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Abstract

Learning new gaits for compliant robots is a challenging multi-dimensional optimization task. Furthermore, to ensure
optimal performance, the optimization process must be repeated for every variation in the environment, for example
for every change in inclination of the terrain. This is unfortunately not possible using current approaches, since the time
required for the optimization is simply too high. Hence, a sub-optimal gait is often used. The goal in this manuscript is to
reduce the learning time of a particle swarm algorithm, such that the robot’s gaits can be optimized over a wide variety
of terrains. To facilitate this, we use transfer learning by sharing knowledge about gaits between the different environ-
ments. Our findings indicate that using transfer learning new robust gaits can be discovered faster compared to tradi-

tional methods that learn a gait for each environment independently.
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I Introduction

In recent years, compliant robots have increasingly
gained interest in the scientific community. They use
low-impedance mechanisms to exploit the robot’s pas-
sive dynamics and nudge it into the desired behaviour,
rather than enforcing a desired trajectory (Pratt, 2000).
This approach is promising, as it is more closely aligned
with biology, where even today animals show capabil-
ities unmatched in robotics. Like in nature, we can
make our robots more compliant by adding passive ele-
ments in the design. These can for instance be used for
storing energy between steps, such as with the Lucy
robot (Verrelst et al., 2005), or the added compliance
can be used to have more robust control of the robot
on difficult terrain (Raibert, Blankespoor, Nelson,
Playter, et al., 2008).

Examples of compliant robots include for instance
the robots with compliant actuators, such as the
CoMaN (Tsagarakis, Li, Saglia, & Caldwell, 2011) and
the Kuka-DLR lightweight arm (Bischoff et al., 2010).
Notable examples of compliant robots in legged
robotics are for instance the M2V2 (Pratt & Krupp,
2008), HyQ (Semini et al., 2011) and StarlETH (Hutter
et al., 2012).

Despite their advantages, compliant robots are
harder to control using linear control methods. Since
their elastic elements show non-linear behaviour,

control by classical paradigms requiring linearization of
the problem prove to be less effective (Horn & Raibert,
1977). One approach to tackle this problem is to have
the robot learn its behaviour and model using optimiza-
tion techniques from machine learning (Bennewitz,
Burgard, Cielniak, & Thrun, 2005; Deisenroth &
Rasmussen, 2011; Dillmann, Rogalla, Ehrenmann,
Zollner, & Bordegoni, 2000; Kohl & Stone, 2004;
Peters, 2007; Waegeman, wyffels, & Schrauwen, 2012;
Wolbrecht, Chan, Reinkensmeyer, & Bobrow, 2008).
This way the robot inherently learns to deal with non-
linearities and uncertainties in its own morphology.
These uncertainties are an inherent problem in robotics,
where the quality of contemporary sensors makes it
impossible to know either the body of the robot or the
environment in full detail.

Having said that, the main disadvantage with these
techniques is that the robot needs to go through the
optimization process for its behaviour repeatedly, every
time the setting of the problem changes. This process
takes up a lot of optimization time, and the time to test
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a behaviour on the robot is usually far greater than the
amount of time spent on the calculation of the optimi-
zation process. It would therefore be useful to make
these optimizations more data-effective, reducing the
number of behaviours to test and thus significantly
reducing the amount of time needed for optimization.
A lot of research has already been done in transfer
learning as a method for increasing the optimization
speed in various methods of machine learning, such as
neural networks and reinforcement learning (Taylor,
Whiteson, & Stone, 2007). Overviews of the state of the
art in many subdomains can be found in review articles
by Taylor and Stone (2009) and Pan and Yang (2010).
Notable results include the transfer learning of infor-
mation in unlabelled images to image classification
algorithms (Raina, Battle, Lee, Packer, & Ng, 2007) or
the use for classification of texts (Do & Ng, 2005).

Examples on the use of transfer learning in robotics
include work on mobile robots (Thrun & Mitchell,
1995) and on the RoboCup soccer Keepaway problem
(Taylor et al., 2007). We are unaware of research done
on transferring knowledge from one gait to another.

However, the idea that transferring knowledge
between tasks speeds up the optimization process is
non-trivial, as transfer learning may hinder perfor-
mance if the tasks are too dissimilar (Rosenstein, Marx,
Kaelbling, & Dietterich, 2005). Hence, in this article we
evaluate the hypothesis that the learning of locomotion
in compliant robots can be speeded up by transferring
knowledge from one gait motion to another in the
learning process.

In order to illustrate this claim, we optimize a gait in
different setups for the quadrupedal, compliant robot
Oncilla (see Figure 1). In each of these setups, we use

)

Figure 1. In (a), the Oncilla robot on the treadmill is shown. Notice the three-segmented pantographic legs and the cable
mechanism actuating the knee in (b). In (c), an exploded view drawing is presented, with the three motors in each leg coloured.
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particle swarm optimization (PSO) to evaluate the
learning process with transfer learning, and compare it
to the same learning process without the transfer learn-
ing. This way we have a baseline to compare with, and
we can evaluate the effectiveness of transfer learning in
increasing the learning speed.

In the following sections, we show the research we
have done to evaluate whether this transfer of knowl-
edge is beneficial. In the next section we describe the
setup used for our experiments. Then we discuss the
results of the experiments and find an answer to our
hypothesis. Afterwards, we evaluate the results and
show what this means for a broader range of applica-
tions. Finally, we conclude with a reiteration of the
most interesting results and findings in this article.

2 Gait optimization

The problem of robot locomotion consists of finding
the appropriate motor signals with respect to higher
level constraints, such as speed or stability of the gait.
There are various ways to generate motor signals. For
one, it is possible to generate gaits through classical
underactuated control theory. Various solutions have
been developed in this terrain. The most influential
example of this approach is the static balance method,
in which the robot keeps the centre of gravity inside the
support polygon (e.g. Rebula, Neuhaus, Bonnlander,
John- son, & Pratt, 2007). A more advanced but equally
important example is the dynamic balance method,
such as the zero-moment-point-based technique (Byl,
Shkolnik, Prentice, Roy, & Tedrake, 2009), in which
the foot placement is chosen such that the resulting
moment on the body becomes zero. These classical
methods however have difficulties dealing with a com-
pliant and thus uncertain morphology. They require a
precise measuring of the state of the robot and its envi-
ronment in order to provide accurate feedback in the
motor signals. In order to avoid the problem of measur-
ing the state of a compliant robot, we focus on open-
loop gait generation in this paper, as this does not
require feedback.

A first commonly used approach is to generate the
motor signals by designing a path in the joint space of
the robot (Ilida & Pfeifer, 2004; Nichaus, Rofer, &
Laue, 2007; wyffels et al., 2010) and optimizing the
parameters of this path. This is the simplest approach,
but we found in previous research that it is not very
effective because the parameters are not very robust
(Degrave, Burm, Waegeman, wyffels, & Schrauwen,
2013). Indeed, small changes in the parameters can
make a gait go from stable to completely unstable.

A second approach is to use a biologically inspired
approach to generate gaits (Dimitrijevic, Gerasimenko,
& Pinter, 1998), based on central pattern generators
(CPGs) in the joint space or (Ijspeert, 2008). These are

very flexible, can create a big range of motions and
they allow for a smooth gait transition between them.
However, this flexibility comes at the price of an
increased design complexity with respect to the para-
meters. In particular, each of the parameters performs
multiple functions which increases the difficulty of
interpreting them (Ijspeert, 2008). A single parameter
of a CPG can for instance affect both the step fre-
quency, step height and step length.

We have used a third, intermediate approach, based
on previous experiments (Degrave et al., 2013). We
parameterize the trajectories of the end-effector, and
use inverse kinematics to generate the motor com-
mands for these trajectories. In this way, we can use
intuitive and robust parameters, while retaining the
flexibility for generating a variety of gaits. Note that
the inverse kinematics do not take the compliance of
the robot into account, nor the interaction of its body
with the environment. We only nudge our end-effector
in the direction of this trajectory; we do not force it to
follow that trajectory exactly. A similar approach has
been done where the trajectory is generated with
cycloids (Sakakibara, Kan, Hosoda, Hattori, & Fujie,
1990) and CPGs (Barasuol et al., 2013; Maufroy,
Kimura, & Takase, 2010).

We have shown in previous research that cubic-
Bézier-spline-based curves provide the fastest gaits we
found on the Oncilla robot (Degrave et al., 2013) as
well as being able to produce biologically plausible tra-
jectories (Flower, Sanderson, & Weary, 2005; Shen &
Poppele, 1995). Therefore we use these splines to gener-
ate the parameterized foot trajectories for each gait. In
this approach, the parameters to be optimized (see
Figure 2) are the following: the major axis 2a, four con-
trol points of the Bézier curves Py, P, P,, P; and the
relative position of this shape with respect to the hip of
the robot (xg,y0). We only allow the P(i = 1,...,4) to
move vertically in order to reduce the number of para-
meters. The lengths of the segments are denoted as
I(i = 1,...,4), and L, and /5 are the same for all four
legs, such that the same stance trajectory is applied to
each leg. In total, there are therefore 12 parameters to
be optimized. Table 1 gives an overview of all the para-
meters that are optimized.

We generate the splines of adjacent feet in counter-
phase in order to have the leg pattern of a trot gait.
This gait was chosen because it is stable and robust for
quadrupeds (Kimura, Shimoyama, & Miura, 1989).
These splines are subsequently limited to the range of
the actuators. They spend an amount of time Zg,pnce IN
the stance phase and #yine in the swing phase in order
to make a trajectory from these splines. These foot tra-
jectories are then converted to motor signals using an
inverse kinematics model of the robot’s legs. In
Figure 3, four examples of such trajectories are shown:
three from the beginning of the optimization process
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Table I. An overview of the parameters to be optimized. Each particle is a vector with a value for each of these parameters. The
trajectories of every gait in this paper are fully defined with these parameters. The distance of the step length is dependent on the
maximal step length at the height xo, such that the points A and B in the foot trajectory never go out of the reachable region of the
robot. The horizontal distance y is dependent on the step length a and on the height x, for the same reason.

Parameter Description Range
f (Hz) The frequency of the gait [1.5;2.0]
a (mm) The step length [0;0max (X0)]
Xo (mm) The vertical distance from the hip to the trajectory’s centre [126; 158]
Yor (mm) The horizontal distance from the hip to the trajectory’s centre for the fore feet [Ymin (X0,@);¥max (X0,a)]
Yor (Mm) The horizontal distance from the hip to the trajectory’s centre for the hind feet [Ymin (X0,0)3¥max (X0,a)]
tseance (d.U.) The fraction of the period of the gait spent in the stance phase [0.4; 0.6]
los 1 (mim) The control points for the top of the trajectory for the fore feet [0; 70]
lor, Iy (Mmm) The control points for the top of the trajectory for the hind feet [0; 70]
b, I3 (mm) The control points for the bottom of the trajectory for all four feet [0; 70]

o
Py® '
IO' e
0" 1
: X0,Y0) 1
A: 7 ‘ Z :B
: ¥
l3: ! 2
: oPr;
P;@

Figure 2. The foot trajectory is defined by two Bézier splines,
controlled by four control points P.. We only allow P; to move
vertically in order to reduce the number of parameters. The
step length is controlled by @; tance and tying are the time in
which the foot does the stance and swing part of the trajectory
respectively; and xo and y, are the coordinates of the location of
the centre point relative to the hip joint.

and one from the end of the optimization process on a
flat terrain.

3 PSO

In order to optimize the parameterized trajectories for
maximal speed, we use PSO. This evolutionary optimi-
zation algorithm uses a set of candidate solutions that
move towards their own previous best solution as well
as the global optimum found so far (Poli, Kennedy, &
Blackwell, 2007). PSO was first intended to simulate
social behaviour of human societies when processing
knowledge (Kennedy, 1997). The algorithm was simpli-
fied, after which it was found to perform general opti-
mization. By now, PSO has been used in hundreds of
different applications (Poli, 2007), including robotics
(Chatterjee, Pulasinghe, Watanabe, & Izumi, 2005;
Pugh & Martinoli, 2008; Pugh, Martinoli, & Zhang,
2005; Qin, Sun, Li, & Ma, 2004). More closely related
to this article, this technique has also been used for

optimizing gaits on bipedal robots (Hemker, Stelzer,
Stryk, & Sakamoto, 2009; Niehaus et al., 2007; Shafii,
Aslani, Nezami, & Shiry, 2010). Evolutionary algo-
rithms are often used in robotics because they are easy
to understand and implement, because they do not
require gradients, and because they are robust against
noisy optimization landscapes (Kennedy & Eberhart,
1995). These benefits make them feasible for applica-
tions on real robots. We preferred PSO to other suc-
cessful evolutionary algorithms such as covariant
matrix adaptation evolution strategy (CMA-ES)
(Hansen & Ostermeier, 1996) and genetic algorithms
(GA) (Davis et al., 1991) because it places the fewest
assumptions on the data. We are therefore confident
that the results obtained with PSO could also be
achieved by the more complex algorithms, whereas the
reverse is less straightforward.

PSO models a set of particles on the fitness land-
scape, whose velocities perceive a noisy force towards
both the particle’s previous best solution, and the best
solution found across all particles so far. After suffi-
cient time, the particles have a tendency to converge to
the optimum. Nevertheless, PSO is only a metaheuris-
tic, and neither convergence nor global optimality is
guaranteed. Fortunately, for optimizing gaits neither of
these is necessary. Firstly, our time available on the
robot is too limited to wait for full convergence as we
want to have a more data-efficient approach. Secondly,
since no mathematical properties of the fitness land-
scape are known a priori, global optimality is never
guaranteed anyway.

In PSO, the update equations of particle x, a vector
containing the 12 parameters, at time step n + 1 are
defined as follows (Shi & Eberhart, 1998):

v(in + 1) = wv(n)
+ ¢, ro (p(n) — x(n))
+ by r1(g(n) — x(n))
x(n+1)=x(n) +vin + 1)
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(a) A random initialization of the trajectory at the
beginning of the optimization process
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(c) A random initialization of the trajectory at the
beginning of the optimization process
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(b) A random initialization of the trajectory at the
beginning of the optimization process
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(d) The optimized trajectory for a flat terrain
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Figure 3. Example trajectories of the feet of the Oncilla robot: (a), (b), (c) a random initialization of the gait from the beginning of
the optimization process; (d) the optimized gait for a flat terrain. Note that all four are idealized trajectories, determined using
inverse kinematics and not taking effects of the robot’s compliance into account.

At time step n, x(n) and v(n) are the locations and
velocity of the particle and p(n) and g(n) are the parti-
cle’s previous best solution and the global best solution
over all past generations. The stochastic terms r; are
sampled from a uniform distribution between 0 and 1.
This stochastic term ensures that sufficient exploration
occurs (Kennedy & Eberhart, 1995). We do not copy
any particles without randomization, since at the end
of the process we will take the best solution found over
all generations. In this paper, we use a population size
of 20 particles, as our initial research showed that this
amount found a good balance between the exploration
and speed of the optimization.

The parameters w, ¢, and ¢, determine the charac-
teristics of the particle and are the meta-parameters of
the algorithm. They determine the amount of explora-
tion and the speed of convergence. Here, w is the inertia
of a particle, and ¢, and ¢, are the acceleration coeffi-
cients determining the magnitude of the random forces
in the direction of the particle’s personal optimum and
the global optimum (Poli et al., 2007). These were set at
the values w = 0.66, ¢, = 1.6 and ¢, = 0.62, which
yield good results for our optimization problem with a
12-dimensional search space, small swarm size and lim-
ited number of evaluations, according to recent findings
(Pedersen, 2010).

4 Transfer learning for PSO

We want to adapt the gait to various environments.
Therefore, the robot will need to learn optimized gaits
in each of these domains. However, since we optimize
on our hardware and not on a model of the hardware,
we need to restrict the number of trials. One way of
achieving this is by reusing past knowledge in order to
solve a new problem, an approach called ‘transfer learn-
ing’ (Pan & Yang, 2010). This way, knowledge the
robot has gained of the data in a previous optimization
is reused in order to spend less time optimizing.

In the original PSO algorithm, particles and their
corresponding speeds are randomly initialized. To
implement transfer learning, we initialize the particle
population with the best particles from a previous opti-
mization process of a similar problem. In our case, this
means we take the best 20 particles over all generations
from a previous optimization of a similar problem. We
chose this approach over more complex approaches,
where the values of the particles are taken into account
to encourage dissimilar solutions, for simplicity’s sake.
We instead give these particles a small impulse in a ran-
dom direction in order to have them start exploring
new solutions (» € U( — 1, 1)). We reckon that initializ-
ing the transferred particles with transferred impulses
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would excessively reduce the exploring of new
solutions:

v(0) = r

x(0) = argmax (score(X(n)))

We hypothesize that this new initialization step will
speed up the convergence of the optimization process
by exploiting the similarity between gait optimization
solutions. This is not trivial (Rosenstein et al., 2005), as
it might increase the change of convergence to a local
optimum because of the reduced exploration in the
beginning. It is also possible that the previous gaits per-
form worse under the new conditions, and consequently
that transferring them to this problem is disadvanta-
geous to the optimization process. The question of
whether transfer learning is beneficial to our problem
of optimizing gaits is therefore the subject of this
article.

5 The Oncilla robot

In order to evaluate the gaits, we use the quadrupedal,
compliant robot Oncilla (Sproewitz et al., 2011). The
robot has 12 degrees of freedom: each leg has a low
inertia shoulder, for adduction and abduction, and hip
actuator, for extension and flexion, and a third actua-
tor actuating the knee through a cable mechanism. It
has been developed for the AMARSIi-project in a joint
effort between EPFL in Lausanne, Switzerland and
Ghent University, Belgium. The leg design was loosely
based on that of a cat, using a three-segmented panto-
graphic system to achieve dynamical properties similar
to those of felines, as shown in Figure 1.

The robot is also equipped with various sensors. The
hip and knee actuators are fitted with motor encoders.
The heel, knee and hip-joint are equipped with mag-
netic encoder sensors. Additionally, the robot is
equipped with a Sharp distance sensor on the front, to
measure the distance to an object in front of the robot.

For the purpose of processing the signals on the
robot, a Roboard RB-110 running Linux Ubuntu 10.04
with a realtime kernel is mounted on the front. Motor
signals are calculated on an external computer next to
the setup and communicated to the robot over ethernet.
This allows us to send a new command to the robot
every 10 ms. In the experiments, the robot was pow-
ered with an additional power cable loosely attached to
an overhead rail. The Oncilla robot can operate auton-
omously as well. For autonomous use, the robot is
powered using lithium polymer batteries, and the com-
mandos are calculated on the Roboard RB-110. This
mode of operation is however not suited to optimiza-
tion, because the battery limits the operating time to 15
to 20 min on a 11.1 V, 1800 mAh battery, depending
on the task and the gaits. This is not nearly enough, as

distance
Sensor

Figure 4. Schematic representation of the setup, showing the
robot on the treadmill. The robot is equipped with a distance
sensor to detect the wall at the end of the treadmill.

for the experiments in this article, the Oncilla robot ran
nearly 6 km during the 4 hours it spent optimizing.

In order to evaluate the multitude of gaits without
interruption, one for each particle in every generation, a
treadmill is used, as shown in Figure 4. The measure-
ments of the long-distance sensor on the robot are used
to control the treadmill’s speed, in order to keep the
robot at a fixed distance from the front of the treadmill.
This way, the robot can walk indefinitely and at various
speeds, as long as it keeps walking in the forward direc-
tion. We test each gait for 4 s at a time, and have a
smooth transition between these gaits for 2 s. Walking
for more than an hour at a time poses little problem this
way. In order to stop the robot from walking off the
sides of the treadmill, a light thread has been added
between the robot’s head and an overhead rail, which
limits the robot’s lateral freedom of movement, while
allowing it to freely move forwards. This thread is loose
during normal operation. During the experiments, an
assistant sits next to the track in order to intervene
when the setup’s safety is jeopardized by a very unstable
gait.

6 Experimental setup

The goal of our experiments is to test our hypothesis
that transfer learning speeds up the learning of locomo-
tion in compliant, quadrupedal robots. To carry this
out, we compare the performance of an optimization
with transfer learning to the performance of an optimi-
zation without transfer learning. This way we can eval-
uate the benefit of transfer learning by comparing it to
a baseline in an identical setting. We verified this on an
experimental basis by evaluating learning speed in three
different classes of problems often encountered in
robotics:

1. Have a change in the environment of the robot, con-
sisting of a different inclination of the treadmill;

2. Have a change in the front leg’s stiffness, that is, a
change in the robot’s morphology;
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3. Increase the noise in the environment of the robot,
by having the robot walk over pebbly terrain.

The goal of our optimization is to maximize the
average robot speed, measured over a period of 4 s. In
this paper, we chose to only optimize for speed. Initial
experiments showed that additionally minimizing body
rotations did not have any effect on the optimization
process. Since adding this stability measure to the fit-
ness would add a meta-parameter weighing the contri-
bution of this measure, while having no effect on the
overall process, we chose to completely overhaul the
stability as fitness and to only optimize for speed.

To evaluate these optimizations, we take a look at a
number of metrics to evaluate the effectiveness of the
optimization. Firstly, we compare the speed of the best
gait in each optimization. This method compares the
goals of the optimizations and is therefore necessary in
the evaluation of the approaches. It is however limited,
since it is very sensitive to outliers. This is particularly
a problem in our application, since due to our limited
population size we will have comparatively more out-
liers during the optimization process than if we had
used a larger population size.

Therefore we also introduce a second metric, to eval-
uate whether all particles perform better on average
than the particles of the same generation in the other
optimization. To do this, we compare the speed of the
gaits in each generation using a Wilcoxon rank-sum
test, the non-parametric variant of the Student’s t-test,
which is to be used for unknown distributions and
small sample sizes (Bridge & Sawilowsky, 1999).
Subsequently we combine the obtained p-values using
Fisher’s method, a well-established method for doing
so (Rosenthal, 1978). This way, we can test the signifi-
cance of the claim that one optimization process is on
average outperforming the other. This second method
has the advantage of being less sensitive to outliers, as
it uses more data and a non-parametric method. Note

that we cannot say anything on the statistical signifi-
cance of the experiment itself, only on the significance
of the difference between the two optimization pro-
cesses compared to a population of speeds randomly
drawn from a population.

The data from these experiments is laid out in the
following sections, and serves not only to scrutinize our
hypothesis, but also to explain the mechanisms behind
them.

6.1 Transfer learning for different inclinations

In the first experiment, we evaluate the effectiveness of
transferring a gait from a flat terrain to a slope. We
start by optimizing a gait on a flat terrain using PSO.
After that we optimize a new gait on a slope twice,
once with transfer learning from the gaits on a flat ter-
rain, once without transfer learning. We compare the
obtained results with each other in order to evaluate
the effect of transfer learning. We perform these last
two optimizations on two inclinations (a 9% and an
18% grade, or a 5.14° and a 10.2° slope), making up a
total of four optimizations.

When we compare the achieved speeds of locomo-
tion in Figure 5, it is clear that on both inclinations the
parameters not only perform better during optimization
when using transfer learning, but they also train faster.
We compare the results of the particles per generation
using a Wilcoxon rank-sum test. We find that the parti-
cles in the optimization with transfer learning on aver-
age outperform the particles without transfer learning
significantly on both inclinations (p < 0.001).

As we observe in Table 2, each inclination requires a
different gait for optimal locomotion. We notice that
on steeper inclinations the step length is reduced while
the robot spends more time with its feet on the ground.
We observe as well that the robot moves its hind feet
further from the body and to the back, in order to level
the body more and keep the centre of mass within the
support polygon.

(a) Optimizing on a 9% slope
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(b) Optimizing on an 18% slope
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Figure 5. Visualization of the particle scores for each generation, in green (A\) for with transfer learning; in orange (V') for without.
(a) The evolution of the fitness over a 9% slope. (b) Evolution of the fitness for an 18% slope. Note the generally better performance
when transfer learning is used, especially when the slope is steeper and the problem is more difficult.
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Table 2. The respective optimized parameters for the different terrains. You can see that the optimal step length of the robot
reduces over higher slopes, while the robot moves its hind feet more to the back. Here you can see that robot spends more time in
the stance phase with higher slopes, and moves its hind feet further from its body.

Grade Transfer

.

lor I, Speed Euclidean

a Xo Yor Yo tstance  lof li¢
learning (m/s)  distance
Flat x 198 953 1370 —1639 000 054 67.1 104 439 653 588 241 076 O
9% x 200 879 1418 —11.88 0.00 060 700 3.13 0.00 476 694 453 067 413
9% v 2.00 90.6 140.1 —1I1.71 0.00 0.54 657 406 239 700 700 262 0.74 1.72
18% x 1.71 844 1439 —887 000 056 526 348 0.00 51.6 662 451 053 6.64
18% v 200 863 1428 —9.77 000 058 700 377 503 399 700 0.00 060 9.05

(a) The step length a and the fraction of time in the
stance phase tstance Of the 50 best particles at each
incline grade
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(b) The step height zo and a spline parameter /15 of
the 50 best particles in each incline grade
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Figure 6. In these figures, we have plotted the parameters of the 50 best particles found in all our optimizations for each
inclination. We have fitted a Gaussian distribution to these particles, and depicted the mean together with the two standard
deviations ellipse. We see that the highest variance is found on the flat terrain, lowering with an increasing inclination. This indicates
that walking on higher inclinations has a higher parameter sensitivity, and is thus more difficult to optimize. Secondly, we see that
there is a relation between the parameters and the inclinations. With increasing slope, the best gaits have a longer stance phase, a

shorter step length and the feet move further from the body.

When studying the best particles found during all of
our optimizations, we found that there is a relation
between the parameters found and the inclination on
which the robot is running. As you can see in Figure 6,
a higher inclination implies a lower variance in para-
meters. Thus, trotting on a steeper terrain requires more
specific parameters. Additionally, we notice a correla-
tion between the parameters on the different inclina-
tions. This confirms our previous research on computer
models of a quadrupedal robot (Kindermans, wyffels,
Caluwaerts, Guns, & Schrauwen, 2012). The results
depicted in this figure indicate that a hierarchical learn-
ing approach to gaiting, such as the one used in Kemp,
Perfors, and Tenenbaum (2007), should prove fruitful.
This is because the relation between the parameters can
be learned, and this knowledge can subsequently speed
up the learning process on intermediate or even higher
inclinations. However, such an approach would lie out-
side the scope of this article.

In order to find out whether the method with trans-
fer learning stays closer to the original particle, we have
calculated the distances from the best particle on the

flat terrain. In Table 2, we have included the Euclidean
distance to the particle on the flat terrain, after normal-
ization of the parameters. This shows that the result of
the optimization with transfer learning is not necessa-
rily closer to the original solution, which serves as an
indication that enough exploration does happen.
Apparently the distance from the optimal parameters
on a flat terrain increases with increasing inclination as
well. Looking at the speed of the optimized results, we
can see that the best particles from transfer learning
have a gait with a speed 9% and 14% faster on the 9%
and 18% grades respectively.

These results confirm our hypothesis, namely that
transfer learning increases the speed of the optimization
process, resulting in better particles throughout the
optimization process.

6.2 Transfer learning for different leg spring
constants

In the second experiment, we have tested the effective-
ness of transfer learning against changes in the robot’s
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Table 3. The respective optimized parameters for the different stiffnesses of the front leg springs.

Transfer f a Xo Yor Yor tstance IOf I|f Io, ’| r I2 I3 speed Euclidean

learning (m/s)  distance
Normal x 1.98 953 1370 —1639 000 054 67.1 104 439 653 588 24.1 076 0
Compliant x .73 962 1364 —24.16 0.00 0.50 0.00 1.74 0.00 40.7 70.0 252 0.66 12.98
Compliant v 200 105.7 129.1 —5.27 0.00 060 70.0 0.00 0.00 70.0 70.0 70.0 0.75 7.16
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Figure 7. Visualization of the particle scores for each
generation when optimizing for a reduced stiffness, in green (A)
for with transfer learning, in orange (V) for without. Notice that
despite the original particles performing worse, the overall
optimization is still better. This means that the better starting
position of the transferred particles is not the main reason they
perform better.

body parameters. To do so, we have reduced the spring
constant in the front legs of the robot by removing one
of the two springs in each of the robot’s front legs.
These springs can be seen in Figure 1(b). This reduction
of the front leg stiffness results in a decrease of their
pushing capacity. We use the same procedure as we did
in the previous experiment with different inclinations,
comparing the optimization results with and without
transfer learning.

If we look at the data in Figure 7, we observe that
the original transferred particles do not perform as well
as the random particles in the new task. However, the
improvement of the particles in the first generations is
still higher than the one of the particles without transfer
learning. This is remarkable, because in order to per-
form better, the transferred particles not only have to
learn faster than their counterparts, but they also have
to overcome the disadvantage of starting with a worse
gait. We will offer an explanation for this observation
in a dedicated subsection later in the paper.

Using the same statistical method as before, we find
that the particles in the optimization process with
transfer learning run significantly larger distances
(p < 0.05).

If we compare the best parameters, as shown in
Table 3, we can see that the best particle of the optimi-
zation with transfer learning has a 13% faster gait than
in the optimization process without transfer learning.
This is despite the fact that the solution is quite differ-
ent from the solutions with the normal stiffness which
were transferred originally, as can be seen in Table 3.
The Euclidean distance of the optimized solution to the
particle with the normal stiffness is relatively large,
both with and without transfer learning. We will offer
an explanation for this behaviour in Section 7.

Once more, these results confirm our claim that
transfer learning increases the speed of the optimization
process. Equivalently, the gaits perform better after a
given time of optimizing. Moreover, this experiment
shows that in transfer learning there is a mechanism at
work besides having a head start.

6.3 Transfer learning for difficult terrains

As a third experiment, to further scrutinize our hypoth-
esis, we have optimized in a noisier environment. In
noisy problems, the PSO will produce more robust
parameters in order to find gaits that perform well,
because the same parameters do not always obtain the
exact same result. An ill-placed pebble could poten-
tially tip the robot over, while there might be no prob-
lem if the pebbles are arranged slightly differently. In
order to do this, we had the robot walking over a flat
surface covered in pebbles. We attached a pebble dis-
penser to our treadmill, which covered the treadmill in
pebbles with a diameter of approximately 1 cm. A
video of this setup is available online (http://youtu.be/
kcBBdwwYmQA).

If we look at the results in Figure 8, we see that the
original transferred particles perform well in this new
task. However, once the PSO algorithm starts explor-
ing, it is hard to return to these original good solutions.
If we compare both optimization processes using the
same method as before, we find that we cannot confirm
our hypothesis. Over all generations together, the parti-
cles optimized with transfer learning do not perform
significantly better than the particles without transfer
learning (p > 0.05).

If we look at the best particles in Table 4, we see that
the one from the transfer-learned optimization does not



78

Adaptive Behavior 23(2)

Table 4. The respective optimized parameters on rocky and normal terrain, with and without transfer learning. We have also added
the parameters of the second-best particle in the transfer learning case, because the best particle was part of the first generation.

Terrain Transfer f a Xo Yor Yof  tseance lof L lor I, L, 5 Speed Euclidean
learning (m/s)  distance
Normal x 198 953 1370 —1639 0.00 054 67.1 104 439 653 588 24.1 0.76 0
Pebbly x 200 873 1422 344 0.00 0.49 0.00 700 60.6 70.0 70.0 70.0 0.69 25.82
Pebbly v 200 893 141.0 —1848 0.00 0.59 546 349 008 649 552 220 0.74 2.44
Pebbly 4 200 948 1373 —829 0.00 057 700 290 0.00 632 564 287 074 1.25
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Figure 8. In this figure we visualize the scores of the particles
for each generation when optimizing for a more difficult terrain,
in green (A) for with transfer learning, in orange (V) for
without. Notice that despite all the original particles
outperforming the random particles in the first generation, this
head start is quickly lost during the rest of the optimization
process.

differ a lot from the original optimization on the flat
terrain. The Euclidean distance to the original particle
is comparatively small. This is because the best particle
found during the entire optimization was one of the
transferred particles. If we look at the best particle in
the same optimization, but exclude the transferred par-
ticles, we find that it is very similar to these solutions as
well.

7 The mechanism behind the speedup

The previous results show that the optimization time
decreases when using particles from similar but differ-
ent problems in the initialization step. Our experiment
with the changed stiffness indicates that this is not
necessarily caused by the transferred particles scoring
well in the new problem. The experiment on the pebbly
terrain indicates the same thing. Even though these
particles started off better, they did not outperform
their counterparts without transfer learning. In this sec-
tion we show an alternative mechanism behind the
transfer learning, namely that the learning process is

Figure 9. A chart showing the values of the step length a and
the distance from the body xq evaluated during the PSO. The
parameters of two optimization processes are shown: the green
particles (+, AA) have been optimized with transfer learning,
and the orange particles ( x, V) have not. The triangles (A, V)
show the parameters at the initialization of the PSO. The
rightmost edge of the search space is not vertical, because @,
depends on xq as explained by Table I. Notice how the
transferred parameters reduce the search space for the
optimization algorithm, whereas the randomly initialized
parameters still need to explore the entire parameter space
before finding that maximizing the step length results in faster
gaits. Note that most particles lie on the edge of the parameter
range, which is also the end of the robot’s range of motion.
When the particles have been transferred, there is still a little
exploration around the entire parameter space, but most
particles are centred around the optimum.

speeded up because the transferred particles indicate
useful areas of the parameter space to explore.

To explain this, we plot all tested parameter combi-
nations of the optimization on the 18% grade inclina-
tion. As you can see in Figure 9, it is more fruitful to
maximize the step length ¢ and have the feet moving at
a medium distance from the body. You can see that in
the transferred parameters this general idea is already
contained in the original particles, while the random
parameters still need to discover this relation. So even
though the transferred particles do not perform well,
they already contain this general idea. Therefore, the
search space is reduced. This way, the optimization pro-
cess has to spend less time on rediscovering this
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(a) Optimizing on a 9% slope
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(c) Optimizing with reduced stiffness of the front legs

2.0
£l
&
5 151 VV
z x
'_g' X
wlOA \
g
% AKX XV vV V¥
¥ v
= 05 RSN v
3 - A
8 'S A, aAA
004 1 [ [ [ [
1 5 10 15 20
generation

(b) Optimizing on an 18% slope
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(d) Optimizing on a rocky terrain
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Figure 10. The size of the search space is plotted here as the geometric mean of the lengths of the principal component axis of the
particle parameters for each generation, in green (A) for with transfer learning, and in orange (V) for without. The lower this mean,
the smaller the volume of the parameter space which is being explored in that generation. As you can see, the transferred particles
initially occupy a smaller part of the parameter space, and this head start is not often lost during the optimization process. This is an
important second mechanism through which the optimization speed is increased.

relationship, and can focus on the more fruitful areas of
the parameter space.

To make this clearer, we have plotted in Figure 10
the mean size of the principal component axes of the
particles throughout the optimization process. These
axes are an indicator of the size of the part of the para-
meter space that is being explored in a particular gener-
ation. The size of the search space with transfer
learning is on average 1.7 times smaller. Moreover, the
transferred parameters start with a search space which
is about the same size as at the end of the optimization
without transfer learning. This indicates again that the
increased learning speed when optimizing with trans-
ferred particles can be explained by the reduced search
space in which the search starts.

8 Conclusion

In this article, we have found that transfer learning is
beneficial for learning gaits on our legged robot. In
order to test our hypothesis that transferring particles
from previous optimizations improves the speed of
learning new gaits on different problems, we compared

these optimizations with optimizations starting from
random samples. We optimized a gait for our robot in
three different settings: first on a 9% and an 18% grade
inclination, then with a different leg stiffness and finally
on a pebbly terrain. We found that using transfer learn-
ing results in better gaits than when not using transfer
learning in all tested cases, evaluated on a real robot.
Everything considered, we conclude that transferring
particles resulted in better gaits in the same amount of
robot time in three out of four cases, while not harming
the optimization speed in the fourth case.

We have also shown that the increased learning
speed is caused by a reduction of the volume in the
parameter space that is used in the exploration.
Therefore, we believe that our approach is more gener-
ally applicable and will prove useful for further devel-
opments in walking robots.

How generally applicable this conclusion is cannot
be reliably determined from this study alone, since only
a single robot and a limited set of walking conditions
was used to obtain the data. We did however identify a
mechanism, alter the robot parameters and the robot
surroundings to test the robustness of this method and
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found similarities between the results of the different
optimizations, which gives us confidence for a more
general applicability.

The research reported here indicates that this idea of
transferring particles is more broadly applicable in
PSO. In general, it would be interesting to verify
whether the mechanism of the reduced search space is
also the main mechanism when applying transfer learn-
ing in other optimization algorithms. Especially because
of this mechanism, we believe that this approach might
be beneficial for other learning problems in robotics as
well, where the number of evaluations in an optimiza-
tion is inherently limited and tasks are often similar,
but solutions to one problem will not often work well in
another.
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