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Abstract

Self-propelled particles (SPPs) are non-equilibrium systems and as such they are not

forced to obey the fluctuation-dissipation theorem. Moreover, SPPs can exhibit fluctu-

ations in the direction of motion uncorrelated from those inthe speed. In this Thesis it

is shown that uncorrelated fluctuations lead to a non-Brownian motion characterized by

expressions for the mean square displacement and diffusioncoefficient that differ from

the classical results by additive corrections. It is also indicated that such effects have been

observed in cell motility experiments.

Interacting SPPs represent another fascinating kind of systems with remarkable dif-

ferences with equilibrium system. For instance, while in equilibrium two-dimensional

systems with continuum symmetry long-range order is forbidden, SPPs can develop such

long-range order. Though it is well known that two-dimensional SPPs with local polar

interactions can exhibit such transition to orientationalorder, a recurring question refers

to alternative physical mechanisms that lead to collectivemotion in SPPs. In this Thesis

it is shown that a self-propelling force together with volume exclusion are sufficient to

cause collective migration. This is clearly illustrated through a model for self-propelled

rod-shaped particles. In particular, it is indicated that the emerging collective patterns

depend on the particle elongation. For instance, it is shownthat for a given density there

is critical particle aspect ratio that triggers non-equilibrium clustering. It is also suggested

that those effects might play a major role in the collective motion of gliding bacteria such

as myxobacteria.

Volume exclusion represents an apolar interaction. This rises the question how the re-

sults known for SPPs with polar interactions change when theinteractions become apolar.

This issue is addressed in this work and it is shown that though SPPs with apolar inter-

actions can also achieve long-range order, the character ofthe transition highly depends

upon particle density.

Finally, it is shown that the ordering dynamics in SPPs with either polar or apolar

interactions can be described with the same continuum theory.



Zusammenfassung

Diese Arbeit untersucht das Verhalten von aktiven getriebenen Teilchen, d. h. Teilchen,

die sich unter Verbrauch von Energie gerichtet mit einer gegebenen Geschwindigkeit

fortbewegen. Solche Teilchen sind per Definition fernab vomthermodynamischen Gle-

ichgewicht und unterliegen daher nicht dem Fluktuations-Dissipations-Theorem. Darüber

hinaus sind die Fluktuationen in der Orientierung solcher Teilchen nicht notwendiger-

weise mit den Fluktuationen ihrer Geschwindigkeit korreliert. In dieser Arbeit wird

gezeigt, dass solche unkorrelierten Fluktuationen für einzelne Teilchen zu nicht-Brownischer

Bewegung führen, bei der die analytische Ausdrücke für die mittlere quadratische Abwe-

ichung und den effektiven Diffusions-Koeffizienten sich vom klassischen Ergebnis durch

additive Korrekturen unterscheiden. Diese Effekte sind unabhängig von unseren Rech-

nungen in Experimenten zur Bewegung von Zellen gefunden worden.

Wechselwirkende getriebene aktive Teilchen unterscheiden sich ebenfalls stark von

analogen Gleichgewichtssystemen. Während zum Beispiel in zwei-dimensionalen Gle-

ichgewichtssystemen mit kontinuierlicher Symmetrie keine langreichweitige Ordnung

auftreten kann (Mermin-Wagner-Theorem), zeigen aktive Teilchen Phasen̈bergänge zu

langreichweitiger Ordnung. Bisher wurden vor allem aktiveTeilchen mit polaren, ,,ferro-

magnetischen Wechselwirkungen untersucht. Hier werden insbesondere aktive Teilchen

mit apolaren, ,,nematischen Wechselwirkungen studiert. Insbesondere wird in zweidi-

mensionalen Simulationen gezeigt, dass aktive getriebenestäbchenförmige Teilchen, die

nur aufgrund von Volumenausschluss wechselwirken, eine starke Tendenz zur Clusterbil-

dung zeigen. Dieses Phänomen tritt weder fr isotrope aktive Teilchen noch für diffusive

Stäbchen auf. Der̈Ubergang zur Clusterbildung wird hier mit Hilfe eines Mean-Field-

Modells für die Populationsdichte von Clustern verschiedener Größe analysiert. Am

Übergang ändert sich die Populationsdichte von einer monotonen zu einer bimodalen

Form. Clusterbildung für aktive Stäbchen tritt bei wesentlich geringeren Dichten als die

nematische Ordnung fr aktive Stäbchen. Analoge Clusterbildungsphänomene werden ex-

perimentell in der kollektiven Bewegung stäbchenförmiger Bakterien auf einem Substrat

beobachtet.

Volumenausschluss repräsentiert eine apolare Wechselwirkung. Im letzten Teil der

Arbeit wird ein vereinfachtes stochastisches Modell für aktive getriebene Teilchen mit

apolaren Wechselwirkungen abgeleitet, das auf Bewegungsregeln analog zum bekannten

Vicsek-Modell für aktive getriebene Teilchen mit polarerWechselwirkung basiert. In
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diesem Modell zeigen sich in Simulationen bei kleinen Teilchendichten und abnehmenden

Rauschstärke erneut die oben beschriebene Clusterbildung, während bei großen Dichten

mit abnehmender Rauschstärke zunächst einÜbergang zu nematischer Ordnung bei ho-

mogener Teilchendichte beobachtet wird, auf den eine Dichteinstabilität folgt. Schließlich

wird eine Molekularfeld-Theorie hergeleitet, die denÜbergang zur nematischer Ordnung,

der bei hoher Dichte gefunden wird, vorhersagt.
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Boston, 2007.

• F. Peruani, A. Deutsch, and M. Bär, to appear in European Physical Journal - Spe-

cial Topics (2007).



Acknowledgments

My gratitude goes first to Markus Bär and Andreas Deutsch forthe support and freedom

I have enjoyed during these years that allowed me to follow myinterests and points of

view. I also would like to thank them for their advice, particularly for introducing me to

the art of presenting results.

I also would like to extend my gratitude to Luis G. Morelli forall the infinite discus-

sions and coffees we had during these years that have contributed so much to this Thesis.

For his idealistic way of doing science, for the fun that is working with him, and for his

friendship.

To Niloy Ganguly for all these years of work and friendship. For his hospitality in

Kharagpur and for teaching me so many practical aspects of the scientific business. Also

for encouraging and promoting generous and fruitful collaborations with his students:

Bivas Mitra, Animesh Mukherjee, Abyayanda Maity, Subrata Nandi, Monojit Chaudhuri

and Sanjib Sadhu. My gratitude also goes to them. Specially to Bivas Mitra with whom I

have already spent near four month of intense work.

To Gustavo Sibona, Haralambos Hatzikirou and Sebastiano deFrancicis for all these

years of fun, coffees, work and friendship.

To Ernesto Nicola and Tobias Klauss for all the interesting discussions that have

helped me so much in the development of this Thesis. To Carsten Svaneborg for all

these years of priceless advise on computers and science.
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Chapter 1

Introduction

Self-propelled particles are ubiquitous in nature, and examples of them range from non-

animated matter like running droplets [1–4] to living system like crawling cells [5–9].

The self-propulsion of the particles makes all these systems essentially non-equilibrium

systems, and fascinating complex phenomena arise depending on the interactions. For in-

stance, the consumption of energy involved in the propulsion mechanisms and the amount

of stored energy allow these active particles to move without obeying the fluctuation-

dissipation theorem [10–14]. Since these particles typically carry their own energy and

do not require the environment to propel themselves, the statistical movement an ensem-

ble of them can perform is not restricted to classical equilibrium constrains like, e.g.,

the ones the fluctuation-dissipation theorem imposed. Imagine, for example, a crawling

cell migrating in a noise environment and compare its movement with a classical inani-

mated Brownian particle. The Brownian particle moves each time that gets buffeted by

the noise environment, changing simultaneously its direction of motion and modulus of

the speed. As it is well known, an ensemble of non-interacting Brownian particles is

then well described by an Ornstein-Uhlenbeck process [15].On the contrary, the crawl-

ing cell is subject to environmental fluctuations as well as fluctuations of its propelling

engine. Consequently, fluctuations in the direction of motion and speed can follow inde-

pendent stochastic processes. Moreover, an organism mightchange its moving direction

and speed according to some stochastic processes that optimize, e.g., a random search of

nutrients [16–18]. In addition, it has been clearly shown inexperiments that the actual

random movement exhibited by many microorganisms [5,7,9] and animals [19] does not

obey a classical Brownian motion. To interpret and understand such experiments it is nec-

essary to rely on a correct phenomenological description ofthe motion of the organism
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which should account for the observed statistical data [20]like fluctuations in the speed

and in the direction of motion. Chapter 2 is devoted to non-interacting self-propelled par-

ticles and addresses this issue. Particularly, it will be shown that when fluctuations in the

speed are uncorrelated with fluctuations in the direction ofmotion, there are additive cor-

rections to the classical Brownian motion theory for the mean position and mean square

displacement. It will be indicated that such kind of non-Brownian motion can explain

some recent observations in cell motility experiments.

Interacting self-propelled particles display fascinating phenomena. Their study has

applicability in a wide range of systems of different complexity: from autonomous robots

[21–23], traffic [24] and human crowds [25], to biological systems of all possible scales as

birds [26], bacteria [27,28], or even down to a molecular level as in the dynamics of actin

and tubulin filaments [29–32]. One of the most interesting aspects of interacting active

particles is that they can exhibit behaviors forbidden to equilibrium systems. Probably,

one of the most remarkable examples is the possibility of long-range orientational order

in two-dimensional systems with continuum symmetry. The Mermin-Wagner theorem

states that equilibrium systems with these characteristics cannot exhibit long-range order

[33]. However, self-propelled particles with continuum symmetry and moving in a two-

dimensional space, as shown for the first time by Vicseket al. in [34], can develop

long-range orientational order.

The model proposed in [34] consists of point-like particlesthat move with a velocity

vector of constant magnitude and interact by aligning theirvelocity direction to the local

average velocity. It has been proposed that this model mightdescribe the collective motion

of birds, fish or even swimming bacteria [35–39]. Though thiscelebrated model offers

a reasonable phenomenological description for many macroscopic patterns observed in

some organisms, it does not account for the actual ”microscopic” mechanism that leads

the individuals to exhibit such a local alignment. The same applies to other qualitative

approaches that focus on the macroscopic description of theobserved patterns [40–45].

A key question not addressed by these models refers the simplest physical mechanisms

that leads to collective motion in self-propelled particles. Collective motion is defined

in this context as a non-zero macroscopic orientational order parameter and is associ-

ated to the formation of groups inside which particles move in the same direction. We

know that long-range chemical signals can be used by self-propelled entities to sense the

environment and coordinate their motion as in bacteria likeE. coli or amoebae likeD. dis-

coideum [46]. But, is there a short-range physical mechanism that can produce a similar
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behavior? Myxobacteria, for instance, a gram-negative gliding bacteria, coordinate their

motion by a membrane-bound signal system, called C-signal,which requires physical

cell-to-cell contact to transfer information. Interestingly, during the early stages of their

life-cycle these bacteria exhibit a complex collective behavior even without exchanging

that signal [27,28,47]. This fact suggests that these cellsorganize their motion by simply

pushing each other. Are then self-propelled particles interacting by volume exclusion able

to form swarms? In Chapter 3 it will be shown that such simple physical interactions of

self-propelled rod-shaped objects lead to collective motion and clustering. Moreover, it

will be explained how the particle shape influences the emerging patterns. Remarkably,

there is a critical particle aspect ratio that triggers clustering. It will be also indicated that

those effects might play a major role in the collective motion of some gliding bacteria as

myxobacteria.

While volume exclusion may represent the most basic and simplest physical mech-

anism leading to collective motion in systems of self-propelled particles, the resulting

alignment mechanism is intrinsically different from that proposed by Vicseket al.. The

interaction of elongated self-propelled objects, as it will be shown in Chapter 3, can cause

particles to locally align parallel as well as antiparallelto each other, i.e., the alignment

mechanism is apolar. On the contrary, in Vicsek model as wellas in other self-propelled

particle models [35,37,39–44], the involved alignment mechanism is polar, i.e., it induces

particles to locally point in the same direction. It is worthto notice that apolar alignment

mechanisms have previously only been used with apolar particles. Apolar particles are

particles whose ”head” and ”tail” are indistinguishable. In contrast, the self-propelled par-

ticles are by definition polar, since in this case we can definea particle ”head” and ”tail”.

Interestingly, all known systems in two-dimensions, either equilibrium or non-equilibrium

systems, with apolar particles and apolar interaction lacklong-range order [33, 48–50].

On the other hand, polar particles with polar interaction, as mentioned above, can exhibit

long-range order. But, what happens in a system of polar particles with apolar interac-

tions such as myxobacteria? In Chapter 4 this question will be addressed. It will be shown

that such a system can exhibit long-range order, with a phasetransition whose character

changes from high to low particle density. Surprisingly, athigh density the system can

reach an ordered state that is neither pure nematic nor polar, but an interesting mixture of

both.

Since self-propelled particles can interact by either a polar or apolar alignment

mechanisms, the further understanding of self-propelled particle dynamics requires a
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common theoretical framework to describe both possible alignment mechanisms. In

Chapter 5 it will be shown that some basic differences of the ordered states under both

alignment mechanisms can be captured by a simple mean-field description. Moreover, it

will be explained why in self-propelled particles with polar interactions, the transition to

orientational order occurs at larger values of the noise intensity than for the analogous

system with apolar interactions.

The physics of interacting and non-interacting self-propelled particles in two-

dimensions is a complex and fascinating topic whose study might help to understand

fundamental open questions in non-equilibrium statistical physics, ecology and develop-

mental biology. We hope through this Thesis to shed some light on some of the questions

and aspects of this novel field.

Outline of the thesis:

Chapter 2

General aspects of two-dimensional self-propelled particle motion, with fluctuations

in the speed and direction of motion are studied. It is considered the case in which

fluctuations in the speed are not correlated to fluctuations in the direction of motion.

Expressions for the mean square displacement and diffusioncoefficient are derived.

Chapter 3

A simple model for self-propelled rods interacting by volume exclusion is presented

and analyzed. It is shown that this simple physical system can exhibit collective motion.

It is also shown that these self-propelled rod-shaped particles, interacting only through

short-range repulsive interactions, exhibit a non-equilibrium transition to clustering for

sufficient large values of the density and particle aspect ratio. Clustering effects affect

speed distribution, particle rotation, and local and global ordering of the particles. The

transition to clustering is reproduced by a mean-field description of the cluster size

distribution. Far below the transition, the clustering dynamics is explained in term of a

maximum entropy principle.
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Chapter 4

A model for self-propelled particles interacting through an apolar alignment mecha-

nism is introduced and analyzed. It is shown that these particles exhibit for low enough

orientational noise a kinetic phase transition to orientational order. Interestingly, the

character of the transition is shown to be strongly dependent on particle density, being

continuous at high density and discontinuous at low density. Clustering is proven to be

essential to achieved long-range orientational order at low density.

Chapter 5

A common theoretical framework to describe the macroscopicdynamics of self-

propelled particles under polar and apolar alignment mechanism is derived. It is shown

that at high density the orientation dynamics is captured bya simple mean-field approach

which predicts a smaller critical noise amplitude for apolar than for polar interactions.

Chapter 6

A summary of the results obtained throughout the thesis is presented.
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Chapter 2

Individual motion:

fluctuations in the speed and in the

direction of motion

Introduction

The study of cell movement on surfaces can shed light on the processes that underlie cell

motility [51]. In vitro experiments that characterize cell movement include woundclosure

assays and individual cell tracking to determine cell trajectories [5–8]. To interpret and

understand such experiments it is necessary to rely on a phenomenological description

of the motion, providing expressions that allow to fit the experimental observations and

compute motility indexes [7,20].

Persistent motion subject to fluctuations has been described by a class of stochastic

processes known as persistent random walk [12, 15, 52–54]. In such processes the direc-

tion of motion fluctuates, but on short time scales a persistence to move without turning

is observed, Fig. 2.1 (a). Formally, the velocity autocorrelation function〈v(t) · v(0)〉 ex-

hibits a finite decay time, giving rise to a ballistic regime〈x2(t)〉 ∼ t2 for short times and

a crossover to a diffusive regime〈x2(t)〉 ∼ t for long times [15,53,54].

A related problem is that of the directed motion of self-propelled particles driven by

an external field. Single cells can be directed by external signals in the form of concen-

tration gradients, as in the case of fibroblasts [55] or the amoebaeD. discoideum [56] (see

Fig. 2.1 (b)). Directed motion with fluctuations can be described by another broad class
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Figure 2.1: Schematic representation of (a) persistent and(b) directed random walks.

of stochastic processes known as the directed random walks [12, 53], which displays a

diffusive regime for short times followed by a ballistic regime for long times [55,57].

Fluctuations in the speed and direction of motion were considered to occur simulta-

neously, or fluctuations of the speed were simply neglected [12, 15, 17, 52–54, 58, 59].

However, recent cell motility experiments suggest that some cells migrate exhibiting fluc-

tuations in the speed and the direction of motion which apparently are uncorrelated [7].

Motivated by these experiments, this chapter is devoted to the study of two-dimensional

self-propelled particles with uncorrelated fluctuations of the speed and the direction of

motion. It is assumed that both processes can be described byindependent characteristic

time-scales. Two different angular dynamics are investigated which correspond to persis-

tent and directed random walks. For these two problems exactexpressions for the mean

squared displacement, the asymptotic diffusion coefficient, and the velocity autocorrela-

tion are derived. The expressions are valid for arbitrary speed and angular stationary dis-

tributions. It is shown that both persistent and directed random motion exhibit a complex

transient with a number of alternating regimes of motion. The effects of speed fluctuations

introduce an additive correction to the diffusion coefficient, while the velocity autocorre-

lation becomes a sum of exponential forms. For the particular case of non-fluctuating

speed, the classical persistent and directed Brownian motion are retrieved.

2.1 General framework

In this section we first derive a general framework to calculate the average position〈x〉 and

mean squared displacement〈x2〉 for a system of stochastic self-propelled particles that

move in two dimensions. At the end of the section we specialize the general expressions

to the case in which fluctuation in the speed and in the direction of motion are independent.

We start by considering that, for a given particle, its velocity v(t) at timet is repre-

sented by an angleθ(t), and a modulus —the speed—v(t). The dynamics of the velocity
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v(t) is given by a stochastic process which for the moment is not specified. d(θ, t) is

defined as the total distance covered by the particle moving along the directionθ, since

the beginning of the trajectory att = 0. Knowing this quantity we can easily express the

position of the particle at timet by:

x(t) =

∫ π

−π

d(θ, t)ř(θ)dθ , (2.1.1)

and its squared displacement by:

x2(t) =

∫∫ π

−π

dθ′dθ′′d(θ′, t)d(θ′′, t)ř(θ′) · ř(θ′′) , (2.1.2)

whereř(θ) = cos(θ)x̌+sin(θ)y̌ is the unit vector along the directionθ. We are interested

in 〈x(t)〉 and〈x2(t)〉. This implies that〈d(θ, t)〉 and〈d(θ′, t)d(θ′′, t)〉 have to be calcu-

lated. Notice that given a particular trajectory characterized byθ̃(t) andṽ(t), the distance

d(θ, t) can be expressed as

d(θ, t) =

∫ t

0

dt′
∫ ∞

0

dv v δ(v − ṽ(t′))δ(θ − θ̃(t′)) . (2.1.3)

Thus, the ensemble average of this distance is

〈d(θ, t)〉 =

∫ t

0

dt′
∫ ∞

0

dv v p(θ, v, t′) , (2.1.4)

where we have introduced the probability density to find the particle moving in the di-

rectionθ with speedv at timet, which by definition isp(θ, v, t) = 〈δ(v − ṽ(t))δ(θ −
θ̃(t))〉 [60]. 〈. . .〉 denotes ensemble averages. On the other hand,d(θ′, t)d(θ′′, t) takes the

form:

d(θ′, t)d(θ′′, t) =

∫ t

0

dt′
∫ t

0

dt′′ (2.1.5)
∫ ∞

0

dv′
∫ ∞

0

dv′′v′v′′ δ(v − ṽ(t′))δ(v − ṽ(t′′))δ(θ − θ̃(t′))δ(θ − θ̃(t′′)) .

The ensemble average of these delta distributions is by definition: p(θ′, v′, t′; θ′′, v′′, t′′) =

〈δ(v− ṽ(t′))δ(v− ṽ(t′′))δ(θ− θ̃(t′))δ(θ− θ̃(t′′))〉. Then, the correlations〈d(θ′, t)d(θ′′, t)〉
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between these distances can be written in terms of the joint probability distribution as

follows:

〈d(θ′, t)d(θ′′, t)〉 =

∫ t

0

dt′
∫ t

0

dt′′ (2.1.6)
∫ ∞

0

dv′
∫ ∞

0

dv′′v′v′′ p(θ′, v′, t′; θ′′, v′′, t′′) .

Using Eq. (2.1.4) the mean value of the position is expressedas:

〈x(t)〉 =

∫ π

−π

〈d(θ, t)〉ř(θ)dθ , (2.1.7)

while through Eq. (2.1.6) the mean square displacement takes the form:

〈x2(t)〉 =

∫∫ π

−π

dθ′dθ′′〈d(θ′, t)d(θ′′, t)〉ř(θ′) · ř(θ′′). (2.1.8)

Eqs. (2.1.4) to (2.1.8) provide a general way to calculate the mean value of the po-

sition and the mean square displacement, which so far does not involve any assump-

tions. In the following, we consider the special case in which the fluctuations in the

speedv are not correlated with the fluctuations in the directionθ. As a consequence,

p(θ, v, t) = p(θ, t)p(v, t) andp(θ′, v′, t′; θ′′, v′′, t′′) = p(θ′, t′; θ′′, t′′)p(v′, t′; v′′, t′′). This

can be the case if, for example, fluctuations in the speed are due to a noise associated to

the propelling engine of the particles, while fluctuations in the direction of motion reflect

the interaction with a noise environment. Beyond these theoretical considerations, there

are biological examples in which the time scales associatedto the speed and direction

of motion fluctuations differ considerably. This strongly suggests that in such kind of

experiments the assumption of the independence of both fluctuations is reasonable [7].

At this point we restrict the problem to a situation in which the velocity fluctuations are

in the stationary state, with an arbitrary speed distribution p(v, t) = ρ(v) and the joint

probability given by

p(v′, t′; v′′, t′′) = ρ(v′)δ(v′ − v′′)e−β|t
′−t′′| (2.1.9)

+ ρ(v′)ρ(v′′)
(
1 − e−β|t

′−t′′|
)
.

This expression for the joint probability distributionp(v′, t′; v′′, t′′) implies that the speed

correlations decay exponentially, as

〈v(t)v(0)〉 − 〈v〉2 = (〈v2〉 − 〈v〉2)e−βt. (2.1.10)
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Here〈v〉 and〈v2〉 are the first and second moments of the stationary speed probability

distributionρ(v). In other words, through Eq. (2.1.9) it is assumed that the speed cannot

instantaneously change, i.e., there is a characteristic timeβ−1 during which particles ”re-

member” their speed. After that characteristic time particles ”forget” about their initial

speed (at timet′′), and so, the speed of a particle at timest′ andt′′ far apart are indepen-

dent. This is reflected by the speed correlations in Eq. (2.1.10). One example of a stochas-

tic process leading to such kind of correlation is given byv(t) = η̃(t), where the value of

the noisẽη(t) is taken from a distributionρ at times given by a Poisson process of rateβ,

and kept constant in between. This can be expressed as∂tp(v, t) = −βp(v, t) + βρ(v).

Under these assumptions Eqs. (2.1.4) and (2.1.6) can now be simplified performing

the integrals on the speed

〈d(θ, t)〉 = 〈v〉
∫ t

0

dt′p(θ, t′) (2.1.11)

〈d(θ′, t)d(θ′′, t)〉 = 〈v〉2
∫∫ t

0

dt′dt′′p(θ′, t′; θ′′, t′′) (2.1.12)

+(〈v2〉 − 〈v〉2)
∫∫ t

0

dt′dt′′p(θ′, t′; θ′′, t′′)e−β|t
′−t′′|

Notably Eq. (2.1.11) does not differ from the correspondingexpression for constant speed,

so the mean total distance is not affected by speed fluctuations. Introducing the time spent

by a particle moving along directionθ as〈T (θ, t)〉 =
∫ t
0
dt′p(θ, t′), 〈d(θ, t)〉 is expressed

as〈d(θ, t)〉 = 〈v〉 〈T (θ, t)〉. On the other hand, speed fluctuations do affect the distance

correlations, Eq. (2.1.12), as an additive correction proportional to the speed variance

σ2 = 〈v2〉 − 〈v〉2.
We are now left with the one-dimensional problem of angular fluctuations on the ring,

i.e., the direction of motion. In the next two chapters we will consider two situations

which differ only in the dynamics of the direction of motion.

2.2 Persistent random walk

As a first application, we consider the case of a persistent random walk, see Fig. 2.1 (a).

We study a problem in which the angular probability distribution function obeys the
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diffusion equation characterized by the diffusion constant κ. A simple example of a

stochastic process leading to such equation is a dynamics for direction of motion given

by θ̇(t) = η(t), whereη(t) is a white noise. Another example is an angular dynamics

described by discrete turning events. If the rate of angularjumps are characterized by

α, and the length of the jumpsφ obey a symmetric distributionρ(φ), then the diffusion

coefficient can be expressed asκ = 〈Γ〉α, whereΓ =
∫
φ2ρ(φ)dφ.

Since initially the ensemble of particles is concentrated at x(t = 0) = 0 and starts to

move in all possible direction, thenp(θ, t) = 1/2π. Notice that the dynamics of the direc-

tion of motion of each individual particle starts with a particular direction, and smoothly

explores other directions, which implies that we have to wait some characteristic time

before finding the particle pointing with equal probabilityin any direction. This fact is

reflected byp(θ′, t′|θ′′, t′′) which obeys the diffusion equation:

∂t′p(θ
′, t′|θ′′, t′′) = κ∂θ′θ′p(θ

′, t′|θ′′, t′′)

with the initial conditionp(θ′, t′|θ′′, t′′) = δ(t′ − t′′)δ(θ′ − θ′′). To guarantee the

conservation of the probability inside the ring the following periodic boundary conditions

are imposed:p(π, t′|θ′′, t′′) = p(−π, t′|θ′′, t′′) and∂θ′p(π, t′|θ′′, t′′) = ∂θ′p(−π, t′|θ′′, t′′).
Taking all this into account we obtain the solution for the conditional probability:

p(θ′, t′|θ′′, t′′) =
1

2π
+

1

π

∞∑

m=1

cos(m(θ′ − θ′′)) e−(m2κ|t′−t′′|) (2.2.1)

From this expression we learn that the particles loose the information about the direc-

tion of motion in a characteristic time. In particular, as|t′ − t′′| → ∞ the information

about the direction of motion at timet′′ is completely absent, and each particle points with

equal probability in any direction. The slowest modem = 1 sets a characteristic time-

scaleκ−1 that separates two distinct regimes. Fort≪ κ−1 the conditional probability has

a maximum, because the particles still ”remember” their direction of motion at timet′′.

For t≫ κ−1 the slowest mode decays and there is no information about theorientation at

time t′′ .

Recalling thatp(θ, t′; θ′, t′′) = p(θ, t′|θ′, t′′)p(θ′, t′′), and then using Eq. (2.2.1) to cal-

culate Eqs. (2.1.11) and (2.1.12), and finally inserting these expressions into Eqs. (2.1.7)

and (2.1.8) it is obtained that〈x(t)〉 = 0 and
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Figure 2.2: Scaled mean squared position as a function of scaled time for persistent random walks.

The lines correspond to Eq. (2.2.2) for rescaled variables.The thin solid red line corresponds to

µ = 0, andµ = 100 for the other curves, withγ = 10−3 (dashed green line),γ = 103 (dotted

blue line) andγ = 106 (thick solid black line).

〈x2(t)〉 = 2
〈v〉2
κ2

(
κt− 1 + e−κt

)
(2.2.2)

+ 2
〈v2〉 − 〈v〉2
(κ+ β)2

(
(κ+ β)t− 1 + e−(κ+β)t

)

In the absence of speed fluctuations, the speed varianceσ2 = 〈v2〉−〈v〉2 vanishes and

Eq. (2.2.2) reduces to the well known result of ”Brownian” particles moving at constant

speed [53,54], which exhibits a single crossover att ∼ κ−1, see red curve in Fig. 2.2.

When fluctuations become relevant, depending on the relative values ofκ andβ and the

value of the speed varianceσ2, a number of crossovers can unfold separating up to four

alternating regimes of motion, see black curve in Fig. 2.2.

In order to unveil the different regimes that Eq. (2.2.2) permits, we introduce non-

dimensional variablesξ = xκ/〈v〉 andτ = κt, and parametersµ2 = σ2/〈v〉2 andγ =

β/κ. For γ ≪ 1 there is a single crossover atτ ∼ 1, see green curve in Fig. 2.2. For
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any other values ofγ, solutions lie between the green and red curves. Forτ ≪ (1 + γ)−1

it is observed that〈ξ2〉 ≃ (1 + µ2)τ 2. This ballistic regime at short time-scales is a

consequence of the exponential decay in the correlations ofthe speed. A first crossover

occurs atτ1 ∼ (1 + γ)−1. For larger times, it may happen that the separation of time-

scales is such that(1 + γ)−1 ≪ τ ≪ 1. In this case〈ξ2〉 ≃ τ 2 + 2µ2τ/(1 + γ). If

µ2 is sufficiently large, a second crossover might be observable at τ2 ∼ 2µ2/(1 + γ)

separating a transient diffusive regime from a second ballistic regime. Finally, forτ ≫ 1

the asymptotic diffusive regime emerges with〈ξ2〉 ≃ 2(1 + µ2/(1 + γ))τ , after the third

crossover atτ3 ∼ 1. Such asymptotic regime can be described in terms of an effective

diffusion coefficient, defined as

D = lim
t→∞

(〈x2(t)〉 − 〈x(t)〉2)/2t . (2.2.3)

From Eq. (2.2.2), we obtain:

D = 〈v〉2κ−1 +
(
〈v2〉 − 〈v〉2

)
(κ + β)−1 . (2.2.4)

Speed fluctuations introduce an additive correction to the well known diffusion coefficient

for constant speed [54].

We stress that it can be observed up to four consecutive regimes of motion sepa-

rated by three crossovers, while in the absence of speed fluctuations only one crossover is

found [53, 54]. To obtain an heuristic understanding of thisresult, notice that the second

term in Eq. (2.2.2) is proportional to the speed varianceσ2 and exhibits the first crossover

from a ballistic to a diffusive regime att ∼ (κ + β)−1. The first term is proportional to

the squared mean value of the speed and exhibits a crossover from a ballistic to a diffusive

regime at a later timet ∼ κ−1. If the separation of time-scales allows it another crossover

could be observed between these two, when the diffusive regime of the second term turns

into the ballistic regime of the first as in the black curve in Fig. 2.2. Note that for this to

happen the speed variance must be sufficiently large.

The effects of the speed fluctuations are also exposed in the velocity autocorrelation

function which takes the form:

〈v(t) · v(0)〉 = 〈v〉2 e−κt + (〈v2〉 − 〈v〉2) e−(β+κ)t . (2.2.5)
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The velocity autocorrelation function of the classical Brownian motion has a single

exponential form, while now, due to the speed fluctuations, it becomes a sum of two

exponentials.

Notice that in Fig. 2.2 it is used a large speed variance and〈x2(t)〉 is plotted over

a huge range to illustrate all the features of Eq. (2.2.2). Inthe concluding remarks sec-

tion it is discussed the effects of the experimental constraints in the observation of the

phenomena described here.

2.3 Directed persistent random walk

As a second example we consider the directed random walk, in which the particles have

some preferred direction of motion. This could be the case for particles moving in a

symmetry-breaking field or subject to an external force. An example of such kind of

stochastic process isθ(t) = η(t), where the value of the noiseη(t) is taken from a distri-

butionρ at times given by a Poisson process of rateα, and kept constant in between. This

can be expressed as∂tp(θ, t) = −αp(θ, t) + αρ(θ). This implies that angular fluctuations

are also in the stationary state,p(θ, t) = ρ(θ). We describe the presence of an exter-

nal field by assuming that
∫ π/2
−π/2

ρ(θ)dθ > 1/2, together with the symmetry requirement

ρ(−θ) = ρ(θ), setting a preferred direction of motion alongθ = 0. The Poissonian nature

of the angular fluctuations imply that the time correlationsdecay exponentially with a

characteristic timeα−1

p(θ′, t′; θ′′, t′′) = ρ(θ′)δ(θ′ − θ′′)e−α|t
′−t′′| (2.3.1)

+ ρ(θ′)ρ(θ′′)
(
1 − e−α|t

′−t′′|
)
.

Using this expressions for the angular probability distributions together with Eqs. (2.1.11)

and (2.1.12) in the expressions (2.1.7) and (2.1.8) we arrive at the following expressions

for the mean value of the position

〈x(t)〉 =
√
c〈v〉t x̌ (2.3.2)

and the mean square displacement

〈x2(t)〉 = 〈v〉2
[
ct2 + 2(1 − c)ϕα(t)

]
(2.3.3)

+ 2
(
〈v2〉 − 〈v〉2

)
[(1 − c)ϕα+β(t) + cϕβ(t)]
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Figure 2.3: Scaled mean squared position as a function of scaled time for directed random walks.

The lines correspond to Eq. (2.3.3) for the rescaled variables, withc = 10−4. The thin solid red

line corresponds toµ = 0. The other curves correspond toµ = 100, with γ = 10−3 (dashed green

line), γ = 103 (dotted blue line) andγ = 106 (thick solid black line).

wherec = 〈cos θ〉2 andϕα(t) = α−2 [αt− (1 − e−αt)].

The mean value of the position grows linearly with time, as occurs when the speed is

constant [53]. The angular distribution affects the constant c = 〈cos θ〉2. This constant

can vanish in the extreme situation where the angular distributionρ(θ) is uniform in the

interval[−π, π]. Such situation corresponds to a persistent random walk in its asymptotic

regime, after the non-constant modes of the angular distribution have settled down. The

mean square displacement on the other hand can portray a range of complex behaviors

for transient times.

We introduce the non-dimensional variableξ = xα/〈v〉 and a non-dimensional pa-

rameterδ = β/α. In the absence of speed fluctuations, the second line in Eq. (2.3.3)

vanishes. In such case, a ballistic regime is observed at short timesτ ≪ 1. For 1 ≪ τ

the non-dimensional mean square displacement follows〈ξ2〉 ≃ cτ 2 + 2(1 − c)τ . Thus, a

second crossover might be observable ifc < 2/3, separating a transient diffusive regime

from the asymptotic ballistic regime dominant for very large times.

When speed fluctuations are present, the additional time-scale β which describes
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speed correlations can give rise up to four crossovers, if the adequate conditions hold,

depending on the value ofµ andδ = β/α.

As an illustration, it considered hereδ ≪ 1, corresponding to a case where speed

fluctuations occur much slower than angular fluctuations. For short timesτ ≪ 1 ≪ δ−1

there is a ballistic regime〈ξ2〉 ≃ (1 + µ2)τ 2. τ1 ∼ 1 marks the crossover to a second

regime, visible for1 ≪ τ ≪ δ−1, and characterized by〈ξ2〉 ≃ c(1 + µ2)τ 2 + 2(1 −
c)(1 + µ2)τ . Here, a second crossover could appear atτ2 ∼ 2(c−1 − 1) between the

diffusive regime and a second ballistic regime. Note thatc should be such that1 ≪ τ2.

Finally, for1 ≪ δ−1 ≪ τ , the non-dimensional mean square displacement follows〈ξ2〉 ≃
cτ 2 + 2[(1 − c)(1 + µ2) + µ2cδ−1]τ . This describes a second transient diffusive regime,

and the asymptotic ballistic regime observed for very largetimes, with a crossover at

τ4 ∼ 2c−1[(1 − c)(1 + µ2) + µ2cδ−1].

As observed for the persistent random walk, speed fluctuations in the directed random

walk also introduce a new time scale, which together with theangular fluctuation time

scale can lead up to five different regimes of motion, and fourcrossovers separating the

ballistic and diffusive regimes. In the absent of speed fluctuations the behavior of the

mean square displacement reduces to two regimes with a single crossover [57].

Also in this example the effective diffusion coefficientD can be derived. Applying

the definition given by Eq. (2.2.3), the following expression is obtained:

D = (1 − c)〈v〉2α−1 + (〈v2〉 − 〈v〉2)[(1 − c)(α + β)−1 + cβ−1] . (2.3.4)

The presence of an external field decouples the time-scale ofspeed fluctuations and

the velocity autocorrelation results in a sum of three exponentials:

〈v(t) · v(0)〉 = 〈v〉2[c + (1 − c)e−αt] (2.3.5)

+ c(〈v2〉 − 〈v〉2)e−βt + (1 − c)(〈v2〉 − 〈v〉2)e−(α+β)t .

2.4 Concluding remarks

We have studied self-propelled particle motion in two dimensions in the presence of fluc-

tuations. Assuming that both the direction of motion and thespeed fluctuate with inde-

pendent characteristic times, we have considered persistent and directed random walks.
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In both cases, the interplay of speed and angular fluctuations gives rise to a sequence of

ballistic and diffusive regimes, revealing a complex transient not observed when speed

fluctuations are absent. We have obtained analytical expressions for the mean value of the

position and for the mean squared displacement, and calculated the crossover times and

the effective diffusion coefficient describing the asymptotic regimes.

The occurrence of such a complex transient in the mean squared displacement can

wreck the interpretation of experimental observations, due to the constrains imposed by

resolution and finite size limitations. Particle size sets the smallest accessible length-

scale, while the field of the experimental setup sets the largest. Similarly, the frequency

of observations sets the smallest observable time-scale, and the duration of the measure-

ment sets the largest time-scale. If the window of observation is limited to a part of the

complex transient, anomalous diffusion could be wrongly interpreted. Superdiffusion has

been repeatedly reported from experimental data [9, 19]. However, distinguishing true

superdiffusion from a persistent or directed random walk isa subtle task [61].

The results derived in this section suggest that in some cases the observed anoma-

lous behavior could be related to one or more of the reported crossovers. That is why

it becomes essential to consider speed fluctuations when interpreting experimental data.

Neglecting speed fluctuations could result in a misleading estimation of the time-scales

of the problem and a wrong understanding of the system.

In Fig. 2.4 (a) displaysD(τ) = (〈ξ2(τ)〉 − 〈ξ(τ)〉2)/2τ for a persistent random walk,

using time and space ranges which are reasonable for currentexperimental setups [5, 7].

Furthermore, we chooseµ = 1.31 according to data reported in [7], and values ofγ

within experimental ranges. The solid red line is the resultwithout speed fluctuations.

Dots correspond to numerical simulations performed withµ = 1.31 andγ = 10. In the

simulations speeds are chosen at a rateβ = 4.0 h−1 from a speed distributionρ(v) ∼ v−3/2

for v ∈ [1, vc] and zero otherwise, withvc such thatµ = 1.31. Angles are chosen at a

rate9.6 h−1 from a uniform distribution of width1 rad centered around the direction of

motion, and so yieldingκ = 0.4 h−1. Error bars are the standard deviation from the mean

value obtained for 100 realizations with 100 particles each. This means that a particu-

lar 100 particles experiment should fall within the range ofsuch error bars. Fig. 2.4 (a)

suggests that for a system that exhibits realistic speed fluctuations as reported in [7], the

diffusion coefficient shows a slight, but still observable,deviation from the coefficient

of a classical (constant speed) persistent random walk. Fig. 2.4 (b) shows that realistic

fluctuations in the speed can produce in the velocity autocorrelation a remarkable devi-
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Figure 2.4: (a) Re-scaled mean squared displacement and (b)velocity autocorrelation as a function

of scaled time for persistent random walks. The lines in (b) correspond to Eq. (2.2.5) for rescaled

variables. In both panels, the solid red line corresponds toµ = 0. For the other curvesµ = 1.31,

with γ = 10−1 (dashed green line) andγ = 10 (dotted blue line). Dots correspond to numerical

simulations as described in the text.

ation from the Brownian motion. The velocity autocorrelation function of a Brownian

particle is a single exponential. Due to the speed fluctuations the velocity autocorrelation

becomes the sum of two exponentials. Such autocorrelationshave been observed in cell

motility experiments, but the microscopic origin of the fast time-scale has not been estab-

lished [7]. Fast intracellular processes could give rise tosuch fluctuations in speed with

small characteristic time-scales [62,63].

To conclude, the simulations suggest that fluctuations in speed as the ones observed

in experiments might be enough to cause visible deviations from the classical result [15].
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Chapter 3

Collective motion driven by particle

shape

Introduction

The study of the collective behavior of self-propelled particles has applications in a wide

range of systems. We observe patterns of interacting self-driven entities in autonomous

robots [21–23], traffic [24] and human crowds [25]. At the biological level, patterns of

self-propelled particles are manifested in all possible scales, from herds, bird flocks, and

fish schools [26] to bacterial swarms [27, 28], and even down to a molecular level in

the dynamics of actin and tubulin filaments [29–32]. A recurrent question is how these

entities coordinate their behavior to form groups which move collectively. At a theoretical

level, several qualitative approaches have been made to incorporate the diverse collective

behaviors of such different systems in a common framework [34, 40–45]. While these

models may satisfactorily explain the phenomenology of some of the observed patterns,

due to their generality they usually fail to reveal the actual mechanism used by the entities

to coordinate their movement.

Models for bacteria likeE. coli as well as for amoebae likeD. discoideum [46], have

been based on chemotaxis, a long-range cell interaction mechanism according to which

individual cells move in response to chemical signals produced by all other cells. How-

ever, in some bacteria there is no evidence for chemotactic cues and cells coordinate their

movement by cell-to-cell signaling mechanisms in which physical contact between bac-

teria is needed [27,28,47,64,65]. How these bacteria sensetheir environment, and which
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information they transmit constitute intriguing questions. Clearly, aggregation of these

bacteria requires an alternative mechanism of gathering tothe long-range chemotactic

signaling.

The absence of diffusive chemical signals poses interesting questions. Can non-

diffusive short-range physical interactions transmit thenecessary information to cause

aggregation? More specifically, can the self-propulsion and anisotropic shape of bacteria

be enough to produce clustering? How important is the shape of bacteria for their collec-

tive motion? And finally, why are gliding bacteria rod-shaped objects? In this Chapter it is

shown that self-propelled, sufficiently elongated particles in a simple model form clusters

and therefore do not require such long-range communicationfor aggregation. Instead,

aggregation depends crucially on the particular shape of the moving objects.

For swimming bacteria it has been proven that the cell shape is essential for individual

motion [66–69]. In contrast, the role of cell shape in the collective behavior has remained

unexplored. It has been shown experimentally [70] that migrating elongated cells exhibit

alignment similar to liquid crystals [71, 72]. A prominent example for collective behav-

ior with no apparent long range interactions are the striking patterns observed during the

life-cycle of gliding myxobacteria, see e.g. [27,28,47]. Earlier modeling work has repro-

duced many of these patterns in three dimensions assuming either perfect alignment [73]

or a phenomenological alignment force [64, 65]. These models have all considered pat-

terns resulting from exchange of chemical signals, that areabsent in an early stage of the

myxobacterial life cycle. Nevertheless, a trend from initial independent motion towards

formation of larger clusters of aligned bacteria is often observed (see Fig. 3.1). More-

over, aligned motion of self-propelled rods (=polar particles) with apolar interactions is

an important example for an ”active nematic” phase, that hasdifferent properties from the

nematic phase observed in two-dimensional driven systems [31, 48]. For instance, while

the interaction of self-propelled elongated rods by volumeexclusion can result in either

parallel or antiparallel local alignment of the particles,as illustrated in Fig. 3.2, these

active particles can form coherently moving polar clustersas shown in Fig. 3.3.

In this chapter we introduce a model for self-propelled rodsmoving in a two-

dimensional space in which interactions are based explicitly on particle shape (see Fig.

3.3). Hydrodynamics interactions are neglected. The latter assumption is justified for

densely packed objects in very viscous media like bacterialfilms. The moving rods have

exclusively repulsive excluded volume interactions. We find that elongated particles form

groups inside which particles are aligned and moving in the same direction (see Fig. 3.3).
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Figure 3.1: Example for clustering of myxobacteria (M. xanthus) in the early stage of the life

cycle. (a) Immediately after maturation of spores. (b) Afterwards, during the vegetative phase.

Snapshots are taken from a movie (Ref. [74], see also [75]), the frame size is 40 x 30µm2.

Similar phenomena were seen in other bacterial species .

We show multiple evidence for this process. At the level of the speed distribution, we

notice that for large values of the particle aspect ratioκ, the distribution becomes sharp

and centered around the active speed. This is due to the confinement of particles inside

densely packed clusters in which fluctuations are highly restricted. Interestingly, in ab-

sence of fluctuations collisions among pure active particles induce a speed distribution

which resemble a Maxwell-Boltzmann distribution. We also show that the average square

angular velocity, a direct measure of particle rotation, isa non-monotonic function of the

κ which exhibits a maximum at an intermediate value ofκ. Through the study of the two-

body correlation function, we find that particles are locally arranged in a side-by-side and

head-to-tail manner. We learn, by analyzing a kind of spin-spin correlation function, that

polar local ordering is facilitated byκ. The numerical evidence indicates that elongated

particles succeed in forming swarms, while isotropic particles fail in producing local po-

lar ordering. Through the study of the ferromagnetic and liquid crystal order parameter

we show thatκ also induces global orientation ordering.

In addition, we find that the interplay of rod geometry, self-propulsion, and repulsive

short-range interaction is sufficient to facilitate aggregation into clustering. In simula-

tions of an individual based model, clustering of self propelled particles is observed for

large enough packing fractionη or aspect ratioκ of the rods (see Figs. 3.3 and 3.5). We

define the onset of clustering by the transition from a unimodal to a bimodal cluster size

distribution. A mean-field approximation for the cluster size distribution is derived and

reproduces the change from a unimodal to a bimodal shape uponincrease of eitherη or

κ. The mean-field yields a simple equationκc = C/η − 1 for the critical rod aspect ratio,

κc, at the onset of clustering in line with the individual-based simulation results. We also

show that the transition is reflected in the crossover of the probability of the maximum
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Figure 3.2: The scheme illustrates the possible alignmentsresulting from a binary collision of

self-propelled (polar) particles. Note the alignment can be parallel (I) as well as antiparallel (II).

cluster size,MT , between a power-law and a logarithmic tail. As a consequence, κc is

located at the maximum growth rate ofMT with κ. Alternatively, the transition to cluster-

ing can be defined as the point at which cluster entropyHC takes its maximum value. We

show that far below the transition, the clustering properties of the system obey the maxi-

mum entropy principle applied toHC , which allow us to describe the system in terms of

the total number of clusters. If diffusion is added to the active motion (active-Brownian

rods), the clustering transition is shifted to higher values ofκ, whereas clustering is absent

for pure diffusive motion (Brownian rods) as well as for isotropic particles withκ = 1.

Hence, clustering of particles with excluded volume interaction requires both active mo-

tion, i. e. a non-equilibrium system, and elongated particles (= rods).

3.1 The individual based model

We consider rod-shaped particles moving on a plane. Each particle is equipped with a

self-propelling force acting along the long axis of the particle. We assume that particles

are submerged in a viscous medium. The rod shape of the particles requires three different

friction coefficients [72, 76, 77] that correspond to the resistance exerted by the medium

when particles either rotate or move along their along and short axis. We consider an over-

damped motion of the particles, i.e., inertial terms are neglected. Velocity and angular

velocity are proportional to the force and torque, respectively, and the state of a particle is

given exclusively by the position of its center of mass, and the orientation of its long axis.

Consequently the movement of theith rod is governed by the following equations for the

velocity of its center of mass and angular velocity:

(v
(i)
‖ , v

(i)
⊥ ) =

(
1

ζ‖
(F − ∂U (i)

∂x‖
),− 1

ζ⊥

∂U (i)

∂x⊥

)
(3.1.1)

θ̇(i) = − 1

ζθ

∂U (i)

∂θ
(3.1.2)
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(a) (b)

(c) (d)

Figure 3.3: Example of the time evolution the individual-based simulations - Snapshots of sim-

ulations with periodic boundary condition for various times at high and low density. (a) and (b)

correspond to simulations performed withN = 200 active particles of aspect ratioκ = 5 at a

packing fractionη = 0.40 (high density). The initial condition of the simulation is shown in (a),

while (b) depicts the system at a later timet = 1000. Snapshots shown in (c) and (d) correspond

to a simulation performed withN = 100 active particles ofκ = 12 at η = 0.034 (low density).

(c) shows the initial state of the system, while (d) refers tot = 1200. Arrows indicate directions

of motion. Note in (b) the formation of a sporadic vortex-like structure. Typical polar-oriented

moving clusters in their characteristic arrow formation are shown in (d).
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wherev(i)
‖ , v

(i)
⊥ refer to the velocities along the long axis and short axis of the particle,

respectively,ζi indicates the corresponding friction coefficients (ζθ is related to the friction

torque),U (i) refers to the energy of the interaction of theith rod with all other nodes, and

F is the magnitude of the self-propelling force. Notice that Eq. (3.1.1) is formulated in

a coordinate system that is oriented along the long axis of the particle. This implies that

Eqs. (3.1.1) and (3.1.2) are coupled. The motion of the center of massẋ(i) = (v
(i)
x , v

(i)
y )

of theith rod is given by

v(i)
x = v

(i)
‖ cos θ(i) + v

(i)
⊥ sin θ(i)

v(i)
y = v

(i)
‖ sin θ(i) − v

(i)
⊥ cos θ(i) (3.1.3)

Notice that the velocity direction and the orientation of the particle are not necessarily

parallel to each other.

3.1.1 Interaction potential

Particles interact by ”soft” volume exclusion, i.e., by a potential that penalize particle

overlapping. The potential is defined as follows:

U (i)(x(i), θ(i),x(j), θ(j)) = φ
N∑

j=1,j 6=i

(
(γ − ao(x

(i), θ(i),x(j), θ(j)))−β − γ−β
)

(3.1.4)

whereao(x(i), θ(i),x(j), θ(j)) is the overlap area1 of the rodsi andj, γ is a parameter which

can be associated to the maximum compressibility,β controls the stiffness of the particle,

andφ is the interaction strength.

In the limit of β going to infinity we recover the classical hard-core potential. The

reasoning is the following. Assumeγ = 1 equal to the volume of the particles, then the

potential can be expressed for a small overlapping areaǫ as:U(ǫ) = βǫ. For the limit of

β going to infinity any finite value ofǫ produces a divergence. In consequence, to avoid

the divergenceǫ has to beǫ = 0, and so we obtain a hard-core potential.

It is worth noticing that since the derivative of the overlapping area depends on how

particles are colliding, the potential provides differentforces and torques upon the spatial

arrangement of the particles at the moment of the collision,see Fig. 3.4.

1The numerical estimation of the overlap area is the bottleneck of the simulations. In Appendix A a

brief explanation about an efficient numerical calculationis provided.
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Figure 3.4: The scheme shows that the potential provides different forces and torques depending

on how particles are colliding. This is owed to the differentderivatives of the overlapping area for

each case.

3.1.2 Fluctuations

We study the effects of fluctuations by inserting additive noise termsR⊥(t), R‖(t) in Eq.

(3.1.1) andRθ(t) in Eq. (3.1.2). The stochastic motion of theith particle is then given by:

(v
(i)
‖ , v

(i)
⊥ ) =

(
1

ζ‖
(R

(i)
‖ + F − ∂U (i)

∂x‖
),

1

ζ⊥

(
R

(i)
⊥ − ∂U (i)

∂x⊥

))

θ̇(i) =
1

ζθ

(
R

(i)
θ − ∂U (i)

∂θ

)
(3.1.5)

where the white noise terms are of the form:

〈R(i)
A (t)〉 = 0 (3.1.6)

〈R(i)
A (t)R

(i)
B (t′)〉 = ǫA,Bδi,jδ(t− t′)

whereA andB stand for‖, ⊥, andθ, δ(t− t′) is a Dirac delta function,δi,j is Kronecker

delta function, andǫA,B is defined as follows. ForA 6= B, ǫA,B = 0, while forA = B,

ǫA,A represents the noise strengths which are three constants:ǫ‖,‖, ǫ⊥,⊥ andǫθ,θ. If we want

fluctuations to represent a thermal noise, the noise strengths have to satisfy the following

relation in order to define a unique temperature in the system[78]:

〈R‖(t)
2〉

2ζ‖
=

〈R⊥(t)2〉
2ζ⊥

=
〈Rθ(t)

2〉
2ζθ

= KBT

whereKB is the Boltzmann constant andT is the absolute temperature.
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Type of particle active forceF 〈R(i)
‖ 〉2/ζ‖ 〈R(i)

⊥ 〉2/ζ⊥ 〈R(i)
θ 〉2/ζθ

pure active 0.4 0 0 0

active-Brownian 0.4 0.0833 0.0833 0.0833

pure Brownian 0 0.0833 0.0833 0.0833

Table 3.1: Active force and noise intensities for pure active, active Brownian, and pure Brownian

particles

3.1.3 Simulation parameters and boundary conditions

All simulations were performed with a particle areaa = 0.2 and the friction coefficients:

1/ζ‖ = 0.1, 1/ζ⊥ = 0.04, and1/ζθ = 0.5. The parameters associated with the potential

given by Eq. (3.1.4) are:γ = 0.16, φ = 0.16 andβ = 1. Three ”types” of particles have

been studied: pureactive, active-Brownian, andBrownian particles. The corresponding

values of active force and noise intensities are given in Table 3.1.

Typically simulations were run withN = 50, 100 and200 particles, and during104

integration steps, using an integration step∆t = 0.1.

Most of the simulation results presented in this chapter correspond to simulations per-

formed placing initially theN particles at random inside a box of areaA and periodic

boundary conditions (see Fig. 3.3), but reflecting boundaryconditions were also stud-

ied (see Figs. 3.14 and 3.15). Unless otherwise indicated, assume periodic boundary

conditions.

As a general observation, for the explored densities, the systems never freeze, i.e.,

never reach a state in which particles do not move. Another important remark is that

collisions among particles lead to local alignment, but contrary to what occurs in [34,40,

41, 44], particles can also point in opposite directions, and in consequence the emergent

dynamics differs from that of those models (see Fig. 3.2).

There are three key parameters which control the dynamics: i) persistence of particle

motion, regulated by the active forceF and the noise strengths, ii) the packing fractionη,

i.e., the area occupied by rods divided by the total area (η = Na/A), and iii) the length-

to-width aspect ratioκ (κ = L/W , whereL is the length andW is the width of the rods)

(see Fig. 3.5).

In the following, we study quantitatively the impact of these three parameters in the

dynamics of the self-propelled rods and cluster size distribution.
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(a) 

(c) 

(b) 

(d) 

(e) 

(f) 

Figure 3.5: Simulation snapshots of the steady states for different particle anisotropyκ and the

same packing fractionη (a-c), and the sameκ and differentη (d-f). Fixing η = 0.24: (a) before

the transition,κ = 1; (b) almost at the transition,κ = 5; (c) after the transition,κ = 8. Fixing

κ = 6: (d) before the transition,η = 0.18; (e) just crossing the transition,η = 0.24; (f) after the

transition,η = 0.34. All cases correspond to simulations withN = 100 active particles of fixed

areaa = 0.2. The arrows indicate the direction of motion of some of the clusters.
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3.2 Dynamics: particle speed, angular velocity and spa-

tial arrangement of particles

This section is devoted to the study of particle motion, characterized by the particle speed

and angular velocity, and the spatial arrangement of particles, including local and global

orientation.

3.2.1 Particle speed

Collisions among pure active particles lead naturally to a dispersion of the speed distribu-

tion. In this case particles are driven only by the self-propelling forceF , and in absence

of interactions or at very low densities, we expect the speeddistribution to be a Dirac

delta function. We refer to this speed as the active speed andsymbolize it as̃v = |F|/ζ‖.
Fig.3.6(a) and (b) illustrate the effect of collisions by comparing simulations performed at

low and high density. Clearly, higher densities correspondto higher collision rates. If the

density is high enough, particle interactions induce an extra speed distribution which gets

superimposed to the Dirac delta distribution associated toṽ. Surprisingly, at high densi-

ties the extra distribution resembles a classical Maxwell-Boltzmann distribution [79] (see

Fig. 3.6(b)). Consequently the system exhibits two typicalspeeds (i.e., a speed distri-

bution with two maxima), one related to the active speed, andthe other one associated

with particle collisions. There are several remarkable differences between the classical

Maxwell-Boltzmann distribution for two-dimensional gas particles, and the one we ob-

serve for purely active particles. The most evident difference is the peak associated to

ṽ (solid vertical line in Fig. 3.6(a) and (b)) . But beyond thisobvious fact, it is worth

noticing that the classical Maxwell-Boltzmann distribution emerges in systems where the

momentum is conserved, while in the system we analyze here itis not conserved.

To understand the speed distribution of active-Brownian particles, we firstly discuss

the speed distribution of simple Brownian particles at low density, i.e., neglecting col-

lisions. Since in this casev(i)
‖ = R

(i)
‖ /ζ‖, then the probabilityf‖ of observing a speed

v‖ along the‖-axis is f‖(v‖) =
(
σ‖
√

2π
)−1

exp(−v2
‖/(2σ

2
‖)), whereσ2

‖ = 〈R2
‖/ζ

2
‖〉.

A similar argument follows forv⊥. In consequence, the probabilityp(s) of observ-

ing an speeds =
√
v2
‖ + v2

⊥ is expressed asp(s) =
∫
v2
‖
+v2⊥=s2

f(v‖, v⊥)dv‖dv⊥, where

f(v‖, v⊥) = f‖(v‖)f⊥(v⊥). In active-Brownian particles, the contribution of the self-

propelling forceF translates simply in a shift off‖(v‖), which now readsf‖(v‖) =



3.2. Dynamics: particle speed, angular velocity and spatial arrangement of particles31

0,0 0,2 0,4
0,0

0,2

0,4

0,6

 

 

 

(a)

p
(s
)

0,0 0,2 0,4
0,0

0,1

0,2

 

 

 

 

(b)

0,0 0,2 0,4
0,00

0,01

0,02

 

 

(c)

p
(s
)

s

0,0 0,2 0,4
0,0

0,1

0,2

 

 

 

(d)

s

Figure 3.6: Speed distributionp(s) at different packing fractionsη and differentκ. Top: p(s) at

different values ofη for purely active particles with a fixedκ = 5. (a) low (η = 0.16) and (b) high

density (η = 0.40). The superimposed Maxwell-Boltzmann distribution in (b)corresponds to a fit

of thep(s) performed removing the highest peak. Bottom:p(s) at fixed density (η = 0.34) for

active-Brownian particles with differentκ. (c) isotropic particles (κ = 1), (d) anisotropic particles

(κ = 10). Notice how the width of the distribution (associated to the noise) shrinks due to local

order formation in elongated particles. The vertical linesindicate the speed induced byF .
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Figure 3.7: Average speed〈s〉 and most probable speeds0 as function ofκ (a) andη (b). Simula-

tions with active-Brownian particles. (a) fixed packing fractionη = 0.34 and box7.67× 7.67. (b)

fixed aspect ratioκ = 5 and box10 × 10.

(
σ‖
√

2π
)−1

exp(−(v‖ − F/ζ‖)
2/(2σ2

‖)). The speed distribution takes the form:p(s) =
∫
v2
‖
+v2⊥=s2

(
2πσ‖σ⊥

)−1
exp(−(v‖ − F/ζ‖)

2/(2σ2
‖)) exp(−v2

⊥/(2σ
2
⊥))dv‖dv⊥. Using this

expression we calculate the average speed〈s〉, defined as〈s〉 =
∫∞

0
sp(s)ds, and the

most probably speeds0, i.e., maximum or mode of the distributionp(s). For Brownian

particles in absence of interaction we estimate〈s〉 = 0.09577 ands0 = 0.07638, while

for active-Brownian particles,〈s〉 = 0.102 ands0 = 0.08.

Now we are in condition to explore the effect of collision in active-Brownian particles.

Surprisingly, this time the interaction among particles can lead to a shrinking of the speed

distribution width. This phenomenon is particularly noticeable comparing particles of

very different aspect ratioκ and exposed to the same noise, as it is shown in Figs. 3.6(c)

and (d). Fig. 3.6(c) shows the speed distribution of particles with an aspect ratio,κ = 1.

Fluctuations almost entirely shape the distribution. The active speed̃v is indicated by the

solid vertical line. Notice that the maximum of the distribution does not coincide with

the active speed. In Fig. 3.6(d) we observe the speed distribution of system identical to

the system in Fig. 3.6(c) except for the particle aspect ratio, which now isκ = 10. It

is observed a remarkable shrinking of the width of the distribution, which now exhibits

its maximum at the active speed. Particles can reduce the effect of the noise by forming

densely packed moving clusters. Inside these structures particles are locally aligned and

their movements are highly constrained. In consequence, the speed due to the active force

F prevails.

In Fig. 3.7 we show a more systematic study of the dependency of particle speed

with the particle aspect ratioκ and packing fractionη. The figures exhibit average speed
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Figure 3.8: Average angular velocity〈ω〉 (a) and average square angular velocity〈ω2〉 (b), and

angular diffusionDθ as function ofη. Simulations with active-Brownian particles of fixed aspect

ratioκ = 5 in a box10 × 10.

〈s〉, and most probable speeds0 as function ofκ in (a), andη in (b). Simulations were

performed in (a) withN = 100 active-Brownian particles at a constant packing fraction

η = 0.34 for various values ofκ. Simulations in (b) also correspond to active-Brownian

particles. This timeκ was kept fixed at5 and the packing fractionη was varied. In (a) it

is shown that〈s〉 ands0 remain insensitive toκ for small values of the parameter, while

an abrupt drop in both quantities is observed for large values ofκ. The jump in〈s〉 ands0

is due to the shrinking of the distribution shown in Fig. 3.6 from (c) to (d). Notice that in

general〈s〉 > s0, and particularly〈s〉 ≥ s0. It can be easily observed in Fig. 3.7(a) that

for small values ofκ, s0 does not coincide with the active speedṽ, while for large values

of κ, s0 ∼ ṽ (compare with Figs. 3.6(c) and (d)). Assuming particles do not get stagnated

for larger value ofκ, we expects0 to be in its minimum, and for larger value ofκ only

see〈s〉 decreasing towardss0. We speculate that the roughly sharp transition exhibited by

s0 could be correlated to the emergence of strong clustering effects, though not directly

to the transition to clustering as it will be defined below. Onthe other hand, Fig. 3.7(b)

shows that〈s〉 ands0 remain constant in the simulated range ofη, but presumably they

would exhibit a similar transition for larger value ofη than the simulated ones.

3.2.2 Angular velocity and angular diffusion

As expected, the angular velocity distribution takes always a Gaussian shape centered

around zero. In absence of angular fluctuations, i.e., for active particles, the width of

the distribution is entirely determined by the collisions among particles, while for active-

Brownian particles there is an additional contribution which comes from the amplitude of

the angular noise〈Ri
θ(t)

2〉. In consequence, the maximum or mode of the distribution is
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zero, and the average angular velocity and average square angular velocity depend upon

angular noise and particle collision rate.

Figs. 3.8(a) and (b) show the average angular velocity〈ω〉 and the average square

angular velocity〈ω2〉, respectively, as function of the packing fractionη. The simulations

were performed with active-Brownian particles of fixed aspect ratioκ = 5 for various

values of the packing fractionη. The size of the box was kept constant at10 × 10 and

the following number of particles were simulated:N = 80, 100, 135, 170 and 200,

corresponding toη = 0.16, 0.20, 0.27, 0.34 and0.40. The figure indicates that as the

packing fraction increases,〈ω〉 also increases (see Fig. 3.8(a)). Similarly,〈ω2〉 grows

with η (see Fig. 3.8(b)). Notice that〈ω2〉 is a measure of the kinetic energy due to particle

rotation. Asη increases, the collision rate enhances. Since collisions imply rotation of the

particles, we expect both,〈ω〉 and〈ω2〉, to increase withη. Figs. 3.8(a) and (b) prove that

this is the case. We conclude that far away from the maximum packing fraction, particle

rotation, resp. the kinetic rotation energy, increase withη.

Fig. 3.8(c) shows the angular diffusionDω as function ofη. It could be argued that

an increase in〈ω〉 and〈ω2〉 would lead to a higher angular diffusion. Fig. 3.8(c) shows

this trend forη > 0.2. The deviation observed atη = 0.16 is probably due to fluctuations

caused by the small number of particles.

Fig. 3.9 shows〈ω〉, 〈ω2〉, andDω, but this time as function of the particle aspect

ratio κ. The simulations were performed withN = 100 active-Brownian particles at a

fixed packing fractionη = 0.34 and for various values ofκ. The figure reveals a complex

response of〈ω〉, 〈ω2〉, andDω to variations ofκ. For small values ofκ, 〈ω〉 and〈ω2〉
grow withκ. As κ increases, the scattering cross section of the particles also increases2.

Consequently, we expect the collision rate to be enhanced bylarger values ofκ, which

in turn caused an increase in〈ω〉 and〈ω2〉. However, notice that there are two processes

competing. On one hand, asκ gets larger, the number of collisions among randomly

moving cluster increases. On the other hand,κ facilitates local ordering. For large values

of κ, particles tend to move parallel to each other. As the numberof available direction of

motion decreases, due to local alignment, the collision frequency also gets reduced. As

shown in 3.9(a) and (b), for large values ofκ this effect becomes dominant and〈ω〉 and

〈ω2〉 get lower values. In the extreme case of perfect polar ordering in the system, and

for active particles,〈ω〉 and〈ω2〉 vanish. We expect in general〈ω〉 and〈ω2〉 to exhibit a

maximum at intermediate values ofκ. Figs. 3.9(a) and (b) confirm that this is the case.

2A discussion about the scattering cross section of rods is provided in section 3.3.
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Figure 3.9: Average angular speed〈ω〉 (a) and average square angular speed〈ω2〉 (b), and angular

diffusion Dθ as function of the particle aspect ratioκ. Simulations with active-Brownian particles

in a box7.67 × 7.67 atη = 0.34.

Particle rotation, resp. the kinetic rotation energy, exhibit a maximum at intermediate

values of the aspect ration, increasing for small values ofκ and decreasing for large values

of the parameter.

Fig. 3.9(c) shows that the angular diffusionDω also has a non-monotonic dependency

with κ. Surprisingly, the maximum ofDω does not coincide with the maximum exhibited

by 〈ω〉 and〈ω2〉. It is worth noting thatDω(κ) has its maximum located near by the value

κc which denotes the onset of clustering in the system as definedin the next section.

3.2.3 Spatial arrangement of particles and orientation ordering

When particles exhibit large values ofκ the local spatial arrangement is such that par-

ticles get aligned in a side-by-side and ”head-to-tail” manner, allowing the formation of

densely packed clusters. This observation can be quantifiedby measuring the two-body

correlation functionp(d), which is nothing else than the probability of finding the center

of mass of two particles separated by a distanced. Fig. 3.10 showsp(d) measured in

simulations performed withN = 100 active particles at a fixed packing fractionη = 0.34

and various aspect ratiosκ. In (a) we observe that for isotropic particles, i.e.,κ = 1,

p(d) exhibits one single peak atd = L = W . Thep(d) is zero ford < L, indicating

particles cannot overlap. Though the single peak evidencesthat many particles stay in a

side-by-side arrangement, they are not aligned, meaning they do not have the active force

F pointing in the same direction as shown by Fig. 3.11(a). FromFigs. 3.10(b) and (c)

we learn that for anisotropic particles, i.e.,κ > 1, p(d) exhibits two peaks. The first one

at d = W corresponds to particles arranged in a side-by-side manner, while the second

peak atd = L to particles arranged in a head-to-tail manner. Notice thatasκ gets larger
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Figure 3.10: The two-body correlation function forη = 0.34 and various values ofκ, κ = 1

(a), κ = 5 (b) andκ = 7 (c). Simulations performed withN = 100 active particles in a box

7.67 × 7.67. Notice the peaks corresponding to particles arranged side-by-side and head-to-tail.

the peak atd = L becomes more pronounced.

Now we want to learn about the orientation of particles inside this arrangements. We

look for a measure of the local ordering. AssumeJi = (cos(θi), sin(θi)) is a unit vector

that represents the orientation of the long axis of theith-particle, or equivalently, the

orientation of its active forceF . If J(x) represents the local orientation or polarization,

we want to calculate the quantity〈J(0)J(d)〉 defined as:

〈J(0)J(d)〉 =

∫

A

dx

∫ 2π

0

dα

∫ 2π

0

dθ

∫ 2π

0

dθ′ (3.2.1)

cos(θ − θ′) p (x, θ, t; θx+ d(cos(α), sin(α)), θ′, t) ,

whereA is the area of the system,cos(θ − θ′) is the scalar product of the orientation of

particles whose long axis areθ andθ′, andp (x, θ, t; θx′, θ′, t) refers to the joint probability

of finding at timet a particle at positionx and pointing in directionθ, and simultaneously

another particle atx′ and pointing in directionθ′. In simulations we calculate this quantity

simply by:

〈J(0)J(d)〉 =
1

nd

∑

|xi−xj |=d

Ji.Jj , (3.2.2)

where the sum runs over all pairs of particles in the simulation separated by a distanced,

andnd is the number of such pairs. Notice that the maximum value that 〈J(0)J(d)〉 can

take is1 and corresponds to a situation in which all particles separated by a distanced are

perfectly aligned.
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Figure 3.11: Local order. Average of the scalar product of the particle orientation,〈J(0).J(d)〉, as

function of the particle distanced. Simulations withη = 0.34, N = 100 and box7.67 × 7.67.

Notice that isotropic particle do not order locally (a), while elongated particle do (b)-(c). The

small peak atd = L in (b) and (c) indicates many particles arrange themselves in a head-to-tail

manner while collectively moving. Compare with Fig. 3.10.

Fig. 3.11 shows〈J(0)J(d)〉 measured in simulations performed, as before, withN =

100 active particles at a fixed packing fractionη = 0.34 and various aspect ratiosκ. For

κ = 1, isotropic particles,〈J(0)J(d)〉 is roughly zero for all values ofd. Compare the

high of 〈J(0)J(d)〉 observed in (a) with (b) and (c). The fluctuation at small values of

d are presumably due to the finite size of the system. As mentioned above, the peak at

d ∼ L = W in Fig. 3.10(a) corresponds to particles arranged in a side-by-side manner.

The small value taken by〈J(0)J(d)〉 at d ∼ 0.44 in Fig. 3.11(a) reveals that roughly

half these particles move parallel, while the other half move anti-parallel to each other.

In contrast, elongated particles exhibit very high local alignment. 〈J(0)J(d)〉 takes its

maximum value atd = W and decay for larger values ofd. Particles separated by a

distanced = W are densely packed, aligned side-by-side and move in the same direction,

as indicated by the high value reached by〈J(0)J(d)〉 at d ∼ W in Figs. 3.11(b) and

(c), and peak atd ∼ W in Figs. 3.10(b) and (c). The correlation of particle orientation

〈J(0)J(d)〉 does not decay monotonically with the distanced as in the planar XY-model.

At d ∼ L, 〈J(0)J(d)〉 exhibits a kink. In Fig. 3.11(c) it can be easily confused with

a fluctuation, but in 3.11(b) the kink is well-defined. Its presence indicates that many

particles are aligned head-to-tail and moving in the same direction.

So far, we have discussed about local orientation ordering,and shown that locallyκ

facilitates ordering. In the following we address briefly the effect on global orientation

ordering ofκ.

The particle orientation distributionp(θ, t) exhibits a very dynamical evolution. Fig.

3.12 showsp(θ, t) for a simulation performed withN = 100 active particles ofκ = 7 at
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η = 0.34. The bright patches correspond to the orientation of large clusters. We want to

quantify the degree of global orientation ordering in such systems. We use two quantities,

the ferromagnetic order parameterSF = 1/N〈|
∑N

i=1 exp (iθi)|〉 and the two dimensional

scalar liquid crystal order parameterSLC = 1/N〈|
∑N

i=1 exp (i2θi)|〉, whereθi refers to

the orientation of the long axis of theith-particle, and〈...〉 denotes temporal average.

SF measures the degree of ”polarization” of the system.SF = 0 indicates that particles

point with equal probability in any direction, whileSF = 1 corresponds to a situation in

which all particles pointing in the same direction. On the other hand,SLC quantifies the

degree of alignment without distinguishing head and tail ofthe particles (recall that the

self-propelling force defines a ”head” and ”tail” of the particles). SLC = 0 indicates no

order, whileSLC = 1 implies that all particles are aligned to a global director.Notice that

if SF = 1 necessarilySLC = 1, while the contrary, i.e.,SLC = 1 does not implySF = 1.

Fig. 3.13 showsSF andSLC as function ofκ. The simulation were performed with

N = 100 active particles ofκ = 7 at packing fractionη = 0.34. It can be observed a

systematic increase ofSF andSLC with κ, despite the fact the system size is too small to

make any claim about possible phase transitions. Presumably, the increase experienced

by SLC is due to polar alignment of particles, though the possibility of true nematic order

can not be excluded. It can be conclude that, as expected, forfinite systems, large values

of κ imply high degree of orientational ordering.

3.3 Clustering

This section is entirely devoted to the study of the clustering dynamics of self-propelled

rods. It starts with a survey of the findings in individual-based simulations.

While most of the study is focused on periodic boundary conditions, here we discuss

briefly the effect of implementing other types of boundaries. In Fig. 3.14 snapshots at

various times of a simulation with a reflecting circular boundary are shown. The simula-

tion was performed withN = 100 active-Brownian particles ofL = 1 andW = 0.2 at a

packing fractionη = 25. The diameter of the reflecting ring is10. Initially particles are

placed at random inside the circle and pointing at random direction (t = 0). As the simu-

lation runs we observe that particles start to gather aroundthe boundary. At the beginning

particles slide on the circular boundary with their long axis parallel to the reflecting wall

t = 150, but soon after traffic jams of counter migrating particles emerge and aggregates

of stalled particles appear on the boundary (t = 300 andt = 450). At this point the dy-
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performed withN = 100 active particles ofκ = 7 at η = 0.34 in box 7.67 × 7.67. The bright
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Figure 3.13: Global orientational ordering quantified through the ferromagnetic order parameter

SF and the two dimensional scalar liquid crystal order parameter SLC . Simulation performed

with N = 100 active particles ofκ = 7 atη = 0.34. Notice the increase ofSF andSLC with κ.
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t=0 t=150

t=300 t=450

Figure 3.14: Snapshots of a simulation with reflecting boundary conditions at various times.N =

100 active-Brownian particles ofL = 1 andW = 0.2; diameter of the reflecting ring10, and so

η = 0.25. Notice that as time goes, particles gather around the boundary.
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namics of the system slows down and we only observe some individual particles traveling

from one aggregate to another. If one waits long enough, it can be seen that some initial

aggregates disappear while others grow in size. Remarkably, while the boundary is not

at all absorbing, particles end up in clusters which are attached to the boundary, and the

particle density in the middle of the system drops to zero. Contrary, in simulations for

the same system but with Brownian particles, the density never drops to zero, though it is

observed slightly higher density on the boundary that on center, and particles do not clus-

ter so much. The self-propelling forceF is responsable of such strong non-equilibrium

clustering effects on the boundary.

In Fig. 3.15 we test other type of boundary condition. The left and right side of the

box are reflecting walls, while the top and bottom side are connected in such a way that a

particle leaving the system through the top side emerges at the bottom side. The simula-

tion shown in Fig. 3.15 corresponds to this tube-like boundary condition (box7.67×7.67)

and was performed withN = 100 active-Brownian particles ofL = 1 andW = 0.2. As

before, the particles are initially distributed at random inside the box and pointing with

equal probability in any direction (t = 0). As the simulation evolves particles start to

aggregate on the reflecting walls, though particle density on the center of the box never

drops to zero (see snapshot corresponding tot = 8534). Another important difference

with respect to simulations with active-Brownian particles and reflecting boundary condi-

tions is that particles never get stalled. Moreover, particles can exhibit sporadic coherent

motion by eventually arranging parallel to one of the reflecting walls and pointing in the

same direction (see left side of the snapshot correspondingto t = 8534).

3.3.1 Clustering induced by persistence in the motion and packing

fraction

When fixingκ andη, we observe that the self-propelling forceF induces (moving) cluster

formation, while, on the other hand, the noiseRi
A, tends to diminish it.

An estimate of particle clusterization is given byM , the mean maximum cluster size

divided by the total number of particles. This quantity is defined as follows:

M =
1

N

1

(T − tt)

∫ T

tt

max(Θ(n1(t)), ..., jΘ(nj(t)), ..., NΘ(nN (t))dt (3.3.1)

whereT represents the simulation time,tt the transient before the ”steady state” is

reached, andΘ(x) a Heaviside function.nj(t) refers to the number of clusters of massj
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t=8534t=750t=0

Figure 3.15: Snapshots of a simulation with a tube-like boundary condition at various times. Left

and right side are reflecting boundaries, while top and bottom side are connected, i.e., the system

is periodic along the vertical direction.N = 100, L = 1, W = 0.2, box 7.67 × 7.67, and so

η = 0.34. Notice that particles aggregate on the reflecting boundaries where eventually coherent

motion emerges (see left side of the snapshot correspondingto t = 8534).

at timet. M ∈ [0, 1]. Fig. 3.16 showsM for different ratios betweenF and the noise

amplitudes, i.e., for pure active, active-Brownian and Brownian particles, and different

value of the packing fractionη (snapshots of simulations with active particles at fixedκ

and various values ofη are shown in Fig. 3.5) . As can be observed in the figure, for all

η pure active particles exhibit the strongest clustering effect, while pure Brownian parti-

cles the weakest. The mean maximum cluster size for active-Brownian particles falls in

between these two extreme cases.

Notice that the dependency ofM with η is different for these three types of particles.

For the range of packing fractions explored,M is almost constant for Brownian parti-

cles, exhibits a linear relation withη for active particles, and a non-linear dependency for

active-Brownian particles.

Clustering is facilitated by the persistence in the motion exhibited by the particles

and not by simply the particle speed. The parameters of thesethree particle types have

been chosen such that without interactions active particles have an average squared speed

〈v2〉 = 0.0016, while in active-Brownian particles〈v2〉 = 0.0132, and in Brownian par-

ticles 〈v2〉 = 0.0116. In consequence,〈v2〉active < 〈v2〉Brownian, and〈v2〉Brownian ∼
〈v2〉active−Brownian. Even using such a smallF , compared to the noise amplitude, we

observe that particles driven only byF exhibit the strongest clusterization, while simul-

taneously, the smallest average squared speed.

Why do these active particles cluster so much? Active particles when they meet tend
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Figure 3.16: Mean maximum cluster size divided by the total number of particles,M , vs. packing

fraction, η. κ = 5. Cases: purely active particle (square), Brownian particles (triangle) and

active-Brownian (circles). The dashed line indicates slope 2.5, suggesting that clustering for pure

active particles is linear withη even having a smaller〈v2〉 than Brownian particles.
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Figure 3.17: The two regimes ofM as function ofκ. (a)Active-Brownian particles at density

η = 0.34. (b) Active particles at densityη = 0.24.

to align their long axis and move parallel to each other. By doing so, they can form stable

dense clusters (see Fig. 3.5). On the other hand, Brownian particles lack the characteristic

persistence in the motion of active particle, and collisions among them rarely lead to per-

fect alignment. In addition, the absence of a self-propelling force does not allow coherent

migration of the clusters. In active-Brownian particles, collisions typically do not cause

perfect alignment of the particles, but eventually clusters of aligned particles emerge. In-

side these clusters, the effect of the noise is highly reduced, and the bias originated by the

self-propelling force induces the coherent motion of the cluster. Consequently, clusters of

active-Brownian particles are more stable than clusters ofBrownian particles.

3.3.2 Clustering induced by the length-to-width aspect ratio

Fixing all parameters and varying onlyκ, we find that the particle aspect ratioκ is a key

parameter that controls the type of the emergent pattern, and particularly clustering (in

Fig. 3.5 some snapshots of simulation at fixedη illustrate this phenomenon). We stress

that when varyingκwe always keep the particle area constant, and soη remains the same.

Moving cluster formation strongly depends onκ. When going from isotropic to

anisotropic particles we observe two regimes of the clusterization process. InitiallyM

grows monotonically withκ up to certain point after whichM seems to reach a plateau

(see Fig. 3.17). The presence of these two regimes suggests the existence of a criticalκc
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Figure 3.18: Evolution of the weighted cluster size distribution nm(t). The high of the function

nm(t) is color coded: dark blue for0, and bright red for the maximum value90. Simulation

performed withN = 100, κ = 7, η = 0.34, N = 100 and a box7.67 × 7.67.

after which cluster sizes no longer grow withκ andM saturates.

The ”saturation” ofM is a robust property of the model that does not depend on either

the noise amplitude or the packing fraction. To illustrate this fact, we show in Fig. 3.17

M as function ofκ for active and active-Brownian particles at different packing fractions.

Notice that Fig. 3.17(a) and (b) exhibit the same qualitative behavior. However, the

amplitude ofM as well asκc, strongly depend on the noise amplitude andη.

Another way to study clustering in the system is through the weighted cluster size

distributionp(m), which measures the probability of finding a randomly chosenparticle

belonging to a cluster of massm. p(m) is defined as follows:

p(m) =
1

N

1

(T − tt)

∫ T

tt

nm(t)mdt (3.3.2)

whereT represents the simulation time,tt the transient before the ”steady state” is

reached, andnm(t) refers to the number of clusters of massj at time t. By abuse of

notation, we refer top(m) as cluster size distribution. Notice that the ”real time” clus-

ter size distribution, represented bynm(t), exhibits a very dynamical evolution in which

clusters are created and disintegrated constantly (see Fig. 3.18). Though this is true, the

temporal average ofnm(t), throughp(m), provides a good characterization of the cluster-

ing properties of the system. The distributionp(m) has proved to be highly reproducible



46 Chapter 3. Collective motion driven by particle shape

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

m

p

κ=8

κ=1

Figure 3.19: Onset of clustering triggered byκ. p(m) as function of the cluster sizem. Symbols

show the average over 8 realizations for active particles atη = 0.34, andκ = 1 (circles) andκ = 8

(crosses). The lines correspond to the mean field theory forκ = 1 (solid) andκ = 8 (dashed).

The second peak (forκ = 8) is the signature of particle clusterization.

in simulation performed under the same conditions, i.e., same initial condition, set of

parameters, and boundary condition.

p(m) is shown in Fig. 3.19 for different values ofκ (κ = 1 (circles) andκ = 8

(crosses)). Simulations exhibit a transition which is triggered byκ whenη is fixed. For

low values ofκ, p(m) is monotonically decreasing, indicating no clusterization. For large

values ofκ, p(m) exhibits a second peak which is the signature of particle clusterization.

The second peak indicates that particles ”prefer” to stay inlarge cluster instead of being

part of small groups. We define the transition from no clustering to clustering as the point

at whichp(m) is no longer monotonically decreasing. By using this definition, we can

estimate the critical aspect ratioκc after which clustering becomes dominant. Notice that

the transition to clustering, implies a transition to a swarming phase.
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3.3.3 A first approach towards the understanding of clustering: the

number of clusters and cluster entropy

As a first step to understand clustering theoretically, we study the evolution of the number

of clusters in the system. We defineG(t) as the total number of clusters in the system.

G(t) takes the form:

G(t) =
N∑

i=1

ni(t) (3.3.3)

whereN refers to the total number of particles in the system andni(t) is the number of

clusters of massi at timet as defined above.G(t) is not conserved during time, while

the number of particles is constant, i.e.,
∑N

i=1 ini(t) = N . Let us now definefi(t) as the

probability of finding a cluster of sizei at timet, which simply reads:

fi(t) =
ni(t)

G(t)
(3.3.4)

Cluster entropy

In the following we look for a measure of ”disorder” in clustering. Given a total number

of clustersG, the total number of ways in whichG may be formed into groupsn1, n2, ...

is given byW :

W =
G!

∏N
j=1 nj !

(3.3.5)

If nj is large, we could approximate the previous expression by use of the Stirling

formula and obtain:

ln(W ) ≈ −G
N∑

i=1

ni
G

ln
ni
G

(3.3.6)

Sinceni/G = fi is the frequency of cluster of massi, we can express:

ln(W )

G
= −

N∑

i=1

fi ln fi (3.3.7)
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Borrowing the definition ofentropy of grouping given by A. Okubo in [80], we call the

right hand side of Eq. (3.3.8) thecluster entropy HC (for N → ∞):

HC = −
∞∑

i=1

fi ln fi (3.3.8)

HC has the following properties which makes it a reasonable measure of disorder in clus-

tering: i) if all particles gather in one cluster, corresponding to a state of maximum order,

thenHC = 0, i.e., the disorder is0. ii) if for each cluster size there is only one cluster,

thenfi = 1/G, and for a givenG, HC has a maximum valueHC = ln(G). This state

corresponds to the maximum clustering entropy, and clearlyif G → ∞, thenHC → ∞.

iii) any change towards the equalization offi increasesHC . It is worth noticing that when

all particles form isolated clusters, thenHC = 0, as it is when all of them belong to one

big cluster.

There are two natural constraints to the discrete frequencydistribution fi, a)∑∞
i=1 fi = 1 and b)

∑∞
i=1 ifi = N/G = q. Notice thatq is the mean number of par-

ticles per cluster.

The principle of maximum entropy states that the most probable distributionf ∗
i cor-

responds to the maximum ofHC . To maximize the entropy under these constrains, the

method of Lagrange multipliers can be used. The distribution f ∗
i of maximum entropy is

then given by:

f ∗
i = exp [− (1 + λ0 + λ1i)] (3.3.9)

whereλ0 andλ1 are Lagrange multipliers [80]. Replacing Eq. (3.3.9) into conditions a)

and b), and after some algebra we obtain:

f ∗
i =

(
1

q − 1

)(
q − 1

q

)i
(3.3.10)

Replacing this expression into Eq. (3.3.8), we obtain:

HC = −
∞∑

i=1

(
1

q − 1

)(
q − 1

q

)i
ln

[(
1

q − 1

)(
q − 1

q

)i]
(3.3.11)
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Using that
∑∞

i=0Q
i = 1/(1 − Q) and

∑∞
i=0 i Q

i = Q/(1 − Q)2 for Q < 1, we express

Eq. ( 3.3.11) as:

HC = ln(q − 1) + q ln(
q

q − 1
) (3.3.12)

Given an estimation forG, we can approximate the mean number of particles per cluster

by q and use Eq. (3.3.12) to estimate the cluster entropyHC .

Evolution equation for the number of clusters

We need an equation forG(t). We look for a simple phenomenological evolution equation

of the form:

Ġ = RS (G) − RF (G) (3.3.13)

whereRS (G) describes the creation per unit time of new clusters due to splitting of

big clusters, whileRF (G) denotes the destruction per unit time of clusters caused by

collision and fusion of clusters. We expect both,RS andRF , to be functions ofG. In the

following, we discuss the functional form of these term.

The creation termRS:

The self-propelled rods we are analyzing do not have any cohesive force. There-

fore, we can assume that the more particles a cluster has, themore unstable it becomes.

Furthermore, clusters usually loose those particles that are located on the boundary of the

clusters. Typically this is due to collisions or fluctuations that make these particles change

the direction of their self-propelling force to some arbitrary direction which typically does

not coincide with the average direction of motion of the group. Thus, we assume that the

probability for a cluster of suffering a fission is proportional to the number of particle on

the boundary. For a cluster withm particles, we approximate the number of particles on

the boundary as
√
m. Sinceq represents the mean number of particles per cluster, we

expectRS to be proportional to
√
q.

At this point we need some characteristic time. Recalling the Buckinghamπ theo-

rem [81], we conclude that this characteristic time has to bea function of eitherL/ṽ or

W/ṽ, or a combination of both. Since elongated particles form more stable clusters than

short particles, we simply take the characteristic timeτ a cluster lives to beτ−1 ∼ ṽ/L.
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Figure 3.20: Average number of clustersG vs. time. Symbols corresponds to simulations per-

formed withN = 100, κ = 4 andη = 0.034. The dot-dashed line is the approximation given by

integration of Eq. (3.3.17), withγ = 0.1186 andβ = 6.

Taking all this into account, we expressRS as:

RS (G) =
ṽ

γL

√
N

G
(3.3.14)

whereγ is a free parameter of the model. Notice that Eq. (3.3.14) represents the mean

number of clusters that are created per unit time, and therefore it is not a rate, i.e., in Eq.

(3.3.13) we insert directly Eq. (3.3.14) and not Eq. (3.3.14) timesG. Clearly,GS has to

be a decreasing function ofG.

The destruction termRF :

From the classical gas theory [79] we know that for dilute gases the collision rate

among molecules can be approximated by:

τ̃−1 = 〈v〉ρσ (3.3.15)

where〈v〉 refers to the mean speed of the gas,σ is the scattering cross section of the

molecules, andρ is the particle density.
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Figure 3.21: Average number of clustersG at the steady state vs. particle aspect ratioκ. Symbols

corresponds to simulations performed withN = 100 andη = 0.034. The dot-dashed line is the

approximation given by Eq. (3.3.18) withγ = 0.1186.

We make use of this expression to estimate the characteristic time between collisions

of the clusters. We assume that clusters move roughly at the active speed̃v, and then

replace〈v〉with ṽ. In this case,ρ is simplyρ = G/A, whereA is the area of the box where

particles move.σ represents the scattering cross section of the clusters. For disks we know

that the scattering cross section is proportional to the radius, which is proportional to the

square root of the disk area. Therefore,σ has to be proportional to
√
q, and also toσ0,

the scattering cross section of individual particles, which we assume to be proportional to

L+W 3. Thus,σ =
√
q (L+W ).

Then, the rate at which a cluster collides takes the form,ṽ
√
N G/A. Since there are

G clusters in the system, we approximate the mean number of clusters that disappear per

unit time by:

RF (G) =
ṽ
√
N

A
G3/2 . (3.3.16)

By inserting Eqs. (3.3.14) and (3.3.16) into Eq. (3.3.13), and using thatκ = L/W and

a = L.W to expressL =
√
aκ andW =

√
a/κ, we find the following explicit expression

3More details about the scattering cross section of individual particles is given in the next section.
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Figure 3.22: Average cluster entropyHC vs. time. Symbols corresponds to simulations performed

with N = 100, κ = 4 andη = 0.034. The dot-dashed line is the approximation given by inserting

in Eq. (3.3.12) the numerical integration of Eq. (3.3.17) with γ = 0.1186 andβ = 6.

for evolution equation for the number of clusters:

Ġ = βṽ
√
N

[
1

γ
√
aκ
G−1/2 −

√
a

A

(
κ1/2 + κ−1/2

)
G3/2

]
. (3.3.17)

whereβ is a constant that is introduced to adjust the time scale of the process. Thus, the

steady state ofG simply reads:

G =
√
N [ηγ]−1/2 (1 + κ)−1/2 , (3.3.18)

whereκ is defined as before, i.e.,κ = ρa.

Inserting Eq. (3.3.18) into Eq. (3.3.12) we obtainHC as function ofκ andη:

HC(κ, η) = ln
(√

Nηγ (1 + κ) − 1
)

(3.3.19)

−
√
Nηγ (1 + κ) ln

(
1 −

√
Nηγ (1 + κ)

)
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Figure 3.23: Average cluster entropyHC at the steady state vs. particle aspect ratioκ at low

density. Symbols corresponds to simulations performed with N = 100 and η = 0.034. The

dot-dashed line is the approximation given by Eq. (3.3.19) with γ = 0.1186.

Comparing theory and simulations

Fig. 3.20 compares the time evolution ofG predicted by Eq. (3.3.17) (dotted curve) and

andG(t) measured in an individual-based simulation performed withN = 100,κ = 4 and

η = 0.034 (circles). For the numerical integration of Eq. (3.3.17) a value ofγ = 0.1186

andβ = 6 were used.γ is chosen to best fit the simulation data shown in Fig. 3.21, while

β is used to adjust the time scale of Fig. 3.20. A fitting of the simulation data shown

Fig. 3.21 by a functionC1 (1 + κ)−C2 reveals thatC2 has to be1/2. This implies that the

dependency onG of the right hand of Eq. (3.3.17) is correct.

Fig. 3.22 shows the time evolution of the cluster entropyHC corresponding to the

simulation whoseG(t) is exhibited in Fig. 3.20. In simulationsHC is measured using the

definition given by Eq. (3.3.8), i.e.,HC(t) = −
∑N

i=1 ni(t)/G(t) ln (ni(t)/G(t)) (blue

solid line). Therefore, the values ofHC reported from simulation are calculated from the

cluster size distribution. On the other hand, the black dashed line in Fig. 3.22 corresponds

to Eq. (3.3.12), whereq now is replaced byq = N/G(t), G(t) being the solution of Eq.

(3.3.17). Thus, the theoretical approximation ofHC is performed only through the mean

number of particles per cluster, which simply involvesG(t), and ignores the actual shape

of cluster size distribution, which is assumed to obey Eq. (3.3.10).
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Fig. 3.23 compares values ofHC for various values ofκ measured in simulations,

as mentioned above (circles), and calculated theoretically (dashed line). This time the

theoretical approximation is performed by inserting in Eq.(3.3.12) the asymptotic values

of G given by Eq. (3.3.18), withγ = 0.1186.

Eqs. (3.3.18) and (3.3.12) provide a phenomenological understanding of dynamics

of the number of clusters and cluster entropy far below from the transition to clustering,

but definitely they can not account for the transition itselfand the clustering properties

above it. The transition to clustering does not simply implya decrease in the number of

cluster, but also a dramatic change in the cluster size distribution. Particularly, the cluster

size distribution becomes no longer monotonically decreasing above the transition point,

as shown in Fig. 3.19. However, in the derivation of Eq. (3.3.12) we have assumed by

Eq. (3.3.10) that the cluster size distribution is a monotonically decreasing function for

all possible values ofG. As a consequence, the cluster entropyHC given by Eq. (3.3.19)

is a monotonically increasing function ofκ andη. But, as can be seen in Fig. 3.24,HC

is not a monotonically increasing function ofκ (the same can be shown forη). Moreover,

above the transition to clustering, reflected in Fig. 3.24 bythe maximum exhibited by

HC
4, the cluster entropy becomes a monotonically decreasing function ofκ.

To understand the transition to clustering and the clustering effects above the transi-

tion, we have to deal directly with the cluster size distribution. In next section we derive

a theoretical description for the cluster size distribution.

3.3.4 A theoretical description for the cluster size distribution

The study of cluster size distributions in physical processes is not new. However, most

of the effort has been focused to understand one particular non-equilibrium process: irre-

versible cluster coagulation of Brownian particles [82–89]. This kind of non-equilibrium

kinetics is frequent in nature: coagulation of colloidal particles, coalescence of rain drops,

smoke and dust, the formation of planetesimals from submicron dust grains, etc [82, 83].

Though this kinetics is remarkably important, it is not a general coagulation process.

In particular, it is assumed that clusters cannot disintegrate, i.e., they cannot split into

parts [82–85]. In consequence, clusters can only grow in time. A second important fea-

ture of these systems is that the number of particles can be considered infinite. Therefore,

4The transition to clustering is also manifested in the behavior of the cluster size distribution which

exhibits a monotonically decreasing shape before the transition, while after it, the cluster size distribution

becomes bimodal.
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Figure 3.24: Cluster entropyHC at the steady state vs. particle aspect ratioκ at high packing

fraction. Simulations performed withN = 50 andη = 0.34. Notice thatHC (κ) is not a mono-

tonically increasing function exhibitκ and exhibit a maximum atκ = 3.

cluster sizes are not limited and particle conservation is not imposed. It becomes evident

that we cannot make use of the classical coagulation theory to explain the cluster size

dynamics of the self-propelled rods. While this is true, a brief introduction to the classical

clustering theory might help to place in context the theoretical framework we develop in

this section.

The celebrated cluster coagulation model introduced by Smoluchowski in 1916 [82,

83] assumes that each cluster of particles is surrounded by asphere of influence. When

their spheres of influence do not overlap, clusters execute independent Brownian motions.

Whenever the sphere of influence of a pair of cluster touch, the clusters stick together and

form a new cluster. To simplify the theoretical derivation of the model, it is assumed

that: 1) clusters are randomly distributed in space and thisfeature persists throughout the

coagulation process, 2) only collisions between pairs of clusters are significant, and 3) the

number of new clusters of sizei+j formed per unit time and unit volume due to collisions

of clusters of sizesi andj, is proportional to the product of the cluster concentrations

Ci = ni/V andCj = nj/V , i.e.,Ki,jCiCj , whereni is the number of cluster of massi

as defined above,V is the volume of the coagulating system, andKi,j is the coagulation
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kernel. The rate equation describing the evolution ofCi(t) takes the form:

Ċi(t) =
1

2

i−1∑

j=1

Ki−j,jCi−j(t)Cj(t) (3.3.20)

−
∞∑

j=1

Ki,jCi(t)Cj(t) , i = 1, ...,∞,

where the first term of the right hand side represents all binary collisions per unit time

that lead to clusters of massi, while the second term describes the number of clusters of

massi that grow in size, per unit time, due to collision with other clusters.

The natural continuous version of Eq. (3.3.20) leads directly to an evolution equa-

tion for the cluster size distributionC(v, t), wherev denotes physical cluster size. The

evolution ofC(v, t) takes the form of an integro-differential equation:

∂tC(v, t) =
1

2

∫ v

0

K(u, v − u)C(u, t)C(v − u, t)du (3.3.21)

− C(v, t)

∫ ∞

0

K(u, v)C(u, t)du .

When a solution of Eq. (3.3.21) exists, and whether it is unique are currently open prob-

lems. Existence and uniqueness of solution for all times have been proven for the kernels

K(u, v) ≤ C(u+ v), whereC is a constant. This result has been recently extended to the

kernelsK(u, v) ≤ r(u)r(v), wherer(v) = O(v), asv → ∞ [87,88].

In the following we focus on the self-propelled rods system and derive a theoretical

description for the cluster size distribution of this system.

Derivation of evolution equation for the cluster size distribution

We want to describe the evolution of the numbernj of clusters of a given sizej through

kinetic equations. The description has to account for fusion and fission of clusters, and

conservation of the number of particles. For the fusion of clusters we adopt kinetic equa-

tions similar to the ones described above, while for clusterfission we define empirical

terms derived from the typical behavior seen in simulations. The time-evolving cluster

size distribution is given by the set of{nj (t)}∞j=1, wherenj (t) is the number of clusters

of massj at timet.
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This description neglects the geometry of clusters as well as spatial fluctuations. This

allows us to consider a single rate constant for all possiblecollision processes between

clusters of massi andj, as well as a unique disintegration constant for any clusterof mass

i. In addition we make four crucial assumptions:

i) The total number of particles in the system,N =
∑N

j=1 jnj (t), is conserved.

ii) Only binary cluster collisions are considered. Collisions between any two clusters

are allowed whenever the sum of the cluster masses is less or equal toN .

iii) Clusters suffer spontaneous fission only by losing individual particles at the bound-

ary one by one,i. e. a cluster can only decay by a process by which aj-cluster split into

a single particle plus a(j − 1)-cluster. This is motivated by observations in the above

simulations.

iv) All clusters move at constant speed,ṽ ≈ F/ζ‖, which implies that rods in a cluster

have high orientational order and interact only very weaklywith their neighbors.

Under all these assumptions the evolution of thenj ’s is given by the followingN

equations:

ṅ1 = 2B2n2 +

N∑

k=3

Bknk −
N−1∑

k=1

Ak,1nkn1 (3.3.22)

ṅj = Bj+1nj+1 − Bjnj −
N−j∑

k=1

Ak,jnknj (3.3.23)

+
1

2

j−1∑

k=1

Ak,j−knknj−k for j = 2, ....., N − 1

ṅN = −BNnN +
1

2

N−1∑

k=1

Ak,N−knknN−k (3.3.24)

where the dot denotes time derivative,Bj represents the fission rate of a cluster of massj,

defined byBj = (ṽ/R)
√
j, andAj,k is the collision rate between clusters of massj andk,

defined byAj,k = (ṽσ0/A)
(√

j +
√
k
)

. σ0 is the scattering cross section of a single rod.

R is the only free parameter and indicates the characteristiclength a rod at the boundary

of a cluster moves before it is leaving the cluster in a typical fission event. We assume

R = αL taken into account that longer rods will stay attached to cluster for a longer time.

The dynamics of clusters of an intermediate sizej is given by Eq. (3.3.23). Eqs. (3.3.22)

and (3.3.24) differ from Eq. (3.3.23) because1-particle clusters cannot decay and it can

not be the product of a collision, while aN-particle cluster can not incorporate any extra
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particle, i.e., it can not experience a collision. SinceṄ = 0 =
∑N

j=1 jṅj (t), conservation

of particles is assured.

Let us provide more details about these equations, focusingparticularly on Eq.

(3.3.23). The number of clusters of massj can grow due to the decay of clusters of mass

j + 1, first term in 3.3.23, or due to the collision of any two clusters whose masses add

up j, last term in Eq. (3.3.23). A decrease of clusters of massj may come from the

spontaneous disintegration ofj-clusters, second term in Eq. (3.3.23), as well as from the

coalescence of clusters of massj with any other cluster, third term in Eq. (3.3.23). So,

gain and loss terms come from collision as well as disintegration processes.

The rate constants

The reasoning behind the rate constantsBk andAk,j is the following. Since we are

assuming clusters are homogeneously distributed and moving at constant speed, we can

deriveAk,j by making use of the expression for collision rate of an idealgas (see Eq.

(3.3.15)). To adapt this expression to our problem, we assume 〈v〉 to be as before the

active speed̃v. σ has to be replaced by the effective scattering cross section(SCS) between

clusters of massj andk. We approximate theSCS of a cluster of massj in 2D by
√
jσ0,

whereσ0 is theSCS of a single particle (assuming that in clusters particles are aligned to

each other). So, the effectiveSCS between clustersj andk becomesσ = σ0(
√
j +

√
k)

(explicitly using the fact that we are in 2D).ρ has to be substituted bynj/A, where

A is the system area. Finallyωj,k represents the collision rate of ak-cluster againstj-

clusters. Thus, the total number of collisions per unit timebetweenj- andk-clusters

becomesωj,knk = ṽσ0(
√
j +

√
k)(nj/A)nk = Aj,knjnk, and from this expression we

obtainAj,k = (ṽσ0/A)
(√

j +
√
k
)

.

For the rate of disintegration we assume a probability of loosing a particle proportional

to the number of particles that conforms the edges of the cluster. For ai-cluster we

approximate this number by
√
i. In addition we assume that there is a characteristic time

which is associated to the time a particle lasts at the edge ofthe cluster. And as before, by

the Buckinghamπ theorem [81], we know that this time has to be proportional toeither

L/ṽ or W/ṽ, or a combination of both. Since elongated particles are more stable than

short particles, we simply take this time to beR/ṽ, whereR is defined asR ∼ L =
√
ακ.

All this together leads to a splitting rate for thei-cluster,Bi = (ṽ
√
i/(αL).

We are interested in expressing Eqs. (3.3.22)-(3.3.24) as function of ṽ, a, A and
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Figure 3.25: Left: The scheme illustrates the proposed experiment to measure the scattering cross

section of individual particles (see text). The scatteringcross section of the particles at the origin

is a function ofφ. Right: Effective scattering cross sectionσ0 as function of the particle aspect

ratioκ. The solid line corresponds toσ = (2/π)
√

a (
√

κ + 1/
√

κ)+
√

a/κ, while the dot-dashed

line is the simplified approximation given by Eq. (3.3.25).

κ. There are two term we need to transform:L andσ0. Recalling thata = LW and

κ = L/W , we expressL asL =
√
a κ. Forσ0 we have first to remember the definition

of SCS. Assume that we have one rod whose center of mass is fixed at theorigin and that

we shoot the rod with point-like particles from one place to the right of the origin and in

such a way that the point-like particles move parallel to thex-axis (see left panel of Fig.

3.25). SCS is the effective ”area” (in 2D, segment) that these particles can hit. The size

of this segment depends on the orientation of the rod with respect to the x-axis, which is

given by an angle that we callφ. As can be seen in the left panel of Fig. 3.25, theSCS

for a given angleφ is σ(φ) = L sin(φ) +W cos(π/2− φ). We want to know the effective

SCS of a rod which can be oriented with equal probability in any direction. This quantity

takes the formσ = (2/π)
∫ π/2
0

σ(φ)dφ = (2/π)(L + W ), where the integral runs from

0 to π/2 due to the symmetry of the problem and2/π symbolizes that all directions are

equally possible. Since in the system we do not have point-like particles but rods, the

actual expression forσ readsσ = (2/π)(L + W ) + W , assuming we shoot with rods

whose long axis move parallel to the x-axis. However, we onlyneed an estimation of a
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single rodSCS to plug into the expression ofAj,k, and so we approximateσ0 simply by:

σ0 =
√
a

(√
κ+

1√
κ

)
, (3.3.25)

where we have used thatL =
√
a κ andW =

√
a/κ. The right panel of 3.25 shows the

scattering cross section of single rods as function of the aspect rationκ.

We have seen that Eqs. (3.3.22)-(3.3.24) are function ofṽ, a, A andκ. Integrating

them with the same parameters used in the simulation and initial conditionnj (t = 0) =

Nδ1,j , we can compare the simulations and the explained rate equation approach (see Fig.

3.19). Next section is devoted to this issue.

Comparing theory and simulations

We want to compare the steady state of Eqs. (3.3.22)-(3.3.24) and the long time behav-

ior of the simulations, which we assume to be also in their steady state. We make the

comparison through the weighted cluster size distributionp(m) = n0
mm/N , wheren0

j

symbolizesnj(t) for t→ ∞. The best agreement between the theory and simulations for

active particles is found for a choice ofα = 1.0 ± 0.05 (see Fig. 3.19). Hence, we will

useR = L in the following.

To understand the relation between the parameters of the model and clustering effects,

we rescale Eqs. (3.3.22)-(3.3.24) by introducing a new timevariable: τ = tṽ/
√
aκ. In

the dimensionless model the equations read:

ṅ1 = 2
√

2n2 +
N∑

k=3

√
knk −

N−1∑

k=1

(√
k + 1

)
nkn1

ṅj =
√
j + 1nj+1 −

√
jnj + P [

1

2

j−1∑

k=1

(√
k +

√
j − k

)
nknj−k

−
N−j∑

k=1

(√
j +

√
k
)
nknj ] for j = 2, ....., N − 1

ṅN = −
√
nnN +

1

2

N−1∑

k=1

(√
k +

√
N − k

)
nknN−k (3.3.26)

whereP is the only dimensionless parameter and is defined asP = (κ + 1)a/A. Notice

that ṽ 6= 0 is scaled and does not affect the qualitative dynamics of thesystem. In the
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Figure 3.26: The dimensionless critical parameterPc as function of the number of particlesN .

The slope of the dashed line is−1.026 ± 0.023.

dimensionless model the parameterP stands for the ratio between fusion and fission

processes and therefore triggers the transition from a unimodal to a bimodal cluster size

distribution (Fig. 3.19), as well as the crossover exhibited byMT between a power-law

and a log-tail (Fig. 3.28). Given the system areaA, the rod areaa, and the number of rods

N , we can estimateκc by:

κc = Pc (N)
A

a
− 1 (3.3.27)

wherePc (N) is the critical value ofP above which clustering set in. Since the transition

occurs when the distribution is no longer monotonously decreasing, we can accurately

determine the critical transition parameterPc using abisection-based method. Given an

interval [a, b] of the parameterP , assume that forP = a the integration of Eq. (3.3.26)

reveals an monotonically decreasing asymptotic distribution, while forP = b the inte-

gration leads to bimodal distribution (specifically, a non-monotonically decreasing dis-

tribution). Now we setP = (a + b)/2 and perform the integration. If the resulting

distribution is monotonically decreasing, we know thatPc ∈ [(a + b)/2, b]. Otherwise,

Pc ∈ [a, (a + b)/2]. By repeating this process, we can reduce the interval containing Pc
and determine with accuracy the value ofPc.

At this point it is worth noticing thatκc also depends onN , i.e., the total number of

particles in the system, and correspondingly, the number ofordinary differential equations

appearing in Eq. (3.3.26). To have a complete understandingof the problem we need
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to know the dependency ofPc with N . Fig. 3.26 showsPc versusN , wherePc was

obtained through the bisection-like method explained above. The slope of the dashed line

is−1.026±0.023. Assuming thatPc is strictly inversely proportional withN and making

some easy algebra, we observe thatκc is a function exclusively of the packing fraction

regardless of the number of particles:

κc =
C

η
− 1 (3.3.28)

where the estimated value ofC wasC ∼ 1.46. Eq. (3.3.28) defines theκ-η phase diagram

of the problem. Fig. 5.3 shows that the prediction given by Eq. (3.3.28) is in accordance

with simulation results. For the range of parameters used inthe individual-based simula-

tions, we retrieve in the rate equation approach the unimodal shape of the weighted cluster

size distribution for small values ofκ andη, and the bimodal shape for large values of

the two parameters. In Fig. 3.19 a comparison of the cluster size distribution obtained

in simulations and from the rate equation approach is shown.For active particles, given

a density of particles (equivalently, a packing fraction),Eq. (3.3.28) predicts the critical

aspect ratioκc that triggers the transition to clustering. Eq. (3.3.28) can also be inverted

to obtain for a given particle aspect ratioκ, the critical density/packing fractionηc above

which clustering set in. To account the fluctuations introduced in individual based simu-

lations of Brownian-active particles,α, which for active particles takes the valueα = 1,

has to be replaced by0 ≤ α < 1. The dashed line in Fig. 5.3 indicates that fluctuations

shift the curve given by Eq. (3.3.28) upwards, i.e.,κc becomesκc = C/(αη) − 1.

As mentioned above,Pc defines the transition to clustering which is manifested by the

emergence of a bimodal cluster size distribution, and also by a crossover inMT (κ) from

a power-law to a log-tail.MT is defined as the probability of observing the maximum

cluster, i.e., a cluster of sizeN : MT = p(N, t → ∞). This quantity, as shown in Fig.

3.28 for the dimensionless model, exhibits two regimes. To the left ofPc, MT grows

rapidly with P , and a power-law regime is observed. To the right ofPc, the growth of

MT dramatically slows down, andMT (P ) exhibits a logarithmic regime. Though these

two regimes are always present, for large values ofη the power-law regime is observable

in a very small range ofκ, as shown in Fig. 3.29. It is instructive to compare Figs. 3.29

and 3.17. In Fig. 3.17M , the mean maximum cluster size measured in simulations,

experiences a fast growth for small values ofκ and then it seems to saturate. On the other

hand, in Figs. 3.29 we observe thatMT grows rapidly for small valuesκ and very slowly,
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Figure 3.27: κ-η phase diagram. The solid line corresponds to the transitioncurve predicted

by equation3.3.28. The dashed line corresponds to the same kind of analysis butconsidering

R ∼ αL, with α = 0.7. The symbols indicate IBM simulations. (crosses) refer to unimodal,

while (circles) to bimodal cluster size distribution of active particles.(stars) refer to unimodal,

while (hexagrams) to bimodal of active-Brownian particles.

i.e., logarithmically, for large aspect ratios. These two regimes are also exposed by mean

cluster sizeφ, as can be observed in Fig. 3.30. As shown in the inset of Fig. 3.28, the

crossover between these two regimes coincides with maximumgrowth rate ofMT with

P . This provides another interpretation forPc, as the value ofP at whichMT exhibits its

maximum. Notice that slight deviations ofP around this value are reflected as remarkable

changes in the collective behavior of the rods.

Study of the cluster size distribution with system size

Eq. (3.3.28) suggests thatκc depends only onη. On the other hand,η is the ratio between

the area covered by particles and the system area. But, now the question is how the cluster

size distribution scales with the system size. We understand by system size, number of

particles, but keeping constantκ. This means that as we add more particles to the system,

we also enlarge the size of the box in which particles move. From our analysis we can

conclude that in principle theκc should be the same, but we cannot say anything else

related to the distribution. The first problem we face is thatby comparing distribution
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Figure 3.28: Crossover between the power-law and the log-tail regimes in the dimensionless

model. The inset shows thatPc is located in the maximum growth rate ofMT with P .
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the log-tail regime forκ < κc. The inset shows the mean maximum cluster sizeM vs κ for IBM
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Figure 3.32: Fraction of particles living in clusters of mass bigger than half system size as function

of the system size.

corresponding to different system sizes, the number of clusters in each system are differ-

ent. We can overcome this difficulty by dividing the cluster index byN . If we do so,

we fix this problem, but now we face another: The area under thecurves are different.∑N
i=1 piδx = 1 with δx = 1 for the case without ”normalization” of the number of nodes.

But now we get
∑N

i=1 piδx/N = 1/N . To solve this problem, we also renormalize the

probability by multiplypi by N . In Fig. 3.31 curves forη = 0.24, κ = 12 and various

cluster sizes are shown.

Now we could ask whether the bimodal distribution is reinforced or weakened by the

system size. If we observe directly the distribution we might get a wrong impression,

because it seems that the clustering effects decrease with system size. However if we

take a quantitative measure asQ, where we defineQ as the ratio between the number

of particles staying in clusters of massm > N/2 and those staying in clusters of mass

m < N/2, we realize that in larger system sizes clustering effect are stronger (see Fig.

3.32). To be more precise, from Fig. 3.32 we learn that the bigger the system size, the

larger the fraction of particles living at large clusters.

In summary, this study suggests that the clustering effectsdiscussed so far are also

present in the thermodynamical limit.
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3.4 Conclusions

Through individual-based simulations we have modeled a system of self-propelled par-

ticles in a noisy environment. Interactions between particles are based on the explicit

consideration of particle shape, i.e., interactions depend on the overlapping area. The

model exhibits a rich collective behavior that depends on the packing fractionη, noise

amplitude, and particle aspect ratioκ.

We have found that elongated particles, i.e. with large aspect ratioκ, form densely

packed clusters inside which particles are aligned and moving in the same direction. We

have found multiple evidence of this process. At the level ofthe speed distribution, it

has been noticed that large values ofκ induce a shrinking of the width of the distribution

around the active speed in such a way that the mode of the distribution shifts towards the

active speed. The width of the angular velocity distribution, on the other hand, increases

with κ, for lower values of the aspect ratio, and decreases at largevalues of it. This has

been noticed by the shape of the average angular velocity andaverage square angular

velocity, as function ofκ, that exhibit a maximum at intermediate values ofκ. The spatial

arrangement of particles has been studied through the two-body correlation function that

has revealed that particles locally arrange in a side-by-side and head-to-tail manner. A

kind of spin-spin correlation function has been used to analyzed local orientation ordering.

We have learned that polar local ordering is facilitated byκ. While isotropic particles do

not exhibit local polar ordering, elongated particles succeed in forming densely packed

cluster in which particles point in the same direction and consequently move coherently.

Finally, through the study of the ferromagnetic and liquid crystal order parameter we have

provided evidence that suggests thatκ also induces global orientation ordering.

Interestingly, we have also found that these self-propelled rod-shaped particles, inter-

acting only through short range repulsive interactions, exhibit non-equilibrium clustering

for sufficient large values ofη andκ. We have observed the active forceF establishes a

persistence in particle movement that makes active and active-Brownian particles qualita-

tively different to Brownian particles. TheF induces particle clustering, while noise tend

to destroy this effect. In the presence of reflecting boundary condition, particles cluster on

the reflecting walls, while for periodic boundary conditions particles form polar-oriented

clusters which swarm around.

The onset of clustering has been defined by a transition from an unimodal to bimodal

cluster size distribution. This transition is reproduced by a mean-field description of the
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cluster size distribution, which yielded a simple criterion, κ = C/η − 1, for the onset of

clustering. This functional form withC ≈ 1.46 provides a good fit to the results of the

active particles simulations. The high density inside the cluster leads also to alignment

of rods and coordinated motion of all particles in the cluster. It has been shown that the

transition to clustering, as defined here, is practically independent of the system size, resp.

the number of particles, and that clustering effects get stronger at large system sizes. We

have provided evidence that suggests that all these findingshold in the thermodynamical

limit. In addition, we have shown that the transition is alsoreflected in the crossover of

the probability of the maximum cluster size,MT , between a power-law and a logarithmic

tail. The analysis ofMT has revealed thatκc is located at the maximum growth rate of

MT with κ. Interestingly, the transition to clustering is also defined as the point, e.g.,κ,

at which cluster entropyHC takes its maximum value. We have also shown that far below

the transition, the clustering properties of the system obey the maximum entropy principle

applied toHC , which allowed us to describe the system in terms of the totalnumber of

clustersG.

It is instructive to compare our result forκc rewritten in the formκη + η ≈ 1.46

with the formula for the isotropic-nematic transitionκη = 3π/2 ≈ 4.7 found in the

two-dimensional version [90] of Onsager’s mean-field theory for Brownian rods [71].

This shows that actively moving rods can achieve alignment at much lower densities than

Brownian rods resp. particles in equilibrium systems. The clustering phenomenon is

absent in simulations with isotropic self-propelled particles as well as with Brownian

rods.

The model introduced in this chapter provides also an alternative explanation for col-

lective behavior of rod-shaped objects. Previous swarmingmodels have achieved swarm-

ing of particle, i.e., aggregation, clustering and local polarization of particles, by assum-

ing attractive interaction plus some local alignment rule [40,41,46]. Here we have shown

that volume exclusion interactions and the rod shape of particles suffice to produce swarm

formation. The former observation offers a simple physicalexplanation for the formation

of swarms and aggregates in many gliding rod-shaped bacteria, that often precedes the

formation of biofilms and the appearance of more complex patterns. Our findings sug-

gest that control ofκ andη regulates collective behavior of bacteria. This is relevant for

the following phenomena in myxobacteria: i) the different evolving colony shapes asso-

ciated with different strains exhibiting different vegetative cell shapes (H. Reichenbach

in [47]), ii) the diversity of the collective movement observed during fruiting body forma-
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tion which is accompanied by changes of the cell shape as during sporulation (D. White

in [47]), iii) the rapid growth and subsequent saturation ofthe ’swarm’ expansion rate with

initial density, iv) the dramatic increase in local cell density experienced by active mov-

ing bacteria during fruiting body morphogenesis in which geometry of cell arrangement

allows maximum cell packing (D. Kaiser and L. Kroos in [47]),and v) the appearance

of aggregates in areas of prior high cell density (D. White in[47]). However, real bio-

logical systems usually employ more complicated mechanisms like chemical signals and

adhesion to achieve and enhance cell aggregation and swarming. The model studied here

should be considered as a minimal model for collective phenomena of actively moving

assemblies.

Finally, the current study can be thought as an example of short-range, contact based,

interaction mechanism of self-propelled particles, in which arrangements of dipole forces

give rise to a complex dynamics through the interplay of mechanical stress and reorien-

tation of the dipoles [91, 92]. From this point of view, the applicability of these results

ranges from gliding cells [93] to active films [94,95].
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Chapter 4

Collective motion in a simple model of

polar particles with apolar interactions

Introduction

In Chapter 3 we have learned that self-propelled rods interacting by volume exclusion can

exhibit collective effects like clustering and swarming for large enough values of particle

density and particle aspect ratio. Remarkably, the interaction among these particles does

not imply a local polar alignment of the particles. Fig. 4.1 sketches two typical colli-

sion events that lead to different local orientation of the particles. As illustrated by the

figure, collisions among self-propelled rods can result in parallel as well as antiparallel

alignment of the particles. This challenges the idea that coherent collective migration of

self-propelled particle in absence of long-range signals and external forces is achieved

only by polar alignment rules.

In this chapter a clear distinction is made between two basicalignment mechanisms:

(1) theferromagnetic (F ) alignment by which particles tend to move parallel to each oth-

ers, and (2) theliquid crystal (LC) alignment, by which particles tend to move parallel

as well as antiparallel to each others (see Fig. 4.2). TheF -alignment, introduced in the

context of SPPs by Vicseket al. [34] and studied by many others [40–43,96], may explain

the collective motion observed in some biological exampleswith strong hydrodynamical

interactions as fish schools [26], swimming bacteria [97], or chemotactic microorgan-

isms [98,99]. On the other hand, theLC-alignment, as said above, is present when volume

exclusion is the main interaction among agents, or when it isunlikely to consider U-turn
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t 1t t t1 (b)0 0(a)

Figure 4.1: An example ofLC alignment mechanism: collisions of anisotropic SPPs can lead to

parallel (a) or antiparallel (b) alignment of the particles. The arrows indicate the active velocity

of the particles.t0 and t1 refer to the configuration before and after the collision, respectively.

See [100].

maneuvers. For instance, gliding bacteria, e.g., myxobacteria in the early stages of the life

cycle [27, 28] as well as actin and tubulin filaments [29, 30] are good examples of SPPs

with LC-alignment. Despite the importance of this kind of alignment, LC has received

comparatively much less attention thanF -alignment. Only recently Ramaswamyet al.

proposed an hydrodynamical description of driven particles withLC-alignment [31]. In

their study they assumed to be in the nematic phase and reported that their system exhibits

giant fluctuations [31]. These findings were confirmed by Chatéet al. [48] through exten-

sive simulations of a system of shaken particles withLC-alignment, and in experiments

with driven granular media [50]. It was also shown that a discrete model of lattice-gas

particles coupled to an angle field and exhibiting a liquid crystal angular dynamics is, in

the nematic phase, intrinsically phase separated [49].

In this chapter, we introduce and analyze a simple model for self-propelled particles

with persistent motion and aLC-alignment mechanism, by which particles align their di-

rection of motion to the average local director. The model can be thought as an abstraction

of the self-propelled rods model presented in Chapter 3, where the effects of volume ex-

clusion interaction are now reduced to a local alignment rule. It has to be pointed out that

particles are truly self-propelled, hence polar, and not like in [48–50], driven by shaking

the system. Through extensive simulations we provide evidence that shows that at high

density the system exhibits a continuous transition to orientational order. Interestingly,

at high density ordering sets in before clustering. The homogeneous density scenario at

which orientational order emerges at high density will allow us to propose in Chapter 5

an effective mean-field equation to describe the orientational dynamics. For the contrary,

at low density the onset of orientation ordering and clustering starts at the same critical

orientational noise. We show that orientational order at low density emerges from the in-

terplay between orientational and clustering dynamics. Furthermore, we provide evidence
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Figure 4.2: The scheme illustratesF - andLC-alignment mechanism. Suppose the initial configu-

ration is given by (a). TheF -alignment forces neighboring particles to move in the samedirection

as shown in (b). On the other hand, ifLC-alignment is implemented, particles also align their

velocity vector but in such a way that it is allowed for them tomigrate in the same direction as

well as in the opposite direction, as depicted in (c). NoticethatF -alignment causes particle A to

perform a long turn, almost a U-turn (see (a) to (b)), whileLC-alignment implies a remarkable

smaller turn (see (a) to (c)).

that suggests that the transition to ordering is in this casediscontinuous. Simulation ev-

idence indicates that the character of the transition to ordering is highly dependent on

particle density, and being for higher densities mean-fieldtype transition. In addition, we

show that also diffusive particles at high density can exhibit a second order phase tran-

sition. However, orientational ordering in diffusive particles at low density is absent and

no density inhomogeneities or clustering effects can be expected. These findings indicate

that the phase transition occurs rather due to mixing of particles than exclusively to the

directed active motion.

4.1 The individual-based model

We consider point-like particles moving at constant speed on a two dimensional space

with periodic boundary conditions. The state of a particle at time t is given by its position

xi and its direction of motionθi. As in Vicsek’s original model [34], a fast local relaxation

of the direction of motion dynamics is assumed. The evolution of the i-th particle is

described by the following updating rule:

xt+∆t
i = xti + v0v

(
θti
)
∆t (4.1.1)

θt+∆t
i = arg




∑

|xt
i−xt

j|≤ǫ
f
(
v(θtj),v(θti)

)

+ ηti (4.1.2)
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Figure 4.3: The scheme illustrates the mapping performed bythe functionf
(
v(θtk),v(θti)

)
. In the

example,f projectsj on the solid semicircle by making a180-degree turn, i.e.,j′, while leaves

unchangedk. See text.

where v0 is the constant speed of the particles,v(θi) is defined asv(θi) =

(cos(θi), sin(θi)), ∆t represents the temporal integration step, the sum in Eq. (4.1.2)

runs also overi, arg (b) indicates the angle of the vectorb in polar coordinates,ηti is a

delta-correlated white noise with a strengthη (ηtiǫ
[
−η

2
, η

2

]
), andf (a,b) represents:

f (a,b) =

{
a if a.b ≥ 0

−a if a.b < 0
(4.1.3)

The reasoning behind the functionf is as follows. We want particlei to align its direction

of motion to the local average director. Instead of performing a normal velocity average

as in [34], theith particle calculates a weighted velocity average by mapping all its neigh-

boring velocities (including its own) to a semicircle whosezenith is given byv(θti). The

procedure is illustrated in Fig. 4.3. Notice that due to thisparticular average, particles

never turn more than 90 degrees to the left or to the right in one time step. Particles always

perform the minimum turn to align their velocity direction to the local director, and so the

movement is always smooth. In the limiting case ofv0 = 0, the model becomes an analog

to the model studied in [101].

4.1.1 Parameters and boundary conditions

Simulations were carried out in a 2D box of areaL×L with periodic boundary conditions

and a random initial configuration. Given a system sizeL, and a radius of interactionǫ,

there are two parameters which determine the system behavior: particle densityρ =

N/L2, whereN is the number of particles, and the directional noise strength η. Fig. 4.4
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(a) (b) (c) 

Figure 4.4: Snapshots of simulations. Number of particles,N = 100, system sizeL = 30, and

radius of interactionǫ = 1. (a) random initial condition. After some time, for a noise strength

η = 0, the system evolves towards the velocity orientational order state (b). The double arrow

depicts the global director. For finite noise, (c)η = 0.2, particles form groups moving coherently

in random direction. The arrows indicate the direction of motion of some clusters.

illustrates the dynamics of the system at low and high valuesof the noise strengthη. The

figure shows snapshots of simulations performed withN = 100 particles of interaction

radiusǫ = 1 in a box of linear sizeL = 30. When the noise intensityη is small enough,

the system evolves towards a state with orientational order, see Fig. 4.4(b). On the other

hand, for large values ofη the system remains disordered, while at intermediate values

of η a weak ordering is observed in which particles form groups that move in random

direction as shown in Fig. 4.4(c).

All simulations have been performed with∆t = 0.1, v0 = 0.25 and ǫ = 1. Five

densities have been studied:ρ = 0.25, 0.5, 1, 2 and4. In each case, system sizes range

from N = 28 to N = 214 particles. Typically simulations have been run for∼ 106

integration steps.

4.1.2 Order parameters

Orientational order

The modulus of the normalized total momentum distinguisheswhether there is a favored

direction in the system and takes the form:

SF (t) =




(

1

N

N∑

k=1

cos(θtk)

)2

+

(
1

N

N∑

k=1

sin(θtk)

)2



1/2

. (4.1.4)
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Notice that using complex notation Eq. (4.1.4) can be expressed asSF (t) =∣∣∣ 1
N

∑N
k=1 e

iθt
k

∣∣∣. We are interested in the temporal average of this quantity after the ini-

tial transient which simply reads:

SF =
1

T − tt

T∑

i=tt

SF (i) , (4.1.5)

whereT refers to the simulation time andtt to the transient time before the steady state

is reached.SF = 1 indicates that all particles point in the same direction.SF = 0 might

refer to a completely disordered situation, but also it might correspond to some peculiar

ordered states as explained below.

The presence of a liquid-crystal alignment, as the one described by Eq. (4.1.2), makes

possible the emergence of two favored direction in the system which are opposite to each

other. If half of the particles move in one direction and the other half in the opposite

direction,SF vanishes. A different order parameter has to be used to distinguish this

ordered state. We recall the order matrixQ of liquid crystals [72]. Specializing this for

2D and taking the largest eigenvalue, we obtain the following scalar orientational order

parameter1:

SLC(t) =
1

4
+

3

2

√√√√1

4
− 1

N2

{
N∑

i,j

v2
xiv

2
yj − vxivyivxjvyj

}
(4.1.6)

wherevxi andvyi are defined asvxi = cos(θti) andvyi = sin(θti). As before, we are

interested in the temporal average:

SLC =
1

T − tt

T∑

i=tt

SLC(i) . (4.1.7)

SLC takes the value1 when all particles are perfectly moving along the same director, and

1/4 in the disorder phase, where particles move with equal probability in any direction. It

is worth noticing thatSF = 1 impliesSLC = 1, converselySLC = 1 does not necessary

imply SF = 1. The nematic phase is defined bySLC = 1 while simultaneouslySF = 0.

Notice thatSLC can be normalized to go from0 to 1:

SLCn =
4
(
SLC − 1/4

)

3
. (4.1.8)

1For the detailed derivation see Appendix B.
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Using complex notationSLCn can be expressed asSLCn =
∣∣∣ 1
N

∑N
k=1 e

i2θk

∣∣∣, where we have

assumedθk to represent a stationary distribution of angles.

Interestingly, for equilibrium two-dimensional systems with continuum symmetry,

i.e., for v0 = 0, as stated by the Mermin-Wagner theorem [33], and confirmed by sim-

ulations, long-range orientational order cannot emerge. Whenv0 > 0 the situation is

different, the system becomes non-equilibrium, and orientational order can emerge. Vic-

seket al. propose that the kinetic transition exhibited by these non-equilibrium systems

is of second-order [34, 102]. It has been suggested that the transition forv0 → ∞ could

be described by a network model which, for additive noise, also predicts a second-order

transition [103]. In contrast, Chatéet al. provided evidence that shows that in the ther-

modynamical limit the transition may be discontinuous [40,41], and that there is a critical

system size above which a crossover from an apparent second to first order character of

the transition can be observed.

Clustering

On the other hand, clustering is characterized through the weighted cluster size distribu-

tion p(m). p(m) is the probability of finding a randomly chosen particle belonging to a

cluster ofm particles and can be expressed asp(m) = m 〈nm〉 /N where〈nm〉 represents

the temporal-average number of cluster of massm. We consider that two particles are

connected and belonging to the same cluster when their centers of mass are separated by

a distance smaller or equal to the diameter of the interacting neighborhood.

4.2 Orientational order and clustering at high and low

densities

Simulations at high and low density exhibit remarkable differences which are manifested

in the character of transition from orientational disorderto order, including a different

response ofSF andSLC to changes in the noise intensityη, and the onset of clustering

effects. In this section, a systematic comparison between these two scenarios, i.e., high

and low density, is presented.

Fig. 4.5(a) shows the behavior of the orientational order parametersSF andSLC vs.

the noise amplitudeη for a high density density scenario corresponding toρ = 4. Simula-

tions were performed withN = 212 particles. A transition from a disordered (isotropic) to
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an orientational ordered (”nematic”) state is indicated. Notice that in contrast to classical

liquid-crystal, for low values ofη, SF does not vanish. It will be explained below that this

behavior is observed even for larger system sizes.

The vertical dot-dashed line in Fig. 4.5(a) indicates the onset of density instabilities.

To the right of that line particle distribution is roughly homogeneous in space for all times.

Fig. 4.5(b) illustrates this situation by showing a typicalparticle configuration slightly to

the right from the vertical line. The simulation snapshot corresponds to the2.5 105 inte-

gration step after the beginning of the numerical experiment whose valueη is indicated

in Fig. 4.5(a). To the left of the vertical line density instabilities becomes evident. Figs.

4.5(c) and (d) show typical patterns at the onset of the density instability, (c), and slightly

to the left from it, (d). Both snapshots correspond to the2.5 105 integration step. The

corresponding values ofη are shown in Fig. 4.5(a). Notice that the polar order param-

eterSF does not take off simultaneously withSLCn but surprisingly after it, at the same

point where the density instabilities become noticeable. Below it will be shown that this

phenomenon is not a finite size effect. Moreover, it will be shown thatSF increases with

system size making the effect even more pronounced. The gathered evidence suggests

that density instabilities are mainly due to the coupling between local polar order and

local density (i.e., formation of polar clusters) rather than to the interplay between local

apolar order and local density as known to occur in liquid crystals [72] and driven apolar

particles [31,49,50].

As said above, at low density the scenario at which orientation order emerges is signif-

icantly different. Fig. 4.6(a) shows, in first place, that for ρ = 0.25 andN = 214 particles,

the transition to orientational order characterized bySLCn is much smoother than at high

density. Secondly, it is observed thatSLCn andSF , in contrast to the high density case,

take off simultaneously. Moreover, both order parameters adopt roughly the same values

near the the onset of orientational ordering. This suggeststhat it is the emergence of polar

order what set in at very first place. As said above, an increase SF results always in an

increase ofSLCn (recall the opposite is not true). Notice, however, that asη is decreased

to low values, apolar order becomes dominant. As mentioned above, the onset of density

instabilities at high density seems to be caused by the coupling between local polar order

and local density. Findings at low density supports this hypothesis since the onset of ori-

entational ordering, resp. onset of polar order, is accompanied by the onset of clustering.

Fig. 4.6(b) shows that before orientational order set in, the spatial distribution of particle

is roughly homogeneous. The snapshot corresponds to the2.5 105 integration step and
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Figure 4.5: Orientational dynamics and clustering at high density. Number of particlesN = 212

and densityρ = 4. (a) orientation order parameterS vs. noise amplitudeη. Symbols are average

over10 realizations. (b)-(c) snapshots of the simulations for thevalues ofη indicated in (a) at the

steady state, time step2.5 105. Particles are represented just by arrows which indicate the direction

of motion of the particle.
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Figure 4.6: Orientational dynamics and clustering at low density. Number of particlesN = 212

and densityρ = 0.25. (a) orientational order parameterS vs. directional noise amplitudeη.

Symbols are average over10 realizations. (b)-(c) snapshots of the simulations for thevalues ofη

indicated in (a) at the steady state, time step2.5 105.

the value ofη is indicated in Fig. 4.6(a) (equivalently for Fig. 4.6(c) and (d)). Just when

orientational order emerges, as shown in Fig. 4.6(c), clustering effects become evident.

As the noise is decreased, andSF becomes larger, clustering effects are more pronounced,

Fig. 4.6(d). We stress that these patterns correspond to typical particle configurations in

the ”steady state” of the systems. Clusters do not keep on growing as in a phase separation

process. As it will be shown below, clusters are formed and disintegrated in a dynamical

way. The rate of growth and disintegration of the clusters ishighly dependent on the value

of η. Given a value ofη the cluster size distribution reaches after a transient a steady dis-

tribution. At low density, the orientational dynamics is highly coupled to the clustering

dynamics.
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4.2.1 System size study

We are interested in knowing whether the above mentioned phenomena persist in the ther-

modynamical limit or are just a finite size effect. We start out by questioning whether there

is genuine long-range order. The Mermin-Wagner theorem states that two-dimensional

systems with continuum symmetry cannot exhibit true long-range order [33]. Further-

more, Koterlitz and Thouless showed how in the planar XY-model the order parameter,

i.e., the magnetization, decays with the system size [104, 105]. As verified later on in

simulations [106], the order parameterφ of the model scales with the system sizeN as

〈φ〉 ∼ N−ψ(T ), whereT refers to the temperature in the system andφ a function of the

temperature. This implies that for all finite temperatureT , in the thermodynamical limit,

i.e.,N → ∞ the order parameterφ vanishes. The same kind of scaling was observed in

equilibrium simulations of two-dimensional long, thin, hard spherocylinders [107] and in

a non-equilibrium two-dimensional system of driven apolarparticles interacting by aLC-

alignment [48]. If our system does not exhibit a genuine long-range order, then we expect

it to present quasi-long-range order as in a Kosterlitz-Thouless transition. We test whether

the parameter scalesSLC asSLC ∼ N−ψ(η). Fig. 4.7 showsSLC(η,N) as function of the

system sizeN for various values of the noise intensityη. Simulations were performed

at high density,ρ = 2. According to the Kosterlitz-Thouless scaling, for a givenη, SLC

obeys a particular decreasing power-law of baseN whose exponent depends onη. The

different curves in Fig. 4.7(a) correspond to different values ofη. Figs. 4.7(a) and (b) are

in log-log scale. Since straight lines are not observed, particularly evident for large val-

ues ofη, we concludeSLC(η,N) does not scale as predicted by the Kosterlitz-Thouless,

and consequently we discard quasi-long-range order at highdensity. Simulations at low

density, as it will discuss below, are much more noisy and it was not possible to draw any

conclusion regarding the scaling ofSLC(η,N).

In the following we explore the behavior ofSLCn andSF , and their interplay, with

the system sizeN . Fig. 4.8(a) showsSLCn andSF measured in simulations performed

with N = 1024 andN = 16384 particles at a densityρ = 0.25. For both system sizes

the curves forSLCn andSF take off simultaneously and grow together up to roughly the

same value ofη, regardless of the system size. As expected, the valueSLCn increases for

smaller system sizes. WhileSF follows the curve ofSLCn , the same behavior inSF is

observed. The numerical evidence supports the hypothesis that at low density the onset

of orientational order is due to the onset of polar order.

The situation at high density is remarkably different. Fig.4.8(b) showsSLCn and
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Figure 4.7:SLC order parameter vs. system sizeN for various values of the noise intensityη.

Particle densityρ = 2. (a)η = 0.001 (squares),0.01 (upside-down triangles),0.1 (diamonds) and

0.3 (triangles). (b)η = 1.0 (squares),1.3 (upside-down triangles) and1.6 (diamonds). (a) and (b)

are in log-log scale. Notice thatSLC(η,N) does not scale asSLC(η,N) ∼ N ζ(η) as expected in

a Kosterlitz-Thouless transition.

SF measured in simulations performed withN = 1024, N = 4096 andN = 16384

particles at a densityρ = 2.0. As expected, the valueSLCn increases for smaller system

sizes. Surprisingly,SF exhibits the opposite behavior.SF increases with system size.

The transition from a disordered to an apparent nematic state suggested bySLCn comes

accompanied by a strong polar order whose presence becomes more pronounced at larger

system sizes. This finding rules out the possibility of a pureclassical nematic state in favor

of a more complex transition involving an interplay betweenSLCn andSF . Remarkably,

SF takes off at a lower value ofη thanSLCn for all system sizes. Contrary to what was

observed at low density, at high density orientational order emerge due to the onset of

apolar order. Let us notice that the later onset of the noisy polar order coincides with the

onset of density instabilities (see Fig. 4.5).

4.2.2 Classification of the transitions

Assuming that there are true long-range order at high and lowdensities, here we look

for evidence to determine the character of the phase transition. At this point it has to

be said that Gregoireet al. [40, 41] show that systems of self-propelled polar particles
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Figure 4.8:SLCn andSF vs. η for various system sizes. (a)ρ = 0.25 and (b)ρ = 2.0. Notice that

at low densitySF seems to decrease with the system sizeN , while at high density the opposite is

observed.

interacting by aF -alignment exhibit a first-order phase transition2. We wonder whether

the order parameterSLCn in self-propelled polar particles interacting this time through

an apolarLC-alignment exhibits such an evidence of first-order phase transition. The

Binder cumulantG is good measure to distinguish between first and second orderphase

transitions. The cumulantG is defined asG = 1 − 〈SLCn
4〉/
(
3〈SLCn

2〉2
)

and measures

the fluctuations of the order parameter.G falling to negative values near the critical noise

intensityηc is a sign of a discontinuous transition. Fig. 4.9 shows the Binder cumulantG

as function of the noise intensityη for various densities. As it can be seen in the figure, for

all the explored densities and all values ofη, G remains positive. However,G presents a

minimum which becomes more pronounced at lower densities. It could be argued that the

minimum exhibited byG, particularly at low densities, could become negative for much

larger system sizes. To solve this problem we look at other estimates of the character of

the phase transition, particularly at the fluctuations of the order parameter.

Fluctuations ofSLCn andSF at low and high densities are remarkably different. Fig.

4.10 shows the time evolution ofSLCn andSF at low density (a), and high density (b).

Notice that in Figs. 4.10(a) and (b), the temporal average ofthe order parameter is roughly

the same,SLC ∼ 0.6. This implies that Fig. 4.10(a) shows the outcome of simulations

performed at a much lower noise,η = 0.5, than simulations shown in Fig. 4.10(b) and

2Nagy et al. [102] has recently called into question the first-order character of the transition reported

in [40,41].
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Figure 4.9: Binder cumulantG as function of the noise intensityη for various densitiesρ. The

curvesρ = 0.25 and0.2 correspond to simulations withN = 16384 particles, while the curve

ρ = 4.0 was performed withN = 8192 particles. Notice thatG is positive for all values ofη and

all densities.

corresponding toη = 1.5. Though the implemented noise in (a) is much weaker than

in (b), the order parameter fluctuations in (a) are much larger than in (b). Furthermore,

simulations in (a) correspond to a much larger system size,N = 214, than simulations in

(b),N = 212

First and second order phase transitions can also be distinguished by studying the

distribution of the order parameter. Typically, in a secondorder phase transition, the time

series of the order parameter shows that order parameter fluctuates around it mean value

as observed in Fig. 4.10(b). The mode of the distribution is close to the mean value, and

the distribution is single peaked. In a first order phase, thetime series exhibits abrupt

jumps from high to low values of the order parameter. Consequently, the mode of the

distribution is no longer close to its mean, and the distribution is bimodal. Fig. 4.11 shows

the distribution of the order parameterSLCn at high and low densities.p
(
SLCn

)
measures

the occurrence frequency ofSLCn in the time evolution of a simulation. The different

curves in the figure correspond to different values ofη. Fig. 4.11(a) showsp
(
SLCn

)
at

high density and as expected from Fig. 4.10(b), the distribution is single peaked for all

values ofη. All the evidence at high density, Binder cumulant, time series of the order

parameter, and its distributionp
(
SLCn

)
points towards a second-order phase transition3.

3The previous assertion is based on the available data, i.e.,system sizes explored. A crossover to a
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Figure 4.10: Time evolution of the order parameters at high and low density. (a) corresponds to

the low density case withρ = 0.25 and noise intensityη = 0.5, while (b) illustrates the high

density case withρ = 0.4 andη = 1.5. Notice that in both, (a) and (b), the temporal average of

theLC-order parameter isSLC ∼ 0.6. However, fluctuations at low density are huge compared

to fluctuations at high density.

At low density, the situation is by far much more ambiguous. Fig. 4.11(b) shows that

p
(
SLCn

)
is sharp at large values ofη and becomes broader for low values of the noise

intensity. The inset showsp
(
SLCn

)
for three values ofη, η = 0.5, 0.6, and0.7. Though

the distributions are very noisy, the bimodal character of the distributions are strongly

suggested. Finally, we presume that at low density, the pronounced minimum ofG can

take negative values for large enough system sizes. We speculate that at low density the

transition is of different character than at high density, and presumably first-order.

4.2.3 Comparison of the transitions at low and high density

We have gathered numerical evidence that strongly suggeststhat the transition is remark-

ably different at high and low densities. There is an obviousphysical difference between

these two extreme scenarios. At high density, meaning abovethe percolation thresh-

old, the local orientation information travels through a percolated systems. Presumably,

at these high densities, the constant motion of particles leading to a constant changing

neighborhood is responsible to the emergence of long-rangeorder. This mixed scenario

together with the numerical evidence of a continuous transition at high density suggest

that the observed transition could be of mean-field type. On the other hand, at low density,

first-order transition for larger system sizes, as observedfor polar interactions in [41], cannot be excluded.
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Figure 4.11: Distribution of the order parameterSLCn at high and low densities.p
(
SLCn

)
measures

the occurrence frequency ofSLCn in the time evolution of a simulation. (a)p
(
SLCn

)
at high density,

ρ = 4.0 andN = 212. The different curves correspond from right to left toη = 1.0, 1.1, 1.2,

1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and2.0. (b) p
(
SLCn

)
at low density,ρ = 0.25 andN = 214. The

different curves correspond from left to right toη = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4

and1.5. The inset of figure (b) shows an amplification of the curvesη = 0.5, 0.6, and0.7.

far below the percolation threshold, the information does no longer travel along a perco-

lated systems and it requires, to be transferred, the physical movement of the particles.

Consequently, the transition at low density has to be highlydependent of the clustering

properties of the system, and its nature depends upon them.

These thoughts are illustrated by the following two figures.In Fig. 4.12 the order

parametersSLCn andSF as function ofη are compared at three densities,ρ = 0.25, 2.0

and4.0. The figure suggests through a simple fittingSLCn ∼ (ηc − η)β that as we move

from low to high densities the character of the transition changes, becoming of mean-field

type at very high densities. We warn that the fitting argumenthas to be taken just as an

illustration. The interplay between orientational order and clustering effects is summa-

rized by theη-ρ phase diagram sketch shown in Fig. 4.13. The lines separating disorder

from orientational order (solid-circle line), and clustering from no clustering (open-circle

line) were estimated using a system size ofN = 214 particles. To accurately determine

the separatrices, a system size analysis has to be performed. Fig. 4.13 represents a rough

estimate of the actualη-ρ phase diagram and has to be considered just as a sketch. How-

ever, Fig. 4.13 suffices to illustrate that at high density, orientational order emerges before

(= at higher values ofη ) the onset of density instabilities, while at low density both, ori-

entational order and clustering, set in at the same value of the noise intensity. Notice that
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Figure 4.12: Comparison of the order parametersSLCn andSF vs. η at different densities:ρ =

0.25 (a), 2.0 (b) and4.0 (c). (a) and (b) were performed withN = 214 particles, while (c) with

N = 212. The dash-dotted curves are fittingsSLCn usingSLCn ∼ (ηc − η)β . In (a) β = 1.8 and

ηc = 1.45, in (b) β = 0.7 andηc = 2.0, and in (c)β = 0.5 andηc = 2.0. In (c) the dashed curve

corresponds to a fitting of the first16 data points to the left ofηc, while the dash-dotted to the first

5 points. In both casesβ = 0.5. The vertical line indicates the onset of density instabilities.

it can be speculated thatηc(ρ) saturates withρ.

In the following sections we provide arguments and evidencethat support all these

hypotheses.

4.3 Understanding clustering

This section is mainly devoted to the understanding of clustering effects at low density.

We start out by studying an apparently unrelated problem, particle diffusion in the ordered

state. The problem will prove to be helpful not only to understand clustering at low density

but also orientational order at low values of the noise intensity.

4.3.1 Diffusion in the order state

Assume that initially all particles are located at the origin and move in direction+x̂ with

speedv0. Assume, in addition, that they box inside which the move is infinite. Since

initially each particle can see all the others, the problem can be described initially by

a mean-field. According to Eq. (4.1.2), particles calculatethe same common direction

of motion. The additive noiseηti acts just as a perturbation around the global common

direction of motion. This average vector can be thought as anexternal field that guides

the particles. The problem becomes, as described in chapter2, a directed random walk.

In consequence, the time evolution of the particle densityρ(x, t) obeys the following
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equation:

∂tρ(x, t) = −v0V (η)∂xρ(x, t) +Dx(η)▽2ρ(x, t) (4.3.1)

whereDx(η) is given by:

Dx(η) = (1 − c)v2
0∆t , (4.3.2)

with c = 〈cos(θ)〉2 = [2/η sin(η/2)]2, as described in Chapter 2 and in [108]. Notice

that ∆t in Eq.(4.3.2) plays the role of the inverse of the turning rate, i.e.,α−1 in Eq.

(2.3.4). V (η) is the mean projection of the instantaneous velocity of the particles on

the +x̂ semi-axis. LetP (ηti = φ) be the probability for theith-particle of getting a

random angular noiseφ. Assuming that the noise, as implemented in the simulation,

is obtained from a step function distribution of widthη, V (η), which by definition is

V (η) =
∫ 2π

0
dθP (θ) cos(θ), takes the form:

V (η) =
2 sin(η/2)

η
. (4.3.3)
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Figure 4.14: SpreadingA of the swarm around it center of mass vs. time for different values of the

noise intensityη. Symbols correspond to measurements of〈x2〉 in simulations withN = 1000

particles, which initially were located at the origin and all pointing in direction+x̂. The dashed

lines correspond to the approximationA = Dx(η)t.

Notice that in the limit ofη → 0, V (η) → 1 andDx(η) → 0, i.e., there is only a

deterministic transport of particles without any diffusion, while in the limit ofη → 2π,

V (η) → 0 andDx(η) → v2
0∆t, i.e., there is only diffusion (which takes its maximum

value) and no convective flux. The description given by Eq. (4.3.1) is valid while the

cloud of particles remains being a percolating giant cluster. For longer times, this picture

fails and particles loose their coherent motion. The interaction among particles is such

that keep particles moving in the same direction as long as they can see each other, but

cannot prevent them from slowly moving apart due to the stochastic kicks on the direction

of motion.

Fig. 4.14 shows the time evolution of the spreadingA of the swarm around it center

of mass in simulations withN = 1000 particles at various noise intensitiesη. As said

above, particles have been initially located at the origin and oriented in direction+x̂. The

spreading around the center of mass is simply defined asA = 〈x(t)2〉 − 〈x(t)〉2. The

dashed lines in Fig. 4.14 correspond to the approximationA = Dx(η)t, whereDx(η) is

given by Eq. (4.3.2). To obtainA analytically, both,〈x(t)〉 and〈x(t)2〉 are calculated from

Eq. (4.3.1). For〈x(t)〉, both sides of Eq. (4.3.1) are multiplied byx and integrated over

the space to get a simple expression for∂t (〈x(t)〉) from which finally〈x(t)〉 is obtained.

And similarly for 〈x(t)2〉, but this time both sides of Eq. (4.3.1) are multiplied byx2. As
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Figure 4.15: (a) and (b):SLC andSF vs. time for a simulation performed withN = 1000 particles

initially located at the origin and all pointing in direction +x̂. The noise intensity corresponds to

η = 0.3 in (a) andη = 1.5 in (b). The solid black line refers to the prediction forSF given

by Eq. (4.3.7), while the dashed line is the approximation for SLC given by Eq. (4.3.10). (c)

shows the trajectory of the center of mass of the particle ensemble corresponding to the numerical

experiment withη = 0.3 (solid line) andη = 1.5 (dot-dashed line).

shown in Fig. 4.14, the agreement between simulations and Eq. (4.3.1) is fairly good.

Now, we turn our attention to the orientational order parameters exhibited by this

cloud of moving particles. At first glance, it might seem thatsince the bunch of particles

moves coherently, thenSF andSLC have to beSF = SLC = 1. Figs. 4.15(a) and (b)

showSF andSLC as function of time in simulation withN = 1000 particles at two values

of η, η = 0.3 (a) andη = 1.5 (b). The figures prove thatSF andSLC inside the coherently

moving swarm are still function ofη. The explanation is as follows. Since each particle

can see all the others, all of them calculate the same averagedirectionα0. This is strictly

true forη < π. Then, the angular dynamics of theith-particle takes the form:

θt+1
i = α0 + ηti . (4.3.4)

This means that the probability of finding a randomly chosen particle pointing in direction

θ is

P (θ) =
1

η
g(θ, α0, η) , (4.3.5)

whereg(θ, α0, η) is defined to be1 whenα0 − η/2 ≤ θ ≤ α0 + η/2, and0 otherwise, i.e.,

g(θ, α0, η) = H(α0 + η/2 − θ).H(η/2 − α0 + θ), whereH(x) is a Heaviside function.
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SF in terms ofP (θ) takes the form

SF =

[(∫ 2π

0

dθP (θ) cos(θ)

)2

+

(∫ 2π

0

dθP (θ) sin(θ)

)2
]1/2

. (4.3.6)

Inserting Eq. (4.3.5) into Eq. (4.3.6), we obtain:

SF =
2

η
sin(η/2) . (4.3.7)

Similarly,SLC in terms ofP (θ) is defined as

SLC =
1

4
+

3

2

[
1

4
+

∫ ∫ 2π

0

dθdθ′P (θ)P (θ) (4.3.8)

(
cos2(θ) sin2(θ′) − cos(θ) sin(θ) cos(θ′) sin(θ′)

)]1/2
. (4.3.9)

Inserting Eq. (4.3.5) into Eq. (4.3.8), we find the followingexpression forSLC :

SLC =
1

4
+

3

2

√
1/4 +

(
4 cos2(η/2) sin2(η/2) − η2

)
/ (4η2) . (4.3.10)

Fig. 4.16 compares Eqs. (4.3.7) and (4.3.10) and simulations performed withN = 1000

particles. The solid and dashed curve correspond to Eq. (4.3.7) and Eq. (4.3.10), respec-

tively. The symbols correspond to temporal averages of simulated time series ofSF and

SLC as shown in Figs. 4.15(a) and (b). The agreement is remarkably good for the104

integration steps that the simulations span. It is worth to notice that during such period the

center of mass of the swarm travels a distanced much larger than the interaction radius

ǫ, i.e.,d ≫ ǫ (see Fig. 4.15(c)), while the swarm spreading around its center of mass is

comparatively very small. Despite the fact the swarm moves in a very coherent way, as

we increaseη, the value of the order parameters drop (see Figs. 4.15(a) and (b)), and the

center of mass performs a more tortuous meandering trajectory as shown in Figs. 4.15(c).

Interestingly, the fluctuations of the center of mass aroundtheŷ axis are much larger than

the swarm spreading around its center. This is due to large fluctuations of the average

total momentum vector that are not reflected in the fluctuations of its modulus, i.e.,SF .

The total momentum vector fluctuates in direction and modulus, butSF fluctuations are

only related to fluctuations of its modulus. The same appliesto orientation tensorQ and

to its associated scalar liquid crystal order parameterSLC .
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Figure 4.16:SF andSLC as function ofη as predicted by Eq. (4.3.7) (solid curve) and (4.3.10)

(dashed curve), respectively. Symbols correspond toSF (triangles) andSLC (squares) measured

in simulations performed withN = 1000 particles initially located at the origin and all pointing

in direction+x̂.

It was said above that this simple description of the swarm isvalid until the spreading

around the center of mass is such that the density of the moving cluster falls below perco-

lation. However, the presence of a finite correlation lengthshifts the threshold to higher

densities. In consequence, the actualcoherence density is a function ofη. Now, imagine

that the swarm does not evolve in an infinite space, but in a boxwith periodic boundary

conditions. Assume in addition that the sizeL2 of the box is such thatN/L2 is much

larger than thecoherence density. Can this system be described in term of such simple

equations as Eq. (4.3.7) and (4.3.10) for all times? And if the initial condition of the

system is completely random, does the system reach the same steady state? For a random

initial condition, we cannot expect an steady state with a unique direction of motion. We

assume that two opposite direction of motion emerge,α0 andα0 +π, and that the angular

dynamics of thei-th particle is simply given by:

θt+1
i =

{
α0 + ηti with probability p+

(α0 + π) + ηti with probability p−
(4.3.11)

In consequence,P (θ) = (p+/η)g(θ, α0, η)+(p−/η)g(θ, α0+π, η). Replacing this expres-

sion into Eqs. (4.3.6) and (4.3.8), we find thatSF = (2/η) sin(η/2)(p+ − p−), whileSLC

remains to be given by Eq. (4.3.10). These ideas are tested inFig. 4.17. The simulations
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Figure 4.17:SLCn vs. η. Symbols correspond to simulations withN = 212 particles at density

ρ = 4 in a box with periodic boundary conditions and random initial conditions. The dot-dashed

curve is a fitting of the first8 data points to the left ofηc = 2 throughSLC ∼ (ηc − η)β, where

β = 0.46 ± 0.03. The solid curve corresponds to Eq. (4.3.10).

were performed withN = 212 particles at densityρ = 4 in a box with periodic boundary

conditions. The initial condition was random and the simulations ran for106 time steps.

The solid curve corresponds to the approximation given by Eq. (4.3.10), where no fitting

parameter is used. The dot-dashed curve is a fitting of the first 8 data points to the left of

ηc = 2 assumingSLC ∼ (ηc − η)β, whereβ = 0.46 ± 0.03. The figure shows that Eq.

(4.3.10) provides a good approximation ofSLC for small values ofη, but fails to describe

orientational order at large values of the noise intensity.Particularly the transition from

disorder to order is not captured by Eq. (4.3.10). Chapter 5 will be devoted to understand

this particular problem.

4.3.2 Cluster size distribution at low density

Fig. 4.6 suggests that at low density the onset of orientational order coincides with the

onset of clustering. We define the onset of clustering as the point at which the cluster

size distribution is no longer monotonically decreasing. Fig. 4.18 shows the cluster size

distributionp(m) for various values of the noise intensityη at low density. The simula-

tions were performed withN = 214 particles at densityρ = 0.25. The figure indicates

that a transition from a monotonically decreasing distribution for large values ofη to a
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Figure 4.18: Clustering at different values of the noise intensity η at low density. Simulation

performed withN = 214 particles at densityρ = 0.25. Notice the transition from a monotonically

decreasing distribution for large values ofη to a bimodal distribution for small enough values of

noise intensity. A comparison with Fig. 4.6(a) reveals thatonset of clustering coincides with the

onset of orientational order.

bimodal distribution for small enough values of noise intensity takes place. Interestingly,

at the transition the cluster size distribution becomes scale-free. A comparison with Fig.

4.6(a) reveals that effectively clustering and orientational order emerge together. In this

subsection we look for an explanation for the observed clustering phenomena.

Through the study of the coherence of an initially perfectlyoriented swarm, we have

learned that clusters have a finite life time before they break into parts. Now we incorpo-

rate the fact that a moving cluster when meets particles whose relative direction of motion

is such that|∆θ| < π/2, collects them, provided the noise intensityη is low enough. If

the topology of the system is a finite torus, these two effects, spreading of particles due

to fluctuation in the direction of motion and collection of particles due to random ”colli-

sions” of clusters, reach an equilibrium and the cluster size distribution (CSD) becomes a

steady distribution. As in Chapter 3 and [100], the evolution of the CSD is described as
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follows:

ṅ1 = 2B2n2 +

N∑

k=3

Bknk −
N−1∑

k=1

Ak,1nkn1

ṅj = Bj+1nj+1 − Bjnj −
N−j∑

k=1

Ak,jnknj

+
1

2

j−1∑

k=1

Ak,j−knknj−k for j = 2, ....., N − 1

ṅN = −BNnN +
1

2

N−1∑

k=1

Ak,N−knknN−k (4.3.12)

where the dot denotes time derivative,Bj represents the rate for a cluster of massj of

loosing a particle, and is defined as

Bj =
Dx(η)

d2

√
j , (4.3.13)

andAj,k is the collision rate between clusters of massj andk, defined by

Aj,k =
v02ǫ

A

(√
j +

√
k
)
. (4.3.14)

In Eq. (4.3.13),d denotes the typical distance that separates particles on the boundary

from their nearest neighbors. In this way,d2/Dx(η) is the characteristic time a particle

on the boundary needs to detach from the cluster. The splitting rateBj is proportional

to the inverse of that characteristic time multiplied by thenumber of particles on the

boundary, which we approximate by
√
j. On the other hand, the collision rateAj,k is a

concept shared from kinetic gas theory [79] which tells us that the collision rate between

two disk-like particles A and B is proportional to the relative velocity of the particles

and the sum of their diameters. We assume the diameter of a cluster of massj can be

approximated by2ǫ
√
j.

Rescaling Eq. (4.3.12) by introducing a new time variableτ = tDx(η)/d2, we retrieve

the dimensionless set of equations given by Eqs. (3.3.26) inChapter 3, where this time

the dimensionless parameterP is defined asP = (2v0ǫd
2) / (ADx(η)). Recall that the

critical dimensionless parameterPc is a function of the number of particles in the system,
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resp. the number of ordinary differential equation in Eq. (4.3.12). Fig. 3.26 indicates that

Pc(N) ∼ Nβ0 whereβ0 = −1.026± 0.023. For simplicity, we takePc(N) = C N−1 and

obtain that there is critical spatial diffusionDx(ηc) defined byDx(ηc) = (2v0ǫd
2ρ) /C.

From this expression, we predict that the critical orientational noiseηc which triggers

clustering (and orientation) is given by the transcendental equation:

ηc =
2 sin(ηc/2)√

1 − 2ρǫd2

v0C∆t

. (4.3.15)

Providedd is known, thenηc can be estimated through Eq. (4.3.15). An estimate of

d would imply a systematic numerical study of either the cluster size distribution orηc.

Though, this can be regarded as a drawback of Eq. (4.3.15), this expression allows us to

understand the the behavior ofηc with respect toρ andv0 at low density.

4.4 Comparison with diffusive particles

We have gathered evidence that indicates that at high density this non-equilibrium system

exhibits a continuous kinetic phase transition from disorder to order. We have mentioned

that an equilibrium two dimensional system with continuum symmetry cannot exhibit

long-range orientational order [33]. Here, we wonder what causes long-range orienta-

tional order in this self-propelled particle system. Fig. 4.12 suggests that as we move from

low to high densities the character of the transition changes and approaches a mean-field

transition at very high densities. Typically a mean-field description, resp. a mean-field

transition, implies a good mixing of particles. Contrary tothe classical static XY-model,

self-propelled particles move and mix up in such a way that each particle has a constantly

changing neighborhood. Does this mixing induce a mean-fieldtransition or is the self-

propulsion responsible for the transition? In Chapter 5 we will introduce a simple mean-

field approach to understand the emergence of orientationalorder from a disorder state.

We will show that in such theoretical framework the replacement of the self-propulsion

of the particles by an uncoordinated spatial diffusion leads to the same type of transition.

This finding strongly suggests that at high density the mixing of particles makes possible

the mean-field transition. In this section we test these ideas through simulations.

Imagine a system of two-dimensional Brownian particles with an internal state vari-

ableθti which might represent the orientation of their long axis. The motion of the parti-

cles is completely decoupled fromθti. However, the dynamics of the internal state variable
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θti does depend on the particle position. Brownian particles interact through the internal

state variable as active particles do through their direction of motion (see Eq. (4.1.2)).

For Brownian particlesθti does not affect particle movement. The evolution of theith-

Brownian particle is given by:

xt+∆t
i = xti + v0

(
cos(γti), sin(γti)

)
∆t (4.4.1)

θt+∆t
i = arg




∑

|xt
i−xt

j|≤ǫ
f
(
v(θtj),v(θti)

)

+ ηti (4.4.2)

whereγti is an uncorrelated random angle obtained from a step distribution of width2π,

i.e.,γti ∈ [0, 2π]. Notice that the equations of motion of active and diffusiveparticles only

differ in the center of mass update rule (see Eqs. (4.1.1) and(4.4.1)), while the orientation

dynamics remains the same (see Eqs. (4.1.2) and (4.4.2)).

Fig. 4.19 compares the apolar order parameterSLCn as function ofη in simulations of

active and Brownian particles. The simulations were performed withN = 214 particles

at two densities,ρ = 0.25 and2.0. The figure shows that at high density the behavior

SLCn (η) in active and Brownian particles is strikingly similar. This finding suggests that

Brownian particles also exhibit a transition to orientational order. The result also supports

the above mentioned mean-field transition hypothesis for high density.

At low densities, on the other hand, active and Brownian particles differ dramatically.

Fig. 4.19 shows that Brownian particles at low density exhibit weak orientational order

compared to active particles. This is not surprising since we have learned that at low

density orientational order in active particles emerges asresult of clustering. In Brow-

nian particles, the uncoupled spatial and angular dynamicsdo not allow a transition to

clustering. In consequence, Brownian particles at low density cannot exhibit orientational

ordering for any (non-zero) finite value ofη.

Fig. 4.20 shows both order parameters,SLCn andSF , in Brownian particles at low

and high density. As expected, since Brownian particles andtheir interactions are ap-

olar, polar order does not emerge. Consequently, the emergence of orientational order

observed in Brownian particle at high density corresponds to a genuine nematic order.

Recall that the transition to orientational order reportedin active particle at high density

comes accompanied for low values ofη by a non-vanishing polar order (see Fig. 4.8).
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Figure 4.19: Comparison ofSLCn vs. η in simulations of active and diffusive particles. The

dynamics of active particles is given by Eqs.(4.1.1) and (4.1.2), while Brownian particles obey

Eqs. (4.4.1) and (4.4.2). Simulations withN = 214 particles.
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Figure 4.20:SLCn andSF vs. η for diffusive particles. Notice that diffusive particles do not exhibit

any polar order at all.
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4.5 Conclusions

We have modeled and simulated a two-dimensional system of (polar) self-propelled par-

ticles interacting through a liquid crystal (apolar) alignment mechanism. Through the

individual-based simulations, we have gathered multiple evidence that indicates that the

system exhibits for low enough orientational noise a kinetic phase transition to orienta-

tional order whose character strongly depends on particle density. At high densities, i.e.,

when the orientation information travels through a percolated system, the liquid crystal

order parameter presents a continuous phase transition. Additional polar order emerges

simultaneously with density instabilities in a second transition. On the other hand, at low

densities, i.e., when the transfer of orientational information requires the physical motion

of the particles, the transition to orientational order is initiated by the onset of clustering,

where individual clusters have strict polar order.

In addition, it has been shown that the dynamics of a coherently moving swarm can be

described as a system of random walkers guided by an externalfield. From this approach,

a rate equation description of clustering has been derived that is qualitatively in line with

simulations at low density.

Finally, it has been tested whether the long-range orientational order observed in self-

propelled particles also appears for interacting Brownianparticles with an internal state

variable. The outcome of the simulations has revealed that Brownian particles at high

density also can exhibit long-range order. This finding together with comparison between

self-propelled and Brownian particles has revealed that athigh density the strong mixing

of particles, due to particle motion, produces the transition.

In summary, the self-propulsion of particles leads to localpolar effects that particu-

larly influence particle transport and clustering effects,which in turn affect the character

of the phase transition to orientational order. These results might shed some light to elu-

cidate the complex interplay between local orientational order and local density in large-

scale pattern of interacting self-propelled entities as gliding bacteria [27,28] and crawling

cells [93].
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Chapter 5

Continuum theory for self-propelled

particles

Introduction

In the previous Chapters we have seen that self-propelled particles (SPPs) with local in-

teractions can organize into large-scale patterns. Flocksof birds [26], swarms of bacte-

ria [27, 35, 109, 110], sperm cells [111], mixtures of microtubules and motors [112], are

biological examples for such a behavior. Beyond the complexity of each particular sys-

tem, we observe that there are some few common features whichcause the emergence of

long-range order in these systems: the active motion of the particles and a velocity align-

ment mechanism. In this Chapter we wonder in which way the local velocity alignment

mechanism affects the emerging macroscopic pattern.

The Vicsek-model [34] is considered the simplest model of SPPs which exhibits col-

lective motion. In this model, point-like particles movingwith a velocity vector of con-

stant magnitude interact by aligning their velocity direction to the local average velocity.

One can think of this model as a model of moving spins, in whichthe velocity of the

particles is given by the spin-vector. Going further in thisanalogy with spin systems, we

denote this alignment mechanism, as in Chapter 4, ferromagnetic (F-alignment). The tem-

perature associated with spin-systems enters in the Vicsek-model as noise in the alignment

mechanism. It was shown that two-dimensional SPPs with F-alignment and additive noise

exhibit a second-order phase transition1 which leads for low enough noise to long-range

1Chaté et al. have questioned the second-order phase transition even when additive noise is imple-



102 Chapter 5. Continuum theory for self-propelled particles

orientational order [34, 102]. For different choices of system parameters and different

choices of the noise term (non-additive noise term), simulations show, however, first or-

der phase transitions to orientational order [40, 41]. Interestingly, in equilibrium systems

of non-moving spins with continuum symmetry this transition cannot occur [33,104,105].

F-alignment is one possible alignment mechanism, but clearly not the only one. If a

system of self-propelled rods interacts simply by volume exclusion as described in Chap-

ter 3, resp. [100], particles may end up moving in the same direction as well as in opposite

directions. A biological realization of such a system are myxobacteria, which in the early

stages of their life-cycle organize their motion by simply pushing each other [27]. A sim-

ilar effect without active motion occurs in liquid-crystals at high density where particles

get locally aligned [72]. In analogy to these systems we namethis mechanism hence

liquid-crystal alignment (LC-alignment). In a system of SPPs with LC-alignment parti-

cles align their velocity to the local average director. In simulations of a model of SPPs

with LC-alignment it was found that at high density these moving ”liquid-crystal” spins

exhibit a second-order phase transition leading to long-range orientational order for low

noise2. Notice that the orientational order observed in SPPs with LC-alignment refers

to the emergence of a global director in the system, while forF-alignment orientational

order refers to the appearance of a global direction of motion.

Toner and Tu were the first to look for a macroscopic description of SPPs with F-

alignment. Their approach was a phenomenological hydrodynamical description based

on symmetry arguments for which they derived general macroscopic equations for a large

class of individual-based models of SPPs with F-alignment [36,42,113]. In this approach

many of the parameters in the model are difficult to derive from the microscopic dynam-

ics. Recently Grégoire et al. proposed an alternative approach based on the Boltzmann

equation [114] and could explain in a systematic way the functional form proposed by

Toner and Tu [42] by use of an ad-hoc collision term.

The case of LC-alignment has been much less explored. Recently, Ramaswamy et al.

proposed a phenomenological hydrodynamical description for driven, but non-persistent,

particles with LC-alignment [31]. The approach is comparable to the Toner and Tu de-

scription for F-alignment. One of the striking results of this approach is the giant number

mented [41], claiming that in the thermodynamical limit thesystem exhibits a first-order transition. How-

ever, very recently Vicsek et al. have insisted about the continuous character of the transition for additive

noise [102] providing evidence not present in their pioneering work [34]. The actual nature of the transition

for additive noise is currently under debate.
2The numerical evidence supporting this assertion has been given in the previous chapter.
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Figure 5.1: Temporal evolution of the velocity direction distribution (angular distribution) in

simulations with very fast angular relaxation. (a) corresponds to F-alignment, while (b) to LC-

alignment. Number of particlesN = 100, radius of interactionǫ = 2, linear system sizeL = 42.4,

and noise amplitudeη = 0.25.

fluctuations of particles in the ordered state, which has been confirmed in simulations

by Chaté et al. [48] and in granular media experiments by Narayan et al. [50]. More

recent simulations have suggested that these fluctuations are linked with intrinsic phase

separation of SPPs into regions of high and low density [49].

Here, we derive mean-field type description for SPPs with F- and LC- alignment. Nu-

merical evidence provided by individual-based simulations indicates that SPPs with both

F and LC-alignment (and additive noise) can exhibit a continuous kinetic phase transition

in two dimensions. The derived mean-field equations allow usto study ferromagnetic

as well as liquid-crystal interactions among particles. Through this approach the phase

transition to orientational order observed in individual-based simulations at high density

for F and LC-alignment is correctly captured. Furthermore,we show that the critical

noise amplitudeηc is such thatηLCC < ηFC in the mean-field description as well as in the

individual-based simulations in both investigated cases.

5.1 Individual-based model

5.1.1 Equations of motion

We consider point-like particles moving at constant speed in a two dimensional space and

assume an over-damped situation such that the state of particle i at timet is given by its
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positionxi and its direction of motionθi. The evolution of these quantities follow:

ẋi = v0v(θi) (5.1.1)

θ̇i = −γ ∂U
∂θi

(xi, θi) + η̃i(t) (5.1.2)

whereγ is a relaxation constant, andU the interaction potential between particles, and

hence∂U
∂θi

(xi, θi) defines the velocity alignment mechanism. Moreover,v0 represents the

active velocity of the particles,v(θi) is defined asv(θi) = (cos(θi), sin(θi)), andη̃i(t) is

an additive white noise applied to the direction of motion. The evolution Eqs. (5.1.1) and

(5.1.2) are expressed in terms of first derivatives. In this way, v0 in Eq. (5.1.1) can be

considered as an active force divided by a translational friction coefficient, andγ in Eq.

(5.1.2) as the inverse of a rotational friction coefficient.

In analogy to spin systems, the ferromagnetic velocity alignment mechanism is given

by a potential defined as:

UF (xi, θi) = −
∑

|xi−xj |≤ǫ

cos(θi − θj) (5.1.3)

whereǫ is the radius of interaction of the particles. For the liquid-crystal alignment mech-

anism, we choose the potential introduced by Lebwohl and Lasher to study liquid crystal

interactions on a lattice [101] which reads:

ULC(xi, θi) = −
∑

|xi−xj |≤ǫ

cos2(θi − θj) (5.1.4)

One can add a coupling strength coefficient to the expression(5.1.3) and (5.1.4). We

assume that the coupling strength is absorbed inγ in Eq. (5.1.2). Notice that the potential

given by Eq. (5.1.3) exhibits one minimum, while Eq. (5.1.4)has two minima, which

correspond to particles pointing in the same direction and particles pointing in opposite

directions.

In the limiting case of very fast angular relaxation we expect Eqs. (5.1.1) and (5.1.2)

to be approximated by the updating rules:

xt+∆t
i = xti + v0v

(
θti
)
∆t (5.1.5)

θt+∆t
i = arg




∑

|xt
i−xt

j|≤ǫ
f(v(θtj),v(θti))


+ ηti (5.1.6)
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wherearg (b) indicates the angle of a vectorb in polar coordinates, andηti is a delta-

correlated white noise of strengthη (ηtiǫ
[
−η

2
, η

2

]
). Given two vectorsa andb, f(a,b) is

defined as follows. For F-alignment,f(a,b) = a and Eqs. (5.1.5) and (5.1.6) becomes

Vicsek model [34]. For LC-alignment,f takes the form:

f (a,b) =

{
a if a.b ≥ 0

−a if a.b < 0
. (5.1.7)

Recall Eqs. (5.1.5), (5.1.6), and (5.1.7) have been introduced and analyzed in the previous

Chapter.

5.1.2 Order parameters

If particles interact through the F-alignment mechanism, and assuming low noise ampli-

tude, they get locally aligned, and locally point in a similar direction. The question is

whether such local alignment may lead to a global orientational order in which a macro-

scopic fraction of the particles in the system points in a similar direction. The order

parameter that quantifies this phenomenon is the modulus of the normalized total mo-

mentum (analogous to the magnetization in the XY-model [104, 105]) that we express

as:

SF =

∣∣∣∣∣
1

N

N∑

i=0

v
(
θti
)
∣∣∣∣∣ (5.1.8)

whereN stands for the total number of particles in the system.SF takes the value1 when

all particle move in the same direction. On the other hand,SF is equal to0 in the disor-

dered case in which particles point in any direction with equal probability. This can be

also observed through the velocity direction distribution, that in two dimensions becomes

an angular distributionC(θ). For high values of the noise,C(θ) is flat. When the noise is

decreased below a critical noiseηc, an instability arises in the system (characterized by a

single peak) indicating the onset of orientational order asshown in Fig. 5.1(a). The order

parameterSF expressed in terms ofC(θ) takes the form:

SF =

[(∫ 2π

0

dθC(θ) cos(θ)

)2

+

(∫ 2π

0

dθC(θ) sin(θ)

)2
]1/2

(5.1.9)
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On the other hand, if for example, half of the particles move in one direction, and

the other half in the opposite direction,SF is also0. Clearly,SF cannot distinguish such

a state and the completely disordered state. However, LC-alignment may induce such a

kind of local arrangement of particle velocities, and lead to a global orientational order

state in which there are two opposite main directions of motion in the system. To study

such orientation ordering, one uses the order matrixQ of liquid crystals [72]. For two

dimensions one takes the largest eigenvalueSLC of Q and obtain the following scalar

orientational order parameter:

SLC =
1

4
+

3

2

√√√√1

4
− 1

N2

{
N∑

i,j

v2
xiv

2
yj − vxivyivxjvyj

}
(5.1.10)

wherevxi andvyi are defined asvxi = cos(θi) andvyi = sin(θi). The orientational order

parameterSLC takes the value1 when all particles are aligned along the same director,

and the value1
4

in the disordered phase where particles move with equal probability in any

direction. Again this can be observed through the velocity direction distributionC(θ). In

this case, for low values of the noise amplitude, as shown in Fig. 5.1(b), an instability

arises in the system with the characteristic of having two peaks separated by2π. In terms

of C(θ), SLC reads:

SLC =
1

4
+

3

2

[
1

4
−
(∫ 2π

0

dθC(θ) cos2(θ)

)(∫ 2π

0

dθC(θ) sin2(θ)

)
(5.1.11)

+

(∫ 2π

0

dθC(θ) cos(θ) sin(θ)

)2
]1/2

Recall Eqs. (5.1.8), (5.1.9), (5.1.10) and (5.1.11) have already been introduced and an-

alyzed in the previous Chapter. Here, we have included them for making the reading of

this Chapter easier and selfcontained.
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5.2 Mean-field approach

5.2.1 Derivation of the mean-field approach

A system of SPPs may alternatively be described through a density fieldψ(x,v(θ), t) =

ψ(x, θ, t) in such a way that the particle density at a pointx is given by

ρ (x, t) =

∫ 2π

0

ψ (x, θ, t) dθ (5.2.1)

while the velocity direction distribution (or angular distribution) can be expressed as:

C (θ, t) =

∫

Ω

ψ (x, θ, t) dx (5.2.2)

We recall that in the individual-based model the kinetic energy is conserved, while

the momentum is not. For F-alignment, the system tends to increase the total momentum,

while for LC-alignment the tendency is to decrease it. The continuum approach has to

reflect that particles can re-orient their velocity direction but always move at constant

speed. On the other hand, the number of particles has to be conserved. Under these

assumptions the following evolution equation forψ(x, θ, t) is obtained:

∂tψ = Dθ∂θθψ − ∂θ [Fθψ] −▽ [Fxψ] (5.2.3)

whereFθψ andFxψ are deterministic fluxes which are associated to the local alignment

mechanism and active migration, respectively, andDθ refers to the diffusion in the direc-

tion of motion.

Let us derive the specific expressions forDθ, Fθ andFx. Dθ depends on the square

of the noise amplitude. For example, if in the individual-based simulationsηi(t) is imple-

mented by taking at each time step a random variable from a step distribution of widthη,

Dθ is givenDθ = η2∆t/24, where∆t is the temporal time step.Fθ contains the inter-

action of a particle located atx and pointing in directionθ with all neighboring particles

which are at a distance less thanǫ from x, and so takes the form:

Fθ = −γ
∫

R(x)

dx′

∫ 2π

0

dθ′
∂U(x, θ,x′, θ′)

∂θ
ψ(x′, θ′, t) (5.2.4)
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whereU(x, θ,x′, θ′) represents the pair potential between a particle located atx and point-

ing in directionθ, and another atx′ and pointing in directionθ′. R(x) denotes the interac-

tion neighborhood aroundx. If x′ is insideR(x), thenU(x, θ,x′, θ′) = U(θ, θ′). Finally,

Fθ can be thought as the ”torque” felt by a particle located atx and pointing in directionθ.

Notice that we have implicitly assumed that the two-particle density can be approximated

in terms of the one-particle probability, i.e.,ψ(x, θ;x′, θ′, t) ≃ ψ(x, θ, t)ψ(x′, θ′, t), as

in the mean-field approximation for coupled oscillators [115] or generic equations for

angular order [116].

The expression forFx is straightforward and is directly related to the velocity of par-

ticle atx and pointing in directionθ,

Fx = v0v(θ) (5.2.5)

5.2.2 Angular distribution

Integrating both sides of Eq. (5.2.3) over the spaceΩ we obtain an evolution equation

for C(θ, t) which still depends onψ(x, θ, t). In the following we assume a homogeneous

spatial distribution of particlesψ(x, θ, t) = C(θ, t)ρ0/N , whereρ0 is defined asρ0 =

N/L2, beingL the linear size of the system. With these assumptions the equation for the

temporal evolution ofC(θ, t) reads:

∂C(θ, t)

∂t
= Dθ

∂2C(θ, t)

∂θ2
+ γ

πǫ2

L2
∂θ

[{∫ 2π

0

dθ′
∂U(θ, θ′)

∂θ
C(θ′, t)

}
C(θ, t)

]
(5.2.6)

5.2.3 Linear stability analysis for F-alignment

For both F- and LC-alignment the homogeneous angular distribution is a steady state of

Eq. (5.2.6). We determine the onset of the ordered state by studying the linear stability

of the disordered state. First let us look at the F-alignment. By dividing both sides of Eq.

(5.2.6) byγπǫ2/L2, and redefining time asτ = (γπǫ2/L2)t, andD′
θ = Dθ/[γπǫ

2/L2]

one obtains:

∂C (θ, t)

∂τ
= D′

θ∂θθC (θ, t) + ∂θ

[{∫
dθ′ sin (θ − θ′)C (θ′, t)

}
C (θ, t)

]
(5.2.7)
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Figure 5.2: Temporal evolution ofC(θ, t). (a) F-alignment, numerical integration of Eq. (5.2.7)

with Dθ = 0.28. (b) LC-alignment, numerical integration of Eq. (5.2.11) with Dθ = 0.014.

For both (a) and (b),C∗ = 0.3183, ∆t = 0.001 and ∆θ = 0.16. The initial condition is a

random perturbation aroundC∗. Notice that for F-alignment a single peak emerges, while for

LC-alignment the distribution develops two peaks.
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Now, consider a weak perturbation of the homogeneous pattern:

C (θ, t) = C∗ + C0e
inθeλτ (5.2.8)

Notice thateinθ are eigenfunctions of the operators emerging from the linearization of Eq.

(5.2.7) about the homogeneous steady state. By substituting into Eq. (5.2.7) and keeping

terms linear inC0 we obtain the following expression for the eigenvalues:

Re(λ) = −D′
θn

2 + πC∗δn,1 (5.2.9)

This means that the only mode which can become unstable isn = 1. The condition for

the instability of the homogeneous state takes the form:

ρ0 >
2Dθ

γπǫ2
(5.2.10)

whereρ0 = N/L2. For a given noise amplitude, expressed byDθ, there is a critical

particle density above which the homogeneous solution is nolonger stable. Fig. 5.1(a)

shows that in individual-based simulations indeed a singlepeak emerges in the system for

low density. Fig. 5.2(a) confirms that such qualitative behavior is recovered by numerical

integration of Eq.(5.2.7).

5.2.4 Linear stability analysis for LC-alignment

Applying analogous procedure for LC-alignment yields:

∂C (θ, t)

∂τ
= D′

θ∂θθC (θ, t) (5.2.11)

+ ∂θ

[{∫
dθ′2 cos (θ − θ′) sin (θ − θ′)C (θ′, t)

}
C (θ, t)

]

Again the weakly perturbed homogeneous ansatz given by Eq. (5.2.8) is considered. As

beforeeinθ are eigenfunctions of the linearized operators. Substituting Eq. (5.2.8) into

Eq. (5.2.11) and keeping terms linear inC0 the following expression for the eigenvalues

is obtained:

Re(λ) = −D′
θn

2 + 2πC∗δn,2 (5.2.12)
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As for the F-alignment, there is only one mode which could become unstable, but this

time it isn = 2. This mode is the only one that exhibits two peaks separated by π, which

corresponds to two population of particles migrating in opposite direction. In this case,

the instability condition of the homogeneous states takes simply the form:

ρ0 >
4Dθ

γπǫ2
(5.2.13)

Again, this inequality defines a critical density for a givennoise amplitude above which

the homogeneous solution is no longer stable. Fig. 5.1(b) shows the emergence of these

two peaks for LC-alignment in individual-based simulations. Numerical integration of

Eq. (5.2.11), see Fig. 5.2(b), confirms that this behavior isrecovered qualitatively by the

mean-field description.

Eqs. (5.2.10) and (5.2.13) indicate that the instability ofthe homogeneous state is

given byρ0, Dθ, andǫ, the range of interaction. The critical density is inversely propor-

tional toǫ2, hence whenǫ goes to infinity the critical density goes to0. The interpretation

of this is straightforward,ǫ −→ ∞ indicates that particles have infinity ”visibility”, i.e.,

each particle can sense all other particles in the system. Inthis way, the collective behav-

ior has to emerge independent of particle density. The otherlimiting case is represented

by ǫ −→ 0. In this case particles do not interact and in consequence noorganized motion

is possible.

From these findings a phase diagram is derived that shows where the system exhibits

velocity orientational order (see Fig. 5.3).

5.2.5 Spatially inhomogeneous steady states

Through the linear stability analysis it has been found for which conditions the homoge-

neous distribution (disordered state) becomes unstable. To study the nonlinear behavior

of these instabilities in more detail, Eq. (5.2.6) can be integrated numerically. Details

about the numerical methods are given in the Appendix C. Fig.5.2 has shown already

the temporal evolution ofC(θ, t). The initial condition is a homogeneous state with small

random perturbations:C(θn, t = 0) = C∗ + η(n), whereθn denotes the discrete angular

variable,C∗ is the constant unperturbed homogeneous state, which we have set to be in

the unstable regime according to Eqs. (5.2.10) and (5.2.13)for the F- and LC-alignment

case, respectively, andη(n) is a white noise. In Fig. 5.4 the angular distribution for F-

and LC-alignment is shown at different times.C(θ, t) tends asymptotically to a non-trivial
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Figure 5.3: Phase diagram derived from the continuum approach. The unstable region corresponds

to the velocity orientational order, while stable means no orientational order can be observed.

steady state, see Fig. 5.4. The width of the peaks in the steady state is the result of the

competition between influence of rotational diffusion, indicated byDθ, and the alignment

force associated with the interactions.

5.2.6 Scaling of the order parameter close to the transition

For a given density, there is a criticalDθc
. Close toDθc

we expect to observe that only one

mode dominatesC(θ, t). As said before,n = 1 is dominant for F-alignment andn = 2

governs LC-alignment. The steady state distributionCst(θ) then takes the form:

Cst(θ) ≃ C∗ +B1

√
Dθc

−Dθ cos(θ − θ0) (5.2.14)

for F-alignment, while for LC-alignment the expression reads:

Cst(θ) ≃ C∗ +B2

√
Dθc

−Dθ cos(2(θ − θ0)) (5.2.15)

whereB1, B2 are constants andθ0 is an arbitrary phase which depends on the initial

condition. In both cases the maximum amplitude ofCst(θ) close to theDθc
grows as√

Dθc
−Dθ. Inserting Eq. (5.2.14) into Eq. (5.1.9) and using, as indicated above,Dθ =

η2∆t/24, we obtain the scaling of the order parameterSF :

SF ≃ B̃1

√
ηc − η (5.2.16)
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Figure 5.4: Convergence towards the non-trivial stable steady state. (a) F-alignment, numerical

integration of Eq. (5.2.7) withDθ = 0.3472. (b) LC-alignment, numerical integration of Eq.

(5.2.11) withDθ = 0.2813. For both (a) and (b),C∗ = 0.3183, ∆t = 0.001 and∆θ = 0.0785.

The initial condition is a random perturbation aroundC∗. Different curves correspond to different

times. Notice that for large values oft curves start to overlap on top of each other.

whereB̃ is a constant. To obtain the scaling of the order parameterSLC , we insert (5.2.15)

into Eq. (5.1.11):

SLC ≃ 1

4
+ B̃2

√
ηc − η (5.2.17)

where againB̃2 is a constant.̃B1 andB̃2 are constants proportional toηc.

5.2.7 Comparison with individual-based simulations

Individual-based simulations have been performed in the limit case of very fast angular

relaxation [34, 102]. In contrast, our mean-field description assumes that there is a finite

angular relaxation. Can we expect the mean-field approach todescribe scaling of the

orientational dynamics in this kind of simulations? We redefine γ as function of the

particle velocityv0 and the particle densityρ. The effective resulting mean-field equation

reads:

∂C

∂t
(θ, t) = Dθ

∂2C(θ, t)

∂θ2
+ γ(v0, ρ)

∂

∂θ

[{∫ 2π

0

dθ′
∂U(θ, θ′)

∂θ
C(θ′, t)

}
C(θ, t)

]
(5.2.18)

whereγ(v0, ρ) is an effective interaction strength which absorbs the spatial dynamics.



114 Chapter 5. Continuum theory for self-propelled particles

The scaling obtained from individual-based simulations may now be compared with

the one predicted by the mean-field approach. We recall thatDθ ∼ η2, whereη is the

orientational noise amplitude used in individual-based simulations. From this we find

thatDθc
−Dθ has to beDθc

−Dθ = K(ηc − η) + O((ηc − η)2), whereK is a constant.

We focus on the LC-alignment and replace this expression into Eq. (5.2.15). We obtain

thatCst(θ) ≃ C∗ + B1

√
ηc − η cos(2(θ − θ0)), and we know from Eq. (5.2.17) that

SLC ≃ 1
4

+ B2

√
ηc − η, whereB1 andB2 are constants.

Fig. 5.5(a) shows a comparison between the scaling predicted by the mean-field ap-

proach forSLC (dashed curve) and the one obtained from individual-based simulations

for ρ = 4 in the limit of very fast angular relaxation (symbols). We find good agreement

between the mean-field prediction and the simulations for the scaling ofS nearηc that

suggests that individual-based simulations with LC-alignment at high densities exhibit a

mean-field type transition. Notice that simulations start to deviate exactly at the point

where density fluctuations become important (denoted by thedot-dashed vertical line in

(5.5)(a)). Let us recall that the mean-field approach implies the assumption of homoge-

neous density. Evidence also points towards a mean-field transition if we look at the scal-

ing of the maximum amplitude of the angle distribution as function of the angular noise

intensityη (see Fig. (5.5)(b)). The order parameter scaling exponent for F-alignment

(Vicsek-model) has been found to be 0.45± 0.07 [34,102], which is also in line with the

predictions of the presented mean-field theory.

Finally, Fig. 5.6 shows that in individual-based simulations with the same parameters

and different (namely LC- and F-) alignment mechanism, in the limit of very fast angular

relaxationηLCC < ηFC as predicted by the mean-field theory. Note, however, that the

simulations yield2ηLCC ≈ ηFC , while the mean-field description predicts
√

2ηLCC = ηFC .

5.3 Concluding remarks

We have derived a mean-field theory for self-propelled particles which accounts for F-

and LC-alignment. This approach predicts a continuous phase transition with the order

parameter scaling with an exponent one half in both cases. Inaddition, it yields that

the critical noise amplitude below which orientational order emerges is smaller for LC-

alignment than for F-alignment, i.e.,ηLCC < ηFC .

These findings were confirmed by individual-based simulations with F- and LC-

alignment. In the limit of infinitely fast angular relaxation used in simulations here
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Figure 5.5: (a) Scaling of the scalar order parameterSLC with the noise amplitudeη. (b) Scaling

of the maxima inCst(θ) with η. Symbols correspond to simulations with LC-alignment in the limit

of very fast angular relaxation.ρ = 4 andN = 212. The dashed-curve corresponds to the scaling

predicted by the mean-field approach (see Eq. (5.2.17)). Thevertical dot-dashed line indicates the

onset of clustering effects in the simulations. To the rightof that line particle densityρ(x) can be

considered constant. To the left of the line,ρ(x) becomes a function ofx. For F-alignment in limit

of very fast angular relaxation, the scaling ofSF is close to the one predicted by Eq. (5.2.16),

compare also [34,102].

the mean-field theory provides a good qualitative description of the simulations. If

simulations were performed by integrating Eqs. (5.1.1) and(5.1.2) with a finite an-

gular relaxation,i. e. a finite γ, a direct correspondence between parameters used

in simulations and parameters in the mean-field theory can bemade and quantitative

comparisons become possible. The presented mean-field theory is not an exact coarse-

grained description of Eqs. (5.1.1) and (5.1.2). For instance, we have neglected the

potential impact of particle-particle correlations. Furthermore, we have assumed spatial

homogeneous density to study the emergence of orientational order. Thus, the presented

approach does not apply to situations where self-propelledparticles show clustering at

the onset of orientational order [100]. In summary, a betterunderstanding of the problem

should imply the study of the interplay between local orientational order and density

fluctuations. We leave that for future research.



116 Chapter 5. Continuum theory for self-propelled particles

0 1 2 4 5 6
0

0.2

0.8

1

η

S
F
, S

LC

F−alignment

LC−alignment

Figure 5.6: Comparing simulations of particles with F-alignment (crosses) and LC-alignment (cir-

cles) in the limiting case of very fast angular relaxation. In both casesN = 214 andρ = 2.0.

Notice that the order parameter for F-alignment isSF while for LC-alignment isSLC (See text).

The dashed horizontal line indicates the minimum value thatSLC could take. The dashed curves

correspond to the best fit assuming an exponent0.5, i.e.,ηc was the fitting parameter.
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Summary

Throughout this Thesis many aspects of the physics of self-propelled particles systems

ranging from individual to collective motion have been addressed. Chapter 2 has been

devoted to the study of the individual motion of self-propelled particles. Specifically,

general aspects of two-dimensional active motion, with fluctuations in the speed and the

direction of motion, have been studied. We have considered the case in which fluctuations

in the speed are not correlated to fluctuations in the direction of motion, and assumed

that both processes, fluctuation in the speed and direction of motion, can be described

by independent characteristic time-scales. Under these assumptions, a complex transient

occurs that can exhibit a series of alternating regimes of motion, for two different angular

dynamics which correspond to persistent and directed random walks. Expressions for the

mean square displacement and diffusion coefficient have been derived. They have been

found to differ from the classical results by additive corrections. The characteristic time-

scales of the stochastic motion are exposed in the velocity autocorrelation, which is a sum

of exponential forms. It has been shown that uncorrelated fluctuations in the direction of

motion and speed might play an important role in the migration of motile microorganisms.

In chapter 3 we have looked for a simple physical mechanism that can induce col-

lective motion in self-propelled particles. Individual-based simulations of self-propelled

elongated rods interacting only by volume exclusion exhibit interesting collective motion,

i.e., formation of coherently moving groups. Provided the particles are elongated enough,

they form densely packed clusters inside which particles are aligned and moving in the

same direction. This effect is reflected in the particle speed distribution, particle rotation,

and local and global orientational order parameter of the particles. These self-propelled

rod-shaped particles that interact only through short-range repulsive interactions, exhibit
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a non-equilibrium transition to clustering for sufficient large values of the density and

particle aspect ratio. We have defined the onset of clustering by a transition of the cluster

size distribution from unimodal to bimodal shape. The transition to clustering observed in

individual-based simulations is reproduced by a mean-fielddescription of the cluster size

distribution, which yielded a simple criterion for the critical particle aspect ratioκc, which

predictsκc to be inversely proportional to the density. The high density inside the cluster

leads to alignment of rods and coordinated motion of all particles in the cluster. Inter-

estingly, the transition to clustering coincides with the point at which the cluster entropy

HC takes its maximum value. Far below the transition, the clustering properties of the

system obey the maximum entropy principle applied toHC , which allowed us to describe

the system in terms of the total number of clusters. A comparison with liquid crystal the-

ory reveals that actively moving rods can achieve alignmentat much lower densities than

Brownian rods resp. particles in equilibrium systems. All these findings are relevant to

understand the collective motion of some gliding bacteria as myxobacteria.

The interaction by volume exclusion among self-propelled rods leads to parallel as

well as anti-parallel alignment of the rods. The resulting alignment mechanisms is apo-

lar, though particles are, due to their self-propulsion, polar. Chapter 4 has been devoted

to the study of a simplified version of the self-propelled rods model. It has been mod-

eled and simulated a two-dimensional system of polar self-propelled particles interacting

through an apolar alignment mechanism. It has been shown that the system exhibits for

low enough orientational noise a kinetic phase transition to orientational order whose

character strongly depends on particle density. At high densities, i.e., above the percola-

tion threshold, the liquid crystal order parameter displays a continuous phase transition.

The orientational order state, however, does not correspond to a perfect nematic phase,

since the transition involves a non-vanishing polar order.On the other hand, at low den-

sities, i.e., when the transfer of orientational information requires the physical motion of

the particles, evidence of a discontinuous phase transition has been found. Contrary to

the high density scenario, the transition to orientationalorder is initiated by an increase

of polar order and the onset of clustering. Through the studyof interacting Brownian

particles, it has been shown that the emergence of long-range orientational order in the

self-propelled particle system at high density arises fromthe mixing of particles rather

than the coupling between active motion and particle orientation.

In Chapter 4 it has been shown that collective effects can be achieved by either a polar

or an apolar alignment mechanism. Chapter 5 has been devotedto develop a common
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theoretical framework to describe the macroscopic dynamics of self-propelled particles

under both possible alignment mechanisms. At high density the orientation dynamics

is captured by a simple mean-field approach which predicts for low enough noise a sin-

gle peaked angular distribution for polar alignment, and a bimodal distribution for apolar

alignment. The approach also predicts a continuous phase transition in which the order

parameter scales with an apparent exponent1/2 for both alignment mechanisms. In addi-

tion, the critical noise amplitude below which orientational order emerges is smaller for

apolar alignment than for polar alignment, in line with individual-based simulations.

In summary, the self-propulsion of particles leads to localpolar effects that partic-

ularly influence particle transport and clustering effects, which in turn affect the global

collective behavior of the system. The results that have been developed throughout this

Thesis might shed some light to elucidate the complex interplay between local orienta-

tional order and local density in large-scale pattern of self-propelled entities as gliding

bacteria [27,28,47,75] and crawling cells [5,56,93,98], among many others.
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Appendix A

Calculation of the overlapping area in

self-propelled rods simulations

The self-propelled rods simulations require a good and fastestimation of the overlapping

area between two rods. This appendix explains how the overlapping area was calculated

in simulations.

Suppose two rods intersect as shown in the left panel of Fig. A.1. The first step in order

to calculate the intersection area between these two rods isto transform the coordinate

system in such a way that the origin of the new system coincides with the center of mass

of one of the particle. The coordinate transformation involves also a rotation so that the

long-axis of the particle coincides with the new system axisỹ′. Notice that now we have

to refer to the other rectangle in terms of the relative variables. The procedure is illustrated

in the right panel of Fig.A.1.

In the new coordinate system the overlapping area can be easily calculated with the

following integral that uses four step functions:

a(x, θ,x′, θ′) =

∫ W/2

−W/2

∫ L/2

−L/2

Θ

(
b̃+ l. sin(α) − b. cos(α) +

b

2

)
(A.0.1)

Θ

(
b

2
−
(
b̃+ l. sin(α) − b. cos(α)

))
Θ

(
ã + l. cos(α) + b. sin(α) +

L

2

)

Θ

(
L

2
− (ã + l. cos(α) + b. sin(α))

)
dl.db

whereã = (cos(θ), sin(θ)).(x′ − x), b̃ = (− sin(θ), cos(θ)).(x′ − x)andα = θ − θ′.

This expression might look complicated, but it can be easilyimplemented in a computer.
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Figure A.1: The left panel sketches the intersection between two rods as seen from a fixed coordi-

nate system. The right panel illustrates the coordinate transformation that is performed to calculate

the overlapping area.

Subdividing the area occupied by the rectangle located atx′ and pointing in directionθ′

in tiny squares and counting those that obey the condition:

− b
2
≤ x′int ≤ b

2
and−L

2
≤ y′int ≤ L

2
,

wherex′int, y
′
int refer the interior points of the rectangle located atx′ in the new coor-

dinate system, a good approximation of the overlapping areais obtained.

Though this procedure works very well, it is extremely slow.To speed up the overlap-

ping calculation, the following can be done. After the coordinate system transformation,

it is possible to calculate the overlapping area by asking which sides of the rectangle

located atx′ intersect the particle located atx. There are four linear equation per side

of the rectangle located inx′. Each linear equation can intersect 0, 1 or 2 sides of the

rectangle at the origin. If we think that there are four linear equation, the total number of

intersection that we may have is 1, 2, 3 or 4. All this represents more than 64 possibilities.

In addition the area of overlap may be a triangle, a rectangleor an irregular polygon.

Despite of this fact, we can use the symmetries of the problemand to classify all the

possible situations in a few cases. In Fig. A.2 some of these cases are shown. Though

this procedure is a tedious and hard task, the resulting algorithm is a very fast, gives the

exact overlapping area, and reduces the calculation of the overlapping area to a series of

“if”s.
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Figure A.2: The figures sketch some of the possible overlapping scenarios. Notice that a side of

the particle located atx′ can exhibit 0, 1 or 2 intersection with the perimeter of the particles at the

origin. The overlapping area can be a triangle, a rectangle or and irregular polygon.
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Appendix B

Liquid crystal tensor

The apolar order in liquid crystal theory is measured through a tensor defined as [72]:

Qα,β =
1

N

N∑

i=1

(
3

2
ui,αui,β −

1

2
δα,β

)
, α, β = x, y, z (B.0.1)

whereui represents the orientation of the long axis of particlei, N is the number of

particles, andδα,β is the Kronecker delta function. NoticeQα,β is symmetric and traceless.

Diagonalization ofQα,β gives three eigenvaluesλ+, λ0 andλ− such thatλ+ > λ ≥ λ−

which sum to zero. The scalar order parameter corresponds tothe maximum eigenvalue

of Qα,β, i.e.,λ+. The director is the eigenvector associated to that eigenvalue.

Qα,β specialized for two-dimensional system takes the form:

Q =




3/(2N)
∑

cos2(θi) − 1/2 3/(2N)
∑

cos(θi) sin(θi) 0

3/(2N)
∑

cos(θi) sin(θi) 3/(2N)
∑

sin2(θi) 0

0 0 −1/2


 (B.0.2)

The eigenvalues are obtained by solvingdet [Q − λI] = 0, whereI is the identity matrix.

The characteristic polynomial reads:

det [Q − λI] = −(1/2 + λ)
[
(a− (1/2 + λ)) (b− (1/2 + λ)) − c2

]
(B.0.3)

where a = 3/(2N)
∑N

i=1 cos2(θi), b = 3/(2N)
∑N

i=1 sin2(θi) and c2 =∑N
i,j=1 cos(θi) sin(θi) cos(θj) sin(θj). It can be easily verified that the roots are:λ− =
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−1/2, λ0 =
[
3/2 −

√
9/4 − 4q

]
/2 − 1/2 andλ+ =

[
3/2 +

√
9/4 − 4q

]
/2 − 1/2,

whereq = a.b− c2. In consequence,λ+ takes the form:

λ+ =
1

4
+

3

2

[
1

4
− 1

N2

N∑

i,j=1

(
cos2(θi) sin2(θj) − cos(θi) sin(θi) cos(θj) sin(θj)

)
]1/2

.

It can be easily verified that in the ordered case, e.g., whenθi = 0 for all i, a = 3/2,

b = c = 0, and soλ+ = 1. In the disordered case, i.e., when all orientations are equally

probable,a = b = 3/4, c = 0, and soλ+ = 1/4.



Appendix C

Numerical integration scheme for

integro-PDE

The numerical integration of the integro-partial differential equation (5.2.6) requires to

perform the numerical integration of Eq. (5.2.4) to then proceed to the integration of the

diffusive and advective terms in Eq. (5.2.6).

At each time stepFΩ(θ, t) is calculated through a simple Newton-Cotes method. Then

the integration of Eq. (5.2.6) is performed through an operator splitting method. The

diffusion is implemented by an explicit forward method. Theintegration of the active

turning (Eq. (5.2.4)) contained in the advective term requires special attention. SinceFΩ

depends explicitly onθ andt neither a Lax nor an Upwind method gives a satisfactory

result. We overcame this difficulty by implementing the following variant of the Upwind

method:

C(θk, tj + 1) = (1 − |F̃Ω(θk, tj)|)C(θk, tj) +

Θ(F̃Ω(θk − 1, tj))|F̃Ω(θk − 1, tj)|C(θk − 1, tj) +

Θ(−F̃Ω(θk + 1, tj))|F̃Ω(θk + 1, tj)|C(θk + 1, tj) (C.0.1)

where θk and tj represent the discrete indices of the angular and temporal vari-

ables respectively,Θ(x) denotes a Heaviside function, and̃FΩ(θk, tj) is defined as

F̃Ω(θk, tj) = (∆t/∆θ)FΩ(θk, tj) where∆θ and∆t are the discretization of the space

and time respectively.
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