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Abstract

The importance of human mobility analyses is growing in both research and practice, especially
as applications for urban planning and mobility rely on them. Aggregate statistics and visualizations
play an essential role as building blocks of data explorations and summary reports, the latter being
increasingly released to third parties such as municipal administrations or in the context of citizen
participation. However, such explorations already pose a threat to privacy as they reveal potentially
sensitive location information, and thus should not be shared without further privacy measures.

There is a substantial gap between state-of-the-art research on privacy methods and their uti-
lization in practice. We thus conceptualize a mobility report with differential privacy guarantees
and implement it as open-source software to enable a privacy-preserving exploration of key aspects
of mobility data in an easily accessible way. Moreover, we evaluate the benefits of limiting user
contributions using three data sets relevant to research and practice. Our results show that even
a strong limit on user contribution alters the original geospatial distribution only within a com-
paratively small range, while significantly reducing the error introduced by adding noise to achieve
privacy guarantees.
Keywords: human mobility data, differential privacy, user-level privacy, exploratory data analysis,
mobility report
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1 Introduction

Mobility data is becoming increasingly important - for urban planning [1], traffic management [2], and
smart city applications [3]. To tackle challenges posed by the climate crisis, cities require movement data
to address smart traffic management [4, 5], shift car use to climate-friendlier options [6], offer broader
access to public transport [7], and steer ever-growing mobility options such as e-scooters [3], to name
a few. The current pandemic further highlights the usefulness of such data as these form the basis for
analyses [8, 9] or simulations of pandemic progression [10].

At the same time, mobility data comprises high-dimensional, sensitive information and thus poses
challenges towards ensuring privacy. For example, just a few recorded locations are sufficient to re-
identify an individual [11], potentially revealing private information such as home and work locations,
political interests or religious beliefs. Recent discussions on storage and processing of mobility data for
pandemic management highlight that many citizens are willing to disclose their movement data only
under extensive privacy guarantees [12, 13]. Uncertainty about how to adequately protect user privacy
and thus comply with applicable data protection laws, for example, makes many mobility providers
reluctant to share their usage data with cities or otherwise release it.

Transparency of policy making can therefore only be guaranteed to a limited extent. The Open
Mobility Foundation facilitates data exchange between mobility providers and cities, thereby also striving
to foster transparency of policy processes to the public. At the same time, they address the inherent
privacy issues of the release of raw mobility data and suggest data minimization, aggregations and reports
as potential countermeasures [14]. For a lot of decisions reporting aggregate statistics is sufficient as
many use cases need no fine granular trajectory data. In Germany, for example, according to road
traffic regulations a street can be redesignated as a bicycle street if a high volume of bicycle traffic
can be proven. Similarly, aggregated mobility data is sufficient to monitor the impact of measures
like new bike infrastructure or shared-mobility docking stations on usage behavior. Beyond monitoring
tasks, aggregated statistics are highly valuable for more complex use cases, such as traffic models [15]
or identification of optimal e-scooter parking zones [16], since these require exploratory data analyses
as a first step to familiarize with the data and evaluate its suitability for the aspired use case. While
aggregations provide some privacy they do not come with privacy guarantees; in fact there are successful
attacks on aggregated mobility data [17] that recover entire trajectories of individuals.

We propose a mobility report comprising most relevant and frequently applied mobility measures that
is equipped with privacy guarantees. For this purpose, we draw on extensive research on the analysis of
movement data that requires the simultaneous examination of spatial and temporal properties together
with the moving object itself [18]. Depending on the data source, mobility data can differ greatly in
its format and structure, spatial and temporal granularity, or content. Thus, it is hardly possible to
comprise a mobility report that suits all data sources and use cases. We carefully aimed to maintain
the report as general as possible while knowing that it cannot fit all needs. Specifically, our report
provides high level key insights to mobility data sets that could be used to provide information to public
administrations, to the public, or for company’s internal knowledge sharing. The report is especially
suited for data containing single trips with an origin and destination (e.g., bike-sharing transaction
history) and use cases about mobility on an aggregated level (e.g., usage of a new introduced bike-sharing
service). It is also aimed at the analysis of staypoints and does not cover route information such as traffic
volumes or the average speed on route segments. Since mobility data includes sensitive information, we
additionally see the need for privacy protection and apply methods for securing differential privacy [19]
which is considered future-proof, e.g. the privacy guarantees hold regardless of the attacker knowledge
or additional information (that becomes available later).

Unlike an iterative approach of arbitrary exploratory analyses, a report with predefined measures
allows for optimizing the allocation of a predefined privacy budget, as exploratory analyses might other-
wise come at a high privacy cost [20]. In order to keep the privacy costs as low as possible while ensuring
high usefulness of the report, both the selection and detailed design of the analyses were optimized.

While differential privacy is well understood for aggregations of general tabular data, there is little
research on how to apply such a mechanism to aggregations of mobility data. Due to the nature of
mobility data, differential privacy is difficult to apply as mobility traces of people are inherently individual
with arbitrarily long sequences and spatial and temporal dimensions covering an infinite range of values.
Broadly speaking, differential privacy guarantees that an adversary can only identify the membership of
an individual within a data set at a defined probability level. The lower the identification probability
shall be maintained the more noise has to be added. Generally, the smaller the number of buckets of
aggregations the lower the share of added noise: consider adding noise of +/- 5 items to one bucket
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with a count of 100 or to 10 buckets each with a count of 10. In the first case, the noisy number of
items will differ by at most 5%, while in the second case, the difference per bucket will be up to 50%.
The number of buckets of mobility data can be adjusted at the spatial dimension (e.g., aggregation on a
100 m grid vs. 1 km grid) and the temporal dimension (e.g., hourly aggregation vs. weekly aggregation).
Also, the space of possible sequences can be adjusted, e.g., by only considering start and end connections
instead of entire routes. However, the number of buckets increases drastically once certain attributes
are cross tabulated, for example, looking at spatial distributions per hour of day, or investigating the
relation of origins and destinations. Data sparsity is an additional issue, as the records are usually not
equally distributed over all buckets. For example, a city center usually has high visit counts while other
areas further outside only get a few visits. Thus, differentially private values are only reliable for certain
buckets while others mainly consist of noise.

We aim to gain insights how differential privacy can be applied to aggregations of mobility data
and what level of utility could be expected when applied to typical, real-world data sets. We therefore
evaluate key measures of the report under different privacy scenarios on three data sets that are used
extensively, especially in mobility research, e.g., to infer transportation modes [21], mine locations of
interest [22], or to investigate the influence of parking-regulations on car-ownership [23]. This provides
an important orientation for the trade-off between privacy and utility of real mobility data sets. Moreover,
a typical mobility data set can contain an arbitrary number of records per user; an upper bound of user
contribution is typically not set or known upfront. Intuitively, the more records a user contributes to
a data set the more likely they will be identified. Thus, to provide differential privacy at a user level,
more noise needs to be added according to the potential contribution of a single user. In order to achieve
acceptable estimates of the sensitivity of the respective aggregation functions when applying noise to
ensure user-level privacy, it is useful to limit the records per user [24, 25, 26, 27]. However, it is not
clear how to choose such an upper bound. We thus analyze the trade-off between privacy and utility
under user-level privacy guarantees and different choices of the limit of user contribution.

A report for mobility data with differential privacy guarantees has the potential to simplify and
accelerate secure analysis and releases of movement data. Analyses of mobility data require specific
geospatial skill sets and resources. With regard to privacy it should be noted that large companies such
as Google, Apple, or Microsoft already make use of differential privacy [28], while smaller companies and
the public sector often lack knowledge and resources required to keep up with big tech players [29]. To
facilitate access and increase usability, we thus provide an implementation of our differentially private
mobility report as open-source Python code.

Our Contributions. After discussing research on mobility data analyses and appropriate measures
for guaranteeing differential privacy in Section 2, we identify elementary measures commonly applied
to human mobility data (Section 3) and compile a mobility report. We provide a differentially private
version of the report and explain the resulting implications (Section 4). We analyze the effect of user-
level privacy and the interplay with different bounds of user contribution on three data sets (Section 5),
and provide practical implications of a user-level differentially private mobility report (Section 6). In
this way, we support data analysts in understanding the implications of a differentially private mobility
report.

2 Related Work

Data analysts use exploratory data analyses (EDA) to become familiar with data sets, usually focusing
on visual inspection. They aim to understand the data, check its validity, detect outliers, identify pos-
sible patterns and assess its suitability for further analyses or models [30, 31]. The concept of EDA was
established by Tukey, who, for example, promoted the use of the five-number summary to describe the
distribution of numerical data [32]. The issue of predefining a set of measures or analyses for an EDA has
already been addressed in literature, e.g., [33]. In addition, implementations of standardized data explo-
rations have recently been made available, e.g., in form of the Python package pandas profiling [34],
making exploratory analyses accessible for a broader group of practitioners.

The analysis of movement data poses additional challenges, as it requires the simultaneous examina-
tion of spatial and temporal properties together with the moving object itself [18]. Therefore, mobility
data need specific analyses in addition to standard EDA methods that can capture and convey their
information. Andrienko et al. [35] have massively contributed to visual analytics of different types of
movement data that can be considered valuable for the creation of a mobility data report. However,
no attempt has been made to predefine a set of analyses for a particular type of movement data and
analytical context such as human mobility in cities. Graser [36] argues that a standardized protocol
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for an EDA can hardly cover all kinds of movement data at once and presents a protocol for an EDA
with the goal to identify problems in GPS data, such as unrealistic jumps in individual trajectories.
The Python package scikit-mobility [37] implements a comprehensive collection of measures suitable
for human movement data, without combining a subset of them into a single report. Additionally, the
package includes methods for privacy risk assessments; however, no privacy mechanisms are provided
that can be applied to the computation of statistics.

In the context of publishing privacy-preserving aggregated statistics, differential privacy has been
proposed for different cases, focusing on relational data and the interactive setting, i.e., data can only be
accessed via certain database queries [38, 39, 40]. For mobility data a multitude of approaches address
differential privacy in the non-interactive setting, i.e., publishing synthetic mobility data [41, 42, 43, 44].
However, these works assume that a user does not contribute multiple items. Therefore, we focus on
releasing mobility measures to understand the implications of user-level and item-level privacy.

For mobility data a multitude of approaches address differential privacy in the non-interactive setting,
i.e., the publication of anonymized historical data in their raw format by, e.g., generating synthetic data
[42, 45, 44, 46]. Such data releases are commonly motivated by the lack of openly available mobility data
for a wide range of (not yet fully specified) use cases. However, often the needed analyses are known
in advance which allows the application of privacy-preserving techniques which are more precise and
targeted for the respective use case.

Additionally, many existing approaches assume that a user does not contribute multiple items. Liu
et al. [26] studied the utility privacy trade-off for user-level privacy and compared it to the item-level
counterpart. While they evaluated it in the context of learning discrete distributions, we focus on a
multitude of aggregations comprising a mobility report. Wilson et al. [27] present an approach to user-
level privacy for aggregations by bounding user contribution. They account for situations in which the
categories used for grouping the data are not known a-priori. However, they guarantee approximate
differential privacy. Aktay et al. [9] follow their overall approach to compute aggregated mobility metrics
in the context of the COVID-19 pandemic. They account for user-level differential privacy by bounding
user contribution to four records. We adapt their differential privacy mechanism, mainly consisting
of adding noise to aggregated statistics and bounding user contribution, and extend it to a variety of
mobility measures and evaluate the impact of the chosen bound for user contribution.

Amin et al. [24] theoretically analyze the bias-variance trade-off of bounding user contribution. Al-
lowing users to contribute large amounts of data may add excessive noise to protect a few outliers, while
limiting users to small contributions keeps noise levels low at the cost of potentially discarding relevant
information and thus introducing bias. Their results show that an optimal contribution limit can be
found for which the expected error of differentially private empirical risk is minimal, but that there is no
contribution bound that is sufficient to eliminate both bias and variance, even in the limit case of infinite
data [24]. In this paper, we make similar considerations and evaluate the influence of bounding user
contribution on suitable error measures. Additionally, we discuss relevant aspects that determine the
trade-off between item-level and user-level differential privacy and show consequences of a differentially
private mobility report.

3 Mobility Report

Following the idea of a report with a predefined set of measures for general tabular data, as implemented
by the pandas profiling package, we propose a urban human mobility data report that includes statis-
tics commonly applied for the exploration of mobility data sets reflecting movement of individuals in an
urban area [47, 48, 37, 49, 50]. This will serve as a basis for practitioners to gain fundamental insights
from human movement data and establish a basis for further decisions.

3.1 Mobility data

Human movement analyses usually focus on stay-points where a certain amount of time is spent, e.g.,
‘home’, ‘work’ or ‘supermarket’ [47], in contrast to way-points that are typically only passed by during
a trip. In terms of privacy risks, the stay-points are also of special interest: although there are attacks
that use mobility features such as speed, direction, or distance [51], most attacks focus on important
locations [52]. We will thus restrict to a generalized form of human mobility defined as a collection of
single trips comprised of origin-destination pairs, in particular, we will ignore way-points. This results in
the following requirements for input data that are satisfied by many common urban mobility data sets
like surveys, routing queries, public transport smart card check-ins and -outs, or shared mobility rentals.
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Figure 1: Overview of our process for a differentially private mobility data report.

Let U be a set of user identifiers and P = {p = (t, l)} a set of spatio-temporal points p consisting of
a timestamp t and a location l referring to a given coordinate reference system (CRS), e.g., geographical
latitude and longitude. A record of the input data set T consists of a user identifier u ∈ U and two spatio-
temporal points, the start and end point, that together define a trip tr. We show a mobility data set
example in Figure 1. Origins and destinations are mapped onto a tessellation. This is needed to spatially
aggregate the data for statistical analyses, modeling tasks [49], and comprehensive visualizations of trips
that are not cluttered with lines [53]. Typical tessellations are administrative boundaries or evenly
distributed grids [49]. We assume that such a tessellation is provided for the report.

3.2 Mobility measures

Human mobility can mainly be analyzed from three perspectives: places that are visited, movements
between places, and mobility characteristics of individuals [54]. For place analyses the number of move-
ments originating or arriving at a location are of interest, while trip analyses focus on where people are
coming from or going to. The analyses of mobility characteristics of individuals, which we refer to as
user analyses, puts a single person into the center of attention. All movements of a person are exam-
ined together, for example to evaluate the spatial range individuals typically move in. We structure the
proposed report in accordance with the described analysis perspectives in addition to a general group
of overview analyses. The first three columns of Table 1 provide an overview of all statistics included,
which are explained in detail below.

The first group of analyses gives an overview of basic information, including the number of trips, users
and locations. Temporal properties are examined in three different ways: trip counts are aggregated to
the number of trips over time, where the time interval is chosen automatically to be a day, week or
month depending on the time range covered by the data. This measure reveals the temporal coverage
and completeness of the data, the potential existence of (un)intentional interruptions and patterns of
seasonality. It is provided as trip counts per time interval and as a five-number summary. Weekly
and daily cycles, which capture patterns that are characteristic for human mobility [55, 48], can be
inferred from the number of trips per weekday and trips per hour disaggregated by weekday and weekend,
respectively.

The second group, place analysis, provides information on the geospatial distribution of the data in
terms of the provided tessellation. The main measure computes the total number of visits per location
over the entire time period of observation. As points of trips can potentially lie outside the tessellation,
the number of outliers is provided as well. Note that there are twice as many visits as trips, since both
start and end point are considered.

The frequency of location visits usually differs depending on the time of day [48]. Therefore, spatial
distributions are also disaggregated as visits per destination by time and split by weekday and weekend.
To limit the number of outputs, we use a default time span of four hours to create six time windows
unlike, e.g., hourly time windows that would result in 24 views. The default time windows, which are
adjustable in the package implementation, are defined as follows: 2:00 - 6:00, 6:00 - 10:00, 10:00 - 14:00,
14:00 - 18:00, 18:00 - 22:00, 22:00 - 02:00. Only destinations are considered to correctly represent spatio-
temporal patterns. For illustration, consider the following example: in the morning people commute
from the outskirts to the city center and vice versa in the evening. If both origins and destinations would
be considered, the outskirts and the city center would be highly frequented in the morning and evening,
thus not revealing important temporal patterns.

The third group covers trip analyses. Trips are aggregated and counted according to origin and
destination tiles, resulting in an OD matrix, named OD flows. Additionally, the travel time and jump
length [49] are computed, the latter representing the geographical straight-line distance between the
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Table 1: Overview of mobility measures and sensitivity.

Group Measure Function Sensitivity

Overview

trips counttr M
users countu 1
locations countp 2 ·M
trips over time countstr,five-number summarytr M , M
trips per weekday countstr M
trips per hour countstr M

Place analysis
visits per location countsp 2 ·M
visits per destination and
time

countstr M

Trip analysis
OD flows countstr M
travel time countstr, five-number summarytr M , M
jump length countstr, five-number summarytr M , M

User analysis

trips per user countsu, five-number summaryu 1, 1
radius of gyration countsu, five-number summaryu 1, 1
locations per user countsu, five-number summaryu 1, 1
mobility entropy countsu, five-number summaryu 1, 1
time between trips countstr, five-number summarytr M ,M

trip’s origin and destination. They are reported in form of five-number summaries and histograms, i.e.,
counts. Travel time and jump length typically decay as a power law [56] with many short times and
distances and few very long trips. An unbound histogram would therefore be highly right-skewed, either
with many small bins or a few non-expressive bins at the lower end of the histogram. To limit the
number of histogram bins for a more comprehensive representation, we propose to cut them off at a
defined maximum based on domain knowledge and to additionally provide the number of outliers above
the defined threshold. In addition to usability reasons, a pre-defined maximum helps to control the
privacy-utility trade-off as will be shown in Section 4.

The last group on user analyses compiles the following measures, summarized as histograms and
five-number summaries. The number of trips per user computes a user’s overall contribution to the data
set. Locations per user represents the distinct locations visited by a user [48] and describes the diversity
of locations a user visits. The mobility entropy entails related information: it is defined as the Shannon
entropy of the user’s visits which quantifies the probability of predicting a user’s whereabouts [57, 48, 49].
The radius of gyration is the characteristic distance traveled by a user [58, 48, 49], computing the spread
of all locations visited by an individual around their center of mass. Again, the distribution of radii of
gyration follows a power law, thus setting cut off values for the histogram is beneficial for usability and
privacy reasons. Further entailed is the time between trips which computes the amount of time between
the end time of a user’s trip and the beginning of the next one. It thus quantifies the temporal density
of user trips in the data, i.e., if user movements are recorded every other hour, day, week or month.

4 Differentially Private Mobility Report

4.1 System Model and Design

Before describing our system for a differentially private mobility data report, we introduce respective
definitions and notations used throughout this paper and illustrate the intermediate steps to such a
report as depicted in Figure 1. Assume a company owns a mobility data set T and needs to release a
report. For a mobility data report, statistics defined in Section 3 are computed and visualized. Despite
the aggregation of data, the mobility report consists of summary statistics which are vulnerable to
reconstruction attacks [40]. By observing answers from measures, such as listed in Table 1, an attacker
can recover secret information, such as trips.

Differential privacy provides mathematical guarantees for the privacy of an individual [19]. The
concept of differential privacy is that the output of an algorithm A remains nearly unchanged if the
records of one individual are removed or added. In this way, differential privacy limits the impact of a
single individual on the analysis outcome, preventing the reconstruction of an individual’s data.
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Definition 1 (Differential Privacy). Let Range(A) be a randomized algorithm that takes a mobility data
set T as input and outputs a value from some output space Range(A). For an ε > 0, A is said to be
ε-differentially private, if for all pairs of data sets T1 and T2 differing in all records of an arbitrary but
fixed user, and all outputs O ⊆ Range(A),

P [A(T1) ∈ O] ≤ eε · P [A(T2) ∈ O].

The parameter ε captures the privacy loss and determines how similar the randomized outputs are
based on T1 and T2, and thus specifies the impact of a single individual’s data records on the output.

In differential privacy literature, the definition usually considers data sets differing in one record,
assuming that every user makes exactly one contribution. This is for instance the case when each record
of a data set corresponds to a complete trajectory of a single user. However, typical mobility data
sets in practice do not satisfy this assumption, containing multiple records per user. In this case, the
classical definition of differential privacy would protect an item, such as a single trip. However, our used
definition of differential privacy protects the privacy of a user. In the remainder of the paper, we will
thus distinguish between item-level privacy and user-level privacy [19].

An important notion in this context is the sensitivity of a function f which corresponds to the
maximum difference that an output can change by removing or adding a record (item-level) or all
records of a user (user-level) [19].

Definition 2 (Sensitivity). Let T1 and T2 be two data sets differing in one record (item-level) or all
records of a user (user-level), respectively. The L1-sensitivity of f is defined as ∆f = max(T1,T2) |f(T1)−
f(T2)|1 for any such T1 and T2.

In our mobility report, most of the functions, listed in Table 1, are counts and as such output numeric
values. For example, the function count outputs a single number, while counts outputs a number for each
category and bin, respectively. A common mechanism for numeric functions is the Laplace mechanism,
where calibrated noise is added to the function’s output, drawn from a Laplace distribution Lap() [19].

Definition 3 (Laplace mechanism). Let f : Tn → Rk with arbitrary domain T . The Laplace mechanism
is defined as A(T ) = f(T ) + (Y1, . . . , Yk) where Yi is a random variable drawn from Lap (∆f/ε) with
mean 0 and variance 2(∆f/ε)2.

Note that for counts, k equals the number of categories/bins, e.g., locations, while k = 1 for the count
function. The magnitude of noise is calibrated according to the sensitivity ∆f of a function.

If we assume item-level privacy for our report, this means for the number of trips over time that noise
with ∆f = 1 is added to each count, since removing or adding one trip changes the count by one. While
this effectively hides the presence of one trip of an individual, it does not protect the presence/absence
of an individual with multiple trips. In other words, removing or adding all trips of a user changes the
number of trips over time by the amount of trips of the corresponding user instead of just one.

Suppose we are interested in the number of OD flows. A user has made 10 trips. If we remove the
user, the counts will always change by 10: If the user made all the trips between the same origin and
destination, the number for this OD flow changes by 10. The other counts remain unchanged. If the user
made the 10 trips between varying OD pairs, the counts for each respective of pair change by 1. This
means that the maximum influence of a user on such a measure f and therefore its sensitivity ∆f = 10.
In practice, however, a user can contribute an arbitrary number of trips and the sensitivity of f is thus
unbounded.

4.2 Bounded user contribution

In this section, we present the differentially private functions of our mobility measures proposed in
Section 3. We list the functions and sensitivity to guarantee user-level privacy in Table 1.

In order to limit the sensitivity, we need to limit the number of possible trips M of a user. If we
choose the highest number of trips a user has in our data set for M , we assume local sensitivity. Local
sensitivity depends on the data set and not only on the function. Therefore, the local sensitivity or the
maximum number of trips may jeopardize the privacy of a user.

Sampling bounds the number of trips of a single user to M and removes the remaining records. The
places people visit is highly predictable for most individuals [58, 57]. There are only few places that a
person visits regularly, usually the home and work place, which make up the majority of locations in a
person’s mobility pattern [59]. Therefore, we assume that the global geospatial patterns of a mobility
data set remain intact even though only a small sample of each person’s trips are included.
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The question arises as to what maximum the number of trips should optimally be set at. For
example, Aktay et al. [9] have limited the number to 4 in their differentially private mobility report,
without explaining this further. We will look at this question in detail as part of our evaluation.

4.2.1 Counts

The count functions based on users (countu) have a sensitivity of 1, since removing a user, no matter
how many trips they make, only changes one count by 1. E.g., the trips per user are represented with a
histogram, each bin representing a possible number of trips. Removing/adding a user with their trips will
only change the count for one bin by 1. The count functions based on trips (counttr) have a sensitivity
of M as explained in the previous example. Since a trip consists of two points (start and end), the count
functions based on points (countp) have a sensitivity of 2 ·M .

To this end, we guarantee differentially private counts. However, e.g., visited locations or reported
categories can reveal the identity of an individual. For example, if only tiles that were actually visited
are included in the report, we can infer that all reported tiles were visited at least once, while all tiles
that were not included are not part of the data set. Thus, we consider all tiles within the tessellation
as given to obtain a finite number of geometric shapes and apply the Laplace mechanism to each of the
tiles, including those with a count of zero. Therefore, there is no certainty which tiles have actually been
visited and which have not. All points outside the provided tessellation are summarized as a single noisy
count of outliers.

The tessellation defines categories for the spatial dimension. Categories for temporal dimensions,
which is reflected by trips over time, are aggregated to specific time intervals, such as day, week or
month. Empty intervals in between should be filled with 0 values so that noise can be applied as well.
While the tessellation also provides a fixed bounding of the spatial extent, there is another issue for
trips over time: revealing the exact first and last day of the entire time interval violates the privacy.
The same issue of leaking minimum and maximum values applies to any count-based measure that has
no pre-defined categories or bins, namely, travel time, jump length, trips per user, time between trips,
radius of gyration, locations per user and mobility entropy. Similar to the given tessellation we can cut
off bins at a defined minimum and maximum based on domain knowledge. Data points outside this
interval are summarized as a single noisy outliers count. Instead, we can also determine the minimum
and maximum differentially private to obtain bounds. Since the minimum and maximum are included
in the five-number summary we do not need to compute them twice.

4.2.2 Five-Number Summary

The five-number summary can be returned differentially private with the exponential mechanism [60].
This mechanism does not add noise to the output. Instead it returns the best answer from a set based on
a scoring function. Differential privacy is guaranteed since sometimes an output is returned even though
it has not the highest score.

Definition 4 (Exponential mechanism). Given an input data set T the Exponential mechanism [60]

randomly samples an output O ⊆ Range(A) with a probability proportional to e
εs(T,O)

2∆s , where s is the
scoring function and ∆s the corresponding sensitivity.

We use the exponential mechanism to determine the five-number summary including the minimum
and maximum. In this case the scoring function is a rank function of the sorted input. Since we determine
the index of an element, a user with M trips influences the output by M . Therefore, the sensitivity for
the five-number summary in Table 1 is the same as that for counts. Note that the element returned by the
exponential mechanism is always a member of the set Range(A). This is reasonable for a finite set where
a noisy response is not useful. Therefore, a pre-defined minimum/maximum is more privacy-preserving
and should be preferred as far as possible.

5 Application and Evaluation
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Table 2: Overview of evaluation data sets

Tessellation Trips per user

Trip count User count Tile count Tessellation area Mean tile area Max Median Mean SD

GEOLIFE 18,670 182 962 3,566 km2 3.7 km2 2,153 27.5 102.6 250.0
MADRID 222,744 75,208 1,259 8,031 km2 6.4 km2 20 2.0 3.0 1.5
BERLIN 1,417,134 378,759 386 891 km2 2.3 km2 16 4.0 3.7 1.8

5.1 Implementation and Provision of Code

The differentially private mobility data report proposed in Section 4 is implemented as a python code
package1 and provided as open source code under the MIT license. The implementation is inspired by
the pandas profiling package. It expects a pandas DataFrame [61] in the required format as input and
outputs a report as an HTML file. This serves as an initial step to provide an easy to use implementation
of the report in practice. We envision to further develop the package to comply with common standards
and to adjust functionality based on testings with practitioners.

5.2 Experimental Setup

In the following, we compare the deviation of the mobility report from differentially private variants. For
this purpose, we focus on four selected mobility measures, introduced in Section 3, that can be considered
typical and unique for mobility data: number of trips, visits per location, OD flows and radius of gyration.
For a full analysis of error measures for the entire report we refer the reader to our online repository2.

Below, we describe the data sets, the choice of parameters for the privacy guarantees, and the error
measures to quantify the deviations.

5.2.1 Data sets

We use three data sets, denoted by MADRID, GEOLIFE and BERLIN, commonly used in research and
applications on human mobility. The first two are real, open data sets; BERLIN is a synthetic data set
created with a traffic simulation software.

The data set MADRID [62, 63] is a survey on the mobility behavior of 75,208 residents of the Community
of Madrid. Participants were asked about each trip they made on one weekday (Monday to Thursday)
they selected between February and May 2018. The data set contains a tessellation consisting of 1,259
irregular sized traffic cells [64] that serve as the possible origins and destinations of the survey. 2,007
points were outside the given tessellation. As our input specification requires coordinates for origins and
destinations, we replace the tile IDs with the coordinates of the respective tile centroids.

GEOLIFE was collected and released as part of the eponymous project [21, 22, 65] in which movements
of 182 participants were recorded between 2007 and 2012 using GPS devices. Users were not continuously
tracked over the entire time period; instead, single trips were recorded when users actively started
tracking. Therefore, the time period and number of recorded trips differ greatly between individual
users. Nine users contribute almost half of the trips with more than 400 trips each, while half of all
users recorded only 27 trips or less. As we only use start and end locations, all way-points of the trips
are removed for our purposes. Most traces are located in Beijing, China. As no tessellation is provided,
we use a hexagonal grid based on the H3 geospatial indexing system3 that covers the majority of data
points within the Beijing center with an H3 resolution of 7, omitting 3,583 (9.5 %) of the records.

The BERLIN data set is produced by open-source traffic simulation software TAPAS [66] of German
Aerospace Center and has been calibrated to the mobility behavior of the population of Berlin on a
typical workday based on a survey in 2017. We work with a 10 % sample of the entire Berlin population
which results in 378,759 users and 1,35 M trips and use traffic cells of Berlin [67] as a tessellation.

In Table 2 we show the main characteristics of the selected data sets and in Figure 2 we visualize
their tessellations and the mobility measure of visits per location. Particularly relevant for consideration
of user contribution bounds is the difference in user contributions per data set: while the distribution
of trips per user in GEOLIFE is strongly skewed to the right, those of MADRID and even more BERLIN are

1Link to the package repository: https://github.com/FreeMoveProject/dp_mobility_report/
2Link to evaluation repository: https://github.com/FreeMoveProject/evaluation_dp_mobility_report
3https://h3geo.org/
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(a) GEOLIFE (b) MADRID (Tessellation by [64]) (c) BERLIN (Tessellation by [67])

Figure 2: Tessellation and visits per location
Basemap: ©OpenStreetMap contributors ©CartoDB

rather balanced with a larger number of users and trips and a lower contribution per user. BERLIN has
by far the most users and trips distributed on the smallest geospatial area.

5.2.2 Evaluation Runs

To evaluate the similarity of mobility measures with and without privacy guarantees we use different
values of the maximal user contribution M and the privacy budget ε. The choices of M are based on
the distribution of the number of trips Mu per user u for a given data set: quartiles, the 10th percentile,
the 90th percentile, the maximum and the minimum (= single trip per user), resulting in seven variants
if no values overlap (e.g., the 10th percentile, second and third quartile have a value of 2 for MADRID).
For a given M , a random sample of min(M,Mu) records is drawn per u.

For comparison, we also include runs that only apply sampling and do not add any noise, which
we refer to as withoutDp. The proposed differentially private mobility report needs to split the given
privacy budget ε between all analyses to grant overall ε-differential privacy. To reduce complexity, we
first evaluate each error measure individually, thus the budget is not split, instead the same amount of
budget is applied to every single analysis which would sum up for an entire report. In Section 5.5 we
elaborate on the implications of privacy budget splitting for the entire report. For evaluation purposes,
all combinations of M and ε are run 10 times. In order to present possible deviations, we add error bars
to show the variance.

5.2.3 Error measures

We use the following measures to quantify the resemblance between mobility data reports without and
with differential privacy guarantees. For any mobility measure x the differentially private counterpart
is denoted as x′. The higher the resemblance the lower the error which suggests a better utility of the
mobility data report.

TripCountError. We use the relative error to quantify the deviation of total trip counts counttr:

TripCountError :=
|counttr − count′tr|

counttr
.

LocationError. The Earth Mover’s Distance (EMD) [68] is used to evaluate the deviation of visit
counts in each tile. The EMD determines the least amount of work necessary to reshape one distribution
to another. Let L be the distribution of visit counts per tile. The EMD between L and L′, denoted as
LocationError, is defined as:

LocationError := EMD(L,L′) =

∑n
i=1

∑n
j=1 dijfij∑n

i=1

∑n
j=1 fij

,

where n is the number of tiles, dij is the distance between the i-th and j-th tile and fij denotes
proportion of flows between the two tiles required to transform L to L′. We use the haversine distance
between the centroids of tile i and j to determine the distance dij , allowing us to quantify geospatial
shifts, where shifts between neighboring tiles are weighted less than shifts between distant tiles. Thus,
we can intuitively interpret the resulting LocationError: A value of, e.g., 100 means that every point in
L needs to move 100 meters on average to reproduce L′. Note that we thereby do not evaluate changes
in absolute visit counts in tiles, but changes of relative shares.

10



Table 3: Error measures for user-level vs. item-level privacy with ε = 1. M equals the maximum user
contribution per data set (GEOLIFE: 2, 153; MADRID: 20; BERLIN: 16.)

GEOLIFE MADRID BERLIN

error measure user-level item-level user-level item-level user-level item-level

TripCountError 0.14 0.00 0.00 0.00 0.00 0.00
LocationError 17,142.48 353.50 202.14 18.87 10.32 1.23
OdFlowError 2.00 1.99 1.96 1.78 1.44 0.60
RadiusOfGyrationError 0.50 0.35 0.00 0.00 0.08 0.08

ODFlowError. We use the symmetric mean absolute percentage error (SMAPE) to measure the
divergence between matrices representing origin-destination flows. First, the OD flows are normalized by
dividing through the sum of OD flows, so it is not accounted for changes in the absolute count through
sampling but only for changes in the distribution. The normalized matrix is denoted as A. To ensure
that the error measure is independent of the size of the tessellation, only the combined support of A
and A′ is considered. Thus, n is the number of combinations where at least one matrix cell of A or A′

is not 0. Otherwise, the error could always be reduced by increasing the tessellation and thereby the
percentage of 0 valued cells. The absolute percentage is determined and averaged to a single measure
defined as

ODFlowError :=
2

n

∑
ac+a′

c>0

|ac − a′c|
(ac + a′c)

,

where ac denotes the entry of the OD matrix A at index c. Note that ODFlowError has a lower
bound of 0 and an upper bound of 2.

RadiusOfGyrationError. The error for the radii of gyration makes use of quartiles and is computed
using SMAPE. The distribution of the radii of gyration, consisting of the five-number summary, is denoted
by ROG:

RadiusOfGyrationError :=
2

5

5∑
q=1

|ROGq − ROG′
q|

(ROGq + ROG′
q)

,

where q is the index of the five-number summary value in ROG.

5.3 Item level vs. user level privacy

There is a substantial difference between item-level privacy and user-level privacy for mobility data, as
they typically contain multiple items per user. In the following, we denote the maximum number of
trips a user contributes to the data set by M , and thus the sensitivity to user-level privacy. Note that in
real applications, the provision of M should also be differentially private, unless it is externally set and
enforced by sampling techniques [24].

We provide the errors for item-level and user-level privacy for ε = 1 in Table 3. It is hardly surprising
that item-level privacy, which provides weaker privacy guarantees, results in less dissimilarity to the
original data set than user-level privacy. However, the difference between the privacy levels depends
heavily on ε, the data set, and the mobility measure.

The LocationError illustrates well that user-level privacy causes an error several times higher than
item-level privacy, in particular for GEOLIFE (48 times for GEOLIFE vs. 11 times for MADRID), which is
likely due to the substantially larger sensitivity. On the other hand, adding noise to the total number of
trips has almost no impact for either privacy setting. This is to be expected since the measure consists
of a single, typically high absolute number that is more robust to noise. Again, for GEOLIFE, the high
sensitivity strongly affects user privacy guarantees and results in a relative error of 14 % even for this top-
level aggregation. On the other hand, there is no relevant difference w.r.t. the RadiusOfGyrationError,
as its sensitivity equals 1 and independent of M (the latter holds for most other user analyses, c.f.
Table 1). The difference for GEOLIFE is likely random, as a standard deviation of σ = 0.20 for item-level
and σ = 0.14 for user-level indicates.

Finally note that, with the exception of BERLIN, even item-level privacy yields an error of more than
100 % for OD flows, suggesting that such analyses require ε > 1 to produce useful results. This is due
to the fact that the number of origin-destination combinations increases quadratically with the number
of tiles, while the corresponding counts are much smaller and thus more sensitive to noise.
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Figure 3: TripCountError for different values of M and ε. The standard deviation of all 10 runs is
represented by the error bars.

5.4 Interplay between the upper bound of trips per user M and privacy
guarantee ε

Without the application of privacy measures, sampling of data decreases the similarity to its origin.
However, a sampling that bounds the user contributions to a defined maximum M can increase the
similarity when user-level differential privacy guarantees are enforced. This is because M defines the
sensitivity which in turn defines the amount of added noise. Thus, the question arises which effect
outweighs the other: the increase of similarity by keeping more data records per user or the decrease
of noise by reducing M . The effect highly depends on the considered mobility measure and data set
which we will evaluate in the following. Note that the errors produced purely by sampling without any
additional noise, denoted withoutDp, function as a lower bound for the differentially private error values.

The evaluation focuses on three aspects: (1) the overall range of error values, (2) the deviation from
the baseline withoutDp, and (3) the existence of ‘tipping points’ for error values created through the
interplay of M and ε.

As we want to assure that the observed effects are not arbitrary due to the random selection of
trips according to M , we first investigate the variance of error measures merely based on different
samples. For each value of M , 10 runs are conducted without noise (i.e., withoutDp) each based on a
new random sample. The standard deviation for each considered error measure and choice of M is low,
as all coefficients of variation, i.e., the ratio of the standard deviation to the mean, turn out to be below
0.15. Thus, we can assume that the way how trips were down-sampled for each user has no considerable
influence.

As expected, the effect of additional information dominates that of additional noise for almost all
data sets and ε-values for the TripCountError (see Figure 3). Almost all ε-curves resemble the baseline
withoutDp, i.e., the added noise has no influence on the error. Instead, the error can be attributed to
the information loss through sampling. M = 1 yields a high relative error between 66 % and 100 % for
all three data sets. An absolute count, unlike a relative share, intuitively largely gains similarity to its
origin with an increased sample. Accordingly, the curves drop for an increase in M . But even for such
a top-level aggregation, a lower sensitivity can outweigh the information loss: for e.g. ε = 0.1, the error
for the highly skewed data set GEOLIFE increases from 32 % to 103 % when setting M = 2, 153 instead of
M = 215. More fine granular mobility measures where trip counts are disaggregated, e.g., geospatially
into tiles, yield smaller values which are in turn more sensitive to adding noise.

In Figure 4 we show the impact of M and ε on the LocationError. Note that the range of the y-axis
differs greatly between data sets since the LocationError depends on the underlying extent and split of
the tessellation and the uniformity of the geospatial distribution. Recall that the LocationError can be
interpreted as the distance every visit needs to be moved on average to create the noisy distribution.
The error for withoutDp is remarkably low for all three data sets, even for M = 1. For MADRID, the
error is only 200 meters and for BERLIN ≈ 60 meters. For GEOLIFE, the error is 2,290 meters which
is rather high compared to the other two data sets. But considering that a sampling of M = 1 only
contains 1 % (182 trips) of the GEOLIFE data set, one could argue that this error, which corresponds
roughly to the diameter of one tile, still lies within a reasonable range. This indicates that there is not
a large information gain when increasing M to capture the geospatial distribution, confirming insights
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Figure 4: LocationError for different M and ε for each data set. The standard deviation of all 10 runs is
represented by the error bars. Note, that for clarity the y-axis of the GEOLIFE graph uses the scientific
notation, i.e., values of the y-axis need to be multiplied by 104.

Figure 5: OdFlowError for different M and ε for each data set. The standard deviation of all 10 runs is
represented by the error bars.

from mobility research stated in Section 4.2 that people mostly visit a few recurrent locations. Overall
patterns can therefore already be captured with only a fraction of the actual trips. For all three data
sets, the maximum M highly increases the error for most variations of ε, indicating the usefulness of
cut off values. E.g., for BERLIN the curves corresponding to ε ≥ 1 follow the course of withoutDp, but for
stronger privacy guarantees, such as ε = 0.1, we see a tipping point of the error at M = 6. Respectively,
for MADRID there is a tipping point for ε = 1 and M = 5. Again, we see the strongest effect of the
sensitivity onto the error for GEOLIFE. It is striking that even for a high privacy budget of ε = 100 the
error deviates from withoutDp at M = 2, 153. For ε = 10 the error increases for any M > 1, while for all
ε < 10 the error for M = 1 is already a multitude higher than the withoutDp baseline, only increasing or
staying constant for higher M -values. This suggests that these ε-values are not suitable for meaningful
analyses of visits per location for GEOLIFE.

We present the results for the ODFlowError in Figure 5. Recall that the range for the ODFlowError
lies between 0 and 2. GEOLIFE clearly does not contain enough data for differentially private analyses of
origin-destination flows. For MADRID and BERLIN much information is already gained with only a small
M , as the error for withoutDp shows. For M = 4 the OdFlowError is down to 17 % for MADRID and
19 % for BERLIN. Adding noise has a major effect: Even for a large data set like BERLIN only a privacy
budget of ε ≥ 10 falls below 100 %. These results raise the question whether user-level differential privacy
guarantees can be given for OD matrices for data sets and tessellations similar in size to those considered
here, while still maintaining high similarity and thereby utility of the data sets for further analyses.

13



5.5 Implications for selection and split of the privacy budget

To create the entire mobility report, an analyst needs to define a privacy budget which must be split
between all conducted analyses. As expected, the evaluation showed that the margin of error highly
differs for different analyses given the same privacy budget. While the TripCountError remains low even
using a small ε, there barely remains any utility for the origin-destination matrix if noise is applied with
a similar ε. Thus, to provide a usable mobility report, different considerations needs to be made: (1) To
save privacy budget, the selection of analyses should be limited to the ones needed. Therefore, an input
parameter is included in the implementation that allows such a selection. (2) Privacy budget should not
be split equally between all analyses, thus the implementation provides the option to assign the budget
share for each analysis.

6 Conclusion and Lessons Learned

We have compiled typical mobility measures of human movement data to a report and evaluated user-
level privacy for selected aggregations on three practice-relevant data sets. Our contribution lays the
groundwork for an easily usable open-source tool to create mobility reports with predefined mobility
measures and differential privacy guarantees.

We have showed that bounding user contribution has a major impact on error measures in the context
of our proposed mobility analyses. The optimal choice of an upper bound M depends on the mobility
measure, data set and choice of privacy budget. Bounding user contribution to the 90th percentile of all
users’ contributions, and thereby down-sampling all ‘power users’, has the strongest effect on reducing
error values for most variations, unless only low guarantees are given by a comparably high ε. In this
case there is, as expected, no major impact of the sensitivity, i.e. noise.

Within this work, the same random sample of size M was used to compute all mobility measures.
Future implementations should consider different sample sizes for different measures: E.g., absolute
counts like the number of trips could be computed with the entire data set, while visits per location
could be based on a sample with a small M . The split of the privacy budget between mobility measures
should further be optimized as some measures are more resistant to noise. Guidelines for meaningful
choices of ε and M would be desirable. It should be noted though that the general question of what
privacy budget is suitable is not straightforward and depends on the data set and use case.

Even for supposedly large data sets, counts of single bins shrink to comparatively small numbers as
data is disaggregated spatially and temporally. Maintaining a high similarity to the original distribution
while preserving privacy of individuals thus becomes a difficult task. Before one optimizes error values,
the question should be raised how well a given data set is suited for user-level differential privacy. A
data set might not include enough users for meaningful, fine-granular aggregations like origin-destination
matrices. E.g., more than 10 % of all trips within the GEOLIFE data set are produced by a single user
and almost 50 % by 9 users. It is likely that these users do not represent 50 % of a population and its
movements to which most use cases using urban mobility data refer. Next, one should be mindful about
the desired analyses. A data set might be large enough for temporal and spatial aggregations separately,
but not for combined analyses like visits per destination and time or OD flows. Further efforts should be
dedicated to optimize the report’s utility, e.g., eliminating queries that are not useful for a certain data
set. Moreover, by smart privacy budget splitting the utility can be enhanced as the order of magnitude
for counts of different analyses vary, thus to balance the margin of errors of all analyses the privacy
budget should be allocated accordingly. Additionally, guidance on the size of a tessellation and the
number of time windows should be provided.

Our evaluations serve as an orientation for the expected utility for a given privacy budget and vice
versa for different mobility measures. Further research should work towards guidelines that are easy to
understand and apply in everyday practice. Moreover, the compiled mobility measures should be assessed
with practitioners to verify their usefulness. Further measures could be included, e.g., additional variables
such as the traffic mode or user demographics. To increase the usability of a mobility report, margins of
error resulting from adding noise is thus included in the implementation of the report.

We want to raise awareness to an additional issue that comes with user-level differential privacy: To
be able to bound user contribution, a user identifier for each record is necessary. This contradicts the
recommendation of data minimization to only store needed information and deserves further discussions
in future research.
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