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Abstract

We propose a novel approach to compute bounds on the objective function value of a wide class

of resource-constrained project scheduling problems. The basis is a polynomial-time algorithm to

solve the following scheduling problem: Given a set of activities with start-time dependent costs and

temporal constraints in the form of time windows, find a feasible schedule of minimum total cost.

Motivated by a known result that this problem can be formulated as a cardinality-constrained stable

set problem in comparability graphs, we show how to reduce it to a minimum cut problem in an

appropriate directed graph.

We focus on an application of this algorithm to different types of resource-constrained project

scheduling problems by using it for the computation of lower bounds on the objective function value

via Lagrangian relaxation of these problems. This approach shows to be applicable to various prob-

lem settings, and an extensive study based on widely accepted test beds in project scheduling reveals

that our algorithm significantly improves upon other fast computable lower bounds at very modest

running times. For problems with time windows, we obtain the best known bounds for several in-

stances, and for a class of notoriously hard labor-constrained scheduling problems with time-varying

resources, we drastically reduce the time to obtain the lower bounds based on the corresponding LP

relaxation. For precedence-constrained scheduling with several resource types, our bounds are again

computed very fast, and improve the bounds obtained in reasonable time by all currently known

algorithms.

1 Introduction and Problem Formulation

Resource constrained projects usually comprise several activities or jobs which have to be scheduled sub-

ject to both temporal and resource constraints in order to meet or minimize a certain objective. Temporal

constraints often consist of precedence constraints, that is, certain activities must be completed before

others can be processed, but sometimes even arbitrary minimal and maximal time lags, so-called time

windows between pairs of activities have to be respected. Moreover, activities require resources while

being processed, and the resource availability is limited. Also time-varying resource requirements and

resource availabilities are considered. Most frequently, the project makespan is to be minimized, but also

other, even non-regular objective functions are considered in the literature. For a detailed account of the

various problem settings, most relevant references as well as a classification scheme for resource con-

strained project scheduling problems we refer to a recent survey by Brucker, Drexl, Möhring, Neumann,

and Pesch [2].
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In general, project scheduling problems are NP-hard, and in the case of time windows even the

problem of finding a feasible solution is NP-hard [1]. The intractability of these problems asks for good

and fast computable lower bounds on the objective value, which may be used for heuristics and exact

procedures. Unfortunately, it is very unlikely that provably good lower bounds can be computed within

polynomial time, since project scheduling problems contain node coloring in graphs as a special case

[19]. Thus, as for node coloring, there is no polynomial approximation algorithm with a performance

guarantee less than nε for any fixed ε > 0, unless P = NP. This negative result puts also limits on the

computation of good lower bounds.

Problem formulation. We now introduce the model of resource-constrained project scheduling with

time windows. Let V = f0; : : : ;n + 1g be a set of activities with integral activity durations p j. All

activities must be scheduled non-preemptively, and by S = (S0; : : : ;Sn+1) we denote a schedule, where

S j is the start time of activity j. Activities 0 and n+ 1 are assumed to be dummy activities indicating

the project start and the project completion, respectively. Temporal constraints in the form of minimal

and maximal time lags between pairs of activities are given. By di j we denote a time lag between two

activities i; j 2 V , and by L � V �V we denote the set of all given time lags. We assume that the

temporal constraints always refer to the start times, thus every schedule S has to fulfill S j � Si + di j for

all (i; j) 2 L. Note that di j � 0 (d ji < 0) implies a minimal (maximal) positive time lag of S j relative to

Si, thus so-called time windows of the form Si + di j � S j � Si � d ji between any two activities can be

modeled. Ordinary precedence constraints can be represented by letting di j = pi if activity i must precede

activity j. In addition to these temporal constraints we will consider a time horizon T as an upper bound

on the project makespan. It can be checked in polynomial time by longest path calculations if such a

system of temporal constraints has a feasible solution. Throughout the paper we will assume feasibility.

We then also obtain for each activity a set of (integral) feasible start times I j := fES j; :::;LS jg, j 2 V ,

where ES j and LS j denote the earliest and latest start time of activity j, respectively.

Activities need resources for their processing. In the model with constant resource requirements, we

are given a finite set R of different, renewable resources, and the availability of resource k 2R is denoted

by Rk, that is, an amount of Rk units of resource k is available throughout the project. Every activity j

requires an amount of r jk units of resource k, k 2 R , to be performed. But also time-varying resource

demands r jk(t) and availabilities Rk(t) are possible. The activities have to be scheduled non-preemptively

such as to minimize a given measure of performance, which usually is the project makespan.

Project scheduling problems are often formulated as integer linear programs with time-indexed bi-

nary variables x jt , j 2V , t 2 f0; :::;Tg, which are defined by

x jt =

�

1 : activity j starts at time t

0 : otherwise,
(1)

This leads to the following, well known integer linear programming formulation.

minimize ∑
t

t � xn+1;t (2)

subject to ∑
t

x jt = 1; j 2V (3)

T

∑
s=t

xis +

t+di j�1

∑
s=0

x js � 1 (i; j) 2 L; t 2 f0; :::;Tg (4)

∑
j

r jk(

t

∑
s=t�p j+1

x js)� Rk; k 2 R ; t 2 f0; :::;Tg (5)

x jt 2 f0;1g j 2V; t 2 f0; : : : ;Tg: (6)
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Constraints (3) indicate that each activity is started exactly once, and inequalities (4) represent the tem-

poral constraints given by the time lags L. Inequalities (5) assure that the activities processed simul-

taneously at time t do not consume more resources than available. Note that by slightly extending the

resource inequalities (5), this formulation can easily be generalized to time dependent resource profiles,

i.e. Rk = Rk(t) and r jk = r jk(t). In order to simplify notation, we have omitted this generalization in the

above formulation.

Previous work. We now briefly review other related work. The above time-indexed formulation for

project scheduling problems has been used before by various authors (e.g. [17, 21, 7, 5, 4]), sometimes

also with a weaker formulation of temporal constraints as ∑t t(x jt � xit) � di j, (i; j) 2 L. Most relevant

to our work is the paper by Christofides, Alvarez-Valdes, and Tamarit [7]. They have investigated a

Lagrangian relaxation of the above integer program in order to obtain lower bounds on the makespan of

project scheduling problems. They solve the Lagrangian relaxations by a branch and bound algorithm,

not aware that they can be solved in polynomial time by purely combinatorial methods (see Section 2).

As a matter of fact, the LP relaxation of (3), (4), and (6) is known to be integral. This structural result has

been shown before by Chaudhuri, Walker, and Mitchell [5]. For problems with precedence constraints

and time varying resources, the same has also been shown by Cavalcante, De Souza, Savelsbergh, Wang,

and Wolsey [4]. The latter authors solve the corresponding linear programming relaxation of (3), (4),

(5), and (6) optimally in order to exploit its solution for ordering heuristics to construct good feasible

schedules.

Mingozzi, Maniezzo, Ricciardelli, and Bianco [14] have proposed several lower bounds on the

project makespan for precedence-constrained project scheduling that rely on a different mathematical

formulation. Their approach is based on introducing variables y
`t which indicate if a (resource feasible)

subset of activities V
`

� V is in process at a certain time t. Clearly, this formulation is of exponential

size, since there are exponentially many such feasible subsets V
`

. They derive different lower bounds

by considering several relaxations, including a very fast computable lower bound, usually referred to as

LB3, which is based on the idea to sum up the processing times of activities which pairwise cannot be

scheduled simultaneously. Their bounds have then been evaluated and modified also by other authors.

Here we particularly mention the paper by Brucker and Knust [3]. They solve the following relaxation of

the project scheduling problem: Feasible subsets of activities must be scheduled (preemptively) such that

every activity receives at least its total processing time. Again, the number of variables is exponential.

To solve the problem, they have applied a column generation approach, where the pricing is done by a

branch and bound algorithm. They thus obtain the best known bounds on the majority of instances of a

well known test bed [13], however, their approach requires very large computation times.

Our approach. In the spirit of Christofides, Alvarez-Valdes, and Tamarit [7], we propose a Lagrangian

relaxation of the resource constraints (5) to compute lower bounds for resource-constrained project

scheduling problems as defined by (2) – (6). Within a subgradient optimization algorithm we solve a

series of project scheduling problems given by (3), (4), and (6), subject to start time dependent costs for

each activity. The core of our approach is a direct transformation of the project scheduling problem (3),

(4), and (6) to a minimum cut problem in an appropriately defined directed graph. To solve the minimum

cut problem, we use a maximum flow code by Cherkassky and Goldberg [6].

The potential of our approach is demonstrated by very promising computational results. We have

used widely accepted test beds for makespan minimization in project scheduling, namely problems with

ordinary precedence constraints as well as arbitrary minimal and maximal time lags [13, 20], and labor-

constrained scheduling problems with a time varying resource profile stemming from chemical produc-

tion within BASF AG, Germany [12].

The experiments reveal that our approach is capable of computing very good lower bounds at very
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short computation times. We thus improve previous, fast computable lower bounds, and in the setting

with time windows even obtain best known lower bounds for quite a few instances. Compared to other

approaches which partially require prohibitive running times, our algorithm offers a good tradeoff be-

tween quality and computation time. It also turns out that our algorithm is especially suited for problems

with extremely scarce resources, which are the problems that tend to be intractable for other approaches.

For the instances stemming from BASF, Cavalcante et al. [4] report on tremendous computation

times for solving corresponding linear programming relaxations. Our experiments show that one can

obtain essentially the same value as with the LP relaxation much more efficiently.

Organization of the paper. In Section 2 we present the Lagrangian relaxation of the integer program

(2) – (6), and introduce a direct transformation of the resulting subproblems (project scheduling subject

to start time dependent weights) to minimum cut problems in an appropriate directed graph. Section 3

is then concerned with an extensive computational study of our approach. We analyze our algorithm in

comparison to both the solution of the corresponding LP relaxations, and other lower bounding algo-

rithms. We conclude with some remarks on future research.

2 The Lagrangian Relaxation

Christofides, Alvarez-Valdes, and Tamarit [7] have proposed the following Lagrangian relaxation of

the time indexed integer programming formulation of resource-constrained project scheduling given by

(2) – (6). They dualize the resource constraints (5), and introduce Lagrangian multipliers λtk � 0, t 2

f0; :::;Tg, k 2 R , to obtain:

minimize ∑
t

t � xn+1;t +∑
j
∑

t

( ∑
k2R

r jk

t+p j�1

∑
s=t

λsk)x jt �∑
t

∑
k2R

λtk �Rk (7)

subject to (3), (4), and (6):

If we now omit the constant term ∑t ∑k2R λtk �Rk and introduce weights

w jt =

8

>

>

>

<

>

>

>

:

∑
k2R

r jk

t+p j�1

∑
s=t

λsk if j 6= n+1;

t + ∑
k2R

r jk

t+p j�1

∑
s=t

λsk if j = n+1;

we can reformulate (7) as

minimize c(x) := ∑
j
∑

t

w jt � x jt subject to (3), (4), and (6): (8)

This formulation specifies a project scheduling problem where the activities have start-time dependent

costs, and where the aim is to minimize the overall cost subject to minimal and maximal time lags

between activities. We refer to this problem as project scheduling problem with start-time dependent

costs. It is a basic observation that all weights can without loss of generality be assumed to be positive,

since due to (3), any additive transformation of the weights only affects the solution value, but not the

solution itself. (In (8) the weights are nonnegative by definition.) Note that the problem can trivially be

solved by longest path calculations if the w jt are non-decreasing in t. However, for general weights this

is not true.

We finally point out that the above Lagrangian relaxation is not restricted to makespan minimization,

but can as well be applied to any other regular, and even non-regular objective function. Thus our
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procedure is applicable to a variety of project scheduling problems like, for instance, the minimization

of the weighted sum of completion times, problems that aim at minimizing lateness, or the so-called

resource investment problem, where the objective is to minimize the investment in expensive resources

such that the production can be accomplished within a given deadline (cf. [15], [8]).

The transformation. We now propose a reduction of the project scheduling problem with start time

dependent costs given in (8) to a minimum cut problem in a directed graph D = (N;A) which is defined

as follows.

� Nodes. The set of nodes N contains for each activity j 2 V the nodes u jt ; t 2 fES j; :::;LS j + 1g.

Furthermore, it contains a dummy source a and a dummy sink b.

So N := fa;bg[fu jt j j 2V; t 2 fES j; :::;LS j +1gg.

� Arcs. The arc set A can be divided into three disjoint subsets. The set of assignment arcs corre-

sponds to the binary variables x jt of the integer program (8) and contains all arcs (u jt ;u j;t+1) for all

j 2V and t 2 I j. Then, x jt corresponds to (u jt ;u j;t+1). Thus, the set of assignment arcs is defined

by the set f(u jt ;u j;t+1)j j 2V; t 2 I jg.

The set of temporal arcs guarantee that no temporal constraint is violated, i.e., the set of temporal

arcs is defined by the set f(uis;u j;s+di j
)j(i; j) 2 L;s 2 Iig.

Finally, a set of dummy arcs connects the source and the sink nodes a and b with the remaining

network. The dummy arcs are given by f(a;ui;ESi
ji 2Vg[f(ui;LSi+1;b)ji 2Vg.

� Capacities. The capacity of an assignment arc (u jt ;u j;t+1), j 2 V , t 2 I j, equals the weight w jt

of its associated binary variable x jt . The capacity of every temporal arc and every dummy arc is

infinite. All lower capacities are assumed to be 0.

0

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

5

5

-2

p1 = 1

(u31;u32)

Figure 1: The left digraph represents the relevant data of the underlying example: Each node represents

an activity, each arc represents a temporal constraint. The right digraph D is the corresponding graph

obtained out of the transformation. Each assignment arc of D corresponds to a binary variable x jt as

defined in (1). For instance, the arc (u31;u32) corresponds to x31. Those arcs marked by a white arrow

head are dummy arcs that connect the global source a and the global sink b with the remaining network.

Figure 1 shows an example of the graph D which is based on an instance consisting of 5 activities

V = f1; :::;5g. The set of time lags is defined by fd12 = 1;d23 = �2;d34 = 2;d54 = 3g. The activity
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durations are p1 = p4 = 1, p2 = p5 = 2, and p3 = 3. We assume that T = 6 is a given upper bound on

the project makespan. Then, the earliest start vector is ES = (0;1;0;3;0) and the latest start vector is

LS = (3;4;3;5;2).

Given a directed graph D = (N;A), an a;b-cut is a pair (X ; X̄) of disjoint sets of nodes X ; X̄ �N such

that X [ X̄ = N, and a 2 X , b 2 X̄ . The capacity c(X ; X̄) of such a cut (X ; X̄) is the sum of the capacities

of its forward arcs c(X ; X̄) := ∑
(u;ū)2(X ;X̄) c(u; ū). An arc (u; ū) 2 A is said to be a forward arc of the cut

if u 2 X and ū 2 X̄ . A minimum a;b-cut is a cut which has minimal capacity among all a;b-cuts.

Theorem 2.1. A minimum a;b–cut (X�

; X̄�

) of digraph D corresponds to an optimal solution x� of inte-

ger program (8) (the project scheduling problem with start time dependent costs), and c(X�

; X̄�

) = c(x�).

Here, x� is given by

x�jt =

(

1 if (u jt ;u j;t+1) is a forward arc of the cut (X ; X̄);

0 otherwise;
(9)

and c(x) denotes the cost of a solution x of the integer program (8).

The proof crucially uses the fact that each minimum a;b–cut of the digraph D consists of exactly one

forward arc (u jt ;u j;t+1) for every activity j. Note that this only holds since the weights w jt are strictly

positive and thus also the capacities of the arcs are strictly positive. Furthermore, it is essential that the

given instance has a feasible solution since, otherwise, one of the dummy arcs might be contained in a

minimum cut. Theorem 2.1 is proved by the following Lemmas 2.2, 2.3, and 2.4.

Lemma 2.2. For each feasible solution x of the integer program (8) there exists an a;b-cut (X ; X̄) in D

such that c(x) = c(X ; X̄).

Proof. Given a feasible solution x of the integer program (8), the construction of the corresponding a;b-

cut (X ; X̄) of D is straightforward. Due to (3), there exists exactly one x j;t j
= 1 for some t j 2 I j for each

activity j 2V , which corresponds to the activity start time S j = t j. Let X :=
S

j2Vfu jt jt � t jg[fag, and

let X̄ := N nX . We now show that the capacity c(X ; X̄) of this cut equals c(x). By definition all arcs

(u j;t j
;ui;t j+1), j 2 V , are forward arcs of (X ; X̄), and the sum of the capacities of these arcs is exactly

c(x). Now suppose that there exist another forward arc of the cut, which then must be a temporal arc

(uis;u jt);s � ti; t > t j. By definition of D, we thus have a temporal constraint between jobs i and j which

says S j �Si � t� s. But since S j �Si = t j� ti < t� s, we obtain a contradiction to the assumption that x

was feasible, and thus c(x) = c(X ; X̄).

Lemma 2.3. Let (X ; X̄) be a minimum a;b-cut of the digraph D. Then for each activity j 2 V exactly

one assignment arc (u jt ;u j;t+1) is contained as forward arc in the cut.

Proof. Since we have assumed that there always exists a feasible solution x of the integer program (8) it

follows by Lemma 2.2 that there always exists a corresponding a;b-cut in D which has finite capacity.

Thus, also the minimum cut (X ; X̄) has finite capacity, i.e., it does not contain any of the dummy or tem-

poral arcs as forward arcs. It follows that for each activity j 2V at least one assignment arc (u jt ;u j;t+1)

is contained as forward arc in (X ; X̄). Now assume that (X ; X̄) contains more than one assignment arc

(u jt ;u j;t+1) for some activity j 2 V . We then construct another cut (X�

; X̄�

) with smaller capacity: For

each j let t j be the smallest time index such that (u j;t j
;u j;t j+1)2 (X ; X̄). Let X� :=

S

j2Vfu jt jt � t jg[fag,

and let X̄� := N nX�. Clearly, X�

� X and the set of assignment arcs of (X�

; X̄�

) is a proper subset of

the corresponding set of assignment arcs of (X ; X̄). Now recall that all weights of the scheduling prob-

lem (8) are strictly positive, thus all arc capacities are strictly positive as well. To see that (X�

; X̄�

) has

smaller capacity than (X ; X̄), it now suffices to show that (X�

; X̄�

) does not contain any of the temporal
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ui;ti

u j;t j

uh;th

(X ; X̄)(X�

; X̄�

)

Figure 2: A minimum cut (X�

; X̄�

) of D always contains exactly one forward arc of each j.

arcs as forward arcs. So assume that there exists such a temporal arc (uis;u jt ) 2 (X�

; X̄�

), s � ti, t > t j.

Since (uis;u jt) 2 A, it follows by construction of D that all arcs (ui;s�z;u j;t�z) 2 A for all z 2 IN0 such

that s� z 2 Ii and t � z 2 I j. Now let z := t � t j � 1, then s� z 2 Ii and t � z 2 I j. Since s � ti, we have

ui;s�z 2 X�

� X . Moreover, by definition of t j, u j;t�z = u j;t j+1 2 X̄ . Thus we have identified a temporal

arc (ui;s�z;u j;t�z)2 (X ; X̄), i.e., a forward arc of the cut (X ; X̄) which is a contradiction to the assumption

that it had finite capacity.

With the use of Lemma 2.3 the following lemma can be derived straightforwardly, which eventually

concludes the proof of Theorem 2.1.

Lemma 2.4. For each minimum cut (X�

; X̄�

) in D there exists a feasible solution x of the integer pro-

gram (8) such that c(x) = c(X�

; X̄�

).

Proof. Given a minimum cut (X�

; X̄�

) of D, let, according to the assignment (9), x jt = 1 for all arcs

(u jt ;u j;t+1) 2 (X�

; X̄�

) and x jt = 0 otherwise. Clearly, the cost of this assignment is exactly the cost

of the corresponding cut, thus c(X�

; X̄�

) = c(x). By Lemma 2.3, it follows that the resulting solution x

fulfills equalities (3). Now suppose that the temporal constraints (4) were not fulfilled by the constructed

solution x. Then there exists a violated temporal constraint, say xis = x jt = 1 where t � s < di j . By

Lemma 2.3, it follows that u j;s+di j
2 X̄ . However, by definition of the digraph D, there exists a temporal

arc (uis;u j;s+di j
), and since uis 2 X , this temporal arc is a forward arc of the cut. Thus the cut (X�

; X̄�

) has

infinite capacity, which contradicts the assumption that its capacity is minimal. (Remember that there

is a feasible solution to (8), thus by Lemma 2.2 there is a cut of finite capacity.) Consequently, also

inequalities (4) are valid, and x is in fact a feasible solution of the integer program (8).

Since D has O(n � T ) nodes and O((n + m) � T ) arcs, a minimum cut in D can be computed in

O(nmT 2log(T )) time when applying the classical push-relabel-algorithm for maximum flows [9]. Here,

m is the number of given time lags L.

A related transformation has been investigated by Chaudhuri, Walker, and Mitchell [5]. They trans-

form the integer program (8) into a cardinality-constrained stable set problem in comparability graphs,

with the objective to identify a stable set of minimum weight among all stable sets of maximum cardi-

nality. The weighted stable set problem in comparability graphs can be transformed in polynomial time

to a minimum flow maximum cut problem on a digraph, in which the maximum cut corresponds to the
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maximum weighted stable set, cf. [10, 16]. However, the resulting digraph is dense while the digraph

resulting from our transformation has a very sparse structure, since the set L of temporal constraints is

usually sparse. Moreover, the directed graph D as defined above need not be acyclic, and thus cannot be

derived from a transitive orientation of the comparability graph defined in [5].

To conclude, the proposed transformation into a minimum cut problem is the key to efficiently solve

the integer program (8). In the following section we will also demonstrate its practical relevance and

efficiency within a subgradient optimization algorithm in order to solve the multiplier problem of the

Lagrangian relaxation (7).

3 Experimental Study

In this section we study several aspects of the proposed lower bounding algorithm. We first compare our

approach with the corresponding LP relaxation of the initial integer program. We then empirically ana-

lyze how running time and quality of the Lagrangian relaxation algorithm depend on different parameters

such as the time horizon, the number of activities, and the scarceness of the available resources. Next, we

compare our bounds with those computed by other lower bounding algorithms for resource-constrained

project scheduling. We finally briefly investigate the computation of feasible schedules based on the

solution of the Lagrangian relaxation.

The Lagrangian multiplier problem which has to be solved within our approach is computed by a

standard subgradient optimization procedure which is aborted if the objective value was not improved

significantly over five consecutive iterations. If this happens within the first 10 iterations we restart the

procedure with another choice of step sizes.

For the computations we have used a slight extension of the resource inequalities (5) which has been

proposed by Christofides, Alvarez-Valdes, and Tamarit [7]. They suggest to strengthen the resource

constraints by ensuring that no activity j 2V nfn+1g is performed simultaneously to the dummy sink

n+1. To do so, we set the resource requirements rn+1;k = Rk for all resources k 2R . Then, once activity

n+ 1 has been started it consumes all available resources. The modified resource constraints can be

written as follows.

∑
j

r jk(

t

∑
s=t�p j+1

x js)+ rn+1;k

t

∑
s=ESn+1

xn+1;s � Rk; k 2 R ; t 2 f0; :::;Tg (10)

3.1 Benchmark Instances

We have applied our algorithms to the widely accepted test beds of the ProGen and the ProGen/max

library [13, 20]. Furthermore, we have considered a small test bed of problems modeled after chemical

production processes with labor constraints [11].

The ProGen library currently provides instances for precedence-constrained scheduling with multiple

resource constraints. These instances consist of 30, 60, 90, and 120 activities, respectively. They are

generated by modifying three parameters of the instance generator, the network complexity which reflects

the average number of direct successors of an activity, the resource factor which describes the average

number of resources required in order to process an activity, and the resource strength, which is a measure

of the scarcity of the resources. The parameter controlling the resource strength varies between 0.1 and

0.7 where a small value indicates very scarce resources. This variation results into 480 instances of

each of the first three instance sizes (30, 60, 90), and 600 instances of 120 activities. The activity

durations were chosen randomly between 1 and 10 and the maximum number of different resources is

4 per activity. The library also contains best known upper bounds on these instances, which we have

used as time horizon T in order to compute the latest start times of the activities (for the instances of 30

activities these upper bounds represent the optimum). Among the whole set of instances we only took
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those for which the given upper bound is larger than the trivial lower bound LB0 which is the earliest start

time ESn+1 of the dummy activity n+1. The number of instances then reduces to 264 (30 activities), 185

(60 activities), 148 (90 activities), and 432 (120 activities). The time horizon of these instances varies

between 35 and 306. For further details on this library we refer to [13].

The ProGen/max library provides 1080 instances scheduling problems with time windows and mul-

tiple resource requirements, each of which consists of 100 activities. The parameters of the instance

generator are similar to those of the ProGen generator but an additional parameter controls the number

of cycles in digraph of temporal constraints. Again, the activity durations were chosen randomly between

1 and 10, and the maximum number of different resources is 5. 21 of the 1080 instances are infeasible

and for another 693 instances there exists a feasible solution with a project makespan which equals the

trivial lower bound LB0. Thus, the number of instances of interest within this test bed reduces to 366.

For these instances, the time horizon is set again to the documented best known upper bounds. It varies

between 253 and 905. For further details on the parameters of this library we refer to [20].

Finally, we consider instances which have their origin in a labor-constrained scheduling problem

(LCSP) from BASF AG, Germany, which can briefly be summarized as follows: The production process

for a set of so-called orders has to be scheduled. Every order represents the output of a constant amount of

a chemical product, and the aim is to minimize the project makespan, i.e., the time to complete all orders.

The production process for an order consists of a sequence of identical activities, each of which must be

scheduled non-preemptively. Due dates for individual orders are given, and due to technical reasons there

may be precedence constraints between activities of different orders. Additionally, resource constraints

have to be respected, which are imposed by a limited number of available workers: An activity usually

consists of several consecutive tasks such as blending, heating or other, and these tasks require a certain

amount of personnel. Thus, the personnel requirement of any activity is varying over time, and given by

a piecewise constant requirement function. We refer to instances of this type as LCSP instances. A more

detailed problem description has been published by Kallrath and Wilson [12]. The instances considered

here are taken from [11].

3.2 Computing Environment

Our experiments were conducted on a Sun Ultra 2 with 200 MHz clock pulse operating under Solaris

2.6 with 512 MB of memory. Our code is written in C++ using the Standard Template Library (STL)

and has been compiled with the GNU g++ compiler version 2.7.2. The Maximum Flow Code which

is provided by Cherkassky and Goldberg [6] is written in C and has been compiled with the GNU gcc

compiler version 2.7.2. Both compilers used the -O4 optimization option. To solve the linear programs

we have used CPLEX v. 4.0.8. All reported CPU times to compute the lower bounds are averaged over

three runs.

3.3 Computational Results

LP relaxation versus Lagrangian relaxation Since the LP relaxation of (8) is integral, the lower

bounds obtained by the Lagrangian relaxation will never exceed those of the LP relaxation. Since the LPs

are usually very large (and notoriously difficult particularly for the LCSP instances) we have compared

the running times to solve these LPs with our Lagrangian relaxation. For the test bed with precedence

constraints and 30 activities, the LP is solved within 18 seconds on average, while the Lagrangian relax-

ation plus the subgradient optimization requires only one second on average, with an average number of

104 iterations. The average deviation of the values of the LP relaxation and the subgradient optimiza-

tion is only 1%. Most instances of the test beds with a larger number of activities require exhaustive

computation time and memory, particularly for large time horizons T .

For the LCSP instances Cavalcante, De Souza, Savelsbergh, Wang, and Wolsey [4] have computed
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Figure 3: Plots (a) and (b) show the running time depending on the time horizon and the number of

activities. Graphic (c) displays the effect of the resource strength on the running time for fixed n = 120

and T 2 [100;120℄. and Graphic (d) visualizes the quality of the different bounds depending on the

resource strength. The ordering of the curves is: Best known upper bound, lower bound by Brucker and

Knust [3], Lagrangian lower bound, LB3.

the LP relaxation of the integer programming formulation of the problem in order to deduce suitable

orderings among the activities for generating feasible solutions for these instances. They also report on

excessive running times required for the computation of such LP relaxations. This can be drastically

reduced when alternatively applying our algorithm.

Empirical analysis Next, we empirically analyze the running time and the performance with respect

to varying problem parameters. For this part of the study we considered all of the ProGen test beds. We

vary the number of activities, the time horizon, and the resource strength. Figures 3 (a) and (b) display

plots that show how the running time depends on both the time horizon and the number of activities. Each

plot additionally contains of a corresponding regression curve. Obviously, the obtained results coincide

with the theoretical running times as stated in Section 2.

Since other algorithms often require large running time when dealing with instances consisting of

very hard resource constraints, we investigate the dependency of the running time of our algorithm on

the resource strength. Recall that a small value of the resource strength parameter indicates very scarce

resources. As depicted in Figure 3 (c), the running time of our algorithm is only slightly affected by the

resource strength parameter.

Other lower bounding algorithms We next compare the results of our algorithm with those ones

computed by other lower bounding procedures. The aim is to show that our algorithm behaves quite

reasonable with respect to the tradeoff between quality and computation time. Besides the trivial lower

10



best known

Type #act. #inst. LB0 LB UB CPU LB3 LB CPU

prec 60 185 71.3 78.8 90.6 6.1 74.2 85.6 13.5

prec 90 148 86.3 99.6 115.8 20.0 86.8 106.1 170.8

prec 120 432 94.6 116.7 137.6 56.9 102.0 124.9 n.a.

temp 100 366 431.4 435.9 499.0 72.1 434.2 452.2 n.a.

Table 1: Lower bounds obtained by the Lagrangian relaxation for the different test beds as described

in Section 3.1. prec and temp indicates whether the instances consist of precedence constraints or of

arbitrary time lags.

bound LB0 only very few other techniques have been proposed, and most of them are tailored to minimize

the makespan. For the scenario with precedence constraints, we compare our algorithm with two other

approaches which are both based on [14]. First, we consider the lower bounds reported by Brucker

and Knust [3] which are the strongest known bounds for the ProGen Testbeds, and second, we have

implemented the O(jV j2) lower bound LB3 (cf. Section 1). The average results on the running time and

the quality of the lower bounds are provided in Table 1. While the computation time for the bound LB3

is negligible (< 0:5 sec.), the algorithm of Brucker and Knust provides better bounds but in exchange for

much larger running times. To obtain the lower bounds for the test bed which consist of 120 activities,

their algorithm occasionally requires a couple of days per instance (on a Sun Ultra 2 with 167 MHz

clock pulse), as reported to us in private communication. We could solve all of these instances within an

average of less than a minute and a maximum of 362 seconds using 12 MB memory. When compared to

the bound LB3, our algorithm produces far better bounds in most of the cases.

For the instances with time windows, the algorithm proposed by Brucker and Knust [3] cannot be ap-

plied, since it is developed for the model with precedence constraints only. The best known lower bounds

collected in the test bed are computed by different algorithms, mostly by a combination of preprocessing

steps and a generalization of the lower bound LB3. As indicated in Table 1, the results of our algorithm

on this test bed are less satisfactory. However, the best known lower bounds for these instances are also

of low quality. We were able to improve 38 of these best known lower bounds among the 366 instances.

The reason for this less satisfactory behavior may be a weaker average resource strength which leads to

bounds of low quality, and also the larger time horizons which result in large running times.

For the LCSP instances, no documented lower bounds are available beside the trivial bound LB0. Our

computational experiences on these instances coincide with the above observation that the quality of our

lower bounds increases when the availability of personnel is very low.

Computing feasible schedules Besides the computation of lower bounds for complex combinatorial

optimization problems, both the LP relaxation and the Lagrangian relaxation method often allow the

construction of good upper bounds by exploiting the structure of the corresponding solution to construct

a good feasible solution. For labor-constrained scheduling problems, Cavalcante, De Souza, Savelsbergh,

Wang, and Wolsey [4] as well as Savelsbergh, Uma, and Wein [18] have proposed such techniques. So

far, we have performed experiments in order to compute feasible schedules for the ProGen instances by

extracting an ordering on the activities from the solution of the Lagrangian relaxation and used them

as priority rules to generate feasible solutions. We could not beat the best known upper bounds (which

have partially been computed by expensive local search and truncated branch and bound algorithms) but

the priority rules deliver the best schedules when compared to other priority lists stated in the literature.

Among all ProGen instances, the average deviation of the upper bounds computed by this technique from

the best known upper bounds is only 18%.
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In summary, our approach works very well for instances with low resource availability. Many in-

stances with this property turn out to be very hard to solve to optimality within branch and bound algo-

rithms. Furthermore, although the running time depends crucially on the time horizon, we are able to

compute instances consisting of large time horizons within reasonable time.

4 Concluding Remarks

We have presented a lower bounding procedure that may be applied to a wide variety of different resource

constrained project scheduling problems. The bounds obtained by this algorithm can be computed fast

and are particularly strong for scenarios with very scarce resources. The algorithm is easy to implement

since it basically computes a sequence of maximum flow problems.

Future research will mainly be concerned with the integration of other classes of inequalities. When

additionally dualizing such inequalities, we may further strengthen the lower bounds at a low computa-

tional cost, since the structure of the underlying minimum cut problem remains unchanged. In particular,

motivated by the approach described by Mingozzi, Maniezzo, Ricciardelli, and Bianco [14], we plan

to identify suitable sets W of activities out of which not more than `;` < jW j; activities can be sched-

uled simultaneously. Based on the used time-indexed binary variables x jt , the above constraint can be

formulated as

∑
j2W

t

∑
s=t�p j+1

x js � ` t 2 f0; :::;Tg:

Furthermore, since we have to compute a sequence of maximum flow computations on very similar

graphs, it could be valuable to adapt the maximum flow algorithm for our specific application, and also

to recycle the flow data of the previous iteration. We also plan to test alternative techniques to solve

the Lagrangian multiplier problem. In particular the so-called One-Shot method could be very helpful,

since, in contrast to the subgradient optimization, only one Lagrangian parameter is changed. This in

turn enables the reuse of the minimum cut of the previous iteration.
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