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Networks of coupled nonlinear oscillators allow for the formation of nontrivial partially synchro-
nized spatiotemporal patterns, such as chimera states, in which there are coexisting coherent (syn-
chronized) and incoherent (desynchronized) domains. These complementary domains form sponta-
neously and it is impossible to predict where the synchronized group will be positioned within the
network. Therefore, possible ways to control the spatial position of the coherent and incoherent
groups forming the chimera states are of high current interest. In this work we investigate how
to control chimera patterns in multiplex networks of FitzHugh-Nagumo neurons, and in particular
we want to prove that it is possible to remotely control chimera states exploiting the multiplex
structure. We introduce a pacemaker oscillator within the network: this is an oscillator that does
not receive input from the rest of the network but is sending out information to its neighbours. The
pacemakers can be positioned in one or both layers. Their presence breaks the spatial symmetry
of the layer in which they are introduced and allows us to control the position of the incoherent
domain. We demonstrate how the remote control is possible for both uni- and bidirectional coupling
between the layers. Furthermore we show which are the limitations of our control mechanisms when
it is generalized from single layer to multilayer networks.

I. INTRODUCTION

Chimera states are intriguing phenomena of partial
synchronization in oscillator networks. Kuramoto and
Battogtokh first observed the coexistence of coherent
and incoherent behaviour in spatially symmetric oscilla-
tor networks in 2002 [1], and two years later these pecu-
liar solutions were named chimera states by Abrams and
Strogatz [2]. During the last two decades chimeras have
become a popular topic in the nonlinear science commu-
nity [3–18] and captured the interest of scientists from
various disciplines, ranging from neuroscience, chemistry,
to engineering and many others. This widespread inter-
est in the phenomenon led to the establishment of con-
ceptual links between chimera states and real-world dy-
namics [7, 19–35] and also to the design of experiments
which led to observation of chimera states in the labora-
tory [36–41].

Recently, a prominent line of research emerged which
studies chimera states in multilayer networks [42–57].
Multilayer networks are important modelling tools for
complex systems such as transportation networks, social
interactions and the brain [58, 59]. Networks of neurons
are one of the most promising applications of multilayer
modelling [60]. Chimera states were observed in two-
and three-layer networks of Hindmarsh-Rose neurons in
Ref. [42]. In [43, 44] Majhi and coauthors considered
a two-layer network of Hindmarsh-Rose neurons and ob-
served the emergence of chimera states via multiplexing
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when the neurons were uncoupled in one of the two lay-
ers. Synchronization between chimera states in multi-
layer networks was studied in recent research. In the
study in Ref. [47] the authors detected generalized syn-
chronization between chimera states in a two-layer net-
work of phase oscillators. Subsequently, Ref. [50] was the
first study on chimera states in a network with layers of
different sizes. There the authors modelled a mean field
interlayer coupling and observed that the phases of the
order parameters of the two layers synchronize [50]. In
[49] it was shown that in a multiplex scheme with three
layers formed by ring networks of FitzHugh-Nagumo os-
cillators, time delays can control relay synchronization
between chimera states. The synchronization of chimera
states in multiplex networks of phase oscillators with
adaptive couplings within each layer was studied in [51].

It is known that in single-layer networks of finite size,
chimera states show the following instabilities. First,
chimeras are transients and therefore they collapse to the
stable synchronous state, although they can have a long
lifetime [4, 23]. Secondly, the complementary coherent
and incoherent groups drift along the network [3], and
therefore the spatial configuration of the chimera state
varies in time. In small networks, these instabilities are
particularly pronounced. Furthermore, the initial posi-
tion of the two groups is sensitively dependent on the
initial conditions. The control of these instabilities of
chimera states has been the subject of several studies
which considered single-layer networks of various types
of oscillators [61–68]. In contrast, control of chimera
states in multilayer networks is still widely unexplored.
In 2019, Omelchenko and coauthors showed that the so-
called tweezers control mechanism introduced in [66] can
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also be used to control chimera states in multiplex net-
works of van der Pol oscillators [69]. In Ref. [56] the au-
thors showed that it is possible to clone a chimera states
from one layer to another of a multiplex network even
when the coupling is active only for a short time. For a
two-layer network of oscillatory FitzHugh-Nagumo units,
a control strategy based on weak multiplexing was devel-
oped allowing to induce or suppress chimera states [52].

It is therefore natural to ask whether other mechanisms
to control chimera states may be effective in multilayer
networks. Here we propose a method based on the in-
terplay of a pacemaker oscillator [68] and the multiplex
structure. Advantages of our method include its simple
implementation and the fact that it does not require any
feedback from the system. By acting only on the connec-
tivity structure and leaving the oscillators unchanged, we
are able to control the position of the incoherent region
in one or both layers, with an efficiency that depends
on the control configuration and the interlayer coupling
strength.

The paper is organized as follows: first we describe

the model and integration methods (Section II A). Then
we introduce measures for the control efficiency and for
interlayer synchronization (Section II B and C, respec-
tively). We proceed with the results which are divided in
two parts, obtained for unidirectional coupling (Section
III A) and for bidirectional coupling (Section III B). We
conclude with a brief discussion (Section IV).

II. METHODS

A. Model and integration

We study the dynamics of a two-layer network of
FitzHugh-Nagumo oscillators. Each unit is characterized
by two variables u and v. The layers are formed by N
oscillators arranged in a ring topology. Following Ref.
[6], inside each layer l = 1, 2, the oscillators are coupled
nonlocally with range R and strength σl. The dynam-
ics of the multiplex network is governed by the following
set of differential equations for ulk, vlk and k = 1, . . . , N
[52]:

ε
du1k

dt
= u1k −

u3
1k

3
− v1k +

σ1

2R

N∑
j=1

G1(k, j)[(buu(u1j − u1k) + buv(v1j − v1k))] + σ2→1(u2k − u1k)

dv1k

dt
= u1k + a+

σ1

2R

N∑
j=1

G1(k, j)[(bvu(u1j − u1k) + bvv(v1j − v1k))]

ε
du2k

dt
= u2k −

u3
2k

3
− v2k +

σ2

2R

N∑
j=1

G2(k, j)[(buu(u2j − u2k) + buv(v2j − v2k))] + σ1→2(u1k − u2k)

dv2k

dt
= u2k + a+

σ2

2R

N∑
j=1

G2(k, j)[(bvu(u2j − u2k) + bvv(v2j − v2k))].

(1)

The bifurcation parameter a is set to 0.5 [6], so that each
individual FitzHugh-Nagumo unit is in the oscillatory
regime. The value of the time separation parameter ε
is fixed at 0.05. The intralayer coupling scheme is con-
structed using a rotation matrix B (equal for both layers)
and a coupling matrix Gl [6]:

B =

(
buu buv
bvu bvv

)
=

(
cosφ sinφ
− sinφ cosφ

)
(2)

Gl(k, j) =

{
1 if there is a link j → k in layer l

0 otherwise
(3)

where j, k = 1, . . . N and l = 1, 2. For nonlocal cou-
pling with a rectangular coupling kernel of range R, the
coupling matrix has the structure shown in Fig. 2(a)
(N = 50, R = 18). It is known that for φ slightly smaller

than π
2 the uncoupled layers show chimera states, so we

set φ = π
2−0.1 throughout all simulations [6]. Regarding

the interlayer coupling scheme, Eq. (1) models a bidirec-
tional multiplex configuration where each oscillator’s u1k

variable in layer 1 is coupled to the corresponding u2k

variable in layer 2, and vice versa [52]. The interlayer
coupling strength is a scalar parameter σ2→1 from layer
2 to layer 1 and σ1→2 in the other direction. We also con-
sider unidirectional coupling, i.e. a driver-response con-
figuration which corresponds to σ1→2 > 0 and σ2→1 = 0.
In Fig. 1 we give a schematic representation of all the
network configurations used in this study, without and
with a control mechanism.

We integrate the system using a 4th order Runge-
Kutta algorithm with a time-step of 0.01 and we take an
integration interval of 106 time steps. We then exclude
transients from the measurements by taking an evalua-
tion interval I in which the first 104 steps are discarded.
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(a) (b)

(d) (e) (f)

(c)

FIG. 1. Different combinations of multiplexing and con-
trol. All networks contain two rings of nonlocally coupled
FitzHugh-Nagumo oscillators. The ring networks are high-
lighted in grey and the oscillator acting as a pacemaker in
blue. The first row shows networks with unidirectional cou-
pling, for which σ2→1 = 0 and σ1→2>0. (a) No control. (b)
Pacemaker in layer 1, position 25. (c) Pacemaker in layer 2,
position 25. In the second row we show networks with bidirec-
tional coupling between the layers and σ1→2 = σ2→1. (d) No
control. (e) Pacemaker in layer 1, position 25. (f) Pacemaker
in layer 1, position 25 and in layer 2, position 50.

FIG. 2. Matrix representation of nonlocal coupling. Panel (a)
shows the connectivity matrix of a ring of nonlocally coupled
oscillators. The network has N = 50 nodes and a rectangular
coupling kernel with R = 18. Panel (b) shows the modifi-
cation of the connectivity matrix which corresponds to the
presence of a pacemaker in position p = 25. All incoming
connections of oscillator 25 are cut, which translates into the
25th row being set to 0.

Following [6], for each layer, initial conditions are taken
to be uniformly distributed on a circle of radius 2.

B. Control impact

In this section we define some quantities that are used
to analyze chimera state in a single-layer network. A
geometric phase is calculated for each oscillator [6]:

θlk = arctan
vlk
ulk

for k = 1, . . . , N.

This quantity is used to compute local order parameters
and mean phase velocities, which serve as tools to display
and detect chimeras:

Zlk =

∣∣∣∣∣∣ 1

2δ + 1

∑
|m−k|≤δ

eiθlm

∣∣∣∣∣∣ (4)

ωlk =

〈
dθlk
dt

〉
I

for k = 1, . . . , N and l = 1, 2. (5)

where i is the imaginary unit, δ determines the number
of neighbours of one oscillator used to calculate its local
order parameter and 〈 〉I is the time average over the
evaluation interval I. As control mechanism, we use a
pacemaker oscillator [68] in one or both layers. A pace-
maker is an oscillator which is not receiving any input
from the rest of the network but is sending output like
all the others. Having a pacemaker in one of the layers
corresponds to changing that layers’ connectivity matrix
Gl defined in Eq. (3). For example, a pacemaker in po-
sition pl = 25 of layer l corresponds to setting to zero
the 25th row of the matrix Gl defined in Eq. (3). This
configuration is shown in Fig. 2(b) for N = 50. [70] We
want to study how the position of the chimera’s incoher-
ent group in the two layers of the network in Eq. (1) is
affected by the interplay of multiplexing and control with
a pacemaker. To do so, following the algorithm in Ap-
pendix B of Ref. [68], we calculate the position cl(t) of
the center of the chimera’s incoherent group. The center
position cl(t) takes integer and half-integer values c in
the interval [0.5, N ]. We then define a binary function χl
that codifies the evolution of the center position in space
and time for each layer:

χl(c, t) =

{
1 if c = cl(t)

0 otherwise.
(6)

We define γl(c) = 〈χl(c, t)〉I , which determines the frac-
tion of times for which the center of the incoherent group
is in any possible position c. We then define the control
impact Γl(pl,∆) for a pacemaker in position pl as:

Γl(pl,∆) =

pl+∆∑
c=pl−∆

γl(c). (7)

This control impact measures how many times the cen-
ter of the chimera’s incoherent group lies in a neighbor-
hood of width 2∆+1 of the pacemaker position pl during
the interval I. In Fig. 3(a) we show a chimera state in
a single layer network of FitzHugh-Nagumo oscillators
without any control. In this case the corresponding dis-
tribution γ(c) is almost flat (Fig. 3(b)). If we introduce
a pacemaker in position p = 25 and we solve Eq. (1)
starting from the same intial condition, then we obtain
the chimera state in Fig. 3(c), which has the incoher-
ent group centered around the pacemaker position. Now
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FIG. 3. A pacemaker controls the position of a chimera state
in a single-layer network on FitzHugh-Nagumo oscillators.
(a),(c) space-time plots of Zlk without control (left column)
and with a pacemaker in position p = 25 (right column). (b)
and (d) show the distribution γ of the position of the center
of incoherence. The green area corresponds to the control im-
pact Γ(25, 5) where p = 25 and ∆ = 5. In panels (b) and (d)
we define p− = p− ∆ and p+ = p+ ∆. Network parameters:
N = 50, R = 18, σ = 0.2, φ = π/2 − 0.1, a = 0.5, ε = 0.05.

γ(c) has a peak around position 25 (Fig. 3(d)). The
area highlighted in green in Fig. 3(b),(d) corresponds to
the control impact Γl. It follows from the definition (7)
that the control impact takes values between 0 and 1. In
an uncontrolled network, there is no preferred position
for the center of the incoherent group. Therefore, when
the evaluation interval I becomes arbitrarily large, the
expected value of Γl is 4∆+1

2N . This means that the cen-
ter of the chimera’s incoherent group is equally likely to
occupy all positions c ∈ [0.5, N ] while it drifts along the
network. However, here we show results for finite simu-
lation times, therefore we cannot see a constant value of
Γ even when there is no control. This is because there is
no preferred initial position for the center of the incoher-
ent group and the drifting is not fast enough to allow the
center of the incoherent group to spend the same amount
of time in all available positions.

C. Quantification of Synchronization

To assess the interplay between chimera states across
the two layers we here introduce two quantities that
measure the alignment of the incoherent groups of the
chimera states and the interlayer synchronization of the
two dynamics. First, we measure the degree to which the
chimera states in the two layers align their position. To
do this we calculate the difference between the position
of the centers of the incoherent groups c1, c2 in the two

layers on a circumference of length N :

D12 = 〈min{|c1(t)− c2(t)| , N − |c1(t)− c2(t)|}〉I , (8)

A value of D12 = 0 denotes alignment of the incoherent
groups, while if D12 = N/2 the center of the two in-
coherent groups are in antipodal positions. To quantify
synchronization between the two layers we use the mea-
sures introduced in Ref. [49]. For k = 1, . . . , N , the local
interlayer synchronization error is defined as:

E12(k) = 〈‖x1k(t)− x2k(t)‖〉I , (9)

where xlk =

[
ulk
vlk

]
for l = 1, 2. By taking also the spa-

tial average in Eq. (9), one obtains the global interlayer
synchronization error [49]:

E12 =
1

N

N∑
k=1

E12(k). (10)

III. RESULTS

In this section we present results about control of
chimera states obtained for unidirectional coupling and
bidirectional coupling between the layers. The results
are shown in Figs. 4 through 9 and detailed information
about the parameters used in the simulations is found in
the caption of Fig. 4. The results are presented with
the same configuration for different combinations of mul-
tiplex coupling schemes and positions of the pacemaker.
The figures are composed by two rows of three panels
each, the first two columns show single layer quantities,
while the last one shows multilayer quantities. In Figs.
4, 5, 6, 7, 8, 9 panels (a), (c) and (b), (d) show the con-
trol impact Γ and a snapshot of the LCG center position
c for layer 1 and layer 2, respectively. For Γ, yellow color
means that the positions of chimera states are controlled.
In this case the position of the center of the LCG takes
values that are close to the pacemaker position. If there
is no control we observe a speckled pattern for c. In
panel (e) we show the alignment of the LCG centers D12

and in panel (f) the global synchronization error E12.
We vary the interlayer coupling strength σ1→2 between
a minimum of 0 (corresponding to isolated layers) and a
maximum of 0.05. Furthermore, we keep σ1 = 0.2 and
we vary σ2 in the interval [0.1, 0.2] (50 uniform steps).

A. Unidirectional coupling

First we consider the case of unidirectional interlayer
coupling from layer 1 to layer 2. We study three possible
configurations: without any control, with a pacemaker in
layer 1 in position p1 = 25 and finally with a pacemaker
in layer 2 in position p2 = 25 while layer 1 is uncontrolled.

Fig. 4(a), (b) confirms that in the absence of a con-
trol mechanism there cannot be any preferred position
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FIG. 4. Effect of unidirectional coupling on chimera states
in a two-layer network of FitzHugh-Nagumo oscillators in the
parameter space of the interlayer coupling σ1→2 and intralayer
coupling σ2 without pacemaker (see Fig. 1(a)). The interlayer
coupling σ1→2 varies from 10−5 to 10−1 and is sampled on a
logarithmic scale, while σ2→1 is kept equal to 0. We then
added a column of results for σ1→2 = 0, corresponding to
isolated layers. The intralayer coupling σ2 varies linearly from
0.1 to 0.2. Other parameters are: N = 50, R = 18, σ1 = 0.2,
φ = π/2 − 0.1, a = 0.5, ε = 0.05. Panels (a) and (b) show
control impact values Γ1(25, 5) and Γ2(25, 5), while panels (c)
and (d) are snapshots of the position cl(ts) of the center of
incoherence in layer l = 1, 2, respectively, at time ts = 500000
time steps. (e) and (f) show synchronization measures: (e)
the alignment D12 and (f) the global synchronization error
E12 in panel (f).

FIG. 5. With unidirectional coupling between the layers, it is
possible to remotely control chimera states in layer 2 using a
pacemaker only in layer 1. Same network configuration and
parameters as in Fig. 4, but here there is a pacemaker in layer
1 in position p1 = 25 (see Fig. 1(b)).

for the center of the incoherent group. This is reflected
in values of Γ1(25, 5) and Γ2(25, 5) that are close to the
expected value of 4∆l+1

2N . This means that in each real-
ization the drifting causes the chimera’s center to occupy
all positions almost uniformly. This is confirmed by the
snapshot of the centers of incoherence shown in Fig. 4(c),
(d). At a certain moment in time, the center of incoher-
ence is in different positions in different realizations. The
incoherent groups of the chimera states align for strong
interlayer coupling (dark area in Fig. 4(e)) and, in gen-
eral, the two layers synchronize their dynamics, as it is

FIG. 6. The driving effect becomes stronger than the pace-
maker effect for increasing interlayer coupling. Same network
configuration and parameters as in Fig. 4, but here there is a
pacemaker in layer 2 in position p2 = 25 (see Fig. 1(c)).

shown in Fig. 4(f) where the global synchronization error
E12 reaches values close to zero.

The scenario described so far in the uncontrolled case is
quite intuitive, while it is less obvious what happens when
there is also a pacemaker present in the network. The re-
sults for the second configuration, obtained for a network
with a pacemaker in position p1 = 25 of the driving layer
(layer 1), are shown in Fig. 5. Because of the unidirec-
tional coupling, layer 1 is not receiving any input from
layer 2, therefore it behaves as an isolated ring network.
The almost constant value of Γ1(25, 5) close to 1 shows
that the pacemaker can control the position of a chimera
state (Fig. 5(a)) in an isolated layer of FitzHugh-Nagumo
oscillators. These new results generalize our observations
for phase oscillators [68] to FitzHugh-Nagumo oscillators.
The question now is whether the pacemaker in layer 1 can
remotely control the position of the chimera state in layer
2 via the coupling. When the two chimeras in the two
layers are aligned (see Fig. 5(e) and (f)), we see that the
answer is affirmative (yellow region in Fig. 5(b)). It is
worth noticing that before the control becomes effective
in layer 2 there is an intermediate region of parameters in
which we observe that the center of the incoherent group
in layer 2 tends to be diametrically opposed to the pace-
maker position (yellow region in Fig. 5(e)). Therefore
the distance between the centers of the two low coher-
ence groups reaches its maximum. The pacemaker has a
repulsive action on the center of incoherence in layer 2
before the remote control starts to be effective.

Another interesting question is which one is stronger,
the pacemaker or the driving? To address this problem,
we move to the third configuration. In this case we still
have unidirectional coupling from layer 1 to layer 2 and a
pacemaker only in position p2 = 25 of layer 2. As a con-
sequence, there is no preferred position for the chimera
states in layer 1, as we can see from the values of Γ1(25, 5)
in Fig. 6(a). In fact, Fig. 6(a) is qualitatively similar to
Fig. 4(a), since slight differences are only due to differ-
ent realizations of the network in layer 1. As the chimera
states align for high values of the interlayer coupling σ1→2
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FIG. 7. Results for a duplex network of FitzHugh-Nagumo
oscillators with bidirectional coupling. All network parame-
ters are the same as in Fig. 4, except for we have σ2→1 =
σ1→2 ≡ σ1↔2 (see Fig. 1(d)).

FIG. 8. Bidirectional coupling makes remote control via a
pacemaker more difficult. Same network configuration and
parameters as in Fig. 7, but here a pacemaker is present in
layer 1, position p1 = 25 (see Fig. 1(e)).

(Fig. 6(b) and (e)), the driving effect of layer 1 eventu-
ally wins over the controlling effect of the pacemaker in
layer 2 (Fig. 6(b)). Nevertheless, it is interesting that
there is a wide region of parameter space in which it is
possible to control the position of the chimera in layer 2
despite the driving by layer 1.

B. Bidirectional coupling

We now consider bidirectional interlayer coupling and
three possible configurations: without any control, with a
pacemaker in layer 1 in position p1 = 25 and lastly with
two conflicting pacemakers, one in layer 1 in position
p1 = 25 and one in layer 2 in position p2 = 50. We vary
the parameter σ2 like in the unidirectional case and the
parameter σ1↔2 like σ1→2 in the unidirectional case.

In the first configuration (Fig. 7), we observe a similar-
ity with the results obtained in the case of unidirectional
coupling (Fig. 4). In this case, again there cannot be
any preferred position for the chimera states in the two
layers (Fig. 7(a) and (b)). This is reflected also in the
snapshots of the center position c1,2(ts) in Fig. 7(c) and

FIG. 9. Conflicting pacemakers and bidirectional coupling
cause the chimera states to compromise on their position.
Same network configuration and parameters as in Fig. 7, but
here in each layer there is a pacemaker, in position p1 = 25
and p2 = 50 (see Fig. 1(f)).

(d). The incoherent groups become aligned through a
monotonic process (Fig. 7(e)) and in the same way the
dynamics of the two layers become synchronized for in-
creasing interlayer coupling (Fig. 7(f)).

The second configuration, in which a pacemaker is
present in layer 1 at position p1 = 25, leads to results
that are different from the unidirectional case. In Fig.
8(a) we see that the pacemaker is able to control the
chimera’s position in layer 1 only up to a certain value
of interlayer coupling σ1↔2 (yellow region). Above this
value, the coupling between the layers takes over and
the chimera states are aligned (Fig. 8(e)), but still do
not have a preferred position. The main difference with
the unidirectional case is that the remote control of the
chimera state in layer 2 via the pacemaker in layer 1 and
the coupling is possible only in a small region of the pa-
rameter space (yellow stripe in Fig. 8(b)).

In the third and last configuration we have conflicting
pacemakers trying to control the chimera states in the
two layers, one in layer 1 in position p1 = 25 and one in
layer 2 in position p2 = 50. In this case we see that the
control works in both layers in a certain region of the pa-
rameter space, corresponding to the yellow areas in Fig.
9(a) and (b). Note that there is another small region for
which the control in layer 1 continues to work. A similar
effect, even more pronounced, is observed with a single
pacemaker in layer 1 (Fig. 8(a)) and is correlated with
antipodal alignment in Fig. 8(e). An analogous effect
can also be observed in the transition to remote control
with unidirectional coupling and a pacemaker in layer 1
(Fig. 5(e)). For stronger interlayer coupling, the control
effect ceases to prevail, but the chimeras become aligned,
as it is to be expected (see Fig. 9(e)). Interestingly, the
two centers are aligned but their positions do not coin-
cide with neither of the pacemakers’ positions, as we can
deduce from the low values of both coupling impact mea-
sures Γ1(25, 5) and Γ2(50, 5) (rightmost part of Fig. 9(a),
(b)). Looking at the center snapshots in Fig. 9(c),(d),
we see that the center is positioned close to 12.5 or 37.5
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which are halfway from the pacemakers’ positions. It is
worth noticing that the synchronization region in Fig.
9(f) becomes smaller when two or more pacemakers are
present in the network.

IV. DISCUSSION

To summarize, in a duplex network with a driver-
response configuration given by unidirectional coupling
between the layers, we observe a nontrivial interplay be-
tween pacemaker control of chimera states and interlayer
synchronization that can be used to construct networks
in which chimera states are present in both layers and
in certain positions. Furthermore, the possibility of con-
trolling remotely the chimera states in layer 2 via a pace-
maker in layer 1 is important for scenarios in which there
is limited access to some parts of the network. A bidirec-
tional coupling scheme makes the remote control of layer
2 via a pacemaker in layer 1 more difficult. When there
are two conflicting pacemakers, for low values of inter-
layer coupling, both pacemakers attract the incoherent
groups to their respective positions. As the coupling be-
comes stronger, the incoherent groups of the chimeras in
the two layers align in a position that is halfway between
the two pacemakers.

Interestingly, in previous studies, pacemakers were
generally used to promote full synchronization [71, 72].
It is remarkable that the same tool can be used for a
completely different purpose when it is combined with
the nonlocal coupling configuration. In general, we find
that it is a nontrivial problem to transfer control methods
for chimera states from single-layers networks to multi-
layer networks, given the many possible configurations in
which this can be done. We show that there are ample

regions of the parameter space in which the control mech-
anism developed in [68] allows one to to control chimeras
in one or both layers. The present study generalizes
the finding of [68] in two directions: we go from phase
to FitzHugh-Nagumo oscillators and from single-layer to
two-layer multiplex networks. It will be interesting in the
future to further investigate the counterintuitive effect in
Fig. 5. There the control becomes effective through a
nonmonotonic process. We observe a resistance of layer
2 to being remotely controlled by layer 1, in the sense
that the center of incoherence in layer 2 positions itself
as far as possible from the pacemaker position before the
control becomes effective.

Our control mechanism has several features which
make it appealing to applications of experimental set-
tings. Among these are its simple implementation, the
fact that it does not require to use feedback from the
system nor to modify the dynamics of the individual os-
cillators. The model that we use is quite simple, but it
serves our general purpose of studying ways to control
partial synchronization patterns in scenarios that can be
associated with brain dynamics [29, 30, 34, 73]. There-
fore, our results may provide a base to develop methods
to control chimera states in experiments and real-world
scenarios.
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Morales, “Coexistence of synchrony and incoherence
in oscillatory media under nonlinear global coupling,”
Chaos, vol. 24, p. 013102, 2014.

[8] Y. Suda and K. Okuda, “Persistent chimera states in non-
locally coupled phase oscillators,” Phys. Rev. E, vol. 92,
p. 060901, 2015.

[9] B. K. Bera and D. Ghosh, “Chimera states in purely
local delay-coupled oscillators,” Phys. Rev. E, vol. 93,
p. 052223, 2016.

[10] A. Zakharova, M. Kapeller, and E. Schöll, “Chimera
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A. L. Fradkov, and E. Schöll, “Complex partial synchro-
nization patterns in networks of delayed-coupled neu-
rons,” Phil. Trans. R. Soc. A, vol. 377, p. 20180128, 2019.

[56] A. Dmitrichev, D. Shchapin, and V. Nekorkin, “Cloning
of chimera states in a large short-term coupled multiplex
network of relaxation oscillators,” Front. Appl. Math.
Stat., vol. 5, 2019.

[57] F. Drauschke, J. Sawicki, R. Berner, I. Omelchenko, and
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