12) cancel out on average except for k = k′. In that case the orthogonality
of different OPW states of an ensemble of randomly distributed QDs is restored and
orthonormality is achieved with the normalization constant

Nk =

√
1−NQD

∑
m

|〈φ0k|φ(m,0)〉|2. (3.13)

3.2 Plasma screening

Am important many body effect present in systems with a high carrier density, such as
QD SOAs or QD lasers, is the screening of the Coulomb interaction due to the surrounding
carrier plasma. The bare Coulomb potential is often found to overestimate the Coulomb
interaction, since the carrier plasma effectively screens the interaction.

Within the context of the present work plasma screening is included via the Lindhard
Formula for the longitudinal dielectric function given by [HAU04]

ε(q, ω) = 1− Vq
∑
k,b

f(εb,k−q, µb, Tb)− f(εb,k, µb, Tb)

~(ω + iδ) + εb,k−q − εb,k
, (3.14)

where b = {e, h} takes into account screening effects due to the electron (e) and hole
(h) plasma seperately. The charge carrier distributions are taken as Fermi distributions
assuming equilibrium within the QW. For the implementation of screening the frequency
dependence of the screening is neglected by applying the limit ω+ iδ → 0. The Lindhard
formula becomes

ε(q, ω → 0) = 1− Vq
∑
k,b

f(εb,k−q, µb, Tb)− f(εb,k, µb, Tb)

εb,k−q − εb,k
, (3.15)

Furthermore, only the long-wavelength limit (q → 0) is considered. With this approxima-
tion Eq. (3.14) can be further simplified by expanding f(εb,k−q, µb, Tb) and εk−q around
q = 0 and keeping only the lowest order terms of the expansion. For the denominator
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one obtains

εb,k−q − εb,k =
~2

2mb
(k2 − 2k · q + q2)− ~2k2

2mb
' −~2k · q

mb
(3.16)

and for the numerator

fk−q − fk = fk − q · ∇kfk +O(q2) ' −q · ∇kfk (3.17)

Inserting Eqs (3.16) and (3.17) into Eq (3.15) one obtains

ε(q, 0) = 1− Vq
∑
b,k,i

−qi ∂f∂ki
−~2k·q

mb

= 1− Vq
∑
b,k,i

qi
∂f
∂ki

~2k·q
mb

(3.18)

Assuming a thermal distribution of the QW states one gets

∑
i

qi
∂fkb
∂ki

= −
∑
b,i

qi
∂fkb
∂Fb

∂εb,k
∂ki

= −
∑
b,i

qiki
~2

mb

∂fkb
∂Fb

. (3.19)

Here, εb,k = ~2k2
2mb

and ∂εk
∂ki

= ~2ki
mb

ε(q, 0) = 1 + Vq
∑
b,k,i

qiki
~2
m
∂fkb
∂Fb

~2k·q
m

= 1 + Vq
∑
b,k

∂fkb
∂Fb

= 1 +
e20

2ε0εbgAq

∑
b

∂

∂Fb

∑
k

fkb (3.20)

= 1 +
e20

2ε0εbgq

∑
b

∂wb
∂Fb

≡ 1 +
κ

q
. (3.21)

Here, wb is the 2D QW carrier density and κ =
∑

b
e20

2ε0εbg
∂wb
∂Fb

is the 2D inverse screening
length. With this the 2D statically screened Coulomb potential is given by

Ws(q, ω = 0) ≡ Vq
ε(q, ω = 0)

=
e20

2ε0εbgAq

q

q + κ
=

e20
2ε0εbgA

1

q + κ
(3.22)

The 2D quasi-Fermi level in the QW can be expressed anaytically as

FQWb (wb, T ) = kBT ln
[
exp(~2βπwb/mb)− 1

]
. (3.23)

This allows to explicitly express the screening wave number as follows

κ =
e20

2ε0εbg

∑
b

∂wb
∂Fb

=
e20

2ε0εbg

∑
b

mb

~2π
(1− e−~2βπwb/mb) =

∑
b

mbe
2
0

2πε0εbg~2
fk=0
b . (3.24)
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3.3 First order Coulomb contributions

In this section the first order Coulomb effects will be discussed. As introduced in sec-
tion 2.2.2 the Hartree-Fock approximation is a common method to resolve the so-called
hierarchy problem arising when evaluating Heisenbergs equations of motion including
Coulomb interaction contributions. Specifically, the Coulomb interaction leads to an
energy renormalization of the single-particle states of the electronic system.

3.3.1 Hartree-Fock approximation

In Hartree-Fock approximation the energy renormalization ∆εHFν for an arbitrary QD
or QW state ν with spin s is given by

ε̃ν = εν + ∆εHFν , (3.25)

where εν is the free carrier single particle energy and ∆εHFν the Hartree Fock term. The
spin index s is in the following tacitly included in ν. The Hartree-Fock term consists of
a direct (Hartree) term and an exchange (Fock) term

∆εHFν = ∆εHν + δs,s′∆ε
F
ν

=
∑
ν′

[Vν′ννν′ − Vν′νν′ν ] fν′ . (3.26)

The summation over ν ′ involves all possible states, e.g., QD as well as QW states with
Vν′ννν′ being the Coulomb matrix element defined in Eq. (2.30). The first term in
Eq. (3.26) is the direct (Hartree) part resulting from direct Coulomb interaction and
the second term is the exchange (Fock) part that results by assuming antisymmetric
wavefunctions and thus by taking the Pauli principle into account.

3.3.2 Screened Coulomb interaction

To account for plasma screening effects the bare Coulomb potential V is replaced with
the screened Coulomb potential W derived in section 3.2 in the direct and exchange
terms

∆εHFν → ∆εSHFν = ∆εSHν + ∆εSFν

=
∑
ν′

[
Wν′ννν′ − δs,s′Wν′νν′ν

]
fν′ . (3.27)
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3.3.3 Coulomb hole

The HF approximation is only a first correction to the Coulomb correlation contribu-
tions and further corrections can lead to significant improvements of the HF estimate.
A frequently used modification to the bare HF contributions for high-density plasma
excitations are the above shown screened interaction and Coulomb hole contributions.

The term Coulomb hole refers to the fact that two electrons cannot occupy the same
spatial position due to the repulsive Coulomb force. A wavefunction built up as a Hartree
product does not restore this property and the probability of finding two electrons at the
same spatial position is not zero. The screening of the Coulomb interaction , however,
weakens the repulsive Coulomb force and thus dimishes the effect of the Coulomb hole,
yielding a reduction of the total energy equal to the difference of the screened and the
unscreened Coulomb potential at zero distance [HAU94]:

∆εCHν = lim
|r|→0

1

2
[W (|r|)− V (|r|)] (3.28)

A similar effect due to the fact that two electrons with equal spins cannot overlap spatially
is accounted for by the exchange (Fock) term of the Hartree-Fock approximation. This
is referred to as the Fermi or exchange hole.

Throughout this work Coulomb renormalizations of the single particle energies are
neglected. Instead, the focus of this work lies on the second order Coulomb scattering
processes between the QD and QW states, which will be presented in the next section.
The calculation of Coulomb renormalizations for QD-QW systems is given in App E.
Typically, the Coulomb renormalizations lead to a band gap shrinkage [NIE04, LIN11b].

3.4 Microscopic theory of carrier-carrier scattering

The screened Hartree-Fock terms and Coulomb hole contributions are first order con-
tributions in terms of the Coulomb potential. The second order Coulomb contributions
are the carrier-carrier scattering contributions presented in this section. A schematic
energy diagram of the given QD-QW structure is shown in Fig. 3.1. It indicates the
energy in growth direction (y) of the QD-QW structure. The quasi-continuum of QW
states is marked by the gray shaded areas, respectively, whereas the confined QD ground
state (GS) and first excited state (ES) are indicated by the solid and dashed gray lines,
respectively. The energy offsets of the electron and hole QD ground states to the QW
band edge are labeled by ∆Ee and ∆Eh and the energy separation between the ground
and excited state electron and hole levels is denoted by ∆e and ∆h. The black arrows
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in Fig. 3.1 indicate the possible scattering induced carrier capture processes from the
QW to the bound QD states as well as intradot relaxation processes (Auger electrons are
omitted).

3.4.1 Born-Markov approximation - Boltzmann equation

The collision terms in Eqs. (2.49) - (2.50) in the Markov limit up to second order in the
screened Coulomb potential W are given by [NIE04, MAJ10]:

∂f jb,m
∂t

∣∣∣∣
col

=
2π

~
∑
ν1ν2ν3

Wν1ν3ν2m

[
W ∗ν1ν3ν2m − δb,b′W ∗ν3ν1ν2m

]
× δ (εm − εν1 + εν2 − εν3)

×
[
fν1(1− fν2)fν3(1− f jb,m)− (1− fν1)fν2(1− fν3)f jb,m

]
. (3.29)

with b, b′ ∈ {e, h}. The above equation is a Boltzmann equation of the form

∂f jb,m
∂t

∣∣∣∣
col

= Sinb,m(1− f jb,m)− Soutb,mf
j
b,m, (3.30)

where the sums over products of matrix elements, occupation factors, and the energy
conserving δ-function is given by the general scattering expression S. In these Auger-
type scattering events two carriers scatter from initial states ν1 (with energy εν1) and
ν3 to final states m and ν2, respectively, and vice versa. The calculation involves
screened Coulomb matrix elements for the direct and exchange interaction |Wν1ν3ν2m|2

and Wν1ν3ν2mW
∗
ν3ν1ν2m, respectively. The index m represents the quantum number of

the 2D angular momentum of the confined QD states, m = 0 and m = ±1 for the GS
and ES, respectively. The states of interest are always QD states denoted by the angular
momentum quantum number m. The summation runs over all other states, QD states
as well as QW states. The δ-function in Eq. (3.29) ensures energy conservation. The
occupation probability of state νi is denoted by fνi .

In the following Eq. (3.29) is systematically split into different contributions originat-
ing from different scattering processes, i.e., direct capture processes and relaxation type
processes

∂f jb,m
∂t

∣∣∣∣
col

= Rcap +Rrel (3.31)

and the different contributions are determined separately. Figure 3.2 gives a systematic
overview of the possible QW-QD Auger processes for a QD with two bound energy states.
The Auger scattering processes are grouped into two main categories, direct capture (and
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Figure 3.1: Schematic energy diagram of the QW-QD system. (a): Direct scattering
processes between QW and QD electron and hole states indicated by the black arrows.
The offset energies of the QD electron and hole GS with respect to the QW band edge
are labeled by ∆Ee and ∆Eh, respectively. The enery separation of the electron and
hole GS and ES are given by ∆e and ∆h, respectively. (b): Direct and relaxation type
capture processes indicated by the black arrows.

escape) processes and relaxation processes shown in Fig. 3.2(a) and (b), respectively. The
arrows in Fig. 3.2 indicate electron transitions in the QD-QW system. An Auger process
can be of pure (e−e of h−h) and a mixed (e−h or h−e). The pure electron processes are
indicated in panels I, III of Figs. 3.2 and the mixed processes are shown in panels II, IV. In
Fig.3.2 the respective hole processes are omitted, but the same scheme applies for holes.
In total this makes a number of sixteen different scattering processes. The scattering
rates are evaluated for quasi-equilibrium between the QW and QD subsystems. The
consideration of pure and mixed processes results in a dependency of the scattering rates
on both the electron and hole QW charge carrier density we and wh respectively. In the
following the separate contributions of each type of process will be discussed.

3.4.2 Direct capture

A direct capture process describes the Coulomb assisted transition of charge carrier from
a QW state to a QD state accompanied by an intraband QW transition. The contribution
to Eq. (3.29) from direct capture processes can be expressed as the following Boltzmann
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(a)
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(b)
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Figure 3.2: (a) Direct electron capture processes from the QW to the QD ground state
(I,II) and first excited state (III,IV). Panels I, III and panels II, IV show pure e-e and
mixed e-h scattering processes, respectively. (c) Electron relaxation processes to the QD
ground state. (blue arrows denote electron transitions also in the valence band).

equation

Rcapb = Sin,capb,m (1− f jb,m)− Sout,capb,m f jb,m, (3.32)

with the in-scattering rate given by the following expression

Sin,capb,m =
2π

~
∑

k1k2k3b′

Wk1k3k2m

[
2W ∗k1k3k2m − δb,b′W ∗k3k1k2m

]
× δ

(
εbm − εbk1

+ εb
′
k2
− εb′k3

)
fk1(1− fk2)fk3 . (3.33)

3.4.3 Relaxation processes

A relaxation process is given by the redistribution of carriers within the intra-QD levels.
This class of scattering processes can be further subdivided into two types of processes
involving either one QW-QD transition accompanied by an intra-QW transition (m1 →
m, k3 → k2) or one QW-QD transition to an energetically low QD level (QD ground
state m = 0) together with a QD-QW transition from an energetically higher QD level
(QD excited state m = ±1) to the QW (k1 → m, k2 → m1). Labeling the scattering
contributions of the first type of relaxation process Rrel′b and of the latter process Rrel′′b

one obtains for the total rate Rrelb = Rrel
′

b + Rrel
′′

b The first relaxation type scattering
process (Rrel′) obeys the following Boltzmann equation

Rrel
′

b =Sin,rel
′

b,m f jb,m1
(1− f jb,m)− Sout,rel′b,m (1− f jb,m1

)f jb,m (3.34)
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with the in-scattering rate

Sin,rel
′

b,m =
2π

~
∑

k2k3b′

Wm1k3k2m

[
2W ∗m1k3k2m − δb,b′W ∗k3m1k2m

]
× δ

(
εbm − εbm1

+ εb
′
k2
− εb′k3

)
(1− fk2)fk3 . (3.35)

The scattering rates for the second type of process (Rrel′′b ) can be obtained in a similar
fashion as Eq. (3.35)

Sin,rel
′′

bb′,m =
2π

~
∑
k1k2

W bb′
k1m1k2m

[
2W ∗ bb

′
k1m1k2m −W ∗ bb

′
m1k1k2m

]
× δ

(
εbm − εb

′
m1

+ εb
′
k2
− εbk1

)
(1− f b′k2

)f bk1
(3.36)

Rrel
′′

b =
∑
b′

Sin,rel
′′

bb′,m f jb′,m1
(1− f jb,m)− Sout,rel′′bb′,m (1− f jb′,m1

)f jb,m. (3.37)

The out-scattering rates are determined by replacing f → (1− f).

3.4.4 Detailed balance

Assuming quasi-equilibrium within the QW states but non-equilibrium between QW and
QD electron and hole states the quasi-Fermi distributions within the QW are given by
Fermi-Dirac distributions

f bk =

[
1 + exp

(
Ebk − F

QW
b

kBT

)]−1
. (3.38)

Here, FQWb is the quasi-Fermi level in the QW carrier reservoir given by Eq. (3.23), kB
is Boltzmann’s constant ant T is the temperature. For direct scattering processes the
detailed balance condition between in- and out-scattering is [LUE09]:

Sin,capb,m = Soutb,m exp

(
±FQWb ∓ εbm

kBT

)
, (3.39)

where the upper and lower signs in the exponent are for the case of electrons (b = e)
and holes (b = h), respectively. For relaxation type processes of type rel′ the detailed
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balance condition reads

Sin,rel
′

b,m = Sout,rel
′

b,m exp

(
−(εbm − εbm1

)

kBT

)
, (3.40)

whereas for relaxation processes of type rel′′ it is given by

Sin,rel
′′

bb′,m = Sout,rel
′′

bb′,m exp

(
−(εbm − εb

′
m1

)

kBT

)
. (3.41)

Note, that the detailed balance condition for the mixed process of Eq. 3.41 involves the
single particle energies of QD electron as well as QD hole states, whereas for all other
processes only one charge carrier type appears in the detailed balance condition. Using
detailed balance one only needs to calculate either in- or out-scattering rates, which is a
significant simplification and saves valuable computation time.

3.4.5 Relaxation time approximation

In many theoretical models for optoelectronic devices [CHO05, LIN10, GIO06, GIO08]
the scattering contributions are treated in relaxation time approximation. In thermal
equilibrium the occupation probabilities become stationary, e.g.,

∂f j,eqb,m

∂t
= 0. (3.42)

For perturbations δf jb,m close enough to thermal equilibrium the time evolution from
Eq. (3.30) is given by

∂

∂t

(
f j,eqb,m + δf jb,m

)
=
∂δf jb,m
∂t

= −(Sinb,m + Soutb,m)δf jb,m. (3.43)

With a charge carrier lifetime defined by

T b1,m = (Sinb,m + Soutb,m)−1 (3.44)

a relaxation time approximation is obtained, leading to an exponential decay of the
perturbation from thermal equilibrium. The scattering rate expressions Sinb,m and Soutb,m

appearing in Eq. (3.44) contain contributions from direct capture processes and relaxation
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processes. The QD ground state scattering expressions are given by

Sinb,GS = Sin,capb,GS + 2Sin,rel
′

b f jb,ES + 2Sin,rel
′′

bb f jb,ES + 2Sin,rel
′′

bb′ f jb′,ES , (3.45)

Soutb,GS = Sout,capb,GS + 2Sout,rel
′

b (1− f jb,ES) + 2Sout,rel
′′

bb (1− f jb,ES) + 2Sout,rel
′′

bb′ (1− f jb′,ES).

For the QD ES the scattering expressions are given by

Sinb,ES = Sin,capb,ES + 2Sout,rel
′

b f jb,GS + 2Sout,rel
′′

bb f jb,GS + 2Sout,rel
′′

bb′ f jb′,GS , (3.46)

Soutb,ES = Sout,capb,ES + 2Sin,rel
′

b (1− f jb,GS) + 2Sin,rel
′′

bb (1− f jb,GS) + 2Sin,rel
′′

bb′ (1− f jb′,GS).

The factor of 2 in the contributions of relaxation type appears due to the degeneracy of
the QD ES. Due to the relaxation rates the expressions for the charge carrier lifetimes
also contain occupation factors of the QD levels.

3.5 Results for an InGaAs-GaAs quantum dot quantum well
system

In this section the numerical results for the scattering rates of the considered QD-QW
system are presented. The conduction and valence bands of the QW are approximated
as parabolic bands with effective masses me and mh. The exact calculation of the band
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y

deep QD shallow QD

Figure 3.3: Schematic diagram of the considered deep QD and shallow QD structures.

structure of the QD-QW material system is a complex task on its own and is beyond the
scope of this work. To gain insight into the qualitative changes resulting for different band
structure parameters without performing complex ab initio calculations (for example via
k ·p calculations [POH05, SEG05]) the QD band offset energies with respect to the QW
and the QD oscillator strength within the 2D harmonic oscillator ansatz are considered
for two extremal cases of very deep QDs on the one hand and shallow QDs on the other
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hand. The energetic configuration of the different QD types is shown in Fig. 3.3 and
the respective parameters are given in Table 3.1. Here, ∆Ee (∆Eh) denotes the energy
separation of the QD GS electron (hole) energy level to the QW conduction (valence)
band edge and ∆e (∆h) is the energy level spacing of the electron (hole) QD GS and ES
energy levels.

Table 3.1: Numerical parameters used for the calculation of scattering rates.

shallow dot deep dot

∆Ee,m=0 74meV ∆Ee,m=0 210meV

∆Ee,m=±1 24meV ∆Ee,m=±1 146meV

∆Eh,m=0 40meV ∆Eh,m=0 50meV

∆Eh,m=±1 20meV ∆Eh,m=±1 44meV

∆e 50meV ∆e 64meV

∆h 20meV ∆h 6meV

hQW 4 nm NQD 1011cm−2

me 0.043m0 mh 0.45m0

In the following the QDs with energies ∆Ee = 74meV, ∆Eh = 40meV, ∆e = 50meV,
∆h = 20meV are referred to as shallow QDs, whereas the QDs with energies ∆Ee =

210meV, ∆Eh = 50meV, ∆e = 64meV, ∆h = 6meV are referred to as deep QDs
(see Fig. Fig. 3.3). The numerical parameters used for the evaluation of the different
scattering contributions are listed in Table A.2. Here, hQW is the height of a single QW
layer, NQD is the 2D QD density and me and mh are the effective masses of electrons
and holes, respectively.

In later parts of this work concentrating on the dynamical aspects of QD SOA devices
the different dot configurations will play a role in the analysis of gain recovery and pulse
propagation dynamics.

3.5.1 Shallow quantum dot scattering rates

In this section the shallow QD scattering rates are presented. Figure 3.4 shows a plot
of the shallow QD direct scattering rates between the 2D QW states and the bound
QD states in dependence of the 2D QW electron density for a plasma temperature of
T = 300 K and a constant ratio of wh/we = 1. The direct electron and hole in-scattering
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Figure 3.4: Direct Auger scattering rates of the QD-QW system vs. QW carrier density
we for electrons and holes, respectively, for a 2D plasma temperature of T = 300 K and a
fixed ratio wh/we = 1.0 (a): In-scattering rates to the QD ground state (black solid line)
and first excited state (blue dash-dotted line). (b): Electon out-scattering rates given
by detailed balance from Eq. (3.39) (c) and (d): Same as (a) and (b) for holes. Other
parameters as in Table 3.1.

rates from the QW states to the bound QD states assisted by Auger electrons in the
QW are shown in Fig. 3.4(a) and (c), respectively, while the direct out-scattering rates
for electrons and holes obtained from the detailed balance condition from Eq. (3.39) are
shown in Fig. 3.4(b) and (d). At zero QW density no states in the QW are occupied
and therefore the scattering rate is zero due to the lack of possible scattering partners.
With increasing QW charge carrier density the electron and hole in-scattering rates at
first increase due to the increased availability of scattering partners. For higher QW
densities, however, Pauli blocking of the final scattering states in the QW leads to a
decrease of the scattering rate. Quantitatively, the direct capture rates to the QD ES are
larger than those to the QD GS. This is due to the fact, that the QD ES is energetically
closer to the QW band edge than the QD GS. Furthermore, the direct hole capture rates
are smaller than the direct electron capture rates for capture processes to the ground
state as well as to the first excited state.

The out-scattering rates for direct capture processes (escape rates) shown in Fig. 3.4(b)
and (d) for electrons and holes, respectively, are much smaller than their capture coun-
terparts. In the electron out-scattering rate one can observe a rollover which can be
attributed to Pauli blocking.
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Figure 3.5: Auger scattering rates for relaxation type processes of the QD-QW system
vs. QW carrier density we for electrons and holes, respectively. The plasma temperature
is T = 300 K (wh/we = 1.0). (a): In-scattering rates. (b): Out-scattering rates given by
detailed balance from Eqs. (3.40) and (3.41). Other parameters as in Table 3.1.

The shallow QD scattering rates for processes of relaxation type are depicted in
Fig. 3.5. For relaxation processes in-scattering refers to the scattering of a charge carrier
into the QD ground state and out-scattering to the opposite process. The dominant
relaxation processes for shallow QDs is the rel′ process depicted in panel I and II of
Fig. 3.2(b), where the intradot relaxation is assisted by a charge carrier transition inside
the QW. The scattering rates of this process is much larger compared to the rel′′ process,
which involves two transitions of charge carriers between QW and QD states.

The electron and hole in- and out-scattering rates of the dominant rel′ relaxation
process are characterized by a fast increase (from zero at zero QW density) with increasing
QW density. At a value of approximately 5× 1010 cm−2 the in-and out-scattering rate of
electrons has a maximum followed by a slight decrease with increasing QW density. For
holes the slope of the initial increase of the in-scattering rate is smaller.

Temperature dependence of scattering

The temperature of the carrier plasma in an optical device may change for example with
varying injection strength due to Joule heating or due to free carrier absorption (FCA)
within the conduction and valence bands. Therefore it is crucial to study the temperature
dependence of carrier-carrier scattering.

To include temperature effects the scattering rates are evaluated for different tem-
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Figure 3.6: Direct in-scattering rates in dependence of the QW electron density and the
plasma temperature. (a): Electron scattering rate to the QD ground state. (b) Electron
scattering rate to the QD first excited state. (c) and (d): Same as (a) and (b) for holes.
The ratio of electron and hole density in the QW is wh/we = 1.0, Other parameters as
in Table 3.1.

peratures of the quasi-Fermi distributions of the QW states. The temperature depen-
dence of the in-scattering rates is shown in Fig. 3.6 for direct capture processes and in
Fig. 3.7 for relaxation type scattering processes. In the considered temperature range
from 300 − 400 K carrier heating leads to an enhanced in-scattering efficiency for all
carrier-carrier scattering processes. Comparing Figs. 3.6 and 3.7 one observes that a
change in the temperature of the carrier plasma has a larger impact on the relaxation
rates, which experience a significant enhancement for elevated temperatures, while the
change in the direct capture rates is less prominent.

3.5.2 Deep quantum dot scattering rates

From intuitive grounds one would expect the direct capture (escape) rates to (from)
the QD levels to decrease due to the increased band offset of the bound QD states to
the QW band edge. For the direct capture rates this behaviour can indeed be observed
in Fig. 3.8 (a). The light shaded curves indicate the direct capture rates for shallow
QDs for comparison. In contrast to shallow QDs the direct capture rate to the QD ES
only merely exceeds the direct capture rate to the QD GS. Also, the respective electron
escape rates plotted in Fig. 3.8(b) are approximately three orders of magnitude smaller
than for shallow QDs. This can be attributed to the larger band offset of the deep QD
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Figure 3.7: Temperature dependence of the scattering rates of relaxation type in depen-
dence of the QW electron density for T = 300, 350, 400 K. (a): Electron scattering rate
of type rel′. (b) Relaxation rates of type rel′′. Pure (e − e) electron scattering rate of
type rel′′ are given by the thick lines and mixed (e− h) electron scattering rates of type
rel′′ are given by the thin lines. (c): Same as (a) for holes. (d): Hole processes of pure
type (h − h) for the process rel′′. The ratio of electron and hole density in the QW is
wh/we = 1.0. Other parameters as in Table 3.1.
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Figure 3.8: Direct capture rates as in Fig. 3.4 for deep QDs. The light shaded curves
in panel (a) and (b) indicate the shallow dot scattering rates from Fig. 3.4(a) and (b),
respectively.

states to the QW band edge compared to the QW-QD band offset of the shallow QD
states. The direct hole capture rates to the QD GS and ES are shown in Fig. 3.8(c)
for deep QDs. They exhibit an enhanced in-scattering rate compared to the shallow
QD direct capture rates of holes shown in Fig. 3.4(c). The out-scattering rates of direct
processes for holes is shown in Fig. 3.8(d). They are comparable to those of shallow QDs
(compare Fig. 3.4(d) ). An increase of the band-offset energy alone would always lead
to a reduction of the scattering efficiency. However, the increased oscillator strength of
the in-plane hole wave functions of the deep QDs compared to the shallow QD wave
functions influences the Coulomb matrix elements and efficiently compensates the effect
attributed to the increased band offset in this case. The scattering rates of relaxation
type processes for deep QDs are shown in Fig. 3.9. As a main difference to the relaxation
rates of shallow QDs, the dominant relaxation process for deep QDs is the mixed process
of type rel′′ and no longer the rel′ process as in the case of shallow QDs. Overall, the
electron relaxation rates for of deep QDs are significantly smaller than those of shallow
QDs, while the hole relaxation rates are comparable in magnitude to those of shallow
QDs. Due to the larger band offset of the QD states with respect to the QW band edge
the electron out-scattering rate shown in Fig. 3.9(b) is greatly reduced compared to the
respective rate for shallow QDs.
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Figure 3.9: Relaxation rates as in Fig. 3.5 for deep QDs.

3.5.3 Quantum dot scattering lifetimes

From the microscopic scattering rates it is possible to extract equilibrium charge carrier
lifetimes of the quantum dot ground and first excited state energy levels using Eqs. (3.44)-
(3.46). The total QD carrier lifetime T b1,m of a bound QD state m given by Eq. (3.44)
can be split into terms containing direct capture processes and relaxation processes as

1

T b1,m
=

1

T b,cap1,m

+
1

T b,rel1,m

, (3.47)

which enables to quantify the contributions of capture and relaxation processes to the
total carrier lifetime.

The resulting scattering lifetimes in dependence of the QW electron density for the
shallow and deep dot energy level spacings given in Table 3.1 are shown in Figs. 3.10
and 3.10, respectively. The dependence of the scattering rates on the carrier density
in the 2D reservoir leads to density dependent carrier lifetimes. Panels (a) and (b) in
Figs 3.10 and 3.11 show the electron lifetimes of the QD ground state and first excited
state, whereas panels (c) and (d) show the respective carrier lifetimes for holes and the
total lifetime given by Eq. (3.47) is given by the black curves.

Shallow quantum dot scattering lifetimes

Focusing on Fig. 3.10 which shows the charge carrier lifetimes of shallow QDs one observes
that the lifetimes of electrons and holes of both the QD ground state and the QD excited
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Figure 3.10: Shallow QD charge carrier lifetimes of the QD ground and first excited state
levels in dependence of the QW electron density we for energy level spacings given in
Table 3.1. The total lifetime is given by the black solid curve. The blue dashed curve
and the red dash-dotted curve mark the lifetimes originating from only the capture and
relaxation processes, respectively. (a): Electron lifetimes of the QD ground state. (b):
Electron lifetimes of the QD first excited state. (c) and (d): Same as (a) and (b) for
holes. The plasma temperature is T = 300 K (wh/we = 1.0). Other parameters as in
Table 3.1.
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Figure 3.11: Deep QD charge carrier lifetimes of the QD ground and first excited state
levels in dependence of the QW electron density we. Energy level spacings are according
to Table 3.1.
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state decrease monotonically with increasing QW electron density. At zero QW density
the lifetimes diverge due to the vanishing scattering rates. The separate contributions
for direct capture processes (blue dashed curves) and processes of relaxation type (red
dash-dotted curves) from Eq. (3.47) shown in Fig. 3.10 indicate that the equilibrium
carrier lifetimes of the QD levels of shallow QDs are to a large extent determined by
the contribution from relaxation processes, especially in the low QW carrier density
regime. The scattering lifetime attributed to direct capture processes is significantly
larger than the contribution originating from relaxation type processes, especially for
low QW electron densities. With increasing QW electron density the contribution from
direct capture processes gains significance. In Fig. 3.10(b) the QD excited state electron
lifetime is shown. Here, one can observe a crossover between the direct and relaxation
type contribution to the overall scattering lifetime at we ≈ 8× 1011 cm−2, from whereon
the carrier capture process make the dominant contribution to the scattering lifetime
of the QD excited state. The increase of the carrier lifetime associated with relaxation
processes (red dash-dotted line) at high densities as visible in Fig. 3.10(b) can again be
attributed to the effect of Pauli blocking, which reduces the scattering efficiency at high
densities and thus increases the associated lifetime.

Deep quantum dot scattering lifetimes

The scattering lifetimes of the deep QD GS and ES levels are shown in Fig. 3.11. As a
first observation the scattering lifetimes for deep QDs are significantly larger than those
of shallow QDs (compare Fig. 3.10). For deep QDs, the carrier lifetimes originating
from direct capture processes make the dominant contribution to the overall scattering
lifetime for QW electron densities above we ≈ 5× 1011 cm−2. This qualitative change in
the behaviour can be attributed to the fact that a large energetic offset of the QD bound
states to the QW band edge effectively reduces the out-scattering rate thus leading to an
increased occupation probability of both the QD ground and excited states. This leads
to effective Pauli blocking in the relaxation scattering channels and thus to a reduced
scattering efficiency of the respective relaxation processes. This effect is most apparent
in the case of electrons, since here the band offset to the QW band edge is very large
(210 meV for the QD ground state).

3.5.4 Conclusion

The microscopic theory of Coulomb interactions in the considered QD-QW system allows
one to calculate the density dependent energy renormalizations of the QW and QD single
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particle states and the carrier-carrier scattering rates between the QW and QD energy
levels. In the present approach the scattering contributions have been evaluated for the
case of quasi-equilibrium between QW and QD. This approach is a good compromise be-
tween a full non-equilibrium approach and the simple ansatz of constant carrier lifetimes,
since it is more exact than any approach using constant lifetimes while it is numerically
by far not as demanding than a non-equilibrium approach. The use of non-constant
carrier lifetimes in device simulations enhances the predictive power of the theoretical
models and can account for effects such as carrier heating.
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CHAPTER 4. DYNAMIC GAIN NONLINEARITIES

Chapter 4

Dynamic gain nonlinearities

The optical properties of semiconductor QDs have been the subject of ongoing research
over the past decades. Especially the InGaAs/GaAs QD based devices have been widely
investigated due to their application in optical communication systems in the 1.3−1.5µm

wavelength window. InGaAs based QD amplifiers with high saturation power, broad gain
bandwidth and ultrafast response have been reported. An understanding of the ultrafast
gain dynamics driven by the underlying carrier and dipole dynamics is crucial in order
to tailor high-speed optical devices. In the first part of this chapter the gain response
to ultrashort input pulses [WEG10, MAJ10] is investigated with focus on the coupled
carrier and dipole dynamics and the underlying carrier-carrier scattering mechanisms
between the QD levels and the surrounding QW that have been derived in Chapter 3.
The second part of this chapter deals with the static gain properties and the linewidth
enhancement factor of QD SOAs.

The material equations used in this chapter are the combined Bloch equations for the
QD and QW, Eqs. (2.48)- (2.50) and Eqs. (2.56) and (2.58), reformulated without first
order Coulomb effects, which are neglected:

∂pjm
∂t

= −i(ωjm − ω)− iµ
j
m

2~
E
(
f je,m + f jh,m − 1

)
− 1

T2
pjm, (4.1)

∂f jb,m
∂t

= −µ
j
m

~
Im
[
E pjm

∗]−Rjsp,m +
∂f jb,m
∂t

∣∣∣∣
col

, (4.2)

∂pk
∂t

= −i(ωk − ω)pk − i
µk

2~
E
(
fke + fkh − 1

)
− 1

TQW2

pk, (4.3)

∂fkb
∂t

= ∆k
b −

µk

~
Im [E pk

∗]− 1

TQW1

(
fkb − fk,eqb

)
. (4.4)

The term ∆k
b explained in detail in Sec. 2.3.2 contains the current injection, spontaneous

emission and scattering contributions to the dynamics of the occupation probability fkb
of the QW states. These contributions are considered to be dependent on the global
charge carrier density wb = (2/A)

∑
k f

k
b rather than on fkb . The carrier-carrier scatter-

55
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Table 4.1: Numerical parameters and transparency current density used for the QD SOA
simulation unless stated otherwise.

symbol quantity value

T2 QD dephasing time 30 fs

TQW2 QW dephasing time 60 fs

TQW1 QW carrier lifetime 120 fs

µjm QD dipole moment 0.6 e0 nm

µk QW dipole moment 0.5 e0 nm

Θ pulse area 1.18π

~δω inhom. broadening 20 meV

NQD 2D QD density 1011cm−2

j0 transparency current density 3.72× 10−9 e0 nm−2fs−1

ing contributions are included in the general expression (∂/∂t)f jb,m|col which have been
derived in Chap 3. The macroscopic dipole density response of the medium is then given
by Eqs. (2.52) and (2.69) as

P = PQD + PQW =
2NQD

hQW

∑
j,m

µjmf(ωj) p
j
m +

2

hQWA

∑
k

pk. (4.5)

The parameters used throughout this chapter are listed in Table 4.1 unless stated other-
wise. For an electric input pulse with amplitude E(t) the pulse area θ is defined as the
time integral over the Rabi frequency Ω(t)

θ =

∫
Ω(t) dt =

µ

~

∫
E(t) dt . (4.6)

This gives a dimensionless quantity θ related to the optical input power in the case
of a positive-valued pulse shape such as a Gaussian pulse. Without losses a pulse with
θ = 2π in resonance to a two-level system leads to a complete Rabi cycle of the associated
microscopic polarization p(t).
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Figure 4.1: Schematic diagram of a pump-probe setup.

4.1 Pump-probe experiments

When an optical signal passes through the amplifier device, which is pumped above
transparency, charge carriers recombine by means of stimulated emission. This reduces
the gain for subsequent optical signals entering the amplifier. Carrier scattering processes
between the QW and QD states then refill the charge carrier states in the QDs and thus
increase the gain to its initial value. The gain recovery time, i.e., the time it takes to fully
recover the gain after a signal has passed through the amplifier essentially determines
the device performance. This section is dedicated to the analysis of the gain recovery
dynamics of QD semiconductor optical amplifiers. The gain recovery dynamics can be
determined experimentally in a pump-probe setup schematically shown in Fig. 4.1. In
such a setup a strong pump pulse is used to excite the system and a delayed weaker
probe pulse is then used to probe the gain state of the device at the delayed time τ .

The gain recovery dynamics is directly linked to the dipole and carrier dynamics
and one can retrieve information on the polarization and carrier lifetime of the system.
The different timescales of the involved processes allows to split the recovery dynamics
into different characteristic stages: an ultrafast, a fast, and a slow recovery stage. The
timescales of the coherent processes, which are on the order of tens to hundreds of fs

determine the ultrafast recovery stage. For pump-probe delays large compared to the
polarization lifetime T2 the dynamic polarization is sufficiently decayed and the gain
recovery dynamics is purely determined by the charge carrier dynamics of the QD-QW
system. The fast recovery stage is characterized by the fast carrier-carrier scattering (ps

timescale) mechanisms between QW and QD states, whereas the slow recovery phase is
determined by the refilling of the QW states by current injection (ns timescales).

The following analysis focuses on single-color pump-probe setups, where the pump
and probe signals are both centered around the same central frequency ω resonant to the
central QD ground state transition frequency. The input signals are ultrashort Gaussian
input pulses with a full width at half maximum (FWHM) of FWHM = 150 fs in ac-
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Figure 4.2: Illustration of the implemented scattering scenarios for electrons I: direct
capture, II: cascading relaxation III: all scattering channels (direct capture and cascading
relaxation). Auger electrons are omitted.

cordance with experimental setups [GOM08, GOM09]. In experiments the probe signal
gain can be extracted using heterodyne detection setups. For a probe signal that is much
weaker in intensity than the pump signal the probe signal will in good approximation
induce a linear polarization response in the medium in addition to the nonlinear response
induced by the strong pump signal. With this assumption the optical susceptibility is only
dependent on the pump electric field and one can approximate the probe polarization as
Pprobe(ω) ≈ Ppump+probe(ω)− Ppump(ω), where Ppump+probe(ω) is the Fourier amplitude
of the macroscopic polarization induced by the superimposed pump and probe electric
fields, and Ppump(ω) is the Fourier amplitude of the macroscopic polarization induced by
the pump pulse alone. The probe susceptibility is therefore in good approximation given
by

χprobe(ω, τ) =
Pprobe(ω, τ)

ε0Eprobe(ω, τ)
≈ Ppump+probe(ω, τ)− Ppump(ω)

ε0Eprobe(ω)
. (4.7)

The differential gain g(ω, τ) of the probe signal from Eq. (4.10) of the probe signal is
then given by

g(ω, τ) = −1

2
Γ

ω

cnbg
Im [χprobe] ≈ −

1

2
Γ

ω

cnbg
Im

[
Ppump+probe(ω, τ)− Ppump(ω)

ε0Eprobe(ω)

]
. (4.8)

Here, Eprobe(ω) is the Fourier amplitude of the full complex electric field Eprobe(t) of the
input probe pulse, Γ is the optical confinement factor, c is the vacuum velocity of light
and nbg is the background refractive index of the medium.

4.1.1 Impact of different scattering channels

In order to analyze the impact of each scattering channel on the gain recovery dynamics
simulations with different scattering scenarios shown in Fig. 4.2 are preformed. The
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Figure 4.3: Simulated gain and phase recovery dynamics for the shallow QD configuration
from Table 3.1 for a single injected pump pulse with pulse area θ = π for an injection
current of j = 10 j0. Black solid curves shows the case with all Auger scattering processes,
red (dashed) curves show the dynamics with direct capture processes only and blue
(dash-dotted) curves with the cascading relaxation channel only. (a): Gain recovery
dynamics and (b): Phase recovery dynamics in dependence of the pump-probe delay
time τ . Parameters as in Table 4.1.

first scenario (I) consists of direct carrier capture processes from the QW to the QD
ground and first excited state, the second scenario (II) is a cascading relaxation type
scenario involving carrier capture from the QW to the first excited state of the QD and
a subsequent relaxation from the ES to the GS and the third scenario (III) includes all
possible scattering channels present in the system.

Shallow quantum dots

The gain and phase recovery dynamics a gain medium with shallow QDs embedded in
a surrounding QW is shown in Fig. 4.3 in dependence of the pump-probe delay time τ
for a current injection of j = 10 j0, with the transparency current j0 from Table 4.1.
The optical parameters are listed in Table 4.1. To quantify the impact of the different
scattering channels Fig. 4.3 shows simulated gain and phase recovery dynamics for the
direct scattering channel (scenario I from Fig. 4.2) given by the blue dash-dotted curve,
the cascading scattering channel (scenario II from Fig. 4.2) shown as a red dashed curve
and with all scattering channels (scenario III from Fig. 4.2) (black solid curve) as given
by the microscopic calculations from Sec. 3.4. The normalized gain recovery dynamics
in dependence of the pump-probe delay time τ is shown in Fig. 4.3(a). In the ultrafast
recovery stage the deviations for different scattering scenarios are small, whereas in the
fast recovery stage (τ > T2) the different scattering scenarios lead to significantly different
dynamical behaviour. It becomes apparent that the cascading relaxation channel given
by the red dashed line in Fig. 4.3(a) drives the (ultra-) fast recovery dynamics. The
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Figure 4.4: QD electron and hole dynamics for a single injected pump pulse with pulse
area θ = π for an injection current of j = 10 j0 and pump-probe delay τ = 0 for the
shallow QDs according to Table 3.1. (a) Electron dynamics of the QD GS (blue solid
curve) and ES (blue dash dotted curves) for scenario I from Fig. 4.2. (b) Same as (a)
shown in black for scenario III of Fig, 4.2. (c) Hole dynamics of the QD GS (blue short
dashed) and ES (blue long dashed) for scenario I from Fig. 4.2. (d) Same as (c) shown in
black for scenario III of Fig, 4.2. Shallow QDs according to table 3.1. Other parameters
as in Table 4.1.

additional enhancement due to direct capture process (difference between black solid and
red dashed curve in Fig. 4.3(a) ) is small. On the other hand the gain recovery dynamics
only with direct capture processes given by the blue dash-dotted line in Fig. 4.3(a) results
in a slow gain recovery dynamics.

In Figure 4.3(b) the associated phase recovery dynamics in dependence of the pump-
probe delay time τ is shown. The phase change is given in terms of the real part of the
probe susceptibility χprobe(ω, τ) from Eq. (4.7) as Re[χω,τ − χ0], where χ0 is the probe
susceptibility of the unperturbed system (its value before the arrival of the pump pulse).
The phase recovery dynamics is also characterized by an ultrafast dynamical regime in
the vicinity of zero delay time τ followed by a fast and slow recovery stage for increasing
delay times. The phase response of the full system with all scattering scenarios given by
the black solid curve is again to a large extent determined by the cascading relaxation
channel. Figure 4.4 shows the underlying carrier population dynamics of the QD electrons
and holes resulting from the pump-pulse excitation used in Fig. 4.3. The population
for scenario I of Fig. 4.2 with pump-probe delay τ = 0 is shown in Figs. 4.4(a),(c),
respectively, while Figs 4.4(b),(d) depict the electron and hole dynamics for scenario III.
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Figure 4.5: Same as Fig. 4.3 for deep QDs according to Table 3.1.

In Figs. 4.4(a),(c), the coherent interaction of the QD ground state with the incoming
light field causes a strong carrier depletion both of electrons and holes, whereas the off-
resonant ES experiences only little light-matter interaction ( and the relaxation path to
the GS is blocked ). In Figs. 4.4(b),(d) relaxation processes between the ES and GS
are allowed, which results in a strong decrease of the ES carrier populations and a faster
refilling of the GS compared to scenario I.

Deep quantum dots

For deep QDs the gain and phase recovery dynamics is shown in Fig. 4.5(a) and (b). The
gain recovery dynamics with deep QDs shown in Fig. 4.5(a) is qualitatively different from
the that of shallow QDs shown in Fig 4.3(a). Here, the transition from the ultrafast to the
fast recovery stage shows a distinct kink after which the gain recovery rate is significantly
lower than in the case of shallow QDs. This behaviour can be directly linked to the lower
scattering efficiency between the QW and QD states of the deep QDs (compare Figs. 3.8
and 3.4 and Figs. 3.9 and 3.5). Furthermore, the impact of the relaxation channel is not as
significant as in the case of shallow QDs, where the relaxation channel drives the (ultra)-
fast gain recovery. The deep QDs instead show quantitatively very similar dynamics for
direct capture processes only (scenario I from Fig. 4.2) and cascading relaxation (scenario
II from Fig. 4.2). The impact of the direct capture channels and the relaxation channels
to the gain recovery dynamics is therefore comparable in magnitude for deep QDs.

The phase recovery dynamics for deep QDs is shown in Fig. 4.5(b). It also shows
qualitative difference in comparison to the shallow dot case shown in Fig. 4.3(b). Again,
the impact of the cascading relaxation is not as significant as in the case of shallow QDs.
Furthermore, the maximum phase change occurs in the vicinity of zero delay time τ
unlike in the case of shallow QDs, where the maximum phase change is observable at a
delay time of several picoseconds. This may be attributed to the weak changes in the



62 CHAPTER 4. DYNAMIC GAIN NONLINEARITIES

0.8

0.9

1.0

f e

fGSe fESe

0 2 4 6 8
t (ps)

0.3

0.4

0.5

f h

fGSh fESh

fGSe fESe

0 2 4 6 8
t (ps)

fGSh fESh

scenario I scenario III

(a) (b)

(c) (d)

Figure 4.6: Same as Fig. 4.4 for deep QDs according to Table 3.1

QD ES electron and hole densities as shown in Fig. 4.6 for deep QDs.

The underlying carrier dynamics for the case of zero pump-probe delay τ is shown
in Fig. 4.6. Here, Figs. 4.6(a) and (c) show the electron and hole dynamics of the QD
ground and first excited staty for the case of direct carrier capture only (scenario I from
Fig. 4.2), while Figs. 4.6(b) and (d) show the the electron and hole dynamics of the QD
ground and first excited staty with all scattering channels included (scenario III from
Fig. 4.2). Comparing Fig. 4.6(a) and (b) one observes that the QD electron ES remains
nearly unaffected by the external input pulse in both cases. The same applies to holes
as shown in Figs. 4.6(c) and (d). The overall impact of the cascading relaxation channel
can therefore be regarded as small.

Impact of coherent quantum well interaction

Figure 4.7 shows the impact of the coherent QW interaction on the gain and phase recov-
ery dynamics. Although the QW states are off-resonant to the central input light field
frequency the coherent QW interactions makes a contribution to the total macroscopic
polarization (as given by Eq. (2.69) resulting in slight deviations of the gain recovery
dynamics from the case without coherent QW interactions, which can be observed in
Fig. 4.7(a). The differences are most apparent in the ultrafast (coherent) recovery regime,
whereas for large pump-probe delays the gain recovery dynamics for the cases with and
without coherent QW interactions coincide nearly perfectly.

The phase dynamics shown in Fig. 4.7(b) for the case with coherent QW interactions
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Figure 4.7: Gain and phase recovery dynamics for a single injected pump pulse with
pulse area θ = π for an injection current of j = 10 j0 without (red solid curves) and with
(blue dash-dotted) coherent interactions in the QW. All Auger scattering channels are
included. (a): Gain recovery dynamics in dependence of the pump-probe delay time τ
(b): Phase recovery dynamics in dependence of the pump-probe delay time τ . Other
parameters as in Table 4.1.

shows quantitative differences compared to the case without coherent QW interactions
both in the ultrafast regime and for large delay times. In the ultrafast recovery stage
around τ = 0 the real part of the susceptibility has a distinct kink caused by the rapid
change of the charge carrier densities. The additional phase change originating from the
coherent QW interaction counteracts the phase change induced by the QD states alone
and flattens out the resulting kink in the phase dynamics around τ = 0. For increasing
delay τ the phase recovery dynamics is slower with coherent QW interaction compared
to the case without coherent QW interaction.

4.1.2 Temperature effects

In this section carrier heating effects in QD SOAs are discussed and a comparison with
measurements of the gain recovery dynamics is performed [MAJ11]. Injection of carriers
into high energy states of the QW leads to an increase of the carrier plasma temperature
and via carrier-phonon scattering processes also to an increase of the lattice temperature.
Coupling to an external heat bath (the environment) counteracts carrier heating. The
overall effect of plasma heating appears in the dependence of the device temperature on
the electric pumping [GOM09] and in temperature dependent scattering rates. The tem-
perature characteristic of the device along which the temperature varies in the dynamic
simulation is modeled as linearly depending on the QW electron density in the range of
interest. The functional dependence of the temperature is given by

T (we) = 145.645 K + 4.185 · 10−9 K cm2we for we ≥ 4.57 · 1010 cm−2 (4.9)
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Figure 4.8: Density plots of the calculated Coulomb scattering rates in dependence of
the QW electron density we and the plasma temperature T for fixed ratio wh/we = 1.5.
The assumed temperature characteristic of the device is shown by the white curves.
Black dots mark the initial steady states used in the pump-probe simulations. [(a) and
(b)]: Electron in-scattering rates for direct capture processes to the QD GS and ES,
respectively. [(c) and (d)]: Electron relaxation rates for processes involving one intradot
transition accompanied by a carrier transition within the QW or two QD-QW transitions,
respectively. [(e) and (f)]: Hole in-scattering rates for direct capture processes to the QD
GS and ES, respectively. [(g) and (h)]: Same as (c) and (d) for holes. The color code is
in units of ps−1. Parameters see Table 3.1.

For QW electron densities below a value of 4.57 · 1010 cm−2 a smooth transition to the
lower temperature bound of 300 K (room temperature) is modeled. The temperature
dependent scattering rates are shown in Fig. 4.8. The temperature characteristic is
indicated by the white curves in Fig. 4.8 and the initial temperature values prior to the
arrival of the input pulse for the different injection currents are marked by the black
dots in Fig. 4.8. The assumed temperature characteristic is in good agreement with
measurements performed in [GOM09], where the device temperature was extracted from
a calibrated measurement of the displacement of the ripple modes in the SOA’s cavity.
Besides the considered Joule heating the device can also heat up due to Auger heating
and free carrier absorption. In a scattering process between QW and QD as described in
chapter 3.4 the assisting Auger electron or hole is lifted to an energetically higher level in
the QW conduction or valence band causing a temperature increase in the equilibration
process. Free carrier absorption accounts for intraband optical excitations within the
conduction band induced by the external light field. Both of these effects are assumed to
be small compared to Joule heating. The assumed energetic configuration is the shallow



4.1. PUMP-PROBE EXPERIMENTS 65

−1 0 1 2 3 4
delay τ (ps)

0.0

0.2

0.4

0.6

0.8

1.0
no

rm
al

iz
ed

ga
in

exp,j=8j0
sim
exp,j=11j0
sim
exp,j=15j0
sim

0 1 2 3 4
delay τ (ps)

0 1 2 3 4
delay τ (ps)

(a) (b) (c)

T = 401 K

T = 325 K

Figure 4.9: (a): Measured (exp) and simulated (sim) gain recovery dynamics for a single
injected pump pulse and injection currents of j = 8 j0 (red ’o’ symbols and solid curve),
j = 11 j0 (green ’x’ symbols and dashed line), j = 15 j0 (blue ’∆’ symbols and dash-
dotted curve ) (b): Gain recovery dynamics for two injected pump pulses with a spacing
of ∆t = 1 ps (T =325 K and T =401 K correspond to the initial temperatures). (c): Gain
recovery dynamics for four injected pump pulses with a spacing of ∆t = 1 ps.

QD configuration. The density- and temperature dependent scattering rates are shown
in Fig. 4.8. Here, an increased scattering efficiency for higher plasma temperatures is
visible for all in-scattering rates. Out-scattering is related to in-scattering via detailed
balance [LUE09] and is not shown in the figure.

In experiments the gain recovery of a InGaAs/GaAs quantum dot based semiconduc-
tor optical amplifier after the amplification of different short pulse trains (one, two and
four pulses) has been measured. By incorporating carrier heating effects into the model an
excellent agreement with ultrafast pump-probe measurements can be achieved [MAJ11].
Although attempts have been made to include carrier heating in QD semiconductor op-
tical amplifier (SOA) models it remains a controversial issue. In Ref. [USK11] Auger
heating in QD devices has been predicted to cause higher temperature increases than
in QW or bulk devices along with a reduced scattering efficiency for elevated tempera-
ture and as a result a recovery performance loss. Despite the fact that the present work
motivates the temperature increase by Joule heating as opposed to Auger heating, the
microscopic theory of carrier-carrier scattering from chapter 3.4 predicts an enhanced
scattering efficiency for elevated temperatures and as a direct consequence also a faster
gain recovery dynamics, which stands in contrast to [USK11]. The measured gain re-
covery dynamics together with the simulated curves are shown in Fig. 4.9 for a single
pulse pump-probe setup (a), a dual pulse setup (b) and a setup with four pump pulses
(c). The pump-pulse spacing is chosen as ∆t = 1 ps in accordance with the experiments
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Figure 4.10: Same as Fig. 4.9 with a fixed temperature of T = 300 K considered in the
simulation.

and the arrival time of the first pump signal is at τ = 0. The experimental data are
shown for injection currents of 80 mA, 110 mA, and 150 mA, whereas the simulations are
depicted for injection current densities j = 8 j0, 11 j0, and 15 j0 given in multiples of
the transparency current density j0, which corresponds approximately to a transparency
current of 10 mA enabling a direct quantitative comparison. The simulated gain recovery
dynamics in Fig. 4.9 is in excellent agreement with the measured data for all pump-probe
setups (one, two and four pulses). Both in the ultrafast gain recovery stage (τ ≈ T2),
where the coherent dynamics of the polarization is essential and in the fast recovery
stage, where τ is on the order of the carrier lifetime given by the Coulomb scattering
between QW and QDs (τ ≥ 1 ps), the simulated curves match the measured data very
well. The impact of the temperature dependence becomes apparent by comparing the
experimental results to simulations without consideration of temperature effects in the
model as is shown in Fig. 4.10. The increase in scattering efficiency due to the increase
of the injection current alone cannot account for the experimentally observed increase of
the gain recovery performance in the fast recovery regime. While the recovery dynamics
for the lowest injection current still shows a very good agreement to the experimental
data, the performance increase for higher injection currents of j = 11 j0 and j = 15 j0

remains too small and so the simulation results deviate very strong from the actual gain
recovery behaviour of the QD SOA.

The carrier dynamics obtained from the simulation in the presence of the pump pulse
only is shown in Fig. 4.11 for an injection current density of j = 8 j0. The input pulse
is centered around τ = 0. The QD ground and excited state populations are plotted for
electrons and holes in Fig. 4.11(a) and (b), respectively. A clear signature of a strong
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Figure 4.11: Time series of QW and QD charge carriers in the presence of the pump
pulse only. (a): Calculated average electron populations in the QD ground state (black
solid curve) and excited state (black dash-dotted curve) (b): Same as (a) for holes. (c):
QW electron density. (d): QW hole density. The injection current density is j = 8 j0.
Other parameters as in Table 4.1

cascading relaxation process is visible both for electrons and holes, where the QD ground
state is quickly refilled by carriers from the excited state, which in turn shows a carrier
depletion setting in with the arrival of the pulse, and is then slowly refilled from the QW.

The QW electron and hole dynamics shown in Fig. 4.11(c) and (d), respectively, is
characterized by a continuous drain in the depicted time window of 8 ps.

4.1.3 Conclusion

In conclusion, the gain recovery dynamics of QD SOAs can be directly linked to the
scattering efficiency of carrier-carrier scattering in the QD-QW system. It therefore
sensitively depends upon the electronic structure of the QDs, but also on the the carrier
plasma temperature. Deep QDs exhibit poor gain recovery performance in comparison
to shallow QDs due to the lower scattering efficiency of carrier-carrier scattering. A
comparison with experimental measurements of the gain recovery dynamics suggests
that the QDs of the gain medium are shallow QDs. Furthermore the significant current
density dependence of the gain recovery dynamics can only be reproduced by taking
carrier heating effects into account. Band structure engineering and efficient temperature
control are therefore highly interesting for the design of high speed optical devices.
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Figure 4.12: Illustration of the transverse optical confinement factor. H(x, y) is the
tranverse mode profile of the electric field.

4.2 Static gain properties

Quantum dot based optical amplifiers not only show ultrafast gain recovery dynamics
due to the efficient QD-QW scattering mechanisms, they also have a broad gain spec-
trum associated with a large inhomogeneous broadening of the QDs. In the theoretical
description the inhomogeneous broadening of the QDs is included by separating the QD
ensemble into subgroups with unique transition frequencies as described in chapter 2. The
width of the inhomogeneous broadening depends mainly on fluctuations in the material
composition and size fluctuations of the QDs. In this section the static gain properties
and the associated static linewidth enhancement factor are investigated.

The differential gain (per length) is defined as

g(ω) = −1

2
Γ

ω

cnbg
Im[χ(ω)], (4.10)

where Γ is the transverse optical confinement , c is the vacuum speed of light and nbg =
√
εb is the background refractive index. The confinement factor is illustrated in Fig. 4.12

and defined in Eq. (B.22) (Γ is the confinement factor perpendicular to the propagation
direction and not the in-plane confinement factor). It accounts for the fact, that only a
fraction of the transverse mode (area Aopt) overlaps with the active cross section (area
Aact). The optical parameters of the gain medium are chosen according to Table 4.1.
The optical susceptibility χ(ω) is obtained from the polarization response of the medium
by calculating the steady state solution to Eqs. (4.1)-(4.4) for a single mode input electric
field E(t) = E0 e

−iω t with constant amplitude E0. The resulting steady state macroscopic
polarization density P from Eq. (4.5) can be used to calculate the susceptibility χ for
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Figure 4.13: Shallow QD gain spectrum (a)and real part of the optical susceptibility
Re[χ] (b) in dependence of the transition energy ~ω for injection currents of j = 2 j0
(black solid curve), j = 10 j0 (blue dashed curve) and j = 30 j0 (red dash-dotted curve)
with coherent QW interactions included in the model. (c) and (d): same as (a) and
(b) without coherent QW interactions (QW dipole moments µk = 0). Parameters as in
Table 4.1.

the given input frequency ω using the relation P = ε0χE. In order to spectrally resolve
the static gain the input frequencies ω have to be varied within the desired range.

4.2.1 Shallow quantum dot static gain spectra

The small signal linear gain and phase spectra for a gain medium comprised of shallow
QDs are shown in Fig. 4.13(a) and (b) for current injection densities of j = 2, 10, 30 j0 ,
respectively. As can be seen in Fig. 4.13(a) and (c) the QD ground state transition at
~ω = 0.96 eV is above transparency for all values of the injection current densitie while
the QD ES with transition energies around ~ω = 1.03 eV is absorptive for j = 2 j0 and
turns from absorption to gain at increased injection current densities. For high injection
currents (j = 30 j0) the value of the ES peak gain even exceeds the GS peak gain in
Fig. 4.13(a) and (b). Furthermore, for an injection current density of j = 30 j0 a third
gain peak in the gain spectrum in Fig. 4.13(a) located at ~ω ≈ 1.07eV appears, which
can be attributed to the coherent QW interaction.

In Fig. 4.13(c) and (d) the gain and refractive index spectra are shown without co-
herent QW interaction (zero QW dipole moment µk = 0). While the part of the gain
spectrum covering transition energies up to values of the ES transition remains little
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Figure 4.14: Same as Fig. 4.13 for deep QDs according to Table 3.1. Parameters as in
Table 4.1.

affected by the coherent QW interaction the part of the gain spectrum with transition
energies above the ES transition energy is significantly altered in the presence of coherent
QW interaction. Without coherent QW interaction the gain curves approach zero gain
for high transition frequencies, whereas with coherent QW interactions the gain medium
is absorptive at high frequencies and may exhibit an additional gain peak at high injec-
tion current densities. The spectrum of the real part of the susceptibility is shown in
Figs. 4.13(b) and (d) for the case of coherent (µk = 0.5) and incoherent (µk = 0) QW
interaction, respectively. The real and imaginary part of the susceptibility are related
via the Kramers-Kronig relations. Consequently, one also observes strong changes due to
the coherent QW interaction in the spectrum of the real part of the susceptibility. Most
importantly the changes in the spectrum of the real part of the optical susceptibility
caused by the coherent QW interaction are significant at the QD ground state and first
excited state transition energies.

4.2.2 Deep quantum dot gain spectra

Deep QD gain and phase spectra for different injection current densities of j = 2, 10, 30 j0

are shown in Fig. 4.14. As a main difference to the shallow QD gain spectra the excited
state optical transition shows an enhanced gain compared to the shallow QD case. Here,
the gain of the ES at a current injection density of j = 30 j0 is nearly double as high
as the GS gain, whereas for shallow QDs the ES gain at j = 30 j0 merely exceeds the
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GS gain. Furthermore, the gain of the QD ES optical transition exceeds the gain of the
GS transition already for low injection currents of j ≈ 2 j0, which was not the case for
shallow dots (see Fig. 4.13). The increased ES gain can be attributed to the larger QD
confinement energies of the deep QDs, which severely reduce the out-scattering rates of
both the GS and the ES, and thus increase their steady state occupation probability.

4.2.3 Static α-factor

A parameter describing the coupling of gain and refractive index changes is the linewidth
enhancement factor, or α-factor, first introduced in Ref. [HEN82]. The α-factor is defined
as

α(ω) =
∂ Re[χ(ω)]/∂N

∂ Im[χ(ω)]/∂N
, (4.11)

where χ is the optical susceptibility and N is the total electron density in the active
region. In generic laser models the α-factor [HEN82, OSI87, AGR93a] is a commonly
used parameter. It is known to affect the stability properties of QD lasers [OTT10] and
is both experimentally and theoretically of high interest.

With the results from the previous section it is possible to calculate the frequency
dependent α-factor of the gain medium in dependence of the injection current density as
well as the excitation strength.

In the following the spectral properties and the associated α-factor will be investigated
for the deep and shallow QD configurations from Table 3.1. The injection current density
and the QD optical dephasing time as well as the amount of inhomogeneous broadening
are varied.

Figure 4.15 shows the calculated small-signal α-factors obtained from the spectra
shown in Fig. 4.13. Figure 4.15(a) shows the resulting α-factor at the QD GS transition
in dependence of the injection current density. The black solid curve shows the α-factor
for the full QD-QW system with coherent interaction of QD and QW states present. One
can observe a strong injection current dependence of the α-factor showing a monotonic
increase with increasing injection current density. In order to determine the impact of
the QW states to the α-factor the blue dashed curve shows the value of α obtained
without coherent QW interaction (µk = 0). In that case the current density dependency
of the α-factor is greatly reduced and unlike in the case with coherent QW interaction
the α-factor increases up to an injection current density of j ≈ 5 j0 and then decreases
upon further increase of the injection current density. Also, the coherent contribution of
the QW states to the α-factor becomes larger with increasing injection current density.
While for small injection strengths the impact of the QW is rather insignificant, at high
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Figure 4.15: (a): α-factor at the QD GS frequency for shallow QDs from Table 3.1
in dependence of the injection current density calculated for a QD gain medium with
coherent interaction in the GS only (red dash-dotted), GS and ES (blue dashed), and
GS, ES and QW (black solid). (b): α-factor in dependence of the transition energy ~ω
for an injection current of j = 10 j0. The vertical dashed lines mark the frequencies of
the QD GS and ES optical transitions. Parameters as in Table 4.1.

injection strengths the QW states make up nearly half the contribution to the α-factor.
Neglecting the coherent interaction of the QD ES state and the QW states by setting
µES = µk = 0 the resulting α-factor at the QD GS transition is zero, which is shown by
the red dash-dotted line in Figure 4.15(a). This can be attributed to the symmetry of
the gain spectrum in this case.

In Fig. 4.15(b) the frequency dependence of the α-factor is plotted for a fixed injection
current density of j = 10 j0. The frequency dependence of the full QD-QW system is
given by the black solid line in Fig. 4.15(b). It shows a nonlinear behavioutr and exhibits
peaks at the frequencies corresponding to the local maxima/minima in the gain spectrum
that can be attributed to the GS, ES, and QW transitions. In the vicinity of the optical
QD GS and ES transitions marked by the vertical lines in Fig. 4.15(b) the α-factor has
local minima. The blue dashed curve in Fig. 4.15(b) shows the α-factor that results
by taking into account only the QD GS and ES coherent interaction and neglecting the
QW dipole interactions (µk = 0). In that case the α-factor is reduced over the whole
frequency range compared to the case with coherent interaction of the QD states and
the QW states. Neglecting the dipole interactions of the QD ES state as well as the QW
states (setting µES = µk = 0) results in a linear frequency dependence given by the red
dash-dotted line in Fig. 4.15(b).

The injection current density and spectral dependence of the α-factor for deep QDs
is shown in Fig 4.16. Regarding the current injection dependence one can observe a
similar behaviour as in the case of shallow QDs, namely an increase of the α-factor with
increasing injection strength. Overall, the α-factor remains smaller than in the shallow
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Figure 4.16: Same as Fig. 4.15 for deep QDs as given in Table 3.1. The vertical dashed
lines mark the frequencies of the QD GS and ES optical transitions. Other parameters
as in Table 4.1.

QD case and at low injection current densities the contribution of the QW states to
the α-factor unlike for the case of deep QDs. The spectral dependence of the α-factor
of deep QDs for a fixed injection current density of j = 10 j0 is shown in Fig. 4.16(b).
Compared to the shallow QD α-factor one observes a pronounced peak in the frequency
range covering the QW transitions, whereas in the spectral range of the QD GS and ES
optical transitions the α-factor is similar to that of shallow QDs.

Here, the local minima in the spectral dependence of the α-factor do not coincide with
the values of the QD GS and ES transitions. For the QD ES the deviations are especially
pronounced and the local minima of the α-factor is shifted to higher frequencies than the
optical transitions. This knowledge can be usefol to tailor optical devices with enhanced
stability properties towards optical feedback or injection [OTT10].

Dephasing time and inhomogeneous broadening dependence

The optical dephasing time T2 that is included in the model as a parameter (see Eq. (2.48))
generally depends on the QW carrier density and temperature just as the scattering rates.
Microscopic calculations performed in [LOR06] based on a quantum kinetic approach sug-
gest values of 5 − 8 meV for the dephasing time. It is therefore useful to examine the
dependence of the spectral properties and the α-factor on the QD dephasing time. The
value of the inhomogeneous broadening ~δω is another parameter in the model that might

Table 4.2: Homogeneous linewidth for different dephasing times T2.

T2 FWHMhom
30 fs 21.9 meV

100 fs 6.6 meV
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Figure 4.17: (a): Gain spectra in dependence of the transition energy ~ω for a fixed
injection current of j = 10 j0 for a QD polarization dephasing time of T2 = 30 fs and
different values of the inhomogeneous broadening ~δω = 0, 20, 50 meV. (b): α-factor
in dependence of the optical excitation frequency ω for a fixed injection current of j =
10 j0 for a QD polarization dephasing time of T2 = 30 fs and different values of the
inhomogeneous broadening ~δω = 0, 20, 50 meV. (c): Same as (a) with a QD polarization
dephasing time of T2 = 100 fs (d): Same as (b) with a QD polarization dephasing time
of T2 = 100 fs. The vertical dashed lines mark the QD GS and ES optical transition
frequencies. Shallow QDs according to Table 3.1. Other parameters as in Table 4.1.

vary from sample to sample or may even be tailored in specific growth modes. There-
fore in this section the fundamental spectral properties for different values of the QD
dephasing time T2 and the amount of inhomogeneous broadening ~δω are investigated
for shallow and deep QDs.

Shallow quantum dot α-factor

In Figure 4.17 gain spectra and resulting α-factors for the QD-QW system are shown
for two different QD optical dephasing times of T2 = 30 fs and T2 = 100 fs and in each
case different values of the inhomogeneous broadening of ~δω = 0, 20, 50 meV. For the
case of no inhomogeneous broadening given by the red dash-dotted line in Fig. 4.17 the
linewidth of the spectra is determined solely by the homogeneous Lorentzian linewidth,
which in turn is related to the dephasing time (see Eq. (2.44) and Table 4.1). For zero
inhomogeneous broadening all QDs share the same transition frequency thus leading to a
narrow gain spectrum. Comparing Figs. 4.17(a) and (c) one can observe that increasing
the inhomogeneous broadening leads to a flattening and simultaneous broadening of the
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Figure 4.18: Same as Fig 4.17 for the deep dot energy level spacing as in Table 4.1. Other
parameters as in Table 4.1.

spectra, while increasing the dephasing time T2 has the opposite effect of narrowing the
spectrum. Both effects are transferred to the frequency dependence of the α-factor in
such a way that a larger QD dephasing time enhances the maxima and minima, while
an increased broadening flattens the spectral dependence. For large dephasing times the
variations in the spectral dependence of the α factor are considerable larger compared to
the case of small dephasing times and the inhomogeneous broadening has a much greater
impact on magnitude of the α-factor.

Furthermore, the α-factor exhibits local minima in its spectral dependence at tran-
sition energies close to, but not necessarily coinciding with, the QD GS and ES tran-
sitions. For a small value of the inhomogeneous broadening the local minima are most
pronounced, thus a smaller inhomogeneous broadening seems to be beneficial for engi-
neering devices with low α-factors.

Deep quantum dot α-factor

The influence of the QD dephasing time and the amount of inhomogeneous broadening
of the QDs on the gain spectra and the α-factor for deep QDs (see Table 3.1) is shown
in Fig. 4.18 for a fixed injection current density of j = 10 j0. One can observe the same
parameter dependent behaviour as already seen in Fig. 4.17, namely that both an increase
in the dephasing time as well as a reduction of the inhomogeneous broadening lead to
narrower and enhanced gain peaks at the QD GS and ES optical transitions. At the
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Figure 4.19: Shallow QD gain spectra and α-factors in dependence of the transi-
tion energy ~ω for different input irradiances of the electric field of I plotted as
I = 0.016 MW m−2 (dash-dotted) I = 0.8 MW m−2 (solid) and I = 1.6 MW m−2

(dashed) lines. (a): Excitation dependence of the gain spectrum and (b) the α-factor.
The QD polarization dephasing has a value of T2 = 30 fs and an inhomogeneous broad-
ening of ~δω = 20 meV. (c) and (d): Same as (a) and (b) with a QD polarization
dephasing time of T2 = 100 fs and inhomogeneous broadening of ~δω = 50 meV. The
injection current is set to j = 10 j0. Other parameters as in Table 4.1.

same time the frequency dependent modulation of the α-factor in the spectral window
around the QD optical transition is enhanced. Additionally, one observes huge α-factors
in the spectral range of the QW transitions, which stands in contrast to the shallow QD
scenario (compare Fig. 4.17).

Excitation dependence

In the previous section the small signal spectral properties of the QD SOA were investi-
gated. With increasing input irradiance of the electric field E(t) the active medium starts
to bleach, which refers to a reduction of the gain towards transparency. Figure 4.19 shows
the gain spectra and the corresponding α-factors for different values of the input irradi-
ance for a fixed injection current density of j = 10 j0 for deep and shallow QDs for differ-
ent dephasing times and different values of the inhomogeneous broadening. Figs. 4.19(a)
and (b) are calculated with a QD dephasing time T2 = 30 fs together with a broadening
of ~δω = 20 meV, while Figs. 4.19(c) and (d) show spectra and α-factors for a dephas-
ing time of T2 = 100 fs and ~δω = 50 meV. The gain bleaching for increasing optical
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input irradiance is very well visible in Fig. 4.19(a) and (c). It leads to a reduction of the
differential gain. With increasing input irradiance the resulting α-factor increases over
a broad range of the frequency domain (only in the range of transition energies below
the QD GS transition a decrease of the α-factor can be observed with increasing input
irradiance as shown in Fig. 4.19(b) ).

4.2.4 Conclusion

In conclusion, one observes that the shape of the gain spectrum strongly depends on
the current injection density. The presence of the surrounding QW leads to strong
absorptive behaviour at high frequencies and significantly alters the spectrum of the real
part of the optical susceptibility in the frequency range of the QD optical transitions. The
presence of QW dipole interactions leads to an increased α-factor of the QD-QW system.
Furthermore, the α-factor exhibits a strong carrier density and frequency dependence.
This suggests, that for a QD amplifier, where the amplified signals are not single mode
and the carrier density may show time-dependent variations it is hard to determine a
definite value for the α-factor. For single mode operation of a QD laser however one can
very well define an α-factor for example at lasing threshold, where the carrier density is
pinned to a fixed value.
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CHAPTER 5. PULSE PROPAGATION DYNAMICS

Chapter 5

Pulse propagation dynamics

In optical networks it is desirable to have short pulses in time and in frequency domain.
Nonlinearities of the gain medium may affect the input pulse leading to distortions from
its original shape. The following analysis will focus on the aspects of pulse shaping and
the analysis of chirp for ultrashort input pulses due to self-phase modulation.

5.1 Input-output characteristics

The input-output characteristics of an optical amplifier measures the output pulse energy
(at the output facet) in dependence of the input pulse energy. It is an important device
characeristic comparable to the I−V -characteristic of a semiconductor laser showing the
gain saturation behaviour of the device.

In the limit of small input pulses the device is unsaturated. With increasing input
pulse energy however, gain saturation effects become stronger leading to a gain suppres-
sion. The input-output characteristics of the investigated QD SOA is plotted in Fig. 5.1
in dependence of the input pulse area θ for unchirped Gaussian input pulses with a
FWHM of 150 fs and 500 fs and a device length of z = 500µm. All curves are normal-
ized to the small-signal single pass gain value at θ = 10−2π. As evident from Fig. 5.1
the amplification regimes can be separated into a small-signal regime, where the gain is
unsaturated, followed by a transition regime and a gain saturation regime for high power
input pulses, where the input signal is not significantly amplified any longer due to gain
saturation. The optical parameters of the gain medium crucially affect the saturation
behaviour. For the case of a large optical dephasing time of T2 = 100 fs given by the
red solid and blue dashed curves in Fig. 5.1 the transition from unsaturated to saturated
behaviour is shifted towards smaller input pulse areas (e.g. smaller input pulse ener-
gies) compared to the case of a small dephasing time of T2 = 30 fs. The reason for this
behaviour is that a larger dephasing time enhances the induced polarization. Therefore
saturation sets on for weaker input pulse signals (smaller input pulse areas).

In the next section the dynamic properties of the QD SOA will be discussed for
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Figure 5.1: Normalized single pass gain of the QD SOA in dependence of the input pulse
area θ. The red solid and short dashed curves are for an initial input pulse width of
FWHM = 500 fs and optical parameter sets I and II from Table 5.1, respectively. The
blue long dashed and dash-dotted curves are for an initial input pulse width of FWHM =
150 fs and optical parameter sets I and II from Table 5.1, respectively. Shallow QDs
according to Table 3.1. Other parameters as in Table 4.1.

different input pulse areas of Θ = 10−3 π in the unsaturated domain and Θ = 2.33π and
Θ = 3.36π in the saturated domain of the QD SOA indicated by the vertical dashed
lines in Fig. 5.1.

5.2 Self-phase modulation

One important manifestation of the intensity dependence of the refractive index in non-
linear media occurs through self-phase modulation, a phenomenon that leads to spectral
broadening of optical pulses. It describes the phase modulation of an optical pulse in-
duced by the refractive index variations during its propagation. Another nonlinear gain
effect is cross-phase modulation, which refers to the phase modulation of an optical field
induced by a co-propagating field at different frequency. In this section the induced
phase dynamics and the resulting chirp of optical signals due to self-phase modulation is

Table 5.1: Parameter sets used for the simulation of the propagation dynamics.

Set I Set II
T2 = 100 fs (6.6 meV) T2 = 30 fs (21.9 meV)
~δω = 50 meV ~δω = 20 meV
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Figure 5.2: Time series of the electric field amplitude of a Gaussian input pulse with
FWHM = 150 fs. The optical parameter are chosen according to set I from Table 5.1
and a pulse area of Θ = 2.33π. The injection current density is j = 10 j0. (a) Time
series E(t) at different spatial positions z. (b) Time series E(t′) in the comoving frame.
Offsets are for better visibility. Shallow QDs according to Table 3.1. Other parameters
as in Table 4.1.

investigated. The chirp of an optical signal refers to the instantaneous frequency change
of the pulse over time. The focus of the analysis is on coherent effects induced by the
polarization dynamics and the impact of coherent interaction with the QW states. The
initial slowly varying input signals are unchirped Gaussian input pulses of the form

E(z = 0, t) = E0 exp

[−t2
2σ2

]
, (5.1)

where E0 is the amplitude of the input signal and σ is the standard deviation of the
Gaussian signal (and the full width at half maximum is FWHM = 2

√
2 ln 2σ). It is

convenient to express the slowly varying envelope of the electric field in terms of amplitude
|E| and phase φ as

E(z, t) = |E(z, t)|eiφ(z,t). (5.2)

The acquired chirp of the signal is then given by the second derivative of the phase φ̈(z, t).
Table 5.1 lists the parameter sets already used in Sec 4.2 that will be considered for the
analysis of the pulse propagation dynamics. In the following analysis of the spatiotem-
poral dynamics it is convenient to transform into a comoving frame by introducing new
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space and time coordinates z′ and t′ as follows

t′ = t− z

vg
, z′ = z. (5.3)

Here, vg = c/nbg is the group velocity, nbg =
√
εbg is the background refractive index

and εbg is the background permittivity. The application of the transformation to the
spatiotemporal dynamics of the electric field is illustrated in Fig. 5.2. Here, panel (a)
shows timeseries of the electric field at different spatial coordinates z in dependence
of t, while panel (b) shows the electric field dynamics in dependence of t′. With the
transformation into a comoving frame defined by Eq. (5.3) the time window needed to
capture the relevant spatiotemporal dynamics of the signal is reduced compared to the
untransformed coordinates. In the following all spatiotemporal plots are made in the
comoving frame.

5.2.1 Small-signal regime

In the limit of small input pulse energies (amplitudes) the gain is in good approximation
linear and saturation effects can be neglected. A pulse propagating in this regime will
acquire only a linear phase shift and therefore no chirp. The resulting spatiotemporal
propagation dynamics for an injection current density of j = 10 j0 and an input pulse
with Θ = 0.01π, and optical parameter set I is shown in Fig. 5.3(a). The shape of
the pulse remains more or less unchanged. The phase dynamics at the output facet at
z = 500µm and the acquired chirp of the pulse is shown in Fig. 5.3(b). The phase shows
an initially linear dependence and the corresponding chirp is minimal around t′ = 0. The
case of a smaller dephasing time T2 (parameter set II) is not shown, since the qualitative
features are very similar in that case. Due to the very small input pulse area, the charge
carrier densities change only very little upon propagation of the pulse through the device
(see Fig. 5.3(c) and (d).)

5.2.2 High power regime

In the high power regime the gain medium shows strongly nonlinear behaviour. The
spatiotemporal dynamics of a pulse in this domain with an input pulse area of θ = 2.33π

is shown in Fig. 5.4 for optical parameters given by set I from Table 5.1. The pulse shape
is strongly deformed from its initial Gaussian shape and in this special case the pulse
exhibits a breakup and a second maximum appears while the pulse propagates through
the amplifier medium. The breakup of the pulse is a manifestation of coherent Bloch
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Figure 5.3: (a): Spatiotemporal dynamics of the slowly varying electric field amplitude E
in dependence of time t′ = t−z/vg and spatial coordinate z. The color code indicates the
amplification in units of the initial slowly varying amplitude E0 at the input facet (z = 0).
(b): Temporal evolution of the phase change and chirp at the output facet (z = 500µm)
given by the black solid and dash-dotted curves, respectively. The injection current
density is j = 10j0, the input pulse area is Θ = 10−2 π and the optical parameters of the
gain medium are T2 = 100 fs and ~δω = 50 meV. Shallow QDs according to Table 3.1.
Other parameters as in Table 4.1.

oscillations induced by the strong input pulse. Despite the damping of the polarization
it leads to absorptive behaviour of the gain medium in the time window between the two
pulse peaks. Without the separate degree of freedom given by the polarization dynamics,
an input pulse could not induce a transition between absorption and gain, instead the
gain would bleach in a monotonic way. Since the damping of the polarization is given by
the inverse of the polarization lifetime one can expect this behaviour to strongly depend
on the dephasing time T2. In Fig. 5.5(a) the pulse propagation dynamics is shown for
the case of T2 = 30 fs and ~δω = 20 meV. While the strong gain nonlinearity leads
to enhanced amplification of the leading pulse edge, the pulse breakup behaviour as in
Fig. 5.4(a) can no longer be observed. The phase and chirp dynamics at the output
facet is shown in Fig. 5.4(b) and 5.5(b) for the two cases discussed. The phase given by
the black solid curves increases monotonically over the duration of the pulse and in the
high intensity region of the pulse the phase shows nonlinear behaviour, an indication of
gain nonlinearities. The resulting chirp shows a maximum in the high intensity region
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Figure 5.4: Same as Figure 5.3 but with input pulse area θ = 2.33π. Parameters are
T2 = 100 fs and ~δω = 50 meV (Set I from Table 5.1). Other parameters as in Table 4.1.

of the pulse and the chirp dynamics follows the electric field intensity dynamics. In
Fig. 5.4(c) the average QD GS and ES inversion at the output facet is plotted. The
average GS inversion (black solid curve) shows an oscillatory behaviour with two minima
corresponding to the intensity peaks of the pulse, while the QD ES state (dash-dotted
curve) is on average less inverted than the GS prior to the arrival of the pulse. During
and after the pulse duration the ES inversion then gradually decreases. The QW electron
dynamics at the output facet is shown in Fig. 5.4(d). Here, an increase of the electron
density due to the coherent light-matter interaction in the QW can be observed setting
in with the arrival of the pulse.

Further increasing the input pulse area to Θ = 3.36π, the spatiotemporal pulse
propagation dynamics has the form shown in Fig. 5.6(a). The associated phase and chirp
dynamics at the output facet is given in Fig. 5.6(b). As already observed in Fig. 5.4(a)
the pulse envelope is broadened while propagating through the medium and again a pulse
breakup can be observed, only here the first peak structure has a lower amplitude than
the second peak. The phase and chirp dynamics shown in Fig. 5.6(b) is qualitatively
similar to that observable in Fig. 5.4(b).
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Figure 5.5: Same as Fig. 5.4 except T2 = 30 fs and ~δω = 20 meV (Set II from Table
5.1). Other parameters as in Table 4.1.

5.3 Impact of coherent interaction in the QW

In Sec 4.2 it was found that the coherent interaction of light with the QW states has
a significant impact on the spectral properties and on the α-factor of the device. The
strong dependence of the α-factor on the coherent QW interaction suggests that the
dipole interactions in the QW also affect the propagation dynamics of optical pulses. In
order to analyze the impact of the coherent interaction of the QW on the propagation
dynamics of ultrashort pulses in the QD SOA the full dynamics is compared to the
limiting case without coherent QW interaction by setting the dipole moment of the
QW states to zero, e.g., µk = 0. The injection current density is in both cases set
to j = 10 j0. The absolute value of the injected current is not the same in this case,
since the transparency current density changes when the QW interactions are switched
on or off. When including coherent QW interactions the transparency current density
is shifted to higher values compared to the case of no coherent QW interactions. The
QW states are not inverted when the QD GS cross from absorption to gain causing
an additional absorptive contribution from the QW states to the overall gain that has
to be overcome by the QD gain contributions, thus requiring a higher inversion of the
QD states. This in turn requires a higher injection current density. The transparency
current densities are listed in App. A.4. Figure 5.7 shows the dynamical behaviour at the
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Figure 5.6: Same as Figure 5.3 for an input pulse area θ = 3.36π. Parameters are
T2 = 100 fs and ~δω = 50 meV (Set I from Table 5.1). Other parameters as in Table 4.1.

amplifier output facet for the case of coherent QW interactions included in the dynamics
(µk = 0.5, black solid curves) and the case when coherent QW interactions are neglected
(µk=0, blue dash-dotted curves). The input pulse width and area are FWHM = 150 fs

and θ = 2.33π, respectively, and the current injection is j = 10 j0. The amplitudes of
the slowly varying electric field is shown in Fig. 5.7(a), while the chirp of the signal is
plotted in Fig. 5.7(b) for the two cases. While the shape of the electric field envelopes are
qualitatively and quantitatively very similar in both cases, the magnitude of the chirp
the pulse acquires is underestimated when the coherent QW interactions are neglected.
The QD GS inversion is shown in Fig. 5.7(c). The initial difference of the inversion for
the two cases considered is a result of the different absolute values of the current injection
density. The double-peak structure of the pulse envelope leads to two local minima of
the GS carrier inversion. The QW electron density is shown in Fig. 5.7(d). The left and
right scale are for the cases with and without coherent QW interaction, respectively. The
higher injection current density in the case of coherent QW interactions leads to higher
initial QW charge carrier densities than without coherent QW interaction. Although
the QW states are off-resonant the coherent interaction generates carriers in the QW
leading to a significant increase of the QW electron density with the onset of the pulse.
With no coherente interaction in the QW the electron density gradually decreases due
to incoherent scattering processes between the QD and QW states. Increasing the pulse
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Figure 5.7: Comparison of the propagation dynamics with quantum well dipole moment
µk = 0.5 e0nm (black solid curve) and µk = 0 (blue dash-dotted curve). The current
injection strength in both cases is j = 10 j0 and the input pulse area and FWHM of
the Gaussian input pulse are θ = 2.33π and FWHM = 150 fs. (a): Dynamics of the
slowly varying electric field amplitude at the ouput facet z = 500µm in dependence of
time t′. (b): Time evolution of the chirp at the output facet. (c): GS inversion at the
output facet. (d): QW electron dynamics we at the output facet. The dephasing time
is set to T2 = 100 fs and the inhomogeneous broadening to ~δω = 50 meV. Shallow QDs
according to Table 3.1. Other parameters as in Table 4.1.

width to FWHM = 500 fs while keeping the other parameters in Fig. 5.7 results in the
dynamical scenario shown in Fig. 5.8. As before, the field envelopes show little deviations
when switching the coherent QW interaction on or off. Comparing Figs. 5.8(b) to 5.7(b)
one notices that the maximum chirp for 500 fs pulse is significantly reduced compared to
the 150 fs pulse and the relative error made when neglecting the coherent QW interaction
becomes smaller.

5.4 Band structure effects

To investigate the band structure effects, the pulse propagation dynamics investigated in
Sec. 5.2 for shallow QDs with energy levels according to Table 3.1 is reconsidered in this
section for deep QDs according to Table 3.1.
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Figure 5.8: Same as Fig. 5.7 for an input pulse width of FWHM = 500 fs.

5.4.1 Small-signal regime

For a small-signal input signal with pulse area Θ = 10−2 π the corresponding spatiotem-
poral dynamics along with the phase and chirp dynamics of the electric field and the QD
and QW carrier dynamics at the output facet is shown in Fig. 5.9. In comparison to
the dynamics of the shallow dot configuration from Fig. 5.3 one observes a higher single
pass gain (due to a larger differential gain, compare Figs. 4.13 and 4.14). The maximum
pulse amplitude at the SOA output facet is approximately 80 times larger than the in-
put signal. As a consequence one can observe gain saturation effects in the GS carrier
inversion in Fig 5.9(c) due to the strong built-up electric field. The field intensity at the
output facet is strong enough that coherent interactions with the off-resonant QW states
takes place leading to an increase in the QW electron density shown in Fig. 5.9(d) (QW
hole density is omitted). Furthermore, the emergence of gain nonlinearities gives rise to
a non-constant chirp as can be seen in Fig. 5.9(b).

5.4.2 High power regime

In the saturated regime of the QD SOA the spatiotemporal pulse propagation dynamics
for deep QDs is reevaluated as in Sec 5.2. The results for input pulse areas of θ =

2.33 , 3.36π are shown in Figs. 5.10 and 5.11, respectively. For an input pulse area of
Θ = 2.33π Figs. 5.10(a) and (b) the spatiotemporal dynamics of the slowly varying
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Figure 5.9: Same as Figure 5.3 for deep QDs from Table 3.1. Parameters are θ = 10−2π,
T2 = 100 fs, and ~δω = 50 meV (Set I from Table 5.1). Other parameters as in Table 4.1.

electric field envelope and the output phase and chirp of the signal, respectively. The
dynamics of the QD GS and ES carrier inversion and the QW electron density are plotted
in Fig. 5.10(c) and (d), respectively. The electric field envelope in Fig. 5.10(a) shows even
more pronounced pulse breakup than in 5.4(a). Compared to Fig. 5.4(b) the chirp for the
deep QDs is larger than in the shallow dot case. The QD GS and ES inversion is shown
in Fig. 5.10(c). Unlike in the case of shallow QDs the GS inversion only slightly exceeds
the ES inversion here. The QD GS optical inversion shows strong coherent oscillations as
in the shallow dot case while the ES experiences a carrier drain when the pulse interacts
with the medium. The QW electron density (hole dynamics not shown) increases during
the interaction period, which indicates coherent interaction (absorption). Due to the
larger detuning of the QW states the magnitude of the coherent QW interaction is not as
large as in the case of shallow QDs and therefore the increase in the QW carrier density
is also smaller. For a larger input pulse area of Θ = 3.36π the dynamical behaviour
shown in Fig 5.11 is qualitatively similar to Fig. 5.10. Most importantly, the acquired
chirp at the SOA’s output facet is very similar to that shown in Fig. 5.10.
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Figure 5.10: Same as Figure 5.3 for deep QDs from Table 3.1. Parameters are θ = 2.33π,
T2 = 100 fs, and ~δω = 50 meV (Set I from Table 5.1). Other parameters as in Table 4.1.
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Figure 5.11: Same as Figure 5.10 for an input pulse area θ = 3.36π. Parameters are
T2 = 100 fs and ~δω = 50 meV (Set I from Table 5.1). Other parameters as in Table 4.1.
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Figure 5.12: Maximum chirp of an input pulse with FWHM = 150 fs and input pulse
area Θ = 2.33π in dependence of the injection current density and the propagation
distance for (a) shallow QDs and (b) deep QDs according to Table 3.1. The values at
the contour lines indicate the chirp in units of ps−2. Parameters are: QD dephasing time
T2 = 100 fs and energy brodening ~δω = 50 meV. Other parameters as in Table 4.1.

5.5 Injection current dependence

The injection current density dependence of the chirping behaviour is investigated in
this section. The maximum attained chirp of the signal in dependence of the injection
current density and spatial position z is shown in Fig. 5.12(a) and (b) for shallow and
deep QDs according to Table 3.1, respectively. The input pulse is an unchirped Gaussian
signal with FWHM = 150 fs. The pulse area is set to Θ = 2.33π in the saturated
regime of the QD SOA. For both shallow and deep QDs the maximum chirp of the pulse
increases in propagation direction. In the case of shallow QDs shown in Fig 5.12(a)
the chirping behaviour for increasing injection current density is characterized first by a
decrease in chirp followed by a minimum and then an increase. As a consequence there
exists an optimal injection current for which the pulse experiences the least chirp. For
deep QDs the maximum chirp of the pulse shown in Fig. 5.12(b) increases monotonically
with increasing injection current density.

5.5.1 Role of coherent QW interactions

The impact of coherent interactions of the pulse with the QW states is analyzed in
Fig. 5.13 by comparing the full system with coherent interactions of QD and QW states
to the reduced system, where only the QD dipole dynamics is considered and the QW
acts solely as a carrier reservoir. The maximum chirp of the pulse at the output facet as
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Figure 5.13: Comparison of the maximum chirp attained at the ouput facet with (solid
black curves) and without (blue dash-dotted curves) coherent QW interactions for an
input pulse with FWHM = 150 fs and input pulse area Θ = 2.33π in dependence of the
injection current density for shallow QDs (a) and deep QDs (b) according to Table 3.1.
Same parameters as in Fig 5.12.

a function of the injection current density is shown in Fig. 5.13 (a) and (b) for shallow
and deep QDs, respectively. The full simulation of the system is given by the black solid
lines, whereas the reduced system where only the QDs are polarizable is shown by the
blue dash-dotted curves. In the case of shallow QDs shown in Fig 5.13(a) the coherent
QW interaction significantly alters the chirping behaviour. Especially for small input
currents j < 10 j0 the coherent QW interaction significantly enhances the chirp of the
pulse. In the deep QD configuration the coherent QW interaction has nearly no effect
on the maximum chirp of the signal.

5.6 Comparison of full-field and reduced dynamics

In order to compare the different models time series of the the full field approach (FDTD)
from Eqs. (2.8)-(2.9) and the reduced wave equation from Eq. (2.10) of the electric field
amplitude, the macroscopic polarization amplitude, and the ground state occupation
probability are plotted in Fig. 5.14 at the input facet (left panel) and output facet (right
panel) of the amplifier. The inset in Fig. 5.14(c) shows a blowup of the full-field dynamics
of the macroscopic polarization density indicating the fast oscillations of the carrier
wave. The input signals of the full electric field and the slowly varying envelopes in
Fig. 5.14(a) perfectly match, whereas the output signal of the full field dynamics lags
behind the dynamics obtained from the reduced system. Other than that, the pulse shape
is recovered by the reduced wave equation and only slight deviations in the amplitude
occur. The observed time lag of the electric field of the full simulation compared to the
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Figure 5.14: Comparison of the dynamics of the full field approach (FDTD) from
Eqs. (2.8)-(2.9) and the reduced wave equation approach from Eq. (2.10) for a Gaussian
input pulse with FWHM = 150 fs, θ = 0.5π and injection current density j = 10 j0.
The left panel shows the input signals and the right panel the output signals in depen-
dence of time t′. (a) and (b): Input and output electric field amplitudes, respectively.
(c) and (d): Input and output absolute values of the macroscopic polarization density
normalized to the FDTD amplitude at the input facet, respectively. The inset shows
a blowup around t′ = 0. (e) and (f): Input and output dynamics of the ground state
occupation probability fe,GS . T2 = 100 fs and ~δω = 50 meV. Shallow QDs according to
Table 3.1. Other paramters as in Table 4.1

reduced system is also noticeable in the output dynamics of the macroscopic polarization
and the QD GS electron probability as shown in Fig. 5.14(d) and (f). The occuring time
lag may be caused by refractive index changes caused by the coherent QW interaction
that are not captured in the reduced approach.
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5.7 Conclusion

To conclude, one observes strong nonlinear self-phase modulation in QD SOAs for input
signals with large intensity. The coherent interactions present in the system can lead to
pulse breakup. Furthermore, the QW dipole interactions can also lead to an enhancement
of the chirp.
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Chapter 6

Wave mixing dynamics

Nonlinear phenomena can be used in two general ways, one being the analysis of the
properties of the medium that generates them, the other is targeted on applications
such as second harmonic generation, optical bistability, phase conjugation etc. The
various kinds of nonlinear spectroscopy methods fall into the first category, and one
of them, namely the pump-probe spectroscopy has been examined in Sec. 4.1. In this
chapter the focus lies on one important application of nonlinear optics, that is four-wave
mixing [AGR88a, CHO95, QAS04, BER04]. The fundamental principle of wave mixing
relies on the nonlinear interaction between incident signals with different frequencies
and propagation directions. The simplest nonlinear wave interaction is created in a
three-wave mixing setup shown in Fig. 6.1(a). In such a setup, the medium is excited
with a saturating pump field with central frequency ω2 along one direction (wavevector
k2) and a potentially weaker probe field with frequency ω1 and direction k1. In the
degenerate case the frequency components of the pump and probe signal are equal, e.g.,
ω1 = ω2 and only the incident angles differ from each other. In the non-degenerate
setup the frequencies of the incident pump and probe signals are also different from
each other. The beating between the pump and probe signals induces field fringes in the
medium which result in refractive index variations caused by carrier density modulations.
The pump field then scatters off the induced fringes creating the conjugate signal. The

(a) (b)
ω1

ω2

ω3

k3

k1

k2

k2 − k1

k2 − k1medium

mismatch

Figure 6.1: (a): Three-wave mixing setup showing incident pump wave ω2 and probe wave
ω1 along with the conjugate signal ω3.(b): Illustration of phase mismatch in three-wave
mixing.
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Figure 6.2: Schematic illustration of a three-wave mixing setup for wavelength conversion.
The central GS and ES transition frequencies as well as the quasi-continuum of the QW
transitions are indicated by the dashed lines and the grey shaded area, respectively. The
pump and probe signals are indicated by the dark blue and red lines and the generated
conjugate signal is given by the green line.

scattering geometry is sketched in Fig. 6.1(a). Unless the wave-vectors ki are all parallel
momentum conservation is not perfectly fulfilled and the conjugate signal intensity is
reduced. Fig. 6.1(b) illustrates this so-called phase mismatch behaviour in three-wave
mixing. In the following we restrict ourselves to collinear propagating pulses which are
phase-matched. Figure 6.2 schematically illustrates the three-wave mixing setup for the
QD SOA system. The central QD ground state and first excited state transition energies
are indicated by the dashed lines and the quasi-continuum of QW transitions is indicated
by the gray shaded area. The pump pulse is centered around the central QD GS transition
frequency ωGS and the detuning frequency of the pump and probe signal is indicated by
∆ω = 2π∆ν. The conjugate signal located at ω = ωGS − ∆ω is given by the green
line while the input probe pulse is indicated by the red line. If not stated otherwise, the
amplitude ratio of input pump signal amplitude Epump and probe signal amplitude Eprobe
is set to Epump = 10Eprobe in the following. As a measure for the nonlinear wavelength
conversion efficiency ∆FWM the ratio of the input probe pulse intensity at frequency
ωGS + ∆ω to the output intensity at the conjugate frequency ωGS − ∆ω is used (ratio
between red and green signals in Fig. 6.2)

∆FWM =
|E(ωGS −∆ω, z = L)|2
|Eprobe(ωGS + ∆ω, z = 0)|2 . (6.1)

The amount to which the beating in the field intensity induces a modulation of the
charge carrier densities of electrons and holes in the active medium strongly depends on
the carrier and polarization lifetimes of the QD and QW states. The polarization lifetime
of the QD states is on the order of tens to hundreds of femtoseconds [LOR06], whereas the
carrier lifetime is on the order of hundreds of femtoseconds up to picoseconds. This means
that effectively the bandwidth of frequency conversion is limited mainly due to the large
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carrier lifetimes of the QD levels. Experimental [AKI02] and theoretical [QAS04, BER04]
investigations of FWM in QD semiconductor optical amplifiers predict a larger bandwidth
of wavelength conversion for QD based devices compared to conventional bulk or QW
amplifiers. Three main mechanisms drive the nonlinear wavelength conversion: global
carrier density pulsations (CDP), spectral hole burning (SHB) and carrier heating (CH).
Global carrier density pulsations refer to variations of the total charge carrier density of
the device, whereas spectral hole burning describes local pulsations of the charge carrier
density (especially in the QDs). In the case of CDP the charge carrier dynamics of the
QDs adiabatically follows the QW charge carrier dynamics. The spectral hole burning
component creates a charge carrier oscillation in the QDs that is decoupled from the QW.
Carrier heating effects in this context refers to free carrier absorption in the conduction
band, where an electron is excited to an energetically higher state. For QD devices these
processes are assumed to play a minor role only and are therefore neglected in the analysis
of Four-wave mixing in QD SOAs.

Throughout this chapter the optical parameters are T2 = 100 fs and ~ δω = 50 meV

(Parameter set I from Table 5.1) and the length of the amplifier is set to L = 500µm.

6.1 Input power dependence

The input power of the optical signal determines the degree of carrier-induced gain non-
linearity and therefore also determines the nonlinear wavelength conversion efficiency
∆FWM to a large extent. For small input powers the induced carrier density variations
are negligible and the gain is in good approximation linear, which means that one can
therefore expect the wavelength conversion efficiency in this regime to be small. On
the other hand, if the input signal is large, the gain medium will bleach very fast thus
leading to a low nonlinear wavelength conversion efficiency. For a Gaussian pulse with
fixed width the pulse area scales the amplitude of the pulse and thus also the maximum
power density of the signal. On the one hand, in the small signal regime (small input
pulse area) the degree of nonlinearity is small and therefore the wavelength conversion
efficiency is low. On the other hand, in the high power regime corresponding to large
input pulse areas, gain bleaching will reduce the wavelength conversion efficiency. In
between these two regime one can expect an optimum input pulse area for which the
conversion efficiency has a maximum value.

Figure 6.3 shows the nonlinear wavelength conversion efficiency in dependence of the
input pulse area for a frequency detuning of ∆ν = 1 THz between the pump and probe
signal, an input pulse width of FWHM = 2 ps, and injection currents of j = 2, 10 j0.
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Figure 6.3: Pulse area dependence of the nonlinear wavelength conversion efficiency for
two different injection current densities of j = 2, 10 j0. The frequency detuning between
pump and probe signal is ∆ν = 1 THz. The input pulse width is FWHM = 2 ps.
Shallow QDs according to Table 3.1.

In the range of input pulse areas from Θ = 5 × 10−2 π to Θ = 50π the wavelength
conversion efficiency at first increases and then decreases again with increasing input
pulse area. The figure indicates that a higher injection current increases the wavelength
conversion efficiency. This can be attributed to an increased scattering efficiency and a
reduced carrier lifetime of the QD levels in combination with a higher modal gain. For
an injection current density of j = 2 j0 the wavelength conversion efficiency is more than
10 dB smaller compared with the case of an injection current density of j = 10 j0. The
maximum wavelength conversion efficiency is shifted to larger input pulse areas for the
case of j = 2 j0 compared to the case of j = 10 j0.

6.2 Frequency dependence

For all-optical wavelength conversion it is desirable to have a large bandwidth to allow
for example wavelength conversion at multiple wavelengths simultaneously. To this end
the frequency dependence of the wavelength conversion efficiency ∆FWM is studied,
e.g., the dependence of the generated conjugate field intensity in the output spectra on
the frequency difference ∆ν between the input pump and probe pulses (see setup in
Fig. 6.2) is investigated in this section. A spectrum of the input and output electric
field for an injection current density of j = 10 j0, an input pulse area of Θ = 0.5π

and FWHM = 2 ps is shown in Figure 6.4. In Fig. 6.4(a) the frequency detuning
between the pump and probe pulses is ∆ν = 1 THz and in Fig. 6.4(b) the pump-probe
frequency detuning is ∆ν = 3.36 THz. The initial Gaussian shape of the input pump
and probe signals given by the black solid curves in Figs. 6.4(a) and (b) are distorted
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Figure 6.4: Input (black solid curve) and output spectrum (black dash-dotted curve)
of three-wave mixing for (a): pump-probe detuning ∆ν = 1 THz and (b): pump-probe
detuning of ∆ν = 3.36 THz. Shallow QDs according to Table 3.1. Other parameters are
FWHM = 2 ps, θ = 0.5π, j = 10 j0.

from their initial shape at the output facet and one can clearly observe a distinct peak
in the spectrum at the conjugate frequency. In Fig. 6.4(a) also higher order peaks at
∆ν = ±2 THz appear in the spectrum. The generated conjugate signal in Fig. 6.4(a) has
a spectral amplitude that even exceeds the amplitude of the initial input signal, whereas
for the larger detuning in Fig. 6.4(b) the generated conjugate signal has an amplitude
that is approximately 10 dB smaller in magnitude than the initial input probe amplitude.

The detuning frequency dependence of the wavelength conversion efficiency is shown
in Fig. 6.5 for injection currents of j = 2, 10 j0. The pulse width is again FWHM =

2 ps. The black solid lines are for negative frequency detunings and the black dash-
dotted line shows the frequency dependence of the wavelength conversion efficiency for
positive detuning. The qualitative shape of the frequency dependence for both high
(j = 10 j0) and low (j = 2 j0) injection currents shown in Figs 6.5(a) and (b), respectively,
is very similar. For the case of strong current injection (j = 10 j0) from Fig. 6.5(a) the
wavelength conversion efficiency is more than 20 dB larger compared to the case of low
current injection (j = 2 j0) Fig. 6.5(b) over the whole range of detuning frequencies. The
reason for this behaviour is that for lower injection current densities the QD SOA has a
lower modal gain and also a reduced QW-QD scattering efficiency leading to enhanced
QD charge carrier lifetimes. For j = 10 j0 the initial value of the wavelength conversion
efficiency for a detuning of ∆ν = 1 THz is above 0 dB. The frequency converted signal at
the output facet thus has a higher intensity than the input probe signal at this detuning
frequency. The symmetry of the wavelength conversion efficiency for positive and negative
detuning is very high for both injection currents. For an injection current density of j =
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Figure 6.5: Frequency dependence of the nonlinear wavelength conversion efficiency for
shallow QDs for different injection current densities of (a): j = 10 j0 and (b): j = 2 j0.
Red solid and blue dash-dotted lines indicate positive and negative frequency detuning,
respectively. The black dashed lines indicate the −20 dB/dec line. The input pulse area
is Θ = 0.5π and the input pulse width is FWHM = 2000 fs.

10 j0 the positive and negative detuning behaviour is almost identical, whereas for j = 2 j0

the asymmetry in the wavelength conversion efficiency increases to several dB with an
enhanced conversion efficiency for negative frequency detunings as visible in Fig. 6.5(b).
The asymmetry can be attributed to the asymmetry of the gain spectrum. For j = 2 j0

the QD excited state is absorptive (see Fig. 4.13) and therefore the gain spectrum is more
asymmetric around the QD GS transition in comparison to the spectrum for an injection
current of j = 10 j0.

Regarding the frequency dependence a typical rate at which the efficiency of bulk and
QW devices decreases with increasing detuning frequency is given by the −20 dB/dec

line. As shown in Fig. 6.5(a) the high conversion efficiency for j = 10 j0 at a detuning of
∆ν = 1 THz drops at a rate faster than −20 dB/dec with increasing detuning frequency
indicating that one is beyond a frequency range where the performance in this regard is
better than that of a QW or bulk device.

The detuning dependence for a Gaussian input signal with FWHM = 10 ps at j =

10 j0 is shown in Fig. 6.6. The larger temporal pulse width allows the detuning in
the lower frequency range to be extended down to 200 GHz while still maintaining a
clear spectral separation of the pump, prope and conjugate signals. The negative and
positive detuning curves show nearly 0 dB separation indicating nearly perfect symmetry
of the wavelength conversion efficiency. The initial wavelength conversion efficiency is
approximately 10 dB at 200 GHz detuning, which is a comparable value to the shorter
2 ps input signal conversion efficiency at 1 THz. A 20 dB/dec decrease is obtained at
approximately 500 GHz in this case.
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Figure 6.6: Same as Fig. 6.5(a) for an input pulse with FWHM = 10 ps and an extended
frequency range from 0.2− 10 THz.

6.2.1 Impact of the band structure

In this section the impact of the band structure on the wavelength conversion efficiency
is examined. To this end the deep QD band structure from Table 3.1 and the associated
scattering rates are used in the evaluation of the wavelength conversion efficiency.

The frequency dependence of FWM for the deep QD configuration is shown in Fig. 6.7
again for injection current densities of j = 2 j0 and j = 10 j0. As a main difference
to the case of shallow QDs from Fig. 6.5 the asymmetry of the wavelength conversion
efficiency for deep QDs is high for an injection current of j = 10 j0 and for deep QDs
the positively detuned prope signals deliver higher wavelength conversion efficiencies
compared to negatively detuned signals. This also stands in opposition to the asymmetric
case for shallow QDs shown in Fig. 6.5(b). For a low value of the injection current
(j = 2 j0) the wavelength conversion efficiency is highly symmetric. In the shallow dot
case the behaviour is opposite (higher asymmetry for low current injection of j = 2 j0 and
low asymmetry for high current injection of j = 10 j0). Again, this behaviour is closely
connected to symmetry of the gain spectrum in the vicinity of the QD GS transition.

6.2.2 Injection current dependence and role of coherent QW interac-
tions

The current injection strength changes the scattering efficiency between QD and QW
states and therefore impacts the carrier dynamics of the QD-QW system.
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Figure 6.7: Same as Fig. 6.5 for deep QDs. The input pulse area is Θ = 0.5π. The input
pulse width is FWHM = 2 ps.
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Figure 6.8: Injection current density dependence of ∆FWM for (a): shallow QDs and
(b): deep dots. Red solid and blue dashed lines indicate positive and negative frequency
detunings of ∆ν = ±3 THz, respectively. (c) and (d): Difference ∆coh of ∆FWM due to
coherent QW interaction for shallow and deep QDs, respectively . The input pulse area
is Θ = 0.5πand the input pulse width is FWHM = 2 ps.
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For the investigation of the injection current density dependence of the wavelength
converstion efficiency the pump-probe detuning frequency is set to ∆ν = ±3 THz. The
wavelength conversion efficiency for shallow and deep QDs in dependence of the injection
current density is shown in Figure 6.8(a) and (b), respectively, for a range of injection
currents from j = 2 − 18 j0. The red solid curves mark the case of negative frequency
detuning while the blue dashed curve indicates positive frequency detunings between
input pump and probe signal. The shallow QD and deep QD behaviour is qualitatively
similar. It is characterized by a quick initial increase with growing injection up to a value
of approximately 5 j0, from whereon the rate of increase in the wavelength conversion
efficiency gradually becomes lower. For shallow QDs shown in Fig. 6.8(a) the negative
and positive detuning curves show a crossover at approximately 12 j0 ,from whereon the
wavelength conversion efficiency for positive pump-probe detuning exceeds the value for
negative pump-probe detuning (and vice versa before). In contrast, for deep QDs shown
in Fig. 6.8(b) the injection current dependence for positive detunings always exceeds the
curve for negative pump-probe detuning.

To quantify the effect of coherent QW interactions on the wavelength conversion
efficiency it is useful to introduce a measure ∆coh = ∆FWHMcoh−∆FWHMincoh, where
∆FWHMcoh and ∆FWHMincoh refer to the wavelength conversion efficiencies with and
without coherent QW interactions included. The impact of coherent QW interactions
to the injection current dependence is shown in Fig. 6.8(c) and (d) for shallow and
deep QDs, respectively. The deviations of the wavelength conversion efficiency due to
coherent interaction of the QW states is of the order of ≈ 1dB. For the case of shallow
QDs shown in Fig. 6.8(c) the coherent QW interaction always leads to an enhancement
of the wavelength conversion efficiency. For the case of deep QDs depicted in Fig. 6.8(d)
the scenario is different. Here, for currents larger than 5 j0 the coherent QW interaction
leads to a slight enhancement of the wavelength conversion efficiency for negative pump-
probe detunings and a reduction for positive detunings. Overall, the impact of coherent
QW interaction on the wavelength conversion efficiency is small. One can therefore
conclude that the spectral hole burning component of the QW states contributing to the
wavelength conversion efficiency is negligible.
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Chapter 7

Summary and outlook

In this thesis the dynamics of quantum dot based semiconductor optical amplifiers has
been studied. A semiclassical model has been set up that is able to predict the dynam-
ics of QD SOAs and give further insight into the the interplay between structure and
device performance. The predictive power of the presented approach makes the results
interesting for experimentalists as well as for the community engaged in QD modelling.

On the level of Maxwell-Bloch equations the dynamics of the amplifier is governed
by material equations for the microscopic interband polarizations and electron and hole
populations of the quantum dot and quantum well states coupled to propagation equa-
tions for the electric field deduced from Maxwell’s equations. The full field dynamics in
one spatial dimension and a reduced set of equations based on the rotating wave and
slowly varying envelope approximations have been introduced. By exploiting the limita-
tions and the range of validity of the reduced set of equations it is now possible to choose
the appropriate modeling approach for a specific physical problem. As an essential part
of the material model microscopically calculated carrier-carrier (Auger) scattering rates
between the QW states and the bound QD states have been calculated for QDs with a
ground state and a first excited state energy level, resulting in a total of sixteen possi-
ble Auger processes between the quantum well and quantum dot states. The resulting
Auger scattering rates in dependence of the quantum well charge carrier density and
temperature have been presented in chapter 3.

In chapter 4 the spectral properties and the static linewidth enhancement factor, or
static α-factor, have been analyzed in dependence of frequency and injection current
density. The separate contributions of the quantum dot ground and excited state and
QW dipole interactions to the linewidth enhancement factor have been examined and it
has been shown that the quantum well dipole interaction leads to significant enhance-
ment of the linewidth enhancement factor compared to the case without coherent QW
interactions.

The frequency dependence of the linewidth enhancement factor exhibits local minima,
which generally do not coincide with the spectral gain maximum. This knowledge can be
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beneficial for cavity design. A low value of the linewidth enhancement factor can enance
the stability properties of semiconductor lasers under external optical injection or optical
feedback.

The dynamic gain properties in response to ultrashort subpicosecond pulses have
been investigated in terms of single-color pump-probe simulations resonant to the QD
GS transition. With the microscopic Auger scattering rates at hand it was possible to
quantify the strength of the different scattering channels. For shallow QDss it was found
that the ultrafast recovery dynamics associated with quantum dot based semiconductor
optical amplifiers is driven by the cascading relaxation scattering channel. An excellent
agreement between experimental and simulated gain recovery dynamics could be obtained
for shallow QD structures over a range of injection current densities in the high excitation
regime. Here, carrier heating was found to play an essential role in order to accurately
describe the current injection dependent gain recovery.

The pulse propagation dynamics for ultrashort input signals was investigated in chap-
ter 5. Nonlinear self-phase modulation measured in terms of the acquired chirp of the
signal was investigated for deep and shallow QD structures. In contrast to the enhanced
static linewidth enhancement factor of shallow QDs the dynamical chirp of the ultra-
short signals was lower for the shallow QDs. The static linewidth enhancement factor
can therefore not be used in the nonlinear gain regime to predict the coupling of ampli-
tude and phase. For the shallow QD structure the injection current dependence of the
chirp has a minimum above transparency indicating optimal operating conditions.

In chapter 6 nonlinear wavelength conversion with nondegenerate four-wave mixing
was examined. For large frequency detunings above 1THz the QD structures still show
a high wavelength conversion efficiency, which is attributed to efficient carrier-carrier
scattering between the QW and QD states, thus outperforming conventional QW or bulk
devices. The high bandwidth of nonlinear wavelength conversion in QD SOAs is mainly
driven by spectral hole burning in the QDs and the impact of QW dipole interactions is
insignificant both for deep and shallow quantum dot devices.

For future investigations regarding quantum dot semiconductor optical amplifiers sev-
eral topics would be of high interest. The model could be extended in several ways. Based
on the microscopic model Coulomb renormalizations of the QD and QW single particle
states can be taken into account into the dynamic device simulation. Their impact on
the spectral properties and the dynamic behaviour of the gain recovery dynamics and the
chirping behaviour of single pulses would be of great interest. Furthermore, the dephas-
ing time of the optical polarization of the QDs has proven to be a sensitive parameter of
the system. Therefore, taking into account a density dependent dephasing time would
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also be of high interest. The inclusion of spontaneous emission noise in the electric field
dynamics and the noise figure in combination with pulse propagation is an interesting
research topic.

Regarding the dynamical aspects the investigation of gain recovery dynamics in a two-
color pump-probe setup is highly interesting from an experimental and also theoretical
point of view, since it can deliver valuable insight into further details on the internal
carrier dynamics and dipole interactions.



108 CHAPTER 7. SUMMARY AND OUTLOOK



APPENDIX A. PARAMETERS

Appendix A

Parameters

A.1 Quantum dot energy level spacings

Parameter Symbol Value Unit

Shallow QD Deep QD

Energy separation of QD GS to QW con-
duction band edge

∆Ee,m=0 74 210 [meV]

Energy separation of QD ES to QW con-
duction band edge

∆Ee,m=±1 24 146 [meV]

Energy separation of QD GS to QW va-
lence band edge

∆Eh,m=0 40 50 [meV]

Energy separation of QD GS to QW va-
lence band edge

∆Eh,m=±1 20 44 [meV]

QD electron energy level spacing ∆e 50 64 [meV]

QD hole energy level spacing ∆h 20 6 [meV]

Table A.1: Quantum dot energy level spacings of deep and shallow QDs.
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A.2 Material parameters

Parameter Symbol Value Unit

Device temperature T 300 [K]

Number of QW layers aL 10

Background permittivity εbg 14.2

GS optical transition energy ~ωGS 0.96 [eV]

Geometric confinement factor Γ 0.2

QD dipole moment µ 0.6 [e0 nm]

QW dipole moment µk 0.5 [e0 nm]

QW charge carrier lifetime TQW1 60 [fs]

QW polarization dephasing time TQW2 120 [fs]

bimolecular recombination rate in the QW Bs 700 [ns−1nm−2]

Einstein coefficient of QD GS WGS 0.45 [ns−1]

Einstein coefficient of QD ES WES 0.55 [ns−1]

In-plane area A 2× 109 [nm−2]

Device length L 500 [µm]

Height of QW layer hQW 4 [nm]

2D QD density NQD 1011 [cm−2]

Efective electron mass me 0.043 [m0]

Efective hole mass mh 0.45 [m0]

Table A.2: Parameters used throughout this work unless stated otherwise.
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A.3 Optical parameter sets

QD type Value Unit

Set I Set II

QD dephasing time T2 100 30 [fs]

QD inhomogeneous broadening ~δω 50 20 [meV]

Table A.3: Optical parameter sets used in Chapter 5.

A.4 Transparency current densities

QD type T2(fs) ~δω(meV) µk(e0 nm) j0 (e0 nm−2fs−1)

shallow 100 50 0 2.47× 10−9

100 50 0.5 2.85× 10−9

30 20 0 3.21× 10−9

30 20 0.5 3.72× 10−9

deep 100 50 0 1.32× 10−9

100 50 0.5 1.37× 10−9

30 20 0 1.39× 10−9

30 20 0.5 1.45× 10−9

Table A.4: Transparency current densities j0 for different paramters used throughout
this work.
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Appendix B

Derivation of the reduced wave equa-
tion

B.1 Derivation of the reduced wave equation

The derivation of the propagation equation fromMaxwell’s Equations that is used through-
out this work is adapted from [BIN95, KNO92]. Starting point are Maxwell’s Equations
governing the space-time evolution of the electric field. We consider the case of a non-
magnetic material, e.g. (B = µ0H)

∇ ·D = ρf , (B.1)

∇ ·B = 0, (B.2)

∇×E = −∂B
∂t
, (B.3)

∇×H = Jf +
∂D

∂t
, (B.4)

where ρf and Jf are the free charge density and current density, respectively. The electric
displacement field is given by D = ε0E+P, where the polarization P is the macroscopic
spatial average of the microscopic dipole density. Taking ∇× of Eq. (B.3) and using
Eq. (B.4) one obtains the fundamental wave equation

∇2E−∇(∇ ·E) =
1

c2
∂2E

∂t2
+ µ0

∂2P

∂t2
+ µ0

∂Jf
∂t

(B.5)

The transversal part of this equation is the propagation equation

∇2ET −
1

c2
∂2ET

∂t2
= µ0

∂2PT

∂t2
+ µ0

∂Jf,T
∂t

. (B.6)
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Furthermore, assuming that the free current density is negligible (Jf = 0). The electric
field is of the general form

ET (r, t) = E(r, t)ei(k0r−ω0t) + c.c. (B.7)

and analogously the macroscopic polarization density

PT (r, t) = P(r, t)ei(k0r−ω0t) + c.c.. (B.8)

E and P are the envelopes of ET and PT , respectively. In the Slowly Varying Envelope
Approximation (SVEA), the envelopes are assumed to vary little on timescales ω−10 .
Inserting this ansatz one obtains

(∇+ ik0)
2E− 1

c2

(
∂

∂t
− iω0

)2

E = µ0

(
∂

∂t
− iω0

)2

P (B.9)

To eliminate the background contribution of the semiconductor polarization the total
polarization is split into separate contributions as follows

P = Pr + Pbg,

where Pr denotes the contributions to the polarization that are in resonance to the input
electric field, whereas Pbg contains all off-resonant contributions. Assuming that Pbg

responds linearly to E and that the response function is a rapidly converging Taylor
expansion around the resonant frequency ω0. One can then write

Pbg(r, ω) = ε0χbg(ω)E(r, ω) (B.10)

With
χbg(ω) = χbg(ω0) + (ω − ω0)χ

′
bg(ω0) +

1

2
(ω − ω0)

2χ′′bg (B.11)

one obtains by Fourier transforming Pbg(r, ω) =
∫
dtPbg(r, t)e

iωt

Pbg(r, t) =ε0

∫
dω

2π
Pbg(r, ω)e−iωt

≈
(
χb,0 + χ′b,0(i

∂

∂t
− ω0) +

1

2
χ′′b,0(i

∂

∂t
− ω0)

2

)
E(r, t), (B.12)
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since∫
dω

2π
(ω − ω0)E(r, ω)e−iωt = (i

∂

∂t
− ω0)

∫
dω

2π
E(r, ω)e−iωt = (i

∂

∂t
− ω0)E(r, t) (B.13)

With the following definition:

χ(ω) := χbg(ω)− ω0χ
′
bg(ω) +

1

2
ω2
0χ
′′
bg(ω)

Setting

χ(ω0) = χbg(ω0)− ω0χ
′
bg(ω0) +

1

2
ω2
0χ
′′
bg(ω0) =: χ0

χ′(ω0) ≈ χ′bg(ω0)− ω0χ
′′
bg(ω0) =: χ′0

χ′′(ω0) ≈ χ′′bg(ω0) =: χ′′0

Eq. (B.12) can be rewritten as

Pbg(r, t) ≈
(
χ0 + iχ′o

∂

∂t
− 1

2
χ′′o

∂2

∂t2

)
E(r, t) (B.14)

Inserting this into Eq. (B.9) gives

(∇+ ik0)
2E− 1

c2

(
∂

∂t
− iω0

)2

E =

µ0

(
∂

∂t
− iω0

)2 [
Pr + ε0

(
χ0 + iχ′0

∂

∂t
− 1

2
χ′′0

∂2

∂t2

)
E

]
(B.15)

For the evaluation of the righthand side in Eq. (B.15) higher than 2nd order time deriva-
tives of the electric field are neglected assuming again that the fields are slowly varying
in time. Then the following equation is obtained

(∇+ ik0)
2E− 1

c2

(
∂

∂t
− iω0

)2

E =

µ0

(
∂

∂t
− iω0

)2

Pr +
1

c2
χ0

(
∂

∂t
− iω0

)2

E

+
1

c2
χ′0

(
2ω0

∂2

∂t2
E− iω2

0

∂

∂t
E

)
+

1

2

1

c2
χ′′0ω

2
0

∂2

∂t2
E. (B.16)



116 APPENDIX B. DERIVATION OF THE REDUCED WAVE EQUATION

The lengthy prefactors involving ω0 and χ0, χ
′
0, χ
′′
0 can be simplified by introducing a

background dispersion relation of the form

k2(ω) =
ω2

c2
(1 + χ(ω)) . (B.17)

To eliminate the terms containing no spatial or time derivative in Eq. (B.16) one assumes
that k0 = k(ω0) . Assuming that χbg(ω) (χ(ω)) is real the first and second derivative of
Eq. (B.17) at ω = −ω0 are evaluated. Equation (B.15) can then be cast into the form([

∇2 + 2ik0∇
]

+ 2ik0k
′
0

∂

∂t
− (k′′0k0 + k2

0)
∂2

∂t2

)
E(r, t) =

µ0

(
∂

∂t
− iω0

)2

Pr(r, t). (B.18)

In this equation, Pr contains the response of all transitions around ~ω0.

To further simplify Eq. (B.18) reasonable approximations for waveguide scenarios
are now discussed, e.g. Fabry-Perot lasers or optical amplifiers. Denoting the spatial
and temporal dimensions of the envelopes with δx, δy, δz, and δt, the derivatives can
be approximated by ∂/∂x → 1/δx, etc. For an order of magnitude estimate one can
replace k0k

′
0 → ω0/c

2 and k′′0k0 + k′0
2 → 1/c2. Now, if ω0 � 1/δt the second order

time derivative on the l.h.s of Eq. (B.18) can be neglected. Furthermore, on the r.h.s
only the term with ω2

0 is kept. The energy level spacing in case of InGaAs QDs is of
the order ~ω ≈ 1 eV, so ω0 ≈ 1.5 fs−1. For pulse lengths of more than 100 fs the above
approximation should be valid.

Concerning spatial effects, the transverse mode structure determines the magnitude
of the transverse derivatives. Considering the lowest (TEM00) mode to be dominant
and the electric field to extend well into the cladding material, the transverse derivative
inside the guiding material is usually negligible.

The wave vector points in propagation direction z, k0 = (0, 0, kz) and typically also
∂2E/∂z2 is small compared to kz/δz and can be neglected resulting in the following wave
equation (

∂

∂z
+ k′0

∂

∂t

)
E(r, t) =

1

2
iµ0

ω2
0

k0
Pr(r, t). (B.19)

As a last step the group velocity νg = 1/k′o is introduced with the approximation
k0 ≈ nbgω0/c, where nbg is the background refractive index nbg =

√
1 + χ0.(

∂

∂z
+

1

νg

∂

∂t

)
E(r, t) =

1

2
iµ0

ω0c

nbg
Pr(r, t). (B.20)
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In an index guided device the active area is confined to a small region in transverse di-
rection, whereas the transverse electric field extends into the surrounding area depending
on the guiding efficiency. Assuming the slowly varying electric field to be of the form

E(r, t) = E(z, t)H(x, y), (B.21)

where H(x, y) is the transverse mode distribution in the x − y plane (transverse to
the propagation direction) a spatial averaging of Eq. (B.20) over the transverse coordi-
nates [SUG04] can be performed. The formal structure of the wave equation then remains
the same, the only difference being a confinement factor Γ in front of the polarization
term of the r.h.s of Eq. (B.20) given by

Γ =

∫
act |H(x, y)|2dx dy∫
cav |H(x, y)|2dx dy . (B.22)

An illustration of the opical confinement factor is given in Fig. 4.12. With this Eq. (B.20)
takes the final form used throughout this work(

∂

∂z
+

1

νg

∂

∂t

)
E(z, t) =

1

2
Γiµ0

ω0c

nbg
Pr(z, t). (B.23)
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Appendix C

Numerical implementation of the elec-
tric field dynamics

This section describes the numerical implementation of the Maxwell-Bloch dynamical
equations into computer code.

C.1 Full field dynamics

The full field dynamics requires a numerical integration scheme for the electric and mag-
netic field dynamics as given by Maxwell’s equations. In Maxwells equations, the electric
field equation contains the dynamic material polarizations as a source term. They are
given by the QD and QW Bloch equations derived in chapter 2. These are systems of
coupled time-domain differential equations for the charge carriers and dynamic micro-
scopic polarizations. The numerical method of choice is a finite difference time domain
method, which is described in more detail below.

C.1.1 The finite difference time domain method

Examining Maxwell’s equations it can be seen that the change in the electric field com-
ponent in time depends upon the curl of the magnetic field component across space. This
results in the basic finite difference time domain (FDTD) time-stepping relation that, at
any point in space, the updated value of the E-field in time is dependent on the stored
value of the electric field and the numerical curl of the local distribution of the magnetic
field in space [YEE66]. The magnetic field is time-stepped in a similar manner. At
any point in space, the updated value of the H-field in time is dependent on the stored
value of the magnetic field and the numerical curl of the local distribution of the electric
field in space. Iterating the electric field and magnetic field updates results in a leapfrog
stepping in time domain. The spatial discretization for the continuum equations of the
electric and magnetic field components is given by a staggered grid. In the staggered grid
method [YEE66] the vector components of the E-field and H-field are spatially staggered
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Figure C.1: Illustration of the general Yee cell spatially staggered grid for the electric
field and magnetic field vector components in three dimensions.

about rectangular unit cells of a Cartesian computational grid so that each E-field vec-
tor component is located midway between a pair of H-field vector components, and vice
versa. This scheme, known as a Yee lattice[YEE66], has proven to be very robust, and
remains at the core of many current FDTD implementations. In time-domain a leapfrog
scheme is used similary, wherein the E-field and H-field updates are staggered so that
E-field updates are conducted midway during each time-step between successive H-field
updates, and vice versa[YEE66]. This time-stepping scheme avoids the need to solve si-
multaneous equations, and yields wave propagation without numerical dissipation. This
means that the electric field components and the magnetic field components are spatially
separated by ∆z/2 and temporally by ∆t/2, where ∆z and ∆t are the spatial and tempo-
ral steps. As a consequence of the macroscopic polarization appearing in the electric field
equation of Maxwell’s Equations the material equations are associated with the location
of the electric field. Figure C.1 illustrates the staggered grid in three dimensions. The
structure of the grid in one dimension as it is used throughout the present work remains
the same: the electric and magnetic field grid spatial grid points have a respective offset
of ∆z/2. The electric field components are solved at the space steps k∆z for the time
steps n∆t, whereas the spatial and temporal grid points of magnetic field components
are (h+ 1

2)∆z and (n+ 1
2)∆t, respectively. Notationally, the discrete values of the electric

field for example are labeled by

Ex(h∆z, n∆t) = Ex(h, n); h ∈ H := {1, 2 . . . Z}, n ∈ {0, 1 . . . T},

where Z ∈ N is the number of spatial grid points and T ∈ N the number of time steps.
The set of spatial grid points H := {1, 2 . . . Z} is in the following referred to as the
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computational domain. The implemented discretized version of the coupled Maxwell
Bloch equations is of the following form
Maxwell equations:

Hy(h+
1

2
, n+

1

2
) = Hy(h+

1

2
, n− 1

2
)− ∆t

µ0∆z
[Ex(h+1, n)−Ex(h, n)] , (C.1)

Ex(h, n+1) = Ex(h, n)− ∆t

ε0εr

[
Hy(h+ 1

2 , n+ 1
2)−Hy(h− 1

2 , n− 1
2)

∆z
−Γ∆P

]
. (C.2)

Quantum dot Bloch equations:

pjm(h, n+1) =pjm(h, n) + ∆t

[
−iω̃jm−

i

4
[Ω̃j
m(h, n+1)+Ω̃j

m(h, n)]×

×(
1

2
[f je,m(h, n+ 1) + f je,m(h, n)]+

1

2
[f jh,m(h, n+ 1) + f jh,m(h, n)]−1)

− 1

T2

1

2
[pjm(h, n+ 1) + pjm(h, n)]

]
=: pjm(h, n) + ∆t∆pjm, (C.3)

f jb,m(h, n+1) =f jb,m(h, n)+∆t

(
−Im

[
1

2
[Ω̃j
m(h, n+1)+Ω̃j

m(h, n)]
1

2
[pj∗m(h, n+1)+pj∗m(h, n)]

]
−Wm

1

2
[f je,m(h, n+1)+f je,m(h, n)][f jh,m(h, n+1)+f jh,m(h, n)]

+
1

2

[
∂f jb,m
∂t

∣∣∣∣
col

(h, n+ 1) +
∂f jb,m
∂t

∣∣∣∣
col

(h, n)

])
(C.4)

Quantum well Bloch equations:

pk(h, n+1) =pk(h, n) + ∆t

[
−iω̃k−

i

4
[Ω̃k(h, n+1)+Ω̃k(h, n)]×

× (
1

2
[fek(h, n+ 1) + fek(h, n)]+

1

2
[fhk (h, n+ 1) + fhk (h, n)]−1)

− 1

TQW2

1

2
[pk(h, n+ 1) + pk(h, n)]

]
=: pk(h, n) + ∆t∆pk, (C.5)

f bk(h, n+1) = f bk(h, n)+∆t

(
−Im

[
1

2
[Ω̃k(h, n+1)+Ω̃k(h, n)]

1

2
[p∗k(h, n+1)+p∗k(h, n)]

])
+∆t∆b

k (C.6)

The term ∆P in Eq. (C.2) is given by the following term in analogy to Eq. (4.5)

∆P =
2NQD

hQW

∑
j,m

f(ωj)µm ∆pjm+
2

hQWA

∑
k

µk∆pk. (C.7)
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In the numerical evaluation of the summation over k-states is replaced by an integral

∑
k

→ A

(2π)2

∫
d2k.

The product ∆t∆b
k is given similar to Eq. (2.65)

∆t∆
b
k =fk,eqb

(
µb(

1

2
[wb(h, n+ 1) + wb(h, n)] + ∆t

1

2
[W inc

b (h, n+ 1) +W inc
b (h, n)], T )

)
− fk,eqb

(
µb(

1

2
[wb(h, n+ 1) + wb(h, n)], T )

)
, (C.8)

where

W inc
b (h, n) =

j(t)

e0
− R̃sp(

1

2
[we(h, n+ 1) + we(h, n)],

1

2
[wh(h, n+ 1) + wh(h, n)])

− 2
∑
m,j

N j 1

2

[
∂f jb,m
∂t

∣∣∣∣
col

(h, n+ 1) +
∂f jb,m
∂t

∣∣∣∣
col

(h, n)

]
. (C.9)

The argument of the collision contribution term denotes that all variables appearing in
these terms are evaluated at the respective space and time grid points. The above set of
equations are of implicit type. They are solved in an iterative predictor-corrector scheme.
Since the magnetic-field equation is updated at a time different from all other dynamic
variables it is advanced in the standard fashion. The remaining set of equations is cast
into the following form

Snew = Sold + ∆t F (Sold, Snew). (C.10)

The state matrix S contains as column vectors the dynamical variables (except the mag-
netic field H) at the spatial grid points of the interior of the computational domain,
e.g.,H \ {0, Z}. F represents, minus the standalone value Sold, the right hand side of
Eqs. (C.2)-(C.5). In each iteration process the value of Snew used in F is first set to the
previous time step value Sold giving updated values Snew by the use of Eq. (C.10). The
value of Snew is then iteratively used in the functional F until two successive values of
Snew reach a desired relative accuracy rtol. For the simulations performed throughout
this work a value of rtol = 10−6 was used.
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C.1.2 Stability and boundary conditions

To propagate a distance of one cell in 1D requires a time of ∆t = ∆x/vg, where vg vg
is the group velocity of the considered electric field in the medium. The stability of the
implemented finite difference time domain method is then given by the following Courant
(or Courant-Friedrichs-Lewy) condition

vg∆t

∆x
≤ 1. (C.11)

For the simulations 2vg∆t = ∆x has been used. In a QD SOA the facet relectivity is
close to zero, therefore absorbing boundary conditions are chosen to keep the outgoing E
and H fields from being reflected back into the problem space. Normally, in calculating
the E field, one needs to know the surrounding H values. At the edge of the problem
space one does not have access to the value to one side. However, without field sources
outside the problem space the fields at the edge must be propagating outward. If a wave
is going toward a boundary in free space, it is traveling at vg, the group velocity speed.
So in one time step of the FDTD algorithm, it travels

vg∆t =
∆x

2
, (C.12)

which is half a space cell. Reasonable boundary condition are therefore given by setting

Ex(0, n) = Ex(1, n− 2); Ex(Z, n) = Ex(Z − 1, n+ 2). (C.13)

These boundary conditions are easy to implement in computer code by simply storing
the respective values of Ex at space points z = 1, Z − 1 for two time steps and then
overriding the values at z = 0, Z with the stored values.

C.2 Reduced wave equation

The reduced wave equation is a single first order partial differential equation. A similar
grid based finite difference time domain method is used to solve the problem. The QD
and QW Bloch equations are given by Eq. (C.3) and Eq. (C.5), respectively, by replacing
ω̃mj → ω̃mj − ω and ω̃k → ω̃k − ω. The discretized version of the reduced wave equation,
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Eq. (2.10), on the same spatial grid as defined above reads:

E(h, n+1)=E(h, n)+νg∆t

(
1

∆x

[
E(h+1, n)−E(h, n)

]
+

1

4
Γiµ0

ω0c

nbg
∆P

)
. (C.14)

The polarization source term ∆P is given by

∆P =
2NQD

hQW

∑
j,m

f(ωj)µm
1

2
[pjm(h, n+1)+pjm(h, n)]

+
2

hQWA

∑
k

µk
1

2
[pk(h, n+1)+pk(h, n)]. (C.15)

The boundary problem is formulated in terms of the initial values of the dynamic
variables on the spatial grid together with the time evolution of the input electric field
at the input facet (z = 0). The solution in the interior is then advanced in an iterative
manner as discussed for the full field solution (see Eq. (C.10)).
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Appendix D

Wavefunction overlap integrals

For lense shaped QDs embedded in a quasi-2D quantum well the 3D wavefunction can be
separated into a z-component and an in-plane contribution given by Eqs. (3.2) and (3.3)
in Sec 2. In this section the wavefunvtion overlap integrals appearing in the Coulomb
matrix elements (3.2) are evaluated. Given localized QD states φα with α = (m,R)

indicates the angular momentum of the QD state and its spatial in-plane position and
QW states in the absence of QDs, which are assumed to be plane waves of the form
φ0k = (1/(

√
A)eik·ρ with two-dimensional carrier momentum k. In the presence of QDs

the orthogonality requirement of the basis set of wavefunctions is achieved by projecting
the plane wave functions onto the subspace orthogonal to the QD wave functions. The
QW wavefunctions are then given by orthogonalized plane waves (OPW) |φk〉 = (|φ0k −∑

α |φα〉〈φα|φ0k〉). As shown in chapter 3 in the large area limit the set of wavefunctions
comprised of the QW OPW wavefunctions together with the QD harmonic oscillator
wavefunctions form an orthonormal basis for the QD-QW system.

D.1 Quantum well - quantum well overlap integrals

For the case of two QW states appearing in an overlap integral of Eq. (3.2) the overlap
integral can be evaluated with Eq. (3.10).

〈φk|eiq·ρ|φk′〉 =
1

NkNk′

[
〈φ0k|eiq·ρ|φ0k′〉

+
∑
α,α′

〈φ0k|φα〉〈φα|eiq·ρ|φα′〉〈φα′ |φ0k′〉

−
∑
α

〈φ0k|eiq·ρ|φα〉〈φα|φ0k′〉

−
∑
α

〈φ0k|φα〉〈φα|eiq·ρ|φ0k′〉
]

(D.1)
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In the large area limit this expression can be simplified with the use of Eq. (3.11). Due to
the random distribution of QDs the translation invariance of the expression is restored,
and one obtains

〈φk|eiq·ρ|φk′〉 = δk,q−k′
1

NkNk′

[
1 +NQD

∑
m,m′

〈φ0k|φm〉〈φm|eiq·ρ|φm′〉〈φm′ |φ0k′〉

−NQD
∑
m

|〈φ0k|φm〉|2

−NQD
∑
m

|〈φm|φ0k′〉|2
]

(D.2)

D.2 Quantum dot - quantum well overlap integrals

When ν and ν ′ in Eq. (3.2) involve one QW and one QD state the resulting overlap
integrals are of type

〈φα|eiq·ρ|φk〉 =
1

Nk

(
〈φα|φ0k+q〉 −

∑
α′

〈φα|eiq·ρ|φα′〉〈φα′ |φ0k〉
)

(D.3)

For a QD located at the in-plane position R one can express

〈φα|eiq·ρ|φ0k〉 =

∫
d2ρφm(ρ−R)eiq·ρφ0k(ρ) = 〈φm|φ0k〉ei(k+q)·R. (D.4)

Assuming non-overlapping QD wave functions for dots at different spatial positions, e.g.,
if the screening length κ of the Coulomb interaction is much shorter than the in-plane
spatial separation of the QDs, Eq. (D.5) can then be written as

〈φm|eiq·ρ|φk〉 =
1

Nk

(
〈φm|φ0k+q〉 −

∑
m′

〈φm|eiq·ρ|φm′〉〈φm′ |φ0k〉
)
ei(k+q)·R. (D.5)
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Appendix E

Coulomb renormalizations

The Coulomb energy renormalizations in a QW-QD many-body system are given in the
following. A numerical implementation on the basis of orthogonalized plane waves will be
subject to further investigations. The different contributions to the total single-particle
energy renormalization for QD and QW states are listed in the following sections.

Screened Hartree energy shifts

Beginning with the screened Hartree contribution to the energy renormalization of a QD
state one finds

∆εSHb,α =
∑
b′,α′

W b,b′

αα′α′αf
b′
α′ +

∑
b′,k′

W b,b′

αk′k′αf
b′
k′ = ∆εSHb,α |QD + ∆εSHb,α |QW . (E.1)

The energy renormalization is made up of separate terms originating from interaction
with other QD states (∆εSHb,α |QD) and QW states (∆εSHb,α |QW ). For the QD contribution
one obtains

∆εSHb,α |QD =
∑
j

∑
b′,m′

1

A

∑
q

W b,b′
q 〈φα|e−iq·ρ|φα〉〈φ(m′,ρj)|eiq·ρ|φ(m′,ρj)〉f b

′
α′ . (E.2)

In the following the shorthand notation |m〉 := |φm,0〉 for the single particle QD wavefunc-
tion at the in-plane spatial position ρ = 0 is introduced. Note, that the above expression
has an in-plane spatial dependence through α = (m, ρi). Evaluating the configurational
average one obtains an expression for the average shift of a QD level

∆εSHb,m|QD =
1

N

∑
i,j

∑
b′,m′

1

A

∑
q

W b,b′
q 〈m|e−iq·ρ|m〉〈m′|eiq·ρ|m′〉eiq(ρj−ρi)f b

′
m′ . (E.3)
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As a final result the QD contribution to the QD Hartree energy shifts is given by

∆εSHb,m|QD =NQD
∑
b′,m′

W b,b′

q=0f
b′
m′

+
∑
b′,m′

1

A

∑
q

W b,b′
q 〈m|e−iq·ρ|m〉〈m′|eiq·ρ|m′〉f b

′
m′ (E.4)

In a similar fashion one can evaluate the QW contribution to the QD energy shifts which
results in

∆εSHb,m|QW =
1

N

∑
i

∑
b′,k

1

A

∑
q

W b,b′
q 〈m|e−iq·ρ|m〉〈φk|eiq·ρ|φk〉e−iq·ρif b

′
k

=
1

N

∑
i

∑
b′,k

1

A

∑
q

W b,b′
q 〈m|e−iq·ρ|m〉δk,k+qe

−iq·ρif b
′

k

=
1

A

∑
b′,k

W b,b′

q=0f
b′
k =

∑
b′

W b,b′

q=0wb′ , (E.5)

involving the QW carrier density wb′ . Following the same steps as above one finds for
the QW screened Hartree energy shifts

∆εSHk =
∑
b′,α′

W b,b′

kα′α′kf
b′
α′ +

∑
b′,k′

W b,b′

kk′k′kf
b′
k′

= W b,b′

q=0

NQD
∑
b′,m′

f b
′
m′ +

1

A

∑
k

f b
′

k′

 = 0, (E.6)

which vanishes due to global charge neutrality.

Screened exchange energy shifts

The screened exchange contribution to the QD energy renormalization reads

∆εSFb,m =−
∑
m′

1

A

∑
q

W b,b
q

∣∣〈m|e−iq·ρ|m′〉∣∣2 f bm′
−
∑
k′

1

A

∑
q

W b,b
q

∣∣〈m|e−iq·ρ|φk′〉∣∣2 f bk′ . (E.7)
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The corresponding energy shifts of the QW stemming from the screened exchange con-
tribution are given by

∆εSFk =−NQD
∑
m′

∑
q

W b,b
q

∣∣〈φk|e−iq·ρ|m′〉∣∣2 f bm′
−
∑
k′

1

A

∑
q

W b,b
q

∣∣〈φk|e−iq·ρ|φk′〉∣∣2 f bk′ . (E.8)

Coulomb hole

The Coulomb hole contribution given by the difference of the screened and unscreened
Coulomb potential is evaluated as

∆εCHν = lim
|r|→0

1

2
[W (|r|)− V (|r|)] =

1

2

∑
ν′

[Wνν′νν′ − Vνν′νν′ ] (E.9)

Coulomb enhanced Rabi frequency

Not only the QD and QW single particle energies experience renormalization, also the
effective Rabi frequency shifts due to Coulomb interaction. Restricting ourselves to the
case of diagonal polarizations (e.g. p = pνν) the Coulomb enhanced Rabi frequency of
an arbitrary state (QD or QW) is

Ω̃ν = Ων + ∆Ων = Ων +
1

~
∑
µ

W e,h
µµνν pµµ. (E.10)

Again, the Rabi frequency shifts of the QDs and the QW are evaluated separately,

∆Ωm =
1

~
∑
m′

1

A

∑
q

W e,h
q

∣∣〈m′|e−iq·ρ|m〉∣∣2 pm′m′
+

1

~
∑
k′

1

A

∑
q

W e,h
q

∣∣〈φk′ |e−iq·ρ|m〉∣∣2 pk′k′ . (E.11)

Similarly, the Rabi enhancement of the QW states is given by the following expression

∆Ωk =
1

~
NQD

∑
m′

1

A

∑
q

W e,h
q

∣∣〈m′|e−iq·ρ|φk〉∣∣2 pm′m′
+

1

~
∑
k′

1

A

∑
q

W e,h
q

∣∣〈φk′ |e−iq·ρ|φk〉∣∣2 pk′k′ . (E.12)
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