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Abstract. Artificial Intelligence (AI) is one of the
key technologies in many of today’s novel applica-
tions. It is used to add knowledge and reasoning to
systems. This paper illustrates a review of AI meth-
ods including examples of their practical application
in Geodesy like data analysis, deformation analysis,
navigation, network adjustment, and optimization
of complex measurement procedures. We focus on
three examples, namely, a geo-risk assessment sys-
tem supported by a knowledge-base, an intelligent
dead reckoning personal navigator, and evolution-
ary strategies for the determination of Earth gravity
field parameters. Some of the authors are members
of IAG Sub-Commission 4.2 – Working Group
4.2.3, which has the main goal to study and report
on the application of AI in Engineering Geodesy.

Keywords. Artificial Intelligence, Knowledge-
Based Systems, Fuzzy Logic, Artificial Neural Net-
works, evolutionary strategies, Geo-Monitoring,
Navigation, Gravity Field Determination.

1. Introduction

AI, in general, is the study and design of intelligent
agents, where an intelligent agent is a system that
perceives its environment and takes actions that
maximize its chances of success (Russell and Norvig
2003). Many real-world problems require the agent
to operate with incomplete or uncertain information
(Negnevitsky 2005). Methods used for uncertain
reasoning are probabilistic in nature, such as
Bayesian networks, which represent a general tool
that can be used for a large number of problems,
for example, reasoning (using the Bayesian infer-
ence algorithm) (Cooper 1990), learning (using the
expectation-maximization algorithm) (Ghahramani
and Rowei 1999), planning (using decision net-
works) (Subbu and Sanderson 2004), and perception
(using dynamic Bayesian networks) (Ferreira et al.
2008). Probabilistic algorithms can also be used for
filtering, prediction, smoothing and finding explana-
tions for streams of data, helping perception systems

to analyze processes that occur over time. AI tech-
niques also include classifiers and statistical learning
methods. A general introduction to AI can be found
in Russell and Norvig (2003) and Negnevitsky
(2005).

In this paper, we show three di¤erent methods of AI
and their application in Geodesy. The first example
shows a decision support system which accesses the
risk of a landslide using a knowledge-based system.
One of the challenging tasks when building such a
system is the transfer of the knowledge from experts
to the system. The second example demonstrates
the application of AI for an intelligent personal
navigator supported by a Dead Reckoning (DR)
mechanism. In this particular example, DR is
achieved by integrating over time the incremental
motion expressed by step direction, step length, and
step altitude. In this context, the term ‘‘intelligent
navigation’’ represents the transition from the con-
ventional point-to-point DR to dynamic navigation
using the knowledge about the mechanism of the
moving person. This knowledge is implicitly repre-
sented by a human locomotion model. The third
example deals with the determination of Earth grav-
ity field parameters (spherical harmonic coe‰cients).
Usually, this is done by a least-squares approach
leading to huge normal equation matrices that have
to be inverted. We present an alternative direct
method based on evolutionary strategy (ES), which
is working without the need to invert any matrix at
all – the algorithm makes use of the principles of
mutation and selection.

Using AI techniques has many advantages in com-
parison to conventional development and imple-
mentation strategies (Russell and Norvig 2003,
Negnevitsky 2005): quick access to the collected
knowledge (e.g., knowledge-based systems), easy to
implement prototypes without deep expert knowl-
edge (e.g., artificial neuronal networks), or systems
that are able to learn (e.g., genetic algorithms).
Nevertheless, the development and use of AI-based
technologies and methods is often controversially
discussed (Marr 1977).
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2. Modern techniques of artificial
intelligence in geodesy

Methods and techniques of AI are commonly used
in Geodesy. In 1995 the research project SAMBA
(‘‘System zur Anwendung der Messtechnik im Bauwe-
sen’’) was designed to develop a knowledge-based
system for the analysis of bridge deformations
(Kuhlmann 1993). A special aspect of the work
done by Brezing (2000) is dedicated to the modeling
of the knowledge – the system has been implemented
from scratch without a knowledge-based system
shell. Reiterer (2001) developed a prototype of a
motorized digital level including control software
and a knowledge-based system for data analysis.
Chmelina (2002) presented the concept and proto-
type of knowledge-based software for the automated
detection of significant 3D displacement behavior in
tunneling. ANNs and neuro-fuzzy networks have
been used by Heine (1999) and Miima (2002) for
deformation analysis. The automatic modeling of
cause-e¤ect relations for applications in geodetic
deformation monitoring has been studied by Martin
and Kutterer (2007), Neuner and Kutterer (2010)
and Vicovac et al. (2010). Actual research work is
dedicated to the modeling and optimization of the
e‰ciency of measurement processes by Petri Nets
and Genetic Algorithms (Rehr and Kutterer 2010).
Other relevant papers are Wieser (2002), Haberler-
Weber et al. (2007), Heinert and Niemeier (2007),
Riedel and Heinert (2008). More applications of AI
techniques in Geodesy can be found in Reiterer and
Egly (2008) and Reiterer et al. (2010).

In the following we will give a brief overview about
some of the most relevant techniques of AI for
Geodesy:

� Knowledge-Based Systems and Fuzzy Logic Sys-
tems,

� Artificial Neural Networks (ANN),
� Evolutionary Algorithms (EA) with its two

branches – Genetic Algorithms (GA) and Evolu-
tionary Strategies (ES).

2.1. Knowledge-based systems and fuzzy systems

(a) Knowledge-based systems

In general, Knowledge-Based Systems (KBS) are
software systems which solve a non-trivial problem
in a specific domain on an expert level (Stefik 1998,
Negnevitsky 2005). Typically, the problems consid-
ered are hard to solve by analytic methods and the
solving methods are often based on rules of thumb
and heuristics. Before we turn our attention to a
specific implementation methodology we discuss the
architecture of a KBS (see Figure 1).

The most important components are the knowledge
base consisting of the domain-specific and case-
specific knowledge, and the inference component
which allows drawing conclusions from the knowl-
edge base. These two components are often called
the core of the KBS. The knowledge base may con-
tain knowledge representations in di¤erent forms,
most often procedural and declarative. Procedural
knowledge is typically incorporated as a short algo-
rithm or program, whereas declarative knowledge is
represented explicitly.

Depending on the application context, there may be
additional components as well. The most important
is the user interface (UI), consisting of the interface
for the expert and the interface for the inexperienced
user. A knowledge acquisition component is also
often available that with the expert edits/updates/
changes the knowledge base. In principle, it is even
possible that the KBS updates itself by learning, but
this is seldom implemented in KBS when applied to
technical problems. A further part is the explanation

Figure 1: Architecture of a Knowledge-Based System (Stefik 1998).

202 Alexander Reiterer, et al.

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 10/1/18 10:49 AM



component that is important for the acceptance of
KBS. It collects relevant data during the solving
process in order to explain the solution (and the
finding of it) to the user. In many cases, the explana-
tion component plays an important role in the test-
ing and evaluation phases of a KBS.

The features and advantages of knowledge-based
systems are as follows (Debenham 1989):

� Most of the problem-specific knowledge is repre-
sented declaratively. This means that the main
focus of developing such a system is on the knowl-
edge which is implemented and not on how to im-
plement it.

� The knowledge is separated from the control
strategy. This separation supports re-usability of
knowledge and makes an easy manipulation of
knowledge possible.

� Symbolic representation of knowledge enables the
system to explain the problem-solving process and
the solution, which results in an improved user
acceptance. Such explanations cannot be achieved
with sub-symbolic approaches like neural net-
works.

� Not only ‘‘hard’’ knowledge can be represented,
but also ‘‘vague/heuristic/loose’’ knowledge1

(which is useful and potentially very profitable).

A knowledge-based approach can deal with uncer-
tainty. Uncertainty occurs, for instance, if one is
not absolutely certain about a piece of information.
Uncertainty is represented by a numerical value (be-
tween 0 and 1), where the value 1 indicates that the
user/system is sure that the information is true, and
a factor of 0 that he/she/it is unsure (Negnevitsky
2005).

After a more general discussion about KBS, we
turn our attention now to a specific KBS model.
For small KBS, which are often embedded into tech-
nical processes, the rule-based approach (rule-based
system – RBS) is beneficial. Moreover, it allows an
easy integration of uncertainty.

The philosophy of the rule-based approach is very
similar to the way people solve problems. Human
experts find it convenient to express their knowledge
in the form of rules, which often describe situations
in which specific actions have to be performed.

Therefore, one possible interpretation of rules (but
not the only one) is in terms of situation-action
pairs. Furthermore, rules are a way to represent
knowledge without complex programming con-
structs, because we declaratively describe the situa-
tion and the action without completely specifying
the complete control regime when a rule has to
apply.

The core of a rule-based system consists of a fact
base for case-specific knowledge, a rule base for
domain-specific knowledge, and the recognize-act-
cycle (RAC) is the inference component. For our
implementation we are using the rule-based pro-
gramming language JESS (Jess 2010); for the follow-
ing examples we will adopt this system’s syntax.

The fact base of a rule-based system is the working
memory, i.e., a kind of database which is a collection
of working memory elements. These elements are
instantiations of a working memory type and can be
considered as record declarations in PASCAL or
struct declarations in C. In JESS working memory
types are templates and realized by the deftemplate
operator. This operator provides the knowledge en-
gineer with the possibility to introduce slots (fields)
into a fact. These slots can be accessed by names.
The deftemplate construct is used to introduce a
template or type from which concrete instantiations
(or facts) can be derived. The following definition of
a template is explained in detail.

(deftemplate meteo_local

(slot nr (type INTEGER))

(slot id (type STRING))

(slot date (type INTEGER))

(slot time (type INTEGER))

(slot temp_local (type FLOAT))

(slot temp_local_fuzzy (type SYMBOL)

(allowed-symbols very_low

low middle high very_high))

(slot precipitation (type FLOAT))

(slot precipitation_fuzzy (type SYMBOL)

(allowed-symbols none very_low

low middle high very_high))

)

ð1Þ

The template meteo_local is a working memory type
consisting of several slots, namely, nr, id, date, time,

1 Evolution Strategies (ES) can also incorporate ‘‘heuristic’’ knowledge by applying so-called pre-defined penalty terms to the performance
index, i.e., the quality function.
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temp_local, temp_local_ fuzzy (the fuzzy value of the
local temperature), precipitation and precipitation_
fuzzy (the fuzzy value of the local precipitation), re-
spectively.

Associated to each slot is a type restricting possible
slot values. Possible types are INTEGER, STRING,
FLOAT or SYMBOL. SYMBOL means that a
symbol can be stored in the slots. The symbols
allowed for each of the slots are defined with
‘‘allowed-symbols.’’ Type checking is performed dur-
ing runtime in order to guarantee that the content of
a slot satisfies its definition. An example of a JESS
fact is shown in the following:

(meteo_local

(nr 1)

(id 001)

(date 24042009)

(time 075545)

(temp_local 14.5)

(temp_local_fuzzy middle)

(precipitation 0.0)

(precipitation_fuzzy none)

)

ð2Þ

The knowledge base in a rule-based system (often
called production systems) represents the domain-
specific knowledge and consists of a set of rules (or
productions). A rule itself consists of two parts,
namely, the left-hand side (LHS) and the right-hand
side (RHS). In the LHS, we formulate the precondi-
tions of the rule; the conjunction of all preconditions
describes the situation. In the RHS, the actions are
formulated that are applied if the rule is executed or
fired. In principal, a rule can be fired if all its pre-
conditions are satisfied. Firing a rule means the exe-
cution of the actions specified in the right-hand side.
It is important to note that the satisfaction of all
preconditions in the left-hand side of the rule does
not imply that the rule is immediately fired – it only
means that the rule can be fired. The decision which
rule to fire in a specific situation is made by the in-
ference or control component.

The inference component or inference engine in a
rule-based system is often the recognize-act-cycle,
which itself can be controlled by the knowledge en-
gineer in a declarative way (see Figure 2). In a first
step, the LHS of all rules are checked against all
possible combinations of working memory elements
– this exhaustive check is called the matching-phase.
The result of the matching phase is the conflict set,
which includes all rule instances ‘‘ready to be fired’’.
Generally speaking, such a rule instance consists of
the rule together with all working memory elements

that are responsible that the rule’s LHS is satisfied.
A conflict resolution strategy selects one rule instance
which is actually fired. Such a strategy is often based
on a given rule priority (or salience), on specify (pre-
fer a rule which describes a more detailed situation)
or on the time the information has been made avail-
able to the system (Debenham 1989).

(b) Fuzzy systems

As mentioned before, a knowledge-based system can
be extended by Fuzzy Logic (FL), combining fuzzy
sets with fuzzy rules to assess complex non-linear be-
haviors (Negnevitsky 2005). A fuzzy set A in a non-
empty set X is defined by the membership functions
hA, interpreted as the degree of membership of each
element x in a fuzzy set A over the unit interval:

A ¼ fx; hAðxÞg; hA : x ! ½0; 1�; x a X : ð3Þ
This means that the value of the membership func-
tion indicates the degree of membership of a quan-
tity x in the fuzzy set. If the membership value is 1,
the quantity is perfectly representative of the set,
and if it is 0, the quantity is not at all a member of
the set. Membership functions are usually repre-
sented as parametric functions, such as triangular,
trapezoidal, or bell-shaped functions. A typical con-
figuration of a fuzzy based system, as shown in
Figure 3, has four fundamental components: (1) a
fuzzification component (or fuzzifier), (2) a fuzzy
rule base, (3) an inference engine, and (4) a defuzzi-
fication component.

The main idea of a fuzzy logic algorithm is to use
linguistic fuzzy rules to capture vague concepts pre-
sented by fuzzy sets. The fuzzification process is the
act of transforming the crisp, measured value of an
input variable into a linguistic representation (i.e.,
relating to a fuzzy set), and finding the numerical
value of the membership function for that variable.

The lengths of the upper and lower segments of the
membership functions are the design parameters,
and the choice of the overlap determines the number
of rules invoked. The actual shape of the member-

Figure 2: Simplified representation of the recognize-act-
cycle.
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ship function is a design problem for fuzzy systems,
although the properties of the system do not change
significantly if the membership functions are modi-
fied slightly. For example, Figure 4 demonstrates a
typical triangular membership function built for ex-
pressing the slope. The slope in the fuzzy language
can be expressed by at least three membership func-
tions defining particular slope ranges: ‘‘Downhill’’,
‘‘Level’’ and ‘‘Uphill’’. A point on this scale may
have three values, one for each of the three member-
ship functions.

The fuzzy rule base provides a formal methodology
for indicating linguistic rules developed through a
domain expert (for better understanding we are
using a simple if-then form rather than a specific
programming language – as mentioned above:
LHS ¼ left-hand side, RHS ¼ right-hand side):

RuleðiÞ:
If xi1 is Ai1 and xi2 is Ai2; . . . ; and xim is Aim|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LHS

then y is Bi|fflfflffl{zfflfflffl}
RHS

ð4Þ

where i ¼ 1; . . . ; n, and n is the number of rules in
a given fuzzy rule base; j ¼ 1; . . . ;m, and m is the
number of antecedents; xij are the input variables
represented as premise variables; Aij are the input
fuzzy sets; and Bi is the output fuzzy set (conse-

quences). As mentioned before, the rules are the
core of a (fuzzy) knowledge-based system, reflecting
the expert’s experience in interpreting the input
parameters and determining the output quantity
(domain-specific knowledge). The rules below, based
on our example, relate two input variables and one
output variable of our fuzzy system:

Ruleð1Þ: If x1 is downhill and x2 is Level
then y is Level

Ruleð2Þ: If x1 is Level and x2 is uphill
then y is uphill

ð5Þ

Note that di¤erent experts would perhaps produce a
di¤erent collection of membership functions; how-
ever, due to the tolerance of the fuzzy systems to
the level of approximation, the systems would even-
tually yield similar results, if all the experts have
captured the main points of interest (Kosko 1991).

The inference engine is the kernel of a (fuzzy)
knowledge-based system, which carries out the ap-
proximate reasoning task. Each rule for i ¼ 1; . . . ; n,
in equation 5 corresponds to a fuzzy rule. For each
of the premises, an area corresponding to the mem-
bership function of the input variable is created.

The final result of fuzzy inference is a fuzzy set,
which is obtained by aggregating the results of the
individual rules. The result of the fuzzy inference is
a fuzzy set. Defuzzification operates on the implied
fuzzy sets produced by the inference engine, and
combines their e¤ects to yield a ‘‘nonfuzzy’’ decision
output. The most commonly used method of defuz-
zification is the Center of Area (COA), which gener-
ates the center of gravity of the area below the mem-
bership function, and projects it onto the domain
axis. The corresponding domain point is used as a
numerical output value.

2.2. Artificial neural networks

An Artificial Neural Network (ANN), also referred
to as Neural Network, is an information processing

Figure 4: An example of the slope membership functions.

Figure 3: Architecture of a fuzzy based system (Kosko 1991).
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system that is inspired by the structure and func-
tional aspects of biological neural networks of the
human brain (Negnevitsky 2005). ANN represents
a mathematical or computational model that con-
sists of an interconnected group of artificial neu-
rons, and processes information using a connective
approach for computation. It is characterized by
its ability to approximate an unknown input-output
mapping through a training phase (Kosko 1991).
Given a set of example pairs (input/output), a neural
network can be trained to approximate a smooth
function relating the data without requiring any
initial dynamic or noise models. This ability comes
from the distributivity of computations within the
ANN and allows powerful learning capabilities (Lin
and Lee 1996, Russell and Norvig 2003).

In most cases, an ANN is an adaptive system capa-
ble of changing its structure as a result of external or
internal information that flows through the network
during the learning phase. Neural networks are
considered non-linear statistical data modeling tools.
They can be used to model complex relationships
between inputs and outputs or to find patterns in
the data. An example of ANN is shown in Figure 5.

As can be seen in Figure 5, ANNs have a large num-
ber of highly interconnected processing elements
(neurons) that usually operate in parallel and are
configured in a regular architecture. Each neuron in
a neural network performs a predefined mathemati-
cal function f ð Þ to determine the strength of the
firing from the neuron. The input neurons are con-
nected to many other neurons in the next layer with
various weights, resulting in a sequence of outputs,
one per neuron. The layer that receives inputs

x1; . . . ; xm is called input layer, and typically per-
forms no computation. The output of the network
is called output layer, which may have single or
multiple outputs, y1; . . . ; yp. Any layer between the
input and the output layers is called a hidden layer.
Each connection also has an associated weight,
which determines the e¤ect of the incoming input
on the firing level of the neuron.

As each neuron output is connected through the
weights to other neurons in other layers (or the
same), di¤erent types of neural networks can be
specified based on the structure that organizes these
neurons and the connection geometry among them.
The feedforward neural network, as shown in Figure
5, is one of the first and arguably simplest type of
neural network, designed by interconnecting several
layers. It is feedforward, because no neuron output
is an input to a neuron in the same layer or preced-
ing layer, and the process moves in only one direc-
tion, forward, from the input nodes, through the
hidden nodes (if any) towards the output nodes.
The other commonly used network architectures
include the radial basis network, the Kohonen self-
organizing map, and various recurrent neural net-
works (Kosko 1991).

The connection weights store the information, and
their values are determined by a neural network
learning process. It is through adjustment of the
connection weights that the neural network is able
to learn (Lin and Lee 1996). However, training an
ANN is, in general, a challenging nonlinear optimi-
zation problem. The backpropagation algorithm is
the most widely used algorithm to train a network
(Zimmermann 1985). This algorithm is a gradient
descent method of training – it uses gradient infor-
mation to modify the network weights to decrease
the error di¤erence between the desired output and
the network output, while the errors propagate
backwards from the output neurons to the input
neurons. However, the o¤-line backpropagation
training is generally achieved through a substantial
number of iterations to reach convergence. For
real-time applications, using a Kalman filter for
training is likely to speed up the process as an on-
line algorithm (Williams 1992, Iiguni et al. 1992).

Training the network may be time consuming. It
usually learns trough several epochs, depending on
how large the network is. Basically, the network
is trained for several epochs and the training is ter-
minated after reaching the maximum number of
epochs, or meeting a pre-defined thresholds. For the

Figure 5: A neural network: an interconnected group of
neurons in di¤erent layers.
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same reason, minimum error tolerance is used, pro-
vided that the di¤erence between the network output
and the known outcome is less than the specified
value.

The critical issue in developing an ANN is this gen-
eralization: how well will the network approximate a
function that is not in the training set? ANN, like
other flexible nonlinear estimation methods can
su¤er from either underfitting or overfitting. During
training, the network might learn too much. This
problem is referred to as overfitting. Overfitting is a
critical problem in most standard ANN architec-
tures. Overfitting is especially dangerous because it
can easily lead to predictions that are far beyond
the range of the training data with many of the com-
mon types of ANNs. One of the solutions is early
stopping, but this approach needs more critical at-
tention as this problem is harder than expected. A
network can also fail in fully approximating a func-
tion in a complicated data set, leading to underfit-
ting. The underfitting can also happen when the
input data are so similar that they appear as clusters
(Negnevitsky 2005).

2.3. Evolutionary strategies

An evolutionary strategy (ES) is a local stochastic
search strategy, which randomly modifies the nomi-
nal values of a present set of non-optimal object
variables in order to find a setting that satisfies any
given problem-specific conditions with a chosen ac-
curacy (Rechenberg 1994). The changing is not arbi-
trary; it is done in a well-defined manner. The ES
first uses an initial (parental) setting of values to cre-
ate a certain number of di¤erent (o¤spring) versions
out of it. Only in the very beginning, any modifica-
tion, i.e., mutation is completely randomly chosen.
The initial mutability rate is a strategy parameter
and also subject to change. Other important strategy
parameters are, for instance, the number of indi-
viduals (parents and o¤spring). Within a so-called
Meta-ES, not only the object parameters but any of
the strategy parameters can also be optimized.

All di¤erent versions of the set of nominal values for
the object variables will be evaluated by testing them
against a given (problem-dependent) quality func-
tion. The latter combines all applicable (known)
condition equations. By comparing the di¤erent
sets, the ES sorts out the most unfit versions, i.e., in-
dividuals. The remaining individuals create a new
generation set of object variables. Memorizing suc-
cessful mutations of past generations enables the ES

to define new and promising mutability rates for the
next generation. Modern ESs allow for an e‰cient
adaptation of these rates (in the form of a cova-
riance matrix). Leaving a margin for randomness is
necessary to secure that the ES algorithm is able to
escape from insu‰cient local optima.

An ES at least includes mutation and selection.
More elaborate versions make use of some addi-
tional evolutionary mechanisms, e.g., recombina-
tion. In Alvers (1998) the reader can find illustra-
tions of the basic concepts for several optimization
methods.

ES can be used to implement technical optimization
algorithms for real-world problems. They are uni-
versal, undemanding, close to reality, easy to imple-
ment, and can be considered as a compromise be-
tween volume and path orientated searches for the
optimal solution. Yet, there is no guarantee to find
the global optimum, and the convergence speed
might be less compared to methods that are tuned
to a specific problem.

In general, optimization strategies can be classified
as follows (Rechenberg 1994):

� global deterministic search strategies (e.g., system-
atic scanning),

� local deterministic search strategies (e.g., gradient
strategies),

� global stochastic search strategies (e.g., Monte
Carlo method),

� local stochastic search strategies (e.g., evolutionary
strategies).

In Geodesy, the traditional least-squares approach
as an example for a gradient strategy (GS) is com-
monly used. GSs are characterized by taking deter-
ministic steps that needs a kind of a pre-testing to
gain information on the ‘‘best’’ search direction.
This collection of information comes without any
improvements yet, and it may take much time.
Only at the actual job steps (hill climbing towards
the optimum) is there a gain in quality. On the other
hand, it is the maximal possible improvement. In
opposition to that procedure, ESs just take sponta-
neous small random steps (uphill di¤usion). The
chance for a big win per single random step is quite
low. But (at least in the linear case) there is (on aver-
age) a 50% chance to gain a small win per single step
(see Rechenberg 1994).

In practice, the ES-algorithm will start with an arbi-
trary initial guess (0th generation), evaluate it using
the objective function, sort the o¤spring, and select
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the best-fitted individuals. Only these remaining in-
dividuals will be mutated (in a more or less reasoned
and adapted but still randomly way), and define
the next generation. These fundamental steps are
repeated loop-wise until a certain given threshold
value for the quality of the solution is reached. The
only real condition for an ES to function is that
the given system/problem does not show a chaotic
behaviour. The algorithm actually just relies on the
existence of strong causality (similar causes lead to
similar e¤ects)2.

Nowadays, there are many di¤erent versions of ES
algorithms available. Basically, they di¤er by the
handling of the strategy parameters, e.g., number of
parents and successors, selection with or without
parents included, mutation rate adaptation, usage
of historic/past information on successful guesses,
parallel populations, mutation of the strategy pa-
rameters itself (Meta-ES), etc. The choice of a spe-
cific setting may depend on the practical needs. But
one major advantage of an ES is that usually the
user does not need to have deep insight into the
given problem. Remember that nature uses evolu-
tionary strategies to optimize real-world problems.

In order to rate the applicability of any given opti-
mization strategy (stochastic or deterministic, glob-
ally or locally), realistic (non-trivial) objective test
functions (i.e., quality functions) should be used,
having at least the following properties: non-linear,
non-separable, free-scalable, not solvable by simple
‘‘hill-climbers,’’ real-valued parameters, strong cau-
sality, and a single global extremum/optimum only.

ESs make use of biological methods of optimization.
Several mechanisms are being deployed, mainly:

� mutation (of individual genes, chromosomes, en-
tire genome),

� recombination (replacement or mixture, intermedi-
ary or discrete),

� selection (ensures the necessary limitation of the
number of individuals),

� isolation (in space and/or time, weak or strong).

In nature, quality evaluations (fitness tests) occur
with respect to the speed of adaptation to a chang-
ing environment – the faster the better. Time is mea-
sured in numbers of generations needed to adapt.
For technical implementations the combination of
time and (possibly accruing construction) costs is
much more important. In purely mathematical ex-

periments on a computer this aspect becomes negli-
gible. Applying an ES does not mean to simply copy
natural processes – it is more important to under-
stand the principles and functionality behind it and
to adapt it to a technical/artificial environment. De-
spite all analogies to biology, there may be signifi-
cant di¤erences. Bear in mind, that nature does not
always

� keep the population size constant (but most ES al-
gorithms will do so),

� select the most fitted individuals (but probably all
ES algorithms will do so),

� allow for multi-recombination (more than two
parents per child may lead to a more robust or
fitter o¤spring; in fact you can also find multi-
recombination in nature, e.g., viruses and bacteria
which are very successful creatures indeed).

Within the last decades EAs have seen many im-
provements, starting from very simple algorithms.
Almost at the same time (late 1960s, early 1970s)
Genetic Algorithms and Evolutionary Strategies be-
came a research topic. Traditionally, GAs are more
common in the US (e.g., Holland (1975), Koza
(1992), Goldberg (1993)) whereas ESs were pro-
foundly studied for instance in Germany (e.g., Re-
chenberg (1994), Hansen und Ostermeier (1996 and
2001), Ostermeier (1997)). Because of a widespread
confusion between GA and ES, the main properties/
di¤erences of these two EA branches will be out-
lined in Table 1.

3. Applications of AI techniques in geodesy
– examples

In the following we will present three examples of
applications of AI techniques in Geodesy:

� knowledge-based deformation interpretation,
� intelligent personal navigation,
� gravity field determination using evolutionary

strategies.

3.1. Knowledge-based deformation interpretation

In recent years damage caused by rockfalls and
landslides has been increasing, as well as the number
of killed or injured persons, due to a spread of settle-
ments in mountain areas. In addition, many global
climate change scenarios predict an increase in the
probability of heavy rain, which is a primary trigger

2 ‘‘Weak causality’’ means that equal causes lead to equal e¤ects, which is not applicable to reality and therefore is called a ‘‘weak’’ principle.
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for rockfalls and landslides. This causes an urgent
need for highly e¤ective and reliable tools for moni-
toring rockfalls and landslides at an operational level.

The rising importance of rockfall and landslide
monitoring is clearly also reflected by a huge num-
ber of research projects. For example in its last two
framework programs, the European Commission
has positioned research about ‘‘Natural Hazards’’
and ‘‘Disaster-Management’’ as a priority topic.

The core of geo-risk management consists of identi-
fying, understanding and mitigating risk by reduc-
ing the probability or consequences of rockfalls.
In the literature, several geo-risk management and
geo-monitoring systems can be found – most notable
are Fujisawa (2000), Kahmen and Niemeier (2003),
McHugh (2004), Scaioni et al. (2004), and Scheikl
et al. (2000). Examples of systems used in practice
are GOCA (2008), and GeoMoS (2008). The main
application field of these tools is monitoring and an-
alyzing deformations – however, they o¤er no possi-
bility for deformation interpretation. Currently, this
is done by human experts. Experts from geology and
civil engineering interpret deformations on the basis
of a large number of data records, of documents and
of knowledge of di¤erent origins. In this context
SLIDISP (Liener et al. 1996) should be mentioned,
which represents an automated system for building
risk potential maps. The interpretation of the corre-
sponding map is still a manual process involving ex-
pert knowledge.

An evaluation of the risk of a rockfall or landslide is
well suited for a KBS. First, the problem is well de-

fined – the solution requires a heuristic approach
and expert knowledge. Second, knowledge and data
from di¤erent fields and sources have to be consid-
ered. Third, experts in this area are not widely avail-
able. Fourth, geo-risk objects that need monitoring
and need a deep interpretation including a huge
number of data sets are increasing. Consequently, a
knowledge-based support system for risk classifica-
tion is a valuable tool – it supports the experts in
their task and provides a first risk assessment.

The interdisciplinary research project ‘‘i-MeaS’’
(‘‘An Intelligent Image-Based Measurement System
for Geo-Hazard Monitoring’’) has been launched
with the purpose of supporting the expert in her in-
terpretation process for geo-risk objects (i-MeaS
2010). The system produces on-line information
about ongoing deformations and supports issuing
alerts in case the deformation behavior exceeds a
predefined limit.

The system uses di¤erent data and knowledge:
� measurement data, captured by di¤erent sensor

systems, e.g., total stations, geotechnical sensors,
etc.

� local weather data, like local temperature, the
amount of precipitation, the kind of precipitation,
etc.

� global meteo data, which are provided by meteoro-
logical service like the Austrian Meteorological
Service or the Swiss Meteorological Service

� expert knowledge (i.e., domain knowledge), which
has been collected in an intensive knowledge ac-
quisition process.

Table 1: Genetic Algorithms vs. Evolutionary Strategies.

Genetic Algorithms (GA) Evolutionary Strategies (ES)

imitation of the cause imitation of the e¤ect
mutation at the genotype mutation at the phenotype
more experimental, less theoretical sustained theoretically
mainly driven by recombination & selection (low

mutation rate, soft selection)
mainly driven by mutation & selection (high mutation

rate, rough selection)
very large population size relatively small population size
no waste of any o¤spring variable selection pressure is possible
parents of good quality will be reproduced more likely

(proportional to its fitness)
all parents have the same chance to become reproduced

(same probability)
faster convergence in the beginning needs some time for step size adaptation
poor fine tuning capabilities parameters can be adjusted very precisely
strong causality may become violated the more robust the slower
recombination result mainly just reflects the way of

encoding
there is no need to transform into other representations

(e.g., binary)
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The approach discussed here is based on a data-
driven forward-chaining rule-based system, which is
capable of handling all the mentioned sensor types
and data. Such a system is sensitive to the input of
new data and infers conclusions from them. They
are therefore well suited in application domains
where new data (e.g., new measurement values) ar-
rive frequently and have to be integrated in the
reasoning process.

We already discussed the basic components of a
rule-based system, and we showed some rules in
‘‘pseudo-code’’, but we have not presented a more
detailed view of rules so far. We said that a rule con-
sists of two parts, the left-hand side and the right-
hand side. If the expert has formulated a rule of the
form ‘‘If we have had heavy rain over the last three
days and the soil was very wet before, then . . .’’, the
question arises what is ‘‘heavy rain’’ and when is
the soil ‘‘very wet.’’ Usually, we have measurement
data that reflect a specific amount of rain (e.g.,
20 mm per hour), but the system is unable to con-
clude whether this is heavy rain or not. As men-
tioned in Section 2.2, the numerical values can be
translated into linguistic concepts by fuzzification.
The use of such an abstraction procedure permits us
to write rules in terms of easily-understood word de-
scriptors, rather than in terms of numerical values.

As an example, we want to define a rule which
calculates a risk factor. In the LHS of the rule
‘‘risk_precipitation’’ below, we check whether there
is an element of type meteo_local in the working
memory where its slot precipitation is ‘‘high’’ or
‘‘very_high’’ and whether there is an element of
type meteo_global where the same slot value is
‘‘high’’ or ‘‘very_high’’. The RHS consists of the
instruction to include a new element of type risk_
factor into the working memory. This new fact com-
prises a mathematical formula where the risk factor
is increased.

(defrule risk_precipitation

(declare (salience 200))

(meteo_local {precipitation == high

|| precipitation == very_high})

(meteo_global {precipitation == high

|| precipitation == very_high})

=>

assert (risk_factor (risk + 1)))

)

ð6Þ

The salience rule property allows the knowledge
engineer to assign a priority to a rule. If more than
one rule has a satisfied left-hand side, then a rule
instance with the highest priority will be fired. The
selection is made by conflict resolution already dis-
cussed above.

Let us describe the architecture of the proposed
knowledge-based interpretation system. It is orga-
nized as a two-level approach:

Level 1: The detection of an actual risk factor of the
landslide. On the basis of a questioner answered
by experts inspecting the site, the actual state of the
landslide is analyzed. This analysis is based on ques-
tions regarding the geological and environmental
situation of the landslide. The expert has the possi-
bility to answer the questions on-site by means of a
mobile device (netbook, table pc, etc.). The result of
this first step is a grading of the landslide into one of
five predefined independent risk levels.

Level 2: The processing of meteorological, geological
and geodetic knowledge and data. On the basis of the
determined initial risk factor, the continuously cap-
tured measurement data, such as deformation vec-
tors and/or meteorological data are employed to
predict the behavior of the landslide. In a final step,
this information is condensed into a current risk
factor, which may be changed if the environmental
parameters change. A simplified structure of the ar-
chitecture of the system is shown in Figure 6.

Figure 6: Simplified architecture of the intelligent system for geo-risk assessment.
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Currently the whole system is in prototype state.
The knowledge base has been divided into separated
units for the processing of meteorological data, de-
formation data and geological data. Furthermore
an explanation tool, which helps the user to under-
stand the decision making, is under development.
For the implementation of the rule-based system,
JESS has been used. The single processing units
have been embedded into a JAVA framework,
which itself has been integrated into a global MAT-
LAB program. The system for processing Level 1
has been implemented and tested. A deep evaluation
(system performance has been compared with sev-
eral experts from geology) shows promising results
– the system behaves like a human expert. The Level
2 system is currently under development – knowl-
edge acquisition has been finished and the RBS
is implemented. Evaluation of this part has been
started. The implementation process will be com-
pleted by a general evaluation process of the whole
processing sequence (Level 1 and Level 2).

3.2. Intelligent personal navigation

The increasing market of mobile information sys-
tems for pedestrians (e.g., information systems for
city tours or public buildings) requires the precise
and reliable provision of the current position. In
contrast to the well-established vehicle navigation
systems that use the combination of position se-
quences with digital maps (e.g., map-matching tech-
niques) pedestrians frequently move outside from
digitally acquired roads/trajectories (Thienelt et al.
2008).

Due to the complexity of sensory data entities and
their dynamic characteristics, as well as their rapidly
changing availability in varying environments, an
‘‘intelligent’’ navigation approach is preferred in-
stead of a classical dead reckoning (DR) algorithm
(Moafipoor et al. 2007). For our example, ‘‘intelli-
gent’’ stands for using ANN and fuzzy logic to esti-
mate DR components of the overall dynamic and
parametric models.

An e¤ective representation of knowledge is one of
the key issues for most AI-related solutions. In the
example presented here, the data/knowledge ac-
quired from the sensors represents body locomotion
in the form of descriptive definitions and classes of
objects, as well as their interpretations. Table 2 lists
all of the measurements, as delivered by the sen-
sors and used in the current intelligent personal
navigation (PN) prototype, which can provide input

parameters to parameterize body locomotion, step
length/direction/altitude modeling functions.

In Table 2, jajxyz, jajxy, and jajz are the magnitudes
of the acceleration vector during a single step in
3D, horizontal, and vertical directions, respectively;
StdðjajxyzÞ, StdðjajxyÞ, and StdðjajzÞ are the corre-
sponding standard deviations of the acceleration
vector norms; MaxðjajxyzÞ and MinðjajxyzÞ are the
maximum and minimum values of the acceleration
magnitude for each step – note that the tilt, in the
form of roll and pitch angles, is available only when
the sensor is at rest (Jekeli 2001). The IMU measure-
ments are used to determine the category of the
locomotion pattern. The barometer provides infor-
mation about body locomotion, such as change of
altitude, Dh, and its standard deviation, StdðDhÞ,
and the total displacement in altitude,

P
ðjDhjÞ.

Step sensors are used to detect step events and to
derive the step length (SL). Lee and Mase (2001a)
showed that the standard deviation, the maximum,
minimum, and the SL parameters are related to the
speed of walking, whereas the mean values and
height variation are related to the terrain gradient.

The first approach to approximate SL modeling was
a Radial Basis Function (RBF) Neural Network
(Grejner-Brzezinska et al. 2007). The RBF network
was designed to perform input-output mapping
based on the concept of a locally tuned and overlap-
ping receptive field basis function structure. The
RBF network was trained by the hybrid learning
rule, unsupervised learning in the input layer (i.e.,
the sensor measurements in Table 2) and supervised
learning in the output layer (i.e., SL is calibrated
during GPS availability). Experiments showed an

Table 2: PN sensors and their measurements contributing to
the parameterization of the locomotion model.

Sensor Sensor Measurements

Accelerometer Step events
jajxyz, jajxy, jajz
StdðjajxyzÞ, StdðjajxyÞ, StdðjajzÞ
MaxðjajxyzÞ, MinðjajxyzÞ
Tilt (roll and pitch angles at rest)

Gyroscope Angular rate

Magnetometer Roll, pitch, heading

Barometer Altitude
StdðDhÞ
–
P

ðjDhjÞ
Step sensors – Step events

External data – Operator’s height, age, weight
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accurate ANN SL modeling, at a 0e 5 cm level.
However, in this approach, it was not possible to
extract structural knowledge (rules) from the train-
ing data, nor could we integrate special information
about the environment (e.g., staircase constraints,
map/image data) into the RBF neural network
structure in order to tune the learning procedures.
To overcome these limitations, a fuzzy logic system
for SL modeling has been proposed and imple-
mented (Moafipoor et al. 2008a). In order to deter-
mine the final design and implementation in the
intelligent PN, both approaches have been studied
and compared by Moafipoor et al. (2008b).

With the heading measured by the gyro and/or mag-
netometer, and with the pre-calibrated SL predicted
by the ANN modeling, the DR of the next position
can be determined. However, this kind of point-to-
point navigation trajectory reconstruction has signif-
icant shortcomings, particularly in its inability to
accommodate outlier detection, since no continuity/
predictive model for the trajectory is formed. Out-
liers can be caused, e.g., by imprecise SL prediction
and uncalibrated magnetometer/gyro step direction
(SD) determination, which can easily bias the deter-
mination of subsequent positions. An approach that
can address these shortcomings is the consideration
of a human body model. Hausdor¤ et al. (2001)
showed that human motion demonstrates specific
characteristics, which make the definition and identi-
fication of generic models of human motion feasible.
To this end, it may be possible to customize a pre-
diction model for SL and SD values based on our
knowledge of a human locomotion model. This
framework was represented in the form of a Kalman
filter, called DR-KF for basic human activities, in-
cluding stumbling, walking, running and climbing
stairs. Equation 7 shows the general structure of the
DR-KF, where the prediction model is established
based on the body locomotion pattern:

If the locomotion pattern (L_P) is [stumble/stand/
walk/run/climb] then

Xk ¼ FL_P
k Xk�1 þ uL_P

k

Zk ¼ HkXk þ vk

�
ð7Þ

where X represents the state vector, including posi-
tion, SL, SD, and step altitude (SA); FL_P is the
transition matrix of the prediction model; uL_P is
the random error vector of the prediction model; Z
is the observation vector; H is the observation ma-
trix; and v expresses the random observation error
(Moafipoor et al. 2008b). This kind of fuzzy control

model in the form of a Kalman filter is known as
Takagi-Sugeno (T-S) fuzzy models. The T–S fuzzy
model is based on the observation that a modeling
problem can be separated into local approximations.
The local approximations are then smoothly inter-
polated to obtain the global model (Simon 2003).

Figure 7 shows the DR navigation trajectory, recon-
structed using FL-based and ANN-based SL model-
ing with integrated gyro and magnetometer sensor
data. The numerical results were conducted on a se-
ries of datasets – for this test, the operator walked
one and a half indoor loops for about 97 m in 2
minutes.

The square symbols in Figure 7 represent the ground
control points that were followed by the operator,
representing the reference trajectory. As shown in
the figure, several SD biases were identified and,
subsequently, fixed. The locus of SD outliers was
identified mostly around the corners, where a large
di¤erence between the prediction and observation
models was estimated. In contrast, due to correct
SL modeling based on accurate locomotion pattern
estimation, there were few outliers marked for SL
value. The statistical results of the reconstructed tra-
jectory using di¤erent SL observations are shown in
Table 3, indicating a similar performance for both
SL modeling methods.

3.3. Gravity field determination using ES

The main goal of this example is to prove the appli-
cability of an evolutionary strategy to a typical
over-determined and inverse problem in Satellite
Geodesy. Adjustment techniques like the traditional
least-squares approach based upon the gradient
search require the inversion of a normal equation
matrix. Depending of the resolution of the gravity
field model and possibly other unknown force field
parameters, this matrix can become very large in
size. This may impose a heavy computational bur-
den. Besides that, a gradient search in general im-
plies some mathematical preconditions (e.g., deriv-
ability) on the functional model.

On the contrary, ES algorithms do not require deriv-
ability nor inversion of any matrix. In fact, we do
not have to care about all the theoretical as well as
practical problems associated with the inversion of
huge normal equation matrices (e.g., ill-conditioned
matrix, numerical instability, etc.). The computa-
tional burden in this case lies solely in the multiple
and therefore time-consuming evaluation of a qual-
ity function. Due to the expected growing speed of
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our computers, this limitation will be overcome
in the future even for the determination of high-
resolution gravity fields. In this case, the original in-
verse problem could always be solved in a direct
manner. This application shall just prove the general
concept.

The task of gravity field determination requires the
finding of an optimal set of spherical harmonics cnm

and snm, representing Earth’s gravity field. As an ex-
ample we choose a simple 4 � 4-gravity field model
ðnmax ¼ mmax ¼ 4Þ. Under certain assumptions (Mai
2005) this leads in total to 21 unknowns (object
parameters) – therefore we are dealing with a 21-
dimensional optimization problem.

Earth’s gravity field directly influences the motion of
an orbiting satellite. In order to determine our un-
knowns, a certain number of (observed or simu-
lated) satellite positions rs

i are given. In this case,
we get a boundary value problem in Satellite Geod-
esy.

Any change (due to the optimization process) in the
nominal values for the spherical harmonics will lead
to a corresponding change in calculated satellite
positions rc

i . Comparing these position vectors with
the simulated ones yields a number of deviations/
residuals Dri :¼ rs

i � rc
i . These di¤erences should

not exceed a chosen threshold based on the accuracy
of orbital observations. Depending on the norm, the

Figure 7: Test area floor plan and DR-KF trajectory reconstruction based on FL and ANN SL modeling integrated with gyro/
magnetometer heading, adjusted by the DR-KF module.

Table 3: Statistical fit to reference trajectory of DR trajectories generated using SL predicted with FL and ANN, and the inte-
gration of gyro/magnetometer compass heading adjusted by the DR-KF module.

97 m; one and a half indoor loops

SD modeling SL modeling

Mean
[m]

Std
[m]

Max
[m]

End Misclosure
[m]

CEP (50%)
[m]

FL 0.90 1.34 1.2 1.2 0.39Gyro/magnetometer
heading ANN 0.88 1.25 1.1 1.3 0.41
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objective function (quality criterion) may be defined
as

Q ¼
XN

i¼1

kDrik ! min ð8Þ

where N is the total number of given/available satel-
lite positions (the following example uses N ¼ 90
vectors). The simulation was done by applying nu-
merical orbit integration taking the well-established
UTOPIA software package, as provided by the Uni-
versity of Texas at Austin (it is based on a Krogh-
Shampine-Gordon numerical integrator). The fol-
lowing Keplerian elements were used as initial
values:

a0 ¼ 7000 km; e0 ¼ 0:007; i0 ¼ 70�;

W0 ¼ 0�; o0 ¼ 0�; M0 ¼ �70�:

Applying a fixed integration step size (¼ output step
size) of 60 seconds leads to a simulated orbital arc of
90 minutes length. At an intentionally low orbital
height of approximately 630 kilometers (to be fairly
sensitive to gravitational e¤ects), the satellite will al-
most complete one single revolution within that time
interval.

Regarding the starting of the ES algorithm, it is
not necessary to thoroughly consider a fitting initial
guess about the unknowns. We might even just take
zeros. For our example, a (1,40)-ES was realized.
For each new generation there is only one parent
but 40 descendants, and only the (mutated) o¤spring
are subject to selection afterwards. This is denoted
by the comma within the round bracket, following
the usual ES-notation – whereas a plus sign would
imply that both parents and o¤spring are taking

part in the selection step. The optimization proce-
dure contains adaption phase(s) of the covariance
matrix (covariance matrix adaptation – CMA),
which itself describes the mutability of the un-
knowns.

Within this example only a simple mutation of the
genes, i.e., random change (within an adapted inter-
val) of the nominal values of the individual spherical
harmonics was applied. Other possible types of mu-
tation, e.g., of the chromosomes (Rechenberg 1994),
are not implemented yet.

Depending on the chosen threshold value (¼ termi-
nation quality Q�), the optimization runtime can
vary greatly. In general, most of the time is spent
on the adaption. With l denoting the number of o¤-
spring, and G being the number of generations it
takes to reach the threshold value, the computa-
tional e¤ort can be expressed by the total number
of function calls (objective function evaluations)
l � G.

Figure 8 shows all of the interim results of a single
ES optimization run. Adaption phases of the cova-
riance matrix are clearly visible. In practice process-
ing time can be saved by incorporating any available
problem-specific pre-knowledge. The left plot illus-
trates the residuals of the unknowns which is only
available in a simulation, where the optimal solution
is actually known).

The final (optimized) values for all unknowns were
compared to the original spherical harmonics (based
on the Joint Gravity Model JGM-3) that were used
for the satellite orbit simulation using UTOPIA. The
termination quality was set to Q� ¼ 1=1000 mm
which is intentionally way beyond the accuracy

Figure 8: Logarithm of the absolute residual values of the unknowns vs. generation (left), and quality following Equation 8 in
m vs. generation (right).
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levels of any of today’s available satellite observa-
tion techniques (GPS, SLR, etc.).

As a result, the final values are, on average, precise
to the level of 10�13 that corresponds to a number
of 6 to 7 significant digits that could actually be
reproduced. This gives an idea about the achiev-
able absolute resolution for similar gravity field de-
terminations. The applied algorithm did not make
use of any pre-knowledge from celestial mechanics,
or physics. Reasoned conditions might be imposed
to the solution of this inverse problem. As an exam-
ple, there exist certain integrals of motion that could
be accounted for by adding penalty terms (Alvers
1998) to the quality function. The algorithm can
sort out unfitted solutions more quickly, but only if
condition evaluations take just a little extra time.3

4. Conclusion and outlook

In this paper we have presented an overview of AI
techniques in Geodesy. Three di¤erent techniques,
namely knowledge-based systems (including fuzzy
logic), artificial neural networks and evolutionary
strategies have been addressed. All these methods
have been illustrated by some practically useful ex-
amples.

All the described techniques have their advantages
and disadvantages. Knowledge-based systems re-
quire domain knowledge mainly acquired from ex-
perts. This knowledge acquisition is the most impor-
tant and costly part in the development of such a
system. Negnevitsky (2005) presents an overview of
knowledge engineering and the development process
(including development tools) in more details. Due
to the explicit (symbolic) representation of knowl-
edge, the user is able to query the system for an ex-
planation of how a result has been obtained, which
knowledge facets are important for the reasoning
process, etc. Such an explanation capability is indis-
pensable for an acceptance of the system’s result by
the user.

For the other two techniques described in this paper,
an explicit representation of domain knowledge is
not required, which makes the development easier.
For instance, in Artificial Neural Network, an ap-
proximation of the input-output relation is set in a
training phase by well-chosen examples. The weight
of the connections between computing elements are

fined-tuned by propagation algorithms. The knowl-
edge is not explicitly (symbolically) represented, but
is distributed over the weights of the connections.
This sub-symbolic representation makes the genera-
tion of explanation of the solution or the solution
finding process impossible.

We expect an increasing use of AI techniques in Ge-
odesy, mainly because tools become more and more
available. The integration of AI techniques into the
development of Geodetic applications greatly sim-
plifies system creation by allowing the programmer
to deal with more abstract concepts like rules in-
stead of low-level constructs like if-statements in
C-programs or compare-and-branch sequences in as-
sembler programming.
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Interdisziplinäre Messaufgaben im Bauwesen, Wißner Verlag

(2010), 307–321.

Riedel, B. and Heinert, M., An adapted support vector machine for

velocity field interpolation at Baota Landslide. In: Proceedings

of First International Workshop (AIEG 2010) – Application of

Artificial Intelligence in Engineering Geodesy, 2008.

Russell, S. and Norvig, P., Artificial intelligence – a modern

approach. Prentice Hall, Pearson Education International, Upper

Saddle River, New Jersey, 2003.

Scaioni, M., Giussani, A., Roncoroni, F., Sgrezaroli, M. and Vas-

sena, G., Monitoring of geological sites by laser scanning tech-

niques, IAPRSSIS 35 (2004), 708–713.

Scheikl, M., Poscher, G. and Grafinger, H., Application of the new

automatic laser remote system (ALARM) for the continuous

observation of the mass movement at the Eiblschrofen Rockfall

Area – Tyrol, Workshop on Advances Techniques for the Assess-

ment of Natural Hazards in Mountain Areas, Austria, 2000.

Simon, D., Kalman filtering for fuzzy discreet time dynamic systems,

Applied soft computing 3(3), 2003.

Stefik, M., Introduction to knowledge systems. 2nd Edition, Morgan

Kaufmann, San Francisco, 1998.

Subbu, R. and Sanderson, C., Network-based distributed planning

using coevolutionary algorithms, Intelligent Control and Intelli-

gent Automation, Vol. 13, World Scientific Publishing Company,

2004.

Thienelt, M., Eichhorn, A. and Reiterer, A., Intelligent pedestrian

positioning in vienna: Knowledge-based Kalman-filtering (wi-

kaf ), ISPRS Proceedings, Vol. XXXVI, Part 5/C55 (2008), 315–

321.

Vicovac, T., Reiterer, A., Egly, U., Eiter, T. and Rieke-Zapp, D.,

Intelligent deformation interpretation, in: Proceedings of Second

International Workshop (AIEG 2010) – Application of Artificial

Intelligence and Innovations in Engineering Geodesy, Braunsch-

weig, Germany (2010), 10–20.

Wieser, A., Robust and fuzzy techniques for parameter estimation

and quality assessment, Shaker Verlag Aachen, 2002.

Williams, R. J., Training recurrent networks using the extended kal-

man filter, in: Proceedings of the IJCNN’92 Baltimore 4 (1992),

241–246.

Zimmermann, H. G., Fuzzy sets theory and its applications, Kluwer,

Nijhoa, Boston, Dordrecht, Lancaster, 1985.

Received: Sep 24, 2010 Accepted: Oct 27, 2010

Author Information

Alexander Reiterer, Tanja Vicovac

Institute of Geodesy and Geophysics

Vienna University of Technology, Austria

E-mail: alexander.reiterer@tuwien.ac.at, tanja.vicovac@tuwien.ac.at

Uwe Egly

Institute of Information Systems

Vienna University of Technology, Austria

E-mail: uwe@kr.tuwien.ac.at

Enrico Mai

Department for Geodesy and Geoinformation Science

Technische Universität Berlin, Germany

E-mail: enrico@mca.bv.tu-berlin.de

Shahram Moafipoor

Geodetics Inc.

San Diego, CA, USA

E-mail: smoafipoor@geodetics.com

Dorota A. Grejner-Brzezinska

Department of Civil and Environmental Engineering and Geodetic

Science

The Ohio State University, USA

E-mail: dbrzezinska@osu.edu

Charles K. Toth

Center for Mapping

The Ohio State University, USA

E-mail: toth@cfm.ohio-state.edu

217Application of artificial intelligence in Geodesy – A review of theoretical foundations and practical examples

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 10/1/18 10:49 AM


