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Zusammenfassung

Die inertiale Mikrofluidik beschäftigt sich mit laminaren Strömungen von Flüssigkeiten
durch mikroskopische Kanäle, bei denen die Trägheitseffekte der Flüssigkeit nicht vernach-
lässigt werden können. Befinden sich Teilchen in diesen inertialen Strömungen, ordnen sie
sich von selbst an bestimmten Positionen auf der Querschnittsfläche an. Da diese Gleich-
gewichtspositionen von den Teilcheneigenschaften abhängen, können so beispielsweise
Zellen voneinander getrennt werden.

In dieser Arbeit beschäftigen wir uns mit der Dynamik mehrerer fester Teilchen, sowie
dem Einfluss der Deformierbarkeit auf die Gleichgewichtsposition einer einzelnen Kapsel.
Wir verwenden die Lattice-Boltzmann-Methode, um dieses System zu simulieren.

Einen wichtigen Grundstein für das Verständnis mehrerer Teilchen bildet die Dynamik von
zwei festen Partikeln. Zunächst klassifizieren wir die möglichen Trajektorien, von denen
drei zu ungebundenen Zuständen führen und eine über eine gedämpfte Schwingung in
einem gebundenem Zustand endet. Zusätzlich untersuchen wir die inertialen Hubkräfte,
welche durch das zweite Teilchen stark beeinflusst werden. Dieser Einfluss hängt vor allem
vom Abstand der beiden Teilchen entlang der Flussrichtung ab.

Im Anschluss an die Dynamik beschäftigen wir uns genauer mit der Stabilität von Paaren
und Zügen bestehend aus mehreren festen Teilchen. Wir konzentrieren uns auf Fälle,
in denen die Teilchen sich lateral bereits auf ihren Gleichgewichtspositionen befinden,
jedoch nicht entlang der Flussrichtung. Paare von festen Teilchen, welche sich auf den
unterschiedlichen Seiten des Kanals anordnen, ziehen sich auch über große Abstände
hinweg an, während sich Teilchen auf der gleichen Kanalseite voneinander entfernen. Das
Zusammenziehen eines zigzagartigen Teilchenzugs entsteht durch die kollektive Minde-
rung des Strömungswiderstandes. Lineare Teilchenzüge treiben langsamer auseinander
als die entsprechenden Paare. Außerdem beobachten wir, dass sich das führende Teilchen
vom Rest des Zuges trennt. Zuletzt untersuchen wir, wie Störungen durch den Teilchenzug
wandern.

Im letzten Teil dieser Arbeit betrachten wir eine einzelne, deformierbare Kapsel. Die
Deformierbarkeit führt zu einer zur Kanalmitte gerichteten Kraft, während die inertiale
Hubkraft die Kapsel nach außen treibt. Welche Kraft dabei dominiert, wird durch die
Steifigkeit der Kapsel bestimmt. Wir untersuchen, wie sich die Deformierbarkeit auf die
Gleichgewichtsposition sowie die Hubkräfte auswirkt. Wir zeigen, dass die Deformierbar-
keit das Skalierungsverhalten der Hubkraft nicht beeinflusst und dass sich die Kraft in
einen inertialen Anteil sowie einen Beitrag für die Deformierbarkeit zerlegen lässt. Zuletzt
demonstrieren wir, wie die Gleichgewichtslage mithilfe einer externen Kraft entlang der
Kanalachse beeinflusst werden kann.
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Abstract

Inertial microfluidics deals with laminar fluid flows through microscopic channels where
the inertial effects of the fluid cannot be neglected. Particles in an inertial flow assemble
at specific positions on the cross-sectional plane. Since these equilibrium positions depend
on particle properties, such devises can be used to sort and separate particles.

In this thesis we study the dynamics of multiple rigid particles and the influence of
deformability on the equilibrium position of a single capsule. We use the lattice-Boltzmann
method to simulate this system.

We start our analysis with the dynamics of two rigid particles, which provides a first
basis to understand the behavior of multiple particles. First, we classify the possible
trajectories, of which three lead to unbound states and one ends in a bound state via
damped oscillations. Additionally, we investigate the inertial lift forces acting on the
particles which are strongly influenced by the second particle. This influence depends
mainly on the axial distance between the two particles along the flow direction.

Subsequently to the dynamics we study the stability of pairs and trains consisting of
multiple rigid particles. We concentrate on the case where the particles are already at their
lateral equilibrium positions, but are initialized with a non-equilibrium axial spacing. Pairs
of rigid particles where the particles are located on opposite sides of the channel attract
each other even over large distances, while particles on the same side of the channel move
away from each other. The contraction of staggered particle trains is related to collective
drag reduction and happens non-uniformly. For linear particle trains, the spreading apart
is slower compared to same-streamline pairs. Furthermore, we observe that the leading
particle separates from the rest of the train. Finally, we investigate how a displacement
pulse migrates through a staggered particle train.

In the last part of this thesis we consider a single deformable capsule. The deformability
results in a force that is directed toward the center of the channel, while the inertial lift
force pushes the particle outward. The dominating force is determined by the stiffness of
the particle. We study how deformability affects the equilibrium position and its influence
on the lift force. The deformability does not only affect the distance to the channel center,
but also the location of the equilibrium position in channels with a rectangular cross
section. We show that the lift force scales like the force for rigid particles and that it can
be decomposed into an inertial part and a contribution due to deformability. Finally, we
demonstrate how the equilibrium position can be tuned by an external force along the
channel axis.
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“Scientists have long been baffled by the existence of spontaneous order in the
universe. The laws of thermodynamics seem to dictate the opposite, that nature
should inexorably degenerate toward a state of greater disorder, greater entropy.
Yet all around us we see magnificent structures – galaxies, cells, ecosystems,
human beings – that have somehow managed to assemble themselves.”

Steven Strogatz - Sync





1
Introduction

Whenever order emerges from disorder, scientists are intrigued by the underlying princi-
ples [1]. One example of such a process is the inertial focusing named Segré-Silberberg
effect [2]. It describes the focusing of an initially uniform distribution of particles on an
annulus when the particles flow through a pipe, which provides a simple yet effective
way to study and analyze biological cells. This thesis focuses on the dynamics and sta-
bility of multi-particle trains and the behavior of a single deformable capsule in inertial
microfluidics.

Inertial focusing was first observed experimentally in the 1960s [2, 3]. The two physical
chemists, Segré and Silberberg, investigated the flow of particle suspensions in a cylindrical
tube. The particles assembled around half-way between the channel center and the walls,
independently of their initial distribution. In addition, the particles formed regular trains
with a specific spacing along the flow direction. The physical cause of this effect was
initially unclear [4]. Although Segré and Silberberg already assumed that the focusing
was caused by inertia, it took 28 years and several analytical approaches to identify the
exact cause of the migration: a combination of the inhomogenous shear gradient and wall
effects [5–8]. At the beginning of the last decade interest in inertial focusing was renewed
as technical advances enabled the production of microfluidic devices which withstand the
high pressure gradients necessary for the inertial regime.

The field of microfluidics deals with liquids on the µm to mm scale which are often
pumped through narrow channels. Common research topics are analysis of blood flow [9,
10] and creation of immiscible droplets [11]. Due to the small dimensions of the channel
and the usually small flow rate, inertia of the fluid is typically neglected in microfluidic
models [12]. However, technical progress made it possible to produce microchannels
that withstand high pressures and thus generate the shear gradients necessary for inertial
focusing [13]. A technical application of microfluidic channels is a so-called lab-on-a-chip
device, which combines one or more laboratory tests on an area roughly the size of a
credit card [14].

An exciting and promising application of lab-on-a-chip devices and inertial microfluidics
involves the medical analysis of cells. In the Segré-Silberberg effect the equilibrium posi-
tions depend on the inherent properties of the particle like its size or its deformability [15,
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Chapter 1 Introduction

16]. Deformability is of particular interest, as it is closely connected to the function and
state of the cell [17, 18]. Deformability can thus serve as an intrinsic biophysical marker
for infections and diseases. Metastatic cancer cells, for example, are often more compliant
than corresponding healthy cells [19, 20], whereas malaria-infected red blood cells are
stiffer than uninfected red blood cells [21].

Using deformability as a marker has the advantage that the diagnosis is based on an
intrinsic property of the cell [22]. While for conventional biochemical markers the details
of a disease must already be well understood, the mechanical properties of cells can be
determined empirically [23, 24]. However, since mechanical properties also vary widely
in healthy cells, a large number of cells must be analyzed to obtain a reliable diagnosis.
In addition, blood contains a variety of different cell types and the concentration of
cells of interest may be low [25]. For instance, one medical study counts only 1–500
circulating tumor cells per milliliter of blood [26]. This is where the high flow rates of
inertial microfluidics has another advantage, as it allows the analysis of up to 4 ml/min
or 6 000 000 cells/s [27]. Using the Segré-Silberberg effect to sort out irrelevant cells
and thereby increase the concentration of infected cells allows the use of less sensitive
and often cheaper analysis methods [16, 28, 29]. Furthermore, the formation of regular
particle trains during the inertial focusing simplifies counting cells or enclosing them in an
analysis solution in order to study them in a well-defined chemical environment [30, 31].

In addition to biomedical applications, the physics of inertial microfluidics itself is intrigu-
ing. The inertia of the fluid is not negligible as a consequence of high flow velocities. Still,
the flows are laminar so that the system evolves deterministically. Due to the non-linearity
in the governing Navier-Stokes equations analytical solutions are only possible in limiting
cases and results are mostly obtained by experiments [15, 32, 33] and simulation [34–36].
With these tools, the Segré-Silberberg effect for a single solid particle is well understood.
It is thoroughly analyzed how the number of equilibrium positions changes with the
cross section of the channel [37, 38] and the lift forces acting on a solid particle are well
understood [35, 39]. For about 10 years, trains of particles have been investigated in
detail [40–42]. The research on particle trains mostly focuses on explaining the spacing
between the particles [43–45]. However, the dynamics of multiple particles and the
influence of deformability are still open questions.

In this thesis we address two main questions: what determines the interaction between
particles in the inertial regime and how does the deformability of particles affect their
dynamics? We focus our analysis on straight channels with a quadratic or rectangular
cross section. To solve the Navier-Stokes equations we use the lattice-Boltzmann method.

Regarding the particle interaction we study the dynamics and stability of rigid particle pairs
and trains. Typical multi-particle structures are shown in Fig. 1.1. Since the typical density
in inertial microfluidic experiments is low, multi-particle interactions are dominated by
pair interactions. First we concentrate on two particles and determine the different types
of trajectories occurring in this system. Depending on the initial conditions, the trajectories
lead to either bound or unbound configurations, where the particles form stable pairs or
slowly drift apart. In the bound configuration the particles are located on opposite sides
of the channel forming a cross-streamline pair. The analysis of bound trajectories suggests
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stable drift apart

cross-streamline pair staggered train same-streamline pair linear train

Figure 1.1: Illustration of possible multi-particle structures in inertial channel flow. Left: Cross-
streamline pairs and staggered trains form stable configurations with a distinct equi-
librium distance. Right: Same-streamline pairs and linear trains quickly expand to a
characteristic axial distance about twice of the distance of cross-streamline pairs and
then slowly drift further apart.

that the dynamics of particles is driven by viscous forces, whereas fluid inertia leads to
specific equilibrium positions. Furthermore, we analyze the two-particle lift force profiles.
The lift forces increase in strength compared to the single-particle lift forces, and we find
an asymmetry of the forces acting on the leading and lagging particle. The influence of
the second particle on the lift force profile decays rapidly with increasing axial spacing.
The scaling of the lift force confirms our previous observation that the dynamics of the
particles is determined by viscous forces when they are close together. Only when the
distance increases the scaling indicates that inertia becomes dominant.

Our findings for the bound trajectories agree with results published in a study at the same
time [46]. However, we also obtained results which contradict the current view in the
literature, namely we classify states as unbound which appear to be stable in experiments.
To further clarify this contradiction, we continue our analysis and focus on the stability
of pairs and multi-particle trains. We confirm the stability of cross-streamline pairs by
showing how they contract or expand to their equilibrium axial distance. In contrast,
same-streamline pairs quickly expand to a characteristic separation, but at long times
slowly drift apart. We reproduce the distribution of particle distances with its characteristic
peak as measured in experiments [47].

Staggered multi-particle trains initialized with an axial particle spacing larger than the
equilibrium distance contract non-uniformly due to collective drag reduction. Linear
particle trains, similar to particle pairs, rapidly expand toward a value about twice the
equilibrium distance of staggered trains and then slowly drift apart non-uniformly. Again,
we reproduce the statistics of particle distances and the characteristic peak observed in
experiments [42]. Finally, we thoroughly analyze the damped displacement pulse traveling
as a microfluidic phonon through a staggered train and show how a defect strongly damps
its propagation.

For the second question, on how deformability influences the Segré-Silberberg effect,
we consider a single deformable capsule governed by Skalak’s constitutive model [48].
It is important to note that deformable particles, unlike solid particles, migrate across
streamlines even when the inertia of the fluid is negligible [49, 50]. Typically, deformable
cells migrate to the center of the channel. In this part we are interested in how this inward-
directed deformability-induced migration compensates the outward-directed migration of
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Chapter 1 Introduction

the Segré-Silberberg effect. As expected, we observe that a softer particle assembles closer
to the channel center than a rigid particle. For a channel with quadratic cross section we
find a master curve for the equilibrium distance making the results independent of the
ratio of inertia and viscous damping. In the case of rectangular channel cross sections the
deformability of the particles has a strong influence on the location of the equilibrium
position. While solid particles are arranged along the short main axis of the channel, soft
particles tend to migrate to the long main axis of the cross section.

A detailed analysis of the lift forces shows that the lift force on a deformable particle
behaves similar to the one acting on a rigid particle. The lift force acting on a deformable
capsule can be decomposed into an inertial part and a contribution due to deformability.
Finally, we demonstrate that the Saffman effect allows us to tune the equilibrium distance
of a capsule by using an external force directed along the flow.

The remainder of this work is structured as follows:

Chapter 2 briefly discusses the technical applications of inertial microfluidics and in-
troduces the basic physical concepts of this work. We continue by reviewing the
underlying mechanisms and models for inertial migration and end this chapter with
a short summary of the modeling and behavior of deformable particles.

Chapter 3 covers the mesoscopic description of the Boltzmann equations and introduces
the lattice-Boltzmann method, which we use to simulate our system. We discuss the
fundamentals of this method and focus on how to implement moving interfaces.

Chapter 4 is dedicated to the dynamics of a pair of rigid particles. We determine the
different types of trajectories, which depend on the initial configuration, and analyze
the two-particle lift force profiles. This chapter is based on my article Ref. [B].

Chapter 5 focuses on the stability of multi-particle structures. We first extend our analysis
of pairs and apply these considerations to trains of multiple particles. The last point
of this chapter is the analysis of a damped displacement pulse traveling through the
train. This chapter is based on my article Ref. [C].

Chapter 6 deals with a single deformable particle. We analyze the influence of deforma-
bility on the equilibrium position of the particle. In addition, we determine the lift
forces acting on the deformable particle. Finally, we investigate how the equilibrium
position can be influenced by an external force. This chapter is based on my article
Ref. [A].

Chapter 7 concludes this work and summarizes the results.
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2
Basics of inertial microfluidics

Inertial microfluidic devices utilize the effects of fluid inertia on a microscale to
sort and align particles or to mix fluids. The non-zero fluid inertia and the still
laminar flow profile lead to a deterministic alignment and sorting of particles
in the plane perpendicular to the flow and sometimes also in axial direction.
Thus, inertial microfluidics is especially well suited for biological and medical
applications where it can be used to sort cells based on the inherent properties
of particles such as size or deformability. In this chapter we first introduce the
idea of lab-on-a-chip devices and briefly review the current understanding of
particles in inertial microfluidics. After discussing the governing equations for
fluids and particles in the flow, we show that cross-streamline migration can
only be explained by inertial effects. We then take a closer look at the individual
migration mechanisms of inertial microfluidics. Finally, we briefly summarize the
migration mechanism special to deformable capsules.

2.1 Lab-on-a-chip devices

In recent years, medical studies revealed that many diseases change the mechanical
properties of cells. One prominent example is the reduced stiffness of circulating tumor
cells compared to healthy cells [19, 20]. Another example are malaria-infected red blood
cells which get stiffer due to the malaria parasite. The question now arises: Is it possible
to diagnose diseases based on their effect on the mechanical properties of cells? This is
one of the motivations driving this work.

To provide a reliable diagnosis, the method has to detect abnormal cells with a high degree
of certainty. For blood tests it is favorable that small samples suffice to run the analysis.
Besides these obvious requirements, the health care system, especially in poorer countries,
demands for a diagnosis method that is inexpensive, fast, and versatile [51]. Ideally it
can be carried out without trained personnel. Promising candidates to meet all these
requirements are microfluidic lab-on-a-chip devices [52].

A lab-on-a-chip device integrates one or more laboratory functions on a single chip. These
devices are only a few millimeters to centimeters in size. They employ hydrodynamics,
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Chapter 2 Basics of inertial microfluidics

optics or chemical processes on a microscale. Hydrodynamic lab-on-a-chip devices are
often made of polymers and contain small channels that can be cast or etched [13, 53].
Depending on the task, different channel designs are available [52, 54]. Possible choices
are rectangular channels with varying cross section, spiraling or serpentine channels.

These lab-on-a-chip devices exactly fulfill the above stated requirements. They only require
small amounts of fluids to operate (10−9 to 10−18 l) [14] and typically rely on passive
mechanisms. The passive nature of the process enables fast and highly parallel assays so
that a single lab-on-a-chip device can analyze up to ∼ 100 000 particles per second [55,
56]. In the future, laboratories could use the lab-on-a-chip modules as plug & play devices
like we used to do with different floppy disks in early computers. Besides the technical
application, lab-on-a-chip devices show fascinating physical phenomena, since the small
scale of the microfluidic channels significantly changes the hydrodynamic interactions
compared to the macroscopic scale.

2.2 Fluid inertia on the microscale

In our daily life we are used to hydrodynamics dominated by fluid inertia. In contrast, on
the micron scale fluids are typically dominated by viscous forces [12]. The ratio of fluid
inertia to viscous damping is captured by the Reynolds number

Re =
LU

ν
, (2.1)

where L is the characteristic length scale and U is the characteristic speed. The fluid
kinematic viscosity ν quantifies the internal friction of the fluid. Large Reynolds number
(Re > 1 · 105) correspond to turbulent behavior [57]. For small Reynolds numbers
(Re� 1) the viscous damping is dominant, which is often the case in biological systems
such as blood flow and the movement of bacteria. The distinctive swimming techniques of
microorganisms compared to humans or fish illustrate the different fluid characteristics of
both regimes [58].

There are two physical quantities describing the viscosity of a fluid: the kinematic viscosity
ν and the dynamic viscosity η. Both are connected via the density ρ of the fluid

η = ρ · ν . (2.2)

The dynamic viscosity η is commonly used in the physical description of fluids. However,
we mainly write the equations with the kinematic viscosity ν, as this quantity is an intrinsic
parameter of our simulation method.

Until the beginning of this century, microfluidic devices typically had channel dimensions
of l ≈ 10 µm, flow speeds of u ≈ 100 µm/s and fluid viscosity of ν = 10−6 m2/s. This
leads to a Reynolds number Re ≈ 1 · 10−3, thus, fluid inertia was usually neglected. The
prevailing opinion at that time is well summarized by Squires and Quake who noted in
2005 [12]:
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2.3 An introduction to inertial focusing

“Of all dimensionless numbers, the Reynolds number is the one most often men-
tioned in connection with microfluidics. Ironically, it may also be the least
interesting number for microfluidics: after all, almost without exception, mi-
crofluidic devices employ fluids with Reynolds numbers that are small enough for
inertial effects to be irrelevant.”

Only two years later the advances in the production process of the channels and the
realization of high throughput opened the field of inertial microfluidics [53].

In an inertial microfluidic device the flow speed reaches typical values of u ≈ 1 m/s and
Reynolds numbers Re ≈ 10 − 100 [53, 55]. The finite fluid inertia rapidly extended
the possible applications of lab-on-a-chip devices, which allow fluids to be mixed at the
microscopic scale, move particles from one medium to another, and separate particles
of different properties from each other. Without inertia, these applications require using
special geometries [59, 60] or viscoelastic fluids [61–63].

In this thesis we focus on questions related to sorting particles. This is important for
the previously introduced diagnosis methods, which rely on the mechanical properties of
pathological cells. In the following we discuss the history of inertial microfluidics relevant
for this work and outline the main effects.

2.3 An introduction to inertial focusing

The effect of inertial focusing was first observed in 1961 by Segré and Silberberg. Starting
from a uniform distribution of mm-sized particles flowing through a 1 cm wide cylindrical
pipe they observed the formation of an annulus around half-way between the channel
center and the walls [2, 3]. The authors varied the Reynolds number between 4 and
520 [64].

The lateral migration was unexpected at the time. The formation of the annulus hinted
at the existence of two opposing contributions which exactly compensate at the annulus.
When the authors plotted the measured particle distributions against the Reynolds number,
the results collapsed onto a master curve. Experiments with a similar setup but at lower
Reynolds number did not report any migration for rigid particles [4]. The master curve
and the addition experiments indicated that the effect was dominated by the inertia of the
fluid. The formation of the annulus is called Segré-Silberberg effect. It took another 13
years and multiple analytical calculations [5, 6] until the effect could be explained as a
combination of the inhomogeneous shear gradient and repulsive wall interactions acting
on the particles [7]. We review the underlying migration mechanism in Sec. 2.5.5.

To show that the effect of inertial migration is not expected from our everyday life
experience we perform a thought experiment. Segré and Silberberg used a cylindrical
channel with a radius of R = 5.6 mm and a very viscous fluid (ν = 364 · 10−6 m2/s).
They varied the Reynolds number by choosing different flow velocities. For example a
mean flow speed of ū = 47.8 cm/s yields a Reynolds number of Re = 2Rū/ν = 14.7.
If we increase the channel radius by one order of magnitude (R = 5.6 cm) one would
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Chapter 2 Basics of inertial microfluidics

Table 2.1: Typical experimental parameters for inertial microfluidics.

Channel dimension Particle radius Flow speed Reynolds number Ref.

20 µm× 20 µm× 4 cm 0.9 µm 0.05–2 m/s 1–40 [67]
50 µm× 50 µm× 4 cm 2.1 µm 0.02–2 m/s 1–100 [68]
35 µm× 60 µm× 3 cm 6 µm 0.9–3.4 m/s 30–120 [42]
80 µm× 80 µm× 60 cm 2.7–4.4 µm 0.001–5.25 m/s 0.07–280 [43]
152 µm× 275 µm× 6 cm 30 µm 0.15–3.6 m/s 21–500 [44]

need a flow velocity of 4.78 m/s to realize the same shear gradient. If the experiment is
run with water (ν = 10−6 m2/s) instead of a highly viscous fluid, the Reynolds number
yields Re ∼ 500 000. Such a high Reynolds number describes a highly turbulent channel
flow where inertial migration could not be observed. Even if we use a more viscous fluid,
like olive oil (ν ≈ 82 · 10−6 m2/s at 20 °C [66]), the corresponding Reynolds number
(Re = 3365) would still be in the turbulent regime. Although the required flow rate for a
larger channel can be achieved, the resulting flow would be chaotic and turbulent and
thus inertial migration could not be observed.

The previous thought experiment shows that it is difficult to utilize the Segré-Silberberg
effect on a macroscopic scale, as one needs a highly viscous fluid to suppress turbulence.
However, on the microscale one can run inertial experiments with water, making it suitable
for medical applications.

Due to the advances in material design and production processes around the beginning
of this century it was possible to create the necessary shear rates and open the field of
inertial microfluidics [39, 53]. We list some typical experimental parameters for inertial
microfluidics in Tab. 2.1. The self-organizing Segré-Silberberg effect allows a highly
efficient sorting process of particles. While possible applications are mostly in the area
of soft particles, current research concentrates mainly on rigid particles, as these have a
reduced complexity.

Inertial migration of a rigid particle is explained by the inertial lift force profile, which acts
perpendicular to the flow direction (see Fig. 2.1) [39]. The force profile has an unstable
fixed point in the channel center and two off-centered stable fixed points. The existence
of the stable fixed points indicates a combination of two opposing forces. The outwards
directed force can heuristically be explained by a dynamic pressure difference across the
particle surface caused by the flow profile. At the equilibrium positions this outwards-

Figure 2.1: Sketch of the lift force profile as a func-
tion of the lateral position perpendicular
to the flow direction along the short chan-
nel axis. The zero crossings correspond to
the equilibrium positions with an unstable
fixed point in the channel center and two
symmetric off-centered fixed points.
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Figure 2.2: Hierarchy of length and time scales within a fluid. Depending on the required resolution
different simulation methods are suitable. Adapted from Ref. [69].

directed force is compensated by repulsive particle-wall interaction. For a cylindrical
channel this leads to the formation of the annulus of particles reported by Segré and
Silberberg [2]. In Sec. 2.5.5 we discuss the underlying processes in more detail.

When the particle density is increased the particles start to interact and form microfluidic
crystals or trains [40, 47]. The particles either align on alternating sides of the channel
(staggered trains) or all particles assemble at the same side of the channel (linear trains),
as illustrated in Ch. 1 (cf. Fig. 1.1). Typically, in experiments and simulations a mixture of
both types of trains is observed. The particles in these trains assemble with a fixed axial
distance ranging from 2.2 to 5 particle diameters for staggered trains and about twice this
distance for linear trains [41, 42]. This regular axial spacing simplifies particle counting or
cell manipulation [30]. Trains are observed at small particle densities with typical volume
fractions between 0.02 to 1 % [42, 43]. In this case, pair interactions of the particles
provide an initial step for understanding the dynamics and stability of multi-particle trains.
We analyze the interactions for a pair of particles in Ch. 4 and for multiple particles in
Ch. 5. Before we look into the details of inertial migration, we introduce the basic concepts
of hydrodynamics.

2.4 Basics of hydrodynamics

2.4.1 Relevant numbers and length scales

Fluids are usually described on the continuum level. However, the fluid itself consists of
molecules and atoms. Here we briefly consider the typical effects that determine dynamics
on the micro-, meso- and macroscale. Here we follow Ref. [69].
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Chapter 2 Basics of inertial microfluidics

We first consider the hierarchy of length scales which are intrinsic to a fluid. The smallest
dimension is that of an atom or a molecule la (see Fig. 2.2). The typical distance traveled
between two collisions of the molecules is the mean free path lmfp. To derive macroscopic
quantities such as density ρ or temperature T , we need to average over many molecules.
These quantities can vary locally over some distance l, which leads to macroscopic gradi-
ents. Finally, a fluid is usually confined by some boundaries which determines the overall
system size lS . Typically, one has la � lmfp � l ≤ lS .

The relation of the mean free path lmfp to the characteristic length scale l is characterized
by the Knudsen number

Kn =
lmfp

l
. (2.3)

The Knudsen number is a good indication for the appropriate simulation method. The
mesoscopic kinetic theory belongs in the regime where Kn . 1. A necessary criterion for
the continuum picture is Kn � 1. In Sec. 3.3.4 we will use the Knudsen number as an
expansion parameter to prove that our simulation method can indeed be used to solve the
hydrodynamic equations.

Coupled to this hierarchy of length scales is a hierarchy of time scales. In the atomic
picture the time of a collision tc = la/vT is determined by the average thermal velocity
vT = (kBT/m)1/2. It is interesting to note that the thermal velocity vT is much larger than
the macroscopic velocity u of the continuum (vT is around the same order as the speed of
sound cs [70]). The time between collisions is tmfp = lmfp/vT . This is the governing time
scale of the kinetic theory, i.e. the molecular details are neglected. On this time scale the
microscopic system relaxes toward its local equilibrium. The local equilibrium does not
necessarily imply that the whole system is in equilibrium. Rather, the local equilibrium
assumption allows the derivation of local thermodynamic quantities such as pressure,
temperature or internal energy. When the system as a whole is out of equilibrium, which is
usually the case, the existing gradients are smoothed out by two effects: advection (inertial
regime) and diffusion (viscous regime). The corresponding time scales are tadv ∼ l/u and
tdiff ∼ l2/ν. To determine which effect is dominant we form the ratio of the two timescales
which yields the Reynolds number:

Re =
lu

ν
=
tdiff

tadv
. (2.4)

Yet another important time scale is given by the speed of sound in the fluid cs. The
time ts ∼ l/cs describes how fast compression waves travel through the system. For an
incompressible fluid this time scale has to be small compared to the advective time scale.
Their ratio is characterized by the Mach number [71]

Ma =
u

cs
=

ts
tadv

. (2.5)

As the speed of sound in water (cs = 1483 m/s at 20 °C [72]) is much larger than the
typical flow speed in microfluidic devices (u ∼ 1 m/s), the Mach number is Ma ≈ 1 · 10−3.
Thus, we can neglect compressibility in the analytical description of the fluid. However,
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Figure 2.3: The mass inside an enclosed
volume can only change
by the mass current ρu
through the surface. Figure
based on Ref. [73].

our simulation method, the lattice-Boltzmann method, is known for its relatively small
speed of sound. We discuss the resulting implications in Ch. 3.

In the following we focus on the continuum picture to derive the relevant hydrodynamic
equations for this work. In the continuum picture the movement and collisions of the
fluid molecules is averaged out, and we assume that the fluid is locally in thermodynamic
equilibrium. We derive the relevant equation for the fluid by using the conservation of
mass and momentum, where we follow Ref. [69] and Ref. [73].

2.4.2 Conservation of mass

Let us consider a small fluid element with density ρ, which occupies some stationary
volume V0. The mass of this fluid element is simply

∫
V0
ρ dV . The fluid mass is conserved,

so any change needs to be transported through the boundary of the volume ∂V0 (Fig. 2.3):

∂t

∫

V0

ρ dV = −
∮

∂V0

ρu · n dA , (2.6)

where the mass moves with the fluid velocity u and n dA is the outwards directed surface
element. We transform this equation using the Gauss theorem,

∫

V0

∂tρ dV = −
∫

V0

∇ · (ρu) dV . (2.7)

As the volume V0 is arbitrary and stationary, the integrands on both sides have to be the
same and the continuity equation for fluid mass results,

∂tρ+∇ · (ρu) = 0 . (2.8)
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Chapter 2 Basics of inertial microfluidics

For most applications we can assume that the density of the fluid is constant and does
not change in time or space. Thus, the continuity equation of an incompressible fluid
simplifies to

∇ · u = 0 . (2.9)

2.4.3 Conservation of momentum

Similar to the density, the momentum of a small fluid volume is changed by convection.
Additionally, forces change the momentum by acting on the surface ∂V0 or as a body force
density F on the whole volume V0.

Before we consider the change of momentum, we first need to introduce the general form
of a surface force density:

T = σn = (−p 1 + σ′)n , (2.10)

where σ is the Cauchy stress tensor and n is the normal vector of the surface ∂V0. Typically,
one splits the Cauchy stress tensor into an isotropic pressure component −p 1 and a viscous
stress component σ′.

Considering all contributions, the change of momentum can be written as

∂

∂t

∫

V0

ρu dv = −
∮

∂V0

(ρu⊗ u)n dA

︸ ︷︷ ︸
convection

−
∮

∂V0

pn dA+

∮

∂V0

σ′n dA

︸ ︷︷ ︸
surface force

+

∫

V0

F dV

︸ ︷︷ ︸
volume force

. (2.11)

We use (u⊗ u)ij = uiuj to denote the dyadic vector product.

Using the Gauss theorem and assuming that the volume is arbitrary yields

∂t(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · σ′ + F (2.12)

or in components,
∂t(ρui) + ∂j · (ρuiuj) = −∂ip+ ∂jσ

′
ij + Fi . (2.13)

Here we define ∂j = ∂xj and use the Einstein notation to sum over identical indices.

We are still missing the exact form of the viscous stress tensor σ′. The viscous stress tensor
σ′ quantifies the internal friction between fluid layers moving with different velocities. The
tensor thus depends on the spatial derivative of the velocity. We assume that the changes
of the velocity within the fluid are small, so we only consider first-order derivatives. The
viscous stress tensor has to vanish for a resting fluid regardless of the reference frame. By
considering a resting fluid in a rotating frame of reference one can show that σ′ cannot
depend on asymmetric combinations of the derivatives [71]. The most general tensor of
rank two, which satisfies all these conditions, is

σ′ = η
(
∇u+ (∇u)T )

)
+

(
ζ − 2

3
η

)
(∇ · u) 1 , (2.14)
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Figure 2.4: Air flow through a Venturi pipe. Due to
conservation of mass the flow velocity in
the narrower region needs to be higher
which leads to a lower pressure. The pres-
sure difference is indicated by the differ-
ence in the water levels on the left and
right.

where the dynamic viscosity η characterizes the shear stress and the volume viscosity ζ
describes the dilatational viscous stress.

For this work we assume that the fluid is incompressible (∇ ·u = 0) and that we deal with
a Newtonian fluid, where the viscosity is constant. This yields the Navier-Stokes equations

ρ
(
∂tu+ (u · ∇)u

)
= −∇p+ η∇2u+ F . (2.15)

2.4.4 Bernoulli’s principle

Concerning the conservation of energy we only discuss one of its consequences: the
Bernoulli’s principle. It introduces the concept of dynamic pressure which allows a
heuristic approach to the Segré-Silberberg effect (cf. Sec. 2.5.5). The Bernoulli’s principle
follows from the conservation of energy along a single streamline of the fluid:

1

2
u2 +

p

ρ
+ Ψ = const , (2.16)

where Ψ denotes a potential energy for example the gravitational potential. The relation is
strictly true only for an ideal fluid without internal friction (ν = 0). For a real fluid a small
rate of energy dissipation needs to be considered which reduces the dynamic pressure.

Based on Eq. (2.16) we find, that an increase of the kinetic energy of a fluid leads to a
reduced pressure. This effect can be nicely demonstrated in a Venturi meter where air is
pumped through a constriction (Fig. 2.4). On the left the air flows through a narrow pipe
which then rapidly extends to a larger radius. Due to the expansion of the pipe the flow
velocity decreases in order to transport the same mass as at the inlet. The decreased flow
velocity increases the pressure which can be observed by the different water levels in the
connected U-shaped pipe. While Eq. (2.16) is only valid along an individual streamline,
the concept of dynamic pressure gives an intuitive explanation to describe the different
migration mechanisms of inertial migration (cf. Sec. 2.5.5).

2.4.5 Concept of similarity

One important property of fluid flows is the concept of similarity: Two flows behave the
same, when the relevant dimensionless numbers are the same. The physics of the Segré-
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Silberberg effect is the same whether the experiment is performed in a 1 cm thick pipe or in
a microchannel only slightly thicker than a hair as long as the fluid properties are adjusted
to obtain the same Reynolds number. As we have already seen in Sec. 2.4.1, the Reynolds
number can be expressed as the ratio of advective and diffusive time scales [Eq. (2.4)]. It
can also be derived by non-dimensionlizing the Navier-Stokes equation. For each quantity
x we introduce a unit-less form by using the characteristic scale X,

x = Xx̃ . (2.17)

There is some freedom in the choice of characteristic scaling factors. For the length L in a
channel geometry one can either use the channel width 2w, the channel height 2h or the
hydrodynamic diameter D = (2wh)/(w + h). For the velocity U one could either use the
average velocity of the channel flow or its maximum velocity in the channel center. We
base our definition on the maximum flow velocity umax and the channel width 2w. The
characteristic timescale T is either given by L/U or, if the system is driven periodically,
it is defined by the external driving. Applying Eq. (2.17) on the Navier-Stokes equations
Eq. (2.15) yields

ρ
U2

L

(
L

TU
∂̃tũi + (ũj ∂̃j)ũi

)
= −ηU

L2
∂̃ip̃+

ηU

L2
∂̃j ∂̃j ũi +

ηU

L2
F̃i , (2.18)

where ∂̃j = L∂j . Furthermore, in Eq. (2.18) we rescale the pressure by ηU/L and the
external force density by ηU/L2 [73].

Collecting all characteristic scaling factors we end up with

Re

(
1

St
∂̃tũi + (ũj ∂̃j)ũi

)
= −∂̃ip̃+ ∂̃j ∂̃j ũi + F̃i (2.19)

where we identify two non-dimensional numbers: the Reynolds number Re = ρUL
η and

the Strouhal number St = TU
L .

The Strouhal number is only important when the system is driven periodically. In such
cases, the Strouhal number relates the external timescale T to the time given by the
characteristic length L and velocity U [74]. In this work we use no periodic force to drive
the channel flow, thus St = 1.

In this work we use three different forms of the Reynolds number. As we are in general
interested in channel flows, the most common form is the channel Reynolds number Re
which is defined by the maximum flow velocity umax and the full channel width 2w

Re =
2ρwumax

η
. (2.20)

In the further course of this chapter we consider the friction on a particle which moves
relatively to a fluid. In this case the bulk Reynolds number Rebulk

p is given by the relative
velocity between particle and fluid ur, and the particle radius a

Rebulk
p =

2aρur
η

. (2.21)
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Figure 2.5: The Navier boundary condition with the
slip length λs. The slip length λs corre-
sponds to the distance behind the surface
where the linear extrapolation of the ve-
locity is zero. The figure is based on
Ref. [73].

The third form of the Reynolds number is the shear particle Reynolds number Rep, which
is given by the change in velocity over a particle in a shear flow with shear rate γ̇. The
change in velocity is then given by ∆u = aγ̇. For a parabolic flow profile in a channel flow
the mean shear rate is γ̇ = umax/w. This yields

Rep =
2aρ∆u

η
=

2ρumaxa
2

wη
= Re

(
a

w

)2

. (2.22)

We note that this quantity is based on the mean shear rate. Alternatively, one can also
consider a local particle Reynolds number which depends on the particles position.

When the Reynolds number in Eq. (2.19) is low and viscous damping is dominant we can
further simplify the Navier-Stokes equations. Neglecting the left side of Eq. (2.19) we get
the Stokes equations:

∇p = η∇2u+ F . (2.23)

In contrast to the full Navier-Stokes equations, these equations are linear partial differential
equations and independent of time. Hence, the solutions are unique and allow linear
combinations. This simplifies an analytical treatment and allows, at least some, analytical
solutions of hydrodynamic problems.

Gases or ideal fluids on the other hand have almost no internal friction and thus vanishing
viscosity (η = 0). In this case the Navier-Stokes equations simplify to the Euler equations

ρ
(
∂tu+ (u · ∇)u

)
= −∇p+ F . (2.24)

Inertial microfluidics occupy the intermediate regime, where fluid inertia is relevant but
the flow field is still laminar. Hence, we need the full Navier-Stokes equations.

2.4.6 Boundary conditions

To determine the solution of the Navier-Stokes equations, we need to define the velocity
field on all boundaries. At the interface between the fluid and the solid walls the velocity
normal to the boundary has to vanish, as otherwise the fluid would penetrate the boundary,

u⊥ = (n · u)n = 0 , (2.25)
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Chapter 2 Basics of inertial microfluidics

Figure 2.6: Sketch of different channel geometries. The blue dots indicate the center of the
coordinate system. If not otherwise stated, we initialize our particles in the x-z-plane
in a rectangular channel (gray plane). In chapter 4 and 6 we calculate the lift force
profiles, where we only consider the first quadrant (red area). The quantities in the
other quadrant can be obtained by symmetry operations.

where n is the outward pointing normal vector. For the tangential component the re-
quirements are not that rigorous. Typical for solid-fluid interfaces is the no-slip boundary
condition. For the no-slip boundary condition one assumes that the fluid moves exactly
with the velocity of the boundary vwall, which is typically v = 0 [75],

u
∣∣∣
wall

= vwall . (2.26)

While the no-slip boundary condition holds for most liquids and boundaries, and certainly
all applications in this work, we want to discuss the limits of this condition. At the
molecular level the molecules surely slip over the interface. Therefore, from a microscopic
view the no-slip boundary condition is questionable. In the 19th century, Navier already
introduced a more general condition that is named after him [73],

u‖
∣∣∣
wall

= −λs(n · ∇)u‖
∣∣∣
wall

. (2.27)

Here some slip velocity over the surface is allowed and the slip or Navier length λs is
introduced (Fig. 2.5). The slip length λs defines the distance behind the wall where the
extrapolated velocity is zero. In careful experiments Joseph and Tabeling measured the slip
length for water on glass to be λs = (50± 50) nm [76]. However, for some hydrophobic
coatings slip lengths in the order of 1 µm where found [77]. If such surfaces were used in
microfluidic systems, they would have a pronounced influence by virtually increasing the
channel width.

2.4.7 Poiseuille flow

With the fluid equations and the boundary condition we are equipped to calculate the
flow profile which develops in a pressure driven channel flow. Fortunately this flow field
can be determined analytically for almost any cross section as long as it is constant along
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Figure 2.7: Poiseuille flow profile u(x, y) in a channel with aspect ratio w/h = 0.5. (a) shows the
profile in the plane perpendicular to the flow direction. The colored lines indicate the
position of the flow profiles along the x-axis (b) and the y-axis (c). While the profile
along the x-axis always has a parabolic shape, the profile along the y-axis flattens
significantly toward the center of the channel.

the flow direction [73]. In this case the flow is parallel to the channel axis and changes
only perpendicular to its direction. Thus, the advection term (u · ∇)u in the Navier-Stokes
equations Eq. (2.15) vanishes. Furthermore, we are interested in the steady-state solution
(∂tu = 0).

Here we consider a channel of length L with a rectangular cross section (width 2w, height
2h) where the flow is driven by a pressure gradient ∇p = −∆p/Lêz. The origin of the
coordinate system is located at the center of the channel cross section with the flow in
z-direction. We refer to the plane perpendicular to that axis as lateral plane. The x-axis
points along the short channel axis (Fig. 2.6).

Based on our definitions we can write the flow as u = u(x, y)êz. The Navier-Stokes
equation for this problem is given by

∆p

L
= η

(
∂2x + ∂2y

)
uz(x, y) . (2.28)

At the solid walls the flow field has to fulfill the no-slip boundary condition u|wall = 0.
This yields the solution [73]

uz(x, y) =
16w2∆p

π3ηL

∞∑

n,odd

1

n3


1−

cosh
(
nπ y

2w

)

cosh
(
nπ h

2w

)


 sin

(
nπ

2

(
x

w
+ 1

))
. (2.29)
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The solution Eq. (2.29) is plotted in Fig. 2.7. Along the short axis (x-axis) the flow has an
almost parabolic shape, while along the long axis the profile flattens toward the center
line, resulting in low shear rates in the center of the channel and high shear rates near the
walls.

The flow field for the other two geometries shown in Fig. 2.6 has a much simpler parabolic
form. The flow profile between two infinite walls placed at x = ±w follows

uz(x) =
∆p

2ηL

(
w2 − x2

)
, (2.30)

and the flow through a cylindrical channel with radius R is given by

uz(r) =
∆p

4ηL

(
R2 − r2

)
. (2.31)

While the flow field of a rectangular channel has a much more complicated form, the
parabolic approximation is often sufficient to get the correct flow profile along the short
axis.

2.5 Rigid particles in flow

We have now established the fundamentals for the description of fluids. In the following
we examine the interactions of particles and fluids. First, we discuss the drag force and the
disturbance flow created by a particle in the regime of vanishing Reynolds numbers. We
show that the cross-streamline migration of the Segré-Silberberg effect is not compatible
with the Stokes equations and can only be explained by inertial effects. We then review
the different mechanisms proposed for inertial migration. Finally, we present a model that
explains how particles in channels with non-circular cross section reach their equilibrium
positions. In this section, we focus on solid, spherical particles while we discuss the
modeling of deformable capsules and the deformability-induced lift force in the next
section.

2.5.1 Basic physics

The dynamics of a rigid particle is fully described by its position x, its velocity v and its
angular velocity Ω. In this work we focus on particles with the same density ρ as the
surrounding fluid (neutrally buoyant particles). Since the typical particle size is in the
order of 5 to 10 µm (cf. Tab. 2.1), thermal fluctuations do not play a role and the dynamics
of a particle is given by Newton’s equations of motion [78]:

d

dt
x = v , (2.32a)

M
d

dt
v = ffluid + f ext , (2.32b)

I
d

dt
Ω = T fluid + T ext , (2.32c)
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2.5 Rigid particles in flow

where M is the mass of the particle and I is its moment of inertia. The force f and torque
T are split into a contribution of the fluid and a contribution of external forces. The
external forces can result from electric or magnetic fields. We will later use such external
forces to control the position of a deformable particle (Sec. 6.5).

The force and the torque the fluid exerts on the particle is given by [75]

ffluid =

∮

particle

(−p 1 + σ′) · n dA , (2.33)

T fluid =

∮

particle

x×
(

(−p 1 + σ′) · n
)

dA . (2.34)

Here σ′ denotes the viscous stress tensor which we introduced in Sec. 2.4.3. The equations
(2.33) and (2.34) are very general and are typically used in simulations and analytical
calculations. The difficulty is to determine the pressure and viscous stress tensor on the
surface of the particle. We separate ffluid into two components: the drag force fdrag and
the lift force flift. The drag force acts in the direction of the flow velocity, while the lift
force is perpendicular to it.

In the following we concentrate on the simplest geometry, a rigid sphere. For a rigid sphere
the two equations (2.33) and (2.34) can be further simplified resulting in the Stokes drag,
which we discuss in the next section.

2.5.2 The Stokes drag and its corrections

One of the most fundamental problems o hydrodynamics is the drag force acting on a
sphere when it moves relative to the surrounding fluid. We first discuss the case where a
particle moves through a uniform velocity field. Then, we review the following corrections
to the drag force: the corrections due to inertial effects, the influence of walls, and, the
correction on the drag force due to an inhomogeneous flow. It is important to note that
while there is an analytical description for each effect individually, such a solution cannot
be found for the combination of all effects. We concentrate on a sphere with radius a,
which moves with a velocity v and rotates with an angular velocity Ω. The flow field is
described by u.

When the particle moves through bulk fluid in a uniform flow field with a different velocity
than the fluid, it disturbs the fluid which results in a drag force. In this case Eq. (2.33) can
be solved and result in a simpler equation for the drag force [75]

fdrag = 6πηa(u− v) = ξ(u− v) , (2.35)

where η is the viscosity of the fluid and ξ is called drag coefficient. This force is also called
Stokes drag in honor of George Gabriel Stokes, who first derived this formula [79].

Similarly, one can derive the torque [cf. Eq. (2.34)] acting on the particle when the particle
is immersed in a rotating flow field [75],

T drag = 8πηa3(ω −Ω) = ξr(ω −Ω) , (2.36)
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where ω = ∇× u is the vorticity of the fluid and ξr is the rotational drag coefficient. As
these formulas for the drag are derived based on the Stokes equation they are only valid
for vanishing Reynolds numbers.

In 1911 Oseen extended the formalism and calculated the first order correction term
for the influence of the fluid inertia on the drag coefficient [80]. Following his work
we consider the full Navier-Stokes equations Eq. (2.15) and analyze the system in the
reference frame of the particle. We begin by splitting the flow velocity u into two parts: the
uniform, undisturbed flow field u0 and a disturbance flow field u′ induced by the particle.
The exact form of the disturbance flow is discussed the next section. The advective term
in the Navier-Stokes equations is then written as

(u · ∇)u = (u0 · ∇)u0 + (u0 · ∇)u′ +
(
u′ · ∇

)
u0 +

(
u′ · ∇

)
u′ . (2.37)

This term simplifies as the derivative of the uniform field vanishes, and we can neglect
O(u′2). This yields the Oseen equations for a uniform flow

ρ
(
∂tu
′ + (u0 · ∇) (u′)

)
= −∇p+ η∇2u′ . (2.38)

As we are only interested in the steady state, we ignore the time derivative. Using these
equations the drag on a particle can be solved analytically and yields a correction to the
Stokes drag [73]

fdrag = 6πηau

(
1 +

3

8

|u|a
ν

)
= ξStokesu

(
1 +

3

8
Rebulk

p

)
(2.39)

where Rebulk
p = |u|a/ν is the bulk particle Reynolds number [cf. Eq. (2.21)].

Next we consider the changes when the particle does not move through bulk but close to
solid boundaries. Now we again neglect inertial effects. In the following we assume that
the fluid is at rest and the particle moves. The particle causes a disturbance flow which
still needs to fulfill the no-slip boundary condition at the walls. This leads to an increased
friction near the walls as the disturbance flow has to approach the no-slip boundary
velocity at a shorter distance. In case of a Stokes flow and small particle sizes this problem
can be solved analytically using the method of mirror images [81]. Similar to the method
of mirror charges in electrodynamics one places a virtual particle on the opposite side of
the boundary and successively solves the no-slip condition on the boundary at the wall
and the particle. The drag the particle experiences depends on the direction of its motion
relative to the wall [81],

fdrag = −ξStokes

(
1 +

9

8

a

d

)
v⊥ − ξStokes

(
1 +

9

16

a

d

)
v‖ +O

(
(a/d)2

)
, (2.40)

where d is the distance of the center of the particle to the wall and v⊥ and v‖ describe the
velocity components perpendicular and parallel to the wall, respectively.
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The last correction we want to consider is the effect of an inhomogenous flow. As the
flow through a channel leads to an inhomogeneous flow profile, this case is particularly
relevant for this work (cf. Sec. 2.4.7). Additionally to the relative velocity between the
particle and the flow, the change of the flow profile in the vicinity of the particle has to be
considered. Faxén calculated the force and the torque on a particle for a Poiseuille flow
assuming negligible wall effects [75, 82],

fdrag = 6πηa

(
1 +

a2

6
∇2

)
u0(xc)− 6πηav , (2.41)

T drag = 8πηa3(ω −Ω) , (2.42)

where xc is the position of the center of the particle. While this formula was derived
for the Poiseuille flow, it is valid for arbitrary flow profiles. The torque on the particle is
not altered compared to Eq. (2.36). The force, however, gets an additional contribution
∝ a2∇2u0, which results in a correction for the drag coefficient. When a particle follows
the flow without external force, the drag force vanishes and the particle’s velocity is given
by

v =

(
1 +

a2

6
∇2

)
u0(xc) . (2.43)

2.5.3 Multipole expansion of the disturbance flow

Up to now we discussed the force the fluid exerts on the particle. While we already
considered the disturbance flow u′ created by a particle, we have not introduced the exact
form of u′. Since the Stokes equation is a linear differential equation, the superposition
principle applies, and we can use the method of Green’s function [83]. To calculate
the disturbance flow caused by a particle at the position x we consider a point force
f(0) = f0δ(0) in Eq. (2.23) which acts on the fluid, where δ(0) is the delta function.

Such a point force creates a disturbance flow field u′ given by [75]

u′(x) = G(x)f0 , (2.44)

where G is the Oseen tensor

G(x) =
1

8πη|x|

(
x⊗ x
|x|2 + 1

)
. (2.45)

The disturbance flow field scales with 1/x and is called Stokeslet. This solution is exact
for a point force. However, we are interested in particles with a finite radius. Therefore,
we need to consider all forces acting on the surface and use the Green’s formalism. Since
we can write any force density as the sum of delta functions, the solution for an arbitrary
surface force density ζn acting on the particle is given by the superposition convolution

u′(x) = −
∮

particle

(
ζ(x′)n ·G(x− x′)

)
dA′ , (2.46)

23



Chapter 2 Basics of inertial microfluidics

where n is the normal vector of the particle surface.

Similar to the multipole expansion in electrodynamics, this disturbance flow can be
expressed by moments at sufficiently large distances from the particle (|x| � |x′|). Far
enough away from the particle one can no longer distinguish between a point on the
surface x′ and the center of the particle. Thus, we have G(x− x′) ≈ G(x). Formally, we
expand the Oseen tensor in Eq. (2.46) in x′ about x′ = 0,

u′i(x) = −Gij(x)Fj +Gijk(x)Djk + . . . , (2.47)

with

F =

∮

particle

ζ(x′)n dA′ , (2.48)

D =

∮

particle

(
ζ(x′)n

)
⊗ x′ dA′ , (2.49)

Gijk(x) =
1

8πη|x|3

(
−δijxk + δjkxi + δikxj −

3xixjxk
|x|2

)
. (2.50)

The leading term in Eq. (2.47) is a Stokeslet with the coefficient F equal to the force
exerted by the fluid on the particle. This term is only present when a net force acts on the
particle. In analogy to the electrostatics F is also called force monopole. The next higher
order is a force dipole D, which can be split in a symmetric and an anti-symmetric part,
called stresslet S and rotlet T [75],

D − 1

3
tr(D) 1 = S + T , (2.51)

with tr(D) is the trace of D and

S =
1

2

∮

particle

[
(ζn)⊗ x′ + x′ ⊗ (ζn)

]
dA′ − 1

3

∮

particle

(ζn) · x′ dA′ , (2.52)

T =
1

2

∮

particle

[
(ζn)⊗ x′ − x′ ⊗ (ζn)

]
dA′ . (2.53)

In the following we need the disturbance field of a particle in a linear shear flow. Such a
particle is force-free (F = 0) and components for the rotlet T cancel out each other. Thus,
the disturbance flow for this case is given by

u′i =
3

8πη

Sij
|x|5xixjxl . (2.54)

2.5.4 No lift force at zero Reynolds number

So far we mostly considered non-inertial fluid-particle interactions. As already mentioned
in Sec. 2.3, the Segré-Silberberg effect requires the inertia of the fluid. This was proven
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Figure 2.8: Graphical illustration of Bretherton’s proof. (a) We consider a spherical particle
immersed in a channel flow, which is driven by the pressure gradient ∇p. We allow for
an external force f ext to act on the particle. The particle moves with a velocity v which
is a solution of the Stokes equation. For the sake of the argument we assume that
this velocity has a nonzero lateral component. (b) The same system as (a) but with
reversed pressure gradient ∇p′ and external force f ′ext. The kinematic reversibility then
states that v′ = −v. (c) The system is mirrored on the x-y-plane. This transforms the
pressure gradient and the external force onto its original value. Thus, the system should
be identical to the initial system (a). However, for the velocity only the component
along the flow direction changes. This leads to a contradiction, which can only be
solved if the lateral velocity component vanishes. Figure adapted from Ref. [84].

by Bretherton one year after the publication of the experiments. He based his arguments
on the symmetry of the Stokes equations, showing that particles cannot move across
streamlines at vanishing Reynolds numbers [85]. Here, we briefly discuss Bretherton’s
argument following his article Ref. [85].

Bretherton based his argument on the kinematic reversibility, a special property of the
Stokes equation. It implies the following: Let u be a solution of the Stokes equations for a
given pressure gradient ∇p and external force f ext acting on the particle in flow direction.
The kinematic reversibility implies that the solution of the Stokes equations with reversed
pressure gradient −∇p and reversed force −f ext is given by −u. An equivalent system
with reversed force and pressure gradient can also be obtained by a reflection on the
x-y-plane. As this system is driven by the same external force and pressure gradient, the
resulting dynamics have to be identically given by −u. This is only true for velocities
perpendicular to the mirror plane, which rules out any cross-streamline migration.

In the following we will put these arguments on a mathematical foundation. We assume
a flow through a straight channel with arbitrary cross section. The flow is driven by
a pressure gradient ∇p which creates a flow profile u = u(x, y)êz in the z-direction
[Fig. 2.8 (a)]. In this flow we place a rigid spherical particle which moves with velocity
v and rotates with an angular velocity Ω. Furthermore, we allow an external force f ext
to act on the particle in the direction of the flow. We place the center of our coordinate
system such that z = 0 coincides with the current particle position. Each vector can be
split into a component along and perpendicular to the flow, which we call v‖ and v⊥
respectively.
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For a given external field ∇p and f ext the Stokes equation uniquely defines the velocities
u, v and Ω. First, we apply the kinematic reversibility on this system which corresponds
to reversing the driving of the flow [Fig. 2.8 (b)]:

∇p′ = −∇p and f ′ext = −f ext (2.55)

which results in the new velocities

u′(x) = −u(x) , (2.56a)

v′ = −v , (2.56b)

Ω′ = −Ω. (2.56c)

Next, we mirror the primed system along the x-y-plane. Thus, all components parallel
to the flow direction reverse their sign while the perpendicular components remain
unchanged [Fig. 2.8 (c)]

v′′‖ = −v′‖, v′′⊥ = v′⊥ . (2.57)

The angular velocity Ω is a pseudo-vector, where the perpendicular component gains an
additional sign change under reflection. Thereby, the cross product of Ω with an arbitrary
vector transforms as Eq. (2.57) [86],

Ω′′‖ = Ω′‖, Ω′′⊥ = −Ω′⊥ . (2.58)

The mirror operation also reverses the external driving into their original form

∇p′′ = ∇p and f ′′ext = f ext . (2.59)

Thus, the initial setup and the transformed setup should behave exactly the same [Fig. 2.8 (a)
and (c)]. However, we do not get the original values for the particle velocity v

v′′‖ = v‖, v′′⊥ = −v⊥ (2.60)

nor the angular velocity
Ω′′‖ = −Ω‖, Ω′′⊥ = Ω⊥ . (2.61)

Since solutions of the Stokes equation are unique this implies

v⊥ = 0, Ω‖ = 0 (2.62)

and there cannot be a lateral migration within the Stokes flow. To explain the cross-
streamline migration observed by Segré and Silberberg one needs to go beyond the
description of the Stokes equation.

2.5.5 Theoretical understanding of inertial focusing

As we have seen, no cross-streamline migration is possible in the regime of vanishing
Reynolds numbers. In the following section we discuss the four different effects that were

26



2.5 Rigid particles in flow

u

∆v1

∆v2

Ω

f rot

a) rotation

u

v > u

∆v1

∆v2

f slip

b) slip velocity

u

∆v1

∆v2

∆v1 > ∆v2

fshear

c) shear gradient

Figure 2.9: Illustration of different migration mechanisms in inertial microfluidics. Whether a
rotating particle moves through a fluid (a), is dragged through a linear shear flow (b)
or moves in an inhomogeneous shear flow (c), the particle always has a different
velocity on its two sides perpendicular to the flow direction. Following Bernoulli’s
principle this lowers the pressure on the side where the velocity is higher and leads to
an inertial lift force acting perpendicular to the flow direction.

proposed to explain the inertial focusing. All these migration effects require at least a
small but finite Reynolds number.

The first two mechanisms could not explain the Segré-Silberberg effect. Nevertheless,
we discuss them here, as they provide important insights for inertial microfluidics. The
first effect becomes relevant in the next section, as it is used to explain the location of
equilibrium points in rectangular channels. The second effect is the Saffman effect, which
we will use in Sec. 6.5 to influence the equilibrium position of deformable capsules. Finally,
we turn to the two effects that explain the formation of an annulus in the Segré-Silberberg
experiment.

Rotation-induced migration – the Magnus effect A first approach to explain the Segré-
Silberberg effect was based on the idea of rotation-induced migration. Rubinow and
Keller analyzed a rotating particle in a fluid with a homogeneous velocity field [5]. They
considered the limit of small but non-zero Reynolds numbers using matched asymptotic
calculations, which we explain in more detail in Sec. 2.5.7. Due to the rotation of
the particle the relative velocity between the sphere and the fluid is larger on one side
compared to the opposite side [Fig. 2.9 (a)]. Following Bernoulli’s principle [cf. Eq. (2.16)],
this leads to a lower dynamic pressure on the side where the velocity is higher. The
resulting force is given by

f rot = πa3ρΩ× vr , (2.63)

where a is the radius, Ω is the angular velocity of the particle, and vr is the relative
velocity between the particle and the fluid [52].

To explain the Segré-Silberberg effect we need to consider channel flow. In this case
the rotation-induced lift force points to the channel center [37]. Thus, this migration
mechanism cannot explain the Segré-Silberberg effect. Furthermore, Saffman [6] later
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calculated that the rotation-induced force is by an order of magnitude smaller than the lift
force created by a shear gradient. Hence, this contribution is often neglected. However,
as we will see in Sec. 2.5.6 Zhou and Papautsky proposed a model based on this force to
explain the limited number of equilibrium positions in non-cylindrical channel geometries.

Slip-induced migration – the Saffman force Saffman extended Rubinow’s and Keller’s
calculation for a moving particle in an unbounded linear shear flow [6]. The important
criterion for the slip-induced migration is that the particles moves relatively to the sur-
rounding shear flow. If that is the case, it has a larger relative velocity on one side and a
smaller one on the other side. As we have already seen with the rotation-induced migra-
tion the different relative velocities lead to a dynamic pressure difference and the particle
moves into the direction of the larger velocity [Fig. 2.9 (b)]. This pressure difference
results in a force

fslip = ρKa2 (γ̇ν)−1/2 vr (2.64)

where K ∼ 6.46 is a numerical constant [6, 87], γ̇ is the shear rate, ρ and ν are the density
and kinematic viscosity of the fluid and vr is the relative velocity between the particle and
the fluid. In honor of Saffman this force is called Saffman force. In contrast to the results
of Rubinow and Keller, this force is independent of the rotation of the particle. Although,
the Saffman force is an order of magnitude larger than the rotation-induced lift force, it
still cannot explain the Segré-Silberberg effect. The reason is that Saffman’s calculations
were based on a relative velocity between the fluid and the particle. This would require
a force acting on the particle. However, the particles in the Segré-Silberberg effect are
force-free. Still, the Saffman force can be used to influence the particles lateral position in
the channel [H, 38, 88], which we demonstrate for deformable capsules in Sec. 6.5.

Wall-induced migration Although the two effects we discussed so far are important
for an understanding of inertial migration, they could not explain the Segré-Silberberg
effect. To explain the formation of the annulus one needs a combination of the next two
effects: the wall-induced migration and the shear-induced migration [7]. We begin by
discussing the wall-induced migration. Ho and Leal found that a sphere in bound linear
shear flow migrates toward the center between the two walls [7]. This demonstrates
the repulsive character of the particle-wall interaction. Later, Zeng et al. did a deeper
analysis of this repulsive particle-wall interaction and found that it is related to the
vorticity generated on the surface of the particle [89]. This vorticity advects and diffuses
downstream. The presence of the walls breaks the symmetry of the wake flow, which in
turn creates secondary flows. This results in an effective lift force that pushes the particle
away from the wall. In agreement with other simulations [32, 35] Zeng et al. observed
an increase of the wall-induced lift force above Re ≈ 100, which then saturates for higher
Reynolds numbers [89].

Shear-induced migration The last missing ingredient is the inhomogeneous shear rate.
Besides the linear shear flow, Ho and Leal calculated the force acting on a sphere in
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a) circular b) quadratic c) rectangular

Figure 2.10: Equilibrium positions for different channel geometries and particle sizes. (a) In a
cylindrical channel the particles are focused in an annulus. Larger particles (red
ring) assemble closer toward the channel center than smaller particles (blue ring).
(b) When a quadratic cross section is used only four equilibrium positions exists, which
are either located on the main axis (smaller particles in blue) or on the diagonals
(larger particles in red). The distance to the channel center is almost the same
for large and small particles. However, the distance to the walls is larger for large
particles. (c) For a rectangular cross section the number reduces even further to two.
Similar to circular cross sections larger particle assemble closer to the center than
smaller particles.

a Poiseuille flow [7]. They considered a particle of radius a which follows a pressure-
driven flow between two infinite planes with the distance w. Due to the parabolic
flow profile (cf. Sec. 2.4.7), any off-centered particle position leads to different relative
velocities along the particle surface [Fig. 2.9 (c)]. This velocity difference creates a
dynamic pressure which drives the particle toward the channel walls. Close to the walls
this shear-induced migration is compensated by wall-induced migration and the particle
settles in its equilibrium position around halfway between the channel center and the
walls. In the limit of small shear particle Reynolds numbers Rep � 1 and small particles
a/w � 1 Ho and Leal found

fshear ∝ ρu2ma4/w2 = ρν2Re2
(
a

w

)4

, (2.65)

where umax is the maximum fluid velocity in the channel center. They also found three
equilibrium positions; an unstable fixed point in the channel center and two fixed points
around halfway between the channel center and walls which is consistent to the Segré-
Silberberg effect. It is important to note that the inertial lift force scales quadratically
with the Reynolds number. In this work we use this scaling to distinguish between viscous
effects ∝ Re and inertial effects ∝ Re2.

2.5.6 Equilibrium positions in channels with non-circular cross sections

Originally inertial focusing was observed in cylindrical channels where the shear-induced
lift force and the particle-wall repulsion discussed in the previous section leads to the
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fast slow

Figure 2.11: Illustration of the two-staged migration process in the channel cross section proposed
by Ref. [37]. Initially the particles are uniformly distributed in the channel and move
along the flow perpendicular to the paper plane (left). Due to the shear gradient the
particles are first focused in two planes perpendicular to the short axis (middle). This
process happens fast. In a second phase the particles move toward the short channel
axis due to a rotation-induced migration (right). The smaller magnitude of the force
results in a much slower process. The shaded areas illustrate the averaged particle
distribution.

formation of an annulus (Fig. 2.10). If we change the channel to a quadratic cross section,
the number of equilibrium positions reduces to four [15, 68]. If the two dimensions of the
channel cross section,w and h, differ more than w/h < 2/3, the number of equilibrium
points is reduced to two [38, 55].

Furthermore, experiments and simulations show that the equilibrium positions of larger
particles are located further away from the channel wall [15, 40]. In the case of channels
with quadratic cross section, simulations report that larger particles further increase the
distance to the walls by moving toward the channel diagonals, while smaller particles
assemble on the main axis. [34, 38, 84]. In experiments, however, all particles migrate
toward the main axis, independent of their size [53]. One possible explanation why larger
particle travel toward the diagonals only in simulation is that in experiment the channel
walls bulge due to high pressure [13]. Typically, three walls of the channel are made of
polymers while the fourth wall is made of glass, ensuring the best possible resolution for
optical imaging. As the deformation depends on the material, the diagonal positions are
no longer symmetric. Prohm showed numerically, that already for minimal deviations of
the aspect ratio from w/h = 1 the equilibrium positions for larger particles (a/w ≥ 0.3)
move from the diagonals to the main axis [84].

Initially it is not obvious, why the number of equilibrium positions is reduced in non-
circular geometries. Considering only the two forces used to explain the annulus in a
cylindrical pipe one could also expect a band of particles in a channel with quadratic cross
section. Indeed, such bands of particles parallel to the walls are reported in experiments
during the initial phase of the inertial focusing [67]. To explain the reduced set of
equilibrium positions Zhou and Papautsky proposed a two-staged migration model [37].
We discuss this model for the case of a rectangular cross section although it is also valid
for quadratic cross sections.

In a rectangular channel the particles are first pushed toward the walls by shear-induced
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Figure 2.12: Illustration of the matched asymptotic analysis.
The system is split into two subsystems: the in-
ner and the outer region. In the inner region
the flow around the particle is approximating
the channel flow as a linear shear flow. In the
outer region the channel walls and the far field
perturbation induced by the particle are consid-
ered.

migration (Fig. 2.11). This process happens fast and the particles form a band parallel to
the longer axis. Here the force due to the shear gradient and the walls compensate each
other. Due to the parabolic flow profile, the shear rate in this region is relatively high. In
such a case, Cherukat and McLaughlin have shown that rotation-induced migration [cf.
Eq. (2.63)] becomes relevant [90]. This rotation-induced force induces a slow migration
toward the final equilibrium position. Only at high Reynolds numbers Re > 200 shear-
induced migration dominates over rotation-induced migration and also four equilibrium
positions were found in rectangular channels located along the main axes [55, 91].

2.5.7 Basics of matched asymptotic expansion

As mentioned in Sec. 2.5.5 all analytical calculations for the inertial migration mechanisms
were based on the matched asymptotics method. Here we want to briefly outline the idea
of this method and follow the work of Schonberg and Hinch [8].

The general idea is to separate the problem into an inner and an outer region (see
Fig. 2.12). The inner region around the particle is dominated by viscous stresses. Here,
it is sufficient to use the Stokes equation. In the inner region the channel boundary is
ignored and only a linear approximation of the flow profile of the channel flow is used. In
the outer region the inertia is of similar order as the viscous stresses and the disturbance
flow of the particle is described as a point disturbance. As the disturbance flow is weak,
the Oseen equation in Eq. (2.5.2) can be used in the outer region. Finally, both solutions
are matched asymptotically such that the inner solution converges to the outer solution as
the channel walls are approached. At the same time the outer solution has to converge to
the inner solution when approaching the particle.

We consider a small, rigid sphere with radius a, which flows in a channel filled with a
Newtonian fluid. The particle is neutrally buoyant and is much smaller than the channel
width 2w. The ratio of particle diameter and channel width is our expansion parameter
α = a/w � 1. The center of the coordinate system is placed in the center of the sphere.
We denote the undisturbed velocity flow field by u and the disturbance flow field by u′.

For the inner solution we use the fact that the particle is small. This allows us to approxi-
mate the channel flow by a linear shear profile u(x) = v + γ(xp)(x− xp), where xp is the
lateral position of the particle and γ is the local shear rate. Near the particle the flow is
governed by viscous stresses and the Stokes equation is sufficient to describe the flow field.
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Batchelor finds for the disturbance field u′inner of a force and torque free particle [74],

u′inner(x) = − 5γ

2|x|5xzx+O(|x|−4) , (2.66)

which is the disturbance flow created by the stresslet of a particle in linear shear flow. This
flow decays rapidly with the distance from the particle and is thus consistent with the
outer flow field.

For the outer region we only consider the far field disturbance created by the particle. As
mentioned above, this disturbance flow is that of a stresslet. Saffman showed that such
a disturbance flow can be expressed as a singular body force in the steady-state Oseen
equation [6, 8]

(u′ · ∇)u0 = −∇p
′

ρ
+ ν∇2u′ − 10πa3νγ

3

(
êx∂z + êz∂x

)
δ(x) . (2.67)

This body force yields the correct far field for the inner solution. The equation cannot be
solved analytically but requires some numerical treatment. The results agree well with
the experiments by Segré and Silberberg up to relatively high Reynolds number around
100 [8]. Asmolov extended the calculations up to channel Reynolds numbers of 3000
while still considering only small particles and small particle Reynolds numbers [92].
Asmolov was able to determine that the lift force scales flift ∝ a4. In recent years Hood
et al. used similar asymptotic calculations to study the inertial migration in a quadratic
channel cross section even for cases where α = a/w = O(1) and O(α2Re) ≈ 10 [93].
Using numerical methods to solve their equations Hood et al. were able to show that the
scaling of the lift force changes to a3 for particles a/w > 0.06. This result agrees with the
experiments [15].

2.6 Soft capsules in flow

So far we have limited ourselves to solid, spherical particles. However, as we mentioned
in the introduction, one of the main applications of lab-on-a-chip devices is the sorting of
biological cells. These biological cells have properties very different from rigid spheres.
Typically, they are deformable and filled with a complex fluid with a strong viscosity
difference between the inner and outer fluid (viscosity contrast). This adds additional
complexity to the problem and introduces new effects.

Most of the analysis on deformable particles was done in the regime of the Stokes equations,
and we also restrict the following discussion to that case [49]. The deformability breaks the
kinematic reversibility of the Stokes equations and allows for cross-streamline migration
even in the case of vanishing Reynolds number. Typically, such deformable particles
migrate toward the channel center [94], in contrast to rigid particle, where no cross-
streamline migration is possible. The migration of deformable capsules is important for
many biological processes. One prominent example is the decrease in the viscosity of
blood when it flows through narrow blood vessels, the Fåhræus-Lindqvist effect [95]. Due
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to the inwards directed migration a cell-free layer forms at the vessel walls which reduces
the mean viscosity of the fluid.

In this section we shortly review the basic migration mechanisms of deformable particles
in Stokes flow. We first discuss the different types of deformable particles. We continue
by introducing our model for deformable capsules and the corresponding dimension-
less numbers. Finally, we shortly review two analytical results for the capsules: the
deformability-induced lift force and the deformation index. The effects of inertia on
deformable capsules is discussed in Ch. 6. Before we discuss the analytical solutions, we
first introduce the different types of deformable particles.

2.6.1 Types of deformable particles

Deformable particles are categorized in three classes: droplets, vesicles, and capsules. In
this work we focus on capsules. However, we will briefly discuss the differences between
the three types.

Droplets form when two immiscible fluids are combined in one flow. The behavior of
droplets is determined by their surface tension. Due to their liquid interface they have no
constraint on their area and can even break apart or join with other droplets. Still, the
total volume of the droplets is conserved.

In contrast to droplets, vesicles are formed by lipid bilayers, which add a constraint on
the area and the volume of each vesicle. Their form is governed by a strong bending
rigidity [49, 96].

The third type of deformable particles are capsules, which are fluid-filled shells made of
polymers [49]. They enclose a constant volume but can elastically dilate their surface
area. The surface dynamics is dominated by shear and area dilation elasticity. Additionally,
the membrane exhibits a small bending rigidity [97].

2.6.2 Modeling of soft capsules

In the following we introduce the physical model for deformable capsules. Capsules are
dominated by the elastic properties of their membrane. We model the elasticity by an
area dilation and a shear resistance. These two contribution are often described by one
equation either by a (neo)-Hookean law or by the Skalak model. For this work, we use the
Skalak model for the strain energy area density εS . The total strain energy ES is given by
the surface integral ES =

∮
εS dA. In this section we introduce the idea behind the Skalak

model, following Ref. [98].

We assume a homogeneous and isotropic membrane. Thus, the strain energy density
depends only on the local dilation and deformation of the membrane characterized by the
displacement gradient tensor D. To understand the concept of the displacement gradient,
it is helpful to consider a single flat triangle (see Fig. 2.13). In Fig. 2.13, an initially
undeformed triangle with zero strain energy (a) is deformed (b). Based on our assumption
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Figure 2.13: Deformation of a triangle. The triangle is made up by three vertices (1,2,3). The
change of the undeformed triangle (a) to the deformed triangle (b) can be described
via the displacement vectors V i with i = 1, 2, 3. When we choose V 1 = 0 and align
the thick edges of both triangles, the deformation is uniquely defined by V 2 and
V 3 (c).

that the εS is independent of the position and rotation, we can align the two states as
shown in (c). The deformation of (b) is now fully characterized by the two deformation
vectors V 2 and V 3. We now assume that the displacement of every point in this triangle is
described by the continuous displacement V , which varies linearly over the triangle face.
Furthermore, we approximate the membrane by an infinitesimally thin sheet. Hence, it is
sufficient to describe the membrane in 2D. The displacement gradient tensor is given by

D =

(
Dxx Dxy

Dyx Dyy

)
=

(
1 0
0 1

)
+

(
∂xVx ∂yVx
∂xVy ∂yVy

)
(2.68)

Since the strain energy density is independent of the rotation and translation it can only
depend on the invariants of this tensor D. These invariants are the eigenvalues λ1 and λ2.
Alternatively one can use the so-called strain invariants I1 = λ21 +λ22− 2 and I2 = λ21λ

2
2− 1

which describe the strain and dilation state of the membrane, respectively [99].

The strain energy density εS(I1, I2) is given by a constitutive model. Such a constitutive
model is not defined by the theory of elasticity, rather it is chosen to describe the stress-
strain behavior of a given material as accurately as possible [98]. Here we use a model
suggested by Skalak et al. which is often used to reproduce experimental data of red blood
cell at small and large strain [48],

εS =
κs
12

(
I21I1 − 2I2

)
+
κa
12
I22 . (2.69)

This formula has two contributions: κs penalizes deformations of the surface and κa
controls the local area dilation.

Additionally, we use bending rigidity to prevent the formation of cusps in strong shear
rates. The corresponding energy is given by the Canham-Helfrich functional [100, 101],

EB = κb

∫

A

2(H −H0)
2 dA+ κk

∫

A

K dA , (2.70)
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where κb is the bending modulus, H is the mean curvature, H0 is the reference curvature,
K is the Gaussian curvature and κk is the Gaussian modulus. The Gaussian curvature is
constant as long as the topology of the object does not change [101, 102]. The change of
the topology corresponds to the formation of holes in the membrane or its rapture. As we
do not model such behavior in our simulations the second integral reduces to a constant
and thus can be neglected in the force calculation [103].

The remaining integral, characterizing the bending rigidity, can be implemented in different
ways [104]. For deformable capsules the bending does not significantly contribute to the
dynamics and it is only used to prevent mesh degeneration. We use a direct discretization
of the Canham-Helfrich functional Eq. (2.70) [102]

EB ≈ 2
√

3κb
∑

ij

(1− cos θij) (2.71)

where the sum runs over all connected vertices and θij is the angle between the normal
vectors of two neighboring faces of the discretized mesh.

Finally, we also consider an energy contribution for the volume conservation,

EV =
κv
2

(
V − V (0)

)2

V (0)
, (2.72)

where κv is the elastic bulk modulus, V the volume of the capsule, and V (0) the volume
of the spherical initial state. This energy contribution ensures that the volume inside the
capsules is conserved as our simulation method is not guaranteed to be divergence free as
we will discuss in the next chapter.

No additional energy contribution is needed to ensure the local area conservation, as it is
already incorporated in the Skalak model via the second term in Eq. (2.69).

To sum up, our model for the deformable capsules introduces four different κ: the shear
modulus κs, the area dilation modulus κa, the bending modulus κb, and the compressibility
κv. To reduce the dimension of our parameter space we follow Krüger et al. and fix the
ratios of the area and the bending moduli to the shear modulus [36],

κa/κs = 2 , κb/(κsa
2) = 2.87 · 10−3. (2.73)

The ratio of bending to shear modulus is close to the experimental ratio of red blood cells1

κb/(κsa
2) = 3.5 · 10−3 [10, 105]. However, the ratio of area to shear modulus in biological

cells is much higher (κa/κs = 100) [9] compared to our parameters. Still, biological cells
can deform due to their non-spherical shape. In this study we concentrate on spherical
initial cell shapes, since we are interested in the general behavior of deformable capsules.
Increasing one or both of the ratios in Eqs. (2.73), we expect that the capsule deforms less
and behaves more like a rigid particle. Finally, we chose κv = 300 000ρν2/w2 such that
the volume changes were less than 1%.

1The other parameters are κb = 2 · 10−19 Nm, κs = 5.3 · 10−6 Nm−1 and aeff = 3.3 µm
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2.6.3 Characteristic numbers for deformable capsules

In Sec. 2.4.1 and Sec. 2.4.5 we introduced the concept of non-dimensional numbers
to describe the fluid. The most prominent number used in this work is the Reynolds
number which quantifies the fluid inertia. The model of the deformable capsules intro-
duces a couple of new parameters in the form of the moduli κ. These moduli influence
the deformability of the capsules, which we want to quantify using non-dimensional
parameters.

In the literature deformable particles are typically characterized by the capillary number
Ca, which is the ratio of the shear stress ρνumax/w and the typical elastic stress κs/a

Ca =
ρνumaxa

wκs
. (2.74)

We note that the capillary number depends explicitly on the flow speed umax. This
intrinsically couples the deformability of the particle (κs) with velocity effects (e.g. fluid
inertia). To separate these two contributions we replace the capillary number by the
Laplace number La. The Laplace number is connected to the particle Reynolds number
Rep = Re(a/w)2 and the capillary number via

La =
Rep
2Ca

=
κsa

ρν2
. (2.75)

The factor of 1/2 is due to our definition of the Reynolds number using the full channel
width Re = 2umaxw/ν [cf. Eq. (2.20)]. The Laplace number is the ratio between typical
elastic shear forces κsa and the intrinsic viscous force scale ρν2 of the fluid. This number
allows us to describe the deformability of the capsule independently of the flow velocity.
Particle which are more rigid (larger κs) are modeled by larger Laplace numbers and
smaller capillary numbers. In Ch. 6 we find that La is the proper quantity to describe the
equilibrium distance of a deformable capsule from the channel center.

2.6.4 Migration of deformable capsules

As stated before, deformable capsules show cross-streamline migration even in the absence
of fluid inertia. This does not contradict the calculations of Bretherton (cf. Sec. 2.5.4) as
the deformable membrane breaks the kinematic reversibility of the Stokes equations. An
analytic description of deformable capsules is in general quite difficult as their shape is
hard to parameterize. However, in some cases analytical solutions can be found.

One of these cases is the deformability-induced lift force acting on a capsule. For small
deformations (Ca � 1) Helmy and Barthes-Biesel managed to determine the lift force
on a deformable capsule in Poiseuille flow where they neglected interactions with the
walls [106]

flift(x) = 18πηumaxxCa

(
a

R0

)3 (5µ− 17)

2
, (2.76)
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where x is the distance from the center, umax is the center velocity of the Poiseuille flow, R0

is the radius of the pipe. Furthermore, µ is the Poisson ratio which is given for the Skalak
model by µ = C/(1 + C) = 2/3, where C = κa/κs is the ratio between the area dilation
and the shear modulus. We note that this form of the lift force differs by a factor of 3
from the result of Helmy and Barthes-Biesel due to a different definition of the capillary
number. The force is directed toward the channel center, opposite to the lift force of the
Segré-Silberberg effect.

2.6.5 Deformation index of capsules

As we stated before, the shape of deformable particles is hard to parameterize. However,
using the Taylor deformation index D one can still determine the deformation of a particle
without an exact parametrization of its surface. The Taylor deformation index is defined
as

D =
rmax − rmin

rmax + rmin
. (2.77)

The dimensions rmax and rmin are obtained by fitting an ellipsoid to the moment of inertia
tensor of the capsule [107, 108]. For a spherical particle the deformation index is zero,
while an infinitely stretched particle has a deformation index of 1.

In case of small capillary numbers, one can derive the deformation index of an elastic
particle in a linear shear flow [109]

D =
15

4

(
2 + µ

1 + µ

)
Ca = 6Ca = 3

Re

La

a2

w2
, (2.78)

where we used again that µ = 2/3 for the Skalak model with κa/κs = 2.

In this chapter we introduced the relevant equations to understand the physics behind the
Segré-Silberberg effect and the cross-streamline migration of deformable capsules. The
next chapter is dedicated to the lattice-Boltzmann method which is used to solve these
physical equations.
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3
Simulation of fluid dynamics

The following chapter is dedicated to the mathematical and conceptual foundation
of the simulation method. First we briefly introduce the kinetic Boltzmann
equation and motivate the physical principles relevant for the simulation method.
From there we discretize the velocity set and write down the lattice-Boltzmann
equation. We show why the lattice-Boltzmann method is indeed suitable for
simulating the Navier-Stokes equations and shortly review how fixed and moving
boundaries can be implemented. Finally, we outline some numerical details,
explain how we calculate forces, and introduce our unit system. This chapter
follows in large parts Ref. [69].

3.1 Overview of computational fluid dynamics

The hydrodynamic equations introduced in Ch. 2 can be solved analytically for only a
few systems. However, in systems with finite Reynolds numbers and moving, possibly
deforming boundaries, solutions can only be obtained by simulations.

Typically, two different approaches are used in the field of computational fluid dynamics
(CFD). The conventional solvers use a top-down method which directly discretizes and
solves the macroscopic equations based on a fixed grid or mesh. Most common are
the finite-volume method and the finite-element method. The implementation of these
methods is generally straight-forward, yet, the non-linear and non-local characteristics
of fluid dynamics require a careful choice of the numerical schemes. The solution of the
hydrodynamic equations is typically obtained by solving a matrix inversion. This non-local
problem is hard to parallelize.

Alternatively, particle-based simulation methods use a bottom-up approach and are based
on microscopic or mesoscopic fluid descriptions. Some examples are the multi-particle
collision dynamics (MPCD), dissipative particle dynamics (DPD) or the lattice-Boltzmann
method (LBM). Typically, the fluid description in particle-based methods is simplified using
virtual fluid particles with specific interaction rules. Most particle-based methods include
thermal fluctuations at the level of particle dynamics, which makes them particularly
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suitable for colloidal and active matter systems. In typical inertial microfluidic channels,
however, the thermal fluctuations do not play a major role as the size of the particles
is typically on the order of 10 µm. For these systems thermal fluctuations mostly lead
to unwanted noise which increases the simulation time unnecessarily [84]. The lattice-
Boltzmann method removes thermal fluctuations by utilizing the distribution function,
rather than individual fluid particles. This athermal mesoscopic description of the fluid
leads to a faster convergence of the simulations.

The particle-based methods do not directly implement the macroscopic fluid equations.
Thus, it is not obvious that these methods solve the equations introduced in Ch. 2 and how
the individual parameters of the methods relate to macroscopic transport variables, such
as the viscosity. In case of the LBM the missing link is established by the Chapman-Enskop-
expansion which we discuss in Sec. 3.3.4. First, we introduce the Boltzmann equation
which is the conceptual foundation of the lattice-Boltzmann method.

3.2 The kinetic Boltzmann equation

In this section we briefly discuss the kinetic Boltzmann equation to introduce many of
the concepts we will need for the lattice-Boltzmann method. Originally, the Boltzmann
equation was derived for a kinetic gas which relaxes toward its equilibrium state via pair
collisions. The key assumption of this description is that the time spend on collisions is
short compared to the time between collisions (tc � tmfp, cf. Sec. 2.4.1). Additionally, the
kinetic Boltzmann equation neglects three or more particle interactions and only considers
elastic pair collisions. The typical length scale of this description is much smaller than the
length scale of the continuum description but larger than the atomic length scale. This
classifies the method as mesoscale. In the following, we derive the Boltzmann equation
for a simple mono-atomic gas.

3.2.1 The distribution function and its moments

Before we write down the Boltzmann equation itself, we first characterize the particle
distribution function. This distribution function is the fundamental variable of the kinetic
theory. It represents the density of all particles with a velocity ξ at position x and time t.

The density ρ, the momentum density ρu, and the energy density E are given by the
zeroth, first, and second moment of the distribution function:

ρ(x, t) =

∫
f(x, ξ, t) d3ξ , (3.1a)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t) d3ξ , (3.1b)

ρ(x, t)E(x, t) =
1

2

∫
|ξ|2f(x, ξ, t) d3ξ . (3.1c)
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a) b) c) Figure 3.1: Basic collisions between hard
spheres. Sliding collisions (a), an-
gled collisions (b), and head-on
collisions (c). Incoming paths are
dashed, outgoing paths are solid.
Figure based on Ref. [69].

The energy density E(x, t) contains contributions of the internal energy e(x, t) due to
thermal motion and kinetic energy 1

2ρ|u|2 of the bulk motion. The internal energy density
is given by

ρ(x, t)e(x, t) =
1

2

∫
|v|2f(x, ξ, t) d3ξ . (3.2)

Here we use the relative velocity v(x, t) = ξ(x, t) − u(x, t) where we subtract the bulk
motion u of the fluid. To connect the internal energy to the macroscopic temperature T or
the pressure p we use the equipartition theorem of classical statistical mechanics. Each
degree of freedom adds an energy contribution of RT/2 to the total internal energy [110],
where R is the gas constant. A mono-atomic gas can only move along the three dimensions
which leads to the internal energy density

ρe =
3

2
ρRT =

3

2
p , (3.3)

where we use ρRT = p for an ideal gas.

Rearranging the equation we can relate the pressure to the relative velocity:

p(x, t) =
2

3
ρ(x, t)e(x, t) =

1

3

∫
|v|2f(x, ξ, t) d3ξ . (3.4)

This relates the pressure of an ideal gas with its internal kinetic energy.

3.2.2 The equilibrium distribution function

Next, we derive the equilibrium distribution. It is the last ingredient needed before we
turn to the evolution of the distribution function, the Boltzmann equation. The kinetic
theory assumes that the simple gas relaxes toward equilibrium via collisions. As collisions
of particles strongly depend on the initial condition (Fig. 3.1), any angular dependency is
removed over time. The resulting equilibrium distribution function should therefore be
isotropic around the bulk velocity u. Hence, the equilibrium distribution can be written as
a function of the absolute value of the thermal velocity |v|

f eq(x, ξ, t) = f eq(x, |v|, t) . (3.5)

We further assume that the solution can be written as

f eq(|v|2) = f eq(v2x + v2y + v2z) = f eq
1D(v2x)f eq

1D(v2y)f
eq
1D(v2z) . (3.6)

After some calculations, one finds the Maxwell-Boltzmann distribution [111]

f eq(x, |v|, t) = ρ

(
1

2πRT

)3/2

exp
(
−|v|2/(2RT )

)
. (3.7)
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3.2.3 The Boltzmann equation and the BGK-collision operator

We now know the equilibrium state and how we can determine macroscopic quantities
from the particle distribution function. The remaining question is how the distribution
function develops in time. Since f is a function of the position x, particle velocity ξ, and
time t its total derivative is given by

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xα

)
dxα
dt

+

(
∂f

∂ξα

)
dξα
dt

, (3.8)

where dtxα = ξα is the particle velocity and dtξα = Fα/ρ is the specific body force due
to Newton’s second law. We assume that the redistribution of the particle distribution
function is due to collisions, which we represent by the collision operator Ω(f). The
resulting equation is called the Boltzmann equation

∂f

∂t
+ ξα

∂f

∂xα
+
Fα
ρ

∂f

∂ξα
= Ω(f) . (3.9)

The Boltzmann equation can be seen as an advection equation which transports the
distribution function with the velocity ξ. The third term on the left-hand side captures the
influence of forces on the velocity.

The original collision operator introduced by Boltzmann considered all possible outcomes
of two-particle collisions in the form of a double integral over the velocity space. However,
the resulting complicated collision operator can be approximated to simplify the analysis
of the Boltzmann equation. A common approximation is the BGK collision operator named
after its inventors Bhatnagar, Gross and Krook [112]. The BGK operator assumes that the
distribution relaxes toward equilibrium with some relaxation time τ

Ω(f) = −1

τ

(
f − f eq) . (3.10)

Using a Chapman-Enskog expansion, which we introduce later in Sec. 3.3.4, one can
connect the Boltzmann equation with the macroscopic description of the Navier-Stokes
equations Eq. (2.15). Comparing the two differential equations, we find that the non-linear
(u · ∇)u term in the Navier-Stokes equations is not present in the Boltzmann equation.
Even without the non-linear term, the Boltzmann equation is difficult to solve due to its
increased parameter space. Solutions of the Boltzmann equation depend on x, ξ, and
t resulting in a 7-dimensional parameter space in 3D. From a numerical point of view
the situation is different. While the non-linear term in the Navier-Stokes equations is
difficult to handle, the Boltzmann equation is an advection equation, which is easier to
solve numerically. We discuss the numerical details of the lattice-Boltzmann method in
the next section.

3.3 The lattice-Boltzmann method

The lattice-Boltzmann method originated from the lattice-gas simulation method, although
it can also be derived via a discretization of the continuous Boltzmann equation. In the
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Figure 3.2: Set of velocity vectors for the D2Q9 (left) and the D3Q19 (right) implementation of
the LBM. In 2D there is one velocity vector pointing to all surrounding lattice nodes
and a zero velocity. In 3D 6 vectors point to the center of the faces, 12 to the center of
the edges, and one velocity is the zero velocity. For clarity, we increase the thickness of
the velocity vectors pointing to the next neighbors.

following we discuss some details of the lattice-Boltzmann method and show via the
Chapman-Enskog expansion that it solves the Navier-Stokes equations.

3.3.1 Velocity discretization

The special feature of LBM is the cubic lattice structure and the discretization of velocities.
Typically, only velocity vectors are allowed that point from one lattice node to one of the
surrounding nodes, where the lattice spacing is usually set to ∆x = 1. This discritized set
of velocities is denoted by DdQq, where d is the number of spacial dimensions and q is the
number of velocity vectors. Common velocity sets are D2Q9 in two dimensions or D3Q19
in three dimensions (Fig. 3.2).

To minimize the memory consumption and number of computations we want to use as
few velocities as possible to determine the macroscopic moments: the density, the velocity,
and the symmetric momentum flux tensor Π. The momentum flux tensor is defined via
Παβ = ρuαuβ − σαβ, where σ is the sum of the viscous stress tensor and the isotropic
pressure [cf. Eq. (2.10)]. To fully determine all macroscopic moments in 3D at least 10
velocities are required: one for density, three for velocity and six independent coefficients
for the momentum flux tensor. In 2D at least 6 velocities are required.

The velocity sets can be derived via different ways. The mathematically rigorous way
uses Hermite polynomials to prove that the macroscopic moments are exactly solved with
a limited set of velocities [69]. This proof provides a strong mathematical basis for the
lattice-Boltzmann method. However, the detailed derivation goes beyond the scope of this
work, and we refer the interested reader to Ref. [113]. A more intuitive approach is to
use the rotational isotropy of the lattice which has to be fulfilled by the velocity set [114].
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Table 3.1: Velocities and weights for the D1Q3, D2Q9 and D3Q19 sets.

Notation Velocities Number Weight
ci wi

D1Q3 (0) 1 2/3
(±1) 2 1/6

D2Q9 (0, 0) 1 4/9
(±1, 0), (0,±1) 4 1/9
(±1,±1) 4 1/36

D3Q19 (0, 0, 0) 1 1/3
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 6 1/18
(±1,±1, 0),(±1, 0,±1),(0,±1,±1) 12 1/36

Each set of velocities ci has a corresponding set of weights wi. To reproduce the isotropic
Navier-Stokes equations the velocity vectors of the cubic lattice need to be isotropic up to
the fifth order [115, 116]. This leads to the following conditions

∑

i

wi = 1 , (3.11a)

∑

i

wiciα = 0 , (3.11b)

∑

i

wiciαciβ = c2sδαβ , (3.11c)

∑

i

wiciαciβciγ = 0 , (3.11d)

∑

i

wiciαciβciγciµ = c4s

(
δαβδγµ + δαγδβµ + δαµδβγ

)
, (3.11e)

∑

i

wiciαciβciγciµciν = 0 , (3.11f)

where cs is the speed of sound, which is given by cs = 1/
√

3(∆x/∆t) for most velocity sets
(including the ones mentioned here) [117]. Additionally, all weights wi have to be positive.
The velocities and the corresponding weights for the D1Q3, D2Q9 and the D3Q19 sets are
listed in Tab. 3.1 and illustrated in Fig. 3.2.

3.3.2 The lattice-Boltzmann equation and the BGK-collision operator

Using the previously derived discrete velocities of Tab. 3.1 the moment integrals Eq. (3.1)
reduce to simple sums:

ρ(x, t) =
∑

i

fi(x, t), ρu(x, t) =
∑

i

cifi(x, t). (3.12)
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streaming collision

Figure 3.3: Steaming and collision in the lattice-Boltzmann method in a D2Q9 grid. The length of
each vector quantifies the population fi. The populations are transported along the
individual velocity vectors (streaming). In the collision step the macroscopic variables
are calculated individually for each lattice node and the populations are relaxed toward
the corresponding equilibrium distribution (shown for τ = ∆t).

Importantly, for each lattice point xi and every independent velocity vector ci a corre-
sponding distribution fi(x, t) exists, typically called population. The evolution of these
discrete distribution functions is given by the lattice-Boltzmann equation

fi(x+ ci∆t, t+ ∆t) = fi(x, t) + Ωi(x, t). (3.13)

This equation describes the flow of “particles” from one lattice node at position x to a
neighboring lattice node at x + ci∆t with velocity ci. At the same time particles are
influenced by the collision operator Ωi, which models the redistribution of populations
at each site. The simplest implementation of Ω is a discritized BGK collision operator [cf.
Eq. (3.10)]

Ωi(x, t) = −fi(x, t)− f
eq
i (x, t)

τ
∆t , (3.14)

which relaxes the distribution function toward equilibrium with a single relaxation time τ .
Other collision operators exist, such as the multi-relaxation time (MRT) [118, 119] collision
operator or entropic models [120]. However, in this work we exclusively use the BGK
collision.

The BGK collision operator relaxes the particle distribution function toward the equilib-
rium distribution. For the continuous Boltzmann equation f eq is given by the Maxwell-
Boltzmann distribution [Eq. (3.7)]. This exponential form is problematic for numerical
simulations as its evaluation is computationally expensive. However, as mentioned ear-
lier the framework of the Hermite polynomials proves that it is sufficient to expand the
exponential function up to second order to fulfill the conservation laws [69]:

f eq
i (ρ,u) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (3.15)

where wi are the weights of the specific velocity set and cs is the speed of sound. The
density ρ and the velocity u are calculated via Eq. (3.12). The equilibrium distribution is
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defined such that its moments are the same as those of fi, i.e.
∑

i

f eq
i =

∑

i

fi = ρ , (3.16a)

∑

i

cif
eq
i =

∑

i

cifi = ρu. (3.16b)

This implies a conservation of mass and momentum during collisions. The implementation
of the lattice-Boltzmann equation with BGK collision is typically done by performing two
alternating steps: the collision and streaming step (Fig. 3.3)

the collision step: f∗i (x, t) = fi(x, t)−
∆t

τ

(
fi(x, t)− f eq

i (x, t)
)

(3.17a)

the streaming step: fi(x+ ci∆t, t+ ∆t) = f∗i (x, t) . (3.17b)

Here f∗i represents the distribution function after the collision and the equilibrium dis-
tribution f eq

i (x, t) is calculated from the pre-collision states of the distribution function.
For details about the implementation and optimization we refer the interested reader to
Ref. [69].

3.3.3 Body forces in the lattice-Boltzmann method

The lattice-Boltzmann equation Eq. (3.13) describes a system without external forces.
However, we use a body force to drive the Poiseuille flow and also need to handle body
forces F due to the immersed boundary method which we discuss in Sec. 3.4.

Including a body force in the LBM requires some refinement of the algorithms as oth-
erwise the method loses its second-order accuracy and numerical artifacts corrupt the
solution [121]. There are several methods to include a body force in the LBM which
maintain second-order accuracy [69]. In this work we use the method introduced by Guo
et al. [121]. The body force influences both the collision step in the lattice-Boltzmann
equation and the calculation of the equilibrium distribution.

In the equilibrium distribution Eq. (3.15), we shift the momentum density by an amount
equal to half the body force

ρũ(x, t) =
∑

i

cifi(x, t) +
∆t

2
F . (3.18)

Additionally, we extend the collision step by an extra source term Si

f∗i (x, t) = fi(x, t) + (Ωi + Si)∆t , (3.19)

where the extra source term is given by

Si =

(
1− ∆t

τ

)
wi

(
ci − ũ
c2s

+
(ci · ũ) · ci

c4s

)
· F . (3.20)
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Both modifications, Eq. (3.18) and Eq. (3.20), remove undesired derivatives in the macro-
scopic continuity and momentum equation caused by time discretization artifacts [69,
121].

3.3.4 Chapman-Enskog analysis

In 1917 Sydney Chapman and David Enskog independently developed a method to derive
the macroscopic hydrodynamic equations from the Boltzmann equation. Later Chapman
combined the two approaches into the Chapman-Enskog analysis [122]. Their method
allows us to connect the mesoscopic details of the kinetic theory to macroscopic quantities
such as the viscosity. In this section we discuss the Chapman-Enskog analysis for the
lattice-Boltzmann equation following Ref. [69].

The Chapman-Enskog analysis is based on a perturbation expansion of the distribution
function fi around its equilibrium distribution f eq

i in orders of the Knudsen number Kn.
Instead of the Knudsen number one typically uses an expansion parameter ε ∼ Kn. To get
a consistent notation we will write the equilibrium distribution f eq

i as f (0)i in the following.
The expansion of the distribution function gives

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . . (3.21)

The expansion parameter ε allows us to group the terms according to their relative order
in the Knudsen number, forming a set of semi-independent equations. In the following we
use the BGK collision operator, Eq. (3.14), but a similar analysis can be done for other
collision operators such as MRT [123]. In Eq. (3.16) we define the equilibrium distribution
f
(0)
i such that it yields the correct macroscopic quantities. Hence, the remaining non-

equilibrium contribution fneq
i = fi − f (0)i does not contribute to the density or momentum

density. We assume that this condition has to hold in each order of the Knudsen number
Kn ∑

i

f
(n)
i = 0 and

∑

i

cif
(n)
i = 0 for all n ≥ 1 . (3.22)

Next we expand the lattice-Boltzmann equation Eq. (3.13) up to second order

∆t (∂t + ciα∂α) fi +
∆t2

2
(∂t + ciα∂α)2 fi +O(∆t3) = −∆t

τ
fneq
i . (3.23)

From now on, we neglect third-order and higher derivatives as these terms are small and
do not significantly affect the macroscopic behavior.

Before we consider the different orders in fi, we expand the time derivative in terms of Kn

∂tfi = ε∂
(1)
t fi + ε2∂

(2)
t fi + . . . , ciα∂αfi = εciα∂

(1)
α fi . (3.24)

It is important to note that the different orders of the time derivative should not be
considered as time derivatives themselves, as often claimed in the literature. Only the sum
of all these terms is the time derivative. This expansion method is called multiple-scale
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expansion and is also used in general perturbation theory. The different orders allow the
treatment of unbounded terms by canceling them by the next higher order term [124].
This becomes clear in an analysis of the Poiseuille flow which yields that in steady state
not each component vanishes individually. Rather, the individual components cancel each
other [122]. Thus, the often used picture that the different orders in Kn correspond to
different timescales can lead to false conclusions.

Now we combine the expanded forms of Eqs. (3.22), (3.23), and (3.24) and collect the
terms of same order in Kn

O(Kn) :
(
∂
(1)
t + ciα∂

(1)
α

)
f
(0)
i = −f

(1)
i

τ
, (3.25a)

O(Kn2) : ∂
(2)
t f

(0)
i +

(
∂
(1)
t + ciα∂

(1)
α

)(
1− ∆t

2τ

)
f
(1)
i = −f

(2)
i

τ
. (3.25b)

The zeroth, first and second moments in O(Kn) are obtained by multiplying Eq. (3.25a)
with 1, ciα and ciαciβ respectively and then summing over all states i:

∂
(1)
t ρ+ ∂(1)γ (ρuγ) = 0 , (3.26a)

∂
(1)
t (ρuα) + ∂

(1)
β

(
ρuαuβ + ρc2sδαβ

)
= 0 , (3.26b)

∂
(1)
t

(
ρuαuβ + ρc2sδαβ

)
+ ∂(1)γ

(
ρc2s(uαδβγ + uβδαγ + uγδαβ)

)
= −1

τ
Π

(1)
αβ , (3.26c)

where
Π

(1)
αβ =

∑

i

ciαciβf
(1)
i . (3.27)

This moment is undetermined but of first order and links the expanded equation of first
and second order in Kn.

We now reverse the derivative expansion Eq. (3.24) and assume that only the first order
of ε is relevant. This already yields the continuity and the Euler equations with p = ρc2s.
However, the viscous interaction, which distinguishes a fluid from a gas, is still missing.

If we furthermore take the zeroth and first moment of Eq. (3.25b) into account we find

∂
(2)
t ρ = 0 , (3.28a)

∂
(2)
t (ρuα) + ∂

(1)
β

(
1− ∆t

2τ

)
Π

(1)
αβ = 0 . (3.28b)

These two equations are second-order corrections to the first order Eqs. (3.26) above.
Combining the moment equations and reversing the derivative expansion, this time with
first and second order in Kn, we find

∂tρ+ ∂γ(ρuγ) = 0, (3.29a)

∂t(ρuα) + ∂β

(
ρuαuβ + ρc2sδαβ

)
= −ε∂β

(
1− ∆t

2τ

)
Π

(1)
αβ . (3.29b)

48



3.3 The lattice-Boltzmann method

These two equations are the conservation equations for mass and momentum with an
unknown viscous stress tensor

σ′αβ = −ε
(

1− ∆t

2τ

)
Π

(1)
αβ . (3.30)

The last piece is to determine this viscous stress tensor which can be done via Eq. (3.26c)
but requires some algebraic reordering. For an isothemal equation of state and an
equilibrium distribution expanded only to second order this yields [69]

Π
(1)
αβ = −ρc2sτ

(
∂
(1)
β uα + ∂(1)α uβ

)
+ τ∂(1)γ

(
ρuαuβuγ

)
. (3.31)

The first term on the right-hand side corresponds to the viscous stress tensor in the Navier-
Stokes equations. The second term is an error due to the second-order approximation of
the equilibrium distribution. By comparing the magnitude of the first and second terms
we find that the error is negligible if u2 � c2s. This corresponds to the limit of small
Mach numbers Ma2 = (u/cs)

2 � 1 (cf. Sec. 2.4.1) and explains why the lattice-Boltzmann
method is only valid for weakly compressible hydrodynamic problems [125].

Neglecting the O(u3) error term and comparing Eqs. (3.29), (3.30), and (3.31) with the
equations derived in Sec. 2.4 we find

p = ρc2s and ν = c2s

(
τ − ∆t

2

)
. (3.32)

These two equations relate the pressure p and viscosity ν to mesoscopic quantities of the
LBM, the speed of sound cs and the relaxation time τ .

3.3.5 Boundary conditions

Although boundary conditions only act on a small part of the volume they have a profound
influence on the physical behavior of the fluid and the numerical quality of simulations. In
the following we will briefly discuss the implementation of a no-slip boundary condition
for a straight wall in the lattice-Boltzmann method. We assume that the boundary is
aligned with the fluid lattice. Moving and more complex shaped boundaries needed for
the particles are considered in the next section (Sec. 3.4).

The no-slip boundary condition mathematically belongs to the class of Dirichlet conditions
where the value of the field is fixed on the boundary. The two other classes of boundary
conditions are the Neumann condition which sets the derivative of the field on the
boundary and the Robin condition which relates the value and the derivative of the field
on the boundary.

The boundary conditions in LBM act on the boundary nodes. These boundary nodes are
connected to at least one solid node and one fluid node. Solid nodes are located in the
boundary and are neglected in the calculation of the populations fi. The evolution of the
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solid nodey boundary node fluid nodey

a) b)

Figure 3.4: Illustration of link-wise (a) and wet-node boundary (b) conditions in a lattice-Boltzmann
D2Q9 grid. (a) For link-wise boundary conditions the solid-liquid interface is located
between the last row of the fluid nodes and the boundary nodes. Here the no-slip
boundary condition is ensured by reflecting the populations in the original direction
(dashed vectors). (b) In case of wet boundary conditions the interface is located
directly on the boundary nodes. On the boundary only some populations are known
for the collision steps (solid lines). The unknown populations (dashed lines) need to
be calculated.

boundary nodes follows the standard rules of LBM given by Eq. (3.17). However, the
calculation of the populations originating from solid nodes need special consideration as
they cannot be obtained by a streaming step. In LBM the boundary conditions are directly
applied onto the populations instead of applying them on the macroscopic variables such
as density or velocity. Thus, the populations are not uniquely defined by the boundary
conditions. This results in a large variety of different schemes implementing the boundary
conditions. In general LBM has two classes of boundary conditions: link-wise and wet-node
boundary conditions (Fig. 3.4). The main difference is the position of the boundary. While
for the link-wise boundary condition the boundary is located between the nodes, it is
located on the nodes in case of wet-node conditions.

A prominent example of a link-wise scheme is the bounce-back condition which is popular
due to its simplicity. Here the normal and tangential component of the incoming popu-
lations are inverted and streamed back in the original direction. While this method is
easy to implement and numerically stable this boundary condition has the disadvantage
that the exact location of the no-slip boundary condition is viscosity-dependent [69]. A
Chapman-Enskog expansion for the boundary shows that in order to get a second-order
accurate simulation method two terms need to compensate each other. To ensure that the
two terms are equal, either the position of the interface must be shifted or a slip velocity
must be introduced at the interface. This problem only exists in the BGK model and can
be solved by using a more complex collision operator such as MRT.

In this work we use the regularized boundary condition proposed by Latt et al. [125, 126]
which belongs to the class of wet-node boundary conditions. These wet-node conditions
face the problem that only the populations of the fluid and boundary nodes are known
(solid lines in Fig. 3.4). The unknown populations (dashed lines) need to be calculated
while ensuring the boundary conditions and the conservation of mass and momentum.
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3.4 Immersed boundary method

This is possible at a straight wall, where enough populations are known to calculate the
density, the momentum density and the momentum stress tensor.

The regularized boundary condition modifies all particle populations on a boundary node,
not only the unknown, while keeping ρ and u unchanged. This leads to a more efficient
implementation and increases the stability which allows the simulation of higher Reynolds
numbers.

As a first step for the boundary condition we determine the macroscopic quantities from
the known populations. The density can be calculated by the sum of the three components

ρ = ρ− + ρ+ + ρ0 (3.33)

where ρ− is the sum of unknown particle populations, ρ+ sums all populations opposite of
the unknown ones and ρ0 contains all populations tangential to the boundary. The velocity
projected on the outwards pointing normal vector is given by

ρu⊥ = ρ+ − ρ− . (3.34)

Combining these two equations yields

ρ =
1

1 + u⊥
(2ρ+ + ρ0) (3.35)

which allows us to calculate the density independently of the unknown quantity ρ−. When
the velocity is prescribed on the boundary we can calculate the equilibrium population for
the boundary nodes. A tempting approach would be to just use the equilibrium population
to fill the unknown values at the boundary nodes. However, the Chapman-Enskog analysis
showed that the non-equilibrium terms are important in order to obtain the correct stresses.
Indeed, if one only uses the equilibrium populations the result fails to give the correct
gradients at the boundary [125].

Instead, Latt et al. proposed to use a bounce-back rule on the non-equilibrium contribution
f
(1)
i = fi − f eq

i as a temporary value to calculate the macroscopic stress at the boundary
Π(1). This stress tensor then allows the calculation of all populations on the boundary
node via [125]

fi = f eq
i (ρ,u) +

wi
2c4s
Qi : Π(1) (3.36)

where Q = cici − c2s 1. The recalculation is needed as the bounced-back non-equilibrium
distribution may violate the velocity boundary condition. By using the recalculation ρ, u
and Π(1) are recovered correctly on the boundary.

3.4 Immersed boundary method

Implementing moving boundaries in simulation methods which rely on fixed cubic lattice
structures, such as the Lattice-Boltzmann method, needs clever approaches. One solution
is to approximate the moving boundary with cubes of the size of the lattice structure
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and use a bounce-back-like boundary condition [127, 128]. However, this method can
only handle rigid particles. Another solution uses an independent second mesh for the
particle, which moves through the fluid mesh. This method is called immersed boundary
method (IBM) and was originally proposed by Peskin in 1972 who used it to simulate flow
patterns around heart valves using traditional CFD methods [129]. Feng and Michaelides
first adapted the method to LBM [130]. While this method is less accurate than the
bounce-back method, it allows the simulation of deformable particles.

The immersed boundary method uses the force density F (x, t) in the Navier-Stokes
equations to ensure the correct fluid properties on the boundary of the particle. This
typically requires velocity interpolations of the fluid on the moving mesh and force
spreading from the mesh onto the fluid. Moreover, using the force density instead of
the lattice-Boltzmann populations allows combining the IBM with any fluid solver which
incorporates a forcing of the fluid [131]. The advantage of the IBM is that it is easy
to implement and it has a relatively small computational overhead, when implemented
correctly. This allows the simulation of complex shapes and structures such as deformable
cells or porous media [132, 133]. Furthermore, it solves the problem of recalculating the
fluid mesh for a moving particle, which is by itself numerically expensive. However, a
drawback of the method is that the moving boundary always encloses fluid nodes. The
contained fluid can influence the exterior fluid if the immersed boundary is rotating [134].
This is especially relevant for the calculation of torques, while hydrodynamic forces are
not effected. In order to compensate for the internal fluid, we apply Feng’s rigid body
approximation [135] and add an additional force acting on the particle so that it moves as
a solid particle would move (see Sec. 3.4.3).

In this section we further introduce two different implementations of the immersed
boundary method, one for rigid particles and one for deformable capsules, which are both
relevant for this work. We will first discuss the common features and then describe the
different algorithms in more detail.

3.4.1 Interpolation kernel

The important aspect of the immersed boundary method is the interpolation of the forces
and the fluid velocity between the Eulerian and Lagrangian grids. The interpolation is
implemented via an interpolation kernel. In the following we discuss its properties. We
denote the coordinates and velocities of the fixed Eulerian grid by x and u(t) respectively
while we denote the coordinates and velocities of the moving Lagrangian vertices by r(t)
and v(t).

If we assume a moving boundary of an infinitesimal thickness the overlap between the
fluid and moving mesh would be minimal or even non-existent. Peskin solved this problem
by introducing a finite interpolation kernel φ(r(t)− xi) which depends on the distance
between the vertex and the lattice nodes [129]. This kernel function should be short-
ranged and normalized. Furthermore, the kernel should consider only an envelope of two
to four lattice nodes around each vertex to be numerically efficient (see different colors
in Fig. 3.5). This envelope is large enough to reduce lattice artifacts. However, it also
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Figure 3.5: (a) Lagrangian boundary (gray) moving between the fixed Eulerian grid (black).
Around each vertex of the Lagrangian mesh only lattice-points within the envelope
width ∆x are considered (red: ∆x = 2, green: ∆x = 3, blue: ∆x = 4). The envelope
gives the immersed boundary a certain thickness (red shaded area for envelop of 2 ∆x).
This increases the effective size of the particle from the gray line toward the red dashed
line. (b) Interpolation kernel for the corresponding envelope functions.

introduces a certain width of the boundary which increases the hydrodynamic radius of
the moving boundary [indicated by the outer red dashed line in Fig. 3.5 (a)] [135]. In his
work Peskin proposed three different kernel functions φ, which consider all lattice nodes
in a square of edge width ∆x =2, 3 and 4 (red, green and blue squares in Fig. 3.5),

φ2(x) =





1− |x| 0 ≤ |x| ≤ 1 ,

0 1 ≤ |x| ,
(3.37)

φ3(x) =





1
3

(
1 +
√

1− 3x2
)

0 ≤ |x| ≤ 1
2 ,

1
6

(
5− 3|x| −

√
−2 + 6|x| − 3x2

)
1
2 ≤ |x| ≤ 3

2 ,

0 3
2 ≤ |x| ,

(3.38)

φ4(x) =





1
8

(
3− 2|x|+

√
1 + 4|x| − 4x2

)
0 ≤ |x| ≤ 1 ,

1
8

(
5− 2|x| −

√
−7 + 12|x| − 4x2

)
1 ≤ |x| ≤ 2 ,

0 2 ≤ |x| .
(3.39)

These forms are commonly used, however, other forms for the interpolation kernel were
proposed as well [136]. In 3D the interpolation kernel can be expressed by ∆(x) =
φ(x)φ(y)φ(z). In this work we use an envelope width of ∆x = 4 [Eq. (3.39)] as this yields
the best stability in our simulations.
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3.4.2 Velocity interpolation and force spreading

Using the interpolation kernel we interpolate the fluid velocity of the Eulerian grid at
position of the i-th mesh vertex via

vi(t) =
∑

x

u(x, t)∆(ri − x) . (3.40)

This interpolated velocity is used to determine a penalty force for a no-slip boundary
condition and to directly integrate the vertex position. The forces f i which are calculated
on the moving boundary at position of the i-th vertex point are then spread back to fluid
via

F (x, t) =
∑

j

f j∆(rj − x) . (3.41)

We note that f j is the total force acting on vertex j not to be confused with the force
density F .

The velocity interpolation in Eq. (3.40) can break the incompressibility of the enclosed
volume. While the velocity field itself should be divergence-free, the interpolated velocities
do no longer fulfill the divergence-free criterion. However, the LBM cannot even guaranty
incompressibility of the fluid. To compensate for possible volume changes within the
particle we apply a volume conservation directly to our deformable capsules (cf. Sec. 2.6.2).

For this work we use two different implementations of the IBM which we will discuss
in the following. For rigid particles we follow Inamuro who proposed a penalty force to
ensure the no-slip boundary condition, using an iterative procedure [137]. The deformable
capsules adopt an algorithm introduced by Krüger et al. [132]. Here the forces of the
constitutive model (e.g. area dilatation, bending, volume conservation) are calculated on
the membrane and then spread onto the fluid nodes. The no-slip boundary condition is
ensured by advecting the vertex points with the interpolated velocity.

3.4.3 Immersed boundary method for rigid particles

We first discuss the immersed boundary method for rigid particles. Multiple schemes
exists to implement immersed boundaries (IB). Ref. [69] gives a broad overview of the
different methods and their advantages and disadvantages. In summary, there are three
different classes: implicit IB, multi direct-forcing IB and explicit IB. The implicit IB class is
numerically very expensive and the explicit IB scheme lacks accuracy. Thus, we use a multi
direct-forcing IB scheme, proposed by Inamuro, which offers a good trait-off between
accuracy and speed [137]. The method ensures the no-slip boundary condition on the
particle surface via an iterative process [137]:

Step 0 The uncorrected fluid velocity is interpolated on every vertex i. To ensure a no-slip
boundary condition we introduce a penalty force which is given by

f
(0)
i = V i − vi (3.42)
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where V i = vparticle + Ωparticle × ri is the velocity of the vertex point and vi is the
interpolated velocity given by Eq. (3.40).

Step 1 The penalty force is spread back on the fluid using Eq. (3.41).

Step 2 The fluid velocity is calculated via Eq. (3.18), now including the penalty force.

Step 3 The velocities are interpolated on the boundary nodes.

Step 4 The penalty force is reevaluated

f
(l+1)
i = f

(l)
i + V i − vi , (3.43)

where l is the iteration index.

Step 5 Repeat step 1–4 until l = lmax.

Each time step we run this algorithm to compute the forces on the particles and the fluid.
Then we iterate the fluid and the particles individually and proceed to the next time step.
We follow Suzuki and Inamuro and use lmax = 5 which is a good compromise between
accuracy and efficiency [134].

The penalty force acts on the fluid via Eq. (3.19) and Eq. (3.20). The force on a rigid
particle is given by the sum of all penalty forces over its

ffluid = −
∑

boundary

f lmax
i . (3.44)

Likewise, the torque T fluid is given by

T fluid = −
∑

boundary

(ri − rc)× f lmax
i (3.45)

with rc the center of mass of the boundary.

One problem of this scheme is that the penalty force also considers contributions from the
fluid inside the particles. To correct for the internal fluid, we implement the rigid body
approximation proposed by Feng and Michaelides [135]. This correction introduces an
additional force

fFeng =
M

∆t

[
v(t)− v(t−∆t)

]
, (3.46)

and torque

T Feng =
I

∆t

[
Ω(t)−Ω(t−∆t)

]
. (3.47)

For the time integration of the particle’s trajectory we use the Verlet scheme [138]:

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
M−1

(
ffluid + fFeng

)
∆t2 , (3.48)

v(t+ ∆t) = v(t) +M−1
(
ffluid + fFeng

)
∆t , (3.49)

Ω(t+ ∆t) = Ω(t) + I−1
(
T fluid + T Feng

)
∆t . (3.50)
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In the case of pair trajectories shown later in Sec. 4.2 the two particles can touch each
other. To avoid overlap of the particles, we use an event-based algorithm to integrate
the trajectories of the particles. When the particles are so close that they would overlap
in the next time step, we break the time step in two parts. In the first part, the step is
reduced to ∆t̃ so that the particles just touch, perform the collision between the particles,
and finish the remaining time step with length ∆t−∆t̃, using the updated values for the
particle velocity and angular momentum. To realize the collision, we follow Ref. [138]
and consider two rough hard spheres so that during collision also angular momentum is
exchanged [138].

3.4.4 Immersed boundary method for deformable particles

The IBM proposed by Inamuro is well suited for rigid particles. For deformable particles we
need a different algorithm that also considers the constitutive equations for the membrane
model [132]:

Step 1 The forces acting on the vertex nodes are calculated, taking into account the
deviation of the deformed state from a defined reference state.

Step 2 The forces are spread to the LBM grid via Eq. (3.41).

Step 3 The fluid is propagated to the next time step and the new fluid density ρ(x, t+ ∆t)
and velocity u(x, t+ ∆t) are calculated.

Step 4 The new fluid velocities are interpolated back onto the Lagrangian mesh via
Eq. (3.40).

Step 5 The vertices are integrated using an Euler step method

ri(t+ ∆t) = ri(t) + vi(t)∆t . (3.51)

Go back to Step 1 and recompute for the next time step.

This algorithm does not enforce a strict no-slip boundary condition on the surface via a
penalty force, rather the vertices move with the surrounding fluid velocity. The resulting
deformation leads to forces which act on the fluid.

In our case, the forces are due to area dilatation, shear, bending and volume conservation,
which are derived as an energy contribution E (cf. Sec. 2.6.2). The resulting force on
vertex i is given by the principle of virtual work

f i =
∂E(r)

∂ri
. (3.52)

The derivation of the individual forces is quite technical and goes beyond the scope of this
thesis. For details on the implementation of the Skalak and volume forces we refer the
reader to Ref. [98].
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3.4.5 Particle mesh and parameters

In our simulation setups the particle surfaces are described as triangulated spheres, which
we obtain by subdividing the faces of an isocahedron and projecting the vertices on a
sphere. We choose a resolution which ensures that the spacing between the vertex nodes
is smaller than the lattice spacing ∆x.

Simulations of deformable capsules with immersed boundaries show the best accuracy for
LBM relaxation times τ ≤ 1 or viscosities ν ≤ 1/6 [132]. Although this was only shown
for deformable particles, we assume a similar behavior for the Inamuro scheme and apply
the same rule for the rigid particles. Due to this restriction we tune the Reynolds number
by adjusting the Mach number while keeping the viscosity fixed at ν = 1/6. Depending
on the resolution this procedure leads to a Mach number Ma > 0.1 which can lead to
compressibility effects (cf. Sec. 2.4.1). In this case we fix Ma = 0.1 and increase the
Reynolds number by reducing the viscosity ν.

3.5 Measurement of the lift force

The movement of particles in a microchannel is determined by the lift force profiles. In
Ch. 4 and Ch. 6 we calculate the lift force profiles for a pair of rigid particles and a single
deformable capsule. In the following we shortly describe how we measure the lift force.
The lift force acts perpendicular to the flow direction, hence, to measure it we fix the
lateral position of the particle and determine the resulting force. Similar to the IBM we
use different mechanisms to fix the lateral position of rigid and deformable particles.

Rigid particles As shown in Sec. 2.5.4, there can be no lift in the regime of the Stokes
equation. Hence, the measured force is purely an inertial effect. For a single rigid particle
we simply set the lateral movement to zero. This is equivalent to applying a force on
the particle which exactly compensates the lift force. The lift force is given by the lateral
component of Eq. (3.44).

We use the same method to determine the force acting on a pair of rigid particles. To ensure
that the axial distance is fixed, we adjust the particle integrator so that both particles move
with their combined center-of-mass velocity. However, this method introduces a small
error. When the particles have a different distance from the channel center, we slow down
the particle closer to the center while we accelerate the other particle relative to their free
streaming velocity. This results in a slip velocity and thus a small force according to the
Saffman effect (cf. Sec. 2.5.5). We did not find a way to correct for this. However, we
expect the Saffman force to be small compared to the lift force.

Deformable particles For a deformable capsule we can not just fix the lateral position
as the membrane itself deforms such that it is force free. Here we need an adjustable
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feedback force ffb which compensates the inertial lift force and fixes the particles lateral
position. When the particle does not move laterally,

ẋlateral
com =

(
f lift + f fb

)
∆t = 0 , (3.53)

the feedback force ffb = −flift compensates the lift force.

The feedback force is evenly distributed over all vertex nodes and given by a proportional-
integral (PI) feedback controller [139]. Its strength has two contributions: The first
contribution is proportional to the current offset, while the sum of all previous offsets is
given by the integral

f fb(t) = γp
(
x0 − xcom(t)

)
+

t∫

0

γi

(
x0 − xcom(t′)

)
dt′ , (3.54)

where γp and γi are the proportionality constants of the current and past time steps,
respectively, and x0 is the targeted lateral position. It is important to note that deformable
capsules also migrate in Stokes flow. So here the lateral force is a combination of inertial
and deformability-induced lift.

3.6 Viscosity units

Internally, the computations are performed in lattice units (∆x = 1, ∆t = 1 and ρ = 1).
However, this parametrization depends rather on the numerical details of the employed
lattice than on the physical properties of the system. To fix this, we express all quantities
with physical properties such as the viscosity ν, density ρ and the channel width w. We
call this scaling viscosity units. Our simulation results are easily compared to experiments
with these units. The scaling of the different quantities is the following:

length: l′ = l/(2w) , position: x′ =
1

2w
(x− xc) ,

time: t′ =
tν

w2
, velocity: u′ =

2uw

ν
, (3.55)

force: f ′ =
f

ρν2
, mass: m′ =

m

ρw3
.

Here a primed variable X ′ denotes the rescaled quantity in viscosity units, whereas X
denotes the unscaled quantity, either in simulation units or in physical units. Hence,
length is expressed in units of half the channel width and time is expressed in units of the
momentum diffusion timescale.

3.7 Simulation code

For the simulation of the lattice-Boltzmann method we extended the open source Palabos
code [140]. The Palabos code is written in C++ and has a special emphasis on extendability
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3.7 Simulation code

and parallelization. The code provides the framework for the fluid and the boundary
conditions, including the Inamuro immersed boundary method (cf. Sec. 3.4.3). We
supplement the Palabos code with custom modules for the mesh and the algorithm
for the deformable capsules. Furthermore, we added periodic boundary conditions for
the immersed boundary method and implemented the Euler integrator for the colloidal
equations of motion. The code is based on the work by Christopher Prohm [84].
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4
Dynamics of a pair of rigid particles

The dynamics of multiple particles is dominated by the pair interactions due
to the strong confinement and the low particle density in inertial microfluidic
devices. In this chapter we study the trajectories and the two-particle lift forces of
a pair of rigid particles. First we analyze the different types of possible trajectories
as a function of the initial lateral positions. We find three unbound types of
trajectories, which we name moving-apart, passing and swapping, and one type of
bound trajectory, where the particles perform damped oscillations. Furthermore,
we analyze the two-particle lift force profile and perform a parameter study based
on the lateral position, axial spacing, and Reynolds number. Finally, we connect
the two-particle lift force profile with the damped oscillations. The chapter is
based on the publication of Ref. [B], where these results are presented.

In the inertial regime a single particle performs cross-streamline migration in microchan-
nels due to the inertial lift force (cf. Sec. 2.3). When the particle density increases the
particles start to interact with each other and form multi-particle structures with a distinct
axial spacing either as staggered or as linear trains (cf. Fig. 1.1). In staggered trains the
particles have a typical axial spacing of around 4 particle radii, while in linear trains
the spacing is about twice this distance. Before we study the stability of multi-particle
structures in the next chapter, we first focus on the possible trajectories and the lift force
profiles of a pair of rigid particles. We distinguish between cross-streamline and same-
streamline pairs where the particles are located either on different sides of the channel or
the same side.

At vanishing Reynolds numbers pair trajectories of rigid particles in Poiseuille flow show
bound or unbound trajectories depending on their initial condition [141]. These trajecto-
ries can qualitatively be described by assuming that one particle follows the streamlines
created by the flow distortion of the other particle [142]. For inertial microfluidics addi-
tional effects need to be considered. In particular, the flow field around a single particle
changes noticeably for inertial microfluidics by losing the fore-aft symmetry [143, 144].
Furthermore, particle pairs move on damped oscillation trajectories toward their final
configuration [47]. Similar to the explanation of pair trajectories at vanishing Reynolds
numbers, Humphry et al. explained the oscillations and stability of the cross-streamline
pairs in the inertial regime by inward spiraling eddies in the flow field around a single
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x
z

∆z

xlead

xlag

a

Figure 4.1: Pair of rigid particles in a Poiseuille flow
in the x-z-plane where the flow is directed
along the z-axis. The particle configuration
is described by the axial distance ∆z and lat-
eral coordinates xlag, xlead (measured from
the center line) for particles leading and lag-
ging in flow, respectively.

particle [41]. This picture has been recently confirmed by analytical calculations [46]. The
oscillations are attributed to viscous flow distortions, while damping is a result of the acting
inertial force that pushes the particle toward its equilibrium position. For same-streamline
pairs, thorough experimental and numerical analysis have been performed recently [42].
Usually, their particle distance is twice the distance of cross-streamline pairs. However, at
higher particle Reynolds numbers the particle pair is reported to relax toward the same
spacing as cross-streamline pairs [42]. Some experiments also observed an increase of
the axial spacing over time [47]. Finally, it has been argued that the stability of such
same-streamline pairs is a result of minimization of the kinetic energy of the fluid [46].
Furthermore, the authors showed by analytical calculations that the axial spacing of the
particles is independent of the Reynolds number in the limit of small Re.

We discuss the stability of trains in more details in the next chapter. In this chapter we
focus on the different trajectories of particle pairs and on the two particle lift force profiles.

4.1 Microfluidic setup

We study a pair of two rigid particles of same radius a, which we initialize in the x-z-plane
at y = 0. For the setup we use the rectangular channel of length L as described in Fig. 2.6
(width 2w, height 2h, and aspect ratio w/h = 0.5). This aspect ratio reduces the number of
equilibrium positions to two, located on the short axis (cf. Sec. 2.5.6). We employ periodic
boundary conditions along the flow direction. To ensure that the particles do not interact
with their mirror images, we use a channel length of L = 30a + ∆z0, where ∆z0 is the
initial axial spacing. In this chapter we concentrate on particles with a radius a/w = 0.4.
We call the particle ahead in the flow leading particle which is followed by the lagging
particle. The initial configuration is given by the lateral position of both particles xlead/lag,0
and the axial distance ∆z0.

4.2 Two particle trajectories

We begin our analysis by categorizing the different trajectories possible for this system.
The types of trajectories depend on the initial lateral positions and the axial distance. Thus,
we categorize them in a phase diagram for the starting lateral positions xlag,0 and xlead,0,
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Re = 10
a/w = 0.4
∆z0/a = 5
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Figure 4.2: (a) Types of particle trajectories indicated in parameter space of starting lateral posi-
tions xlag,0 and xlead,0 for a pair of solid particles at Re = 10. The starting axial distance
is ∆z0/a = 5 and particle radii are a/w = 0.4. The black lines indicate |xlag,0| = |xlead,0|.
(b-d) Three exemplary trajectories for unbound moving-apart (b), passing (c), and
swapping (d) states drawn in the center-of-mass frame. The dots indicate the initial
conditions. The flow is directed along the z axis from left to right and the dashed line
indicates the center of the channel.

while keeping the starting axial distance fixed at ∆z/a = 5 [Fig. 4.2 (a)]. We identified
four different kinds of coupled particle movements, which we term moving apart, passing,
swapping and damped oscillations [Fig. 4.2 (b-d)].

We name the first three types of trajectories unbound as the particles drift apart and reach
their equilibrium lateral positions at large axial distances, where they hardly influence
each other anymore. In the next chapter, we find that particles which end up on different
sides of the channel move together eventually. However, this contraction does not depend
on different lateral positions and happens on timescales much larger compared to the
trajectories discussed here. We also observe bound trajectories, where the two particles
perform damped oscillations about their equilibrium lateral positions (Fig. 4.3). These
trajectories occur in the narrow red region in Fig. 4.2 (left), where the particles occupy
opposing channel sides and the lagging particle is initially slightly faster than the leading
particle. We now analyze these trajectories in more detail and start by describing the
unbound trajectories.

4.2.1 Unbound trajectories

For the unbound trajectories no stable pair configurations exists [green, blue, and orange
patches in Fig. 4.2 (a), example trajectories are shown in Fig. 4.2 (b-d)]. In the moving
apart trajectories (green patch with |xlead,0| ≥ |xlag,0|), the leading particle is faster than
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the lagging one. The distance between both simply increases, and they independently
migrate toward their equilibrium positions due to inertial focusing, as given by the single-
particle lift force profile. Even when the particles start from the same initial lateral
position in the same half of the channel, they do not keep their distance fixed but follow a
moving-apart trajectory [green line in Fig. 4.2 (b)]. The reason for this is an asymmetry
in the lift force profile, which pushes the leading particle closer to the center and the
lagging particle closer to the walls. We discuss the lift forces in more detail in Sec. 4.3.
The different lateral movement of the two particles causes a non-zero relative velocity
and the particles move apart. Finally, in the narrow green stripe with xlead,0 > xlag,0 > 0
[see Fig. 4.2 (a)], the particles initially approach each other. However, the lagging particle
also drifts toward the wall so that it becomes slower than the leading particle, and they
both just move apart. The fact that the particle move apart even when they start on the
same lateral position contradicts the current opinion of the stability of same-streamline
pairs [42, 46, 145]. We discuss this in detail in Sec. 4.3.1 and 5.3.1.

Passing trajectories occur when the lagging particle is closer to the channel center and
therefore much faster than the leading particle. This allows the initially lagging particle to
pass the leading one, and both particles change their order in the axial direction [blue line
in Fig. 4.2 (c)]. During this overtaking, the displacement of the two particles is asymmetric.
The particle closer to the channel center is displaced strongly while the trajectory of the
leading particle is hardly affected. Furthermore, the passing particle does not return
toward its initial condition as it is the case in the Stokes regime [141]. After the passing
the axial distance increases and the particles assume their single-particle positions due to
inertial focusing. We note that the particles do touch during the overtaking as we did not
implement any lubrication approximation. However, due to our event-based integration
method, they do not overlap (cf. Sec. 3.4.3).

When moving on swapping trajectories [orange line in Fig. 4.2 (d)], the lagging particle,
though moving faster, does not succeed in overtaking the leading particle. Instead, the
particles come close to each other and then swap lateral position, which makes the leading
particle the faster particle. During this process they keep their axial order. When the
particles move apart, they have interchanged their distances to the channel center. For
example, for the orange trajectories in Fig. 4.2 (d), one finds |xafter

lead | ≈ |xbefore
lag | and vice

versa. Similar trajectories in linear shear flow are called reversing trajectories [146].

In general, we see similar types of trajectories also at low Reynolds numbers [141], indi-
cating that the trajectories are governed by the viscous particle coupling and the Poiseuille
flow profile. The fluid inertia results in an additional lift force which focuses the particles
onto their lateral equilibrium positions. Although the two-particle trajectories studied in
this chapter are often unbound we find that they are relevant for the understanding of
particle trains as we discuss in the next chapter (cf. Ch. 5).

4.2.2 Damped oscillations

Besides the three unbound trajectories we find one type of bound trajectories. Figure 4.3 (a)
illustrates such a damped oscillation in the center-of-mass frame of the particles. After
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Figure 4.3: (a) Trajectories of both particles in the x-z-plane drawn in the center-of-mass frame.
The initial position is indicated by a dot. (b) Distance |x| of each particle to the channel
center plotted as a function of time. (c) Axial distance ∆z/a of the particles versus
time. The particles start with initial conditions xlag,0/w = −0.2, xlead/w = 0.24, and
∆z0/a = 5 and the Reynolds number is Re = 10.

a short transient regime at the beginning, both particles migrate toward their stationary
lateral positions (|xeq|/w ≈ 0.4), while performing damped oscillations (Fig. 4.3). This
was also observed in experiments by Lee et al. [47]. The damping is the result of the
inertial lift force which constantly focuses the particles onto their lateral equilibrium
positions. This is supported by the observation of undamped oscillatory trajectories in
pure Stokes flow [141]. A damped motion is not possible in Stokes flow as it would violate
the kinetic reversibility of the Stokes equations (cf. Sec. 2.5.4).

Ultimately, the particles reach a cross-streamline equilibrium configuration. Their lateral
positions agree with the positions of single particles. For the axial distance we find that
all bound particle pairs performing damped oscillations assemble at an axial distance of
∆z/a ≈ 4.1 independent of their initial conditions (see Fig. 4.4). This value for the axial
distance is in good agreement with experimental and theoretical results [40–42, 46].

In the following, we analyze how oscillation frequency Ω and damping rate γ behave as a
function of the Reynolds number (Fig. 4.5). We determined Ω = 2π/∆T by measuring the
time ∆T between maximal displacements (cf. Fig. 4.4) and γ by an exponential fit for the
amplitudes decaying in time. For the oscillation frequency Ω [Fig. 4.5 (a)], we find a linear
scaling with the Reynolds number, which indicates that the oscillations are due to the
viscous coupling between the particles. In contrast, the damping rate scales quadratically
with the Reynolds number [Fig. 4.5 (b)]. This can be easily understood as the damping
is a consequence of the inertial lift force which shows the same scaling. Note that our
findings on the damped oscillations are in full agreement with Hood and Roper [46].

The oscillation and the resulting formation of stable cross-streamline pairs was already
explained by Humphry et al. [41]. The authors argue that a single rigid particle creates
a viscous disturbance flow, which contains eddies or vortices on the opposite side of
the channel. We also see these eddies in our simulated flow field, as indicated by the
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∆z0/a Figure 4.4: Oscillating pairs relax to the same axial
distance independent of the initial axial
spacing ∆z0 and lateral positions. We
measure the time between the maximal
displacements ∆T to calculate the fre-
quency of the oscillation.

streamlines in the co-moving frame (Fig. 4.6). The second particle then occupies the
center of an eddy, where it does not move relative to the first particle. Since the viscous
disturbance flow is independent of Re, the position of the eddy does not change with Re.

While we fully agree with this explanation, we follow a different approach and describe at
the formation of these stable configurations via the picture of lift force profiles presented
in the following section (Sec. 4.3). The advantage of the lift force profiles is that they
unambiguously show whether equilibrium positions are stable fixed points and at the
same time determine the full dynamics of a particle pair.

We explain the formation of stable particle pairs by a stable fixed point, where the lift
forces acting on the particles become zero and where both particles have the same distance
from the channel center so that they drift with the same velocity. We will now determine
the two-particle lift force profiles and later relate them to the damped oscillations.
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Figure 4.5: Oscillation frequency Ω (a) and damping rate γ (b) of the particle–particle distance
plotted versus Re. The initial conditions are xlag,0/w = −0.2, xlead,0/w = 0.24, and
∆z0/a = 5. Linear and quadratic fits in Re are indicated, respectively.
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Figure 4.6: Streamline in the co-
moving frame for a single
particle (red) at Re = 20.
An eddy forms on the op-
posite side of the channel
(blue). The base flow is
directed to the right.

4.3 Lift force profiles

The two-particle lift force profiles quantify the forces that each particle experiences in the
presence of the other particle either leading or lagging in flow. Zero forces correspond
to fixed points or equilibrium positions in the channel cross section and the magnitude
of the force indicates how fast the particles are focused on their equilibrium positions.
When both particles are mirrored at the channel axis, the lift force reverses sign. More
importantly, when the flow direction is reversed the leading particle becomes the lagging
particle. Due to the secondary flow in the inertial regime, the leading and lagging particles
experience different flow fields which results in an asymmetry in the lift force profile. We
have already observed this asymmetry in the discussion of the moving apart trajectory
with the same initial lateral spacing (Sec. 4.2.1). There the leading particle was pushed
inwards and the lagging particle moved outwards resulting in an increase of ∆z.

In the following we determine how the two-particle lift force profiles change as a function
of the axial particle distance ∆z (measured along the flow direction), the lateral coor-
dinates xlead and xlag, and the channel Reynolds number Re. In order to compare these
profiles with the one of a single rigid particle, we recall the following two characteristics
(see Fig. 4.7): For a single rigid particle one finds an unstable fixed point in the channel
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Figure 4.8: Lateral lift force profiles along the short axis for the lagging (a) and leading (b)
particles for Re = 5, axial distance ∆z/a = 3, and particle radius a/w = 0.4. The curve
parameters are the positions of the leading (a) or lagging (b) particle, respectively.
The black line corresponds to the single-particle force profile.

center, as well as stable off-centered fixed points along symmetry axes in the channel cross
section. Furthermore, it is important to note that the force scales quadratically with the
Reynolds number, which is also demonstrated in Fig. 4.7.

4.3.1 Parameter study

To determine the lift forces in our simulations, we fix the particles’ lateral positions and
measure the forces, which the fluid exerts on them. The lift forces are crucially influenced
by the presence of the second particle, and we will illustrate how they depend on the
axial particle distance ∆z. The particles flow with different velocity along the channel axis
depending on their positions in the channel cross section. So, when we measure the lift
force profiles, we let the particles move with their center-of-mass velocity and keep ∆z
constant. This means that we effectively act with an axial force along the flow direction
on each particle, resulting in small changes of the lift forces according to the Saffman
effect [6] (cf. Sec. 3.5).

In Fig. 4.8, we demonstrate how the presence of another particle influences the lift force
profiles and the equilibrium positions. We keep the axial distance of the particle pair fixed
at ∆z = 3a and plot force profiles of the lagging particle for different lateral positions xlead
of the leading particle [Fig. 4.8 (a)] and vice versa [Fig. 4.8 (b)]. Overall, one recognizes
that the profile is drastically influenced by an adjacent particle and lift forces generally are
larger compared to the single-particle case. Thus, inertial focusing is enhanced.

For the leading particle [Fig. 4.8 (b)], we find only stable fixed points in the channel side
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Figure 4.9: Lateral lift force profiles along the short axis for the lagging (a) and leading (b)
particles for Re = 5, particle radius a/w = 0.4, and at the larger axial distance
∆z/a = 5 compared to Fig. 4.8. The curve parameters are the positions of the leading
(a) or lagging (b) particle, respectively. The black line corresponds to the single-particle
force profile.

opposite to the location of the lagging particle, the other fixed points have disappeared.
However, the new equilibrium positions are closer to the channel center compared to the
single-particle case (black line) and, ultimately, for xlag = 0, the stable fixed point is in
the channel center. In contrast, when the leading particle resides in the upper half of the
channel, the fixed point of the lagging particle in the other channel side [Fig. 4.8 (a)]
becomes unstable and stable equilibrium points only exist close to the upper channel wall
for sufficiently large xlead. Interestingly, the configuration with xlead = xlag = 0 is not
stable. Finally, note that the lift force profiles of the leading and lagging particles differ
from each other due to secondary flow as stated in the beginning.

When we increase the distance ∆z of the two particles along the flow direction, the lift
force profiles are more similar in shape to the profile of a single particle, however the
individual lines are shifted upwards (lagging particle) or downwards (leading particle)
(Fig. 4.9). In particular, for the cases where the other particle is close to the channel center
(x/w < 0.3), two stable equilibrium positions in the two respective sides of the channel
are still present. In addition, when the second particle is in the channel center (x/w = 0),
the force profile agrees with the single-particle case close to the channel center (blue lines
in Fig. 4.9) but the stable equilibrium positions are located closer to the channel walls.
Finally, by increasing the axial distance between the particle pair, the strength of the lift
forces decreases compared to Fig. 4.8.

The existence of stable fixed points in the lateral force profiles of both particles does not
necessarily define a stable particle configuration, since particles closer to the channel
center move faster than particles near the channel walls. For a stable pair configuration,
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Figure 4.10: Lateral forces for a particle pair as a function of the axial distance ∆z with both
particles sitting at the single-particle equilibrium positions: (a) cross-streamline
configuration with the leading and lagging particles at xlead/w = −0.39 and xlag/w =
0.39, respectively; (b) same-streamline configuration with xlead/w = xlag/w = 0.39.

the fixed points of both particles have to be at the same distance from the channel
center. Strictly speaking, this does not have to be the case, as in the inertial regime,
there is an asymmetry between the leading and lagging particles. However, we only find
configurations where both particles assembled very close to the single-particle equilibrium
position. From Fig. 4.9, we observe that an equilibrium position might be possible for
xlag/w = −xlead/w around 0.4, which is close to the final state of the damped oscillations
discussed in Sec. 4.2.2. In contrast, when the particles are close together, for example at
∆z/a = 3 as in Fig. 4.9, such a stable pair configuration is not possible.

In Fig. 4.10, we fix the lateral positions of both particles at the single-particle equilibrium
position |xlead/lag|/w = 0.39 and vary their axial distance. For stable configurations, the
lift forces acting on both particles have to vanish. We analyze both pair configurations
observed in experiments: same-streamline pairs and cross-streamline configuration. For
the cross streamline configuration [Fig. 4.10 (a)], the lift forces indeed vanish at ∆zCS

eq .
This fixed point is also stable since along the channel axis, it implies an effective repulsion
for ∆z < ∆zCS

eq and an effective attraction for ∆z > ∆zCS
eq , as the following argumentation

shows. When the particles move closer together, the lift forces acting on both particles are
positive. They push the leading particle with negative xlead to the center, which thus moves
faster, and the lagging particle with positive xlag toward the walls, which thus slows down.
As a result, the particle distance increases again. The same argumentation holds when
the particles are moved apart. This demonstrates that the cross-streamline configurations
are stable against small perturbations. The axial distance of ∆z/a ≈ 4.2 corresponds well
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to the equilibrium distance for the damped oscillation discussed in Sec. 4.2.2 and with
experimental values [41, 47].

However, we do not find stable configurations for the same-streamline case [Fig. 4.10 (b)].
Here, both particles are on the same side of the channels and their lift forces have opposite
signs. A fixed point at a close distance ∆z/a = 0.225 exists, but the same argumentation as
before reveals that it is unstable against perturbations. This appears to be a contradiction
to what is found in experiments, where same-streamline particle trains and pairs where
observed [41, 42]. Typically, experiments report that same-streamline pairs assemble at
a spacing about twice the equilibrium spacing of cross-streamline pairs [41, 42, 145].
Indeed, we expect to see same-streamline pairs with a similar distance in our simulations
when we initialize them at an axial spacing ∆z/a < 8 (cf. Sec. 5.3.1). However, our results
indicate that same-streamline pairs are only one-sided stable. When the particles are
squeezed together, they relax again to ∆z/a ≈ 10 but when they are pushed apart, the
particles do not contract again. Such an increase of the axial distance was also observed
by Lee et al., when a particle train passes through an expansion-contraction channel
geometry [47]. In the next chapter we show that our simulations almost exactly reproduce
the statistics for the axial pair spacing in Ref. [47].

Recently, the results of an oscillatory flow field in an inertial microfluidic device have been
published [145]. In this channel the flow velocity was periodically reversed in order to
create a virtually infinite channel for Reynolds numbers Re = 1− 5. The authors report a
weakly attractive regime for same-streamline pairs in the range of 7.4 < ∆z/a < 14 where
the particle slowly approach each other. However, the authors measure a relative velocity
close to zero with error-bars covering both attractive and repulsive regimes. At the same
axial distance we observe that the lift forces almost vanish for ∆z/a > 10, and the particles
move independently of each other [Fig. 4.10 (b)]. Finally, some studies observe that the
axial distance depends on the particle Reynolds number [42, 43]. In particular, Kahkeshani
et al. report, that the same-streamline axial distance decreases to about half the spacing at
larger particle Reynolds numbers (Re > 50) [42]. We carefully checked different channel
aspect ratios and mesh resolutions but the particle always assembled at an axial spacing
round 8−10a. A possible source of error might be the immersed boundary method, which
we use to implement the flowing particle. However, the results in Ref. [147], for example,
show that this method captures the principal behavior of solid particles in laminar flow.
Furthermore, the otherwise good agreement with the experimental findings makes us
confident that the results presented here capture the dominant effects.

4.3.2 Scaling of the lift force with Reynolds number

We continue by analyzing the influence of the Reynolds number on the two-particle force
profiles. Again, we plot the force profiles at an axial distance ∆z/a = 3 as in Fig. 4.8
but now for Re = 20 instead of Re = 5 (see Fig. 4.11). We immediately recognize that
in contrast to Fig. 4.8, the force profiles are similar in shape to the one-particle profile
but shifted upwards (lagging particle) or downwards (leading particle) with increasing
lateral distance. We saw a similar behavior in Fig. 4.9 for Re = 5 at the larger axial
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Figure 4.11: Lateral lift force profiles along the short axis for the lagging (a) and leading (b)
particles for Re = 20, ∆z/a = 3, and a/w = 0.4. The curve parameters are the
positions of the leading (a) or lagging (b) particle, respectively. The black lines
correspond to the single-particle force profile.

distance ∆z/a = 5. In both cases, the strength of the lift forces is similar to that of the
single-particle forces, while in Fig. 4.8, the two-particle induced forces are considerably
larger than the inertial forces on a single particle. In addition, the lift forces in Fig. 4.11
rescaled by ρν2Re2 are smaller than in Fig. 4.8, which suggests that the usual scaling with
Re2 does not apply. We study this in more detail in the next paragraph.

We now take a closer look at how the lift force scales with the Reynolds number Re. We
already realized that for small particle distances, the two-particle lift forces no longer scale
with Re2 as in the single-particle case. However, it is also clear that for large distances,
this scaling has to be recovered since the influence of the two particles on each other
strongly decreases. To analyze this aspect in more detail, we fix the leading particle at
xlead/w = 0.3 and vary xlag. We determine the maximum value of the magnitude of the
lift force profile for the lagging particle and plot it versus Reynolds number for several
particle distances.1 Figure 4.12 (a) shows the results in double-logarithmic scale. One
clearly recognizes a power-law scaling with exponent α: fmax

lift ∝ Reα. When we plot
α versus ∆z for both the leading and lagging particles, we find α = 2 for ∆z/a > 7
[Fig. 4.12 (b)]. When the particles approach each other, the scaling exponent decreases
to almost α = 1 for ∆z = 3a. This scaling helps to further understand the character of
the lift force, in particular, when two particles interact. A particle disturbs the fluid flow,
which then influences the motion of nearby particles through a viscous coupling. This is
the dominant contribution to the lift force at small distances, as indicated by the linear
scaling of the lift force with Re. The inertial contribution takes over at large distances,

1In concreto, we consider the maximum value of |flift| within |x|/w < 0.4 to ignore wall effects.
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Figure 4.12: (a) Maximum value of the lift force of the lagging particle plotted versus Re for
different axial distance ∆z. The leading particle is fixed at xlead/w = 0.3 while xlag
is varied. The particle radius is a/w = 0.4. The dashed lines indicate scaling laws:
∝ Re and ∝ Re2. (b) Scaling exponent α from fmax

lift ∝ Reα plotted versus ∆z for both
particles. For both graphs the leading particle is fixed at xlead/w = 0.3, while the
position of the lagging particle is varied.

where the disturbance flow from the neighboring particle is weak, and one recovers the
typical scaling for the inertial lift force, flift ∝ Re2. So, our analysis confirms the picture
of Ref. [47], which explicitly speaks about viscous disturbance flow. To sum up, both
Fig. 4.10 and 4.12 indicate that beyond the distance ∆z/a ≈ 7, the particles do hardly
interact. In Ref. [148], it is argued that hydrodynamic interactions in a microchannel are
screened for distances larger than the width of the channel cross section. In our case,
taking a particle radius of a = 0.4w, a distance of 7a corresponds to 2.8w, which is close
to the channel width of 2w. This explains the rapidly decreasing influence of the second
particle on the lift force.

4.3.3 Contour plots

In Sec. 4.2 we analyzed possible trajectories for a pair of solid particles moving under
the influence of the lateral lift forces. To understand these trajectories, it is instructive to
use a two-dimensional representation of the respective lift force profiles of the leading
and lagging particle [see Fig. 4.13 (c-e)]. In this representation the asymmetry between
the force profiles of the leading and lagging particle becomes obvious. The white lines
indicate zero crossings of the lift force, which represent stable and unstable equilibrium
points. The dynamics of the oscillating particle pair, which we discussed in Sec. 4.2.2, can
be nicely illustrated using lift force contour plots.

These contour plots are obtained similarly to the force profiles which we discussed
previously while for the trajectory the particles move without constraints. We start with
the initial conditions

xlag,0/w = −0.2, xlead,0/w = 0.24, and ∆z0/a = 5 .

In the following we analyze how the lift force profile changes along the trajectory
(Fig. 4.13). To facilitate direct comparison of the force profiles with the trajectories we plot
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Figure 4.13: Top: Lateral (a) and axial distance (b) of an oscillating pair of particles as a function
of time. (c-e): Snapshots of the lift force contour plot at different times during the
oscillation. The left column shows the lift force acting on the lagging particle and
the right column shows the force for the leading particle. The black marks indicate
the lateral positions of the two particles. The gray dashed lines indicate line of same
lateral distances (|xlead| = |xlag|).
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again the lateral position (a) and the axial distance (b) already shown in Fig. 4.3. In the
following we consider the force profile at three points in the trajectory: the minimum (c),
the maximum (d) and the equilibrium axial distance (e). Overall, we observe that both
particles migrate toward the walls until they reach their equilibrium position. However,
this migration is not monotonously. As the lift force is non-symmetric and strongly depends
on the axial distance, both particle experience forces of different strengths which also vary
in time. This results in two alternating configurations where either the leading or the
lagging particle moves faster compared to the other one, driving the oscillations of ∆z.

Initially, the lagging particle is closer to the center of the channel and thus moves faster.
Thus, the axial distance decreases significantly. This results in a strong lift force pushing
the lagging particle toward the channel wall, while the leading particle is pushed toward
the center for a short time (c). Now the leading particle is faster and the distance increases
again. The resulting lift force is acting more strongly on the leading particle, while the
lagging particle almost keeps its lateral spacing. At point (d) the leading particle is
pushed further outside than the lagging particle and their distance decreases. During the
oscillation the particles cross the equilibrium distance, e.g. at point (e). However, since at
this point in time the lateral positions of the particles are still different, the oscillation does
not end there. Finally, after a few oscillations, the particles reach their stable equilibrium
positions, where the lift forces are zero.

4.4 Conclusions

Understanding pair interactions of two particles in inertial microfluidics is an important
step for understanding collective dynamics such as the formation of particle trains. In this
chapter we studied the trajectories and the lift force profiles of a pair of two rigid particles
in an inertial channel flow.

We identified four types of particle trajectories depending on the initial lateral position
of the leading and lagging particles. Three of them are unbound, where the particle
distance increases after the initial approach until both particles reach their single-particle
equilibrium positions independently. In the moving-apart trajectories the leading particle
is faster than the lagging particle and the pair drifts apart. If the lagging particle is much
faster, it overtakes and thereby changes axial order with the leading particle in what we
called passing trajectories. On a swapping trajectory the lagging particle is only slightly
faster. It approaches the leading particle, but then they exchange their lateral positions
and move apart again.

Finally, bound trajectories occur for xlag ≈ −xlead, where axial distance and lateral
positions of the particles perform damped oscillations while reaching their equilibrium
values. As such a damping can not occur in Stokes flow, it is clearly an inertial effect.
Consequently, the damping rate scales with the Reynolds number squared, while the
oscillation frequency is a linear function of Re. All bound trajectories approach the same
axial distance of ∆z/a ≈ 4.1 independent of the initial conditions.
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The two-particle lift force profiles of both particles are strongly influenced by their neigh-
bors and depend on the particle distance along the channel axis. They clearly differ
between the leading and lagging particles and the lift forces are stronger compared to
a single particle. The increased lift force enhances particle focusing by driving them
faster toward their equilibrium positions. At close distance the lift force profiles differ
strongly from the profile of a single particle and do not allow for stable pair configurations.
However, when increasing the axial distance or the channel Reynolds number, the profiles
appear similar in shape but are shifted by constant forces. Interestingly, at small axial
distances below ∆z/a = 4 the strength of the lift forces scales with Re indicating that
hydrodynamic interactions between the particles are dominated by viscous forces, while
for distances ∆z/a = 10 and larger scaling is quadratic in Re showing the importance of
inertial forces. In between, the scaling follows Reα with the exponent varying smoothly
from 1 to 2 while increasing ∆z. Finally, we presented the lift force profiles of leading
and lagging particles in a two-dimensional representation as a function of both lateral
particle positions. These two-dimensional plots determine the coupled dynamics and the
trajectories of two floating particles.

We already mentioned the disagreement regarding the stability of the same-streamline
pairs in our simulation results and other publications. To explain the observed typical
distance of same-streamline pairs, the literature assumes an attractive interaction between
the particles. Our results indicate, that there is only a repulsive interaction which almost
vanishes at the observed distance and thus does not separate the particle further. In the
next chapter we concentrate on the issue of stability of pairs. Additionally, we analyze the
stability of larger particle trains and study how perturbations move through the train.
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Stability of pairs and trains

In this chapter we study the stability of multiple-particle structures of rigid spheres.
In contrast to the previous chapter we focus more on the stability and initialize the
particles already at their lateral equilibrium position but with a non-equilibrium
axial spacing. First, we focus on a pair of flowing particles where we confirm
the stability of cross-streamline pairs. In contrast, same-streamline pairs quickly
expand to a characteristic separation but even at long times slowly drift apart.
Adding more particles, we show that a staggered particle train contracts non-
uniformly due to a collective drag reduction. For linear trains the drifting apart is
slowed down compared to a same-streamline pair. Furthermore, it is non-uniform
as the leading particles separate from the rest of the train. Finally, we present
how a damped displacement pulse travels through a staggered train and how a
defect strongly damps the propagation of the pulse. The chapter is based on the
publication of Ref. [C], where these results are presented.

At higher densities particles do not only move to an equilibrium position in the channel
cross section but also form regular trains along the channel axis [42, 47, 149]. This feature
of inertial microfluidics is particularly useful for counting [24, 150, 151], sorting [27, 31,
33, 152], or manipulating cells [28, 30].

The particle trains were discussed in many works both in simulation [153, 154] and exper-
iments [42, 43, 47]. However, literature is sometimes inconclusive in their explanations
and observations. Thus, we dedicate the first section of this chapter a more detailed
overview of the different observations.

Toward the end of the chapter we will also analyze how perturbations of the regular
structure move through a staggered particle train. An initial particle displacement triggers
a displacement pulse which travels through the staggered train while being damped.
Due to the resemblance with acoustic phonons, such excitations are called microfluidic
phonons [155]. So far, these phonons were only analyzed for flowing droplets squeezed
between two parallel plates at vanishing Reynolds numbers [156, 157]. They provide an
interesting model system with non-linear and non-equilibrium behavior [158]. In this
quasi-two-dimensional geometry the interactions between the droplets are determined
by dipolar interactions [155]. Studies on such phonons in inertial microfluidics do not
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Figure 5.1: Multi-particle trains in cross-streamline configuration (a) and same-streamline config-
uration (b). xeq gives the equilibrium distance from the channel centerline, ∆z the
distance between two neighboring particles, and u indicates the flow direction.

exist. Due to the strong inertial damping such microfluidic phonons have to be triggered
from outside. Staggered particle trains are desired for applications since their regular and
dense order enhances particle throughput and at the same time facilitates particle sorting.
Understanding how staggered trains react on perturbations might open efficient ways to
crystallize them.

This chapter is strongly connected to the previous one where we focused on the lift force
profiles and the different types of possible trajectories of a pair of rigid particles. In the
following we study to what extent we can transfer the results of a pair to multi-particle
trains. Furthermore, we focus on their stability and the related particle dynamics. We
analyze the cross- and same-streamline pairs and extend the results to multi-particle
trains. In contrast to the previous chapter we initialize the particles already close to their
lateral single particle equilibrium position and focus on the dynamics of the axial spacing.
In the last part of this chapter we analyze how perturbations move through an inertial
microfluidic train. Due to the fluid inertia the dynamics of these inertial microfluidic
phonons behave differently than the microfluidic phonons observed in quasi-2D Stokes
flow. We will analyze how the phonons depend on the Reynolds number and on the
properties of the microfluidic train.

5.1 Summary of literature

The first experiments for particles in inertial microfluidics used cylindrical tubes, where
particles focus onto an annulus. In Ref. [40] Matas et al. studied particles with a low
confinement ratio (ratio of particle to cylinder radius between 0.03 and 0.05) and observed
particle trains above Re ≈ 100. With increasing Reynolds number more and more particles
assembled into trains. For channels with quadratic or rectangular cross sections, the
particles focus on one of the four or two possible equilibrium positions depending on the
aspect ratio of the cross section [37, 38, 54]. For such channels, typically, a mixture of
staggered and linear particle trains occurs [159]. In staggered trains the particle locations
alternate between both channel halves, whereas in linear trains all particles are located on
one side (see Fig. 5.1). For both structures experiments and simulations report a distinct
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axial spacing, where the spacing for linear trains is about twice the spacing of staggered
trains [42, 43, 47, 154].

Lee et al. explained the formation of particle trains by the combination of two effects:
(i) inertial lift forces focus the particles onto their single-particle equilibrium positions
and (ii) the viscous disturbance flow together with the imposed channel flow determine
their axial separation [47]. In Ref. [41] the well-defined axial spacing of two particles
in a cross-streamline pair is explained by the flow field around a single particle viewed
in its center-of-mass frame. In their simulations two inward spiraling vortices on the
opposite side of the channel form, located around 4 particle radii ahead and behind the
particle. The second particle then follows the streamlines created by the first particle and
spirals in damped oscillations toward its equilibrium position (cf. Sec. 4.2.2). This idea is
also confirmed by analytical calculations [46]. From the perspective of the two particle
lift force profiles the final configuration corresponds to stable fixed points where both
particles move with the same velocity (cf. Sec. 4.3.1). Finally, two-dimensional simulations
in Ref. [160] indicate that above Re = 80 particles in a staggered train perform stable
oscillations about these equilibrium positions.

The stability of linear trains is less clear. Lattice-Boltzmann simulations performed by
Kahkeshani et al. indicate that same-streamline pairs are stable [42], for which Ref. [46]
provided an explanation based on the minimization of the kinetic energy of the fluid.
However, early experiments [47] and most recent 2D simulations [154] report an increase
of particle spacing over time in agreement with our own findings (cf. Ch. 4). Some
experiments report that for increasing Reynolds number the axial spacing between the
particles decreases [43, 153] even to the value of cross-streamline pairs [42]. However,
other experiments report an increase of the spacing in linear trains with increasing Re [44].
In the range of Re ≈ 1 to 4 recent experiments observe that the spacing is independent of
the flow velocity and that the smallest channel dimension determines the axial spacing
between pairs [145]. Finally, simulations using a force coupling method report that trains
are only stable up to lengths of 2 to 4 particles depending on the confinement ratio and
the particle Reynolds number [153].

A comparison of the different experimental results is hampered since they use very
different parameters, such as the confinement ratio a/w and channel Reynolds number.
While experiments with smaller particles can go to higher channel Reynolds numbers
with Re > 100 [40, 43], experiments with larger particles typically operate at channel
Reynolds numbers between 1 and 20 [41, 47, 145]. As the particle Reynolds number
is Rep = (a/w)2Re, both experiments and simulations can operate at the same particle
Reynolds number although the other parameters are very different. This is especially
relevant for Re ≈ 100, where the secondary flow around a single larger particle (a/w = 0.4)
becomes so strong that it influences the particle-wall interactions [44]. A detailed review
of the effect of particle size suggests that for a small confinement ratio a/w / 0.1 the
particles move closer together with increasing Reynolds number [40, 43, 153] while for
larger particles the separation seems to increase [44, 47].

Experiments are often limited by the channel length. Typical length-to-width ratios are
L/2w ≈ 1000. To overcome the limitation of the channel length, Dietsche et al. used an
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oscillatory flow device which switched the direction of the flow such that the particles
stayed in the channel and were not affected by the switching [145]. They confirmed the
stability of cross-streamline pairs. For the same-streamline pair they identified a range of
separations, 7.4 < ∆z/a < 14, where the particles moved together at low speed. However,
the error bars were much larger than the measured speed values.

5.2 Microfluidic setup

Similar to the previous chapter we focus on particles with a radius a/w = 0.4 and
rectangular channels with an aspect ratio w/h = 0.5 (cf. Fig. 4.1). We place N neutrally
buoyant particle with radius a on the x-z-plane in the channel flow. The particles are
initialized either in a staggered or a linear particle train (Fig. 5.1). If not stated otherwise,
the particles are initialized on the equilibrium position of single particles on the x axis.
The initial axial spacing ∆z0 of two neighboring particles in a staggered configuration
differs from the equilibrium value ∆zCS

eq observed in the previous chapter. Same-streamline
configurations are initialized with an axial spacing smaller than the limiting distance, we
observe at long times. To analyze the stability of particle pairs and trains, the channel
length is always chosen sufficiently long [at least L ≈ (N + 1) · 10 a] to ensure that
hydrodynamic interactions with images from the periodic boundary conditions along the
channel were not relevant (cf. Fig. 4.10). When analyzing the microfluidic phonons, the
channel length always was L = N ·∆z, so that we simulated an infinitely long particle
train using periodic boundary conditions. In Sects. 5.3.1 and 5.3.2 we restrict ourselves to
the Reynolds number Re = 20. In Sec. 5.4 we vary the Reynolds number between 5 and
100.

We now present our results starting with the stability of cross-streamline and same-
streamline pairs, which we then extend to the same types of particle trains. Finally, we
address microfluidic phonons concentrating on the damped propagation of a displacement
pulse.

5.3 Stability of particle trains

5.3.1 Stability of cross- and same-streamline particle pairs

Before we consider multi-particle trains, we first analyze the long-time behavior and
stability of a pair of rigid particles where both particles are initialized at their lateral
single-particle equilibrium positions. We focus on the axial distance and look for stable
axial configurations. We already analyzed the dynamics of a pair of particles. In the
following, we focus on the case where both particles already occupy their equilibrium
lateral positions. Thus, they stream with the same velocity.
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Figure 5.2: (a) Axial distance ∆z/a and (b,c) distance from the channel centerline |x|/w as a
function of time for particles in a cross-streamline configuration. Both particles are
initialized at single-particle equilibrium positions, x = ±xsingle

eq , and different initial
axial distances ∆z0 are chosen. In (a) the dashed line indicates the equilibrium axial
distance ∆zCS

eq /a ≈ 4.2 and the upper axis labels indicate the traveled distance of
the center-of-mass of the pair along the channel for ∆z0/a = 8. (b) Initial distance
∆z0 = 6a > ∆zCS

eq and (c) ∆z0 = 2.5a < ∆zCS
eq .

5.3.1.1 Cross-streamline particle pairs

In Sec. 4.2.2 we found that particles in all analyzed bound trajectories reach the same
cross-streamline configuration with an axial distance, ∆zCS

eq = 4.2 a, independent of the
initial positions. In order to observe the damped oscillation, leading and lagging particles
in flow were initialized with a similar lateral position xlag ≈ −xlead. Here, we analyze the
situation where both particles are initialized on the single-particle equilibrium positions
at ±xeq/w ≈ ±0.4 but with a distance ∆z0 6= ∆zCS

eq . In Fig. 5.2 (a) we vary the initial
distance ∆z0 from 2.5 a to 9 a and plot the respective time course of the axial distance. In
all cases the particles reach ∆zCS

eq ≈ 4.2, even when the initial axial distance is as large
as 9 a. In the graph the top axis indicates the traveled distance of the particle pair for
∆z0/a = 8. This shows that the particle pair relaxes to its equilibrium configuration on
distances much shorter than typical channel lengths of the order of L/2w ≈ 1000 [43, 47].

In Fig. 5.2 (b,c) we show the time course of the lateral coordinates of the leading and
lagging particles. When the initial axial distance ∆z0 is larger than the equilibrium value
[Fig. 5.2 (b)], the lateral positions hardly change. However, the resulting relative axial
velocity is sufficient to let them approach each other. Only when the particles are initialized
closer to each other [Fig. 5.2 (c)], the lateral position change noticeably by ca. 10 %. This
then initiates a rapid increase of the axial spacing due to the different flow velocities [blue
line in Fig. 5.2 (a) with ∆z0/a = 2.5] followed by a slow relaxation back to the equilibrium
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Figure 5.3: (a) Lateral positions and (b) axial distance as a function of time for a same-streamline
particle pair. The dashed line localizes the maximum lateral displacement. Inset:
At larger times still a slow but steady increase of ∆z is observable. The upper axis
indicates the traveled distance of the center-of-mass of the pair along the channel. At
t = 45w2/ν the particles have moved a distance of z/2w = 650.

value. We note that in the final configuration the leading particle is located slightly closer
toward the channel center than the lagging particle but moves with the same velocity. The
difference is smaller than a lattice unit. Our study shows that particle pairs relax toward
their preferred distance even when starting at their lateral equilibrium positions.

5.3.1.2 Same-streamline particle pairs

In Sec. 4.2.1 we already observed that particles initialized on the same streamline with
an initial distance of ∆z0/a = 5 slowly drift apart, even when positioned on the single-
particle equilibrium position. We explained this behavior with an asymmetry in the two
corresponding lift force profiles: the leading particle is pushed toward the channel center
while the lagging particle is pushed toward the walls such that they move apart. This
behavior does not change for larger ∆z0. Hence, our previous simulations indicate that
same-streamline pairs are not stable.

We now analyze this behavior in more detail in Fig. 5.3. Again, we initialize the particles
at the lateral equilibrium position and with an axial spacing equal to the axial distance
∆zCS

eq of the cross-streamline pairs. The leading particle is noticeably and rapidly pushed
toward the channel center while the lagging particle moves outwards [Fig. 5.3 (a)]. This
drives the particles apart, which is visible by the rapid increase of the axial distance in
Fig. 5.3 (b). Beyond ∆z/a ≈ 5, the particles slowly relax toward their equilibrium lateral
position. However, even at large times, where both particles should move with the same
speed, we still observe a slow but steady increase of the particle spacing [Fig. 5.3 (inset)].
In experiments such a drift might be difficult to measure. According to our simulations,
beyond t = 5w2/ν the distance ∆z increases by only 6% while the particle pair travels a
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Figure 5.4: Histogram of particles distances for randomly initialized pairs after the center-of-mass
has traveled a distance of z/2w = 1000. The small peak at ∆z/a = 4 corresponds to
cross-streamline pairs, which formed despite the fact that all particles were initialized
on the same channel side. The red line shows data from experiments for pairs of
particles with the same confinement ratio (a/w = 0.4) and the same traveled distance
(2.5 cm) [47]. We rescaled the experimental data by a factor of 0.4 to match the height
of the peak.

distance of 600× 2w. This is of the order of channel lengths used in experiments. Taking
typical values of L = 5 cm and 2w = 50 µm, we obtain L/(2w) ≈ 1000 [43].

Experiments typically report a distance of about twice the equilibrium spacing of cross-
streamline pairs [42], which would be ∆z/a ≈ 8.4 in our case. Our simulations indicate
that the particles go to a larger spacing. In experiments the starting conditions are not as
well-defined as in our case. To reproduce the experimental statistics for particle distances
observed in Ref. [47], we initialize 76 different pair configurations, where both particles
are randomly placed in the upper channel half with an initial distance 5a < ∆z0 < L/2.
In Fig. 5.4 we plot the distribution of particle distances after the particles have traveled
a distance of 1000 × 2w, which is a typical value in experiments as mentioned above.
The simulated distribution matches well with experiments for the same particle size with
a peak at ∆z/a = 9.8 [47]. The authors do not specify the channel Reynolds number
explicitly, but the particle Reynolds number Rep = Re(a/w)2 = 2.4 is similar to the value
of 3.2 used for this work.

To summarize, while we obtain good agreement with early experiments [47], we could
neither identify an additional stable equilibrium distance for higher Reynolds numbers [42]
nor reproduce an attractive interaction of particles in same-streamline pairs [145].

5.3.2 Stability of particle trains

Based on the insights we gathered from the behavior of particle pairs, we continue by
analyzing multi-particle trains and begin with staggered particle trains.
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Figure 5.5: Snapshots of the contraction process of a staggered particle train at different times
given in units of w2/ν. At t = 0 all particles are initialized with a nearest-neighbor
distance ∆z0 = 6.5a = 1.5∆zCS

eq . The color of the trailing pairs corresponds to the lines
in Fig. 5.6 (b).

5.3.2.1 Staggered particle trains

Concentration on the ideal case, we analyze how an expanded staggered particle train
contracts toward its equilibrium configuration. For this we consider 11 particles, which we
initialize on their single-particle position at ±xeq with an axial distance of ∆z0 = 6.5 a ≈
1.5∆zCS

eq .

As expected from the analysis of the cross-streamline pairs, the axial distances between the
particles decrease in time. However, as Figs. 5.5 and 5.6 (a) demonstrate, the contraction
does not occur uniformly but rather through the formation of particle pairs. The contrac-
tion starts in the front and back of the train. We observe that initially only the leading and
trailing pairs contract, whereby mainly the leading particle of the pair moves backwards
toward the lagging particle [Fig. 5.5 (t = 3.2)]. While the pairs contract, they slow down.
The leading pair stays connected to the staggered train but the last pair separates from
the rest of the train due to its reduced velocity (see below). This triggers the contraction
of the next pair and then a third pair so that at t = 7.2 three individual pairs in the back
of the train exist. The contraction of these pairs always occurs in the same manner. In
Fig. 5.6 (b) we plot their particle distances versus time and have shifted the curves by the
time the previous pair needed to contract and separate. Then, all three curves fall onto
each other.

The particle pair in the front of the staggered train also slows down. The next particle
in line catches up so that a three-particle cluster exists at t = 4.4. This cluster slows
down further and the next two particles can catch up. Ultimately, at t = 7.2 a contracted
five-particle cluster exists followed by the 3 trailing pairs. The larger cluster slows down
(see below) so that the three pairs can catch up one by one (t = 16.9) and, finally, at
t = 32.2 the staggered train has reached its equilibrium configuration.

84



5.3 Stability of particle trains

back of the crystal

front of the crystal

0 10 20 30 40
−40

−20

0

20

40

t/(w2/ν)

z/
a

0 2 4 6 8

4

5

6

t/(w2/ν)

∆
z/
a

∆z0,1(t)

∆z2,3(t− 2)

∆z4,5(t− 4)

a) b)

Figure 5.6: (a) Axial positions of all the particles in a staggered particle train as a function of time.
The positions are given in the center-of-mass frame of the train. (b) Axial particle
distances of the trailing particle pairs (cf. Fig. 5.5) as a function of time. The curves of
the second and third pair are shifted such that they fall onto each other. The initial
axial distance is ∆z0 = 6.5 ≈ 1.5∆zCS

eq .

For the contraction of the particle train, two mechanisms are relevant. They are related
to viscous drag reduction of clusters of particles compared to a single particle and when
the clusters are more compact [158, 161, 162]. In our case, this means the resistance
to an imposed Poiseuille flow is reduced and therefore the clusters slow down relative
to the flow. Thus, a pair of particles slows down when the axial distance decreases and
the center-of-mass velocity also decreases for larger staggered trains. We discuss this in
detail in Fig. 5.7. In graph (a) we plot the center-of-mass velocity of a cross-streamline
pair as a function of the axial particle distance. Although the decrease of the velocity
with ∆z is very small, it quantitatively agrees with the reported results of simulations
for a pair of rigid particles (a/w = 0.8) moving on the centerline of a confined flow at
Re� 1 [162]. In plot (b) we observe for staggered particle trains that the center-of-mass
velocity monotonically decreases with increasing number of particles. For N > 5 this
decrease is linear. The difference in velocities of a cluster consisting of 20 particles and a
single particle is about 5 %. A similar dependency on the particle number was reported
for simulations of a chain of particles driven by an applied force along a ring in a bulk
fluid [161]. However, in this situation the variation of the velocity is more pronounced
(around 50 %). The same type of collective drag reduction was also reported by Beatus
et al. [155] for a linear chain of droplet disks in a quasi-2D flow. The authors named this
observation the peloton effect, in analogy to the reduced drag of a group of closely riding
cyclists.

We finish with a final observation. Figure 5.8 shows that the axial spacing of neighboring
particles in a staggered train is non-uniform and increases toward the front of the train. For
trains with more than nine particles the axial distance saturates at a value of ∆z/a = 4.8,
which is about 15 % larger than the distance of a single pair (∆zCS

eq /a = 4.2). Finally, we
observe that the distance of the leading pair is slightly reduced for trains consisting of
seven particles or more.
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Figure 5.7: (a) Axial center-of-mass velocity for a cross-streamline pair as a function of the particle
distance. The velocity is plotted in units of the fluid flow velocity at the lateral position
of the particle pair. The data were extracted from the gray curve Fig. 5.2 (a), which
starts at ∆z0 = 9a. (b) Axial center-of-mass velocity for a staggered particle train as
function of the number of particles in the train. The velocity is plotted in units of the
single-particle velocity. The gray dashed line is a linear fit for range with N > 5.

5.3.2.2 Linear particle trains

In the following we analyze the stability of linear particle trains and check if multi-particle
interactions can stabilize the trains. For the individual same-streamline pairs we found
that the axial distance of a same-streamline particle pair steadily increases in time (cf.
Sec. 5.3.1). However, linear particle trains have been observed both in experiments [42,
43] and simulations [153] where they typically align with an axial particle spacing about
twice the distance measured for staggered trains.

We initialize the particles in a linear train at the lateral equilibrium positions of single
particles and choose an initial axial distance of ∆z0/a = 4 between neighboring particles.
Figure 5.9 shows that the mean axial distance for linear trains of different sizes increases
monotonically in time. However, while for N = 2 the axial distance hardly changes after
reaching a distance of ∆z/a ≈ 10, the mean distance of trains with N > 2 increases
visibly and the increase is slower for longer trains. The reason is that the expansion of the
linear train is non-uniform. In Fig. 5.10 we show snapshots of a train with five particles
at different times and plot the axial distance of neighboring particles. After an initial
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fast expansion to ∆z/a ≈ 8, which is about twice the distance of a cross-streamline pair,
always the leading particle is carried away by the imposed flow while the particle train
behind it moves more slowly. This creates a particle train where the particle distance at
one instant in time increases from the back (pair index 1) to the front (index 4). In our
simulations all particles have traveled a distance of more than 1000w as the upper axis of
the plot shows. Thus, the steady increase of ∆z is very slow and it might not be possible to
observe this in a typical experiment. However, our data show that the final configuration
in the simulations is not a stable configuration.

The separation of the leading particle from the rest of the train was also reported in
simulations by Gupta et al. [153]. They also mention stable trains up to a certain cluster
size, an effect the authors name conditional stability. Their critical cluster size depends
on the confinement ratio a/w and the particle Reynolds number. In their analysis the
authors focused on confinement ratios a/w = 0.08− 0.14, which is much smaller than in
our work. However, their results indicate that for larger particles the critical cluster size
reduces to N = 2.
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Figure 5.10: Expansion of a linear particle train consisting of 5 particles. (a) Snapshots at different
times given in units of w2/ν. At t = 0 all particles are initialized with the axial
equilibrium distance of cross-streamline pairs. (b) Axial distance of neighboring
particles as a function of time. From the back to the front the pairs are indexed by 1
to 4.
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Figure 5.11: Histogram of particles distances for 4, 6, or 11 particles randomly initialized in the
upper channel half after they have traveled at least a distance of 160w along the
channel. The small peak at ∆z/a = 4 corresponds to cross-streamline pairs, which
formed despite the fact that all particles were initialized on the same channel side.
The red line shows data from experiments by Kahkeshani et al. [42] for slightly smaller
particles with a/w = 0.34. We rescaled the experimental data by a factor of 0.7 to
match the height of the peak.

Finally, we calculate the statistics of the particle spacing in linear trains (Fig. 5.11). For
this we randomly place 4, 6, or 11 particles in the upper channel half and ensure that
there is no overlap between the particles. The channel length is chosen such that the
volume fraction is fixed at ϕ = 0.004 as in Ref. [42]. After the particles traveled at least a
distance of 160w, we measure the distance to the nearest-neighbor particles. The recorded
statistics shows good agreement with experimental data measured for slightly smaller
particles with a/w = 0.34 compared to our particles with a/w = 0.4 (Fig. 5.11). Again,
we observe a small peak at ∆z/a = 4.2 which, in our case, corresponds to particles which
move to the lower channel half.

5.3.2.3 Staggered particle train with defect

Besides the pure cross-streamline and same-streamline particle trains we also initialized a
staggered train with a single defect. The results for the temporal evolution of the particle
distances and some representative snapshots of the train are presented in Fig. 5.12.

To create a defect, the fourth and fifth particles are placed on the same channel side so
that two staggered trains exist, which consist of four and five particles, respectively. The
trains first contract individually while they drift apart from each other as the increasing
distance of particle 4 and 5 indicates [red line in Fig. 5.12 (b)]. Only after the two trains
have reached their equilibrium configuration, we observe that the lagging four-particle
train catches up to the slightly slower train with five particles [see Fig. 5.7 (b)]. In the final
state the particle distance of the defect is about twice the equilibrium particle distance
of cross-streamline pairs similar to observations in [30, 159]. We note that this distance
is not governed by any attractive interaction between the two particles but solely due to
the fact that the larger leading train moves slower than the smaller trailing train. Indeed,
when we swap the two trains such that the smaller one is leading, the two trains slowly
drift apart in time.
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Figure 5.12: Staggered particle train with defect. (a) Snapshots at different times t of the non-
uniform contraction from the initial (t = 0) toward the final (t = 154) configuration.
(b) Distances between neighboring particles plotted versus time. The final particle
distance of the defect is 2∆zeq as indicated by the dashed line.

5.4 Microfluidic phonons

Regular structures such as the staggered particle trains can be perturbed and thereby
show propagating phononic excitations or microfluidic phonons. To study them in more
detail, we analyze how a cross-streamline train reacts to a perturbation of a single particle
position. We fit a train of 12 particles into a channel and adjust its length such that
periodic boundary conditions generate an infinitely extended staggered train.

In Fig. 5.13 (a) we show the staggered train, where we initialized the 12 particles with
an axial spacing of ∆z/a = 4.2, which corresponds to the equilibrium distance of an
isolated particle pair, and with lateral equilibrium positions at ±xeq/w = ±0.4. To
perturb the system, we move one particle inwards toward the channel center as indicated.
Thus, it moves faster than the train and approaches the neighboring particle in front.
Figure 5.13 (b) quantifies the reaction of all the particles by plotting their displacements
∆|x(t)| = |x(t)| − xeq from the equilibrium position where ∆|x| < 0 means motion
toward the channel center and ∆|x| > 0 toward the channel wall. While approaching the
neighboring particle, the first particle is pushed back to its equilibrium position and thereby
pulls the neighboring particle from the opposite channel side toward the center. Thus, the
whole process repeats such that a displacement pulse travels through the staggered train
as illustrated by Fig. 5.13 (b). The particle motion is strongly damped since the inertial lift
force pushes the particles back toward their equilibrium positions. The initially displaced
particle (pink curve) overshoots by a small distance and then relaxes toward its equilibrium
position. Also, the propagating displacement pulse is exponentially damped (dashed line
in Fig. 5.13) with a damping rate γ, which we discuss in more detail further below. We
observe that individual particles in a train return much faster to their equilibrium positions
compared to isolated particles due to the coupling to neighboring particles, while the
relaxation time of the whole pulse, γ−1, is roughly twice as big. Below, we will also discuss
in more detail the velocity of the displacement pulse.

The mechanism for the propagating displacement pulse can be explained as a sequence of
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Figure 5.13: (a) Staggered particle train with an initial displacement of the seventh particle
counted from the end (pink) and equilibrium axial particle distance is ∆z/a = 4.2.
(b) Lateral particle displacement from the equilibrium position, ∆|x(t)| = |x(t)| − xeq,
plotted versus time for all the particles. The color coding is the same as in (a). Here
∆|x| < 0 means motion toward the channel center and ∆|x| > 0 toward the channel
wall. The exponential decay of the pulse height with time is indicated (dashed line)
and γ is damping rate. The Reynolds number is Re = 25.

swapping trajectories similar to the one we discussed in a previous chapter (cf. Sec. 4.2.1).
As indicated in Fig. 5.14, the displaced particle approaches the next particle in line, and
they swap their lateral positions such that xafter

lead = −xbefore
lag and vice versa. In principle,

a propagating displacement pulse of the same type but without damping should also be
possible in low-Reynolds-number flow, as swapping trajectories exist in this regime as
well [141].

If the displacement brings the first particle close to or across the channel centerline such
that ∆|x|/w ≤ −0.4, it becomes too fast and can no longer swap its position with the
next particle. Instead, it moves through the staggered train (see Fig. 5.15) and leaves
behind a defect, where two neighboring particles move on the same streamline. This is
reminiscent of the passing trajectory for a particle pair identified in the previous chapter
(cf. Sec. 4.2.1).

urel urel

Figure 5.14: The swapping mechanism from the previous chapter explains how the displacement
pulse is passed from the lagging to the leading particle. The curved arrows indicate the
particle trajectories during swapping. The lateral equilibrium position of the particles
and the channel center are marked by the dashed and dotted lines, respectively.
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Figure 5.15: Top: Example of a passing trajectory in a staggered train when the initial lateral
displacement from the equilibrium position is too large. Bottom: Snapshot after the
particle has passed two of its neighbors.

5.4.1 Quantitative analysis of the displacement pulse

In Fig. 5.16 we plot the ratio of pulse velocity to train velocity vpulse/vtrain and the damping
rate γ of the displacement pulse as a function of the Reynolds number Re. This is similar
to our analysis of the damped oscillations for a pair of rigid particles (cf. Sec. 4.2.2).
The velocity ratio is roughly constant in Re so that we identify a linear dependence
vpulse ∝ vtrain ∝ Re, which makes sense since the fluid flow directly determines how
fast displaced particles approach their neighbors. A similar scaling was observed for the
oscillating frequency of a pair of rigid particles (Sec. 4.2.2). The pulse velocity is also
larger than the train velocity since the displacement pulse is propagated by faster moving
particles. For the damping rate γ of the displacement pulse we find good agreement with
the damping rate of the oscillating particle pair in the regime of Re ≤ 20 [Fig. 5.16 (b)].
The γ values for the propagating pulse are slightly lower. The damping rate scales
quadratically with Re, only for higher Reynolds numbers the scaling deviates slightly from
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Figure 5.16: Ratio of pulse to train velocity (a) and damping rate γ (b) of the displacement pulse as
a function of the Reynolds number. In all cases the initial axial spacing is ∆z0/a ≈ 4.2
and the initial displacement is ∆|x|0/w = −0.2. For comparison, we also plot γ for
an oscillating particle pair from the previous chapter.
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Figure 5.17: Ratio of pulse to train velocity (a) and damping rate γ (b) of the displacement pulse
as a function of axial particle distance ∆z. The other parameters are Re = 20 and
∆|x|0/w = −0.2. The dashed lines indicate a region with almost constant γ.

Re2. Thus, damping of the propagating pulse is a clear inertial effect due to the acting
inertial lift force and therefore the scaling with Re2 is expected.

In our setting using periodic boundary conditions along the channel axis, we can compress
or expand the infinitely extended particle train by changing the channel length. This
allows to study pulse propagation under tension. A possible experimental realization
are expanding or contracting channels, where the channel width changes abruptly. For
example, in an expanding channel the particle spacing relaxes slowly to its larger dis-
tance [24, 47]. In Fig. 5.17 we show ratio of pulse to train velocity vpulse/vtrain and the
damping rate γ as a function of the axial particle distance ∆z. The velocity ratio again
is nearly constant with varying ∆z, while the train velocity increases linearly with ∆z
due to the increased friction (not shown). For the damping rate we find three different
regimes. When the staggered train is strongly compressed, the damping rate is strongly
reduced, which is due to the strong repulsive interactions between particles. Additionally,
we observe that the displacement pulse no longer travels in one direction only, rather it
propagates in both directions at the same time. For axial distances around the equilibrium
value (3.5 < ∆z/a < 4.5) the damping rate is almost constant and it slightly increases
for ∆z/a > 4.5. Here, the regular train is not stable. Instead, the distances between two
particles contract leaving larger gaps between particle pairs. Thus, the particles relax
toward their equilibrium positions more like an individual particle, increasing the overall
damping rate.

Finally, we also varied the initial displacement ∆|x|0 from the equilibrium position and
plot in Fig. 5.18 ratio of pulse to train velocity vpulse/vtrain and the damping rate γ.
Positive ∆|x|0 means that the particle is moved toward the channel wall. Since it thereby
slows down relative to the staggered train, it approaches the particle behind and the
displacement pulse moves against the staggered train. For the velocity ratio this means
vpulse/vtrain jumps from a value larger than one to a value smaller than one when ∆|x|0
becomes positive, while the pulse velocity is relatively constant on both sides of the jump.
The dependence of the damping rate is less intuitive. It is constant for large negative
∆|x|0, goes through a minimum and then increases linearly for increasing ∆|x|0 starting
at ∆|x|0 = −0.1.
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Figure 5.18: Ratio of pulse to train velocity (a) and damping rate γ (b) of the displacement pulse
as a function of the initial displacement ∆|x|0. The other parameters are Re = 20 and
∆z/a = 4.2.

5.4.2 Influence of a defect on the pulse propagation

Finally, we study how a defect in the staggered particle train strongly dampens the
propagating pulse and show our results in Fig. 5.19. We reduce the number of particles
to 11 and introduce a defect with two neighboring particles on the same streamline, as
already investigated above. As illustrated in Fig. 5.19, the pulse is initiated at the fifth
particle to the left of the defect. Up to the defect it propagates as before. However, having
passed the defect it is strongly damped such that the pulse vanishes almost completely.

5.5 Conclusions

The axial alignment of particles in inertial microfluidic devices is an important feature
for counting, manipulating, and sorting cells. Therefore, the stability of trains is a crucial
ingredient for designing and understanding lab-on-a-chip devices. As the literature on this
topic does not always agree with their findings, we focused on a detailed analysis for one
specific set of parameters.

The stability of cross-streamline pairs is accepted in the literature. We showed that
particles in such a pair attract each other over large distances while their lateral positions
hardly change. A cross-streamline pair always contracts or expands to its equilibrium
axial distance. For same-streamline pairs we thoroughly analyzed and thereby confirmed
the result of the previous chapter that the same-streamline configuration does not have
an equilibrium axial spacing. However, from smaller distances it quickly expands to a
characteristic separation but even at long times very slowly drifts apart. Their dynamics is
dominated by a repulsive interaction, which rapidly decays with increasing axial distance.
Although our observations contradict the existence of stable same-streamline pairs [42,
46, 145], the distribution of axial distances agrees with experiments [47]. In particular, it
has a well-defined peak at about twice the distance of cross-streamline pairs.

Then, we extended our analysis to particle trains with more than two particles and first
analyzed how staggered trains relax to their equilibrium configurations. In particular,
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Figure 5.19: (a) Staggered particle train with a defect and an initial displacement of the first
particle counted from the end (pink). The equilibrium axial particle distance is
∆z/a = 4.2 and ∆z/a = 8.4 between the defect particles. (b) Lateral particle
displacement from the equilibrium position, ∆|x(t)| = |x(t)| − xeq, plotted versus
time for all the particles in the upper and lower channel half. The color coding is the
same as in (a). The arrow indicates the strongly damped displacement of the first
particle after the defect has been passed.

a staggered train initialized with an axial particle spacing larger than the equilibrium
distance contracts non-uniformly. The non-uniform contraction is related to two effects
of collective drag reduction: (i) when two particles in a cross-streamline configuration
approach each other they slow down since they exhibit less resistance to the driving
Poiseuille flow and (ii) the center-of-mass velocity of staggered trains decreases the
more particles are in the train (peloton effect). These two effects drive the non-uniform
contraction in the back and front of a staggered train. While in the back trailing pairs
of particles separate from the rest of the train, in the front the leading pair slows down
and collects more and more particles. Only with time the pairs catch up with the particle
train in front of them and form one large train. Finally, we found a master curve for the
axial spacing within a staggered train. The spacing between the particles increases from
the back to the front of the train and ultimately saturates for sufficiently long trains. So
a staggered train is slightly expanded at the front relative to the back. In experiments a
particle train slowly expands when it enters a channel with a suddenly expanding cross
section [24, 47]. This could be a means to observe the scenario outlined here.

For linear trains we found a very similar behavior as for same-streamline pairs. Starting
from a particle distance similar to the staggered train, the spacing relaxes in the beginning
phase to a value close to experimental results [42] about twice the distance of cross-
streamline pairs. Then, the particles continue to slowly drift apart non-uniformly. The
leading particle moves the fastest and separates from the rest of the train. This confirms
a similar observation reported by Gupta et al. for a smaller confinement ratio [153].
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In addition, we were able to reproduce the statistics of particle distances observed in
experiments [42].

Finally, we analyzed how a displacement pulse migrates as inertial microfluidic phonon
through a staggered train. The displacement is transported from one particle to another
via swapping trajectories, where the inertial lift forces damps the amplitude of the displace-
ment pulse. When the initial displacement is too large, the displaced particle itself moves
through the staggered train and leaves behind a defect. The ratio of pulse to train velocities
is almost constant for varying Reynolds number and axial particle distance, whereas it is
by ca. 30 % smaller for initial displacement toward the wall compared to perturbations
toward the channel center. For the damping rate of the displacement pulse we confirm the
quadratic scaling with the Reynolds number, which identifies damping as an inertial effect.
The damping rate is almost constant for varying axial distance between the particles and
thereby changing line density. Only when the particles are close together the damping
rate is reduced. This is especially interesting when the line tension of staggered trains
changes rapidly when entering sections of the channel with expanding or contracting cross
sections [24, 47] since then the trains want to expand or contract.
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6
Single deformable capsule

One fascinating application of lab-on-a-chip devices is the diagnoses of diseases
based on mechanical properties of cells. The deformability of the capsule results
in an additional lift force directed toward the channel center which is in parts
compensated by the inertial lift force. While a deformable capsule is less complex
than a real living cell, it allows us to get a deeper understanding of the relevant
effects which determine the dynamics of single deformable particles in inertial
microfluidics. We first analyze the equilibrium positions of a single deformable
capsule in a microchannel with quadratic or rectangular cross section. We verify
that the scaling of the lift force for a rigid particle also holds for a deformable
capsule and analyze how the deformability influences the lift force scaling. We
show, that the lift force for a deformable capsule is the sum of the inertial lift
force of a rigid particle and the lift force derived for a deformable capsule without
inertia. Finally, we use the Saffman effect to further control the equilibrium
position of the capsule which should allow a finer separation of deformable
capsules. The chapter is based on the publication of Ref. [A], where these results
are presented.

Most applications of inertial microfluidics arise in the field of medical analysis. Due to its
passive sorting capability with high throughput this technology might drastically reduce
the cost for diagnosis. However, the deformability of cells yields an additional lift force
which results in a migration of the capsule toward the channel center. This migration is
also possible in the case of negligible fluid inertia as the deformable membrane breaks
the kinematic reversibility of the Stokes equation. So far, deformable capsules were
mostly studied in Stokes flow [49, 50, 163]. Only in recent years studies have been
extended to the inertial regime [27, 164–168]. In particular, Hur et al. demonstrated with
their experiments that particles can be separated from each other based on their elastic
deformability [16] . Indeed, particles move closer to the channel center the softer and
the larger they are. This effect was also studied in simulations [169, 170]. Although all
results agree that soft particles move to the channel center, the influence of the Reynolds
number is not completely clear. While in some cases the final equilibrium distance from the
channel center seems to depend on the Reynolds number [36, 171], Kilimnik et al. found
no evidence of such a behavior in their computer simulations [169]. In the following,
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we analyze how this inwards directed deformability-induced migration compensates the
outwards-directed inertial focusing.

6.1 Microfluidic setup

In the following analysis we focus on a single deformable particle in a microchannel with
a quadratic cross-section. In Sec. 6.2.2 we vary the channel cross section to study the
influence of the deformability on the equilibrium position. To ensure that the particle
does not interact with its periodic images our simulations are conducted with a length-to-
width ratio of L/2w = 4. For the deformable capsule we need a much higher resolutions
compared to the rigid particles as the high shear rate induces defects in the mesh used
to model the capsule. Hence, we choose 120 cubic unit cells along the full width of the
channel when we record trajectories of the capsules, and 90 cells for determining the
lift force profiles. Especially for soft particles (La = 1 to 10) and high Reynolds numbers
(Re = 100) the lift force is not constant but oscillating in time. To avoid these oscillations,
the resolution is further enhanced to 180 cells. The instability in the mesh is mainly caused
by the bending contribution Eq. (2.71). By changing the formula for the bending one can
improve the numerical stability of the mesh and reduce the required resolution [104].

In this chapter we characterize the deformable capsule by the capillary number Ca or
the Laplace number La (cf. Sec. 2.6.3) and analyze the change introduced by varying the
particle radius a and the channel Reynolds number Re. We defined the capillary number
and the Laplace number as follows (cf. Sec. 2.6.3)

Ca =
ρνumaxa

wκs
and La =

κsa

ρν2
. (6.1)

We vary the Laplace number in the interval between 1 (very soft) and 1000 (almost rigid)
which corresponds to a capillary number between 1 · 10−4 and 10. For the Reynolds
number we choose the values 5, 10, 50 and 100.

6.2 Equilibrium position of a deformable capsule

6.2.1 Influence of deformability on the equilibrium position

We first study the equilibrium position of one single capsule as a function of its deforma-
bility. To determine the equilibrium position of the capsule we use two different methods.
The first method is closer to the experiment, the second uses lift force profiles and will
be explained further below. In the first method, the particle is put at a specific position
and can then move freely. Figure 6.1 shows a collection of example trajectories in the
lateral plane. In the initial phase the particles migrate in the direction of the channel
center. When the particles are close to their equilibrium distance they change direction and
move in a polar direction toward their final equilibrium positions, which is located on the
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Figure 6.1: Trajectories of the capsules in the cross-sectional plane of the channel with different
rigidity quantified by the Laplace number La. The trajectories are plotted for different
particle sizes a/w and Reynolds numbers Re as indicated in (a)–(d). The capsules start
at the same position and the endpoint of the trajectories are shown by filled circles.
Some simulations did not reach their steady state indicated by the open symbols. The
more deformable the capsule is (smaller La), the closer the particle migrates toward
the channel center at x = y = 0. The migration process is split into two different
processes. First the particle migrates fast radially toward the channel center. When the
particle reaches its approximated equilibrium distance, it changes the direction and
slowly migrates toward its equilibrium position.
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diagonal for most particles. Only small capsules with a/w = 0.1 and capsules at Re = 100,
which are sufficiently rigid (La > 50), clearly migrate toward the x axis [Fig. 6.1 (b,c)].

While this method gives a good indication for the migration process it is also computation-
ally costly. Especially the small particles with a/w = 0.1 at Re = 10 migrate slowly and do
not reach a steady state, even in the longest simulation runs [Fig. 6.1 (c)]. The reason
is that the lift force driving the particle motion strongly scales with particle radius a and
Reynolds number as we discuss later in this chapter. However, in most cases one clearly
sees to which position the particles migrate. The trajectories are similar to those of rigid
particles, which has been thoroughly studied in Ref. [38]. One key result is that larger
particles migrate toward the diagonal, where they are further away from the walls, while
smaller particles migrate toward the main axes.

As Fig. 6.1 gives no indication of the time scale of the migration, we analyze the lateral
velocity v⊥ as a function of the distance d from the center (Fig. 6.2). For this we focus on
the trajectories visualized in Fig. 6.1 (d). In all simulations the particle starts at the same
position at a distance d/w = 0.58. After a rapid increase in the beginning, the velocity
gradually decreases to zero as the particles move toward their equilibrium distance. Clearly,
softer particles (small La) show a larger lateral migration velocity than rigid particles.
The migration process splits into two phases. In the first phase the gradual decrease of
the lateral velocity corresponds to the inwards directed motion. When the capsules are
close to their final equilibrium distance, the radial movement stops and the lateral velocity
is close to zero. In the second phase the particles slowly drift along the polar direction
toward their equilibrium positions. The velocity is so small that it is hardly recognizable
in Fig. 6.2. These two different phases indicate a similar process as discussed in Sec. 2.5.6,
where the fast inwards directed motion was related to a shear-induced migration while
the second process was attributed to the rotation-induced migration.

As mentioned, the free trajectories require long simulation times. To determine the
equilibrium positions more efficiently, we measure the lift force profiles using the method
outlined in Sec. 3.5. The equilibrium positions correspond to the stable fix points. We
discuss the lift force profiles in more detail in Sec. 6.4. Figure 6.3 shows the 2D lift
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Figure 6.3: 2D-lateral lift force profile for the La = 10 trajec-
tory in Fig. 6.1 (a). The streamlines correspond
to the lift force at that position and agrees with
the lateral trajectory (green line).

force streamline which corresponds to the actual trajectory observed for the free flowing
particle. To obtain these lift force streamlines, we fix the lateral position of the capsule
and calculate the force and interpolate in-between. As most equilibrium positions are
located on the diagonals, we only determine the lift force profiles along that line.

In Figure 6.4 (a) we plot the equilibrium distance as a function of the deformability of
the capsule for different Reynolds numbers Re. For the rigid particles we observe that the
particles move closer toward the channel wall as the Reynolds number increases. This was
already predicted by analytical calculations [92] and observed by experiments [32, 44]
and simulations [35]. The shift toward the center is related to a change in the vorticity
production around the particle. When the deformability-induced lift force becomes more
dominant, the capsule migrates to an equilibrium position which is closer to the channel
center. As the strength of the inertial forces increase with Re2, the capillary number needs
to be much larger at higher Reynolds numbers for the particle to assemble at the channel
center.

All curves roughly have the same shape and shift to the right with increasing Re. This

a/w = 0.2

10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

Deformability Ca

d
eq
/w

5 10 50 100

100 101 102 103
0

0.2

0.4

0.6

Rigidity La

d
eq
/w

softg rigidrigid gsoft

Re

a) b)

Figure 6.4: Equilibrium distance deq/w from the channel center as a function of (a) the capillary
number Ca and (b) the Laplace number La for different Reynolds numbers Re. The
particle radius is a/w = 0.2.
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Figure 6.5: Equilibrium distance deq/w from the channel center for different particle radii.
(a) deq/w plotted versus La, (b) deq/w versus La/(a/w)4. The Reynolds number is
Re = 10.

indicates a more general dependency of the equilibrium distance. As we already discussed
in Sec. 2.6.3, the capillary number Ca is proportional to the absolute flow velocity umax.
Indeed, removing this dependency and plotting the equilibrium distance versus the Laplace
number La, which measures the rigidity of the capsule, all curves roughly fall onto one
master curve [Fig. 6.4 (b)]. This was already observed by Kilimnik et al. [169]. Deviations
from the master curve occur for rigid capsules (large La), which move closer to the channel
walls with increasing Re [32, 35, 92]. Also, for very low values of La, the value where the
capsule starts to move away from the channel center is sensitive to Re. This might be due
to the fact that the shapes of two capsules, located either in the channel center or close-by,
differ strongly as we will discuss below. Our results for the equilibrium distance were later
also confirmed by finite volume calculations [61].

The fact that the equilibrium position can be scaled on a master curve may seem surprising,
since the shear deformation increases with the Reynolds number. However, the analytical
expression for the deformability-induced lift force in Stokes flow [Eq. (2.76)] is also
proportional to u2max, which is the same scaling as in the inertial lift force [cf. Eq. (2.65)].
While this formula was derived for vanishing Reynolds numbers and small deformations,
the formula still holds close to the centerline as we discuss later in Sec. 6.4.

Furthermore, the particle radius a/w plays an important role for the equilibrium distance,
as Fig. 6.5 (a) demonstrates. Larger particles leave the channel center at larger La and
thereby assemble closer to the channel center compared to smaller particles. One reason
for this behavior is that La ∝ a. Additionally, the lift force, which drives the capsule away
from the center, roughly scales with a3 as discussed in Ref. [15] and Sec. 6.4. So, if we
plot deq versus La/(a/w)4, the equilibrium distances collapse on a master curve in the
regime where the capsules are deformable [Fig. 6.5 (b)]. For rigid particles (large La) the
curves do not collapse since smaller particles move closer to the channel walls [16, 35].
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6.2.2 Influence of the channel cross section on the equilibrium position

So far we only discussed a quadratic channel cross section. However, as illustrated in
Fig. 2.10 the number of equilibrium positions for a rigid particle can be adjusted by varying
the aspect ratio. For rigid particles it was reported that the diagonal equilibrium position,
where larger particles are located, switches toward the short axis at w/h ≈ 0.75 [38].
We mark the location of stable fixed points by a black dot and unstable fixed points by a
white dot. Half filled dots indicate saddle fixed points which are stable only along one
direction [38].

As discussed earlier, deformable capsules in a quadratic cross section mostly migrate
toward the diagonal. When we now decrease the aspect ratio w/h, we find that relatively
stiff particles (La = 250) still assemble close to the diagonal while this equilibrium position
completely moves toward the short axis at w/h = 0.5 (see Fig. 6.6). This agrees with the
results for rigid particles [38].

We now fix the channel’s aspect ratio to w/h = 0.5 and study what happens if the particle
becomes softer (Fig. 6.7). While the equilibrium position of the rigid particle with La = 250
was located on the short axis, a softer particle with La = 100 moves in the direction of
the diagonal. For an even softer particle (La = 10) the equilibrium position moves again
to a main axis but in this case toward the long axis. On the long axis the shear rate is
smaller which decreases the elastic stress on the particle. This trend was already observed
by Ref. [172]. However, they do not comment on this result. For very deformable particles
(La = 1), the equilibrium position is again located at the channel center. We note that the
particle with a/w = 0.4 and La = 10 is already focus at the channel center in case of a
quadratic cross section (cf. Fig. 6.5). Thus, aspect ratio of the channels further allows to
fine-tune the position of the equilibrium position which might offer new possibilities for
cell sorting.

In the following we again concentrate on quadratic channel cross sections.

6.3 Deformation of the capsule

In Fig. 6.8 we illustrate the shapes of capsules at their equilibrium positions for different
Laplace numbers (La) and two values of the Reynolds number Re = 10 and Re = 100.
At La = 1 the capsules are located in the channel center and show the expected form of
a parachute, which is more visible at larger Reynolds numbers [173]. At La = 2.5, the
capsules have left the center with deq/w ≈ 0.28 and the deformation is more asymmetric.
The capsules are less deformed with increasing La, although the capsules move further
away from the channel center, where the viscous shear stresses increase due to the
parabolic flow profile. Interestingly, although the shapes of capsules with the same La
differ for the two Re values, in Fig. 6.4 we demonstrated that their equilibrium distances
to the channel center are roughly the same independent of Re. This indicates, that the
shape and the deformation of a capsule is a result of the local shear rate and has only
limited effect on the equilibrium position.
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Figure 6.8: Shapes of the capsules for different Laplace and Reynolds numbers. Below each picture
is the corresponding equilibrium distance. The flow is directed to the right.

To quantify the deformation of the capsule, we determine the Taylor deformation index
D (cf. Sec. 2.6.5) at the equilibrium position of the particles. As mentioned above, the
deformation is the result of the shear rate which is proportional to the Reynolds number
Re. To compare the different deformation indices we normalize by the Reynolds number.
In Fig. 6.9 we plot D/Re versus Laplace number La for different Re. Very rigid particles
(La = 500) assemble around halfway between the channel walls and the center and
are hardly deformed (small D). The softer the particles become, the more they are
deformed asymmetrically, which means increasing D. This happens although capsules
migrate to smaller equilibrium distances deq, where shear gradients are lower. At small
La values, where the equilibrium distances deq in Fig. 6.4 (b) sharply decrease to zero,
the deformation indices also sharply decrease to small values since the capsules have a
more symmetric parachute shape in the channel center. The sharp decrease of D becomes
less prominent with decreasing Re since the capsules are less deformed. For stiff particle
(La ≈ 50) the deformation follows the analytical solution for a capsule in linear shear flow
[Eq. (2.78)] where we use the mean shear rate (violet line in Fig. 6.9).
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6.4 Lift force profile

6.4.1 Lift force scaling

The dynamics and equilibrium positions of an elastic capsule are determined by the lift
force profile. In this section we study how the inertial lift force scales with Reynolds
and Laplace number as well as particle radius and compare it to rigid particles. For rigid
particles with radii much smaller than the channel width the analytical solution [64, 92]
for the lift force predicts the scaling flift ∝ Re2(a/w)4. For larger rigid particles, of similar
size as ours, numerical solutions of the Navier-Stokes equations give a scaling proportional
to Re2(a/w)3 near the channel center and Re2(a/w)6 near the channel walls [54]. To
measure the lift force we follow the procedure described in Sec. 3.5. As almost all capsules
travel to equilibrium positions on the diagonal (cf. Sec. 6.2.1), we study the lift force
profiles along this direction.

We usually observe the typical form of the lift force profile with two equilibrium positions
of the capsule, where the lift force vanishes [see, for example, Fig. 6.10 (a)]: one unstable
fix point in the channel center (d = 0) and one stable fix point between channel center
and walls. In the previous section we found that the equilibrium position is almost
independent of the Reynolds number, in particular, in an intermediate range of capsule
rigidity measured by La. This independence of the Reynolds number is also visible in
the lift force profiles measured for different Reynolds numbers where all zero crossings
coincide [see Fig. 6.10 (a)]. Furthermore, the profiles for small Re fall on top of each
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Figure 6.11: (a) Inertial lift force flift along the diagonal in units of ρν2(a/w)3 plotted versus
distance d/w to the center for different particle radii a/w. Other parameters are
La = 10 and Re = 10. (b) Maximum of flift plotted versus a/w.
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Figure 6.12: Inertial lift force flift along the diagonal in units of ρν2(a/w)3 plotted versus distance
d/w to the center for different particle radii a/w. Other parameters are La = 500 and
Re = 10. In contrast to the softer particles (Fig. 6.11), the (a/w)3 scaling also holder
for larger particles.
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Figure 6.13: (a) Inertial lift force flift along the diagonal in units of ρν2 plotted versus distance
d/w to the center for different Laplace numbers La. Other parameters are Re = 10
and a/w = 0.2. (b) Maximum of flift plotted versus La.

other when we scale flift by Re2. This scaling is confirmed in Fig. 6.10 (b), where we plot
the maximum lift force versus Re. Only for high Reynolds number (Re = 100) we obtain
a deviation from flift ∝ Re2. Indeed, by measuring the particle–wall interaction of rigid
particles, the authors of Ref. [89] noticed an increase of the wall lift coefficient around
Re ≈ 100 due to an imperfect bifurcation of the wake structure. This might explain our
observation. However, in total the scaling law flift ∝ Re2 also seems to be valid for soft
spheres at moderate Re.

As a next step, we analyze how the lift force scales with the particle radius. Fig. 6.11 (a)
confirms the scaling flift ∝ (a/w)3 for small distances, while closer to the walls the force
profiles clearly differ. Strong deviations also occur for larger particles with a/w ≥ 0.3,
which is also visible in the maximum lift force plotted versus a/w in Fig. 6.11 (b). This is
in contrast to Ref. [15] and [35], where the scaling was verified for rigid particles with
radii up to a/w = 0.38. The different behavior can be attributed to the deformability of the
capsules. Indeed, for La = 500 we verify the scaling up to a particle radius of a/w = 0.4
(Fig. 6.12).

6.4.2 Influence of the deformability on the lift force profile

So far we have confirmed that the scaling for the Reynolds number and the particle radii
also holds for deformable capsules. The last remaining quantity is the scaling with the
Laplace number [see Fig. 6.13 (a)]. For large Laplace numbers the lift force is that of a
rigid particle. Making the particles softer, the stable equilibrium position moves toward
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lift and scaled the difference with
the Laplace number. For particles with La > 25 this lift force close to the center
x/w < 0.25 follows approximately the analytical solution given by Eq. (2.76).

the channel center and ultimately for La = 1 reaches the center, as already discussed
in Sec. 6.2. Also, the maximum value of the lift force decreases the softer the particles
become as illustrated in Fig. 6.13 (b). At this point we cannot extract a scaling of the lift
force with the Laplace number.

To get a better understanding of the deformability-induced lift force we subtract the lift
force of a rigid particle (see Fig. 6.14). The remaining contribution is the deformability-
induced lift force which follows the analytical expression [Eq. (2.76)] in the vicinity
(x < 0.2) of the channel center and for La > 25. The analytical expression for the
deformability-induced lift force was derived under the assumption of small deviations
(large La) and vanishing Reynolds numbers (cf. Sec. 2.6.4). Furthermore, the particle-wall
interactions were neglected. When these assumptions are no longer fulfilled we find a
deviation of the analytical form and the next higher order needs to be considered.

In summary, we conclude that the lift force of a deformable capsule close to the center
can be written as a combination of the inertial Segré-Silberberg force f rigid

lift and the
deformability-induced lift force derived at vanishing Reynolds numbers fdeform

lift

flift ∝ a3Re2
(
f rigid

lift +
1

La
fdeform

lift

)
. (6.2)

6.5 External control force

Experiments and simulations showed that the lateral position of rigid particles can be
controlled by an external force which is applied along the channel axis [38, 88]. Depending
on the sign of the external force the particle is either accelerated or decelerated relative
to the channel flow. This changes the relative velocity between particle surface and
surrounding fluid resulting in a Saffman force (cf. Sec. 2.5.5).
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In the following, we analyze how such an external force influences the equilibrium position
of a deformable capsule. For this we apply a constant force on the elastic capsule which is
evenly distributed on the membrane vertices. We follow the convention that a positive
force is directed against the flow and thus slows down the particle [38]. In Fig. 6.15 (a)
we plot the equilibrium distance to the channel center as a function of the external control
force fctrl. As before, we determined the equilibrium positions from the stable fix points of
the lift force profiles along the diagonal of a quadratic cross section. For a rigid capsule
(La = 500) the results agree with previous simulations [38]: when the particle is slowed
down (fctrl > 0), it moves toward the channel center and ultimately reach it for sufficiently
large fctrl > 0, while an accelerated particle moves closer to the channel walls.

With increasing deformablity we observe that the equilibrium distance decreases for
strongly negative control forces. At La = 25 the off-centered equilibrium position along
the diagonal vanishes for large absolute values of the control forces. For an even softer
capsule (La = 5) the behavior reverses and the capsule behaves opposite to a rigid particle.
When the particle is slowed down, it moves away from the channel center. When it is
accelerated, it approaches the center and ultimately stays there.

Förtsch et al. observed a similar kind of migration for a soft capsule under gravity at

f ctrl

v

ξlong

ξshort

Figure 6.16: Illustration of the anisotropic drag reduction
for a deformable capsule. Due to its elongated
shape the capsule experiences a different drag
coefficient along its short axis and its long axis.
When an external control force f ctrl pulls on
the particle, the velocity v contains a contri-
bution perpendicular to the force.
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vanishing Reynolds numbers [174]. They showed by simulation and analytical calculations
that this can be explained by the anisotropic drag coefficient. Due to its elongated shape
the resistance of the soft capsule is different along its main axes (Fig. 6.16). Pulling on
such a deformed capsule with a force directed along the flow, results in an additional
lateral velocity component.

Furthermore, we find that all curves in Fig. 6.15 (a) for different La intersect in one point
at a positive control force of about f∗ctrl = 1.2ρν2. At this control force all particles assemble
at the same equilibrium distance d∗eq independent of their deformability. This property
seems to be generic as we also find it for other Reynolds numbers. While the intersection
point moves to higher control forces with increasing Reynolds number, in fact, f∗ctrl ∝ Re
as Fig. 6.15 (b) demonstrates, the distance from the channel center stays almost the same
at d∗/w ≈ 0.46. We do not have a clear understanding of this behavior. However, we
checked that it is generic and not a numerical artifact. In particular, this behavior does not
change when we increase the channel length to investigate the influence of the periodic
boundary condition or when we increase the resolution of the lattice-Boltzmann grid to
check for discretization errors.

Using an external force, allows a much finer control of the particle’s equilibrium position
compared to the passive system. For example, in the absence of a control force (fctrl = 0 in
Fig. 6.15) the equilibrium position of particles with La = 5 and La = 25 are quite close to
each other. By applying fctrl = −1.2ρν2 the softer particle moves toward the center while
the equilibrium position of the less deformable particle hardly changes. This effect should
help to enhance particle separation based on its deformability. One way to implement an
external force experimentally could be using buoyancy where fluid and particles have a
different density. When the channel is directed upright, gravity could act as an axial force.

6.6 Conclusions

In this chapter we studied the Segré-Silberberg effect for a deformable capsule. While the
fluid inertia focuses particles onto off-centered equilibrium positions, the deformability
results in an additional lift force with pushes the particle toward the channel center. The
rigidity, quantified by the Laplace number, determines which effect is more dominant.

We found that most particles assemble along the diagonal of the channel. The softer the
particles are, the closer they move toward the channel center. Their final equilibrium
distance depends on the particle rigidity, its radius and the channel Reynolds number. By
introducing the Laplace number as ratio of elastic force to the intrinsic viscous force scale,
the equilibrium position for different Reynolds numbers collapse on a single master curve.
The equilibrium distance is thus independent of the flow velocity. Additionally, we also
identified such a data collapse for different particle radii.

By changing the aspect ratio of the channel we could further fine-tune the position of
the equilibrium position. For a channel with a rectangular cross section a rigid particle
is focused along the short axis. For more deformable particles we observed, that their
equilibrium position moves in the direction of the diagonal. With increasing deformability

111



Chapter 6 Single deformable capsule

the equilibrium position first moves toward the long axis of the channel cross section
where the shear gradient is smaller. Only very soft particles get focused in the center of
the channel. However, the Laplace number for the center position is a magnitude lower
than in the case of a square channel.

In contrast to the equilibrium distance we found that the deformation of the capsules
strongly depends on the Reynolds number. The deformation of the off-centered capsules
increases with decreasing Laplace number although the capsules migrate in areas with
a smaller shear gradient. Very soft capsules assemble at the channel center and have a
symmetric parachute shape.

The lift force profiles of deformable capsules behave pretty much the same as those of
rigid particles, where the lift force scales as flift ∝ Re2(a/w)3. For deformable capsules, we
observed deviations from this scaling law only for high Reynolds number (Re = 100) and
large particles (a/w = 0.3). We were not able to identify a scaling involving the Laplace
number. However, we found that the force on a deformable capsule can be written as sum
of the inertial lift force for a rigid particle and the deformability-induced lift force derived
for capsules in the absence of inertia.

Finally, we demonstrated that the particle equilibrium position can be controlled by an
external force along the channel axis. For almost rigid particles (La = 500) we confirmed
previous results [38], but found a new behavior for soft particles. While rigid particles
migrate toward the channel center when they are slowed down, moderately soft particles
with La ≈ 25 migrate toward the channel center both for positive and negative control
forces. For even lower La the capsules behave opposite to rigid particles as they move
toward the channel wall when slowed down. Interestingly, we observed that all graphs
with different Laplace numbers intersect in one point at a non-zero control force.
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7
Conclusions

In this thesis, we analyzed pairs and trains of rigid particles as well as a single deformable
capsule in a microfluidic channel in the inertial regime. In the following we shortly review
the main results.

First, we analyzed the dynamics of a pair of rigid particles moving in the x-z-plane in
chapter 4. We determined the possible types of trajectories as a function of the initial
lateral positions of the leading and lagging particles. We found four different types of
trajectories which we named swapping, passing, moving-apart and damped oscillations.
While the first three types result in an unbound configuration where the particles ultimately
move apart, the damped oscillations end in a bound state characterized by a distinct axial
spacing. We quantified the frequency and the damping rate of the oscillations. The scaling
of both quantities indicates that the oscillations are driven by the viscous disturbance flow
and the inertial lift forces push the particles towards their equilibrium position resulting in
the damping. Furthermore, we determined the two-particle lift force profiles as a function
of the lateral positions, the axial spacing and the Reynolds number. The presence of the
second particle increases the strength of the lift force compared to the single-particle
case and influences the shape of the profile. The effect of the second particle is mostly
determined by the axial spacing between the two particles and rapidly decreases with
increasing distance. The lift forces acting on the particles exhibit a strong asymmetry
between the leading and the lagging particle as a consequence of inertial secondary flows.
By determining the scaling of the lift force with the Reynolds number we found that the
two-particle lift force exhibits a viscous scaling at close particle separations. Only when
the spacing increases, the inertial scaling is recovered. Finally, we used the calculated lift
force profiles to explain the damped oscillations.

We extended our research to multiple rigid particles in chapter 5 and focused on the
stability of pairs and trains. In contrast to the previous chapter we initialized the particles
at their lateral equilibrium position but not at their axial equilibrium spacing. First, we
demonstrated that cross-streamline pairs attract each other over large distances resulting
always in the same axial spacing even when both particle were initialized at the same
lateral distance from the channel center. In contrast, we did not observe an equilibrium
spacing for same-streamline pairs. Instead, we found that the strong repulsion at close
distances combined with a rapid decay of the influence of the second particle resulted in a
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characteristic peak in the distribution of the axial spacing in agreement with experimental
results [47]. Adding more particles, we studied how a staggered train relaxes towards its
equilibrium configuration. When the axial particle spacing is larger than the equilibrium
distance, the train contracts non-uniformly due to a collective drag reduction. Similarly,
linear trains drift apart in a non-uniform way where the leading particle separates from
the train in agreement to Ref. [153]. Finally, we studied how a displacement pulse travels
through a staggered train which is related to the swapping and passing trajectories of the
previous chapter. We conclude this chapter with a quantitative analysis of the damping
and the pulse to train velocity ration.

In the last chapter of this thesis we focus on a single deformable capsule. This deformability
leads to an additional lift force which is directed to the center of the channel. In chapter 6
we study the combination of deformability-induced migration and the Segré-Silberberg
effect. We find that a capsule moves to an equilibrium position closer to the channel
center with increasing deformability. In quadratic channels we observe that most particles
move towards the diagonals, while in rectangular channels the position of the equilibrium
position changes with the Laplace number. We demonstrate that the Laplace number is
suitable to characterize the rigidity of the particles as it enables us to scale the equilibrium
distance on a master curve independent of the Reynolds number. Furthermore, we confirm
that the scaling of the lift force for a single rigid particle also holds for a deformable
capsule. The inertial lift force acting on a deformable capsule can be expressed as a
sum of the lift force for a rigid particle and a deformable contribution which is inversely
proportional to the Laplace number. Finally, we studied how a deformable particle moves
under the influence of an external axial force which speeds up or slows down the particle
relative to the flow resulting in a Saffman force. Surprisingly, we find the behavior of
a soft capsule is reversed compared to a rigid particle. This can be understood by the
anisotropic drag coefficient of the elongated capsule [174]. Moreover, we observe that a
specific axial force exists at which the particles assemble at an equilibrium position which
is independent of the deformablity. This effect might be helpful to enhance sorting and
separation of particles based on their size and deformability.

Our work raises further interesting questions, and we outline directions for future research
in the following. We restricted our analysis of rigid particles to monodisperse particles of
radius a/w = 0.4. However, many applications involve polydisperse particle distributions.
Recently, Gao et al. experimentally studied trains at a low confinement ratio with particles
of two different radii [45]. The authors observed that the larger particles typically lead
the trains. Simulations of polydisperse systems offer new insights on the relevant effects
for rigid particles in inertial microfluidics.

Biomedical applications typically use deformable cells or droplets. While we only consid-
ered a single deformable capsule in this thesis, the interactions of multiple deformable
particles is certainly another interesting research field. A pair of soft particles at vanish-
ing Reynolds number shows attractive behavior [175] and can even form microfluidic
crystals [176]. Extending our work of chapter 4 and 5 to deformable particles promises
valuable insights.
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