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Abstract

Many datasets can be interpreted as graphs, i.e. as elements (nodes) and binary relations
between them (edges). Under the label of complex network analysis, a vast array of graph-
based methods allows the exploration of datasets purely based on such structural properties.
Community detection, as a subfield of network analysis, aims to identify well-connected
subparts of graphs. While the grouping of related elements is useful in itself, these groups
can furthermore be collapsed into single nodes, creating a new graph of reduced complex-
ity which may better reveal the original graph’s macrostructure. Therefore, advances in
community detection improve the understanding of complex networks in general.

However, not every dataset can be modelled properly with binary relations – higher-
order relations give rise to so-called hypergraphs. This thesis explores the generalization of
community detection approaches to hypergraphs. In the focus of attention are social book-
marking datasets, created by users of online bookmarking services who assign freely chosen
keywords, so-called “tags”, to documents. This “tagging” creates, for each tag assignment,
a ternary connection between the user, the document, and the tag, inducing particular struc-
tures called 3-partite, 3-uniform hypergraphs (henceforth called 3,3- or more generally k,k-
hypergraphs). The question pursued here is how to decompose these structures in a formally
adequate manner, and how this improves the understanding of these rich datasets.

First, a generalization of connected components to k, k-hypergraphs is proposed. The
standard definition of connected components here rather uninformatively assigns almost all
elements to a single giant component. The generalized so-called hyperincident connected
components, however, show a characteristic size distribution on the social bookmarking
datasets that is disrupted by, e.g., spamming activity – demonstrating a link between be-
havioural patterns and structural features that is further explored in the following.

Next, the general topic of community detection in k, k-hypergraphs is introduced. Three
challenges are posited that are not met by the naive application of standard techniques,
and three families of synthetic hypergraphs are introduced containing increasingly complex
community setups that a successful detection approach must be able to identify.

The main methodical contribution of this thesis consists of the following development
of a multi-partite (i.e. suitable for k, k-hypergraphs) community detection algorithm. It is
based on modularity optimization, a well-established algorithm to detect communities in
non-partite, i.e. “normal” graphs. Starting from the simplest approach possible, the method
is successively refined to meet the previously defined as well as empirically encountered
challenges, culminating in the definition of the “balanced multi-partite modularity”.

Finally, an interactive tool for exploring the obtained community assignments is intro-
duced. Using this tool, the benefits of balanced multi-partite modularity can be shown:
Intricate patters can be observed that are missed by the simpler approaches. These findings
are confirmed by a more quantitative examination: Unsupervised quality measures consid-
ering, e.g., compression document the advantages of this approach on a larger number of
samples.

To conclude, the contributions of this thesis are twofold. It provides practical tools for
the analysis of social bookmarking data, complemented with theoretical contributions, the
generalization of connected components and modularity from graphs to k, k-hypergraphs.
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Zusammenfassung

Viele Datensätze können als Graphen aufgefasst werden, d.h. als Elemente (Knoten) und
binäre Verbindungen zwischen ihnen (Kanten). Unter dem Begriff der “Complex Network
Analysis” sammeln sich eine ganze Reihe von Verfahren, die die Untersuchung von Daten-
sätzen allein aufgrund solcher struktureller Eigenschaften erlauben. “Community Detec-
tion” als Untergebiet beschäftigt sich mit der Identifikation besonders stark vernetzter Teil-
graphen. Über den Nutzen hinaus, den eine Gruppierung verwandter Element direkt mit
sich bringt, können derartige Gruppen zu einzelnen Knoten zusammengefasst werden, was
einen neuen Graphen von reduzierter Komplexität hervorbringt, der die Makrostruktur des
ursprünglichen Graphen unter Umständen besser hervortreten lässt. Fortschritte im Bereich
der “Community Detection” verbessern daher auch das Verständnis komplexer Netzwerke
im allgemeinen.

Nicht jeder Datensatz lässt sich jedoch angemessen mit binären Relationen darstellen
– Relationen höherer Ordnung führen zu sog. Hypergraphen. Gegenstand dieser Arbeit
ist die Verallgemeinerung von Ansätzen zur “Community Detection” auf derartige Hyper-
graphen. Im Zentrum der Aufmerksamkeit stehen dabei “Social Bookmarking”-Datensätze,
wie sie von Benutzern von “Bookmarking”-Diensten erzeugt werden. Dabei ordnen Be-
nutzer Dokumenten frei gewählte Stichworte, sog. “Tags” zu. Dieses “Tagging” erzeugt,
für jede Tag-Zuordnung, eine ternäre Verbindung zwischen Benutzer, Dokument und Tag,
was zu Strukturen führt, die 3-partite, 3-uniforme (im folgenden 3,3-, oder allgemeiner
k, k-) Hypergraphen genannt werden. Die Frage, der diese Arbeit nachgeht, ist wie diese
Strukturen formal angemessen in “Communities” unterteilt werden können, und wie dies
das Verständnis dieser Datensätze erleichtert, die potenziell sehr reich an latenten Informa-
tionen sind.

Zunächst wird eine Verallgemeinerung der verbundenen Komponenten für k, k-Hyper-
graphen eingeführt. Die normale Definition verbundener Komponenten weist auf den un-
tersuchten Datensätzen, recht uninformativ, alle Elemente einer einzelnen Riesenkompo-
nente zu. Die verallgemeinerten, so genannten hyper-inzidenten verbundenen Kompo-
nenten hingegen zeigen auf den “Social Bookmarking”-Datensätzen eine charakteristis-
che Größenverteilung, die jedoch bspw. von Spam-Verhalten zerstört wird – was eine
Verbindung zwischen Verhaltensmustern und strukturellen Eigenschaften zeigt, der im fol-
genden weiter nachgegangen wird.

Als nächstes wird das allgemeine Thema der “Community Detection” auf k, k-Hyper-
graphen eingeführt. Drei Herausforderungen werden definiert, die mit der naiven Anwen-
dung bestehender Verfahren nicht gemeistert werden können. Außerdem werden drei Fami-
lien synthetischer Hypergraphen mit “Community”-Strukturen von steigender Komplexität
eingeführt, die prototypisch für Situationen stehen, die ein erfolgreicher Detektionsansatz
rekonstruieren können sollte.

Der zentrale methodische Beitrag dieser Arbeit besteht aus der im folgenden dargestell-
ten Entwicklung eines multipartiten (d.h. für k, k-Hypergraphen geeigneten) Verfahrens zur
Erkennung von “Communities”. Es basiert auf der Optimierung von Modularität, einem
etablierten Verfahrung zur Erkennung von “Communities” auf nicht-partiten, d.h. “nor-
malen” Graphen. Ausgehend vom einfachst möglichen Ansatz wird das Verfahren itera-
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tiv verfeinert, um den zuvor definierten sowie neuen, in der Praxis aufgetretenen Heraus-
forderungen zu begegnen. Am Ende steht die Definition der “ausgeglichenen multi-partiten
Modularität”.

Schließlich wird ein interaktives Werkzeug zur Untersuchung der so gewonnenen “Com-
munity”-Zuordnungen vorgestellt. Mithilfe dieses Werkzeugs können die Vorteile der zu-
vor eingeführten Modularität demonstriert werden: So können komplexe Zusammenhänge
beobachtet werden, die den einfacheren Verfahren entgehen. Diese Ergebnisse werden von
einer stärker quantitativ angelegten Untersuchung bestätigt: Unüberwachte Qualitätsmaße,
die bspw. den Kompressionsgrad berücksichtigen, können über eine größere Menge von
Beispielen die Vorteile der ausgeglichenen multi-partiten Modularität gegenüber den an-
deren Verfahren belegen.

Zusammenfassend lassen sich die Ergebnisse dieser Arbeit in zwei Bereiche einteilen:
Auf der praktischen Seite werden Werkzeuge zur Erforschung von “Social Bookmarking”-
Daten bereitgestellt. Demgegenüber stehen theoretische Beiträge, die für Graphen etablierte
Konzepte – verbundene Komponenten und “Community Detection” – auf k, k-Hypergraphen
übertragen.
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1. Introduction

1.1. Motivation

Machines and human beings have formed an intricate symbiosis. We rely on a global net-
work of machines for an ever-growing amount of tasks, with vast capacities for data pro-
cessing and transmission at our disposal. In turn, algorithms increasingly rely on us to
attach meaning to these data. Large amounts of often tiny traces of our meaning-creating
behaviours are harvested, fed back into computational systems and subjected to their raw
processing power, resulting in electronic services that seem to better understand us.

This pattern is at the core of some of the most successful services created in the re-
cent past. Google’s PageRank (Page et al., 1998) algorithm attributes autority scores to
individual web pages based on incoming links from other sites. Amazon’s recommenda-
tion system has become one of the site’s most prominent features, computing item sim-
ilarities based on purchasing patterns. In both cases, (human-generated) contents or ob-
jects are archived into (machine-generated) indices, which become more accessible through
the collection of (human-generated) relevance statements like hyperlinks or purchases and
(machine-generated) extrapolations.

A less antropomorphic way to put this is to simply observe that interfaces increasingly
adapt their navigational structures through the collective actions of their users. This ap-
proach has in fact been named “social navigation” almost 20 years ago:

In social navigation, movement from one item to another is provoked as an
artifact of the activity of another or a group of others. (Dourish and Chalmers,
1994)

This thesis focusses on extracting structures meaningful for social navigation from a partic-
ular type of user behaviour, social bookmarking. Social bookmarking sites allow users to
“tag” (freely annotate) documents found on the web, creating rich annotations of web con-
tent and leading to millions of document/user/tag triples. These triples can be interpreted as
edges of generalized graphs called 3-uniform 3-partite hypergraphs – graphs whose edges
connect three elements from three distinct sets –, structures to which many concepts from
graph theory and network analysis have been generalized only recently, or not yet at all.

Methodologically, this thesis focusses on decomposing these hypergraphs into connected
components and communities, reducing their complexity and facilitating their exploration.
These efforts should however have implications beyond the concrete application domain
of social bookmarking data. On the theoretical side, missing generalizations are provided,
while on the applied side, various other datasets, both in information retrieval and in other
areas, can be interpreted as 3-uniform 3-partite hypergraphs.

More background to these areas will be provided in the next section, before the chapter
concludes with an overview of examined datasets, a table of symbols and an outline of the
rest of this document.
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1. Introduction

1.2. Background and Related Work

This thesis is located at the intersection of the three topics of social bookmarking, com-
munity detection and hypergraph theory. In the following, the relevant background in the
individual areas will be introduced, along with work in pairwise intersections of these ar-
eas where appropriate. Finally, the work most closely related to this thesis, situated in the
intersection of all three topics, will be reviewed.

1.2.1. Social Bookmarking

Saving “bookmarks” is a basic functionality of web browsers: Users can store their favorite
URLs for easy later access. When the website Delicious started its service in 2003, it had
the simple purpose of letting users take their bookmarks from their local drives to the web.
In what may have initially seemed like a minor design decision, Delicious no longer sup-
ported the hierarchical folder structure traditionally used for managing bookmarks, instead
offering users to attach to each bookmark a number of freely chosen keywords, so-called
“tags”.

The combination of central storage and informal annotation would soon become a well-
known pattern for services and interfaces called “social bookmarking” or “social tagging”.

space 194

photography 138

astronomy 134

hubble 118

science 115

photos 108

telescope 69

nasa 64

photo 54

calendar 50

advent 43

pictures 38

images 36

2008 21

art 20

image 19

awesome 16

list 15

christmas 15

cool 13

bigpicture 12

inspiration 11

watch 9

universe 9

stars 8

amazing 6

adventcalendar 5

adventskalender 4

interesting 3

boston.com 3

History

Saved 395 times, first saved by markdlarsonon 01 Dec 08. View Char

Cassiopeia A21 DEC 10

02 DEC 10

01 DEC 10

21 OCT 10

20 MAY 10

Hubble Space Telescope Calendário do Advento 2008 - 1 de dezembro de 200828 APR 10

21 FEB 10

hubble best images photos astronomy nature

science nasa

converted by Web2PDFConvert.com

Figure 1.1.: Delicious interface showing the data for a particular URL, showing eight (of
395) users’ detailed entries on the left (tags on gray background) and the tag
distribution on the right
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1.2. Background and Related Work

One of its advantages is that the flat annotations enabled new navigation interfaces, ridden
of the heavy physical connotations of the folder metaphor. Each tag can be selected and
act as as “top level folder”. Besides showing the associated documents, all other tags co-
assigned to some documents with this tag can be displayed to refine the search, creating
ad-hoc hierarchical structures as required by the user.

Moreover, the collection of many user’s bookmarks in a central place allowed for social
discovery: Users could see which other users have tagged shared documents or which other
documents have been tagged with a tag of their interest. Following these possibilities to
a more global view, the aggregated datasets, thought of as commented traces of online
behavior, have become the subject of a substantial body of research. The discussion below
will trace these developments, starting from an individual point of view and then broadening
its scope to more collective phenomena.

1.2.1.1. A Typical Interface

Let us first take a look at the interface of Delicious, more precisely the detail screen for a
particular URL (delicious.com, 2010). This not only ensures the principle of social book-
marking services is properly demonstrated, but will also allow some initial observations
about the aggregated data that will be drawn upon later on.

By featuring Delicious that prominently, by the way, I do not intend to make a hard claim
about Delicious being the first social bookmarking site ever. However, Smith (2007) claims
the use of the term “tag” in the specific sense used here goes back to a column name in
the first Delicious database. In any case, it is one of the oldest and most successful social
bookmarking systems and is therefore used as a running example in this section.

Figure 1.1 shows one of the main screens of Delicious: The overview of all tags given to
a particular URL. On the left side, we see a list of users who have bookmarked the URL,
including user names (in blue), their notes (above, where applicable) and the tags they have
chosen to attach (in gray). On the right, there is a list of the tags most frequently used.
Several things are notable about this list:

• First of all, the subject of the actual website (a collection of images obtained via
the Hubble space telescope) can be inferred just by looking at the top tags: “space”,
“photography”, and “astronomy”.

• While the most popular tag “space” is also found in the page title, tags like “astron-
omy”, “science” or “art” embed the document in a context that seems trivial but might
be hard to construct for a machine. Other tags, like “cool”, “awesome” or “inspira-
tion” add subjective judgements (Höltschi et al. (2008) claims that subjectivity is a
central contribution of social tags, although that aspect will not be further investigated
here), while the tag “2008” hints at personal organization schemes of the users that
do not relate to the content of the page itself.

• The top tag has been assigned by almost half of the users, whereas the tag at position
10 was only used by slightly above 10% of the users. This is not a coincidence.
Golder and Huberman (2006), in one of the earliest and most influential papers on the

3



1. Introduction

topic, demonstrate that this type of long-tailed distribution (i.e. few highly popular
tags and quick decay in popularity) is characteristic for social bookmarking systems.
They also show that over time (or more precisely, as more and more users add tags),
the tag distribution stabilizes: Fewer tags are added and the relative frequencies of
the tags become fixed.

In short, a lot of the features that make social bookmarking services interesting to study can
already be found on a single screen.

1.2.1.2. Types of Social Bookmarking Systems

The properties of the datasets created through social bookmarking systems depend on cer-
tain features of these systems. Marlow et al. (2006) provide different dimensions along
which bookmarking systems can differ. Let us take the photo management service Flickr
as an example for a tagging-enabled service which strongly differs from Delicious. The
dimensions most important for the tagging dynamics are

source Which items are tagged – users’ own, system-wide, or global resources? While
Flickr provides a tagging of user-provided photographs, Delicious lets users tag arbi-
tray (global) resources.

tagging rights Who can tag resources? Where users own resources, it may make sense
to restrict tagging rights to the owners (or whoever they extend those rights to, as it
is actually done in Flickr), whereas in other systems, e.g. with global resources as
Delicious, anyone should be able to tag any resource.

tagging support How are users supported in tagging documents? Many social bookmark-
ing systems come with a recommendation engine for tags. A simpler support method
is just showing other users’ tags. These methods may play a crucial role in the ob-
served convergence effects.

Vander Wal (2005) coined the term “Folksonomy” (as a mixture of folks and taxonomy)
for the datasets created by social bookmarking systems, and summarizes the main poles
in their properties by distinguishing between “broad” (e.g. Delicious) or “narrow” (e.g.
Flickr) folksonomies, depending on whether many and few people contribute to the tagging
of individual resources. Understanding and exploiting the collective dynamics of social
bookmarking systems is at the center of this thesis, so the focus will be on broad folk-
sonomies.

1.2.1.3. Tags as Keywords

Meaningful keywords can significantly speed up retrieval tasks – however, such keywords
can be obtained through various sources. Why should we be interested in social tagging
as yet another source when we can obtain keywords from the authors of documents, from
keyword extraction algorithms or from professional indexing services?

4



1.2. Background and Related Work

Kipp (2007) has compared keywords provided both by authors and by PubMed with those
generated by users in CiteULike, a social bookmarking service for scientific articles which
will be discussed in further detail later on. She reports significant differences between user-
and expert-generated descriptors. A striking example of added value are tags describing
methodological specifics like “family-studies” absent in the more official descriptor sys-
tem, directly reflecting the focus of the users’ interests. In a similar spirit, Al-Khalifa and
Davis (2006) compare automatically generated keywords to tags and a manually created in-
dex, finding higher similarity between tags and the index than between computer-generated
keywords and the index. Heymann and Garcia-Molina (2009) compare tags and Library of
Congress Subject Headings, i.e. a taxonomy generated by experts over many years. They
find similar vocabularies, but different usage patterns – the overlap between works labelled
with similar tags is rather small, in ways that “are ultimately bad for retrieval using expert
assigned controlled vocabularies”.

While the comparsion of different keyword collections helps illustrate the differences
between the mechanisms, actual differences in usefulness for retrieval tasks can only be es-
timated using such methodology. In contrast, Melenhorst et al. (2008) report an impressive
study in which “194 participants tagged a total of 115 videos, while another 140 partici-
pants searched the video collection for answers to eight questions” – using either tags or
professionally or automatically generated metadata. They conclude that “social tags yield
effective retrieval processes, whereas automatically generated metadata do not”.

1.2.1.4. Social Dynamics

A large body of research suggests that the reasons for the effectiveness of social book-
marking systems cannot be found by regarding the individual tagger, but instead lie in the
dynamics of the social interactions enabled by these systems. More generally, there is a
trend of enabling consumers to be also (at least small-scale) content creators, summarized
under the heading of “Produsage”, a mix between production and usage (Bruns, 2008).
Here, however, we want to focus on a more specific discussion of the mechanisms inside
social bookmarking systems.

Golder and Huberman (2006) have provided one of the first quantitative studies of social
bookmarking systems. As already mentioned above, they famously showed a “stabiliza-
tion” effect: As the number of users who tag a document grows, the relative frequency of
the assigned tags becomes stable. Characteristic frequency/rank distributions in the connec-
tivity of tags were found to be created by tagging behaviour by Cattuto et al. (2007b), who
could also show that significant deviations from these patterns were caused by spam entries.
Cattuto et al. (2007a) argue that “. . . users of collaborative tagging systems share universal
behaviours that . . . appear to follow simple activity patterns”. Halpin et al. (2007) and Fu
(2008) aim to make explicit these patterns, providing generative models to reproduce the
long-tailed distributions found in the data and the tagging processes of individual subjects,
respectively. Schifanella et al. (2010), on the other hand, exploit the fact that Flickr and
Last.fm allow, in addition to tagging, for explicit social connections. They can show local
alignment effects in the vocabulary of connected users, to the extent that similar vocabu-
laries can be used for the prediction of friendships. This makes a strong case for the social

5



1. Introduction

feedback mechanisms at work in these systems. Wetzker et al. (2010) further explore the
relation between individual and collective vocabulary and propose a mechanism for “trans-
lating” between the two.

Several articles focus on the connecting the collective activity in bookmarking systems to
other fields like computational linguistics. Hotho et al. (2006a) have provided early visions
for possible applications. In addition to an algorithm called FolkRank for tag recommenda-
tion (to be discussed below in more detail), they provide a simple mechanism to mine con-
cept hierarchies from tag co-occurrences. Cattuto et al. (2008) have later combined these
approaches through “semantic grounding”, i.e. looking up tags in WordNet (Fellbaum,
1998), a machine-readable lexical database annotated with relations like is-synonym-of, is-
hyponym-of etc. Glushko et al. (2008) regard tagging datasets as valuable empirical data
for research on cultural categorization.

It is impossible to treat all these works in the depth they would deserve. We will encounter
some of them again later on – for now however, the goal of this short introduction is rather
to provide pointers to the most central papers, as well as to give a first impression of the
inherent complexity of the datasets in question.

1.2.1.5. Harnessing the Collective Aspects

One of the simplest and most famous applications using tagging data are the once om-
nipresent “tag clouds”: The most popular tags for, e.g., a set of documents are displayed,
with the size of each tag representing its relative frequency. Compared to simply using the
most popular tags as a regular keyword list, these visualizations made a first step towards
showing the collective nature of the underlying data, by emphasizing the differences in pop-
ularity between different tags. While many variations of tag clouds have been conceived,
Hassan-Montero and Herrero-Solana (2006) must be noted for proposing an early cluster-
ing of tags to make the relative position of tags inside the clouds more meaningful, along
with Stefaner (2007), who proposes various ideas for tag-related interfaces, one of which
consists of aligning a single user’s tags by similarity.

Tag and tag-based recommendation, i.e. recommending sets of tags for a given document
or recommending documents for given tags, is another field of applications using tagging
data to improve working with tags, see e.g. Jäschke et al. (2007); Symeonidis et al. (2008);
Jäschke et al. (2009). Works from this field will be highlighted again later on for their
methodological aspects. However, let us here briefly review other tag-based applications
that expand their focus to areas outside the social bookmarking domain.

One line of work tries to apply the knowledge contained in social bookmarking datasets to
the task of web search. While Bao et al. (2007) report that a variant of PageRank enhanced
with this sort of information shows greatly improved results and Yanbe et al. (2007) propose
an interface for the integration of web search and tags, Heymann et al. (2008) perform a
more quantitative analysis and come to the conclusion that the sheer number of web sites is
too large, compared to the number of sites that get annotated. Naaman (2009) has coined
the term “Spatio-Tempo-Social” for a more exploratory use of tags and other social data
sources: Instead of improving a particular task, he proposes to to employ this information
for “Learning from and about Humans with Social Media”. The “World Explorer” described
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by Ahern et al. (2007) is a great example for this line of work: photos from Flickr which
contain both tags and the geographical coordinates of where they were taken are used to
created a map overlay describing the most important terms for the displayed region.

The motivation for the work described in this thesis is much in the spirit of these last two
sections: Understanding the structures inside tagging datasets, while keeping an eye open
for possible applications, navigational or otherwise. My particular methodological focus
for this goal lies on community detection, which will be introduced now.

1.2.2. Community Detection

Graphs are discrete structures consisting of nodes V and edges E between those nodes:

Definition 1.1 (Graph) A graph G = (V,E) is a set V of |V | = N nodes or vertices and
a set E ⊂ V × V of |E| = M edges. The adjacency matrix A of H is an |V | × |V | matrix
such that Ai,j = |e ∈ E : vi ∈ e ∧ vj ∈ e|, i.e. non-zero entries denote adjacent nodes.
The incidence matrix B of H is a |V | × |E| matrix such that Bi,j = 1 if ej ∈ vi, and 0
otherwise.

Building on the mathematical branch of graph theory, complex network analysis has emerged
in recent years as an interdisciplinary research area, studying the properties of complex sys-
tems that can be interpreted as graphs. By interpreting social bookmarking datasets as
graphs, we can apply the toolbox of complex network analysis on them. Community detec-
tion is the one tool I will focus on in particular.

1.2.2.1. Methods for Community Detection

Community detection, the identification of closely connected groups of nodes in complex
networks, has been a vibrant field of research field for the last years (Girvan and Newman,
2002). Identifying such groups has various applications (Newman, 2006): The identification
of related elements based on connectivity can be useful in itself, as for communities in social
networks or clusters of related documents. Additionally however, related elements can be
collapsed into single nodes, creating a new graph of reduced complexity. This may help
reveal the original graph’s macrostructure and functional or semantic modules. Therefore,
recent advances in detecting communities have increased the understanding of complex
networks in general.

As pointed out by, e.g., Newman (2006), community detection (also called graph clus-
tering, which is however more ambiguous since it could also relate to the task of clustering
different graphs) is related to, but not equivalent to graph partitioning. Graph partitioning
enforces a division of the graph into a given number of partitions while minimizing a crite-
rion like the number of inter-partition edges (the “cut size”), typically balanced by a term
rewarding similarly sized partitions. This setting is geared towards solving concrete prob-
lems with constraints formulated as networks. Community detection is more exploratory in
spirit and aims to extract the optimal number and size of well-connected partitions from the
data as well. A typical graph partitioning problem might be to seat 12 people on two tables
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of six while avoiding friends (adjacent nodes) to be torn apart. The community detection
equivalent would come up with its own proposals concerning number and sizes of tables.

What exactly does it mean for a group of nodes to be well-connected? Numerous defini-
tions exist. Each one implies a quality measure for particular groupings which in turn leads
to corresponding optimization approaches. “Good” connectivity can be defined, e.g., related
to the cut size for approaches inspired by partitioning (Leskovec et al., 2008), as robust-
ness against removal of “bridging” edges (Girvan and Newman, 2002), or by information-
theoretic means concerning the efficient coding of trajectories through the graph (Rosvall
and Bergstrom, 2007) – please refer to (Schaeffer, 2007; Fortunato, 2010) for in-depth
overviews over community detection algorithms, or to (Danon et al., 2005; Lancichinetti
and Fortunato, 2009) for quantitative comparisons.

1.2.2.2. Modularity

Throughout this thesis, however, I will focus on and extend a measure called modularity
(Newman, 2006). For a given assignment of a graph’s vertices into communities, it com-
pares the number of intra-community edges (i.e. edges between elements from the same
community) to the expected number of such edges, were edges evenly distributed over
nodes. Since the property we are looking for in communities is well-connectedness be-
tween its members, the former quantity being larger than the latter should correspond to
suitable communities.

Definition 1.2 (Modularity) For a graph G = (V,E), let M be the number of edges |E|
and A the adjacency matrix. Let σ be a function assigning vertices V to communities. Then
the modularity Q of a community assignment σ relative to a null model P is

Q =
1

2M

∑
(i,j)∈V×V

[Aij − Pij ]δ(σ(i), σ(j))

where δ(x, y) = 1 iff x = y and 0 otherwise (Newman, 2006).

Q rewards community assignments where the actual adjacency (A) is higher than the ex-
pected (P ) adjacency for all pairs of nodes in a community. The canonical choice for P is
the mean adjacency in a “configuration model” graph, where edges are randomly distributed
such that a given degree distribution is kept. This amounts to

Pij =
kikj
2M

,

where ki is the degree of node i.
Optimizing modularity is a well-established method for community detection, and vari-

ous efficient methods for this optimization exist, for example a spectral method on the ad-
jacency matrix by Newman (2006), or a bottom-up clustering method proposed by Clauset
et al. (2004) and optimized by Wakita and Tsurumi (2007).

At the same time, several criticisms have been voiced concerning modularity. The so-
called “resolution limit”, e.g. pointed out by Fortunato and Barthélemy (2007) prohibits
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the identification of communities below a certain size in large, sparse networks where the
expected connectivity becomes so small that a single edge creates above-expectation con-
nectivity, resulting in groups of nodes being falsely classified as communities. This problem
is mitigated for my purposes by the fact that the applications introduced later on consider
the whole clustering hierarchy obtained by bottom-up modularity optimization, not only a
single community assignment. Even if two small communities are merged in the solution
for optimal modularity, i.e. a specific point in the clustering tree, further exploration of that
tree will still expose the underlying structure.

Another criticism lies in the fact that modularity “typically admits an exponential number
of distinct high-scoring solutions and typically lacks a clear global maximum” (Good et al.,
2010). While this implies that results returned by modularity optimization should be treated
with caution in some contexts, I believe that its widespread use, its intuitive interpretation
and the existence of previous work on bipartite generalizations (see below) make modularity
an attractive point to start investigating the challenges that will be sketched in the following.

1.2.2.3. Community Detection on Bipartite Graphs

Bipartite graphs are graphs in which edges only connect nodes from two distinct sets:

Definition 1.3 (Bipartite Graph) A Bipartite Graph is a graphG = (V,E) whose nodes V
can be divided into two partitions V1, V2 : V = V1∪V2, V1∩V2 = ∅ such thatE ⊂ V1×V2.

Many networks found in real-world settings are bipartite graphs (sometimes also called
two-mode networks): Terms that appear in documents, users who buy products, patients
exhibiting medical symptoms all imply graphs in which elements from one set are invariably
only connected to elements from the other one. While it is possible to treat bipartite graphs
simply as graphs, additional insights can often be gained by taking into account the bipartite
property where it is known. For community detection in particular, it is typically desirable
to obtain distinct sets of communities for the two partitions. It is therefore not surprising
to find a vast body of literature on community detection in bipartite graphs, also known
as “Co-Clustering” when the graph-theoretical aspect is less prominent than the point of
creating two distinct sets of clusterings.

Carrasco et al. (2003) for example have proposed a combined top-down (via graph par-
titioning) und bottom-up (via a flow-based method) clustering algorithm for advertiser/
keyword graphs. Dhillon et al. (2003); Chakrabarti et al. (2004) aggregate elements into
communities in order to minimize the information required to encode bipartite adjacency
matrices. Kumar et al. (2008) propose the “k neighborhood graph”, connecting only those
elements from one domain which share at least k elements in the other. Evans and Lambiotte
(2009) proposes a community detection algorithm that supports overlapping communities
(i.e. elements can belong to more than one community) by considering the so-called “line
graph”, i.e. the graph of incident edges, a concept that will be discussed in more depth in
Section 2.2.1.2. Liu et al. (2009) emphasize in particular the need, in the context of in-
cremental optimization, to reevaluate the assignments for one partition after updating the
assignments in the other.
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It will become clear in Section 1.2.3 that in order to deal with bookmarking data, a fur-
ther modification to the underlying datastructure is required that is somewhat similar to the
modification from “normal” to bipartite graphs. Therefore, it is particularly interesting to
find, from the vast array of bipartite clustering methods, those which have a systematic re-
lationship to their non-partite baselines. Modularity is a promising candidate in this respect
as well: Barber (2007); Guimerà et al. (2007); Murata (2009) all propose generalizations
of modularity for bipartite graphs. On the one hand, this shows that modularity isn’t trans-
fered easily or unambiguously to the bipartite case; on the other hand, I share these author’s
(supposed) intuition that it is worth looking for derived measures matching the original’s
conciseness and elegance. While different bipartite modularity measures are discussed in
4.2.1, we will now get closer to the reason we need a specialized community detection
method at all.

1.2.2.4. Social Bookmarking and Community Detection

Social bookmarking datasets are complex, noisy and huge – a 2007 crawl of Delicious by
Wetzker et al. (2008) contains about half a billion of tag assignments. As argued above,
community detection methods let us view the “bigger picture” of a graph by grouping sim-
ilar nodes. Therefore, their application on those datasets appears tempting for distilling the
latent information contained.

Work explicitly dealing with communities in social bookmarking data often focusses
on one type of elements. Ramage et al. (2009) propose a tag-based document clustering,
Schifanella et al. (2010) cluster users by their tagging behaviour. Mostly however, tags are
clustered, e.g. by Begelman et al. (2006); Halpin et al. (2007); Shepitsen et al. (2008);
Wartena and Brussee (2008). Li et al. (2008) cluster tags for social interest discovery, then
compare the associated users and urls. Lambiotte and Ausloos (2006) and Zlatić et al.
(2009) define generic similarity measures applicable for any partition, however restrict their
analysis to the effects on single partitions.

In my view, a full understanding of the involved community structures requires a si-
multaneous grouping of users, documents and tags. While some work employs bipartite
community detection, e.g. Tang and Liu (2010), this does not capture the full content of the
involved information either. As it turns out, properly representing the ternary relationship
inherent in the data requires an extension of the formal framework considered so far. This
extension, the hypergraph, will be introduced in the following.

1.2.3. Hypergraphs

This section introduces hypergraphs, the data structures required to properly represent social
bookmarking data in the terminology of networks. Let us start from the obvious question:
Why can’t we simply use graphs to represent social bookmarking data?

Every time a user u tags a document d with a tag t, this can be interpreted as an edge
between u, d, and t. However, conventional graphs only allow for binary edges. One pos-
sibility to deal with this issue would be to store three edges (d, u), (u, t), and (d, t), which
however comes at the price of information loss. To see this, consider four tagging events
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v1 v2

v3

v4 v5e1

e2

e3

(a) Graph Gs

d1 d2

u1
u2 u3

t1 t2

e1 e2 e3 e4

(b) Hypergraph Hs, plotting hyperedges as
nodes e

Figure 1.2.: A sample graph and a sample hypergraph. Note that edges appear as nodes in
the hypergraph visualization

(d1, u1, t1), (d2, u1, t2), (d2, u2, t1), and (d1, u2, t2). By only storing pairwise information
it would be no longer retrievable which user tagged d1 with t1 since both users have used
both tags, both tags were used for d1, and the ternary relationship, by definition, was not
stored.

The question of how crucial exactly this information loss is turns out to be a recurring
issue throughout the future chapters. However, let us here discuss the formal structure
required to store the full information.

1.2.3.1. Definitions

Definition 1.4 (Hypergraph) A hypergraph H = (V,E) is a set V of |V | = N nodes and
a family E of |E| = M subsets of V called edges. If ∃e ∈ E : vi ∈ e ∧ vj ∈ e, nodes vi
and vj are adjacent. If ∃v : v ∈ e1 ∧ v ∈ e2, edges e1 and e2 are incident.

Hypergraphs, first named so by Berge (1970), according to Chvátal (2003), are general-
izations of graphs in which edges can connect arbitrary amounts of nodes. Estrada and
Rodriguez-Velazquez (2005) give an overview of complex real-world networks that are best
understood as hypergraphs, e.g. social networks in which relevant interactions take place be-
tween more than two actors, like buyer, seller and broker, or food webs in which all species
competing for the same prey are connected through an edge. Zhou et al. (2006) generalize
graph-based, semi-supervised machine learning techniques to hypergraphs. However, the
class of hypergraphs is a very large one and these works discuss hypergraphs with an arbi-
trary number of edges. Here, we are concerned with a very specific subset of hypergraphs,
since each edge connects exactly three elements from three distinct sets. These structures
are called 3-uniform, 3-partite hypergraphs:

Definition 1.5 (k-Uniform, k-Partite Hypergraphs) Let the size of an edge be the number
of nodes it contains. The maximum size of an edge in E is called the range of H . If the size
of all edges in E = r, H is a r-uniform hypergraph. A hypergraph is k-partite if V can be
partitioned in k sets (from here on called domains instead of “partitions” to avoid confusion
in the context of graph partitioning) V1, . . . , Vk such that nodes from the same set are never
adjacent. If k = r, H is a k-partite, k-uniform, or simply k, k-hypergraph, and its edges
are k-tuples containing one element out of each set Vi. For brevity, let K = {1, . . . , k}
and, where k=3, let D, U and T denote H’s 3 domains (documents, users and tags). The
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Table 1.1.: Incidence Matrices of the sample graphs

(a) B(Gs)

e1 e2 e3

v1 1
v2 1 1
v3 1
v4 1
v5 1

(b) B(Hs)

e1 e2 e3 e4

d1 1 1
d2 1 1
u1 1
u2 1 1
u3 1
t1 1 1
t2 1 1

adjacency tensor A of a k, k-hypergraph is a |V1| × . . .× |Vk|-dimensional tensor such that
Av1,...,vk = |e ∈ E : e = (v1, . . . , vk)|.

“Normal” graphs are included in the set of hypergraphs as uniform hypergraphs with
r = 2. A bipartite graph can be described as a 2,2-hypergraph. k, k-hypergraphs with
k > 2 can thus best be conceived as generalizations of bipartite graphs. Imagine, e.g., a
tag/document matrix representing connections between the two domains, inducing a bipar-
tite graph. Introducing a third, say, user dimension turns this matrix into a tensor which
induces a 3,3-hypergraph. This represents data in which documents and tags are no longer
just either connected or not, but instead associated with each other by one or several users,
as in social bookmarking data. More generally, such structures can of course represent any
other type of data in which elements of three different kinds are in a ternary relation to each
other.

Figure 1.2 proposes a visualization technique for hypergraphs that will be used through-
out this thesis. Since edges with more than two vertices are notoriously hard to visualize, hy-
pergraphs are turned into a bipartite graph by introducing “edge nodes” e1, . . . , e4 and trans-
forming a ternary edge like (d1, u1, t1) into three binary edges (d1, e1), (u1, e1), (t1, e1),
allowing traditional visualization. To put it differently, what’s plotted is the graph obtained
by interpreting B(Hs) as an adjacency matrix of a bipartite graph, with the two domains
made up of the original nodes and the original edges, respectively. The sample graph Gs
(for comparison) is defined by the incidence matrix in Table 1.1 a), and the sample 3-partite
3-uniform hypergraph Hs given by Table 1.1 b).

1.2.3.2. Social Bookmarking and Hypergraphs

It seems, in fact, that only in the context of social bookmarking k, k-hypergraphs have be-
come the focus of major research interest. Hotho et al. (2006b), for example, propose a
generalized version of PageRank, “FolkRank”, computing tags or pages authorities using a
model working on the native 3-dimensional structure. Cattuto et al. (2007b) have proposed
generalizations of concepts like cliquishness or transitivity to 3,3-hypergraphs, drawing on
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social bookmarking data for examples. Random generative models for 3,3-hypergraphs cap-
turing characteristics of real social bookmarking datasets have been proposed by Ghoshal
et al. (2009).

1.2.3.3. Community Detection in Hypergraphs

Closely related to the task at hand is work on hypergraph partitioning (Selvakkumaran and
Karypis, 2006), which however does not address the specifics of k, k-uniform hypergraphs
and is concerned with partitioning instead of community detection.

As k-dimensional tensors can be interpreted as adjacency tensors of k, k-hypergraphs,
much work based on tensor decompositions (Kolda and Sun, 2008) is strongly related.
These techniques have been applied to other r-uniform hypergraphs, e.g., on RDF-triples
describing ontologies on the Semantic Web (Franz et al., 2009) or on datasets including
time (Acar et al., 2005). Sun et al. (2005) propose a three-dimensional generalization of
Singular Value Decomposition to improve web search using a threedimensional structure
of users, queries, and clicked web pages. Many approaches to tag recommendation draw
on tensor factorization methods as well, e.g. (Symeonidis et al., 2008; Rendle et al., 2009;
Krestel et al., 2009; Wetzker et al., 2009).

Factorization methods try to find approximations of the original matrices or tensors by
recreating these structures in a lower-dimensional space, mapping the original rows and
columns to linear combinations of the new ones. These new elements might be interpreted
as communities; however factorization methods are not optimized towards finding partic-
ularly sparse representations, i.e. clear community assignments. Cichocki et al. (2009)
propose a threedimensional generalization of Non-Negative Matrix Factorization (NMF).
NMF (Lee and Seung, 1999) is geared towards finding sparse mappings from original to
reduced elements, which might make it a better choice. Another constraint however is that
the dimensionality of the reduced structure, which would correspond to the number of com-
munities, is typically not optimized during the process (as it is in community detection), but
given as a hyper-parameter that is at best optimized in an external loop.

To my knowledge, the only article on community detection in partite hypergraphs that
employs factorization methods is by Lin et al. (2009). All other works on community de-
tection in three-dimensional structures work with a more graph-oriented techniques (i.e.
expecting sparsely filled tensors) and are, interestingly, typically defined with respect to
social bookmarking data directly. It is at this specific intersection of social bookmarking,
community detection and hypergraphs that the work in this thesis is situated. The work in
this particular area will be reported in the following section.

1.2.4. Community Detection in Hypergraphs for Social Bookmarking

An early approach in the spirit of multi-partite community detection was provided by Jäschke
et al. (2008), whose “shared conceptualizations in folksonomies” correspond to simultane-
ous document, user, and tag communities. However, these assignments are not made for all
nodes but only for particularly frequently co-occurring instances.
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Closer to the work described here is the method by Lu et al. (2009), who propose a
prototype-based tripartite clustering approach that creates individual clusters in all three
partition based on edges between cluster members. It however solves a slightly different
task since the number of clusters to be found in each dimension need to be provided as pa-
rameters. Nevertheless, this method’s performance will be used for benchmarking purposes
in Section 4.2.

Most closely connected to this thesis is the tripartite modularity described by Murata
(2010a), which is based on my earlier work in that field, whereas that earlier work was
in turn inspired by the bipartite modularity formulated by Murata (2009). A quantitative
comparison between these methods will be provided in Section .

Concludingly, there is little work on community detection suited for application on book-
marking data, and most of the work has been created in parallel with the work presented
here.

1.2.5. Summary

This section is intended to both motivate community detection in hypergraphs and show the
need for additional work in this area. The basic argument can be outlined as follows:

• Social bookmarking data is presumably full of latent knowledge and intricate struc-
ture.

• Community detection is a promising approach to unveil the bigger picture in complex
networks.

• 3-partite, 3-uniform hypergraphs are the appropriate choice for representing social
bookmarking data.

• Community detection in 3-partite, 3-uniform hypergraphs requires special methods.

More generally, the task described here is the simultaneous discovery of communities along
different domains (multi-partite community detection) in sparse regimes, i.e. for adjacency
tensors which suggest a graph-like interpretation of the data. While social bookmarking data
was the original motivation as well as the focus of a large portion of previous work dealing
with these particular data structures, this is in fact a more general theoretical setting. It
is in this sense of generality that I try to refrain from using content-based features from
the individual domains like URL patterns, user names, or tag semantics, and instead try
to formulate content-agnostic methods that focus on structural features (an exception is
the work presented in Chapter 2, which is the earliest work described here and shows the
evolution from content-based to purely structural methods). Even the fixed values of k = 3,
in my opinion, should only be a setting for a particular problem domain. To stress this point,
more general statements about k, k-hypergraphs (instead of just 3,3) are made wherever this
can be achieved without exaggerated notational efforts.
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1.3. Datasets

Most of the datasets examined in this thesis occur across different chapters. Let me therefore
list these datasets at this early occasion. This has the additional advantage of providing a
more concrete view on the data discussed above.

1.3.1. Delicious

This corpus contains a month (December 2007) worth of entries from delicious.com,
taken from the corpus described in (Wetzker et al., 2008). No explicit spam information is
given in this dataset, but the authors report to have manually identified a certain amount of
spamming activity.

1.3.2. Bibsonomy

Many analyses were performed on the bibsonomy.org dataset (Knowledge & Data En-
gineering Group, University of Kassel, 2008) as provided to the participants of the PKDD/ECML
2008 Tag Spam Discovery Challenge. Bibsonomy is a social bookmarking platform for both
bibliographic references and URLs offered by the Hotho et al. (2008). The dataset contains
manually assigned labels classifying users as spammers or legitimate users.

1.3.3. CiteULike

citeulike.org is a social bookmarking system for bibliographic references only. The
dataset contains all entries up to February 22nd, 2008, obtained from citeulike.org/
faq/data.adp. Not too much spamming activity is to be expected here because the only
annotated entries are academic articles.

1.3.4. Visualize.us

Visualize.us is a social bookmarking site for images. The crucial difference to photo sharing
services like Flickr is that the bookmarked documents are not photos uploaded personally,
but rather images found somewhere on the web. In systems which include a sense of own-
ership, tagging rights are often limited to owners or their friends. With Visualize.us, every
user can tag every document, leading to a potentially higher number of tags and tagging
users per document. As mentioned in the introduction, social bookmarking datasets with
this property are also called “broad folksonomies” – Flickr on the other hand is the proto-
typical example for “narrow folksonomies” used in Vander Wal (2005)’s original definition
of these terms. The data was obtained through a crawler written by Andreas König.

1.3.5. MovieLens

MovieLens (movielens.org) is a collaborative movie recommendation service pro-
vided by the GroupLens research group of the University of Minnesota. The data collected
through this service is available in several datasets under grouplens.org/node/73.
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Table 1.2.: Examined networks and the number of vertices (by type) and edges.

name |D| |U| |T| |E| |D|
|E|

|U|
|E|

|T|
|E|

Delicious 3,536,030 283,414 727,400 19,599,270 18.0% 1.4% 3.7%
Bibsonomy 1,574,963 38,920 396,474 16,818,699 9.0% 0.2% 2.4%

without spam 294,196 2,638 72,776 947,306 31.1% 0.2% 7.7%
CiteULike 734,442 22,814 153,688 2,419,430 30.4% 0.9% 6.3%
Visualize.us 518,701 17,153 82,152 2,298,816 22.6% 0.7% 3.6%
MovieLens 10,681 4,009 15,240 95,580 11.1% 4.2% 15.9%
AOL 1,607,028 520,956 1,071,618 52,094,425 3.1% 1.0% 2.1%

The data used here is part of the “Movielens 10M” daatset, which contains, in addition to
10 million ratings of 10,000 movies by 72,000 users, around 100,000 tag assignments.

1.3.6. AOL

In order to contrast social bookmarking data with other data of the same format, the AOL
search log dataset described by Pass et al. (2006) was examined. Each combination of
searcher, search term and clicked document is interpreted as an edge.

1.3.7. Summary

Table 1.2 shows the basic statistics of the introduced datasets. While the datasets differ in
absolute size as well as in the relative sizes of the different domains, some commonalities
can be found. For example, it holds that |D| > |T | > |U | in all datasets. The AOL
search log dataset differs from the bookmarking datasets by having the lowest number of
documents and tags in relation to the number of edges, implying that there might be less
variety in search terms used and documents selected during web search than there is in
applied tags and tagged documents during social bookmarking. More generally, this is a
first, general hint that the process underlying the creation of these datasets becomes visible
through basic statistical properties.
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1.4. List of Symbols

Table 1.3.: Table of Symbols

symbol short explanation definition

G = (V,E) a graph with nodes V and edges E Def. 1.1, p 7
H = (V,E) a hypergraph with nodes V and edges E Def. 1.4, p. 11
A adjacency tensor of a hypergraph Def. 1.4, p. 11
k the number of domains in a k, k-hypergraph Def. 1.5, p. 11
(d, u, t) an edge from a 3,3-hypergraph Def. 1.5, p. 11
P expected adjacency between node or communities Def. 1.2, p. 8
M the number of edges in a (hyper)graph Def. 1.2, p. 8
Q modularity Def. 1.2, p. 8
δ Kronecker’s delta function, 1 for identity Def. 1.2, p. 8
σ a community assignment function, mapping nodes on communities Def. 1.2, p. 8
σ a k-partite community assignment (k different σ functions) Def. 3.1, p. 50
C(σ) the community space induced by σ Def. 3.1, p. 50
Vd,i(σ) nodes of domain d in community i given by σ Def. 3.1, p. 50
στ the τ th state in a k-partite hierarchical clustering Def. 3.2, p. 51
ϕ a single join: domain, source, and target community to be joint Def. 3.2, p. 51
Σ a k-partite hierarchical clustering, a list of joins Def. 3.2, p. 51
σ ◦ ϕ the application of a join on a previous community assignment Def. 3.2, p. 51
cσ a community edge induced by σ Def. 3.3, p. 51
vol(cσ) the volume of cσ Def. 3.4, p. 52
ρ(cσ) the density of cσ Def. 3.4, p. 52
r(cσ, i) the relative importance cσ for community i Def. 3.4, p. 52
Cσ,α all community edges of relative importance α Def. 3.4, p. 52
elm normalized number of edges between two communities l and m Def. 4.1, p. 69
al normalized number of edges in community l Def. 4.1, p. 69
QM Murata’s modularity Def. 4.1, p. 69
Eproj(vi, vj) the set of edges connecting nodes vi and vj Def. 4.2, p. 70
Ei,j the bipartite projection of a hypergraph w.r.t. its ith and jth domain Def. 4.2, p. 70
QCB coupled bipartite modularity Def. 4.3, p. 70
GQ(σ, ϕ) the gain in modularity obtained by applying ϕ to σ Def. 4.4, p. 71
fd(σ) correspondence function: the importance of σ for its dth community Def. 4.5, p. 79
QMP multi-partite modularity Def. 4.5, p. 79
QMP|... multi-partite modularity with a particular correspondence function Def. 4.5, p. 79
Qβ mixed multi-partite modularity Def. 4.6, p. 93
QMP,α dampened multi-partite modularity Def. 4.8, p. 102
QMPbal|lin balanced multi-partite modularity Def. 4.9, p. 106
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1. Introduction

1.5. Outline

This rest of this document is structured as follows:

Chapter 2: Hyperincident Connected Components introduces a generalization of con-
nected components to k, k-hypergraphs. It demonstrates that the hyperincident con-
nected components of social bookmarking datasets follow a typical distribution, which
is disrupted by, e.g., spamming activity.

Chapter 3: Multi-Partite Community Detection introduces the general topic of commu-
nity detection in k, k-hypergraphs and provides three families of synthetic bench-
marking graphs.

Chapter 4: Multi-Partite Modularity provides a set of modularity measures suitable for
application on k, k-hypergraphs. Starting from the most simple approach possible,
the method is successively refined to meet the various challenges posed in Chapter 3.

Chapter 5: Community Detection on Real Data introduces an interactive tool for explor-
ing obtained community assignments and illustrates the advantages of different com-
munity detection approaches using real-life datasets.

Chapter 6: Conclusions closes the main part of this document.

Appendix A.1 contain details about the software packages provided for the main findings
of the core chapters 2 to 5.

Appendix A.2 contains additional figures.
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2. Hyperincident Connected Components

My work on social bookmarking data started by participating in the spam detection task
taking place as part of the 2008 ECML/PKDD Discovery Challenge (Hotho et al., 2008).
The dataset described in Section 1.3.2 was provided to researchers, with users manually
classified into spammers and legitimate users. The task was to identify the characteristics
of spamming behaviour and train a classifier to predict new users’ status in a previously
unknown test dataset.

The most relevant result of this work, in my view, is the subsequent definition of hy-
perincident connected components, a way of decomposing hypergraphs purely based on
structural features that singles out spammers rather successfully, in particular given that it
works completely unsupervised. The finding that structural features can provide such strong
signals about the contents of social bookmarking data will be crucial for the further course
this thesis, leading to the work on community detection. Furthermore, connected compo-
nents can be interpreted as an extreme form of communities, where two nodes live in the
same community as long as a path exists between them. Therefore, even though this chap-
ter does not deal with community detection in the strictest sense, it plays – apart from the
stand-alone value of the contained results – an important role to highlight the motivations
behind the work presented later on.

Section 2.1: Spam Detection describes several measures for predicting a users’ probabil-
ity of being a spammer and discusses their performance both when used individually
and when combined into a single predictor.

Section 2.2: Hyperincident Connected Components introduces the notion of hyperin-
cident connected components and its applicability to spam detection.

The work focussing on spam detection has been published as (Neubauer and Obermayer,
2008), the parts focussing on hyperincident connected components as (Neubauer et al.,
2009; Neubauer and Obermayer, 2009a).

A database-backed version of the algorithm described in this chapter for decomposing
hypergraphs into their hyperincident connected components is provided as a downloadable
software package, hcc – see Appendix A.1.1 for details.
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2. Hyperincident Connected Components

2.1. Spam Detection

2.1.1. Background

Distinguishing artificial bookmarking/tagging behaviour (such as spamming) from genuine
human information management activities can help sharpen our understanding of the under-
lying cognitive and social processes – it has, however, also become a practical task. Social
bookmarking sites now receive significant attention, creating incentives for spammers to
penetrate these systems. When targeting users, spammers tag fake sites with popular tags,
trying to trick users into visiting the posted site when they browse the entries for a given
tag. Search engines can be targeted by tagging the promoted website with a random tag:
Social bookmarking sites show a list of top entries for each tag, and for a page to be in the
top (and probably only) position in such a list for any tag might lead search engines to boost
that page’s ranking. Even though it unclear whether search engines actually use that infor-
mation, the possibility alone seems to have created sufficient incentive for web spammers
to populate social bookmarking systems: The motivation for the spam detection challenge
stems from operating a real social bookmarking system, which turns out to involve dealing
with huge amounts of spam.

2.1.2. Related Work

Heymann et al. (2007); Koutrika et al. (2007) have simulated the impact of several spam-
ming practices on the overall properties of a social bookmarking dataset in dependence of a
number of key parameters. In (Cattuto et al., 2007b), spam is mentioned briefly as it causes
a deviation from an otherwise smooth strength distribution of a tag network. A number of
indicators for suspicious activity was proposed by Wetzker et al. (2008) based on an anal-
ysis of a vast corpus of tagging data obtained from Delicious. Most related to the current
task is however the work of Krause et al. (2008), in which the organizers of the workshop
describe experiments on an earlier version of the dataset used here. The following contribu-
tions follow a similar approach by creating user features to train a classifier on. However, I
will explore other features, varying the exploitation of co-occurrence patterns already used
in (Krause et al., 2008), but also introducing new features based on network analysis, and
perform a text classification on the URL components of the bookmarks.

2.1.3. The Challenge Dataset

The training dataset provides 14,074,956 triples E = (d, u, t) ∈ D × U × T , where D is
the set of 1,425,108 documents, U is the set of 31,715 users, and T is the set of 310,234
tags. Each of these triples represents a single association a user of Bibsonomy has cre-
ated between a tag and a document. Documents can either be bibliographic references or
WWW bookmarks and come with associated metadata like URL, title etc. Users are simply
presented as IDs and labeled as spammers or non-spammers. Tags are strings.

The most striking fact is that 29,248 of 31,715 users are spammers, i.e., only 7.78% are
legitimate users. Most tags and documents are used by spammers or non-spammers exclu-
sively and can thus be regarded as spam (84% of documents, 15.7% of tags), or non-spam
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2.1. Spam Detection

(15.7% of documents, 11% of tags) as well. Overlap between use by spammers and non-
spammers is very rare in documents (0.3%), but more frequent among tags (7%). This
indicates two different incentives for spammers: They may post spam bookmarks under
frequently used tags, such that other users browsing the repository are led to their pages.
Posting bookmarks under other, sometimes randomly created tags, probably serves the pur-
pose of creating links from reputated sites (the bookmarking site) to the spammed page,
trying to trick search engines into improving the spammed page’s rank.

The merged training and test dataset consists of 16,818,699 triples, 1,574,963 documents,
38,920 users and 396,474 tags. Of the new 7,205 users in the test set (the prediction targets),
only 171, i.e. 2.37% are regular users. Furthermore, it is notable that around 90% of all
documents are only bookmarked by one person.

2.1.4. Tag/Document Clouds

On this occasion, let me briefly introduce a visualization method which extracts a large-
scale view of the contents of a given social bookmarking dataset. It is inspired by Stefaner
(2007), who positions tags by their mutual relations, extending the normal tag cloud by
using spatial position to indicate semantic similarity. However, his visualization focusses
on a single user’s set of tags, whereas the method described here provides a more global
view.

The visualization focusses on the n most frequently bookmarked documents. For each
of these documents, a “tag vector” is constructed in a similar fashion to the term vectors
frequently used in Information Retrieval: Each tag is assigned to a unique index in a vector
whose size equals the number of unique tags used by all documents. Each document can
then be represented as a vector whose ith element contains the number of times users have
associated it with the corresponding tag ti. The cosine similarity assigns a value between 0
(if the vectors are orthogonal, i.e. the documents do not share any tags) and 1 (if the two tag
vectors are identical) and is given, for two vectors A and B, by A·B

||A||||B|| , i.e. the normalized
inner product.

Having thus obtained pairwise similarities between all documents, the m most similar
pairs are connected. Additionally each document is connected to its most frequently as-
signed tag, and tag labels are logarithmically scaled by the number of associated documents.
The resulting graph is rendered using the GraphViz (Gansner and North, 2000) visualiza-
tion toolkit. All tag/document clouds depicted here were constructed using n=1000 and
m=3000, which seems to provide a good tradeoff between complexity and readability.

Figure 2.1 visualizes the top entries of the Bibsonomy social bookmarking dataset, first
without spam, then with spam included (visualizations of the other datasets can be found in
Appendix A.2.1). We can see very complex and subtle patterns in the clean data, which are
overshadowed by the spam entries in the second plot. These two figures not only provide
an example of spam in social bookmarking systems, but also motivate the basic assumption
underlying the further work: Spammers appear to not only post different websites with
different tags, but they behave differently in such a fundamental way that it structurally
changes the resulting networks.
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2. Hyperincident Connected Components
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Figure 2.1.: Tag/Document Cloud of the Bibsonomy dataset
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2.1. Spam Detection

2.1.5. Spam Measures

Users are classified using three different types of features, based on co-occurences, network
properties and URL terms. Co-occurrence features are based on the assumption that users
associated with similar documents and tags as spammers are likely to be spammers them-
selves. Network-based features work on a collective scale, assuming common behavioural
patterns which can be identified in the graph structures created by tagging activities. Finally,
a text classification on the URLs’ components identifies frequent terms in spam URLs.
With these features, an SVM is trained for classification. Here, the features are introduced
in more detail, whereas the next section will describe the training and prediction process in
more detail.

2.1.5.1. Co-Occurrence Features

Distributing “Spamminess” Let a tag’s or a document’s spamminess be the frequency
by which users that use that tag / tag that document are classified as spammers. I formalize
these notions for documents; they are equivalently definied for tags. Let U+(d), U−(d) and
U?(d) be the set of spam, non-spam and unknown users who tagged a document. Then we
can define a document’s spamminess s(d) as well as a confidence c(d) for that measure,
based on the fraction of labelled vs unlabelled users, as

s(d) =
|U+(d)|

|U+(d)|+ |U−(d)|
, c(d) =

|U+(d)|+ |U−(d)|
|U+(d)|+ |U−(d)|+ |U?(d)|

.

If there are no known users for a given element, the confidence is set to 0, and spamminess
to the average of all documents (around 0.8).

See Figure 2.2(a) for the distribution of the resulting values. This figure was generated
using the training dataset while holding out each fifth user’s label to create a setting similar
to the test situation. Non-spam documents have either a value of 0 or, if unknown (due to
the held-out values), the assigned average value, whereas spam documents have a value of
either this average if unknown or otherwise 1.

From the documents’ spaminess ratings, an unknown user’s spamminess can be computed
as

s(u) =

∑
d∈D(u) s(d)c(d)∑
d∈D(u) c(d)

,where D(u) = {d ∈ D : ∃t ∈ T : (d, u, t) ∈ E},

i.e. the average spamminess of all documents the user has tagged, weighted by the confi-
dence.

Iterated Spamminess Distribution We see in Figure 2.2(a) that a significant part of
both spam and non-spam documents receive the default, average value (implying confidence
0) and can thus not be used to classify users. This is due to the high fraction of documents
tagged by only one user – if those single users are unlabelled, the corresponding documents
cannot be used for spam prediction. However, even if we cannot tell a document’s spammi-
ness by the users that have tagged it, we might learn something from the tags it was tagged
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2. Hyperincident Connected Components

(a) simple distribution (b) iterated distribution

Figure 2.2.: Accumulative document spamminess after spamminess distribution for
spam(red), non-spam(green) and mixed(blue) documents

with. In the same manner, we can estimate a tag’s spamminess by the documents it was
used for. In order to use this information, a second feature is computed for each element,
its iterated spamminess si and the according confidence ci. We initialize si and ci with the
original values s and c, and then compute

ci(d) =

∑
t∈T (d) ci(t)

|T (d)|
,where T (d) = {t ∈ T : ∃u ∈ U : (d, u, t) ∈ E}

and

si(d) =

∑
t∈T (d) : si(t)ci(t)

ci(d)
.

In short, documents whose spamminess cannot be predicted obtain the weighted average
spamminess of their associated tags, and their average confidence. This process is repeated
iteratively for all tags and documents with confidence 0 until no such elements remain or
no further information can be spread. Figure 2.2(b) shows the smoothing effect of this
transformation: Almost all spam documents now receive a weighting of close to 1, whereas
the prediction for the previously unpredictable non-spam documents could be reduced from
0.8 to 0.4, on average.

Cosine Similarity As introduced in (Krause et al., 2008), a simple way to exploit co-
occurence information is to create a similarity function between users based on their used
tags, and predict a user’s spamminess as the sum of the known users’ spamminess weighted
by that similarity. I integrated that approach by creating tag (and document) vectors for each
user such that each component corresponds to a given tag, and the value of that component
would be 1 if the user used that tag. Then, the cosine between the two tag vectors serves as
a similarity function.

2.1.5.2. Network Features

Next, network features are turned into user features. To examine only relevant portions of
the overall graph structure, I define induced graphs as the bipartite graphs gained by fixing
an element from one of the three sets, and connecting those elements from the other two
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2.1. Spam Detection

sets that are connected via the fixed element. For example, we might fix a document and
then examine all users and tags associated with it, with edges connecting users with the tags
they used for the document. More formally, induced graphs are defined by their edges ED,
EU and ET obtained by fixing a particular document, user, or tag as

ED(d′) = {(u, t) ∈ U × T : (d′, u, t) ∈ E}

EU (u′) = {(d, t) ∈ D × T : (d, u′, t) ∈ E}

ET (t′) = {(d, u) ∈ D × U : (d, u, t′) ∈ E}

Then, the following measure are computed for all of these graphs:

Connected components A connected component of a graph G is a set of nodes such
that any node can be reached from any other node in that component by travelling along the
edges inG (this will be introduced more formally in the next section, where this definition is
generalized – see Definition 2.1). If a graph is disjoint, the number of connected components
describes the number of disconnected subgraphs – the graph in Figure 1.2(a) is an example
of a graph with two connected components. The number of components found is directly
used as a measure.

Characteristic Path Length The characteristic path length is the average shortest path
distance between two arbitrary nodes in the graph. This number was computed for all graphs
in which no element set exceeded 1000 elements.

Degree Ratios Finally, the ratio between the average degrees of each element set was
taken into account, normalized by the size of the other set. For a user-induced graph, this
would mean

dd,t(u) =
avg degree(D(u))

|T (u)|
·
(

avg degree(T (u))

|D(u)|

)−1
,

where avg degree(S) is the average degree of all elements in S. It is only after these nor-
malizations and the division that relevant differences between spam and non-spam users
appear.

2.1.5.3. URL Classification

A central aspect in deciding whether a given bookmark is spam or not should be its content.
While the bookmarked URLs cannot simply all be downloaded, their content can be esti-
mated by analyzing the terms used in the URLs themselves. Each URL is split by dashes,
dots, colons, and frequent elements like “http”, “www” or “html” are removed, creating a
feature vector containing a tfidf representation of its terms. Then, the feature vectors of all
URLs with spamminess 0 are used as negative samples, and an equal number of URLs with
spamminess 1 as positive samples. After training a linear SVM (Fan et al., 2008), unknown
URLS are classified with a value (urlspam(d)) between -1 and 1, and all URLs with a
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2. Hyperincident Connected Components

value between 0 or 1 are considered spam, skipping those URLs which do not contain any
known URL part. This yields a new user feature

url(u) =

∑
d∈Durl(u)

urlspam(d)

|Durl(u)|
,

Durl(u) = {d ∈ D : (∃t : (d, u, t) ∈ E) ∧ urlspam(d) is defined}.

2.1.5.4. Other Features

Connection Strength For each tag/document pair, the number of users that used it
together were counted. It turns out that high values tend to imply spamminess. Therefore,
two user features are included measuring the averages of each document’s a) average and
b) maximum connection strength .

Counting Finally, the average number of user per document (again averaged to the single
user), the average ratio of tags and users per document, and simply the number of entries
per user are integrated as features.

2.1.6. Detection Approach

2.1.6.1. Creating a validation dataset

Trying to simulate the setting of predicting the unknown test dataset, a validation dataset
was created from the training dataset. Users, ordered by date of registration, are split into
five subsets, each containing the nth fifth of spam and the nth fifth of non-spam users.
Training on the first four fifths and evaluating on the last one, the situation of predicting
future users knowing roughly four times as many from the past is simulated, as it is the case
in the actual test scenario.

2.1.6.2. Training a classifier

With the a given features, a Support Vector Machine is trained using SVMLight (Joachims,
1999). The parameters are obtained by optimizing for the previously created validation
dataset while training on the first four fifths of the data. Across various situations, a poly-
nomial kernel of degree 6 with a balancing factor of 0.077 (the fraction of non-spammers
in the training dataset) to be best. With these parameters, a classifier is trained on the whole
training dataset (i.e. all fifths), to be applied on the test dataset.

2.1.7. Results

Algorithms are evaluated using the AUC measure, the area under the ROC (Receiver Op-
erating Curve). This measure accepts a ranked list and expresses the probability that a
randomly chosen positive sample will be ranked higher than a randomly chosen negative
one (Fawcett, 2006), thereby assigning 1 to a perfect separation and 0 to a ranking in which
all positive samples are predicted to be more negative than any negative one. Let us now first
review the performance of the individual features and then evaluate the compound classifier.
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2.1. Spam Detection

2.1.7.1. Single Features

A detailed list of the features generated from each group is presented in Table 2.1. It docu-
ments the AUC values for each feature when used alone as predictor, both on the probe and
the test dataset.

Co-Occurrence Features The average spamminess of used elements, particularly of tags,
is a strong predictor of a user’s spamminess. Iterating spamminess distribution helps
to increase the expressiveness of document spamminess. In fact, the product of tag
spamminess and iterated document spamminess performs better than the final predic-
tor on the test set.

URL prediction Apart from co-occurrence features, the URL predictor is the strongest
single predictor of spamminess.

Network Features Many of the features describing the statistical properties of induced
graphs seem to indicate a tendency towards spamminess or non-spamminess, but no
single feature is useful as a stand-alone predictor. The degree ratio between docu-
ments and tags in user-induced graphs, and the number of connected components in
tag-induced graphs seem to be the most relevant single predictors.

Other features The ratio of tags per user, for documents, turns out to be a useful measure.
Also, the simple number of entries per user provides a tendency towards spamminess.

2.1.7.2. Compound Results

The SVM-based approach described above achieved an AUC of 0.913 on the test set for
the submission run, using basically all the features introduced earlier (see column “S” in
Table 2.1). In hindsight, it turns out that leaving out network features entirely (see column
“O”) yielded the best result of 0.961. The performance of network-based features alone
(column “N” in the overview) lies at an AUC of 0.854. Finally, the performance of using,
without an additional classifier, the product of the tag spamminess and the iterated document
spamminess amounts to 0.929.

2.1.8. Discussion

The most striking result of the presented experiments is that, at the end of the day, the
constructed classifier performs worse than a simple product of two of the features used,
tag and iterated document spamminess. What happened? As it turns out, the combined
spamminess features perform a lot worse (almost 0.1 AUC) on the validation set than on
the test set. The trained classifier weighs the features accordingly and is thus not able to
benefit from the improved spamminess features on the test set. The quality of the network
measures remains stable from probe to test set, and so does the submitted classifier. Leaving
out network properties during training (classifier “optimal”) forces the classifier to weigh
co-occurrence features more strongly, and thus the increased quality of those features can
be put to use. To conclude, the unexpected behaviour of the classifier has more to do with
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2. Hyperincident Connected Components

Table 2.1.: Features by group, and AUC value if used as single predictor

Used by
Feature name AUC(val.) AUC(test) S N O

Co-Occurence Features
Avg. Spamminess

Documents 0.676 0.689 s o
Tags 0.839 0.926 s o

Avg. Spamminess (iterated)
Documents 0.813 0.900 s o
Tags 0.842 0.918 s o

User Cosine Similarity
Documents 0.554 0.533 s o
Tags 0.823 0.887 s o

Avg. Document * Avg. Tag Spamminess
Normal(tags) * Iterated(documents) 0.843 0.929

Features of Induced Graphs
Degree ratios

Avg (deg(user)/deg(document)) per tag 0.518 0.565 s n
Avg (deg(user)/deg(tag)) per document 0.669 0.660 s n
deg(docs)/deg(tag) 0.683 0.674 s n

Characteristic Path Length
User 0.607 0.579 s n
Avg. per tag 0.375 0.358 s n
Avg. per document 0.659 0.658 s n

Connected components
#connected components/#entries by user 0.328 0.350 s n
Avg. #connected components per tag 0.681 0.704 s n

Other Features
Connection strength

Avg (Avg. connection strength per document) 0.560 0.576 s n
Avg (Max. connection strength per document) 0.549 0.559 s n

URL classification
Avg. URL prediction per document 0.814 0.787 o

Counting features
Avg. #users per document 0.503 0.515 s n
Avg. #tags/#users per document 0.674 0.660 s n
# entries 0.642 0.627 s n o
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2.1. Spam Detection

the discrepancy between the final test set and the final fifth I chose as a validation set, than
with the features themselves.

The best submission (Gkanogiannis and Kalamboukis, 2008) reached an AUC score of
0.98, focussing on optimizing text classification on URL components as was part of the
described classifier. Still, the network features have to be regarded as promising, as they
produce insight into the structural properties of spamming behaviours, and in contrast to
co-occurrence or URL features, no labeled users are needed for their construction. This
could prove valuable when examining new datasets for which no labels have been created
yet. Finally, a content-based approach like the text classification may not be available or
feasible for situations where other objects than URLs are involved. Therefore, I have further
examined structural properties after the completion of the actual challenge, leading to results
described in the next section.
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2. Hyperincident Connected Components

2.2. Hyperincident Connected Components

Decomposing a graph into its connected components, as briefly discussed already, is a fun-
damental diagnostic procedure: The number of components and their relative size, in par-
ticular that of the largest one (known as the potential “giant component”) can yield valuable
insights into the basic structure of a graph and the processes underlying its formation. De-
composing tagging networks into their connected components however turns out to be unin-
formative: As will be shown later on, they tend to consist of a single connected component
containing more than 99,9% of all nodes. In this section, I therefore propose a general-
ization of the notion of connected components to hypergraphs – hyperincident connected
components – that raises the requirements for being connected to a level that creates more
meaningful component distributions for the networks we are dealing with here.

This section starts by defining connected components and their hyperincident general-
ization. Only with these definitions in place, the related literature can be meaningfully
discussed. Following that, an efficient construction algorithm is proposed, and then the re-
sults of applying both measures on the various tagging datasets are discussed. Building on
these main results, two additional topics are discussed: The relation of the found distribu-
tions to components in bipartite projections of the original graphs, and the application of
the found measures for supervised spam detection.

2.2.1. Definitions

2.2.1.1. Connected Components

The connected components of a graph define its disjunct subgraphs, i.e. a partition of its
nodes such that a path exists between any pair of nodes within a component, but no path
exists between any two nodes from two different components.

Definition 2.1 (Connected Components) Let H = (V,E) be an arbitrary hypergraph. A
path exists between two nodes v1 and v2 ∈ V iff either v1 and v2 are adajacent, or ∃vx such
that v1 and vx are adjacent, and a path exists between vx and v2. LetCC(H), the connected
components of H , be a unique partition of V such that there exists a path between any two
nodes in each partition, but no path between any two nodes from two different partitions.

This definition makes a point of using an arbitrary hypergraph even though connected com-
ponents are usually defined on graphs: The regular definition does not refer the size of the
involved edges and can therefore be directly applied to the more general concept of hy-
pergraphs. Revisiting the sample graphs Gs and Hs from Section 1.2.3, Gs is an example
of a graph composed of two connected components, Hs is an example of a hypergraph
consisting of a single connected component (see Figure 2.3).

2.2.1.2. Edge-Based Formulation of Connected Components

As we have just seen, the definition of connected components is agnostic of the size of
edges – either two vertices are adjacent via at least one edge, or they are not. However,
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v1 v2

v3

v4 v5e1

e2

e3

(a) Gs with two connected components

d1 d2

u1
u2 u3

t1 t2

e1 e2 e3 e4

(b) Hs with one component

Figure 2.3.: Sample graphs. Blue, slashed connections indicate incident edges.

this definition takes a node-centric view on connected components. We can instead regard
connected components from the perspective of the edges involved.

Definition 2.2 (Edge-Path) An edge-path exists between two edges e1 and e2 iff either e1
and e2 are incident, or ∃ex such that e1 and ex are incident, and an edge-path exists between
ex and e2.

Figure 2.3 shows the incident edges in Gs and Hs, respectively. The notion of an edge-path
in H is equivalent to the notion of a regular, vertex-based path in the line graph L(H),
which is defined as the graph connecting incident edges in H .

Definition 2.3 (Connected Edge-Components) Let two edges e1, e2 belong to the same
connected edge-component if there exists an edge-path between e1 and e2. Let eCC(H),
the connected edge-components of H , be a unique partition of E such that there exists an
edge-path between any two edges in each partition, but none between any two edges from
different partitions.

Again, an alternative definition of eCC(H) is CC(L(H)), where L(H) is the line graph of
H . Later on, it will however be notationally more convenient to keep consideringH instead
of L(H), so L(H) is constructed only implicitly.
eCC(H) is a set of connected components of edges. This can be used to retrieve a

partition of vertices analogous to CC(H):

Definition 2.4 (Conn. Components (edge-based)) CC ′(H) describes a unique partition
of V such that any two vertices v1 and v2 belong to the same partition if ∃e1, e2 ∈ E : v1 ∈
e1 ∧ v2 ∈ e2 and e1 and e2 belong to the same connected edge-component. Any isolated
vertex v : @e ∈ E : v ∈ e forms an additional, distinct component.

The edge-based definition of connected components induces the same partition on the set
of all nodes as the traditional, node-based one:

Lemma 2.1 CC(H) and CC ′(H) describe an identical partition of V , i.e. two vertices
v1, v2 belong to the same component c in CC(H) iff they belong to the same component c′

in CC ′(H).
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d1 d2

u1
u2 u2 u3

t1 t2

e1 e2 e3 e4

Figure 2.4.: The two 2-incident connected components in Hs. Blue, slashed connection in-
dicate 2-incidence between edges e1 and e2 / e3 and e4, respectively. e2 and
e3 are incident via u2, but not 2-incident – sharing neither a tag nor a docu-
ment – turning a single connected component into two 2-incident connected
components.

Proof 2.1 If v1 and v2 are connected according toCC(H), a path must exist between them.
This means that there must be edges e1 and e2 such that v1 ∈ e1 and v2 ∈ e2 and an edge-
path exists between e1 and e2, which is the definition of belonging to the same component
according to CC ′(H).

2.2.1.3. Hyperincident Connected Components

With connected components defined in terms of edges, they can be generalized to “hyper-
incident” connected components.

Definition 2.5 (m-Incidence) Let two edges e1, e2 be m-incident if |e1 ∩ e2| ≥ m.

This notion evolves around the fact that in a hypergraph, incident edges may share either
one vertex (as in a normal graph) or more than one (since they may have more than two
vertices). This creates a graded form of connectivity between edges, where a hypergraph
of range r can have edges that are up to m = r − 1-incident (for two edges to be exactly
r-incident would mean that all vertices are shared, which would imply the two edges are in
fact identical). We can now identify paths between edges that are m-incident:

Definition 2.6 (m-Incident Edge-Paths) Anm-incident edge-path exists between two edges
e1 and e2 if either e1 and e2 are m-incident, or ∃ex such that e1 and ex are m-incident and
an m-incident path exists between ex and e2.

In parallel to the above construction of edge-based connected components, these paths can
be used to construct components of edges:

Definition 2.7 (m-Incident Edge-CCs) Let them-incident connected edge-components of
H ,

eHCC(H,m) = {ec1, . . . , ecn}

be a unique partition of E into n disjoint sets eci such that there exists an m-incident
connected edge-path between any two edges in each partition, but none between any two
edges from different partitions.
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2.2. Hyperincident Connected Components

From these components of edges, again components of vertices can be obtained:

Definition 2.8 (m-Incident CCs) Let the m-incident connected components of H ,

HCC(H,m) = {c1, . . . , co} ,

be a family of subsets of V such that for each m-incident connected edge-component eci ∈
eHCC(H,m), there exists an m-incident connected component ci such that for any vj:
vj ∈ ci ↔ ∃e ∈ eci ∧ vj ∈ e

For a more intuitive understanding, consider Figure 2.4 showing the two 2-incident con-
nected components of Hs: e1 and e2 are 2-incident via t1 and d1, as are e3 and e4 via t2
and d2. e2 and e3 are only 1-incident via u2 which does not suffice to connect them into a
single 2-incident connected component.

Note that this leads to u2 being part of both components; although eHCC(H,m) is a
partition of E, HCC(H,m) no longer needs to be a true partition of V and thus a vertex
can be part of more than one component.

The nomenclature in these definitions differs from my earlier publications in a less pro-
lific use of the prefix “hyper”; instead of speaking about m-hyperincident e.g. edges, it
appears more reasonable to speak about m-incident edges and use hyperincidence for all
cases dealing with m > 1. This furthermore helps to highlight the fact that m-incidence
and all derived concepts are true generalizations, i.e. they fall back to the usual, graph-based
definitions for m = 1.

2.2.2. Related Work

Connected components are well-researched phenomena: In particular, the emergence of gi-
ant components in random graphs was stochastically analyzed over 50 years ago (Erdos and
Renyi, 1960). It could be shown that as soon as the relation of edges to vertices reaches
one, giant components are asymptotically certain to emerge as the number of vertices ap-
proaches infinity. These findings were generalized to hypergraphs by Schmidt-Pruzan and
Shamir (1984) without however changing the definition of connectedness. In a similar fash-
ion, Bradde and Bianconi (2009) examine component distributions of 3,3-hypergraphs with
an unchanged notion of connectedness. McGlohon et al. (2008) stresses the importance of
the comparatively underresearched “next-largest components” and provides an examination
of their temporal evolution in real graphs. The notion of identifiability has been proposed as
a generalization of connectedness (Goldschmidt, 2005) that constrains the maximum num-
ber of intermediate edges from an initial set of vertices.
m-incident connected components are not to be confused with m-vertex-connected com-

ponents, that describe subgraphs which remain connected if one were to remove up to
m − 1 vertices, or to m-edge-connected components that describe subgraphs which re-
main connected if up to m − 1 edges were removed. Intuitively, this can be seen because
m-hyperincident connectivity is a feature enforced between any two edges in the compo-
nent, whereas m-vertex- or edge-connectity is a global feature of the graph (consider the
example of a cycle as a 2-vertex-connected graph). A relation, however, can be constructed
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d1u1 d1u2

d1t1

u1t1 u2t1

d2u2 d2u3

d2t2

u2t2 u3t2

e1 e2 e3 e4

d1 d2

u1
u2 u3

t1 t2

Figure 2.5.: C2(Hs). Blue, slashed connections connect edges e and their 2-combinations
C2(e). e1 and e2 being 2-incident in H through t1 and d1 is reflected by d1t1
being a part of both C2(e1) and C2(e2)

as follows: For every m-incident connected hypergraph H , its line graph L(H), i.e., the
graph in which edges sharing vertices in H are connected vertices, is m-edge-connected
if we allow L(H) to be a multigraph and create an edge in L(H) between two vertices in
L(H) for every vertex their corresponding edges share in L. Considering Figure 2.4, this
means we can remove any d, u, or t without the components being disconnected because
by definition, any two e are connected by two such vertices.

Various generalizations of connectivity have been introduced under the label of hyper-
connectivity (hence the more specific term of hyperincident connectivity), e.g. for complete
lattices (Serra, 1998) or to describe the global connectivity property of graphs (Boesch,
1986) that for every minimum vertex cut D of a graph G, G−D has exactly two connected
components, one of which is is an isolated vertex. To conclude, however, to my best knowl-
edge, no generalization of connectedness in the sense defined here has been proposed so
far.

2.2.3. Construction

The m-incident connected components of a hypergraph H = (V,E) can be efficiently
computed by computing the connected components of a structure I call the m-combination
graph of H , and decomposing that structure into regular connected components.

Definition 2.9 (m-Combination Graph) Let H = (V,E) be a hypergraph of range > m.
For an edge e = {v1, . . . , vk}, Cm(e), the m-combinations of e are all (

(|e|
m

)
) combinations

of m of its contained vertices. Let Cm(H) be the m-combination graph of H defined by the
set of edges E′, where E′ contains an edge between all members of Cm(e), for all edges
e ∈ E.

The black edges and nodes in Figure 2.5 show the 2-combination graph of Hs: The fact
that e1 connects d1, u1, and t1, e.g., leads to the new nodes u1t1, d1u1, and d1t1 being
connected.

Lemma 2.2 For a given hypergraph H = (V,E), two edges e1, e2 belong to the same m-
incident connected component in eHCC(H,m) iff their m-combinations Cm(e1), Cm(e2)
belong to the same connected component in CC(Cm(H)).
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2.2. Hyperincident Connected Components

Algorithm 1 Generation of 2-incident components from a 3,3-hypergraph.
function HCC(E) . E = [(d1, u1,t1), . . . ]

Epairs← [] . Will hold edges of C2(E)
for (d, u, t) ∈ E do

for pair ∈ [((d,u), (d,t)), ((d,u), (u,t)), ((d,t), (u,t))] do . Edges between binary
if pair /∈ Epairs then . edges

Epairs += pair
end if

end for
end for
CC← CONNECTEDCOMPONENTS(Epairs) . returns {node: component, . . . }
H← {}
for (d, u, t) ∈ E do

H[(d,u,t)]← CC[(d, u)] . = CC[(d, t)] = CC[(u, t)]
end for
return H . H = {(d1, u1, t1): component_id, . . . }

end function

Proof 2.2 e1 and e2 are connected iff either

• e1 and e2 directly share an m-combination c: there exists c = {v1, . . . , vm} : c ⊂
e1 ∧ c ⊂ e2, i.e. c ∈ Cm(e1) ∧ c ∈ Cm(e2), or

• e1 shares such a combination with ex, and ex and e2 are connected.

Either way, e1 and e2 are connected in Cm(H) iff they are connected through a chain of
m-incident edge pairs, i.e. iff they belong to an m-incident connected edge-component.

Lemma 2.3 Finding the 2-incident connected components of a 3,3-uniform hypergraph
H = (V,E)

a) can be reduced to finding the connected components of a graph C2(H) = (V ′, E′), and

b) |V ′| ≤ 3|E| and |E′| ≤ 3|E|.

Proof 2.3 a) follows from the previous lemma. For proving b), consider that H is com-
posed of edges e = (d, u, t). For each e, C2(e) = {(d, u), (d, t), (u, t)}. So by adding
e, at most these three vertices are added to V ′ – some of these combinations may al-
ready have been added by other edges. Connecting those vertices adds the set of edges
{((d, u), (d, t)), ((d, u), (u, t)), ((d, t), (u, t))} in C2(H). Again, vertices can be shared,
so 3 is an upper bound as well.

Algorithm 1 sketches the resulting algorithm, which first creates the new graph C2(H)
and then calls a library function to compute its connected components. The computation
of connected components can be performed very effiently, and as the algorithm simply
creates a graph with at most three times as many nodes and edges, it follows – and this was

35



2. Hyperincident Connected Components

Table 2.2.: Number of connected components and relative size of giant component. Number
of 2-incident connected components and relative sizes of giant and next-largest
component (GHCC/NLHCC). See Table 1.2 on p. 16 for basic properties of
datasets.

name #CC |GCC| #2-HCC |GHCC| |NLHCC| |NLHCC|
|GHCC|

Delicious 42 > 0.999 43,232 0.79 0.04 0.05
Bibsonomy 8 > 0.999 111,121 0.21 0.08 0.38

without spam 7 > 0.999 9,727 0.91 0.01 0.011
CiteULike 11 > 0.999 57,738 0.64 0.01 0.016
Visualize.us 7 > 0.999 1,684 0.98 <0.001 <0.001
MovieLens 3 > 0.999 265 0.96 0.01 0.013
AOL 247 > 0.999 26,874 0.99 1.0E-5 1.0E-5

confirmed in practice – that the creation of 2-incident components can be performed very
quickly. In contrast, computing the 2-vertex- or 2-edge-connected components of a graph
(see Section 2.2.2) is computationally much more intensive. Adding new information is
even simpler: for each incoming edge e, we simply have to test if the three tuples in C2(e)
have so far lived in different hyperincident components, and, if so, merge them to a single,
new one.

2.2.4. Results

2.2.4.1. Distribution of Component Sizes

All aforementioned networks are decomposed into their regular (1-incident) and 2-incident
connected components. Table 2.2 shows the number of resulting regular components and
the relative size of the giant component. We can see that in all cases, the networks are
basically entirely connected, i.e. the giant component contains more than 99.9% of all
nodes. In contrast, a much higher number of components and a less crisp distribution of
sizes (except in the AOL dataset) can be observed for 2-incident connected components
(for the sake of brevity, any further mentioning of “components” refers to the 2-incident
connected components).

Figure 2.6 plots the distribution of the sizes of each dataset’s components: In all cases, we
see a characteristic power law-like distribution. Only for the smallest, most frequent com-
ponents plotted on the left of each figure, we see a decay in all datasets except Bibsonomy
and CiteULike.

To further explore the relationship between the giant (gcc) and the next largest compo-
nents (nlc), refer to Figure 2.7, where for each dataset, the size (in terms of number of
edges contained) of the top 10 components is displayed on a log scale. In the legitimate
tagging datasets, we see a sharp contrast between the sizes of the giant and the next largest
component. The difference to the third-largest component and the following ones is not par-

36



2.2. Hyperincident Connected Components

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

n
u

m
b

er
o
f

co
m

p
o
n

en
ts

component size

(a) Delicious

1

10

100

1000

10000

100000

1e+006

1 10 100 1000 10000 100000 1e+006 1e+007

n
u

m
b

er
of

co
m

p
on

en
ts

component size

(b) Bibsonomy (green: without spam)

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+006 1e+007

n
u

m
b

er
o
f

co
m

p
o
n

en
ts

component size

(c) CiteULike

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+006 1e+007

n
u

m
b

er
of

co
m

p
on

en
ts

component size

(d) Visualize.us

1

10

100

1000

1 10 100 1000 10000 100000

n
u
m

b
er

of
co

m
p

on
en

ts

component size

(e) MovieLens

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

n
u

m
b

er
of

co
m

p
on

en
ts

component size

(f) AOL

Figure 2.6.: Distribution of component sizes for different datasets. Points indicate number
of components (y) per component size (x), lines indicate number of components
(x) of size >= y.
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(b) Bibsonomy (green: without spam)
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Figure 2.7.: Size of 10 largest components for different graphs – the size of the next-largest
components decays sharply for the regular tagging datasets. For the search log
dataset f), the size next-largest components decays even sharper, while it decays
very smoothely when spam is included as in (b)/red.
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(a) part of giant component (b) spam component

Figure 2.8.: Different hyperincident components in the Bibsonomy dataset. We start with
all edges belonging to a single user, then incrementally add 2-incident edges
until we either reach a limit of 2000 nodes (left) or no more 2-incident edges
exist (right). Green dots: legitimate users, red dots: spammers, blue dots: doc-
uments, cyan dots: tags, black dots: edges. Enlarged dots indicate groups of
equivalently connected items.

ticularly large. In the spam-contaminated Bibsonomy dataset, the next-largest components
are much larger relative to other datasets. Examining the Delicious dataset, we also see
relatively sharp difference between giant and second-largest component, but it is slightly
weaker expressed than in the other tagging datasets. This may be a result of the moderate
level of spam entries reported by Wetzker et al. (2008). In the AOL dataset, in contrast, the
dominance of the giant component is much stronger than in any of the tagging datasets. This
can be taken as a hint that the decomposition is successfully capturing the fundamentally
different underlying formation dynamics.

2.2.4.2. Spam Content of Components

It turns out that the big next-largest components of the spammed Bibsonomy dataset are
completely made up by spam users. While the giant component contains a rather large
fraction of legitimate users (20% vs 7% in the overall dataset), not a single one can be
found in the 128 next-largest components.

Figure 2.8 visualizes the situation: Starting with all edges containing a single user, 2-
incident edges are recursively added. In Figure 2.8(a), which starts with a legitimate user,
we have to stop expanding at some point (here, after 2000 nodes), as the user is (as is likely)
part of the giant component. Figure 2.8(b) shows a typical large non-giant component
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Figure 2.9.: Size of 10 largest components of the induced graphs for the Bibsonomy dataset.

composed of almost identical spam users – expansion does not have to be terminated here,
as the edges displayed are all that can be reached via a 2-incident path from one of the
original user’s edges. Almost no such structures of limited size exist for legitimate users;
in fact, the quantitative analysis of components’ contents was initially motivated by not
finding a single example of a component of manageable size not exclusively composed of
spam users.

To understand the process that might be responsible for this effect, it is important to stress
again the fact that 2-incident connected components induce a partition of edges, whereas
vertices as documents, users, or tags can be part of several components. Due to this, a
spammer umay enter legitimate documents with legitimate tags for disguise, probably con-
necting to corresponding edges in the giant component – but this does not result in all
of their additional entries automatically being connected to the giant component as well.
Consider a spammer who tries to appear legitimate by tagging cnn.com with ’news’. The
corresponding edge would probably be connected to the giant component and (correctly)
appear legitimate. However, by enforcing 2-incident connectivity, this would not lead to an-
other entry containing a spam tag and a spam document necessarily being connected to that
component as well, because two nodes of that new edge would have to be connected before,
not only the one representing the user. Like this, certain cloaking measures of spammers
are automatically countered.

2.2.4.3. Bipartite Connected Components

In this section, a question will be discussed that was originally brought up by my colleague
Robert Wetzker: How much of the specific component sizes found in the hypergraph could
be due to bipartite connectivity patterns already? In order to examine this questions, let us
first set up the following definitions.

The user/document-graph UD(H) is defined by the edges {(d, u) : ∃(d, u, t) ∈ H},
i.e., tags are ignored and only shared documents imply connectedness. The user/tag-graph
UT(H) analogously is defined by the edges {(u, t) : ∃(d, u, t) ∈ H}. The obvious third
possibility, the document/tag graph is left out here because it would not contain the labelled
users, making a comparison between spam and non-spam versions of the graph difficult.

Figure 2.9 shows the size of the top 10 largest components (as the number of con-
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Figure 2.10.: Distribution of spam and non-spam users into the isolated, next-largest and
giant components

tained users) of UD(H) and UT (H), for the Bibsonomy dataset. It turns out that the
user/document graph in fact shares the signature discrepancy between the size distributions
of the spam and the spam-free dataset. The user/tag graph, on the other hand, does not ex-
press this effect that strongly. The spam-laden dataset does in fact show next-largest com-
ponents slightly larger in relative size, but most users are contained in the giant component
(please note the change in scale between the two figures).

Let us regard this situation on a more global scale. For this purpose, components are
classified as the giant component (gcc), next largest components (nlc) describing any other
component containing more than one user, and the remaining isolated components contain-
ing only edges from one user. Figure 2.10 shows the distribution for the three different
types of graph, again split by spam and spam-free datasets. Note that in the case of the full
hypergraph, users can be parts of several components, leading to the additional possibility
of a user being both in the giant and a non-giant component. The following results can be
read from this figure:

• The user/tag graph is almost fully connected.

• In the user/document graph, on the other hand, the characteristic component size
distributions of the hypergraph can partially already be found.

• The ratio of spam users in the giant component, however, is lower in the hypergraph
than in the document/user graph.

To conclude, it appears that although much of the component size distribution in the hyper-
graph is caused by connectivity patterns in the user/document graph, the hypergraph does
contain additional structural information leading to an even sharper contrast between spam
and non-spam. In the next and final part, the effects of these findings for spam detection
will be discussed.

2.2.4.4. Application for Spam Detection

Based on the results of Figure 2.10, a simple classification scheme can be devised that
directly uses the component membership information: Users receive a spam rating of -1 if
contained in the giant component, 0 if isolated, and 1 if they are members in a large but
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min # docs/user
0 1 10 100

User/Document 0.73 0.78 0.81 0.84
User/Tag 0.49 0.49 0.50 0.50
Hypergraph 0.73 0.78 0.84 0.88
Combined 0.76 0.81 0.87 0.91

Table 2.3.: AUC values of the different connectivity-based classifiers

non-giant component. These scores can be computed for UD(H), UT (H) and H . The
predictions based on UD(H) and H’s components are combined into a single predictor
by adding the scores obtained from membership in both graphs’ components. Assuming
that many of the isolated components are caused by users which have tagged only very few
documents, the classifiers are also evaluated on the subsets of users having tagged more
than 1, 10, or 100 documents.

Table 2.3 shows the performance values when applying these heuristics. As was to be
expected from the distribution of users, UT (H) does not provide any usable information.
The other approaches however do well, particularly on users with more documents. The
hypergraph’s connectivity is slightly more informative than UD(H)’s. However, the per-
formance of the combined predictor exceeds that of both individual ones. This suggests that
neither graph’s connectivity is redundantly encoded by the other’s, i.e., there must be users
which are in a next-largest component in one graph but not in the other.

2.2.5. Conclusion

I have introduced a generalization of connected components and shown their applicability
to 3-partite 3-uniform hypergraphs. Tagging activity, in the datasets examined, creates a
specific distribution of connected components, with the second-largest component being
one to two orders of magnitude smaller than the giant one. Different creation processes
create different pattern. In particular, spamming activity appears to create a large number
of next-largest components of much higher relative size than their non-spam counterparts.
These components, in the data examined, are made up completely by spammers: In the
examined, spam-annotated dataset examined, not a single legitimate user was found in the
second- to 129th largest components.

These findings were used to create classifiers for detecting spam users in tagging datasets.
Obviously, the unsupervised classifier does not reach the performance of supervised clas-
sifiers with domain-specific features. However, it can be used without labeled information
and might provide first indications of users that need to be further examined, particularly
when applied to users which have already had the time to form some revealing connectivity
patterns.

I believe these findings are good news – not only for researchers in spam detection, but for
anyone interested in learning from tagging data. In bookmarking their favourite resources,
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users create traces of complex cognitive processes. The results indicate that the complexity
these processes is mirrored by the structures emerging from the use of social bookmarking
systems, too subtle to be easily reproduced by malevolent spammers. This reinforces the
implicit assumption that underlies work on tag analysis in general: That tagging data is a
rich source of non-trivial latent information.
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3. Multi-Partite Community Detection

This chapter defines the task of multi-partite community detection. It highlights the spe-
cial requirements of this task and provides both terminology and quantitative criteria for
discussing these issues later on.

Section 3.1: Motivation generally describes the task of multi-partite community detec-
tion. A toy example illustrates the basic process.

Section 3.2: Definitions puts the intuitions of the previous section into mathematical terms.

Section 3.3: Synthetic Datasets defines three families of synthetic datasets which repre-
sent different challenges such that different community detection algorithms can be
directly evaluated with respect to those challenges.

The evaluation methodology (synthetic datasets and test routines) described in this chapter
is provided as a downloadable software package, mpcd (Multi-Partite Community Bench-
marks) – see Appendix A.1.2 for details.
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3. Multi-Partite Community Detection

3.1. Motivation

In Section 1.2.2.1, community detection for “normal” (non-partite) graphs has been in-
troduced: The goal is to group nodes which are structurally close in the graph for some
definition of “close”, both for the sake of identifying those groups of similar nodes – which
may point to functional, semantic or social relations in the underlying data – and in order
get a clearer view of a graph’s macro-structure. These goals basically remain the same in
the multi-partite case.

Section 1.2.2.3 has introduced bipartite community detection, finding distinct community
assignments for the two partitions of a bipartite graph. Multi-partite community detection
aims to generalize bipartite community detection to k, k-hypergraphs with arbitrary k.

Before proceeding to define multi-partite community detection and related vocabulary
more formally, let us consider an example showing different possible community assign-
ments in a small graph.

3.1.1. An example

The hypergraph Hs is given by the edges listed in Table 3.1(a) and visualized in Fig-
ure 3.1(a). As we can see, it is defined by 10 edges connecting 3 documents, 2 users and 2
tags. The goal is to find one partition for each of those three sets.

3.1.1.1. Description

Figures 3.1(a) - 3.1(e) show not one, but five possible community assignments. They build
on each other, starting with the trivial solution of assigning each node to a single community.
From there on, each community assignment is like the previous one, except one community
has been merged with another one. Even though community detection primarily aims to
provide a single partition of a graph’s elements into communities, such a recursive process
is typical for the optimization of community assignments. Girvan and Newman (2002) and
Newman (2006), e.g., describe top-down approaches of recursively splitting communities,
starting with all elements in the same community, whereas e.g. Clauset et al. (2004) describe
a bottom-up algorithm that joins two communities at each step, starting with each element

Table 3.1.: Sample data as visualized in Figure 3.1

(a) edges representing Hs

d u t d u t

1 1 1 1 2 1
1 1 2 1 2 2
2 1 1 2 2 1
2 1 2 2 2 2
3 1 1 3 2 1

(b) sample output of community detection

domain el. el. modularity step

2 1 2 0.351111 1
1 2 1 0.402223 2
3 2 1 0.455556 3
1 3 1 0.500000 4
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3.1. Motivation

in its own community. In both cases, even though a single, optimal state is returned as a
result, such recursive processes imply an entire clustering hierarchy. Later on, the analysis
will at times be extended to this hierarchy. Figure 3.1(f) highlights the recursive nature
of the merging process – three dendrograms, sharing a temporal scale (y), visualize the
progressive clustering in each domain.

Table 3.1(b) describes the individual merging operations that lead to community assign-
ments (b)–(e). The first line, “2 1 2 . . . ”, e.g., indicates that element 1 and 2 of domain 2
(i.e., users) are the first to be merged. Correspondingly, after four joins, one element per
domain remains in Figure 3.1(e). This table also represents an example of the output com-
munity detection algorithms should produce. The fourth column indicates the quality of the
community assignment after each merge (here, it shows the value of the coupled bipartite
modularity that will be introduced in Section 4.2, which however is not important for our
example).

3.1.1.2. Interpretation

Several things can be observed in Figure 3.1. First of all, the notion of tripartite commu-
nity structure becomes evident: An overall community assignment consists of a set of three
individual community assignments, one per domain. Also, it intuitively introduces commu-
nity edges, groups of edges incident to elements from the same communities, that will be
defined more formally in the next section and are visualized here as black or gray circles.

Furthermore, we see how choosing the optimal solution out of a a hierarchy of community
assignments is not obvious even for this simple example. (c) is a sweet spot because all
redundant elements, but none with different connectivity have been grouped. In real data,
however, using identical connectivity as a selection criterion might result in a high number
of small communities, as most elements are connected slightly differently. So a solution
like (d) might be more appropriate: Although the difference between Tag 1 and 2 is hidden,
the gray community edge to Document 3 indicates that this element is less connected to
the user and the tag community than the other documents. In terms of our sample quality
measure, (see Table 3.1(b)), the last (trivial) solution should in fact be considered optimal
(this special case – the trivial solution becoming optimal – is examined in more depth in
Section 4.2.4.3).

Table 3.2.: 3-partite hierarchical clustering induced by the joins in Table 3.1(b)

k 1 2 3
d1 d2 d3 u1 u2 t1 t2

σ0k 1 2 3 1 2 1 2
σ1k 1 2 3 1 1 1 2
σ2k 1 1 3 1 1 1 2
σ3k 1 1 3 1 1 1 1
σ4k 1 1 1 1 1 1 1
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Finally, it should be noted that the path from (a) to (e) – i.e. which nodes to join at each
step – is only one of many possible ones. The actual challenge lies in constructing these
paths. An alternative path from (a) to (e) might e.g. first join Documents 1+3, and join
Document 2 later on. Even without any quantitative definition, this seems like a bad idea,
given that Documents 1 and 2 are identically connected, whereas 1 and 3 are not.

3.1.2. Challenges of Multi-Partite Community Detection

Why can’t we simply use existing community detection techniques to perform analyses
like the one just shown? Refering back to the definition of modularity (Definition 1.2 on
page 8), we can find the following implicit assumptions are made:

• The goal is to create a single set of community assignments.

• Nodes are either in the same community, or not.

• Edges are binary.

The previous assumptions (the last one for k > 2) become invalid when dealing with (k, k)
hypergraphs. This leads to the three challenges for multi-partite modularity detection:

1. Distinct community structures Different domains may have different community struc-
tures: Communities in one domain may not exactly correspond to another community
in another domain; there may also be different numbers of communities. Therefore,
k different sets of communities should be supported.

2. Correspondence instead of equality If we assume distinct community structures per
domain, the notion of connected nodes (which, by definition of partiteness, come
from different domains) incident to the “same” community becomes obsolete. If the
number of communities per domain are equal, speaking of elements from different
domains being in the “same” domain may be tempting if correspondence is strong.
But if, for example, there are two communities A and B in one domain and only one
community C in another, it becomes clear that neither A or B are the same community
as C. Instead, a generalized notion of elements from different domains belonging to
corresponding communities is required.

We also need to take care not to punish the non-adjacency of (necessarily non-adjacent)
elements in the same community within a single domain, as done by standard modu-
larity.

3. Hyper-Incidence While the previous two points have been pointed out before (e.g. by
Murata (2009)) for bipartite graphs, dealing with hypergraphs additionally requires
us to generalize a binary notion of correspondence to k-ary one, measuring the joint
correspondence between all involved communities.

The three families of synthetic hypergraphs that will be introduced later on in this chapter
highlight these challenges. However, let us now define some required terminology.
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t1

t2

u2

u1

d1

d3

d2

(a) Original hypergraph. Black dots represent hyper-
edges. Each coloured shape represents a single ob-
ject.

d2

t1

t2

u1 + u2

d1

d3

(b) After the first join (user 1+2), each black dot now
represents a community edge of two edges (*,*,user
1) and (*,*,user 2).

t1

t2

u1 + u2

d1 + d2

d3

(c) After the second join (document 1+2), the basic
structure of the hypergraph becomes apparent: docu-
ments 1 and 2 connected to tags 1 and 2, with docu-
ment 3 only connected to tag 1.

t1 + t2

u1 + u2

d1 + d2 d3

(d) The third join (tag 1+2) introduces lossy com-
pression: The right community edge implies edges
between tag 2 and document 3 that don’t exist and is
hence coloured gray instead of black.

t1 + t2
u1 + u2

d1 + d2 + d3

(e) After the fourth join (documents 1+2 and 3), all
elements from the same domain have been assigned
to a single community.

0

1

2

3

4

D

0

1

2

3

4

U

0

1

2

3

4

T

(f) The combined dendrograms of this process, for
documents, users, and tags. Figure (a) represents the
bottom, Figure (e) the top of the trees.

Figure 3.1.: A sample hypergraph Hs, given by the edges in Table 3.1(a), clustered by the
steps given by Table 3.1(b) / a 3-partite hierarchical clustering σ given by Ta-
ble 3.2
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3. Multi-Partite Community Detection

3.2. Definitions

3.2.1. Community Assignments

The result of community detection is a function assigning nodes to communities. Let us fix
this formally for the k-partite case.

Definition 3.1 (k-partite community assignment) Let a k-partite community assignment
for a k, k-hypergraph H be defined as a k-tuple σ = (σ1, . . . , σk) of community assign-
ment functions σd : Vd → Cd, projecting the vertices in Vd onto communities Cd ⊂ N.

Let the codomain of σ, Cσ = C1 × . . . × Ck be the community space induced by σ.
Applying each element of σ to each element vi of an edge e = (v1, . . . , vk) lets us interpret
σ as a vector-valued function projecting edges into the community space:

σ : E → C,σ(e) = (σ1(v1), . . . , σk(vk)).

Let Vd,i(σ) be the partitions of Vd (the nodes in domain d) induced by σ, i.e. the content
of the communities:

Vd =
⋃

i∈Cd(σ)

Vd,i(σ), v ∈ Vd,i(σ)⇔ σd(v) = i.

Let the weight a of Vd,i(σ) be the number of edges incident to the elements of the partition,

ad,i(σ) = |{e ∈ E : σd(ed) = i}|.

Literature on non-partite modularity assumes a single community assignment function σ,
and also work on bipartite modularity assumes a single σ containing assignments for ele-
ments of both domains. For many discussions, I have found it handy to address the different
domains explicitly, using e.g. the above notation of a vector-valued σ = (σ1, . . . , σk)
and distinct sets of nodes. I will typically provide definitions in both notations and use
whichever notation is more concise in the further discussion. When switching between
multi-partite (left) and non-partite (right) notations, it is useful to keep in mind that for
c = (i, j, k)σ,

|cσ| = ei,j,kM and ad,i(σ) = aiM.

In practice, community assignments come in groups. Any community detection approach
that works by binary merges implicitly creates an ordered list of community assignments.
This list is of some interest in itself, as we may

• choose to pick another intermediate result as the final assignment than the algorithm
chose which originally created the assignments (see Section 4.2.3).

• need to talk about different hypothetical sets of clusterings (see Section 4.4),

• compute global properties to understand the clustering process (see Section 4.5), or

• use it to allow an interactive exploration of the clustering results (see Section 5.2).
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Let us therefore define this structure more precisely.

Definition 3.2 (k-partite hierarchical clustering) A k-partite hierarchical clustering is an
ordered list

Σ = σ0, . . . ,σN−k

of N − k + 1 k-partite community assignments .
σ0 = (σ01, . . . , σ

0
k) assigns each element to an individual community, i.e.,

∀i ∈ K, ∀(v, v′) ∈ Vi × Vi : v 6= v′ → σ0i (v) 6= σ0i (v
′).

σN−k assigns, per domain, each element to a single community, i.e.

∀i ∈ K, ∀(v, v′) ∈ Vi × Vi : σN−ki (v) = σN−ki (v′).

Each intermediate community assignment differs from its predecessor in that two com-
munities have been merged into one. The difference between two consecutive community
assignments στ and στ+1 is described as a join ϕ = (d, s, t) that contains the source com-
munity s and target community t from domain d which have been merged. Let us define the
application of a join ϕ to a community assignment σ as σ ◦ ϕ such that

ϕ = (d, s, t)⇒ στ ◦ ϕ = στ+1, στ+1
d′ (v) =

{
t d = d′ ∧ στd(v) = s
στd′(v) else.

Figures 3.1 (a) through (e) depict the five different stages of community assignments given
by a particular hierarchical clustering. Table 3.2 enumerates the exact community assign-
ments at each step and domain.

3.2.2. Community Edges

By merging elements into communities, a new graph is implicitly constructed in which the
new nodes correspond to communities of original nodes, and the edges correspond to groups
of edges running between elements from the same community. Let us call those implied,
aggregate edges community edges.

Definition 3.3 (community edges) Let a community edge

(c1, . . . , ck)σ = cσ ∈ Cσ = C1 × . . . Ck

be a set of edges equivalent under σ:

cσ = {e ∈ E : σ(e) = c}.

Individual communities ci indexed by cσ = (c1, . . . , ck) are called incident to cσ.
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In simpler terms: a list of communities c = (cd, cu, ct) looks a lot like an edge (d, u, t),
and community edges make this relation explicit by relating c to all the edges between
elements from the communities it contains. As an example, the community assignment σ2

as given by Table 3.2 clusters the nodes of Hs into 2, 1, and 2 communities respectively.
This gives rise to four community edges:

(1, 1, 1)σ2 = {(1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1)}
(1, 1, 2)σ2 = {(1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2)}
(3, 1, 1)σ2 = {(3, 1, 1), (3, 2, 1)}
(3, 1, 2)σ2 = ∅

Arenas et al. (2007) examine the effects of merging nodes to modularity optimization,
and, in the process, also discuss the properties of aggregate edges. Since their work is
focussed on non-partite graphs, however, they have to deal with other phenomena, in par-
ticular emerging self-loops which do not play a role in the multi-partite case because the
nodes that are merged are, by definition, not incident to each other. Here, instead, it will be
necessary later on to discuss certain other properties of community edges:

Definition 3.4 (properties of community edges) The weight of a community edge cσ refers
to the number of edges inside it, is notated as |cσ|, and is implicitly defined already, since
community edges are defined as the set of edges they unite.

The volume of a community edge cσ is given by

vol(cσ) =
∏
i∈K
|v ∈ Vi : σi(v) = ci|,

i.e. the maximum number of edges that could theoretically belong to cσ if there was an
edge between all involved elements.

The density of a community edge cσ is given by

ρ(cσ) =
|cσ|

vol(cσ)
,

i.e., the ratio of the actual to the maximum number of contained edges.
The relative importance r(cσ, i) of an community edge cσ for its ith incident community

ci is given by

r(cσ, i) =
|cσ|

|{e = (v1, . . . , vk) ∈ E : σi(vi) = ci}|
=
|cσ|

ad,ci(σ)
,

describing the ratio of the number of edges in cσ to the total number of edges incident to
elements in ci.

The community edges of importance α are a subset of all possible community edges as
given by the community space Cσ:

Cσ,α = {cσ ∈ Cσ : ∃i : r(cσ, i) ≥ α} ,

i.e. those community edges which have at least a relative importance of α for at least one
of their incident communities.

52



3.2. Definitions

The black circles in Figure 3.1(a) through 3.1(d) are community edges of density 1. Their
size differences in (c) reflect differences in volume (4 vs 2). The gray circle in (d) represents
community edges with densities< 1. The single circle in (e) also refers to a density< 1 – it
is nevertheless plotted in black, because its density value is the highest (since only one) in
the plot and normalization is applied.

To give a final intuition about community edges: Only the black dots in Figure 3.1(a)
represent single edges – the other figures use black dots to represent several edges: com-
munity edges. For an initial community assignment σ0 which assigns each node to a single
community, the set of community edges furthermore is equivalent to the set of edges. Using
the notation introduced here, the new graphs implied by creating larger communities can be
described naturally as entities which live in the same space as the original graph on one side
of the spectrum and a graph consisting of just one hyperedge on the other end of it.

3.2.3. Evaluation Measures

Throughout this thesis, a recurring topic is the evaluation of obtained community assign-
ments. This section introduces normalized mutual information (NMI), an established su-
pervised quality measure that rates the similarity between two community assignments and
will be used in particular to compare predicted with correct assignments. In cases where
no ground truth is available, a quality measure may be required nevertheless to compare
different clusterings. While modularity is in fact such a measure, it is beneficial to have
a “neutral” measure since different versions of modularity are being compared in the first
place. For this purpose, a compression measure based on minimum description length is
introduced as well.

3.2.3.1. Normalized Mutual Information

Definition 3.5 (NMI) The Normalized Mutual Information between two community as-
signments σA and σB is defined as

NMI(σA, σB) =
2MI(σA, σB)

H(σA) + H(σB)
,

where MI is mutual information and H entropy.
Danon et al. (2005) give the following implementation-oriented definition of MI and H:

Let a = |CσA | and b = |CσB | be the number of communities found by the two clusterings.
Let N ∈ Na×b be a confusion matrix in which rows correspond to communities in σA,
columns correspond to communities in σB , and elements Nij count the elements which
have been assigned to i by σA and to j by σB . Let furthermore ||N|| be the sum of all
entries in N and Ni. and N.j denote the sum of entries of the ith row and jth column of
N, respectively. Then the mutual information can be computed as

MI(σA, σB) = −
a∑
i=1

b∑
j=1

Nij log

(
Nij ||N||
Ni.N.j

)
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and entropy is given by

H(σA) =

a∑
i=1

Ni. log

(
Ni.

||N||

)
, H(σB) =

b∑
j=1

Nj. log

(
Nj.

||N||

)
.

If both assignments predict a single community, the denominator vanishes. In this case,
we define NMI to be 1, because the correct assignment has been predicted.

To evaluate a k-partite community assignment σ = (σ1, . . . , σk), the mean NMI of the
domain-specific assignments is computed:

NMI(σ) =
1

k

k∑
i=1

NMI(σi).

This measures the information one community assignment contains about the other, normal-
ized to values between 1 in the case of perfect agreement and 0 for complete independence,
e.g. if one of the assignments assigns all elements to one community.

A simpler alternative might be the approach used by e.g. Newman (2004). Assuming
that σA is the correct assignment and σB the predicted one, each predicted cluster CB is
assigned to a correct cluster in CA such that CA = argmax c(σA(v) = c ∧ σB(v) = CB).
Then each element assigned to CB which is not in σA is considered wrong, and the quality
is defined as the fraction of correctly clustered elements. As argued e.g. by Danon et al.
(2005), this measure may be problematic in certain cases. Consider, e.g., a simple case
where elements numbered from 1 to 6 are assigned to clusters to [1, 1, 2, 2, 3, 3] by the
correct assignment σA. Now consider two possible assignments: σB which assigns the
elements to [1, 1, 1, 1, 3, 3] and σC , assigning to [1, 1, 1, 3, 3, 3]. In both cases, the two
elements previously assigned to cluster 2 are mis-aligned. The simple correctness measure
would therefore assign a score of 2

3 to both. However, the two elements are still in the same
cluster in σB but torn apart by σC . NMI accounts for this different by assigning a score
of 0.73 to σB and 0.51 to σC . It is this sensitivity to border cases which has made NMI a
frequently adapted quality measure in the literature (see e.g. recent papers on benchmarking
by Lancichinetti et al. (2008)), and it will be used throughout this thesis.

3.2.3.2. Minimum Description Length

For cases in which no ground truth is available, a measure is introduced here that describes
the amount of information required to transmit a k-dimensional adjacency tensor under a
given community assignment. It follows the basic approach and argumentation put forth by
Chakrabarti et al. (2004) for a two-dimensional case. When sorting nodes by community
membership, well-connected communities should translate to densely populated regions in
the sorted adjacency tensor, which results in better compression, linking community quality
to information-theoretic terms. Liu and Murata (2010) have recently proposed to directly
optimize a similar measure as a method for community detection. Here however, it is only
used for comparing different results.

The general approach consists of dividing the tensor into sub-tensors and transmitting
them individually with an optimized encoding based on their sparseness or density. Since
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the structural information about the decomposition needs to be transmitted as well, the cost
for transmitting the adjacency tensor of a hypergraph G = (V,E) with domains K under a
community assignment σ can be formulated as

I(G,σ) = I(G,σ)coding + I(G,σ)structure .

I(G,σ)coding represents the actual coding costs, i.e. the amount of information required
to transmit whether an individual k-tupel of elements are adjacent or not. Without com-
pression, each tuple requires a single bit. Assuming that elements are grouped such that
the adjacency tensor is partitioned in sparse and dense regions, this can be achieved more
efficiently, transmitting the information for each community edge separately:

I(G,σ)coding =
∑
cσ∈C

vol(cσ)H(ρ(cσ)).

vol(cσ) is the size of the sub-tensor being encoded, i.e. the number of bits to transmit.
ρ(cσ) describes the ratio between ones and zeroes in the current sub-tensor, influencing
the encoding costs per bit: The entropy H(p) (Shannon, 1948) describes the information
required on average to transmit a single bit, based on the probability of it being 1, and is
given for the binary case as

H(p) = −p log2 p− (1− p) log2(1− p).

This function has its maximum at p = 1
2 , such that any imbalance towards more ones or

more zeroes enables compression schemes that allow for more efficient transmission. This
is how particularly dense and sparse sub-tensors contribute to lower encoding costs. Please
note that no statement is made about the actual encoding used to transmit these bits – all we
need from information theory here is the average cost of this implied coding.

Still, structural information needs to be included in order to inform the potential receiver
about the meaning of the data to be transmitted. In order to see the necessity of this, imag-
ine reducing the sub-tensor size to single bits – this would reduce the coding costs to 0.
However, having overall transmission costs of 0 for a non-empty tensor would not make
sense; the answer is that all information would go into this structural part. Indeed, once the
position and size of each non-empty sub-tensor of size 1 is transmitted, no further encoding
of the actual contents would be required, at the cost of exploding structural costs however.
In order to express the trade-off between coding and structural costs, we need to spell out
the encoding of this structural part, which is made up of four different components:

I(G,σ)structure = I(G,σ)count + I(G,σ)assignment + I(G,σ)density + I(H,σ)hascontent.

I(G,σ)count =
∑
i∈K

32 + log2 |Vi|

computes the cost of transmitting the number of nodes and communities for all domains i.
The number of nodes |Vi| per domain cannot be known in advance and is therefore difficult
to compress – Chakrabarti et al. (2004) employ a principle of universal code length for
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integers of unknown range, but here it seems easier to assume that the number of nodes per
domain will always fit into a 32-bit integer and simply transmit this number uncompressed.
Once this number is known, however, the following number of communities – maximally
as large as |Vi| – can be encoded using only as many bits as required.

I(G,σ)assignment =
∑
i∈K
|Vi| log2 |Ci|

computes the cost of transmitting the community assignment for each node. Note that
an efficient coding of the community id by log2 |Ci| is possible because the number of
communities has been transmitted before.

I(G,σ)density =
∑

cσ∈Cσ ,|cσ |>0

log2 vol(cσ)

computes the cost of transmitting the number of ones per community edge, informing the
implicit compression scheme.

I(H,σ)hascontent = min

(∏
i∈K
|Ci|, |cσ ∈ Cσ : |cσ| > 0|

∑
i∈K

log2 |Ci|

)
+ 1

computes the cost for transmitting for each potential community edge out of Cσ whether
it contains edges, since the previous encodings only transmit for actual, i.e. non-empty
community edges. This can either be a single bit per community edge – all community
edges are listed in order, and the first bit encodes whether content follows – or a list of
positions for all non-empty community edges. Although this costs additional information
required to encode the indices of the incident communities, it may be advantageous if many
communities exist, so the encoding can change between the two schemes to choose the more
efficient one. The single bit at the end is used to transmit which encoding is chosen.

Using this coding scheme, all necessary information to unambiguously reconstruct the
compressed adjacency tensor is provided. The final costs can be summarized by

I(G,σ) =
∑

cσ∈Cσ ,|cσ |>0

(vol(cσ)H(ρ(cσ)) + log2 vol(cσ))

+
∑
i∈K

(32 + log2 |Ci|+ |Vi| log2 |Ci|)

+ min

(∏
i∈K
|Ci|, |cσ ∈ Cσ : |cσ| > 0|

∑
i∈K

log2 |Ci|

)
+ 1.

Example Figure 3.2 illustrates the relationship between community assignments and
minimum description length, anticipating some technology and concepts from later chap-
ters. We examine a constrained tag expansion (see Section 5.1.2; basically a number of
edges around a given tag, obtained in a particular fashion), here around the tag “Charity”
from the Delicious dataset (see Section 5.3.2 for further discussion of the results).
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(a) Unsorted adjacency tensor (b) Sorted adjacency tensor

Figure 3.2.: The same adjacency tensor, once unsorted and once with axis elements grouped
by community membership. Blocks of same colour group edges that connect
elements from the same communities (community edges). The sorted tensor
can be seen to be decomposed into subcubes that are either sparsely or densely
populated with edges, allowing better compression.

Figure 3.2(a) shows the unsorted adjacency tensor. In the absence of community assign-
ments, a better way of encoding this tensor than the one proposed above is to simply transmit
the coordinates of all edges. As the subgraph contains 30 documents, 154 users and 73 tags,
each edge’s coordinates are encoded by 5, 8, and 7 bits respectively. Having 1001 edges to
transmit and assuming a 8-bit header per domain encoding the number of elements yields a
size of 20044 bits to transmit the edges in the graph / the position of non-zero elements in
the tensor.

Figure 3.2(b) shows the same tensor, only that axes are sorted by community membership
as assigned by the balanced modularity optimization introduced in Section 4.5.5. Instead
of edges being almost uniformly distributed in the three-dimensional space, distinct regions
of dense and sparse population can be identified. Edges belonging to the same community
edge (i.e. connecting elements from the same communities) are shown as blocks of identical
colors (remote blocks of same colour do not have a special relation and are caused by lack
of sufficient colors). By applying the proposed compression scheme, only 7664 bits would
be required to transmit the tensor. This corresponds to a bit more than 38% of the original
size.
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3. Multi-Partite Community Detection

3.3. Synthetic Datasets

A common way (Danon et al., 2005; Meila, 2007) of judging the performance of community
detection algorithms is the construction of synthetic graphs in which a community structure
is defined over nodes, and edges connect nodes from the same communities with a proba-
bility 1 − µ, where µ is a noise or mixing factor. This structure is sometimes described as
a (relaxed, for µ > 0) caveman graph (Watts, 1999; Schaeffer, 2007). The ability of algo-
rithms to reconstruct the original clustering is then used as a performance indicator. Here,
generalizations suitable for k, k-hypergraphs are proposed. Evaluation will be performed
by summing the previously introduced NMI measure over all domains.

In non-partite graphs, edges connect either nodes from the same or from different com-
munities. The most direct generalization to k, k-hypergraphs would imply that for each
community in a domain, there exists exactly one other community in each other domain
such that edges only connect elements from those communities. More generally however,
one might only require that all elements from one community are consistent with respect to
which communities in other domains they are connected to, allowing for more complicated
relations than the 1:1:1 relation described first. In the following, three families of synthetic
hypergraphs are introduced, each more complicated than the previous one, starting with the
simplest generalization.

3.3.1. SIMPLE

For the first, SIMPLE scenario, we define n communities with a fixed number of nodes
for each domain. Each community in one domain is defined to correspond to exactly one
community in the two other domains.

Edges are generated by picking a random node and then picking another node from all
other domains, each with probability k−1

√
(1− µ) from the corresponding community. Like

that, the overall probability of all elements of an edge coming from corresponding commu-
nities remains k−1

√
(1− µ)

k−1
= 1− µ.

Figure 3.3(a) illustrates this idea for two communities per domain: Edges, in the absence
of noise, only exist between elements from either the first set of document, user, and tag
communities, or the second one. Figure 3.4(a) shows a randomly generated graph from this
family with 5 elements per community. Here, color indicates community membership. Ele-
ments from unambiguously corresponding communities, i.e. all documents, users and tags
from one set of mutually corresponding communities are colored identically (although not
technically from the same community since coming from different domains). Figure 3.5(a)
shows the adjacency tensor of the same graph. Across all axes, elements are ordered by
community membership. Each range on an axis has specific ranges on the other axes to
which it has connections.

3.3.2. OVERLAPPING

A more interesting case is the presence of OVERLAPPING communities. Here, the simplest
such model is examined: Two document and two user communities, but only one tag com-
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3.3. Synthetic Datasets

(a) SIMPLE (b) OVERLAPPING (c) CONTRADICTIVE

Figure 3.3.: Community structure of synthetic datasets. Edges are placed between commu-
nities connected by edges (black dots) with probability 1 − µ. In all figures,
squares represent (communities of) documents, triangles are users, and circles
tags.

(a) SIMPLE (b) OVERLAPPING (c) CONTRADICTIVE

Figure 3.4.: Graphs randomly generated from the corresponding families (µ = 0 for all
graphs). Elements from identical or unambiguously corresponding communi-
ties share the same color.
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(c) CONTRADICTIVE

Figure 3.5.: Adjacency tensors of the graphs from Figure 3.4. Elements are ordered by
community membership. Two edges have the same color exactly if they belong
to the same community edge, i.e., the elements they connect are all members of
the same communities. Visualization created with the R package ScatterPlot3D
by Ligges and Mächler (2003).
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3. Multi-Partite Community Detection

munity exist. Imagine a community of tags around the topic of “memory” which may be
used by e.g. computer scientists and psychologists to annotate distinct concepts, and dif-
ferent communities of documents. This shows why different numbers of communities for
different domains might be necessary (challenge 1) and why it does not make sense to talk
about objects from different domains being from the “same” community (challenge 2); there
is no single e.g. document community to which the “memory”-related tags could be said to
belong more than to the other. A community detection algorithm should be able to identify
the two different sets of document and user communities without mistakenly separating the
single tag community into two.

Each edge is created by picking a random document, picking a user from the corre-
sponding community with probability 1 − µ and always adding a tag from the single tag
community.

Again, Figure 3.3(b) illustrates the basic community structure. Figure 3.4(b) shows a
randomly generated graph. Documents and users form tightly connected groups – again,
elements from corresponding sets of communities share the same color, but the tag commu-
nity is located between the two. This situation is represented in Figure 3.5(b) by the fact
that edges are clearly separated along two axes, but overlap on the third (y) axis.

“Overlapping” in this case means that a community in one domain may correspond to
several communities in another domain. There is a body of work on multiple community
assignments per node, e.g., (Lehmann et al., 2008) and (Lancichinetti et al., 2009), in which
case communities are also said to overlap. This is, however, a different sense of the word
and a topic that is not further investigated here.

3.3.3. CONTRADICTIVE

The final scenario assumes that each community is connected to each other community, but
in a CONTRADICTIVE fashion. Imagine two groups of people A and B, two communities
of tags (positive and negative), and two sets X and Y of, say, movies. This example shows
a situation where people from group A tag all movies X positively, the other movies nega-
tively, and the other group of people acts exactly in the oppositive way. This highlights the
extension of correspondence noted in challenge 3: The question “Do A and X correspond?”
needs to be replaced by the question “Do A, X and + correspond?”

Edges are created by a generalized process which could be also used to create the pre-
vious examples as well as more complicated scenarios. A set of L of legal community
edges is defined – combinations of communities between whose elements edges are de-
sired. For each edge, it is randomly decided whether it is supposed to be a “legal” edge
(with probability 1 − µ) or a noisy one (otherwise). Then, nodes are randomly assem-
bled to edges until the edge is, depending on its purpose, either a member of the le-
gal community edges or not. To further illustrate the idea: the SIMPLE graphs would
be constructed by defining L = {(0, 0, 0), (1, 1, 1)}, the OVERLAPPING graphs through
L = {(0, 0, 0), (1, 1, 0)}. CONTRADICTIVE graphs, finally, are defined by the legal com-
munity edges L = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Figure 3.3(c) again shows the general community structure. Each user community is con-
nected to each document and each tag community, but when users from different commu-
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3.3. Synthetic Datasets

nities tag documents from the same community, they use tags from different communities.
We see six different colours used in the sample graph in Figure 3.4(c) as there are no sets
of communities which could be said to correspond to each other across domains. The adja-
cency tensor in Figure 3.5(c) finally offers a different view on the same data. If we divide
the axis in halves and label them 0 and 1, edges cluster in areas corresponding to the legal
community edges.

3.3.4. Conclusion

Various extensions to the provided hypergraph models could be conceived – for example,
communities could be of different sizes (Lancichinetti et al. (2008) examine this for non-
partite cases), and graphs with a higher number of communities and more complicated rela-
tions could be made up. However, the goal of these models is rather to provide a minimal set
of examples that highlight the challenges provided in Section 3.1.2. As will become more
obvious later on, they require at least a one-, two- or three-dimensional representation of the
data, respectively, and thus separate different classes of algorithms by their representational
power. In the next chapter, modularity will be incrementally generalized to handle those
challenges.
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4. Multi-Partite Modularity

This chapter generalizes modularity to k, k-hypergraphs. It discusses a number of modu-
larity measures which, building on top of each other, finally fulfill all the requirements for
community detection on k, k-hypergraphs as laid out in the previous chapter:

Section 4.1: Non-Partite Modularity explains how the regular modularity measure for non-
partite graphs can be applied to k, k-hypergraphs and why this approach is, in many
cases, deficient.

Section 4.2: Coupled Bipartite Modularity introduces an approach based on the simul-
taneous optimization of the bipartite modularity of several bipartite graphs derived
from the original hypergraph.

Section 4.3: Multi-Partite Modularity generalizes both bipartite modularity and the in-
volved notion of correspondence to provide a family of truly multi-partite modularity
measures.

Section 4.4: Hybrid Modularity Optimization deals with the conflict between coupled bi-
partite and multi-partite modularity measures which perform well in different situa-
tions. A joint optimization approach is proposed which combines the capabilities of
both methods.

Section 4.5: Balanced Multi-Partite Modularity finally discusses an effect that often oc-
curs with real graphs and leads to the formation of single giant communities. This
effect is eliminated by balancing the correspondence function, leading to the final
version of multi-partite modularity as proposed in this thesis.

Section 4.6: Discussion concludes this chapter.

The coupled bipartite modularity optimization is provided as a downloadable software
package, mpcd (Multi-Partite Community Detection) – see Appendix A.1.3 for details.

Parts of this chapter have been published in Neubauer and Obermayer (2009b), Neubauer
and Obermayer (2010) and Neubauer and Obermayer (2011).
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4. Multi-Partite Modularity

4.1. Non-Partite Modularity

When a hypergraph is reduced to a simple graph, regular modularity optimization ap-
proaches can be applied. However, information is lost in this process. This section in-
troduces a baseline algorithm based on such a reduction to test if the information loss is
relevant for the task of community detection.

4.1.1. Definition and Optimization

The hypergraph is “projected” (Figure 4.1(b)): for each edge (d, u, t), three new edges
(d, u), (d, t), and (u, t) are introduced. If another edge, e.g., (d, u, t′) exists, the weight of
edge (d, u) is accordingly increased. Clauset et al. (2004)’s fast modularity optimization is
applied on the resulting graph, and the community assignments obtained are used for the
original nodes.

For example, d1, u1 and t1 might be mapped to nodes 1,2 and 3 in the graph handed
to the non-partite community detection algorithm. Assuming that the algorithms assigns
these nodes all to a single community 1, d1, u1 and t1 would be assigned to (now distinct)
document, user and tag communities of id 1.

It should be noted that by this approach, none of the challenges defined in Section 3.1.2
are attacked – the original data is merely transformed such that original modularity becomes
syntactically applicable. We will use this baseline algorithm to test whether these challenges
actually become relevant in practice.

Interpreting the non-partite clustering A small complication in translating from the
non-partite to the 3-partite graph occurs when we require the entire hierarchical clustering
instead of just the final set of community assignments. Algorithm 2 shows how a tripartite
hierarchical clustering can be obtained from the non-partite clustering in the face of merges
between nodes which refer to elements from different domains.

Consider two documents d1,d2 and two users u1,u2 (let us restrict ourselve to two do-
mains for this example). These are mapped onto nodes 1,2,3, and 4, respectively, before
passing on the graph to the non-partite modularity optimization. Suppose the resulting clus-

(a) original (b) projected (c) HDU (d) HDT (e) HUT

Figure 4.1.: Different ways of reducing a 3, 3-hypergraph composed of elements from the
domains D, U, and T (squares, triangles and circles). Projection (b) replaces
hyperedges by binary edges between the incident nodes. A decomposition into
bipartite graphs yields three new graphs (c)-(e).
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4.1. Non-Partite Modularity

tering tree is (3 → 1, 2 → 1, 4 → 1). The problem here is that node 3 (u1) is merged into
node 1 (d1), i.e. two elements from different domains are merged, while we are interested
only in merges between elements from the same domain. By the time 1 is merged with 4
(u2), we need to remember that this community, although a document community, “carries”
a user community as well.

In this example, the algorithm would be called with parametersC = ((3, 1), (2, 1), (4, 1))
for the obtained clustering, and a Map = ((1 : d1, 2 : d2), (3 : u1, 4 : u2)) containing the
mapping between non-partite and original node ids.

• When the first join 3→ 1 is processed, Carry[2][1] is set to 3, indicating community
1 now carries element 3 from dimension 2.

• When the second join 2 → 1 is processed, two elements from the same dimension
are merged, resulting in the output (d2, d1).

• When the third join 4 → 1 is processed, this is treated as 3 → Carry[2][1] = 4 ,
resulting in the output (u2, u1).

The result is the desired set of clustering trees of depth 2: ((d2, d1),(u2, u1)).

4.1.2. Explanation of Evaluation Charts

Figure 4.3 shows the performance of the non-partite approach on the three synthetic datasets,
along with the coupled bipartite approach to be introduced in the next section for better
comparison. Since this type of chart will occur several times throughout this chapter, the
following section will first describe what exactly is shown in these figures before the actual
results are discussed.

Each row shows the performance on one family of synthetic datasets. In all experiments,
graphs were created with 10 nodes per community for the SIMPLE and OVERLAPPING

families and with 5 nodes per community for the CONTRADICTIVE family. Per row, the
performance on three different edge densities (difficulties) is shown. The individual charts

(a) OVERLAPPING

sample graph with
correct community
assignments

(b) OVERLAPPING

sample graph without
domain information

(c) Community assign-
ments by non-partite
method

(d) Wrongly recon-
structed community
structure

Figure 4.2.: The non-partite method wrongly splits up the single tag community in an
OVERLAPPING graph.
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4. Multi-Partite Modularity

Algorithm 2 Converting a non-partite into a tripartite hierarchical clustering
function RECOVERTRIPARTITE(C, Map)

. C = [(v(source,1), v(target,1)), (v(source,2), v(target,2)), . . .]
. Map = [{vi : d1, vj : d2, . . .}, {vk : u1, . . .}, {vl : t1, . . .}]

Carry ← [{}, {}, {}] . Carry[d][v1] = v2 ⇔ v2 was merged into v1, but
. v2 refers to a different domain (d) than v1

C3← [] . will hold result

for (s, t) ∈ C do . s(ource) is merged into t(arget)
dimsource ← d ∈ {1, 2, 3} : s ∈Map[dim]
dimtarget ← d ∈ {1, 2, 3} : t ∈Map[dim]
for d ∈ {1, 2, 3} do . over all domains

s′ ← −1
t′ ← −1
if dimsource = d then . Does s refer to an element from d?

s′ ← s
else if s ∈ Carry[d] then . or carry an element from d?

s′ ← Carry[d][s]
end if
if dimtarget = d then

t′ ← t
else if t ∈ Carry[d] then

t′ ← Carry[d][t]
end if

if s′ 6= −1 ∧ t′ 6= −1 then . s and t refer to elements from d
sreal ←Map[d][s′] . obtain IDs from hypergraph
treal ←Map[d][t′]
C3 + = (d, sreal, treal) . store that in domain d, sreal → treal
if t′ ∈ Carry[d] then

del(Carry[d][t′]) . Carried element has been resolved
end if

else if s′ 6= −1 ∧ t′ = −1 then . s refers to element from d, but t does not
Carry[d][t]← s′ . make a note for t that it carries an unmerged s

end if
end for

end for
return C3 . = [(d1, s1, t1), (d2, s2, t2), . . .]

end function
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4.1. Non-Partite Modularity

indicate performance (NMI) by a mixing factor µ. Error bars indicate standard deviation
over 100 randomly created graphs. Methods keep “their” color across different evaluation
charts. The evaluation charts were created using R (R Development Core Team, 2011).

The variance of the NMI values in many cases is rather large. In order to differentiate
the variance that comes from the differences between the individual graphs and that which
stems from actual performance difference between the methods, an additional statistical test
is performed – a so-called sign test. Instead of regarding the absolute performance values,
the better algorithm for each individual graph is determined. This results in a “score” of
n:(100− n). A binomial test is performed against the null-hypothesis that both algorithms
perform similarly well, i.e. that the chance of one algorithm outperforming the other on
a single graph equals 50%. Hollow symbols indicate non-significant differences (p>0.05,
meaning superior performance of one method in at least 61 out of 100 examples). It turns out
in most cases that differences between algorithms are in fact significant even when absolute
variance is high, confirming the hypothesis that this variance is rather due to differences
between sample graphs.

4.1.3. Results

The non-partite approach performs well on the SIMPLE family of graphs: Increasing the
number of edge-to-node ratio improves results while adding noise by increasing µ decreases
performance, a pattern which will be visible across all datasets and algorithms. The ap-
proach however completely fails on the OVERLAPPING graphs, and, consequently, on the
even more complicated CONTRADICTIVE dataset as well.

Let us examine the case of OVERLAPPING graphs in more detail. Figure 4.2(a) shows
a graph from that family with 3 edges per node, 10 nodes per community and µ = 0 – as
previously shown in Figure 3.4(b). Figures 4.2(c) and 4.2(d) show the solution as returned
by the non-partite method: The tags, originally in a single community (green in 4.2(a)), are
assigned to one of two tag communities, depending on which document/user community
they are slightly more strongly connected to. This is, however, the obvious solution for the
non-partite method to return when we consider the structure of the graph without domain
information (as “seen” by the method), shown in Figure 4.2(b). By letting go of the domain
information, the non-partite approach has no reason to assume the tags (not recognizable as
such) should not be split into two communities, and correctly simply splits the graph in two.

An obvious objection to a multi-partite modularity measure might be: Why not just
project the data down onto a normal graph? The OVERLAPPING graphs are one (in my opin-
ion the simplest possible) case in which this does not work. It demonstrates the practical
implications of the first two challenges presented in Section 3.1.2: A method to reconstruct
the intended community structure will need to support distinct community assignments for
distinct domains – Challenge 1 – (and be able to process domain information in the first
place) and furthermore support ambiguous correspondence relations between communities
from different domains – Challenge 2. The next subsection introduces a method which
supports this features.
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Figure 4.3.: Comparing the non-partite algorithm to the coupled bipartite approach: The
non-partite approach performs well in the SIMPLE case, but fails both in the
OVERLAPPING and CONTRADICTIVE situation. The coupled bipartite ap-
proach however succeeds in the OVERLAPPING case. See Section 4.1.2 for
a detailed explanation of this chart.
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4.2. Coupled Bipartite Modularity

In the previous section, regular community detection methods were made applicable to
k, k-hypergraphs, at the cost of losing crucial structural information. Here, we examine
a reduction to several bipartite graphs such that modularity measures adapted for bipartite
graphs can be applied while retaining more of the original hypergraph’s structure. After
reviewing bipartite modularity measures, this section introduces the so-called coupled bi-
partite modularity and an optimization algorithm, then discusses its performance on the
synthetic datasets.

4.2.1. Bipartite Modularity

Bipartite graphs are instances of k, k-hypergraphs with k=2. Therefore, they are also af-
fected by the first two of the challenges mentioned above. Since 2007, at least three differ-
ent generalizations of modularity have been proposed for handling them. We will discuss
these measures in some detail – closely following the argumentation in (Murata, 2009) – as
they play a crucial role for our proposed algorithm.

Barber (2007)’s modularity addresses the issue of connectivity by adapting the null model
such that Pij = 0 for nodes i, j from the same domain. This keeps the proposed modularity
measure from punishing the non-adjacency of elements from the same domain. However,
the model still assumes a shared community structure in both domains, not addressing the
issue of different communities.

Guimera’s modularity (Guimerà et al., 2007) only considers the community structure
of one domain. It rewards nodes from the same community being connected to the same
nodes from the other domain. Declaring the community structure of the second domain as
irrelevant resolves both issues. However, in many cases, the community structure of both
domains is of interest. Here, the modularity measure might be applied in both directions,
which however is not an integrated solution and might complicate direct optimization.

Definition 4.1 (Murata’s modularity) For a given graph G = (V,E) with M edges, an
adjacency matrix A and a community assignment σ, Murata (2009)’s bipartite modularity
QMu is defined as

QMu(σ) =
∑
l

(elm − alam), m = argmax
m

(elm),

where
elm =

1

2M

∑
i∈V :σ(i)=l

∑
j∈V :σ(j)=m

A(i, j), and al =
∑
m

elm.

For every community l from one domain, this identifies that community m from the other
domain which l shares the most edges with (m being from the other domain is not explicitly
stated, because the number of shared edges with communities from the same domain, by
definition, is 0, so none of them will ever be the result of the argmax function). Let us
call m the “corresponding community” of l. QMu rewards a high number of edges shared
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4. Multi-Partite Modularity

between these communities (elm) minus the expected number of shared edges according
to the configuration model, alam. Rephrased in terms of community edges, (l,m) indexes
that community edge incident to l that has the highest relative importance for l, and QMu

rewards (l,m) being of high density, normalized by a null model.
Since this modularity measure is the only of the three which explictly supports distinct

communities for distinct domains, it is the best choice as the basis for the coupled bipartite
modularity (a recent generalization by Suzuki and Wakita (2009) will be discussed later on
in the context of further generalizations).

4.2.2. Definition

Coupled bipartite modularity is based on the decomposition of a 3,3-(or k, k) hypergraph
onto 3 (or k(k − 1)/2) bipartite graphs. As illustrated in Figure 4.1(c) - 4.1(e), each edge
(d, u, t) of a hypergraph H results in an edge (d, u) in a first graph called HDU , and an
edge (d, t)/(u, t) in the two next graphs HDT and HUT . Multiple occurrences of a pair
like (d, t) lead to a more strongly weighted new edge. We call those graphs the bipartite
projections of H:

Definition 4.2 (Bipartite Projection) Let i and j be indices of two distinct domains of a
k, k-hypergraph H = (V,E), i.e. values from K or names like D,U ,T . For a hyperedge
e ∈ E, let ei be the element indexed by i. For two nodes vi and vj from the corresponding
domains, the set

Eproj(vi, vj) = e ∈ E : ei = vi ∧ ej = vj

thus contains all hyperedges which connect vi and vj . The bipartite projection Hi,j of H is
then defined by the edges

Ei,j = {(vi, vj) : Eproj(vi, vj) 6= ∅}

and the weight of each edge (vi, vj) = |Eproj(vi, vj)|.

Definition 4.3 (Coupled Bipartite Modularity) Let the coupled bipartite modularity of a
3,3-hypergraphH with bipartite projectionsHDU , HDT , andHUT be the mean modularity
of the bipartite projections under a community assignment σ:

QCB(σ) =
1

3
QMu(HDU , σ) +

1

3
QMu(HDT , σ) +

1

3
QMu(HUT , σ)

or, more generally, for k, k-hypergraphs with bipartite projections Hi,j:

QCB(σ) =
2

k(k − 1)

∑
i∈K

∑
j∈K,j>i

QMu(Hi,j , σ)

So, the task of multi-partite community detection is reduced to several applications of
Muarata’s bipartite modularity. Each domain has its independent set of community as-
signments, and the joint quality of the assignments is computed as the average modularity
they produce in the bipartite relations. Like this, information about the domain membership

70



4.2. Coupled Bipartite Modularity

Algorithm 3 The general greedy bottom-up modularity optimization algorithm
function OPTIMIZE(E,V ,Q)

. E contains the edges of the hypergraph to be clustered
. V = (V1, . . . , Vk) contains nodes of the hypergraph, by domain

. Q is the modularity function to optimize

σ0 ← unique community ids for every node
∆Qd(s, t)← G(σ0, ϕ = (d, s, t)) ∀d ∈ K, (s, t) ∈ Vd × Vd
for τ = 1 . . . |V | − k do . |Vd − 1| binary joins in every domain d

ϕ← argmaxϕ′=(d,s,t)(G(στ−1, ϕ′)) = argmaxϕ′=(d,s,t)(∆Qd(s, t))

στ ← στ−1 ◦ ϕ
ϕdirty ← NEEDUPDATEQ(στ−1, ϕ)
∆Qd′(s

′, t′)← G(στ , ϕ′) ∀ϕ′ = (d′, s′, t′) ∈ ϕdirty

end for
return Σ = (σ0, . . . ,σ|V |−k)

end function

of the individual nodes is kept. Although the third of the three challenges – hyper-incidence
(see Section 3.1.2) – is handled by reduction such that information loss still occurs, keeping
domain membership information and supporting distinct community models take care of
the first two challenges.

4.2.3. General Bottom-Up Optimization of Modularity

Before discussing the specifics of optimizing coupled bipartite modularity, I will introduce
the general optimization approach, i.e. how k-partite hierarchical clusterings are generated,
for all modularity measures proposed from now on, unless noted otherwise.

Definition 4.4 (Modularity Gain) LetG(σ, ϕ) be the change in modularity obtained from
applying join ϕ to σ:

G(σ, ϕ) = Q(σ ◦ ϕ)−Q(σ).

Optimization works in a greedy bottom-up fashion. Each node starts as a single commu-
nity (σ0). At each step, those two communities are merged which, across all domains, result
in the highest gainG in modularity, leading to a newστ . In analogy to (Clauset et al., 2004),
the actual optimization is performed by keeping one community × community table ∆Qd
per domain d, storing the potential modularity gain obtained by joining two communities
and, after a join, updating those entries of ∆Q which may have been affected by the join,
as computed by a function NEEDUPDATE. Finally, the k-partite hierarchical clustering Σ
defined by (σ0, . . . ,σ|V |−k) is returned. See Algorithm 3 for a description in pseudo-code.

The NEEDUPDATE function plays a crucial role for the performance of the algorithm. In
order for the algorithm to be correct, it must at least return all joins ϕ (i.e. community pairs
with domain index) for which

G(στ−1, ϕ) 6= G(στ , ϕ).
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4. Multi-Partite Modularity

If it marks all pairs for updating, the algorithm is simplified to a fully brute-force approach.
However, depending on the particular modularity, significant speed-ups can be achieved by
efficiently predicting which pairs need updating.

Another aspect specific to the particular modularity function is how the actual modularity
gain of a join is computed. Again, one might choose the brute-force approach and simply
call the modularity function for the new community assignment. Knowledge about the be-
havior of specific modularity functions has been incorporated in the actual implementations
instead.

Finally: Several optimisations have been left out of the algorithm description. For ex-
ample, modularity gain is symmetric, since information about which community is merged
into which is only relevant for syntactic reasons, not for modularity computation – so ∆Q
is symmetric as well and redundant entries need not be computed nor stored twice. Keep-
ing track of and returning the index τoptimal of the best community assignment is another
example of low-level optimizations that has been left out of the pseudo-code.

4.2.4. Optimization for the Coupled Bipartite Modularity

4.2.4.1. Minimizing the output of NEEDUPDATE

Given two communities s, t in a domain d that have just been joint, an upper bound for the
set of pairs for which ∆Q needs to be updated is the set of all pairs containing a community
out of one of the following three sets:

• S1: the communities s, t being joint,

• S2: any community l in a domain d′ 6= d with connections to S2 (as s, t, or the new
s+ t may be or become l’s corresponding community), or

• S3: any community o in d with connections to any l ∈ S1 (because the merge of
s+t may have changed whether o joining another community becomes or stays l’s
corresponding community).

Depending on the network’s connectivity, set S3 may grow rather large, requiring large
portions in ∆Qd to be recomputed. See Section 4.3.3 for a discussion on how taking into
account the nodes in set S3 is only required due to the non-local properties of argmax and
can be abandoned once it is replaced by simple linear function.

4.2.4.2. Computing Modularity Gain

The actual computation of the modularity gain is optimized by keeping track of which
communities do or could correspond to each other and only testing for changes in these
relations. The exact procedure is rather intricate and omitted here both because it does not
significantly contribute to the main line of argument and because it would mean turning a
significant amount of Java into pseudo-code.
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4.2. Coupled Bipartite Modularity

4.2.4.3. Choosing the Best Community Assignment

Once all elements have been merged into a single community, the community assignments
obtained during the process form a hierarchical clustering, and the best individual commu-
nity assignment needs to be selected if a definite assignment is required. By default, this
would be the assignment with the highest associated modularity value. However, there may
be reasons to choose other community assignments. For example, Murata’s modularity has
the property of returning 0.5 if all elements in a domain are assigned to the same cluster: If
vertices from domain 1 and 2 all belong to community 1 and 2, respectively,

e1,2 = e2,1 = a1 = a2 =
1

2M
M = 0.5, and

QMu = e1,2 − a1a2 + e2,1 − a2a1 = 0.5.

In the presence of some noise, this may be a value unsurpassed by any of the non-trivial
solutions. This behaviour may be fixed by replacing, in the definition of elm, the term
1

2M by 1
M , as could be argued to be more appropriate. This however affects the measure’s

overall performance in other ways. So instead, the trivial solution is simply ignored and the
second-best one is chosen, greatly improving results.

Another possibility is to use another function than modularity altogether for the selection
of the final assignment. Empirically, we have found that choosing the solution with the best
compression as defined in Section 3.2.3.2 tends to find slightly better spots, evading both
overly simplistic and overly complex solutions (i.e. assignments too high or too low in the
clustering tree).

4.2.5. Related Work

Various other approaches for bipartite community detection exist that either modify modu-
larity more strongly than the measures introduced in this section, e.g. (Ghosh and Lerman,
2009), or work in a completely different fashion, e.g. the multi-level approach by Liu and
Murata (2009) or the bipartite cut-based community detection by Kumar et al. (2008). Since
the following work relies on further generalizations of modularity, these approaches have
not been taken into account, but might well be interesting candidates for coupled optimiza-
tion as well.

Bekkerman et al. (2005) provide an earlier example for the general strategy of reducing
multi-way interactions to several binary relations. Hartsperger et al. (2010) describe an
approach based on Nonnegative Matrix Factorization that simultaneously approximates the
adjacency matrices of several bipartite graphs, which however stem directly from a k-partite
(non-hyper-) graph.

Closest to the coupled bipartite modularity is however the work by Lu et al. (2009) who
perform a so-called tripartite clustering on social bookmarking data. It derives individual
cluster assignments for documents, users, and tags, and it also works by reducing the tripar-
tite structure to bipartite relations. The difference to the coupled bipartite modularity is that
it uses a centroid-based approach. A centroid for a domain d represents the average con-
nectivity of all cluster members, with one average vector per domain d 6= d′. The authors
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Figure 4.4.: Individual NMI scores for the non-partite and coupled bipartite approach, for
each of the 100 graphs of the SIMPLE family with 0.5 edges/node and µ = 0.1.
The two data points at 0.1 in the top left chart in Figure 4.3 correspond to the
means of these values.

then propose an algorithm which, for a given number of clusters per domain, minimizes the
difference between the centroids and its members’ actual connectivity. This approach was
also evaluated on the synthetic datasets and the results will be discussed in the following.

4.2.6. Results

4.2.6.1. Coupled Bipartite Modularity

Figure 4.3 shows the performance of the coupled bipartite modularity. First of all, it excels
on the SIMPLE graphs, outperforming the non-partite modularity in many cases. To shortly
come back to the issue of significance: We find some of the aforementioned cases in which
average performance values seem to be very close, particularly when taking into account
the standard deviation as indicated by the error bars. Figure 4.4 shows the individual values
behind the two means for one case in which the two means seem to be particularly close:
µ = 0.1 in the top left chart, i.e. the one regarding the sparsest SIMPLE graphs. For each
graph, a single point is plotted with the non-partite method’s performance as its x position
and the coupled bipartite performance on the y position. We find that the coupled bipartite
modularity not only reaches higher absolute values in some cases, but more importantly that
the majority of the points lie above the diagonal, indicating a higher performance by the
coupled bipartite modularity for that particularly graph. In fact, 64 out of 100 datapoints lie
above the diagonal, a bit above the 61 required to turn the probability of equal performance
given the data below 5%.

The method also performs well in the OVERLAPPING case: The domain information and
the support for distinct community structures allow for a perfect reconstruction in many
graphs. Keeping domain information, it can find that the best community assignment is for
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all tags to remain in a single community. All document and user communities are now fully
connected to “their” (the only) corresponding tag community, leading to high modularity
values for the corresponding bipartite relations.

However, the information it receives in the CONTRADICTIVE case is too limited to al-
low for any sensible reconstruction: The bipartite connections indicate connections exist
between any two communities – users from both communities have tagged documents from
both communities and have used tags from both communities, just as tags from both com-
munities have been assigned to documents from both communities. Therefore, the bipartite
connections alone contain no information to tell apart different communities. This under-
lines the relevance of the third challenge (hyper-incidence).

4.2.6.2. Lu’s Tripartite Clustering

Lu’s algorithm requires the number of clusters as a parameter, as opposed to the coupled bi-
partite modularity – the ability to find the optimal number and size of clusters automatically
is in fact one of the outstanding features of modularity. This poses the question of how to
compare the algorithms fairly. Two different approaches are taken: First, three clusters per
domain (i.e. too many) are given to the algorithm to test if may leave unrequired clusters
empty. In the other scenario, the correct number of clusters are given to the algorithm –
2×1×2 clusters for the OVERLAPPING dataset and 2×2×2 for the others. Heuristics can
be conceived to find the correct number of communities after generating results for various
settings, so this approach might be better suited for comparison. The following results can
be observed:

• Figure 4.5 shows the results for the first setting. Basically, no sensible results can be
obtained without setting the right number of clusters.

• Figure 4.6 shows the results when providing the correct number of clusters. Still,
the only time the tripartite clustering outperforms the coupled bipartite modularity
is in the very sparse OVERLAPPING case where, without knowledge about the right
amount of clusters, the modularity-based approach assigns all elements to a single
cluster.

• Apart from the absolute performance values, the curves do follow the same basic
shape. Both algorithms react positively to more edges and negatively to noise, and
both fail on the CONTRADICTIVE dataset.

When comparing the performance of the two algorithms, one has to keep in mind that the
coupled bipartite modularity was designed and optimized with the synthetic test cases in
mind, whereas the tripartite clustering was applied out of the box using the code Caimei Lu
was kind enough to send me. The algorithm also provides several hyperparameters which
might be tuned to get better results. More relevant therefore is the fact that both methods
show the same behaviour in general and, in particular, fail on the CONTRADICTIVE test
graphs. This further strengthens the point that this is an inherent limit when considering
only bipartite relations and further motivates the formulation of a multi-partite method,
which will be developed in the next section.
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Figure 4.5.: Comparing the coupled bipartite modularity with Lu’s tripartite clustering. For
each graph, the number of clusters was set to 3, i.e. too high. The tripartite
clustering, under these circumstances, almost never produces sensible results.
See Section 4.1.2 for a detailed explanation of this chart.
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Figure 4.6.: Comparing the coupled bipartite modularity with Lu’s tripartite clustering. The
perfect number of clusters was given to Lu’s algorithm. Still, it performs worse
than coupled bipartite modularity except in few cases. See Section 4.1.2 for a
detailed explanation of this chart.
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4.3. Multi-Partite Modularity

In this section, a natively multi-partite modularity measure is proposed. After demonstrating
how previous work leads to a natural generalization of the basic modularity formula, a
second generalization allows the additional choice of arbitrary correspondence functions.
An optimization algorithm is proposed and compared the the previous one and a brute-force
approach in terms of runtime complexity. Then, its performance on the synthetic datasets is
reviewed.

4.3.1. Definition

First of all, as stated by Clauset et al. (2004), modularity Q can be rewritten as

Q(σ) =
∑
i∈C

(eii − a2i ) ,

where C is the codomain of σ, i.e. the set of communities,

eij =
1

2M

∑
v,w∈V :σ(v)=i∧σ(w)=j

A(v, w)

for an adjacency matrix A, and

ai =
1

2M

∑
v∈V :σ(v)=i

kv.

Instead of summing over all individual pairs of nodes, and only counting those assigned
to the same community, this directly computes the aggregate actual (e) and expected (a)
adjacency of each community, then sums over all communities. We can further rewrite this
as

Q(σ) =
∑

(i,j)∈C×C

(eij − aiaj)f(i, j) ,

where
f(i, j) = δ(i, j).

This shows how identity is just one possible choice for the correspondence between com-
munities. Murata’s bipartite modularity QMu, given by

QMu(σ) =
∑
i∈C

(eij − aiaj), j = argmax
k

(eik)

can rewritten analogously as

QMu(σ) =
∑

(i,j)∈C×C

(eij − aiaj)f(i, j),

where
f(i, j) = δ(j, argmax

k
(eik)).

78



4.3. Multi-Partite Modularity

So identity in Q is replaced by an argmax in QMu. We can rewrite QMu one step further as

QMu(σ) =
∑

(i,j)∈C1×C2

(eij − aiaj)(f1(i, j) + f2(i, j)) ,

where
f1(i, j) = f(i, j) and f2(i, j) = f(j, i)

and C1 and C2 are the communities from the two different domains. Since elements from
different communities in the same domain, by definition, never share edges, it follows that
communities in the same domain never correspond to each other, such that the exclusion of
pairs from C1 × C1 and C2 × C2 does not change the sum. Since each community occurs
only as i or j, the correspondence function needs to be applied in both directions.

Using this formulation, the generalization to three domains becomes clear:

Definition 4.5 (Multi-Partite Modularity) Let the multi-partite modularity of a 3,3-hyper-
graph H under a community assignment σ and a correspondence function f be defined as

QMP(σ) =
∑

(i,j,k)∈C1×C2×C3

(eijk − aiajak)
(
f1(i, j, k) + f2(i, j, k) + f3(i, j, k)

)
,

where

elmn =
1

M

∑
i∈V :σ(i)=l

∑
j∈V :σ(j)=m

∑
k∈V :σ(k)=n

A(i, j, k)

and
ai =

∑
j,l

ei,j,l, aj =
∑
i,l

ei,j,l, al =
∑
i,j

ei,j,l.

or, more generally, for k, k-hypergraphs :

QMP(σ) =
∑

(i1,...,ik)∈C1×...×Ck

ei1,...,ik − ∏
j∈{i1,...,ik}

aj

 k∑
d=1

fd(i1, . . . , ik)

.
Where necessary, the particular choice of correspondence function will be denoted after
“MP”, as in QMP|lin.

The previous definitions are formulated to relate to the previous literature on mainly non-
partite modularity. In the terminology of community edges introduced in Section 3.2.2,
sums iterate over the community space Cσ, each index (i, j, k) refers to a community edge,
and ei,j,k = 1

M |(i, j, k)σ|. This allows a convenient reformulation for the general case as

QMP(σ) =
∑

cσ∈Cσ

((
|cσ|
M
−

k∏
d=1

ad,cd(σ)

M

)
k∑
d=1

fd(cσ)

)
.
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4.3.2. Correspondence functions

What remains is the choice of the correspondence function f . fd(cσ), to summarize, de-
scribes how strongly the dth component of cσ, cd, corresponds to the communities incident
to cσ. As an abstraction of the correspondence function implicit in the original modularity’s
definition, its purpose is to provide a multi-partite and potentially continuous replacement.

In the following, general requirements for correspondence functions will be defined that
follow from this. Then, two correspondence functions will be introduced that fulfill these
requirements in different ways.

4.3.2.1. Requirements for correspondence functions

The following requirements make explicit properties of the originally employed identity
function, δ(x, y) =1 iff x = y and 0 otherwise, that should remain valid for its generaliza-
tions.

1. No correspondence without connectivity

|cσ| = 0⇒ fd(cσ) = 0

If a set of communities do not share any edges, all mutual correspondences should be
0. This ensures that these sets do not contribute anything to the modularity and that
the outer sum in fact loops over non-empty community edges only.

2. Full correspondence for full connectivity

fd(cσ) = 1⇔ |cσ| = ad,cd

If a community cd shares all its edges with a set of communities, its correspondence
to this set should be 1. This in fact follows from requirements 1 and 3, but is noted
here for clarity.

3. Correspondence per community must sum to 1∑
cσ∈Cσ :cd=i

fd(cσ) = 1

The sum of all correspondence values between a given community i and other (sets
of) communities should amount to 1, just as is the case with δ, where for a given
community c, only (c, c) returns 1. This value may however be reached as the sum of
various correpondence values < 1.

As it turns out, bounding correspondence is the driving force behind the creation of
communities. Imagine setting the correspondence to 1 for each community edge with
a positive contribution to modularity. The ideal solution in this case is to keep ev-
ery element in a single community: The community edges (which in this case are
identical to the original set of edges) have an actual connectivity of 1

M , whereas the
expected connectivity remains minimal due to the small size of the involved “com-
munities”, i.e. the single nodes. Any join can only increase expected connectivity,
decreasing overall modularity. While this is an extreme example, it highlights the
importance of this final requirement.
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4.3.2.2. Murata’s Tripartite Modularity

Murata (2010a,b) has proposed a direct generalization of his approach to tripartite hyper-
graphs which can be seen as an instance of this formulation with

f1(i, j, k) = δ((j, k), argmax
(j′,k′)

(eij′k′))

and f2, f3 correspondingly.
This function fulfills the above requirements:

1. |cσ = (i, j, k)σ| = 0 ⇒ eijk = 0. Since each community contains at least one node
and each node is incident to at least one edge (since we do not consider nodes without
edges as they trivially do not play a role for community detection), another (j′, k′)
will be the result of argmax, assigning a correspondence of 0 to an empty (i, j, k)σ.

2. |cσ = (i, j, k)σ| = a1,i ⇔ (j, k) = argmax(j′,k′)(eij′k′) ⇔ f1(i, j, k) = 1, i.e., a
set of communities sharing all edges is automatically the result of argmax, resulting
in a correspondence of 1.

3. For any community i, f1(i, j, k) is 1 exactly for 1 combination of (j, k) and 0 for any
other.

4.3.2.3. Linear Multi-Partite Modularity

As proposed earlier by Suzuki and Wakita (2009) for bipartite cases, I further generalize
correspondence to a real-valued measure, able to represent ambiguous relations, where a
single community may correspond to several communities in a another domain at the same
time:

f1(i, j, l) =
ei,j,l
ai

, f2(i, j, l) =
ei,j,l
aj

, f3(i, j, l) =
ei,j,l
al

which, in terms of community edges, is the relative importance of σ for its dth component
(see Def. 3.4):

fd(cσ) = r(σ, d) =
|cσ|
ad,cd

.

If a document community i shares 4 of its 10 edges with a tag/user pair (j, l), and 6 edges
with (j′, l′), the correspondences provided by this function will be 0.4 and 0.6, respectively,
instead of 0.0 and 1.0 as with the argmax-based approach.

This function also fulfills the requirements for a correspondence function:

1. |cσ| = 0⇒ fd(cσ) = 0
ad,cd

= 0

2. |cσ| = ad,cd ⇔ fd(cσ) =
ad,cd
ad,cd

= 1

3. Since
∑

cσ∈Cσ :cd=i
|cσ| = ad,i – the sum of edges connecting elements in cd to any

other set of communities equals the total number of edges of elements in cd–,∑
cσ∈Cσ :cd=i

fd(cσ) =
∑

cσ∈Cσ :cd=i

|cσ|
ad,i

=

∑
cσ∈Cσ :cd=i

|cσ|
ad,i

= 1.
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4.3.3. Optimization

As will be shown below, the linear multi-partite modularity outperforms the argmax-based
one. After finding this while comparing the algorithm using a brute-force maximization, I
decided to only devise an optimized maximization method for the linear approach, which
will be discussed in this section. Nevertheless, a specialized maximization approach for the
argmax-based multi-partite modularity is easily conceivable, most likely as a generalization
of the optimization for the bipartite approach described in Section 4.2.3.

4.3.3.1. Minimizing NEEDUPDATE

The optimization follows the general approach described in Algorithm 3 in Section 4.2.3,
so performance optimization consists of finding a function NEEDUPDATE as to update as
few pairs as possible (but still as many as necessary). As it turns out, it is easier to track
the consequences of joins when using a linear correspondence function than when using
argmax, which has undesirable non-local properties.

Consider four communities i, j, o, p in one dimension, and a single community l in an-
other community. 3 edges connect elements in i and l, and 2 edges connect elements in
each of j,o and p with elements in l. l has no further connections.

With argmax, i is the corresponding community for l. If i and j are joint, the joint i+ j
remains the corresponding community. However, before the join, o and p together would
have become the corresponding community for l. Afterwards, the four edges of o + p are
less than the five edges of i + j. So, any entries in ∆Q related to o and p have to be
updated even though these communities were neither changed nor share connections with
i or j – because l’s future correspondence with regard to these communities changes due
to the merge of i and j. This is the reason for considering set S3 in the coupled bipartite
optimization in Section 4.2.3.

With a linear correspondence function, l’s correspondence to o and p is 2
9 before and after

joining i and j, and the correspondence to a potential future o + p remains 4
9 . Thus, there

is no need to recalculate the modularity gains through joins involving o or p. In the termi-
nology of Section 4.2.3, set S3 is no longer required, significantly decreasing computation
time since S3 tends to be the largest, involving all neighbours of i and j of distance 2 in
domain d.

To conclude, the actual optimiziation again consists of of keeping k community × com-
munity matrices ∆Q and finding, at each step, the pair i, j in community d which yields the
highest increase in modularity G. The difference is that afterwards, we only have to update
those entries of ∆Q that involve any community from the sets

• S1: the communities i, j being joint, or

• S2: any community l in a domain d′ 6= d with connections to S1.

4.3.3.2. Computing Modularity Gain

Computing the modularity gain for a join ϕ = (d, s, t) is also made easier by the locality
of the linear correspondence function. The only relevant community edges are those which
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4.3. Multi-Partite Modularity

are incident to s or t. Their contribution before the join can be computed and subtracted,
while the contribution of the new community edge with s+ t in their place is added.

4.3.4. Runtime Analysis

Algorithm 3 was presented as the general approach for greedy bottom-up optimizatin of
modularity across several domains. It was argued that the actual runtime depends on the
number of community pairs for which the modularity gain stored in ∆Q has to be updated
– as computed by NEEDUPDATE –, as well as the speed of the actual updating. Now that the
two main branches of modularity optimization problems – those involving argmax- based
and those with linear correspondence functions – have been introduced, let us examine the
runtime of the algorithm and its concrete implementations.

4.3.4.1. Theoretical Analysis

For a k, k-hypergraph H = (V,E) with N = |V | and M = |E|, N − k − 1 update steps
are required – one element remains per domain, and no updates are required after the final
step. For each step, the largest part of the computation time is spent computing the updates
required after applying join ϕτ to στ−1.

Let T (H) designate the time to perform community detection on H. Then

T (H) ∈ O

(
N−k−1∑
τ=1

|NEEDUPDATE(στ−1, ϕτ )|UPDATECOST(H,στ )

)

I omit here components of lower complexity like the runtime of NEEDUPDATE, finding the
maximum in ∆Q and changing the community assignments as they would vanish in the O
notation anyhow. Three different realizations exist:

brute-force At each step, all gains are computed from scratch, each one by calling the
modularity function on the result of performing the corresponding join.

argmax An adaptation for argmax-based modularity functions. The NEEDUPDATE func-
tion minimizes the set of required updates to all pairs that could be potentially influ-
enced by changing argmax-relations, just as the actual update function can shortcut
modularity computation by only considering potentially affected community edges.

linear An adaptation for modularity functions with linear correspondence functions. As
argued in the previous section, this makes possible a NEEDUPDATE function which
returns a considerably smaller set of update pairs, in particular because no pairs in the
domain in which the join takes places need to be updated except those involving one
of the two joined communities.

Let us now review each realization’s concrete runtime behaviour.
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4. Multi-Partite Modularity

Brute-Force At each step, all entries of ∆Q will be recomputed, for each domain d.
Since the matrices are symmetric and the diagonal is not required, this leads to

|NEEDUPDATEbrute−force(σ, ϕ)| ∝
k∑
d=1

|Cd|(|Cd| − 1)

2
∈ O(N2), where Cσ = (C1, . . . Ck).

This is a somewhat generous upper bound, since |Cd| = |Vd| only in the first clustering step
and at each step, |Cd| is decreased by one for one of the domains. Still, the basic type of
dependency is quadratic.

UPDATECOSTbrute−force(H,σ
τ ) ∝M

k∑
d=1

log |Vd| ∈ O(M logN).

The computation of modularity requires looping over all edges and retrieving the commu-
nity assignment of each involved node, which has logarithmic cost in a hashtable. It follows
that

T (H)brute−force ∈ O(N ·N2 ·M logN) = O(N3 logN ·M).

Argmax The basic approach for the optimized updates consists of identifying potentially
affected communities and recomputing only pairs of communities involving those. For each
affected community in a domain d, the entire row, i.e. |Cd| entries of the corresponding table
have to be updated. For a join ϕ = (d, s, t), this leads to

|NEEDUPDATEargmax(σ, ϕ)| ∝ 2|Cd|+
k∑

d′∈{1,...,l}, d′ 6=d

(
|S2| · |C ′d|+ |S3| · |Cd|

)
,

where

S2 = {v ∈ Vd′ : ∃e ∈ E : ed ∈ {s, t} ∧ ed′ = v}

and

S3 = {v ∈ Vd : ∃v ∈ Vd : ∃e ∈ E : ed = v ∧ ed′ ∈ B}.

Sets S2 and S3 have been introduced in more depth in the previous section. As we can see,
their size depends on the connectivity of the graph, making the behaviour of this optimized
version harder to quantify. Since in the worst case, however, these sets may contain all
nodes in the corresponding domain, the only guaranteed bound is equivalent to the brute-
force approach:

|NEEDUPDATEargmax(σ, ϕ)| ∈ O(2N +N2 +N2) = O(N2).

A similar argumentation holds for the update cost.
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4.3. Multi-Partite Modularity

Linear As argued above, the advantage of using linear correspondence is that no further
updates in domain d are required, therefore

|NEEDUPDATElinear(σ, ϕ)| ∝ 2|Cd|+
∑

d′∈{1,...,k}, d′ 6=d

(|S2| · |Cd′ |) ∈ O(2N+N2) = O(N2).

Again, the worst case behaviour is equivalent to the brute-force approach, even if the amount
of recomputations is less or equal to the argmax approach.

To conclude, the runtime of the greedy bottom-up optimization in all three cases is in
O(N3 logN · M), even though significant speed-ups can be expected in the optimized
versions. In the following, the actual time requirements for the different algorithms will be
compared.

4.3.4.2. Empirical Analysis

For a comparison of actual runtimes and a validation of the theoretical results obtained in
the previous section, time requirements for various synthetic hypergraphs were collected:
SIMPLE,OVERLAPPING and CONTRADICTIVE graphs were generated with varying edge
densities as used in the performance charts, and with varying numbers of nodes ranging
from 2 to 17 for the brute-force approach, and 2 to 27 for the optimized approaches. The
individual data points correspond to average values for a particular graph configuration over
the different noise levels.

Figure 4.7(a) shows the time requirements for the three variants. The first thing to no-
tice is that the optimized versions indeed run much quicker than the brute-force approach.
Second, the runtimes of the brute-force approach seem in fact to depend linearly on the
theoretical complexity derived in the previous section. The various “lines” with different
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(a) Runtimes on a N3 logN ·
M scale.

●
●

●

●●
●●
●●●●

●

●

●●●
●

●

●

●

●

●

●●●

●

●●
●
●●●

●●●●

●●●●●

●
●●●

●
●●

●●

●

●

●●●
●●
●●

●

●

●
●
●

●

●
●●

●

●

●●

●

●●
●
●●●

●

●
●

●
●

●●
●●●
●

●

●

●
●

●

●●

●

●

●
●

●●●●

●

●
●

●●
●

●

●

●●

●

●

●●●
●●

●

●●
●

●●●

●

●
●●

●

●●
●

●

●

●
●

●

●

●
●
●●●
●

●●

●

●
●●

●

●

●
●●●
●
●●●●●●

●
●●●
●

●

●

●

●

●●
●●●●●●●

●

●●

●

●
●●●●●●●●

●

●

●

●
●
●●●

●

●
●
●

●
●

●●●

●

●●●●
●
●
●

●

●
●

●●●

●

●●●●
●●●
●

●

● ●
●●

●
●
●●

●

●●
●●

●
●

●●●●
●

●

●●
●●

●

●

●●●●

●

●●

●

●●●

●

●
●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●
●●●

●●
●

●

●●●
●

●●●

●

●
●●

●
●

●

●

●●
●
●

●

●●●●●●
●

●

●●
●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 2e+09 4e+09 6e+09 8e+09

0
5

10
15

20
25

30
35

(N^3)log(N)M

S
ec

on
ds

(b) Runtimes of optimized al-
gorithms only on a N3 logN ·
M scale.
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(c) Runtimes of optimized al-
gorithms only on a N2 logN ·
M scale.

Figure 4.7.: Runtime behaviour of the different optimization procedures (black=brute-force,
green=argmax, red=linear). Figures b) and c) include data from larger graphs
not feasible with the brute-force approach.
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slopes correspond to different families of synthetic graphs, for which the various influences
that were cancelled out in deriving the O-notation have influences of different strength.

Figure 4.7(b) shows only the runtimes of the optimized approaches for better visibility.
Figure 4.7(c) plots the same data on a N2 logN ·M scale, i.e. leaving out one factor of
N , showing a better linear dependency. This may indicate that even though the number of
required updates is, in the worst case, proportional to N2, it is in practice closer to N .

4.3.4.3. Conclusion

Greedy bottom-up optimization of modularity is a costly enterprise whose exact effort de-
pends on the number of nodes, the number of edges, and the connectivity of the graph.
Improvements furthermore depend on the actual connectivity described by the edges. Us-
ing such improvements, evidence could be presented supporting both that the worst-case
runtime is in O(N3 logN ·M) and that the real runtime seems to be in O(N2 logN ·M)
with, additionally, a smaller linear factor.

These results, on one hand, emphasize the beneficial effect of creating hand-tailored op-
timization procedures for specific modularity functions. On the other hand, much work
remains to be done – a super-quadratic dependency on the number of nodes is prohibitive
for larger graphs. For hypergraphs with hundreds of nodes and thousands of edges, com-
munity detection can easily take hours and days, so in order to provide real-time services or
examine even larger hypergraphs, further speed-ups are required. A discussion of possible
approaches is postponed to Section 6.2.

4.3.5. Results

Multi-partite modularity with a suitable correspondence function f considers all three chal-
lenges posed in Section 3.1.2. Like the coupled bipartite modularity measure, it allows for
distinct community assignments per domain and has a generalized notion of equality suited
for multi-partite relations. Furthermore, it meets the third challenge by a generalized notion
of correspondence that can express a joint correspondence between k communities. The
synthetic benchmark graphs were used again to confirm whether these theoretic advantages
improve performance.

Figure 4.8 compares the performance of the linear multi-partite modularity against that
of the coupled bipartite one. Figure 4.9 compares the linear and argmax approach. We
observe four results:

1. The two multi-partite modularities are the first approaches to perform well on the
CONTRADICTIVE graphs.

This is the most important result. The multi-partite generalizations of modularity
were set up to consider relations that can only be detected using the full tripartite
information contained in the hypergraph. The success of the methods confirms that
this goal is met.

2. They perform similarly convincingly on the OVERLAPPING dataset, the linear variant
even outperforms the coupled bipartite approach.
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This is another positive, but somewhat surprising result. The communities in the
OVERLAPPING dataset can, in theory, be fully reconstructed without considering tri-
partite relations - so where does the advantage of the linear multi-partite modularity
come from? It seems that by considering tripartite relations, wrong decisions can be
avoided in ambiguous situations where a wrong bipartite join might offer the highest
gain in the short term.

3. The linear variant consistently outperforms the argmax-based variant.

One has to keep in mind that the goal of modularity optimization is to create com-
munity edges with a high density. Through the argmax function, only one com-
munity edge per community enters the equation. In all cases but the SIMPLE one,
more than one relevant community edge exists for at least one (OVERLAPPING) or
all (CONTRADICTIVE) communities (for reference, see Figure 3.3 – the black circles
indicate the relevant community edges). The possibility to reward progress in differ-
ent community edges in parallel is the crucial advantage of the linear correspondence
function.

4. Neither of the two multi-partite methods perform particularly well on the SIMPLE

dataset.

This was, to me, the single biggest surprise I found during the work on this thesis. One
might expect that a more complex approach works better on all possible situations
– instead we lose performance on the simple situations after concentrating on the
more complicated ones. The next section will be wholly dedicated to explaining and
resolving this problem.

At this point, the goal of devising a multi-partite modularity measure has been reached.
However, even using only synthetic data, we can see that this is not enough. The mathe-
matically pure concept of linear multi-partite modularity needs to be additionally refined in
order to deal with all possible situations it might encounter. This will be the topic of the
next two sections.

87



4. Multi-Partite Modularity

 
 

 

 
 

  

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.5 edges/node

       N
M

I

 
 

 

 
 

  

       

S
im

pl
e

 

 

 

 
   

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 edge/node

   
 

 
 

 

 

 

 

 
   

   
 

 
 

 

 

 

     

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 edges/node

 
 

 

    

 

 

     

 
 

 

    

       

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 edge/node

   
 

  
 

N
M

I

          
 

  
 

O
ve

rla
pp

in
g

 

 
 

 
 

  

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 edges/node

 
 

 

 
   

 

 
 

 
 

  

 
 

 

 
   

 

 

 

    

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 edges/node

 

 

 
    

 

 

 

    

 

 

 
    

       

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 edges/node

   
 

 
 

 

µ

N
M

I

       

   
 

 
 

 

C
on

tr
ad

ic
tiv

e

Coupled Bipartite Multi−Partite (linear)

       

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 edges/node

   

 

 
 

 

µ

       

   

 

 
 

 

       

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 edges/node

  
 

 

  
 

µ

       

  
 

 

  
 

Figure 4.8.: Comparing the coupled bipartite algorithm to the (linear) multi-partite ap-
proach: The latter finds sensible solutions on the CONTRADICTIVE datasets,
but performs poorly in the sparser SIMPLE settings. See Section 4.1.2 for a
detailed explanation of this chart.
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Figure 4.9.: Comparing the linear to the argmax-based multi-partite approach: The lin-
ear approach outperforms the argmax approach in all situations but those few
where the approaches tie. See Section 4.1.2 for a detailed explanation of this
chart.
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4.4. Hybrid Modularity Optimization

As we have seen in the previous section, multi-partite modularity succeeds in extracting
complicated situations, but sometimes fails in identifying the simple ones. In this section, I
will first identify the cause of this behaviour, and then proceed to two alternative community
detection methods, the latter of which, called hybrid modularity optimization, can handle
all synthetic graph families with satisfying performance.

4.4.1. Why Multi-Partite Modularity Fails

Figure 4.10 shows a simple situation in which multi-partite modularity fails to create the
expected result. Given an intermediate clustering στ in 4.10(a), we would expect d1 and d2
to be merged in a next join ϕ+ = (1, d1, d2) (Figure 4.10(b)), or u1 and u2. Instead, the
best next step modularity-wise is to join d1 and d3 (ϕ− = (1, d1, d3), see Figure 4.10(c)),
even though d1 and d2 share a tag, whereas d1 and d3 don’t share anything.

4.4.1.1. Numerical analysis

To understand this strange behaviour, let us compute the modularity for each community
assignment in detail. Note that modularity is computed as a sum over all non-empty com-
munity edges. For each community edge, the summands take the form x · f , where x
contains the actual minus the expected adjacency (let us call this “raw modularity”) and f
represents the correspondence.

QMP(σ) =
∑

cσ ∈ Cσ︸ ︷︷ ︸
community edges

((
|cσ|
M
−

k∏
d=1

ad,cd(σ)

M

)
︸ ︷︷ ︸

x

k∑
d=1

fd(cσ)︸ ︷︷ ︸
f

)
.

Since in the following, particular values for x will repeat themselves, let

a = 1
3 −

1
3 ·

1
3 ·

2
3 = 7

27 be the raw modularity of a community edge that contains one edge
between 2 communities which only have one edge and one which contains two,

b = 1
3 −

1
3 ·

1
3 ·

1
3 = 8

27 the raw modularity when all incident communities have only one
edge, and

c = 1
3 −

1
3 ·

2
3 ·

2
3 = 5

27 the raw modularity when two incident communities have two edges,
and one has one.

Then, inserting the correspondence terms – which are either 1 or 0.5, depending on whether
a community edge contains all or just half of a community’s edges – we obtain

QMP(H,στ ) = 2a(1 + 1 + 0.5) + b(1 + 1 + 1) = 5a+ 3b =
59

27
,

QMP(H,στ ◦ ϕ+) = 2c(0.5 + 1 + 0.5) + b(1 + 1 + 1) = 4c+ 3b =
44

27
, and

QMP(H,στ ◦ ϕ−) = 2a(1 + 1 + 0.5) + c(0.5 + 1 + 0.5) = 5a+ 2c =
45

27
.
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u1

u2

u3

d1

d2 d3
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t2

(a) Community structure
given by some στ

u1
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u3

d1 + d2

d3

t1

t2

(b) Community structure given
by στ ◦ ϕ+, a desirable next join

u2

u3
u1

d2

d1 + d3

t1
t2

(c) Community structure given by
στ ◦ ϕ−, the actual next join

Figure 4.10.: Given an assignment function στ at some point in the clustering of a hy-
pergraph, στ ◦ ϕ+ and στ ◦ ϕ− represent two possibilities to continue the
clustering.

So στ ◦ ϕ− really is a better choice than στ ◦ ϕ+, analytically. This discrepancy
with the intended behavior lies in the role of the two community edges (d1, u1, t1)σ and
(d2, u2, t1)σ. As they are transformed into (d1 + d2, u1, t1)σ◦ϕ+ and (d1 + d2, u2, t1)σ◦ϕ+ ,
correspondence decreases and expected adjacency goes up due to d1 + d2’s increased size,
so their contribution to modularity drops from 5a to 4c. The intuitive advantage, the fact that
d1 and d2 share connections with t1, remains unrewarded by the modularity measure. By
focussing on tripartite relations, it cannot capture the improvement in binary relations that
this join would bring. The join ϕ−, on the other hand, looks just as well or badly connected
under this measure, but has the advantage of creating only one community edge connecting
two communities of weight 2, thereby slightly outperforming ϕ+, which contains two such
community edges.

4.4.1.2. Generalized Explanation

More generally speaking, linear multi-partite modularity only increases when two former
community edges are collapsed onto each other. Let us formulate and prove this assumption
formally – this not only ensures the generality of the phenomenon, but also plays a crucial
role for the decision criterion of hybrid modularity which will be defined below.

Lemma 4.1 For a join ϕ = (1, s, t) (assuming w.l.o.g., for notational convenience, that
k = 3 and that the join is taking place in domain 1) applied to σ,(
∀(i, j) ∈ C2 × C3 : (|cσ(s, i, j)| = 0 ∨ |cσ(t, i, j)| = 0)

)
=⇒ GMP|lin(σ, ϕ) < 0.

This means that if no pair of non-empty community edges (s, i, j)σ, (t, i, j)σ exists that
will be merged into a single (s+ t, i, j)σ◦ϕ, the gain in linear multi-partite modularity gain
is negative, regardless of partial matches such as (s, i, j)σ and (t, i, j′)σ, as present in the
example.

Please note that I constrain myself to the linear version here. A proof for the argmax
variant would be decidedly more complex due to the involved non-local effects, while the
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4. Multi-Partite Modularity

basic approach remains the same, showing that actual connectivity remains the same while
expected connectivity is increased and connectivity, at best, stays the same.

Proof 4.1 Let Q(cσ) denote the individual contribution of each community edge, such that

Q(σ) =
∑

cσ∈Cσ

Q(cσ).

Using this terminology (and replacing QMP|lin by Q for readability),

G(σ, ϕ) < 0

⇐⇒ Q(σ) > Q(σ ◦ ϕ)

⇐⇒
∑

cσ∈Cσ

Q(cσ) >
∑

cσ◦ϕ∈Cσ◦ϕ

Q(cσ◦ϕ)

⇐⇒
∑

cσ=(s,i,j),(d,i,j)∈Cσ

Q(cσ) >
∑

cσ◦ϕ=(s+t,i,j)∈Cσ◦ϕ

Q(cσ◦ϕ) (4.1)

⇐= ∀(i, j) ∈ C2 × C3 :

Q((s, i, j)σ) + Q((t, i, j)σ)︸ ︷︷ ︸
=0 per condition

> Q((s+ t, i, j)σ◦ϕ) (4.2)

⇐⇒

(
es,i,j︸︷︷︸
=:x>0

−as aiaj︸︷︷︸
=:y>0

)
·

(
es,i,j

(
1

as
+

1

ai
+

1

aj︸ ︷︷ ︸
=:z>0

))
>

(
es,i,j + et,i,j︸︷︷︸

=0 per condition

−(as + at)aiaj
)
·

(
(es,i,j + et,i,j)

(
1

as + at
+

1

ai
+

1

aj

))

⇐⇒ (x− asy)

(
x

as
+ z

)
> (x− (as + at) y)

(
x

as + at
+ z

)
(4.3)

⇐⇒ at > 0

Step 4.1 is possible because the summands of the two sums are identical except for those
community edges which are affected by join ϕ = (1, s, t), i.e. those involving community s
or t before the join or the new community s+ t after the join.

Step 4.2 makes an even stronger argument than necessary by stating that the inequal-
ity not only holds for the whole sum, but for each individual set of involved community
edges (s, i, j), (t, i, j) and (s + t, i, j). Per condition, either QMP|lin((s, i, j)σ) = 0 or
QMP|lin((t, i, j)σ) = 0; w.l.o.g. we assume the latter from step 4.2 on and below.

As can be seen in step 4.3, at can only decrease the right hand side of the inequality. As
at refers to the weight of a non-empty community, it is always positive.
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It follows that joins that create only bipartite improvements, e.g. ϕ = (1, d1, d2) where
community edges (d1, u, t)σ and (d2, u

′, t)σ exist – like ϕ+ –, never contribute positively
to linear multi-partite modularity.

Due to the greedy optimization strategy, this neglect may have have severe consequences.
Since στ ◦ ϕ+ is rejected and a wholly different path is chosen via στ ◦ ϕ−, the way to a
fully merged community edge (d1 +d2, u1 +u2, t1)σ◦ϕ+◦ϕ′ – which would be rewarded by
the modularity measure – is blocked in our example. This demonstrates how this problem
affects not only a single, but also the future clustering steps.

As pointed out by my colleague Wendelin Böhmer, there is a certain analogy to fitting a
function: You can generally do more with a higher-order function class, but you still need
the lower-order terms. I will now proceed with two possible approaches towards integrating
the “lower-order” coupled bipartite modularity.

4.4.2. Mixed Multi-Partite Modularity

Using the knowledge that multi-partite modularity fails in some cases and coupled bipartite
modularity in others, it seems promising to create a modularity measure which integrates
both measures’ input. A simple attempt to achieve this is to define a function which mixes
the two in a linear fashion.

Definition 4.6 (Mixed Multi-Partite Modularity) Let the mixed multi-partite modularity
of a k, k-hypergraphH under a community assignment σ, a correspondence function f and
a mixing factor β be defined as

Qβ = βQMP(H,σ, f) + (1− β)QCB.

This introduces the question of how to set β. Figure 4.11 shows the results on the syn-
thetic test graphs for various values of β. We find that

• On the SIMPLE and OVERLAPPING dataset, a linear interpolation between the two
methods basically creates a linear interpolation in performances. The higher we set
β, the better the performance becomes on the OVERLAPPING examples and the worse
it gets in the SIMPLE case.

• For the CONTRADICTIVE case, the behaviour is more non-linear. At β = 0.5, usable
results can be achieved, whereas below that threshold, results are basically useless –
even though the curve for β = 0.25 looks considerably higher than the one for β = 0,
the fact that the former does not react to noise or increased edge density tells us that
for both values, the results returned are a static baseline result.

• So, if certain losses in quality for the first two cases can be accepted, any value β >
0.5 can provide acceptable results for all three families, while even higher values
can improve performance on OVERLAPPING and CONTRADICTIVE, at the cost of
performance on SIMPLE.

These results show that there is hardly any synergetic effect by combining the two mod-
ularity measures in this way. Instead β seems to allow us to put a weight on which type
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of phenomena we would like to be detected more effectively. So can we inspect a real-life
dataset, find out how it is structured and then find a good value for β? While one might try
different values for β and choose the best result based on a quality measure different than
modularity, e.g. the compression ratio, it is important to keep in mind that the synthetic test
sets do not aim to represent real graphs. Instead, they should be seen as building blocks,
representing in an isolated fashion various phenomena which can simultaneously occur in
real data. So, instead of asking whether a whole graph is globally “more SIMPLE” or “more
OVERLAPPING”, it would be more desirable to analyse the local situation at each clustering
step and choose a the optimal approach based on that.

4.4.3. Hybrid Modularity Optimization

There are situations in which multi-partite modularity outperforms the coupled bipartite
modularity, and there are other situations in which the opposite is the case. As it turns out,
these situations can be defined rather clearly, allowing a more targeted decision between the
two than the global mix defined in the previous section.

4.4.3.1. Definition and Optimization

Hybrid modularity optimization, as the name suggests, differs from the previous modulari-
ties in that it does not actually provide a new definition for modularity, but instead changes
the optimization scheme. So far, a single modularity measure was used to identify the op-
timal join at each step τ , given a current community assignment σ. Here, instead, at each
step, a decision is made as to which modularity to use for finding the next join.

Basically, the relative advantages of multi-partite and coupled bipartite modularity can
be easily defined for a given situation:

• If there is a possibility to create a join that merges two community edges, e.g. (d, u, t)σ
and (d′, u, t)σ, QMP identifies this, whereas QCB may not favor such a join over one
involving only a bipartite improvement, e.g. joining d and d′ when, only (d, u, t)
and (d′, u′, t) exist. This follows from the definition and is confirmed by the two
approaches’ performance on the CONTRADICTIVE dataset.

In these situation, we would like to base the decision wholly on QMP.

• If no merging of two community edges is possible, QMP is not able to distinguish
whether joins create at least bipartite improvements or not, as shown in the example
involving ϕ+ and ϕ−, whereas this is exactly what QCB examines.

In these situations, we would like to base the decision wholly on QCB.

Lemma 4.1 provides a simple decision criterion to decide whether, at a given clustering
step τ with intermediate community assignments στ , the algorithm is facing the first or the
second situation. If there is a join ϕ such that GMP(στ , ϕ) > 0, we can safely apply ϕ
because this means that στ is in the domain where QMP yields good results. Otherwise,
the next join is chosen using QCB. Algorithm 4 highlights the changes to the original
optimization algorithm 3.
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Algorithm 4 Changing the original to a hybrid modularity optimization algorithm
function OPTIMIZE(E,V ,Q)

initialize ∆QMP and ∆QBP

. . .
for τ = 1 . . . |V | − k do

. . .
ϕ← argmaxϕ′=(d,s,t)(GMP(στ−1, ϕ′)) = argmaxϕ′=(d,s,t)(∆QMP,d(s, t))
if GMP(στ−1,ϕ)<0 then

ϕ← argmaxϕ′=(d,s,t)(GCB(στ−1, ϕ′)) = argmaxϕ′=(d,s,t)(∆QCB,d(s, t))
end if
. . .

end for
return (σ0, . . . ,σ|V |−k)

end function

Lemma 4.1, by the way, does not mean that a negative GMP(σ, ϕ) necessarily implies
that no community edges will be merged by ϕ. Another decision criterion would therefore
be to check for merged edges directly and switch to QCB only if no such edges are found,
i.e., using the multi-partite modularity even in some cases where it yields a negative mod-
ularity gain. Experimental results (not shown here) indicate a minor shift in performance
from SIMPLE to CONTRADICTIVE cases. Since the difference is minimal, I will restrict
myself to the approach defined above in the following.

Regrettably, hybrid modularity optimization comes with theoretical and practical costs:
On the theoretical side, it is no longer possible to provide in closed form the quality function
that is being optimized. On the practical side, we need to keep both GMP and GCP updated
after each join, i.e. the computational costs of the two modularities involved add up. In the
following, it will be examined whether the quality of the results justifies these costs.

4.4.3.2. Using Linear Coupled Bipartite Modularity

The replacement of the argmax-based by a linear correspondence function can also be ap-
plied on the coupled bipartite modularity: This simply means that the modularity applied
on the individual bipartite graphs is, instead of Murata’s bipartite modularity, Suzuki and
Wakita (2009)’s bipartite modularity. While the argmax-based coupled bipartite modularity
works better if used alone – compare red lines in Figure 4.11 and A.6 – the linear coupled
bipartite modularity in fact works better as a component in the mixed and hybrid settings,
while benefitting from the speed improvements associated with linear correspondence func-
tions. The performance charts for the mixed and hybrid functions with argmax-based bipar-
tite modularity are shown in the Appendix (Figure A.6) – in the following however, mixed
and hybrid approaches of linear multi-partite modularity refer to using a coupled bipartite
modularity with linear correspondence.
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4.4.4. Results

Figure 4.11 compares the results of the hybrid modularity optimization with those of the
mixed modularity for various values of β, including β = 0 and β = 1 for purely bipartite/multi-
partite modularity.

• On the SIMPLE dataset, the hybrid optimization performs comparable to the coupled
bipartite approach, particularly in the sparse regime (0.5 edges/node) in which multi-
partite approaches fail to find any structure. In the denser regimes, it is sometimes
outperformed by the medium-β approaches, but these differences seem rather small
compared to the qualitative difference between finding a solution or not. These results
indicate that the detection works in situations in which multi-partite modularity is
inadequate.

• On the CONTRADICTIVE dataset, hybrid optimization yields results comparable to
β = 0.5, i.e., it struggles in the sparser environments but does retrieve the desired
structure once enough information is available. These results indicate that the detec-
tion works as well in situations in which coupled bipartite modularity is inadequate.

• It is the OVERLAPPING dataset in which hybrid optimization really shines. It outper-
forms all other approaches by a rather large margin particularly in the sparser regimes.
It is one thing for the hybrid optimization to basically find the right mix adaptively
between the two modularities, as shown in the previous two points. It is a different
thing, however, to outperform the two constituent modularities as clearly as in the re-
sults for 1 edge/node. This indicates that the analysis of the two measures’ strengths
and weaknesses has really led to a synergetic effect and creates results impossible to
achieve for any single measure alone.

To summarize, hybrid modularity optimization achieves the best aggregate performance
over all datasets and seems to be the community detection approach of choice unless a
quality measure in closed form is required or time performance is particularly crucial.

4.4.5. Conclusions & Outlook

This concludes the improvements of modularity towards performance on the synthetic test
datasets. The fact that the solution for the multi-partite/bipartite trade-off lies in a change of
the optimization routine suggests that further improvements might be possible by tweaking
that routine. One possibility might be to look two joins ahead, such that intermediate joins
like ϕ+ which would lead to a good result in the next step can be correctly judged. An elab-
orate theoretical analysis would however be necessary to avoid the combinatorial explosion
of the associated search space.

This section has strongly focussed on 3, 3-hypergraphs. A hybrid community optimiza-
tion for k-partite hypergraphs for k > 3 could work exactly as described here, using the
k-partite and the coupled bipartite approach. A more elaborate approach would involve
defining k − 1-partite projections of k-partite hypergraphs, generalizing the bipartite pro-
jections defined in Def. 4.3. Like this, community edges sharing k−1, k−2, . . . communities
could be detected.
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Figure 4.11.: Comparing the hybrid approach to linear interpolations between the linear
coupled bipartite and linear-multi-partite modularity: The hybrid approach
is the only one which performs reasonably well under all conditions. Error
bars omitted for clearness. See Section 4.1.2 for a detailed explanation of this
chart.
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4. Multi-Partite Modularity

4.5. Balanced Multi-Partite Modularity

Some phenomena encountered applying multi-partite modularity on real hypergraphs are
not caught by the synthetic datasets. This section will discuss a final adjustment to linear
multi-partite modularity to deal with a particular crucial issue that comes up in certain hy-
pergraphs. Parts of this section anticipate concepts properly introduced only in the next
chapter on exploring real datasets. However, as these issues require an adaptation of the
modularity measure, they have to be addressed here.

I will first describe the problem using a sample hypergraph, then analyze it more generally
and propose a new measure, balance, to quantify its occurence. Two changes to multi-partite
modularity are proposed to mitigate the undesired effects: dampened modularity involving
a dampening parameter α and balanced modularity which is parameter-free. The beneficial
influence of these changes will be demonstrated on three prototypical hypergraphs.

4.5.1. Problem Description

When performing community detection on real hypergraphs, we want to obtain useful com-
munity assignments. While usefulness is a fuzzy term and its exact interpretation may differ
between applications, two phenomena have frequently occured that can safely be considered
not useful even without a particular application in mind.

First, for many hypergraphs, solutions tend to be suggested in which all elements of one
domain are grouped into a single community. This may be a sensible solution in some cases,
but concrete examples exist where community structure could clearly be distinguished vi-
sually in the original hypergraph, and yet all elements were joint into a single community.

(a) A sample hypergraph Hmedium

 mac

 software

 apple

(b) Community assignment of linear multi-partite
modularity optimization

Figure 4.12.: A hypergraph from obtained data and a problematic community assignment
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4.5. Balanced Multi-Partite Modularity

As an example, consider the hypergraph shown in Figure 4.12(a), containing all edges in-
volving documents of a particular user from the Delicious dataset (a “user expansion” – see
Section 5.1 for more sophisticated subgraph extraction techniques and associated use cases).
Even though there are clearly discernible groups of tags (turqoise circles) only associated
with some of the documents – basically all of the outer tags, whereas the more centrally po-
sitioned tags seem well connected to all documents –, the optimal community assignment
for multi-partite modularity assigns all of them to a single community. Figure 4.12(b) shows
a visual representation of the clustering (see Section 5.2 for a detailed description of this
type of visualization) and gives an intuitive idea of why this is not particularly informative.

Second, the situation cannot be easily resolved by manually splitting the clusters. Since
all nodes eventually end up in a single community, the cause for the problem mentioned
above could be that this happens earlier in one domain than in the others. If this was the
only problem, it could be fixed by manually expanding that single community, i.e. undo
some of the final joins, or, thinking in terms of dendrograms, “going deeper” into the clus-
tering tree. However, in the problematic cases we’re interested in here – when the single
community doesn’t legitimately represent a pattern in the data – this does not help: The
giant communities tend to split into a tiny spin-off and a mostly unchanged new giant com-
munity, a symptom of individual nodes being added to this single community all through
the clustering process. See 4.15(c) for the dendrogram of the tag domain that corresponds
to the solution presented in Figure 4.12(b).

The problem is thus not a single bad solution – the whole clustering tree is pathologically
formed. The fact that nodes, in such cases, can just as well be all joint into a single com-
munity, is a mere symptom. Consider two communities of users u1 and u2, each of which
has tagged on community of documents, d1 and d2, respectively. Half of the edges used by
each user community connect the documents to individual tag communities t1 and t2, the
other half associates the documents with a shared tag community t3. This is basically an

n edges

n edges

n edges

n edges

u1

u2

d1

d2

t1

t3

t2

(a) στ : t1, t2 and t3 are disjunct communities.

2n edges

2n edges

u2

u1

d1

d2

t1 + t2 + t3

(b) στ+2: t1 and t2 have been merged into t3.

Figure 4.13.: A hypothetical hypergraph under two different clusterings: t1 and t3 are either
individual tag clusters or all joint into a single, central tag cluster. Linear
multi-partite modularity assigns a higher score to the latter case.
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4. Multi-Partite Modularity

abstraction of the situation shown in Figure 4.12(a): A central set of tags which seems to
be applied to a lot of documents, and a number of “arms” connected to only parts of the
documents.

There are two relevant possibilities to cluster this data. The first one – let us refer to
it as στ – is to keep distinct communities for t1 and t2, as shown in Figure 4.13(a). The
other possibility στ+2 (i.e. two steps further) is to merge the two outer tag communities
into the central one, as shown in Figure 4.13(b). The first option appears more desirable.
From a user’s point of view, it tells a clearer story. Looking at the visualization of the
second option, one might get the impression that the two user communities only differ with
respect to their associated documents and use the same set of tags. From an analytic point
of view, one might expect that a clear separation of the tags by usage would yield better
results than merging them and creating implicit connections between elements which do
not share a connection. However, once again we can observe how the intuitions about the
modularity are not matched by its actual behaviour: It turns out that QMP|lin(στ ) = 9

8 ,
whereas QMP|lin(στ+2) = 10

8 . On the bright side, this means we now have an atomic
example of the current problem at hand.

4.5.2. Numerical Analysis

Let us take a look at the more general case ofm instead of two “arms”. For στ ,Q is the sum
of the contributions of the m outer community edges (called Qouter in the equation) and the
m inner community edges, Qinner, whereas the modularity of στ+2 is computed as the sum
of the contribution from m identical community edges Qmerged. The sum of edge weights
M = 2mn, but all occurrences of n are in fact cancelled out in the actual computation. So,
the modularity for the clustering in which the arms remain unmerged is

QMP|lin(στ ) = m ·Qouter +m ·Qinner

= m

(
1

2m
− 1 · 2 · 2

8m3

)(
1 +

1

2
+

1

2

)
(4.4)

+ m

(
1

2m
− 2 · 2 ·m

8m3

)(
1

2
+

1

2
+

1

m

)
(4.5)

=
3

2
− 3

2m2
,

whereas the modularity for clustering all arms into the central cluster is

QMP|lin(στ+m) = m ·Qmerged

= m

(
2

2m
− 2 · 2 · 2m

8m3

)(
1 + 1 +

1

m︸ ︷︷ ︸
x

)
(4.6)

= 2− 1

m
− 1

m2
.

The difference between the desired and the undesired outcomes converges to 0.5 as the
number m of arms increases (to put these numbers into scale, please note that I did not
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4.5. Balanced Multi-Partite Modularity

normalize the linear multi-partite modularity here, so its maximum is k or 3 instead of 1).
The more arms exist, the more beneficial it is to eliminate them and create a central tag
cluster. This is clearly not the intended behavior.

The cause of the problem is marked with an x. As the tag communities are merged, doc-
uments and users are connected to a single tag community containing lots of tags they are in
fact unconnected to. However, this only decreases correspondence from the perspective of
the tag community (the 1

m term in x). The correspondence of the bloated community edge
for the document and user communities, on the other hand, goes up to 1: All their incident
edges are contained in a single community edge. Even though the expected adjacency in-
creases, the increase in correspondence is more than enough to mitigate both this and the
tag community’s poor correspondence value. In other words, the optimization, in certain
situations, leads to community assignments that are bad for one domain, as long as they are
good for the other domains. The key to resolving the described problems is therefore to en-
able modularity to detect such types of imbalances and punish the corresponding solutions
accordingly. Below, two approaches towards this goal are introduced.

4.5.3. Balance

Before the changes to the modularity measure are introduced, we require a measure to iden-
tify whether these approaches perform correctly. Since the very problem is that modularity
yields high values for undesirable solutions, it cannot be used for evaluation.

One possibility is to inspect the solutions manually and see if communities in one domain
are collapsed into one. The ultimate goal is to prevent exactly this from happening – except
where justified – however, it seems desirable to have a quantitative measure at hand, e.g.,
for automatic evaluation.

The measure proposed here, balance, inspects the entire hierarchical clustering obtained,
and scans for the existence of giant communities.

Definition 4.7 (Balance) Let the balance in the dth domain of a k-partite clustering Σ =
(σ0, . . . ,στmax) be

bald(Σ) =

τmax∑
τ=0

balτd
τmax + 1

,

where

balτd =
ad,secondmax(στ )

ad,max(στ )
,

and max and secondmax refer to the community in d with the highest and second-highest
number of incident edges (a) for a given community assignment στ .

So, a low value for bald means that over many steps, the community with the most inci-
dent edges has a lot more such edges than the next-biggest one. By considering all steps,
this measure distinguishes “legit” big communities, merged from several big ones in a late
stage, from pathological giant communities created by continually adding nodes to the same
community, as shown in Figure 4.15(c) for the example discussed initially.
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4. Multi-Partite Modularity

4.5.4. Dampened Multi-Partite Modularity

Since the cause of giant communities seems to be a lack of concern about weak corre-
spondence values for single communities, the so-called dampened multi-partite modularity
replaces the simple sum of all correspondence values with a softmin function:

Definition 4.8 (Dampened Multi-Partite Modularity) Let the dampened multi-partite mod-
ularity of a 3,3-hypergraphH under a community assignment σ, a correspondence function
f , and a damping factor α be defined as

QMP,α =
∑

(i,j,k)∈C1×C2×C3

(eijk − aiajak) softminα(f1(i, j, k), f2(i, j, k), f3(i, j, k)) ,

or

QMP,α =
∑
c∈Cσ

((
|cσ|
M
−

k∏
d=1

ad,cd(σ)

M

)
softminα(f1(cσ), . . . , fk(cσ))

)
,

where

softminα(x1, . . . , xn) =

n∑
i

xmin + α(xi − xmin), xmin = min(x1, . . . , xn).

The parameter α controls how strongly one weak correspondence value should influence
the overall correspondence value of a single community edge, and thereby its contribution
to modularity. A value of 0 amounts to a hard minimum function, whereas a value of 1
leaves the original sum function unchanged.

4.5.4.1. Choosing α

Since neglecting information from other domains is generally detrimental to overall perfor-
mance, α should be set only as low as necessary. In practice, I have tried out several values
for α per graph (0, 0.25, 0.5, 0.75, 1.0), retrieved the minimal balance over all domains, and
chosen the result with the highest minimal balance.

Often, comparing the balances on the first 20% of the clustering already serve as a good
predictor for which α value will be the best on the whole dataset. Searching for a more
systematic way of finding α, another approach evolved that will be introduced in the next
section. Before, however, let us look at the effects of dampening.

4.5.4.2. Results

For evaluation, I have chosen three typical user-expansion graphs that respond best to differ-
ent α settings: Hlow (Figure A.7(a)), Hmedium (Figure 4.12(a)), and Hhigh (Figure A.7(b)).
Figure 4.14 shows the balance in each domain, for each α value, for all three hypergraphs.
The highest minimum balance for the graphs is found at α = 0, α = 0.25 and α = 1,
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4.5. Balanced Multi-Partite Modularity

(a) Results for Hlow (b) Results for Hmedium (c) Results for Hhigh

Figure 4.14.: Balance per domain (blue=documents, green=users, turqois=tags) for three
hypergraphs and dampened modularity with various values of α and balanced
modularity. Vertical lines indicate average balance.

respectively. The compression (not shown), used as a quality measure for the clustering in-
dependent from modularity, mainly stays invariant, indicating that tuning balance does not
disturb the identification of dense clusters.

Figure 4.15 shows the clustering results for Hmedium in more detail for various values of
α. Each row shows a visualization of the final community assignment, the development of
bal for tags over time (since this is the domain creating the problems in the undampened
version), as well as the dendrogram of the tag domain.

• The first row shows the connection between a single tag cluster, very low balance
values and a dendrogram that describes a clustering process characterized by joining
tiny elements into a single giant community.

• The second row shows the results for the optimal choice of α, 0.25 (Figure 4.14(b)
shows that this value yields the highest minimum balance). We see discrete clusters,
a better balance and a dendrogram that shows two big and one small cluster.

• The third row shows the results for α = 0. Even though balance is even higher in the
tag domain and we see an even more refined dendrogram, Figure 4.14(b) shows that
now, balance for the document domain drops drastically.

The fourth row will be discussed in the next section. See Figures A.8 and A.9 in the Ap-
pendix for corresponding analysis charts of the other two hypergraphs. The effect of de-
creasing α on the synthetic test charts were also tested, see Figure 4.16. As expected, low
values of α cause a slight decrease in performance. However, the corresponding benefits
cannot properly evaluated on these datasets because no giant communities are created. To
conclude, the above results show that

• Balance is a suitable measure to detect the emergence of giant communities, which
cause long phases of very low individual balance values.
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4. Multi-Partite Modularity

• Using the dampening approach, decreasing α can be used to remove the giant com-
munities.

• Different hypergraphs have different optimalα values. Trying out different values and
choosing the one which yields the highest minimum balance seems like a feasible
approach, but is neither theoretically well-founded nor particularly efficient in real
applications.

The next section will introduce an approach to remove the need for choosing a particular α.

4.5.5. Balanced Modularity

There is another way to look at the behavior leading to giant communities. It is indeed
problematic that “sacrificing” correspondence for one domain while optimizing the two
others may lead to superior modularity values. More specifically however, we can see that
it is in particular the decaying correspondence of the largest involved community that is
characteristic for the emergence of giant communities. So, an alternative to weighting the
individual correspondence values per community towards the minimum is a weighting by
the size (i.e. the number of incident edges) of the involved community. This way, a low
correspondence value for the biggest community will drag down the contribution of the
whole community edge without the need to explicitly address the minimum value.

4.5.5.1. Definition

Consider a community edge cσ = (i, j, k)σ for which the three involved communities
contain 10, 10 and 20 edges, respectively, i.e. ai = aj = 10, ak = 20. I propose a linear
weighting scheme such that in this case, the individual contribution of the correspondence
values if 1

4 ,
1
4 and 1

2 . This amounts to changing the correspondence part of the modularity
function from

f1(i, j, k) + f2(i, j, k) + f3(i, j, k)

to
f1(i, j, k)

ai
ai + aj + ak

+ f2(i, j, k)
aj

ai + aj + ak
+ f3(i, j, k)

ak
ai + aj + ak

or, more generally, to
k∑
d=1

fd(cσ)
ad,cd(σ)∑k

d′=1 ad′,cd′ (σ)
.

For the linear correspondence function, such a balancing results in a correspondence term
of

k∑
d=1

|cσ|
ad,cd(σ)

ad,cd(σ)∑k
d′=1 ad′,cd′ (σ)

=
k|cσ|∑k

d′=1 ad′,cd′ (σ)
.

This leads to the following definition:
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(a) Visualization for α = 1 (b) Balance chart for α = 1
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(c) Tag dendrogram for α = 1
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(g) Visualization for α = 0 (h) Balance chart for α = 0
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(l) Tag dendrogram – balanced

Figure 4.15.: Hmedium – results for the dampened modularity with various values of α and
the balanced modularity
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Definition 4.9 (Balanced Linear Multi-Partite Modularity) Let the balanced linear multi-
partite modularity of a 3,3-hypergraph H under a community assignment σ be defined as

QMPbal|lin =
∑

(i,j,k)∈C1×C2×C3

(eijk − aiajak)3
ei,j,k

ai + aj + ak
,

or

QMPbal|lin =
∑

cσ∈Cσ

((
|cσ|
M
−

k∏
d=1

ad,cd(σ)

M

)
k|cσ|∑k

d=1 ad,cd(σ)

)
.

4.5.5.2. Re-Evaluating the Example

Going back to the initial example: Does the version that leaves the m “arms” with spe-
cific tags unmerged receive a higher balanced modularity than the one with a large, central
community?

Replacing linear by balanced modularity, the correspondence term (1 + 1
2 + 1

2) in Equa-
tion 4.4 becomes 3

5 , the term (12 + 1
2 + 1

m) in Equation 4.5 becomes 3
4+m , and the term

(1 + 1 + 1
m) becomes 1

2m . Already, it becomes visible that correspondence in the latter
case converges towards 0 as m becomes large – the central tag community becomes larger,
compared to the single document and tag communities, so its decreasing correspondence
receives more weight. While a similar process takes place for the correspondence of the
inner edges in the unmerged case, the outer edges are unaffected by the choice of m, which
guarantees a positive correspondence value. Plugging in the numbers into the modularity
computation, we obtain

QMPbal|lin(στ ) = 3

(
0.1− 2

5m2
+

1

8 + 2m
− 1

8m+ 2m2

)
and

QMPbal|lin(στ+m) = 3

(
1− 1

m

)
1

2 +m
.

QMPbal|lin(στ ) > QMPbal|lin(στ+m) for allm > 2. It might be preferable to obtain this re-
sult for m ≥ 2, but it seems an acceptable compromise that the balanced modularity favors
merging two arms, as the size difference between the central tag community and the docu-
ment and user communities has not yet grown that large. Since for large m, QMPbal|lin(στ )
converges to 0.3, but QMPbal|lin(στ+m) to 0, balanced modularity can be considered a suc-
cessful adaptation at least to the toy example: The solution maintaining the “arms” gets
more stable the more such arms exist.

4.5.5.3. Results

Figure 4.14 shows, in the last column for each graph, the balance values obtained by the
balanced linear modularity measure. The bottom rows in Figures 4.15, A.8 and A.9 show
the visualization, tag balance charts and tag dendrograms obtained with this measure. A
number of observations can be made from this data:
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4.5. Balanced Multi-Partite Modularity

• For those hypergraphs which would require a dampening – low – α, i.e. Hlow and
Hmedium, balanced solutions are found. While it is unclear whether higher balance
is always better, what is important is that very low balance values are removed. This
happens in both cases.

• For Hmedium, it is possible to “over-dampen” by choosing α = 0 which results in an
unbalanced document domain (see the left-most bar in Figure 4.14(b)). This problem
does not occur using balanced modularity optimization.

• For Hhigh, which has the most balanced results for α = 1, i.e. the undampened
version, numerical results (Figure 4.14(c)) look slightly worse than for the balanced
version, compared to the undampened one. Even though the visualization of the bal-
anced result in Figure A.9(j) arguably provides a successful overview of the dataset,
this finding might encourage a certain caution in balancing graphs which do not need
to be balanced.

Figure 4.16 completes the examination of the balanced, hybrid modularity: Its results on
the synthetic datasets are not quite as good as the undampened version and resemble those
of dampened modularity with medium α settings. This further strengthens the hypothesis
that balancing should only be applied where necessary.

4.5.6. Conclusion

In this section, I have discussed a problem that occurred on real data, and provided, after
a theoretical discussion of its origins, two solutions, the dampened and the balanced mod-
ularity measure. Even though the problem could be solved by the dampened modularity,
it requires a parameter, implying a full clustering process for every candidate setting. Bal-
anced modularity, on the other hand, works without a parameter, and performs comparably
to finding a good α value, in particular if such a value would be low, i.e. balancing is
required in the first place.

In practice, I would recommend clustering an unknown hypergraph without any damp-
ening in the first place. If balance in one of the domains turns out to be critically low – in
the examined graphs, giant communities were characterized by a balance below 0.2 – or the
giant community is visually identified, I would recommend applying the balanced modu-
larity. Only if this measure yields unsatisfactory results – which could not be observed on
the, admittedly small, set of examples – dampened modularity can be used as a last resort
to fine-tune the obtained results.
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Figure 4.16.: Comparing the effect of dampening for different values of α vs the balanced
approach. The underlying modularity measure is the hybrid multi-partite one
(shown in light turqouise, as α = 1 removes the dampening). Low values
of α lead to a decay in performance, particular in the OVERLAPPING case.
The balanced approach suffers some performance loss as well, compared to
the undampened version, but not as severe. See Section 4.1.2 for a detailed
explanation of this chart.
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Table 4.1.: An overview about the introduced modularity measures and their capabilities.

SIMPLE OVERLAP CONTRADICTIVE Balanced param.-free

Non-Partite X X
Coupled Bipartite X X X
Multi-Partite X X X
Mixed X X X
Hybrid X X X X
Dampened X X X X
Balanced X X X X X

4.6. Discussion

4.6.1. Summary

In the first three sections, it was demonstrated how increasingly higher-dimensional rela-
tions in the data in fact require higher-dimensional community detection algorithms. Also,
the relevance of the theoretical challenges from Section 3.1.2 could be proven on actual
data: Distinct community assignments, ambiguous correspondence relations, and different
ternary generalizations of correspondence could all be shown to matter even in the rather
simplistic examples.

While the first three sections basically build the way to the formulation of a truly multi-
partite modularity measure, the last two sections describe the struggles of this theoretically
motivated measure when facing real data. Hybrid modularity integrates modularities of
different order, which turned out to be important after seeing the multi-partite modularity
fail on the SIMPLE datasets. Balanced modularity finally resolves the problem of single
giant communities, an undesired effect that could only be found on real hypergraphs.

Table 4.1 sums up the developments described in this chapter.

4.6.2. Conclusion

This concludes the chapter with the primary theoretical contributions of this thesis. Taking
a step back, what happened in the last two chapters is that starting from a general problem
statement and a number of abstract challenges, a method was devised and refined to the point
where very specific situations have been analyzed and accounted for. It was my concern to
document not only the final formulations of the modularity functions but the thoughts that
led up to those formulations and my interpretation of the behaviour of these functions in
various situations.

The next logical step is now to see how the devised methods perform on real data, and
how their functionality can be put to use in application contexts. This is the topic of the next
chapter.
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5. Community Detection on Real Data

This chapter highlights possible applications of the previously introduced multi-partite com-
munity detection on hypergraphs obtained from real-world social bookmarking datasets.

Section 5.1: Use Cases and Sub Graphs considers possible use cases for community de-
tection in social bookmarking datasets. These involve restricting the attention to the
neighborhood of a particular item of interest; therefore these use cases correspond to
patterns for extracting subgraphs around these items.

Section 5.2: Interactive Exploration of Community Structure introduces the interactive
exploration tool mpce (Multi-Partite Community Exploration). It allows browsing
k-partite hierarchical clusterings, i.e. the exploration of the full clustering tree in-
stead of a static, single solution. It serves as an example of a navigational application
as well as to visually compare the solutions of different community detection algo-
rithms.

Section 5.3: Comparison of Community Detection Algorithms examines the practical
differences between the different community detection algorithms when applied on
the proposed use cases. This involves both the inspection of individual results and a
more general analysis, examining average properties over many results.

Section 5.4: Network Analysis in a Real Social Network contains a report on a project
with VZ.net, the company operating Germany’s largest social networks StudiVZ,
MeinVZ and SchülerVZ.

The software described in Section 5.2 is provided as a downloadable software package,
mpce (Multi-Partite Community Exploration) – see Appendix A.1.4 for details.

Parts of this chapter have been published in Neubauer and Obermayer (2011).
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5. Community Detection on Real Data

5.1. Use Cases and Subgraphs

When we set out to explore the community structure of social bookmarking sets, the goal
was to uncover the suspected information contained. Now, with the methods in place, how
can they be used in practice to make that information relevant? Furthermore, how can we
judge, in the absence of ground truth, whether a given community assignment is “good”,
or better than another one? These questions are “softer” than the question which algorithm
performs better on a benchmarking dataset. Having concrete use cases however might fa-
cilitate such judgements. To answer these questions, two use cases will be introduced, and
the corresponding solutions of different community detection algorithms will be explored.
Those use cases are:

• “I want to get an overview over all documents I have assigned a given tag to, using
tags from other users.”

• “I want to get an overview of what a particular tag is all about.”

The hypothesis is that these overviews can be generated by extracting relevant parts of the
full bookmarking dataset, performing community detection on those parts and letting the
users explore its solution. In the following, the subgraphs related to each use case will be
defined. In the next section, I will propose a tool for the visualization and exploration of the
obtained solutions, and the third section will conclude this topic by an in-depth examination
of those results.

5.1.1. User/Tag Expansions

5.1.1.1. Definition

The subgraph defined here is related to the use case of exploring all of a user u′’s documents
that she has tagged with a tag t′. Assuming that all edges in the social bookmarking dataset
are in E, these documents are given by

D(u′, t′) = {d : (d, u′, t′) ∈ E}.

One possibility to extract related edges might be to simply retrieve

E1(u
′, t′) = {(d, u′, t′) ∈ E : d ∈ D(u′, t′)}.

Figure 5.1(a) shows a graph created for the tag “programming” and a user who has tagged
only 6 documents with this tag. We might also fetch the edges concerning all other tags that
user u′ has applied on those documents:

E2(u
′, t′) = {(d, u′, t) ∈ E : d ∈ D(u′, t′)} ,

shown Figure 5.1(b). However, a much richer description of the tagged documents can be
gained by using the social aspect of social bookmarking systems, retrieving the edges with
all users’ tags for the documents in question.
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5.1. Use Cases and Subgraphs

(a) E1: A user, the tag “pro-
gramming”, and 6 documents
tagged “programming” by the
user (6 edges)

(b) E2: All other tags also used
by the user on the initial 6 docu-
ments (16 edges)

(c) EDU : All other tags (52)
given by users (47) to the initial
6 documents (216 edges)

Figure 5.1.: Real data: Expansion around a user/tag pair

Let the user/tag expansion around a user u′ and a tag t′ be defined as the hypergraph
given by the edges

EDU (u′, t′) = {(d, u, t) ∈ E : d ∈ D(u′, t′)}.

Figure 5.1(c) demonstrates how this adds some complexity even for the small sample
dataset. At the same time, some structure already becomes evident from the layout in the
graph, grouping four of the documents together and isolating the remaining two. It remains
to be seen how community detection can help to maintain this additional information while
reducing the complexity of the representation.

5.1.1.2. Multi-Partite p-Cores

A recurring practical problem when dealing with subgraphs obtained by e.g. user/tag ex-
pansions is constraining their size, given the runtime constraints of community detection
algorithms discussed in the previous chapter. One way to reduce the size of a subgraph is
to remove the “outer” nodes, restricting analysis to those elements which are more strongly
connected to other elements in the graph. This inner part is known as the “core” of a graph.

A p-core (Seidman, 1983) is a subgraph of a graph G containing all elements that are
connected to at least p elements which are also in the core. It can be computed by repeatedly
removing all elements with degree < p until no more elements are removed. p-cores have
been used, for example, for the decomposition of large networks (Alvarez-Hamelin et al.,
2005). In Hotho et al. (2006b), a p-core of a tagging dataset is used for testing methods
requiring a highly connected graph. Here, I generalize the concept of p-cores to the multi-
partite case, requiring the all elements of a multi-partite p-core are connected to at least
p elements from each other domain, i.e. each documentsin a multi-partite 2-core needs
to be connected to at least two tags and two users. In (Neubauer and Obermayer, 2008),
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5. Community Detection on Real Data

Figure 5.2.: The 2-core of a user/tag-expansion

we define an even more general definition of cores. It allows to specify that, e.g. each
documents needs to be connected to n tags and m users. Since these refinements however
did not turn out to be practically relevant, they are not formally defined here. The multi-
partite p-core, however, has regularly been used during the inspection of various subgraphs
and appears to be a suitable way of reducing a graph’s size while keeping the gist of its
contents. Figure 5.2 shows a 2-core of a user/tag-expansion, displaying the characteristic
lack of “dangling” nodes on the borders of the graph.

5.1.2. Constrained Tag Expansions

The second use case is to quickly obtain an overview over the contents associated with a
particular tag t′ without paying attention to a single user in particular. The simplest way
to obtain an associated subgraph might be to simply obtain all edges e ∈ (d, u, t′) ∈ E.
However, this will create widely differing graphs depending on the usage of t′. While the
multi-partite p-cores introduced above provide a way of pruning the obtained graphs to more
manageable sizes, I here propose here an alternative way for controlling the subgraph’s
size. The goal is to influence it during the creation of the graph already. It has various
benefits: From a performance point of view, it provides more fine-grained control over the
actual number of edges and elements, enabling better prediction of the runtime required for
community detection. From a usability point of view, the resulting clusterings will be more
uniform, providing more consistent visualizations to the user over different tags. Finally,
from a methodological point of view, being able to produce many graphs of rougly the same
dimensions will allow for a more expressive quantitative comparison later on.

The “constrained tag expansion” aims to fulfill these requirements. It is defined via the
four parameters t′, nT , nD, nE . Casually speaking, we first find the top nD documents
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5.1. Use Cases and Subgraphs

tagged with t′. Then the top tags associated with those top documents are identified (creat-
ing the union of the top nT from each document), and finally edges are added user by user
until we pass the threshold of nE edges.

More formally, we start by retrieving all documents

D(t′) = {d : ∃d, u, t′ ∈ E}.

Let D(t′)[nD] be the nD documents in D(t′) tagged by the most users. Now, let us obtain
the top tags for each of those top documents.

T (d′) = {t : ∃d′, u, t ∈ E}

Let T (d′)[nT ] be the nT tags used on d′ by the most users.Combining the tags obtained in
this way leaves us with a set of top tags around our initial tag t′:

T (t′) =
⋃

d′∈D(t′)[nD]

T (d′)[nT ].

This set can contain up to nD ·nT tags, although it is more likely that some documents share
top tags and a smaller number is obtained. Having identified both the top documents and
the top tags, the edges between them are given by

E(t′) = {(d, u, t) ∈ E : t ∈ T (t′) ∧ d ∈ D(t′)[nD]}.

We might be done now, but we additionally want to control the number of edges in this
graph. This can be achieved by incrementally adding edges, grouping edges by the users
that have created them and adding them by those groups until the maximum number of
edges is reached. Since the goal is to find the relations between tags and documents, users
having tagged several documents are preferable. All users having tagged the top documents
with the top tags can be obtained

U(t′) = {u : (d, u, t) ∈ E(t′)}.

These users are sorted in descending order based on the number |D(u′)| of top documents
they have tagged:

|D(u′)| = |{d′ : (d′, u′, t) ∈ E(t′)}|.

The constrained tag expansion is then defined by the set of edges

E(t′)[ne] =
⋃

u′∈U(t′)

(d, u′, t) ∈ E(t′) ,

where U(t′) contains the minimum number of users taken from the ordered list that is
required for |E(t′)[nE ]| ≥ nE .

This construction may appear a bit artificial, but it is the result of several iterations of
subgraph constructions, trying to achieve graphs of comparable shape and size across many
tags while ensuring real-world applicability. As we will see later on, the obtained graphs are
simple enough to be clustered in mass, but complex enough to reveal differences between
different algorithms.
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5.2. Interactive Exploration of Community Structure

This section introduces the tool mpce (Multi-Partite Community Exploration) which in-
teractively visualizes k-partite hierarchical community assignments, and demonstrates its
output on a sample hypergraph.

5.2.1. Multi-Partite Community Exploration

mpce is a piece of software written in Java on top of the Processing (processing.org)
framework, which facilitates the creation of interactive, animation-based programs. Besides
abstracting graphics and animations, one of its advantages is the abundance of existing plug-
ins. Here, the dynamic graph visualization is implemented using the Traer Physics plug-in
(murderandcreate.com/physics). Using this plug-in, the graph layout is rendered
in real-time as the user interacts with the system, with nodes modeled as particles, edges
modeled as springs and non-adjacent nodes kept apart by simulating repulsive forces. Other
functionalities include exporting into PDF files, which has been used for the screenshots in
this section.
mpce exploits the hierarchical clustering generated by bottom-up community detection

algorithms. Instead of just considering the optimal spot in-between as returned by commu-
nity detection algorithms, mpce lets users undo this development in a step-wise fashion.
This can be compared to using a file system explorer, starting from the root directory. The
root directory corresponds to the root in the clustering tree, where each element belongs to
the same community. By expanding it, it is split into the two subcommunities it was merged
from.

Additional complexity comes from the fact that users are exploring not one, but three
trees at the same time, one for each domain. As introduced in Section 3.2, the output of k-
partite community detection algorithms is a k-partite hierarchical clustering: At each step,
this clustering describes the merging of two communities in one domain. Users can either

 color

 photography

 illustration

(a) σ253

 color

 photography

 illustration

(b) σ252

Figure 5.3.: View before (a) and after first split (b). A set of 256 nodes has undergone
253 binary joins, resulting in one community per domain. Accordingly, (a)
represents the community assignment σ253, i.e., the top of the clustering trees,
and (b) represents σ252.
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5.2. Interactive Exploration of Community Structure

follow the order of the clustering – by pressing the space key, the next community according
to the clustering is split. Alternatively, they can click on any community to split it even out
of turn.

Figures 3.1(a) through 3.1(e) on page 49 have been produced using mpce. Since users
would start from the final community assignment with all elements in one community per
domain, repeatedly pressing space would take the user from 3.1(e) to 3.1(a).

More formally, in the terminology of Section 3.2:

• Each state of the tool visualizes a k-partite community assignment σ.

• When using the default order (by pressing space to perform the next split), the com-
munity assignments are taken from the k-partite hierarchical clustering Σ given as
the input, starting with the last assignment σN−k for N nodes and k domains and
decreasing the index at each step.

• When splitting communities manually, a new community assignment is created, copy-
ing the current one and changing it by finding the next split of the current communities
according to Σ.

• Communities are connected by edges represented as black or gray circles. These
correspond to community edges Cσ induced by the currently displayed community
assignment σ. In all cases shown here, a minimum relevance of α = 0.2 has been set
for better readability, such that the actual set of community edges is given by Cσ,α.

• The size of each circle is scaled by the number of edges |cσ| of the community edges
cσ it represents. The color scales with its density τ(cσ), with black indicating the
currently highest value.

5.2.2. Example

Let us explore the user/tag-expansion around a the tag “color” and a user who has used this
tag on 101 documents from the Visualize.us dataset (see Section 1.3.4). There are 76 users
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Figure 5.4.: Tree state at σ243, showing the top quarter of the clustering trees. At each
y-position, exactly one join takes place. Here, the highest 11 joins have been
reversed - the resulting communities are encoded by colour.

117



5. Community Detection on Real Data

who have used 79 different tags on those documents in altogether 1035 assignments.
Figure 5.3(a) shows mpce’s initial output after processing the output of the community

detection process (see Table 3.1 on page 46 for the general structure of this output). The
“last” (taking a bottom-up point of view) community assignment σ253 is shown, i.e., all
elements from the same domain have been assigned to a single community. Now, we can
gradually descend the clustering trees. Proceeding one step from σ253 to σ252 results in
the last join of the 3-partite community assignment being reversed, which, as we can see in
5.3(b), has been a join of two user communities.

How should these visualizations be read? First of all, communities can be annotated with
their most important elements – the ones with the most edges –, as done here for images
and tags. The size of element and community edges represents the number of contained
elements/edges (sizes are normalized at each step and not representative across different
steps). This information should enable the user to get a quick idea of the overall structure
and where to find items of interest, particular as the structure further unfolds.

 red

 photo

 inspiration

 creative

 decoration
 books

 bird

 balloon

 photography

 colors

 graphic

 color

 illustration

 balloons

 craft

Figure 5.5.: Interface state at σ243, i.e. 11 binary community splits – the single communi-
ties have been split into 4 document, 5 user, and 5 tag communities. community
edges are plotted for relative importances α ≥ 0.2.
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Figure 5.5 shows the output 11 expansion steps into the community structure. Docu-
ments, users, and tags have been split in a pretty balanced fashion, creating four “arms”,
each with a distinct triple of strongly connected document/user/tag communities, but still
connected to a large central tag community (plus, for two of them, connected to a small,
central user community).

It is well possible that one of the documents of the upper left document community Cd
(the balloons) is in fact tagged with one of the tags from the lower left community Ct(for
example, “photo”). If this was the case, there should be a connection via a small, gray com-
munity edge between the corresponding communities. This is where enforcing a minimal
relative importance of α = 0.2 comes into effect: if there is a non-empty community edge
(Cd, Cu, Ct) (for any user community Cu), its relative importance is smaller than 0.2 for
any of the involved communities, i.e., not drawing this connection neglects less than 20%
of incident edges, for all communities. In short, α can be adjusted to achieve a trade-off
between completeness and clarity in the resulting visualization. I found that a value of
α = 0.2 yields well-readable results in many cases.

Figure 5.4 finally shows the top quarter of the clustering trees representing the hierar-
chical clustering under exploration, at the state displayed in Figure 5.5. Starting from the
top of the tree, we have reversed the ten highest joins implied by these trees. Figure 5.3(b)
showing the user community being split first corresponds to the root of the middle tree (the
“U” dimension) being higher than the roots of the other trees. Exploring the next step of
the induced community structure would mean undoing the 11-highest join in the trees. Of
course, explorations beyond the linear order implied by these trees are possible. A user
might be interested in a particular community and expand it manually, overriding the next
step implied by the trees, basically expanding a subtree earlier than it would have normally
been.

This concludes the example of how community assignments, and in particular a hierar-
chical set of community assignments, can be visualized, and how such a visualization might
be useful for navigational purposes. The remaining question is whether different algorithms
result in meaningful differences with respect to these visualizations.
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5.3. Comparison of Community Detection Algorithms

Let us first compare a pair of individual results on a user/tag expansion, demonstrating
clear differences in the nature of resulting visualizations. In the next step, constrained tag
expansions are considered, first again on an individual example, then – as made possible by
the uniform size of the subgraphs – in a more quantitative fashion.

5.3.1. Examining a User/Tag-Expansion

Here, the results of non-partite and coupled biparite community are compared. Using the
Delicious dataset, a user/tag expansion has been created like the one shown in Figure 5.1
– using also the tag “programming”, but bookmarks of a different user. Instead of six, this
user has tagged 261 documents with “programming”. In order to obtain a feasible dataset,
the graph is reduced to its elements which are connected to at least three different elements
from each other domain (the multi-partite 3-core, see Section 5.1.1.2). This results in a final
dataset of 182 documents, 910 users and 250 tags linked by 17401 edges.

5.3.1.1. Results

Figures 5.6(a) and 5.6(b) are the results of applying non-partite and the (argmax-based)
coupled bipartite modularity optimization on this example. Again, only community edges
of relative importance α ≥ 0.2 are displayed.

It must be noted that optimization of the coupled bipartite modularity runs for several
hours whereas applying Clauset’s fast optimization on the non-partite graph requires only
seconds. All the more, it is crucial to determine if this effort, or further work on the opti-
mization, is rewarded by better results.

The most striking difference between the two solutions – next to the different number
of communities – is that the non-partite method yields isolated triples of document/user/tag
communities, whereas the coupled bipartite solution also contains relevant community edges
connecting elements from different triples. More concretely, even though four triples of
strongly connected communities from each domain exist in the coupled bipartite version,
each document and tag community is also connected to the central user community.

5.3.1.2. Evaluation

Which community assignment is better? In the absence of ground truth that could give
us a quantitative answer, this issue is up to discussion and different positions can be held.
I would, however, like to argue in favor of the result produced by the coupled bipartite
approach.

First of all, there is some quantitative evidence after all. Examining the amount of edges
removed by neglecting edge communities of insufficient relevance, it turns out that 2769
edges or ˜16% of edges are removed for the coupled bipartite solution, whereas 10284
edges or ˜59% are removed with the same cut-off threshold α for the non-partite solution.
This is a problematic measure to use by itself: It could be optimized by the trivial solution
of joining all elements into the same community (yielding a single edge community and 0%
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(a) Communities found by the non-partite approach
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(b) Communities found by the coupled bipartite approach

Figure 5.6.: Communities detected in a user/tag expansion around “programming” in Deli-
cious (p = 3, α = 0.2)
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lost edges), and also the different numbers of communities play a role. Accounting for these
factors would conceivably lead to a measure similar to modularity. Still, the big difference
between these values might indicate that the coupled bipartite approach actually captures
some essential structural properties that the non-partite approach does not.

Our knowledge about the algorithms’ behaviour on synthetic data further supports this
suspicion: The non-partite approach is forced to group documents, users, and tags into
shared communities, not being able to tell the difference between them. The large num-
ber of suppressed edges could be caused exactly by edges diffusely distributed across the
borders of these artificial communities, indicating that the found distribution is due to the
limitations of the applied model and not due to the underlying structure of the data. Op-
posed to that, the coupled bipartite approach possesses the flexibility to model edges beyond
closely linked community triples. Like this, different pairs of document/tag communities
can all be strongly connected to the central user cluster and yet remain unmerged.

This flexibility allows for what in my view makes the more qualitative argument in fa-
vor of the coupled bipartite approach: While both community assignments seem to make
sense in terms of the grouped tags, the coupled bipartite result additionally reveals insights
between the different communities, telling an additional “story” about the data:

• There is a community of documents mainly about backend programming with tags
like “programming”, “development”, and, not displayed here, “webservice”, “database”,
etc. The corresponding document and tag communities (left) are connected to the
central user community (“programmers”) in the middle via a large community edge.

• There is another bunch of documents, largely tagged with tags like “javascript”,
“jquery” etc – i.e., GUI/design-oriented technologies. The rightmost community edge
connects this document/tag community pair to the rightmost user cluster (“design-
ers”).

• The center/right community edge is what makes things interesting: It connects the
central community of “programmers” to the GUI-related right communities; with-
out, however, there being a corresponding community edge from the “designers” to
backend technologies.

So we started by trying to organize our bookmarks, and ended up learning something
about the users connected to those bookmarks. The bulk of users is interested in the topic
of the central tag, programming, and part of this interest includes frontend technologies.
Another set of users that is only interested in that frontend part. If we were, e.g., interested
in learning more about design, further exploring these users’ bookmarks might be a good
next step. Although these insights may not appear spectacular, they do seem plausible and
reveal another level of structure of the underlying data.

This may indicate that an individual treatment of the different domains can lead to qual-
itatively new insights, compared to a simpler treatment or complete ignorance of the user
dimension.

In the following, an example is presented that shows relevant differences between four
different detection algorithms, as well as a more quantitative examination of these differ-
ences.
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5.3.2. Examining Constrained Tag Expansions

The example in the previous section has provided evidence that the theoretical considera-
tions stated in Section 3.1.2 do have practical impact, and that an algorithm taking them
into account leads to qualitatively different solutions than one which doesn’t. However,
this example had two shortcomings: First of all, meaningful differences could only be pre-
sented between the non-partite and the coupled bipartite case (multi-partite solutions have
therefore been omitted), and it focussed on a single hypergraph, making the evidence rather
anecdotal.

These shortcomings will be fixed here: Four different algorithms will be examined on
various examples. Let us briefly review these algorithms to make clear their individual
relevance.

Non-Partite Modularity (Section 4.1) – the baseline algorithm that does not take into ac-
count the partiteness of the source data,

Coupled Bipartite Modularity (Section 4.2) – the algorithm which takes into account par-
titions, but does not work on “real” tripartite data structures,

Hybrid Multi-Partite Modularity (Section 4.4.3) – the algorithm which uses tripartite mod-
ularity unless in cases that are identified to be problematic, in which it switches back
to using the optimal step provided by the bipartite one, and

Balanced Multi-Partite Modularity (Section 4.5.5) – which extends the hybrid multi-partite
modularity by adapting the correspondence function to avoid the occasional patholog-
ical giant components the former occasionally produces.

Using constrained tag expansions, another single example will be examined first that exem-
plarily highlights the characteristics of all involved algorithms. In the second part, numeric
results based on the examination of 250 randomly chosen tags will be presented that em-
phasize the generality of these differences. All expansions discussed here were created for
the top 30 documents, top 5 tags per document, and a maximum of 1000 edges. Tags for
which 30 documents or 1000 edges could not be obtained were not considered.

5.3.2.1. Individual Analysis

Let us start by examining a single example of a constrained tag expansion. Not only is
it helpful for the future discussion to have an idea of how clusterings for a constrained
tag expansion look like – this example also nicely highlights the differences between the
algorithms involved.

The example I have chosen is the tag “Charity”. This tag was used by 2866 users on 2342
distinct tags, creating 4210 edges. Only 154 users’ edges relating to the top tags needed to
be added to obtain the required 1000 edges. Please refer to Figures 5.7 to 5.10 for the
solutions of the different algorithms – the actual clustering step used for the assignment
displayed was once again selected by optimal minimum description length.
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Figure 5.7.: Community structure for the constrained tag expansion around the tag “Char-
ity”, produced by the non-partite modularity
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Figure 5.8.: Community structure for the constrained tag expansion around the tag “Char-
ity”, produced by the coupled bipartite modularity

124



5.3. Comparison of Community Detection Algorithms

 http://www.kiva.org/app.php
 http://www.gapminder.org/

 http://www.idealist.org/

 http://www.coopamerica.org/tools/print.cfm?page=/p

 http://www.freerice.com/index.php

 http://kiva.org/

 http://www.givewell.net/

 https://www.microplace.com/

 http://www.ted.com/

 http://www.dangerousground.org/kbps.html

 activism

 http://www.freerice.com/

 http://bookmooch.com/

 http://www.kiva.org/

 charity

 http://www.eff.org/

 http://www.volunteermatch.org/

 http://www.prosper.com/

 http://www.charitynavigator.org/

 microfinance

Figure 5.9.: Community structure for the constrained tag expansion around the tag “Char-
ity”, produced by the multi-partite modularity
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Figure 5.10.: Community structure for the constrained tag expansion around the tag “Char-
ity”, produced by the balanced multi-partite modularity
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Non-Partite The non-partite approach cleanly identifies four clusters. A nice feature of
the tag “Charity” is the fact that these clusters, which most algorithms somewhat agree upon,
correspond to distinctly identifiable topics. First of all, there is the microfinance community
(top left corner). Then, there is a community of sites that seems to offer opportunities for
charitable activities (top right corner). There is a community of sites more related to the big-
ger picture (bottom left corner), like the “one laptop per child” initiative or gapminder.org,
a data visualization tool for various statistics related to measures of well-being in differ-
ent nations. Finally, there’s a more “consumer-oriented” community of sites (bottom right
corner), involving freerice.com, donating rice for correctly answering vocabulary questions.

As in the previous example, the non-partite approach does a good job of identifying the
individual topics. However, it fails again to create relations between the different clusters,
for the same reasons discussed previously. This strengthens these earlier assumptions, and
validates once again the need for more sophisticated approaches.

Coupled Bipartite Even though it was successful in identifying inter-cluster connec-
tions in the previous example, the coupled bipartite approach this time fails to do so. The
only difference to the non-partite solution is that it has merged the two clusters of general
information and consumer-oriented sites, which are arguably less specific than the two other
ones.

Hybrid Multi-Partite The multi-partite approach displays the problematic behaviour
discussed in Section 4.5.5: The optimal solution consists in collapsing all tags into a single
community. Since the tags now cannot help in comparing sites, the remaining clustering
is purely user-based. For example, freerice.com/index.php and freerice.com/ are clustered
into two distinct communities – depending on which exact URL users have bookmarked.
Clearly, this defies the purpose of community detection and can easily be identified as the
weakest solution of all four.

The specific example of these two similar URLs stimulates further thought: Should the
two have been merged into a single document during import? Or should the convergence
of two such similar URLs into a single community be quantitatively evaluated as a quality
measures? I believe however that it is legitimate to keep the two separate, and that the effect
is overall too rare to meaningfully measure it on a larger scale.

Balanced Multi-Partite The (again, implicitly hybrid, since the switching heuristics
of the hybrid approach are kept in place) balanced multi-partite approach was specifically
designed to counter the problem of the giant community, and that is what it does. The four
content communities found by the non-partite approach are successfully identified again.
Beyond that however, there are some interesting inter-cluster relationships to be found.
I will stick here to the most prominent feature: Three clusters are highly interconnected
(and two of the previous user communities have been merged into a single one), and the
one that remains isolated is the one with the more consumer-facing sites. In my view,
this is an intuitively appealing solution, since users interested in financing microcredits or
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Table 5.1.: Compressed size (MDL) relative to random community ordering

Compressed Size Std. Dev.

Non-Partite 38.7% 3.2%
Coupled Bipartite 38.2% 3.3%
Hybrid Multi-Partite 37.3% 3.5%
Balanced Multi-Partite 37.2% 3.6%

donating together probably form a different target audience than those stopping by at, e.g.,
freerice.com to play a sort of game in their browsers.

Beyond the concrete example, it is nice to see the characteristics of the different algo-
rithms exposed so saliently. We can see the balancing playing an important role, and the
multi-partite analysis it enables resulting in informative new connections between the triples
of document/user/tag communities already identified by the simpler algorithms. Let us now
proceed and find out whether these results are actually scalable.

5.3.2.2. Collective Analysis

Even though the exemplary analysis of individual results looks promising, it does not pro-
vide a solid basis for answering the question how well the algorithms are really doing on
real-world data. I cannot examine all possible examples, and of those examples I have ex-
amined, I have admittedly presented ones with particularly compelling stories, and not the
ones where only trivial differences could be determined between the different algorithms.
Let us therefore proceed to a more quantitative methodology and compare the statistics of
the clusterings for 250 tags randomly chosen among those which qualified, i.e. had suffi-
cient documents and edges attached.

Compression Table 5.1 shows the average size of the compressed description of the
adjancency tensor using the MDL scheme described in Section 3.2.3.2. Even though the
numbers lie in a rather close range, it can be seen that the coupled bipartite approach con-
sistently outperforms the non-partite one, while the multi-partite approaches outperform the
bipartite one. The standard deviations are pretty high, but it is again hard to judge in how far
these variations are due to the differences between graphs, as was the case for the synthetic
datasets. Therefore, a sign test is applied in the same fashion as described in Section 4.1.2,
counting the number of times one algorithm scores better than another. Both hypotheses (the
bipartite modularity outperforming the non-partite one, and the multi-partite modularities
outperforming the bipartite and non-partite ones) are highly significant (p<0.001).

Community Sizes Considerable effort has been spent trying to control the number of
resulting communities. Figure 5.11 plots the distributions of the sizes of both the smallest
and the highest number of communities. If a solution consists of 3 document, 4 user, and 5
tag communities, this would contribute to these charts as one count for 3 in the “minimum”
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series and one count for 5 in the “maximum” series – i.e. in which domain the highest or
lowest number of communities is found is not taken into consideration.

We find that the overwhelming majority of solutions, for the non-partite approach, has
two or three communities. Even though this is a nice number of communities to start from
for display and exploration purposes, it further strengthens the suspicion that the results
obtained from this modularity function are largely driven by its algorithmic properties.

The coupled bipartite approach, in contrast, has a more plausible (i.e. wider) distribution,
and even the occasional outliers with very many communities help underline the trust that
an exceptional structure in the data will be mirrored by the solution.

For the hybrid multi-partite approach, it turns out that the tendency for giant communities,
at least on graphs with the structure of the tag expansions, is more than anecdotal: Almost
100 out of 250 graphs end up with a solution that incorporates a single community in one of
the domains. As we have seen above, this easily correlates with less than optimal clusterings
in the other domains, and there also seems to be a tendency to create large numbers of
communities in these other domains, as indicated by the sprawling distribution of maximal
community sizes.

The balanced multi-partite modularity repairs this problem just as reliably as the hybrid
one produces it. The number of single-community solutions almost drops to zero, and the
overall distribution of community sizes looks very similar to the bipartite solutions.

(a) Non-Partite (b) Coupled Bipartite

(c) Hybrid Multi-Partite (d) Balanced Multi-Partite

Figure 5.11.: Histograms of minimal (gray) and maximal (blue) number of communities of
all three domains, for different modularities.
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5.3.2.3. Conclusion

The quantitative analysis confirms the anecdotal findings obtained from examining individ-
ual cases:

• Significant differences exist between the solutions of the different algorithms, both
in terms of compression quality and the distribution of the number of communities
obtained.

• The theoretically most sophisticated modularity measures, taking into account the full
tripartite structure of the source data, outperform the simpler modularity measures in
terms of compression quality.

• The coupled bipartite and the balanced multi-partite modularity seem to have the most
“healthy” distributions concerning the number of modularities, assuming that both an
almost fixed number of resulting communities (as produced by the non-partite mod-
ularity) and a high number of single-community results (as produced by the hybrid
multi-partite modularity) are undesirable.

Whether the measures applied here are the last word in terms of judging multi-partite com-
munity assignments may be debatable – some alternative approaches will be discussed in
the outlook. However, in the absence of ground truth, it may be legitimate to examine em-
pirically good solutions, try to abstract their features, and then examine those features on a
larger scale. Using this methodology, and regarding the specific type of graph examined, it
appears reasonable to assume that the balanced multi-partite modularity is in fact the best
modularity measure to use.

This concludes the main discussion of multi-partite community detection algorithms
dealing with real data. The use cases introduced in the beginning of this chapter should
have provided both an example of potential applications, as well as a basis to compare
the different algorithms by. I would like to believe that the initial questions about relevant
differences and real-world applications of the introduced algorithms can be answered posi-
tively. A more in-depth conclusion of the overall findings will be provided in the following
chapter. Before, however, I will report the findings of an industrial collaboration, where
some of the concepts introduced here (even though adapted to the concrete settings) could
be applied.
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5.4. Network Analysis in a Real Social Network

During the final stages of my dissertation, I’ve had the great opportunity to work in a
joint project with VZ.net, the company running the largest German social network Stu-
diVZ/MeinVZ (for university students/others) and SchülerVZ (a protected network for pupils
of minor age). The goal of this pilot project was to explore how applicable and useful graph-
theoretic techniques are when dealing with real-world challenges on graphs as serious as the
ones created through the usage of VZ.net’s services. I will discuss findings on the general
properties of this graph as well as an experiment performed with bipartite community de-
tection. Before, however, let me review the special privacy considerations that have to be
considered in this setting.

5.4.1. On Privacy

Special care was taken in order not to violate the privacy rights of users during the examina-
tion of the data. The data provided for research was a dedicated export containing only the
necessary information, i.e. an adjacency list of user ids – in an internal format that I couldn’t
use to bring up the corresponding profile page on the web – without further information in
the case of the friend list, and a list of user/”Edelprofil” pairs (see below) for the community
detection experiment. For comparison purposes, a subgraph was provided containing only
users registered as living in Berlin, but this, as well, was performed by VZ.net employees
without me getting access to personal information at any point. Furthermore, all of the data
was processed on-site at VZ.net on their machines, and the only data that has ever left their
network are the aggregate results shown here. Also note that in the community detection
experiment, we only investigate the resulting clusters of public profiles, not the resulting
clusters of users. Finally, even with these precautions in place, the SchülerVZ data were
completely off-limits due to even higher privacy standards applied for the data of minors.

5.4.2. Connected Components of the Friendship Graph

The central feature of social network sites is the ability to “friend” other users: One user
initiates a friend request, and if the other user accepts, the two users are now registered as
friends, resulting in each one showing up in the other’s “friend list”, and gaining extended
permissions regarding each other’s data. Interpreting each friendship as an edge between
two user nodes result in a “friendship graph”, which in the export of the combined StudiVZ
and MeinVZ data from early 2010 consists of around 8.5 million nodes with around 330
million edges, and 250000 users with 3 million users in the Berlin subgraph.

The first question was whether the friendship graph is connected. It almost is: the largest
connected component contains 8564919 out of 8571918 users, which is more than 99.9%.
In the Berlin subgraph, 232258 out of 233082 users (or more than 99.6% of users) belong
to the largest components, with the next-largest components containing 29 and 11 users,
respectively. 4762 and 561 users, respectively, were entirely unconnected. This result of
almost each user being connected to each other user through a path of common friends was
basically expected as a general property of sufficiently densely populated random graphs
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Table 5.2.: Average number of users reached after number of hops, including standard de-
viation (both rounded)

Hops Full graph Berlin graph

1 77 74 27 34
2 8181 9622 1281 1782
3 529257 510520 32535 28612
4 4808269 1734597 122252 38340
5 2893922 1668272 63620 41399
6 313498 637191 10998 20267
7 11267 44795 1336 6717
8 398 939 171 2273
9 41 57 22 432
10 4 7 7 61
11 1 1 6 19
12 1 0 6 7
13 4 2

(see Chapter 2). Still, confirming this property was a useful first step in getting to know the
tools (in particular the graph database Neo4J) and tricks required to deal with a graph of
this size.

5.4.3. Characteristic Path Length of the Friendship Graph

In a next step, the characteristic path length – the average shortest path distance between
two arbitrary nodes – of the two graphs was examined. For a single node, the shortest
path length to each other node vi is computed by performing a breadth-first search from
that node, knowing that when a node vj is encountered after n steps, this is the shortest path
length to that node, since it would otherwise have appeared earlier. Ideally, the characteristic
path length is computed by getting this distribution for each node and computing the true
average. For the full graph, however, a single breadth-first traversal, as required to compute
the distances from a single user to all other users, took hours to compute. Therefore, we
just let the program run for over a week and used the data from the nodes completed during
that time. These were mere 354 searches for the full graph and 68670 searches for the
Berlin graph. The results are displayed in Figure 5.12, showing for each number of hops
the fraction of all users that could be reached, averaged over all examined users, with error
bars indicating standard deviation among users. The raw numbers can be found in Table 5.2.

5.4.3.1. Small World Properties

The most evident result is the low number of ’hops’ (traversed edges) required to reach
almost every user in the graphs. In both cases, after 6 hops, more than 99% of the user
population can be reached in both cases, whereas after 4 hops, more than half of it can be
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(b) Berlin graph

Figure 5.12.: Cumulative Distribution of Path Lengths: Number of users reachable by
distance

reached on average. The characteristic pathlength, i.e. the average of all observed path-
lengths between pairs of nodes is 4.35 and 4.23 for the full and Berlin graph.

Networks like this with a very short characteristic path length in relation to the number of
their nodes are called “small world” (Watts, 1999) networks. In a social context, this means,
in simpler terms, that everyone knows everyone else through a short chain of friends. This is
a well-known effect in social networks that has entered popular culture as the “Six degress
of separation” phenomenon. To see how this happens, consider a network in which two
people are connected if they are within 50 meters of each other at this very moment. This is
a network without small world properties – to reach a person that is 50km away, you would
have to hop through around 1000 different people (leaving aside issues of connectivity). If
we now instead assume us connected to everyone we have ever been closer than 50m to, a
single person in Berlin that has ever been to Munich will dramatically decrease the social
distance between everyone in Berlin and Munich. Given that social ties possess a certain
constancy over time, it seems safe to assume that online social networks are much closer to
the second type of network than to the first one.

Still, there is a somewhat unexpected effect to be observed in the data: The distributions
of the two graphs look very similar. Shouldn’t we expect that two people in Berlin are on
average connected by fewer connections than two people in Germany? This expectation
can be formulated more formally: The small world property states that characteristic path
lengths grow logarithmically to the number of nodes, i.e. the relation between characteristic
pathlength p and the number of nodes N can be described as N ∼ bp for a base b. One
might assume that the full graph and the Berlin subgraph have the same properties and thus
the same base parameter b, which should then however result in a lower characteristic path
length in Berlin. Putting in the numbers for the two graphs, we get values for b of around
39 and 18 for the full and Berlin graph, respectively. The whole point of the small world
property is that b does not change significantly as the graph grows, leading to only small
increases in path lengths over time. Why does it change here? There are two possible
perspectives on that:
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• b can be interpreted as the average branching factor, or the number of previously
unencountered users each new user in a path contributes. As we cut out the non-
Berlin users from the graph, this number is bound to decrease – i.e. there are fewer
people to reach, but there are also fewer people contributing shortcuts.

• While the first explanation would explain the change of b, the fact that the character-
istic path length stays almost identical could also mean that geographic factors play
such a small role in the friendship graph that sampling Berlin users is almost like
randomly sampling users from the graph.

We have to be precise about the predictions of the small-world property: What it really says
is that the full graph should have about the same base b now as it used to have when it was,
say, only 250000 users large. What the above results now show in any case is that cutting
out a subgraph of that size creates a new network that doesn’t necessarily resemble that
earlier-stage full graph.

Short-Range Effects Does this mean that regional proximity does not play any role
for social distance? This certainly seems to contradict our intuitions about how we’re more
likely to meet people with shared aquaintances when in the same city! Taking a closer
look at the charts, we find that there is a difference between the two which however is not
captured by the global measure of characteristic path length and the number of hops needed
to connect to almost everyone. This difference lies in the fraction users found through
few connections. In the Berlin graph, 0.5% of the users can be reached via two hops, and
14.3% after three hops, whereas only 0.1% and 6.3% can be reached on the full graph. This
means e.g. that the probability of being connected to a random person via only two friends
becomes five times higher when only considering users in Berlin. It is conceivable that our
personal experiences are shaped more strongly by those short-range effects than by the vast
number of distant people that do not get much closer on average.

5.4.3.2. Pathological Path Lengths

On the other end of the path length spectrum, the maximum number of hops required to form
a path between two users is 12 and 13, respectively. The distribution shows us that only a
tiny fraction of users is further away than six hops from any other user, so we wondered
how such extreme path lengths could possibly come into existence.

One might assume that the user creating these values are simply poorly connected users.
However, it is not enough to be poorly connected – in order to arrive at extreme path lengths,
you’d have to be connected to other poorly connected users which in turn only have poorly
connected friends, and so on. Figure 5.13(a) shows a poorly connected, but “normal” user in
red. Even though that user has only few friends, those friends have a more average number
of friends, and the original user’s average path length is at most only one hop larger than
that of the more well-connected friends. We therefore examined single users with such high
distances, and found a peculiar setup. Figure 5.13(b) shows the neighborhood of one of
these users, representative for the other extreme cases as well. The user and those close to
him (black) are not only poorly connected, they are in fact only connected to one or two
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(a) A poorly connected, but “nor-
mal” user, directly connected to well-
connected friends

(b) An poorly connected, irregular user,
connected to regular users only through
a number of other irregular users (black)

Figure 5.13.: Neighborhoods of different types of users with few friends. Such users (red),
when connected to the giant component, at some point are connected to users
(blue) with a high number of friends (green).

users at all, the ones required to form this long chain. Further examination of these users
by the VZ employees showed that these users all seemed to have been created by the same
person, maybe for fun or testing purposes, or for more malign intents – even though it is not
clear how setting up this kind of connectivity could help such intents.

From a graph-theoretic point of view, this example confirms that it is very unlikely for
a node in a small-world network to be all that far away from the core of the network – in
the concrete case, one may have to make conscious efforts to create such a node. From
an applications point of view, this finding follows up on the themes on spam detection
discussed in Chapter 2: Non-standard behaviour creates non-standard graph properties so
salient that single abusive users may be identified by looking at the global properties of a
multi-million node graph. While this might be an interesting aspect to explore for operators
of network-based services, it also underlines the importance of privacy considerations when
dealing with networked data.

Conclusions On one hand, the results on path lengths confirm typical assumptions
about the small-world behaviour of a social graph: The friendship graph of StudiVZ has
a very short characteristic path length, and extreme deviations towards larger path lenghts
point to anomalies in the underlying behaviour. On the other hand, the results also provide
insights that correct two assumptions one might mistakenly hold about small-world graphs:

• Sampling from a graph is not the same as looking at the graph at an earlier point of
time, and the statements made by the small-world property apply to the latter case
only.

• Two networks may seem similar looking at their characteristic path length or the
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number of hops required to reach almost every node in the network. The subjec-
tive experience of connectedness may however be much more closely related to the
probability of meeting someone only few hops away. Since this is a feature that is
overshadowed in those measures by the vast majority of only distantly connected peo-
ple, it may be that subjective “small-world” experiences are largely decoupled from
the measures associated with this term in network analysis.

These results bring up further questions that could be examined in a follow-up project:

• How well does the friendship graph follow the small-world property, i.e. how does
the evoluation of b look like for different points in time?

• Do other regional subgraphs also exhibit the property of unchanged characteristic
path length but higher probability of short-distance connections? It could be imag-
ined that there are different classes of subgraphs, depending on absolute size but also
regionally varying behaviours.

5.4.4. Bipartite Communities between Users and Profiles

As the second part of the project, we investigated the applicability of multi-partite commu-
nity detection in a real-life setting. The platform provides the possibility of maintaining
so-called Edel (noble) profiles – fan pages for public figures, events, products and the like.
These profiles behave slightly different than normal user profiles – they don’t show up, for
example, as normal users’ friends, but as items these users like. Also, they receive dedicated
support by VZ.net, which, among other services, includes sorting them into a category tree.
This contrasts them from, e.g., groups, which do not have to correspond to persons, events
or such, can be created by any user, exist in much larger numbers, and are not categorized
as finely.

5.4.4.1. Background

Bipartite community detection between users and entities like Edel profiles or groups has
a number of interesting applications in the current setting. First of all, the identified clus-
ters can serve for recommendations – if users already like elements of one cluster, chances
are they will respond positively to recommendations from the same cluster. An automatic
grouping can also facilitate a later manual assignment of categories to these groups, which
may be interesting for commercial purposes. On the other partition, grouping users by sim-
ilar interests without being restricted on users actually liking exactly the same things opens
up possibilities for, e.g., friendship suggestions. In short, obtaining a sensible bipartite
community structure could be the basis for future applications – if the results are actually
sensible.

5.4.4.2. Experiment

The assumption is that an algorithm which creates sensible results on Edel profile networks
– which we can test given the existing categorizations – might also provide valuable insights
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into, e.g. the structure of the groups, where we have no such ground truth. We therefore
decided to apply bipartite community detection to Edel profiles, in particular to those of
major political Edel profiles, i.e. those of the seven largest German political parties or
politicians from those parties, kept in a “Politics” subtree of the category tree. This is a
clear-cut and easily interpretable domain, and has the advantage of keeping the numbers of
connections at a managable level. As of early 2011, there were 446 Edel profiles and 260134
users, with 402259 assignments between the two sets, leading to an average of 901.93 fans
per profile and 1.55 liked profiles per user. The most liked profile had 64919 fans, and the
most active user was a fan of 401 profiles.

We applied an optimization of Murata (2009)’s bipartite modularity with the mpcd soft-
ware package described in Appendix A.1.3, which can handle the bipartite case as a special
case of the originally intended, more general k-partite usage. The number of nodes and
edges could be significantly reduced by merging users with identical sets of liked profiles,
such that two users who both like exactly one profile would be represented as a single user
with an edge of double weight to the commonly shared profile (and vice-versa, if two pro-
files happened to be liked by an identical set of users). Such a “packing” of the graph was
previously considered for the tripartite case, but exactly matching connections to two other
domains seemed too rare after a short inspection of actual hypergraphs. In the bipartite case
however, such identities were found often enough to help reduce the size of the graph. In
order to further speed up computation, a next step in compressing the graph was to replace
the need for identical connections by a minimum similarity, grouping users whose vectors
of liked and unliked profiles showed a cosine similarity of at least 0.5. This finally reduced
the number of edges to around 40000 and proved managable for the current algorithm.

5.4.4.3. Results

It has to be noted that the runtime of mpcd’s community detection does not scale well,
as was already examined theoretically in Section 4.3.4. The community detection on the
packed graph took three weeks to finish on a powerful server. However, finding the truly
optimal community assignments is computationally intractable to begin with, and in order
to evaluate the benefits of searching further shortcuts or introducing new approximations,
the center of our attention was the quality of the results.

Figures 5.14 and 5.15 show the results, with the former showing the number of profiles
in each cluster, and the latter showing the number of aggregate “likes” in each cluster, each
time grouped by party. Several observations can be made:

• The optimal community assignment found consists of six clusters of political profiles.

As described above, we focussed on the seven major political parties in Germany.
However, two of them, CDU and CSU, form the “CDU/CSU” faction at the federal
level (regionally, there is no CDU in Bavaria and no CSU outside of it) and are com-
monly regarded as a single political entity. The reason why there are seven parties,
six clusters is that CDU and CSU are grouped together in cluster 1.

• The differentiation between clusters is clear-cut.
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Figure 5.14.: The six resulting communities and the number of profiles in each, by party.
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Figure 5.15.: The six resulting communities and the number of times users liked a profile in
each, by party.
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Each cluster corresponds to one political faction very clearly. Even though there is the
occasional “foreign” profile in some clusters, these are profiles which are not liked
by many users, as Figure 5.15 shows; those foreign profiles have a diminishingly
small aggregate number of users liking them. Conceivably, that small number of
connections is also the reason for their misplacement in the first place. The only
exception is a single SPD representative in the “Die Linke” (“the Left”) cluster 5
who has a high number of fans. She turns out to be Antje Krug, who used to be
featured as a candidate in the German political gameshow format “Ich kann Kanzler”
(“I can chancellor” [sic]). Judging from online resources of VZ.net (2009) and the
SPD (Köcher, 2009), Krug in fact obtained those fans during that show and prior
to joining the SPD. Thus discounting this outlier, we can conclude that the political
profiles are clustered in such a way that the connections between users and profiles
are almost perfectly divided by political faction.

5.4.4.4. Conclusions

The detection of communities in the political profiles could successfully retrieve the under-
lying structure. The only “mistake” in comparison to the manual category assignments is
the merge of CDU and CSU, which, as discussed above, is well in accordance with public
perception of the two.

This result is generally good news for a possible application on unlabelled data such as
groups. Even though thematic clusters may not be pronounced as clearly in groups as they
are in the political landscape, it seems that existing patterns can be identified.

Of course, for a large-scale application of this technique, further optimization of the com-
munity detection algorithm would be required in terms of runtime behaviour. The graph can
be arbitrarily reduced in size by lowering the threshold for merging similar users. A more
sophisticated line of work would require further examination of the actual graph structures,
looking for ways to reduce the number of recomputations after each join, possibly leaving
certain pairs of possible joins “dirty” (i.e. un-updated) when it can be estimated that their
change does not change the favourite in the next step.

5.4.5. Summary

The results of this project can be summed up by three major points:

1. The friendship graphs behaves as expected, showing a giant connected component
and a low characteristic path length. Extreme deviations can be traced back to anor-
mal usage patterns.

2. A regional subgraph shows properties remarkably similar to those of the full graph,
in terms of path lengths. However, the intuitively expected increase in small world-
phenomena is mirrored by a relative increase of short-range connections, which how-
ever are overshadowed in the global measure typically applied.
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3. Bipartite community detection retrieved an existing category structure rather flaw-
lessly. Given further work on speeding up the process, real-world applications on
unlabelled data are conceivable.

For me, this project has confirmed that the abstract measures used in network analysis can
in fact be used to better understand a complex system as the graph structures maintained
at VZ.net. Revealingly, a lot of the effort was spent on very concrete technical problem-
solving to deal with the sheer amount of data – an important point to take home. I hope
that, at the same time, some of these rather abstract results will find a way back into daily
business – I could imagine, e.g., path length distributions to be useful for certain operational
decisions.
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6.1. Results and Discussion

6.1.1. Summary

This thesis, at its core, is about generalizing concepts defined on binary relations to ternary
and theoretically even higher-order relations. In particular, it is concerned with concepts
for decomposing the resulting structures into meaningful subparts for easier analysis. The
practical background for this generalization is the emergence of datasets like social book-
marking data which are most naturally represented as 3-partite 3-uniform hypergraphs.

The starting point was the identification of spammers in social bookmarking data. The re-
sults on hyperincident connected components showed that a) structural information in these
datasets is closely tied to the behaviour of its users, and b) a theoretically sound treatment
of the underlying hypergraphs may generate insight where a simplification to normal graphs
does not. Encouraged by these results, I further pursued the theme of hypergraph decompo-
sitions, heading into the more general direction of community detection. In the first of the
three chapters dedicated to this topic, this task was formally defined for k, k-hypergraphs,
along with a set of challenges faced when dealing with these structures, and synthetic ex-
amples to benchmark progress on the way to solving them. In the next chapter, several
methods were developed to solve this task, from a simple (non-partite) baseline to a final
(balanced multi-partite) solution incorporating both theoretical considerations and answers
to practical issues encountered. Finally, a tool for visualizing and exploring the obtained
results was introduced and the methods were compared in different situations, highlighting
their practical differences when applied on real data.

To conclude, this thesis provides, on the practical side, insights into the structure of so-
cial bookmarking datasets as well as tools for their further exploration. On the theoretical
side, existing gaps are filled by generalizing concepts well-established on graphs, connected
components and modularity, to k, k-hypergraphs.

6.1.2. Discussion

6.1.2.1. On Generalizations

The main theoretical contribution of this thesis is the generalization of modularity to k-
partite, k-uniform hypergraphs. Several interesting things happened during the creation of
this generalization, or rather, these generalizations.

Simple generalizations. . . Back in Section 2.2, during the generalization of connected
components, life was easy. The original concept was rephrased in a way that made
explicit the formerly hidden parameter tying it to the 2-dimensional case, and then
that parameter could be scaled up to accomodate the higher-dimensional cases.
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. . . don’t always work It became evident in Section 4.3 that a similar approach was not
good enough for the generalization of modularity. The original measure to be gener-
alized neglects, for each community, all outgoing edges except the ones connecting
to the most strongly connected other community. A simple generalization would ne-
glect all edges except those connecting to exactly the most strongly connected pair of
communities from the two other domains. This led to a restrictively high number of
edges that were not taken into account by the naive generalization. This issue could
be solved by replacing the original argmax-based, binary selection heuristic by a lin-
ear correspondence function. Still, it is worth noting that the process of generalization
exposed a structural weakness in the original method that only escalated when taken
to higher dimensions.

Losing on the simpler cases Another issue, addressed in Section 4.4, was the effect that
the higher-order method, while performing well on the test cases involving higher-
order correlations, failed to handle the simpler cases correctly. The solution here was
to combine the simpler and the advanced method into a hybrid one. To bring up again
the analogy of my colleague Wendelin Boehmer, a quadratic function can fit curves a
linear function cannot, but one still keeps the linear term around in case one needs to
fit a line.

Undesirable optima The last issue I want to discuss is the one resolved in Section 4.5,
where it turned out that the multi-partite modularity function would find unexpected
and undesirable optima by joining all elements from one domain into a single giant
community. The solution is to encode the desired property of balanced community
sizes into the objective function. Still: This property came “for free” in the bipartite
case, and only in the higher-dimensional case the possibility of joining everything in
one domain and then only optimizing the remaining two ones became an (undesired)
possibility.

I guess the bottom line is that although sometimes, an elegant formal generalization on
paper may do the trick, all sorts of unexpected effects may appear when an algorithm of
sufficient complexity is moved out of its original domain (but then of course, that’s the
whole fun of it).

6.1.2.2. On Synthetic Datasets

One might argue that the results on the synthetic examples basically show what they were
designed to show: Higher-dimensional relations being reconstructable only by algorithms
taking into account these relations. The respective advantages, one might continue, might
have been shown purely analytically as well. However, it is not quite as easy, and in my
opinion the observed examples are valuable for at least three reasons.

1. Concrete examples help to solidify the image of the problem at hand. For example,
I was certain that multiple bipartite projections lose information contained in a hy-
pergraph long before the CONTRADICTIVE example was made up. However, it was
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hard to actually put a finger on when exactly this would happen. As we see now,
it is actually a pretty specific case in which tripartite structure really is important.
More generally, the examples helped putting the problem into a format which could
be viewed, discussed, and played with.

2. Numerous ideas have been tried out during the creation of this thesis that, in theory,
treated the tripartite structure in a similarly native way, but failed to work on the
examples. So the synthetic datasets were not made up after the fact to show that
everything works, but have been around all the way, shaping the development of the
proposed algorithms. In that sense, they might be understood as machine learning
equivalents of unit tests in software engineering.

3. Certain phenomena could be observed that probably would have been very hard to
anticipate by a purely analytic approach. A simple example is the behaviour of the
different algorithms under the influence of noise. A more significant example is the
poor performance of the multi-partite modularity measures from Section 4.3 on the
SIMPLE dataset. Never would it have occured to me that a more advanced represen-
tation of the data might actually miss relations that are obvious to a simpler one.

Of course, not every possible challenge could be cast as a synthetic dataset. The creation
of pathological giant communities that led to the definition of the balanced modularity only
became apparent once real datasets were examined. Still, the simplified and artificial exam-
ple with different “arms” was a helpful step towards identifying the underlying problems,
underlining the importance of the synthetic examples as condensed problem descriptions
and test cases.

To conclude, I believe the synthetic datasets have proven themselves to be valuable tools
in devising the proposed algorithms. By making them available per download, I hope they
will be helpful for further developments as well.

6.1.2.3. On Algorithms

The work on multi-partite community detection was theoretically motivated by the chal-
lenges put forward in Section 3.1.2: distinct community structure, correspondence instead
of equality, and hyper-incidence. Now that these challenges have been resolved by the
proposed algorithms: Was it worth it? Are the results sufficiently better?

The most significant difference is observed when switching from the non-partite base-
line to any partition-aware method, even the coupled bipartite one. This is not much of a
surprise, because even this bipartite method takes into account the first two challenges al-
ready. By removing the implicit restriction to group documents, users, and tags together,
new solutions become possible that apparently better fit the actual structure contained in the
datasets (different numbers of communities among domains, connections between the main
clusters), as shown e.g. in Section 5.3.1.

The difference between the bipartite and the multi-partite modularity measures is more
subtle. The compression figures examined in Section 5.3.2 show that the multi-partite meth-
ods bring the same improvement relative to the bipartite method as the bipartite one brings
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in relation to the non-partite one, yet the difference is sometimes hard to spot. In the same
section, we see a case where the (balanced) multi-partite method finds interesting inter-
cluster connections that the bipartite misses, which may hint at an increased sensitivity of
the multi-partite methods. Yet, I could not find an example in which the difference between
the two is as striking as the one to the non-partite method. This, however, may also include
an insight about the underlying data, to be discussed in the following.

6.1.2.4. On Social Bookmarking Data

The practical motivation for the work on community detection in hypergraphs was to un-
cover the hidden knowledge contained in social bookmarking data. What has generally been
learned about these datasets?

Cognition does matter. Social bookmarking collects traces of rather high-level cognitive
behaviour, and it is nice to see that this actually shows in the structure of the data.
This was, for me, the main take-away from the spam detection challenge described in
Chapter 2 – automated spam scripts not being fully capable of replicating the struc-
ture created by thinking humans. This mix between highly individual behaviour and
consistent large-scale phenomena is for me one of the most fascinating features of
this data. I hope the visualizations like the tag/document clouds of whole datasets or
the community structure of particular subgraphs succeed in transporting the sense of
beauty that emerges when dealing with this data.

Users are more than keyword providers. A plausible criticism of the methods described
in this thesis might be: Why can’t we simply aggregate over all users and use the sum
of their tags? If we look, e.g., at the community structures in the previous chapter, we
can see that the more interesting insights are typically generated by explicitly taking
into account who tags what – given sufficiently sophisticated methods are in place to
use this information.

There is little controversy. As noted earlier, the difference between the bipartite and the
truly multi-partite methods did not turn out as visually significant as one might have
(or at least I have) expected. However, a class of synthetic datasets could be produced
that can only be resolved by these multi-partite measures. The conclusion seems to
be that these particular cases do not play a huge role in the real data. Interpreting this
example, the CONTRADICTIVE graph family, it turns out that it simulates a scenario
of controversy: One community of users insists to tag one community of documents
one way, another one insists to tag them differently; and there is another community
of documents where the situation is reversed. If tags were ratings, such situations
should be expected to occur. In the actual data however, such behaviour could not be
found even when I explicitly looked for it (by examining the neighborhood of tags
like “war” or “politics” more closely). The reason seems to be that even if two users
disagree on politics, they are going to tag a political article with “politics” rather than
with “good”, “bad” or “propaganda”. This is actually consistent with the fact that
tags are primarily used for personal information management, and only secondarily,
if at all, with the intention of signalling their content to other users.
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6.2. Outlook

Finally, let me describe some possible extensions of the work presented here, as well as
possible future developments it could provide insights for.

6.2.1. Hyperincident Connected Components

Numerous questions remain to be explored in the area of hyperincident connected compo-
nents: Can we create a generative model that creates the component signatures of legitimate
and spamming activity? Do the findings generalize to spam in other datasets?

On a more specific level, what are the reasons for the slightly different signature of the
Delicious corpus? In comparison to the other datasets, it contains slightly larger next-largest
components, and also the frequency of component sizes does not peak at 1, but at 6 edges,
while no component smaller than 3 edges exists. One possible explanation for the bigger
next-largest components might be the presence of moderate amounts of spam. A possible
explanation for the shifted peak might be the presence of tag suggestions in the Delicious
interface: Maybe users are less likely to remain completely unconnected if they are encour-
aged to repeat tags other users have assigned earlier. In any way, it has to be noted that
this corpus, as opposed to the others, is only a slice from the middle of the usage period –
any further investigation of these features would have to be performed on a more complete
dataset.

Furthermore, what exactly is the process leading to the formation of the huge giant com-
ponent in the search-log data, and what can it tell us about the difference between finding a
document by a keyword and labelling it with a tag? Does this phenomenon generalize?

Finally, I have gone to some length to introduce m-incident and not simply 2-incident
connected components – so another path of further investigations would be to examine
hypergraphs with range >3, allowing the decomposition into 3- and higher-hyperincident
connected components.

6.2.2. Community Detection

The current optimization of multi-partite modularity might be further improved. Although
analytic gain updates as proposed by Clauset et al. (2004) for the non-partite case (not
requiring further loops over edges after initialization) seem hard to obtain because of the
non-linearity of potentially changing corresponding communities, further speed improve-
ments should be possible by, e.g., allowing for incomplete updates where justifiable. Al-
ternatively, the generalization of other optimization approaches such as the fast “Louvain”
method (Blondel et al., 2008) appears promising. Many other community detection ap-
proaches are suitable for generalization as well.

Another big question is how to compare different community assignments for real-world
data in a more quantitative way than what has been presented here. Either a dataset with
ground truth communities along all three domains can be obtained, or justified unsupervised
quality measures are developed. Such justification however should best be obtained relative
to actual users, and this also brings up the probably most valid evaluation: Integrating tools

145



6. Conclusions

based on community detection into actual social bookmarking services and measuring the
amount of human effort saved.

6.2.3. k-Partite, k-Uniform Hypergraphs

(3,3)-hypergraphs have been mostly discussed in relation to social bookmarking data, but in
fact they are significant to a much wider range of datasets: Wherever terms are connected to
entities not in a static, objective way as represented by the classic term/document matrices,
but associated by users in noisy, subjective ways, the information about who associated the
term becomes crucial. Therefore, the three-dimensional tensors gained by extending the
term/document matrix by a user dimension, and the hypergraphs created by these tensors,
appear as the basic model of social media: comments made by a particular user to a blog
post/product/etc, tweets by a user involving a URL, changes made by a user to a wikipedia
entry – all these cases involve tripartite structures, and I hope to have provided motivation
for a dedicated treatment of these peculiar structures. Future research might even identify
applications beyond the domain of social media.

6.2.4. Social Data

The technologies introduced in this thesis are prototypical, yet concrete applications could
be built on top of them. Decomposing social bookmarking data in the ways described
here could be shown to sometimes provide qualitatively new insights – e.g. by identifying
communities of users that could be interesting for a user, and being able to label them based
on the documents and tags they are associated with. The visualizations created by mpce
certainly have an “expert mode” feel to them – still, they showcase how the rather abstract
output of multi-partite community detection algorithms might be used to create new user
interfaces, allowing a richer structuring of document collections based on socially annotated
data.

Hendler et al. (2008) have coined the term “web science” for the interdisciplinary study
of the internet “as an entity in its own right”. Beyond the specific example of social book-
marking, the trend for users to generate ever more data and for services to mine this data
for insights is unbroken – creating not only more, but also qualitatively new types of data.
Time and location, for example, are two additional dimensions that play an important role in
many new datasets. These dimensions are admittedly different than, say, tags, because there
is already a strong relation between datapoints in terms of spatial or temporal proximity,
so the need to establish such relations does not exist in the same sense as for the initially
unrelated tags. Still, interpreting these coordinates as nodes in a hypergraph might open up
new exploratory methods, and I would like to hope that some of the insights generated here
can be helpful for their construction.
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A.1. Software Packages

Here, the software packages that have been created as part of this thesis are described. I
will provide a short introduction for each and then append excerpts of the corresponding
readme files to give an idea of the actual usage. All software packages can be found under
http://www.ni.tu-berlin.de/menue/software/.

A.1.1. hcc (Hyperincident Connected Components)

hcc provides a database-backed implementation of the decomposition algorithm proposed
in Section 2.2. While it requires the data to be inserted in to a database in a specific format,
its advantage over the memory-based approach is that is suitable for decomposing networks
with tens of millions of entries, furthermore persisting the results. It also contains auxialiary
functions for charting the obtained results.

Description

hcc computes connected components and hyperincident connected components in social
bookmarking datasets which are stored in a database.

Usage

python hcc.py [cc|hcc|hccplot|hccstats] db

cc computes the connected components.

hcc computes the 2-incident connected components.

hccstats outputs basic statistics about the found components.

hccplot creates .plt-files of the component size distributions to be processed by GnuPlot.

db is the name of a database reachable through dbconnection() and containing at
least the tables and fields defined in template.sql . In particular, edges must be
stored in the entries table, where document_id, user_id and tag_idpoint to
the three elements connected by the edges. The corresponding tables documents,users,
and tags can be used to store additional metadata.
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A.1.2. mpcb (Multi-Partite Community Benchmarks)

The software package mpcb provides facilities for benchmarking future community de-
tection algorithms on k, k-hypergraphs. It contains code to generate random hypergraphs
according to the models introduced in Section 3.3, as well as a database-backed evaluation
framework to integrate novel detection algorithms as well as additional hypergraph models.
A database is available for download that contains performance evaluations of the non-
partite, coupled bipartite and hybrid modularity, together with the hypergraphs on which
these evaluations have been run. Like this, future algorithms can be evaluated on the same
data, which – along with their included performance data – allows for a direct comparison
with my approaches.

Description

mpcb runs benchmarking tests on multi-partite clustering algorithms.

Setup

mpcb creates synthetic hypergraphs and stores them for later reuse, along with any already
obtained results. If you have already run experiments on 100 graphs with one method, you
can add a second one and it will be applied to the same 100 graphs, making it comparable to
the first method without need to recompute that first method’s performance. In order to store
this data, a database is required. Please create a database mpcb (the name can be changed
along with database credentials in configuration.py) and execute the code in mpcb.sql
or mpcb_data.sql, to get an empty database or, respectively, one containing reference
data by my approaches to compare against.

Usage

mpcb.py provides a list of method groups as defined in configuration.py (by default, only
nonvsbi) Example:

> python mpcb.py

mpcb.py method_group graphtype nodes [start_id] [num_graphs] runs the eval-
uation using the clusterers from the provided method group, the graph type, creating
graphs with the given number of nodes. A start id and the highest id to be evaluated
can be given. Graph types:

0 all

1 Simple

2 Overlapping

3 Contradictive

Example:
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> python mpcb.py nonvsbi 1 10 0 10

list.py without parameters shows a list of available method groups.

list.py method_group shows a list of graph families for which results are available
for the given method group.

Example:

> python list.py nonvsbi

might create an output like

10 ( 0) contradiction(5.0, 2.0)
10 ( 1) contradiction(5.0, 3.0)
10 ( 2) contradiction(5.0, 4.0)
10 ( 3) contradiction(5.0, 5.0)
10 ( 4) overlap(5.0, 1.0)
10 ( 5) overlap(5.0, 2.0)
10 ( 6) overlap(5.0, 3.0)
10 ( 7) simple(5.0, 0.5, 2.0)
10 ( 8) simple(5.0, 1.0, 2.0)
10 ( 9) simple(5.0, 2.0, 2.0)

This means, e.g., that 10 graphs have been evaluated on all methods in nonvsbi of
the Contradictive family with 5 nodes per community and 2 edges per node. This
graph family has the family id 0 (value in paratheses). Use these family ids to create
a gridded result chart in the next step.

Routput.py method_group familyid_familyid_...[#familyid_...[#...]]

rowtitle[_rowtitle[_rowtitle...]] creates a set of data files that can be used
with the provided R script plotresults.r to produce evaluation charts. Accepts
a list of family ids which are separated by _, or by # in order to create a new row.
Row titles are separated by _.

Example:

> python Routput.py nonvsbi 7_8_9#4_5_6#0_1_2
Simple_Overlapping_Contradictive

plotresults.r method_group [method_group] plots the data created by Routput.py

Example:

> Rscript plotresults.r nonvsbi

creates a file results_nonvsbi_figure.pdf based on the data created by Routput.py.

149



A. Appendix

print.py method_group family_id prints the numeric results of the methods in
the provided method group for the given graph family.

Example:

> python print.py nonvsbi 0

shows the results for the graph family with id 0.

scatter.py method_group family_id creates a set of data files that can be used
with the provided R script plotscatter.r to produce scatter plots showing the numeric
results of the methods in method_group on all charts given by family_id.

Example:

> python scatter.py nonvsbi 7 1.0

if used on the dataset shown above would scatter the results of the non- and bipartite
methods on graphs of the simple(5.0, 0.5, 2.0) family with p=1.0 (i.e. noiseless).

plotscatter.r filename creates a PDF from scatter data.

Example:

> Rscript plotscatter.r scatter_nonvsbi_7_1.000

creates a scatter plot from the file created by the previous call of scatter.py.

Adding own clusterers

In order to analyse your own clusterer, extend the Clusterer class in clusterers.py.
get_clusters must accept in edges a dictionary of the format

{(d,u,t): w, ...}

and return a list of community assignment dictionaries, one per dimension:

[{d1: community_id, d2: ...},
{u1: ..., ...},
{t1: ..., ...}]

Overwrite __str__ to control the name under which your clusterer’s results will be
stored. Integrate your clusterer by creating a method group in configuration.py ,
e.g. by adding

"my_method_group": [clusterers.FakeClusterer("Hybrid"),
clusterers.MyNewClusterer()]

to compare your algorithm to the performance data of the hybrid clusterer.
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Figure A.1.: Entity Relationship Diagram for the database holding graphs and results cre-
ated via mpcb.
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A.1.3. mpcd (Multi-Partite Community Detection)

The software package mpcd provides a Java-based command-line implementation of the
coupled bipartite modularity optimization introduced in Section 4.2.

Description

mpcd accepts a hypergraph in text format and performs a community detection based on
coupled bipartite modularity optimization.

Input Format

mpcd expects as input a list of edges, given by three space-separated element ids and a
weight per line, e.g.

2450 1656 1180 1.000000
...

Running mpce

mpcd [inputfile] -o [output file prefix] -om

om outputs the individual joins at each step, instead of just storing the final community
assignment of optimal modularity

Output format

[output file prefix].[0|1|2] contain a list of

node id: community id

pairs.
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A.1.4. mpce (Multi-Partite Community Exploration)

The software package mpce as described in Section 5.2 provides a Java-based frontend for
visualizing and exploring community domains as created for example, but not necessarily,
by the aforementioned mpcd.

Description

mpce accepts a hierarchical clustering in three dimensions and allows an interactively ex-
ploring it. The GUI starts showing the top-most state of the clustering, all elements of
one dimension merged into a single community. By pressing space or clicking on individ-
ual communities, the next or the selected community is split into the two subcommunities
it consists of. A PDF can be exported of the current interface state by pressing ’p’. By
hovering over a community node and pressing ’a’, annotations can be turned on or off.

Input format

mpce expects, as parameters, a directory and a merge file name. In the directory, a file
edges.txt is expected which must contain the edges in the format

1 1 1 1.0

to describe a hyperedge between elements 1, 1, 1 of weight 1.0.
The *.merges files contain the main clustering information like

2 1937 1066 0.026370 0

which mean that in dimension 2, community 1937 is merged into 1066. The following two
colums indicate step-wise clustering quality and clustering step.

Additionally, the directory can contain names.0, names.1, and names.2 , which,
for the corresponding dimension, contains labels like

121771: http://google.com

Running mpce

Either run mcpe via mpce.bat [directory], or import mpce as an Eclipse project
and run MPCEViewer , in both cases using a 32-bit JRE.

Example In the mpce directory, try

mpce example fc
mpce example tribi

to visualize the clustering of a sample graph using the non- or coupled bipartite approach.
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A.2. Additional Figures

A.2.1. Full Set of Tag/Document Clouds
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Figure A.2.: Tag/Document Cloud of the CiteULike dataset
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Figure A.3.: Tag/Document Cloud of the Visualizeus dataset
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Figure A.4.: Tag/Document Cloud of the Delicious dataset
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Figure A.5.: Tag/Document Cloud of the MovieLens dataset
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A.2.2. Additional Charts
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Figure A.6.: This shows basically the same information as Figure 4.11 on page 97, except
an argmax-based correspondence function is used for the bipartite modularity.
See Section 4.1.2 for a detailed explanation of this chart.
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(a) A sample hypergraph Hlow

(b) A sample hypergraph Hhigh

Figure A.7.: The two hypergraphs examined in the following two charts
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Figure A.8.: Hlow – results for the dampened modularity with various values of α and the
balanced modularity
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Figure A.9.: Hhigh – results for the dampened modularity with various values of α and the
balanced modularity
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