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Abstract

Self-propelled particles (SPPs) are non-equilibrium esyst and as such they are not
forced to obey the fluctuation-dissipation theorem. Moeep$BPPs can exhibit fluctu-
ations in the direction of motion uncorrelated from thoséhia speed. In this Thesis it
is shown that uncorrelated fluctuations lead to a non-Brawmnotion characterized by
expressions for the mean square displacement and diffesiefficient that differ from
the classical results by additive corrections. It is algbdated that such effects have been
observed in cell motility experiments.

Interacting SPPs represent another fascinating kind aésyswith remarkable dif-
ferences with equilibrium system. For instance, while imiklgrium two-dimensional
systems with continuum symmetry long-range order is fatbig SPPs can develop such
long-range order. Though it is well known that two-dimemsibSPPs with local polar
interactions can exhibit such transition to orientatiooraer, a recurring question refers
to alternative physical mechanisms that lead to colleatieéion in SPPs. In this Thesis
it is shown that a self-propelling force together with volimxclusion are sufficient to
cause collective migration. This is clearly illustratedaiiigh a model for self-propelled
rod-shaped particles. In particular, it is indicated thed €merging collective patterns
depend on the particle elongation. For instance, it is shimahfor a given density there
is critical particle aspect ratio that triggers non-eduilim clustering. It is also suggested
that those effects might play a major role in the collectivaion of gliding bacteria such
as myxobacteria.

Volume exclusion represents an apolar interaction. Thesrthe question how the re-
sults known for SPPs with polar interactions change whemtieeactions become apolar.
This issue is addressed in this work and it is shown that th&®Ps with apolar inter-
actions can also achieve long-range order, the characteedfansition highly depends
upon particle density.

Finally, it is shown that the ordering dynamics in SPPs wither polar or apolar
interactions can be described with the same continuumyheor



Zusammenfassung

Diese Arbeit untersucht das Verhalten von aktiven getriebdeilchen, d. h. Teilchen,
die sich unter Verbrauch von Energie gerichtet mit einerepegen Geschwindigkeit
fortbewegen. Solche Teilchen sind per Definition fernab tbarmodynamischen Gle-
ichgewicht und unterliegen daher nicht dem Fluktuatiomssipations-Theorem. Daruber
hinaus sind die Fluktuationen in der Orientierung solchatchen nicht notwendiger-
weise mit den Fluktuationen ihrer Geschwindigkeit koesli In dieser Arbeit wird
gezeigt, dass solche unkorrelierten Fluktuationen fizedne Teilchen zu nicht-Brownischer
Bewegung fuhren, bei der die analytische Ausdriicke i@ndttlere quadratische Abwe-
ichung und den effektiven Diffusions-Koeffizienten sichmv&lassischen Ergebnis durch
additive Korrekturen unterscheiden. Diese Effekte sindairdngig von unseren Rech-
nungen in Experimenten zur Bewegung von Zellen gefundedevor

Wechselwirkende getriebene aktive Teilchen unterschesiieh ebenfalls stark von
analogen Gleichgewichtssystemen. Wahrend zum Beigpielvei-dimensionalen Gle-
ichgewichtssystemen mit kontinuierlicher Symmetrie kelangreichweitige Ordnung
auftreten kann (Mermin-Wagner-Theorem), zeigen aktividciien Phasdpergange zu
langreichweitiger Ordnung. Bisher wurden vor allem akfiedchen mit polaren, ,,ferro-
magnetischen Wechselwirkungen untersucht. Hier werdgpesondere aktive Teilchen
mit apolaren, ,,nematischen Wechselwirkungen studiersbdsondere wird in zweidi-
mensionalen Simulationen gezeigt, dass aktive getriebgehenformige Teilchen, die
nur aufgrund von Volumenausschluss wechselwirken, ear&eiTendenz zur Clusterbil-
dung zeigen. Dieses Phanomen tritt weder fr isotrope @Kiailchen noch fur diffusive
Stabchen auf. Dedbergang zur Clusterbildung wird hier mit Hilfe eines Mefield-
Modells fur die Populationsdichte von Clustern verschiest Grof3e analysiert. Am
Ubergang andert sich die Populationsdichte von einer tooem zu einer bimodalen
Form. Clusterbildung fur aktive Stabchen tritt bei wettieh geringeren Dichten als die
nematische Ordnung fr aktive Stabchen. Analoge Cludterbgsphanomene werden ex-
perimentell in der kollektiven Bewegung stabchenforeniBakterien auf einem Substrat
beobachtet.

Volumenausschluss reprasentiert eine apolare Wechkalvg. Im letzten Teil der
Arbeit wird ein vereinfachtes stochastisches Modell fidtivee getriebene Teilchen mit
apolaren Wechselwirkungen abgeleitet, das auf Bewegeaggkr analog zum bekannten
Vicsek-Modell fur aktive getriebene Teilchen mit polaiechselwirkung basiert. In



diesem Modell zeigen sich in Simulationen bei kleinen Tedledichten und abnehmenden
Rauschstarke erneut die oben beschriebene Clusterbile@hrend bei grof3en Dichten
mit abnehmender Rauschstarke zunachstiéiargang zu nematischer Ordnung bei ho-
mogener Teilchendichte beobachtet wird, auf den eine Bistabilitat folgt. Schlief3lich
wird eine Molekularfeld-Theorie hergeleitet, die déhergang zur nematischer Ordnung,
der bei hoher Dichte gefunden wird, vorhersagt.
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Chapter 1
Introduction

Self-propelled particles are ubiquitous in nature, andvgdas of them range from non-
animated matter like running droplets [1-4] to living systéke crawling cells [5-9].
The self-propulsion of the particles makes all these systessentially non-equilibrium
systems, and fascinating complex phenomena arise degemdihe interactions. For in-
stance, the consumption of energy involved in the propalsiechanisms and the amount
of stored energy allow these active particles to move witlaheying the fluctuation-
dissipation theorem [10—-14]. Since these particles tWiyicarry their own energy and
do not require the environment to propel themselves, thesttal movement an ensem-
ble of them can perform is not restricted to classical eguidim constrains like, e.g.,
the ones the fluctuation-dissipation theorem imposed. imeador example, a crawling
cell migrating in a noise environment and compare its movemgth a classical inani-
mated Brownian particle. The Brownian particle moves e#&dle that gets buffeted by
the noise environment, changing simultaneously its doaadf motion and modulus of
the speed. As it is well known, an ensemble of non-intergcBnownian particles is
then well described by an Ornstein-Uhlenbeck process [@B]the contrary, the crawl-
ing cell is subject to environmental fluctuations as well asttiations of its propelling
engine. Consequently, fluctuations in the direction of mmoand speed can follow inde-
pendent stochastic processes. Moreover, an organism ofighge its moving direction
and speed according to some stochastic processes thatamtémy., a random search of
nutrients [16—-18]. In addition, it has been clearly showrxperiments that the actual
random movement exhibited by many microorganisms [5, pé]animals [19] does not
obey a classical Brownian motion. To interpret and undacssaich experiments it is nec-
essary to rely on a correct phenomenological descriptigh@inotion of the organism
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which should account for the observed statistical data [[R8]fluctuations in the speed
and in the direction of motion. Chapter 2 is devoted to nderarcting self-propelled par-
ticles and addresses this issue. Particularly, it will beashthat when fluctuations in the
speed are uncorrelated with fluctuations in the directiomofion, there are additive cor-
rections to the classical Brownian motion theory for the mpasition and mean square
displacement. It will be indicated that such kind of non\Bngan motion can explain

some recent observations in cell motility experiments.

Interacting self-propelled particles display fascingtphenomena. Their study has
applicability in a wide range of systems of different conxutie from autonomous robots
[21-23], traffic [24] and human crowds [25], to biologicasssms of all possible scales as
birds [26], bacteria [27,28], or even down to a moleculaeleas in the dynamics of actin
and tubulin filaments [29-32]. One of the most interestingeats of interacting active
particles is that they can exhibit behaviors forbidden toildzrium systems. Probably,
one of the most remarkable examples is the possibility afd@nge orientational order
in two-dimensional systems with continuum symmetry. Theriia-Wagner theorem
states that equilibrium systems with these charactesisdonot exhibit long-range order
[33]. However, self-propelled particles with continuummeyetry and moving in a two-
dimensional space, as shown for the first time by Viceekl. in [34], can develop
long-range orientational order.

The model proposed in [34] consists of point-like partidlest move with a velocity
vector of constant magnitude and interact by aligning thelocity direction to the local
average velocity. It has been proposed that this model rdggttribe the collective motion
of birds, fish or even swimming bacteria [35-39]. Though trekebrated model offers
a reasonable phenomenological description for many meapas patterns observed in
some organisms, it does not account for the actual "micmstonechanism that leads
the individuals to exhibit such a local alignment. The samglias to other qualitative
approaches that focus on the macroscopic description aflikerved patterns [40-45].
A key question not addressed by these models refers theesiyghysical mechanisms
that leads to collective motion in self-propelled partcleCollective motion is defined
in this context as a non-zero macroscopic orientationaéropdirameter and is associ-
ated to the formation of groups inside which particles mavéhe same direction. We
know that long-range chemical signals can be used by sefighled entities to sense the
environment and coordinate their motion as in bacterialikaoli or amoebae lik®. dis-
coideum [46]. But, is there a short-range physical mechanism thatpcaduce a similar



behavior? Myxobacteria, for instance, a gram-negatiwairgi bacteria, coordinate their
motion by a membrane-bound signal system, called C-sigwaich requires physical

cell-to-cell contact to transfer information. Interesgfy) during the early stages of their
life-cycle these bacteria exhibit a complex collective &ebr even without exchanging
that signal [27,28,47]. This fact suggests that these ogjignize their motion by simply
pushing each other. Are then self-propelled particlesaating by volume exclusion able
to form swarms? In Chapter 3 it will be shown that such simpigsical interactions of

self-propelled rod-shaped objects lead to collective aménd clustering. Moreover, it
will be explained how the particle shape influences the emergatterns. Remarkably,
there is a critical particle aspect ratio that triggers ting. It will be also indicated that
those effects might play a major role in the collective motd some gliding bacteria as
myxobacteria.

While volume exclusion may represent the most basic andlsshphysical mech-
anism leading to collective motion in systems of self-pttgaeparticles, the resulting
alignment mechanism is intrinsically different from thabposed by Vicselt al.. The
interaction of elongated self-propelled objects, as itelshown in Chapter 3, can cause
particles to locally align parallel as well as antiparatteleach other, i.e., the alignment
mechanism is apolar. On the contrary, in Vicsek model as agih other self-propelled
particle models [35,37,39-44], the involved alignment haggsm is polar, i.e., it induces
particles to locally point in the same direction. It is wotthnotice that apolar alignment
mechanisms have previously only been used with apolarcpesti Apolar particles are
particles whose "head” and "tail” are indistinguishablecbntrast, the self-propelled par-
ticles are by definition polar, since in this case we can defiparticle "head” and "tail”.
Interestingly, all known systems in two-dimensions, eittgguilibrium or non-equilibrium
systems, with apolar particles and apolar interaction laokg-range order [33, 48-50].
On the other hand, polar particles with polar interacti@yentioned above, can exhibit
long-range order. But, what happens in a system of polarcestwith apolar interac-
tions such as myxobacteria? In Chapter 4 this question wiiddressed. It will be shown
that such a system can exhibit long-range order, with a ptrassition whose character
changes from high to low particle density. Surprisinglyhagh density the system can
reach an ordered state that is neither pure nematic nor, polfisan interesting mixture of
both.

Since self-propelled particles can interact by either aapalr apolar alignment
mechanisms, the further understanding of self-propell@digte dynamics requires a
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common theoretical framework to describe both possiblgnalient mechanisms. In
Chapter 5 it will be shown that some basic differences of tfieied states under both
alignment mechanisms can be captured by a simple mean-&stdigtion. Moreover, it
will be explained why in self-propelled particles with polateractions, the transition to
orientational order occurs at larger values of the noisensity than for the analogous
system with apolar interactions.

The physics of interacting and non-interacting self-phage particles in two-
dimensions is a complex and fascinating topic whose studyhtrielp to understand
fundamental open questions in non-equilibrium statispbgsics, ecology and develop-
mental biology. We hope through this Thesis to shed somédiglsome of the questions
and aspects of this novel field.

Outline of the thesis:

Chapter 2

General aspects of two-dimensional self-propelled dartiwotion, with fluctuations
in the speed and direction of motion are studied. It is carsd the case in which
fluctuations in the speed are not correlated to fluctuatianghe direction of motion.
Expressions for the mean square displacement and diffesieificient are derived.

Chapter 3

A simple model for self-propelled rods interacting by vokiexclusion is presented
and analyzed. It is shown that this simple physical systemeshibit collective motion.
It is also shown that these self-propelled rod-shapedgbesti interacting only through
short-range repulsive interactions, exhibit a non-efytiim transition to clustering for
sufficient large values of the density and particle aspdat.ra&Clustering effects affect
speed distribution, particle rotation, and local and glabdering of the particles. The
transition to clustering is reproduced by a mean-field deson of the cluster size
distribution. Far below the transition, the clustering dgmcs is explained in term of a
maximum entropy principle.



Chapter 4

A model for self-propelled particles interacting throughapolar alignment mecha-
nism is introduced and analyzed. It is shown that thesegbestexhibit for low enough
orientational noise a kinetic phase transition to orieotetl order. Interestingly, the
character of the transition is shown to be strongly dependerparticle density, being
continuous at high density and discontinuous at low den€itystering is proven to be
essential to achieved long-range orientational ordenvatlensity.

Chapter 5

A common theoretical framework to describe the macroscayitamics of self-
propelled particles under polar and apolar alignment mashais derived. It is shown
that at high density the orientation dynamics is captured bynple mean-field approach
which predicts a smaller critical noise amplitude for apthean for polar interactions.

Chapter 6

A summary of the results obtained throughout the thesisasented.



Chapter 1. Introduction



Chapter 2

Individual motion:
fluctuations in the speed and in the
direction of motion

Introduction

The study of cell movement on surfaces can shed light on theegses that underlie cell
motility [51]. Invitro experiments that characterize cell movement include walo=lre
assays and individual cell tracking to determine cell ttgges [5-8]. To interpret and
understand such experiments it is necessary to rely on aopieological description
of the motion, providing expressions that allow to fit the esmqmental observations and
compute motility indexes [7, 20].

Persistent motion subject to fluctuations has been deschpe class of stochastic
processes known as persistent random walk [12, 15, 52-84judh processes the direc-
tion of motion fluctuates, but on short time scales a persigtéo move without turning
is observed, Fig. 2.1 (a). Formally, the velocity autodatien function(v(¢) - v(0)) ex-
hibits a finite decay time, giving rise to a ballistic regimé(t)) ~ ¢* for short times and
a crossover to a diffusive regimig?(t)) ~ t for long times [15, 53, 54].

A related problem is that of the directed motion of self-paibgd particles driven by
an external field. Single cells can be directed by extermgads in the form of concen-
tration gradients, as in the case of fibroblasts [55] or theedtraeD. discoideum[56] (see
Fig. 2.1 (b)). Directed motion with fluctuations can be ddsat by another broad class
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Figure 2.1: Schematic representation of (a) persisten{l@ndirected random walks.

of stochastic processes known as the directed random wEX$3], which displays a
diffusive regime for short times followed by a ballistic rege for long times [55, 57].

Fluctuations in the speed and direction of motion were amred to occur simulta-
neously, or fluctuations of the speed were simply neglect@d1s, 17, 52-54, 58, 59].
However, recent cell motility experiments suggest thatesaoeils migrate exhibiting fluc-
tuations in the speed and the direction of motion which agéyr are uncorrelated [7].
Motivated by these experiments, this chapter is devotebestudy of two-dimensional
self-propelled particles with uncorrelated fluctuatiofighee speed and the direction of
motion. It is assumed that both processes can be describedégyendent characteristic
time-scales. Two different angular dynamics are invegigiavhich correspond to persis-
tent and directed random walks. For these two problems exgeessions for the mean
squared displacement, the asymptotic diffusion coefficiemd the velocity autocorrela-
tion are derived. The expressions are valid for arbitragesipand angular stationary dis-
tributions. It is shown that both persistent and directedicem motion exhibit a complex
transient with a number of alternating regimes of motione €fiects of speed fluctuations
introduce an additive correction to the diffusion coeffitjavhile the velocity autocorre-
lation becomes a sum of exponential forms. For the particcdae of non-fluctuating
speed, the classical persistent and directed Browniaromatie retrieved.

2.1 General framework

In this section we first derive a general framework to caleilae average positigx) and
mean squared displacemdmt) for a system of stochastic self-propelled particles that
move in two dimensions. At the end of the section we spe@dhe general expressions
to the case in which fluctuation in the speed and in the doaaf motion are independent.
We start by considering that, for a given particle, its véloe () at timet is repre-
sented by an angkt), and a modulus —the speed«{¢). The dynamics of the velocity
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v(t) is given by a stochastic process which for the moment is netifipd. d(0,t) is
defined as the total distance covered by the particle movmggahe directior?, since
the beginning of the trajectory at= 0. Knowing this quantity we can easily express the
position of the particle at timeby:

x(t) = /_ " (6, r0)do, (2.1.1)

and its squared displacement by:

= // do'de"d(o',t)d(8",t)r(0") - 7(0"), (2.1.2)
wherer(6) = cos(0)i + sin(#)y is the unit vector along the directieh We are interested
in (x(t)) and(x2(t)). This implies thatd(0,t)) and(d(#',t)d(6",t)) have to be calcu-

lated. Notice that given a particular trajectory charaeest byd(t) andi(t), the distance
d(6,t) can be expressed as

d(0,1) = / v / o s(o — 5860 — (). (2.1.3)

Thus, the ensemble average of this distance is

d0,t)) :/0 dt’ /000 dvop(0,v,t), (2.1.4)

where we have introduced the probability density to find thgiple moving in the di-
rectiond with speedv at timet, which by definition isp(0,v,t) = (5(v — 0(t))d(0 —
6(t))) [60]. (...) denotes ensemble averages. On the other hifids)d(6”, t) takes the
form:

d(@',t)d(0" t / dt’ / dt” (2.1.5)

/ ' / A" §(v — 5())(v — TE)5(0 — O))S(0 — B(t")) .

The ensemble average of these delta distributions is byitiefinp(6’, ', t'; 0", v" t") =
(S(v—o(t))8(v—0(t")5(0—0(t))56(0—0(t"))). Then, the correlationgl(¢’, t)d (6", t))
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between these distances can be written in terms of the jooligbility distribution as

follows:
(d(@',t)d(0",t /dt/dt” (2.1.6)

/ dv / d'U,/ /1 p U/ t/,e// U// t//) .

Using Eq. (2.1.4) the mean value of the position is expreased

(x(t)) = / " (0, 1)(0)db, (2.1.7)

—T

while through Eq. (2.1.6) the mean square displacemens tidesform:
= // de'de" {d(6',t)d(0",t))r(0") - 7(0"). (2.1.8)

Egs. (2.1.4) to (2.1.8) provide a general way to calculagenttean value of the po-
sition and the mean square displacement, which so far daeswvave any assump-
tions. In the following, we consider the special case in Wwhige fluctuations in the
speedv are not correlated with the fluctuations in the directtonAs a consequence,
p(0,v,t) = p(0,t)p(v,t) andp(@', 0", t'; 0" V" ") = p(&',¢; 0", t")p(v', t';0",t"). This
can be the case if, for example, fluctuations in the speedwedéada noise associated to
the propelling engine of the particles, while fluctuatiom$he direction of motion reflect
the interaction with a noise environment. Beyond thesert#t@al considerations, there
are biological examples in which the time scales associatetle speed and direction
of motion fluctuations differ considerably. This stronglyggests that in such kind of
experiments the assumption of the independence of bothudltiohs is reasonable [7].
At this point we restrict the problem to a situation in whitfe tvelocity fluctuations are
in the stationary state, with an arbitrary speed distrdnti(v,t) = p(v) and the joint
probability given by

p(0 0" ) = p(0)s(v —")e A (2.1.9)
+ p()p(") (1= e )

This expression for the joint probability distributip(w’, ¢'; v”, t") implies that the speed
correlations decay exponentially, as

(v(t)o(0)) = (v)* = ((v*) = (v)*)e™™. (2.1.10)
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Here (v) and (v?) are the first and second moments of the stationary speedhplioba
distributionp(v). In other words, through Eq. (2.1.9) it is assumed that tleedgannot
instantaneously change, i.e., there is a characteristei' during which particles "re-
member” their speed. After that characteristic time plasi¢forget” about their initial
speed (at time”), and so, the speed of a particle at tineand¢” far apart are indepen-
dent. This is reflected by the speed correlations in Eq.12)10One example of a stochas-
tic process leading to such kind of correlation is givenyby = 7)(¢), where the value of
the noisey(t) is taken from a distributiop at times given by a Poisson process of rate
and kept constant in between. This can be exprességh@st) = —fp(v,t) + Bp(v).

Under these assumptions Egs. (2.1.4) and (2.1.6) can nownpdifsed performing
the integrals on the speed

(d(0,4)) = (v) /0 dt'p(0, ) (2.1.11)

t
(d(@',t)d(9", 1)) = (v)? / / dt'dt"p(0,t': 0" ") (2.1.12)
0
t
—|—(<’U2> _ <'U>2) // dt’dt”p(@’,t’;@”,t”)e‘mtl_t”'
0

Notably Eqg. (2.1.11) does not differ from the correspondairgression for constant speed,
so the mean total distance is not affected by speed fluchsatintroducing the time spent
by a particle moving along directiohas(7'(0,t)) = fot dt'p(0,t'), (d(0,t)) is expressed
as(d(6,t)) = (v) (T(0,t)). On the other hand, speed fluctuations do affect the distance
correlations, Eq. (2.1.12), as an additive correction prispnal to the speed variance
o? = (v?) — (v)2.

We are now left with the one-dimensional problem of angulastilations on the ring,
l.e., the direction of motion. In the next two chapters wel wiinsider two situations
which differ only in the dynamics of the direction of motion.

2.2 Persistent random walk

As a first application, we consider the case of a persistetoia walk, see Fig. 2.1 (a).
We study a problem in which the angular probability disttibn function obeys the
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diffusion equation characterized by the diffusion constan A simple example of a
stochastic process leading to such equation is a dynamiairértion of motion given
by 6(t) = n(t), wheren(t) is a white noise. Another example is an angular dynamics
described by discrete turning events. If the rate of angulaps are characterized by
«, and the length of the jumps obey a symmetric distributiop(¢), then the diffusion
coefficient can be expressedras- (I')a, wherel’ = [ ¢*p(¢)d.

Since initially the ensemble of particles is concentratex(a= 0) = 0 and starts to
move in all possible direction, therid, t) = 1/2x. Notice that the dynamics of the direc-
tion of motion of each individual particle starts with a pautar direction, and smoothly
explores other directions, which implies that we have totwame characteristic time
before finding the particle pointing with equal probabilityany direction. This fact is
reflected byp(¢',t'|0”,t") which obeys the diffusion equation:

aﬂp(@/’ t,|9”, t”) _ K@g/g/p(@/) t,|9”, t//)

with the initial conditionp(¢’,t'|0”,t") = §(t' — t")0(0" — 0”). To guarantee the
conservation of the probability inside the ring the follogiperiodic boundary conditions
are imposedp(w,t'|0",t") = p(—m, t'|0",t") and Oy p(w,t'|0",t") = Opp(—m,t'|0",t").
Taking all this into account we obtain the solution for the@ditional probability:

R e
p(0. 10" t") = =t > " cos(m(0 — @")) e~ =D (2.2.1)
m T
m=1

From this expression we learn that the particles loose floenration about the direc-
tion of motion in a characteristic time. In particular, [#ls— t’| — oo the information
about the direction of motion at tinié is completely absent, and each particle points with
equal probability in any direction. The slowest mode= 1 sets a characteristic time-
scalex~! that separates two distinct regimes. Fex. x~! the conditional probability has
a maximum, because the patrticles still remember” theieation of motion at time”.
Fort > x~! the slowest mode decays and there is no information abouatrit¥etation at
timet” .

Recalling thap(0,t';¢',t") = p(0,t'|6',t")p(#',t"), and then using Eqg. (2.2.1) to cal-
culate Egs. (2.1.11) and (2.1.12), and finally insertingéhexpressions into Egs. (2.1.7)
and (2.1.8) it is obtained thak(¢)) = 0 and
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Figure 2.2: Scaled mean squared position as a function tddstiene for persistent random walks.
The lines correspond to Eq. (2.2.2) for rescaled variablés thin solid red line corresponds to
p = 0, andy = 100 for the other curves, with = 10~3 (dashed green line); = 10? (dotted
blue line) andy = 10° (thick solid black line).

(xX*(t)) = 2L (kt—1+e") (2.2.2)

In the absence of speed fluctuations, the speed varignee(v?) — (v)? vanishes and
EqQ. (2.2.2) reduces to the well known result of "Brownianfttpes moving at constant
speed [53, 54], which exhibits a single crossover at ~~!, see red curve in Fig. 2.2.
When fluctuations become relevant, depending on the relatilues ofc and§ and the
value of the speed variane€, a number of crossovers can unfold separating up to four
alternating regimes of motion, see black curve in Fig. 2.2.

In order to unveil the different regimes that Eq. (2.2.2)rpks, we introduce non-
dimensional variable§ = zx/(v) andr = xt, and parameterg®> = ¢%/(v)? andy =
B/k. Forvy < 1 there is a single crossover at~ 1, see green curve in Fig. 2.2. For
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any other values of, solutions lie between the green and red curvesFar (1 + ) ™!

it is observed thaté?) ~ (1 + p?)72. This ballistic regime at short time-scales is a
consequence of the exponential decay in the correlatiottseafpeed. A first crossover
occurs atr; ~ (1 + )~ For larger times, it may happen that the separation of time-
scales is such thdtl + v)™! < 7 < 1. In this case(¢?) ~ 72 + 2u27/(1 + 7). If

©? is sufficiently large, a second crossover might be obseevabt, ~ 2u2/(1 + )
separating a transient diffusive regime from a seconddtilliegime. Finally, forr > 1

the asymptotic diffusive regime emerges With) ~ 2(1 + n?/(1 + v))r, after the third
crossover at; ~ 1. Such asymptotic regime can be described in terms of antiefiec
diffusion coefficient, defined as

D = lim (x3(1)) — (x(t))?)/2t. (2.2.3)

t—oo

From Eq. (2.2.2), we obtain:
D= ()’ + ((v*) = (0)*)(k + B8)"". (2.2.4)

Speed fluctuations introduce an additive correction to tekkmown diffusion coefficient
for constant speed [54].

We stress that it can be observed up to four consecutive esgoh motion sepa-
rated by three crossovers, while in the absence of speeddhimbs only one crossover is
found [53, 54]. To obtain an heuristic understanding of temult, notice that the second
term in Eq. (2.2.2) is proportional to the speed variastcand exhibits the first crossover
from a ballistic to a diffusive regime at~ (x + 3)~!. The first term is proportional to
the squared mean value of the speed and exhibits a crossoweaballistic to a diffusive
regime at a later time~ x~!. If the separation of time-scales allows it another crossov
could be observed between these two, when the diffusiveiegf the second term turns
into the ballistic regime of the first as in the black curve ig.2.2. Note that for this to
happen the speed variance must be sufficiently large.

The effects of the speed fluctuations are also exposed indloeity autocorrelation
function which takes the form:

(v(t)-v(0)) = (W)2e ™ + ((1?) — (v)?) e~ BT (2.2.5)
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The velocity autocorrelation function of the classical Brean motion has a single
exponential form, while now, due to the speed fluctuationgecomes a sum of two
exponentials.

Notice that in Fig. 2.2 it is used a large speed variance @&A¢t)) is plotted over
a huge range to illustrate all the features of Eq. (2.2.2)th&nconcluding remarks sec-
tion it is discussed the effects of the experimental com#san the observation of the
phenomena described here.

2.3 Directed persistent random walk

As a second example we consider the directed random walkhichvthe particles have
some preferred direction of motion. This could be the caseéaticles moving in a
symmetry-breaking field or subject to an external force. Aanaple of such kind of
stochastic process i8t) = n(t), where the value of the noisgt) is taken from a distri-
butionp at times given by a Poisson process of ratand kept constant in between. This
can be expressed 8 (0, t) = —ap(6,t) + ap(f). This implies that angular fluctuations
are also in the stationary statgf,t) = p(f). We describe the presence of an exter-
nal field by assuming th@\ﬁfﬁ2 p(0)df > 1/2, together with the symmetry requirement
p(—0) = p(#), setting a preferred direction of motion alofig= 0. The Poissonian nature
of the angular fluctuations imply that the time correlatialesay exponentially with a
characteristic timex !

p(0, 150" 1) = p(0)6(0 — @")e "] (2.3.1)
+p(0)p(0") (1)

Using this expressions for the angular probability disttibns together with Eqgs. (2.1.11)
and (2.1.12) in the expressions (2.1.7) and (2.1.8) weeaaivhe following expressions
for the mean value of the position

(x(t)) = Vet (2.3.2)
and the mean square displacement

() = ()2 [et? +2(1 — ¢)pa(t)] (2.3.3)
+ 2((0*) = (©)?) [(1 = &)parp(t) + cps(t)]
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Figure 2.3: Scaled mean squared position as a function t#dtae for directed random walks.
The lines correspond to Eq. (2.3.3) for the rescaled varsabbithc = 10~*. The thin solid red
line corresponds tp = 0. The other curves correspondie= 100, with v = 10~3 (dashed green
line), v = 10? (dotted blue line) and = 10° (thick solid black line).

wherec = (cos6)? andip,(t) = a2 [at — (1 — e™)].

The mean value of the position grows linearly with time, asups when the speed is
constant [53]. The angular distribution affects the comista= (cos ). This constant
can vanish in the extreme situation where the angular bdigtdan p(¢) is uniform in the
interval[—, 7]. Such situation corresponds to a persistent random watk asymptotic
regime, after the non-constant modes of the angular digtoib have settled down. The
mean square displacement on the other hand can portray @ chregmplex behaviors
for transient times.

We introduce the non-dimensional varialjle= z«/(v) and a non-dimensional pa-
rameterd = (3/a. In the absence of speed fluctuations, the second line inZE8}.3)
vanishes. In such case, a ballistic regime is observed at smes+ <« 1. Forl < 7
the non-dimensional mean square displacement follgdjs~ c7% + 2(1 — ¢)7. Thus, a
second crossover might be observable i 2/3, separating a transient diffusive regime
from the asymptotic ballistic regime dominant for very atgnes.

When speed fluctuations are present, the additional tirake-gtwhich describes
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speed correlations can give rise up to four crossoversgifatitequate conditions hold,
depending on the value pfandd = 5/a.

As an illustration, it considered hete < 1, corresponding to a case where speed
fluctuations occur much slower than angular fluctuations.skort timesr < 1 < 5!
there is a ballistic regimé?) ~ (1 + p?)7%. 7, ~ 1 marks the crossover to a second
regime, visible forl < 7 < 67!, and characterized b{¢?) ~ c(1 + p?)72 + 2(1 —
¢)(1 + p*)7. Here, a second crossover could appear,at- 2(c™! — 1) between the
diffusive regime and a second ballistic regime. Note thathould be such that < 7.
Finally, for1 < §~! < 7, the non-dimensional mean square displacement follg#ys~
et +2[(1 — ¢)(1 + p?) + pu?cé 7. This describes a second transient diffusive regime,
and the asymptotic ballistic regime observed for very largees, with a crossover at
Ty~ 27 (1= o) (1 + p?) + p2cd 1.

As observed for the persistent random walk, speed fluctustiothe directed random
walk also introduce a new time scale, which together withahgular fluctuation time
scale can lead up to five different regimes of motion, and @wassovers separating the
ballistic and diffusive regimes. In the absent of speed dlations the behavior of the
mean square displacement reduces to two regimes with asiragsover [57].

Also in this example the effective diffusion coefficieRtcan be derived. Applying
the definition given by Eqg. (2.2.3), the following expressis obtained:

D= (1= + (") = @)L —c)a+8)" +c67]. (2.3.4)

The presence of an external field decouples the time-scalpesfd fluctuations and
the velocity autocorrelation results in a sum of three exmbials:

2.4 Concluding remarks

We have studied self-propelled particle motion in two digiens in the presence of fluc-
tuations. Assuming that both the direction of motion andgpeed fluctuate with inde-
pendent characteristic times, we have considered pearsetel directed random walks.
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In both cases, the interplay of speed and angular fluctuatiores rise to a sequence of
ballistic and diffusive regimes, revealing a complex tiansnot observed when speed
fluctuations are absent. We have obtained analytical esioresfor the mean value of the
position and for the mean squared displacement, and ctddullae crossover times and
the effective diffusion coefficient describing the asyntigtoegimes.

The occurrence of such a complex transient in the mean sdjuisplacement can
wreck the interpretation of experimental observationg ttuthe constrains imposed by
resolution and finite size limitations. Particle size séts $mallest accessible length-
scale, while the field of the experimental setup sets theetrgSimilarly, the frequency
of observations sets the smallest observable time-saadethe duration of the measure-
ment sets the largest time-scale. If the window of obsesuas limited to a part of the
complex transient, anomalous diffusion could be wrongtgripreted. Superdiffusion has
been repeatedly reported from experimental data [9, 19)wewer, distinguishing true
superdiffusion from a persistent or directed random wakkssibtle task [61].

The results derived in this section suggest that in somesdaseobserved anoma-
lous behavior could be related to one or more of the repontesisovers. That is why
it becomes essential to consider speed fluctuations wherpneting experimental data.
Neglecting speed fluctuations could result in a misleadstgration of the time-scales
of the problem and a wrong understanding of the system.

In Fig. 2.4 (a) displayD(7) = ({(£2(7)) — (£(7))?) /27 for a persistent random walk,
using time and space ranges which are reasonable for cesxpatimental setups [5, 7].
Furthermore, we choose = 1.31 according to data reported in [7], and values,of
within experimental ranges. The solid red line is the resuthout speed fluctuations.
Dots correspond to numerical simulations performed witk 1.31 andy = 10. In the
simulations speeds are chosen at afate4.0 h~! from a speed distribution(v) ~ v=3/2
for v € [1,v.] and zero otherwise, with. such thatu = 1.31. Angles are chosen at a
rate9.6 h—! from a uniform distribution of width rad centered around the direction of
motion, and so yielding = 0.4 h—!. Error bars are the standard deviation from the mean
value obtained for 100 realizations with 100 particles eathis means that a particu-
lar 100 particles experiment should fall within the rangesoth error bars. Fig. 2.4 (a)
suggests that for a system that exhibits realistic speetlifitions as reported in [7], the
diffusion coefficient shows a slight, but still observabdieyviation from the coefficient
of a classical (constant speed) persistent random walk. Z=g(b) shows that realistic
fluctuations in the speed can produce in the velocity autetairon a remarkable devi-
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Figure 2.4: (a) Re-scaled mean squared displacement anelfigjty autocorrelation as a function
of scaled time for persistent random walks. The lines in @jaspond to Eqg. (2.2.5) for rescaled
variables. In both panels, the solid red line corresponds£00. For the other curveg = 1.31,
with v = 10~! (dashed green line) and= 10 (dotted blue line). Dots correspond to numerical
simulations as described in the text.

ation from the Brownian motion. The velocity autocorredatifunction of a Brownian
particle is a single exponential. Due to the speed fluctnatibe velocity autocorrelation
becomes the sum of two exponentials. Such autocorrelatiaves been observed in cell
motility experiments, but the microscopic origin of thetfase-scale has not been estab-
lished [7]. Fast intracellular processes could give rissuoh fluctuations in speed with
small characteristic time-scales [62, 63].

To conclude, the simulations suggest that fluctuations @edpas the ones observed
in experiments might be enough to cause visible deviatimra the classical result [15].
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Chapter 3

Collective motion driven by particle
shape

Introduction

The study of the collective behavior of self-propelled [mdes has applications in a wide
range of systems. We observe patterns of interacting sekdentities in autonomous
robots [21-23], traffic [24] and human crowds [25]. At thelbgical level, patterns of
self-propelled particles are manifested in all possibdes; from herds, bird flocks, and
fish schools [26] to bacterial swarms [27, 28], and even dawa molecular level in
the dynamics of actin and tubulin filaments [29-32]. A reentrquestion is how these
entities coordinate their behavior to form groups which moellectively. At a theoretical
level, several qualitative approaches have been madedgoiorate the diverse collective
behaviors of such different systems in a common framewof#k48-45]. While these
models may satisfactorily explain the phenomenology ofesofithe observed patterns,
due to their generality they usually fail to reveal the actmachanism used by the entities
to coordinate their movement.

Models for bacteria likée. coli as well as for amoebae lik2. discoideum [46], have
been based on chemotaxis, a long-range cell interactiolmamém according to which
individual cells move in response to chemical signals peediby all other cells. How-
ever, in some bacteria there is no evidence for chemotastis and cells coordinate their
movement by cell-to-cell signaling mechanisms in whichgbgl contact between bac-
teriais needed [27,28,47,64,65]. How these bacteria 4begeenvironment, and which
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information they transmit constitute intriguing quessorClearly, aggregation of these
bacteria requires an alternative mechanism of gatheringedong-range chemotactic
signaling.

The absence of diffusive chemical signals poses integesjirestions. Can non-
diffusive short-range physical interactions transmit tleeessary information to cause
aggregation? More specifically, can the self-propulsiah @amsotropic shape of bacteria
be enough to produce clustering? How important is the shipaateria for their collec-
tive motion? And finally, why are gliding bacteria rod-shdjdjects? In this Chapter itis
shown that self-propelled, sufficiently elongated paggdah a simple model form clusters
and therefore do not require such long-range communicétioaggregation. Instead,
aggregation depends crucially on the particular shapeeofritiving objects.

For swimming bacteria it has been proven that the cell srepssential for individual
motion [66—69]. In contrast, the role of cell shape in thdaxilve behavior has remained
unexplored. It has been shown experimentally [70] that atigg elongated cells exhibit
alignment similar to liquid crystals [71, 72]. A prominentaanple for collective behav-
ior with no apparent long range interactions are the stgikiatterns observed during the
life-cycle of gliding myxobacteria, see e.g. [27,28, 47&rlker modeling work has repro-
duced many of these patterns in three dimensions assuntimgy perfect alignment [73]
or a phenomenological alignment force [64, 65]. These nwldaVe all considered pat-
terns resulting from exchange of chemical signals, thaghsent in an early stage of the
myxobacterial life cycle. Nevertheless, a trend from alithdependent motion towards
formation of larger clusters of aligned bacteria is ofteisated (see Fig. 3.1). More-
over, aligned motion of self-propelled rods (=polar paesg with apolar interactions is
an important example for an "active nematic” phase, thatlféerent properties from the
nematic phase observed in two-dimensional driven syst8i<B]. For instance, while
the interaction of self-propelled elongated rods by volerelusion can result in either
parallel or antiparallel local alignment of the particles, illustrated in Fig. 3.2, these
active particles can form coherently moving polar cluséershown in Fig. 3.3.

In this chapter we introduce a model for self-propelled roglsving in a two-
dimensional space in which interactions are based expliait particle shape (see Fig.
3.3). Hydrodynamics interactions are neglected. Therlassumption is justified for
densely packed objects in very viscous media like bactéimas. The moving rods have
exclusively repulsive excluded volume interactions. Wd fimat elongated particles form
groups inside which particles are aligned and moving in #mesdirection (see Fig. 3.3).
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Figure 3.1: Example for clustering of myxobacterhd. (xanthus) in the early stage of the life
cycle. (a) Immediately after maturation of spores. (b) Afterds, during the vegetative phase.
Snapshots are taken from a movie (Ref. [74], see also [788),flame size is 40 x 3@m?.
Similar phenomena were seen in other bacterial species .

We show multiple evidence for this process. At the level @& $ipeed distribution, we
notice that for large values of the particle aspect ratithe distribution becomes sharp
and centered around the active speed. This is due to the eordint of particles inside
densely packed clusters in which fluctuations are highlyricéed. Interestingly, in ab-
sence of fluctuations collisions among pure active padigleuce a speed distribution
which resemble a Maxwell-Boltzmann distribution. We aleow that the average square
angular velocity, a direct measure of particle rotatiom r©on-monotonic function of the
x which exhibits a maximum at an intermediate value oT hrough the study of the two-
body correlation function, we find that particles are logallranged in a side-by-side and
head-to-tail manner. We learn, by analyzing a kind of spim-sorrelation function, that
polar local ordering is facilitated by. The numerical evidence indicates that elongated
particles succeed in forming swarms, while isotropic et fail in producing local po-
lar ordering. Through the study of the ferromagnetic anditiqcrystal order parameter
we show that also induces global orientation ordering.

In addition, we find that the interplay of rod geometry, gaiépulsion, and repulsive
short-range interaction is sufficient to facilitate aggtgn into clustering. In simula-
tions of an individual based model, clustering of self ptgueparticles is observed for
large enough packing fractiopor aspect ratia: of the rods (see Figs. 3.3 and 3.5). We
define the onset of clustering by the transition from a uniatdol a bimodal cluster size
distribution. A mean-field approximation for the clustezesdistribution is derived and
reproduces the change from a unimodal to a bimodal shapeinpaase of eithen or
k. The mean-field yields a simple equation= C'/n — 1 for the critical rod aspect ratio,
k., at the onset of clustering in line with the individual-bdsémulation results. We also
show that the transition is reflected in the crossover of tlobdgbility of the maximum
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) ()
Figure 3.2: The scheme illustrates the possible alignmeasisiting from a binary collision of
self-propelled (polar) particles. Note the alignment carphrallel (1) as well as antiparallel (II).

cluster size M, between a power-law and a logarithmic tail. As a conseqeiencis
located at the maximum growth rate bf with «. Alternatively, the transition to cluster-
ing can be defined as the point at which cluster entridpytakes its maximum value. We
show that far below the transition, the clustering progsrtf the system obey the maxi-
mum entropy principle applied t8, which allow us to describe the system in terms of
the total number of clusters. If diffusion is added to thevaciotion (active-Brownian
rods), the clustering transition is shifted to higher vala&x, whereas clustering is absent
for pure diffusive motion (Brownian rods) as well as for isqgic particles withx = 1.
Hence, clustering of particles with excluded volume intéoa requires both active mo-
tion, i. e. a non-equilibrium system, and elongated pasi¢k rods).

3.1 The individual based model

We consider rod-shaped particles moving on a plane. Eadltlpas equipped with a
self-propelling force acting along the long axis of the [t We assume that particles
are submerged in a viscous medium. The rod shape of thelpanggjuires three different
friction coefficients [72, 76, 77] that correspond to thastsice exerted by the medium
when particles either rotate or move along their along and sixis. We consider an over-
damped motion of the particles, i.e., inertial terms arelestgd. Velocity and angular
velocity are proportional to the force and torque, respettj and the state of a particle is
given exclusively by the position of its center of mass, dradrientation of its long axis.
Consequently the movement of ttth rod is governed by the following equations for the
velocity of its center of mass and angular velocity:

G @y _ (L. oU® 1 oU@
(UH ’Ul) - (C| (F al'” )7 CJ_ 0xl (311)
laU(i)

v = (3.1.2)

TG 00
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Figure 3.3: Example of the time evolution the individuakbd simulations - Snapshots of sim-
ulations with periodic boundary condition for various tisna& high and low density. (a) and (b)
correspond to simulations performed with = 200 active particles of aspect ratio = 5 at a
packing fractionp = 0.40 (high density). The initial condition of the simulation isasvn in (a),
while (b) depicts the system at a later tithe- 1000. Snapshots shown in (c) and (d) correspond
to a simulation performed witlt' = 100 active particles ok = 12 atn = 0.034 (low density).

(c) shows the initial state of the system, while (d) refers to 1200. Arrows indicate directions
of motion. Note in (b) the formation of a sporadic vortexeliktructure. Typical polar-oriented
moving clusters in their characteristic arrow formatioa shown in (d).
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wherevﬁi),vf) refer to the velocities along the long axis and short axishefparticle,
respectively(; indicates the corresponding friction coefficierggié related to the friction
torque),U® refers to the energy of the interaction of titke rod with all other nodes, and
F is the magnitude of the self-propelling force. Notice thgt E3.1.1) is formulated in
a coordinate system that is oriented along the long axiseoptrticle. This implies that
Egs. (3.1.1) and (3.1.2) are coupled. The motion of the carftmassx? = (v, v{")

of theith rod is given by

¥ = ’U|(|i) cos 00 + v(f) sin 0

véi) = ’U|(|i) sin ) — ’UY) cos ¥ (3.1.3)
Notice that the velocity direction and the orientation of {harticle are not necessarily
parallel to each other.

3.1.1 Interaction potential

Particles interact by "soft” volume exclusion, i.e., by aeial that penalize particle
overlapping. The potential is defined as follows:

N
U (xD 00 x0) g0)) = ¢ Z ((y - ao(x® .00 x5 gU)y)=8 7—5) (3.1.4)

i=1j#i

wherea, (x, 00 xU) 9)) is the overlap aréaof the rods andj, - is a parameter which
can be associated to the maximum compressibiitgontrols the stiffness of the particle,
ando¢ is the interaction strength.

In the limit of 5 going to infinity we recover the classical hard-core potntirhe
reasoning is the following. Assume= 1 equal to the volume of the particles, then the
potential can be expressed for a small overlapping aesal (e¢) = (e. For the limit of
( going to infinity any finite value of produces a divergence. In consequence, to avoid
the divergence has to be: = 0, and so we obtain a hard-core potential.

It is worth noticing that since the derivative of the ovepap area depends on how
particles are colliding, the potential provides differéarces and torques upon the spatial
arrangement of the particles at the moment of the colliser,Fig. 3.4.

1The numerical estimation of the overlap area is the bottleré the simulations. In Appendix A a
brief explanation about an efficient numerical calculatoprovided.
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Figure 3.4: The scheme shows that the potential providésrelift forces and torques depending
on how particles are colliding. This is owed to the differdativatives of the overlapping area for
each case.

3.1.2 Fluctuations

We study the effects of fluctuations by inserting additivesadermsR (¢), R (t) in Eq.
(3.1.1) andRy(t) in Eq. (3.1.2). The stochastic motion of ik particle is then given by:

W 0 L o) out 1 ( W _ U m))
oy = (2R 4 F - = (RrY -
(UH v)”) <CI( I oz ) L i e

. 1 N oU®
@ — —(grW"_
0 2 (Rg 2% ) (3.1.5)

where the white noise terms are of the form:

(RP(t) = 0 (3.1.6)
(RYMRY () = eandiyolt —t)

whereA and B stand for||, L, andd, (¢t — t’) is a Dirac delta function; ; is Kronecker
delta function, and , 5 is defined as follows. Fad # B, e4 5 = 0, while for A = B,
€4,4 represents the noise strengths which are three constants: | andey . If we want
fluctuations to represent a thermal noise, the noise stisrigtve to satisfy the following
relation in order to define a unique temperature in the sy§i&in

(B (R0 (R

2 2¢1 2Gy

whereK i is the Boltzmann constant afdis the absolute temperature.
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Type of particle  active forcé’ <R|(|i))2/c|| (RiN2/¢, (RW™2/¢,

pure active 0.4 0 0 0
active-Brownian 0.4 0.0833 0.0833 0.0833
pure Brownian 0 0.0833 0.0833 0.0833

Table 3.1: Active force and noise intensities for pure agtactive Brownian, and pure Brownian
particles

3.1.3 Simulation parameters and boundary conditions

All simulations were performed with a particle area- 0.2 and the friction coefficients:
1/¢) = 0.1,1/¢1 = 0.04, and1/{y = 0.5. The parameters associated with the potential
given by Eq. (3.1.4) arey = 0.16, ¢ = 0.16 and3 = 1. Three "types” of particles have
been studied: puractive, active-Brownian, andBrownian particles. The corresponding
values of active force and noise intensities are given inerad.

Typically simulations were run wittv. = 50, 100 and200 particles, and during0*
integration steps, using an integration step= 0.1.

Most of the simulation results presented in this chapteresmpond to simulations per-
formed placing initially the/NV particles at random inside a box of ardaand periodic
boundary conditions (see Fig. 3.3), but reflecting boundaryditions were also stud-
ied (see Figs. 3.14 and 3.15). Unless otherwise indicatezlynae periodic boundary
conditions.

As a general observation, for the explored densities, tséerys never freeze, i.e.,
never reach a state in which particles do not move. Anoth@ormant remark is that
collisions among patrticles lead to local alignment, buttcany to what occurs in [34, 40,
41, 44], particles can also point in opposite directionsl @mnconsequence the emergent
dynamics differs from that of those models (see Fig. 3.2).

There are three key parameters which control the dynan)iprsistence of particle
motion, regulated by the active forééand the noise strengths, ii) the packing fraction
i.e., the area occupied by rods divided by the total anea (Va/A), and iii) the length-
to-width aspect ratia (x = L/W, whereL is the length andl” is the width of the rods)
(see Fig. 3.5).

In the following, we study quantitatively the impact of teetiree parameters in the
dynamics of the self-propelled rods and cluster size thgtion.
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Figure 3.5: Simulation snapshots of the steady states ffareint particle anisotropy: and the
same packing fraction (a-c), and the same and differentn (d-f). Fixingn = 0.24: (a) before
the transitionks = 1; (b) almost at the transition; = 5; (c) after the transitions = 8. Fixing

k = 6: (d) before the transitiom = 0.18; (e) just crossing the transition, = 0.24; (f) after the
transition,n = 0.34. All cases correspond to simulations with = 100 active particles of fixed
areas = 0.2. The arrows indicate the direction of motion of some of thestdrs.
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3.2 Dynamics: particle speed, angular velocity and spa-
tial arrangement of particles

This section is devoted to the study of particle motion, abtarized by the particle speed
and angular velocity, and the spatial arrangement of pesticncluding local and global
orientation.

3.2.1 Particle speed

Collisions among pure active particles lead naturally tespersion of the speed distribu-
tion. In this case particles are driven only by the self-gtbpg force £, and in absence
of interactions or at very low densities, we expect the spkstlibution to be a Dirac
delta function. We refer to this speed as the active speedymtolize it ash = |F|/(.
Fig.3.6(a) and (b) illustrate the effect of collisions byvgoaring simulations performed at
low and high density. Clearly, higher densities corresportugher collision rates. If the
density is high enough, particle interactions induce areesgpeed distribution which gets
superimposed to the Dirac delta distribution associated ®urprisingly, at high densi-
ties the extra distribution resembles a classical MaxBeltzmann distribution [79] (see
Fig. 3.6(b)). Consequently the system exhibits two typgeeds (i.e., a speed distri-
bution with two maxima), one related to the active speed,thether one associated
with particle collisions. There are several remarkabléedinces between the classical
Maxwell-Boltzmann distribution for two-dimensional gaarpicles, and the one we ob-
serve for purely active particles. The most evident difieeis the peak associated to
0 (solid vertical line in Fig. 3.6(a) and (b)) . But beyond tloisvious fact, it is worth
noticing that the classical Maxwell-Boltzmann distrilmrtiemerges in systems where the
momentum is conserved, while in the system we analyze heradtt conserved.

To understand the speed distribution of active-Browniatiglas, we firstly discuss
the speed distribution of simple Brownian particles at loswsity, i.e., neglecting col-
lisions. Since in this casq(f) = Rﬁi)/§||, then the probabilityf; of observing a speed
vy along the||-axis is f|(v)) = (oyv2r) " exp(—v}/(207)), wherea? = (R3/¢3).

A similar argument follows for,. In consequence, the probabilipfs) of observ-
ing an speed = , /vit + v} is expressed ag(s) = fvﬁwi:SQ f(vj,v1)dvydv,, where
f(up,v) = fi(y)fo(ve). In active-Brownian particles, the contribution of thefsel
propelling force F' translates simply in a shift of(v;), which now readsf(v|) =
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Figure 3.6: Speed distributiop(s) at different packing fractions and differentx. Top: p(s) at
different values of) for purely active particles with a fixed = 5. (a) low (7 = 0.16) and (b) high
density ¢ = 0.40). The superimposed Maxwell-Boltzmann distribution in ¢bjresponds to a fit
of the p(s) performed removing the highest peak. Bottopfs) at fixed density 4 = 0.34) for
active-Brownian particles with differemt (c) isotropic particlesK = 1), (d) anisotropic particles
(x = 10). Notice how the width of the distribution (associated te tioise) shrinks due to local
order formation in elongated particles. The vertical limeficate the speed induced By,
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Figure 3.7: Average speed) and most probable speegd as function ofx (a) andn (b). Simula-
tions with active-Brownian patrticles. (a) fixed packingctiann = 0.34 and box7.67 x 7.67. (b)
fixed aspect ratiec = 5 and box10 x 10.

(aﬂx/%)_l exp(—(v — F/{)?/(20})). The speed distribution takes the form(s) =
fvﬁ+ui:s2 (27m||aL)_1 exp(— (v — F/C”)z/(QUﬁ)) exp(—vi/(2ai))dv|‘dvl. Using this
expression we calculate the average speeddefined ass) = [, sp(s)ds, and the
most probably spees}, i.e., maximum or mode of the distributigris). For Brownian
particles in absence of interaction we estimate= 0.09577 ands, = 0.07638, while
for active-Brownian particleg;s) = 0.102 andsy = 0.08.

Now we are in condition to explore the effect of collision otige-Brownian particles.
Surprisingly, this time the interaction among particles lead to a shrinking of the speed
distribution width. This phenomenon is particularly netble comparing particles of
very different aspect ratie and exposed to the same noise, as it is shown in Figs. 3.6(c)
and (d). Fig. 3.6(c) shows the speed distribution of pasielith an aspect ratia, = 1.
Fluctuations almost entirely shape the distribution. Tttéeva speed is indicated by the
solid vertical line. Notice that the maximum of the distiilomn does not coincide with
the active speed. In Fig. 3.6(d) we observe the speed distibof system identical to
the system in Fig. 3.6(c) except for the particle aspecorathich now isk = 10. It
is observed a remarkable shrinking of the width of the distion, which now exhibits
its maximum at the active speed. Particles can reduce theteff the noise by forming
densely packed moving clusters. Inside these structurtislpa are locally aligned and
their movements are highly constrained. In consequenesgbed due to the active force
F prevails.

In Fig. 3.7 we show a more systematic study of the dependehpwarticle speed
with the particle aspect ratio and packing fractiom. The figures exhibit average speed
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Figure 3.8: Average angular velocity) (a) and average square angular velodity) (b), and
angular diffusionDy as function ofy. Simulations with active-Brownian particles of fixed adpec
ratiox = 5 in a box10 x 10.

(s), and most probable speegl as function ofx in (a), andn in (b). Simulations were
performed in (a) withV = 100 active-Brownian particles at a constant packing fraction
n = 0.34 for various values ok. Simulations in (b) also correspond to active-Brownian
particles. This time: was kept fixed ab and the packing fraction was varied. In (a) it

is shown that's) ands, remain insensitive ta for small values of the parameter, while
an abrupt drop in both quantities is observed for large wadiie. The jump in(s) ands,

is due to the shrinking of the distribution shown in Fig. 3:@nm (c) to (d). Notice that in
general(s) > sq, and particularly(s) > s,. It can be easily observed in Fig. 3.7(a) that
for small values of, s, does not coincide with the active spegdvhile for large values
of k, so ~ v (compare with Figs. 3.6(c) and (d)). Assuming particles dioget stagnated
for larger value ofx, we expects, to be in its minimum, and for larger value afonly
see(s) decreasing towards. We speculate that the roughly sharp transition exhibited b
so could be correlated to the emergence of strong clusteriiegtsf though not directly
to the transition to clustering as it will be defined below. Ba other hand, Fig. 3.7(b)
shows that's) ands, remain constant in the simulated rangenpbut presumably they
would exhibit a similar transition for larger value gthan the simulated ones.

3.2.2 Angular velocity and angular diffusion

As expected, the angular velocity distribution takes akvayGaussian shape centered
around zero. In absence of angular fluctuations, i.e., foveaparticles, the width of
the distribution is entirely determined by the collisiomsang particles, while for active-
Brownian particles there is an additional contribution @fh¢omes from the amplitude of
the angular noiséR}(¢)?). In consequence, the maximum or mode of the distribution is
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zero, and the average angular velocity and average squauaanelocity depend upon
angular noise and particle collision rate.

Figs. 3.8(a) and (b) show the average angular velocityand the average square
angular velocityw?), respectively, as function of the packing fractipriThe simulations
were performed with active-Brownian particles of fixed agpatiox = 5 for various
values of the packing fraction. The size of the box was kept constantlatx 10 and
the following number of particles were simulatedi = 80, 100, 135, 170 and 200,
corresponding to) = 0.16, 0.20, 0.27, 0.34 and0.40. The figure indicates that as the
packing fraction increases$y) also increases (see Fig. 3.8(a)). Similafly?) grows
with 7 (see Fig. 3.8(b)). Notice th&b?) is a measure of the kinetic energy due to particle
rotation. Asy increases, the collision rate enhances. Since collisiapgyirotation of the
particles, we expect botky) and(w?), to increase withy. Figs. 3.8(a) and (b) prove that
this is the case. We conclude that far away from the maximurkipg fraction, particle
rotation, resp. the kinetic rotation energy, increase with

Fig. 3.8(c) shows the angular diffusidn, as function ofy. It could be argued that
an increase iffw) and (w?) would lead to a higher angular diffusion. Fig. 3.8(c) shows
this trend forp > 0.2. The deviation observed at= 0.16 is probably due to fluctuations
caused by the small number of particles.

Fig. 3.9 showsw), (w?), and D,,, but this time as function of the particle aspect
ratio . The simulations were performed wifh = 100 active-Brownian particles at a
fixed packing fractiom = 0.34 and for various values of. The figure reveals a complex
response ofw), (w?), and D, to variations ofx. For small values of;, (w) and (w?)
grow with . As s increases, the scattering cross section of the partickesimtreases
Consequently, we expect the collision rate to be enhancddrigr values ok, which
in turn caused an increase () and(w?). However, notice that there are two processes
competing. On one hand, asgets larger, the number of collisions among randomly
moving cluster increases. On the other hanticilitates local ordering. For large values
of x, particles tend to move parallel to each other. As the nurobavailable direction of
motion decreases, due to local alignment, the collisioguescy also gets reduced. As
shown in 3.9(a) and (b), for large values:othis effect becomes dominant and) and
(w?) get lower values. In the extreme case of perfect polar arderi the system, and
for active particles{w) and(w?) vanish. We expect in general) and(w?) to exhibit a
maximum at intermediate values of Figs. 3.9(a) and (b) confirm that this is the case.

2A discussion about the scattering cross section of rodsoigighed in section 3.3.
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Figure 3.9: Average angular spegd) (a) and average square angular speed (b), and angular
diffusion Dy as function of the particle aspect ratio Simulations with active-Brownian particles
in a box7.67 x 7.67 atn = 0.34.

Particle rotation, resp. the kinetic rotation energy, bkt maximum at intermediate
values of the aspect ration, increasing for small valuesasfd decreasing for large values
of the parameter.

Fig. 3.9(c) shows that the angular diffusify, also has a non-monotonic dependency
with «. Surprisingly, the maximum ab_, does not coincide with the maximum exhibited
by (w) and{(w?). It is worth noting thatD,_,(x) has its maximum located near by the value
k. Which denotes the onset of clustering in the system as defirthé next section.

3.2.3 Spatial arrangement of particles and orientation or@ring

When particles exhibit large values efthe local spatial arrangement is such that par-
ticles get aligned in a side-by-side and "head-to-tail” mam allowing the formation of
densely packed clusters. This observation can be quant§iedeasuring the two-body
correlation functiorp(d), which is nothing else than the probability of finding the tegn
of mass of two particles separated by a distaficé~ig. 3.10 showg(d) measured in
simulations performed witlV = 100 active particles at a fixed packing fractign= 0.34
and various aspect ratios In (a) we observe that for isotropic particles, i.e.= 1,
p(d) exhibits one single peak @& = L = W. Thep(d) is zero ford < L, indicating
particles cannot overlap. Though the single peak evidethagsnany particles stay in a
side-by-side arrangement, they are not aligned, meaneydb not have the active force
F pointing in the same direction as shown by Fig. 3.11(a). Frags. 3.10(b) and (c)
we learn that for anisotropic particles, i.e.> 1, p(d) exhibits two peaks. The first one
atd = W corresponds to particles arranged in a side-by-side mamwnde the second
peak atd = L to particles arranged in a head-to-tail manner. Noticedbatgets larger
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Figure 3.10: The two-body correlation function fpr= 0.34 and various values of, k = 1
(@), = 5 (b) andk = 7 (c). Simulations performed wittv = 100 active particles in a box
7.67 x 7.67. Notice the peaks corresponding to particles arrangedsiede and head-to-tail.

the peak at/ = L becomes more pronounced.

Now we want to learn about the orientation of particles iaghis arrangements. We
look for a measure of the local ordering. Assule= (cos(6;),sin(6;)) is a unit vector
that represents the orientation of the long axis of dieeparticle, or equivalently, the
orientation of its active forcé’. If J(x) represents the local orientation or polarization,
we want to calculate the quantity (0)J(d)) defined as:

(J(0) /dx/ da/ d@/ ¢ (3.2.1)

cos(6 — 0" p (x,0,t;0x + d(cos(a),sin(a)), &', 1) ,

where A is the area of the systermms(f — ¢) is the scalar product of the orientation of
particles whose long axis afeandd’, andp (x, 0, t; 02', 0', t) refers to the joint probability
of finding at timet a particle at positio and pointing in directiod, and simultaneously
another particle at’ and pointing in directiof’. In simulations we calculate this quantity
simply by:

(3(0)J(d)) — Y 135, (3.2.2)

\xz xj|=d

where the sum runs over all pairs of particles in the simoesieparated by a distandge
andn, is the number of such pairs. Notice that the maximum value({th@)J(d)) can
take isl and corresponds to a situation in which all particles sepdray a distancé are
perfectly aligned.
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Figure 3.11: Local order. Average of the scalar product efgérticle orientation(J(0).J(d)), as
function of the particle distancé Simulations withn = 0.34, N = 100 and box7.67 x 7.67.
Notice that isotropic particle do not order locally (a), ¥ehelongated particle do (b)-(c). The
small peak atl = L in (b) and (c) indicates many patrticles arrange themselveshead-to-tail
manner while collectively moving. Compare with Fig. 3.10.

Fig. 3.11 showsJ(0)J(d)) measured in simulations performed, as before, Witk
100 active particles at a fixed packing fractign= 0.34 and various aspect ratias For
k = 1, isotropic particles{J(0)J(d)) is roughly zero for all values af. Compare the
high of (J(0)J(d)) observed in (a) with (b) and (c). The fluctuation at small eslof
d are presumably due to the finite size of the system. As mesdiabove, the peak at
d ~ L = W in Fig. 3.10(a) corresponds to particles arranged in alsydside manner.
The small value taken byJ(0)J(d)) atd ~ 0.44 in Fig. 3.11(a) reveals that roughly
half these particles move parallel, while the other half enanti-parallel to each other.
In contrast, elongated particles exhibit very high loca&raient. (J(0)J(d)) takes its
maximum value atl = W and decay for larger values df Particles separated by a
distancel = W are densely packed, aligned side-by-side and move in the dagttion,
as indicated by the high value reached {3y0)J(d)) atd ~ W in Figs. 3.11(b) and
(c), and peak af ~ W in Figs. 3.10(b) and (c). The correlation of particle or&idn
(J(0)J(d)) does not decay monotonically with the distancas in the planar XY-model.
At d ~ L, (J(0)J(d)) exhibits a kink. In Fig. 3.11(c) it can be easily confusedhwit
a fluctuation, but in 3.11(b) the kink is well-defined. Its geace indicates that many
particles are aligned head-to-tail and moving in the samextion.

So far, we have discussed about local orientation ordeand,shown that locally
facilitates ordering. In the following we address briefly tiffect on global orientation
ordering ofk.

The particle orientation distribution(d, t) exhibits a very dynamical evolution. Fig.
3.12 showg (4, t) for a simulation performed withv' = 100 active particles ok = 7 at



38 Chapter 3. Collective motion driven by particle shape

n = 0.34. The bright patches correspond to the orientation of lahgsters. We want to
guantify the degree of global orientation ordering in sugdtams. We use two quantities,
the ferromagnetic order paramet&f = 1/N(| Zf\il exp (i6;)|) and the two dimensional
scalar liquid crystal order paramet&f® = 1/N(| SV | exp (i26;)|), wheref; refers to
the orientation of the long axis of th#éh-particle, and(...) denotes temporal average.
ST measures the degree of "polarization” of the systé.= 0 indicates that particles
point with equal probability in any direction, whil&’" = 1 corresponds to a situation in
which all particles pointing in the same direction. On thieesthand,S“ quantifies the
degree of alignment without distinguishing head and tathef particles (recall that the
self-propelling force defines a "head” and "tail” of the palets). SL¢ = 0 indicates no
order, whileS™® = 1 implies that all particles are aligned to a global direchwtice that
if S = 1 necessarilys*“ = 1, while the contrary, i.e.$°“ = 1 does not implyS* = 1.
Fig. 3.13 showss” andS*¢ as function ofx. The simulation were performed with
N = 100 active particles ok = 7 at packing fractiom; = 0.34. It can be observed a
systematic increase of andS*““ with «, despite the fact the system size is too small to
make any claim about possible phase transitions. Presynthblincrease experienced
by SX¢ is due to polar alignment of particles, though the possjbif true nematic order
can not be excluded. It can be conclude that, as expectefihitersystems, large values
of x imply high degree of orientational ordering.

3.3 Clustering

This section is entirely devoted to the study of the cluatedynamics of self-propelled
rods. It starts with a survey of the findings in individuakbd simulations.

While most of the study is focused on periodic boundary comal, here we discuss
briefly the effect of implementing other types of boundarigs Fig. 3.14 snapshots at
various times of a simulation with a reflecting circular bdary are shown. The simula-
tion was performed witllv = 100 active-Brownian particles of = 1 andIW = 0.2 at a
packing fractiony = 25. The diameter of the reflecting ring 19. Initially particles are
placed at random inside the circle and pointing at randoetton ¢ = 0). As the simu-
lation runs we observe that particles start to gather arthmtioundary. At the beginning
particles slide on the circular boundary with their longsaparallel to the reflecting wall
t = 150, but soon after traffic jams of counter migrating particleseege and aggregates
of stalled particles appear on the boundary=(300 andt = 450). At this point the dy-
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Figure 3.12: Evolution of the particle orientation distiiion p(6,¢). The high of the function
p(0,t) is color coded: dark blue fdy, and bright red for the maximum val@e25. Simulation
performed withNV = 100 active particles ok = 7 atn = 0.34 in box 7.67 x 7.67. The bright
patches correspond to the orientation of large clusters.

Figure 3.13: Global orientational ordering quantified tigb the ferromagnetic order parameter
ST and the two dimensional scalar liquid crystal order param&t“. Simulation performed
with N = 100 active particles of: = 7 atn = 0.34. Notice the increase & andS™¢ with x.
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Figure 3.14: Snapshots of a simulation with reflecting b@mpaonditions at various times\ =
100 active-Brownian particles of = 1 andW = 0.2; diameter of the reflecting ring0, and so
n = 0.25. Notice that as time goes, particles gather around the tzoynd
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namics of the system slows down and we only observe somed@ivparticles traveling
from one aggregate to another. If one waits long enoughniteaseen that some initial
aggregates disappear while others grow in size. Remarkabiie the boundary is not
at all absorbing, particles end up in clusters which arech#d to the boundary, and the
particle density in the middle of the system drops to zeront2wy, in simulations for
the same system but with Brownian particles, the densitgmnénops to zero, though it is
observed slightly higher density on the boundary that otereand particles do not clus-
ter so much. The self-propelling forde is responsable of such strong non-equilibrium
clustering effects on the boundary.

In Fig. 3.15 we test other type of boundary condition. The defd right side of the
box are reflecting walls, while the top and bottom side arenecoted in such a way that a
particle leaving the system through the top side emergdeedidttom side. The simula-
tion shown in Fig. 3.15 corresponds to this tube-like bouypdandition (box7.67 x 7.67)
and was performed withV = 100 active-Brownian particles of = 1 andWW = 0.2. As
before, the particles are initially distributed at randorside the box and pointing with
equal probability in any directiort (= 0). As the simulation evolves particles start to
aggregate on the reflecting walls, though particle dengityhe center of the box never
drops to zero (see snapshot corresponding +o 8534). Another important difference
with respect to simulations with active-Brownian partecénd reflecting boundary condi-
tions is that particles never get stalled. Moreover, plsican exhibit sporadic coherent
motion by eventually arranging parallel to one of the reftegtvalls and pointing in the
same direction (see left side of the snapshot corresponding: 8534).

3.3.1 Clustering induced by persistence in the motion and pking
fraction

When fixingx andn, we observe that the self-propelling foreanduces (moving) cluster
formation, while, on the other hand, the noigg, tends to diminish it.

An estimate of particle clusterization is given by, the mean maximum cluster size
divided by the total number of particles. This quantity i§ied as follows:

11
- N(T—t)

/t maz(0(ny(t)), ..., jO(n;(t)), ..., NO(ny(t))dt (3.3.1)

where T represents the simulation time, the transient before the "steady state” is
reached, an®(x) a Heaviside functionn;(t) refers to the number of clusters of mgss
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Figure 3.15: Snapshots of a simulation with a tube-like lolauyp condition at various times. Left
and right side are reflecting boundaries, while top and botale are connected, i.e., the system
is periodic along the vertical directionV = 100, L = 1, W = 0.2, box 7.67 x 7.67, and so

n = 0.34. Notice that particles aggregate on the reflecting bouadavhere eventually coherent
motion emerges (see left side of the snapshot correspomaling 8534).

at timet. M € [0,1]. Fig. 3.16 shows\/ for different ratios betweert” and the noise
amplitudes, i.e., for pure active, active-Brownian andviar@n particles, and different
value of the packing fraction (snapshots of simulations with active particles at fixed
and various values of are shown in Fig. 3.5) . As can be observed in the figure, for all
71 pure active particles exhibit the strongest clusteringatffwhile pure Brownian parti-
cles the weakest. The mean maximum cluster size for actige4dian particles falls in
between these two extreme cases.

Notice that the dependency of with 7 is different for these three types of particles.
For the range of packing fractions explored, is almost constant for Brownian parti-
cles, exhibits a linear relation witifor active particles, and a non-linear dependency for
active-Brownian particles.

Clustering is facilitated by the persistence in the motighilgited by the particles
and not by simply the particle speed. The parameters of tiimese particle types have
been chosen such that without interactions active pastid@e an average squared speed
(v?) = 0.0016, while in active-Brownian particleév?) = 0.0132, and in Brownian par-
ticles (v?) = 0.0116. In consequenceyv?)active < (V2) Brownian, aNd(V?) Brownian ~
(V%) qetive— Brownian- EVEN USiNg such a small, compared to the noise amplitude, we
observe that particles driven only l#y exhibit the strongest clusterization, while simul-
taneously, the smallest average squared speed.

Why do these active particles cluster so much? Active dagiwhen they meet tend
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Figure 3.16: Mean maximum cluster size divided by the tosmhber of particles)M, vs. packing
fraction,n. k = 5. Cases: purely active particleguare), Brownian particles#iangle) and
active-Brownian ¢ircles). The dashed line indicates slope 2.5, suggesting thatecing for pure
active particles is linear with even having a smallew?) than Brownian particles.
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Figure 3.17: The two regimes df/ as function ofx. (a)Active-Brownian particles at density
n = 0.34. (b) Active particles at density = 0.24.

to align their long axis and move parallel to each other. Byndaso, they can form stable

dense clusters (see Fig. 3.5). On the other hand, Brownidiclpa lack the characteristic

persistence in the motion of active particle, and collisiamong them rarely lead to per-
fect alignment. In addition, the absence of a self-propglforce does not allow coherent
migration of the clusters. In active-Brownian particlesllisions typically do not cause

perfect alignment of the particles, but eventually clustdraligned particles emerge. In-
side these clusters, the effect of the noise is highly redlumed the bias originated by the
self-propelling force induces the coherent motion of thust@r. Consequently, clusters of
active-Brownian particles are more stable than clusteBrafvnian particles.

3.3.2 Clustering induced by the length-to-width aspect rab

Fixing all parameters and varying onrty we find that the particle aspect ratias a key
parameter that controls the type of the emergent pattechparticularly clustering (in
Fig. 3.5 some snapshots of simulation at fixedlustrate this phenomenon). We stress
that when varying: we always keep the particle area constant, angremains the same.

Moving cluster formation strongly depends an When going from isotropic to
anisotropic particles we observe two regimes of the clistgon process. Initially\/
grows monotonically withs up to certain point after which/ seems to reach a plateau
(see Fig. 3.17). The presence of these two regimes sugbestsistence of a critical.
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Figure 3.18: Evolution of the weighted cluster size disttiibn ,,(¢). The high of the function
nm(t) is color coded: dark blue fod, and bright red for the maximum val®). Simulation
performed withV = 100, k = 7, n = 0.34, N = 100 and a boX7.67 x 7.67.

after which cluster sizes no longer grow withand M saturates.

The "saturation” of\/ is a robust property of the model that does not depend onreithe
the noise amplitude or the packing fraction. To illustrdtis fact, we show in Fig. 3.17
M as function ofx for active and active-Brownian particles at different gagikractions.
Notice that Fig. 3.17(a) and (b) exhibit the same qualieatrehavior. However, the
amplitude ofM as well asx.., strongly depend on the noise amplitude gnd

Another way to study clustering in the system is through tleéghted cluster size
distributionp(m), which measures the probability of finding a randomly chgsanicle
belonging to a cluster of mass. p(m) is defined as follows:

T
p(m) = %(Tiitt) /t o (E)ymdt (3.3.2)

where T' represents the simulation time, the transient before the "steady state” is
reached, and.,,(t) refers to the number of clusters of massat timet. By abuse of
notation, we refer tg(m) as cluster size distribution. Notice that the "real timetis!
ter size distribution, represented hy, (t), exhibits a very dynamical evolution in which
clusters are created and disintegrated constantly (see€8Hi§). Though this is true, the
temporal average of,,(¢), throughp(m), provides a good characterization of the cluster-
ing properties of the system. The distributioim) has proved to be highly reproducible
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Figure 3.19: Onset of clustering triggered byp(m) as function of the cluster size. Symbols
show the average over 8 realizations for active particles-at.34, andx = 1 (circles) andk = 8
(crosses). The lines correspond to the mean field theory fer1 (solid) andx = 8 (dashed).
The second peak (for = 8) is the signature of particle clusterization.

in simulation performed under the same conditions, i.anesaitial condition, set of
parameters, and boundary condition.

p(m) is shown in Fig. 3.19 for different values &f (x = 1 (circles) andx = 8
(crosses)). Simulations exhibit a transition which is triggered byhenn is fixed. For
low values ofx, p(m) is monotonically decreasing, indicating no clusterizatibor large
values ofk, p(m) exhibits a second peak which is the signature of particlstehization.
The second peak indicates that particles "prefer” to stdgnge cluster instead of being
part of small groups. We define the transition from no clustgto clustering as the point
at whichp(m) is no longer monotonically decreasing. By using this deéinitwe can
estimate the critical aspect ratig after which clustering becomes dominant. Notice that
the transition to clustering, implies a transition to a swiailg phase.
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3.3.3 A first approach towards the understanding of clustemg: the
number of clusters and cluster entropy

As a first step to understand clustering theoretically, weysthe evolution of the number
of clusters in the system. We defid&¢) as the total number of clusters in the system.
G(t) takes the form:

N

G(t) =) ni(t) (3.3.3)

i=1

where N refers to the total number of particles in the system ayid) is the number of
clusters of mass at timet as defined above((¢) is not conserved during time, while
the number of particles is constant, i.¥.,' , in;(t) = N. Let us now defing/(t) as the
probability of finding a cluster of sizeat timet, which simply reads:

fi(t) = (3.3.4)

Cluster entropy

In the following we look for a measure of "disorder” in clustey. Given a total number
of clusters(z, the total number of ways in whiadi may be formed into groups,, no, ...
is given byW:

W =

(3.3.5)
Hj'vzl n;!

If n; is large, we could approximate the previous expression kyofishe Stirling
formula and obtain:

N
T, Ny
(W)~ -Gy ~lng (3.3.6)
=1

Sincen; /G = f; is the frequency of cluster of magsve can express:

In(W) al
o= ;f In f; (3.3.7)
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Borrowing the definition oentropy of grouping given by A. Okubo in [80], we call the
right hand side of Eq. (3.3.8) thatuster entropy H (for N — o0):

Ho=-) filnf; (3.3.8)
i=1

H¢ has the following properties which makes it a reasonablesorezof disorder in clus-
tering: i) if all particles gather in one cluster, corresgmg to a state of maximum order,
thenHy = 0, i.e., the disorder i$. ii) if for each cluster size there is only one cluster,
then f; = 1/G, and for a givenz, H- has a maximum valué/~ = In(G). This state
corresponds to the maximum clustering entropy, and cleéady— oo, thenHo — oo.

lii) any change towards the equalizationfpincreasedi.. It is worth noticing that when
all particles form isolated clusters, théfi, = 0, as it is when all of them belong to one
big cluster.

There are two natural constraints to the discrete frequetisiribution f;, a)
Yoy fi=1land b)d> 2 if; = N/G = ¢. Notice thatg is the mean number of par-
ticles per cluster.

The principle of maximum entropy states that the most prigbdistribution f;* cor-
responds to the maximum @f.. To maximize the entropy under these constrains, the
method of Lagrange multipliers can be used. The distributfoof maximum entropy is
then given by:

fi=exp[= (14 Ao + A1i)] (3.3.9)

where ), and\; are Lagrange multipliers [80]. Replacing Eg. (3.3.9) inbmditions a)
and b), and after some algebra we obtain:

f;;( ! )(q_l)i (3.3.10)
q—1 q

Replacing this expression into Eq. (3.3.8), we obtain:

=) (T ) ()] e
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Using thatd) " @' = 1/(1 — Q) and> 2, Q" = Q/(1 — Q) for Q < 1, we express
Eqg. (3.3.11) as:

He =1n(g — 1) + qln(—> -) (3.3.12)
Given an estimation fofr, we can approximate the mean number of particles per cluster
by ¢ and use Eq. (3.3.12) to estimate the cluster entidpy

Evolution equation for the number of clusters

We need an equation fé#(¢). We look for a simple phenomenological evolution equation
of the form:

G = Rg(G) — Rr (G) (3.3.13)

where R (G) describes the creation per unit time of new clusters due littisg of

big clusters, whileRr (G) denotes the destruction per unit time of clusters caused by
collision and fusion of clusters. We expect botly, and R, to be functions of7. In the
following, we discuss the functional form of these term.

The creation term Rg:

The self-propelled rods we are analyzing do not have anysieddorce. There-
fore, we can assume that the more particles a cluster hasydreunstable it becomes.
Furthermore, clusters usually loose those particles tiedbaated on the boundary of the
clusters. Typically this is due to collisions or fluctuatsahat make these particles change
the direction of their self-propelling force to some aréitr direction which typically does
not coincide with the average direction of motion of the grotihus, we assume that the
probability for a cluster of suffering a fission is proportad to the number of particle on
the boundary. For a cluster with particles, we approximate the number of particles on
the boundary ag/m. Sinceq represents the mean number of particles per cluster, we
expectiis to be proportional tq /g.

At this point we need some characteristic time. RecallirgBckinghamr theo-
rem [81], we conclude that this characteristic time has ta ienction of eitherl. /o or
W /v, or a combination of both. Since elongated particles formenstable clusters than
short particles, we simply take the characteristic timeecluster lives to be ! ~ ©/L.
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Figure 3.20: Average number of clustesvs. time. Symbols corresponds to simulations per-
formed with N = 100, x = 4 andn = 0.034. The dot-dashed line is the approximation given by
integration of Eq. (3.3.17), with = 0.1186 and3 = 6.

Taking all this into account, we expreRs as:

CRVE (3.3.14)

where~ is a free parameter of the model. Notice that Eq. (3.3.14)essmts the mean
number of clusters that are created per unit time, and thiexéfis not a rate, i.e., in Eq.
(3.3.13) we insert directly Eq. (3.3.14) and not Eq. (3.3tiMdesG. Clearly,Gs has to
be a decreasing function 6f.

The destruction term Rp:

From the classical gas theory [79] we know that for diluteegathe collision rate
among molecules can be approximated by:

T = (v)po (3.3.15)

where (v) refers to the mean speed of the gass the scattering cross section of the
molecules, ang is the particle density.
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Figure 3.21: Average number of clustérsat the steady state vs. particle aspect rati®ymbols
corresponds to simulations performed with= 100 andn = 0.034. The dot-dashed line is the
approximation given by Eg. (3.3.18) with= 0.1186.

We make use of this expression to estimate the characteiist between collisions
of the clusters. We assume that clusters move roughly atdtiueaspeeds, and then
replace(v) with ©. In this casep is simplyp = G/ A, whereA is the area of the box where
particles moveo represents the scattering cross section of the clustersligks we know
that the scattering cross section is proportional to thausaavhich is proportional to the
square root of the disk area. Therefasehas to be proportional tg/g, and also tasy,
the scattering cross section of individual particles, Whie assume to be proportional to
L+ W 3. Thus,o = /q(L+W).

Then, the rate at which a cluster collides takes the fargilV G /A. Since there are
G clusters in the system, we approximate the mean number steciithat disappear per
unit time by:

Rr(G) = %G?’/z. (3.3.16)

By inserting Egs. (3.3.14) and (3.3.16) into Eq. (3.3.18}) asing that. = L /I and
a = L.W to expresd. = \/ax andW = /a/k, we find the following explicit expression

3More details about the scattering cross section of indadgharticles is given in the next section.
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Figure 3.22: Average cluster entropi vs. time. Symbols corresponds to simulations performed
with N = 100, x = 4 andn = 0.034. The dot-dashed line is the approximation given by insgrtin
in Eq. (3.3.12) the numerical integration of Eq. (3.3.17)hwji = 0.1186 and§ = 6.

for evolution equation for the number of clusters:

. . 1 Vva
= BoVN | ——— G2 N (12 Y2 G2 3.17
G = pv \/_FLG (/—c K ) G (3.3.17)

where( is a constant that is introduced to adjust the time scaleeptbcess. Thus, the
steady state aff simply reads:

G=VNn| "1 +r)*, (3.3.18)

wherex is defined as before, i.e:,= pa.
Inserting Eqg. (3.3.18) into Eq. (3.3.12) we obtdi as function ofx andn:

He(k,n) = In (\/Nm(lJrn) - 1) (3.3.19)
— VNny (14 k)In (1 — /Ny (1+ Ii))
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Figure 3.23: Average cluster entrogyc at the steady state vs. particle aspect ratiat low
density. Symbols corresponds to simulations performet@i Wit= 100 andn = 0.034. The
dot-dashed line is the approximation given by Eq. (3.3.1i#) w = 0.1186.

Comparing theory and simulations

Fig. 3.20 compares the time evolution@fpredicted by Eq. (3.3.17) (dotted curve) and
andG (t) measured in an individual-based simulation performed with 100, x = 4 and

n = 0.034 (circles). For the numerical integration of Eq. (3.3.17)sdue ofy = 0.1186
andj = 6 were usedy is chosen to best fit the simulation data shown in Fig. 3.21ewh
£ is used to adjust the time scale of Fig. 3.20. A fitting of thedation data shown
Fig. 3.21 by a functior; (1 + x)~* reveals that’, has to bel /2. This implies that the
dependency oty of the right hand of Eq. (3.3.17) is correct.

Fig. 3.22 shows the time evolution of the cluster entrdfyy corresponding to the
simulation whose-(t) is exhibited in Fig. 3.20. In simulatiorf$. is measured using the
definition given by Eq. (3.3.8), i.eH(t) = —Zf\il n;(t)/G(t)In (n;(t)/G(t)) (blue
solid line). Therefore, the values éf- reported from simulation are calculated from the
cluster size distribution. On the other hand, the black ddgine in Fig. 3.22 corresponds
to Eq. (3.3.12), where now is replaced by = N/G(t), G(t) being the solution of Eq.
(3.3.17). Thus, the theoretical approximation/fyf is performed only through the mean
number of particles per cluster, which simply involvg@g ), and ignores the actual shape
of cluster size distribution, which is assumed to obey ER. (D).
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Fig. 3.23 compares values &f- for various values ok measured in simulations,
as mentioned above (circles), and calculated theoreti¢ddshed line). This time the
theoretical approximation is performed by inserting in E33.12) the asymptotic values
of G given by Eq. (3.3.18), with = 0.1186.

Egs. (3.3.18) and (3.3.12) provide a phenomenological nstaleding of dynamics
of the number of clusters and cluster entropy far below fromttansition to clustering,
but definitely they can not account for the transition itseifl the clustering properties
above it. The transition to clustering does not simply implgiecrease in the number of
cluster, but also a dramatic change in the cluster sizaldlision. Particularly, the cluster
size distribution becomes no longer monotonically dedénggabove the transition point,
as shown in Fig. 3.19. However, in the derivation of Eq. (3we have assumed by
Eq. (3.3.10) that the cluster size distribution is a monimiay decreasing function for
all possible values ofi. As a consequence, the cluster entréfyy given by Eq. (3.3.19)
Is @ monotonically increasing function efandr. But, as can be seen in Fig. 3.24¢
is not a monotonically increasing function ©{the same can be shown fgy. Moreover,
above the transition to clustering, reflected in Fig. 3.24Hwy maximum exhibited by
Hc*, the cluster entropy becomes a monotonically decreasimgfifin of .

To understand the transition to clustering and the clusgegifects above the transi-
tion, we have to deal directly with the cluster size disttibn. In next section we derive
a theoretical description for the cluster size distribatio

3.3.4 Atheoretical description for the cluster size distrbution

The study of cluster size distributions in physical proesss not new. However, most
of the effort has been focused to understand one particalaequilibrium process: irre-
versible cluster coagulation of Brownian particles [82-8%is kind of non-equilibrium
kinetics is frequent in nature: coagulation of colloidattpes, coalescence of rain drops,
smoke and dust, the formation of planetesimals from sulmmidust grains, etc [82, 83].
Though this kinetics is remarkably important, it is not a g&h coagulation process.
In particular, it is assumed that clusters cannot disimategri.e., they cannot split into
parts [82—85]. In consequence, clusters can only grow ie.tilasecond important fea-
ture of these systems is that the number of particles cantmdered infinite. Therefore,

4The transition to clustering is also manifested in the b@raf the cluster size distribution which
exhibits a monotonically decreasing shape before theitramswhile after it, the cluster size distribution
becomes bimodal.
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Figure 3.24: Cluster entrop¥{~ at the steady state vs. particle aspect ratiat high packing
fraction. Simulations performed with' = 50 andn = 0.34. Notice thatH¢ (k) is not a mono-
tonically increasing function exhibit and exhibit a maximum at = 3.

cluster sizes are not limited and particle conservatiortamposed. It becomes evident
that we cannot make use of the classical coagulation theoexplain the cluster size
dynamics of the self-propelled rods. While this is true,iaftintroduction to the classical
clustering theory might help to place in context the thaoa¢framework we develop in
this section.

The celebrated cluster coagulation model introduced byl&howski in 1916 [82,
83] assumes that each cluster of particles is surroundedspyere of influence. When
their spheres of influence do not overlap, clusters exeod&piendent Brownian motions.
Whenever the sphere of influence of a pair of cluster tou@hchinsters stick together and
form a new cluster. To simplify the theoretical derivatiohntiee model, it is assumed
that: 1) clusters are randomly distributed in space andéaigire persists throughout the
coagulation process, 2) only collisions between pairsudtelrs are significant, and 3) the
number of new clusters of size- j formed per unit time and unit volume due to collisions
of clusters of sizeg and j, is proportional to the product of the cluster concentratio
C; = n;/V andC; = n;/V, i.e., K, ;C;C;, wheren, is the number of cluster of mass
as defined abové/ is the volume of the coagulating system, dkigd; is the coagulation
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kernel. The rate equation describing the evolutiod’'gt) takes the form:

where the first term of the right hand side represents allrpinallisions per unit time
that lead to clusters of masswhile the second term describes the number of clusters of
massi that grow in size, per unit time, due to collision with otharsters.

The natural continuous version of Eq. (3.3.20) leads diydotan evolution equa-
tion for the cluster size distributio@'(v, ), wherev denotes physical cluster size. The
evolution ofC'(v, t) takes the form of an integro-differential equation:

0,C(v,t) = / K(u,v —u)C(u,t)C(v — u, t)du (3.3.21)

- vt/Kuv (u,t)du .

When a solution of Eq. (3.3.21) exists, and whether it is uaigre currently open prob-
lems. Existence and uniqueness of solution for all timee h@en proven for the kernels
K(u,v) < C(u+wv), whereC is a constant. This result has been recently extended to the
kernelsK (u,v) < r(u)r(v), wherer(v) = O(v), asv — oo [87,88].

In the following we focus on the self-propelled rods systerd derive a theoretical
description for the cluster size distribution of this syste

Derivation of evolution equation for the cluster size distibution

We want to describe the evolution of the numberof clusters of a given sizg¢ through
kinetic equations. The description has to account for fusiod fission of clusters, and
conservation of the number of particles. For the fusion o$tdrs we adopt kinetic equa-
tions similar to the ones described above, while for cluBtsion we define empirical
terms derived from the typical behavior seen in simulatiofigse time-evolving cluster
size distribution is given by the set ¢f;; (t)};.";l, wheren; (t) is the number of clusters
of massj at timet.
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This description neglects the geometry of clusters as wsadpatial fluctuations. This
allows us to consider a single rate constant for all possiblision processes between
clusters of massandy, as well as a unique disintegration constant for any cludterass
i. In addition we make four crucial assumptions:

i) The total number of particles in the systemi,= Z;.Vzl gn;j (t), is conserved.

i) Only binary cluster collisions are considered. Cobiss between any two clusters
are allowed whenever the sum of the cluster masses is lesgial® V.

iii) Clusters suffer spontaneous fission only by losingwidiial particles at the bound-
ary one by onei,. e. a cluster can only decay by a process by whighduster split into
a single particle plus & — 1)-cluster. This is motivated by observations in the above
simulations.

iv) All clusters move at constant spe&ds F'/(;, which implies that rods in a cluster
have high orientational order and interact only very weakl their neighbors.

Under all these assumptions the evolution of th& is given by the following/V
equations:

N N-1
hl = 232n2 + Z Bknk - Z Amnknl (3322)
k=3 k=1
N—j
’flj = Bj+1nj+1 — Bjnj — Z Awnknj (3323)
k=1
1 3=
—|—§ Aw_knknj_k for j=2, ... ,N —1
k=1
1 N-1
hN = —BNTLN + 5 Z AhN_knan_k (3324)
k=1

where the dot denotes time derivative, represents the fission rate of a cluster of nyass
defined byB; = (v/R)+/j, andA4;  is the collision rate between clusters of massdk,
defined byA; ;, = (v0y/A) (\/j + \/E> 0y is the scattering cross section of a single rod.
R is the only free parameter and indicates the charactelestgth a rod at the boundary
of a cluster moves before it is leaving the cluster in a tylpiisgion event. We assume
R = aL taken into account that longer rods will stay attached tetelufor a longer time.
The dynamics of clusters of an intermediate gize given by Eq. (3.3.23). Egs. (3.3.22)
and (3.3.24) differ from Eq. (3.3.23) becausearticle clusters cannot decay and it can
not be the product of a collision, while/g-particle cluster can not incorporate any extra
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particle, i.e., it can not experience a collision. Sif¢e= 0 = Z;V:ljhj (t), conservation
of particles is assured.

Let us provide more details about these equations, focugarcularly on Eg.
(3.3.23). The number of clusters of mgssan grow due to the decay of clusters of mass
j + 1, first term in 3.3.23, or due to the collision of any two cluste’hose masses add
up j, last term in Eq. (3.3.23). A decrease of clusters of nyassay come from the
spontaneous disintegration ptclusters, second term in Eq. (3.3.23), as well as from the
coalescence of clusters of maswith any other cluster, third term in Eq. (3.3.23). So,
gain and loss terms come from collision as well as disintemrgrocesses.

The rate constants

The reasoning behind the rate constaifsand A; ; is the following. Since we are
assuming clusters are homogeneously distributed and m@tinonstant speed, we can
derive A;, ; by making use of the expression for collision rate of an idgd (see Eq.
(3.3.15)). To adapt this expression to our problem, we assamto be as before the
active speed. o has to be replaced by the effective scattering cross se&if) between
clusters of masg andk. We approximate th8CS of a cluster of masg in 2D by /jo,
whereo is the SCS of a single particle (assuming that in clusters particlesadigned to
each other). So, the effecti8S between clusterg andk becomesr = o4(v/7 + Vk)
(explicitly using the fact that we are in 2D). has to be substituted by, /A, where
A is the system area. Finally; , represents the collision rate ofkacluster againsj-
clusters. Thus, the total number of collisions per unit tibedweenj- and k-clusters
becomesu; yny = 900(v/j + Vk)(nj/A)n, = Ajun;ng, and from this expression we
obtainA; ; = (0/A) <\/3 + \/E>

For the rate of disintegration we assume a probability ofilog a particle proportional
to the number of particles that conforms the edges of theerlud-or ai-cluster we
approximate this number by. In addition we assume that there is a characteristic time
which is associated to the time a particle lasts at the edgeeafiuster. And as before, by
the Buckinghanmr theorem [81], we know that this time has to be proportionaitber
L/v or W/o, or a combination of both. Since elongated particles areerstable than
short particles, we simply take this time to B¢o, whereR is defined af® ~ L = \/ax.
All this together leads to a splitting rate for theluster,3; = (9v/i/(aL).

We are interested in expressing Egs. (3.3.22)-(3.3.24)astibn of o, a, A and
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Figure 3.25: Left: The scheme illustrates the proposedréxeat to measure the scattering cross
section of individual particles (see text). The scattegngss section of the particles at the origin
is a function of¢. Right: Effective scattering cross sectiog as function of the particle aspect
ratio x. The solid line corresponds to= (2/7)\/a (v/k + 1/v/k)++/a/k, while the dot-dashed
line is the simplified approximation given by Eq. (3.3.25).

k. There are two term we need to transforfm:andoy,. Recalling thate = LW and

k = L/W, we expresd asL = /a k. Foro, we have first to remember the definition
of SCS. Assume that we have one rod whose center of mass is fixed atitjiie and that
we shoot the rod with point-like particles from one placette tight of the origin and in
such a way that the point-like particles move parallel toxtexis (see left panel of Fig.
3.25). CSis the effective "area” (in 2D, segment) that these paricien hit. The size
of this segment depends on the orientation of the rod withe@tsto the x-axis, which is
given by an angle that we call. As can be seen in the left panel of Fig. 3.25, 8@S
for a given angle is o(¢) = Lsin(¢) + W cos(m/2 — ¢). We want to know the effective
CSof a rod which can be oriented with equal probability in amgdiion. This quantity
takes the formv = (2/7) 0”/2 o(p)dp = (2/7)(L + W), where the integral runs from
0 to /2 due to the symmetry of the problem a2gir symbolizes that all directions are
equally possible. Since in the system we do not have pdiatparticles but rods, the
actual expression for readsoc = (2/7)(L + W) + W, assuming we shoot with rods
whose long axis move parallel to the x-axis. However, we ardgd an estimation of a
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single rodSCSto plug into the expression of; ;,, and so we approximatg simply by:

o0 = Va (x/ﬁ + %) , (3.3.25)
where we have used that= \/ax andWW = \/a/k. The right panel of 3.25 shows the
scattering cross section of single rods as function of thecgations.

We have seen that Egs. (3.3.22)-(3.3.24) are functioh, of A andx. Integrating
them with the same parameters used in the simulation andlioinditionn; (t = 0) =
Né, j, we can compare the simulations and the explained rateiequatproach (see Fig.
3.19). Next section is devoted to this issue.

Comparing theory and simulations

We want to compare the steady state of Egs. (3.3.22)-(3.a&r2d the long time behav-
ior of the simulations, which we assume to be also in theimdjestate. We make the
comparison through the weighted cluster size distribution) = n),m/N, wheren
symbolizes;(t) for t — co. The best agreement between the theory and simulations for
active particles is found for a choice af= 1.0 + 0.05 (see Fig. 3.19). Hence, we will
useR = L in the following.

To understand the relation between the parameters of thelrand clustering effects,
we rescale Egs. (3.3.22)-(3.3.24) by introducing a new traré@ble: 7 = tv/+/ak. In
the dimensionless model the equations read:

N N-1
ny, = 2\/5712 + Z \/Enk — Z <\/E+ 1) nENy
k=3 k=1
13~
hj = \/j + 17lj+1 — \/Enj +P[§Z (\/E"— \/j — ]C) NEhj—
k=1
N—j
— ( j+\/E>nknj] for j=2,...,.N—1
k=1
LNl
i = =iy + 3 (\/E +VN = k) TATIN _k (3.3.26)
k=1

whereP is the only dimensionless parameter and is definelt as(x + 1)a/A. Notice
thato # 0 is scaled and does not affect the qualitative dynamics ofylséem. In the
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Figure 3.26: The dimensionless critical paramdteras function of the number of particle$.
The slope of the dashed line4sl.026 + 0.023.

dimensionless model the parameferstands for the ratio between fusion and fission
processes and therefore triggers the transition from a ash@ito a bimodal cluster size
distribution (Fig. 3.19), as well as the crossover exhibivg M between a power-law
and a log-tail (Fig. 3.28). Given the system arkdhe rod area, and the number of rods
N, we can estimate,. by:
ke = P.(N) % -1 (3.3.27)

whereP, (N) is the critical value of? above which clustering set in. Since the transition
occurs when the distribution is no longer monotonously el@sing, we can accurately
determine the critical transition parameferusing abisection-based method. Given an
interval[a, b] of the parameteP, assume that foP = « the integration of Eq. (3.3.26)
reveals an monotonically decreasing asymptotic distobytwhile for P = b the inte-
gration leads to bimodal distribution (specifically, a noonotonically decreasing dis-
tribution). Now we setP = (a + b)/2 and perform the integration. If the resulting
distribution is monotonically decreasing, we know tliate [(a + b)/2,b]. Otherwise,
P. € [a,(a + b)/2]. By repeating this process, we can reduce the interval tontgr.
and determine with accuracy the valuefof

At this point it is worth noticing that. also depends oV, i.e., the total number of
particles in the system, and correspondingly, the numberdbhary differential equations
appearing in Eq. (3.3.26). To have a complete understarafitige problem we need
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to know the dependency af. with N. Fig. 3.26 showsP. versusN, where P, was
obtained through the bisection-like method explained abdwe slope of the dashed line
Is —1.026 +0.023. Assuming thafP. is strictly inversely proportional wittv and making
some easy algebra, we observe thats a function exclusively of the packing fraction
regardless of the number of particles:

o — % 1 (3.3.28)

where the estimated value 6fwasC' ~ 1.46. Eq. (3.3.28) defines then phase diagram
of the problem. Fig. 5.3 shows that the prediction given by B.28) is in accordance
with simulation results. For the range of parameters usédarndividual-based simula-
tions, we retrieve in the rate equation approach the unifrsbdgoe of the weighted cluster
size distribution for small values of andn, and the bimodal shape for large values of
the two parameters. In Fig. 3.19 a comparison of the clusterdistribution obtained
in simulations and from the rate equation approach is shdéwn active particles, given
a density of particles (equivalently, a packing fractidag, (3.3.28) predicts the critical
aspect ratios.. that triggers the transition to clustering. Eq. (3.3.28) akso be inverted
to obtain for a given particle aspect ratipthe critical density/packing fraction. above
which clustering set in. To account the fluctuations intiatlin individual based simu-
lations of Brownian-active particles, which for active particles takes the valuae= 1,
has to be replaced iy < o < 1. The dashed line in Fig. 5.3 indicates that fluctuations
shift the curve given by Eqg. (3.3.28) upwards, ite.pecomes:. = C'/(an) — 1.

As mentioned abovd,, defines the transition to clustering which is manifestediay t
emergence of a bimodal cluster size distribution, and aysa trossover inV/r(x) from
a power-law to a log-tail.Mr is defined as the probability of observing the maximum
cluster, i.e., a cluster of siz&: M; = p(N,t — oo). This quantity, as shown in Fig.
3.28 for the dimensionless model, exhibits two regimes. holeft of P., M grows
rapidly with P, and a power-law regime is observed. To the righi’gfthe growth of
M7 dramatically slows down, andi/(P) exhibits a logarithmic regime. Though these
two regimes are always present, for large values thie power-law regime is observable
in a very small range of, as shown in Fig. 3.29. It is instructive to compare Figs93.2
and 3.17. In Fig. 3.1/, the mean maximum cluster size measured in simulations,
experiences a fast growth for small valuesc@nd then it seems to saturate. On the other
hand, in Figs. 3.29 we observe thdt- grows rapidly for small values and very slowly,
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Figure 3.27: k-n phase diagram. The solid line corresponds to the transdiome predicted
by equation3.3.28. The dashed line corresponds to the same kind of analysisdmsidering
R ~ oL, with o = 0.7. The symbols indicate IBM simulationscrpsses) refer to unimodal,
while (circles) to bimodal cluster size distribution of active particléstars) refer to unimodal,
while (hexagrams) to bimodal of active-Brownian particles.

i.e., logarithmically, for large aspect ratios. These t@gimes are also exposed by mean
cluster sizep, as can be observed in Fig. 3.30. As shown in the inset of Fi2g8, 3he
crossover between these two regimes coincides with maxignomth rate ofM/ with

P. This provides another interpretation 8y, as the value of® at which M, exhibits its
maximum. Notice that slight deviations gfaround this value are reflected as remarkable
changes in the collective behavior of the rods.

Study of the cluster size distribution with system size

Eq. (3.3.28) suggests that depends only or). On the other hand, is the ratio between

the area covered by particles and the system area. But, mogutstion is how the cluster
size distribution scales with the system size. We undedstgnsystem size, number of
particles, but keeping constat This means that as we add more patrticles to the system,
we also enlarge the size of the box in which particles movemFour analysis we can
conclude that in principle the,. should be the same, but we cannot say anything else
related to the distribution. The first problem we face is tmatcomparing distribution
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Figure 3.28: Crossover between the power-law and the libgeigimes in the dimensionless
model. The inset shows th&t is located in the maximum growth rate &fr with P.
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Figure 3.29: The two regimes @ff; as function ofc. (a) Semilog plot. The dashed line indicates
the log-tail regime fok < k.. The inset shows the mean maximum cluster diz@s « for IBM
simulations. (b) Log-log plot. The dashed line indicates power-law regime fok > «..
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Figure 3.30: The mean cluster sigdor = 0.24 and various values of the aspect ratioNotice
that¢ also exhibits two regimes witi.
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Figure 3.31: Scaling of the clustering effect as functiothef system size.
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Figure 3.32: Fraction of particles living in clusters of maggger than half system size as function
of the system size.

corresponding to different system sizes, the number of@lsisn each system are differ-
ent. We can overcome this difficulty by dividing the clustedex by N. If we do so,
we fix this problem, but now we face another. The area undectinees are different.
SV pidz = 1 with 6z = 1 for the case without "normalization” of the number of nodes.
But now we get>_~  p;6z/N = 1/N. To solve this problem, we also renormalize the
probability by multiplyp; by N. In Fig. 3.31 curves fory = 0.24, k = 12 and various
cluster sizes are shown.

Now we could ask whether the bimodal distribution is reinéat or weakened by the
system size. If we observe directly the distribution we nhigbet a wrong impression,
because it seems that the clustering effects decrease ysithns size. However if we
take a quantitative measure @s where we defing) as the ratio between the number
of particles staying in clusters of mass > N/2 and those staying in clusters of mass
m < N/2, we realize that in larger system sizes clustering effeetsttonger (see Fig.
3.32). To be more precise, from Fig. 3.32 we learn that thgdrighe system size, the
larger the fraction of particles living at large clusters.

In summary, this study suggests that the clustering efféistussed so far are also
present in the thermodynamical limit.
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3.4 Conclusions

Through individual-based simulations we have modeled tesy®f self-propelled par-
ticles in a noisy environment. Interactions between piagi@are based on the explicit
consideration of particle shape, i.e., interactions ddpamthe overlapping area. The
model exhibits a rich collective behavior that depends @npacking fractiom, noise
amplitude, and particle aspect ratio

We have found that elongated particles, i.e. with large @sfio ~, form densely
packed clusters inside which particles are aligned and mgowi the same direction. We
have found multiple evidence of this process. At the levelhef speed distribution, it
has been noticed that large values:ohduce a shrinking of the width of the distribution
around the active speed in such a way that the mode of thédisbn shifts towards the
active speed. The width of the angular velocity distribntion the other hand, increases
with «, for lower values of the aspect ratio, and decreases at \aiges of it. This has
been noticed by the shape of the average angular velocityaesihge square angular
velocity, as function of;, that exhibit a maximum at intermediate values.off he spatial
arrangement of particles has been studied through the balg-torrelation function that
has revealed that particles locally arrange in a side-tig-and head-to-tail manner. A
kind of spin-spin correlation function has been used toya®al local orientation ordering.
We have learned that polar local ordering is facilitatedcbyVhile isotropic particles do
not exhibit local polar ordering, elongated particles sgctin forming densely packed
cluster in which particles point in the same direction andsamuently move coherently.
Finally, through the study of the ferromagnetic and liquigktal order parameter we have
provided evidence that suggests thatlso induces global orientation ordering.

Interestingly, we have also found that these self-progdelbel-shaped patrticles, inter-
acting only through short range repulsive interactionkjl@knon-equilibrium clustering
for sufficient large values of andx. We have observed the active forEeestablishes a
persistence in particle movement that makes active angeaBtiownian particles qualita-
tively different to Brownian particles. The induces patrticle clustering, while noise tend
to destroy this effect. In the presence of reflecting boundandition, particles cluster on
the reflecting walls, while for periodic boundary conditsguarticles form polar-oriented
clusters which swarm around.

The onset of clustering has been defined by a transition froomamodal to bimodal
cluster size distribution. This transition is reproducgdalimean-field description of the
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cluster size distribution, which yielded a simple criteriea = C/n — 1, for the onset of
clustering. This functional form witld' ~ 1.46 provides a good fit to the results of the
active particles simulations. The high density inside tluster leads also to alignment
of rods and coordinated motion of all particles in the clustehas been shown that the
transition to clustering, as defined here, is practicalieipendent of the system size, resp.
the number of particles, and that clustering effects gehgfer at large system sizes. We
have provided evidence that suggests that all these fintiolgsn the thermodynamical
limit. In addition, we have shown that the transition is aletiected in the crossover of
the probability of the maximum cluster siz&/;-, between a power-law and a logarithmic
tail. The analysis of\/; has revealed that. is located at the maximum growth rate of
M with k. Interestingly, the transition to clustering is also ddfis the point, e.gs,

at which cluster entrop¥/ - takes its maximum value. We have also shown that far below
the transition, the clustering properties of the systeny thse maximum entropy principle
applied toH, which allowed us to describe the system in terms of the taiatber of
clustersG.

It is instructive to compare our result far. rewritten in the formxn + n ~ 1.46
with the formula for the isotropic-nematic transitiam = 37/2 ~ 4.7 found in the
two-dimensional version [90] of Onsager’s mean-field tlyefor Brownian rods [71].
This shows that actively moving rods can achieve alignmemiLech lower densities than
Brownian rods resp. particles in equilibrium systems. Thestering phenomenon is
absent in simulations with isotropic self-propelled paes as well as with Brownian
rods.

The model introduced in this chapter provides also an atem explanation for col-
lective behavior of rod-shaped objects. Previous swarmiadels have achieved swarm-
ing of particle, i.e., aggregation, clustering and locdbpaation of particles, by assum-
ing attractive interaction plus some local alignment rdi@, A1, 46]. Here we have shown
that volume exclusion interactions and the rod shape oigiestsuffice to produce swarm
formation. The former observation offers a simple physegilanation for the formation
of swarms and aggregates in many gliding rod-shaped bagcteat often precedes the
formation of biofilms and the appearance of more complexepadt Our findings sug-
gest that control ok andn regulates collective behavior of bacteria. This is relé¥an
the following phenomena in myxobacteria: i) the differemblging colony shapes asso-
ciated with different strains exhibiting different vegita cell shapes (H. Reichenbach
in [47]), ii) the diversity of the collective movement obged during fruiting body forma-
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tion which is accompanied by changes of the cell shape asglgporulation (D. White
in [47]), iii) the rapid growth and subsequent saturatiothef'swarm’ expansion rate with
initial density, iv) the dramatic increase in local cell déy experienced by active mov-
ing bacteria during fruiting body morphogenesis in whiclmgetry of cell arrangement
allows maximum cell packing (D. Kaiser and L. Kroos in [47d)nd v) the appearance
of aggregates in areas of prior high cell density (D. Whit§4in]). However, real bio-
logical systems usually employ more complicated mechasig chemical signals and
adhesion to achieve and enhance cell aggregation and swearitiie model studied here
should be considered as a minimal model for collective phwra of actively moving
assemblies.

Finally, the current study can be thought as an example of-sange, contact based,
interaction mechanism of self-propelled particles, inettrarrangements of dipole forces
give rise to a complex dynamics through the interplay of naeatal stress and reorien-
tation of the dipoles [91, 92]. From this point of view, theppability of these results
ranges from gliding cells [93] to active films [94, 95].



70

Chapter 3. Collective motion driven by particle shape



Chapter 4

Collective motion in a simple model of
polar particles with apolar interactions

Introduction

In Chapter 3 we have learned that self-propelled rods iot@gby volume exclusion can
exhibit collective effects like clustering and swarming liarge enough values of particle
density and particle aspect ratio. Remarkably, the intema@among these particles does
not imply a local polar alignment of the particles. Fig. 4ketehes two typical colli-
sion events that lead to different local orientation of tlatigles. As illustrated by the
figure, collisions among self-propelled rods can resultarafiel as well as antiparallel
alignment of the particles. This challenges the idea thaeent collective migration of
self-propelled particle in absence of long-range signats external forces is achieved
only by polar alignment rules.

In this chapter a clear distinction is made between two baElgiloment mechanisms:
(1) theferromagnetic (£) alignment by which particles tend to move parallel to eatth o
ers, and (2) théiquid crystal (LC) alignment, by which particles tend to move parallel
as well as antiparallel to each others (see Fig. 4.2). Afaignment, introduced in the
context of SPPs by Vicsedt al. [34] and studied by many others [40—43,96], may explain
the collective motion observed in some biological examplil strong hydrodynamical
interactions as fish schools [26], swimming bacteria [9T]cloemotactic microorgan-
isms [98,99]. On the other hand, thé'-alignment, as said above, is present when volume
exclusion is the main interaction among agents, or whenunlgely to consider U-turn
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Figure 4.1: An example of.C' alignment mechanism: collisions of anisotropic SPPs cad te
parallel (a) or antiparallel (b) alignment of the particl&he arrows indicate the active velocity
of the particles.ty andt; refer to the configuration before and after the collisiorspestively.
See [100].

maneuvers. For instance, gliding bacteria, e.g., myxei@dn the early stages of the life
cycle [27, 28] as well as actin and tubulin filaments [29, 3@] good examples of SPPs
with LC-alignment. Despite the importance of this kind of alignmérC' has received
comparatively much less attention thakalignment. Only recently Ramaswarsyal.
proposed an hydrodynamical description of driven padieith LC-alignment [31]. In
their study they assumed to be in the nematic phase and e€gbet their system exhibits
giant fluctuations [31]. These findings were confirmed by €bial. [48] through exten-
sive simulations of a system of shaken particles vitftalignment, and in experiments
with driven granular media [50]. It was also shown that a itz model of lattice-gas
particles coupled to an angle field and exhibiting a liquigstal angular dynamics is, in
the nematic phase, intrinsically phase separated [49].

In this chapter, we introduce and analyze a simple modeldiffpsopelled particles
with persistent motion and &C'-alignment mechanism, by which particles align their di-
rection of motion to the average local director. The modellmathought as an abstraction
of the self-propelled rods model presented in Chapter 3revtiee effects of volume ex-
clusion interaction are now reduced to a local alignmerg.rlilhas to be pointed out that
particles are truly self-propelled, hence polar, and ri& ih [48-50], driven by shaking
the system. Through extensive simulations we provide exieé¢hat shows that at high
density the system exhibits a continuous transition tonbaigonal order. Interestingly,
at high density ordering sets in before clustering. The hggneous density scenario at
which orientational order emerges at high density will\alkas to propose in Chapter 5
an effective mean-field equation to describe the oriematidynamics. For the contrary,
at low density the onset of orientation ordering and cluistestarts at the same critical
orientational noise. We show that orientational order atdensity emerges from the in-
terplay between orientational and clustering dynamicsthieumore, we provide evidence
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Figure 4.2: The scheme illustratés and LC-alignment mechanism. Suppose the initial configu-
ration is given by (a). Thé'-alignment forces neighboring particles to move in the sdireetion

as shown in (b). On the other hand,/it’-alignment is implemented, particles also align their
velocity vector but in such a way that it is allowed for thenntigrate in the same direction as
well as in the opposite direction, as depicted in (c). Notiw F-alignment causes particle A to
perform a long turn, almost a U-turn (see (a) to (b)), wHil€-alignment implies a remarkable
smaller turn (see (a) to (c)).

that suggests that the transition to ordering is in this chseontinuous. Simulation ev-

idence indicates that the character of the transition termg is highly dependent on

particle density, and being for higher densities mean-fiygbe transition. In addition, we

show that also diffusive particles at high density can exlalsecond order phase tran-
sition. However, orientational ordering in diffusive pelgs at low density is absent and
no density inhomogeneities or clustering effects can beegol. These findings indicate
that the phase transition occurs rather due to mixing ofiggastthan exclusively to the

directed active motion.

4.1 The individual-based model

We consider point-like particles moving at constant spee@ dwo dimensional space
with periodic boundary conditions. The state of a partitienaet is given by its position
x; and its direction of motio#;. As in Vicsek’s original model [34], a fast local relaxation
of the direction of motion dynamics is assumed. The evotutb the i-th particle is
described by the following updating rule:

t+At
7

X = x,+wvov (0) At (4.1.1)

oAt = arg Z £ (v(05),v(0)) | +nf (4.1.2)

t_ ot
X; xj|§e
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Figure 4.3: The scheme illustrates the mapping performdddojunctionf (v(@,@), v(@f)). In the
example,f projects; on the solid semicircle by making i&0-degree turn, i.e.;’, while leaves
unchanged:. See text.

where v, is the constant speed of the particleg(;) is defined asv(¢;) =
(cos(6;),sin(6;)), At represents the temporal integration step, the sum in EdL.2{4.
runs also ovet, arg (b) indicates the angle of the vectbrin polar coordinatesy! is a

delta-correlated white noise with a strengtty!e [—2, 1), andf (a, b) represents:

£ (a.b) = a if ab>0 (4.1.3)
"] —a if ab<0 o

The reasoning behind the functiéms as follows. We want particleto align its direction
of motion to the local average director. Instead of perfoigra normal velocity average
as in [34], theth particle calculates a weighted velocity average by mapall its neigh-
boring velocities (including its own) to a semicircle whasmith is given by (6!). The
procedure is illustrated in Fig. 4.3. Notice that due to fhasticular average, particles
never turn more than 90 degrees to the left or to the right @twne step. Particles always
perform the minimum turn to align their velocity directiamthe local director, and so the
movement is always smooth. In the limiting case@ 0, the model becomes an analog
to the model studied in [101].

4.1.1 Parameters and boundary conditions

Simulations were carried out in a 2D box of area L with periodic boundary conditions
and a random initial configuration. Given a system dizend a radius of interactios
there are two parameters which determine the system behagvaoticle densityp =
N/L?, whereN is the number of particles, and the directional noise strengFig. 4.4
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Figure 4.4: Snapshots of simulations. Number of particés= 100, system sizd. = 30, and
radius of interactiore = 1. (@) random initial condition. After some time, for a noigeeagth

n = 0, the system evolves towards the velocity orientationatpstate (b). The double arrow
depicts the global director. For finite noise, {c} 0.2, particles form groups moving coherently
in random direction. The arrows indicate the direction otioroof some clusters.

illustrates the dynamics of the system at low and high vahfi¢se noise strength. The
figure shows snapshots of simulations performed With= 100 particles of interaction
radiuse = 1 in a box of linear sizd. = 30. When the noise intensity is small enough,
the system evolves towards a state with orientational psger Fig. 4.4(b). On the other
hand, for large values of the system remains disordered, while at intermediate salue
of n a weak ordering is observed in which particles form grous thove in random
direction as shown in Fig. 4.4(c).

All simulations have been performed witht = 0.1, vy = 0.25 ande = 1. Five
densities have been studied= 0.25, 0.5, 1, 2 and4. In each case, system sizes range
from N = 28 to N = 2! particles. Typically simulations have been run for10°
integration steps.

4.1.2 Order parameters
Orientational order

The modulus of the normalized total momentum distinguistiesther there is a favored
direction in the system and takes the form:

97 1/2

SE(t) = (% ZCOS(@Z)) + (% Zsin(@i)) . (4.1.4)
k=1 k=1
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Notice that using complex notation Eq. (4.1.4) can be esgwsasS’(t) =
‘% fo:l ¢?i|. We are interested in the temporal average of this quarttiéy the ini-
tial transient which simply reads:

T
SF = = i » > 8", (4.1.5)

i=t¢

whereT refers to the simulation time angto the transient time before the steady state
is reached ST = 1 indicates that all particles point in the same directi§A.= 0 might
refer to a completely disordered situation, but also it miggrrespond to some peculiar
ordered states as explained below.

The presence of a liquid-crystal alignment, as the one destby Eq. (4.1.2), makes
possible the emergence of two favored direction in the gsysthich are opposite to each
other. If half of the particles move in one direction and thleeo half in the opposite
direction, S vanishes. A different order parameter has to be used tandisish this
ordered state. We recall the order matghof liquid crystals [72]. Specializing this for
2D and taking the largest eigenvalue, we obtain the follgvgoalar orientational order
parameter.

131 1
SLC(t) = Z + 5 Z ~ 2 {Z ’Uiivzj — Umvyivzjvyj} (416)

i?j

wherev,; andv,; are defined as,; = cos(0!) andv,, = sin(¢?). As before, we are
interested in the temporal average:

T
1 .
SEC — T—% > SC). (4.1.7)

=

SLC takes the valué when all particles are perfectly moving along the same threand
1/4 in the disorder phase, where particles move with equal fmitityain any direction. It
is worth noticing thatS* = 1 implies SX“ = 1, converselyS*“ = 1 does not necessary
imply S = 1. The nematic phase is defined BY“ = 1 while simultaneoushst = 0.
Notice thatS¢ can be normalized to go fromto 1:

4(5t¢ —1/4)

SLC’ —
" 3

(4.1.8)

For the detailed derivation see Appendix B.
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Using complex notatio$2¢ can be expressed 84¢ = )% SV, €|, where we have
assumed),, to represent a stationary distribution of angles.

Interestingly, for equilibrium two-dimensional systemghwvcontinuum symmetry,
i.e., forvy = 0, as stated by the Mermin-Wagner theorem [33], and confirnyesirh-
ulations, long-range orientational order cannot emergédhem, > 0 the situation is
different, the system becomes non-equilibrium, and oaigonnal order can emerge. Vic-
seket al. propose that the kinetic transition exhibited by these aequHibrium systems
is of second-order [34,102]. It has been suggested thatahsition forv, — oo could
be described by a network model which, for additive nois& aredicts a second-order
transition [103]. In contrast, Chaté al. provided evidence that shows that in the ther-
modynamical limit the transition may be discontinuous f], and that there is a critical
system size above which a crossover from an apparent seadinsttorder character of
the transition can be observed.

Clustering

On the other hand, clustering is characterized through #ighted cluster size distribu-
tion p(m). p(m) is the probability of finding a randomly chosen particle lbgjimg to a
cluster ofm particles and can be expresseg@s) = m (n,,) /N where(n,,) represents
the temporal-average number of cluster of massWe consider that two particles are
connected and belonging to the same cluster when their centers of maseparated by
a distance smaller or equal to the diameter of the interqectghborhood.

4.2 Orientational order and clustering at high and low
densities

Simulations at high and low density exhibit remarkableatéghces which are manifested
in the character of transition from orientational disortteiorder, including a different
response of¥ and SL“ to changes in the noise intensify and the onset of clustering
effects. In this section, a systematic comparison betweesettwo scenarios, i.e., high
and low density, is presented.

Fig. 4.5(a) shows the behavior of the orientational ordeametersS” and S*¢ vs.
the noise amplitude for a high density density scenario corresponding to 4. Simula-
tions were performed withi = 2'2 particles. A transition from a disordered (isotropic) to



78 Chapter 4. Collective motion in a simple model of polar &8 with apolar interactions

an orientational ordered ("nematic”) state is indicatedtide that in contrast to classical
liquid-crystal, for low values ofy, S* does not vanish. It will be explained below that this
behavior is observed even for larger system sizes.

The vertical dot-dashed line in Fig. 4.5(a) indicates theedof density instabilities.
To the right of that line particle distribution is roughlyinogeneous in space for all times.
Fig. 4.5(b) illustrates this situation by showing a typipalticle configuration slightly to
the right from the vertical line. The simulation snapshatesponds to the.5 10° inte-
gration step after the beginning of the numerical experinndrose value; is indicated
in Fig. 4.5(a). To the left of the vertical line density ingil&ies becomes evident. Figs.
4.5(c) and (d) show typical patterns at the onset of the tieimstability, (c), and slightly
to the left from it, (d). Both snapshots correspond to 2tel0° integration step. The
corresponding values of are shown in Fig. 4.5(a). Notice that the polar order param-
eter S¥ does not take off simultaneously wiff¢ but surprisingly after it, at the same
point where the density instabilities become noticeabkdo® it will be shown that this
phenomenon is not a finite size effect. Moreover, it will bewsh thatS* increases with
system size making the effect even more pronounced. Themgatlevidence suggests
that density instabilities are mainly due to the couplingwaen local polar order and
local density (i.e., formation of polar clusters) rathearitto the interplay between local
apolar order and local density as known to occur in liquidstals [72] and driven apolar
particles [31, 49, 50].

As said above, at low density the scenario at which oriesnairder emerges is signif-
icantly different. Fig. 4.6(a) shows, in first place, that fo= 0.25 and N = 2! particles,
the transition to orientational order characterized¥/ is much smoother than at high
density. Secondly, it is observed thg“ and S¥, in contrast to the high density case,
take off simultaneously. Moreover, both order parametdaparoughly the same values
near the the onset of orientational ordering. This sugdbatst is the emergence of polar
order what set in at very first place. As said above, an iner84sresults always in an
increase ofSX¢ (recall the opposite is not true). Notice, however, that ésdecreased
to low values, apolar order becomes dominant. As mentiohedeg the onset of density
instabilities at high density seems to be caused by the owupétween local polar order
and local density. Findings at low density supports thisdtlgpsis since the onset of ori-
entational ordering, resp. onset of polar order, is accarepicby the onset of clustering.
Fig. 4.6(b) shows that before orientational order set ia,gpatial distribution of particle
is roughly homogeneous. The snapshot corresponds t2.3H€° integration step and
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Figure 4.5: Orientational dynamics and clustering at highsity. Number of particled/ = 2!2
and densityp = 4. (a) orientation order paramet8rvs. noise amplitudg. Symbols are average
over 10 realizations. (b)-(c) snapshots of the simulations fonthleles ofy) indicated in (a) at the

steady state, time st€p5 10°. Particles are represented just by arrows which indicateitiection
of motion of the particle.
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Figure 4.6: Orientational dynamics and clustering at lowsity. Number of particlesv = 212
and densityp = 0.25. (a) orientational order paramet8rvs. directional noise amplitude.
Symbols are average ovéb realizations. (b)-(c) snapshots of the simulations fonidlees ofn
indicated in (a) at the steady state, time S2€p10°.

the value of is indicated in Fig. 4.6(a) (equivalently for Fig. 4.6(c)dfu)). Just when
orientational order emerges, as shown in Fig. 4.6(c), efusy effects become evident.
As the noise is decreased, attl becomes larger, clustering effects are more pronounced,
Fig. 4.6(d). We stress that these patterns correspond iwatyparticle configurations in
the "steady state” of the systems. Clusters do not keep amiggas in a phase separation
process. As it will be shown below, clusters are formed asdthtigrated in a dynamical
way. The rate of growth and disintegration of the clustelggily dependent on the value

of n. Given a value of) the cluster size distribution reaches after a transiergadstdis-
tribution. At low density, the orientational dynamics igjhly coupled to the clustering
dynamics.
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4.2.1 System size study

We are interested in knowing whether the above mentionedgrhena persist in the ther-
modynamical limit or are just a finite size effect. We stattlmpiquestioning whether there
is genuine long-range order. The Mermin-Wagner theoretesthat two-dimensional
systems with continuum symmetry cannot exhibit true loagge order [33]. Further-
more, Koterlitz and Thouless showed how in the planar XY-eldide order parameter,
i.e., the magnetization, decays with the system size [108], 1As verified later on in
simulations [106], the order parameteof the model scales with the system si¥eas
(¢) ~ N~¥T) whereT refers to the temperature in the system anal function of the
temperature. This implies that for all finite temperatiliten the thermodynamical limit,
i.e., N — oo the order parametef vanishes. The same kind of scaling was observed in
equilibrium simulations of two-dimensional long, thinrtdapherocylinders [107] and in
a non-equilibrium two-dimensional system of driven apgiarticles interacting by AC-
alignment [48]. If our system does not exhibit a genuine loaugge order, then we expect
it to present quasi-long-range order as in a Kosterlitztléss transition. We test whether
the parameter scalég® asS“ ~ N=¥™ . Fig. 4.7 showss““(n, N) as function of the
system sizeV for various values of the noise intensity Simulations were performed
at high densityp = 2. According to the Kosterlitz-Thouless scaling, for a giverb~¢
obeys a particular decreasing power-law of bAserhose exponent depends gnThe
different curves in Fig. 4.7(a) correspond to differeninea ofy. Figs. 4.7(a) and (b) are
in log-log scale. Since straight lines are not observedjquéarly evident for large val-
ues ofy, we concludeS*“(n, N) does not scale as predicted by the Kosterlitz-Thouless,
and consequently we discard quasi-long-range order atdeghkity. Simulations at low
density, as it will discuss below, are much more noisy anchs wot possible to draw any
conclusion regarding the scaling 8f¢(n, N).

In the following we explore the behavior ¢ff¢ and S, and their interplay, with
the system sizéV. Fig. 4.8(a) showssZ¢ and S measured in simulations performed
with N = 1024 and N = 16384 patrticles at a density = 0.25. For both system sizes
the curves forS2¢ and S take off simultaneously and grow together up to roughly the
same value ofj, regardless of the system size. As expected, the @lieincreases for
smaller system sizes. Whilg!" follows the curve ofSZ¢, the same behavior i is
observed. The numerical evidence supports the hypothesisit low density the onset
of orientational order is due to the onset of polar order.

The situation at high density is remarkably different. Fig8(b) showsSZ¢ and



82 Chapter 4. Collective motion in a simple model of polar &8 with apolar interactions

@) o 0 o s = 0 ‘
e Y, . (b)
U) 0.8 \v4 < [} 4
0995 5 . ] 8 v
O
N O -
0.99} ] o
. 0.6/ &
AN
0.985! A
A
0.08L - - 054 _ 9
10 10° N 10 10 10° N 10

Figure 4.7: SC order parameter vs. system sixefor various values of the noise intensity
Particle density = 2. (a)n = 0.001 (squares)).01 (upside-down triangles).1 (diamonds) and
0.3 (triangles). (b)y; = 1.0 (squares)].3 (upside-down triangles) arid6 (diamonds). (a) and (b)
are in log-log scale. Notice th&t““ (, N) does not scale a8 (n, N) ~ N¢() as expected in
a Kosterlitz-Thouless transition.

ST measured in simulations performed with = 1024, N = 4096 and N = 16384
particles at a density = 2.0. As expected, the valug.“ increases for smaller system
sizes. SurprisinglyS” exhibits the opposite behavioS” increases with system size.
The transition from a disordered to an apparent nematie staggested bg-¢ comes
accompanied by a strong polar order whose presence becoonegrmnounced at larger
system sizes. This finding rules out the possibility of a mlassical nematic state in favor
of a more complex transition involving an interplay betwegrt’ and S*. Remarkably,
S* takes off at a lower value of than SL¢ for all system sizes. Contrary to what was
observed at low density, at high density orientational oelaerge due to the onset of
apolar order. Let us notice that the later onset of the noxgrrder coincides with the
onset of density instabilities (see Fig. 4.5).

4.2.2 Classification of the transitions

Assuming that there are true long-range order at high anddiemsities, here we look
for evidence to determine the character of the phase transitAt this point it has to
be said that Gregoiret al. [40, 41] show that systems of self-propelled polar parsicle
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Figure 4.8:55¢ and St vs. ) for various system sizes. (a)= 0.25 and (b)p = 2.0. Notice that
at low densityS” seems to decrease with the system sizavhile at high density the opposite is
observed.

interacting by aF'-alignment exhibit a first-order phase transifiokVe wonder whether
the order paramete$-© in self-propelled polar particles interacting this timeaingh
an apolarLC-alignment exhibits such an evidence of first-order phamsesttion. The
Binder cumulanti is good measure to distinguish between first and second pliese
transitions. The cumularg is defined agy = 1 — (SLC7)/ <3<S£Cz>2) and measures
the fluctuations of the order parametérfalling to negative values near the critical noise
intensityn. is a sign of a discontinuous transition. Fig. 4.9 shows theBi cumulant

as function of the noise intensityfor various densities. As it can be seen in the figure, for
all the explored densities and all valuesoiz remains positive. Howevef; presents a
minimum which becomes more pronounced at lower densitiesuld be argued that the
minimum exhibited by, particularly at low densities, could become negative focm
larger system sizes. To solve this problem we look at oth#mates of the character of
the phase transition, particularly at the fluctuations efdlhder parameter.

Fluctuations ofS2¢ and S at low and high densities are remarkably different. Fig.
4.10 shows the time evolution ¢f.“ and S* at low density (a), and high density (b).
Notice thatin Figs. 4.10(a) and (b), the temporal averagleesbrder parameter is roughly
the sameS““ ~ 0.6. This implies that Fig. 4.10(a) shows the outcome of siniohast
performed at a much lower noisg,= 0.5, than simulations shown in Fig. 4.10(b) and

2Nagy et al. [102] has recently called into question the first-order abtar of the transition reported
in [40, 41].
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0.6

Figure 4.9: Binder cumulard® as function of the noise intensity for various densitieg. The
curvesp = 0.25 and0.2 correspond to simulations withh = 16384 particles, while the curve
p = 4.0 was performed withV = 8192 particles. Notice thafr is positive for all values of; and
all densities.

corresponding to) = 1.5. Though the implemented noise in (a) is much weaker than
in (b), the order parameter fluctuations in (a) are much fattgen in (b). Furthermore,
simulations in (a) correspond to a much larger system dize, 2!, than simulations in
(b), N = 2%2

First and second order phase transitions can also be dighed by studying the
distribution of the order parameter. Typically, in a seconder phase transition, the time
series of the order parameter shows that order parametardtes around it mean value
as observed in Fig. 4.10(b). The mode of the distributiondsecto the mean value, and
the distribution is single peaked. In a first order phase tithe series exhibits abrupt
jumps from high to low values of the order parameter. Coneetiy, the mode of the
distribution is no longer close to its mean, and the distrdmis bimodal. Fig. 4.11 shows
the distribution of the order parametgf“ at high and low densities: (S2“) measures
the occurrence frequency of- in the time evolution of a simulation. The different
curves in the figure correspond to different valuegyofFig. 4.11(a) showg (S,%C) at
high density and as expected from Fig. 4.10(b), the didiobus single peaked for all
values ofn). All the evidence at high density, Binder cumulant, timdeseof the order
parameter, and its distributign(S2“) points towards a second-order phase transition

3The previous assertion is based on the available datasystem sizes explored. A crossover to a



4.2. Orientational order and clustering at high and low de&rss 85

(@)os | | (b)

0.6 ' | “ |
0.6F \
LL LL SLC
2] N o4 oF
O " 047 o’ N
- -
7p] 9p]
o2l 0.2
0 0 ‘
0 0 1 2

t x 10°

Figure 4.10: Time evolution of the order parameters at higt law density. (a) corresponds to
the low density case with = 0.25 and noise intensity; = 0.5, while (b) illustrates the high
density case witlh = 0.4 andn = 1.5. Notice that in both, (a) and (b), the temporal average of
the LC-order parameter i§“¢ ~ 0.6. However, fluctuations at low density are huge compared
to fluctuations at high density.

At low density, the situation is by far much more ambiguousy. F.11(b) shows that

D (Sﬁc) is sharp at large values gfand becomes broader for low values of the noise
intensity. The inset shows(S.¢) for three values of), n = 0.5, 0.6, and0.7. Though
the distributions are very noisy, the bimodal characterhef distributions are strongly
suggested. Finally, we presume that at low density, thequmoced minimum of> can
take negative values for large enough system sizes. We Ispethiat at low density the
transition is of different character than at high densityg aresumably first-order.

4.2.3 Comparison of the transitions at low and high density

We have gathered numerical evidence that strongly sugtiestthe transition is remark-
ably different at high and low densities. There is an obviglugsical difference between
these two extreme scenarios. At high density, meaning abieveercolation thresh-
old, the local orientation information travels through aiqeédated systems. Presumably,
at these high densities, the constant motion of particlagditg to a constant changing
neighborhood is responsible to the emergence of long-rardgs. This mixed scenario
together with the numerical evidence of a continuous ttemmsat high density suggest
that the observed transition could be of mean-field type.H@mther hand, at low density,

first-order transition for larger system sizes, as obsefwegolar interactions in [41], cannot be excluded.
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Figure 4.11: Distribution of the order parames&i“ at high and low densities: (S2) measures
the occurrence frequency 8f¢ in the time evolution of a simulation. ()(S.¢) at high density,
p = 4.0 and N = 2'2. The different curves correspond from right to leftrto= 1.0, 1.1, 1.2,
1.3,1.4,1.5,1.6,1.7, 1.8, 1.9 and2.0. (b) p (S5¢) at low density,p = 0.25 and N = 2'4. The
different curves correspond from left to right4o= 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4
and1.5. The inset of figure (b) shows an amplification of the cumyes 0.5, 0.6, and0.7.

far below the percolation threshold, the information doe$amger travel along a perco-
lated systems and it requires, to be transferred, the pdiysiovement of the particles.
Consequently, the transition at low density has to be higlelyendent of the clustering
properties of the system, and its nature depends upon them.

These thoughts are illustrated by the following two figurés.Fig. 4.12 the order
parameterss2¢ and S¥ as function ofy are compared at three densitips= 0.25, 2.0
and4.0. The figure suggests through a simple fittifitf’ ~ (. — n)” that as we move
from low to high densities the character of the transitioarges, becoming of mean-field
type at very high densities. We warn that the fitting argunieast to be taken just as an
illustration. The interplay between orientational ordad a&lustering effects is summa-
rized by then-p phase diagram sketch shown in Fig. 4.13. The lines sepgrdisorder
from orientational order (solid-circle line), and clustey from no clustering (open-circle
line) were estimated using a system size\of= 2!* particles. To accurately determine
the separatrices, a system size analysis has to be perfoFiged!.13 represents a rough
estimate of the actua}p phase diagram and has to be considered just as a sketch. How-
ever, Fig. 4.13 suffices to illustrate that at high densttigrdational order emerges before
(= at higher values of ) the onset of density instabilities, while at low densitytthori-
entational order and clustering, set in at the same valueeofidise intensity. Notice that
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Figure 4.12: Comparison of the order parametgf§ and S’ vs. 7 at different densitiesp =
0.25 (a), 2.0 (b) and4.0 (c). (a) and (b) were performed witN = 2! particles, while (c) with
N = 2'2, The dash-dotted curves are fitting$¢ using S¢ ~ (n. — n)”. In (a) 3 = 1.8 and
1. = 1.45, in (b) 6 = 0.7 andn. = 2.0, and in ()3 = 0.5 andn. = 2.0. In (c) the dashed curve
corresponds to a fitting of the firs6 data points to the left of.., while the dash-dotted to the first
5 points. In both case8 = 0.5. The vertical line indicates the onset of density instéibai

it can be speculated that(p) saturates withp.
In the following sections we provide arguments and evidaheg support all these
hypotheses.

4.3 Understanding clustering

This section is mainly devoted to the understanding of elirst) effects at low density.
We start out by studying an apparently unrelated problemigadiffusion in the ordered
state. The problem will prove to be helpful not only to undiensl clustering at low density
but also orientational order at low values of the noise isitgn

4.3.1 Diffusion in the order state

Assume that initially all particles are located at the arighd move in directior-x with
speedvy. Assume, in addition, that they box inside which the movenfite. Since
initially each particle can see all the others, the problem be described initially by

a mean-field. According to Eq. (4.1.2), particles calcutae same common direction
of motion. The additive noise! acts just as a perturbation around the global common
direction of motion. This average vector can be thought asxéernal field that guides
the particles. The problem becomes, as described in chapgedirected random walk.

In consequence, the time evolution of the particle densigy, t) obeys the following
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Figure 4.13: Sketch of the system phase diagram Number of particlesV = 2'4. The solid-
circle line corresponds tg.(p) and separates orientational order (O.0.) from no orientati
order (no O.0.) regions. The open-circle line is the separbetween clustering effects (C.E.)
and no C.E. regions.

equation:
Aip(x,t) = —vV () Dep(x, 1) + Dx(n)7%p(x, 1) (4.3.1)
whereDy(n) is given by:
Dy(n) = (1 — c)vjAt, (4.3.2)

with ¢ = (cos(6))?2 = [2/nsin(n/2)]°, as described in Chapter 2 and in [108]. Notice
that At in Eqg.(4.3.2) plays the role of the inverse of the turningerate., o' in Eq.
(2.3.4). V(n) is the mean projection of the instantaneous velocity of thgiges on
the +x semi-axis. LetP(n! = ¢) be the probability for theth-particle of getting a
random angular noise. Assuming that the noise, as implemented in the simulation,
is obtained from a step function distribution of width V'(n), which by definition is
V(n) = 02” dfP(0) cos(), takes the form:

Vi(n) = 2sin(n/2). (4.3.3)

Ui



4.3. Understanding clustering 89

Figure 4.14: Spreading of the swarm around it center of mass vs. time for differeties of the
noise intensity;. Symbols correspond to measurements$xdf in simulations withN = 1000
particles, which initially were located at the origin anfi@dinting in direction+x. The dashed
lines correspond to the approximatidn= Dy (n)t.

Notice that in the limit ofp — 0, V() — 1 and Dx(n) — 0, i.e., there is only a
deterministic transport of particles without any diffusjavhile in the limit ofn — 2,
V(n) — 0 andDy(n) — v3At, i.e., there is only diffusion (which takes its maximum
value) and no convective flux. The description given by Eg3.d is valid while the
cloud of particles remains being a percolating giant cluster longer times, this picture
fails and particles loose their coherent motion. The irtigpa among particles is such
that keep particles moving in the same direction as long &g ¢tan see each other, but
cannot prevent them from slowly moving apart due to the ststib kicks on the direction
of motion.

Fig. 4.14 shows the time evolution of the spreadihgf the swarm around it center
of mass in simulations witlv. = 1000 particles at various noise intensitigs As said
above, particles have been initially located at the origid ariented in directior-x. The
spreading around the center of mass is simply defined as (x(¢)?) — (x(¢))%. The
dashed lines in Fig. 4.14 correspond to the approximatioa D, (n)t, whereDy(n) is
given by Eq. (4.3.2). To obtaid analytically, both{x(¢)) and(x(t)?) are calculated from
Eqg. (4.3.1). Forx(t)), both sides of Eq. (4.3.1) are multiplied leyand integrated over
the space to get a simple expressiondof(x(t))) from which finally (x(¢)) is obtained.
And similarly for (x(¢)?), but this time both sides of Eq. (4.3.1) are multiplied<®3y As
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Figure 4.15: (a) and (b)S~C andS* vs. time for a simulation performed withi = 1000 particles
initially located at the origin and all pointing in directio+x. The noise intensity corresponds to
n = 0.3in (@) andn = 1.5 in (b). The solid black line refers to the prediction i6f given
by Eq. (4.3.7), while the dashed line is the approximation§6¢ given by Eq. (4.3.10). (c)
shows the trajectory of the center of mass of the particlerabse corresponding to the numerical
experiment withy = 0.3 (solid line) andy = 1.5 (dot-dashed line).

shown in Fig. 4.14, the agreement between simulations an@E)1) is fairly good.

Now, we turn our attention to the orientational order paramseexhibited by this
cloud of moving particles. At first glance, it might seem thigiice the bunch of particles
moves coherently, thef? and S“ have to beS” = S¢ = 1. Figs. 4.15(a) and (b)
showS* and S’ as function of time in simulation withV = 1000 particles at two values
of n,n = 0.3 (&) andy = 1.5 (b). The figures prove that" andS~¢ inside the coherently
moving swarm are still function af. The explanation is as follows. Since each particle
can see all the others, all of them calculate the same avdsggiona,. This is strictly
true forn < 7. Then, the angular dynamics of tita-particle takes the form:

Ot =g + 1t (4.3.4)

This means that the probability of finding a randomly chosamigle pointing in direction
0is

P(0) = %9(9, ao, 1), (4.3.5)

whereg(6, o, 1) is defined to bé whenay —n/2 < 0 < ag+n/2, and0 otherwise, i.e.,
9(0,a0,m) = H(awg +1/2 —0).H(n/2 — ap + 0), whereH (z) is a Heaviside function.
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S in terms of P() takes the form

< /0 K doP(0) 008(9)> + ( /0 K doP(0) sin(@))2] " : (4.3.6)

Inserting Eq. (4.3.5) into Eq. (4.3.6), we obtain:

2

S* =

St = 2sin(n/Q). (4.3.7)
n
Similarly, S£© in terms of P(6) is defined as

SEC = i g { //27r dody’ P(0) P(9) (4.3.8)
(cos n’(0') — cos(9) sin(f) cos(¢) sin('))] S (4.3.9)

Sl

Inserting Eq. (4.3.5) into Eq. (4.3.8), we find the followiexpression fols~¢:

St = i + g\/l/él + (4 cos?(n/2) sin®(n/2) — n?) / (4n?). (4.3.10)

Fig. 4.16 compares Egs. (4.3.7) and (4.3.10) and simukpenformed withV = 1000
particles. The solid and dashed curve correspond to Eq.7}4a8d Eq. (4.3.10), respec-
tively. The symbols correspond to temporal averages of Isited time series of* and
SLC as shown in Figs. 4.15(a) and (b). The agreement is remarkgainid for the10*
integration steps that the simulations span. It is worthotiice that during such period the
center of mass of the swarm travels a distasi@euch larger than the interaction radius
€, l.e.,d > ¢ (see Fig. 4.15(c)), while the swarm spreading around it¢ecexf mass is
comparatively very small. Despite the fact the swarm mowes very coherent way, as
we increase), the value of the order parameters drop (see Figs. 4.15@(a) and the
center of mass performs a more tortuous meandering trayegssshown in Figs. 4.15(c).
Interestingly, the fluctuations of the center of mass ardheg axis are much larger than
the swarm spreading around its center. This is due to largeufitions of the average
total momentum vector that are not reflected in the fluctmatiof its modulus, i.e.$*.
The total momentum vector fluctuates in direction and masludutS* fluctuations are
only related to fluctuations of its modulus. The same appiegientation tensof) and
to its associated scalar liquid crystal order paramgtér.
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Figure 4.16:S™ and S as function ofy as predicted by Eq. (4.3.7) (solid curve) and (4.3.10)
(dashed curve), respectively. Symbols corresponsi‘idtriangles) ands“¢ (squares) measured
in simulations performed wittv = 1000 particles initially located at the origin and all pointing
in direction+x.

It was said above that this simple description of the swamvalisl until the spreading
around the center of mass is such that the density of the malister falls below perco-
lation. However, the presence of a finite correlation lergjtifits the threshold to higher
densities. In consequence, the actgllerence density is a function of;. Now, imagine
that the swarm does not evolve in an infinite space, but in adthxperiodic boundary
conditions. Assume in addition that the sizé of the box is such thaiv/L? is much
larger than thecoherence density. Can this system be described in term of such simple
equations as Eq. (4.3.7) and (4.3.10) for all times? Andefithitial condition of the
system is completely random, does the system reach the saaty state? For a random
initial condition, we cannot expect an steady state withigusdirection of motion. We
assume that two opposite direction of motion emergeanda, + 7, and that the angular
dynamics of the-th particle is simply given by:

gt _ { ap + 1! with probability  p. 43.1)
' (ap + ) +n!  with probability p_

In consequence?(0) = (p+/1)g(0, o, n)+(p—/1)9(0, v+, n). Replacing this expres-
sion into Egs. (4.3.6) and (4.3.8), we find ti$dt = (2/n) sin(n/2)(p; — p_), while SL¢
remains to be given by Eq. (4.3.10). These ideas are testéd.id.17. The simulations
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Figure 4.17:S5¢ vs. . Symbols correspond to simulations with = 2'2 particles at density
p = 4 in a box with periodic boundary conditions and random ihitenditions. The dot-dashed
curve is a fitting of the firs§ data points to the left of, = 2 throughS*¢ ~ (5, — 77)5, where
8 = 0.46 + 0.03. The solid curve corresponds to Eq. (4.3.10).

were performed withV = 2!2 particles at density = 4 in a box with periodic boundary
conditions. The initial condition was random and the sirtiates ran for10° time steps.
The solid curve corresponds to the approximation given hy(E®.10), where no fitting
parameter is used. The dot-dashed curve is a fitting of thesfdata points to the left of
ne. = 2 assumingstc ~ (n. — 77)5, where = 0.46 + 0.03. The figure shows that Eq.
(4.3.10) provides a good approximation®f for small values ofj, but fails to describe
orientational order at large values of the noise intengtrticularly the transition from
disorder to order is not captured by Eq. (4.3.10). Chapteill%e/devoted to understand
this particular problem.

4.3.2 Cluster size distribution at low density

Fig. 4.6 suggests that at low density the onset of orientatiorder coincides with the

onset of clustering. We define the onset of clustering as tiat gt which the cluster

size distribution is no longer monotonically decreasinigy. B.18 shows the cluster size
distributionp(m) for various values of the noise intensifyat low density. The simula-

tions were performed witl' = 2! particles at density = 0.25. The figure indicates

that a transition from a monotonically decreasing distidoufor large values of) to a



94 Chapter 4.

Collective motion in a simple model of polar @aes with apolar interactions

xn=0
+1=0.001
n=1.3
0n=1.5
>n=2.0

Tty

Figure 4.18: Clustering at different values of the noisensity » at low density. Simulation
performed withV = 2! particles at density = 0.25. Notice the transition from a monotonically
decreasing distribution for large valuespfo a bimodal distribution for small enough values of
noise intensity. A comparison with Fig. 4.6(a) reveals thadet of clustering coincides with the
onset of orientational order.

bimodal distribution for small enough values of noise iisigntakes place. Interestingly,
at the transition the cluster size distribution becometesitae. A comparison with Fig.
4.6(a) reveals that effectively clustering and orientaicorder emerge together. In this
subsection we look for an explanation for the observed etigy phenomena.

Through the study of the coherence of an initially perfectiyented swarm, we have
learned that clusters have a finite life time before theylnet parts. Now we incorpo-
rate the fact that a moving cluster when meets particles /helative direction of motion
is such thatAd| < /2, collects them, provided the noise intensitys low enough. If
the topology of the system is a finite torus, these two effesgisgeading of particles due
to fluctuation in the direction of motion and collection ofrpieles due to random "colli-
sions” of clusters, reach an equilibrium and the clustes digtribution (CSD) becomes a
steady distribution. As in Chapter 3 and [100], the evolutid the CSD is described as
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follows:
N N-1
n = 2Byny+ Y Bing — Y Agimem
k=3 k=1
N-j
’flj = Bj+1nj+1 — Bjnj — Z Awnknj
k=1
131
—|—§ Aw_knknj_k for j=2, ... ,N —1
k=1
1 N-1
hN = —BNTLN + 5 Z AhN_knan_k (4312)
k=1

where the dot denotes time derivative; represents the rate for a cluster of massf
loosing a particle, and is defined as

B, - ngn) V7, (4.3.13)

andA; ; is the collision rate between clusters of massdk, defined by

Ay = ”OT?E (V7 + ) . (4.3.14)

In Eq. (4.3.13),d denotes the typical distance that separates particleseohdhndary
from their nearest neighbors. In this walj,/ D, (n) is the characteristic time a particle
on the boundary needs to detach from the cluster. The spglittte 3; is proportional
to the inverse of that characteristic time multiplied by thenber of particles on the
boundary, which we approximate kyj. On the other hand, the collision ratg ; is a
concept shared from kinetic gas theory [79] which tells @ the collision rate between
two disk-like particles A and B is proportional to the relativelocity of the particles
and the sum of their diameters. We assume the diameter ofsteclof masg can be
approximated bye./;.

Rescaling Eq. (4.3.12) by introducing a new time variable t D, (n) /d?, we retrieve
the dimensionless set of equations given by Eqgs. (3.3.26hapter 3, where this time
the dimensionless parametgris defined as® = (2vped?) / (ADy(n)). Recall that the
critical dimensionless parametgr is a function of the number of particles in the system,
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resp. the number of ordinary differential equation in EqQ3(#2). Fig. 3.26 indicates that
P.(N) ~ N% where3, = —1.026 + 0.023. For simplicity, we take®,(N) = C N~ and
obtain that there is critical spatial diffusidby (r.) defined byD,(n.) = (2vped?p) /C.
From this expression, we predict that the critical oriental noiser,. which triggers
clustering (and orientation) is given by the transcendetaation:

Ne = 2sin(n/2) . (4.3.15)

_ 2ped?
voC At

Providedd is known, then,. can be estimated through Eq. (4.3.15). An estimate of
d would imply a systematic numerical study of either the @usize distribution of..
Though, this can be regarded as a drawback of Eq. (4.3.18expression allows us to
understand the the behaviorgpfwith respect tg andv, at low density.

4.4 Comparison with diffusive particles

We have gathered evidence that indicates that at high geh&ton-equilibrium system
exhibits a continuous kinetic phase transition from disotd order. We have mentioned
that an equilibrium two dimensional system with continuupmsetry cannot exhibit
long-range orientational order [33]. Here, we wonder wlaises long-range orienta-
tional order in this self-propelled particle system. Figl2suggests that as we move from
low to high densities the character of the transition charagel approaches a mean-field
transition at very high densities. Typically a mean-fieldat@tion, resp. a mean-field
transition, implies a good mixing of particles. Contranthe classical static XY-model,
self-propelled particles move and mix up in such a way thel garticle has a constantly
changing neighborhood. Does this mixing induce a mean-fralisition or is the self-
propulsion responsible for the transition? In Chapter 5 wkimtroduce a simple mean-
field approach to understand the emergence of orientatadal from a disorder state.
We will show that in such theoretical framework the replaeabof the self-propulsion
of the particles by an uncoordinated spatial diffusion etadthe same type of transition.
This finding strongly suggests that at high density the ngxahparticles makes possible
the mean-field transition. In this section we test thesesde@ugh simulations.

Imagine a system of two-dimensional Brownian particlesvait internal state vari-
abled! which might represent the orientation of their long axise Thotion of the parti-
cles is completely decoupled frofh However, the dynamics of the internal state variable



4.4. Comparison with diffusive particles 97

0! does depend on the particle position. Brownian particlesraet through the internal
state variable as active particles do through their dioectif motion (see Eq. (4.1.2)).
For Brownian particle®! does not affect particle movement. The evolution of itne
Brownian particle is given by:

XA = x4y (cos(+}), sin(rf)) At (4.4.1)
Orat = arg [ ) £ (v(0h),v(0) | + ! (4.4.2)
<

where~! is an uncorrelated random angle obtained from a step disimito of width 2,
i.e.,7! € [0, 2n]. Notice that the equations of motion of active and diffugiaeticles only
differ in the center of mass update rule (see Eqgs. (4.1.1]j4ddL)), while the orientation
dynamics remains the same (see Egs. (4.1.2) and (4.4.2)).

Fig. 4.19 compares the apolar order paramgfér as function of; in simulations of
active and Brownian particles. The simulations were perfat with N = 2! particles
at two densitiesp = 0.25 and2.0. The figure shows that at high density the behavior
SLC(n) in active and Brownian particles is strikingly similar. $Hinding suggests that
Brownian particles also exhibit a transition to orientatiborder. The result also supports
the above mentioned mean-field transition hypothesis fgin bensity.

At low densities, on the other hand, active and Brownianiglag differ dramatically.
Fig. 4.19 shows that Brownian particles at low density eithileak orientational order
compared to active particles. This is not surprising sineehave learned that at low
density orientational order in active particles emergeeeaslt of clustering. In Brow-
nian particles, the uncoupled spatial and angular dynaduocsot allow a transition to
clustering. In consequence, Brownian particles at low ignannot exhibit orientational
ordering for any (non-zero) finite value 9f

Fig. 4.20 shows both order parametes$® and S*, in Brownian particles at low
and high density. As expected, since Brownian particlestaed interactions are ap-
olar, polar order does not emerge. Consequently, the emsgge orientational order
observed in Brownian particle at high density corresponda genuine nematic order.
Recall that the transition to orientational order repoiteective particle at high density
comes accompanied for low valuesrplby a non-vanishing polar order (see Fig. 4.8).
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Figure 4.19: Comparison ofZ€ vs. 7 in simulations of active and diffusive particles. The
dynamics of active particles is given by Egs.(4.1.1) and.®}, while Brownian particles obey
Egs. (4.4.1) and (4.4.2). Simulations with = 24 particles.
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Figure 4.20:5-¢ andS* vs. , for diffusive particles. Notice that diffusive particles dot exhibit
any polar order at all.
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4.5 Conclusions

We have modeled and simulated a two-dimensional systenotdrjpself-propelled par-

ticles interacting through a liquid crystal (apolar) algent mechanism. Through the
individual-based simulations, we have gathered multigldence that indicates that the
system exhibits for low enough orientational noise a kmphase transition to orienta-
tional order whose character strongly depends on partesity. At high densities, i.e.,
when the orientation information travels through a peremlasystem, the liquid crystal
order parameter presents a continuous phase transitioditidwhl polar order emerges
simultaneously with density instabilities in a second $iaon. On the other hand, at low
densities, i.e., when the transfer of orientational infation requires the physical motion
of the particles, the transition to orientational ordemisiated by the onset of clustering,
where individual clusters have strict polar order.

In addition, it has been shown that the dynamics of a cohlgremdving swarm can be
described as a system of random walkers guided by an extesidalFrom this approach,
a rate equation description of clustering has been derhatdg qualitatively in line with
simulations at low density.

Finally, it has been tested whether the long-range oriemaktorder observed in self-
propelled particles also appears for interacting Browmarticles with an internal state
variable. The outcome of the simulations has revealed thatvBian particles at high
density also can exhibit long-range order. This finding tbgewith comparison between
self-propelled and Brownian particles has revealed thaight density the strong mixing
of particles, due to particle motion, produces the tramsiti

In summary, the self-propulsion of particles leads to Iquahr effects that particu-
larly influence particle transport and clustering effeetiich in turn affect the character
of the phase transition to orientational order. These tesuight shed some light to elu-
cidate the complex interplay between local orientatiomdeoand local density in large-
scale pattern of interacting self-propelled entities adirgl bacteria [27,28] and crawling
cells [93].
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Chapter 5

Continuum theory for self-propelled
particles

Introduction

In the previous Chapters we have seen that self-propellgatiea (SPPs) with local in-
teractions can organize into large-scale patterns. Flotkéds [26], swarms of bacte-
ria [27, 35, 109, 110], sperm cells [111], mixtures of miatmiles and motors [112], are
biological examples for such a behavior. Beyond the coniyl@X each particular sys-
tem, we observe that there are some few common features whide the emergence of
long-range order in these systems: the active motion of diniecpes and a velocity align-
ment mechanism. In this Chapter we wonder in which way thalleelocity alignment
mechanism affects the emerging macroscopic pattern.

The Vicsek-model [34] is considered the simplest model d@$S®hich exhibits col-
lective motion. In this model, point-like particles movingth a velocity vector of con-
stant magnitude interact by aligning their velocity direntto the local average velocity.
One can think of this model as a model of moving spins, in wihiahvelocity of the
particles is given by the spin-vector. Going further in thiglogy with spin systems, we
denote this alignment mechanism, as in Chapter 4, ferroetefir-alignment). The tem-
perature associated with spin-systems enters in the Viicgedel as noise in the alignment
mechanism. It was shown that two-dimensional SPPs withgfialent and additive noise
exhibit a second-order phase transitiovhich leads for low enough noise to long-range

!Chaté et al. have questioned the second-order phasetisansien when additive noise is imple-
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orientational order [34, 102]. For different choices ofteys parameters and different
choices of the noise term (non-additive noise term), sitraia show, however, first or-
der phase transitions to orientational order [40, 41].regengly, in equilibrium systems
of non-moving spins with continuum symmetry this transitt@nnot occur [33,104,105].

F-alignment is one possible alignment mechanism, butlgieat the only one. If a
system of self-propelled rods interacts simply by volumewsion as described in Chap-
ter 3, resp. [100], particles may end up moving in the sanmeeton as well as in opposite
directions. A biological realization of such a system arexabacteria, which in the early
stages of their life-cycle organize their motion by simplysping each other [27]. A sim-
ilar effect without active motion occurs in liquid-cryssadt high density where particles
get locally aligned [72]. In analogy to these systems we n#mgemechanism hence
liquid-crystal alignment (LC-alignment). In a system off2Pwith LC-alignment parti-
cles align their velocity to the local average director. imw@ations of a model of SPPs
with LC-alignment it was found that at high density these mgVvliquid-crystal” spins
exhibit a second-order phase transition leading to lomgiesorientational order for low
nois€. Notice that the orientational order observed in SPPs wifhalignment refers
to the emergence of a global director in the system, whild=fatignment orientational
order refers to the appearance of a global direction of motio

Toner and Tu were the first to look for a macroscopic descniptif SPPs with F-
alignment. Their approach was a phenomenological hydmaaycal description based
on symmetry arguments for which they derived general maogms equations for a large
class of individual-based models of SPPs with F-alignm&®6t42,113]. In this approach
many of the parameters in the model are difficult to derivenftbe microscopic dynam-
ics. Recently Grégoire et al. proposed an alternativeagugbr based on the Boltzmann
equation [114] and could explain in a systematic way the tional form proposed by
Toner and Tu [42] by use of an ad-hoc collision term.

The case of LC-alignment has been much less explored. Rgdeatmaswamy et al.
proposed a phenomenological hydrodynamical descriptiodriven, but non-persistent,
particles with LC-alignment [31]. The approach is comp&eab the Toner and Tu de-
scription for F-alignment. One of the striking results asthpproach is the giant number

mented [41], claiming that in the thermodynamical limit $ystem exhibits a first-order transition. How-
ever, very recently Vicsek et al. have insisted about theicoaus character of the transition for additive
noise [102] providing evidence not present in their piomagwork [34]. The actual nature of the transition

for additive noise is currently under debate.
2The numerical evidence supporting this assertion has bigen o the previous chapter.
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Figure 5.1: Temporal evolution of the velocity directiorstibution (angular distribution) in
simulations with very fast angular relaxation. (a) cormeggs to F-alignment, while (b) to LC-
alignment. Number of particle¥ = 100, radius of interactior = 2, linear system sizé& = 42.4,
and noise amplitudg = 0.25.

fluctuations of particles in the ordered state, which haslm@anfirmed in simulations
by Chaté et al. [48] and in granular media experiments byajm et al. [50]. More
recent simulations have suggested that these fluctuatrerigmied with intrinsic phase
separation of SPPs into regions of high and low density [49].

Here, we derive mean-field type description for SPPs witmig-LaC- alignment. Nu-
merical evidence provided by individual-based simulaiomicates that SPPs with both
F and LC-alignment (and additive noise) can exhibit a carttus kinetic phase transition
in two dimensions. The derived mean-field equations allowoustudy ferromagnetic
as well as liquid-crystal interactions among particlesroligh this approach the phase
transition to orientational order observed in individbalsed simulations at high density
for F and LC-alignment is correctly captured. Furthermave, show that the critical
noise amplitudey, is such thayi® < nf in the mean-field description as well as in the
individual-based simulations in both investigated cases.

5.1 Individual-based model

5.1.1 Equations of motion

We consider point-like particles moving at constant spaedtivo dimensional space and
assume an over-damped situation such that the state oflparst timet is given by its
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positionx; and its direction of motiol;. The evolution of these quantities follow:

. oU
0, = —7%(&,@) + 7 (t) (5.1.2)

where~ is a relaxation constant, arid the interaction potential between particles, and
henceg’—g (xi, 0;) defines the velocity alignment mechanism. Moreovgrepresents the
active velocity of the particles;(6,) is defined as/(6;) = (cos(6;), sin(6;)), and#;(t) is
an additive white noise applied to the direction of motiohe®volution Egs. (5.1.1) and
(5.1.2) are expressed in terms of first derivatives. In thag,w, in Eq. (5.1.1) can be
considered as an active force divided by a translationetidn coefficient, andy in Eq.
(5.1.2) as the inverse of a rotational friction coefficient.

In analogy to spin systems, the ferromagnetic velocityratignt mechanism is given
by a potential defined as:

Up(x;,0;) = — Z cos(6; — ;) (5.1.3)

% —x;|<e

wheree is the radius of interaction of the particles. For the ligargistal alignment mech-
anism, we choose the potential introduced by Lebwohl antéra® study liquid crystal
interactions on a lattice [101] which reads:

Urc(xi,6;) = — Z cos?(0; — 6,) (5.1.4)

% —x;|<e

One can add a coupling strength coefficient to the expregsidn3) and (5.1.4). We
assume that the coupling strength is absorbedimEq. (5.1.2). Notice that the potential
given by Eq. (5.1.3) exhibits one minimum, while Eqg. (5.1x)s two minima, which
correspond to particles pointing in the same direction artigles pointing in opposite
directions.

In the limiting case of very fast angular relaxation we expgegs. (5.1.1) and (5.1.2)
to be approximated by the updating rules:

t+AL

X

= x|+ v (0) At (5.1.5)

oA = arg | Y £(v(0h),v(0) | + (5.1.6)

t_ ot
X; xj|§e
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wherearg (b) indicates the angle of a vectbrin polar coordinates, angf is a delta-
correlated white noise of strength(n'e [—2, 2]). Given two vectors andb, f(a, b) is

defined as follows. For F-alignmerta,b) = a and Egs. (5.1.5) and (5.1.6) becomes
Vicsek model [34]. For LC-alignmenf,takes the form:

£ (a,b) = a if ab>0 (5.1.7)
] —a if ab<0 o

Recall Egs. (5.1.5), (5.1.6), and (5.1.7) have been intedand analyzed in the previous
Chapter.

5.1.2 Order parameters

If particles interact through the F-alignment mechanisna, assuming low noise ampli-
tude, they get locally aligned, and locally point in a simidérection. The question is
whether such local alignment may lead to a global orientatiorder in which a macro-
scopic fraction of the particles in the system points in ailgindirection. The order
parameter that quantifies this phenomenon is the moduluseohdrmalized total mo-
mentum (analogous to the magnetization in the XY-model [105]) that we express
as:

(5.1.8)

whereN stands for the total number of particles in the systéftakes the valué when

all particle move in the same direction. On the other hatfdis equal to0 in the disor-
dered case in which particles point in any direction withaqrobability. This can be
also observed through the velocity direction distributitwat in two dimensions becomes
an angular distributiod’(#). For high values of the noisé€;(¢) is flat. When the noise is
decreased below a critical noigg an instability arises in the system (characterized by a
single peak) indicating the onset of orientational ordestaswvn in Fig. 5.1(a). The order
parametelS” expressed in terms ¢ (9) takes the form:

( /0 K doC(0) 008(9)> + ( /0 K doC () sm(e)) 2] " (5.1.9)

2
St =
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On the other hand, if for example, half of the particles maveme direction, and
the other half in the opposite directiafi’ is also0. Clearly,S* cannot distinguish such
a state and the completely disordered state. However, igdrakbnt may induce such a
kind of local arrangement of particle velocities, and leadtglobal orientational order
state in which there are two opposite main directions of amoin the system. To study
such orientation ordering, one uses the order mapriaf liquid crystals [72]. For two
dimensions one takes the largest eigenvaltie of () and obtain the following scalar
orientational order parameter:

SHC=—+

RS,
M| o

ihj

N
11
J 4 N? {Zvi% - Uwi“m%%} (5.1.10)

wherev,; andv,; are defined as,; = cos(¢;) andv,; = sin(¢;). The orientational order
parameterS~“ takes the valug when all particles are aligned along the same director,
and the valué in the disordered phase where particles move with equakibty in any
direction. Again this can be observed through the veloditydtion distributionC'(6). In

this case, for low values of the noise amplitude, as showrign 5.1(b), an instability
arises in the system with the characteristic of having twakpeseparated . In terms

of C(0), SL¢ reads:

B _ ( /0 " d6C(6) cos2(9)) ( /0 " J6C(6) sin2(9)) (5.1.11)

+ ( /027r dOC (0) cos(8) sin(g)) 2] 1/2

Recall Egs. (5.1.8), (5.1.9), (5.1.10) and (5.1.11) haveaaly been introduced and an-
alyzed in the previous Chapter. Here, we have included tteerméking the reading of
this Chapter easier and selfcontained.
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5.2 Mean-field approach

5.2.1 Derivation of the mean-field approach

A system of SPPs may alternatively be described through sitydield ¢ (x, v(0),t) =
¥(x, 0,t) in such a way that the particle density at a pains given by

p(x,t)z/oﬂw(xﬁ,t)de (5.2.1)

while the velocity direction distribution (or angular disution) can be expressed as:

C0,1) - /Q W (%, 0, 1) dx (5.2.2)

We recall that in the individual-based model the kineticrggds conserved, while
the momentum is not. For F-alignment, the system tends tease the total momentum,
while for LC-alignment the tendency is to decrease it. Thetiomum approach has to
reflect that particles can re-orient their velocity direntibut always move at constant
speed. On the other hand, the number of particles has to tsen@d. Under these
assumptions the following evolution equation fofx, 6, t) is obtained:

Oy = DgOgotp — Op [ Fprp] — 7 [Fa)] (5.2.3)

whereFyy andF ¢ are deterministic fluxes which are associated to the logghilent
mechanism and active migration, respectively, Apdefers to the diffusion in the direc-
tion of motion.

Let us derive the specific expressions foy, Fy andF,. D, depends on the square
of the noise amplitude. For example, if in the individuaked simulationsg; (¢) is imple-
mented by taking at each time step a random variable frompedssé&ribution of widthy,
Dy is given Dy = 1At /24, whereAt is the temporal time stepk, contains the inter-
action of a particle located atand pointing in directiod with all neighboring particles
which are at a distance less thafiom x, and so takes the form:

2T 9 ! 0l
Fy=—~ / dx’ / d@’aU(X’aéx’e)w(x’,H’,t) (5.2.4)
R(x) 0
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whereU (x, 0, x’, 0') represents the pair potential between a particle locatedat point-
ing in directiond, and another at’ and pointing in directiod’. R(x) denotes the interac-
tion neighborhood arounxl. If x" is insideR(x), thenU(x,0,x’,60') = U(6,0'). Finally,
F, can be thought as the "torque” felt by a particle locatex and pointing in directior.
Notice that we have implicitly assumed that the two-pagtansity can be approximated
in terms of the one-particle probability, i.e\(x,0;x", 60’ t) ~ ¥(x,0,t)Y(x', ¢ t), as
in the mean-field approximation for coupled oscillatorsg[Lar generic equations for
angular order [116].

The expression foF,, is straightforward and is directly related to the velocitypar-
ticle atx and pointing in directiod,

F, = vyv(0) (5.2.5)

5.2.2 Angular distribution

Integrating both sides of Eq. (5.2.3) over the spQcee obtain an evolution equation
for C'(0,t) which still depends om(x, 6, t). In the following we assume a homogeneous
spatial distribution of particles(x,6,t) = C(0,t)po/N, wherep, is defined agp, =
N/L?, beingL the linear size of the system. With these assumptions thatiequor the
temporal evolution of” (0, t) reads:

ac(6,t)  _ R*C(0,t) wé ™ 9Ub,0) .
5 = Do 00 /OdeTC(e,t) C6,t)| (5.2.6)

5.2.3 Linear stability analysis for F-alignment

For both F- and LC-alignment the homogeneous angular bligian is a steady state of
Eq. (5.2.6). We determine the onset of the ordered stateualyisty the linear stability
of the disordered state. First let us look at the F-alignmBwtdividing both sides of Eq.
(5.2.6) byyre?/L?, and redefining time as = (yre?/L?)t, and D) = D,/[yme®/L?]
one obtains:

oC (0,t)
or

= D})dpyC (0, t) + Oy H / o/ sin (0 — 0') C (¢, t)} C (o, t)} (5.2.7)



5.2. Mean-field approach 109
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Figure 5.2: Temporal evolution a@f'(¢,t). (a) F-alignment, numerical integration of Eq. (5.2.7)
with Dy = 0.28. (b) LC-alignment, numerical integration of Eq. (5.2.11iftwDy = 0.014.
For both (a) and (b)C* = 0.3183, At = 0.001 and A9 = 0.16. The initial condition is a
random perturbation around*. Notice that for F-alignment a single peak emerges, white fo
LC-alignment the distribution develops two peaks.
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Now, consider a weak perturbation of the homogeneous patter
C(0,t) = C* + Coe™ e (5.2.8)

Notice thate™’ are eigenfunctions of the operators emerging from the tinaton of Eq.
(5.2.7) about the homogeneous steady state. By subsgitatio Eq. (5.2.7) and keeping
terms linear inC;, we obtain the following expression for the eigenvalues:

Re(\) = —Dpn® + 7C*8,1 (5.2.9)

This means that the only mode which can become unstable=isl. The condition for
the instability of the homogeneous state takes the form:

2Dy
ye?

Po > (5.2.10)
wherep, = N/L? For a given noise amplitude, expressed by, there is a critical
particle density above which the homogeneous solution i®nger stable. Fig. 5.1(a)
shows that in individual-based simulations indeed a sipgbk emerges in the system for
low density. Fig. 5.2(a) confirms that such qualitative hédras recovered by numerical
integration of Eq.(5.2.7).

5.2.4 Linear stability analysis for LC-alignment

Applying analogous procedure for LC-alignment yields:

oC (0,t)
or

= D}dgeC (0,1) (5.2.11)

+ 0 H / 02 cos (6 — @')sin (0 — 0') C (@, t)} C (o, t)}

Again the weakly perturbed homogeneous ansatz given by32.8] is considered. As
beforee’ are eigenfunctions of the linearized operators. SubBstguEq. (5.2.8) into
Eq. (5.2.11) and keeping terms linearGf the following expression for the eigenvalues
is obtained:

Re(\) = —Dyn® + 21C*5,, 5 (5.2.12)
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As for the F-alignment, there is only one mode which couldobee unstable, but this
time itisn = 2. This mode is the only one that exhibits two peaks separated Wwhich
corresponds to two population of particles migrating in @gife direction. In this case,
the instability condition of the homogeneous states takeplg the form:

4Dy
e

po > (5.2.13)
Again, this inequality defines a critical density for a givesise amplitude above which
the homogeneous solution is no longer stable. Fig. 5.1(@)slthe emergence of these
two peaks for LC-alignment in individual-based simulasorNumerical integration of
Eq. (5.2.11), see Fig. 5.2(b), confirms that this behavioet®vered qualitatively by the
mean-field description.

Egs. (5.2.10) and (5.2.13) indicate that the instabilityhed homogeneous state is
given bypg, Dy, ande, the range of interaction. The critical density is inveygaiopor-
tional toe?, hence whenr goes to infinity the critical density goes@o The interpretation
of this is straightforward¢ — oo indicates that particles have infinity "visibility”, i.e.,
each particle can sense all other particles in the systethidnvay, the collective behav-
ior has to emerge independent of particle density. The ditméing case is represented
by e — 0. In this case particles do not interact and in consequenceganized motion
is possible.

From these findings a phase diagram is derived that showswiesystem exhibits
velocity orientational order (see Fig. 5.3).

5.2.5 Spatially inhomogeneous steady states

Through the linear stability analysis it has been found faralr conditions the homoge-
neous distribution (disordered state) becomes unstabletully the nonlinear behavior
of these instabilities in more detail, Eq. (5.2.6) can begnated numerically. Details
about the numerical methods are given in the Appendix C. 5ig.has shown already
the temporal evolution af’(6, t). The initial condition is a homogeneous state with small
random perturbationg”(6,,,t = 0) = C* + n(n), whered,, denotes the discrete angular
variable,C* is the constant unperturbed homogeneous state, which veededvo be in
the unstable regime according to Egs. (5.2.10) and (5.20t3he F- and LC-alignment
case, respectively, angin) is a white noise. In Fig. 5.4 the angular distribution for F-
and LC-alignment is shown at different tim&s(6, ¢) tends asymptotically to a non-trivial
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H

6 unstable

Figure 5.3: Phase diagram derived from the continuum approEhe unstable region corresponds
to the velocity orientational order, while stable means nerational order can be observed.

steady state, see Fig. 5.4. The width of the peaks in theysttatk is the result of the
competition between influence of rotational diffusion,icaded byD,, and the alignment
force associated with the interactions.

5.2.6 Scaling of the order parameter close to the transition

For a given density, there is a criticA)_. Close toD,, we expect to observe that only one
mode dominate€’(f,t). As said beforep = 1 is dominant for F-alignment and = 2
governs LC-alignment. The steady state distributigy{¢) then takes the form:

Cst(0) ~ C* + By+/ Dy, — Dy cos(0 — 6y) (5.2.14)

for F-alignment, while for LC-alignment the expressiondga

Cst(0) ~ C* + Bayy/ Dy, — Dy cos(2(0 — b)) (5.2.15)

where By, B, are constants ané, is an arbitrary phase which depends on the initial
condition. In both cases the maximum amplitude(f(#) close to theD,, grows as
/Do, — Dy. Inserting Eq. (5.2.14) into Eq. (5.1.9) and using, as iattid aboveD, =
n*At /24, we obtain the scaling of the order parametér

S~ Bivn. —n (5.2.16)
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Figure 5.4: Convergence towards the non-trivial stabladstestate. (a) F-alignment, numerical
integration of Eq. (5.2.7) withy = 0.3472. (b) LC-alignment, numerical integration of Eqg.
(5.2.11) withDy = 0.2813. For both (a) and (b)¢* = 0.3183, At = 0.001 andAé = 0.0785.
The initial condition is a random perturbation aroutitl Different curves correspond to different
times. Notice that for large values bturves start to overlap on top of each other.

whereB is a constant. To obtain the scaling of the order paranggterwe insert (5.2.15)
into Eqg. (5.1.11):

+ Bov/ne — 1 (5.2.17)

SLC ~

AN

where agairB; is a constantB; and B, are constants proportional tp.

5.2.7 Comparison with individual-based simulations

Individual-based simulations have been performed in tiné case of very fast angular
relaxation [34, 102]. In contrast, our mean-field desoniptassumes that there is a finite
angular relaxation. Can we expect the mean-field approadesoribe scaling of the
orientational dynamics in this kind of simulations? We ffgte~ as function of the
particle velocityy, and the particle density. The effective resulting mean-field equation
reads:

9 5 o[ [ U0
a—f(e,t) _ Dg% +1(on )5 H /O d@’%C(G’, t)} C(G,t)}(5.2.18)

where~(uvy, p) is an effective interaction strength which absorbs theiapdynamics.
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The scaling obtained from individual-based simulationy maw be compared with
the one predicted by the mean-field approach. We recallithat- 2, wherer is the
orientational noise amplitude used in individual-basedusations. From this we find
that Dy, — Dy has to beDy, — Dy = K(n. — n) + O((n. — n)?), whereK is a constant.
We focus on the LC-alignment and replace this expressiankat (5.2.15). We obtain
that Cy;(0) ~ C* + Biy/1. — ncos(2(6 — 6y)), and we know from Eq. (5.2.17) that
SL¢ ~ 1+ Byy/n.—n, whereB, and B are constants.

Fig. 5.5(a) shows a comparison between the scaling predistehe mean-field ap-
proach forS'¢ (dashed curve) and the one obtained from individual-basedlations
for p = 4 in the limit of very fast angular relaxation (symbols). Wedfigood agreement
between the mean-field prediction and the simulations fersdaling ofS nearr. that
suggests that individual-based simulations with LC-atignt at high densities exhibit a
mean-field type transition. Notice that simulations startiéviate exactly at the point
where density fluctuations become important (denoted bylttelashed vertical line in
(5.5)(a)). Let us recall that the mean-field approach ingpiee assumption of homoge-
neous density. Evidence also points towards a mean-figiditran if we look at the scal-
ing of the maximum amplitude of the angle distribution asction of the angular noise
intensityn (see Fig. (5.5)(b)). The order parameter scaling expor@nEfalignment
(Vicsek-model) has been found to be 0:4%.07 [34, 102], which is also in line with the
predictions of the presented mean-field theory.

Finally, Fig. 5.6 shows that in individual-based simulagavith the same parameters
and different (namely LC- and F-) alignment mechanism, eliimit of very fast angular
relaxationni® < nk as predicted by the mean-field theory. Note, however, that th
simulations yield,5¢ ~ 1%, while the mean-field description prediaf@niC = nf..

5.3 Concluding remarks

We have derived a mean-field theory for self-propelled plgiwhich accounts for F-
and LC-alignment. This approach predicts a continuousehassition with the order
parameter scaling with an exponent one half in both casesaddiition, it yields that
the critical noise amplitude below which orientational @r@émerges is smaller for LC-
alignment than for F-alignment, i.e}:¢ < nfk.

These findings were confirmed by individual-based simutetioith F- and LC-
alignment. In the limit of infinitely fast angular relaxatiaused in simulations here



5.3. Concluding remarks 115

oo ‘ ‘ y 0.05— : : .
[m]
DDDD (a) o (b}
[m]
@ "o S e 0.5
"o = o M=A(n -n)
/D‘D\ 5 0.03 N c
L ! ~
0.6 " = N /
— 051 Y ! R
S=0.25+A - [ i
(.- L g 001 P)=F(x)* p(x)=p, .
03] : qI’DmrmmH 0 . : ) b
0 1N 2 16 18 1 2

Figure 5.5: (a) Scaling of the scalar order paramster with the noise amplitude. (b) Scaling

of the maxima irCy, () with . Symbols correspond to simulations with LC-alignment mlimit

of very fast angular relaxatiom = 4 and N = 2'2. The dashed-curve corresponds to the scaling
predicted by the mean-field approach (see Eq. (5.2.17))vé&tieal dot-dashed line indicates the
onset of clustering effects in the simulations. To the righthat line particle density(x) can be
considered constant. To the left of the lipéz) becomes a function af. For F-alignment in limit

of very fast angular relaxation, the scaling.$f is close to the one predicted by Eq. (5.2.16),
compare also [34,102].

the mean-field theory provides a good qualitative descniptf the simulations. If
simulations were performed by integrating Eqgs. (5.1.1) énd.2) with a finite an-
gular relaxation,i. e a finite 7, a direct correspondence between parameters used
in simulations and parameters in the mean-field theory camade and quantitative
comparisons become possible. The presented mean-field, tisewot an exact coarse-
grained description of Egs. (5.1.1) and (5.1.2). For instarwe have neglected the
potential impact of particle-particle correlations. Fatmore, we have assumed spatial
homogeneous density to study the emergence of orientaboder. Thus, the presented
approach does not apply to situations where self-propgléaticles show clustering at
the onset of orientational order [100]. In summary, a betteterstanding of the problem
should imply the study of the interplay between local omiohal order and density
fluctuations. We leave that for future research.
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Figure 5.6: Comparing simulations of particles with F-afigent (crosses) and LC-alignment (cir-
cles) in the limiting case of very fast angular relaxation.bbth casesvV = 24 andp = 2.0.
Notice that the order parameter for F-alignmen§{swhile for LC-alignment isSZC (See text).
The dashed horizontal line indicates the minimum value $#4t could take. The dashed curves
correspond to the best fit assuming an expofenti.e.,n. was the fitting parameter.



Chapter 6
Summary

Throughout this Thesis many aspects of the physics of seffglled particles systems
ranging from individual to collective motion have been afded. Chapter 2 has been
devoted to the study of the individual motion of self-prdeélparticles. Specifically,
general aspects of two-dimensional active motion, withtélattons in the speed and the
direction of motion, have been studied. We have considé&edase in which fluctuations
in the speed are not correlated to fluctuations in the dorabdf motion, and assumed
that both processes, fluctuation in the speed and directiomotion, can be described
by independent characteristic time-scales. Under thesargstions, a complex transient
occurs that can exhibit a series of alternating regimes afangfor two different angular
dynamics which correspond to persistent and directed rarndalks. Expressions for the
mean square displacement and diffusion coefficient have degved. They have been
found to differ from the classical results by additive catiens. The characteristic time-
scales of the stochastic motion are exposed in the velogitycarrelation, which is a sum
of exponential forms. It has been shown that uncorrelatedufitions in the direction of
motion and speed might play an important role in the migredfomotile microorganisms.
In chapter 3 we have looked for a simple physical mechanisahdan induce col-
lective motion in self-propelled particles. Individuagded simulations of self-propelled
elongated rods interacting only by volume exclusion exhitteresting collective motion,
i.e., formation of coherently moving groups. Provided thetiples are elongated enough,
they form densely packed clusters inside which particlesadigned and moving in the
same direction. This effect is reflected in the particle dpdistribution, particle rotation,
and local and global orientational order parameter of théghes. These self-propelled
rod-shaped particles that interact only through shorgiearepulsive interactions, exhibit
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a non-equilibrium transition to clustering for sufficiemrde values of the density and
particle aspect ratio. We have defined the onset of clugtényra transition of the cluster
size distribution from unimodal to bimodal shape. The tit@msto clustering observed in
individual-based simulations is reproduced by a mean-flektription of the cluster size
distribution, which yielded a simple criterion for the arél particle aspect ratie., which
predictsk,. to be inversely proportional to the density. The high degnisiside the cluster
leads to alignment of rods and coordinated motion of alligled in the cluster. Inter-
estingly, the transition to clustering coincides with tleen at which the cluster entropy
Hc takes its maximum value. Far below the transition, the ehirsgy properties of the
system obey the maximum entropy principle applieditg which allowed us to describe
the system in terms of the total number of clusters. A congparivith liquid crystal the-
ory reveals that actively moving rods can achieve alignmaéntuch lower densities than
Brownian rods resp. particles in equilibrium systems. A#de findings are relevant to
understand the collective motion of some gliding bactesiengixobacteria.

The interaction by volume exclusion among self-propelledssrieads to parallel as
well as anti-parallel alignment of the rods. The resultitigranent mechanisms is apo-
lar, though particles are, due to their self-propulsionapaoChapter 4 has been devoted
to the study of a simplified version of the self-propelledgedodel. It has been mod-
eled and simulated a two-dimensional system of polar gelpglled particles interacting
through an apolar alignment mechanism. It has been showhthaystem exhibits for
low enough orientational noise a kinetic phase transitmrientational order whose
character strongly depends on particle density. At highsiliess, i.e., above the percola-
tion threshold, the liquid crystal order parameter displaycontinuous phase transition.
The orientational order state, however, does not corraspma perfect nematic phase,
since the transition involves a non-vanishing polar oréar.the other hand, at low den-
sities, i.e., when the transfer of orientational inforroatrequires the physical motion of
the particles, evidence of a discontinuous phase trandi#s been found. Contrary to
the high density scenario, the transition to orientatiadkr is initiated by an increase
of polar order and the onset of clustering. Through the stfdypnteracting Brownian
particles, it has been shown that the emergence of longerarigntational order in the
self-propelled particle system at high density arises fthenmixing of particles rather
than the coupling between active motion and particle oaigort.

In Chapter 4 it has been shown that collective effects carchieeed by either a polar
or an apolar alignment mechanism. Chapter 5 has been detotielop a common



119

theoretical framework to describe the macroscopic dynsmicself-propelled particles
under both possible alignment mechanisms. At high denkgyoctrientation dynamics
is captured by a simple mean-field approach which predictbfo enough noise a sin-
gle peaked angular distribution for polar alignment, andhadolal distribution for apolar
alignment. The approach also predicts a continuous phassition in which the order
parameter scales with an apparent expon¢afor both alignment mechanisms. In addi-
tion, the critical noise amplitude below which orientatdorder emerges is smaller for
apolar alignment than for polar alignment, in line with widual-based simulations.

In summary, the self-propulsion of particles leads to Iqualbr effects that partic-
ularly influence particle transport and clustering effegtkich in turn affect the global
collective behavior of the system. The results that have loeseloped throughout this
Thesis might shed some light to elucidate the complex ifagrpbetween local orienta-
tional order and local density in large-scale pattern ofgelpelled entities as gliding
bacteria [27, 28,47, 75] and crawling cells [5, 56, 93, 98}pag many others.
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Appendix A

Calculation of the overlapping area in
self-propelled rods simulations

The self-propelled rods simulations require a good anddstatnation of the overlapping
area between two rods. This appendix explains how the qyarig area was calculated
in simulations.

Suppose two rods intersect as shown in the left panel of Fity. Fhe first step in order
to calculate the intersection area between these two ramstiansform the coordinate
system in such a way that the origin of the new system coigaidth the center of mass
of one of the particle. The coordinate transformation imeslalso a rotation so that the
long-axis of the particle coincides with the new system gkidNotice that now we have
to refer to the other rectangle in terms of the relative \deis. The procedure is illustrated
in the right panel of Fig.A.1.

In the new coordinate system the overlapping area can bly eatiulated with the
following integral that uses four step functions:

w/2 L/2 . b
a(x,0,x',0") = / © (b +1.sin(a) — b. cos(a) + —) (A.0.1)
—wy/2J-1)2 2

0 (5~ (b Lsinte) —b.cosa) ) © (a+ Leos) + sinfa) + £ )

o (g (@ +1.cos(a) + b sin(a))) dl.db

whered = (cos(6),sin(d)).(x' — x), b = (—sin(d), cos(d)).(x' — x)anda = 6 — ¢
This expression might look complicated, but it can be easilylemented in a computer.
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Figure A.1: The left panel sketches the intersection betvtee rods as seen from a fixed coordi-
nate system. The right panel illustrates the coordinatesfeamation that is performed to calculate
the overlapping area.

Subdividing the area occupied by the rectangle located ahd pointing in directior’
in tiny squares and counting those that obey the condition:

b ! b L / L

int

wherex!,,, y.., refer the interior points of the rectangle locatedain the new coor-
dinate system, a good approximation of the overlappingiarebtained.

Though this procedure works very well, it is extremely sldw.speed up the overlap-
ping calculation, the following can be done. After the cooate system transformation,
it is possible to calculate the overlapping area by askingchvkides of the rectangle
located atx’ intersect the particle located at There are four linear equation per side
of the rectangle located iR’. Each linear equation can intersect 0, 1 or 2 sides of the
rectangle at the origin. If we think that there are four linequation, the total number of
intersection that we may haveis 1, 2, 3 or 4. All this représerore than 64 possibilities.
In addition the area of overlap may be a triangle, a rectanglen irregular polygon.
Despite of this fact, we can use the symmetries of the prol@dechto classify all the
possible situations in a few cases. In Fig. A.2 some of thasesxare shown. Though
this procedure is a tedious and hard task, the resultingitigois a very fast, gives the
exact overlapping area, and reduces the calculation of\ttdapping area to a series of

“if”s.



123

=T
P4

Figure A.2: The figures sketch some of the possible oventapptenarios. Notice that a side of
the particle located at’ can exhibit 0, 1 or 2 intersection with the perimeter of theipis at the
origin. The overlapping area can be a triangle, a rectangéma irregular polygon.
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Appendix B

Liquid crystal tensor

The apolar order in liquid crystal theory is measured thitoagensor defined as [72]:

1
Qaﬁ_ NZ( Ui,alip — 75) o, =mx,y,2 (B.0.1)

whereu; represents the orientation of the long axis of partiglév is the number of
particles, and,, s is the Kronecker delta function. Noticg, 5 is symmetric and traceless.
Diagonalization ofQ),, s gives three eigenvalues., Ao andA_ such that\, > A > A_
which sum to zero. The scalar order parameter corresporttie tmaximum eigenvalue
of Q. s, 1.€.,A\;. The director is the eigenvector associated to that eideava

(., Specialized for two-dimensional system takes the form:

3/(2N) > cos?(0;) —1/2 3/(2N) > cos(f;)sin(f;) 0
Q=1 3/(2N)>_ cos(b;)sin(b;) 3/(2N) " sin?(6;) 0 (B.0.2)
0 0 —1/2

The eigenvalues are obtained by solvifig [Q — A\I] = 0, wherel is the identity matrix.
The characteristic polynomial reads:

det[Q =M = —(1/24+A) [(a— (1/2+ ) (b—(1/24+ X)) —¢*] (B.0.3)

where a = 3/2N)2N cos®(6;), b = 3/(2N)XN sin(6;) and ¢ =
2%21 cos(6;) sin(f;) cos(;) sin(f;). It can be easily verified that the roots are: =



126 Appendix B. Liquid crystal tensor

S1/2, o = [3/2 - \/9/4—44 /2 - 1/2 and\, = [3/2+ \/9/4—4q] /2 - 1/2,

whereq = a.b — c2. In consequence\, takes the form:

N

1/2
1 1 2 .2 ; i
1N Z (cos®(6;) sin(6;) — COS(Qi)Sln(ei)cos(ej)sm(ej))] '

i,j=1

It can be easily verified that in the ordered case, e.g., whea 0 for all i, « = 3/2,
b= c=0,andso\, = 1. In the disordered case, i.e., when all orientations aralggu
probableg = b =3/4,¢=0,and so\; = 1/4.



Appendix C

Numerical integration scheme for
Integro-PDE

The numerical integration of the integro-partial diffeiehequation (5.2.6) requires to
perform the numerical integration of Eq. (5.2.4) to thengeked to the integration of the
diffusive and advective terms in Eg. (5.2.6).

At each time step, (0, t) is calculated through a simple Newton-Cotes method. Then
the integration of Eq. (5.2.6) is performed through an operaplitting method. The
diffusion is implemented by an explicit forward method. Tih&egration of the active
turning (Eq. (5.2.4)) contained in the advective term reggispecial attention. Sinde,
depends explicitly o andt neither a Lax nor an Upwind method gives a satisfactory
result. We overcame this difficulty by implementing the daling variant of the Upwind
method:

C(Op,t;+ 1) = (1 — [Fo(bh, t;)])C(Oh, t;) +
O(Fa(by — 1,t;))|Fa(0r — 1,1;)|C(0, — 1,t;) +
O(—Fo(0r + 1,1;)) | Fa (O + 1,£,)|C (0 + 1,1;) (C.0.1)

where ¢, and t; represent the discrete indices of the angular and temparad v
ables respectivelyP(z) denotes a Heaviside function, arﬂ)(ek,tj) is defined as
fg(é)k,tj) = (At/A0)Fq(bk,t;) where Ad and At are the discretization of the space
and time respectively.
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