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Abstract

This dissertation presents new approaches and methods for the application of tracking-

by-detection algorithms for pedestrian tracking in video surveillance scenarios with

static cameras. Using a modular state-of-the-art tracking-by-detection framework

based on a Gaussian Mixture Probability Hypothesis Density (GM-PHD) Filter, this

work analyzes the challenges of tracking pedestrians in surveillance and develops

approaches to deal with them.

On the detector side, filters based on local crowd density and geometric priors

are proposed in order to improve pedestrian detection in crowds. Compared to

the baseline, these filters reduce bad detections and allow for adaptive dynamic

thresholding in the detection process, thus enhancing the detection results.

To improve the tracking process in ambiguous scenarios, feature-based label

trees are proposed which maintain a visual model of the tracked objects and al-

low their re-identification after crossing situations. Performance improvements to

the baseline are shown both in simulation and practical experiments.

Further tracker improvements include extensions to enable the usage of multiple,

complementary detectors in the framework and the proposal of a novel update step

which is independent of the sensor order. A theoretical justification and practical

validation in experiments show that this method yields better results for visual track-

ing than the individual sensors or the commonly used iterated corrector approach.

The mathematical concept of a critical path of missed detections inspires the

usage of motion cues for post-filtering detections in order to improve the tracking

further. The proposed filtering concept is modular and independent of the detector

used. Thanks to a reduction of missed detections it improves both the detection and

tracking results which is shown on different data sets.

In order to enable further integration of visual information cues into the tracking

framework, three different runtime-efficient person re-identification methods and

their parametrization are also assessed on four different datasets in this work and

integrated into a powerful multi-cue re-identification method. Therefore, different

greedy and non-greedy fusion strategies are validated. In order to improve the com-

parison of region covariance features, the baseline metric is extended by a novel

pre-processing step in order to ensure the full rank of the covariance matrix. This

reduces bad metric results by rank issues and improves the re-identification process.





Zusammenfassung

Diese Arbeit behandelt neue Ansätze für die visuelle Objektverfolgung in Video-

überwachungsanwendungen mit Hilfe des Tracking-by-detection-Prinzips. Ausge-

hend von einem Gaussian Mixture Probability Hypothesis Density Filter als Bei-

spielverfahren werden Probleme und Schwierigkeiten analysiert, die bei seiner An-

wendung für die Videoüberwachung mit statischen Kameras entstehen, und es wer-

den Ansätze entwickelt, diesen entgegenzuwirken.

Um die Ergebnisse auf der Sensorebene zu verbessern, werden Filter vorgeschla-

gen, die anhand von lokaler Menschenmengendichte und geometrischen Nebenbe-

dingungen falsche Detektionen reduzieren und durch adaptive dynamische Schwel-

lenwerte bessere Detektionsergebnisse erzielen.

Für die Verfolgung sich kreuzender Objekte wird eine Erweiterung der Label-

Bäume vorgeschlagen, die mittels eines Modells der verfolgten Objekte die späte-

re korrekte Zuordnung der Objekte ermöglicht. Simulationen und praktische Ex-

perimente zeigen, dass diese Integration visueller Merkmale in die Label-Bäume

Performance-Verbesserungen erzielt.

Weitere vorgeschlagene Verbesserungen in dieser Arbeit sind die Integration

mehrerer Detektoren zur Erhöhung der Detektionswahrscheinlichkeit mittels eines

neuartigen Korrektorschritts. Im Gegensatz zum bisher üblichen iterierten Korrek-

torschritt ist die Sensorreihenfolge beim entwickelten Verfahren egal, und die Per-

formance wird verbessert, was theoretisch und durch Experimente gezeigt wird.

Das Konzept eines kritischen Pfads von Fehldetektionen inspiriert die Nutzung

von Bewegungsinformationen für die Nachfilterung von Detektionen, um die Ob-

jektverfolgung weiter zu verbessern. Dieser Ansatz ist modular und unabhängig

vom Detektionsalgorithmus einsetzbar. Dank einer Reduzierung der Fehldetektio-

nen verbessert es sowohl die Objektdetektion als auch die -verfolgung, was auf

mehreren Datensätzen gezeigt wird.

Für eine Integration weiterer visueller Informationen in das Objektverfolgungs-

system werden zusätzlich in dieser Arbeit laufzeiteffiziente Verfahren zur Perso-

nenwiedererkennung evaluiert und mittels verschiedener Fusionsmethoden in ein

Multideskriptorsystem kombiniert. Um Fehler durch die Vergleichsmetrik der ver-

wendeten Region Covariance-Methoden auszuschließen, wird das bisherige Ver-

fahren um einen neuen Vorverarbeitungsschritt erweitert, der den vollen Rang der

Matrizen sicherstellt und so die Wiedererkennung verbessert.
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Chapter 1

Introduction

1.1 Video Surveillance and Multi-Object Tracking

IN recent years, video surveillance (often also called CCTV for "Closed-Circuit

Television" which is used synonymously in this work) has spread almost ubiq-

uitously in most western civilizations and also in many other countries in the world.

It is often connoted with and politically advocated as a measure to ensure security

in a given area, however, the main use of this technology appears to be in helping

in the investigation of criminal acts after their occurrence rather than in preventing

crimes from happening (see e.g. [Cerezo, 2013] as a related study for the city of

Málaga / Spain).

Nonetheless, a potential novel need for security is not the only reason why this

technology has increasing economical success and sees every year more installa-

tions and applications. It is also in the course of technological advancements that

new applications are found and introduced for existing systems. In many cases,

those novel applications are designed to build upon existing infrastructures and net-

works and can thus benefit from already existing video surveillance systems. It can

also be assumed (e.g. in [Langheinrich et al., 2014]) that with every new use case

and installation, people will become more accustomed to cameras and the related

analysis in their lives and will be more likely to accept the usage of this technol-

ogy for further aspects. Some examples for spreading usage of video surveillance

are surveillance in critical infrastructures such as airports or train stations, traffic

surveillance, crowd monitoring in mass events like concerts or demonstrations. It

also plays an important role in the preservation of evidence and further in the foren-
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Figure 1.1: Common processing flow for automated video surveillance systems

sic analysis of events (e.g. theft or robbery in shops).

All of these applications coincide with a generally increasing amount of multi-

media data in our societies and the desire of analyzing them. Consequently, new

developments e.g. in automated video summarization, semantic scene analysis and

so on can often be adapted also for video surveillance systems and facilitate their

development.

The current focus of CCTV for human-assisting and forensic applications is also

due to the fact the amount of CCTV footage is extending the real-time analyzing ca-

pabilities of human operators. As an example according to [Lewis, 2011], the Lon-

don tube network alone accounts for a number of 11,000 cameras and it becomes

clear that not all of the video streams they record can be viewed and analyzed in

real-time by human operators at acceptable costs.

While many concepts and developments of the previous paragraphs refer to video

surveillance in general, it is important to distinguish automated systems which are

also often named "smart" video surveillance systems. As an answer to the increas-

ing amount of video data mentioned before, automation of surveillance is an often-

desired task in order to reduce costs for human operators and to enable them to

consider more specifically only events which appear suspicious instead of watching

all incoming video streams without prioritization.

Automated video surveillance requires different sub-tasks. In order to establish

a general architecture for such a system, publications like [Foresti, 1998] or [Foresti
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et al., 2005] propose a processing flow similar to the one shown in Figure 1.1.

In this common approach, automated analysis is used to recognize events or

properties from a video stream which are relevant to a human operator. These

events can include e.g. left-luggage items or violence detection while potentially

interesting properties are an estimate of the number of persons in a crowd, crowd

density, crowd motion and so on.

In order to identify these events and properties, tracking plays a major role as it

provides another often desired information: the path a person (or more generally:

a moving object) took during the time he or she has been monitored in the scene.

While this property itself may appear of lesser interest, it lays the grounds for further

analysis in the scene such as e.g.

• Person counting (e.g. in public transport or retail environments).

• Loitering detection (according to [Gasserm et al., 2004], loitering can be used

to indicate possible drug dealing activity in public transport).

• Statistical analysis such as common paths in a scene and detection of abnor-

mal, potentially dangerous events such as trespassing by unauthorized per-

sons or traffic / crowd flow analysis.

• General action recognition (which often needs analysis of an object over mul-

tiple frames) such as e.g. assaults, vandalism or graffiti spraying.

• Analysis of customer behavior by identifying the path of customers in a shop,

further estimate personal properties such as gender, age etc. and concluding

on the products the person shows interest for (e.g. in [Popa et al., 2010]).

Generally speaking, for any additional analysis in the objects themselves, track-

ing can be helpful as it indicates the position of objects in the image and their indi-

vidual history in the scene. This position then enables both a more detailed analysis

and potential information fusion such as e.g. averaging of related information cues

over multiple frames. While this thesis focuses specificly on the pedestrian use case,

in practice the aforementioned conclusions are valid for any kind of distinct object

which is of interest to the observer.
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1.2 Thesis Objectives

This work investigates the usage of tracking-by-detection (TbD) algorithms for

multi-human tracking in modern video surveillance algorithms. These approaches

split pedestrian detection and the tracking process in separate tasks and in each

frame assign tracks to the previously estimated detections. Consequently, TbD al-

gorithms by design rely on accurate human detections and can behave poorly in

their absence.

However, reliable human detection independent of e.g. pose, crowd density and

image properties such as noise, resolution etc. is still an unsolved problem es-

pecially in real-time scenarios although big improvements have been achieved in

recent times. While in other tracking domains such as e.g. radar-based airspace

surveillance or sonar-based marine tracking scenarios, high detection rates can be

presumed, video surveillance scenarios thus often cannot provide this asset.

This problem of reliable pedestrian detection is the basis for further investigation

within this work and research is carried out addressing the following points:

• How can TbD methods be embedded into a general tracking framework for

video surveillance applications?

• How do TbD algorithms perform in pedestrian tracking surveillance setups?

• What factors limit the usage of TbD approaches for human tracking in surveil-

lance contexts?

• Identify improvements in order to address these related weaknesses of TbD

systems and assess their performance within a multi-target pedestrian tracking

system.

• As a key aspect of this thesis, the application and camera setups shall be kept

as unrestricted as possible so the resulting methods and improvements should

not require special a-priori knowledge (e.g. camera calibration information)

which is not at hand in general surveillance scenarios.

It shall be noted that in order to address these questions, the focus of this work is

not on using the latest pedestrian detector available but instead emphasis is placed

on investigating and reducing the effect of bad detections in the tracking system in
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order to obtain universal insights which can be generalized for different detection

methods.

1.3 Principal Contributions and Novelties of This The-

sis

In the course of work for this thesis, the following main novelties and contributions

have been developed in response to the previously formulated points:

• A framework for multi-pedestrian tracking in video surveillance setups

using the tracking-by-detection paradigm and probability hypothesis den-

sity (PHD): As an example for a tracking-by-detection tracker, a Gaussian

mixture probability hypothesis density (GM-PHD) filter has been integrated

into a modular tracking framework which allows using different pedestrian

detectors as input for the tracker. The system supports a dimensionality ex-

pansion of the state and observation spaces from pointwise detections to re-

gions of interest which are more common in computer vision applications.

The pedestrian tracking framework can be easily extended to other object

classes such as cars, boats, animals etc. as long as reliable object detection

and description methods for those object classes are available.

• A novel approach for ambiguous situations during the tracking process

The baseline GM-PHD filter does not exploit visual information but relies

solely on detections provided by a detector (tracking-by-detection principle).

In case of multiple objects near each other, this can lead to ambiguous situ-

ations. Introducing novel feature-based label trees for the GM-PHD tracker

allows for the incorporation of visual cues into the framework and thus im-

proves the handling of occlusions and near objects by the system.

• A thorough sensitivity assessment regarding missed detections for the

GM-PHD filter used in this thesis: The GM-PHD filter is theoretically an-

alyzed and a sensitivity analysis for missed detections is performed. The

proposed concept of a critical path allows to describe the risk of a tracking

failure in relation to a pedestrian detector’s detection probability. This sensi-

tivity assessment lays the theoretical foundations for improvements regarding

5



CHAPTER 1.3: Principal Contributions and Novelties of This Thesis

consecutive missed detections.

• A method for inclusion of multiple detectors into the GM-PHD frame-

work which allows exploitation of potentially complementary informa-

tion provided and thus improves detection and tracking results: In con-

trast to a previously formulated fusion method using an iterated corrector

step, the proposed approach does not depend on the order in which the detec-

tors are used nor requires very high detection rates. Nonetheless, results are

significantly improved compared to both the usage of only one detector and

the iterated corrector approach using two detectors. The proposed concept

has been tested with two human detectors based on background subtraction

techniques and histograms of oriented gradients but can easily be extended to

further detectors.

• The introduction of motion cues into the tracking in order to compensate

errors in the pedestrian detection process: Using highly efficient sparse op-

tical flow, a post-detection filter is proposed which accommodates for missed

detections and thus improves the tracking performance. The filter is tested

extensively on various datasets and experimentally validated.

• An outlook into crowd applications where local crowd information is in-

corporated into the human detector: It is shown that for crowded scenarios,

crowd density estimation can be exploited in order to improve the pedestrian

detection process. This facilitates the parametrization of standard person de-

tectors and achieves better detection results because the detector settings can

be adapted automatically for different crowd density settings.

• Assessment and extensive parameter evaluation of run-time-efficient per-

son re-identification methods for the tracking system: For this purpose,

the visual features must be extracted in an efficient and reliable manner from

known appearance models of a person and stored for future reference. By

combining different feature types based on color, gradient and texture infor-

mation, a reliable multi-feature person re-identification method is developed

which proves favorable compared to single-feature methods. It is shown how

the pedestrian descriptor developed can be integrated in the overall tracking

framework. However, an explicit integration is left as future work.
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• An improved scheme for comparing region covariance features: For the

comparison of region covariance features in the re-identification step, the im-

portance of full-rank matrices is shown in this work in order to avoid ambigu-

ous results. A new pre-processing step for covariance matrices is proposed

which ensures that the matrices used for comparison have full rank. Com-

pared to other approaches which add an identity matrix to the features, this

step is mathematically consistent, does not need any further parametrization

and avoids introducing an additional bias.

1.4 Thesis Overview

The structure of the thesis is as follows: Chapter 2 introduces common methods for

pedestrian detection which allow an automated detection of pedestrians in an image

and thus build the basis for respective tracking applications.

In Chapter 3, a literature overview on relevant tracking methods is provided.

While this thesis focuses on tracking improvements using the tracking-by-detection

paradigm, also other methods have been proposed in the literature and are presented

in order to give an outline of current tracking methods. Tracking-by-detection is

introduced as a state-of-the-art paradigm which builds the basis for the framework

in this thesis and the Gaussian mixture probability hypothesis density (GM-PHD)

filter is given as a state-of-the-art example using this paradigm. Advantages and

issues related to the GM-PHD filter are also discussed in this chapter.

The framework used in this thesis is outlined in Chapter 4 which introduces the

adaptation of the GM-PHD filter for visual tracking and explains enhancements for

both the pedestrian detection used as well as for the tracking method itself.

Pedestrian detection is especially challenging in crowded environments which is

the topic of Section 4.1. Due to occlusion and low target visibility, the performance

of pedestrian detectors decreases in areas with high crowd density. Therefore, an

adaptive method of using local crowd density information as a cue for enhancing

object detection in crowds is shown and geometrical filters are introduced as an

additional measure to improve upon the gains obtained.

While enhancements on the detection level are a good basis in order to improve

the overall tracking performance, Section 4.2 treats aspects of the tracker. Porting

the PHD filter from its domain of origin (sonar / radar domain) to the field of visual
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surveillance brings the need for adaptations, one of which is the specific treatment

of occlusion situations. The introduction of visual feature-based label trees into the

tracker shown in Section 4.2.1 allows distinguishing between close targets and thus

improves the tracking performance.

Another improvement of the PHD filter developed in this thesis is the usage of

multiple pedestrian detectors for the framework. Section 4.2.2 shows examples of

using two complementary pedestrian detectors and how their order heavily influ-

ences the respective tracking performance in the baseline PHD filter. As a remedy,

in this work a method has been developed which improves the performance com-

pared to the baseline system while, at the same time, the ordering of the detectors is

irrelevant.

While Section 4.1.1 described improvements for pedestrian detection in crowded

environments, the availability of image information for the PHD filter also brings

up ways of improving detections in low-crowded scenarios. Therefore, as a remedy

for potentially low detection probabilities for pedestrian detectors, in Section 4.3,

motion information has been included into the tracking framework in order to com-

pensate for missed detections. After a sensitivity analysis against missed detections

for the GM-PHD filter, a mathematical justification for this approach is derived in

Section 4.3.1 and the concept of a critical path of missed detections is proposed

for description and analysis. Section 4.3.2 outlines the implementation of an active

post-detection filter which uses motion information in order to improve arbitrarily

generated detections. The concept is in accordance with the theoretical consider-

ations made before and is experimentally validated on different datasets in Sec-

tion 4.3.3 for region of interest-based detections.

Person re-identification and visual descriptors for tracking are closely related

and the existence of many appearance-based tracking algorithms shows the need

for object descriptors which are suitable for tracking applications. This does not

only mean that they must be accurate in distinguishing between different targets but

they also have to be fast to compute and compare.

Chapter 5 provides a detailed overview of state-of-the-art low-level re-identification

algorithms and shows how they can be integrated into the presented tracking frame-

work. Results for a developed multi-cue person re-identification algorithm are given

and show how the performance over baseline methods is enhanced.

The thesis concludes with Chapter 6 where the main achievements of this work
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Chapter 2

Pedestrian Detection

OBJECT and specifically pedestrian detection is a challenging task in computer

vision systems. Semantic understanding of videos and images has been an

important issue since the first days of image and video processing. As the co-

existence of human beings, computers and cameras in daily life (e.g. CCTV systems

and their related analytics engines but also mobile phones with on-board cameras

and so on) presents a high number of analytics opportunities, the need for reliable

object identification in videos is a special focus of researchers. The upcoming do-

main of robotics, especially the area of moving robots or autonomously driving cars,

also created a lot of interest for automatic person detection and object recognition.

Depending on the specific purpose and application, a number of different ap-

proaches have been proposed. As the most significant ones, algorithms for activity

detection and object recognition can be distinguished. The first are capable of iden-

tifying areas in a given scene where changes happen or activity is perceived. Most

types of activity in a scene can usually be related to actions by objects or creatures

and thus lead to the deduction that in spaces with activity an object or creature

can be expected. Activity detection algorithms are often change-based, i.e. they

identify pixel- or block-wise changes in an image compared to a model of the un-

changed scene (i.e. background). Without additional analysis, the methods may

detect pedestrians walking or a bird flying by but cannot classify the object any

further.

On the other hand, model-based object recognition algorithms are designed in

order to detect instances of a certain object class which may comprehend human

beings or other object classes such as types of animals, chairs, cars etc. This class
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of methods uses pre-trained models of the objects to be recognized and is often

closely connected with modern machine learning methods, such as support vec-

tor machines, boosting techniques or convolutional neural networks. Thus, it also

benefits from the increasing success of these methods.

In summary, it can be said that the difference between the two method classes

is often inspired by data availability or the need for a specific object model in the

application. While activity recognition does not build upon a specific model, no

training data for a particular object class is needed. As a result of this unspecificity,

it can thus also be seen as an unsupervised method. In contrast, the model-based

approaches require supervised learning, usually based on a large number of exam-

ple objects in order to obtain a high generalization of the method, but also enable

applications as detecting e.g. only dogs or cars in the scene.

It seems intuitive that the identification of one specific object class out of many

poses many more problems than just identifying some object – and thus algorithms

for activity detection can generally be kept simpler than methods for identification

of a certain object as will be shown in the next paragraphs. Thus, despite its lower

specificity, activity detection is traditionally a popular area in the surveillance do-

main because it requires less computational complexity or less training effort than

sophisticated machine learning strategies. If more detailed analysis is needed, ac-

tivity detection can often still limit the search space and thus reduce the overall

run-time when further methods are applied.

2.1 Algorithms for Activity Detection

Activity detection as described before is closely related to change detection. The

focus of these methods is usually on the pixel level, i.e. no specific object detection

is necessary. While on the one hand those changes can be perceived in relation to a

stationary background, also changes from a temporal perspective are possible. One

of the simplest methods for this purpose is frame differencing as proposed in [Jain

and Nagel, 1979; Haritaoglu et al., 2000] where the difference between consecutive

frames allows per-frame detection of motion boundaries in a video and thus yields

silhouettes of moving objects.

Algorithms exploiting stationary background are often called background sub-

traction techniques, meaning that once an estimate of the scene background is avail-
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able, differences in the current image from this background can be found in princi-

ple by simple subtraction. Such differences indicate activity and can be assumed to

correspond to objects in this area. However, most modern techniques refrain from

using a simple differencing scheme but instead apply models based on probabilities.

The well-known approach from [Stauffer and Grimson, 1999], which uses a

Mixture-of-Gaussian approach (MoG) in order to describe the background prob-

ability distribution per pixel, has been the basis for many algorithms. A survey

comparing some of the most relevant ones can be found in [Bouwmans et al., 2008;

Heras Evangelio, 2014].

Variants of this algorithm have e.g. been developed at TUB-NÜ for static object

detection [Heras Evangelio et al., 2011] or abandoned luggage detection [Smith

et al., 2006]. Concerning the computational load, for sparsely crowded scenes of

576× 720 pixels RGB resolution [Heras Evangelio, 2014] gives values between

33 and 43 frames per second (fps) which shows that the complexity for activity

detection can be kept suitable for real-time processing for standard image sizes.

Less popular approaches for background subtraction include other statistical mod-

els such as codebooks [Kim et al., 2004] or eigenbackgrounds [Tian et al., 2013].

It should be mentioned that most of the background subtraction algorithms rely

on a static camera setup or at least need an accurate image registration because

statistics are built upon individual pixels which must be regarded over multiple

frames in time. Therefore, modern surveillance concepts tend to avoid using these

concepts in order to remain flexible and allow e.g. an application on video data

from PTZ (pan-tilt-zoom) cameras.

Inspired by the aforementioned methods using pixel features and a static back-

ground, another class of activity detection algorithms uses motion information. At

TUB-NÜ, approaches using optical flow trajectories in a video ([Senst et al., 2012b,

2014]) have been developed in order to identify point movements over longer peri-

ods. These movements are grouped and allow distinguishing between background

and foreground or even between multiple objects. A camera motion estimation step

as e.g. in [Senst et al., 2014] even helps accounting for slight camera movement.

While these methods benefit from recent improvements in sparse optical flow com-

putation, it has to be said that their resolution and thus accurate object segmentation

is still limited by a higher computational complexity compared to traditional back-

ground subtraction techniques. Thanks to increasing processing power and paral-
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lelization options, it can be expected that such methods will be more common in the

future.

2.2 Histograms of Oriented Gradients for Pedestrian

Detection

As mentioned before, methods for detection of certain object classes give more spe-

cific results than pixel-based activity detection algorithms. An algorithm designed

to identify a clearly defined object class such as e.g. humans or dogs is expected

to distinguish those classes from other objects such as e.g. cars or giraffes. Evi-

dently, such methods exploit previous knowledge. Therefore, they usually learn a

model of the respective object class and can thus only detect objects which have

been pre-defined in such a model.

Despite this specificity in the object classes given, most approaches for object

detection or recognition aim at general frameworks which can be used for different

object classes as long as they reveal enough individual differences in their general

feature representation. Therefore, these frameworks use a twofold approach: In a

first step, the extraction of feature descriptors from an image is performed and in

a second step, machine learning enables a classification of these descriptors. Rele-

vant features for different applications can be color values (RGB), edges, contours

and so on on the pixel level. These features are then combined into feature vec-

tors for classification, often by using higher-level descriptors such as histograms or

covariance representations of the features.

The authors of [Dollár et al., 2012] present a good overview on relevant tech-

nologies for pedestrian detection. Features used by many algorithms consider the

shape of an object by modeling its gradient distribution. One of the first approaches

following this idea and still a very popular one was described in [Dalal and Triggs,

2005] and became known as histograms of oriented gradients (HOG). Due to its

flexibility and applicability to different object classes, it has become a de facto stan-

dard for object detection with hand-crafted feature vectors. In this method, images

are decomposed into individual cells in which gradients and their respective ori-

entation are quantized into histograms. The result is normalized in a block-wise

fashion and yields a descriptor which is returned for every cell. A visualization for
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this method can be seen in Figure 2.1 where the extracted gradients are shown per

cell.

Using a pre-defined set of training images, the descriptors for specific objects can

be trained to a support vector machine (SVM) [Cortes and Vapnik, 1995] which is

further used to identify feature vectors matching the trained model. In order to keep

the trained model comparable to candidate regions in an image which might poten-

tially have different sizes, these candidate regions are usually resized (i.e. scaled)

to the region size of the model. Using this technique, objects of different size can

be found in the image using the same pre-trained model.

In order to localize objects in an image, it is necessary to compare the resulting

descriptor for multiple positions over the image. This is usually done in a window-

ing approach, i.e. the region in which the HOG feature vector is computed is shifted

over the image and the detection scores returned by the SVM allow estimating the

most probable position of objects in an image, e.g. using non-maxima suppression

as in [Dalal and Triggs, 2005]. As mentioned before, this HOG approach relies

on gradient information of an object and can thus be used for a number of differ-

ent object classes. However, its limitations are given when object classes are not

distinguishable only by gradient or shape information.

In contrast to the previously described method which uses standard derivative

filters in order to compute histograms of oriented gradients, alternative approaches

have been proposed. [Wang et al., 2009] uses local binary patterns [Ojala et al.,

1994, 1996] for feature extraction and a model for partial occlusion. According to

[Wang et al., 2009], a higher performance can thus be achieved on some datasets.

The HOG principle has inspired a number of derived works. A detector based on

the Ω-shape of human head and shoulders has been proposed in works from TUB-

NÜ ([Pätzold et al., 2010]). The target representation is learned in a support vector

machine and matched against information collected in a windowing approach from

current frames. Additional cues for validation are obtained using motion informa-

tion and a motion coherency measure.

Another extension, which is used for a number of experiments in this thesis,

has been proposed by [Felzenszwalb et al., 2010a] as the DPM (deformable parts

model) detector. Its main contribution enriches the standard descriptor by Dalal

and Triggs using a so-called "star-structured" part-based model. While the model

defined in [Dalal and Triggs, 2005] is used as "root model", additional, smaller
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Figure 2.1: Visualization of histogram of oriented gradients (HOG) features: object shapes

in original images (left) are described using their gradient orientation (right). The HOG

feature vector includes multiple gradient directions coded as a histogram (cell size 8, 20

histogram bins for orientation).
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Figure 2.2: Visualization of trained person model using [Felzenszwalb et al., 2010a]. Left:

root filter with eight object parts and their respective deformation model. Right: Exemplary

human detections (red) with blue boxes describing object parts found. Image has been

published in [Eiselein et al., 2013a]

models are defined for object parts. All of these features can be seen as simple

filters which are convolved over the image using the Dalal-Triggs feature vector.

Part models in this method have twice the spatial resolution than the root filter

in order to capture smaller image cues. These different scales are also taken into

account for extraction in order to reduce the computational effort. Particularly, finer

scales are only evaluated at positions where the root score on the coarse grid is

sufficiently high.

The final detection score at a certain position is then computed as the sum of

the root filter score at the given location and the maxima scores for parts at their

respective position related to the root filter. Additionally, a bias and a deformation

cost accounting for position offsets compared to the part position in the pre-trained

model are introduced. By using a windowing scheme and returning the detection

scores per pixel and scale, the result is a set of detections which are post-processed

using a non-maxima suppression (NMS) explained in detail in Section 4.1.2.

The DPM detector achieves good performance on many public databases but also

has a higher computational load than the baseline method from [Dalal and Triggs,

2005]. Figure 2.2 (left) shows a visualization of a star model for person detection

using the feature model proposed in [Felzenszwalb et al., 2010a]. An exemplary

detection result is shown in Figure 2.2 (right).

The importance of gradient information for object detection has also been em-

phasized in another class of pedestrian detection methods which is based on boosted
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features, such as e.g. [Dollár et al., 2014]. With pixel-wise image transforms (e.g.

intensity values, gradients and so on), a set of weak classifier can be obtained. A

weak classifier gives a binary classification result and in average obtains a classifi-

cation probability above 50% [Alpaydın, 2008], but generally does not obtain very

high classification accuracy. Nonetheless, the combination of multiple weak clas-

sifiers can lead to superior classification results as shown in [Freund and Schapire,

1997]. In this way, high-level classifiers can be built on top of a hierarchy of weak

ones using boosting theory.

In [Dollár et al., 2014], the authors propose Accumulated Channel Features

(ACF) and use the AdaBoost algorithm, proposed by Freund and Schapire in 1997

[Freund and Schapire, 1997], in order to build a tree of weighted weak classifiers

on top of an efficient multi-scale feature extraction.

Features used in [Dollár et al., 2014] are the pixel-wise normalized gradient mag-

nitude, a 6-channel histogram of oriented gradients and LUV color channels, all

collected over different scales within a region of interest in the image. This method

may appear simple but nonetheless achieves a good person detection performance

on common datasets such as the Caltech benchmark [Dollár et al., 2009; Dollár

et al., 2012]. Therefore, the proposed technique has inspired a number of other

works. For example, in [Nam et al., 2014], features are locally decorrelated before

training and classification in so-called orthogonal trees (similar to ACF). While this

may increase the run-time for training, it achieves both a reduction of the detection

time and an improvement of the detection performance.

Methods based on convolutional neural networks (CNNs) have recently become

particularly popular for object detection, too (e.g. [Girshick et al., 2014] or a method

developed at TUB-NÜ [Bochinski et al., 2016]). These do not use hand-crafted fea-

ture vectors but instead automatically learn the feature cues which are most impor-

tant for classification. This is done by performing a training on a large number of

samples and adjusting the weights in the neural network in order to minimize the

classification error. CNN-based methods are currently among the best-performing

pedestrian detectors but require high-end graphics processors, large training and

test datasets, long training times and careful parametrization which can be difficult

when using 3rd party networks. For this work, the focus is therefore on non-CNN

methods.

The advent of methods such as [Dollár et al., 2014; Nam et al., 2014] led to a
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number of other, similar publications with boosting approaches and it also coin-

cided temporally with an increase of interest in pedestrian detectors for automotive

applications. This is mirrored in a change in the evaluation procedure for pedestrian

detectors. The Caltech pedestrian dataset [Dollár et al., 2009; Dollár et al., 2012]

taken from dashboard cameras within driving cars has become a de facto standard

and symbolizes this development.

On the one hand, this dataset contains very many pedestrian images (192k for

training / 155k for testing), but the size of persons to be detected is also significantly

smaller than in common surveillance videos. As a consequence, the DPM detector

has difficulties matching the part models for far-scale detections [Dollár et al., 2012]

which appear at lower resolution.

For standard surveillance datasets, however, the performance of ACF is similar

to DPM as has been shown in the works of our group at TUB [Bochinski et al.,

2016]. It is therefore that the very popular DPM detector which is available both as

C++ 1 and MATLAB implementation [Felzenszwalb et al., 2010b] has been taken

as basis for experiments in this work. It represents a sufficiently accurate detection

method and its code is available for experiments.

2.3 Pedestrian Detection in This Thesis

In this thesis, different detectors based on algorithms from the previous sections

are used in various settings in order to show the flexibility of the tracking approach

which does not depend on a certain algorithm for pedestrian detection.

Particularly, two scenarios are defined which differ in the dimensionality of the

measurement / state space (introduced in the next chapter) and in the computational

complexity for the overall detection process: The first configuration reflects needs

for embedded devices with small processing capacity. Accordingly, also pedes-

trian detectors with lower computational demands are considered in this scenario.

Therefore, both an activity detection method using background subtraction as in

Section 2.1 and a simple detector based on histograms of oriented gradients have

been used in this thesis.

The first one is based on a foreground detection algorithm developed at TUB-NÜ

[Heras Evangelio et al., 2011] including an additional morphological filtering step

1from http://www.opencv.org
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in order to remove false detections by noise. Its output is an estimate for the head

position of a pedestrian which is assumed in the horizontal center of the respective

bounding box and at 85% of the bounding box’s height. The detector has an over-

all good detection probability but can be hampered e.g. by clutter due to lighting

changes. Due to its rather low computational complexity, it could also be used on

embedded devices such as e.g. smart cameras.

The second detector is based on the TUB-NÜ algorithm from [Pätzold et al.,

2010] and uses histograms of oriented gradients. It is trained on the head / shoulder

shape of pedestrians. Due to the smaller size of the target pattern, it returns only

the central x- and y-position of the head and no bounding box for the person silhou-

ette. Another drawback of the small size of the target pattern is a lower detection

probability compared to other approaches.

This simple HOG detector is more suited for small devices such as smart cameras

or embedded systems because it does not use scaling of the target image (i.e. it

assumes a given size of the target in the image) and also uses only one resolution for

the HOG representation. Therefore, it has much lower computational requirements

than other, more sophisticated methods such as [Felzenszwalb et al., 2010a].

For this scenario, the tracking filter uses a measurement model as proposed e.g.

in [Mahler, 2007]. The measurements are two-dimensional, i.e. pointwise detec-

tions are used comprising the center x/y coordinates of a person’s head.

The second configuration relates to a case which is more common for high-

performance computers and uses regions of interest-based pedestrian detections.

For this use case, the DPM approach [Felzenszwalb et al., 2010a] is applied which

has a higher computational complexity than the previously mentioned methods but

also achieves a much higher detection performance. According to [Felzenszwalb

et al., 2010a], the processing time on a standard PC is around is around 2 seconds

for an image of the PASCAL Visual Object Classes Challenge 2007 dataset [Ev-

eringham et al., 2007] (varying resolution, 500×500 pixels maximum). Other ex-

periments conducted in this thesis indicate run-times of approximately 7-8 seconds

(single-threaded) for Full HD content (1920×1080 pixels) on current PC hardware.

For this thesis, a DPM detector with a model trained on the PASCAL VOC

2007 dataset is used and the detection results are a four-tuple composed by x-/y-

coordinates of the upper left corner of the region of interest and the respective width

/ height.
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Object Tracking

OBJECT tracking in videos in its simplest form can be formulated as the task of

estimating the trajectory of a given object over a set of video frames while

the object moves in the scene and its trajectory is projected onto the image plane.

An exemplary application for this task could be a forensic search where a CCTV op-

erator designates a person to a tracking algorithm and wants to know this person’s

trajectory at other time instants in the given video until a time frame is reached

when the person’s face or other characteristics can be seen. Such tracking is known

as visual tracking and can be considered instance-specific because it follows a des-

ignated, individual instance of an object class. In the given case, the class is a

specified person but it could also be a cell under the microscope or a persons’s hand

in order to recognize gestures. Instance-specific tracking usually requires a model

of the individual properties of the tracked object instance (e.g. color, shape or tex-

ture information for image processing applications) which can be extracted directly

from the video and the initial, known object position. Please note that in this work,

the terms target and object for the tracked entity are used synonymously.

Another tracking application case is multi-object tracking, i.e. the extraction

of ideally all trajectories related to a specific object class in a video which can be

helpful for analyzing those objects’ behaviour. As an example, shopping centers are

often interested in analyzing their clients’ paths through a shop and their shopping

interests in order to optimize the presentation of products in the shop and thus to

increase overall sales.

Further applications for tracking arise in the area of home automation for the el-

derly and disabled: In order to enable elder people to live as long as possible in their
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known environment, it is necessary to provide them with help in their daily routine.

However, already for economic reasons, human caretakers cannot be around every

cared for person 24/7. Thus automated solutions are considered which are e.g. able

to determine if an accident happened, if the person took their medication etc. and

human staff can then react on those events if needed. In order to extract this seman-

tic information from video footage, video analytics systems necessarily also need

to track known and unknown persons in a home environment.

The following sections will provide an overview of different tracking techniques.

Instance-specific methods will be presented first because they symbolize traditional

concepts for visual tracking based on the aforementioned initial target annotation.

In a second step, an extension to general detection-based, single- and multi-object

tracking techniques will be given as these methods represent the main application

focus for this work. Furthermore, a state-of-the-art overview of current tracking

methods can be found in Section 3.2.5.

As a general concept, instance-specific or visual tracking methods have to deal

with errors known in the literature as "tracking drift" [Zhang et al., 2012]: If the

model to be tracked appears too similar to other object instances or the background,

the situation becomes ambiguous for the tracker and tracking failure is likely.

The "drift" concept arises from the early beginning of visual tracking using tem-

plate matching (e.g. [Peacock et al., 2000; Kaneko and Hori, 2002; Matthews et al.,

2004]) and is caused by small tracking errors or noise introduced which is accu-

mulated over time and at some point becomes too large for the tracker to operate

correctly.

An often-applied remedy is thus to update the tracked model continuously. The

reason for such an update can be changing lighting conditions over the whole scene,

noise, different object appearance from changing views and so on. However, every

update again bears the risk of introducing errors into the model e.g. due to segmen-

tation noise. According to [Liu et al., 2014], an often-applied method in such cases

is to limit the changes allowed for the model update and to keep the model thus near

a prior appearance model. Nonetheless, the authors mention that rapid changes and

multiple similar objects remain challenging for most existing methods.

Visual tracking can be applied for numerous applications which vary e.g. in the

objects to be tracked. The survey in [Yilmaz et al., 2006] mentions applications

for tracking such as traffic monitoring, video indexing, motion-based recognition
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and more. Also medical applications such as cell-tracking or the tracking of human

body movements for human-computer interaction are mentioned here for the sake

of completeness but will generally require different approaches in terms of problem

modeling and integration of prior information. The focus in this work will remain

on automated person tracking.

A more recent survey with a focus on visual tracking and thanks to the choice

of the dataset also partially pedestrian tracking is [Smeulders et al., 2014]. It gives

experimental results on different feature tracking approaches for which public im-

plementations are available. In contrast to the work in this thesis, the objects to be

tracked have to be initialized manually which is not feasible for real-world applica-

tions and thus not the application scope of this work.

Experiments in [Smeulders et al., 2014] involve trackers using sparse optical flow

([Baker and Matthews, 2004]) and the Struck method [Hare et al., 2011] which

uses a kernelized structured output support vector machine (SVM) learned on-

line on the tracking targets. Other, on the given dataset often better performing

methods are "Tracking, Learning and Detection" [Kalal et al., 2012] which com-

bines optical flow tracking with discriminative classifier learning, the Foreground-

Background Tracker [Chu and Smeulders, 2010] which uses a linear discriminant

classifier trained on Gabor features and "Tracking by Sampling Trackers" [Kwon

and Lee, 2011] relying on multiple basic trackers which are sampled in order to

provide both the most promising target hypotheses and appearance / tracking mod-

els.

The previously mentioned overview on visual tracking techniques in [Yilmaz

et al., 2006] is a good introduction into general tracking concepts but does not cover

recent developments. However, it bridges foundations of both visual tracking (e.g.

optical flow or mean-shift tracking [Comaniciu et al., 2000]) to multi-object data

association such as MHT [Reid, 1979] and also covers related aspects of visual

object detection and segmentation.

Due to their time of publication, both survey articles miss currently popular ap-

proaches such as correlation trackers. These came up beginning with the formu-

lation of the "Minimum Output Sum of Squared Error" filter [Bolme et al., 2010]

as an extension of traditional correlation filters to the Fourier domain. A similar

scheme was then used for multi-dimensional feature vectors (e.g. histograms of

oriented gradients) [Danelljan et al., 2014]. Additional work has been done for the
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"kernelized correlation filter" [Henriques et al., 2015] by applying the kernel trick

for ridge regression with a linear kernel and using circulant matrices for efficient

computation.

For this thesis, automated tracking systems for surveillance purposes are of main

interest. In contrast to the previously mentioned visual tracking methods, they usu-

ally cannot rely on manual selection of tracking targets e.g. by a human opera-

tor. Instead they need some possibility of automated initialization, i.e. detection

of the targets to track. As a result, because the tracking algorithm lacks knowl-

edge about specific object instances of interest, such algorithms are not necessarily

instance-specific but need to detect and track a whole class of objects. Therefore,

one could call them class-specific trackers or more commonly multi-object tracking

or tracking-by-detection (TbD) systems. Different algorithms suitable for automatic

object detection and the ones used for the framework of this thesis have been intro-

duced in Chapter 2.

In order to use the resulting detections for tracking with automated initializa-

tion of new tracks, both error sources of missed (false negative) and supernumerous

(false positive) detections have to be considered. As an additional issue, in general

tracking setups, the number of tracked objects is not known. In light of all these un-

certainties, standard approaches for multi-object tracking often involve probabilistic

formulations.

A first differentiation between different methods is due to the target state space.

It can differ significantly between different applications and different tracking al-

gorithms. As has been shown in Chapter 2, pedestrian detections can include both

position and size (generally width / height of the associated bounding box) so that

a region of interest can be used in the object representation. If the observable input

of the tracker is only a position, the width and height information are not available

and thus cannot be used for the object’s state vector.

Section 2.3 already explained how both approaches have been used in the context

of this thesis: For a potential use case of low-performance hardware (e.g. smart

cameras) only pointwise detections for the estimated head position of a pedestrian

are used and the position part of the state vector is thus a two-dimensional point. On

the other hand, for applications with more computational power at hand, the DPM

detector [Felzenszwalb et al., 2010a] provides regions of interest and the tracker can

thus exploit a four-dimensional state space of position, width and height. Additional
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information for both scenarios is the object’s velocity which is also included in the

state space.

The position, size and velocity information in this thesis refers to pixel coordi-

nates. While these are directly available from the video frame, it is also possible to

use a camera calibration for the scene and relate pixel coordinates to their 3d-world

positions. This calibration information can be helpful in order to improve the track-

ing process because the relation between distances in pixel and world coordinates is

dependent on the camera view and the usage of pixel coordinates can thus result in

an inappropriate motion model for the objects in the scene. E.g. the assumption of a

linear motion model is often justified in real-world coordinates but can be erroneous

in the pixel domain.

However, camera calibration information is usually not available in general sce-

narios and in most cases must be obtained manually, which can be a costly, tedious

work and inhibits an on-line application. Therefore, in this work the state space is

composed by pixel coordinates.

For this thesis, the following guidelines have been identified for the visual track-

ing task:

• The tracking algorithm should be independent of the detector method used.

• The tracking algorithm should be automatic, i.e. especially the initialization

of a track and all object detection and tracking steps should be automatic.

• The complexity of the tracking algorithm should be low in order to allow for

near real-time processing on a standard PC.

• The tracking algorithm should be as general as possible, i.e. no assumptions

on the nature of objects shall be made as long as an automatic object detection

algorithm from visual data exists. This shall enable the usage of the developed

system for different object classes although in this thesis only persons are

considered as tracking targets.

As mentioned before, according to these requirements, instance-specific tracking

is not suitable. Different object classes for which the tracking may be applied will

most probably have different visual features and as a result, the comparison of spe-

cific instances in one class must focus on different cues than in another class. Con-

sequently, a general visual feature vector for instance-specific tracking of different

29



Chapter 3. Object Tracking

Figure 3.1: Depending on the scenario characteristics, different tracking-by-detection

methods have been developed in the literature.

object classes appears less promising. On the other hand, the tracking-by-detection

paradigm can be easily combined with detection methods for different object classes

and will thus be used in this thesis.

Should it become necessary, differentiation between several object instances can

be added according to a specific object class. Foundations of such extensions are

given in this thesis and could in the future be used to enable feedback between the

tracking position and the detector used in order to improve the detection results (as

e.g. [Xue et al., 2010]).

From a conceptual view, tracking algorithms can be classified according to the

difficulty of the individual tracking scenario. Figure 3.1 shows how an increasing

number of unknowns aggravates the tracking problem and requires more complex

solutions. The easiest scenario (green path) shown involves only one object and

at most one detection per frame (i.e. no clutter). For this case, the Kalman fil-

ter [Kálmán, 1960] or one of its variants (extended [Kálmán, 1960] / unscented

Kalman filter [Julier and Uhlmann, 1997]) are popular and efficient solutions. The

difficulty for tracking-by-detection algorithms increases when association uncer-
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tainty between detections and tracks increases. The yellow path represents a single

target with clutter and can be solved e.g. using the Probabilistic Data Associa-

tion Filter (PDAF) [Bar-Shalom and Tse, 1975] which associates detections to the

previously estimated track. In contrast to the previous ones, the red path addition-

ally involves an unknown number of targets. Therefore, also the number of false

positive and false negative detections received is unclear which makes it the most

challenging case shown. For this scenario with an even increased association effort,

the Joint Probabilistic Data Association Filter (JPDAF) or the PHD filter shown in

Section 3.2.4 are possible remedies.

As a general conclusion, it can be said that the tracking process becomes more

difficult, the more objects are to be tracked and the more uncertainty (noisy data,

missed detections, clutter) is present in the overall process. Pedestrian tracking in

video surveillance applications generally involves detection noise, unknown motion

models, missed detections, clutter, and an unknown number of objects in the scene.

Therefore it can be considered a very challenging use case as shown in the red path.

In the following sections, an overview on tracking-by-detection methods is given.

Starting with popular Bayesian approaches for the single-target tracking case, rele-

vant multi-target trackers extending the single-target case are presented. The chap-

ter concludes with a detailed description of the PHD filter used in this thesis and the

related challenges for application.

3.1 Tracking-by-Detection: Bayesian Trackers for the

Single-Object Case

The term tracking commonly implies an estimation or prediction step due to detec-

tion uncertainty. If it was possible to detect any tracking target continuously without

errors over all video frames, tracking would be simplified to an association problem.

In light of imperfect detections, tracking has a tight connection with statistical and

probabilistic methods because target states (and thus trajectories) can be treated as

statistical variables. As an example from daily life, it would be intuitive to assume

(or predict in Bayesian terms) the position of an object "somewhere around" the last

position where it has been observed before. In other words, the probability P(xk+1)

of a certain target state at time k+ 1 is expected to depend on the last state xk of
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that target and the related uncertainty increases with the time an object state cannot

be confirmed. This simple example shows the importance of state probabilities in

object tracking and is a basic motivation for using Bayesian Trackers.

Considering the tracking problem as a state estimation problem, the measure-

ments are influenced by noise, and depending on the underlying process, not all state

variables may be observable (e.g. in CCTV applications, velocity is an often-used

state variable but usually not measured from video frames). A popular approach

for modeling tracking problems relies on the Bayes theorem and models the related

state uncertainties statistically. The general Bayes formula relating likelihood and

prior / posterior probability

Posterior prob. =̂ P(A|B) = P(B|A) ·P(A)
P(B)

=̂
likelihood · prior prob.

evidence
(3.1)

is valid for P(B) 6= 0 and computes the probability P of an event A given the

condition B. Here, P(A) and P(B) are the probabilities of observing A and B re-

spectively, while P(B|A) is the likelihood of event B occurring under condition A.

For tracking using the single-sensor, single-target Bayes filter, equation (3.1)

is typically solved iteratively by solving the related predictor and corrector equa-

tions (3.2) and (3.3). The presentation here follows the explanation in [Mahler,

2007] to which the reader is referred for further details. With x, x̂ as the current and

previously estimated states and Zk : z1,z2, ...,zk as the time sequence of observed

detections, the predictor step

Pk+1|k(x|Zk) =
∫

Pk+1|k(x|x̂) ·Pk|k(x̂|Zk)dx̂ (3.2)

is executed for every time step, followed by the corrector step:

Pk+1|k+1(x|Zk+1) =
Pk+1(zk+1|x) ·Pk+1(x|Zk)

Pk+1(zk+1|Zk)
. (3.3)

The term

Pk+1(zk+1|Zk) =
∫

Pk+1(zk+1|x) ·Pk+1(x|Zk)dx

is the Bayesian normalization factor. As a result of the filtering step, a sequence

of posterior probability distributions is computed:
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P0|0(x|Z0)→ P1|0(x|Z0)→ P1|1(x|Z1)→ ·· · → Pk|k(x|Zk)

→ Pk+1|k(x|Zk)→ Pk+1|k+1(x|Zk+1)

A theoretical justification for both the predictor and the corrector step of a Bayes

filter is provided in [Mahler, 2007]. Well-known methods relying on such a re-

cursive solution of the Bayes problem are the Gaussian-based Kalman filter and

sequential Monte Carlo (SMC) [Isard and Blake, 1998] techniques, also known as

particle filters.

3.1.1 The Kalman Filter

The Kalman filter [Kálmán, 1960] named after Rudolf Kálmán is the more common

name of the process of linear quadratic estimation (LQE) which is an often-used

concept e.g. in control theory and signal processing. It considers the state estimate

in the k-th time step tk to contain all information from previous time steps leading

to a recursive formulation of the estimation problem.

Considering a random process formulation for the tracking task, the Kalman

filter takes into account the stream of previously received noisy input data (i.e. ob-

servations) and generates a statistically optimal state estimate for the tracked object.

With a common object state x =
(

x y
·
x

·
y
)T

comprising position and velocity,

the uncertainty is modeled as a respective covariance F for this state vector. Fol-

lowing [Mahler, 2007], the process and the observations can be described by:

xk+1 = Mkxk +wk (3.4)

zk = Hkxk +vk (3.5)

with wk and vk as the process noise and measurement noise, respectively. The

state transition matrix Mk (also known as motion model or state transition matrix)

and the measurement matrix Hk describe the target motion from one time step to

the next and the deterministic state-to-measurement transform, respectively. The

related noise covariance matrices are
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Qk = E
[
wkwT

k

]
(3.6)

and

Rk = E
[
vkvT

k

]
. (3.7)

Both process noise and measurement noise are considered white sequences and as

such statistically independent from each other and statistically independent in time.

The algorithm implemented in the Kalman filter is based on two steps:

1. In the prediction step, estimates of the predicted state are generated together

with their respective degree of uncertainty. For control systems, a control

vector is usually modeled as input here as well, however can be omitted in

tracking applications for the sake of simplicity. The prediction step thus in-

volves the previous state of the object with related uncertainty and a motion

model M which describes the expected position in the next image:

x̂k|k−1 = Mkx̂k−1|k−1 (3.8)

Pk|k−1 = MkPk−1|k−1MT
k +Qk (3.9)

2. In the update step (or corrector step), the predicted object state is adjusted

according to the received measurement zk. For this update, in each iteration

the so-called Kalman gain Kk is computed as follows (a detailed derivation

can be found e.g. in [Grover Brown and Hwang, 2012]):

Kk = Pk|k−1HT (HPk|k−1HT +Rk)
−1 (3.10)

x̂k|k = x̂k|k−1 +Kk(zk −Hxk|k−1) (3.11)

Pk|k = (I −KkH)Pk|k−1 (3.12)

Kk thus can be seen as importance weight of incoming measurements. In

case of higher measurement noise or a certain state estimate, the impact by

new measurements is reduced while in the opposite case, Kk favors novel

information from recent measurements.

34



CHAPTER 3.1: Tracking-by-Detection: Bayesian Trackers for the Single-Object

Case

In the last decades, the Kalman filter has proven to be a powerful filter for state

estimation and is still used in a number of tracking publications (e.g. [Reid, 1979;

Marcenaro et al., 2002] or [Pätzold et al., 2012] developed at TUB-NÜ). How-

ever, it has certain limitations which are to be considered when it is used for video

surveillance-based object tracking:

• The Kalman filter estimates only one object state and does not account for

multiple hypotheses. When dealing with multiple objects, typically a Kalman

filter needs to be initialized for every object (e.g. in [Marcenaro et al., 2002;

Pätzold et al., 2012]).

• The Kalman filter uses a linear motion model for state transition which might

not be suitable perfectly for all applications. E.g. pedestrians in common

CCTV videos usually do not follow a linear motion model. While this can be

accounted for to a certain degree by adjusting the process noise, the model

may still be too strict for certain applications. An alternative to adjusting the

process noise can be the usage of an Extended Kalman Filter (EKF) [Jazwin-

ski, 1966] or Unscented Kalman filter (UKF) [Julier and Uhlmann, 1997]

which both provide solutions for nonlinear processes.

• The filter gives optimal results for Gaussian-distributed white measurement

and process noise. In practice however, the filter may also converge to a

different (usually non-optimal!) solution in case the noise distributions take a

different form.

3.1.2 Sequential Monte Carlo Methods

SMC methods (also called particle filters) are another class of Bayesian filters which

approximate the posterior distribution of a tracked object by using a number of

weighted samples (Figure 3.2 shows an example for the one-dimensional case).

One could intuitively describe each of those samples as an individual guess of the

object’s current state which is then assigned a likelihood according to a known

model.

The advantage of this method is its ability to deal with nonlinear systems be-

cause the sampled distribution is not restricted in its form. Additionally, different

hypotheses about an object’s state are implicitly possible without the need for e.g.
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Figure 3.2: A general density function (roughly) approximated by weighted samples. Sam-

ples are shown by circles with diameters according to their respective weight.

hierarchical approaches. Nonetheless, in order to obtain a good estimate of the

distribution, a high number of samples is required.

In the computer vision community, the ConDensation algorithm (Conditional

Density Propagation) which has firstly been described by Isard and Blake in [Isard

and Blake, 1998] is one of the most prominent SMC approaches. It models a general

probability density function using a set of weighted samples:

p(x|z)≈
N

∑
i=1

ω(i)δ (x−x(i)),
N

∑
i=1

ω(i) = 1 (3.13)

with δ (x) as the Dirac function.

The main idea of SMC methods such as "Sampling Importance Resampling" /

"Sequential Importance Resampling" (SIR) or "Sequential Importance Sampling"

(SIS) lies in the propagation of "successful" estimates into the next iteration. The

SIR method shown here can be considered a general formulation of which different

specializations have been formulated (e.g. bootstrap filter, SIS, stratified resam-

pling) [Heine, 2005].

Following the description in [Grover Brown and Hwang, 2012], the resampling

step in particle filters attributes new weights to particles:

wi
k ∝ wi

k−1

L(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,zk)
(3.14)

with L(zk|xi
k) as the likelihood of a particle according to its position, p(xi

k|xi
k−1)

as the transition prior (motion model) and q(xi
k|xi

k−1,zk) as the proposal importance

density which is used for sampling the "best fitting" particles (usually related to the

particles’ weight). The likelihood can be chosen as a measure of similarity of the

estimated state to a known model (e.g. distance to a known appearance model).

This approach iteratively favors nearly correct state estimates and discards bad

guesses. In the transition prior, artificial noise can be integrated in order to scatter
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particles around "good" states and thus improve the robustness of the estimate.

A common problem, the "degeneracy phenomenon" appears when after a num-

ber of iterations, only few particles remain with a high weight, thus inhibiting

the selection of particles with lower weight. As a remedy, SIR applies a resam-

pling step where particle weights are re-distributed e.g. to a uniform distribution

[Grover Brown and Hwang, 2012].

Sequential Monte Carlo methods are often-used as non-linear state estimators

and are especially interesting because they implicitly allow for multiple state hy-

potheses at the same time. However they have a few disadvantages which are men-

tioned in the following:

• The final state is not directly accessible but instead has to be obtained from the

particles e.g. in a clustering process or by weighed averaging of the particle

states.

• The accuracy of the estimate is increased with the number of particles used.

However, the computational effort also rises with the number of particles.

This can be a problem when the likelihood computation is computationally

more demanding (e.g. often when based on image information).

• If n objects are to be tracked, the number of particles necessary for state

estimation usually also increases by the factor n. An additional computational

burden here can be the need for clustering in order to find individual objects

from the set of particles.

In comparison to that, the Kalman filter allows to estimate an individual ob-

ject’s state and the related probability density without the need for clustering which

makes the Kalman filter in general faster to compute than SMC methods. However,

for both methods, their application to multi-object tracking is not trivial and needs

additional effort as will be shown in the following chapter.

3.2 Tracking-by-Detection: Multi-Object Case

In the last section, two implementations of the single-sensor, single-object Bayes

tracker have been presented. These can be built upon in order to obtain solutions

for the multi-object case which are presented in Sections 3.2.1 and 3.2.2. Recent
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approaches involve the usage of random finite sets for object tracking and are pre-

sented in Section 3.2.3. These approaches aim at seeking solutions for a general

Bayesian formulation for a multi-sensor, multi-object tracker and attract increasing

interest in the tracking community. In this thesis, a PHD tracker is used which is

presented in Section 3.2.4. In order to give the reader an introduction into the topic

of multi-object tracking, its challenges are outlined in the next paragraphs.

When advancing from single-object to multi-object tracking, it may seem an

intuitive expectation that every object accounts for one detection per frame and

that these detections then are to be accumulated to tracks. However, in reality this

assumption generally does not hold.

The visual multi-object tracking problem under general circumstances is hard

because it involves a number of unknowns:

• The correct number of detections: Object detection is subject to different

errors. Full or partial occlusion of an object is an intuitive problem for detec-

tion algorithms, but also the pose of an object, its color and the overall lighting

constraints in the scene (e.g. contrast or brightness) have influence on the de-

tection algorithm. In addition, low camera resolution and both motion blur

and defocalization can reduce the detection probability for the methods pre-

sented in Chapter 2 and thus lead to an increased number of false negatives.

As an additional source of errors for the tracker, false positive detections are

also possible. Detection algorithms based on histograms of oriented gradients

can be deluded by objects which appear similar to this model (e.g. tripods

can have a gradient structure similar to persons), leading to false positive

detections. By parametrization (e.g. score threshold), detection methods can

be adjusted to favor either of these two errors but commonly not both of them

can be reduced to zero at the same time.

It can thus be said that the multi-object tracking algorithm has to handle situ-

ations in which compared to the ground truth both a higher or a lower number

of detections can be received.

• The correct number of objects which are present in the scene: Due to the

aforementioned problem of accurate detection, the cardinality of the state es-

timate does not necessarily reflect reality. If the number of objects was known

in advance, the problem of incorrect detections could be alleviated. However,

38



CHAPTER 3.2: Tracking-by-Detection: Multi-Object Case

Figure 3.3: Illustration of state space and observation space for a multi-object tracker:

Difficulties in tracking can arise due to erroneous detections. The assignment of states (xi)

and detections (zi) is mostly intuitive for the given case. However, for z2 a decision has to

be taken: It could belong to x2 though there seems to be a higher probability that z3 should

be assigned to x2 (depending e.g. on the previous motion). However, z2 could also be a false

positive detection or a new object.

in general scenarios new objects may enter the scene or existing objects leave

and the number of tracked objects can only be an estimate.

• The association of objects and detections is more complicated than in the

single-object case. Due to the unknown number of real objects, this process is

highly error-prone because objects may be associated wrongly or the creation

or deletion of tracks may be incorrect. Related decisions have to be drawn

automatically and on-line and can only be based on the knowledge from pre-

vious frames.

An example for a situation with ambiguous measurements is given in Figure 3.3

where 3 object states and 4 detections received are shown. In order to make a qual-

ified decision in this case, the tracker should provide an assessment for all possible

options. While the detections z1 and z4 can be assigned to an object with high prob-

ability, it is not directly clear if x2 accounts for z2 or z3 (or none of them). If not,

at least one of the two detections can be a false positive detection or a new object.

All these options have to be considered and evaluated in the tracking algorithm.

It is common practice to base the final decision about currently estimated object

states on the past, i.e. on the measurements received and on previous decisions.

Especially for the on-line tracking case considered in this thesis, in such ambiguous

cases different options must be kept in memory in order to correct decisions proving
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less probable during future evaluation.

In order to cope with these requirements, different solutions have been proposed.

One way is the usage of one individual tracker per object and a higher-order logic

for association of object detections to the respective filter and creation / deletion of

tracks. A related example is shown in Section 3.2.1 where multiple Kalman filters

are used and combined in a tree-based approach in order to model different object

tracks (multiple hypothesis tracking).

Due to memory and processing power constraints, the tree has to be restricted to

the most probable branches so that not all associations between objects and detec-

tions can be maintained for all frames. This approach is therefore a greedy algo-

rithm which at a certain time removes improbable hypotheses from the past and for

further processing relies only on the most likely ones.

Another approach is the design of real multi-object trackers which can also be

based on a multi-object formulation of a Bayes tracker. Random finite set-based

trackers have been proposed exactly for this application. Their main idea is to model

both the target states and the received detections as sets. This allows the formulation

of a Bayesian multi-object tracker and is explained in more detail in Section 3.2.3.

3.2.1 Multiple Hypothesis Tracking

Multiple hypothesis tracking (MHT) has been first proposed in [Reid, 1979]. The

algorithm builds a tree of all possible associations between received measurements

and current tracks. An example for three objects and four detections is shown in

Figure 3.4 and should be read as follows: Track x1 can be assigned four detections,

each leading to a related updated state. Depending on the respective assignment,

other states are assigned the remaining detections. Practical implementations also

need to consider possible false positive detections and newly created tracks, both

leading to further branches which have been omitted for simplicity in the schema.

The actual state estimation for every object is traditionally done using an individ-

ual Kalman filter per object which receives the detection assigned in the respective

branch. As a result, the estimated states for all objects in this hypothesis are avail-

able and can also be used in order to derive the joint probability of the hypothesis
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Figure 3.4: Illustration of multiple hypothesis tracking principle: Measurements zi are

assigned consecutively to the different tracks leading to updated states. Only one detection

can be assigned to a track which reduces the number of possible assignments with increasing

depth. Options for newly created tracks and false positive detections are omitted for better

readability.

as a whole [Reid, 1979]:

Pk
i =

1
c

P
NDT
D (1−PD)

(NT GT−NDT )β NFT
FT β NNT

NT ×
[

NDT

∏
m=1

N (Zm −Hx̂,C)

]
Pk−1

i (3.15)

with Pk
i as the hypothesis probability and PD as the detection rate. NDT , NFT , NNT

represent the number of measurements associated with prior objects, false alarms

and new targets, respectively. β NFT
FT and β NNT

NT are the densities of false detection

and new targets. The individual object state is estimated by a Kalman filter as a

Gaussian distribution with mean x̂ and covariance C, c is a normalization constant.

The tree within a MHT tracker can easily extend to a very high number of nodes

and connections. It is therefore critical in this algorithm to restrict it to contain only

the most probable branches and to use a gating procedure in order to allow only

detections to be assigned to an object which are near the expected position of that

object.

Additional procedures for removing unlikely hypotheses comprise e.g. pruning

of branches with a probability below a certain threshold or n-pruning which ensures

that all branches in the tree should share a common node n frames ago in the past

(other branches are deleted).
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MHT has proven a very successful algorithm for multi-object tracking and also

newer extensions have been developed for visual tracking (e.g. in [Pätzold et al.,

2012] developed at TUB-NÜ or [Kim et al., 2015]). However it can be criticized

from both theoretical and practical considerations.

The theoretical approach of MHT is a greedy method, i.e. the tree of possible ob-

ject paths is quickly restricted only to the most likely ones. If a decision for a certain

node in the tree has been taken and other branches in the tree are deleted, there is no

option to go back and choose a different object configuration even though it might

seem more likely in the current time step than a previously chosen hypothesis.

The practical implementation of MHT is highly demanding in terms of memory

and computation. The hypotheses tree (or a matrix representing the tree) has to

be kept in memory and it grows exponentially with the number of detections and

tracked objects. This makes the algorithm hard to implement in embedded systems

such as e.g. smart cameras but also poses a significant computational burden on

standard PCs, especially when considering additional analytics modules which may

be run on the same hardware as the tracker.

3.2.2 Particle Filter-Based Multi-Object Trackers

Particle filters can also be extended in order to estimate a joint probability distribu-

tion consisting of multiple single-object states (e.g. in [Khan et al., 2005]). This

approach is computationally much more intensive than single-object particle filters

because the state vectors can change in dimensionality according to the number of

objects in the scene. In [Khan et al., 2005], Markov Chain Monte Carlo (MCMC)

methods are therefore used in order to ensure a more efficient sampling of the par-

ticles. In particular, reversible-jump MCMC (RJMCMC) sampling allows for di-

mensionality changes of particle states. As an interaction model for the targets, a

Markov random field (MRF) is proposed.

MCMC methods are iterative algorithms which can sample from an unknown,

potentially very complex probability distribution. This sampling is performed using

the unknown distribution as the equilibrium distribution of a Markov chain built. By

simulating the chain for a number of steps, its state can be used in order to obtain

a sample of the desired distribution (details can e.g. be found in [Asmussen and

Glynn, 2007]).

RJMCMC allow for changes in state dimensionality. Considering a single-object
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state xs =

(
x

y

)
and a multi-object state xm, xm can be built by stacking multiple xs

on top of each other. For k individual objects, the multi-object configuration can

then be expressed by:

xm =




xs1

xs2
...

xsk




=




(
x1

y1

)

(
x2

y2

)

...(
xk

yk

)




. (3.16)

Equation (3.16) shows the overall system state can have different dimensions at

different time instants. During the sampling, RJMCMC methods allow to switch

between dimensions by using the operation pair add / delete. These operations are

used to extend the sampling candidate’s system state with an additional object or

a missing object (with respect to the current state). The sampling for a variable

number of objects in [Khan et al., 2005] is then done using a Metropolis-Hastings

algorithm [Metropolis et al., 1953] which is common in many MCMC-based state

estimators.

Despite of allowing a generally more efficient sampling compared to standard

particle filters, the main drawback of the RJMCMC method mirrors the drawback

of particle filters: The computational complexity can be very high, especially in

embedded systems or smart cameras where the processing capabilities at hand are

low. Due to the increased system state dimensionality and the need for sampling

potential candidate states from higher- or lower-dimensional spaces, the particle

number needed is usually high although the efficient MCMC sampling reduces it

compared to standard SIR methods as presented in Section 3.1.2.

3.2.3 Random Finite Sets in Tracking Theory

In the previous sections, a number of different approaches to both single- and multi-

object tracking have been presented. A common drawback for many of them is their

computational complexity. Intuitively, in a system with no objects, it can usually be

expected that the number of detections received increases linearly with the number
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Figure 3.5: Illustration of a correct state estimate with labeling error: Using a standard

error metric for a multi-object state X = (x1,x2)
′, the error e =

∥∥∥X − X̂

∥∥∥ depends on the

order of the objects in the overall state (symbolized as black dotted line).

of targets. Assuming every object could have generated every detection, the effort

for assigning detections and objects in order to obtain the next state estimate thus

becomes factorial in the number of objects.

With an overall system state X built by stacked individual states xi as in Equa-

tion (3.16), an additional problem can arise from the comparison between estimated

states and observed states. Figure 3.5 shows a situation where the error between

two estimated objects and two ground truth objects is to be computed. While the

objects themselves are estimated in the correct locations, an identification error has

occurred, i.e. their labels are wrong. Assuming e.g. x1 =

(
0

0

)
and x2 =

(
1

1

)
, the

error becomes e=
∥∥∥X − X̂

∥∥∥= 2 although both individual states have been estimated

correctly. The problem becomes even more evident when many correctly estimated

objects are considered and the metric value changes as a function of the distance

between only two wrongly labeled states.

While the estimation error thus gives different values depending on the order in

which individual objects are considered for the overall system state, it is still com-

putable in the previous example. However, the situation can become more com-

plicated when different dimensions of estimate and ground truth are considered.

Figure 3.6 shows two ground truth objects of which only one has been estimated

near its correct position. Mathematically, the error between a two-dimensional es-

timate and a four-dimensional ground truth vector is not clearly defined. Following

this argumentation, it becomes clear that a multi-object state represented by using a
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Figure 3.6: Illustration of an estimation error in object dimension: While in the left image,

x1 has been estimated near its correct position, x2 has not been estimated. Mathematically,

this error is not defined clearly if a multi-object state vector is used. In the right image, a

similar problem appears for an estimated state x̂2 which does not exist as ground truth state.

single vector suffers from the same data-association issues as multiple single object

states used for tracking (as e.g. in MHT). For evaluation, it thus becomes almost a

philosophical question how dimensionality issues should be penalized and to which

degree labeling errors should contribute to a tracking metric.

A remedy for the aforementioned issues has been introduced using random finite

sets (RFS). A RFS is a finite set with a random number of elements which them-

selves are random numbers as well. While a set is generally not ordered, this formu-

lation thus allows a mathematically rigorous error estimation in the aforementioned

cases and circumvents the computationally expensive data association issue. It is

also mathematically possible to measure distances between two sets A,B of poten-

tially different cardinality [Vo, 2008], e.g. using the Hausdorff metric. Considering

the distance between a point x and a nonempty, compact set S as:

D(x,S) = min{d(x,s)|s ∈ S},

with d(x,y) as a metric of the space over which the set is defined (e.g. using

an L1- or L2 norm over Rn), the Hausdorff metric between two object sets A,B is

defined as

dHausdor f f (A,B) = max{max{D(a,B)|a ∈ A},max{D(b,A)|b ∈ B}}. (3.17)

Using the Hausdorff metric, the previously mentioned estimation error issue in
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Figure 3.5 can be resolved. With X̂ as an estimate for the ground truth multi-object

state X , the Hausdorff metric is computed as follows:

dHausdor f f (X , X̂) = max{max{D(x1, X̂),D(x2, X̂)},max{D(x1,X),D(x2,X)}}.

Reducing the formula by solving for D and using an L1 norm for d then gives:

max{max{d(x1,x1),d(x2,x2},max{d(x1,x1),d(x2,x2)}}
= max{max{0,0}}
= 0

The Hausdorff measure can also be used in order to measure an error in car-

dinality/dimensionality. Considering the previous example shown in Figure 3.6,

X = {x1,x2} and X̂ = {x1}. The Hausdorff measure thus gives:

dHausdor f f (X , X̂) = max{max{D(x1, X̂),D(x2, X̂)},D(x1,X)} (3.18)

= max{d(x1,x2),d(x1,x1)}
= d(x1,x2)

As a critique on the usage of the Hausdorff metric for this application, [Vo, 2008]

mentions its relative insensitivity to cardinality errors in the estimate. This can

be understood by considering a perfect state estimate (dHausdor f f = 0) where an

additional ground truth state is added. The Hausdorff metric will then take different

values depending on the distance of this new state to its closest neighboring state.

This behavior may not be suitable or desired for all applications of a multi-object

tracking system. As a remedy, [Vo, 2008] mentions a Wasserstein-based method

from [Hoffman and Mahler, 2004] where this drawback has been reduced. Based

on this distance, other metrics have been proposed which are further adopted to the

tracking problem (e.g. [Schuhmacher et al., 2008; Ristic et al., 2011]). The metrics

used in this work are presented and discussed in detail in Appendix A.5.

A) The Multi-Target Bayes Filter

With this knowledge about RFS methods, it is possible to extend the single-sensor,

single-target Bayes filter presented in Section 3.1 to multiple objects and multi-

ple detectors using so-called meta-states and meta-observations [Mählisch, 2009].
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Instead of modeling the different objects individually, a meta-state is introduced

which represents them all together in a finite set of state vectors

X =
{

x1,x2, ...,xn
}
, n, |X | ∈ N (3.19)

with both the vectors and their number being random variables. Therefore, this

formulation allows different cardinalities in the set which then corresponds to dif-

ferent numbers of objects being tracked. X = /0 would e.g. represent the hypothesis

of no object being tracked. Such a formulation is especially important for the multi-

target Bayes formulation as it allows covering different hypotheses in a single set.

As any ordinary set, X has no order and thus represents no ordering in objects.

Therefore, it covers all n! permutations of the individual object states. Similarly,

meta-observations are sets of individual measurements / observations:

Z =
{

z1,z2, ...,zm
}
, m, |X | ∈ N (3.20)

Using the Finite Set Statistics (FISST) developed by R. Mahler [Mahler, 2007],

a closed-form expression for the multi-target Bayes filter can be obtained. Not

surprisingly, its structure is very similar to the single-target Bayes filter presented

in Section 3.1:

Pk+1|k(X |Z(k)) =
∫

Pk+1|k(X |X̂) ·Pk|k(X̂ |Z(k))δ X̂ (3.21)

Pk+1|k+1(X |Z(k+1)) =
Pk+1(Zk+1|X) ·Pk+1(X |Z(k))

Pk+1(Zk+1|Z(k))
(3.22)

with Z(k) : Z1, ...,Zk as a time sequence of measurement sets, Pk+1|k(X |X̂) as the

multi-target Markov density and Pk+1(Z|X) as the multisource likelihood function

(both as introduced in [Mahler, 2007]).

Pk+1(Zk+1|Z(k)) =
∫

Pk+1(Zk+1|X) ·Pk+1|k(X |Z(k))dX̂

is the Bayesian normalization factor. The result of the filtering step is again a

sequence of posterior probability distributions:

P0|0(X |Z(0))→ P1|0(X |Z(0))→ P1|1(X |Z(1))→ ·· · → Pk|k(X |Z(k))

→ Pk+1|k(X |Z(k))→ Pk+1|k+1(X |Z(k+1))
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As can be seen from these equations, the universal mathematical foundations of

the Bayes theorem do not change using the FISST formulation. Unfortunately, a

practical implementation is generally impossible due to high dimensional integrals

(potentially even without closed form!) and a too high computational load [Mahler,

2004b; Mählisch, 2009].

For a better understanding, it will also be necessary to describe the special case of

changing cardinalities in the object / measurement representations which are mod-

eled implicitly using FISST because it avoids any explicit ordering or assignment

of objects and measurements [Mählisch, 2009]. Such cardinality changes in the

detection set may occur e.g. due to

• False detections (i.e. false positives or clutter): Imperfections of the detection

algorithm can cause detections to be measured at positions with no object /

person present.

• Missed detections: Similarly, objects might not be detected by the detection

algorithm although they are visible in the scene.

• Lack of separability: A number of close objects may be detected as one ob-

ject (e.g. the part-based pedestrian detector may combine parts over multiple

persons into one larger detection).

• Multiple detections: An object may be detected multiple times (special case

of clutter, due to implicit maxima filtering in many visual object detection

algorithms often less relevant in computer vision application).

Cardinality changes in the object set include

• Occurrence of an object: A new person appears in the scene.

• Disappearing of an object: A person leaves the scene.

• Splitting / Spawning of objects: Less relevant in surveillance scenarios. A

often-cited military context for this case is a fighter jet launching missiles.

• Merging of objects: Also less relevant in surveillance scenarios. Could be

used e.g. for group tracking or in military contexts.
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B) Standard Prediction and Measurement Model

From these considerations, the following standard prediction model and standard

measurement model have been defined (e.g. in [Mählisch, 2009; Mahler, 2007]).

The standard prediction model involves the following points which have become a

de-facto standard in many tracking applications:

1. Object motion is described by the transition probability p(xk+1|xk). The

Markov property states that the next state depends only on the current state

but not on past states.

2. An object "survives" with a survival probability pS and disappears accord-

ingly with the probability 1− pS.

3. The appearance of new objects is described using the "birth" density b(x).

The number of new objects follows a Poisson distribution.

4. Object appearance, disappearance and survival for any two objects are pair-

wise statistically independent.

5. Persistent objects spawn with probability Pspawn and remain a single object

with 1−Pspawn. This case will not be considered in this thesis.

The "standard measurement model" from [Mahler, 2007] describes the following

principles:

1. No measurement / detection is created by more than one object.

2. An object can either create one detection (with probability pD) or it can create

no detection (i.e. a missed detection, with probability 1− pD).

3. The false alarm error follows a Poisson distribution in time and is uniformly

distributed in space (with clutter rate C ).

4. Target-generated measurements are conditionally independent of state while

also statistical independence of false alarms and object measurement pro-

cesses is presumed.
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C) Discussion of the Standard Prediction and Measurement Model

While these models originated mostly in the radar and sonar domains, they can be

considered universal for many multi-target tracking applications. Despite the po-

tential need for approximations for any real-life scenario, it makes particular sense

to discuss some of the resulting implications on computer vision applications. E.g.

the error distribution may in reality differ from the assumptions given in the stan-

dard measurement model. While (in computer vision as in other applications) its

presumed Poisson-shaped distribution (with a-priori known parameters) in time can

already be questioned, its distribution in space may be an even bigger issue because

in real applications, it will not necessarily be uniform. One could think of a mirror-

ing glass or any other area with frequent false alarms which confuse the detection

algorithm. HOG-based pedestrian detectors could e.g. be fooled by person-shaped

objects such as tripods, activity detection methods suffer from sensitivity against

e.g. lighting changes, changes in the background and so on, thus causing false

alarms in a systematic fashion often at certain areas in the scenery.

Also the detection probability in surveillance setups may not be constant but in-

stead dependent on the person’s position. For example due to the view geometry in

many surveillance camera setups, there are spaces in the scenery where a pedestrian

detector works better than in others. This can be due to resolution issues (size of

the person in that specific position) or also due to changing lighting or contrast over

the scene.

These considerations should not be understood as a general restriction inhibiting

the usage of these standard models in practical applications, and their existence is

certainly not restricted to the field of computer vision. However, it should be taken

carefully into account that the assumptions in the standard measurement model are

directly incorporated into the tracking method, and it would be desirable to deal

with such imperfections as mentioned before directly in the detector in order to

avoid further difficulties for the tracker.

The motivation of using random finite sets in tracking theory has given rise to

a big field of algorithms and methods for tracking applications. By usual con-

vention in the tracking community, methods which extract the individual object

states without consideration of their order (i.e. without labeling) are referred to

as filtering methods while tracking methods are supposed to preserve the correct

object labeling. The next chapter will present the Probability Hypothesis Density
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(PHD)[Mahler, 2003] filter which is used for multi-object tracking within this thesis

and serves as an exemplary case of RFS-based trackers.

3.2.4 Tracking Using Probability Hypothesis Density

The probability hypothesis density (PHD) filter solves the problem of the potentially

intractable multi-target Bayes filter by using an approximation of the underlying

probability distribution. Instead of propagating the multi-target posterior density,

it propagates the multi-target intensity which is the first-order statistical moment of

the posterior multi-target state [Mahler, 2003]. This intensity is also known as PHD.

One of the first PHD filters for tracking applications has been published in [Siden-

bladh, 2003] using sequential Monte Carlo techniques. Closed-form versions of the

filter followed (e.g. [Vo and Ma, 2005, 2006] and soon attracted interest in the

signal-processing community. This chapter will describe the PHD filter in detail

and discusses advantages and issues related to this specific RFS-based filter. How-

ever, a complete derivation of the filter is omitted as this would be out of scope for

this thesis and has already been given in thorough detail e.g. in [Mahler, 2007].

Section A) presents the underlying theoretical concept which is then exploited

in the following paragraphs. All the derivation and nomenclature of variables fol-

lows largely [Mahler, 2007] to which the reader is also referred for more detailed

explanations. Section 3.2.5 then discusses the method theoretically and focuses on

the filter’s need for high detection probabilities which is not unusual compared to

other tracking-by-detection methods but needs to be kept in mind when applying

the algorithm in computer vision scenarios.

Remedies which have been developed within this work for the issues found are

presented in Chapter 4.

A) The Concept of Probability Hypothesis Density

Ronald Mahler who first described the FISST theory for tracking applications and

introduced the mathematical foundations in this field also described the probabil-

ity hypothesis density (PHD) [Mahler, 2003, 2007] commonly denoted as D. It is

defined to be the first statistical moment (the "expected value") of a multi-target

probability distribution of a random finite set. The PHD lives on the single-object

state space and assigns to every point in it the sum of probability densities for the
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possible meta states (cf. Equation (3.19)) containing an element at that point [Mäh-

lisch, 2009]:

D(x) =
∞

∑
n=0

1
n!

∫
p({x,y1, ...,yn})dy1...dyn (3.23)

Here, n can be an arbitrary number of objects in the scene and is thus part of

an infinite sum over all possible numbers of objects. The factor 1
n! accounts for

multiple permutations of the same meta state containing n elements.

Although its name might suggest it, the PHD is not a probability density. When

summed up over a given region in the single-object state space, the expected number

of objects in that region is obtained. Formally, with Ψ as an RFS in the state space

and S as the region, the following relation holds [Mahler, 2007]:

∫

S
DΨ(x)dx = E [|S∩Ψ|] . (3.24)

An example of PHD (using a Gaussian mixture representation) for four objects

is shown in Figure 3.7 (left). The related object configuration is given in Figure 3.7

(right). Independently from the objects’ identity, their probabilities of existence

are summed up for all points yielding two smaller peaks for x1,x2 and a larger and

broader distribution for x3,x4 which are closer to each other than the former objects.

Consequently, the PHD does itself not contain any information about the objects’

identity because it maps information into the single-object state space in which

relations between several objects are not visible. In the next sections, approaches to

maintain such information will be presented.

However, information about the objects’ position can be obtained through the

PHD which implicitly contains it in its form (though as a sum over all objects).

Consequently, the PHD is an intensity function [Mählisch, 2009] and one can intu-

itively imagine a tracking process based on the PHD as the identification of peaks

in the PHD and an assignment of them to the tracks known so far.

B) The Probability Hypothesis Density Filter

Ronald Mahler proposed the PHD filter in [Mahler, 2003] as a recursive Bayes filter

which estimates the PHD in every time step. Its implementation can be done us-

ing different methods but due to complexity issues, an approximation to the general

PHD filter formulation [Mahler, 2003] is always necessary. Therefore, different
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Figure 3.7: Schematic representation of probability hypothesis density approximated by

Gaussian mixtures (left). The related object configuration (right).

approaches have been proposed in the literature. One of the very first practical

implementations used SMC methods [Vo et al., 2005] while also Gaussian mix-

ture models [Vo and Ma, 2005; Clark et al., 2006] have been developed. For higher

nonlinear, non-Gaussian systems, a spline-based implementation has also been pub-

lished ([Sithiravel et al., 2013]).

In the context of this thesis, the Gaussian mixture probability hypothesis density

(GM-PHD) filter is used. It assumes linear target dynamics for the transition density

fk|k−1(xk|xk−1) and the single target likelihood function g(z|x) [Clark et al., 2006]

fk|k−1(xk|xk−1) = N (xk;Fk−1xk−1,Qk−1) (3.25)

gk(zk|xk) = N (zk;Hkxk,Rk). (3.26)

In these equations, Fk−1 is the transition matrix and Qk−1 the covariance matrix

of the measurement noise (similar as for the Kalman filter). Hk is the observation

matrix, and Rk is the observation noise covariance.

For time step k, a PHD representation constituted by a mixture of Jk Gaussian

distributions with weights w
(i)
k , mean values µ

(i)
k and covariance matrices C

(i)
k is

used:

Dk(x) =
Jk

∑
i=1

w
(i)
k N (x; µ

(i)
k ,C

(i)
k ). (3.27)
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The advantages of the GM-PHD filter over e.g. the SMC implementation lay

especially in the lower computational complexity and the closed-form formulation

for the PHD which avoids the need for particle clustering in order to obtain the final

object states. In the following chapters, the PHD filter is therefore introduced side-

by-side with the GM-PHD approximations in order to enable the reader to directly

understand both the filtering technique used and its mathematical foundations. De-

tailed derivations of the filter are omitted here but can be obtained from [Mahler,

2003, 2007].

The first initialization of the filter is done using an appropriate PHD prior:

D0|0(x) = D0|0(x|Z(0)) = n0 · s0(x) (3.28)

with s0(x) as a probability density with peaks in the prior target positions [Mahler,

2007] and n0 as an initial guess of the number of expected targets. In cases where

no knowledge is available about current object positions, the PHD can be initialized

as an empty distribution, i.e. for the GM-PHD filter as an empty list of Gaussian

distributions.

The actual multi-target filtering process is then done in two steps: the prediction

and the update (correction) step.

C) Prediction Step

The predictor equation of the PHD filter in (3.29) shows that the PHD in time step

k is influenced by two kinds of targets. New targets and already known targets are

considered separately:

Dk|k−1(xk) = b(xk)
︸ ︷︷ ︸

new targets

+
∫

pS(xk−1) · f (xk|xk−1) ·Dk−1|k−1(xk−1)dxk−1
︸ ︷︷ ︸

already known targets

(3.29)

Here, xk and xk−1 represent the estimated target states in the last and current

frame. The birth intensity b(x) in (3.29) models the appearance of new targets.

Previously known targets are propagated into the next frame with survival proba-

bility pS and their position in the next frame is predicted using the motion model

f (xk|xk−1). As mentioned before, the case of spawning targets is not considered in

the context of this thesis.
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The birth distributions in the birth intensity b(x) are chosen to have a very small

variance and are centered in the detections received. An example is shown in Fig-

ure 3.8. The resulting prediction step in the GM-PHD filter then becomes (omitting

the state subscripts for simplicity):

Dk|k−1(x) = b(x)+
Jk−1

∑
j=1

pS(x) ·w(i)
k−1 ·N (x; µ

(i)
S,k|k−1,C

(i)
S,k|k−1) (3.30)

with µ
(i)
S,k|k−1 = Fk−1µ

(i)
k−1 and C

(i)
S,k|k−1 = Qk−1 + Fk−1C

(i)
k−1FT

k−1 similar to the

Kalman predictor step (Equation (3.9)).

As a conclusion, the prediction step serves for initialization of new objects and

for propagating (or extrapolating) targets from the last time step, leading thus to

a PHD representation which represents a list of expected target positions in the

current frame.

D) Update Step

After the prediction step, the expected target positions are updated using the current

measurement set Zk = {z1, . . . ,zm}:

Dk|k(x) = (1− pD(x)) ·Dk|k−1(x)

︸ ︷︷ ︸
missed targets

+ ∑
z∈Zk

pD(x) ·Lz(x) ·Dk|k−1(x)

C +
∫

pD(x) ·Lz(x) ·Dk|k−1(x)dx
︸ ︷︷ ︸

targets associated to detections

(3.31)

Similar to the Kalman filter, the result of the correction step (3.31) in the PHD fil-

ter is a mixture distribution for both missed and detected targets. With (1− pD(x))

as the probability of missed detections, the first part of the equation accounts for un-

detected targets and just propagates the predicted PHD with a new, reduced weight

according to the expected pD. The lower pD, the more emphasis is placed on the

predicted PHD while a high pD emphasizes the second term where the PHD is up-

dated according to the detections received. Detection probability must be known

beforehand and is a constant value in the system.

The second term is a sum over all detections which contribute to the target state

by their individual likelihood value. This term can be explained most simply by

first looking at the numerator. It contains the product of the previously estimated

PHD, a likelihood function Lz which describes how probable a given detection has

been produced by the target with the given state and the probability of receiving a
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Figure 3.8: Illustration of prediction step for GM-PHD filter using the PHD from Fig-

ure 3.7: The previous PHD estimate is propagated using the motion model f (x|x′) and the

survival probability pS. In a second step, the birth density b(x) is added. In this example,

the birth density is chosen related to four detections received, i.e. a birth distribution with

initial small variance is added for every detection. The result of the predictor step, shown in

the last image, is a superposition of both intermediate results.
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detection for the given state. Lz can be chosen on different grounds (e.g. distance or

similarity of the target with a previously established model). In the tracking system

used within this thesis, a simple spatial approach is applied by using a L2 distance

in x/y distance (2D case) or an overlap ratio of bounding boxes (4D case).

The denominator in the second term serves as a normalization over all target

states and detections. The normalization ensures that the maximal attributed weight

per detection and state is 1 while potential surplus detections are accounted for by

the average clutter intensity C .

For a better explanation of this normalization, consider the simplified example

of a predicted PHD with value zero in the whole state space except for one position

x0 = 3. This describes 3 expected targets at x0 and none elsewhere. The detection

probability pD(x0) = 1. If in this case one target detection z0 has been received in x0

and the likelihood Lz0(x0) = 1 states that the detection has certainly been produced

by a target in x0, the corrected PHD becomes:

Dk|k(x0) =
pD(x0) ·Dk|k−1(x0)

C + pD(x0) ·Lz(x0) ·Dk|k−1(x0)
=

1 ·3
C +1 ·1 ·3 =

3
C +3

. (3.32)

With a clutter intensity C = 0, this term thus becomes Dk|k(x0) = 1. The inter-

pretation is that for three targets, pD = 1 and C = 0, three detections are expected in

order to maintain all targets. If only one is received, the expected number of targets

in this position reduces accordingly.

Now, let also clutter be present: C = 3, i.e. in average three false positive detec-

tions can be expected per frame. The result becomes:

Dk|k(x0) =
3

3+3
=

1
2
. (3.33)

which shows that the received detections for the system have similar weight as

the constantly expected clutter detections. In this case, the overall number of targets

in x0 thus reduces to 0.5 because the average contribution of a detection received is

lower than in cases with no clutter.

The GM-PHD filter uses the same principle as given by Equation (3.31) but
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Figure 3.9: Illustration of update step for target x1 (red circle) in the GM-PHD filter: For

every detection (blue stars), a new curve between detection and target state is created (green

circles). Its weight and covariance matrix depend on the likelihood Lz relating state and

detection, on the noise parameters and on the previous state estimate.

builds upon the corrector step used in the Kalman filter:

Dk|k(x) = (1− pD) ·Dk|k−1(x)+ ∑
z∈Zk

Jk−1

∑
j=1

pD(x) ·Lz(x) ·w( j)
k|k−1

C +
Jk−1

∑
l=1

pD(x) ·L(l)
z (x) ·w(l)

k|k−1

(3.34)

In the first term, the Jk Gaussian distributions are weighted with a factor 1− pD in

order to account for missed targets. In the second term, for every pair of received

detection d j and predicted Gaussian distribution Npred(x; µ
( j)
pred,k|k−1,C

( j)
pred,k|k−1), a

new corrected Gaussian Ncorr(x; µ
( j)
corr,k|k,C

( j)
corr,k|k) is created with

µ
( j)
corr,k|k = µ

( j)
pred,k|k−1 +K

( j)
k (z−Hkµ

( j)
pred,k|k−1)

C
( j)
corr,k|k = (I −K

( j)
k Hk)C

( j)
pred,k|k−1 (3.35)

K
( j)
k =C

( j)
pred,k|k−1HT

k (HkC
( j)
pred,k|k−1HT

k +Rk)
−1

and weights as the fraction term:

w
(l)
k|k =

pD(x) ·Lz(x) ·w( j)
k|k−1

C +
Jk−1

∑
l=1

pD(x) ·L(l)
z (x) ·w(l)

k|k−1

. (3.36)

Doing so thus creates a new Gaussian in the state space with mean position be-

tween the target position and the detection associated. Figure 3.9 shows an example
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for this procedure with only one target state (x1) being corrected. In the update

step such a correction is performed for every target hypothesis, leading thus to the

creation of (Jk−1 + |Zk|) · (1+ |Zk|) Gaussians after this procedure.

E) Complexity Reduction in the GM-PHD filter

In both the predictor and update step, the number of components in the Gaussian

mixture model increases rapidly over time. As mentioned before, its number after

both steps is

Jk|k = (Jk−1 + Jbirth,k) · (1+ |Zk|). (3.37)

All of these components represent a potential target hypothesis and their mixture

gives an approximation of the overall likelihood for target existence in the state

space. Components with high probability have higher weights while improbable

states are weighted with less importance.

Given the rapid growth in the number of components, it is crucial for the perfor-

mance of the system to include a way of focusing only on the most important states

and remove the irrelevant ones. Therefore, additional merging and pruning steps

are performed as described in [Clark and Vo, 2007].

In the pruning step, curves with negligible weights wi < wprune are removed.

This is another approximation in the algorithm apart from the Gaussian mixture

model but appears to not have significant effects on the tracking performance (as

shown in [Vo and Ma, 2006] and a diploma thesis conducted at TUB-NÜ [Arp,

2012]). The system in this thesis uses a constant pruning threshold of wprune = 10−5.

Another way of reducing the complexity in the system is performed in the merg-

ing step. This procedure consists of computing the pairwise similarity of the Gaus-

sian components in the PHD and of merging the ones which describe similar target

states. Remember that the PHD can take values higher than one for positions with

more than one target in the state space, then the merging of L Gaussian hypotheses

N (x; µ
(i)
k ,C

(i)
k ) into one new Gaussian component is performed as follows ([Clark

and Vo, 2007]):
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Different comparisons are possible in order to assess the similarity between mul-

tiple Gaussian components. In the framework used for this thesis, the similarity is

computed using the Alspach distance ([Alspach, 1970]):

dAlsp(m
(i)
k ,m( j)

k ) = (m(i)
k −m( j)

k )TC
(i)
k

−1
(m(i)

k −m( j)
k ) (3.39)

For the merging process, equation (3.39) is computed for a given component

and all possible merge candidates. Therefore, the covariance matrix C
(i)
k of the first

merging candidate for this comparison is used in equation (3.39) although it will

generally differ from the second one. In practice however, this approximation does

not change the system’s performance notably and as important advantage of this

distance formulation, low computational complexity is achieved.

Curves with dAlsp(m
(i)
k ,m( j)

k )< Tmerge are merged. The merging process contin-

ues iteratively until no more merging candidates are found.

F) State Extraction and Target Association in the GM-PHD filter

Iterative application of prediction and update step in the GM-PHD filter yields a set

of Gaussian distributions. Knowing the number of objects nob jects as the integral of

the PHD representation, the nob jects highest peaks in this multi-modal distribution

can be used as target state estimates. Another, more common way was proposed

in [Clark et al., 2006] and uses a constant extraction threshold Textract = 0.5. In

concordance with the standard measurement model used for the PHD filter, a hy-

pothesis can be attributed a weight of approximately ∆wk = 1 per measurement in

the corrector step equation (3.34). In case of multiple objects, the overall contribu-

tion is split between them. It is therefore natural to treat hypotheses with a weight

w
(i)
k > Textract as target states while the ones with lower weight are potential target

states which are not extracted. As shown in a diploma thesis carried out at TUB-NÜ

[Arp, 2012], the splitting of weights between updated curves has also implications
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Figure 3.10: Illustration of the label trees from [Panta et al., 2009] for three time steps with

one detection received in each: For every track, the tree is initialized with the corresponding

birth distribution. In the first time step, two hypotheses are created (one for the case without

detection and one for a notional detection). Each of these resulting hypotheses is then

propagated into the next time step and generates new hypotheses with the corresponding

detections. Extracted states are shown in green while red ones represent hypotheses which

are not extracted for the track.

for the merging threshold. It should be chosen in a way that the corrected hypothe-

ses derived from a target state can be merged and thus represent the whole weights

update for the target.

The system as presented by now estimates the target states but does not assign

them to previously known tracks. This means that the information about the targets

position is known but not their identity (multi-target filtering). For a tracking sys-

tem these information have thus to be included again. In order to accomplish such

an assignment of states and tracks, different solutions have been proposed in the

literature.

In [Clark et al., 2006], unique track labels were introduced for birth distributions

which are then propagated to the extracted state of the target. However, this method

focuses on only one hypothesis for each track which is a problem in ambiguous

situations. The PHD filter itself is perfectly capable of maintaining multiple state

hypotheses but this method assigns the labels only to the most probable one.

An improvement was given in [Panta et al., 2009], where a tree-based approach

is used. In contrast to the previously mentioned procedure, the initial labels are

propagated through all steps in the algorithm and also for multiple hypotheses. This

is done using so-called label trees which are initiated for birth distributions with a
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unique label. In this step, the tree is composed only by one node (the birth distribu-

tion). During the life-time of this target, its potential positions are added to the label

tree as new nodes. Traversing the nodes upwards in this tree from the last extracted

state to the root node thus reveals a target’s path from the last frame to the initial

starting point (see Figure 3.10).

The figure shows the tree for one target. After initialization, there are two hy-

potheses in the system which relate to the case of an undetected target and the cor-

responding hypothesis for a detection received. In the following time steps, these

hypotheses are the basis for further state estimates which are added to the respective

node in the tree. Remember that in this example, only one detection per time frame

is shown for simplicity. If at any time step more or less than one detection was

received, the number of nodes in this time step would change accordingly.

The leaves of the tree are the potential current state estimates which form the

PHD contribution for this target. Green circles in the tree symbolize the hypotheses

with highest weight which are extracted in each time step in order to form the track

estimate. By traversing the tree along these state estimates, the target path can be

retrieved.

This method of constructing a tree-shaped data structure for the tracks appears

similar to the MHT tree. However, the PHD filter still has some peculiarities com-

pared to MHT, namely e.g. the higher number of trees (one tree per target instead

of one overall tree in MHT) and the non-usage of a gating procedure in the standard

approach (though it could be applied as e.g. proposed in [Macagnano and de Abreu,

2011]).

From this example it becomes clear that the number of branches in the tree grows

exponentially and in order to maintain a suitable run-time and memory require-

ments, the tree must regularly be reduced to a smaller size. On the one hand, this is

done using the aforementioned pruning and merging methods which are executed

only for hypotheses in the same tree: If a leaf is removed from the PHD, the respec-

tive branch is pruned, too. If hypotheses are merged, the branch with the highest

weigh among them is kept.

However, the hierarchical information structure of the tree can also be used in

order to further reduce the number of Gaussians in the PHD. One option used in the

system for this thesis is based on a confirmation threshold Tcon f irm. Whenever a

state has a weight wi < Tcon f irm, it is marked as tentative (otherwise as confirmed).
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Branches which have not been confirmed for a longer period of time are removed

as the corresponding hypotheses are not reliable. Also branches which have been

marked as tentative for several consecutive frames are removed from the tree.

An additional pruning of branches is done using the so-called n-pruning [Black-

man, 2004] which is common in multiple hypothesis tracking. This method assumes

that the tree should never be ambiguous for more than the last nn−pruning frames and

builds on the idea that possible changes should be more likely in the recent nodes.

Therefore a decision for older time steps is enforced by removing all branches from

the node of age t − nn−pruning or older which do not lead to the currently extracted

hypothesis.

Another general parameter in the proposed system is the extraction lifetime

threshold textract . By comparison of the current frame number with the time stamp

of the first appearance of a label tree, its lifetime tage can be computed. In order to

reduce false positive detections which might appear only in a few frames, the sys-

tem extracts merely tracks of the label trees for which tage ≥ textract . A usual choice

for this parameter is textract = 5, i.e. tracks of younger age are not extracted.

In order to avoid problems in cases with crossing targets, [Panta et al., 2009]

proposes a log-likelihood-based scheme for track association which relates the can-

didate hypothesis with the state history of known targets. It computes the log-

likelihood ratio (LLR) over mean and covariance of the states and chooses the can-

didate with the highest LLR which is equivalent to comparing the motion model to

its historic values and choosing the target hypothesis which follows the historical

model best. However, it has been shown in the context of a diploma thesis [Arp,

2012] that an increased sensor and process noise level can reduce the advantages of

the LLR-extension considerably.

Consequently, for applications such as vessel or plane tracking, the LLR-based

association model seems helpful. However, its advantage in terms of pedestrian

tracking is questionable. Especially the fact that an increased noise level is needed

for pedestrian tracking makes it necessary to apply different methods in this domain.

Section 4.2 shows how the system used within this thesis has been enhanced by

applying an image cue-based association method.
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3.2.5 Comparison of GM-PHD Filter with State-of-the-Art for

Visual Tracking: the Need for High Detection Rates

The PHD filter is a powerful tracking algorithm relying on the Bayes theorem. It

uses a set-based formulation in order to extend the Bayes filter to the multi-target

case and is at the same time mathematically sound but also intuitive and elegant.

The performance of the PHD filter especially in scenarios with a high amount of

noise has been shown to be better than e.g. MHT [Mahler, 2007]. However, its

origin lies in the radar / sonar tracking domain where mostly linear motion models

and high detection rates can be presumed. This is a major difference to the context

of this thesis which is the application for visual pedestrian tracking in the CCTV

domain.

In order to show the general suitability of the proposed PHD filter for visual

tracking, tests on two standard benchmarks have been conducted.

The first benchmark is the MOT17 dataset and presented in Table 3.1. It clearly

shows that the GM-PHD filter implementation from this work which has been

firstly published in the year 2012 has recently been outperformed by newer ap-

proaches. One of the reasons of its lower performance is due to the nature of the

dataset. MOT17 contains a set of highly different and heterogeneous videos (Exam-

ple frames shown in Appendix A.2.1) and it is very hard to parametrize the method

for all videos using the same parameters. Especially videos with moving camera are

hard because no camera motion estimation is performed in the GM-PHD filter and

the internal motion model becomes thus unreliable. It is therefore that the MOT17

dataset is not suitable in the context of this thesis and will not be used furthermore.

However, as an advantage of the GM-PHD filter, its low computational complexity

can be mentioned as it is among the three fastest methods in Table 3.1.

The best performing method shown in the table is eTC17 [Wang et al., 2018]

which uses a neural network-based tracking method called TrackletNet Tracker

(TNT) combining temporal and appearance information in a unified graph model

framework. First, tracklets for each object are obtained using CNN feature in-

formation and intersection-over-union (IOU) with epipolar constraints in order to

address potential camera motion in the video. Using a multi-scale neural network

(TrackletNet), the similarity between two tracklets can be assessed and afterwards,

the tracklets are grouped in order to obtain the final object IDs.
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Tracker Year of Publication MOTA IDF1 MT ML FP FN ID Sw. Frag FPS

eTC17[Wang et al., 2018] 2018 51.9±12.4 58.1 23.1% 35.5% 36164 232783 2288 (38.9) 3071 (52.3) 0.7

eHAF17[Sheng et al., 2018b] 2018 51.8±13.2 54.7 23.4% 37.9% 33212 236772 1834 (31.6) 2739 (47.2) 0.7

AFN17[Shen et al., 2018] 2018 51.5±13.0 46.9 20.6% 35.5% 22391 248420 2593 (46.3) 4308 (77.0) 1.8

FWT[Henschel et al., 2017] 2017 51.3±13.1 47.6 21.4% 35.2% 24101 247921 2648 (47.2) 4279 (76.3) 0.2

jCC[Keuper et al., 2018] 2018 51.2±14.5 54.5 20.9% 37.0% 25937 247822 1802 (32.1) 2984 (53.2) 1.8

MOTDT17[Chen et al., 2018] 2018 50.9±11.9 52.7 17.5% 35.7% 24069 250768 2474 (44.5) 5317 (95.7) 18.3

MHT_DAM[Kim et al., 2015] 2015 50.7±13.7 47.2 20.8% 36.9% 22875 252889 2314 (41.9) 2865 (51.9) 0.9

TLMHT[Sheng et al., 2018a] 2018 50.6±12.5 56.5 17.6% 43.4% 22213 255030 1407 (25.7) 2079 (37.9) 2.6

EDMT17[Chen et al., 2017] 2017 50.0±13.9 51.3 21.6% 36.3% 32279 247297 2264 (40.3) 3260 (58.0) 0.6

HAM_SADF17[Yoon et al., 2018] 2018 48.3±13.2 51.1 17.1% 41.7% 20967 269038 1871 (35.8) 3020 (57.7) 5.0

DMAN[Zhu et al., 2018] 2018 48.2±12.3 55.7 19.3% 38.3% 26218 263608 2194 (41.2) 5378 (100.9) 0.3

AM_ADM17[Lee et al., 2018] 2018 48.1±13.8 52.1 13.4% 39.7% 25061 265495 2214 (41.8) 5027 (94.9) 5.7

PHD_GSDL17[Fu et al., 2018] 2018 48.0±13.6 49.6 17.1% 35.6% 23199 265954 3998 (75.6) 8886 (168.1) 6.7

MHT_bLSTM[Kim et al., 2018] 2018 47.5±12.6 51.9 18.2% 41.7% 25981 268042 2069 (39.4) 3124 (59.5) 1.9

IOUT[Bochinski et al., 2017] 2017 45.5±13.6 39.4 15.7% 40.5% 19993 281643 5988 (119.6) 7404 (147.8) 1522.9

FPSN[Lee and Kim, 2018] 2018 44.9±13.9 48.4 16.5% 35.8% 33757 269952 7136 (136.8) 14491 (277.8) 10.1

HISP_T17[Baisa, 2018] 2018 44.6±14.2 38.8 15.1% 38.8% 25478 276395 10617 (208.1) 7487 (146.8) 4.7

GMPHD_SHA[Song and Jeon, 2016] 2016 43.7±12.5 39.2 11.7% 43.0% 25935 287758 3838 (78.3) 5056 (103.2) 9.2

SORT17[Bewley et al., 2016] 2016 43.1±13.3 39.8 12.5% 42.3% 28398 287582 4852 (99.0) 7127 (145.4) 143.3

EAMTT[Sanchez-Matilla et al., 2016] 2016 42.6±13.3 41.8 12.7% 42.7% 30711 288474 4488 (91.8) 5720 (117.0) 12.0

visGMPHD*[Kutschbach, 2017] 2017 40.3 38.0 8.4% 44.7% 5281 7814 42542 289233 1.5

GMPHD_KCF*[Kutschbach et al., 2017] 2017 39.6±13.6 36.6 8.8% 43.3% 50903 284228 5811 (117.1) 7414 (149.4) 3.3

GM_PHD[Eiselein et al., 2012] 2012 36.4±14.1 33.9 4.1% 57.3% 23723 330767 4607 (111.3) 11317 (273.5) 38.4

Table 3.1: Tracking results compared with state-of-the-art trackers on MOT17 benchmark using public detections (from MOT-Challenge website,

due date 31.12.2018, anonymous or incomplete references omitted). Entries marked with * indicate modifications of the GM-PHD scheme evaluated

in a master’s thesis conducted at TUB-NÜ [Kutschbach, 2017].
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In eHAF17 [Sheng et al., 2018b], a "Heterogeneous Association Fusion" (HAF)

is used performing a fusion of both high-level detections and low-level image data

to associate targets to tracks. The resulting association graph and track trees are then

fed into a MHT tracking step in order to solve for the most probable track associa-

tions. Additionally, the framework allows for adaptation of the weights controlling

the contribution of motion and appearance information.

[Shen et al., 2018] propose to combine the often-split tasks affinity learning and

data association into a unified framework with data-driven association, namely the

Tracklet Association Tracker (TAT). Using a bi-directional optimization framework,

association of targets can be directly learned from the extracted features in the video.

The usage of raw detections and hierarchical association allows for a significant

speed-up while the performance is still among the best in the table.

In [Henschel et al., 2017], a fusion of two detectors is performed by formulating

a weighted graph labeling problem over the detections received from the usual full-

body detector and an additional head detector. The resulting NP-hard optimization

problem is solved by approximation based on the Frank-Wolfe algorithm and a new

solver proposed by the authors.

[Keuper et al., 2018] formulate visual tracking as a co-clustering problem by

combining bottom-up grouping with top-down detection and tracking. The group-

ing step in this paper involves bottom-up motion information coming from seg-

mented point feature trajectories while top-down tracking information is derived

from clustered bounding boxes. Solving the joint problem then yields the tracking

results.

Deep learning is a basis for [Chen et al., 2018] in order to cope with unreli-

able detections caused e.g. by occlusion. Therefore, match candidates from both

tracking and detection candidates are jointly processed in order to complement each

other in unclear situations. A fully convolutional neural network trained on large

person re-identification datasets is used for scoring and experiments show real-time

performance using a high-end graphics engine.

An extension of the classical MHT method is proposed in [Kim et al., 2015] by

introducing an on-line appearance learning step. Using a regularized least-squares

framework, the number of hypotheses in the system is reduced and the algorithm

becomes more discriminative than the standard MHT. This is achieved at a slightly

higher computational cost than classical MHT, yet not real-time capable on PC hard-
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ware.

Similar to the previously mentioned method, [Sheng et al., 2018a] base their

work on the classical MHT algorithm. In order to explicitly exploit information

from adjacent frames in the system, hypotheses are clustered into five categories

and a hypothesis transfer model is designed in order to explicitly describe relation-

ships between hypotheses across adjacent frames. Then, an approximation running

in polynomial time is used to solve the underlying iterative maximum weighted in-

dependent set (MWIS) problem for multi-object tracking with MHT. An additional

tracklet-level association step reduces the computational complexity using confident

short tracklet generation.

EDMT17 by [Chen et al., 2017] is another approach to enhance the classical

MHT algorithm using additional information. The authors apply a scene model

which correlates the position of a detection with its height variation. Additionally,

an analysis between detections is carried out in order to assess if overlapping de-

tections should be suppressed or added using Bayesian inference. Both of these

results are then incorporated into the MHT method in order to enable penalization

of unlikely hypotheses and to enable the selection of more suitable ones.

The authors of [Yoon et al., 2018] propose handling temporal errors during multi-

object tracking by using historical appearance information. A joint-input siamese

neural network trained in a 2-step process is proposed in order to distinguish targets

from each other and to overcome issues such as temporal occlusion or bad matches.

Additional effort is done on removal of noisy detections according to scene infor-

mation.

Another work based on neural networks has been proposed by [Zhu et al., 2018]

and introduces Dual Matching Attention Networks (DMAN) with spatial and tem-

poral attention for multi-object tracking. A key idea is to integrate both single-

object tracking and data association into a unified framework in order to cope with

noise in detections and with interactions between objects. Additionally, the method

includes a cost-sensitive tracking loss for visual tracking of individual targets which

shall foster the usage of hard negative distractors in the training process.

Robust data association between consecutive frames is the key topic for a method

proposed in [Lee et al., 2018]. While one of the problems related with learning

appearance variations over time is the need for filtering out noisy detections and

occlusions, especially between different targets, additional difficulties arise due to
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similar appearance between targets, potentially leading to low discriminability be-

tween them. In this publication, an online appearance learning step using a partial

least square (PLS) method is applied on on-line-collected training samples from

the tracking process. These are continuously refined using PLS subspaces and the

projection of the trained features onto these. An evaluation of the feature discrim-

inability allows the selection of only those targets with low separability and thus

reduces the computational effort significantly.

The work in [Fu et al., 2018] presents a SMC-PHD method and elaborates espe-

cially on two key ideas: It proposes a novel gating concept and an on-line group-

structured dictionary learning step. The first is supposed to enable a knowledge-

based selection of a suitable gating size and thus a reduction of the clutter inference

in cluttered environments. Group-structured dictionary learning then serves to ro-

bustly estimate the target birth intensity. Consequently, newly created targets can

be derived from noisy sensor results while simultaneous code word optimization

for the dictionary update stage is applied in order to enhance the adaptability of the

dictionary to appearance and illumination changes.

[Kim et al., 2018] give another example of a method based on MHT by incor-

porating neural networks into this classical approach. The authors propose using

a Bilinear Long Short-term Memory (LSTM), a recurrent network model which

allows learning of long-term appearance models. According to the authors, the cou-

pling of the LSTM building blocks in a multiplicative manner instead of an additive

one is beneficial for appearance modeling. Furthermore, data augmentation is em-

ployed for efficient training of score models for appearance and motion as a basis

for the final tracking using MHT.

The "Intersection-over-union tracker"’ (IOUT) [Bochinski et al., 2017] also de-

veloped at TUB-NÜ uses the principle of overlapping bounding boxes around ob-

jects in consecutive frames. It can basically both maintain and expand the target

tracks by identifying the detection with the highest intersection-over-union ratio

compared to the last detection in the existing frame. For reasons of stability, a

certain minimal threshold is required for this step. In many cases, these assign-

ments yield a number of unmatched detections which are considered sources of

new tracks. On the other hand, tracks that have not been updated for a number

of frames are considered dead and will be removed eventually. Additional perfor-

mance improvements are achieved by using a filtering step to delete all tracks of
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short length and/or low-confidence detections.

In [Lee and Kim, 2018], a novel Feature Pyramid Siamese Network (FPSN) is

proposed for multi-object tracking. The authors claim that this concept is advanta-

geous for learning the similarity metric of targets and detections compared to a plain

Siamese network as used previously. The FPSN aims at combining architectures of

feature pyramid networks (FPN) and Siamese networks and, as a result, enables

the usage of multi-level discriminative features. In order to add motion information

into the system, a spatiotemporal motion feature is proposed to enhance the tracking

performance.

While many of the former methods concentrate on changing some partial as-

pects of already established methods, [Baisa, 2018] is an implementation of a rather

novel tracking concept. This TbD algorithm is based on the Hypothesized and In-

dependent Stochastic Population (HISP) filter which combines aspects from both

traditional tracking approaches like MHT and set-based methods, such as the PHD

filter. The HISP filter is linear in complexity and can keep track identities as MHT

does. The authors propose an additional mechanism in order to avoid having multi-

ple targets with the same label by considering their weights propagated over time.

In [Song and Jeon, 2016], a variation of the GM-PHD filter is applied. As the

algorithm is able to cope with noise and false positives very well but suffers from

false negative detections, the authors add a hierarchical framework for association

of fragmented or wrongly assigned targets. This is done by contribution of two addi-

tional data association steps on low- and mid-level. It can be seen that this measure

gives already a good improvement although it does not suffice to outperform other

tracking methods.

A rather pragmatic approach for multi-object tracking is "Simple Online and

Realtime Tracking" in [Bewley et al., 2016] which uses Kalman filtering and the

Hungarian algorithm for assignment of tracks and detections. As an additional con-

tribution in the paper, the need for accurate detections is emphasized and the authors

propose using CNN detectors for their highly improved performance compared to

traditional approaches. As a result, the proposed method allows for real-time per-

formance at 260 fps and was among the most accurate trackers at the time of publi-

cation.

[Sanchez-Matilla et al., 2016] propose another SMC-PHD-based tracking ap-

proach which distinguishes strong and weak detections and processes them differ-
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ently. Weak detections, i.e. detections of low confidence, are used only for label

propagation while strong detections are additionally used for initialization of new

targets. The sampling itself is applied in a perspective-respecting manner, i.e. dis-

tortions due to the camera view are filtered out. Data association in this paper hap-

pens after the predication step which shall remove the need for additional clustering

of particles in order to associate the correct label.

GMPHD-KCF is a Gaussian Mixture Probability Hypothesis Density Filter ex-

tended by Kernelized Correlation Filters, a variant of the GM-PHD tracker in this

work, which has been developed at TUB-NÜ in the framework of a master’s the-

sis [Kutschbach et al., 2017; Kutschbach, 2017]. It applies visual correlation filters

(namely Kernelized Correlation Filters (KCF) [Henriques et al., 2015]) in order to

enhance the tracking in situations with missed detections. The approach followed

is similar to [Danelljan et al., 2014] and splits the overall target model into two

separate models for estimation of target translation and target scale. Thanks to the

small variations between consecutive frames and the motion model of most scenes,

this split appears natural as in most visual tracking scenarios, targets change much

more in position than in scale over consecutive frames. It thus becomes possible to

perform translation estimation and scale estimation subsequently and independently

from each other which is done in this method using FHOG-features from [Dollár,

2016]. The kernel used for translation estimation in the KCF is a Gaussian kernel

while for scale estimation a filter with a linear kernel is used.

The visGMPHD [Kutschbach, 2017] filter is an extension to the previously pre-

sented GMPHD-KCF method and has also been developed as a part of a master’s

thesis at TUB-NÜ. It does not only perform visual object tracking as the GMPHD-

KCF approach but furthermore uses the KCF-framework for visual re-identification

by regarding the trained correlation filters as sources of target-specific image cues.

On that account, the correlation filter information motivates and enables the com-

putation of a visual likelihood model and is used for merging of label trees. As a

result, some drawbacks of the KCF-filter extension, such as an increased sensitivity

to false positives are alleviated at the cost of a much higher computational load.

Table 3.2 shows results for the University at Albany DEtection and TRACking

(UA-DETRAC) dataset [Wen et al., 2015]. This benchmark for vehicle tracking

uses traffic cameras with comparable viewpoints in every video and pre-computed

detections for several detectors (details in Appendix A.2.2). Apart from the class of
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Methods Year of Publication PR-MOTA PR-MOTP

Evolving Boxes [Wang et al., 2017] detections

IOUT [Bochinski et al., 2017] 2017 16.4 26.7

GM-PHD [Eiselein et al., 2012] 2012 14.4 26.5

GMPHD-KCF* [Kutschbach, 2017] 2017 14.1 25.9

CompACT [Cai et al., 2015] detections

GM-PHD [Eiselein et al., 2012] 2012 14.3 36.3

JTEGCTD [Tian and Lauer, 2017] 2017 14.2 34.4

HGFT 2017 12.1 33.5

MTT [Zhang et al., 2017] 2017 12.0 35.7

GMPHD-KCF* [Kutschbach, 2017] 2017 12.0 33.8

GOG [Pirsiavash et al., 2011] 2011 11.7 34.4

CCM 2017 10.7 33.8

CMOT [Bae and Yoon, 2014] 2014 10.3 33.4

H2T [Wen et al., 2014] 2014 10.1 33.6

IHTLS [Dicle et al., 2013] 2013 8.7 34.2

CEM [Milan et al., 2014] 2014 4.5 33.2

Table 3.2: Tracking performance on the UA-DETRAC "experienced" dataset (values from

[Kutschbach, 2017]). Entries marked with * indicate modifications of the GM-PHD scheme

evaluated in a master’s thesis conducted at TUB-NÜ [Kutschbach, 2017]. The GM-PHD

filter generally performs on a good level and is only outperformed by the off-line IOUT

method developed at TUB-NÜ [Bochinski et al., 2017].
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tracked objects (mainly cars), the videos are thus very suitable in the context of this

thesis as they e.g. are not taken by moving camera.

A problem, however, of this benchmark is the metric used. Trackers are evalu-

ated in terms of PR-MOTA and PR-MOTP, respectively. These measures are con-

structed by varying the detection threshold and thus obtaining the related PR-curve

(Precision-Recall-curve) for the detector. The tracker is then executed for ten points

on this curve, thus giving ten tracking results for different detector thresholds and

related detection sets. The final PR-MOTA / PR-MOTP values are obtained by com-

puting the MOTA / MOTP values for the different tracking results and computing

the area under the curve using interpolation between the sample points. Details to

the benchmark can be found in [Wen et al., 2015] while [Lyu et al., 2017] gives

a summary on the submitted methods and approaches in the AVSS2017 "Chal-

lenge on Advance Traffic Monitoring", held in conjunction with the International

Workshop on Traffic and Street Surveillance for Safety and Security (IWT4S) at

the 14th IEEE International Conference on Advanced Video Signal-based Surveil-

lance (AVSS) 2017.

The aforementioned evaluation procedure is used in order to link the tracking

performance to the quality of detections received which is principally an interest-

ing scientific idea. However, it can well be argued that for most real contexts, a

single operating point (and potentially a small neighborhood around this point to

account for robustness) on the PR-curve of the system is more descriptive and a

large share of the curve is irrelevant for the general performance perception. Ad-

ditionally, while on the one hand potential systematic detector issues influence the

overall tracking performance of different algorithms to different degrees, on the

other hand the tracker may need to be adjusted to several detection setups which

is more challenging for the GM-PHD filter than e.g. for the less complex IOUT

[Bochinski et al., 2017] algorithm.

In Table 3.2, results for the "experienced" UA-DETRAC dataset using two dif-

ferent detectors are shown. For both setups, the GM-PHD filter achieves very good

performance both in PR-MOTA and PR-MOTP and is only outperformed by IOUT

with EB detections.

However, as mentioned before, IOUT is not an on-line algorithm as it performs

the post-processing filter step on the final tracks which makes it less suitable for

many applications and the focus for this thesis.
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Another challenge participant evaluated on "Evolving Boxes" detections is the

previously explained method "Gaussian Mixture Probability Hypothesis Density

Filter extended by Kernelized Correlation Filters" (GMPHD-KCF) by [Kutschbach

et al., 2017; Kutschbach, 2017], a variant of the GM-PHD tracker in this work,

which has been developed at TUB-NÜ in the framework of a master’s thesis.

The second-best contribution using CompACT detections in the challenge is

"Joint tracking with event grouping and constraints in time domain" (JTEGCTD)

published in [Tian and Lauer, 2017]. The method first applies a grouping step to

deal with assignments for detection-to-tracks which is used in order to reduce the

target drift due to object mismatches in crowded scenes. Its main idea relies on

evaluation of the inter-object motion relationships within crowds. In order to re-

establish tracks and rediscover targets after a long disappearance, the second com-

ponent in the method applies subgraph models and Binary Integer Programming

(BIP).

"Higher-order Graph and Flow network based Tracker" (HGFT) is a method

submitted for evaluation by Xiaoyi Yu and Guang Han. It is based on the below-

mentioned GOG tracking algorithm from [Pirsiavash et al., 2011] which applies a

min-cost flow network with a number of modifications. According to [Lyu et al.,

2017], the differences to the original approach include "high-order temporal rela-

tions among detections in the confidence calculation" using spatial features such as

overlap and height ratio of detections over multiple frames to improve the tracking

performance.

Zhang et al. proposed with [Zhang et al., 2017] "Multi-task Deep Learning for

Fast Online Multiple Object Tracking" (MTT) a method based on deep neural net-

works. By using an appearance feature extractor trained by triplet loss function and

the assessment of the detection quality before the actual tracking step (by compar-

ison of ground truth and detection positions / regions-of-interest and training of a

binary classification network), the network is able to use only high-quality detec-

tions for training. Consequently, the joint network becomes a multitask network

sharing the computation of the convolutional layers in both parts and achieves good

overall tracking results.

GOG ("Globally optimal greedy algorithms for tracking a variable number of

objects") has been published by H. Pirsiavash, D. Ramanan, and C. C. Fowlkes

in the year 2011 [Pirsiavash et al., 2011] and proposes a formulation of the multi-
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object tracking problem using a cost function on the number of tracks and both their

birth and death states. The authors apply a greedy algorithm to solve the problem

by sequential instantiation of tracks finding the shortest path on a flow network and

claim that one of its advantages is that pre-processing steps such as non-maxima

suppression can easily be embedded into the tracker. Another contribution in the

paper is the proposal of a near-optimal algorithm running in linear time both for

the number of objects and the sequence length which is realized based on dynamic

programming (DP).

"Online distance based and offline appearance based tracker with correlated color

dissimilarity matrix" (CCM) by Noor M. Al-Shakarji, Filiz Bunyak, and Kannap-

pan Palaniappan is a method which manages the birth, death and temporary lose

of objects during visual tracking in a specific process. The location of individual

targets is predicted using a Kalman filter. In a second step, the local assignment

of objects to tracks is done via the well-known Hungarian algorithm [Kuhn, 1955]

based on spatial distance. Afterwards, the spatial distance and a reliable appearance

model are exploited as inputs for a refinement process and the global assignment.

According to [Lyu et al., 2017], this method can "filter out noisy detections from

objects that are reliably detected".

CMOT [Bae and Yoon, 2014] proposed by S.-H. Bae and K.-J. Yoon has been

published in the year 2014 and proposes a robust online multi-object tracking method

capable of handling occlusion by clutter or other objects and similar appearances of

different objects which are basic problems for multi-target tracking. The algorithm

works by analyzing tracklets and their properties, such as the detectability and con-

tinuity of a tracklet followed by an assessment of the respective tracking confidence.

These confidence values are then used for tracklet association over different config-

urations and thus solving the tracking problem. Following this logic, tracklets can

sequentially grow with new, incoming detections while, according to the authors,

"fragmented tracklets are linked up with others without any iterative and expensive

associations". For a reliable association between tracklets and detections, an online

learning step with incremental linear discriminant analysis is proposed in order to

facilitate discrimination of object appearances even under severe occlusion.

H2T proposed by L. Wen et al. [Wen et al., 2014] in the year 2014 is a multi-

target tracker exploiting an undirected hierarchical relation hypergraph. The authors

formulate the tracking task as a hierarchical search problem of dense neighborhoods
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on a dynamically constructed undirected affinity graph. Considering high-order

relationships of detections over the spatio-temporal domain improves the robustness

of the system against similarly looking targets close to each other. A hierarchical

optimization process, on the other hand, helps the tracker to overcome difficulties

of long-term occlusion.

Iterative Hankel Total Least Squares (IHTLS) proposed by C. Dicle, O. I. Camps,

and M. Sznaier is a computationally efficient algorithm for multi-object tracking-

by-detection. In their publication [Dicle et al., 2013], the authors claim to address

four main challenges for visual tracking: similar appearances between different tar-

gets, lack of knowledge about targets that are occluded or outside the camera field of

view, crossing of trajectories between targets, and moving cameras. This is achieved

by using motion dynamics in order to differentiate between targets with similar ap-

pearance, minimize mis-identification of targets and recover missing data. A com-

putationally efficient Generalized Linear Assignment (GLA) approach is combined

with further processing steps to recover missing data and evaluate the complexity

of target dynamics for comparison. It is possible to apply this scheme for tracklets

of arbitrary length and no a-priori dynamical model for target motion is required.

Thanks to its exploitation of motion cues, the algorithm is especially suitable for

scenarios with little or poor appearance cues.

A. Milan, S. Roth, and K. Schindler proposed Continuous Energy Minimization

for Multi-Target Tracking (CEM) [Milan et al., 2014]. This algorithm formulates

the multi-target tracking problem as a minimization of a continuous energy func-

tion. In contrast to other, similar methods, CEM is designed to model an energy

function corresponding to a more complete representation of the problem instead

of one suitable for global optimization approaches. Therefor, the authors make use

of image data as well as physical considerations such as e.g. target dynamics, mu-

tual exclusion, and persistence of tracks. The system performs explicit occlusion

handling in order to exploit also partial image evidence and uses a target appear-

ance model to resolve ambiguities between different targets. A sophisticated opti-

mization scheme is proposed which combines both conjugate gradient descent and

trans-dimensional jumps in an alternating fashion in order to resolve the underlying

non-convex energy function. The moves are applied in such a way that the energy is

always minimized but still weak minima can be left in the search for other, stronger

ones. Additionally, the method allows exploring larger portions of the search space
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of varying dimensionality.

The above comparison shows that the performance of the GM-PHD filter is gen-

erally on a good level compared to other methods and benefits especially from better

detectors, such as EB. However, in the context of this thesis, both MOT17 (due to

the heterogeneous videos) and UA-DETRAC (due to the nature of tracked objects

and the metric issues) have only been shown for the sake of completeness but other,

more suitable videos are used to show the improvements of this work.

The computational complexity of the proposed GM-PHD method is low, i.e. for

the pure tracking process without detection, it is possible to achieve 30-40 frames

per second as shown in Table 3.1. Depending on the configuration, also higher

values can be obtained. From both the performance and the computational com-

plexity, it can be concluded that the GM-PHD filter is generally a suitable tool for

multi-target tracking in surveillance scenarios.

However, it appears that the GM-PHD filter just recently became more popular

in the visual tracking community. This is partially because in the last years, much

research has been dedicated to instance-specific tracking of individual objects and

related feature extraction (e.g. correlation filters such as [Danelljan et al., 2014;

Henriques et al., 2015]). It is likely that continuous improvement in tracking single

objects will also help in tracking multiple of them at the same time.

Nonetheless, as mentioned before, it is of crucial interest for multi-target tracking

that solutions of dealing with false positive and false negative detections which arise

in the context of automated object detection for multiple tracks are found. It is in this

area where the GM-PHD filter provides good foundations which are mathematically

justified. It is therefore that with the rise of better detectors based on convolutional

neural networks (CNNs), some of the problems mentioned below may be reduced

for future developments.

A number of tracking approaches based on PHD filters have been published in

the visual tracking literature, e.g. PHD filters using SMC methods (e.g. [Maggio

et al., 2007; Wang et al., 2008; Maggio and Cavallaro, 2009; Feng et al., 2017].

The GM-PHD tracker proposed in [Wang et al., 2007] relies on background sub-

traction techniques for detecting objects as do some of the previously mentioned

SMC methods. This is advantageous because background subtraction detectors can

be adjusted to have a very low false negative rate.

The authors of [Pollard et al., 2009] use a GM-PHD method in order to track
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vehicles in unmanned aerial vehicle (UAV) video footage and propose a GPU im-

plementation in order to obtain real-time performance.

The authors of [Zhou et al., 2014] propose a novel birth distribution approach for

GM-PHD filters based on previous detections which is mainly a solution in case of

many re-appearing false positive detections.

In [Baisa and Wallace, 2017], the authors used a tri-GM-PHD filter in order to

track three different types of targets in a video and showed how their approach

improves upon using multiple individual filters.

A game-theoretical approach is used in [Zhou et al., 2015] in order to deal with

occluded targets. This, however, increases the computational load considerably

and is therefore not suitable for the focus of this work. Another recent tracking

approach using a GM-PHD filter has been proposed by [García et al., 2018] for

vehicle tracking.

Group tracking of pedestrians using a GM-PHD filter has been performed by

[Edman et al., 2013]. The method uses a projection of the pedestrians’ positions into

world coordinates in order to track and cluster them. It is mentioned that "The low

probability of detection implied by image detection algorithms is a slight problem

for the GM-PHD filter. If a group is obscured by another group for several frames

the group will disappear from the filter."

Although found in the context of group tracking, this result is consistent with the

experimental outcomes in this thesis: the sensitivity of the GM-PHD filter to missed

detections is a main concern for its applicability to visual tracking. Considering the

corrector step equation (3.31), it becomes clear that the PHD filter relies on high

detection rates. In case of e.g. a general, state-independent pD = 0.8, the corrector

becomes

Dk|k(x)≈ (0.2) ·Dk|k−1(x)

︸ ︷︷ ︸
small contribution
by missed targets

+(0.8) · ∑
z∈Zk

Lz(x) ·Dk|k−1(x)

C +
∫

Lz(x) ·Dk|k−1(x)dx
︸ ︷︷ ︸

high contribution
by associated detections

(3.40)

which shows that the new state largely (80% as given by the detection probabil-

ity) depends on the detections received and their likelihood-dependent contribution

to the previously estimated states. In the example, the contribution according to

previously estimated states is relatively small (20%). However, in practice the de-

tection rate is given as an average value over time and usually empirically justified.
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As such, in on-line scenarios with changing characteristics, it may be hard to define

a suitable value beforehand.

Following the previous reasoning, if a state estimate cannot be confirmed by

a detection, the summed likelihood term over all detections is small because the

respective detection (which would contribute with a high likelihood) is missing. As

a result, the overall contribution by the detections is small and the weight for the

current PHD component quickly drops.

This effect clearly depends on the detection probability but it is important to

note that already one missed detection can cause the overall weight of the PHD

to drop below the extraction threshold which is usually chosen as Textract = 0.5.

In such a case, the state estimate is not extracted and a tracking failure (in this

case a missed track) occurs. If the detection is received again in the next frame,

the tracker might recover due to the now high likelihood and re-raise the dropped

weight of the hypothesis again. However, if a detection is missed for a number

of consecutive frames it is also possible that the hypothesis weights drop below

the pruning threshold wprune which lets the tracker remove all information about the

track. This behavior is desired for tracks which leave the scene but can be a problem

if the track should be continued.

Unfortunately, the performance of usual, camera-based pedestrian detection al-

gorithms in terms of detection probability is even for recently developed methods

far from optimal values. This makes it necessary to develop strategies to overcome

the problems related to missed detections. Chapter 4 shows a mathematical analy-

sis of the issue and approaches taken in the course of this thesis in order to improve

the tracking performance of the PHD filter for environments with lower detection

probabilities.

One could argue that in order to reduce the impact on the performance reduc-

tion for the tracking system, a different tracker than the PHD filter could be used.

However, when relying on the tracking-by-detection (TbD) paradigm, the problem

remains the same in different algorithms. As in these methods tracks are extracted

from the detections received, it is always the question how to proceed with tracks

which have not been confirmed by a detection. In such a case, there are only two

choices to the tracking algorithm: complete removal of the track or extrapolation of

the new position using information from the last states. While the first is the cor-

rect solution in case of targets leaving the scene, the latter is preferable for missed
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detections but at the very moment of the missed detection, there is not enough in-

formation to solve the problem. This dilemma can be taken as fundamental for

multi-target tracking applications.

Thus, regardless of the tracking algorithm applied, the basic problem remains

the same. The issues described are in principle valid for any TbD system and it is

without loss of generality that the PHD filter can be used in this thesis.

However, apart from its mathematically rigorous foundation, a major advantage

of the PHD filter (and especially the GM-PHD implementation) compared to other

tracking methods is its very low computational complexity which is linear in both

the number of targets and detections ([Mahler, 2007]) and thus is very well suited

for real-time applications.
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Chapter 4

Proposed Tracking Framework

IN the previous chapters, theoretical foundations for the tracking framework in

this thesis have been laid and advantages and potential issues of the baseline

PHD filter used for pedestrian tracking in surveillance scenarios have been dis-

cussed.

In this section, the overall tracking framework which has been developed for this

thesis is explained in detail. Several improvements are contributed which can over-

come the difficulties and problems identified previously, especially the sensitivity

with regard to missed detections which is an important drawback for tracking-by-

detection methods and will be a major subject to improvements. Depending on the

circumstances and specific use cases of the final application of the tracking frame-

work, different approaches are shown to contribute to a higher detection or tracking

performance and are thus an important outcome of this thesis.

In summary, the main methodological contributions in this chapter are:

• An improved human detection method in scenarios with groups and medium-

dense crowds of pedestrians where the detection rate decreases due to over-

lapping regions-of-interest (presented in Section 4.1).

• A label tree extension using visual information for the tracker which avoids

labeling errors for overlapping objects (given in Section 4.2).

• A methodology for using multiple pedestrian detectors in the tracking frame-

work which can complement each other in order to improve the detection

performance (given in Section 4.2.2).
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• The introduction of motion information into the tracking process by means of

active post-detection filters in order to add additional "artificial" detections to

improve the tracker (presented in Section 4.3).

4.1 Improving Human Detection in Crowds

Parts of the work in this chapter have been published in

• Eiselein, V.; Fradi, H.; Keller, I.; Sikora, T.; Dugelay, J.-L., 2013. Enhanc-

ing Human Detection using Crowd Density Measures and an adaptive Cor-

rection Filter. In: Proceedings of the 10th IEEE International Conference on

Advanced Video and Signal-Based Surveillance (AVSS 2013), Kraków, Polen,

27.08.2013 - 30.08.2013

• Fradi, H.; Eiselein, V.; Dugelay, J.-L.; Keller, I.; Sikora, T., 2015. Spatio-

Temporal Crowd Density Model in a Human Detection and Tracking Frame-

work. In: Signal Processing: Image Communication, vol. 31, February 2015,

pp: 100–111, ISSN=0923-5965 (journal)

Automatic pedestrian detection in crowded environments poses a number of

challenges which cause significantly lower detection rates than in uncrowded sce-

narios. The main reason for these impairments is the high occlusion when multiple

people are present in the scene. It is therefore that tracking of pedestrians in crowds

is generally a very hard problem and cannot be considered solved yet.

In scenarios with significant overlapping between individuals, standard pedes-

trian detectors such as the HOG-based methods presented in Chapter 2 have diffi-

culties because they usually do not use specific occlusion handling. Therefore, if a

part of a person is not visible, this part cannot contribute to the detection process

and the final detection score is lower than it would be for a non-occluded person.

Additionally, both detection and tracking methods are often trained for individuals

instead of crowds which makes it difficult to transfer approaches from single-target

scenarios to crowds.

Consequently, parametrization of the pedestrian detector (especially the detec-

tion threshold) becomes more complex because not only the usual scene charac-

teristics such as lighting conditions, camera view, image quality and so on are to

be regarded, but also the expected crowd density attributes directly to the detection
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results. Static detection thresholds are difficult to apply because depending on the

current scene crowdiness, the detector may systematically miss pedestrians (missed

detections) or may report too many (false alarms). A solution to this problem will

be discussed in Section 4.1.1 and uses dynamic thresholding based on crowd den-

sity maps estimated for the scene. This approach is simple and efficient but allows

for the usage of multiple detection thresholds within the same image and can thus

increase the detection performance in denser scenes significantly.

Additional problems can occur in the deformable parts-based detector (DPM)

[Felzenszwalb et al., 2010a] because individual parts from different pedestrians can

be fused to a (wrong) single detection result because the detector itself does not per-

form any checks regarding the size of the detection output or the aspect ratio. Such

undesired behaviour can be overcome using geometrical filters which will be ex-

plained in Section 4.1.2. Section 4.1.3 presents results for the dynamic thresholding

based on crowd density and for two filter implementations based on aspect ratio and

height. The section concludes with Section 4.1.4 with a discussion of these results.

4.1.1 Dynamic Detection Thresholds Based on Crowd Density

In order to enable the pedestrian detector to take into account how many people are

expected in a scene and to facilitate its parametrization by the user, a crowd density-

based approach is used in this thesis. Motion tracking is used in order to establish

long-term trajectory information for points and to identify areas in the scene where

the likelihood for pedestrians is high. This information leads to crowd density maps

which are estimated as shown in detail in the next paragraph. Based on a local

density value, the detector can be adjusted to the current scene characteristics. This

process is shown in the following paragraphs.

A) Estimation of Crowd Density Maps

In order to allow for a local change in the parameters of the pedestrian detector,

local density information is needed. While other options could be the estimate of

the overall number of people in the scene as e.g. in [Hou and Pang, 2011], such

information would not be helpful if the crowd density varies over the scene. Ad-

ditionally it should be mentioned that estimating the number of persons in a scene

is generally a difficult task by itself and usually one of the applications of a pedes-
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trian detector. It is thus hard to introduce such a-priori information which actually

results from accurate pedestrian detection beforehand. Crowd density information

however can be computed for arbitrary areas and can deliver all desired information

regarding detection and localization of crowds up to pixel-wise level of detail.

A similar approach has been proposed in [Rodriguez et al., 2011a] using an en-

ergy formulation. In contrast to the work in this thesis, the author uses the detection

scores of a person detector which can be considered a drawback as it does not in-

troduce additional knowledge into the detection process. The system presented in

[Rodriguez et al., 2011a] also requires an additional learning process with human-

annotated ground truth detections.

For this thesis, a crowd-density estimation approach from [Fradi and Dugelay,

2013] has been chosen. It computes a crowd density map using local features (e.g.

SURF [Lowe, 2004] or FAST [Rosten et al., 2010]) as an observation of a proba-

bilistic crowd function. The underlying assumption is that in average, there should

be a similar number of local features on every person in the scene. While one might

expect this to be dependent e.g. on image contrast, lighting conditions or clothing

of the people in the scene, the assumption has been shown in several publications

[Fradi and Dugelay, 2013; Fradi et al., 2015; Senst et al., 2014] to hold for compu-

tation of sufficiently accurate crowd density maps.

The basis for the feature tracking step is a set St of m points in frame t = t0 which

are initialized using the FAST method [Rosten et al., 2010]:

St0 =




x0,t0

x1,t0
...

xm,t0




(4.1)

with xi,t j
=
(
xi,t j

,yi,t j

)T
. In this work, a detection threshold of ξ = 20 is used for

FAST which is suitable for the data used but depending on contrast and resolution

of the video data, other choices here can be used in order to increase or reduce the

number of trajectories.

A direct usage of these feature points without any additional pre-processing

would yield at least two issues: On the one hand, the processing time would be

greatly increased but (more importantly), the system would also not be able to dis-
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tinguish between points on foreground objects, which are interesting in order to

compute the crowd density, and irrelevant background information.

Therefore, in order to identify motion in the scene and to concentrate the crowd

density estimation on foreground objects, local feature tracking is used. This is an

alternative to background subtraction methods which could also be used for this

task. [Fradi and Dugelay, 2013] shows that the tracking step improves the system’s

performance compared to background subtraction based on gaussian mixture mod-

els (GMM).

Feature tracking is done using the robust local optical flow (RLOF) method

[Senst et al., 2012a] developed at TUB-NÜ. Based on the assumption that the main

foreground objects in the scene are persons, these can then be differentiated from

background by their non-zero motion vectors. The method used in this thesis ap-

plies RLOF in consecutive frames in order to build trajectories for the m points

tracked:

Stn =




x0,t0 ,x0,t1 , . . .x0,tn

x1,t0 ,x1,t1 , . . .x1,tn
...

xm,t0 ,xm,t1 , . . .xm,tn




(4.2)

Therefore, to obtain Stn , RLOF is applied to every point xi,tn−1 in the (n− 1)-th

frame in order to determine its motion vector mn−1 = (∆xn−1,∆yn−1). New point

coordinates can then be computed as

xi,tk = xi,tk−1 +mk−1 (4.3)

A trajectory set such as Stn allows the observation of motion over multiple frames

and enables more sophisticated motion measures such as the average or maximal

motion over time while standard optical flow only focuses on the motion within the

last frame. The system in this thesis is thus less prone to errors due to change in the

motion signatures (e.g. due to pedestrians walking and standing still for a while).

The reason for using RLOF instead of e.g. Lucas-Kanade optical flow [Lucas

and Kanade, 1981; Bouguet, 2000] (as used in the well-known KLT feature tracker

[Tomasi and Kanade, 1991]) is its superior performance with regard to noise. RLOF
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uses a robust norm for error minimization which reduces the effect of outliers and

thus improves the position estimate in ambiguous cases.

A common problem for point trackers using local optical flow is the choice of

feature points to be tracked. These are usually chosen depending on texture and

local gradient information, and thus often do not lie on the center of an object but

rather at its borders. As in this case they can easily be affected by other motion

patterns or by occlusion, the feature point tracking is impeded.

RLOF handles such effects better than e.g. the standard KLT tracker [Tomasi

and Kanade, 1991] but in order to avoid preventible issues, in this work, a forward-

backward verification scheme is used. The resulting position of a point in a frame

is used as input to the same motion estimation step from the second frame into the

first one. Points for which this ‘reverse motion’ results in a position highly different

from their respective initial position are presumed to be subject of occlusion and are

thus discarded.

In order to identify feature points lying on foreground objects, in every time

step, the overall mean motion mt of a trajectory t is compared to a certain threshold

βmotion. βmotion can be set according to the image resolution, camera perspective

and expected motion patterns. Features with sufficient motion in their history are

then identified by the relation mt > βmotion while the others are considered part of

the static background. The choice of βmotion does mostly not appear to be critical,

in this work βmotion = 1px is used. The advantage of using trajectories in this sys-

tem instead of computing the motion vectors only between two consecutive frames

is that the estimate is more robust to noise and the overall motion information is

more accurate. The process can be seen as an implicit temporal filtering step which

improves the consistency of the results compared to using only two consecutive

frames.

With the moving feature points given, the actual crowd density estimation step

consists of a kernel density estimation using Gaussian kernels and the positions of

local features. Using the assumption of a similar distribution of feature points on the

different foreground objects (i.e. persons), it appears natural and intuitive to expect

a higher crowd density for local feature points being located closer to each other.

In contrast, in areas where the points have a large spatial distance, it is unlikely to

expect a high crowd density.

Accordingly, a probability density function is estimated using a Gaussian kernel
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density. Considering a set of nk local features extracted from a given image at their

respective locations {(xi,yi), i ∈ {1..nk}}, the density C(x,y) is defined as follows:

C(x,y) =
1√

2πσ

nk

∑
i=1

exp−(
(x− xi)

2 +(y− yi)
2

2σ2 ) (4.4)

with σ as the bandwidth of the 2-dimensional Gaussian kernel. The resulting den-

sity function is then used as a crowd density map with image resolution and pro-

vided to the detection modules. A visualization of the overall process of crowd

density estimation using local features is given in Figure 4.1.

B) Crowd Density-Sensitive Pedestrian Detection

Many common pedestrian detection algorithms use a pre-configured static detection

threshold τ . In real-world applications, such static thresholds can cause difficulties

because beforehand, it is not clear to the user how to adapt the algorithm to a new

scene and how to choose the thresholding value which influences both the detection

rate (i.e. the true positive rate) and the clutter (i.e. the false positive rate). Addi-

tionally, factors such as the number of persons in a scene, image contrast, camera

motion and even perspective distortions may vary over different videos and even

within a single video over time. They can thus easily influence the choice of a

suitable threshold.

While lower values will usually increase the number of detections and allow rec-

ognizing more persons, they will also most likely increase the number of false pos-

itives. On the other hand, higher thresholds will only detect more reliable candidate

regions and might cause the detector to miss people in the scene. As a compro-

mise between true and false positives needs to be found, common practice mostly

involves the usage of training videos of the given scene for which the best static

threshold is assessed (using a person-annotated ground truth) and then used during

future processing.

However, this methodology is especially error-prone in heterogeneous scenes

with both crowded and uncrowded areas or in scenes where the number of persons

changes over time. In crowded areas, usually lower thresholds would be suitable

as due to occlusions, the overall detection scores are not as high as for individuals.

Higher thresholds, on the other hand, have the advantage of reducing the number

of false positives in lesser crowded spaces and are thus favorable in order to avoid

clutter.

87



CHAPTER 4.1: Improving Human Detection in Crowds

Figure 4.1: Different steps in crowd density estimation process using local FAST features

shown on two videos: Features are tracked over multiple frames in order to create trajec-

tories with motion information associated (top left). Red features are assumed background

due to low motion (top right). Kernel density estimation yields the final density estimate,

shown in red (bottom left). For comparison, the density estimate without background re-

moval is also shown (bottom right).
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It is therefore desirable to find a way of automatically setting the detection

threshold τ according to the crowd density– or in other words: to the probability es-

timate that people are present in a certain position of the image. The density maps

as computed in the previous paragraph provide exactly this information. There-

fore, they form the basis in order to automatically adjust the detection threshold

according to the local crowd density and finally improve the detection accuracy of

pedestrian detectors.

Assuming an image I of size M×N pixels, the crowd density function is defined

pixel-wise according to Equation (4.4). The detector, on the other hand, yields a

set of candidate detections for a given threshold τ . Considering them as regions

of interest (RoIs) with x-/y-coordinates, width and height, they form a set D(τ) =

{d1,d2, ...,dn} with di = {xi,yi,wi,hi,si}.

Here, xi,yi denotes the position of detection di and wi,hi the respective width

and height. Every detection has an associated score si which reflects the detector’s

confidence regarding the similarity to a previously trained pedestrian model.

For most scenes, it makes sense to consider a pre-defined range of detection

thresholds given by an upper / lower boundary τmax/τmin. These values represent

suitable detection thresholds for crowded and uncrowded scenes and are chosen

beforehand by the user.

For the system used in this thesis, the final value of the detection threshold then

varies between these two boundaries and is computed as:

τdyn = τmin +(τmax − τmin) ·Ĉ(di), (4.5)

with

Ĉ(di) =

hi−1
∑
j=0

wi−1
∑

k=0
C(xi + j,yi + k)

wi ·hi
(4.6)

as the average crowd density value for detection di.

In other words, the area of each detection received is evaluated regarding the

estimated crowd density. The average density estimate over the whole detection

area is normalized to a value Ĉ(di) ∈ [0;1] according to which the final detection

threshold is set for the respective detection.

An effective, yet simple implementation of this procedure is ensured by first
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identifying a set of detections

D(τmin) = {d1min
,d2min

, ...,dnmin
} (4.7)

which have a score si greater or equal to the minimal detection threshold τmin.

In a second step, the surplus detections which do not fit to the underlying crowd

density estimate need to be filtered out. Therefore, the detections from the set

D(τmin) are now assessed individually in order to adapt their respective detection

thresholds according to the particular crowd density estimate.

This is done by computing the average crowd density estimate Ĉ(di) over wi and

hi as in equation (4.6) and inserting the result into Equation (4.5). The resulting

threshold τdyn is individually computed for detection di and its crowd context and

thus dynamically adapts to the crowd density level in the respective image area.

In a final step, τdyn is compared to si in order to identify if the detection should

be filtered out or kept:

di :





si ≥ τdyn : kept

si < τdyn : f iltered out
(4.8)

The final set of detections is post-processed by a non-maxima suppression step

as in the standard method [Felzenszwalb et al., 2010b]. This is explained in more

detail in Section 4.1.2.

4.1.2 Geometric Priors for Pedestrian Detection

A major problem for pedestrian detectors is the varying scale and shape of persons

in a video. While current state-of-the-art pedestrian detectors usually handle differ-

ent scaling levels, the aspect ratio of a person can vary a lot depending on e.g. the

individual physique of a person and the person’s pose in relation to the camera.

Especially the often-used part-based pedestrian detector from [Felzenszwalb et al.,

2010a] faces specific challenges in crowded scenarios because it uses multiple part

models attributing to the overall filter score. As a consequence of this combination

of part scores, it is possible that parts coming from multiple different persons are

combined erroneously to a non-existing single one. The reason is that such a com-

bination may yield higher final scores than the true detections if some of their parts
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Figure 4.2: Effects of the proposed geometric prior on a frame of the PETS 2009 dataset

[Ferryman and Shahrokni, 2009]: Detections without filtering (left), remaining detections

after filtering according to aspect ratio (center) and remaining detections after filtering ac-

cording to height (right). While the unfiltered detections may include too large candidates

(red) and detections comprising several persons at correct height (yellow), the geometrical

filters are able to reduce such false detections according to their respective properties.

are occluded. Examples for such a situation are highlighted in yellow in Figure 4.2

(left) showing detections with a wrong aspect ratio.

Notwithstanding that, it makes sense to ensure a consistent detection height be-

tween consecutive frames. However, due to the commonly used camera perspective

in video surveillance applications, it is improbable that every person in the im-

age is perceived with the same height in pixels. Apart from rather small potential

height differences in the persons themselves, the position in the image has a much

more important impact on the pixel height of a person. Assuming a common video

surveillance perspective of the camera, the same person walking in the scene from

the lower part of the image towards the upper boundary of the image will appear

smaller and smaller as the distance to the camera increases.

As this relation is not considered in common pedestrian detectors, no prior in-

formation is used in the detection algorithm and accordingly, candidate detections

are not restricted in their size by the detector. This is visualized in Figure 4.2 (left)

where two detections of excessive height (marked in red) are provided by the algo-

rithm.

An additional issue with both mentioned error types arises due to the selection

method used by common pedestrian detectors in order to identify the best-fitting

detection for a person. As a result of the windowed classification step over the input

image, the detector returns a set of candidate detections:

D(τ) = {d1,d2, ...,dn} (4.9)
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which have at least the detection score si ≥ τ but may be overlapping in the

image domain. In order to find the best subset of detections for the current image, a

non-maxima suppression (NMS) scheme is applied as follows ([Felzenszwalb et al.,

2010b]):

• Sort D(τ) according to the detection scores received for every candidate de-

tection. Set the result set D̂(τ) = /0.

• Pick the di with the highest score from D(τ) according to the detection scores

received for every candidate detection.

• Remove all d j ∈D(τ) which overlap with di to a higher degree than Tmaxoverlap

by computing their spatial overlap. Frequently, Tmaxoverlap = 0.5 is used.

• Add di to the result set: D̂(τ) = D̂(τ)∪{di} and remove it from D(τ).

• Repeat until D(τ) = /0.

If the detection score of a false detection (e.g. a detection which is larger or

wider than desired) is higher than of the overlapping detection candidates, these are

suppressed. It is therefore probable that such bad detections decrease the detection

result twice: Firstly by introducing an additional undesired detection of wrong size

and secondly by suppressing potentially good detections which otherwise would

have contributed to the detection result in a positive way. In order to alleviate this

issue, in this thesis two filtering steps are proposed to cope with bad detections of

wrong size. These are introduced in the following.

A) Filtering Detections According to Aspect Ratio

The first filter defined in this thesis exploits human symmetry by applying a re-

striction on the aspect ratio of a person, i.e. the ratio of width and height of the

respective region of interest. Except for small changes caused e.g. by backpacks or

other items carried by a person, this aspect ratio does not change significantly when

looking at the same person from different views. Small changes in the physique

over multiple persons, however, can be accounted for by using a threshold in the

classification process as shown in the following.

92



CHAPTER 4.1: Improving Human Detection in Crowds

Defining

r = median (
width(di)

height(di)
), i ∈ 1..n (4.10)

over a set of candidate RoIs D = {d1,d2, ...,dn}, the current aspect ratio estimate

r̂ can be computed iteratively over all accepted detections in the person detection

process, i.e. the outcome of previous frames is used in order to obtain a stable

parameter estimate for the scene.

A new detection candidate with aspect ratio ri is only accepted if it deviates less

than a given threshold ∆r, i.e.

di :





ri < (1−∆r) · r̂ : filtered out

ri > (1−∆r) · r̂
∧

ri < (1+∆r) · r̂ : kept

ri > (1+∆r) · r̂ : filtered out.

(4.11)

In the experiments for this thesis, ∆r is set to ∆r = 0.3. An example of this

correction filter can be seen in Figure 4.2 (center) where false positive detections

from the original image are suppressed because they have been found to expose an

unexpected aspect ratio.

An advantage of the iterative definition of the filtering procedure is its adapta-

tion to unknown scene parameters. No user input is required in order to identify

suitable values for the aspect ratio. At the same time, it can be argued that the fil-

tering mechanism is greedy and thus relies too strongly on a number of accurate

detections in the beginning of the learning period. However, it has been shown in

experiments with the [Felzenszwalb et al., 2010a] pedestrian detector, the algorithm

is able to converge to a suitable estimate of the aspect ratio and yields good results

(see Section 4.1.3).

Another drawback of the method is that it relies on static camera views which

may be a problem, e.g. when PTZ cameras are used. While the spread of PTZ

camera increases, they are still not as common as static cameras which have been

installed much more often during the last decades. PTZ cameras are also often

rather a tool used for an inspection of suspicious events while it is uncommon that

the camera operator changes the camera view on a regular basis. Given that, the

view towards the people walking through the scene commonly does not change

a lot which allows the design of a correction filter based on static cameras. In
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cases of PTZ cameras, a change of the camera view can be detected (e.g. using a

homography-based method such as [Su et al., 2005]) and the estimation of r̂ can be

re-initialized once the camera motion stops and the view remains static again.

B) Filtering Detections According to Expected Height

With the same assumption of a static camera view as described for the detection

filter exploiting the aspect ratio, it is possible to exploit a person’s height as another

human property to filter out incorrect detections. Considering a standard surveil-

lance setup, i.e. an overhead camera, a relationship between a person’s position

and their height can be assumed. As mentioned previously, an intuitive relationship

would be to expect a greater pixel height of a person close to the camera (and in the

mentioned camera setup thus in the lower parts of the image). On the other hand,

a person further from the camera will be found in the upper parts of an image and

will appear smaller in the pixel representation.

This intuitive relation can be described mathematically using perspective trans-

formations. Assuming the pedestrians in the scene to walk on a common ground

plane and a zero-roll angle of the camera (i.e. image lines are parallel to the ground

plane), the following relationship has been derived in [Hoiem et al., 2006]:

yw ≈ yc ·
hi

vi − v0
(4.12)

where yw and hi are the real-world 3D- and image heights of an object, yc the

height of the camera mount, v0 the horizon position in pixel coordinates and vi the

image (row) position of a pedestrian’s feet. Resolving equation (4.12) for hi yields

vi − v0

yc
· yw ≈ hi. (4.13)

Making the assumption that all persons in the scene have the same height allows

substituting yw for a constant. The horizon position and the camera height are fur-

ther constants which can be reduced in order to finally represent the term for frame

k as

γ · vi +δ ≈ hi (4.14)

In the approach used in this thesis, a self-adapting mechanism is used which

estimates γk and δk in all frames. For frame k, this is done as a least-squares fit
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over the so far accepted detections from previous frames. Initialization is done

using the detections of the first frame while new detections are accepted if they are

within a range of relative deviation (error threshold) of ±∆size. An example for the

application of this correction filter can be seen in Figure 4.2 (right) where two false

positive regions of wrong size (red) are suppressed.

Again, it should be mentioned that the presumption of a static camera view for

this filter may appear restrictive but could be alleviated easily using a camera motion

estimation step as noted in Section A). Another important restriction (as mentioned

also in [Hoiem et al., 2006]) is that the height filter inhibits detection of pedestrians

at unexpected heights. E.g. detections for a person standing on a roof top will likely

be suppressed as the height of such a person will not match the expected height.

However, as most surveillance systems are set up in structured environments with

approximately planar ground surfaces and one main ground level, this issue appears

less critical.

4.1.3 Experimental Evaluation

In order to assess the performance increase for the three proposed enhancements

for pedestrian detection in crowds, four different video sequences are used. The

datasets, namely the videos "S1.L1 13.57" and "S1.L1 13.59" from the PETS 2009

dataset, the "TownCentre" sequence, the video "INRIA 879-42_I" and "UCF 879-

38", are publicly available and presented in the appendix in Appendix A.1.

These videos have been chosen because they exhibit both areas with little activ-

ity as regions with higher crowd density which is important in order to show the

improvements by the dynamic thresholding mechanism. The two PETS sequences

have a common surveillance camera view and are well established, UCF shows a

scene of very dense crowd which is highly challenging for the pedestrian detector.

The INRIA video has been recorded with an uncommonly steep camera view which

again is a major difficulty for the detector and also shows very dense crowds. The

video with the lowest crowd density is the TownCentre sequence which shows both

individuals and groups in a pedestrian zone. It has been added to the evaluation

in order to show the system’s performance on groups and scenes with lower crowd

density.
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PETS 13.57 PETS 13.59 TownCentre INRIA UCF ∅

τstatic N-MODA / N-MODP

-1.5 -0.394 / 0.568 -0.840 / 0.599 -2.219 / 0.685 -0.011 / 0.345 0.298 / 0.548 -0.633 / 0.549

-1.4 -0.127 / 0.569 -0.425 / 0.599 -1.647 / 0.686 0.050 / 0.346 0.307 / 0.549 -0.368 / 0.550

-1.3 0.139 / 0.570 -0.019 / 0.600 -1.170 / 0.687 0.122 / 0.348 0.321 / 0.549 -0.122 / 0.551

-1.2 0.354 / 0.573 0.243 / 0.606 -0.785 / 0.688 0.179 / 0.349 0.336 / 0.550 0.065 / 0.553

-1.1 0.459 / 0.580 0.440 / 0.614 -0.463 / 0.688 0.222 / 0.349 0.360 / 0.551 0.204 / 0.556

-1 0.531 / 0.587 0.558 / 0.624 -0.193 / 0.690 0.252 / 0.346 0.386 / 0.552 0.307 / 0.560

-0.9 0.557 / 0.601 0.599 / 0.637 0.036 / 0.691 0.270 / 0.344 0.420 / 0.554 0.376 / 0.565

-0.8 0.559 / 0.612 0.612 / 0.648 0.205 / 0.692 0.283 / 0.343 0.459 / 0.557 0.423 / 0.571

-0.7 0.542 / 0.628 0.602 / 0.660 0.334 / 0.694 0.280 / 0.347 0.472 / 0.564 0.446 / 0.579

-0.6 0.513 / 0.642 0.581 / 0.672 0.441 / 0.696 0.262 / 0.350 0.466 / 0.573 0.452 / 0.587

-0.5 0.476 / 0.654 0.556 / 0.682 0.515 / 0.698 0.223 / 0.353 0.441 / 0.580 0.442 / 0.593

-0.4 0.443 / 0.660 0.529 / 0.689 0.566 / 0.701 0.180 / 0.343 0.402 / 0.588 0.424 / 0.596

-0.3 0.398 / 0.671 0.491 / 0.695 0.605 / 0.705 0.138 / 0.342 0.354 / 0.595 0.397 / 0.602

-0.2 0.357 / 0.674 0.446 / 0.704 0.625 / 0.708 0.102 / 0.342 0.296 / 0.598 0.365 / 0.605

-0.1 0.311 / 0.677 0.399 / 0.714 0.637 / 0.711 0.072 / 0.322 0.245 / 0.604 0.333 / 0.606

0 0.270 / 0.668 0.356 / 0.705 0.645 / 0.714 0.049 / 0.287 0.196 / 0.607 0.303 / 0.596

0.1 0.226 / 0.669 0.313 / 0.704 0.648 / 0.717 0.035 / 0.261 0.157 / 0.609 0.276 / 0.592

0.2 0.187 / 0.660 0.273 / 0.682 0.640 / 0.720 0.024 / 0.207 0.119 / 0.605 0.248 / 0.575

0.3 0.153 / 0.631 0.236 / 0.663 0.628 / 0.723 0.016 / 0.163 0.091 / 0.608 0.225 / 0.557

0.4 0.125 / 0.596 0.201 / 0.641 0.610 / 0.726 0.011 / 0.127 0.069 / 0.577 0.203 / 0.534

0.5 0.097 / 0.582 0.174 / 0.620 0.589 / 0.728 0.007 / 0.083 0.047 / 0.526 0.183 / 0.508

Table 4.1: Baseline method for pedestrian detection: performance measured using the

DPM detector [Felzenszwalb et al., 2010b] with static thresholds on different test videos. A

threshold of τstatic =−0.8 gives best results on PETS and INRIA datasets while for UCF, a

similar value of τstatic =−0.7 should be chosen. Only for TownCentre, τstatic = 0.1 giving

best results is very different from the other datasets. Averaging over all datasets in order

to find a suitable average value for different environments yields τstatic = −0.6 (gray cells

indicate respective detection performance per video).
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Figure 4.3: True positive and false positive rates for the baseline DPM detector [Felzen-

szwalb et al., 2010b] and different static detection thresholds. Values have been normalized

using the number of ground truth persons in the scene.

A) Baseline Performance

In the first performance test, the baseline DPM detector has been applied on the

test videos using varying static detection thresholds and no post-filters. Results

are reported using the normalized MODA (N-MODA) and normalized MODP (N-

MODP) measures for the whole video sequence and are shown in Table 4.1. Both

measures are described in Appendices A.4.2 and A.4.4.

As N-MODA describes the statistics of successfully matched detection results in

terms of correct, missed and supernumerous detections, it is more expressive than

N-MODP which describes the spatial fitting accuracy of detections to the ground

truth. Therefore, the performance evaluation in this section will focus on N-MODA.

It can be seen that, in general, the highest N-MODA values are achieved with a

threshold of τstatic = −0.8 for PETS and INRIA sequences and τstatic = −0.7 for

UCF respectively. For TownCentre however, it turns out that a value of τstatic = 0.1

is preferable. The default detection threshold resulting from the pre-trained VOC

2007 model [Everingham et al., 2007] is τde f ault =−1.44 which is a huge contrast

and can only be explained by a discrepancy in the characteristics of the training

and test data. In order to have one single parameter setting for comparison in the

next experiments, the individual results have been averaged over all datasets, thus

yielding τstatic =−0.6 as the best compromise for the different scenarios.

All these values show that relying on a pre-trained, default parameter is not nec-

essarily a good idea for pedestrian detectors and that usually a number of test runs
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are necessary in order to identify a suitable detection threshold. However, such a

pre-trained model represents the common case in real-world applications as it is

unrealistic to annotate training videos in every setup and to re-train a detection al-

gorithm on these data for every single camera.

For the PETS and TownCentre sequences, generally higher detection perfor-

mances are achieved which is due to the camera view and a higher similarity with

the pre-trained pedestrian model. The camera view in the UCF and INRIA datasets

is more tilted which makes a pedestrian’s silhouette differ from the pre-trained

model. Consequently, the detection rates are lower for these datasets. The N-

MODA values are computed using false positive detections and true positive de-

tections. An overview of these two measures can be found in Figure 4.3 where

the respective results are given for a range of detection thresholds. As one would

expect, with higher thresholds, both false positive and true positive rates decrease.

Highest true positive rates are obtained for TownCentre while UCF and INRIA are

the sequences with the lowest detection rates. Sample result frames for the different

videos are given in Figure 4.4.

B) Dynamic Thresholding Based on Crowd Density

One of the main parameters of the underlying crowd density estimation step as

outlined in Section 4.1.1 is the σ value for the kernel density estimation. In order to

identify suitable values for this parameter, experiments have been conducted which

are shown in the following. Crowd density estimation as outlined in Section 4.1.1

is a relative method which gives locally relative density estimates. As such, it is

less suitable for estimation of the exact number of persons in a scene but gives

information about how much denser the crowd in one area of the image is compared

to another area. Consequently, no numerical evaluation is done here in order to

define a suitable σ . Instead, the crowd density and related parameters are compared

subjectively by comparing the resulting crowd density maps given in Figure 4.5.

Figure 4.5 shows different crowd density maps computed for varying values of

σ . It can be seen that the density maps generated with low σ values tend to be "un-

dersegmented" while results for higher σ values lose local specificity because gaps

between people are also filled in the density map. A value of σ = 25 appears visu-

ally appropriate for the test videos and will be used in the following experiments.

In order to assess the performance of the dynamical thresholding step, Tables 4.2
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Figure 4.4: Exemplary pedestrian detection results for the baseline DPM detector [Felzen-

szwalb et al., 2010b] using static detection threshold (set to -0.6) in PETS 13.57, PETS

13.59 (top row), INRIA, UCF (second row) and TownCentre (third row) datasets.
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Figure 4.5: Exemplary visual results for crowd density estimation on PETS 13.59 and

INRIA sequences using different kernel bandwidth parameters (first row for both sequences:

σ = 5, σ = 15, σ = 25, second row: σ = 35, σ = 45, σ = 55). In order to preserve the

locality information in the density maps, a σ value of 25 appears suitable. Lower values

expose holes in homogeneous regions, higher values tend to "oversegment" crowds and

generate rather coarse maps.
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PETS 13.57 PETS 13.59 TownCentre INRIA UCF ∅

τ ∈ [τmin;τmax] N-MODA / N-MODP

indiv. best static 0.559 / 0.612 0.612 / 0.648 0.648 / 0.717 0.283 / 0.343 0.472 / 0.564 0.452 / 0.587

base(-0.6) 0.513 / 0.642 0.581 / 0.672 0.441 / 0.696 0.262 / 0.350 0.466 / 0.573 0.452 / 0.587

[−2;0.2] 0.573 / 0.605 0.600 / 0.652 0.673 / 0.702 0.257 / 0.481 0.382 / 0.578 0.497 / 0.604

[−2;0.1] 0.583 / 0.601 0.608 / 0.647 0.649 / 0.701 0.255 / 0.480 0.412 / 0.575 0.502 / 0.601

[−2;0] 0.589 / 0.596 0.613 / 0.641 0.621 / 0.698 0.254 / 0.479 0.438 / 0.573 0.503 / 0.597

[−2;−0.1] 0.589 / 0.592 0.605 / 0.637 0.587 / 0.696 0.249 / 0.480 0.453 / 0.570 0.497 / 0.595

[−2;−0.2] 0.589 / 0.586 0.601 / 0.631 0.539 / 0.695 0.246 / 0.478 0.463 / 0.568 0.488 / 0.591

[−2;−0.3] 0.585 / 0.583 0.590 / 0.627 0.488 / 0.693 0.242 / 0.476 0.471 / 0.563 0.475 / 0.589

[−2;−0.4] 0.578 / 0.580 0.580 / 0.623 0.429 / 0.692 0.237 / 0.477 0.467 / 0.560 0.458 / 0.586

[−2;−0.5] 0.565 / 0.575 0.563 / 0.619 0.356 / 0.691 0.232 / 0.476 0.457 / 0.556 0.434 / 0.583

[−2;−0.6] 0.544 / 0.572 0.540 / 0.614 0.268 / 0.691 0.224 / 0.475 0.433 / 0.554 0.402 / 0.581

[−1.6;0.2] 0.534 / 0.629 0.585 / 0.671 0.684 / 0.706 0.267 / 0.479 0.340 / 0.584 0.482 / 0.614

[−1.6;0.1] 0.550 / 0.623 0.596 / 0.667 0.669 / 0.703 0.277 / 0.478 0.372 / 0.584 0.493 / 0.611

[−1.6;0] 0.565 / 0.617 0.606 / 0.662 0.640 / 0.702 0.263 / 0.477 0.404 / 0.580 0.496 / 0.608

[−1.6;−0.1] 0.577 / 0.611 0.614 / 0.657 0.612 / 0.699 0.264 / 0.476 0.431 / 0.576 0.500 / 0.604

[−1.6;−0.2] 0.589 / 0.605 0.618 / 0.650 0.577 / 0.696 0.260 / 0.478 0.451 / 0.573 0.499 / 0.601

[−1.6;−0.3] 0.595 / 0.599 0.617 / 0.646 0.532 / 0.694 0.255 / 0.479 0.468 / 0.569 0.493 / 0.597

[−1.6;−0.4] 0.596 / 0.594 0.618 / 0.637 0.474 / 0.693 0.250 / 0.478 0.476 / 0.565 0.483 / 0.593

[−1.6;−0.5] 0.590 / 0.588 0.605 / 0.632 0.409 / 0.692 0.246 / 0.477 0.471 / 0.561 0.464 / 0.590

[−1.6;−0.6] 0.582 / 0.583 0.600 / 0.626 0.325 / 0.691 0.240 / 0.476 0.458 / 0.556 0.441 / 0.586

Table 4.2: First part of comparison between baseline pedestrian detection method and pro-

posed dynamic thresholding on different test videos (σ = 25, motion parameter βmotion = 1).

Gray lines indicate the parameter setting found as the best compromise on all datasets, "in-

dividually best static" describes the best results with static τ and varying parameter sets

for different datasets. The results indicate that the proposed dynamic thresholding step im-

provements can achieve better detection results compared to the baseline method (see also

Table 4.3).

and 4.3 give numerical values for the proposed adaptive thresholding with different

ranges of τ ∈ [τmin;τmax].

It is shown that the usage of a dynamical detection threshold can improve upon

both the best baseline performance obtained using an individual parameter set per

video and especially upon the usage of a single parameter set for all videos (gray

cells). Here, the average performance improves from 0.452 to 0.503 (~+11%)

which is a substantial enhancement. In this case, the detection performance could

be enhanced over all individual videos except for UCF and INRIA. Especially for

PETS 13.57 or TownCentre, the results are significantly better than for a static

threshold of τstatic = −0.6 (~+15% and ~+41%, respectively). On the other hand,

the detection performance on UCF and INRIA drops by ~6% and ~3% for these
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settings because the parameters matching other scenarios are not working similarly

well on UCF. However, despite the variety of the datasets, an overall performance

gain is obtained even with one overall setting which may not be perfect in the indi-

vidual scenarios.

On the other hand, the performance improvements are mainly in videos with

changing crowd dynamics (i.e. PETS and TownCentre), while the system shows

a slightly better performance on videos with high crowd density and little density

variation (UCF and INRIA) when parametrized with static thresholds.

Similarly improved results can be found when looking at the individually best

parameter settings for static thresholds (first line) and the individually best dynamic

thresholding parameter sets marked in bold font in the individual columns. In this

case, improvements can be achieved in every single dataset tested. The biggest

achievements are obtained on the PETS 13.57 and TownCentre datasets where the

proposed dynamic thresholding step improves the N-MODA measure in both se-

quences by ~+6%. It should also be mentioned that in the case of individually

optimal parameters, small enhancements are also obtained on UCF. However, simi-

larly as in the previous test, no enhancements are obtained on INRIA. The detection

performance drops slightly (~-2%).

It is thus demonstrated that the proposed dynamic thresholding concept is a suit-

able measure in order to enhance pedestrian detection in crowded scenarios. It is

especially suited for videos with changing crowd densities where the highest gains

are to be expected. Considering the fact that no new detection method or re-training

is necessary when applying this algorithm to a pedestrian detector, the possible per-

formance gain is very high.

C) Performance Improvement by Geometric Priors

The second improvement proposed in this chapter is the usage of geometrical filters

in order to ensure a correct size of detections and to inhibit oversized results. In

order to parametrize the filters, a maximal error threshold ∆size for the size filter and

∆r for the aspect ratio must be chosen. The influence of this parameter on the height

filter is shown in Figure 4.6. As one might expect, the overall impact of the filtering

mechanism on the detection results is different in each of the test videos and the

influence of ∆size varies over the different sequences, too.

The curves generally start at lower N-MODA values because for low error thresh-
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PETS 13.57 PETS 13.59 TownCentre INRIA UCF ∅

τ ∈ [τmin;τmax] N-MODA / N-MODP

indiv. best static 0.559 / 0.612 0.612 / 0.648 0.648 / 0.717 0.283 / 0.343 0.472 / 0.564 0.452 / 0.587

base(-0.6) 0.513 / 0.642 0.581 / 0.672 0.441 / 0.696 0.262 / 0.350 0.466 / 0.573 0.452 / 0.587

[−1.4;0.2] 0.499 / 0.640 0.563 / 0.681 0.691 / 0.707 0.257 / 0.476 0.320 / 0.586 0.466 / 0.618

[−1.4;0.1] 0.520 / 0.636 0.579 / 0.677 0.673 / 0.705 0.267 / 0.479 0.353 / 0.586 0.479 / 0.617

[−1.4;0] 0.537 / 0.632 0.594 / 0.672 0.652 / 0.703 0.271 / 0.476 0.384 / 0.584 0.488 / 0.613

[−1.4;−0.1] 0.550 / 0.626 0.611 / 0.666 0.625 / 0.701 0.278 / 0.476 0.415 / 0.580 0.496 / 0.610

[−1.4;−0.2] 0.566 / 0.620 0.616 / 0.661 0.594 / 0.698 0.264 / 0.476 0.438 / 0.577 0.495 / 0.606

[−1.4;−0.3] 0.581 / 0.611 0.620 / 0.655 0.553 / 0.695 0.263 / 0.476 0.460 / 0.573 0.495 / 0.602

[−1.4;−0.4] 0.589 / 0.604 0.619 / 0.650 0.495 / 0.694 0.257 / 0.476 0.475 / 0.569 0.487 / 0.599

[−1.4;−0.5] 0.592 / 0.598 0.616 / 0.644 0.432 / 0.693 0.252 / 0.475 0.476 / 0.564 0.474 / 0.595

[−1.4;−0.6] 0.592 / 0.591 0.611 / 0.636 0.351 / 0.692 0.246 / 0.476 0.465 / 0.559 0.453 / 0.591

[−1.2;0.2] 0.468 / 0.651 0.537 / 0.688 0.692 / 0.708 0.252 / 0.474 0.291 / 0.590 0.448 / 0.622

[−1.2;0.1] 0.486 / 0.648 0.558 / 0.684 0.677 / 0.706 0.252 / 0.473 0.327 / 0.589 0.460 / 0.620

[−1.2;0] 0.505 / 0.643 0.574 / 0.679 0.655 / 0.704 0.258 / 0.477 0.361 / 0.587 0.471 / 0.618

[−1.2;−0.1] 0.522 / 0.639 0.592 / 0.676 0.633 / 0.702 0.269 / 0.476 0.396 / 0.584 0.482 / 0.615

[−1.2;−0.2] 0.538 / 0.633 0.604 / 0.671 0.607 / 0.700 0.275 / 0.471 0.421 / 0.582 0.489 / 0.611

[−1.2;−0.3] 0.557 / 0.625 0.615 / 0.665 0.568 / 0.697 0.273 / 0.474 0.450 / 0.577 0.493 / 0.608

[−1.2;−0.4] 0.570 / 0.617 0.619 / 0.659 0.517 / 0.695 0.265 / 0.473 0.469 / 0.572 0.488 / 0.603

[−1.2;−0.5] 0.577 / 0.611 0.620 / 0.653 0.457 / 0.694 0.261 / 0.472 0.474 / 0.567 0.478 / 0.599

[−1.2;−0.6] 0.582 / 0.603 0.623 / 0.646 0.374 / 0.693 0.256 / 0.472 0.473 / 0.562 0.462 / 0.595

[−1;0.2] 0.431 / 0.661 0.499 / 0.698 0.692 / 0.710 0.222 / 0.483 0.266 / 0.595 0.422 / 0.629

[−1;0.1] 0.451 / 0.658 0.524 / 0.693 0.681 / 0.708 0.227 / 0.474 0.301 / 0.592 0.437 / 0.625

[−1;0] 0.472 / 0.654 0.548 / 0.688 0.661 / 0.706 0.233 / 0.474 0.337 / 0.590 0.450 / 0.623

[−1;−0.1] 0.491 / 0.650 0.566 / 0.684 0.640 / 0.703 0.248 / 0.475 0.373 / 0.587 0.463 / 0.620

[−1;−0.2] 0.509 / 0.644 0.584 / 0.678 0.612 / 0.702 0.265 / 0.472 0.407 / 0.585 0.476 / 0.616

[−1;−0.3] 0.527 / 0.638 0.597 / 0.673 0.579 / 0.699 0.273 / 0.473 0.432 / 0.581 0.482 / 0.613

[−1;−0.4] 0.543 / 0.631 0.608 / 0.667 0.535 / 0.696 0.269 / 0.470 0.459 / 0.575 0.483 / 0.608

[−1;−0.5] 0.561 / 0.623 0.615 / 0.663 0.476 / 0.695 0.261 / 0.471 0.473 / 0.570 0.477 / 0.604

[−1;−0.6] 0.567 / 0.615 0.616 / 0.656 0.398 / 0.694 0.259 / 0.470 0.477 / 0.564 0.463 / 0.600

Table 4.3: Second part of comparison between baseline pedestrian detection method and

proposed dynamic thresholding on different test videos (σ = 25, motion parameter β = 1).

Gray lines indicate the parameter setting found as the best compromise on all datasets,

"individually best static" describes the best results with static τ and varying parameter sets

for different datasets. The results indicate that the proposed dynamic thresholding step

improvements can achieve better detection results compared to the baseline method (see

also Table 4.2).
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Figure 4.6: Relevant N-MODA curves for proposed height filter parametrized with differ-

ent error thresholds. The error threshold determines which maximal relative deviation the

filter allows based on the estimated pedestrian model established in previous frames and

differs over different test videos. Generally, the τ values for best performance decrease

compared to the baseline detection process due to the filtering step.
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olds, only few detections are accepted and no usable scene parameter model can be

computed. Accordingly, the filtering step leads to bad results. With suitable, higher

error thresholds, the filtering excludes incorrect candidate detections and uses the

remaining ones to model usable scene parameters. The performance thus rises.

At some point, the filter threshold becomes too high and the number of accepted

detections increases, leading to a bad scene model and high acceptance probabil-

ity for bad detections. As a consequence, the overall detection performance drops

again. The maximum N-MODA value is achieved at different error thresholds,

however, a sweet spot for most sequences exists for ∆size ≈ 0.25. In the following

experiments, the height filter will thus be parametrized with ∆size = 0.25.

It is important to note that the usage of a height prior allows to apply significantly

lower detection thresholds. Figure 4.6 shows that in order to achieve best results,

τ can be lowered by 0.3 (PETS, INRIA) or even more (UCF, TownCentre). This

shows that the filter performs according to the formulated expectations and filters

less suited candidate detections which are replaced by better-matching detections of

lower score.

The height filter improves the system’s performance over all test videos as can

also be seen in Table 4.4. The table shows the results for a range of different τ

values. Compared to the baseline method, the improvement by the height filter is

very high. This outcome is especially found when looking at the gain achieved using

only one parameter for all datasets: For this experiment, the height filter improves

the N-MODA value from 0.452 to 0.569 (~+26%).

However, also when choosing individually best parameters per dataset, the de-

tection performance is enhanced on every single dataset:

• For PETS 13.57, the performance improves from 0.559 to 0.646 (~+16%).

• For PETS 13.59, the performance improves from 0.612 to 0.645 (~+5%).

• For TownCentre, the performance improves from 0.648 to 0.694 (~+7%).

• For INRIA, the performance improves from 0.283 to 0.501 (~+77%).

• For UCF, the performance improves from 0.472 to 0.588 (~+25%).

Especially on INRIA and UCF, very high gains can be achieved using a height

filter. The result on these datasets can be explained by both relatively low perfor-

mance by the baseline method and the scene characteristics of high crowd density
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in combination with steep camera tilt angles. Pedestrians are also perceived at a

greater size than in other datasets. Due to these reasons, height errors in the detec-

tion candidates are easily possible and also affect a larger area in the image where

candidates with lower detection score are suppressed. In these cases, the usage

of a height prior both removes bad candidates and enables previously suppressed,

correct detections to improve the results.

Results of the proposed aspect ratio filter are given in Figure 4.7. The influence

of the acceptance threshold ∆r for this filtering method varies much more over the

different videos than for the height filter. This can be justified by the variation in

the test sequences: While height errors are common in all test videos, candidates

with wrong aspect ratio are of lesser importance in some video sequences. E.g.

in TownCentre, such errors are less common. This is visible in the respective N-

MODA plot which does not change significantly for ∆r > 0.2. Accordingly, the

performance gain varies over the different sequences.

Following Figure 4.7, ∆r = 0.3 is chosen as parametrization for the error thresh-

old for the following experiments. The maximum N-MODA value is achieved at

different error thresholds on the different datasets, however, ∆r = 0.3 appears to

give suitable general results.

Numerical results are given in Table 4.4. This table reflects the characteristics

of the different datasets. As mentioned before, errors due to aspect ratio are not

common in all of them. Main improvements using individual parameters per dataset

are perceived on INRIA (~+14%) and the PETS sequences (~+8% and ~+3% on

PETS 13.57 and PETS 13.59, respectively). For UCF, the filter has practically no

effect while for the TownCentre dataset, the detection performance even decreases

slightly.

The results show that the usage of the aspect ratio filter is more scene-dependent

than the height filter. Looking at the gray cells in the rightmost column indicates

the results for using a single parameter setting on all datasets. This averaging of the

N-MODA values over all datasets shows that the usage of the filter decreases the

performance compared to the baseline method while the individually best param-

eters per video may still show improvements. It is therefore recommended to use

the filter only after a thorough inspection of the baseline detections and their related

errors.

Table 4.4 also shows results for the combination of both filters. In this case,
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Figure 4.7: Relevant N-MODA curves for proposed aspect ratio filter parametrized with

different error thresholds. The error threshold determines which maximal relative deviation

the filter allows based on the estimated pedestrian model established in previous frames and

differs over different test videos. For aspect ratio filtering, the τ values for best performance

decrease less than for height filtering.
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PETS 13.57 PETS 13.59 TownCentre INRIA UCF ∅

N-MODA / N-MODP

baseline

indiv. best static 0.559 / 0.612 0.612 / 0.648 0.648 / 0.717 0.283 / 0.343 0.472 / 0.564 0.452 / 0.587

base(-0.6) 0.513 / 0.642 0.581 / 0.672 0.441 / 0.696 0.262 / 0.350 0.466 / 0.573 0.452 / 0.587

HF (0.25)

τ =−1.2 0.611 / 0.571 0.513 / 0.613 0.324 / 0.708 0.474 / 0.367 0.502 / 0.544 0.485 / 0.561

τ =−1.1 0.646 / 0.583 0.603 / 0.627 0.439 / 0.709 0.501 / 0.374 0.562 / 0.555 0.550 / 0.570

τ =−1 0.646 / 0.596 0.637 / 0.637 0.533 / 0.710 0.442 / 0.363 0.588 / 0.565 0.569 / 0.574

τ =−0.9 0.633 / 0.611 0.645 / 0.650 0.607 / 0.711 0.321 / 0.331 0.587 / 0.573 0.559 / 0.575

τ =−0.8 0.601 / 0.628 0.638 / 0.660 0.648 / 0.712 0.249 / 0.313 0.563 / 0.585 0.540 / 0.580

τ =−0.7 0.564 / 0.643 0.625 / 0.669 0.673 / 0.713 0.205 / 0.271 0.524 / 0.594 0.518 / 0.578

τ =−0.6 0.518 / 0.657 0.595 / 0.681 0.689 / 0.714 0.191 / 0.275 0.482 / 0.601 0.495 / 0.585

τ =−0.5 0.475 / 0.669 0.565 / 0.690 0.694 / 0.716 0.113 / 0.337 0.434 / 0.607 0.456 / 0.604

τ =−0.4 0.436 / 0.674 0.534 / 0.697 0.692 / 0.717 0.123 / 0.396 0.381 / 0.614 0.433 / 0.620

ARF (0.3)

τ =−1.1 0.572 / 0.602 0.538 / 0.635 -0.463 / 0.692 0.315 / 0.325 0.422 / 0.568 0.277 / 0.565

τ =−1 0.603 / 0.610 0.617 / 0.643 -0.197 / 0.694 0.323 / 0.325 0.453 / 0.572 0.360 / 0.569

τ =−0.9 0.601 / 0.621 0.630 / 0.652 0.030 / 0.695 0.316 / 0.326 0.471 / 0.576 0.410 / 0.574

τ =−0.8 0.584 / 0.629 0.626 / 0.664 0.197 / 0.696 0.298 / 0.331 0.471 / 0.583 0.435 / 0.581

τ =−0.7 0.557 / 0.640 0.608 / 0.674 0.324 / 0.698 0.269 / 0.335 0.458 / 0.591 0.443 / 0.587

τ =−0.6 0.520 / 0.649 0.586 / 0.684 0.431 / 0.700 0.235 / 0.337 0.433 / 0.600 0.441 / 0.594

τ =−0.5 0.480 / 0.660 0.560 / 0.691 0.505 / 0.701 0.192 / 0.341 0.401 / 0.606 0.427 / 0.600

τ =−0.4 0.440 / 0.667 0.533 / 0.695 0.557 / 0.704 0.153 / 0.340 0.359 / 0.613 0.408 / 0.604

τ =−0.3 0.395 / 0.676 0.495 / 0.700 0.598 / 0.707 0.120 / 0.358 0.311 / 0.619 0.384 / 0.612

τ =−0.2 0.354 / 0.677 0.451 / 0.708 0.618 / 0.710 0.090 / 0.352 0.258 / 0.623 0.354 / 0.614

τ =−0.1 0.309 / 0.680 0.401 / 0.718 0.630 / 0.713 0.066 / 0.324 0.216 / 0.624 0.324 / 0.612

τ = 0 0.268 / 0.669 0.359 / 0.708 0.638 / 0.716 0.045 / 0.296 0.173 / 0.624 0.297 / 0.603

τ = 0.1 0.225 / 0.670 0.315 / 0.707 0.642 / 0.718 0.033 / 0.266 0.137 / 0.621 0.270 / 0.596

τ = 0.2 0.187 / 0.661 0.274 / 0.685 0.635 / 0.721 0.022 / 0.212 0.103 / 0.613 0.244 / 0.579

both filters

τ =−1.3 0.629 / 0.610 0.562 / 0.635 0.205 / 0.708 0.461 / 0.357 0.530 / 0.522 0.477 / 0.567

τ =−1.2 0.651 / 0.622 0.627 / 0.643 0.327 / 0.710 0.475 / 0.367 0.603 / 0.585 0.537 / 0.585

τ =−1.1 0.643 / 0.633 0.651 / 0.654 0.440 / 0.710 0.454 / 0.387 0.597 / 0.597 0.557 / 0.596

τ =−1 0.619 / 0.644 0.657 / 0.662 0.533 / 0.711 0.408 / 0.361 0.585 / 0.607 0.560 / 0.597

τ =−0.9 0.601 / 0.652 0.653 / 0.669 0.607 / 0.712 0.233 / 0.286 0.563 / 0.613 0.531 / 0.586

τ =−0.8 0.576 / 0.660 0.636 / 0.677 0.647 / 0.713 0.296 / 0.334 0.528 / 0.619 0.537 / 0.601

τ =−0.7 0.546 / 0.666 0.622 / 0.683 0.670 / 0.714 0.242 / 0.281 0.492 / 0.623 0.515 / 0.593

τ =−0.6 0.505 / 0.672 0.592 / 0.691 0.686 / 0.715 0.193 / 0.267 0.448 / 0.628 0.485 / 0.595

τ =−0.5 0.469 / 0.677 0.563 / 0.697 0.691 / 0.717 0.173 / 0.332 0.403 / 0.629 0.460 / 0.610

τ =−0.4 0.430 / 0.681 0.533 / 0.700 0.689 / 0.718 0.135 / 0.360 0.352 / 0.633 0.428 / 0.618

Table 4.4: Influence of proposed filters on static detection thresholds (HF: height filter,

ARF: aspect ratio filter, with respective thresholding values). The first two lines describe

the individually best results for the baseline method (with variable τ values and without

usage of filters) and τ = −0.6 as found the best compromise of a static threshold for all

videos (gray cells). The filters improve significantly upon the baseline method.

108



CHAPTER 4.1: Improving Human Detection in Crowds

the filters are applied consecutively to the candidate detections and they are trained

using only the detections which remained after both filtering steps.

In this case, improvements are visible on all datasets, both for the case of individ-

ual parameters per dataset and for one parameter setting on all datasets. However,

when looking at the individually best parameter sets, it is visible for the combi-

nation of both filters that the results are not always better than the results of pure

height-based filtering. The reason here is that the filtering step based on the aspect

ratio of candidate detections does not improve results on all datasets, which is also

the case in the combination of both filters. For the two PETS sequences and the

UCF dataset, the results are slightly better than using only height filtering, results

for TownCentre are on a similar level and for INRIA are slightly worse than for pure

height filtering with individually chosen parameters. For averaged parameter val-

ues, the overall picture is similar: On PETS 13.59, the filter combination performs

a bit better than pure height filtering but for the other datasets, results are slightly

worse.

It can thus be concluded that the height filter should be preferred over the aspect

ratio filter because it is less sensitive to the video scenario. However, if pedestrians

are to be detected at different height levels, the aspect ratio filter will be advanta-

geous due to the underlying assumptions.

D) Combining Crowd Density-Based Thresholding and Geometric Priors

Results for a combination of both enhancements proposed in this chapter, i.e. the

usage of a dynamically chosen detection threshold according to crowd density esti-

mates and of geometrical filters in order to ensure suitable detection candidates are

visible in Table 4.5. The first rows in the table summarize the previous experiments

in this chapter by giving results for the baseline method, for the filtering methods

using static detection thresholds and for dynamic detection thresholds without geo-

metrical filters. These results allow for a proper comparison and for quantification

of the performance improvements provided by the individual factors.

Generally, the results in Table 4.5 are in accordance with the previously drawn

conclusions. By comparing the results of dynamically chosen detection thresholds

without filtering with the version using additional height filtering, it can be found

that results are improved on all datasets. The heighest gains are obtained for INRIA

(from 0.278 to 0.451, ~+62%) and UCF (from 0.477 to 0.612, ~+28%). The aver-

109



CHAPTER 4.1: Improving Human Detection in Crowds

age N-MODA performance over all datasets improves from 0.503 to 0.598, i.e. by

a gain of ~+19%.

In contrast, filtering according to the aspect ratio enhances the performance less

than height filtering when used with dynamic thresholds. When compared to dy-

namic thresholding without filtering, the average performance over all datasets re-

mains on a similar level. Higher improvements are visible for PETS 13.57 (from

0.596 to 0.652, ~+9%) and INRIA (from 0.278 to 0.338, ~+22%) while values for

TownCentre and UCF are almost the same as without filtering.

The combination of both filters gives similar results as using the height filter

alone. For the PETS sequences and TownCentre, the values are almost the same.

For INRIA, slight improvements are obtained using both filters while for UCF, the

usage of only a height filter is preferable. The average gain of both filters over all

datasets is on a similar level as for using the height filter only.

When comparing the filtering results for static and dynamic thresholding, it can

be seen that enhancements are possible for almost all combinations. Results for

the height filter approach are enhanced on every dataset except for INRIA using

dynamic thresholding. The averaged N-MODA performance also rises from 0.569

to 0.598 (~+5%). Results for aspect ratio filtering are even clearer: On every sin-

gle dataset and for averaged results, the performance is enhanced by the proposed

dynamic thresholding (~+14% for averaged results).

The conclusion for using both filters is again more dependent on the dataset:

While average N-MODA values improve from 0.560 to 0.603 (~+8%), the main

gains are obtained on PETS 13.57, TownCentre and INRIA. Results for UCF are

slighly worse, and PETS 13.59 remains on a similar level.

4.1.4 Conclusion on Detector Improvements

In this chapter, three improvements for pedestrian detection frameworks have been

shown and validated in an extensive evaluation. During the experiments, it was

found that the standard detection threshold τ =−1.44 used in the DPM pedestrian

detector and the VOC2007 Model is highly unsuitable for common test videos.

Albeit testing a large range of τ values in a manual selection, it was possible to

enhance the detection results over all datasets using a simple crowd density model

for dynamic parametrization of the pedestrian detector.

Enhancements for dynamical thresholding using a single parameter set on all
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PETS 13.57 PETS 13.59 TownCentre INRIA UCF ∅

N-MODA / N-MODP

indiv. best static 0.559 / 0.612 0.612 / 0.648 0.648 / 0.717 0.283 / 0.343 0.472 / 0.564 0.452 / 0.587

indiv. best static HF (0.25) 0.646 / 0.596 0.645 / 0.650 0.694 / 0.716 0.501 / 0.374 0.588 / 0.565 0.569 / 0.574

indiv. best static ARF (0.3) 0.603 / 0.610 0.630 / 0.652 0.642 / 0.718 0.323 / 0.325 0.471 / 0.583 0.443 / 0.587

indiv. best static both 0.651 / 0.622 0.657 / 0.662 0.691 / 0.717 0.475 / 0.367 0.603 / 0.585 0.560 / 0.597

indiv. best dynamic 0.596 / 0.594 0.623 / 0.646 0.692 / 0.710 0.278 / 0.476 0.477 / 0.564 0.503 / 0.597

τdyn, HF (0.25)

[−2;0.2] 0.592 / 0.614 0.611 / 0.658 0.718 / 0.717 0.356 / 0.373 0.360 / 0.601 0.527 / 0.593

[−2;−0.6] 0.661 / 0.571 0.595 / 0.620 0.664 / 0.710 0.191 / 0.263 0.612 / 0.571 0.545 / 0.547

[−1.8;−0.4] 0.658 / 0.589 0.631 / 0.636 0.690 / 0.713 0.451 / 0.345 0.559 / 0.586 0.598 / 0.574

[−1.6;−0.6] 0.672 / 0.586 0.636 / 0.633 0.675 / 0.711 0.174 / 0.249 0.594 / 0.579 0.550 / 0.552

[−1.2;−0.6] 0.626 / 0.616 0.646 / 0.655 0.683 / 0.712 0.191 / 0.259 0.551 / 0.589 0.539 / 0.566

τdyn, ARF (0.3)

[−2;−0.5] 0.650 / 0.601 0.624 / 0.640 0.346 / 0.695 0.331 / 0.339 0.477 / 0.579 0.486 / 0.571

[−1.8;−0.6] 0.652 / 0.602 0.623 / 0.641 0.288 / 0.695 0.332 / 0.337 0.476 / 0.578 0.474 / 0.571

[−1.6;−0.4] 0.623 / 0.621 0.631 / 0.657 0.464 / 0.697 0.338 / 0.333 0.461 / 0.588 0.503 / 0.579

[−1.6;−0.6] 0.642 / 0.610 0.631 / 0.648 0.316 / 0.695 0.333 / 0.331 0.477 / 0.579 0.480 / 0.573

[−1.4;−0.6] 0.628 / 0.617 0.633 / 0.654 0.341 / 0.696 0.333 / 0.328 0.473 / 0.583 0.482 / 0.576

[−1;0.2] 0.429 / 0.667 0.500 / 0.700 0.686 / 0.712 0.144 / 0.374 0.230 / 0.621 0.398 / 0.615

τdyn, both (0.25 / 0.3)

[−2;−0.4] 0.650 / 0.634 0.650 / 0.658 0.684 / 0.713 0.494 / 0.394 0.536 / 0.615 0.603 / 0.603

[−2;−0.6] 0.670 / 0.624 0.650 / 0.650 0.663 / 0.712 0.307 / 0.278 0.583 / 0.610 0.575 / 0.575

[−2;0.2] 0.569 / 0.656 0.610 / 0.680 0.716 / 0.717 0.321 / 0.356 0.355 / 0.621 0.514 / 0.606

[−1.4;−0.6] 0.622 / 0.648 0.653 / 0.668 0.678 / 0.713 0.370 / 0.284 0.536 / 0.617 0.572 / 0.586

Table 4.5: Results of combined dynamical thresholding and geometrical filters as proposed

in this thesis. For better readability, only results with best parameter sets found for individ-

ual videos are given. The first lines show summarized results from previous experiments in

order to allow a comparison of the individual performance enhancements of the proposed

improvements. τdyn: dynamically chosen detection threshold, HF: Height filter, ARF: As-

pect ratio filter.
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videos have been shown to be approximately ~+11%. Improvements for individual

parameter settings per video have also been shown in this chapter.

Additional improvements to the detection algorithm have been proposed as ge-

ometrical filters which sort out bad detection candidates based on their aspect ratio

or height. In order to find suitable parameters for the filtering process, the proposed

system performs an effective self-adaptive, on-line training mechanism.

Despite a certain variation over the different datasets (which were deliberately

chosen as very different videos!), a general observation is that the height filter con-

tributes a higher additional performance to the detector than filtering according to

the aspect ratio. This may be biased by the used detection algorithm which im-

plicitly uses a pedestrian shape model but it is visible that especially in the case of

dynamically chosen detection thresholds, filtering according to the aspect ratio can

also deteriorate the detection performance.

Height filtering on the other hand can improve the detection performance in all

tested scenarios. The usage of dynamical detection thresholds generally also adds

an additional improvement to the detection performance using filters. While this

additional enhancement again may vary over different datasets and also depends on

the choice of filtering applied, the overall results are encouraging and the system

can be recommended for scenarios of changing crowd densities.

It should be mentioned that the different performance improvements by the indi-

vidual steps are not mutually exclusive but the overall detection improvement tends

to find a saturation level. Therefore, it cannot be expected to gain additional perfor-

mance by performing all proposed improvements compared to e.g. using only dy-

namic thresholding and a height filter. Also, pedestrian detection candidates which

are already very unlikely for the baseline detector most probably won’t be found

using the filters, either.

The idea of the methods realized in this work is to identify ways of enhancing

the performance of a pedestrian detection system but it is clear that certain limits are

set by the choice of the baseline system [Felzenszwalb et al., 2010b]. Due to e.g.

an imperfect training process or uncommon pedestrian poses which may not have

been part of the training set, the detection algorithm has imperfections which cannot

be accounted for completely by the enhancements in this chapter. However, the

proposed improvements can also be applied for other pedestrian detection methods

which can be affected by similar basic issues as this often-used detection algorithm.
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The system as proposed in this work has the limitation of using static cameras.

The reason for this is that the underlying crowd density maps used for parametriza-

tion have been obtained with the requirement of a static camera setting in order

to separate background and foreground pixels. If necessary, this limitation can be

avoided by using developments such as [Senst et al., 2014] from TUB-NÜ which

indicates that small camera motion can already be compensated for in the compu-

tation of crowd density maps. It can therefore be expected that in the future, crowd

density maps might also be generated with sufficient accuracy for larger camera

motion, such as PTZ cameras or UAV platforms.

Concerning the additional computational complexity for dynamic thresholding,

within the context of this thesis, it is difficult to give general values. The reason

is that for a correct comparison, the detector from [Felzenszwalb et al., 2010b] has

been used which is written in MATLAB. The motion trajectories, however, have

been computed using a more efficient optical flow implementation in C++ while the

density estimates, again, are based on MATLAB code.

Hence, in order to assess the computational burden, the reader is referred to

the above mentioned [Senst et al., 2014] where an implementation from TUB-NÜ

shows that accurate density maps can be estimated in approximately 60 ms per

frame (thus approximately 16 frames per second) on a standard PC (image resolu-

tion 768×576 pixels). Experiments show that the run-time for the C++ implemen-

tation of [Felzenszwalb et al., 2010a] from the OpenCV library is approximately 1s

in such an image. Therefore, the effort for filtering appears negligible compared to

the plain detection. Newer pedestrian detectors may perform faster but according

to the survey from [Dollár et al., 2012], the fastest one ("The Fastest Pedestrian De-

tector in the West", [Dollár et al., 2010]) achieves 6.5 frames per second for VGA

images (640× 480 pixels). This shows that the additional computational effort in-

troduced by the density filtering is small and, if needed, the process can even be

implemented as an individual thread parallel to the detection task.

Similar considerations can be made for filtering according to height and aspect

ratio. While, again, the implementations for this thesis have been made using MAT-

LAB, the learning of the parameters and the filtering of the final detection results

have an O(n) complexity (linear in the number of detections) and is thus negligible

compared to finding detection candidates.
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4.2 Improving the PHD Filter for Visual Tracking

While the previous chapter introduced detector enhancements for a tracking-by-

detection (TbD) system and crowded scenarios, this section will focus on the track-

ing part by suggesting enhancements for visual tracking using a probability hypoth-

esis density (PHD) filter.

As discussed in previous chapters, the application of a PHD filter (or a general

TbD tracker) for pedestrian tracking in the surveillance domain offers both prob-

lems and chances. While a major problem has been identified in the rather low

detection rates of computer vision pedestrian detection systems, the availability of

image information is a big advantage compared to domains such as radar or sonar.

It is thus natural to consider these information for extensions to the baseline PHD

filter in order to increase its performance for video-based tracking.

The first adaptation is thus an extension for the label trees in the PHD filter (see

Section 3.2.4 F) ) using image features. This proposed object track extraction is

especially helpful for tracking near objects and is shown in Section 4.2.1.

A second extension for the PHD filter involves the design of a model for using

multiple, complimentary pedestrian detectors in order to address low detection rates

in visual tracking scenarios. The standard combination using an iterated corrector

step is evaluated and it is shown why this approach relies on high detection rates. A

new model is proposed and evaluated using two simple pedestrian detectors (Sec-

tion 4.2.2).

4.2.1 Feature-based Label Trees: Using Image Cues for Object

Association

Parts of the work in this chapter have been published in Eiselein, V.; Arp, D.; Pät-

zold, M.; Sikora, T., 2012. Real-Time Multi-Human Tracking Using a Probability

Hypothesis Density Filter and Multiple Detectors. In: 9th IEEE International Con-

ference on Advanced Video and Signal-Based Surveillance (AVSS 2012), Beijing,

China, 18.09.2012 - 21.09.2012 .

One problem for the baseline PHD tracker appears when crossing targets are

present. As mentioned in Section 3.2.4 F), the log-likelihood ratio (LLR)-based

system from [Panta et al., 2009] is not suitable for pedestrian tracking as this sce-
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Figure 4.8: Illustration of association problem for crossing targets: The GM-PHD label-tree

approach [Panta et al., 2009] maintains two targets h1 and h2. With the targets approaching

each other, the uncertainty in the system increases until the targets are indistinguishable

(symbolized by cloud). The tracker needs to maintain two hypotheses per target, thus at the

time of resolution, both estimated states have high probabilities for both labels (the correct

h1,1 and h2,2 but due to the lack of image information also h2,1 and h1,2) which makes the

inevitably upcoming track assignment error-prone.

nario generally involves higher noise ratios for which the LLR is not helpful for

track association. The reason is that with higher noise ratios, real-life situations as

temporary encounters (e.g. shaking hands and leaving) between two persons can

appear similar to two persons with crossing paths.

The main problem related to crossing objects is shown in Figure 4.8 for two

objects far from each other (for the sake of simplicity shown with the help of two

objects but the issue importance increases with higher numbers of objects). Due to

the distance, detections generated by one target have almost no affect on the other

one and newly generated hypotheses for the other target’s detections (i.e. for target 1

the detection generated by target 2 and vice versa) are quickly pruned and removed

from the individual label trees. Only the ones generated by the target itself remain

as belonging to the same track. This changes when the objects start approaching

each other.

The spatially closer the detections are received, the higher is the impact of detec-

tions generated by the other target. At some point, the impact by "bad" contributions

increases to levels at which the resulting hypotheses are not pruned from the label

trees anymore. While the additional hypotheses might be merged with the correct

ones in each label tree as long as the targets are very close, this will no longer be the
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case when the targets veer away from each other. With the distance increasing, two

different hypotheses are maintained for every target and it is unclear which assign-

ment should be made for the tracks after the crossing situation because both of the

candidates have similar probability and detections for the track confirm both (see

Figure 4.8).

Possible errors for the tracker resulting from the ambiguity of a situation with

near targets are shown in Figure 4.9. A first issue are potential labeling errors if

the wrong label is assigned to each track (see Figure 4.9 (left)). Another error may

occur because the filter assignments in a label tree are made independently from

other label trees. It is thus possible that both labels are assigned to the same track

and one target is lost. However, for the lost target, detections will be received again,

so the tracker will start a new track with a new label here (see Figure 4.9 (right)).

For the two labels assigned to only one target, only one detection will be received.

Consequently, at some point one of them will afterwards be removed by the system.

The proposed solution to these problems is the usage of image information in

feature-based label trees (FBLT) although this introduces an additional computa-

tional burden. While the tracking filter runs on the detections which have already

been found in the current frame, the time for computing individual visual target

appearance models adds up to the run-time of the object detection method. It is

therefore necessary to reduce the usage of image information to a minimum level

needed in order to maintain an acceptable overall run-time. The system developed

in this thesis does this by identifying situations in which the additional information

should be used. A central criterion for this decision is the vicinity to other objects.

By finding spatially near pairs of tracks in the totality of tracks, the targets with

increased ambiguity level are identified and can be managed specifically.

The following procedure is performed in order to avoid tracking errors for cross-

ing objects:

1. Targets far from each other: At the time of the first extraction of a new label

(i.e. the start of a new track), a characteristic image feature is computed for

the target. In the related publication [Eiselein et al., 2012], color histograms

are used for this purpose as they are quickly computable and reliable in many

environments. However, also other image cues can be used, e.g. histograms

of oriented gradients, feature points or contour information. As long as no

other targets are near, this information is updated in every frame to maintain
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Figure 4.9: Illustration of potential problems related to the ambiguity for crossing targets.

Without the usage of image information, the uncertainty in the crossing situation can lead

to wrong id assignments (left) or even to double assignments of labels to a target (right). In

this case, one of the two tracks assigned to the same target will most likely later be pruned

and for the remaining target, a new track label is created (yellow).

it recent and robust. With other objects in vicinity, the updating mechanism

for the feature is stopped in order to avoid degeneration influences from other

targets.

2. Targets in proximity: In case of near targets (i.e. within a proximity radius

of dvicinity), pruning of branches and also n-pruning is deactivated for the re-

spective label trees in order to maintain all relevant hypotheses in the trees.

If one of the branches were removed by pruning, the respective label might

be deleted forever, thus inhibiting a correct assignment in the future. In this

phase, two state estimates exist in both label trees and their weights are unre-

liable. Therefore only feature information is now used for state extraction. In

this area, both objects have very similar states and a potentially wrong label

(e.g. due to occlusion) needs to be corrected afterwards.

3. Targets in withdrawal: When the two targets leave the vicinity area, the la-

bel assignment becomes more reliable than in the phase before. The targets

can now be supposed to not overlap anymore and to be fully separable by

their features. In addition to a suitable distance threshold dvicinity, only reli-

able states with a minimal weight of 0.3 are extracted. This ensures that the

extracted states are sufficiently dependable.
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Figure 4.10: Proposed solution for resolving the ambiguity of crossing targets: By com-

puting an instance-specific image feature for every target (left), in the vicinity area with

other targets, image cues can be used for identification of the correct target hypothesis. Af-

ter leaving the vicinity area, for each target the most similar hypothesis with respect to the

known image cue is chosen. Other hypotheses with a high distance to the extracted one are

considered to belong to the other target and are removed (right).

In order to remove the duplicate hypotheses in both label trees, hypotheses far

from the extracted state must be pruned in every tree. For this decision, the

system uses a cut-off radius of 0.66 ·dvicinity but tests revealed that this value is

not performance-critical as long as all hypotheses generated by other objects

are removed. In Figure 4.10 this procedure is shown. After the crossing

situation, hypothesis h1,1 is extracted and h1,2 is removed. For the other target

h2,2 is extracted and h2,1 is removed.

In order to test the feature-base label tree concept, both simulations on virtual

data and tests on real video footage are conducted. Figure 4.11 shows a numer-

ical evaluation of a crossing between two targets with different color in a virtual

environment. The plot is averaged over 1000 simulation runs, the targets cross be-

tween frames #60-65. The OSPA-T distance is at a maximum level of 100 for the

first frames because tracks are only extracted when they are confirmed for at least

5 frames. At this point, the OSPA-T metric falls rapidly to a lower value (which is

greater than zero due to process and measurement noise).

For the standard GM-PHD filter using label trees without additional image fea-

ture information, an increased uncertainty level is visible around frame #60 where

the OSPA-T level rises. When the two targets overlap, the distance decreases
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Figure 4.11: Values of the OSPA-T metric show an improvement of the feature-based label

trees (yellow) compared to standard label-trees (blue) and log-likelihood-based label-trees

(red) using a simulation of two crossing objects. Results are averaged over 1000 simulation

runs.

slightly because within this short time interval, the two target states are almost iden-

tical and even with wrong assignments, the error metric falls. However, as soon as

the targets veer away from each other, the OSPA-T distance rises again up to a max-

imum. Afterwards, the spatial distance between the targets increases again and at

some point, the filter extracts the two target labels for assignment to both tracks.

As mentioned before, at this point, the state extraction is error-prone and will not

be correct in all cases. Depending on the target motion and the noise in the scene,

the percentage of wrongly assigned labels can be as high as 50%. This is why the

averaged OSPA-T distance over all runs now gives a higher error than before the

crossing situation. The description for the performance graph of the log-likelihood

(LLR) approach can be explained by the same principles and shows no significant

improvement.

In contrast, after the initial track extraction, the proposed FBLT approach with

assignments using image features shows a low OSPA-T distance for the whole test

case.

A real-world use case is shown in Figure 4.12 where two frames from the ex-

emplary PETS S1.L2 12.34 sequence are shown together with the tracks generated

by the standard GM-PHD filter (upper row) and the GM-PHD filter using the FBLT
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Figure 4.12: Illustration of the effect of the feature-based label trees (FBLT) on video

frames #450 - 468 from PETS 2009 S1.L2 12.34 dataset (point detections): Without FBLT

(top row) the lady in the red parka cannot be tracked within the crossing situation with

another person. Using FBLT (bottom row), the lady is tracked correctly over the ambiguous

situation. Image has been published in [Eiselein et al., 2012].

extension (bottom row). In this sequence, the FBLT approach is able to track the

lady in the red parka over the crossing situation between frames #450-468 while the

baseline algorithm fails and loses the track.

With the evaluation on both virtual simulation data and real video footage, the

usefulness of the feature-based label trees becomes evident. It is a valuable mech-

anism which provides important information in order to reduce tracking errors and

to enhance the overall correctness of the tracks in ambiguous situations.

4.2.2 Usage of Multiple Detectors

Apart from improving sensor performance as shown in Section 4.1, another ap-

proach in order to deal with low detection probabilities can be the usage of multiple
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sensors. Different detectors can have very different characteristics which leads to

the assumption that a combination of multiple, complementary detectors could be

more effective than a single one. It will be shown in this paragraph that this as-

sumption can be made but its realization in the PHD tracker requires a substantially

different approach than has been previously proposed.

A) Shortcomings of the Iterated Corrector Approach by Mahler

In [Mahler, 2003, 2004a, 2007], Mahler proposed a way of using multiple detectors

in the PHD filter which involves an iterative approximation because "The rigorous

formula for the PHD corrector step appears to be too complicated to be of practical

use." ([Mahler, 2007], p. 594).

According to this, given a set of detectors S[1],S[2] . . . ,S[s] and their multisensor

observation set

Zk+1 = Z
[1]
k+1 ∪·· ·∪Z

[s]
k+1, (4.15)

the multisensor-corrected PHD can be approximated as

Dk+1|k+1(x)≈
s

∏
j=1

F
[ j]
k+1(Z

[ j]
k+1|x) ·Dk+1|k(x) (4.16)

with the term

F
[ j]
k+1(Z

[ j]
k+1|x) = 1− p

[ j]
D (x)+ ∑

z j∈Z
[ j]
k+1

p
[ j]
D (x)L[ j]

z[ j]
(x)

C [ j](z[ j])+
∫

p
[ j]
D (x) ·L[ j]

z (x) ·Dk+1|k(x)dx
,

j ∈ {1 . . .s}
(4.17)

previously known from the single-tracker update step.

In a more intuitive description, this means to perform a state estimate using the

prediction step and then to run an iterative update procedure where the output PHD

D
[ j]
k+1(Z

[ j]
k+1|x) of update step j is used as input for the next update step j+1.

The conclusion from Mahler is "The heuristic approach is not entirely satisfac-

tory since changing the order in which the sensor outputs are processed will pro-

duce different numerical results. In practice, however, simulations seem to show

that sensor order does not actually result in observable differences in the behav-

ior of the PHD filter. This may be because the PHD approximation itself loses so
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Figure 4.13: Illustration of the state space with 5 targets and detection spaces D[1],D[2] for

two noise-affected detectors. X1, X2 and X3 are detected by both detectors while X4 and X5

are missed by one detector each.

much information that any information loss due to heuristic multisensor fusion is

essentially irrelevant." ([Mahler, 2007], p. 595)

For the application of visual tracking in video surveillance scenarios however,

this conclusion does not appear correct. A closer (though approximate) look to the

problem reveals the reason for this which is given in Figure 4.13 where detections

are shown as circles in the respective detection spaces (in this case x/y dimension

without scale for the sake of simplicity). Every detection generates a high likelihood

within its neighborhood. The likelihood decreases with the distance to the detection

(represented as level sets in Figure 4.13).

As shown in Equation (4.16), the iterated update step can be roughly approxi-

mated by a pointwise multiplication with the "PHD pseudolikelihood" F
[ j]
k+1(Z

[ j]
k+1|x)

(a more accurate mathematical derivation is given in [Mahler, 2007] but is not nec-

essary here). Considering the example of Figure 4.13, this means that the impact by

the detections generated for x1,x2,x3 remains with high probability while z[1]4 and

z[2]4 are multiplied with a low probability from the other detection space and will

consequently be considered only with little probability for the tracking process.

This process shown in Figure 4.14 can be useful for high detection probabilities

and clutter detections distributed independently in the two detection spaces. In this

case the iterative corrector step effectively wipes out the noisy detections while

maintaining the correct ones. However, this behavior is not desirable in case of
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Figure 4.14: Illustration of the baseline method for multiple sensors as proposed in [Mahler,

2003, 2007] on the previous example: The iterative corrector step effectively wipes out

detections from the first sensor which are not found in the second sensor (here generated

by x5). While this is useful in case of clutter, it is a major disadvantage in case of targets

correctly detected by only one sensor.

lower detection probabilities where both detectors might miss a target. For visual

tracking, the iterated corrector approach as formulated in [Mahler, 2003, 2007] is

thus not suitable.

Another problem of this method is its susceptibility to the order in which the

individual detectors are used. While Mahler’s iterated corrector approach may be

correct in cases where all objects are highly probable to be detected by both sensors,

Figure 4.15 shows exemplary results for the iterated corrector with varying detector

order in cases with low detection probabilities and it can be seen that the results are

highly different.

The reason for these differences lies in the characteristics of the detectors used.

Their detection rates are given in Table 4.6. Observe that the background subtraction-

based activity detector generally has a higher detection probability than the head de-

tector which is based on a histogram of oriented gradients. However, it suffers from

a higher clutter due to illumination issues and cannot distinguish multiple overlap-

ping persons in the scene. On the other hand, the head detector has been tuned to

generate very few clutter detections but, as shown in Table 4.6, also has a much

lower average detection rate.

Now, if the iterated detector step is executed with two detectors having detection
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PETS 2009 TUB Walk

HOG-based Head detector 0.34 0.46

GMM-based activity detector 0.84 0.79

Table 4.6: Average detection probabilities pD for two detectors on different videos. Detec-

tions have been counted manually over the videos.

probabilities pD1, pD2 and clutter rates C1, C2, the following cases can be distin-

guished:

1. pD1 = pD2: In this case, the ordering differences are only due to the clutter

rates. Supposing randomly distributed, independent clutter, the clutter from

the second sensor remains while the first one is reduced by the factor (1−
pD2). Therefore, it makes sense to use the sensor with higher clutter first

because its weight will be reduced in the second update. If the order was

reversed, the bad hypotheses generated from clutter would remain with their

initial, higher weight.

2. pD1 6= pD2: The detections in the first detector D1 are either confirmed in

the second detector D2 (detection case, yielding a hypothesis weight of ≈ 1

or higher after the update step) or weighted with a factor of (1− pD2) (case

of pedestrian not being detected in the detector D2). A lower pD2 as to be

expected in visual surveillance scenarios thus reduces the hypothesis weight

less. In order to keep the weight of unextracted hypotheses high, it theoreti-

cally makes sense to use the detector with a higher pD first and thus decrease

the weighting factor for missed detections in the second sensor. However,

the detection probabilities may not be known exactly in advance or remain

constant over the video. At times sensor D2 detects many less detections in a

frame than D1, it would be better to use the opposite order (D2 first, then D1)

which increases the hypothesis weight for detections not found in sensor D2.

The clutter rates C1, C2 complicate the issue even more: Similar to the first

case, if the first sensor D1 generates clutter, it can survive the update step in

sensor D2 with a lower weight and the respective hypothesis still remains in

the system. On the other hand, clutter induced in the second sensor D2 will

be kept with a higher hypothesis weight which generally makes it preferable
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PETS 2009 TUB Walk (excerpt) TUB Walk (full)

HOG Head detector only: 76.6 74.6 56.6

Activity detector only: 50.2 70.7 38.5

Iterated (Activity before Head) 47.5 59.9 39.5

Iterated (Head before Activity) 50.8 69.9 38.4

Table 4.7: Averaged OSPA-T measure for different example videos (lower is better): Eval-

uation of PETS 2009 sequence "S2.L1" (view 1) starting from frame #150 due to training

phase for activity detector. Excerpt of TUB Walk sequence refers to a part (frame #3300-

#3500) especially chosen for a high number of people over the whole image (values from

[Eiselein et al., 2012]).

to use the detector with a lower clutter rate in the second update iteration.

Given these reasons for different results according to the sensor order in an it-

erated update step, it shall also be noted that it cannot always be foreseen which

sensor order is advantageous in a given scenario. Background subtraction-based

detectors e.g. may have fundamentally different clutter characteristics in sunlight

where reflections, shadows, lighting changes etc. may occur more often than e.g.

in cloudy or rainy scenarios. Due to lack of perfect training examples, detectors

based on histograms of oriented gradients may have a preferred position in which a

pedestrian is detected better than in others (e.g. from the back or in profile view).

Consequently, it can be very hard to generalize about the best sensor order when

applying a tracking system with two detectors in a real-world scenario.

Practical examples for this difficulty can be seen in Figures 4.15 and 4.16 where

exemplary tracking results for both detectors and their combinations are shown. The

improvement by using a combination of the two detectors appears small and while

in Figure 4.15 longer tracks are maintained using the HOG-based detector before

the background subtraction-based (BG) one, Figure 4.16 shows a case where the

opposite ordering seems favorable.

These rather subjective, visual results are supported by objective tracking mea-

sures in Table 4.7 for the TUB Walk sequence. The table shows numerical results

for the whole video sequence (10.000 frames) and for a smaller part ("excerpt" with

a length of 200 frames) of it where a higher number of individuals is walking by.

The OSPA-T distance for using the BGS detector before the Head HOG detector
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Figure 4.15: Exemplary tracking result using the iterated-corrector scheme and changes

induced by sensor order on TUB Walk sequence. Top row: Background subtraction-based

detector only (left), HOG-based head detector only (right), bottom row: iterated corrector

(HOG before BG), iterated corrector (BG before HOG). "BG only" or the combination

"HOG before BG" seem to achieve best results.
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Figure 4.16: Exemplary tracking result using the iterated-corrector scheme and changes

induced by sensor order on TUB Walk sequence. Top row: Background subtraction-based

detector only (left), HOG-based head detector only (right), bottom row: iterated correc-

tor (HOG before BG), iterated corrector (BG before HOG). Results are contradictory to

Figure 4.15 as "HOG only" or the combination "BG before HOG" seem to be best.
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is lower for the excerpt part but higher over the whole video sequence. This result

again shows the difficulty in choosing the correct sensor order, even when regard-

ing the data within a single video with practically constant external characteristics

(camera view, lighting conditions etc.).

A closer look to the detection probabilities of the sensors described in Table 4.6

reveals that the probability of a pedestrian in the TUB Walk sequence being detected

by both detectors at the same time is only

P = (pD1 · pD2)≈ 0.36.

Yet, by counting the detections, it has been found that pedestrians are detected

with PD = 0.86 by at least one of the detectors which promises an enhanced per-

formance for a suitable combination of both detectors. This clearly indicates the

need for an appropriate sensor fusion method in the GM-PHD filter when applied

to a video surveillance scenario with lower detection probabilities. The developed

fusion method should follow these requirements:

1. Detections in both sensors should contribute to the tracking according to their

respective likelihood.

2. If one detector fails to detect a person but the other succeeds, the failure

should be at least partially compensated.

3. The sensor order should not matter.

4. The computational complexity of the new update step should not be signifi-

cantly higher than for an iterated one.

B) Replacement of the Iterated Corrector Approach by a Novel Update Pro-

cedure

According to requirements formulated in the previous paragraph, a change in the

update procedure for multiple detectors was developed in this thesis. Its main idea

is to avoid the implicit multiplication of likelihoods between multiple sensors and to

exchange it with an additive approach. The different single-sensor likelihoods are

combined into a pseudo-likelihood L̂ which incorporates the averaged sum of the

individual likelihoods over multiple detectors. Implementing this idea, the formula

of the proposed update step for two detectors can be altered to
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L2
Z2
(x) = ∑

z j∈Z2
k

pD,2(x) ·L2
z j
(x)

C2 +
∫

pD,2(x) ·L2
z j
(x) ·Dk|k−1(x)dx

. (4.20)

In Equation (4.19), L1
Z1
(x) is the contribution with respect to the first sensor:

Similar to the one-sensor case, all detections z j in the current detection set Z1
k

are iterated and for each of them the update contribution is summed up using the

detector-specific detection rate pD,1, clutter rate C1 and the respective likelihood

L1
z j
(x). L2

Z2
(x) is computed accordingly for the second sensor.

The first term is the equivalent of the converse detection probability in the one-

sensor case. It combines the individual converse detection probabilities for every

sensor in a way that ensures the overall likelihood sum

Loverall =
(1− pD,1)+(1− pD,2)+ pD,1 + pD,2

2
(4.21)

over all detection cases reduces correctly to unity. This is important because

otherwise a bias could exist, leading to a systematical growth or shrinkage of the

probability hypothesis density D. Apart from this purely mathematical necessity, a

lower interpretability for this term can be considered a disadvantage compared to

the baseline case.

The proposed pseudo-likelihood fulfills all requirements as listed above: The

detections in both sensors contribute according to their likelihood and the respec-

tive sensor characteristics (requirement 1). Without loss of generality, considering

L1
Z1
(x) = 0, Equation (4.18) reduces to
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Figure 4.17: Illustration of proposed additive sensor fusion model on the previously de-

scribed example: Despite a potentially smaller hypothesis weight, targets x4 and x5 are

maintained throughout the update step regardless of sensor order.

Dk|k(x) = L̂ ·Dk|k−1(x) (4.22)

= (
(1−pD,1)+(1−pD,2)

2 +
0+L2

Z2
(x)

2 ) ·Dk|k−1(x)

= (
(1−pD,1)+(1−pD,2)+L2

Z2
(x)

2 ) ·Dk|k−1(x)

which still enables the system to track a pedestrian with a detection from the

second sensor if there are no detections from the first one (requirement 2).

In the proposed fusion model, the sensor order does not matter because addition

is a commutative operation (requirement 3). Requirement 4 is also fulfilled be-

cause computing a weighted sum of two likelihoods does not require substantially

more operations than an iterative computation of them. The proposed update step

for two sensors has thus been shown to comply with all requirements listed. It shall

be noted here that in [Streit, 2008], another approach of solving the problems re-

lated to the iterated corrector step by an averaged PHD has been proposed but was

mathematically rebutted in [Mahler, 2013]. Therefore it is important to emphasize

that this proposed novel update step is an approximation and improvement for the

case of visual tracking but has not been proven to generally give superior results.

An illustration of the proposed additive update step for multiple detectors is given

in Figure 4.18 where the effect in the previous example is shown: Regardless of

the sensor order, both detections which have only been detected by one sensor are
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maintained as hypotheses for the next step.

The proposed model can even be extended to multiple sensors, although this has

not been tested in practical applications for this thesis. Considering a set of sensors

S = {S1,S2, ...,Sn}with s = |S| as the number of sensors and a set of detection sets,

Equation (4.18) can be extended to

Dk|k(x) = L̂ ·Dk|k−1(x) (4.23)

= 1
s
· (

s

∑
i=1

(1− pD,s)+
s

∑
i=1

Ls
Zs
(x)) ·Dk|k−1(x)

with

Ls
Zs
(x) = ∑

z j∈Zs
k

pD,s(x) ·Ls
z j
(x)

Cs +
∫

pD,s(x) ·Ls
z j
(x) ·Dk|k−1(x)dx

Although due to lack of a higher number of complementary pedestrian detectors

no tests for s > 2 have been conducted in this thesis, it appears intuitive that using

this model, the advantage of a higher number of sensors can be exploited better than

in the iterative baseline approach because an erroneous last sensor cannot wipe out

the impact of detections from previous sensors.

However, this approximation comes at a price which is a higher state variance

compared to the iterated corrector approach. In practical application however, this

does not appear critical. Indeed, with every correct detection of a track, the co-

variance in the individual sensors’ output decreases and the estimate becomes more

precise again. Experimental results of this method are given in Table 4.8 extending

Table 4.7 where it is shown that the proposed fusion approach outperforms both de-

tectors in the single-sensor case and both ways of iterative combination of the two

detectors on different videos. The gains are especially high for the video parts with

higher number of people in the scene ("excerpt") as the overall video also contains

frames with an empty scene which generate good metric results anyway and thus

levels differences in the numerical results.

Those results are visualized by exemplary frames from the TUB Walk sequence

in Figures 4.18 and 4.19 which show the proposed approach compared to the previ-

ously shown both sensor orders in the iterated detector case. While in Figure 4.18,

the proposed additive fusion performs slightly better than the iterated "HOG-before-

BG" case and much better than the iterated "BG-before-HOG", Figure 4.19 shows
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Figure 4.18: Improved tracking result for additive corrector step. Top row: Iterated correc-

tor (HOG before BG), iterated corrector (BG before HOG). Bottom row: Proposed additive

approach.

that the number of tracks and their length for the proposed method are favorable to

both iterated variants.

4.2.3 Conclusion

This chapter introduced the proposed adaptations for a probability hypothesis den-

sity filter applied in a video surveillance scenario. The first approach developed

aims at reducing ambiguities in crossing-target situations. Thanks to the image in-

formation available in the video domain, it is possible to train models for each target

and to compare them in order to avoid confusing the tracks.

Based on this principle, this chapter proposed an implementation using feature-

based label trees which incorporate visual features built on color histograms for

their low computational complexity. These are updated in every frame and included

directly into the target data structure for usage in cases of ambiguity. The perfor-
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Figure 4.19: Improved tracking result for additive corrector step. Top row: Iterated correc-

tor (HOG before BG), iterated corrector (BG before HOG). Bottom row: Proposed additive

approach.

PETS 2009 TUB Walk (excerpt) TUB Walk (full)

HOG Head detector only: 76.6 74.6 56.6

Activity detector only: 50.2 70.7 38.5

Iterated (Activity before Head) 47.5 59.9 39.5

Iterated (Head before Activity) 50.8 69.9 38.4

Proposed method 38.2 58.2 36.5

Table 4.8: Averaged OSPA-T measure for different example videos (lower is better)): Eval-

uation of PETS 2009 sequence "S2.L1" (view 1) starting from frame #150 due to training

phase for activity detector. Excerpt of TUB Walk sequence refers to a part (frame #3300-

#3500) especially chosen for a high number of people over the whole image. The proposed

method outperforms all variants using an iterated corrector step or a single sensor.
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mance improvement for feature-based label trees compared to the baseline without

usage of visual information has been shown both in a simulation and in practical

examples.

A second adaptation has been proposed in case of multiple pedestrian detectors

available. In a first theoretical assessment, the baseline scheme for incorporating

multiple detectors into a PHD filter has been assessed and weaknesses have been

identified. The baseline iterative scheme essentially represents the case of a mul-

tiplicative combination and consequently, as an especially undesired property, the

sensor order is important if the baseline assumptions of very high detection proba-

bility and low clutter are not met.

In this work, a different way of integrating multiple pedestrian detectors has been

proposed: Instead of using a multiplicative combination, an additive blending of

both detection results is proposed. This leads to the desirable result that detections

in only one sensor are not neglected as it may happen in the baseline method but

can be maintained and tracked. As an additional improvement, sensor order does

not matter for the proposed combination.

It has been shown on surveillance videos that the proposed approach achieves

better results than all four competing methods of using the individual detectors or

the iterative baseline scheme with two different sensor orders.

While this chapter discussed the usage of two complimentary detectors in order

to tackle the problem of low detection probabilities for visual pedestrian detectors,

it has to be mentioned that in practice, such usage of two detectors is only possible

if both of them have a suitably low computational complexity. It is therefore that

the related experiments in this chapter have used a background subtraction-based

detector and a simple HOG detector.

The next chapter again focuses on the use case of only one detector and shows

how its results can be enhanced by an additional post-filtering step in order to in-

crease the tracking performance also for scenarios with computationally more com-

plex detection methods where only one sensor is used.

4.3 Active Post-Detection Filtering Using Optical Flow

Parts of the work in this chapter have been published in

• Eiselein, V.; Senst, T.; Keller, I.; Sikora, T., 2013. A Motion-Enhanced
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Hybrid Probability Hypothesis Density Filter for Real-Time Multi-Human

Tracking in Video Surveillance Scenarios. In: Proceedings of 15th IEEE

International Workshop on Performance Evaluation of Tracking and Surveil-

lance (PETS 2013). Clearwater Beach, USA, 16.01.2013 - 18.01.2013

• Eiselein, V.; Bochinski, E.; Sikora, T., 2017. Assessing Post-Detection Fil-

ters for a Generic Pedestrian Detector in a Tracking-By-Detection Scheme.

In: Analysis of video and audio "in the Wild" workshop at 14th IEEE Interna-

tional Conference on Advanced Video and Signal-Based Surveillance (AVSS

2017), Lecce, Italy, 29.08.2017 .

As shown in Chapter 2, research in the area of pedestrian detection using cam-

eras has become increasingly popular in the past years and person detectors have

been improved substantially in recent time. However, current algorithms still do

not reach detection rates from other tracking areas. As an example, in the field of

plane or vessel tracking using radar / sonar measurements, in which the PHD filter

used for tracking in this thesis originated, it is not uncommon to expect detection

rates of e.g. more than pD = 0.98 (as in the rather outdated [Stone and Anderson,

1989]) at an expectedly also increased false positive (i.e. clutter) rate. In radar /

sonar applications, the clutter is usually considered randomly distributed. While the

PHD filter can handle such randomly distributed clutter better than other tracking

algorithms, due to its usage of the tracking-by-detection concept, it is very sensitive

to missed detections and it has been shown previously (see Section 3.2.5) that its

performance thus suffers from lower detection rates.

As shown in Figure 4.3 on page 97, the detection rates of the DPM detector

[Felzenszwalb et al., 2010b] used in this thesis are much lower than detection rates

by radar sensors. E.g. on the TownCentre dataset, for the detection threshold of

σ = 0.1 (best N-MODA value), the detection probability is pD ≈ 0.73 while the

per-image clutter (false positive) rate is C ≈ 0.08.

If the detection threshold is lowered in order to reduce the number of false nega-

tives, the drawback is an increase of systematic false positives. A detection thresh-

old of e.g. σ = −0.7 increases the detection probability in the aforementioned

example to pD ≈ 0.9 while the clutter rate rises to C ≈ 0.6. Due to the nature of

the pedestrian detectors used, these errors occur in background areas for which the

feature representation appears similar to the one of a pedestrian and as such, with
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a lowered σ , the probability of false positives found systematically over multiple

frames in a more or less static background increases. Such systematic clutter detec-

tions (in contrast to randomly distributed ones) are difficult to handle for a tracking

algorithm because without additional prior knowledge it is hard to differentiate be-

tween repeated false positives and correctly detected new tracks. Therefore, with

a lower detection threshold, a higher probability of false positive tracks is to be

expected in the tracking results.

Having these basic considerations in mind, one solution can be the usage of

multiple detectors as shown in Section 4.2.2. However, running two independent

detectors may not be desirable in all scenarios e.g. because of the increased run-

time of the overall tracking process which makes this method more appropriate for

simple pedestrian detectors.

Therefore, it appears natural to also consider improvements for a single detector.

The goal of such improvements will be to avoid temporal gaps in the detection

process while at the same time no additional false positives should be generated.

In this thesis, a novel way of incorporating motion information into the detection

process is proposed which can increase the detection rate of arbitrary pedestrian

detectors in surveillance scenarios. In particular, a temporal filtering step using the

concept of optical flow is proposed which is presented in detail in the following

sections. On the one hand, this concept allows re-using detections from previous

frames and thus improving the detection performance while on the other hand, de-

tector parametrization becomes easier than in the baseline case. The approach can

be seen as an additional simple tracking step improving the input detections for the

main tracker.

As a major contribution, this concept is not only applicable to PHD filters or

specific detection algorithms but can be considered a new formulation of integrat-

ing motion information into visual tracking-by-detection algorithms. The compu-

tational complexity of the method is negligible compared to a standard pedestrian

detector.

Tracking using motion information is not uncommon. In the scientific literature,

a number of ways have been proposed in order to introduce motion information into

the tracking process: Apart from optical flow-based trackers such as [Choi, 2015]

implementing a descriptor based on aggregated local flow or [Fragkiadaki and Shi,

2011] which separates persons from the background using trajectories and motion
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saliency, [Milan et al., 2015] use optical flow and color for background / foreground

separation with superpixels and train a classificator to distinguish background and

foreground objects. In [Xiang et al., 2015], the stability of pedestrian detections is

assessed using a divergence measure of sparse optical flow within their regions of

interest. A similar approach has been published in works from TUB-NÜ [Pätzold

et al., 2010] where dense optical flow is used to confirm head detection candidates

before tracking.

The post-detection filter proposed in this thesis follows similar ideas and can be

seen as a way of coupling the detection and tracking processes in a tracking frame-

work. Different approaches have been published in the literature which combine

these two elementary steps: [Andriluka et al., 2008] proposed to use a Gaussian

process latent variable model in order to improve hypotheses for human pose in

subsequent frames. In [Gepperth et al., 2014], dense appearance-based likelihood

maps are combined with spatial priors from a particle filter. This, however, requires

access to both the detector and tracker internal information, e.g. in order to de-

rive a dense likelihood map. For general detectors, especially proprietary ones, the

method might therefore be impractical. [Wang et al., 2012] proposed a two-step al-

gorithm where a second detector is trained in an unsupervised manner on the results

of a first detection step. This requires additional re-training and thus potentially

leads to a higher runtime.

Also to be mentioned is the usage of other information priors serving as proposal

distribution for pedestrian detections. An example is the usage of crowd density

estimates as described in Section 4.1.

The organization of this chapter is as follows: Section Section 4.3.1 explains

theoretical considerations related to the concept of post-filtering detections while

Section 4.3.2 explains the proposed filtering concept using optical flow information.

Section 4.3.3 gives an evaluation and results of the proposed concept.

4.3.1 Theoretical Considerations for Post-Filtering of Person De-

tections in a Tracking-by-Detection Framework

In order to motivate the usage of a post-detection filter in a tracking-by-detection

framework, this chapter takes a closer look at the sensitivity of an exemplary tracking-

by-detection tracker against missed detections. The GM-PHD filter presented in

137



CHAPTER 4.3: Active Post-Detection Filtering Using Optical Flow

Section 3.2.4 B) is used as a tracking-by-detection method which can be described

in a mathematically rigorous manner but its underlying principles extend to other

tracking-by-detection trackers as well. However, separate considerations for other

trackers would be out of scope for this work.

For the theoretical analysis of post-detection filters, a quick review of the update

procedure (Equation (3.34)) is taken: The result of this step is a set of Gaussian

distributions with their associated weights according to the confidence in the related

track hypothesis. As outlined in Section 3.2.4 F), the state extraction in the filter

uses a constant extraction threshold Textract = 0.5 in order to identify the hypotheses

with sufficiently high scores to be reported in every time step.

The usual weight of a confirmed state hypothesis i is wi ≈ 1. In case of a missed

detection in Equation (3.34), it is multiplied by a factor (1− pD). If this happens

in N consecutive frames, the weight of the state hypothesis will consequently be

multiplied by (1− pD)
N . Now, in case the respective weight falls below Textract ,

the state is not extracted and will not be reported in the result set of estimated

hypotheses, although the respective hypothesis may still exist in the internal label

trees of the PHD filter. One could argue that such disregarding and not reporting

an existing low-weight hypothesis may be undesired from an application point of

view but in practice, due to the uncertainty about the respective target state, this can

be considered the best solution in ambiguous cases. It could e.g. be the case that

the target has left the scene which is a situation where continuous reporting of a

low-weight track would produce continuous errors.

However, in case of multiple consecutively missed detections for a hypothesis,

wi might drop below the pruning threshold tprune and at this point, the tracker will

discard the track and remove the remaining internal label tree. If later new measure-

ments are received from the given target, the tracker will re-initialize a new track

with a different label and will not re-use the previous one.

It is important to note that in the application scenario of this thesis, i.e. the

tracking of pedestrians in a video surveillance context, the probability of several

consecutive missed detections cannot be neglected. Consecutive video frames often

differ only in small details. This causes a large similarity between consecutive video

frames which makes it probable that a detector failing to recognize an object in one

frame might also fail in the following frames. Together with a generally lower pD,

the risk for consecutively missed detections is thus much higher than e.g. in the
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sonar / radar domain.

Just lowering tprune in order to account for this issue is not a good solution be-

cause in this case, the number of Gaussians will increase and create an undesired

high additional burden during the whole tracking process.

Also, decreasing the expected detection probability pD below the real detection

rate of the used detector is not suitable as it will force the system into maintaining

old hypotheses for a longer time than needed and inhibits a quick adaptation to new

measurements. Indeed, the state estimates will become biased by giving too much

weight to previous states. In both cases, the system’s uncertainty about state esti-

mates increases unnecessarily which lowers the tracking performance accordingly.

In the following paragraph, a sensitivity analysis will be made in order to assess

the effect of missed detections from a theoretical point of view. The following

assumptions are made for this analysis:

1. The object extraction threshold is Textract = 0.5. Whenever the hypothesis

weight falls below this value, the respective target is considered non-existent

and will not be shown by the tracker. This situation will thus be considered a

tracking failure because the number of targets is estimated wrongly.

2. It is assumed that tracking failure is mainly perceived in a wrong estimate

of the number of targets and does not have significant influences to labeling

errors. This is indeed not an improbable assumption because generally, the

tracker easily maintains track labels as long as the track itself can be estab-

lished. For this however, new detections near the previous track are necessary.

3. The tracker parameters (e.g. process noise) are expected to model the tar-

get motion sufficiently and the detector shall have no offset, i.e. received

detections are always near their expected value. Therefore, their respective

likelihood is high and a detection near a target estimate increases this track’s

weight almost instantly to one.

From these assumptions, it can be deduced that tracking failure occurs whenever

a critical path of ncrit ∈ N successively missed detections is reached. The value

of ncrit is not fixed but depends on pD. With the aforementioned assumptions, the
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Figure 4.20: Length of critical path for missed detections over detection probability

(Textract = 0.5): The higher the detection probability, the shorter becomes the critical path.

Discontinuities are due to rounding to natural numbers for ncrit .

relation can be modelled as

ncrit =

⌊
log(Textract)

log(1− pD)

⌋
=

⌊
log(0.5)

log(1− pD)

⌋
. (4.24)

Figure 4.20 shows the length of the critical path for different detection proba-

bilities. Only natural numbers are possible as a result for the number of frames

which leads to discontinuities at rounding points. Note that clutter influence and

noise effects can cause a track’s weight to exceed unity and might thus add some

positive margin to the numbers shown but theoretically, for pD > 0.5, only a single

detection needs to be missed in order to cause a tracking failure if no other detection

is received in proximity.

This model of a critical path to be avoided in order to inhibit tracking failure

is an important concept in order to assess the sensitivity of the PHD filter against

missed detections. However, the graph in Figure 4.20 only shows the length of
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Figure 4.21: Probability of tracking failure due to reaching a critical path for a single track

on a sequence of 10 frames.

a critical path depending on pD but not its probability of occurrence during the

tracking process.

As a general formulation, the probability for tracking failure of a single track

in the next m consecutive frames PFailure(m) can be modeled as the sum of failure

probabilities in the individual frames. As an example, with a critical path of length

ncrit = 3, the probability of failure in the next 5 frames is the sum of failure prob-

abilities in frame 3, 4 and 5. In the first 2 frames, no failure can happen due to the

length of ncrit .

The relation can be formulated mathematically as:

PFailure(m) = PConsMiss(ncrit ,m), ncrit ,m ∈ N (4.25)

with PConsMiss(n,m) as the probability of missing at least n consecutive detections

of a target within the following m frames.

PConsMiss(n,m) can be computed in a recursive fashion:

PConsMiss(n,m) =





1, if n = 0

0, if m = 0,n > 0

pD ·PConsMiss(n,m−1)

+(1− pD) ·PConsMiss(n−1,m−1), otherwise

(4.26)

The first case explains as: PConsMiss(0,m) = 1 because missing at least 0 detec-

tions is a certain event regardless of the number of frames. In the second case,
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PConsMiss(n,0) = 0 for more than 0 detections because it is impossible to miss n

detections in 0 frames.

In all other cases, a binary decision tree can be built with path probabilities pD

and 1− pD, respectively: If a detection has currently been received (with probability

pD), in the following m− 1 frames at least ncrit detections must be missed for a

tracking failure. In case of a currently missed detection (with probability 1− pD),

n− 1 more consecutive misses have to occur in the remaining frames in order to

reach a critical path.

Due to the recursive structure of Equation (4.26), results cannot be computed for

several hundreds or even thousands of video frames in a normal video. In order to

obtain at least an intuitive understanding of the values to be expected, Figure 4.21

shows the probability for tracking failure PFailure in a sequence of m = 10 frames

(red graph). Discontinuities in the graph are due to the dependency of ncrit which

changes with pD but remains a natural number.

For a high pD, tracking failure is unlikely as the probability of several consecu-

tive missed detections is low. On the other hand, a very low pD ≈ 0.067 or lower

would require more than 10 missed detections to make the estimate’s weight fall

below 0.5. Therefore, the probability of a tracking failure in 10 consecutive frames

becomes 0 for very low detection probabilities. In between these two bounds, the

probability of a tracking failure is relatively high. Only for values of pD > 0.95, the

risk of failure becomes significantly lower. It is obvious that improvements for the

tracking process with common detection probabilities in video surveillance scenar-

ios are needed, especially when considering that a higher number of frames (e.g.

for a whole video of hundreds or thousands of frames) will inevitably lead to even

higher failure probabilities.

4.3.2 Using Motion Information as a Temporal Filter for Person

Detections

In the last section, the need for techniques to reduce the number of missed detections

for pedestrian detectors has been outlined. With this motivation in mind, post-

detection filters can be designed relying on either a passive or an active filtering

scheme.

A common passive approach involves the usage of a hysteresis-based passive

142



CHAPTER 4.3: Active Post-Detection Filtering Using Optical Flow

detection filter as outlined in two TUB-NÜ publications [Bochinski et al., 2016;

Eiselein et al., 2017] which accepts low-scoring detection candidates overlapping

with previously received detections in order to avoid missed detections. This ap-

proach will be used for comparison in the results section.

In the following, an active post-detection filter based on optical flow informa-

tion is proposed in order to re-use detections from previous frames. Its goal is to

artificially increase the detection probability without adding unnecessary additional

clutter. The filter is designed to have low run-time constraints and to be fully in-

dependent of the underlying detection method as well as independent of the (TbD-

based) tracking algorithm.

The overall post-filtering scheme is visualized in Figure 4.22. The active filter

computes sparse optical flow information vt(x,y) from the previous and the cur-

rent image frames It−1, It using a pyramidal implementation of [Lucas and Kanade,

1981].

With the region of interest for every detection in Dt−1 = {d0, . . .dN−1}, these

motion estimates allow the propagation of previous detections into the current frame

as propagated positions d̂t
i :

d̂t
i = dt−1

i +vt−1
i (4.27)

with vt−1,t
i as the local displacement for dt−1

i . For pointwise detections without

related bounding box, a quadratic area around the detections can be taken as region

of interest.

In order to reduce the number of bad motion estimates, a forward-backward

scheme is applied, i.e. the resulting position in the second image is again used as an

input to the optical flow estimation and its backward motion into the first frame is

computed. Only if the resulting position is sufficiently close (i.e. within 1.5 pixels

in this work) to the source position, it is considered for matching.

This gives the propagated detection set D̂t =
{

d̂t
0, . . . , d̂

t
N−1

}
which contains cur-

rent position estimates of all detections from the last frame. However, these may

overlap with the detection set Dt received by the sensor in the current frame.

In order to avoid two measurements for one object (this would violate funda-

mental assumptions for tracking systems as formulated in Section 3.2.3 B)), a com-

parison between the two detection sets Dt and D̂t is performed. For detections with
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Figure 4.22: Scheme of the proposed motion-based filtering step for pedestrian detections

(nprop = 1): Detections di,t−1,d j,t−1 are propagated from the previous frame (left) into the

current one using optical flow. The resulting red detections d̂i,t , d̂ j,t (center) are compared

with newly received detections in the current frame. Propagated detections matching a

newly received detection are removed, the others are kept. The final result is shown at the

right.

bounding boxes, the spatial overlap as the intersection-over-union IOU with

IOU(d̂t
i ,d

t
j) =

A(d̂t
i )
⋂

A(dt
j)

A(d̂t
i )
⋃

A(dt
j)

(4.28)

is computed for all detection pairs constituted of a propagated and a non-propagated

detection. IOU is taken here for its simplicity and low run-time but it would also

be possible to apply other distance measures, e.g. image information of detections,

such as color / gradient distribution. Using the constraint IOU(d̂t
i ,d

t
j) > 0.5, prop-

agated detections for which a matching candidate in Dt is found are removed from

D̂t . The result is a filtered set D̂t
f iltered . In case of pointwise detections, the IOU

criterion can be replaced e.g. by a L2 norm for which a maximal accepted value

needs to be set.

Now, detections in the current frame can be "filled up" with propagated detec-

tions from D̂t
f ilter and the resulting detection set is

Dt
f inal = Dt ∪ D̂t

f iltered,

D̂t
f iltered =

{
d̂t

i

}
: IOU(d̂t

i ,d
t
j)< 0.5 ∀d̂t

i ∈ D̂t ,dt
j ∈ Dt . (4.29)

In principle, this concept of propagating detections from previous images into

the current one can be done for arbitrary numbers of frames npropagation. As an

example, for npropagation = 2, a detection in frame t would be propagated into the
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Figure 4.23: Probability of tracking failure due to reaching a critical path for a single track

on a sequence of 10 frames. The red graph represents the baseline case with npropagation = 0

shown in Figure 4.21, other colors show the improvement using the proposed active post-

detection filter with different propagation lengths.

frames t +1 and t +2 and so on for greater values of npropagation. The double filter

effectively inhibits too many false positives but on the other hand, the gain is limited

due to saturation effects.

This can be seen when looking at Figure 4.23 where the risk of reaching a critical

path is shown for different detection probabilities and different propagation lengths.

Similar to Figure 4.21, it is based on Equation (4.26) but additionally the effect

of the active post-detection filter with different npropagation is shown. Figure 4.23

shows that with increasing npropagation, the overall risk of tracking failure is reduced.

The absolute gain difference between two npropagation levels becomes smaller for

increasing npropagation which shows a saturation effect of the filter. Nonetheless, the

probability of tracking failure can be largely reduced compared to the baseline case

(red line).

4.3.3 Experimental Results for Post-Detection Filter

In this section, results for the proposed post-detection filter are given. This work

focuses on the usage of detections providing a region of interest which are more
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common for modern detectors in the surveillance domain. Results for pointwise

detections can be found in [Eiselein et al., 2013b].

The evaluation is done on a set of very different video sequences which reflect

different challenges for pedestrian detection and tracking. From the well-known

CAVIAR1 dataset, the four videos EnterExitCrossingPaths1cor ("CAVIAR1"), Walk-

ByShop1cor ("CAVIAR2"), ThreePastShop1cor ("CAVIAR3") and ThreePastShop-

2cor ("CAVIAR4") are used which show an indoor corridor view of a shopping mall

in low resolution. Pedestrians near the camera are usually well detected but a per-

son standing on the other side of the corridor is perceived too small for the part-

based detector which leads to constant miss-detections in this area. The sequence

S2.L1 12-34 from PETS2009 dataset [Ferryman and Shahrokni, 2009] is an outside

scenery with 720×576 pixels resolution and many people changing their directions

quickly. A lamp post in the middle of the scene poses specific occlusion problems.

In order to show the performance of the system on high definition video content, the

Full HD videos PL1 and PL2 from Parking Lot dataset [Shu et al., 2012] are taken

which show a denser group of pedestrians captured on an outdoor parking lot.

As performance measure, the Clear metrics [Bernardin and Stiefelhagen, 2008]

computed by the development kit of the MOT challenge [Milan et al., 2016] are

used. Following [Bochinski et al., 2016], in order to account for inaccuracies in

the ground truth annotation, a correct match in this evaluation is required to give a

minimum IOU of 0.2 instead of 0.5.

Baseline detections have been obtained using a DPM v5 implementation [Felzen-

szwalb et al., 2010b] and the VOC2007 model. For comparison, a passive post-

detection filtering approach described in the works by TUB-NÜ [Bochinski et al.,

2016; Eiselein et al., 2017] uses a purely hysteresis-based model in which lower-

scoring detections in the current frame are accepted as long as they overlap signifi-

cantly with detections from previous frames ("passive filter").

Figures 4.24 and 4.25 show N-MODA and N-MODP values of the filtered and

unfiltered detections for different detector thresholds. For these experiments, a

range of parameters (i.e. the low-confidence threshold σl in the passive post-detection

filter and the maximum propagation times nprop, tMAX in both filters) has been eval-

uated in order to maximize the performance. In case of the passive post-detection

filter, the threshold shown is equivalent to σh for the high-confidence detections.

1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Figure 4.24: Best N-MODA values for different detector thresholds for all test sequences.

Image has been published in [Eiselein et al., 2017].
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Figure 4.25: Best N-MODP values for different detector thresholds for all test sequences.

Image has been published in [Eiselein et al., 2017].
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When assessing object detection performance, the detection accuracy N-MODA

is usually considered of major importance. For this measure, the baseline results

generally rise from lower thresholds to a maximum value before decreasing again.

The reason is that N-MODA essentially is a normalized sum of false positive and

false negative detections. For lower thresholds, many false positives are obtained

while higher thresholds lead to fewer detections and thus many missed detections.

A peak is reached in between these two extremal scenarios.

The proposed active post-detection filter generally increases the number of de-

tections regardless of them being true or false positive. Its performance therefore

drops below the baseline for thresholds with many false positives. This underper-

formance is less relevant for most applications because the detection performance

can be much higher for correctly parametrized, higher thresholds. However, with an

increasing detection threshold, the number of false positives decreases and missed

detections become more relevant. At this point, the filter outperforms the system’s

performance considerably for a wide range of detector thresholds. For even higher

thresholds, the performance remains on a higher level compared to the baseline but

decreases again.

As an additional, important advantage, the filter facilitates the detector configu-

ration because the possible range of suitable detection thresholds is increased.

Similar observations are made for the passive post-detection filter but its effect

is generally lower compared to its active counterpart. The N-MODA peak for the

active filter is generally higher than for passive filtering and the range of possible

thresholds is larger. A reason for this is that the passive post-detection filter does not

restrict the size of a candidate’s detection bounding box and therefore, size changes

are possible after a number of propagations. As a result, the assignment in the N-

MODA computation becomes less clear. The size of the active-filtered regions of

interest, however, remains the same as the very first one over time which is con-

sistent with the expectation that a person appears at similar size over consecutive

frames.

As visible in Table 4.9, for the PETS09-S2L1 sequence the gain for active fil-

tering and the optimal value for nprop are lower than in other videos. This can be

explained by occlusions generated by the lamp post in the middle of the scene. Oc-

clusions generally reduce the accuracy of optical flow estimates but the performance

of the active filter still improves over the baseline results and the passive filter.
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Sequence CAVIAR 1 CAVIAR 2 CAVIAR 3 CAVIAR 4 PETS09 PL 1 PL 2

baseline

(DPM)

σ -0.5 -0.5 -0.3 -0.3 -0.5 -0.4 -0.4

N-MODA 0.52 0.33 0.33 0.3 0.72 0.67 0.73

N-MODP 0.14 0.25 0.36 0.34 0.18 0.19 0.08

passive

filtering

σh -0.4 -0.4 -0.1 -0.2 -0.1 -0.1 -0.1

σl -0.8 -0.8 -0.6 -0.8 -0.9 -0.8 -1.0

tMAX 13 12 20 20 9 17 16

N-MODA 0.54 0.34 0.35 0.32 0.75 0.73 0.81

Gain 0.04 0.03 0.06 0.07 0.04 0.09 0.11

N-MODP 0.13 0.24 0.37 0.33 0.18 0.18 0.08

Gain -0.07 -0.04 0.03 -0.06 0 -0.05 0

active

filtering

σ -0.4 -0.3 0.1 0 -0.2 0 -0.1

nprop 13 19 20 20 3 18 13

N-MODA 0.58 0.39 0.37 0.35 0.76 0.76 0.85

Gain 0.12 0.18 0.12 0.17 0.06 0.13 0.16

N-MODP 0.12 0.23 0.37 0.31 0.18 0.20 0.08

Gain -0.14 -0.08 0.03 -0.09 0 0.05 0

Table 4.9: Detection metrics for both filter methods with respective best parameters to the

unfiltered baseline (PL: Parking Lot). Gain denotes the respective relative improvements.

N-MODP values are given in Figure 4.25. This metric describes the spatial ac-

curacy of the detected bounding boxes, and it can be found that both filters decrease

this measure compared to the baseline case. This is not surprising because there is

already a certain level of noise contained in the baseline detections, i.e. not all of

the detection bounding boxes match the underlying ground truth perfectly.

Considering the active filter, it can be assumed that this noise level cannot be re-

duced because a perfect motion estimate would place the filtered detection exactly

at the same position over a pedestrian as before. However, non-perfect motion es-

timates can have a negative influence on the spatial accuracy. Indeed, such drifting

effects lead to additional noise introduced in both filters and thus the spatial accu-

racy is lower than in the baseline case. The active post-detection filter, however,

reduces the N-MODA values only slightly compared to the passive one.

Exemplary detection results for the active filtering scheme are given in Fig-

ure 4.26. Red boxes indicate detections received by the part-based detector, blue

dotted rectangles indicate a detection propagated from previous frames which was

deleted due to overlap to a normally received detection. Green boxes indicate a

detection added by the post filter which otherwise would have been missed.

A summary of the N-MODA / N-MODP values for both post-detection filters

with their parameters and the unfiltered baseline method can be found in Table 4.9.

150



CHAPTER 4.3: Active Post-Detection Filtering Using Optical Flow

Figure 4.26: Examples of the proposed motion-based post-detection filter on the CAVIAR

1 video: Red detections have been received normally, blue dotted detections are candidates

from post-detection filter which have been filtered out due to overlap with normally received

detection. Green detections are added as a result from proposed active post-detection filter.
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Sequence CAVIAR 1 CAVIAR 2 CAVIAR 3 CAVIAR 4 PETS09 PL 1 PL 2

baseline

(DPM)

N-MOTA 0.44 0.29 0.25 0.28 0.67 0.51 0.72

N-MOTP 0.14 0.25 0.37 0.37 0.12 0.29 0.06

passive

filtering

N-MOTA 0.46 0.30 0.27 0.28 0.62 0.59 0.71

Gain 0.05 0.03 0.08 0 -0.07 0.16 -0.01

N-MOTP 0.14 0.24 0.34 0.36 0.13 0.29 0.06

Gain 0 -0.04 -0.08 -0.03 0.08 0 0

active

filtering

N-MOTA 0.53 0.35 0.30 0.28 0.67 0.69 0.77

Gain 0.2 0.21 0.2 0 0 0.35 0.07

N-MOTP 0.10 0.21 0.35 0.33 0.12 0.26 0.06

Gain -0.29 -0.16 -0.05 -0.11 0 -0.1 0

Table 4.10: Tracking metrics for both filter methods to the unfiltered baseline (PL: Parking

Lot). Gain denotes the respective relative improvements.

As discussed before, the minimum IOU for correctly matched true positive detec-

tions has been set to a value of 0.2, thus leading to a general decrease in the N-

MODP values.

Another important advantage is that for all experiments, higher detection scores

can be used than in the baseline method. This leads to fewer false positives and

higher N-MODA values. The overall gains have been computed in order to show

the improvements of the two filtering schemes compared to the baseline. For the

proposed active filter, N-MODA gains are usually at a level of 10% or more. Only

for PETS, the gain is at 2% due to the reasons discussed before.

Tracking results using these filtered detections and the GM-PHD filter frame-

work presented in Section 4.2.1 are shown in Table 4.10. For the entry "active

filtering", the tracker parameters (especially pD and clutter) are the same for all

comparisons and have been optimized on the baseline results for a fair comparison.

An adaptation of these parameters to the improved detections will likely enhance

upon these results.

Generally, the improved detection quality leads to better tracking results even

with the same parameters. Due to the low-pass properties of the tracker, however,

this effect varies over the different videos. While the N-MOTA performance is

never worse than the baseline, for CAVIAR 1, CAVIAR 2 and CAVIAR 3 the gain

is around 20% and in the case of Parking Lot 1, the gain reaches even 35%.

The N-MOTP measure is the tracking equivalent to N-MODP and shows the

spatial accuracy of the estimated tracks. As for N-MOTP, the filtered results perform

less accurate here due to the reasons given in relation to N-MODP.
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The high performance gain in terms of N-MODA comes at a slightly higher

computational load. Both filters increase the computational complexity but only

to a very low degree. While the passive filter only requires analysis of previous

detection results and computation of the respective overlap ratios, its main increase

in complexity comes from the higher number of detections received by lowering

the detection thresholds. The filtering effort, however, is negligible compared to

running a state-of-the-art pedestrian detector over a full image.

The active post-detection filter computes sparse optical flow per detection and

is thus much more demanding in terms of computational load. However, a set of

detections for usual surveillance videos contains less than 20 detections. The re-

lated effort for computing the motion vectors is higher than for the passive filtering

approach but still far below a detection cycle over a full image and can even be par-

allelized. As a consequence, both filters are real-time capable for standard videos

and in addition theoretically suitable for any type of pedestrian detector.

4.3.4 Conclusion on Active Post-Detection Filters Using Optical

Flow in the Tracking Process

This section motivated the need of high detection rates in tracking-by-detection sys-

tems theoretically and proposed a solution for CCTV scenarios with lower detection

probabilities by using an active, motion-based post-detection filter.

After a detailed state-of-the-art analysis of related concepts from the literature,

a mathematical analysis of the risk for tracking failure has been formulated which

shows how crucial the treatment of missed detections is for such tracking methods.

The results of this analysis inspired the design of an active post-detection filter

which uses sparse optical flow information between consecutive frames in order to

artificially increase the detection probability and reduce the related issues.

The filter achieves high gains on a variety of datasets both in terms of detection

and tracking performance. As an additional advantage apart from the performance

enhancement, its runtime is low and can be neglected compared to usual detectors.

The filter is fully independent of the pedestrian detection method used and can even

be used without access to or modification of the detector code. As it can generally

be used for any kind of tracking-by-detection system, it is thus very interesting for

real-world applications.
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Chapter 5

Person Re-Identification in Tracking

Contexts

Parts of the work in this chapter have been published in Eiselein, V.; Sternharz,

G.; Senst, T.; Keller, I.; Sikora, T., 2014. Person Re-identification Using Region

Covariance in a Multi-Feature Approach. In: Proceedings of International Confer-

ence on Image Analysis and Recognition (ICIAR 2014), Part II, LNCS 8815, 2014,

Vilamoura, Portugal, 22.10.2014 - 24.10.2014

IN the previous chapters, a tracking-by-detection framework has been proposed

for pedestrian tracking in surveillance scenarios. Apart from a mechanism to

separate crossing targets, image information has only been used for detection of

pedestrians and for enhancing these detections prior to the tracking process. This

is a contrast to template trackers or correlation-based trackers which extract image

features from a given region of interest and estimate the most likely position of that

region in the next frame.

For certain reasons, it can be helpful to introduce image information in the track-

ing process and to extract specific features on a per-target basis:

1. For specific applications, it can become necessary to distinguish between

multiple targets even if no continuous perception of them can be guaranteed.

Using a target model built by extracting instance-specific image features, such

distinction can be achieved for application cases as e.g. loitering, person re-

identification or cross-camera tracking.
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Figure 5.1: Two concepts are shown for the usage of image information in tracking-by-

detection systems: In every frame, input images of pedestrians are collected from the tracks

and transformed into a pedestrian model built from feature vectors which is updated reg-

ularly (basic functionality required for both applications, blue). 1) In order to re-identify

(green) previously known pedestrians, a data storage is needed which contains the feature

models for all tracked pedestrians known so far. A feature vector of a newly extracted pedes-

trian track is compared to these known candidates and its tracking id can be set accordingly.

2) In case of tracking failure, the feature model built from previous frames can be used to

search the target in the current frame (not regarded in this thesis).
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2. In case of missed detections, image cues can help providing a suitable guess

for the current target state. In this case, the area where a target is expected

is searched for feature vectors associated with the respective target. The best

matching position is returned as possible target location.

The described feature extraction and indexing concepts are shown in Figure 5.1.

Regardless of the exact motivation, the establishment of a target model based on

extracted feature vectors requires a recent target model which has to be updated

regularly (usually on a per-frame basis). This means that for every target, a model

has to be extracted in every frame for a given location and integrated into the pre-

viously known feature representation. This feature representation is then stored in

a data structure enabling operations such as fast retrieval of a given id or matching

of a feature vector with all stored target models. All of these operations must be

performed in a very fast manner as the tracking process should not be slowed down

more than necessary. The main reason why processing time is of special importance

is that the feature retrieval and comparison between matching candidates may have

to be performed multiple times per video frame. It is therefore that in the context of

this work, fast person re-identification methods will be preferred and a combination

of multiple basic methods is shown in order to improve re-identification results.

As an additional point, in the second case mentioned above (i.e. the usage of

feature vectors for improvements in the tracking process) it is also necessary to

provide a mechanism of searching for a given feature vector within a region of the

current image. This can be done by using a sliding window approach and extracting

feature vectors in every position. The resulting feature vectors are compared to the

ones stored in the database and the best match represents a potential candidate of the

current target state. As outlined in [Bolme et al., 2010], this procedure is very time-

consuming and requires a lot of effort in order to ensure both a suitable accuracy in

the target location estimate and a short run-time. It would thus be out of scope for

this thesis.

Therefore, within this work, multiple person re-identification techniques are in-

vestigated in order to lay the foundations for an integration of pedestrian descriptors

into the tracking-by-detection framework proposed previously. As a main challenge

for later integration, run-time must be taken into account and should be kept at a

very low level.

The chapter is organized as follows: The next paragraph provides an overview of
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low-complexity state-of-the-art pedestrian re-identification methods and the evalu-

ation methodology (Section 5.1). In the following chapters the feature descriptors

evaluated for pedestrian re-identification are outlined. In this thesis, point feature

descriptors (Section 5.2), color histograms (Section 5.3) and region covariance de-

scriptors (Section 5.4) are investigated. Section 5.4.1 explains a metric issue for

region covariance descriptors related to eigenvalue computation and proposes a

pre-processing step in order to solve the problem. Together with the choice of a

suitable feature vector and a new partitioning scheme, this novel way of avoiding

rank deficiency in the covariance matrices contributes to a considerably improved

re-identification process compared to previous region covariance methods.

A fusion of multiple descriptors in order to enhance the re-identification perfor-

mance is proposed in Section 5.5 which also contains experiments and results for

the approach developed as a follow-up of the publication [Eiselein et al., 2014].

Section 5.6 concludes the chapter.

5.1 Review of Low-Complexity Person Re-Identification

Methods and Evaluation Methodology

Person re-identification algorithms can be divided into methods based on point fea-

ture descriptors (e.g. [Hamdoun et al., 2008] [Khedher et al., 2013]) presented in

Section 5.2 and methods extracting appearance information for a whole image patch

within a region of interest. A very common example for the latter are pedestrian ap-

pearance models based on color histograms (e.g. [Zoidi et al., 2013; Possegger

et al., 2015]) which have the huge advantage of low run-time and memory con-

straints. They are presented in Section 5.3. Another region-based approach investi-

gated in this work is region covariance [Tuzel et al., 2006] shown in Section 5.4.

Apart from these methods, other more sophisticated but generally also computa-

tionally more expensive object descriptors have been developed, e.g. Fisher vectors

[Jaakkola and Haussler, 1999] which can also be applied for person re-identification

[Perronnin and Dance, 2007; Ma et al., 2012]. Fisher vectors have been evaluated

in a Master’s thesis at TUB-NÜ [Sternharz, 2014] and, due to their complexity and

run-time constraints, are not considered in this thesis.

The choice of suitable image features for general application of person re-identifi-
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cation methods can be a difficult task and is also directly related to the metric chosen

to discriminate between the respective feature vectors. Instead of finding the best

performing feature vector, it is thus also possible to modify the metric used to com-

pare two multi-dimensional feature vectors.

Learning a discriminative metric directly from the known ground truth samples

has been proposed e.g. in [Weinberger and Saul, 2008], [Davis et al., 2007] and

[Guillaumin et al., 2009]. Although it can be said that once the metric is learned, its

application can often be done by simple matrix operations, it usually requires a high

computational effort in order to derive such a metric. As a remedy, in [Hirzer et al.,

2012] the authors propose to reduce the mathematical constraints for a metric and to

neglect easily-separable samples for the metric estimation but the computation pro-

cess still appears too costly if performed for every person in a video frame in order

to improve tracking results. Another reason why metric learning is not considered

in this work is that these methods usually require a large, pre-labeled training set

of pedestrian samples and in tracking approaches, the number of training samples

obtained from tracks is often limited.

Other person re-identification approaches are given in [Goldmann et al., 2006]

where background subtraction is used in order to generate binary masks and model

only a person without the surrounding background pixels. In a similar, derived

method, in [Farenzena et al., 2010] segmentation information is exploited by defin-

ing symmetry axes in a person’s silhouette. Results are promising but depend on a

previous background / foreground separation step. In general CCTV environments

such information might not be available e.g. due to a high number of people in the

scene, occlusion or changing lighting conditions which inhibit a good separation

of individual silhouettes. In such cases, a good person segmentation is already a

challenging task itself. Therefore in this thesis, a generic person re-identification

process without background separation is used, which, however, could be enhanced

by segmentation information if available.

The evaluation process of a person re-identification system is usually done on

a statistical level. In most cases, person re-identification can be considered an ap-

plication of either a 1 : 1 or a 1 : N matcher. While a 1 : 1 matcher performs a

verification step (e.g. answers the question "Is this person the same as that person?"

or as a possible application "Does this feature vector obtained from a camera at a

customs counter correspond to the identification cues stored on a given passport?"),
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a 1 : N matcher performs an identification step, i.e. a search of a single query sam-

ple qi in a database of N candidate samples from a given gallery G = {c1, ...,cn}.

In other words, it finds the most similar known sample to a query sample. In this

work, we assume the typical case that the candidate samples ci in the gallery are

pairwise distinct (i.e. no duplicate identities) and the "closed universe" assumption

holds (i.e. for all query samples, the gallery contains a correct match). However,

both constraints may be weakened in other applications which might then yield the

need of extensions to the principles outlined here.

For a 1 : 1 matcher, statistical evaluation often relies on the computation of the

False Acceptance Rate (FAR) and the False Rejection Rate (FRR, also false negative

rate or miss rate) [Bolle et al., 2004, 2005] which describe the false positive and

false negative decisions produced by the system. Its computation is based on a

confusion matrix (see Table A.1) where the entries are computed as outlined in

Appendix A.6.

The entries of the confusion matrix often depend on the parametrization of the

algorithm. Therefore, for better comparability of two different methods, a Receiver

Operating Characteristic (ROC) curve can be used in which both values are plotted

against each other in order to show the system-specific trade-off between them.

ROC curves have the advantage of being a very common tool exploiting standard

statistical properties and are as such easily understandable while providing a way of

abstraction from parametrization.

In contrast to 1 : 1 matchers, a 1 : N matching system returns the one sample

out of N candidates which is considered to correspond best to the query sample

according to some feature representation. The evaluation of such a system can be

more complicated than in the 1 : 1 case if more than only the best rank is considered.

In this case, a standard performance measure is the Cumulative Matching Curve

(CMC) [Grother and Phillips, 2004]. This measure assesses the system’s capability

of ranking potential match candidates correctly. Assuming a probe (or query) set

Q = {q1, ...qm} of cardinality M, the matcher can be used in order to compute a

similarity score s(qi,ci) for each query sample qi and all candidate samples in the

gallery set. Ordering these scores for each qi yields:

s(qi,ci1)≥ s(qi,ci2)≥ s(qi,ci3)
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and thus the ranking of the probe sample is

R(qi) = in,

with in as the position in the sorted list (e.g. R(qi) = 3 if the true match of

sample qi has the 3rd highest score). Doing so assigns a rank position to every

possible similarity score and candidate sample of query qi.

Obtaining the CMC now requires the discrete rank probabilities P(k) which de-

scribe the average probability of assigning a specific rank to some query. Usually,

these probabilities are estimated using the normalized true frequencies of occur-

rence of the different ranks, computed over the query set:

P̂rank(k) =
1
M
(#(R(qi) == k)), k = 1, ...,N. (5.1)

P̂rank(k) thus contains the normalized number of samples for which the true rank

is k. Accordingly, P̂rank(x) is an estimate of the probability that the rank R of any

probe computed by the system is x. For usual applications, probability mass func-

tions with lower average ranks are considered better because they show that the

system in average computes high similarity measures for correct matches and only

a small number of attempts is necessary to obtain a correct match.

Based on P̂rank(x), the CMC measure is then computed as follows:

CMC(k) =
k

∑
r=1

P̂rank(r), k = 1, ...,N. (5.2)

It can be interpreted as a measure of how many guesses by the system are needed

in order to obtain a certain probability that the genuine sample is returned. For real

applications this makes sense because even assuming that no automatic identifi-

cation system is perfect, the system can still narrow down the search space for a

human user. A system could e.g. return the 10 samples with the highest similarity

scores and the user then identifies which of them corresponds to the query sample.

The CMC is an effective measure in order to assess such a system’s performance,

e.g. an estimate of CMC(10) = 0.7 would mean that with an average probability of

0.7 the user is shown the right match in the first 10 samples returned by the system.

Both, the CMC- and the ROC measure return values in the interval of [0;1].

The CMC curve over a set of k candidates increases monotonically because of its

formulation as a recursive sum over the values of k. With increasing k, it converges
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to 1 and its slope - as a measure of this convergence - can be seen as a description

of the likelihood of genuine matches for smaller gallery sizes.

The advantage of the CMC compared to a ROC measure is that it not only takes

a value of "true" or "false" as input but also considers the system’s ranking capabil-

ities. Assume e.g. the outputs of two 1 : N matchers are to be compared and system

A returns the true candidate sample in average at the 2nd position. Another system B

might return the true sample in average at the 20th position. If both systems were to

be regarded as 1 : 1 matchers and the first match was considered to be the resulting

match decision, their performance in terms of ROC could be the same as long as the

first match would be equally bad in both systems. However, using the CMC mea-

sure, system B is considered worse than system A because it systematically returns

higher ranks for correct matches.

In order to compress the description of a ROC or CMC curve into a single value,

the area under the respective curve (AUC) measure can be used. Normalized over

the number of gallery samples (CMC) or the interval of [0;1] (ROC), it is another

description of the same system properties. In this work, ROC-AUC is used for

configuration of individual feature properties because it is more expressive for slight

changes and the final system evaluation is done using CMC measure because it is

the most common measure for this application.

The datasets used for evaluation of pedestrian re-identification are summarized

in Appendix A.3. For none of them, foreground masks are available or have been

used.

5.2 Feature Point-based Descriptors

In the computer vision community, feature points are often-used ways of extract-

ing image features and detecting characteristics in a picture. The main idea of this

approach is to use feature distributions around characteristic points which should

ideally be independent of illumination, rotation, shift and image noise. By re-

identifying those points in a different image of the same object, it is thus possible to

infer e.g. motion information between these images or deduce similarities between

points and their spatial environment.

Often-used approaches build a scale-space using low-pass filters of different

bandwidth. Foundations for this approach have been laid in [Lindeberg, 1994].
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Figure 5.2: In the SIFT algorithm [Lowe, 2004], in each octave the initial image is repeat-

edly Gaussian-filtered (left). Differences between adjacent Gaussian images are used for

extrema detection. After every octave, the image is downsampled and the process repeated.

Extremal points in a scale-space represent sources and sinks of intensity flow and

are seen as characteristic points. Identification of these points can be done using an

(often approximated) Laplacian of Gaussian filtering process which can be seen as

bandpass filter of the image.

Common feature point extraction methods include algorithms such as "Scale-

invariant features transform" (SIFT) [Lowe, 2004] or "Speeded Up Robust Fea-

tures" (SURF) [Bay et al., 2008] and derived works [Ke and Sukthankar, 2004;

Winder and Brown, 2009; Chandrasekhar et al., 2011]. An overview with com-

parisons and evaluations of different approaches can be found in [Mikolajczyk and

Schmid, 2005]. An overview of suitable feature types for person re-identification is

given in [Bäuml and Stiefelhagen, 2011].

Figure 5.2 shows the principle used in the SIFT algorithm: The input image

is repeatedly convolved with a Gaussian kernel. While a Laplacian-of-Gaussian

(LoG) representation has been shown in [Lindeberg, 1994] to allow for scale invari-

ance, difference-of-Gaussians (DoG) images can be seen as an approximation for

LoG images. Therefore in SIFT, the difference between two of the resulting Gaus-

sian images is used in order to build up a scale-space in which extremal points are

searched. Scaling down the input image after each octave reduces the computational

effort.

Accordingly, for SIFT the number of octaves and the number of scales in every

individual octave are two parameters which have to be considered in the evaluation
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Figure 5.3: Schematic of the point feature-based person re-identification system from

[Hamdoun et al., 2008] which builds the basis for the point-feature classification in the

proposed method.

of its descriptor when used for re-identification. The feature descriptor itself is

then extracted as gradient orientation histograms defined over the region around a

keypoint (details can be found in [Lowe, 2004]).

Compared to SIFT, SURF features [Bay et al., 2008] have been optimized for

speed, e.g. instead of using Gaussian filters, box filters are applied because they

can be computed faster by using integral images [Viola and Jones, 2001]. The use

of integral images also allows for building the scale-space by scaling up the filter

window instead of reducing the image size which can be done in a constant time

due to the integral images. Thus, pre-filtering the images can be omitted.

In order to use local point features for person re-identification, a number of ap-

proaches have been proposed. Once feature points are found and feature vectors are

extracted, these need to be matched against reference models in order to identify

the person. For quick comparisons and a fast id retrieval, the authors of [Hamdoun

et al., 2008] propose a k-d tree to store the feature vectors and use a majority vote

over the points found to determine the object id. A schematic representation of

this person re-identification system is shown in Figure 5.3. For this thesis, the idea

of using a tree-based data structure is adopted, however, a FLANN-based method

[Muja and Lowe, 2009] is used for performance reasons.

Khedher et al. use in [Khedher et al., 2012] an automatic method of acceptance
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of SURF correspondences based on GMMs learned on the reference set and a model

of the distance distribution resulting from matches of the same person and with

different persons respectively. This allows to adjust thresholding parameters for the

feature matching process on-line without the need for presets and also increases the

system’s performance in cases where camera views are very different.

For this thesis, a multi-cue person re-identification scheme is proposed for which

the combination of individual steps is naturally computationally more intensive than

a single-cue re-identification step. Additionally, for tracking purposes appearance

differences of an object between individual frames are small which reduces the

advatages of the GMM-based approach from [Khedher et al., 2012]. Instead, for

run-time reasons the points found are matched and a majority vote as in Figure 5.3

is performed.

In [Khedher et al., 2013], the method from [Hamdoun et al., 2008] is refined

using the "Least Absolute Shrinkage and Selection Operator" (LASSO) algorithm

which performs a regression on the feature vectors of the model and the query in or-

der to reduce the feature dimensions and use a sparse representation by the minimal

number of points which contribute to the person appearance. As the performance

improvement of this algorithm compared to the baseline method seems rather low

but the algorithm uses an iterative scheme which has to be re-computed on-line

for new persons, we refrain from the LASSO method in this thesis and prefer the

quicker baseline approach.

Again, it can be argued that the possible improvements for the point feature-

based re-identification step could enhance the overall system’s performance which

is not questioned here. However, the focus in this chapter is to provide means of

person re-identification with very low run-time in order to use it not only for re-

identification but also for improving the system’s tracking performance. Nonethe-

less, it could be a focus of future work to include individual enhancements as the

ones mentioned above while still maintaining the overall computational efficiency.

Conducting experiments regarding the pedestrian re-identification performance

of the system in Figure 5.3 reveals that a number of its parameters are inherently

connected: The number of octaves used for computation of the feature points and

the number of scale levels per octave L are to be seen in connection with the image

scale which is intuitive considering that during the computation of SIFT and SURF,

feature vectors are extracted at extremal points in a scale-space of the image. This
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relationship is especially relevant considering that the resolution in CCTV footage is

often low. Consequently, the resolution pyramid built in order to extract the feature

points can easily be too coarse for a proper representation of the features.

The solution to this problem can be two-fold: On the one hand, it is possible to

increase the number of scales (i.e. reduce the step size between them) used within an

octave which enhances the systems’s resolution for image details. On the other hand

the image can also be scaled up (i.e. bi-linearly interpolated in this thesis) which

is a better solution for SURF features where for performance reasons the step size

follows a scheme fixed by the size of the filter kernels and cannot be altered.

SURF thus can also be parametrized implicitly using the image scale while SIFT

features rather benefit from adjusting the number of scales per octave or using a

different value for σ in the lowest octave. Exemplary results for these parameter

settings are shown in Figure 5.4 where the x-axis shows the minimal area of the

image patches after upscaling. All patches are resized with the same scale per ex-

periment, however, due to the different size of the patches, the minimal value is

given.

Apart from the VIPeR dataset where higher values give better results, the curves

show no significant improvements after images have been rescaled to approximately

80.000 pixels. However, for the other datasets the performance does not deteriorate

after this value, either. It seems thus suitable to choose a rather high value for the

minimal image size while not taking an inappropriately high value for performance

reasons (run-time increases linearly with the number of pixels as will be shown

later).

Especially for the datasets ETHZ and CAVIAR, the SURF variant not using the

reference orientation (labeled "u" for "upright") shows superior results. This can

be explained by the fact that all persons in the dataset are provided with the same

orientation. Computation of a reference orientation is thus not needed and can only

introduce errors.

From the results in the experiments, the performance of SURF (both in its 64-

and 128-bit variant) appears to be generally better than the performance of SIFT.

This conclusion should be taken with care as it still depends on various parameter

settings. However, considering also the lower run-time of SURF compared to SIFT

and the intuitive way of parameterizing it using the image scale, in this thesis SURF

is chosen over SIFT. Accordingly, the following experiments are based on these
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Figure 5.4: Influence of image scaling for SIFT & SURF with different configurations used

in the person re-identification system proposed by [Hamdoun et al., 2008]. For SIFT, the

value of σ in the lowest octave and the number of layers per octave L are given in the

legend, SURF has been tested with both the standard (SURF64) and extended (SURF128)

descriptor. For both methods "u" symbolizes the upright descriptor. The ROC-AUC shows

that the SURF implementations benefit from scaling while SIFT remains mostly unaffected

by this parameter. Even over multiple parameter sets, SIFT generally shows a lower perfor-

mance than SURF. SURF on the other hand should be considered with image scaling as a

parameter in mind.
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Figure 5.5: Schematic illustration of the overlap parameter in the partitioning scheme.

For this example of a 4x6 partition, the red rectangle shows an overlap of 0.5, i.e. its

center position remains the same but its area is extended in a way that it covers neighboring

partitions to 50% of their width / height. Feature points are only matched in their respective

partition.

conclusions and will use "upright" SURF features without reference orientation and

an image up-sampling step to 100.000 pixels.

5.2.1 Partitioning Schemes Improve the Re-Identification Per-

formance

In order to further increase the performance of the re-identification system based

on feature points, a partition scheme is introduced (shown in Figure 5.5). The par-

titioning is done via rectangular sub-spacing of the input region and inhibits the

matching of points which are improbable matches due to their spatial positions in

the image (i.e. a point on the head of a person should be found in another image

at a similar location and not e.g. on the foot of a person). In order to compen-

sate potential alignment issues in imperfect partitions between consecutive images,

subregions are allowed to overlap.

In every subregion, feature detection is performed and the respective descrip-

tors are matched against their stored reference descriptors in that region. Doing so

ensures only correct feature point matches within one subregion but increases the

processing time and memory requirements because one search tree per subregion

needs to be kept in memory and all trees need to be searched for matches. The final

matching id is obtained in a voting scheme over the different partitions.

Results of applying the partitioning scheme are shown in Figure 5.6 where the

recognition performance (ROC-AUC measure) is shown over the partition overlap
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Figure 5.6: Performance comparison (ROC-AUC) for person re-identification system from

[Hamdoun et al., 2008] with different partitioning schemes x×y and overlaps o. All experi-

ments are conducted with a rescaling to 100.000 pixels as an outcome of previous tests. The

extended detector in general does not improve the performance while an overlap of 0 = 0.5

in the partitioning scheme seems a good compromise for all datasets.
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for a number of partitioning schemes. It can be seen that no specific partition-

ing scheme gives best results on all datasets, however, the usage of a partitioning

scheme can always enhance results compared to an approach without partitioning

(i.e. a single (1x1) partition). Possible performance gains are between 5% (on

CAVIAR4REID) and 14% (on PRID2011), depending on the dataset, partitioning

scheme and overlap ratio. Suitable overlaps and the best number of partitions in x-

/ y-axis depend on the dataset but differences are generally small. The overlap of

o = 0.5 can be considered a good trade-off for most scenarios tested.

Concerning the usage of an extended descriptor in the SURF feature, Figure 5.6

shows no general enhancement in the system’s accuracy, except for the PRID dataset

where the extended descriptor enhances results considerably and almost regard-

less of the partitioning scheme used. For future experiments, a 7× 11 partitioning

scheme with overlap o = 0.5 will be chosen.

5.2.2 Run-time of Pedestrian Re-Identification Using Point Fea-

tures

Feature matching in this approach is performed using FLANN trees [Muja and

Lowe, 2009] which are a faster, approximate extension to k-d trees. Since without

knowledge about the structure of the dataset and the parameters used, this algorithm

is difficult to analyze, a closer theoretical look shall be taken at a standard k-d tree.

The average search time in a k-d tree is

O(logn)

in the number of feature points [Bentley, 1975]. Generally, such a performance

can be considered fast. When using more than one partition, the number of trees

increases. The drawback of the related re-identification performance gain are thus

increased memory and computational needs. Assuming equally distributed feature

points over the image, the search in k trees for n/k points each results in

O(k log(n/k)) = k ·O(log(n/k))
(again)
= O(logn) (5.3)

and is effectively (though not visible in the Big O notation) a higher computa-

tional load than searching one tree for n features. The invisibility of this effect in

the Big O notation is due to the fact that for its computation the number of features
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Figure 5.7: Training times for point feature-based person re-identification system from

[Hamdoun et al., 2008] using different partitioning schemes from previous configurations.

Times are normalized per test instance and include pre-processing such as scaling and color

conversion which explains differences between the datasets. The usage of an extended

descriptor increases the run-time considerably. The run-time is increased by higher number

of partitions.

171



CHAPTER 5.3: Color Histogram-based Descriptors

is considered approaching infinity. k would thus theoretically be omitted in this

consideration as shown in Equation (5.3).

However, in real use cases the number of features in every search tree must be

kept to a suitable limit in order to obtain both an acceptable re-identification ac-

curacy and a low run-time. Therefore, the effect of several parallel trees remains

noticeable in practice (see Figures 5.7 and 5.8).

Considering re-identification for a future integration into a tracking process, two

steps can be distinguished which both contribute to the overall computational com-

plexity. On the one hand, it is necessary to train the algorithm with images of known

persons as long as the tracks of them can be extracted (Figure 5.7). On the other

hand, in order to support the tracking process in ambiguous situations, candidate

images of unknown persons are matched against the database in order to be identi-

fied (Figure 5.8) when the tracking process fails.

Thus, both the run-times spent for training a model of a person and the testing

of a candidate image are very important in the tracking process. As shown in Fig-

ures 5.7 and 5.8, the training step can be done in less than 0.02 s (i.e. more than 50

frames per second) for a 1x1 partition scheme while the testing step depends on the

size of the database and thus differs to a higher degree between different datasets.

However, matching a query image in small candidate galleries is also feasible in

similar time. For both cases, a more complex partitioning scheme and the usage of

extended descriptors increase the run-time because more internal comparisons are

necessary.

It is also visible that for higher overlaps, generally the run-times increase more

than linearly. The reason for this increase is that for higher overlaps, feature points

found in the border areas of a partition will be considered in multiple partitions. The

higher the overlap value, the higher is in average also the number of points which

have to be considered in more than one partition. As a result, the number of points

which are searched for in the FLANN tree increases and thus require additional

overhead.

5.3 Color Histogram-based Descriptors

Gradient-based feature points, as shown in the previous section, are well-established

for object re-identification. However, as gradient extraction is normally done in
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Figure 5.8: Testing run-times for point feature-based person re-identification system from

[Hamdoun et al., 2008] using different partitioning schemes from previous configurations.

Times are computed for a pre-trained system and normalized per test instance. Differences

between datasets are due to pre-processing and different numbers of trained samples in the

data structures (e.g. VIPeR contains 632 images vs. 72 in CAVIAR4REID.
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ROC-AUC HSV (1x1) Lab (1x1) RGB (1x1) XYZ (1x1) YCbCr (1x1)

CAVIAR4REID 0.277 0.175 0.264 0.256 0.174

ETHZ 0.214 0.185 0.167 0.181 0.144

VIPeR 0.038 0.025 0.027 0.035 0.028

PRID 0.125 0.063 0.118 0.090 0.075

Table 5.1: Area under ROC curve (ROC-AUC) for pedestrian re-identification using color

histograms over different color spaces (no partitioning). Over all datasets, HSV gives sig-

nificantly better results than other color spaces.

grayscale images, it is intuitive to additionally exploit color information in order to

increase the recognition performance.

A basic method exploiting information from multiple channels of an image patch

is the usage of color histograms which estimate the frequency of a range of intensity

values in an image. They have been introduced firstly by [Swain and Ballard, 1991]

and since then have become a standard tool for image analysis. Thanks to their

simplicity and low computational complexity, color histograms are widely used in

the computer vision community.

Similar to the previously shown point feature methods, the reference color his-

tograms are stored in a FLANN tree structure [Muja and Lowe, 2009] for quick

search and retrieval. An important histogram parameter is the number of bins used

for quantization. Figure 5.9 shows results on this parameter and shows that the

re-identification performance for different partitioning schemes over a wide range

of bin numbers yields similar runs of the curves. For CAVIAR4REID and ETHZ,

higher numbers of bins lead to decreasing performance, PRID and VIPeR show

slight improvements in this case until reaching saturation. The maximum for VIPeR

is at 16 bins which can be explained by dataset characteristics. The VIPeR dataset

has a better color and spatial resolution compared to the other datasets which makes

it reasonable to apply a higher resolution of the histogram as well here, but the over-

all performance improvement by choosing 16 bins seems small. For the following

experiments, a value of 5 is thus taken, given that this value provides good results

for all datasets.

The histogram feature vectors are built in HSV color space which was found

favorable compared to other color spaces (descriptions of different color spaces can

be found e.g. in [Priese, 2015]). Experiments on color spaces are given in Table 5.1.

The results show clearly that for the re-identification task, HSV outperforms RGB
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Figure 5.9: Re-identification performance using color histograms, different partitioning

schemes (x× y) and a L1 norm for different numbers of histogram bins.
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and other color spaces.

In order to obtain the final feature vector, histograms from all channels are con-

catenated. This has the advantage that only one reference database for known per-

sons is needed while otherwise a database for every channel would be required. Es-

pecially for higher numbers of persons in the database, the speed-up for this method

is useful while no significant performance reduction was found according to [Stern-

harz, 2014].

A number of works (e.g. [Vadivel et al., 2003; Pele and Werman, 2010] have

focused on the best metric for histogram comparison. While bin-to-bin distances

such as Ln distances are dependent on the number of bins and can become less

discriminative for higher number of bins, they are still much faster to compute than

cross-bin distances such as e.g. the Earth-Mover’s distance [Monge, 1781; Rubner

et al., 2000] and are therefore advantageous for the proposed application.

Thus, for a fast and in most cases reliable comparison of feature vectors with a

number of stored models and in accordance with these previously mentioned find-

ings, the L1 norm (Manhattan distance) is used for ranking the different stored mod-

els against the query feature vector and obtain the individual scores and the final

person match. For future work, the inclusion of metrics such as e.g. [Pele and

Werman, 2009] could be possible in order to assess the recognition performance

improvement against a potentially higher run-time.

5.3.1 Partitioning Schemes for Color Histograms

Color histograms are especially suited for scenarios with good color saturation and

lighting conditions and their application can show difficulties under low resolution

and noise. In order to increase the re-identification performance, a partitioning

scheme as presented in Section 5.2.1 is used in this thesis. Similar to the previously

explained approach for point features, the region of interest is divided into a set of

overlapping areas, histograms are computed in these areas and concatenated. A final

matching score is obtained using a voting procedure over all partitions. The positive

effect of this partitioning is shown in Figure 5.9 where different colors represent

different partitioning schemes. In order to avoid issues due to bad segmentation, an

overlap of o = 0.5 is used as in the feature point-based methods.

The graphs show that there is no partition scheme which gives best results for all

datasets. Overall, a saturation is visible for the number of partitions. On VIPeR and
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Figure 5.10: Run-time for color histograms: train time for different partitioning schemes

PRID which generally show more distinctive colors and better resolution, the per-

formance increase by a more detailed partitioning is bigger than for CAVIAR4REID

and ETHZ. As a configuration suitable for most scenarios, in future experiments the

system will be configured with 13×15 partitions (overlap o = 0.5).

5.3.2 Run-time of Pedestrian Re-Identification Using Color His-

tograms

An important benefit of using color histograms is their computational efficiency.

Figures 5.10 and 5.11 show the run-times for the training and testing case for dif-

ferent partitioning schemes and bin numbers. Overall per-person training times for
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Figure 5.11: Run-time for color histograms: test time for different partitioning schemes
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suitable configurations are in the range of 3-10 milliseconds, common testing times

range from 10-25 milliseconds per person except for VIPeR where, again, the higher

number of samples in the database increases the time for a match to 15-40 millisec-

onds. These times are considerably lower than the counterparts using feature points

(Figures 5.7 and 5.8) which is an important advantage especially when considering

that multiple matches per frame might be necessary in an application case.

Run-times increase practically linearly with the number of bins because the run-

time of the metric used for comparison depends linearly on this parameter while

it has no significant effect on the quantization process, i.e. the creation of the his-

tograms. A more detailed partitioning scheme also increases the run-time but for

smaller bin numbers (e.g. values around 5), the difference appears less critical.

Using integral histograms [Porikli, 2005], it is even possible to reduce the com-

putation of histograms in rectangular regions of interest to a sum of four compo-

nents which makes the feature extraction even faster. However, integral histograms

are not used in this work. The main reason is that standard datasets for evaluation

already come with an annotation given either as bounding boxes around a person or

as the image file containing only the person. The advantage of integral histograms is

therefore limited compared to e.g. a whole frame in which several bounding boxes

around persons were to be evaluated. Additionally, persons in the datasets are usu-

ally given at a small scale which reduces the effort needed for computation of the

histogram in the respective area.

As a result, even for the case of using multiple overlapping partitions within the

region of interest, the advantage of an integral histogram seems of little importance

compared to the effort of building the integral histogram over the whole image.

However, for a possible future integration of the method into a tracker, integral

histograms may be useful. Considering a person track lost by the GM-PHD tracker,

the presented feature extraction could be used in order to find the person’s current

location in the image. As in this case different pixel positions would have to be

evaluated, integral histograms could speed up the extraction process considerably.

5.4 Region Covariance Descriptors

The region covariance descriptor was firstly presented in [Tuzel et al., 2006] and

can incorporate different feature cues in a given region of interest. For an image
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I(x,y), a d-dimensional F(x,y) = Φ(I,x,y,) can be defined as a general, pixel-wise

mapping of image features, e.g. position, color or intensity values, gradients and so

on:

F(x,y) = Φ(I,x,y,) =




z1

z2
...

zd




(5.4)

with zi as the individual pixel-wise image features mapped to the i-th channel of

the feature matrix F. From this feature representation, the region covariance matrix

CR for a given region R ⊂ F with n pixels in the image can be computed. This

matrix incorporates the variances of individual channels and is computed as

CR =
1

n−1

n

∑
k=1

(zk −µµµ)(zk −µµµ)T (5.5)

with µµµ as the mean vector of the points. The resulting CR is of dimension d ×d

and can be computed quickly using integral images [Tuzel et al., 2006].

Similar as for the color histogram, scores and final person matches are given by a

ranking according to a non-euclidean distance based on the generalized eigenvalues

of two covariance matrices [Förstner and Moonen, 1999]. This process and possible

issues which can occur for cases of singular covariance matrices will be explained

in the following paragraph. In this thesis, a novel pre-processing step is proposed

in order to enhance the metric to avoid these problems.

5.4.1 Metric for Region Covariance Descriptors

An important property of covariance matrices is that they do not lie in Euclidean

space. It is therefore necessary to apply a non-trivial metric for feature comparison.

In order to compute the distance between two covariance matrices C1,C2 of dimen-

sion d, Förstner et al. [Förstner and Moonen, 1999] proposed a metric based on

generalized eigenvalues:

d1(C1,C2) =

√√√√ d

∑
i=1

ln2(λi(C1,C2)) (5.6)
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with λi as the i-th generalized eigenvalue. The set of (λ1, . . . ,λd) is obtained by

solving the generalized eigenvalue problem

C1v =C2vΛ (5.7)

with

Λ =




λ1 0 . . . 0

0 λ2 . . . 0
... 0

. . .
...

0 . . . 0 λd



.

An intuitive explanation behind this metric is to compute to what extent an ellip-

soid represented by C1 must be shrinked or stretched in each dimension in order to

be mapped onto the ellipsoid given by C2. Another formulation of this metric for

covariance matrices has been proposed by [Palaio and Batista, 2008] and is based

on matrix exponential and logarithm:

d2(C1,C2) = tr(log2(

√
C

−1/2
1 C2 C

−1/2
1 )) (5.8)

with tr() as the trace of the resulting matrix.

Both of these metric formulations require full-rank matrices C1,C2 in order to

give meaningful results. While the logarithm and square root functions of a matrix

in Equation (5.8) require invertible matrices, the related generalized eigenvalue λi in

Equation (5.7) becomes 0 or approaches ∞ in case of a rank deficiency in C1 or C2,

respectively. ln2 in Equation (5.6) then causes the final distance to take intractably

large values (d1 → ∞).

However, rank-deficiency can appear easily in a covariance matrix. The more

dimensions are considered for the covariance feature, the higher the risk for a sin-

gularity in one of the matrices. A singularity is especially bad for evaluation of

pedestrian similarity when it occurs in the query matrix. In this case, all known per-

son models will be compared to a rank-deficient query matrix resulting in the same

distance regardless of the stored candidate for comparison and a certain amount of

randomness is introduced into the evaluation. In an ideal case, there should be small

differences in the assigned metric values between several candidates, in order to ob-
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Figure 5.12: Influence of α parameter (weight of identity matrix) for generalized eigen-

value metric (red: [Förstner and Moonen, 1999], blue: proposed enhancement) using 1.000

runs with random matrices. Varying α leads to significantly different metric values but there

is no general rule on how this parameter should be chosen. The proposed method ensures

a full rank of the covariance matrix, thus does not need α and gives always reproducible

results.

tain a systematic assignment in the evaluation. In case of rank deficiency, such a

ranking is impeded because of infinite values in the metric.

In order to avoid such behaviour, Tuzel et al. proposed in [Tuzel et al., 2007] to

add a low-weighted identity matrix I to the computed covariance matrix:

Ĉ1 =C1 +α · I,α ∈ R (5.9)

This may be suitable in some use cases but poses a number of questions. It is

e.g. unclear if α · I should always be added or only in cases of rank deficiency. In

the latter case, the singularity level needs to be defined but it is not sure when a case

is severely enough to add this term. It is also undefined if α should be chosen as a

constant value or changing in order to avoid a certain numerical singularity level. In

certain cases, it might even be necessary to perform an iterative check, i.e. adding

the term and checking for singularity and adding it again, if needed.

As a strong disadvantage of this remedy, the additive term effectively changes the

feature vectors and it might be necessary to decide from case to case on the weight
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for the identity matrix. The influence of α is illustrated in Figure 5.12 (red line)

where the baseline metric [Förstner and Moonen, 1999] (Equation (5.6)) is used in

an experiment of a comparison between two random 10× 10 covariance matrices,

one of which is singular. The metric value changes considerably depending on the

value chosen for α . Results are averaged over 1.000 runs.

In this thesis, a different way is taken in order to avoid the aforementioned rank

issues. By removing collinear rows in the comparison candidates, a full rank for the

feature matrices can be ensured.

Algorithm 1 Scheme for feature relation-preserving full-rank reduction
1: procedure REDUCE(C1,C2)

2: removedDims1 ← {}, removedDims2 ← {}

3: C1,reduced ← [ ], C2,reduced ← [ ]

4: i ← 0

5: while (i < rows(C1)) do

6: A1 ←
[

C1,reduced

row(C1, i)

]

7: if hasFullRank(A1) then C1reduced ← A1

8: else

9: push_back(removedDims1, i)

10: i ← i+1

11: i ← 0

12: while (i < rows(C2)) do

13: A2 ←
[

C2,reduced

row(C2, i)

]

14: if hasFullRank(A2) then C2reduced ← A2

15: else

16: push_back(removedDims2, i)

17: i ← i+1

18: if removedDims2 6= removedDims1 then

19: removeDims(C1,reduced ,removedDims2)

20: removeDims(C2,reduced ,removedDims1)

21: ensureQuadraticForm(C1,reduced ,removedDims1)

22: ensureQuadraticForm(C2,reduced ,removedDims2)

Algorithm 1 shows the proposed enhancement in the metric used for comparison

of region covariance features. Its main idea is to identify rows leading to singularity

(i.e. collinear rows) and to remove them from both of the matrices to be compared.

The removal from both matrices is crucial in order to not compare different feature

types, i.e. (co-)variances of the pixel x position in C1 with (co-)variances of the x

gradient in C2. The proposed algorithm works in an iterative manner and system-

atically builds full-rank matrices C1,reduced,C2,reduced by adding row after row and

keeping track of the row indices which have been sorted out due to collinearity. As
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a final step, the corresponding columns for every removed row are deleted, in order

to ensure a quadratic form of the result matrix.

For the following example, collinearity will be symbolized by ||, i.e. for two

vectors v1,v2, v1||v2 → v1 = a ·v2, with a ∈ R.

In the case of two matrices C1 and C2 of dimension 5×5 being compared,

C1 =




r1,1

r1,2

r1,3

r1,4

r1,5




=




c1,11 c1,12 . . . . . . . . .

c1,21 c1,22 . . . . . . . . .
...

...
. . . . . . . . .

...
...

...
. . . . . .

c1,51 c1,52 c1,53 c1,54 c1,55




C2 =




r2,1

r2,2

r2,3

r2,4

r2,5




=




c2,11 c2,12 . . . . . . . . .

c2,21 c2,22 . . . . . . . . .
...

...
. . . . . . . . .

...
...

...
. . . . . .

c2,51 c2,52 c2,53 c2,54 c2,55



.

Assuming r1,1||r1,3 and r2,2||r2,4 leads to the removal of r1,3 and r2,4 and accord-

ingly also r2,3 and r1,4. After the proposed reduction step the resulting full-rank

matrices thus become

C1,reduced =




c1,11 c1,12 c1,15

c1,21 c1,22 c1,25

c1,51 c1,52 c1,55


 , C2,reduced =




c2,11 c2,12 c2,15

c2,21 c2,22 c2,25

c2,51 c2,52 c2,55




and the metric value can be computed accordingly to Equation (5.6) or Equa-

tion (5.8). As mentioned before, this procedure removes effectively the dependency

of an undesired additional parameter α and behaves predictable as shown in Fig-

ure 5.12 (blue line).

5.4.2 Feature Configuration for Region Covariance

Region covariance, as proposed in the baseline paper [Tuzel et al., 2006] for track-

ing applications, uses a feature vector comprising x- and y-coordinate, RGB val-

ues and the magnitudes of first and second order gray-scale x / y derivatives. In
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[Bak et al., 2010], for their work on person re-identification, the authors propose a

11-dimensional feature vector composed by x- and y-coordinate, intensity values,

gradient magnitude and orientation, all of the latter in R, G and B channel. It is

therefore that the first experiments for region covariance conducted in this thesis

focus on the configuration of the feature vector and the choice of a suitable parti-

tioning scheme.

Results shown in Figures 5.13 to 5.16 indicate that the choice of the best feature

vector is not only related to the dataset used in the evaluation, but also depends to a

certain degree on the partitioning scheme used. The approach by [Tuzel et al., 2006]

uses a custom partitioning scheme composed of 5 regions: the full region, and left

/ right / upper and lower half, respectively. Consequently, in the plots, the related

curve is a line because the results are not varied over the number of x / y partitions.

Figures 5.13 to 5.16 show an evolution from smaller feature vectors to the one

which is proposed in this thesis (14×14 dimensions):

F =
{

Ic,Y, |Ic
x | ,

∣∣Ic
y

∣∣ ,θ c, Igray
xy

}
, ∀c ∈ {1,2,3} (5.10)

with

X/Y (position of pixel)

Igray/Ic (intensity)∣∣∣Igray

x/y

∣∣∣/
∣∣∣Ic

x/y

∣∣∣ (magnitude of image gradient)

θ gray/θ c (gradient orientation)∣∣∣Igray

xx/yy/xy

∣∣∣/
∣∣∣Ic

xx/yy/xy

∣∣∣ (magnitude of 2nd order derivatives)

and gray,c indicating grayscale and individual channels’ values, respectively. The

plots show a general, slight improvement with additional cues in this feature vector.

In the experiments, it turned out that this feature vector gives especially good

results when used in HSV color space. Related experiments are given in Table 5.2.

As with the previously described feature vectors, the re-identification perfor-

mance increases generally with more detailed partition schemes. However, this

effect appears to be less important compared to feature point descriptors or color

histograms.

While the plots in Figures 5.13 to 5.16 generally indicate that the configurations

proposed in [Tuzel et al., 2006] and [Bak et al., 2010] can be improved by using

other features, the possible gain depends largely on the number of partitions. With
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Dataset RGB HSV XYZ Lab YCrCb

CAVIAR4REID ROC-AUC 0.756 0.757 0.756 0.752 0.756

CMC-AUC 0.626 0.633 0.628 0.596 0.595

ETHZ 0.825 0.827 0.830 0.813 0.820

0.801 0.806 0.782 0.795 0.784

VIPeR 0.755 0.767 0.757 0.753 0.757

0.598 0.601 0.603 0.632 0.602

PRID 0.754 0.767 0.769 0.762 0.752

0.563 0.532 0.595 0.577 0.547

average 0.773 0.780 0.778 0.770 0.771

0.647 0.643 0.652 0.650 0.632

Table 5.2: Area under ROC / CMC for the proposed feature vector on different color spaces

(2×3 partitions). Although differences are small on this non-optimal partitioning scheme,

results on RGB are worse than e.g. on HSV or XYZ.

increasing number of x and y partitions, the re-identification performance improves

but it is to be mentioned that this comes at a cost of linearly rising run-time. The

reason is that due to the special metrics used for comparison of region covariance,

no efficient data structure for feature retrieval (such as e.g. the FLANN tree used

for point features and color histograms) can be used and thus a 1:1 comparison

between the query feature and all candidates is required. With an increasing number

of partitions, this effort rises linearly. It should be mentioned that theoretically, the

matching process could be parallelized, i.e. an individual thread could be used for

each matching candidate. In this case, a linear speed-up by the number of parallel

threads could be reached but such an approach has not been implemented for this

thesis.

As an additional worsening point, the metric used for comparison is computa-

tionally much more expensive than e.g. a L1 norm used for color histograms or

point features and the run-time increases with bigger feature vectors. These two

points add up to a much higher computational load of region covariance compared

to the previously shown point features and color histograms.

Consequently, the evaluation regarding the best suitable partitioning scheme for

region covariance in a tracking framework must be a trade-off in terms of recogni-

tion accuracy and computational complexity.

Assuming an average gallery size of 100 person candidates in an application and

the requirement of an approximate matching time of 0.1 seconds, CAVIAR4REID

(72 candidate images) and ETHZ (120 candidate images) are the most relevant
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datasets for an application use case and 2×3 is a suitable partitioning scheme.

5.5 Multi-Feature Person re-Identification Framework

In the previous sections, different approaches for person re-identification have been

shown and suitable configurations have been identified. While many performance

assessments using ROC-AUC for the individual methods have already been shown

in the last sections, Figure 5.17 shows a CMC plot for them. The CMC measure is

used here because it represents a standard and well-known performance assessment

for 1:N matchers and also allows a very intuitive understanding of the system’s

performance.

In Figure 5.17, it is visible that none of the previously described features ranks

best over all datasets. Feature points (SURF) generally show very good perfor-

mance compared to region covariance and color histograms but for VIPeR, their

performance is at least for galleries of less than 200 candidates the worst among all

methods.

It is therefore intuitive to search for information fusion strategies for the different

methods in order to combine their strengths and obtain better results than the indi-

vidual methods. The presented single-feature re-identification algorithms used are

at least partially complementary and different strategies can be exploited for their

fusion. With a set of individual matchers {M1 . . .Mi} returning result scores si,n for

a query sample q and each of the N gallery candidates c1 . . .cN , the following fusion

strategies have been implemented and tested:

• Max value fusion: The individual result scores si,n from each method are

normalized to ŝi,n in order to lie in the same value range and the maximal

value over the individual matching scores and all gallery candidates is chosen

as the final score:

s f inal(q) = max
n=1...N

max
∀i

ŝi,n(q).

The related id is returned as the final re-identification result.

• Additive average fusion: The individual result scores from each method are

fused by an additive averaging step. The maximal value / id pair is chosen as
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Figure 5.13: Area under normalized ROC and related run-time for region covariance and

different feature configurations (CAVIAR4REID). Top row: 1 x-partition, centre row: 2

x-partitions, bottom row: 3 x-partitions.
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Figure 5.14: Area under normalized ROC and related run-time for region covariance and

different feature configurations (ETHZ). Top row: 1 x-partition, centre row: 2 x-partitions,

bottom row: 3 x-partitions.
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Figure 5.15: Area under normalized ROC and related run-time for region covariance and

different feature configurations (VIPeR). Top row: 1 x-partition, centre row: 2 x-partitions,

bottom row: 3 x-partitions.
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Figure 5.16: Area under normalized ROC and related run-time for region covariance and

different feature configurations (PRID). Top row: 1 x-partition, centre row: 2 x-partitions,

bottom row: 3 x-partitions.
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Figure 5.17: Cumulative matching characteristic for single descriptors and proposed ap-

proach using multiple descriptors.
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the final re-identification result:

s f inal(q) = max
n=1...N

∑
∀i

si(q).

• Multiplicative average fusion: The individual result scores from each method

are fused by a multiplicative averaging step. The maximal value / id pair is

chosen as the final re-identification result:

s f inal(q) = max
n=1...N

∏
∀i

si(q).

• Iterative removal fusion: The individual methods are combined hierarchi-

cally. For every matcher, a given percentage of the lowest scores is removed

from the candidate set. In the last step, the best-matching candidate among

all remaining is selected according to an additive average fusion.

• Iterative thresholding fusion: The individual methods are combined hier-

archically. For every matcher, scores below a given threshold t are removed

from the candidate set. In the last step, the best-matching candidate among

all remaining is selected according to an additive average fusion.

• Accumulative weight fusion: The individual methods are combined hierar-

chically. For every matcher, the best scores are summed until reaching a given

weight (survival weight). All other candidates are removed. In the last step,

the best-matching candidate among all remaining is selected according to an

additive average fusion.

The different strategies can be classified as greedy and non-greedy fusion ap-

proaches. Greedy strategies sort out candidates performing bad in one re-id step

and deny them to be considered in further steps. Non-greedy approaches allow all

candidates to be considered in the final step, regardless of their scores in previous

re-id steps.

As an additional measure known from machine learning literature, a score nor-

malization (labeled "norm" in the graphs) between the different methods has been

implemented. In order to map the score ranges and distributions of all individual

person descriptors onto a common space, vector unity x′ = x
‖x‖ is used for normal-

ization.
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Figure 5.18: Cumulative matching characteristic (CMC) for exemplary non-greedy fusion

approaches. Numerical differences for similar curves shown in Table 5.3.

194



CHAPTER 5.5: Multi-Feature Person re-Identification Framework

Results for the non-greedy strategies are presented in Figure 5.18. Obviously,

max fusion is not a good option because in all datasets, the identification probability

does not exceed significantly the performance for a random guess. This explains by

the very diverse score distributions among the different base methods. Especially

region covariance computes a distance measure in a logarithmic space and despite a

normalization approach in order to map the similarity scores of different re-id steps

onto a common interval, the values appear to be too different.

Multiplicative averaging obtains worse results compared to additive averaging.

Again, this can be explained by the complementarity of the feature descriptors and

thus inhomogeneity of the scores of the individual base methods for the same query

samples. Therefore, if e.g. one score is low and two are higher, an additive fusion

does not penalize the lower score as much as a multiplicative one and correct can-

didates getting a bad ranking in the first feature matcher steps can catch up in the

later ones. In contrast, additive fusion improves the system’s robustness against an

outlier from a single matcher. For better readability, Table 5.3 gives numerical re-

sults on the experiment and also shows the slight improvement by the normalization

approach.

Figure 5.19 indicates results for greedy strategies. The results support the previ-

ous conclusions about inhomogeneity in the individual features’ similarity scores.

It is well visible from the graphs that the iterative removal of candidates after every

feature step does not improve the overall re-identification performance. Regardless

of removing a certain percentage of bad candidates in every step or e.g. threshold-

ing the ones with low scores, a simple averaging scheme obtains far better results

than the greedy schemes. The performance decreases with increasing number of

candidates removed, i.e. with an increasing level of greediness.

Numerical results (CMC-AUC) in Table 5.3 support the conclusions drawn and

show the details more precisely. Again, the results support the finding that the re-

moval of bad candidates in an iterative scheme gives worse results than maintaining

all potential matching candidates over all feature steps. The higher the number of

candidates removed in individual steps (i.e. higher parameters in "thresh" / "iter

removal" or lower percentages in "survival weight"), the lower is generally the per-

formance.

For easy performance comparison of the data fusion from different feature de-

scriptors, Figure 5.17 shows a CMC plot of the individual re-identification steps
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CAVIAR4REID ETHZ VIPeR PRID average

avg* 0.771 0.954 0.660 0.715 0.775

avg+ 0.768 0.940 0.691 0.724 0.781

avg+, norm 0.771 0.945 0.693 0.723 0.783

max fusion 0.503 0.583 0.571 0.486 0.536

thresh(0.002), avg+ 0.635 0.811 0.555 0.521 0.631

thresh(0.005), avg+ 0.639 0.799 0.508 0.506 0.613

thresh(0.01), avg+ 0.625 0.756 0.501 0.513 0.599

thresh(0.015), avg+ 0.624 0.712 0.501 0.502 0.585

thresh(0.02), avg+ 0.603 0.658 0.501 0.502 0.566

survival weight 0.9 0.638 0.855 0.597 0.626 0.679

survival weight 0.95 0.683 0.891 0.622 0.65 0.711

survival weight 0.98 0.727 0.909 0.636 0.68 0.738

survival weight 0.99 0.75 0.94 0.641 0.695 0.756

0.001 iter removal 0.769 0.94 0.69 0.725 0.781

0.01 iter removal 0.769 0.94 0.676 0.721 0.777

0.05 iter removal 0.754 0.928 0.652 0.689 0.756

0.1 iter removal 0.743 0.915 0.644 0.685 0.747

0.15 iter removal 0.73 0.914 0.643 0.657 0.736

ColorHist 0.71 0.857 0.642 0.598 0.702

SURF 0.749 0.946 0.61 0.709 0.754

RegCov 2x3 0.633 0.806 0.601 0.532 0.643

Table 5.3: Results of different fusion schemes on the test datasets based on area under CMC

curve (CMC-AUC; "thresh(t), avg+": iterative thresholding, "survival weight w": accumu-

lative weight fusion, "iter removal": Iterative removal fusion, additive average "avg+" for

comparison). Baseline descriptors given for reference.
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Figure 5.19: Cumulative matching characteristic for exemplary greedy fusion approaches

("thresh(t), avg+": iterative thresholding, "survival weight w": accumulative weight fusion,

"iter removal": Iterative removal fusion, additive average "avg+" for comparison). Numeri-

cal values given in Table 5.3.
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and their combination in the fused method. It is visible that the fusion enhances

the results considerably on all datasets, however, a feature point-based approach

("SURF") can also show good performance in some cases. Depending on the ap-

plication case, it is therefore worth considering either a rather simple feature point

re-identification step or the more complex but also more powerful fusion found in

this thesis.

Considering the run-time of the fusion methods, it can generally be said that the

influence of the fusion scheme is small compared to the individual computational

complexities. Therefore, keeping in mind the rather high computational demand for

region covariance in comparison to point features and color histograms, the region

covariance influence dominates the overall run-time.

5.6 Conclusion

In this chapter, the application case of pedestrian re-identification for tracking use

cases has been analyzed. The main contributions include

• The development of guidelines regarding the system design for potential use

cases in tracking applications.

• A thorough analysis of three basic pedestrian re-identification methods which

have been tested and evaluated on four different datasets.

• The investigation of suitable parametrizations of the different re-identification

methods, including the usage of partitioning schemes for performance en-

hancements.

• The identification of potential rank issues in the metric for region covariance

matrices and the development of a pre-processing step in order to remove

collinear rows in the matrices and to ensure their full rank.

• The development of fusion strategies for single-feature matchers and their

comparison in a detailed analysis which results in a proposal for a multi-

feature pedestrian re-identification system for tracking applications.

Three baseline feature descriptors for pedestrian re-identification have been ex-

tensively assessed and compared on four different datasets. It has been found that
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for single-cue methods especially feature point-based approaches combine high per-

formance and acceptable run-time. Color histograms are a simple and fast method

which shows acceptable results with very little computational complexity. Region

covariance approaches, however, suffer from their high computational demands and

have thus to be parametrized with very small partitioning schemes for tracking con-

texts. With these restrictions, their re-identification performance decreases signifi-

cantly.

In order to further enhance the re-identification performance, fusion strategies

have been developed and tested in this work. These include greedy and non-greedy

approaches. Greedy methods generally have lower performance because they re-

strict the number of candidates in each feature descriptor step, and due to the com-

plementarity of the different base descriptors, this fusion approach has been proven

less powerful than non-greedy approaches. Best results have been obtained using

vector unity normalization and the non-greedy additive averaging scheme.

Opportunities for future work are especially in the efficient application of the

findings to a tracking process. In order to further reduce the run-time, this could

include e.g. the usage of integral images for color histograms or region covariance

and a multi-threading implementation on descriptor and partition level. Additional

work could be done for the efficient retrieval of a given descriptor in an image

region.
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Chapter 6

Conclusions and Outlook

THE objective of this thesis was to investigate the usage of tracking-by-detection

methods for the task of pedestrian tracking in video surveillance scenarios.

While in the current literature especially visual trackers are very popular, tracking-

by-detection algorithms for multi-target tracking have been proposed and refined

especially in the radar / sonar tracking community which is a very different environ-

ment compared to camera-based computer vision and has fundamentally different

requirements.

In this thesis, the Gaussian mixture probability hypothesis density (GM-PHD)

filter has been used as a popular example for tracking-by-detection filters which

has a low computational complexity and can be used for arbitrary objects as long

as they can be detected in a designated object detection step. For the GM-PHD

filter, a thorough analysis has been performed in order to assess its performance for

pedestrian tracking in surveillance contexts. Due to the fact that reliable pedestrian

detection in arbitrary scenarios is still an open area of research, a major weakness of

the GM-PHD filter has been found in its requirement for very high detection rates

which has been justified by an analysis of its theoretical foundations.

In order to tackle the problem of low detection probabilities, this work proposes

different remedies for various application scenarios both for the detection and the

tracking part of the system. For the integration of further image information into the

proposed tracking-by-detection framework, the thesis provides an in-depth evalua-

tion of three fast feature extraction methods for person re-identification which en-

ables the future integration of image cues into the framework and will likely give an

additional performance boost.
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The following sections present the achievements, the drawable conclusions and

potential future research topics of this thesis.

6.1 Achievements

After a detailed introduction of single- and multi-target tracking algorithms and

their mathematical foundations, a first achievement of this thesis is the development

of a flexible tracking-by-detection framework for multi-person tracking in video

surveillance contexts. The framework is modular and capable of using different

pedestrian detectors as well as both pointwise detections and detections with regions

of interest. With a GM-PHD filter as the main tracking component, the system is

fast and can be applied to virtually any object class with an appropriate detection

method. Table 3.2 shows that its performance is on a good level compared to other

tracking approaches.

Secondly, the detector side of the framework is addressed by proposing a para-

metrization using local crowd density maps and geometric correction filters. Pedes-

trian detectors require the setting of suitable parameters such as the detection thresh-

old beforehand. This is especially challenging in scenarios with medium or dense

crowds where occlusion inhibits a good detection performance. This thesis pro-

poses a method of dynamically parametrizing the detector based on estimates of

local crowd density. Compared to the baseline method, this approach performs bet-

ter in terms of detection accuracy and is more flexible with temporarily changing

crowd densities in the scene. An additional advantage is proposed by using geomet-

rical correction filters which use constraints on the size or aspect ratio of detections

which are inherent to the scene characteristics. The filters learn a scene model in

a greedy fashion based on previously received detections and are not restricted for

use with a certain pedestrian detector.

On the tracker side, another improvement is proposed by feature-based label

trees which extend baseline label trees with visual information cues. When two

tracked pedestrians approach or their paths even cross each other, a purely detection-

based tracker has difficulties to maintain track labels. It is shown how this problem

can be reduced by using image information which allows distinguishing state hy-

potheses according to visual information cues. The improvement by feature-based

label trees has been shown both in a simulation and on practical examples.
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The fourth advancement in this thesis is a novel step for integrating multiple

pedestrian detectors into the GM-PHD filter framework. A theoretical analysis of

the baseline approach led to the conclusion that the iterated-corrector step is not

suitable for visual pedestrian trackers. Important drawbacks are its inherent need

for very high detection rates which are not given in this field of application and,

consequently, a performance dependency from the sensor order. This thesis pro-

poses a remedy using an additive update step which both removes the sensor-order

dependency and yields better results.

As a fifth contribution of this thesis, a thorough analysis of the GM-PHD filter

regarding false negative detections is performed and the concept of a critical path

of missed detections is introduced in order to mathematically describe the risk of

tracking failure. These theoretical foundations are used in order to motivate an in-

troduction of motion cues using an active post-detection filter which is the sixth

improvement made by this thesis. This concept can be applied to both pointwise

and region of interest-based detections. The active post-detection filter is sensor-

independent and can even be used on 3rd party detectors without access to the de-

tector code. It has been tested on different datasets and shows high improvements

both for detection and tracking.

In order to enable future integration of further image cues into the proposed

tracking-by-detection framework, the next contribution is an in-depth evaluation of

runtime-efficient person re-identification methods and their parametrization. Three

methods based on point features, color histograms and region covariance and the ap-

plication of partition schemes for performance improvements are assessed on four

different datasets. In order to combine these different approaches into a more pow-

erful re-identification method, different greedy and non-greedy fusion strategies are

exploited and tested, thus yielding a multi-cue system which performs better than

the single-cue methods on a variety of datasets.

Within these experiments, the last improvement proposed by this thesis is an

enhanced scheme for comparison of region covariance features. The baseline metric

suffers from potential rank issues in the covariance feature. The proposed extension

removes collinear rows from the feature matrix while respecting the feature order

in the two matrices for comparison. It therefore ensures a proper comparison and

reduces bad metric results by rank issues.
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6.2 Conclusions

The GM-PHD pedestrian tracking-by-detection framework developed in this the-

sis has proven its potential as a modular, flexible pedestrian tracker with differ-

ent enhancements in order to deal with lower detection probabilities in the video

surveillance domain. It has been shown that with an open implementation of the

deformable parts model (DPM) detector, good tracking results can be obtained and

that different enhancements allow to increase the detection and tracking perfor-

mance additionally.

Pedestrian detection in denser crowds is still an area of active research and far

from being solved. The adaptive correction filters proposed in this work have

been shown to contribute to a higher detection performance by removing detections

which are likely to be incorrect. A dynamic parametrization based on geometric

correction filters for size and aspect ratio and estimation of the local crowd density

can significantly reduce the number of outliers and also allows for correct detec-

tions which otherwise would have been eliminated by the non-maxima suppression

in standard object detectors.

For the tracking of close objects, the GM-PHD filter has been extended with

visual features which help maintaining the correct labels for tracks in ambiguous

situations, such as crossing of targets. However, it can be said that, despite these

improvements, even with this extension the plain vanilla GM-PHD filter still suffers

from the lower object detection probability in visual tracking scenarios. In this

work, this has been theoretically justified by a sensitivity analysis of the GM-PHD

filter with regard to missed detections. Especially the proposed concept of a critical

path helps to understand intuitively where the problem arises.

The first improvement in order to deal with the aforementioned lower object de-

tection probabilities involves the combination of multiple object detection methods.

If applicable in the respective application case, this approach has been shown to

improve the tracking performance significantly. Due to the data fusion from two

detectors, complementary information can be used which would not be available

with only one detector. Especially the replacement of the iterative corrector step by

an additive one which has been proposed in this work is a major step towards better

performance for surveillance scenarios with lower detection probabilities.

As in some scenarios, only one object detector may be available or the com-
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putational load of using two detectors may be undesired, the usage of active post-

detection filters in this work has been theoretically motivated and shows very promis-

ing results. Compared to the baseline system and a passive filter using hysteresis

thresholding, the active filter performs significantly better and adds only a small

additional effort for computation of local optical flow. The developed concept sup-

ports on-line and real-time processing and can easily be realized for different object

types and detection algorithms.

Further work in this thesis lays the foundations for introducing new visual cues

into the tracking framework. By assessing a number of low-level re-identification

methods for the pedestrian case, it has been found that apart from color histograms,

especially feature point descriptors such as SURF can be used for describing a per-

son’s appearance in a fast and reliable manner. In comparison, region covariance

descriptors are more demanding in computational terms and are thus less suitable

for visual tracking. All of the mentioned approaches can be parametrized with par-

titioning schemes which improve their re-identification performance but also lead

to a higher run-time.

Additionally, the application of region covariance has been shown to suffer from

the risk of potential rank issues, leading to problems in the respective metric. This

work proposes a remedy by removing collinear rows in order to ensure full rank

in the matrices but, unfortunately, this step increases the computational load for

region covariance even more. If run-time is less of an issue, region covariance

can still be used as it generally gives good re-identification results. However, in

this case especially a fusion of different feature descriptors should be taken into

account which supports the usage of complementary information in the descriptors

and achieves best performance on a variety of datasets.

6.3 Outlook

Within the course of this work, some ideas could not be realized and shall be

highlighted in order to direct further research in the future: Regarding the afore-

mentioned sensitivity against false negative detections, it would be interesting to

perform detailed analyses for comparison with other trackers such as e.g. multi-

hypothesis tracking (MHT). The GM-PHD filter which has been used as an example

in this thesis is a modern, generalizable and popular tracking-by-detection example
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but its sensitivity still might differ in some points from other approaches.

With the rise of new pedestrian detectors, e.g. methods based on convolutional

neural networks (CNNs), new options are available in order to tune the detection

part of the framework. In this thesis, the popular DPM method has been chosen

because it is openly available both in MATLAB and C++ implementations. CNN

approaches require high-end graphics processors and their re-implementation from

a publication takes a lot of specialized machine learning know-how in order to tune

the parameters to a given dataset. While this was the reason they have not been

regarded in this work, it would be interesting to see e.g. results of the dynamic

thresholding according to crowd density for such approaches.

The tests on different person re-identification methods performed within this the-

sis are detailed and allow for the design of a system exploiting such information

cues in order to enable e.g. cross-camera tracking or re-identify lost tracks. Due

to time constraints, within the work of this thesis only standard re-identification

datasets have been used and no final integration into the tracking framework has

been done. Such an implementation of person re-identification methods within the

tracking framework would yield opportunities to both improve the system’s perfor-

mance by improving the quality of the tracks and to address new applications such

as cross-camera tracking or loitering detection which could be subject to future

work.
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Datasets

A.1 Datasets and Videos Used for Person Detection

A.1.1 PETS 2009

The PETS 2009 dataset [Ferryman and Shahrokni, 2009] has been published and

used for the 11th IEEE International Workshop on Performance Evaluation of Track-

ing and Surveillance (PETS 2009). Since then it has been the basis for evaluation

and competitions in this workshop and numerous publications. It comprises multi-

ple views recorded on campus at University of Reading, UK. While some sequences

are recorded for evaluation of tracking purposes, it also provides sequences for per-

son count and crowd density estimation, flow analysis and event recognition. Person

sizes differ due to the camera view between approx. 30 and 150 pixels height.

For person detection in crowds only the first view (768× 576 pixels) has been

used and two video sequences ("S1.L1 13.57", "S1.L1 13.59") with 220 and 241

frames respectively were annotated manually. Example frames of these sequences

can be found in Figure A.1 (top).

A.1.2 INRIA 879-42_I

This video is part of the Data-driven Crowd Analysis Dataset described in [Ro-

driguez et al., 2011b] released in collaboration with the Institut national de recherche

en informatique et en automatique (INRIA). It shows a scene where a dense group

of pedestrians passes walking in one direction while a single person goes in the

opposite direction. The scene is recorded at 480× 360 pixels from an almost ver-
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Figure A.1: Exemplary frames of the PETS 2009 dataset (left: crowd sequence, right:

tracking sequence).

Figure A.2: Left: Exemplary frame of the INRIA 879-42_I video. The high number of per-

sons and the unusual camera perspective make it a very hard video for pedestrian detection.

Right: Exemplary frame of the UCF 879_38 video. Due to a high number of overlapping

people, pedestrian detection is also relatively difficult for this video.

tical camera perspective which makes it challenging for usual pedestrian detectors.

Pedestrians are perceived at a height of approximately 100-120 pixels. A sample

frame is shown in Figure A.2 (left). The detection experiments focus on the first

430 frames of this sequence and discard the following empty frames.

A.1.3 UCF 879-38

This video is taken from the UCF crowd segmentation dataset [Ali and Shah, 2007]

and has a resolution of 720×480 pixels. All the videos from this dataset show high

density moving objects. The video shows a public plaza with many pedestrians

walking in all directions, approaching and avoiding collision with each other. De-
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Figure A.3: Exemplary frames of MOT 17 videos. The videos vary largely in terms of

crowd density, scene content and camera motion.

spite a rather high resolution (a single pedestrian has a height from approximately

150 to 190 pixels), the video is very challenging due to a rather steep camera view, a

very high crowd density and many occlusions. A manual annotation for the first 200

frames has been conducted as no official ground truth was available. An exemplary

frame is shown in Figure A.2 (right).

A.2 Datasets Used for Tracking

A.2.1 MOT17 Tracking Benchmark

MOT17 [Milan et al., 2016] is a public1 benchmark for multiple-object tracking. It

consists of a training and a test set, each composed of 21 videos with pedestrians

in various scenarios. Detections are provided for three pedestrian detectors. The

resolution of the videos is VGA (640× 480) or Full HD (1080× 1920). Trackers

can be parametrized using the test data with ground truth available and benchmark

results are obtained by uploading the tracking results on the test set onto a test server

which evaluates the results and provides scores such as MOTA, MOTP and so on.

The videos are highly challenging as they are very heterogeneous and it is expected

to find a common parametrization for a tracker to be benchmarked. Additionally,

1download from ❤tt♣s✿✴✴♠♦t❝❤❛❧❧❡♥❣❡✳♥❡t✴❞❛t❛✴▼❖❚✶✼✴
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Figure A.4: Exemplary frames of the UA-DETRAC dataset.

many videos have been recorded with a moving camera, e.g. from cars or robot

platforms which is a problem for trackers based on an internal motion model. Con-

sequently, in this thesis, the benchmark is only used for a general validation of the

system but more suitable videos have been chosen for detailed evaluation.

A.2.2 UA-DETRAC Vehicle Tracking Benchmark

The University at Albany DETection and tRACking (UA-DETRAC) benchmark

dataset [Wen et al., 2015] is a public2 real-world multi-object detection and multi-

object tracking benchmark. The dataset has been captured at 24 different locations

in China and comprises 10 hours of videos recorded using a digital single-lens re-

flex (DSLR) camera. Videos are of 960× 540 pixels resolution and captured at

25 frames per second (fps). In total, 8520 vehicles have been annotated manually,

leading to over 1.2 million labeled bounding boxes in the videos which have been

categorized into the three levels "Easy", "Medium", and "Hard". The "Beginner"

challenge requires participants to submit results for 10 test videos marked as "easy"

while the "Experienced" set contains 30 videos labeled as "Medium" or "Hard". The

dataset has been the basis for a tracking benchmark at IEEE AVSS 2017 conference.

After using the ground truth provided for some training sequences for parametriza-

tion of the tracker, evaluation is done by uploading the results onto a test server,

where the tracking scores are computed using the test set ground truth (unknown to

the participants). The most important evaluation measures used comprise the rather

uncommon PR-MOTA / PR-MOTP curves which are constructed by firstly varying

the detection threshold and thus obtaining the related PR-curve (Precision-Recall-

curve) for the object detector.

2download from ❤tt♣✿✴✴❞❡tr❛❝✲❞❜✳r✐t✳❛❧❜❛♥②✳❡❞✉✴
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Figure A.5: Exemplary frames of the TUB Walk video sequence recorded at Technische

Universität Berlin. Video characteristics are a traditional surveillance camera view from

high altitude and a semi-dense scene.

The tracker is then executed for ten sample points on this curve, yielding the

respective tracking results. Finally, the MOTA/MOTP values for these points are

computed and the area under the curve (AUC) is computed by interpolation. Details

on the computation can be found in [Wen et al., 2015].

Due to the nature of the tracked objects and the uncommon metric, the dataset is

only used for a general validation of the system but more suitable videos have been

chosen for detailed evaluation.

A.2.3 PETS 2009 (Tracking)

The PETS 2009 dataset mentioned in Appendix A.1.1 for crowd applications also

contains a suitable video for object tracking applications. Therefore, for the se-

quence "S2.L1 12.34", head positions have been annotated manually for all per-

sons visible (for pointwise detections) and body bounding boxes have been obtained

from Multiple Object Tracking (MOT) 2015 benchmark [Leal-Taixé et al., 2015],

respectively. An example frame of this video can be seen in Figure A.1 (right). The

video contains 795 frames at a frame rate of approx. 6-7 frames per second (fps).

A.2.4 TUB Walk

The TUB Walk sequence has been recorded on the campus of Technische Univer-

sität Berlin (TUB) with the aim of creating a new video which meets typical con-

ditions for CCTV applications in real life. While the camera in this sequence is at
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Figure A.6: Exemplary frames of the TownCentre video sequence. Video characteristics

are an over-head mounted surveillance camera view in an average-dense scenery.

overhead height (approx. 10 meters) with a down-tilt view typical for video surveil-

lance, it gives a frame size of 800× 600 pixels with rather low contrast and low

color resolution. The scene recorded is a pedestrian way on TUB campus where

mostly pedestrians and bikers are perceived. For this sequence, the heads of the

persons in the bottom region of the scene have been manually annotated for evalua-

tion in 10400 video frames. The person size is generally small (between 32 and 64

pixels height), it should also be noted that due to the camera view, persons far from

the camera appear much smaller than the ones near the camera. Exemplary frames

of this video can be found in Figure A.5.

A.2.5 TownCentre Dataset

The TownCentre dataset has been published in [Benfold and Reid, 2011] and is

available on the website3 of the University of Oxford. It contains a real-life video

sequence of 4500 frames recorded in a busy town centre street. The video data is

of very good visual quality as it is high definition (1920x1080 pixels) recorded at

25 fps. The camera view is a typical surveillance view from an overhead-mounted

camera. According to [Benfold and Reid, 2011], its ground truth is hand-labelled

and the video shows an average of sixteen people visible at any time. These persons

are walking both alone and in groups and are mostly perceived in a side-front or

side-rear view. An exemplary TownCentre frame is shown in Figure A.6.

3download from ❤tt♣s✿✴✴✇✇✇✳r♦❜♦ts✳♦①✳❛❝✳✉❦✴❆❝t✐✈❡❱✐s✐♦♥✴❘❡s❡❛r❝❤✴Pr♦❥❡❝ts✴

✷✵✵✾❜❜❡♥❢♦❧❞❴❤❡❛❞♣♦s❡✴♣r♦❥❡❝t✳❤t♠❧
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Figure A.7: Exemplary frames of the CAVIAR videos "EnterExitCrossingPaths1cor",

"WalkByShop1cor" (top), "ThreePastShop2cor", "ThreePastShop1cor" (bottom).

A.2.6 CAVIAR

The "Context Aware Vision using Image-based Active Recognition" (CAVIAR)

dataset is a well-known video surveillance dataset and has been used in many scien-

tific publications. It has been obtained in the EC Funded CAVIAR project/IST 2001

37540 and can be found at ❤tt♣✿✴✴❤♦♠❡♣❛❣❡s✳✐♥❢✳❡❞✳❛❝✳✉❦✴r❜❢✴❈❆❱■❆❘✴.

As the sequences cover different activities aimed especially at action recognition

(e.g. person falling, leaving bags, fighting and so on), not all of them are relevant

for tracking. Therefore, four videos have been chosen from the dataset which show

the traditional over-head camera position and a corridor view: 1) "EnterExitCross-

ingPaths1cor" (383 frames), 2) "WalkByShop1cor" (2360 frames), 3) "ThreePast-

Shop1cor" (1650 frames), 4) "ThreePastShop2cor" (1521 frames). Sample frames

are shown in Figure A.7. The videos have rather low resolution (384×288 pixels),

low contrast and suffer from compression artifacts.
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Figure A.8: Exemplary frames of the Parking Lot videos "Parking Lot 1" (left) and "Parking

Lot 2" (right).

A.2.7 Parking Lot

The Parking Lot sequences [Shu et al., 2012; Dehghan et al., 2015] have been pub-

lished by University of Central Florida4 and provide videos of a parking lot recorded

in Full HD (1920×1080 pixels) at high frame rates (30 and 29 frames per second,

respectively). Both videos have been recorded from a far-distance, high camera

position and show relatively crowded scenes with pedestrians walking in queues,

long-term inter-object occlusions and abrupt motion. The video lengths are 1000

frames and 1500 frames, respectively. Tracking ground truth is provided in the

dataset. Figure A.8 shows sample images for both sequences.

A.3 Datasets Used for Person Re-Identification

A.3.1 CAVIAR4REID

CAVIAR4REID has been published in [Cheng et al., 2011] and contains pedestrian

images taken from the aforementioned CAVIAR [CAVIAR Dataset, 2007] dataset.

The size of the images varies from 17× 39 to 72× 144 pixels. For 72 persons,

images from one camera view are provided. For 50 of them, a second camera

view is also available. The authors of [Cheng et al., 2011] claim to have chosen

camera views "maximizing the variance with respect to resolution changes, light

conditions, occlusions, and pose changes". Examples of this dataset can be found

in Figure A.9. It is a challenging dataset with images of usually lower resolution,

lower contrast and more coding artifacts than other datasets. For evaluation, 72

4download at ❤tt♣✿✴✴❝r❝✈✳✉❝❢✳❡❞✉✴❞❛t❛✴P❛r❦✐♥❣▲❖❚✴
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Figure A.9: Sample images from the CAVIAR4REID dataset illustrating the scale differ-

ences within the data. Two persons are shown (1st and 2nd row, 3rd and 4th row) from two

different camera views.

images of individual persons are searched in a training set of 72 other images, both

taken from the "corridor" sequences.

A.3.2 ETHZ

The basis for the ETHZ dataset [Schwartz and Davis, 2009] is the image data from

[Ess et al., 2007] which has been captured using moving cameras at head height.

For person re-identification, all image samples have been resized to 32× 64 pix-

els. While the dataset contains images of rather good quality in terms of resolution,

contrast and sharpness, it is still challenging due to illumination changes and occlu-

sions. For our tests, we use the first appearance of every individual as the training

image and search a query image which has been recorded 25 frames later than the

training image in a set of 120 samples. Sample images can be found in Figure A.10.
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Figure A.10: Sample images from the ETHZ dataset. Two persons are shown. Although

images are shown here with the same height, in general the size of the images is not the

same for different persons and images.

A.3.3 VIPeR

The VIPeR dataset has been published in [Gray et al., 2007]. It contains two views

of 632 pedestrians, each pair of views composed by images of 48×128 pixels size

taken from different cameras. Due to varying viewpoint, pose and lighting condi-

tions, it can be considered a very challenging dataset available for single-shot person

re-identification. Visual examples of this dataset can be found in Figure A.11. For

evaluation in this work, 632 test images are randomly chosen and must be retrieved

from a training set of 632 images.

A.3.4 PRID 2011

Published in [Hirzer et al., 2011], the PRID 2011 dataset has been recorded on the

basis of person trajectories from two different cameras. One major difficulty of this

dataset is its differently textured background (street with / without a crosswalk). The

single views contain 753 resp. 475 persons of which 245 appear in both views. All

images are normalized to a size of 64× 128 pixels. For experiments in this work,
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Figure A.11: Sample images from the VIPeR dataset containing images from different

viewpoints. Images of the same persons are in the same column. All images are normalized

to a size of 48×128 pixels.

each of the first 200 persons appearing in one camera is searched in the images

taken from the other one. Examples of this dataset can be found in Figure A.12.

A.4 Measures Used for Object Detection

Regardless of the nature of objects (pedestrians, cars etc.), the detection of multiple

objects in a video frame can intuitively be described as two main tasks:

• Detecting the correct number of objects in a video frame.

• Localizing the objects as close as possible to their ground truth position.

Both of these tasks are evaluated in the Multiple Object tracking (MOT) metrics

published in [Stiefelhagen et al., 2007; Bernardin and Stiefelhagen, 2008] and are

presented in the following.

A.4.1 Multi-Object Detection Accuracy (MODA)

MODA published in [Stiefelhagen et al., 2007; Bernardin and Stiefelhagen, 2008]

measures the accuracy of the detection process for a given frame and takes into
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Figure A.12: Sample images from the PRID 2011 dataset containing images from different

viewpoints. Images of the same persons are in the same column. All images are normalized

to a size of 64×128 pixels.

account the number of missed detections M(t) and the number of false positive

detections FP(t) at time t:

MODA(t) = 1− cm ·M(t)+ c f ·FP(t)

NG(t)
(A.1)

with NG(t) as the number of ground truth objects in frame t and cm,c f as the cost

functions for missed detections and false alarms, respectively (costs set to one for

evaluations in this thesis). A detection is classified as matched when a specific over-

lap between ground truth detection and estimated detection is found (see definition

of MODP for details). In case of M(t) = FP(t) = NG(t) = 0, the MODA value is

set to 1.

It can be argued that Equation (A.1) becomes less intuitive in the case of FP(t)>

0 and NG(t) = 0. In this case, the MODA value for the respective frame becomes

−∞ regardless of the number of false positives. So, if the detection algorithm es-

timates 1.000 false positives, it would be rated as bad as another method which

might only yield 1 false positive. Though it would be possible e.g. to use a con-

stant denominator of value one in such cases, this change would come at a cost of

interpretability when comparing with other frames. MODA is a relative measure

describing errors in relation to the ideal case and can be compared on a per-frame

basis. Following [Stiefelhagen et al., 2007; Bernardin and Stiefelhagen, 2008], the
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ratio between detection errors and ground truth is therefore not altered in order to

ensure an equal interpretation over all frames.

A.4.2 Normalized Multi-Object Detection Accuracy (N-MODA)

N-MODA [Stiefelhagen et al., 2007; Bernardin and Stiefelhagen, 2008] is based on

the previously described framewise MODA measure and computes the normalized

MODA for the whole video:

N-MODA = 1− ∑
N f rames

t=1 (cm ·M(t)+ c f ·FP(t))

∑
N f rames

i=1 NG(i)
. (A.2)

Note that this measure does not just average the MODA values in order to avoid

issues with MODA(t) = −∞ (see definition of MODA measure in Appendix A.4.1

for details). Instead, a normalization of the summed MODA enumerators over the

summed target numbers is used. The maximal value for N-MODA is one, i.e. no

false positives or missed objects are reported.

A.4.3 Multiple Object Detection Precision (MODP)

MODP measures the average overlap ratio between the ground truth bounding boxes

and the detected objects for a given frame. Missed or falsely identified objects are

only implicitly taken into consideration. This requires the first step in computing

the measure to be a matching of the set of detections D = {d1,d2, ...,dn} and the

corresponding ground truth detections G = {g1,g2, ...,gn}in order to identify which

ground truth detections have been found by the detector. For this matching step, the

overlap ratio Φ is defined as:

Φ(t) =
Nmapped(t)

∑
i=1

∣∣∣g(t)i

⋂
d
(t)
i

∣∣∣
∣∣∣g(t)i

⋃
d
(t)
i

∣∣∣
(A.3)

with Nmapped(t) as the number of assigned object regions in frame t.

Taking Φ(t) between all pairs as input, in this thesis the well-known Hungarian

algorithm [Kuhn, 1955] is used for assignment. As proposed in [Stiefelhagen et al.,

2007], a threshold of 0.2 for the overlap ratio prevents assignments between badly

matching pairs.
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Once the assignment for all frames is done, MODP (t) is computed as the summed

and normalized overlap ratio between all assigned pairs in the image:

MODP(t) =





0, i f Nmapped(t) = 0

otherwise
Φ(t)

Nmapped(t)
.

(A.4)

A.4.4 Normalized Multi-Object Detection Precision (N-MODP)

Similar as N-MODA to MODA, N-MODP [Stiefelhagen et al., 2007; Bernardin and

Stiefelhagen, 2008] is closely related to MODP and gives normalized localization

results for the entire sequence by averaging the individual values:

N-MODP =
∑

N f rames

t=1 MODP(t)

N f rames

. (A.5)

A.5 Measures Used for Tracking

According to [Bernardin and Stiefelhagen, 2008], for the aims of a perfect multi-

object tracking algorithm, the following points should be considered:

• The tracker should correctly estimate the number of objects in every video

frame.

• The tracker should assign every object an ID which is consistent throughout

the whole video.

• The tracker should estimate every object state as close as possible to its real

state.

However, as no perfect multi-object tracker exists, an evaluation metric should

measure the differences to this ideal system. The design of a multi-object tracking

metric should thus consider the following principles:

• The number of missed objects (false negatives) should increase the metric.

• The number of wrongly detected objects (false positives) should increase the

metric.
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• The distance between estimated positions of all objects and known ground

truth states should increase the metric.

• Labeling errors should increase the metric.

On the other hand, [Ristic et al., 2011] claim that a measure for multi-object

tracking should have a rigorous mathematical foundation based on finite set theory.

In this context, properties such as

• Being a metric on the space of finite sets

• A meaningful physical interpretation

• The meaningful capture of cardinality errors

• An easy computation

are also desired. It can be seen that the evaluation of a multi-object tracking

algorithm comprises a number of requirements which may be prioritized differently

according to the application case. Also, for individual aspects, a specific measure

can be used or a combination involving e.g a weighted sum of the individual terms

for the whole evaluation can be applied.

As a result, different methods have been proposed for evaluation of a multi-object

tracker. In this thesis, two measures for region-of-interest-based detections / tracks

(N-MOTA / N-MOTP) and one for point-based detections / tracks (OSPA-T) are

used.

A.5.1 MOTA

The MOTA [Stiefelhagen et al., 2007; Bernardin and Stiefelhagen, 2008] measure

essentially is an extension of the MODA measure for object detection shown pre-

viously in Appendix A.4.1 but also takes into account the number of wrong label

assignments (i.e. ID changes or mismatch errors) MME(t):

MOTA(t) = 1− cm ·M(t)+ c f ·FP(t)+ cl ·MME(t)

NG(t)
. (A.6)

The cost function cl is set to one for all evaluations in this thesis. Similar to N-

MODA (see Equation (A.2)), N-MOTA can be computed as a normalized version

of MOTA for a full video.
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A.5.2 MOTP

This measure essentially is an application of the previously shown MODP measure

for tracking purposes. MOTP as published in [Bernardin et al., 2006; Bernardin

and Stiefelhagen, 2008] measures the total position error over all frames between

the ground truth objects and the estimated objects:

MOT P =
∑i,t di(t)

∑t ct
(A.7)

with di(t) as the geometric distance between ground truth object i and its tracked

counterpart for frame t. In this thesis, di(t) is an overlap ratio as in Equation (A.3)

for tracks based on region-of-interest detections. Similar to N-MODP (see Equa-

tion (A.5)), N-MOTP can be computed as a normalized version of MOTP for a full

video.

A.5.3 OSPA / OSPA-T measures

The Optimal SubPattern Assigment for Tracking (OSPA-T) metric has been in-

troduced in [Ristic et al., 2011] as a mathematically consistent methodology for

evaluation of multi-object tracking algorithms. It extends the OSPA metric from

[Schuhmacher et al., 2008] using a track assignment scheme and additionally ex-

ploits label information in order to account for identity changes. Both metrics,

OSPA and OSPA-T, are based on pointwise detection / track states.

A) Globally Optimal Assignment of Tracks

In order to compare all estimated and ground truth tracks, the first step is their

definition for every time step. Using an existence indicator ei
k defining if a track i

exists in a certain time step k, in frame k track T i is represented as

T i
k =





/0 if ei
k = 0

{(l,xk} if ei
k = 1

(A.8)

with l ∈ N as the track label and xk as the state estimate in frame k.

For an object appearing in frame 2 of 5 video frames and existing till the end of

the video, the track could thus be described as T i = { /0,(l,x2),(l,x3),(l,x4),(l,x5)}.
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Using a method such as the Hungarian algorithm [Kuhn, 1955], the globally

optimal assignment λ ∗ between the set of ground truth tracks X1,X2, . . . ,XL and

estimated tracks Y 1,Y 2, . . . ,Y R can be computed for the case L ≤ R as

λ ∗ = arg min
λ∈ΛR

L

∑
l=1

K

∑
k=1

[
el

ke
λ (l)
k min(∆,

∥∥∥xl
k −yλ (l)

k

∥∥∥
2
)

+(1− el
k)e

λ (l)
k ∆+ el

k(1− e
λ (l)
k )∆

]
(A.9)

with ΛR as the set of permutations of length L with elements from {1,2, . . . ,R}
and ∆ as the penalty / cutoff parameter. The case L ≥ R is treated accordingly.

In Equation (A.9), the first term accounts for the case of both objects present

in a frame while the second and third term, respectively, penalize false positive

and missing tracks. Indeed, the procedure is an application of the OSPA metric

[Schuhmacher et al., 2008] with n = 2 and c = ∆, meaning that the global OSPA

metric is minimized for all K frames in order to find the perfect assignment for

estimated tracks to ground truth.

As a result of this step, ∀i ∈ 1...L, λ ∗ allows a mapping of Label [Y λ (i)] and

Label [X i] between ground truth and track estimates.

B) Metric Computation

Let Tk = {{xk,1, l1}, ...,{xk,m, lm}} and Ek = {{yk,1,h1}, ...,{yk,n,hm}} be the exist-

ing ground truth position sets and the multi-object state estimates (also in set for-

mulation) produced by the tracking system at timestep k. Labels between ground

truth and estimated states have been harmonized by the assignment procedure in the

last paragraph.

The OSPA distance between X and Y is then defined as

OSPAp,c(Tk,Ek) =

[
1
n

(
min
π∈Πn

m

∑
i=1

(dc(xi,yπ(i)))
p +(n−m) · cp)

)] 1
p

(A.10)

with

• d(x,y) as the base distance between two tracks (see below)

• dc(x,y) = min(c,d(x,y) as the so-called cut-off distance between two tracks

with c > 0. This parameter allows setting the maximum penalty for state

errors.
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• m,n as the cardinalities of the two track sets

• Πn as the set of permutations (possible point assignments) of length m ≤ n

with elements {1,2, ...,n}

• 1 ≤ p < ∞ as the OSPA metric order

The base distance accounts for estimation errors in both the state and label infor-

mation. It is defined as

d(x,y) = d({x, l},{y,h}) =
(

dstate(x,y)+dlabel(l,h)

) 1
p′

(A.11)

with the state distance as

dstate(x,y) = ‖x−y‖p′ (A.12)

and the labeling distance

dlabel(l,h) = α ·δ [h, l] . (A.13)

In this thesis, the penalty for wrong labels is set to α = 30 and p = p′ = 2.

δ [a,b] is the Kronecker complement which returns 0 for identical labels and 1 in

the opposite case. Further explanations on the base distance as well as the OSPA-T

metric in general can be found in [Ristic et al., 2011].

As a result of the previously described process, Equation (A.10) returns the min-

imal distance over all possible combinations of state estimates and ground truth

states, taking into account a cut-off distance for states, wrong labels and cardinality

errors.

A.6 Basic Measures Used for Evaluation of Person

Re-Identification Methods

For person re-identification, usually statistical measures are used. In order to de-

rive the values for receiver operating characteristic (ROC) and cumulative matching

characteristic (CMC) shown in Section 5.1, basic statistical measures are outlined

in this chapter.
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A.6.1 True Positive Rate (TPR)

The true positive rate, also known as recall or sensitivity, is computed as the fraction

of correctly assigned samples over known positive samples:

T PR =
#T P

#P
=

#T P

#T P+#FN
(A.14)

A.6.2 True Negative Rate (TNR)

The true negative rate, also known as specificity, is computed as the fraction of

correctly not assigned samples over the known negative samples:

T NR =
#T N

#N
=

#T N

#FP+#T N
(A.15)

A.6.3 False Positive Rate (FPR)

The false positive rate is computed as the fraction of wrongly assigned samples over

the known negative samples:

FPR =
#FP

#FP+#T N
= 1−T NR (A.16)

A.6.4 False Negative Rate (FNR)

The false negative rate is computed as the fraction of wrongly assigned samples

over the known positive samples:

FNR =
#FN

#FN +#T P
= 1−T PR (A.17)

A.6.5 Confusion Matrix

Based on the previously outlined statistical measures TPR,TNR,FPR,FNR, a confu-

sion matrix can be used in order to describe the statistical properties of a 1:1 feature

matcher (scheme given in Table A.1).
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actual positive actual negative

predicted as positive TP FP

predicted as negative FN TN

Table A.1: Confusion matrix for 1:1 matchers
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