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Leveraging Novel Information for Coarse-Grained
Prediction of Protein Motion

Abstract

Proteins are involved in almost all functions in our cells due to their ability to combine
conformational motion with chemical specificity. Hence, information about the motions of a
protein provides insights into its function. Proteins move on a rugged energy landscape with
many local minima, which is imposed on their high-dimensional conformational space. Exhaustive
sampling of this space exceeds the available computational resources for all but the smallest
proteins. Computational approaches thus have to simplify the potential energy function and/or
resolution of the model using information about what is relevant and what can be ignored. The
accuracy of the approximation depends on the accuracy of the used information. Information
that is specific to the problem domain, i.e. protein motion in our case, usually results in better
models.

In this thesis, I propose a novel elastic network model of learned maintained contacts, lmcENM.
It expands the range of motions that can be captured by such simplified models by leveraging
novel information about a protein’s structure. This improves the general applicability of elastic
network models.

Elastic network models (ENMs) are a highly popular coarse-grained method to study protein
motions. They assume that protein motions are harmonic around an equilibrium conformation
and largely governed by the protein’s structural connectivity. This leads to the simplified
representation of a protein as elastic mass-spring-network based on residue interactions. Despite
their simplicity, ENMs predict intrinsic protein motions with surprising biological relevance.
Accurate ENM predictions, however, require the initial contact topology to be maintained during
a protein’s motion. This is naturally fulfilled for highly collective motions resulting in successful
predictions. But localized functional transitions involving substantial changes in the contact
topology are often poorly explained. This limits the practical relevance of ENMs because the
motion type of a protein is unknown a priori and thus it is unknown whether ENMs can capture
it.

lmcENM overcomes this limitation by leveraging information about the dynamic behavior of
contacts, i.e. whether they break or are maintained when the protein moves. The maintained
contacts remain after predicted breaking contacts have been removed from the initial network. In
contrast to existing ENM variants, lmcENM is able to accurately predict protein motions even
for localized and uncorrelated functional transitions with changing contact topology.

In the first part of my thesis, I show that the absence of observed breaking contacts enables
ENMs to accurately explain localized functional transitions. The resulting network of observed
maintained contacts, mcENM, can be built when start and end conformation of a functional
transition are known. Of course, to apply this strategy in the standard case when only a single
protein conformation is available, we need to be able to predict these breaking contacts.

In the second part of my thesis, I show how the breaking contacts can be predicted. To do so, I
developed a machine-learning based classifier to differentiate breaking from maintained contacts
based on a graph-based encoding of their structural context. The physicochemical characteristics
of a contact’s structural context capture how tightly different parts of the protein are bound to
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each other, how this affects their movements, and ultimately their contact topology. To build
lmcENM the predicted breaking contacts are removed from the initial network. Using a large set
of proteins covering different motion types I demonstrate the effectiveness of lmcENM.

My thesis unlocks breaking contacts, or generally dynamic contact changes, as a novel source of
information that has proven valuable in coarse-grained prediction of protein motion. Because they
are defined on a simplified model of the structural connectivity of a protein, they are insensitive
to structural details that would otherwise make their identification and prediction more difficult.
The existence and usefulness of breaking contacts demonstrated in my thesis enables future
research opportunities to study the conditions under which they occur and to examine the features
that contributed the most to their accurate prediction. Our framework for predicting breaking
contacts can be easily extended to further advance our understanding of protein motion.
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Ausnutzung neuer Informationen für
grobaufgelöste Vorhersage von Protein Bewegung

Zusammenfassung

Proteine sind an fast allen Funktionen in unseren Zellen beteiligt aufgrund ihrer Fähigkeit,
Konformationsbewegungen mit chemischer Spezifität zu kombinieren. Informationen über die
Bewegungen eines Proteins liefern somit Einblicke in seine Funktion. Proteine bewegen sich auf
einer zerklüfteten Energielandschaft mit vielen lokalen Minima über ihrem hochdimensionalen
Konformationsraum. Eine erschöpfende Abtastung dieses Raums übersteigt die verfügbaren
Rechenressourcen für alle bis auf die kleinsten Proteine. Computergestützte Ansätze müssen daher
die Energiefunktion und/oder die Auflösung des Modells vereinfachen aufgrund von Informationen
darüber, was relevant ist und was ignoriert werden kann. Die Genauigkeit der Approximation
hängt von der Genauigkeit der verwendeten Information ab. Informationen, die spezifisch für die
Problemdomäne sind, d. h. Proteinbewegung in unserem Fall, führen normalerweise zu besseren
Modellen.

In dieser Arbeit stelle ich ein neuartiges elastisches Netzwerkmodell von erlernten erhaltenen
Kontakten, genannt lmcENM, vor. Es erweitert die Bewegungsreichweite, die durch diese Netz-
werke erfasst werden können, durch das Ausnutzen neuer Informationen über die Struktur eines
Proteins. Dies verbessert die allgemeine Anwendbarkeit von elastischen Netzwerkmodellen.

Elastische Netzwerkmodelle (ENMs) sind eine sehr populäre grobkörnige Methode zur Unter-
suchung von Proteinbewegungen. Sie nehmen an, dass Proteinbewegungen harmonisch um eine
Gleichgewichtskonformation verlaufen und weitgehend von der strukturellen Konnektivität des
Proteins bestimmt werden. Dies führt zur vereinfachten Darstellung eines Proteins als elastisches
Masse-Feder-Netzwerk auf der Basis von Residue-Interaktionen. Trotz ihrer Einfachheit sagen
ENMs intrinsische Proteinbewegungen mit überraschender biologischer Relevanz voraus. Genaue
ENM-Vorhersagen erfordern jedoch, dass die anfängliche Kontakttopologie während der Bewegung
eines Proteins aufrechterhalten wird. Dies ist natürlicherweise für hoch kollektive Bewegungen
erfüllt, was zu ihrer erfolgreichen Vorhersagen führt. Lokalisierte Funktionsbewegungen, die
wesentliche Änderungen in der Kontakttopologie beinhalten, werden jedoch oft nur unzureichend
erklärt. Dies begrenzt die praktische Relevanz von ENMs, da der Bewegungstyp eines Proteins a
priori unbekannt ist und daher unbekannt ist, ob ENMs es erfassen können.

lmcENM überwindet diese Einschränkung, indem Informationen über das dynamische Verhal-
ten von Kontakten genutzt werden, d. h. ob sie brechen oder erhalten bleiben, wenn sich das
Protein bewegt. Die erhaltenen Kontakte bleiben übrig, nachdem die brechenden Kontakte aus
dem ursprünglichen Netzwerk entfernt wurden. Im Gegensatz zu existierenden ENM-Varianten
ist lmcENM in der Lage, Proteinbewegungen auch für lokalisierte und unkorrelierte Funktions-
transitionen mit sich ändernder Kontakttopologie genau vorherzusagen.

Im ersten Teil meiner Arbeit zeige ich, dass die Abwesenheit von beobachteten brechenden
Kontakten ENMs in die Lage versetzt, lokalisierte Funktionstransitionen genau zu erklären.
Das resultierende Netzwerk von beobachteten bleibenden Kontakten, mcENM, kann erstellt
werden, wenn die Anfangs- und Endkonformation eines Funktionsübergangs bekannt ist. Um diese
Strategie im Standardfall anzuwenden, wenn nur eine einzige Proteinkonformation zur Verfügung
steht, müssen wir diese brechenden Kontakte natürlich vorhersagen können.
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Im zweiten Teil meiner Arbeit zeige ich, wie die brechenden Kontakte vorhergesagt werden
können. Um dies zu erreichen, entwickelte ich einen maschinell lernenden Klassifikator, der die
brechenden von den bleibenden Kontakten unterscheidet auf Grundlage einer graph-basierten
Kodierung ihres strukturellen Kontexts. Die physikalisch-chemischen Eigenschaften des struktu-
rellen Kontexts eines Kontakts erfassen, wie stark verschiedene Teile des Proteins miteinander
verbunden sind, wie sich dies auf ihre Bewegungen und letztendlich auf ihre Kontakttopologie
auswirkt. Zum Erstellen von lmcENM werden die vorhergesagten brechenden Kontakte aus
dem ursprünglichen Netzwerk entfernt. Anhand eines großen Datensatzes von Proteinen, die
verschiedene Bewegungstypen abdecken, demonstriere ich die Effektivität von lmcENM.

Meine Dissertation erschließt brechende Kontakte oder allgemein dynamische Kontaktänderun-
gen als eine neue Informationsquelle, die sich bei der grobkörnigen Vorhersage von Proteinbewegung
als wertvoll erwiesen hat. Da diese dynamische Kontaktänderungen auf einem vereinfachten Modell
der strukturellen Konnektivität eines Proteins definiert sind, sind sie unempfindlich gegenüber
strukturellen Details, die ansonsten ihre Identifizierung und Vorhersage erschweren würden. Die
Existenz und Nützlichkeit von brechenden Kontakten, die meine Dissertation zeigt, bietet die
Grundlage dafür die Bedingungen für ihr Auftreten und die Eigenschaften, die am meisten zu ihrer
Vorhersage beigetragen haben, weiter zu erforschen. Unser Framework für die Vorhersage von
brechenden Kontakten kann leicht erweitert werden, um unser Verständnis der Proteinbewegung
weiter voranzutreiben.
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Everything should be made as simple as possible,
but not simpler.

Albert Einstein1

Proteins are not just good to eat, but they have
specific shapes [...]. Although they consist of many
thousands of atoms, they are governed by the
same laws that govern the structure of bridges
and houses. Everything is highly organized.

Michael Levitt2 1
Introduction

In 2013 Michael Levitt, Martin Karplus, and Arieh Warshel jointly won the Nobel Prize in
Chemistry for their pioneering work on "developing multiscale models for complex chemical
systems"3. It was the first time that the nobel price was awarded to computational research,
thereby acknowledging the importance of combining experimental methods with computational
approaches to further advance the field, now known as computational structural biology.
The key quest behind the work of Levitt, Karplus, and Warshel is to find the appropriate degree
of simplification that makes computational simulation of complex biochemical systems feasible
but still yields biologically meaningful predictions.

To come up with a simplified model for a complex problem we need information that tells us
what is important and what can be ignored. The accuracy of this information determines the
quality of the approximation. Exploiting domain-specific information will usually result in better
models because it is targeted to the actual problem. Nonetheless, every simplification introduces
errors. Hence, the goal is to balance model complexity and (domain-specific) generalization error,
which usually depends on the actual task, the availability of information, and the dedicated
computational resources. The task defines the purpose of the simplified model, i.e. which questions
should be answered, and in which context it is applied. For instance, if we are only interested in
the flexibility of proteins the three-dimensional position of atoms can be ignored as demonstrated
by rigidity analysis (Hermans et al., 2017).

This thesis aims to find such an appropriate simplification for coarse-grained prediction of
protein motion using elastic network models (ENMs) (Tirion, 1996, Hinsen, 1998, Atilgan et al.,
2001, Tama and Sanejouand, 2001). Based on strong assumptions, ENMs deliberately simplify

1This aphorism is attributed to Einstein although he may have never put it on paper. Instead he
introduced the underlying idea in a lecture. The actual paraphrase may have been crafted by Roger Session
when promoting Einstein’s idea (https://quoteinvestigator.com/2011/05/13/einstein-simple/).

2https://news.stanford.edu/news/2013/october/levitt-nobel-chemistry-100913.html
3https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/advanced-

chemistryprize2013.pdf

1

https://quoteinvestigator.com/2011/05/13/einstein-simple/
https://news.stanford.edu/news/2013/october/levitt-nobel-chemistry-100913.html
https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/advanced-chemistryprize2013.pdf
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Chapter 1. Introduction

the model of a protein and yet successfully predict function-related protein motions. However,
the gained computational efficiency comes at a certain cost. ENMs are limited to a particular
motion type.

To overcome this limitation, we propose to leverage novel information about dynamic changes
in the simplified network connectivity of ENMs. We present an approach to predict these dynamic
changes using methods from graph theory and machine learning. By adjusting the network based
on the predicted changes, we expand the range of motions that can be predicted by ENMs.

Before introducing our approach in more detail (section 1.3), I will give a basic intuition on

• why simplification is required to predict protein motion (section 1.1) and
• how simplification is facilitated by the use of information, focusing on the two most

commonly used computational approaches to study protein motion (section 1.2).

1.1 Protein Motion

1.1.1 Functional Significance of Protein Motions

Proteins are essential building blocks in the cells of living organisms. Almost all cellular processes
rely on their ability to combine chemical interaction with conformational motion (Alberts et al.,
2002). They transport nutrients, transmit signals, catalyze enzymatic reactions, or regulate the
metabolism. They stabilize the cells as structural scaffolds. They drive muscular contraction
or vesicle transport in the cytoplasm as motor proteins. They support our immune system as
antibodies by binding and neutralizing foreign microbes, and much more. All these functions
require intensive interaction with binding partners, called ligands, which depends on the protein’s
ability to change its conformational shape.

The function of a protein is tightly coupled to its structure-encoded motions (Bahar et al.,
2010b, Haliloglu and Bahar, 2015, Orozco, 2014, Teilum et al., 2009, Rueda et al., 2007b, Karplus
and Kuriyan, 2005). This became evident for the first time when Felix Haurowitz observed the
conformational change of hemoglobin upon oxygen binding in 1938 (Haurowitz, 1938). Since
then, it has been established that to carry out their function proteins need to interact with other
molecules.

To enable the interaction with a binding partner proteins need to adapt their three-dimensional
structure (conformational shape). Only if the shapes of protein and ligand match along their
binding interface, also their chemical binding becomes strong enough to be effective (Alberts et al.,
2002). To gain insights into the function of a protein therefore requires the ability to infer the
motion abilities inherently encoded in its structure. Most importantly, it may advance therapeutic
treatment and the design of novel drugs against severe diseases, such as Alzheimer’s (Anand
et al., 2014, Cope et al., 2018, Villemagne et al., 2018), HIV/AIDS (Ghosh et al., 2016, Chupradit
et al., 2017, Wu et al., 2017), or influenza (Webster and Govorkova, 2014, Wang et al., 2015).

2



1.1. Protein Motion

1.1.2 Complexity of Conformational Space and Dynamics

Proteins typically consist of tens of thousands of atoms. This number can grow up to hundreds
of thousands when considering large biomolecular assemblies, such as the ribosomes, chaperons,
or viruses (Voss, 2007). Hence, their conformational space is too large to be sampled exhaustively
with current computational methods for all but the smallest proteins. Fig 1.1A shows such a case
where the conformational space of the molecule is simple enough to be explored in full detail.
Because the molecule has only two torsional angles along its backbone, its conformational space
is sufficiently described by two dimensions. Each conformational change in this space also affects
the free energy of the molecule, resulting in an energy landscape drawn along the third dimension.

BA

Figure 1.1: Illustration of free energy landscape and folding funnel. (A) Free energy surface of the
Alanine Dipeptide imposed on their two-dimensional conformational space defined by two torsional
angles. The two conformations represent low-energy states. Figure taken from1. (B) Folding funnel
that leads over multiple partially folded states at intermediate energy levels towards few folded
states with lowest energy. Figure source: Dill and MacCallum (2012). Reprinted with permission
from AAAS.

The three-dimensional structure of a protein is determined by its sequence (Anfinsen, 1973), a
chain of amino acids encoded in our DNA. To reach this folded state proteins must be guided
efficiently because they cannot sample the space of possible conformations within realistic folding
times of a few seconds (Levinthal, 1969). This has led to the view of the energy landscape as
a rugged funnel-shaped surface with many local minima. At the bottom of the funnel is the
global energy minimum containing a few low-energy folded states (Dill and Chan, 1997, Dill and
MacCallum, 2012) as shown in Fig 1.1B.

Under physiological conditions in the cell, the native state is more accurately characterized
as an ensemble of conformations (Frauenfelder et al., 1991, Henzler-Wildman and Kern, 2007,
Orozco, 2014). Proteins continuously transition between stable, low-energy sub-states on the free
energy landscape around their native state. Each transition involves overcoming energy barriers,
which is more or less likely given the laws of thermodynamics and influence of the surrounding
solvent. Consequently, some conformations are highly populated while others are rare. A major
determinant of this distribution seems to be the nature’s predisposition to optimize proteins
for their biological function. There is growing evidence that evolution has shaped the protein’s

1https://www.sfb716.uni-stuttgart.de/forschung/teilprojekte/projektbereich-
c/teilprojekt-c6/beschreibung/index.en.html

3
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Chapter 1. Introduction

Figure 1.2: Hierarchy of motion amplitudes
and timescales defined by the energy land-
scape. The landscape is organized in three
tiers based on the energies, barrier height,
and time scales of the conformational transi-
tions. Transitions across high energy barriers
have lower probability than over small barri-
ers. Biomolecular processes at the micro- to
milisecond scale, such as ligand binding or
signal transmission, can change equilibrium
of the energy landscape between states (from
dark blue to light blue or vice versa). Figure
source: Henzler-Wildman and Kern (2007).
Reprinted with permission from Springer Na-
ture.

energy landscape to favor the population of its functionally relevant sub-states (see Wei et al.
(2016) and citations therein).

Binding a ligand may change this distribution. Two mechanisms have been proposed to explain
how this might happen. The first mechanism, induced-fit (Koshland, 1958) occurs when the
ligand actively induces a conformational change in the binding pocket to enable the binding
process. The second mechanism conformational selection mechanism (Tsai et al., 1999, Goh et al.,
2004) happens when the passive presence of a ligand shifts the population of states towards the
reachable but only rarely visited bound conformation. In a large-scale study Stein et al. (2011)
found that about half of the proteins showing conformational changes upon ligand binding follow
the latter model, while the other half may be better explained by a combination of intrinsic and
induced movements. Only a small portion of proteins showed purely induced motions. Hence, in
most cases the conformational changes involved in ligand binding seem to be intrinsically encoded
in a protein’s structure.

To perform these conformational changes, a protein has to move along the energy landscape
and cross energy barriers of different heights as shown in Fig 1.2. Consequently, these motions
vary widely in their temporal and spatial scales (Henzler-Wildman and Kern, 2007). They range
from fast, small-scale side chains fluctuations and loop motions up to slow, large-scale domain
motions or even (partial) un- and refolding. Many functional processes in our cells, such as
protein-ligand binding, enzyme catalysis, or signal transmission involve anharmonic transitions at
the micro- to millisecond scale between different conformational states (see Fig 1.2). As we will
see in the following, the temporal and spatial scales of protein motion impose a major challenge
for studying them by experimental and computational means.

4



1.1. Protein Motion

1.1.3 Limits of Experimental Protein Motion Determination

The wide range of temporal and spatial scales of protein motions make it difficult—if not
impossible—to observe them directly with current experimental methods. Nonetheless, they
are and will remain the gold standard for determining protein structure and dynamics. This
is demonstrated by the amount of experimentally resolved structures that are deposited at the
protein data bank (PDB) (Berman et al., 2000), which more than doubled over the past ten years.
At the time of this writing the PDB contains a total of 118756 protein structures resolved by
X-ray crystallography, 10753 by nuclear magnetic resonance tomography (NMR), and 1603 by
cryo-electron microscopy (cryo-EM)1.

X-ray crystallography (Drenth, 2007) provides the highest structural resolution and can be
applied to a wide range of protein sizes. But its view on protein dynamics is limited to stable
start or end conformations of functional transitions. To determine the three-dimensional positions
of atoms x-rays rays are shot on a crystal of the protein, which consist of millions of protein
instances arranged in a regular grid. The atom positions can be calculated from the resulting
diffraction pattern. Crystallizing the protein at very low temperatures is necessary because at
room temperature x-rays would rapidly destroy the protein. Besides being a time consuming
process that is not guaranteed to work, it may introduce structural distortions (Dror et al.,
2012, Wang et al., 2014a, Miller, 2014). Furthermore, there is no guarantee that these structural
snapshots captured in the crystal match the most populated states in solution (Ma and Nussinov,
2016). Cryo-EM provides structural snapshots of large molecular complexes without the need of
crystallization but cannot reach the atomic resolution of X-ray crystallography.

Dynamic methods, such as NMR (nuclear magnetic resonance) (Kovermann et al., 2016), FRET
(fluorescence resonance energy transfer) (Lerner et al., 2018), AFM (atomic force microscopy,
optical tweezers) (Pavliček and Gross, 2017), SAXS (Small-angle X-ray scattering) (Kikhney and
Svergun, 2015) provide a time-resolved view on protein dynamics, but they are limited by the
size of proteins or time-scales they can resolve (Dror et al., 2012, Wang et al., 2014a, Miller, 2014,
Maximova et al., 2016). Recently, also temperature- and time-resolved x-ray-free-electron-laser
(XFEL) crystallography (Keedy et al., 2015, Bostedt et al., 2016, Martin-Garcia et al., 2016,
Johansson et al., 2017) has been developed, which overcomes the radiation damage potentially
resulting from X-ray crystallography. However, there are only a few facilities world-wide to run
these experiments, which has resulted in about 150 resolved protein structures deposited at the
PDB so far (Johansson et al., 2017).

1Numbers are retrieved from http://www.rcsb.org/stats/summary, accessed on 2018-07-02.
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1.2 Atomistic vs. Coarse-Grained Approaches to

Study Protein Motions

Computational approaches to study protein motions aim to close the gap left by experimental
methods. Nonetheless, due to the aforementioned complexity of protein motion they must find
an appropriate level of simplification to balance computational cost and biological relevance. To
do so, they replace the complex energy landscape of proteins by simpler energy potentials using
knowledge about physics and reduce the resolution of the protein using knowledge about the
highly organized structural shape of proteins that determines their motions.

Over the past decades numerous computational approaches to predict protein motions have
been developed. They have been extensively reviewed in a series of recent publications (Maximova
et al., 2016, Shehu and Plaku, 2016, Kmiecik et al., 2016, López-Blanco and Chacón, 2016, Orozco,
2014, Al-Bluwi et al., 2012). In this thesis we focus on the two widely used approaches to study
protein motions, which span the range of used simplifications: most accurate molecular dynamics
(MD) simulations and highly simplified elastic network models (ENMs).

Molecular dynamics approaches—on one end of the spectrum—simulate atomistic motions based
on empirical physical force fields, which approximate the protein’s energy landscape (McCammon
et al., 1977, Karplus and Petsko, 1990, Karplus and McCammon, 2002, Karplus and Kuriyan,
2005). This results in what is believed to be a highly accurate understanding of protein motion.
However, due to the computational requirements, only brief glimpses of protein motion can be
obtained. In spite of increasing computational power, advances in parallelization (Buch et al., 2010,
Stanley and De Fabritiis, 2015, Kutzner et al., 2015), and special-purpose supercomputers (Shaw
et al., 2009, 2014, Ohmura et al., 2014), the practical usability of MD remains limited (Stanley
and De Fabritiis, 2015).

On the other end of the spectrum, efficient computational approaches make drastic simplifica-
tions to the underlying physics—but at the same time maintain a surprising biological accuracy.
They exploit the fact that much information about protein motion seems to be captured in
the protein’s contact topology, a simplified representation of the structural connectivity. These
coarse-graining approaches, including the elastic network models (ENMs) (Tirion, 1996, Bahar
et al., 1997, Hinsen, 1998, Haliloglu et al., 1997, Atilgan et al., 2001), deliberately decrease the
resolution of the underlying model to gain computational power, yet predict intrinsic protein
motions of biological relevance (Tama and Sanejouand, 2001, Krebs et al., 2002, Eyal et al., 2006,
Ahmed et al., 2010, Bahar et al., 2010b).

Elastic network models, which will be the focus of this thesis, are one form of simplified model
that has been very successful. They represent a protein as a network of masses connected by
springs. Each mass corresponds to a residue of the protein. Two masses are connected by a
virtual spring if the respective residues are within a certain distance in the protein structure (we
will also say that the residues are in contact).

There is a cost associated with the reduction in model complexity realized by ENMs. The
simplicity prevents them from capturing functional transitions if they are localized or uncorrelated
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(low degree of collectivity) (Tama and Sanejouand, 2001, Ma, 2005, Cavasotto et al., 2005, Yang
et al., 2007, Orellana et al., 2010). Making matters worse, it is difficult to know a priori whether
ENMs can model a protein’s motion accurately (Yang et al., 2007). As a result, ENMs currently
are not only limited to a particular type of protein motion, it is also difficult to know if a given
protein exhibits that motion type. These factors limit the practical relevance of ENMs.

1.3 This Thesis: Leveraging Novel Information for

Coarse-Grained Protein Motion Prediction

In this thesis I propose a novel elastic network model that aims to improve the general applicability
of ENMs by leveraging information to maintain the network’s connectivity. The thesis consists of
two main chapters: The first identifies the relevant information about dynamic contact changes
that is required to improve the accuracy ENMs. The second presents our approach to predict
these dynamic contact changes to be able to adjust the network of ENMs in the standard case,
where only a single protein conformation is available.

• Chapter 5 Elastic Network Model of Maintained Contacts (mcENM)
investigates how the network connectivity of ENMs must be refined in order to capture
also localized function-related protein motions. It is based on the insight that ENMs
explain function-related transitions only if the initial network topology (the springs) is
maintained during the protein’s motion. Highly collective conformational changes naturally
fulfill this requirement. Localized functional transitions, on the other hand, often lead to
substantial changes in the contact topology and therefore in the corresponding network
topology. I show that removing springs from the ENM for contacts that break during the
motion enables ENMs to capture local and uncorrelated motions. This results in a novel
elastic network model of maintained contacts (mcENM) that can be applied when two
conformations of a protein are available. Of course, to employ ENMs in situations when
only a single conformation of the protein is known, we must also be able to predict these
breaking contacts from that single conformation. My approach to predict these contacts is
presented in the next chapter.

• Chapter 6 Elastic Network Model of Learned Maintained Contacts
(lmcENM) presents the core contribution of our approach, which is the ability to predict
the dynamic behavior of contacts, i.e. whether they break or are maintained. To do
so, I leverage information from the protein’s structure. This information is captured in
the physicochemical characteristics of local parts of the protein structure. While these
parts largely maintain their structural shape when the protein moves, they move with
respect to each other controlled by the strength of their physicochemical interactions.
Consequently, the mobility and deformability of these parts also affect their underlying
contact topology, causing some contacts to break during a functional transition. To predict
these breaking contacts, I developed a machine-learning based classifier trained on a graph-
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based representation of their structural context, which is based on the contact prediction
framework for protein structure prediction introduced by Schneider and Brock (2014).

Based on the predicted contact changes, I build a novel elastic network model, called
lmcENM, which only consists of learned maintained contacts. These contacts form the
connectivity of the ENM, after the predicted breaking contacts have been removed. The
adjusted contact topology of lmcENM more likely remains valid when the protein moves and
thus helps capture localized conformational changes. Although lmcENM encodes additional
information about the dynamic behavior of contacts, it still preserves the simplicity of the
original ENM approach. lmcENM can be used to predict the motions of a protein based
on a single conformation as input (standard case).

Before coming to these two main chapters, I will first review related work in the context
of elastic network models (chapter 2), introduce the background required to understand the
contributions of this thesis (chapter 3), and describe data set and methods relevant to both two
main chapters (chapter 4). Each of the main chapters additionally introduces the methods that
only apply in their own context. The final chapter concludes the thesis (chapter 7).
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2
Related Work

In this chapter we review related work that aims to improve prediction accuracy and general
applicability of elastic network models (ENMs). Before, we will give a brief introduction to the
foundations of ENM that are required to understand the relation between previous work and our
approach.

2.1 Elastic Network Models - Basics

Elastic network models (ENMs) approximate the structural connectivity of proteins to predict
their structure-encoded, intrinsic motions. They describe proteins as mechanical networks of
point masses (residues) that are linked by uniform elastic springs if their Cα atoms are within
a predefined distance. Harmonic analysis of the resulting mechanical system then reveals the
normal modes of the resulting mechanical system (Bahar et al., 2010b, López-Blanco et al., 2014).
The most dominant, low-frequency modes are commonly associated with the protein’s motion
relevant for its function (Petrone and Pande, 2006).

Elastic network models (ENMs) derive information about protein motion based on two main
assumptions: First, the intrinsic motions of a protein can be approximated by a simplified,
harmonic potential (Tirion, 1996). Second, the coarse-grained structure of a protein largely
encodes these motions (Bahar et al., 1997, Hinsen, 1998, Haliloglu et al., 1997, Atilgan et al.,
2001).

Due to the harmonic approximation made by ENMs, the accuracy of motion predictions
deteriorates with distance from the initial conformation. Nevertheless, often a few low-frequency
modes suffice to accurately explain functional transitions of proteins that are large-scale and
highly collective (Tama and Sanejouand, 2001, Krebs et al., 2002, Eyal et al., 2006, Ahmed
et al., 2010). This ability to narrow down the relevant deformation space (spanned by the
essential low-frequency modes) makes NMA-based approaches particularly suited to guide confor-
mational exploration (Kirillova et al., 2008, Gur et al., 2013), docking simulations (Cavasotto
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et al., 2005, Dobbins et al., 2008, Cavasotto, 2012), or refinement of experimentally resolved
structures (Schröder et al., 2007, Gniewek et al., 2012).

ENMs often fail to capture localized or uncorrelated motions (Tama and Sanejouand, 2001, Ma,
2005, Cavasotto et al., 2005, Yang et al., 2007, Orellana et al., 2010, Dietzen et al., 2012, Globisch
et al., 2013). In these cases, extraneous constraints, introduced by the simple construction of
the model, stiffen the network, preventing the ENM from reflecting localized protein motion. To
overcome this limitation, as we will see in this thesis, it is necessary to identify and remove these
extraneous constraints from the network.

2.2 Elastic Network Model Variants

Refining elastic network models by exploiting additional information has a long tradition given
their coarse-grained nature, see for example López-Blanco and Chacón (2016) for a recent review.
However, one has to carefully balance how much and which additional information is actually
relevant as computational cost increase with model complexity. We now briefly review related
approaches that adjust network connectivity and/or stiffness, or interaction potential of ENMs.
Based on the type of additional information we broadly categorize them into three groups:
Methods that exploit (i) additional physcicochemical information, (ii) information about the
protein’s structure, or (iii) information about the protein’s motion.

2.2.1 Exploiting Physicochemical Knowledge

ENMs rely on the fact that physical forces gradually decrease with distance, i.e. residues close in
space are more likely to move together than more distant ones. Basic ENMs use an arbitrary
fixed distance cut-off and constant spring stiffness, possibly oversimplifying matters. Alternative
approaches connect all residues in the network and select spring stiffness as function of residue
distance (Hinsen, 1998, Hinsen et al., 2000, Kovacs et al., 2004, Rueda et al., 2007a, Yang et al.,
2009b). Apart from potentially over-constraining the network, a generic function for spring
stiffness seems to be difficult to define (Lezon and Bahar, 2010).

Other approaches additionally consider the chemical type of the interaction. They vary spring
stiffness between covalently bonded and non-bonded residue pairs (Hinsen et al., 2000, Kondrashov
et al., 2006), or set them according to relative entropies between the interacting residues instead
of relative energies (Sankar et al., 2018). Jeong et al. (2006) propose a chemical bond-cutoff ENM,
where each CA-atom is connected to its four closest sequential neighbors and spring stiffness is
varied with sequence distance. This implicitly guarantees network stability even for lower cutoffs
that are usually not accessible for distance-cutoff based ENMs. Due to the sparser network they
need to explicitly model chemical interactions, such as disulfide bridges, hydrogen bonds, or
van-der-Waals forces. Recently, a mass-weighted variant has been proposed (Kim et al., 2013),
which was further extended by symmetry constraints to better capture the packed state of protein
crystals when their structure is determined experimentally (Kim et al., 2015). These models are
particularly accurate in terms of B-factor prediction. However, B-factors themselves provide a
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questionable source of information about protein motion due to the influence of crystal packing
effects or errors introduced by molecular refinement (Fuglebakk et al., 2013).

2.2.2 Exploiting Structural Knowledge

Some approaches tailor the connectivity and/or potential of the ENM to knowledge of the
protein’s structure. The simplest way to achieve this is to consider interactions between more
than two residues with a more complex potential (Stember and Wriggers, 2009, Lin and Song,
2010, Srivastava et al., 2012), or additionally incorporate side-chain connectivity and chemical
type (Frappier and Najmanovich, 2014, Kaynak et al., 2017). It is also possible to consider
additional backbone or side-chain atoms (Micheletti et al., 2004, Moritsugu and Smith, 2007),
secondary structure (Tama et al., 2000), or information obtained from rigidity analysis (Ahmed and
Gohlke, 2006, Ahmed et al., 2010, Hermans et al., 2017). While the former trade physical accuracy
for computational cost, the latter may introduce errors due to the additional coarse-graining.

ENMs can also have mixed resolution, where functional relevant parts are modeled at the
atomic level and other parts at the coarser residue level (Kurkcuoglu et al., 2009b). While this
increases computational cost it also requires to know, where the functional relevant parts are
in order to refine their resolution. To efficiently analyze large biomolecules Xia (2017) reduces
resolution in a multi-scale virtual particle based ENM that accounts for mass distribution and
distance relations of virtual particles (coarse-grained sub units of larger complexes). Xia et al.
(2014) proposed an ENM derived from an alpha-shape based tesselation of the protein structure,
which circumvents the definition of distance-cutoffs or distance-dependent functions to construct
the network topology.

If aspects of the structure are known to remain constant during the protein’s motion, it is
possible to refine ENMs by adding additional constraints to maintain the overall structure, for
example in the case of membrane proteins or larger protein complexes. Dony et al. (2013) augment
ENMs by adding springs between buried residues as well as between hydrogen-bonded residues.

2.2.3 Exploiting Knowledge about Motion

The aforementioned approaches obtain the network topology of the ENM from a single, static
protein conformation. Hence, there is no guarantee that the initial contact topology derived
from this conformation remains valid when the protein moves. In some cases, however, we
posses information about two or more conformations along the motion trajectory and use this
information to improve the ENM.

One type of refinement is based on molecular dynamics (MD) simulations. Based on a single
MD simulation, Hinsen et al. (2000) optimized a distance-dependent function to adjust spring
stiffness. Orellana et al. (2010) optimized connectivity and stiffness of the ENM based on short
MD trajectories. They propose a three-staged hybrid potential with strongly connected sequential
neighbors, distance-weighted springs for residues close in space, and a protein-size dependent cutoff
to ignore irrelevant, remote interactions (see 4.3 for details). Their approach outperforms simpler
ENM variants, but it remains questionable whether MD trajectories in the nano-second regime
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are able to cover the full space of motions accessible to proteins (Durrant and McCammon, 2011).
Globisch et al. (2013) refine ENMs of protein complexes by analyzing short MD trajectories of
their subunits. They reduce the network to bonds largely maintained throughout the simulations.
The computational costs of the required MD simulations and the ability to only generate partial
trajectories of the protein’s motion limit the applicability of this approach.

Another source of information are ensembles obtained by Nuclear Magnetic Resonance (NMR)
or X-ray. For instance, Lezon and Bahar (2010) derive optimal stiffness constants for secondary
structure type and sequence distance between interacting residues using entropy maximation
of NMR ensembles. Despite the good agreement between normal modes and PCA-modes from
X-ray and NMR ensembles (Yang et al., 2009a), the structural diversity of the latter may be
biased towards missing experimental data (Fuglebakk et al., 2013).

When two conformations of a protein are known (e.g. open and closed conformation), the
structural differences between these conformation allow to infer aspects of the intermediate
motion. Song and Jernigan (2006) and Yang et al. (2007) use this information to tailor ENMs
to the observed collective motions by varying the spring stiffness within (stronger) and between
(weaker) domains. The resulting ENMs are more accurate, but they can only be obtained when
two different conformations are available.

2.3 Relation to Our Work

The main hypothesis of this thesis is that leveraging information about dynamic changes in the
connectivity of elastic network models expands the range of motion types that they can capture.
Hence, to advance the general applicability of ENMs we need to exploit additional information
beyond the topological constraints imposed by the initial conformation. The aforementioned
approaches suggest that additional information about the motions of a protein is encoded in
a broad range of physicochemical, structural, and topological characteristics of their structure.
While adjusting ENMs based on singular characteristics/properties or small subsets may improve
their prediction accuracy in some cases, the most important aspects of function-related protein
motions more likely result from the interplay of a broader set of properties (Jamroz et al., 2012)

Now the main question seems to be: how can we identify the combination of relevant charac-
teristics to refine ENMs most effectively? We propose to learn these combinations from a large
set of possible characteristics. In particular, we consider features that capture the influence of
local and global structural topology on protein motion. Furthermore, we deliberately refine the
network connectivity of ENMs without adjusting stiffness or interaction potential. This allows us
to preserve the simplicity and computational efficiency of ENMs, while improving their general
applicability. Still, the approach we present below can be used in conjunction with most of the
previously mentioned methods of adjusting ENMs.
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3
Background

In this chapter we introduce the theoretical foundations and concepts that lay out the basis for
our approach. They are required to understand the contributions of this thesis.

In section 3.1 we introduce how networks/graphs can be used to analyze relations between data
or objects. We use them in multiple ways in this thesis: (i) we model the structural connectivity of
a protein as a network of inter-residue contacts (contact topology network), (ii) we augment this
network with physicochemical and structural information to characterize the local environment
of each contact, (iii) we analyze these local contact graphs and extract features from them to
train a classifier to differentiate breaking from maintained contacts, and (iv) we obtain the elastic
network models from the protein’s inter-residue contact graph to determine its intrinsic motions.
We introduce graph parameters, node and edge label statistics, spectral analysis of graphs, and
centrality measures that we use to derive the graph features characterizing the local contact
environment.

In section 3.2 we give an introduction into the basics of machine learning. In particular, we
focus on support vector machines and how they can perform classification on graphs. We train
them to predict the dynamic behavior of inter-residue contacts, i.e. if they are breaking or
maintained when the protein moves, based on their local embedding in the contact topology
network. We also introduce principal component analysis that we use to determine the most
dominant movements in conformational ensembles of proteins to validate our approach.

Section 3.3 introduces coarse-grained prediction of protein motion using normal mode analysis
and elastic network models. Here, we focus on the anisotropic network model because it forms the
basis of our novel elastic network model of learned maintained contacts, lmcENM (see chapter 6).
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3.1 Network analysis

Many areas and activities in our daily live rely on the relationships between data, objects, or
entities that are described, explored, and predicted by networks. For example, we interact and
collaborate in social, political, or scientific networks (Scott, 2017, Ward et al., 2011, Maireder
et al., 2017, Ebadi and Schiffauerova, 2015, Ding, 2011). We access search engines to find relevant
information in the web (Brin and Page, 1998). We use optimized transportation systems (Guimerà
et al., 2005, Arnold et al., 2004) or rely on the security of telecommunication networks (Gorman
et al., 2004). We benefit from epidemics prevention (Luke and Harris, 2007), crisis management
via social networks (Shi et al., 2017), or advances in network-based drug design (Csermely et al.,
2013) and systems biology (Horvath, 2011, Albert, 2007, Böde et al., 2007). We improve our
understanding of cognitive processes (Avena-Koenigsberger et al., 2018, Bassett et al., 2011) or
how brain diseases, such as Alzheimer’s, affect our brain’s functional connectivity (Supekar et al.,
2008).

Network analysis provides the tools and techniques to study and understand such complex
systems of interactions and relationships in order to make future predictions. It reduces complexity
by encoding relational data into networks of nodes that interact along edges. Nodes and edges
can be attributed to capture additional properties of both, data and relations. Based on this
simplified representation structural and topological properties of these networks can be analyzed.

In this thesis we aim to predict the dynamic behavior of inter-residue contacts, i.e. whether
they break or are maintained, given their local embedding in the protein’s contact network (see
chapter 6 for more details on the contact prediction algorithm). To do so, we augment these local
contact networks with physicochemical and structural properties, such as solvent accessibility,
hydrogen bonding, associated secondary structure elements, closeness to a pocket, or being part of
a symmetric arrangement. Based on the assumption that the local contact networks of breaking
and maintained contacts differ in their properties and topology, we train a classifier to distinguish
them based on their similarity. To compare the networks we derive features by analyzing their
structural and topological properties (see the overview of features in 6.2.1 and the detailed list of
features given in the appendix A.2). The similarity is then simply computed as the Euclidean
distance between the feature vectors.

In the following we first introduce the basics of graphs and networks. Then, we focus on their
analysis by introducing properties that characterize topology and spectrum of a graph, its node
and edge label statistics, and centrality measures indicating the importance of individual nodes.
These properties allow us to obtain the graph features required to classify contacts as breaking or
maintained.
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3.1.1 Graphs and Networks

Formally, a graph is defined as the ordered pair G = (V,E) consisting of a set of vertices V (also
called nodes) and edges E (links) (Cormen, 2009, Brandes, 2005). An edge e = (u, v), where
u, v ∈ V , connects exactly two vertices in graph G.

There are different types of graphs depending on the type of edges (see Fig. 3.1 for examples).
The simplest form is an undirected graph. It consists of edges that have no direction, i.e. they
link unordered vertex pairs with symmetric adjacency. Consequently, the edges (u, v) and (v, u)

are equivalent. Simple, undirected graphs require the vertices of an edge to be distinct (u ̸= v)
and thus contain no self-loops. Edges can also be directed to represent asymmetric relationships
between vertices in a so-called directed graph, or digraph. A directed edge e = (u, v) starts
at vertex u and ends at vertex v, i.e. the vertex pair (u, v) is ordered. In addition, undirected
or directed edges can be weighted, for instance by their distance. The associated graphs are
called weighted graphs/digraphs. However, we only employ undirected graphs/networks in
this thesis.

b c 

a d 

Directed graph

     a  b  c  d
a   0  0  1  0
b   0  0  1  0
c   0  0  1  1
d   0  0  0  0

b c 

a d 

Undirected graph

     a  b  c  d
a   0  1  1  0
b   1  0  1  0
c   1  1  0  1
d   0  0  1  0

A B

b c 

a d 

Undirected weighted graph

     a  b  c  d
a   0  1  5  0
b   1  0  2  0
c   5  2  0  3
d   0  0  3  0

C
2

1 5
3

Figure 3.1: Examples of graph types and corresponding adjacency matrices. (A) Undirected graph
with symmetric adjacency matrix. (B) Directed graph with asymmetric adjacency matrix. (C)
Weighted undirected graph with weighted adjacency matrix.

Networks encode additional information in form of node and edge attributes, which goes
beyond the adjacency relations typically modeled by graphs (Brandes, 2005). Nodes may be
characterized by attributes such as label, size, or object category, while edges can be associated
with properties such as capacity, time, similarity, or a function of other variables.

Fig. 3.2 shows a simplified network obtained from the contact topology of secondary structures
of a protein that is augmented by structural and physicochemical properties. Two secondary
structure elements (nodes) are in contact (linked) if at least one residue of element A is within a
pre-defined distance of a residue of element B. The edges are attributed by the actual number of
contacts, Euclidean distance between the centroids of the secondary structure elements, interaction
energy, and the type of interacting secondary structure elements. Each secondary structure element
is characterized by its type, its sequential length (number of amino acids), its 3d-length, and
solvent accessibility.
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Figure 3.2: Example of a simplified network derived from the contact topology of the secondary
structures of a protein structure. Nodes represent secondary structure elements. Edges link sec-
ondary structure elements that are in contact, i.e. at least one residue of element A is within a
pre-defined distance with a residue in element B. Nodes and edges are characterized by structural
and physicochemical properties.

3.1.2 Topological Analysis

Graph parameters (Brandes, 2005) capture topological properties of a graph/network. For
instance, the degree of a vertex is defined by its number of edges to other vertices. The distance
between two vertices in the graph is given by the length of the shortest path between them along
edges from the graph. Eccentricity of a vertex denotes its largest distance to any other vertex
in the graph. The minimum eccentricity in a graph defines the radius of the graph, while the
maximum eccentricity denotes its diameter. A graph consisting of two disjoint vertex sets with
edges only between but not within the sets is called a bipartite graph.

3.1.3 Spectral Analysis

Another way to represent graphs is to encode the relations between their nodes in matrices (Lovász,
2007, Brandes, 2005, Brouwer and Haemers, 2011). The most common matrices are the adjacency
matrix and the Laplacian matrix. Spectral analysis based on the eigendecomposition of these
matrices yields additional structural properties, such as spectrum or energy of a graph. Below
we focus on the properties used in this thesis to further characterize the local embedding of an
inter-residue contact in the contact graph. The derived features build the group of graph-spectrum
features used for the breaking contact prediction (see 6.2.1 and Table A.5).

The adjacency matrix captures which nodes are adjacent to each other (see Fig. 3.1). For
an undirected graph G = (V,E) with n vertices V = {v1, v2, ..., vn}, the adjacency matrix A has
square shape (n× n). Its elements Aij are defined as:

Aij =

1, if (vi, vj) ∈ E

0, otherwise
(3.1)
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The diagonal of the matrix contains only zeros for simple graphs without self-loops. If the graph
is weighted the non-zero entries are multiplied by the edge weight.

The adjacency matrix A of an undirected graph G is symmetric. Hence, its eigendecomposition
A = UΛUT results in a set of real eigenvalues and eigenvectors. The orthonormal eigenvectors
build the columns of the matrix U . The set of eigenvalues λi along the diagonal of Λ is called the
spectrum of graph G, where we assume that λ1 ≥ λ2 ≥ ... ≥ λn. The first eigenvalue λ1 relates
to the average degree of G. Much more interesting is the so-called eigenvalue or spectral
gap between the first and second largest eigenvalues because it is related to connectivity and
expansion of a graph (Lovász, 2007, Brouwer and Haemers, 2011). A large gap indicates that the
graph is highly connected and has large expansion, i.e. many edges must be removed in order to
cut the graph into two parts. The energy (Li et al., 2012) of a simple graph is defined as the
squared sum of the absolute eigenvalues of A. Dense graphs that are highly connected tend to
have higher energy than sparse graphs of the same size, e.g. if edges have been removed (Shatto
and Çetinkaya, 2017).

The Laplacian (sometimes called Kirchhoff matrix) of an undirected graph G = (V,E) is
built by subtracting the adjacency matrix A from the diagonal matrix D of the vertex degrees:
L = D −A. The elements of the symmetric, n× n matrix L are given by:

Lij =


−1 if i ̸= j and (vi, vj) ∈ E

degG(vi) if i = j

0, otherwise

(3.2)

where degG(vi) =


j Aij denotes the degree of vertex vi, vi ∈ V (G). For an undirected, simple
graph, the spectrum of the Laplacian is called the Laplacian spectrum of the graph. We
introduce the Laplacian here because it is used by the Gaussian Network Model to encode the
inter-residue connectivity of a protein (see 3.3).

3.1.4 Distribution of Node and Edge Labels

Node/edge label statistics (Li et al., 2012) describe how node or edge labels are distributed
in a network/graph G = (V,E) with vertices V and edges E.

The label entropy EG quantifies the probabilities of different node labels l1, ..., lm given by

EG = −
m
k=1

p(lk) ∗ log p(lk) (3.3)

where p(lk) = |lk|/|V | is the probability of observing the node label lk in the graph.

The neighborhood impurity IG of graph G measures the average distribution of labels in
the neighborhood of all nodes. It is given by

IG =


v∈V |l(u) : u ∈ nei(v), l(v) ̸= l(u)|

|V |
(3.4)
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with nei(v) being the neighbor nodes of v. For instance, we calculate entropy and neighborhood
impurity of secondary structure types or solvent accessibility among the residues in the local
contact networks.

The link impurity LG of graph G measures the impurity degree among all edges defined as

LG =
|(v, u) ∈ E : l(v) ̸= l(u)|

|E|
(3.5)

For instance, we evaluate the link impurity considering chemical type, secondary structure,
solvent accessibility, or symmetry.

3.1.5 Centrality Measures

Centrality measures indicate the relative importance of individual nodes or their influence on
other nodes in the network (Brandes, 2005). For instance, in social networks, such as Twitter,
information flow and content is often dominated by so-called influencers. They usually have
many followers that retweet their posts and mention them on a regular basis (Cha et al., 2010).
Although a large number of followers is not sufficient to be an influencer, it still increases the
likelihood of being retweetet or mentioned if the followers find content and quality of the initial
tweet worth sharing.

In general, there is no unique definition of node centrality as it depends on the context. Among
other reasons nodes may be important because they are connected to many other nodes (degree
centrality) or bridge between different parts of the network (betweenness centrality). We use these
measures to characterize the importance of breaking and maintained contacts in different contexts.
For instance, maintained contacts are important to stabilize the network when the protein moves,
whereas breaking contacts can be neglected in this regard. In other words, one would expect
that maintained contacts have higher degree centrality than breaking ones. In contrast, breaking
contacts often occur between sparsely connected parts, such as flexible helices or loops or between
two moving domains. Hence, breaking contacts should have higher betweenness centrality given
that they reside in such bridge-like regions.

In the following we introduce three different centrality measures used in this thesis to characterize
the importance of contacts within the whole network: degree, closeness, and betweenness centrality.
While the degree centrality is agnostic to the topology of the network, closeness and betweenness
centrality take the relative position of each node to the others into account. We define these
measures for an undirected graph G = (V,E) with vertex set V and edge set E as they are
implemented in the Python library NetworkX (Hagberg et al., 2008). Fig. 3.3 exemplifies the
different notions of importance captured by the depicted centrality measures.

The degree centrality cD (Brandes, 2005) of vertex v is given by its degree degG(v), i.e. the
number of its neighbors. We use the normalized degree centrality cDn as implemented in
NetworkX (Hagberg et al., 2008), which is defined as

cDn(v) =
degG(v)

(|V | − 1)
(3.6)
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Figure 3.3: Centrality measures for a graph. The three different color codings illustrate how degree,
closeness, and betweenness centralities capture different meanings of importance for the same
graph. All measures are normalized. Hence, red indicates a high value, blue a low value. Node f
has the highest degree centrality because it has the largest number of neighbors compared to all
other nodes. Node e is the one closest to all other nodes in the graph. It can be seen as a “hub”
that distributes messages to the other nodes. Node e has also the highest betweenness centrality
because it “bridges” between the two parts of the graph.

where |V | is the number of vertices in the graph. Hence, the degree of each vertex gets normalized
by the maximum possible degree of the graph.

The normalized closeness centrality cnC (Freeman, 1978, Brandes, 2005) of vertex v is
defined as the inverse of the average shortest path distance to u over all n− 1 reachable nodes in
the graph

cCn(v) =
n− 1

u∈V,u̸=v d(v, u)
(3.7)

where d(v, u) is the shortest-path distance between vertex v and u, and n denotes the number of
nodes with a path to v. The multiplication with n− 1 normalizes the measure. Intuitively, the
node with highest closeness centrality has minimum effort to communicate to all other nodes in
the network. This refers to the notion of a “hub”.

The betweenness centrality cB (Brandes, 2008, 2005) of vertex v is defined as

cB(v) =


s,t̸=v∈V

ρst(v)

ρst
(3.8)

where ρst is the number of shortest paths between all pairs of vertices (s, t) ∈ V and ρst(v) refers
to the fraction of such shortest-paths that pass along vertex v. The betweenness centrality can
be interpreted as how much a node controls the communication between all other node pairs,
which have this node on their shortest-path.
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Chapter 3. Background

3.2 Machine Learning

In this section we will give a brief introduction into basic concepts of machine learning with
a particular focus on the algorithms used in this thesis: (i) classification using support vector
machines and graphs, and (ii) dimensionality reduction using principal component analysis. More
details can be found in a series of comprehensive books about this topic, such as Mitchell (1997),
Bishop (2006), Murphy (2012), Goodfellow et al. (2016), Michalski et al. (2013), Géron (2017),
James et al. (2013). They cover the depths of machine learning and its various subfields in theory
and practice and serve as basis for this introduction.

Machine learning aims to empower computers to automatically learn from data (Samuel, 1959)
or more specifically (Mitchell, 1997):

A computer program is said to learn from experience E with respect to some task
T and some performance measure P , if its performance on T as measured by P ,
improves with experience E.

Given a set of experiences, also called training data or samples, a machine learning algorithm
searches for the hypothesis that best explains this data in order to make predictions for new,
unseen data. For example, our task is to predict, whether a tumor is benign or malignant (task)
based on its size (Kourou et al., 2015). As input, we get histological data of the tumor (training
samples) obtained from microarray analysis of a patient’s tissue. We measure the performance of
the algorithm based on the match between predicted label and actual label, which was assigned
by a medical expert. Based on this feedback the algorithm trains to improve its performance.
Using the trained model it can then predict the label of unseen histological data.

Depending on the type of training data machine learning problems are broadly categorized
into supervised, semi-supervised, unsupervised, and reinforcement learning. Machine learning
approaches are also labeled based on the learning methodology into online methods, which learn
while making predictions, and batch learning, which trains once given all available data in order
to make future predictions afterwards.

Supervised Learning has access to labeled training data. Given a set of labeled training
data D = {xi, yi}ni=1, it aims to learn a function f : X → Y that maps the input xi ∈ X (training
samples) to the output yi ∈ Y (labels). If the labels are discrete, i.e. belong to two (binary) or
more classes (multi-class), we call it a classification problem. If the labels are real-valued we call
it a regression problem. The example above falls in the category of supervised learning because a
human expert (teacher) labeled the input data used to train the algorithm.

Unsupervised Learning, in contrast, has no access to the labels of the training data. Its
objective is to structure the given input data D = {xi}ni=1 on its own by identifying patterns
in the training samples. If the data is categorized into discrete groups, where similar samples
belong to the same group, we call it clustering. If the data is projected onto a lower dimensional
continuous representation we call it dimensionality reduction. An example for unsupervised
learning is the segmentation of tumors given medical images, e.g. from MRI-scans. The algorithm
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3.2. Machine Learning

aims to detect boundaries in these images by grouping similar pixels together, i.e. to segment the
tumor from its environment.

Semi-Supervised Learning gets training data as input that is only partially labeled, while
most of it is unlabeled. Using unsupervised learning it categorizes the unlabeled data based on
similarity. Knowing the label for one sample of a category is then enough to label the whole
category accordingly. The previous example can be extended to semi-supervised learning by
providing the algorithm with a few images, where the segmented tumors were labeled by an
medical expert as benign or malign.

Reinforcement Learning (RL) learns to sequentially optimize a decision policy based on a
reward signal. In RL the learning system is called an agent that sequentially decides about the
next action to take given its current state in order to maximize its total reward. The received
feedback signal in form of positive (good choice) or negative (bad choice) rewards guides the
agent to optimize its decision policy, i.e. which action to take next based on the current state.
An example for reinforcement learning is the control of drug dose in cancer treatment. Based on
the biomarkers of a patient the RL agent decides to increase or decrease the drug dose. It then
gets feedback, whether the biomarker of the patient improved or not, which helps the algorithm
to optimize the drug dose over time.

We will now introduce support vector machines in more detail because we use them to
differentiate breaking from maintained contacts in this thesis (see chapter 6).

3.2.1 Support Vector Machines (SVMs)

Support vector machines (Boser et al., 1992, Cortes and Vapnik, 1995) are popular supervised
learning models that are particularly good at solving complex classification tasks. In the biomedical
field they have many applications (Ben-Hur et al., 2008), among them the prediction of cancer
recurrence, susceptibility or survival (Kourou et al., 2015), the identification of drug targets (Wang
et al., 2017), or computer-aided diagnosis of Alzheimer’s (Khedher et al., 2017). SVMs can also
be used for regression tasks. However, here we focus on SVM-based classification because we
use it to differentiate breaking from maintained contacts in order to improve elastic network
models (see chapter 6). This introduction is based on the following publications (Boser et al.,
1992, Cortes and Vapnik, 1995, Burges, 1998, Vert et al., 2004, Noble, 2006, Ben-Hur et al., 2008,
James et al., 2013, Géron, 2017), which provide additional details for interested readers.

In their simplest form, SVMs aim to find the hyperplane that separates data points into two
classes while maximizing the perpendicular distance, called margin, to the closest samples in each
class. This is called binary classification, which discriminates unseen data depending on which side
of the hyperplane it falls. The maximum margin criterion is motivated by the assumption that
the distance of unseen data to the decision boundary is approximately the same as of the training
data. Hence, the maximal margin hyperplane reduces the risk of misclassification compared to
any other separating hyperplane, which improves the generalization performance of SVMs for
previously unseen data (Fig 3.4A).

21



Chapter 3. Background

1

2

3
4

misclassifiedsupport vector

margin width

w
∙x+b = 0

w
∙x+b = +1

w
∙x+b = -1

2
||w||

A B

ξ>1

ξ<1

Figure 3.4: Examples of separating hyperplanes and soft-margin support vector machine. (A) Exam-
ples of hyperplanes separating the training data in two classes with different margins. All separate
the samples well. But hyperplane no. 3 with the largest margin to the closest samples in each class
has the best generalization performance, assuming that training data and unseen data are simi-
larly distributed. (B) Illustration of a soft-margin support vector machine. It maximizes the margin,
while tolerating margin violations measured by the slack-variables ξ to some extent, regulated by
the cost parameter C. The support vectors define the class hyperplanes (dashed lines) parallel to
the maximal margin hyperplane (solid line).

The training samples lying on the hyperplanes defining the class boundaries are called support
vectors. Removing one of these support vectors from the training set most likely changes the
boundary, while the absence of other training samples has no effect on the decision boundary.

In many real-world problems, a decision boundary that separates all data points without
error does not exist. Because larger margins improve generalization performance, we would thus
accept some misclassifications, as long as their number remains small enough. The soft margin
hyperplane fulfills this purpose by maximizing the margin while minimizing the number of
errors (Cortes and Vapnik, 1995). It extends the original hard-margin SVM by adding slack
variables ξi and a user-defined cost parameter C. The former relaxes the margin by tolerating
errors to some degree, while the latter regulates the trade-off between margin size and error
acceptance (Fig 3.4B). To discourage misclassification, errors must be penalized by a larger cost.

Given a set of labeled training data D = {xi, yi}ni=1 with xi ∈ Rd being the i-th vector in D

and corresponding labels yi ∈ {−1, 1}, the optimization objective of an SVM can be formalized
as follows

minimize
w, ξ, b

1

2
∥w∥2 + C

n
i=1

ξi (3.9a)

subject to yi(w · xi + b) ≥ 1− ξi, (3.9b)

ξi > 0, for i = 1, . . . , n (3.9c)
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3.2. Machine Learning

where w0 · x+ b0 = 0 is the equation of the maximum margin hyperplane. It can be shown that
the margin between the two parallel hyperplanes, defining the class boundary, is 2

∥w∥2 (Burges,
1998). Thus, we aim to minimize the norm (length) ∥w∥2 in order to maximize the distance
between the two hyperplanes.

Finding a solution to this primal minimization problem is equivalent to solving its dual
maximization problem. Because the latter is a quadratic programming problem it can be solved
efficiently. For αi ∈ Rn the dual problem using Lagrange multipliers is defined as

maximize
αi ≤ 0

L(α) ≡
n

i=1

αi −
1

2

n
i,j=1

αiαjyiyj xi · xj (3.10a)

subject to 0 ≤ αi ≤ C ∀i, (3.10b)
n

i=1

αiyi = 0. (3.10c)

The dual Lagrangian has the advantage that the αi are bounded only by the regulation parameter
C, whereas the slack variables ξ and their Lagrange multipliers do not appear. Now the weight
vector of a large margin hyperplane can be formulated by linearly combining the solutions αi of
the optimization problem above (eqn. 3.10a) and the input samples xi:

w =

ns
i=1

αiyixi (3.11)

where ns denotes the number of support vectors.
Linear SVM-classifiers measure the similarity between input samples by their inner product

(also called dot product). However, many real-world problems are not linearly separable. To
overcome this problem, Boser et al. (1992) introduced the kernel-trick. It uses the transformation
ϕ : Rd → H to map the data from the d-dimensional input space to a higher (infinite) dimensional
feature space H, also called Hilbert space (see Fig 3.5 for an illustration). Using eqn. 3.11 the
discriminant function becomes

f(x) = w · ϕ(x) + b

=

n
i=1

αiyi ϕ(xi) · ϕ(x) + b

=

n
i=1

αiyi k(xi,x) + b

Using a kernel function k(xi,xj) = ϕ(xi) · ϕ(xj) all dot products of the algorithm in the input
space can be replaced by dot products in the feature space. Instead of doing the linear separation
in the input space, which is not possible for these kinds of problems, it can be done in the infinite
dimensional feature space. Hence, using the kernel-trick enables support vector machines to solve
non-linear classification problems.
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Figure 3.5: Illustration of the Kernel-Trick. The dataset is not linearly separable in the two-
dimensional input space. By transforming it with the transformation ϕ : R2 → R3 it becomes
linearly separable by a hyperplane in the higher-dimensional feature space, shown at the right. The
gray curve in the left panel refers to the decision boundary from feature space back-projected to the
input space. Figure adapted from MIT OpenCourseWare1.

We use two of the most popular kernels in this thesis (Vert et al., 2004):

• Linear Kernel

kL(xi,xj) = xi · xj =
n

i,j=1

xixj (3.12)

• Gaussian radial basis function (RBF) Kernel

kG(xi,xj) = exp(−γ||xi − xj ||2) (3.13)

where γ > 0 is a user-defined parameter, which specifies the width of the Gaussians. Large
values of γ may lead to overfitting and poor generalization performance. Hence, this
parameter has to be tuned in advance.

Besides these two kernels many others have been proposed and implemented2, even for non-
vectorial data. Examples are string-kernels (Lodhi et al., 2002, Saunders et al., 2003, Leslie and
Kuang, 2004) or graph-kernels (Borgwardt et al., 2005, Vishwanathan et al., 2010, Yanardag and
Vishwanathan, 2015), which measure the similarity between strings or graphs, respectively.

A binary SVM classifier usually outputs a binary value indicating the class a test sample
belongs to. To predict probability values instead Platt’s scaling method (Wu et al., 2004) can be
used. It performs logistic regression on the binary output values of the SVM using additional
cross-validation.

1https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-
learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf

2see for instance https://github.com/gmum/pykernels.
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3.2. Machine Learning

3.2.2 Graph Classification

As introduced before (see chapter 1 and section 3.1), we aim to predict the dynamic behavior of
inter-residue contacts given their structural context in the protein. We claim that the properties
of this contact environment determine whether contacts break or are maintained when the protein
moves. Graphs/networks are a well-suited data structures to encode this contact environment
and its properties due to their ability to capture interactions (edges) between objects (nodes).

Classifying contacts as breaking or maintained given the graph-based representation of their
structural embedding is a particular instance of methods that apply machine learning on graphs.
Learning on graph-structured data has many applications, for instance to detect anomalies in
social networks (Kang et al., 2014), to differentiate proteins by their roles in protein-protein
interaction networks (Hamilton et al., 2017), or to predict whether therapeutic protein drugs are
potentially usable in the treatment of other diseases (Duvenaud et al., 2015).

Being able to apply machine learning methods on graphs requires a way to compute their
similarity. In general, the problem of finding an exact mapping between two graphs or subgraphs
((sub)graph isomorphism) is NP-complete, i.e. there exists no algorithm that is able to compute
it in polynomial time unless P = NP (Vishwanathan et al., 2010). Common approaches tackle
this problem by using a simplified, but more practical estimation of similarity, among them are
kernel-based (Vishwanathan et al., 2010) and feature-based methods (Li et al., 2012).

Graph kernels use subgraphs, subtrees, shortest paths, cycles, or random walks to decompose
a graph into parts (Vishwanathan et al., 2010, Li et al., 2012). By mapping the derived patterns
into the lower-dimensional feature space their similarity can be efficiently calculated using the
dot-product (see 3.2.1 for an explanation of the “kernel-trick”). An example of a graph kernel is
the shortest-path-kernel (Borgwardt and Kriegel, 2005). Given two graphs G1 and G2 it computes
the shortest paths between all pairs of nodes in each graph. The kernel function now compares
the similarity between the two graphs by comparing the lengths of all these shortest-paths based
on their inner product, for instance using a linear kernel:

k(G1, G2) =


s,t∈V1


k,l∈V2

k(d(s, t), d(k, l))

= d(s, t) · d(k, l)

Graph features encode topological metrics and label statistics of graphs in order to compare
them (Li et al., 2012). For instance, average degree or average path lengths (closeness centrality)
attribute the global topology of a graph, whereas neighborhood impurity or label entropy capture
the distribution of edge or node labels (see 3.1.1 for details on calculating graph attributes). The
similarity between two graphs can now easily be calculated as the Euclidean distance between
their fixed-length feature vectors.

In this thesis we use the feature-based approach to extract information encoding the dynamic
behavior of contacts from their structural context. This is mainly motivated by the fact that
incorporating domain-specific information is much easier in the feature-based approach because
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they can simply be added to the feature vector. In addition, feature-based approaches are
computationally more efficient and scale better to larger graphs than kernel-based methods (Li
et al., 2012).

With the recent advent of deep learning an alternative approach became quite popular, which
is called representation learning on graphs (Hamilton et al., 2018). Instead of human-
engineered features or kernels for graph comparison, these methods automatically learn a mapping
of graphs into a lower-dimensional space, while optimizing the match between original graph and
learned mapping considering geometric relations. Thus, they can be incorporated directly into
the machine learning algorithm itself. However, to be effective such approaches typically require
large amounts of data.

3.2.3 Principal Component Analysis (PCA)

Principal component analysis belongs to the category of unsupervised learning problems,
which aim to find structure in the input data without prior knowledge, e.g. known labels. It is a
highly popular statistical technique to identify essential patterns, called principal components, in
data, which represent the orthogonal axes of largest variance (David and Jacobs, 2014, Smith,
2002). The principal components are linear combinations of the original data and can be used to
project the data into a lower-dimensional space with minimum loss. Hence, PCA is typically used
for dimensionality reduction, for instance to compress high-throughput gene-expression data
in bioinformatics (Ma and Dai, 2011) or to filter MRI-images used to predict brain healthiness,
e.g. to support early Alzheimer’s diagnosis (Gewers et al., 2018).

In its basic form, dimensionality reduction with PCA relies on five steps:

1. normalize the vectorial input data by subtracting the mean

2. build the covariance matrix (or correlation matrix)

3. decompose it into eigenvectors (principal components) and eigenvalues (amplitudes)1

4. project the input data into the lower dimensional space using a subset of main principal
components

In this thesis, we apply PCA to identify the dominant directions of structural displacements
captured by protein conformational ensembles (e.g. experimentally determined or snap-shots from
molecular dynamics simulations) (David and Jacobs, 2014). These so-called essential dynamics
(ED) are often used to validate the intrinsic motions of proteins predicted by elastic network
models (Sankar et al., 2018, Yang et al., 2009a). In the context of proteins, normalization of the
conformational ensemble is equivalent to finding their optimal structural superposition, which can
be calculated by a least-squares fit (Kabsch, 1978) to a pre-defined reference structure (e.g. the
unbound conformation or an average structure for MD/NMR ensembles). This removes global
rotational and translational movements of the conformers, which yields the internal motions in
the ensemble.

1For square matrices, which can be diagonalized, eigen-decomposition is used, otherwise the more
general singular value decomposition (SVD).
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From this superimposed ensemble we can obtain the fluctuations of the Cα-atoms1 from their
average position. The covariances between atom i and j define the elements Qij of the covariance
matrix Q as

Qij =

(qi − ⟨qi⟩)(qj −


qj

)T


(3.14)

where q1, ..., q3N represent the mass-weighted, three-dimensional coordinates of the Cα atoms,
N refers to the number of residues of the protein, and ⟨·⟩ denotes the average over the ensemble.
The variances on the diagonal of Q capture the average motion amplitude along one coordinate.
The covariances (cross-correlations) in the off-diagonal elements reveal the relationship between
the motions.

Diagonalization of this matrix yields 3N − 6 eigenvectors with non-zero eigenvalues, where
the first six trivial modes representing global rotation and translation are ignored. The eigenvec-
tors, ranked by decreasing variance, capture the collective motions of the ensemble, where the
corresponding eigenvalues indicate their mean square fluctuations.

In contrast to normal mode analysis, introduced below, PCA can explain also non-harmonic
conformational changes, which show displacements beyond the harmonic approximation from
the equilibrium conformation. Nonetheless, the most dominant ED-modes most often agree well
with the lowest-frequency normal modes. For a more detailed derivation of PCA in the context of
molecular ensembles analysis please refer to David and Jacobs (2014), Yang et al. (2009a).

3.3 Coarse-Grained Normal Mode Analysis with Elas-

tic Network Models

The main contribution of this thesis is a novel elastic network model of learned maintained
contacts (lmcENM in chapter 6). Elastic network models (ENMs) represent proteins as mass-
spring-networks to examine their structure-encoded motions at a coarse-grained scale using normal
mode analysis (NMA). In the following, we will introduce the basic theoretical foundations of
normal mode analysis and elastic network models, which are required to understand the technical
details and contributions of our approach.

3.3.1 Normal Mode Analysis (NMA)

Normal mode analysis (NMA) is a widely used method to determine the motions of a protein
intrinsically accessible to its structure. It is based on the assumption that pairs of interacting
atoms behave as coupled harmonic oscillators and that the motions of a protein can thus be
approximated by the sum of these pairwise vibrations around a given equilibrium conformation
(Bahar et al., 2010a, Bastolla, 2014, López-Blanco et al., 2014). Fig 3.6A illustrates a simple
network of three point masses coupled by harmonic oscillators.

1PCA is usually performed using Cα-atoms representing the residues of the protein. However, any
atom-subset, e.g. all backbone or heavy atoms, can be used.
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Figure 3.6: Coupled harmonic oscillators and normal modes of water molecule. (A) Network of
point masses (m) coupled by simple harmonic oscillators (springs). (B) Normal modes predicted by
NMA for the water molecule: a bending mode and two stretching modes (symmetric and asymmet-
ric). The mode directions of each atom are indicated by the yellow arrows.

Commonly used in physics, NMA can be applied to any particle network to analyze its spectrum
of vibrations, for instance to determine the vibrations of crystals (Rousseau et al., 1981) or to
calculate the elastic deformations of smart hybrid materials, such as magnetic gels, to infer their
capabilities as vibration absorbers or soft actuators (Pessot et al., 2016).

Researchers started to use NMA to study protein motions more than 30 years ago (Brooks
and Karplus, 1983, Go et al., 1983, Levitt et al., 1985). Since then NMA-based prediction of
protein motions became highly popular because the predicted low-frequency motions were found
to agree well with functional protein motions even for coarse-grained normal mode analysis based
on elastic network models (ENMs 3.3.2) (Sankar et al., 2018, Bahar et al., 2015, Kurkcuoglu
et al., 2012, Meireles et al., 2011, Bahar et al., 2010a).

NMA analytically solves the equations of motions based on the assumption that the potential
energy landscape of a protein–despite its many local minima–is approximately parabolic (called the
harmonic hypothesis/approximation, see Fig 3.8 on page 33). As such, NMA complements
MD simulations, which need to numerically integrate the equations of motions to sample motion
trajectories along this rugged energy landscape. In principle, any differentiable force field, e.g.
semi-empirical force fields from MD, can be used to study the collective motions of proteins. But
due to their lower computational costs, simpler force fields requiring no energy minimization of
the initial conformation, such as the ones used by ENMs (see 3.3.3), are nowadays routinely used.

In the following we will give a brief introduction into the theoretical foundations of NMA.
A full derivation is presented in a series of publications (Bahar et al., 2010a, Bastolla, 2014,
López-Blanco et al., 2014), which served as basis for this introduction.

Given a protein with N atoms, we can represent a particular conformation q as a 3N -dimensional
vector of its atom coordinates in Cartesian space given by

q = (x1, y1, z1, ..., xN , yN , zN )T (3.15)
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With VNMA being the potential energy of the protein defined by any force field, we can express
VNMA around the equilibrium conformation q0 as an expanding Taylor series given by

VNMA(q) ∼= VNMA(q
0) +

3N
i

δVNMA

δqi


q0

(qi − q0i ) +
1

2

3N
i,j

δ2VNMA

δqiδqj


q0

(qi − q0i )(qj − q0j ) + ... (3.16)

where VNMA(q
0) refers to the potential at the energy minimum and is zero per definition. Also

the second term, the first derivative, vanishes to zero because the equilibrium conformation q0 is
defined to be in the energy minimum of the potential function. Due to the harmonic assumption,
small displacements around the equilibrium are sufficiently approximated by the second-order
term and therefore higher-order terms can be ignored. Thus, the approximate potential from
eqn. 3.16 can be reduced to

VNMA(q) ∼=
1

2

3N
i,j

δ2VNMA

δqiδqj


q0

(qi − q0i )(qj − q0j ) (3.17)

Let H denote the Hessian matrix of second partial derivatives of the potential function w.r.t.
the positions of the network nodes (∆qT). The elements of H are given by

Hij =
δ2VNMA

δqiδqj


q0

(3.18)

Then we can rewrite eqn. 3.17 as

VNMA(q) ∼=
1

2

3N
i,j

(qi − q0i )Hij(qj − q0j ) =
1

2
∆qTH∆q (3.19)

H is organized as NxN -matrix consisting of 3x3-submatrices. Each of this submatrices captures
the effect of two interacting atoms onto the energy of the system.

Normal mode analysis decomposes the Hessian matrix with respect to the mass-weighted
positions of the network nodes into a set of orthogonal eigenvectors (normal modes) and eigenvalues
(frequencies) based on the following generalized eigenvalue problem:

HU = ΛTU (3.20)

where U = (u1,u2, ...,uN ) is the matrix of eigenvectors, which diagonalizes the Hessian matrix
H, Λ = (λ1, λ2, ..., λN ) is the diagonal matrix of corresponding eigenvalues, and T is the kinetic
energy matrix.

H is symmetric and positive-semidefinite because it resides at the local minimum of an harmonic
energy potential. Thus, it can be diagonalized without negative eigenvalues, i.e. the local curvature
of the potential can only be zero or positive. The first six normal modes with zero-frequency are
typically ignored because they correspond to the external rigid body motions (three rotations
and three translations in 3D) of the protein.
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Chapter 3. Background

Hence, the complete deformation space of a protein is spanned by the remaining 3N − 6 normal
modes, i.e. any motion in this space can be described by the linear combination of these modes.
The normal modes are ranked by increasing frequency according to their corresponding eigenval-
ues, which specify the energetic cost of a deformation along the mode direction. Low-frequency
modes are easily accessible for the protein due to their low energetic costs. Hence, they represent
the most dominant, collective motions of the system and are also called global or soft modes.
High-frequency modes, in contrast, are energetically less favorable and encode local movements
with low degree of collectivity. Fig 3.6B on page 28 shows the normal modes of a water molecule.

The harmonic assumption greatly simplifies the prediction of protein motions using NMA. But
at the same time it is the source of its main limitations:

1. To avoid energetic instability the energy of the initial conformation of a protein must be
minimized before analyzing its normal modes. Besides being a time-consuming step, this
energy minimization may introduce structural distortions, which in turn may reduce the
accuracy of the predicted motions.

2. Due to the harmonic approximation structural displacements along the mode directions
are only valid close to the equilibrium conformation.

3. NMA ignores molecular constraints, such as fixed bond lengths of covalent bonds or fixed
dihedral angles. Hence, additional efforts are required to preserve structural integrity
beyond infinitesimal small displacements from the equilibrium along the normal modes, e.g.
by iterating between moving along normal mode directions and re-evaluating of normal
modes based on the energy minimized intermediate conformations.

4. The eigenvalue decomposition of a matrix has in general cubic complexity, although highly
efficient solvers exist. Therefore, all-atom NMA based on detailed force fields, as used
for instance in atomistic MD simulations, is practically limited to small and mid-sized
molecules.

To reduce computational costs and mitigate these limitations coarse-grained NMA based
on elastic networks deliberately simplify potential function and/or model resolution. We will
introduce them in the following.

3.3.2 Elastic Network Models (ENMs)

More than 20 years ago, Monique Tirion proposed the first elastic network model (ENM) based
on a highly simplified harmonic potential instead of the complex force fields commonly used by
NMA (Tirion, 1996). She modeled a protein as network of atoms, where spatially close neighbors
are linked by uniform elastic springs (based on a distance cutoff). Despite its simplicity, the
elastic network closely resembled the low-frequency modes and fluctuations predicted by standard
NMA.
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3.3. Coarse-Grained Normal Mode Analysis with Elastic Network Models

Several advantages arise from this single-parameter model: First, there is no need to minimize
the energy of the initial conformation because it is defined to be the minimum energy state of the
harmonic potential. Besides saving computational time, this also avoids the risk of structural
distortions. Second, it reduces the computational costs for diagonalizing the Hessian of the
network potential to infer normal modes (eigenvectors) and associated frequencies (eigenvalues).
And most importantly, studying conformational transitions by the means of predicted normal
modes became computationally feasible.

Apart from simplifying the potential function also the resolution of the underlying model can be
reduced, which inspired the development of several ENM variants shortly after Tirion’s model was
published. The Gaussian Network Model (GNM) (Haliloglu et al., 1997, Bahar et al., 1997)
is an elastic network model defined on residue- instead of atomic-level. Because the GNM only
considers topological constraints between residues it predicts collective dynamics in form of residue
fluctuations and their cross-correlations but cannot provide information about their directionality.
The Anisotropic Network Model (ANM) (Atilgan et al., 2001, Tama and Sanejouand, 2001)
extends the GNM with directional information by considering the three-dimensional coordinates
of the Cα-atoms representing the residues. Both ENMs presented in this thesis (chapters 5 and 6)
are based on the ANM. Thus, we will introduce its theoretical foundations in more detail below
(see 3.3.3).

Coarse-grained NMA based on ENMs became a quite popular tool for studying protein
motions due to its ability to combine computational efficiency with surprising biological accuracy.
Numerous studies have demonstrated that the most dominant normal modes capture collective
protein motions with functional relevance (Tama and Sanejouand, 2001, Krebs et al., 2002, Eyal
et al., 2006, Rueda et al., 2007a, Ahmed et al., 2010, Bahar et al., 2010a, Kurkcuoglu et al., 2012,
Meireles et al., 2011, Mahajan and Sanejouand, 2015, Bahar et al., 2015, Sankar et al., 2018).
These motions are robustly encoded by the overall geometric shape of the protein without being
affected by small variations in structural details or potential function. Consequently, ENMs allow
the analysis of large biomolecular assemblies that exceed the range of atomistic MD simulations.

Today, ENMs have reached a broad range of applications (Fig 3.7) (López-Blanco and Chacón,
2016). For instance, they are employed to study the intrinsic motions of large molecular complexes,
such as viral capsids (Lee et al., 2018, Hsieh et al., 2016) or the ribosome (Wang et al., 2004,
Kurkcuoglu et al., 2009a). They provide insights into the mechanism of allosteric effects (Guzel
and Kurkcuoglu, 2017) or reveal structural dynamics of membrane proteins (Bahar et al., 2010a,
Di Luca and Kaila, 2018). They are be used to produce pools of candidate structures for
protein docking (Cavasotto et al., 2005, Dobbins et al., 2008, Meireles et al., 2011, Cavasotto,
2012, Kurkcuoglu and Doruker, 2016). They guide fine-grained conformational sampling, such
as MD simulations or geometric exploration along the most dominant motion directions of a
protein (Kirillova et al., 2008, Gur et al., 2013). They assist the refinement of experimentally
determined models through normal-mode guided flexible fitting of candidate structures into
low-resolution density maps (Hinsen et al., 2010, Schröder et al., 2007, Gniewek et al., 2012).
They have been applied to study the dynamics of RNA (Mailhot et al., 2017, Zimmermann
and Jernigan, 2014, Pinamonti et al., 2015), to predict the effect of sequence mutations on the
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Chapter 3. Background

Figure 3.7: Representative applications of ENMs. Application scenarios range from analysis and
prediction of biologically relevant motions to generation of conformational ensembles used in various
structural biology scenarios. The central image shows the elastic network model of adenylate kinase
with arrows indicating the motion direction corresponding to the lowest energy normal mode. Fig-
ure source: Reprinted from López-Blanco and Chacón (2016), Copyright (2018), with permission
from Elsevier and additional permission from Refs. (Lopéz-Blanco et al., 2011, Oot et al., 2012,
Miyashita et al., 2011, Wang et al., 2014b, May and Zacharias, 2008, Liu and Bahar, 2012, Bahar
et al., 2015) to reprint the images around the central image.

structure-encoded protein motions (Frappier and Najmanovich, 2014), or to examine the link
between structure-encoded motions of a protein and evolution of structure and sequence (Haliloglu
and Bahar, 2015, Liu and Bahar, 2012).
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3.3. Coarse-Grained Normal Mode Analysis with Elastic Network Models

3.3.3 Anisotropic Network Model (ANM)

The elastic network models, mcENM and lmcENM (see chapters 5-6), presented in this thesis
base on the widely used anisotropic network model (ANM) (Atilgan et al., 2001, Tama and
Sanejouand, 2001). Essentially, the ANM is a low-resolution variant of Tirion’s ENM (see 3.3.2)
using the same simplified harmonic potential. But instead of considering atomic interactions, the
ANM captures interactions between the Cα-atoms of spatially close residues (“in contact”) by
connecting them with uniform elastic springs.

Fig 3.8 illustrates the coarse-grained quadratic approximation of a protein’s detailed energy
landscape. The native conformation of the protein defining the energy minimum of the harmonic
potential is modeled as ANM. By deforming the initial conformation along the predicted global
modes two substates S1 and S2 can be reached, which have been revealed at an intermediate
resolution of the energy profile.

Figure 3.8: Coarse-grained approximation of the energy landscape (2D-profile) around the native
conformation of a protein. N refers to the native conformation modeled as a coarse-grained elastic
network model, which resides at the single energy minimum of the quadratic approximation (green
curve) of the energy profile (black curve). In between the detailed energy profile with several mi-
crostates (m1, m2, m3, ...) and its harmonic approximation is an energy profile at intermediate
resolution, which reveals two and more substates (S1, S2, S3, ...). The structural models of sub-
states S1 and S2 result from sampling along global modes around the native conformation. Small
fluctuations around S2 produce a conformational ensemble at higher structural resolution (bot-
tom right). Figure source: Reprinted with permission from Bahar et al. (2010a). Copyright (2018)
American Chemical Society.

In general, the spring stiffness can be varied as done by several ENM variants (Fuglebakk
et al., 2015) (see also chapter 2). In this thesis, we rely on the ANM in its classical form using
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an uniform spring stiffness to purely focus on the effect of dynamic contact changes on ENM
accuracy (see chapters 5 and 6).

Formally, two residues i and j are in contact if their distance is shorter than a pre-determined
cutoff rc. The binary contact matrix C captures this network in its elements Cij :

Cij =

1, if dij ≤ rc

0, otherwise
(3.21)

where dij denotes the Euclidean distance between the three-dimensional coordinates of the Cα

atoms, which represent residues i and j. The cutoff distance rc depends on the type of ENM
used and is often tailored protein- or problem-wise.

The generalized form of the entire network potential of the ANM is defined as

VANM =
N
i,j

Kij

2
(dij − d0ij)

2 (3.22)

where dij and d0ij denote the instantaneous and equilibrium distance of residues i and j measured
between their Cα atoms, N is the number of residues of the protein, and Kij refers to the elements
of the stiffness matrix defined below.

The stiffness matrix K specifies the spring stiffness between residues i and j as

Kij = γ · Cij (3.23)

where γ is a uniform stiffness constant and Cij ∈ {0, 1} refers to the entry of residues i and j in
the contact topology matrix of the initial conformation as defined in eq. 3.21.

For a protein with N residues, the Hessian is a 3N × 3N matrix that is constructed from
3× 3 submatrices. Using eqn. 3.22 in eqn. 3.18, the off-diagonal elements Hij are given by

Hij = −Kij

d2ij



(xj − xi)
2 (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)
2 (yj − yi)(zj − zi)

(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)
2


(3.24)

and the diagonal elements Hii as
Hii = −


i,j

Hij (3.25)

Diagonalization of the Hessian matrix yields the normal modes (eigenvectors) and frequencies
(eigenvalues) of the ANM, as described in detail above (see 3.3.1).
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4
Materials and Methods

In this chapter we present materials and methods that are relevant to both proposed elastic
network models in this thesis, namely the elastic network model of maintained contacts
(mcENM) in chapter 5 and the elastic network model of learned maintained contacts
(lmcENM) in chapter 6. First, we introduce the set of proteins that is used for development and
evaluation of mcENM and lmcENM. Next, we introduce the measures that we use to evaluate
the ENMs in terms of biological accuracy, captured deformation space, as well as alignment
of predicted low-frequency modes to essential dynamics of conformational ensembles. Last, we
introduce the reference ENMs that we use to validate mcENM and lmcENM including their
parametrization.

4.1 Protein Data Set

To train and test our classifier as well as to evaluate the performance of lmcENM, we chose a set of
proteins with known motion type. The Protein Structural Change DataBase (PSCDB) (Amemiya
et al., 2011, 2012) provides motion classified protein pairs, each representing the functional
transition of one protein family in the SCOP (Structural Classification of Proteins) database. A
pair consists of two conformations, marking start and end of the functional transition, where
only the latter is bound to a ligand, the former is unbound. The PSCDB classifies each of these
functional transitions into six motion types (see below). In particular, it distinguishes highly
collective, domain motions from localized, uncorrelated transitions. This allows us to explicitly
assess the ability of our approach to explain localized, functional transitions that are elusive for
classical ENMs.

35



Chapter 4. Materials and Methods

We applied several filters to extract a meaningful and consistent data set from the PSCDB
and excluded proteins

(a) without significant motion (root mean squared distance (RMSD) ≤ 1.0Å),

(b) with less than 70 residues alignment length,

(c) with resolution higher than 2.5Å,

(d) including chain breaks (defined as more than 4.2Å Euclidean distance between two consec-
utive Cα atoms along the sequence (Li et al., 2011)),

(e) including a peptide with more than six non-hydrogen atoms in the unbound conforma-
tion (Brylinski and Skolnick, 2008),

(f) with largely extended or disordered structures.

Furthermore, we limited ourselves to single-chain proteins to enable faster development and
testing. Filters (a) and (d) exclude proteins encoding little to no information about protein
motions, whereas (b), (c), (e), and (f) exclude proteins for which this information is distorted due
to low structural quality, highly specialized structural topology, or interaction with other chains.

Our final data set of 90 protein pairs is distributed across the following motion classes (see
Dataset A in the supplementary file S2 of our paper (Putz and Brock, 2017)): coupled domain
motion (short: CDM, 21 protein pairs), independent domain motion (IDM, 14), coupled local
motion (CLM, 27), independent local motion (ILM, 18), buried ligand motion (BLM, 4), and
other types of motion (OTM, 6). Both domain and local motions can be associated with ligand
binding (coupled) or without (independent). Proteins that are bound to a ligand in the end
conformation, but lack considerable movement between start and end, are categorized as buried
ligand motions. Although, these proteins move to bind the ligand, the structural differences
between the two conformations are small because the ligand-free conformation seems to imitate
the shape of the ligand using occluded water molecules (Amemiya et al., 2011). All remaining
proteins fall into the category other types of motions that are larger (RMSD > 1.0Å) but do not
match the criteria for local or domain motions.

The length of proteins in our data set ranges from 70 to 712 amino acids. The RMSDs (root
mean squared distances) between the unbound and bound conformation range between 1.1Å and
9.6Å.

4.2 Evaluation of Elastic Network Models

Coarse-grained ENMs often guide more detailed exploration of protein motions (see Elastic
Network Models (ENMs)). The value of this guidance largely depends on two factors: First, how
much can the guidance be trusted, i.e. how accurate is the prediction of the essential deformation
space that has to be searched. Second, how much can it reduce computational cost by narrowing
down the search space for conformational exploration.
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In addition, we evaluate how well the predicted low-frequency ENM-modes match to the
dominant structural deformations captured by conformational ensembles.

4.2.1 Assessing the Biological Accuracy

A common measure to evaluate the accuracy of ENMs is the mode overlap Oj (Marques and
Sanejouand, 1995, Tama and Sanejouand, 2001). It specifies the amount of conformational change
captured by a single mode j based on the angle between conformational displacement vector and
mode direction vector Mj , as defined in:

Oj =

 3NMj∆ri


3N

M2
j ·

3N
∆r2i

1/2
(4.1)

where ∆ri = (rSi − rEi ) denotes the displacement vector from start (rSi ) to end conformation (rEi )
at residue i; N is the number of residues of the protein. The measure ranges between 0 and 1
(perfect match).

By summing up the individual mode overlaps of the first k low-frequency modes, we now can
specify their cumulative mode overlap CO(k) (Yang et al., 2007). It indicates how accurate
the deformation space spanned by these modes captures the functional transition, given by:

CO(k) =


k

j=1

O2
j

1/2

. (4.2)

In principle, the number of low-frequency modes required to span the essential deformation space
is unknown. This is due to its strong coupling to the collectivity of the functional transition
(see 3.3.2). However, usually less than ten modes suffice to accurately capture function-related
movements that are highly collective. In the results section, we thus assess the cumulative mode
overlap of the first ten low-frequency modes CO(10) unless stated otherwise. We use CO(10) as
main measure for benchmarking the different ENM variants. To avoid over-fitting to a single
measure we evaluate a set of other commonly used metrics described below.

The Pearson correlation coefficient is used to measure the similarity between predicted
residue fluctuations and observed displacements, as well as between predicted fluctuations and
experimental B-factors from the unbound conformation. Predicted fluctuations were scaled to
observed displacements and B-factors, respectively. The correlation coeffient ranges between -1
(total negative correlation), 0 (no correlation) and +1 (total positive correlation).

The fraction of variance of a mode measures how much of the structural variance it explains.
It is defined by the variance of mode j divided by the trace of the covariance matrix of the model.
The cumulative fraction of variance (CFV(k)) sums up the individual contributions of the
first k low-frequency modes.
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The degree of collectivity κi (Brüschweiler, 1995) of a protein motion quantifies the number
of involved residues. It is given by:

κj =
1

N
exp(−

N
i

u2j,i log u
2
j,i) (4.3)

where N denotes the number of residues of the protein and u2j,i is defined as u2j,i = α 1
mj

(M2
j,X +

M2
j,Y +M2

j,Z) with Mj being the j-th mode vector and mj its mass; α is a normalization factor
to ensure that


iNu2j,i = 1. The measure varies between 1/N (only one residue affected) and 1

(maximally collective).

4.2.2 Assessing the Dimensionality of Deformation Space

The dimensionality of the essential deformation space depends on the desired accuracy. Therefore,
we assess the number of modes required to capture 70%, 80%, and 90% of the functional
transition (measured in percent cumulative mode overlap). Lower dimensionality effectively
reduces computational cost for subsequent exploration of this space.

In addition, we report the maximum overlap MaxO(j) among the first j modes, together
with the rank of the corresponding mode (rank 0 refers to the first mode), its collectivity, and
fraction of variance.

4.2.3 Comparing against Essential Dynamics of Conforma-

tional Ensembles

Conformational ensembles obtained from structural databases provide an additional source to
characterize protein flexibility (Best et al., 2006, Burra et al., 2009, Monzon et al., 2016). For a
subset of proteins we obtained such an ensemble and analyzed its Essential Dynamics (ED) using
Principal Component Analysis (PCA) as implemented in ProDy (Bakan et al., 2011). We use
the following measures to analyze the similarity between ENM deformation space and principal
components space.

The Pearson correlation coefficient CC is used to determine the similarity between the
mean square fluctuations captured by ED and the squared fluctuations of the ENM. It varies
between -1 (total negative correlation), 0 (no correlation) and +1 (total positive correlation).

The root mean square inner product (RMSIP) (Amadei et al., 1999) measures the
similarity of two vectorial spaces by the overlap of their k-dimensional subspaces:

RMSIP(k) =


k

i,j=1
(Ui · Vj)

2

k


1/2

(4.4)
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where Ui and Vj are the eigenvectors/principal components of the compared covariance matrices;
k is the dimensionality of the subset of low-frequency modes/principal components. Commonly,
k is set to an arbitrary value of 10. RMSIP ranges between 0 and 1 (perfect match).

A related measure of vector space similarity is the root weighted square inner product
(RWSIP) (Carnevale et al., 2007). In contrast to the RMSIP it considers the relative contribution
of each eigenvector (direction) weighted by its corresponding eigenvalue (magnitude). Further, it
takes into account the full spaces to be compared instead of a small subspace. The RWSIP is
given by:

RWSIP =


N

i,j=1
uivj(Ui · Vj)

2

N
i=1

uivi


1/2

(4.5)

where Ui and Vj are the eigenvectors/principal components of the compared covariance matrices;
ui and vj are the eigenvalues; N is the number of non-trivial eigenvectors in each mode set. ENM
eigenvalues have been inverted to be proportional to the relative amplitudes captured by PCA
eigenvalues. RWSIP ranges between 0 and 1 (perfect overlap).

4.3 Reference Elastic Network Models Used for

Evaluation

To validate our approach, we compare it against the baseline ENM defined by the classical
ANM as well as three other reference ENM variants:

• HCA-method - a cutoff-free elastic network model with distance-dependent force con-
stants (Hinsen et al., 2000),

• OFC-ENM - a model with optimized force constants based on structural properties (Lezon
and Bahar, 2010),

• edENM - a hybrid elastic network model combining a bond-cutoff strategy for close sequen-
tial neighbors and distance-dependent force constants for remote interactions (Orellana
et al., 2010).

All variants use the general form of network potential, VANM , as defined in eq. 3.22 on page 34.
In the following we introduce the technical details and parametrization of each reference ENM.
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4.3.1 Baseline ENM

All ENM variants proposed in this thesis rely on the Anisotropic Network Model (ANM) invented
by Bahar et al. (Bahar et al., 1997) (see 3.3.3). As such it defines the natural baseline for
evaluating our approach.

In their simplest form ANMs assign a uniform stiffness constant to all springs in the network
and only parametrize the distance-cutoff to determine residues in contact, which influences the
overall density of the network. A common strategy is to adjust the cutoff distance of ANMs
within a range of 8-15Å based on the given protein or problem (Atilgan et al., 2001, Eyal et al.,
2006, Kondrashov et al., 2007, Leioatts et al., 2012, Fuglebakk et al., 2013, 2015). Because
sparser networks at smaller cutoffs tend to become unstable, cutoff values of 12Å and larger
are typically chosen (Jeong et al., 2006, Eyal et al., 2006, Fuglebakk et al., 2013). While these
artificial constraints usually do not alter collective motions of the network they often reduce the
actual mobility of local parts of the network. As a consequence, ANMs at these cutoffs are less
suitable to predict localized functional transitions, which is the main goal of this thesis. We
therefore tried to lower the cutoff distance for our data set as much as possible without making
the network unstable.

To do so, we evaluated the performance of ANM at cutoff values ranging from 8-18Å by
measuring their cumulative mode overlap of the first ten low-frequency modes. At cutoffs lower
than 11Å, some networks became unstable yielding more than the trivial six zero eigenvalues: 20
cases for ANM8, 9 cases for ANM9, and 3 cases for ANM10 from our full set of 90 proteins. We
therefore tried to stabilize the ANMs to work at cutoffs lower than 11Å .

To be stable elastic network models must fulfill two requirements (Jeong et al., 2006): (i)
each node must be connected to at least four other nodes, (ii) the network must have at least
3N − 6 edges, where N refers to the number of nodes. As first step towards stabilizing the
ANM at lower cutoffs we therefore enforce that each Cα atom is constrained by at least four
neighbors (node degree >= 4). Under-constrained Cα atom get connected to their closest–not
yet connected–neighbors along the sequence irrespective of their distance. Please note that this
also adds artificial constraints but only locally, which is unlikely to alter the intrinsic motions
encoded by the ANM in contrast to an overall larger cutoff as discussed above.

Table 4.1 shows the performance of this network, called ANMminDeg4, at different cutoffs.
The 4-neighbor-connectedness criterion largely reduces the number of networks yielding more
than six zero eigenvalues, yet some networks remain unstable at cutoffs 8 and 9Å. However,
ANM10minDeg4 now fulfills the criterion of six zero eigenvalues for all proteins and yields largest
agreement between predicted and actual motion directions. Hence, we chose it as baseline for our
approach.

This is in line with Kondrashov et al. (2007) who found that a distance-cutoff of 10Å yields largest
agreement in overlap of motion directions, but less accurate prediction of motion magnitudes. In
turn, the best match of motion amplitudes (fluctuation profiles) requires cutoffs larger than 15Å,
thereby reducing the overlap in motion directions by increasing structural stiffness and collectivity
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Table 4.1: Performance of ANMminDeg4 at cutoff value rc ranging between 8 and 18Å measured by
the cumulative mode overlaps of the first ten low-frequency modes evaluated on the LMC_all data
set (90 proteins). Cutoffs 9Å and 10Å yield best median overlap. However, only ANM10minDeg4

fulfills the criterion of six zero eigenvalues making it the better choice as baseline for our approach.
Table source: Putz and Brock (2017).

rc (Å) 8a 9b 10 11 12 13 14 15 16 17 18

median 0.670 0.685 0.685 0.677 0.673 0.675 0.665 0.660 0.647 0.624 0.615
mean 0.661 0.665 0.665 0.667 0.664 0.660 0.651 0.646 0.639 0.631 0.622

a10 cases with more than the six trivial zero eigenvalues
b3 cases with more than the six trivial zero eigenvalues

of motion. This counteracts our goal to accurately model localized functional transitions with
low degree of collectivity.

We also find that the simple 4-neighbor-connectedness criterion above does not guarantee net-
work stability of distance-cutoff based ANMs (see ANM8minDeg4 and ANM9minDeg4 in Table S13.
This is interesting because also the second requirement for stabilized networks is maintained
as it is for the bond-cutoff based ENM proposed by Jeong et al. (Jeong et al., 2006). They
connect each CA-atom with its closest four sequential neighbors and scale spring stiffness based
on sequence distance. But, due to the sparser network they need to explicitly model chemical
interactions, such as disulfide bridges, hydrogen bonds, of van-der-Waals forces, which makes
the network construction more complex than for the distance-cutoff based ENM. In contrast,
we only ensure that each CA-atoms is constrained by four contacts that are not necessarily the
closest four sequential neighbors and model springs with uniform stiffness. This allows us to keep
the network construction simple but also to solely focus on the effect of changes in the network
topology.

In the rest of this thesis, we refer to this ANM10minDeg4 simply as ENM or baseline ENM.

4.3.2 HCA

The HCA method (Hinsen et al., 2000) defines the spring stiffness between all residue pairs in
the network using a fast decaying distance-dependent function:

Kij =

a · dij − b, if dij < rc

c · (dij)−d, otherwise
(4.6)

where dij is the Cartesian distance between residues i and j. We used the parametrization
of the original publication (a = 205.5 kcal mol−1Å−3, b = 571.2 kcal mol−1Å−2, c = 3.059 ∗
105 kcal mol−1Å4, d = 6, and rc = 4.0Å).
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4.3.3 OFC-ENM

OFC-ENM (Lezon and Bahar, 2010) scales spring stiffness based on secondary structure type and
sequential distance between interacting residues. The optimal stiffness constants are obtained by
analyzing NMR-ensembles using entropy maximization. We use OFC-ENM with the distance
cutoff 10Å and the default parameter set as implemented in ProDy (Bakan et al., 2011).

4.3.4 edENM

edENM (Orellana et al., 2010) is a hybrid elastic network model that distinguishes three types
of interactions. Residues close in sequence (up to three sequence positions apart) build a fully
connected network where spring stiffness depends on sequence distance. Interactions between
residues within a protein-size-dependent cutoff, rc, are modeled with distance-dependent springs.
Irrelevant, remote interactions above the cutoff are excluded from the network. This leads to the
following definition of spring stiffness between residues i and j:

Kij =


a/(sij)

b, if sij ≤ 3

(c/dij)
d, if sij > 3 and dij ≤ rc

0, otherwise

(4.7)

where dij (sij) is the Cartesian (sequential) distance between residues i and j, respectively;
rc = 2.9 ∗ ln(N)− 2.9 is a size-dependent distance cutoff with N being the number of residues of
the protein. We used the default parametrization of the original publication, which was optimized
based on MD simulations (a = 60 kcal mol−1Å−2 and b = 2; c = 6 kcal mol−1Å−2 and d = 6).
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5
Elastic Network Model of

Maintained Contacts (mcENM)

5.1 Introduction

This chapter addresses a major shortcoming of elastic network models (ENMs): While they
reliably predict collective protein motions, they poorly capture localized functional transitions in
most cases. In chapter 1 we argued that this limitation questions the practical relevance of ENMs
because the motion type of a protein is usually unknown a priori. Hence, we have no guarantee
that the motions predicted by ENMs match the actual motions of the protein.

The goal of this chapter is to show that this limitation can be overcome by accounting for
dynamic changes in the network connectivity of ENMs. This is based on the key insight that
localized, function-related transitions often involve substantial changes in the contact topology of
a protein. To reliably predict its motions, we therefore need to adjust its initial contact topology
to reflect these dynamic changes. In case we know at least two conformations of a protein we will
see that this task simply becomes extracting the differences between their contact topologies, i.e.
which contacts break, form, or are maintained. We call these differences observed contact changes.
Of course, to see effective changes in the contact topologies, the structures of the conformations
must differ enough. Good candidates for such a pair of conformations are start and end of a
functional transition.

By investigating the effect of these dynamic contact changes on ENM accuracy we identify
breaking contacts as the relevant contact change. Removing the springs associated with observed
breaking contacts releases constraints on local parts of the elastic network, which were imposed
by the initial contact topology of the protein. We call the resulting network the elastic network
of maintained contacts (mcENM, see Fig 5.1).

43



Chapter 5. Elastic Network Model of Maintained Contacts (mcENM)

mcENM

Breaking
Maintained

Normal Modes

CA

Contact Changes Map

NMA

Ligand

Unbound
Bound

Figure 5.1: Flowchart overview of mcENM construction and analysis. First, we identify observed
breaking contacts between start (unbound) and end (bound) conformation of a functional transi-
tion. Next, we remove the springs associated with the observed breaking contacts from the initial
elastic network model of the start conformation, resulting in the network of maintained contacts
(mcENM). Last, we analyze mcENM using normal mode analysis (NMA) to predict the intrinsic de-
formations (normal modes) of the protein (image generated with ANM 2.0 web server (Eyal et al.,
2015)).

We evaluate the performance of mcENM on a set of 90 pairs of protein conformations covering
different motion types and compare it to the classical, distance-cutoff based ENM. Our results show
that mcENM is indeed capable of predicting localized functional transitions, thereby expanding
the range of motions that can be captured by ENMs. Furthermore, mcENM requires fewer modes
to capture such localized function-related movements, which alleviates another problem of ENMs
not to know how many and which modes to consider. Finally, we investigate the relationship
between the occurrence of observed breaking contacts and their effect on ENM accuracy by
considering motion type, structural fold, and function class of the proteins in our data set.

This chapter provides the foundation for the core contribution of this dissertation–presented in
the following chapter 6–in two regards: First, mcENM marks the theoretical upper bound on
ENM precision that can be achieved with a "perfect" network, which is useful when evaluating the
performance of different ENM variants. Second, the observed breaking contacts contain valuable
information that enables their prediction, as we will see in the following chapter.

5.1.1 Contributions

In this chapter, we make the following contributions:

Conceptual Contributions

• We propose that accounting for dynamic changes in the contact topology of proteins expands
the range of motion types that can be explained by elastic network models (ENMs).

• We identify observed breaking contacts in the initial contact topology as a major obstacle
for ENMs to capture localized function-related protein motions. These breaking contacts
can be obtained if at least two conformations of a protein, preferably start and end of a
functional transition, are known.

44



5.1. Introduction

Technical Contributions

• We present a novel elastic network model of maintained contacts (mcENM) that accounts
for a particular type of observed dynamic changes in the underlying contact topology of
proteins. It ignores springs that are associated with contacts that have been observed to
break when the protein moves. mcENM can be applied to proteins, when more than one
conformation is known.

Empirical Contributions

• We show that the absence of observed breaking contacts enables mcENM to capture
function-related protein motions not only when they are collective but also when they are
local and uncorrelated. It also substantially reduces the dimensionality of the essential
deformation space required to explain localized functional transitions. If more than one
conformation of a protein is known, mcENM provides a more accurate prediction of the
motions required to transition between these two conformational states than the widely
used, distance-cutoff based ENMs.

• We show that mcENM improves prediction accuracy not only for local movers but also
for proteins in other motion categories. We also show that certain structural folds and
functional classes of proteins promote dynamic changes in the contact topology more than
others and that breaking contacts differ in their impact on ENM accuracy.

5.1.2 Outline

The rest of this chapter is organized as follows:

• Section 5.2 Methods introduces the concept of dynamic contacts, i.e. observed contact
changes, their definition, and the strategies to identify, which contact changes are relevant
to improve ENM accuracy.

• Section 5.3 Implementation describes the parametrization of mcENM and its baseline,
the distance-cutoff based ENM.

• Section 5.4 Results and Discussion describes the experimental setup and analyzes
and discusses the experimental results, which contain an analysis of breaking contact
occurrence in relation to their effect on ENM accuracy w.r.t. motion type, structural fold,
and functional class of proteins.

• Section 5.5 Conclusion summarizes the findings of this chapter, discusses its limitations,
and establishes observed breaking contacts as a novel source of information to improve
prediction accuracy and general applicability of ENMs.
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5.2 Methods

In this section we introduce our definition of contact changes and the resulting types of dynamic
contacts. Based on these changes we then adjust the initial contact topology of proteins to study
the effect of contact changes on ENM accuracy.

As introduced in 3.3.2 elastic network models build upon the contact topology of proteins,
which simply models them as network of interacting residues. Two residues interact, i.e. are
in contact, if the distance between their Cα atoms is within a pre-defined distance cutoff (see
eqn. 3.21). The contact topology of a protein is derived from a single conformation. Therefore it
encodes static structural connectivity. But proteins move between different conformations, for
instance to accommodate their shape to fit a binding partner. Depending on the type of motion
these changes may also affect the coarse-grained contact topology of a protein.

5.2.1 Definition of Contact Changes and Contact Types

To identify function-related changes in connectivity, we thus compare the contact matrices
between start (S) and end (E) conformation of a functional transition. Taking the endpoints of a
conformational transition increases the chance that associated changes in the contact topology
are substantial and relevant for the protein to function.

We observe three different types of contact changes yielding the following contact types, which
we call dynamic contacts :

• maintained contacts preserve their original distance within a pre-defined threshold,

• breaking contacts exceed or shorten their original distance above this threshold, and

• forming contacts establish between residues that are in contact distance after the movement,
i.e. in the end conformation.

maintained breaking forming

Figure 5.2: Simplified illustration of types of contact changes. Deformation of the contact network
causes a contact to break, another one to form, while most contacts maintain their distance.

Based on the contact matrix C as defined in eqn. 3.21 we formalize the dynamic contacts in the
transition matrix T , whose elements, Tij , encode the three different types of contact transitions,
defined as follows:
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Tij =



maintained contact, if CS
ij = 1 and eij ≜ |∆dij

dSij
| ≤ ec

breaking contact, if CS
ij = 1 and eij ≜ |∆dij

dSij
| > ec

forming contact, if CS
ij = 0 and CE

ij = 1

no contact, otherwise

(5.1)

where CS
ij (CE

ij ) refers to the entry for residues i and j in the contact matrix of the start and end
conformation, respectively; eij denotes the distance change between residues i and j relative to
their initial distance in the start conformation, where ∆dij ≜ dSij − dEij . Intuitively, eij can be
interpreted as strain measuring how much the distance between two particles in a body elongates
(“stretch”) or shortens (“compression”) relative to their original distance. We limit the distance
change by an upper bound ec to distinguish breaking from maintained contacts.

Fig. 5.3C shows an example of a contact transition matrix that is derived from the conforma-
tional transition of Arsenate reductase (ArsC) upon binding a ligand.

5.2.2 Identification of Relevant Contact Changes

Based on the observed contact changes we consider two of the three possible strategies to adjust
the initial contact topology of ENMs:

(I) removing breaking contacts, and

(II) removing breaking contacts and adding forming contacts.

We explicitly exclude the third possible strategy from our analysis, which is to add forming
contacts without removing the breaking ones. This is because it immediately contradicts our
main hypothesis that erroneous constraints prevent parts of the initial network from performing
localized motions. Every forming contact imposes another constraint on the network rendering it
less flexible.

Strategy I - Removing Breaking Contacts

What does it actually mean if we observe contacts to break when the protein moves? Two parts
of the protein, initially in contact distance, are driven apart throughout the function-related
movements of the protein. Thus, elastic network models should model these contacts much weaker
than contacts that maintain their distance during the motion. Otherwise they would locally
render the network stiffer than it actually is, thereby preventing localized functional transitions.

However, the widely used, distance-cutoff based ENMs treat every contact the same due
to the uniform spring stiffness. This leaves us with two options: Either we adjust the spring
stiffness accordingly, for instance based on the observed relative distance change of contacts, or
we completely ignore the springs associated with observed breaking contacts in the network.

We decided to do the latter for two reasons: First, only the network topology is adjusted without
making the simplified model more complex. This is motivated by a widely accepted principle in
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science called Occam’s Razor, which states that simpler hypotheses making fewer assumptions
should be preferred over more complex ones because they can easier be tested1. Second, weakening
the springs associated with observed breaking contacts may still underestimate the mobility of
functionally relevant loops that are highly flexible. In particular, if partial unfolding and refolding
is involved complete removal of these erroneous constraints may be necessary to explain the
flexibility of these parts. The case study 6.4.7 in the following chapter presents an example for
partial unfolding and refolding of functionally relevant loops in an outer membrane transporter.
Its functional transitions are more accurately captured by ENMs if the observed breaking contacts
are ignored.

We call the resulting model without the springs associated with the observed breaking contacts
elastic network of maintained contacts (mcENM). The steps to build mcENM are illustrated
in Fig 5.3. mcENM allows us to solely examine the effect of a refined network topology on
ENM accuracy. Optimizing spring stiffness can be considered a follow up step to further tune
ENM performance. In general, mcENM can be combined with any other ENM formulation that
optimizes spring stiffness.

Unbound Bound

A

Breaking 
 Maintained 

Observed Contacts

Forming 

D C

B

Relative Contact Distance 
Changes Matrix

Contact Transition 
Matrix T

Figure 5.3: Illustration of mcENM construction steps. (A) Conformational transition from unbound
to bound conformation of Arsenate reductase (ArsC). (B) Distance changes of contacts relative to
their initial distance in the unbound conformation. (C) Contact transition matrix based on prede-
fined extension threshold to distinguish observed breaking from maintained contacts (see eqn. 5.1
for details). Color coding of observed contact changes applies to subfigures C and D. (D) Removing
the observed breaking contacts (highlighted in red) results in the elastic network model of main-
tained contacts (mcENM). Observed forming contacts are only shown in the contact transition
matrix (subfigure C).

1https://plato.stanford.edu/entries/simplicity/
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Strategy II - Removing Breaking Contacts and Adding Forming Contacts

Above we argued that adding observed forming contacts will most likely counteract increased
mobility in local parts of the network gained by removing breaking contacts. However, there may
be cases, where adding forming contacts to the elastic network in combination with removing
breaking ones more accurately captures the intrinsic motions of proteins. To test this hypothesis,
we build the elastic network of maintained and forming contacts (mfcENM).

5.2.3 Protein Data Set

To identify contact changes related to function-related protein motions we obtained a set of 90
conformational pairs from the Protein Structural Change DataBase (PSCDB) (Amemiya et al.,
2011, 2012). Each pair captures start and end of a functional transition, which is classified by
motion type, such as collective domain motions or localized motions involved in ligand binding.
We also utilize these conformational pairs to evaluate the performance of the ENM variants w.r.t.
to different types of function-related protein motions. To do so, we predict intrinsic motions
based on the start conformation and validate their match with the observed conformational
displacement. Detailed information on the data set and the motion classification can be found in
section 4.1.

5.2.4 Evaluation of Elastic Network Models

We assess the performance of elastic network models by evaluating their biological accuracy and
the dimensionality of their essential deformation space. The employed measures are introduced
in detail in section 4.2. For convenience, we briefly summarize them here.

The biological accuracy of ENMs indicates how much we can trust the predicted ENM-motions
to use them as guidance for subsequent applications, such as conformational exploration or
ensemble generation for protein docking. We use mode overlap (Marques and Sanejouand,
1995, Tama and Sanejouand, 2001) and cumulative mode overlap (Yang et al., 2007) of the
first ten low-frequency modes to measure the alignment between predicted motion directions
and actual conformational displacement. We calculate the Pearson correlation coefficient to
assess the similarity between predicted and actual residue fluctuation profiles. We measure how
much structural variance can be explained by individual or a subset of low-frequency modes by
the (cumulative) fraction of variance. Finally, we quantify the amount of residues involved
in the protein’s motion by the degree of collectivity (Brüschweiler, 1995) of a mode.

The dimensionality of the essential deformation space of ENMs influences the computational
costs required to search the space spanned by a subset of the most dominant low-frequency modes.
Hence, we analyze the number of modes that are required to capture 70%, 80%, and 90% of the
actual conformational displacement. We also report rank, collectivity, and fraction of variance
of the mode with maximum overlap among the first ten low-frequency modes together with its
overlap.
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5.3 Implementation

In the following we describe the implementation details of the two ENM variants proposed
and evaluated in this chapter, mcENM and mfcENM. This includes their parametrization and
information about the software, which we used to implement them. The two ENM variants,
mcENM and mfcENM, are based on the widely used distance-cutoff based anisotropic network
model introduced in 3.3.3. Thus, it naturally marks the lower bound on ENM performance and
we will refer to it simply as ENM or baseline ENM for the rest of this thesis.

A detailed description of the parametrization of the baseline ENM is presented in 4.3.1. We
find that a cutoff distance of 10Å yields the best performance of the baseline ENM in terms
of capturing the functional transitions in our data set while maintaining network stability by
enforcing the four-neighbor-connectedness criterion.

5.3.1 Parametrization of mcENM and mfcENM

Before adjusting the contact networks of mcENM and mfcENM they are essentially the same as
the baseline ENM at cutoff 10Å including the stability modifications. To distinguish breaking
from maintained contacts, we use an empirically defined extension threshold of 9% of the initial
contact distance that maximizes the median accuracy improvement of mcENM for our dataset
(Table 5.1).

Table 5.1: Performance of mcENM at different extension thresholds ec used to distinguish breaking
from maintained contacts. Contacts that extend their distance by less than ec percent of their
initial distance are considered maintained, otherwise they are labeled as breaking. mcENM is based
on the best performing ANMminDeg4 at cutoff value 10Å (see Table S10). The performance is
measured by the cumulative mode overlaps of the first ten low-frequency modes evaluated on the
whole data set (90 proteins). Extension thresholds between 5% and 9% reach similar performance,
with slightly better median at threshold 9%. Removing too many breaking contacts as for threshold
5% may lead to instable networks. Hence, we chose extension threshold 9% to build mcENM in
this study.

ec (%) 5a 7 9 11 13 15 17 19 21 23 25

median 0.819 0.819 0.820 0.815 0.807 0.801 0.795 0.790 0.777 0.778 0.779
mean 0.804 0.800 0.799 0.793 0.787 0.781 0.774 0.769 0.767 0.763 0.762

a1 case with more than the six trivial zero eigenvalues

However, mcENM and mfcENM became instable in several cases after removing observed
breaking contacts based on the above defined extension threshold. This was due to the removal
of contacts with less than four amino acids sequence separation. Hence, we had to tighten the
stability criterion of the baseline ENM that required at least four neighbors in contact for each
residue, which must not necessarily be the closest four along the sequence. To maintain network
stability for mcENM and mfcENM, we remove breaking contacts only if their residues are at
least four sequence positions apart. The criterion for six zero eigenvalues is maintained after the
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removal of breaking contacts in both, mcENM and mfcENM, for all proteins (Table F in the
supplementary file S2 of our paper (Putz and Brock, 2017)).

5.3.2 Used Software

All evaluated ENM variants in this thesis have been implemented and analyzed using the open-
source Python framework ProDy (Bakan et al., 2011) in version 1.8.2, which provides various
tools and methods to analyze protein structural dynamics. To produce the figures, tables,
and plots presented in this chapter, we used ProDy (Bakan et al., 2011), Matplotlib (Hunter,
2007), Seaborn (mwa), Pandas (McKinney et al., 2010), IPython (Pérez and Granger, 2007),
Jupyter (Kluyver et al., 2016), and Pymol (Schrödinger, LLC, 2015).

5.4 Results and Discussion

This section provides the biological grounding of our approach. By assuming “perfect” knowledge
we examine whether ENMs indeed are capable of explaining localized, functional transitions of
proteins. We propose that in order to do so ENMs have to account for dynamic changes in the
initial contact topology of a protein, which are required to capture these localized movements.

We start by explaining the experimental setup to observe these dynamic contact changes and
how our refined ENM variants are evaluated. We structure the remainder of this section into
three parts: (i) identification of breaking contacts as relevant contact change, (ii) the effect of
the refined network on ENM accuracy, in particular w.r.t. different motion types, and (iii) the
relation between breaking contact occurrence and accuracy improvement considering motion type,
structural fold, and functional class of the studied proteins.

First, we analyze if our refined ENM variants based on observed contact changes improve the
match between predicted and actual motions at all. We will see that only the absence of observed
breaking contacts yields a better match of mcENM-predicted motions to actual motions than the
baseline ENM, whereas also adding forming contacts results in a drastically reduced prediction
accuracy that is far below the baseline ENM.

After identifying breaking contacts as the relevant contact change we continue with an extensive
evaluation of mcENM compared to the baseline ENM on the data set of 90 proteins performing
different motion types. We start by examining if removing observed breaking contacts helps
to capture localized functional transitions. Next, we analyze and discuss how this affects the
dimensionality of the essential deformation space needed to explain these motions. This has
implications for other methods and applications that use ENM predictions as guidance, such as
molecular dynamics, or protein docking.

Finally, we analyze the occurrence of observed breaking contacts depending on motion type,
structural fold, and function class of the proteins in our data set and how this relates to the
achieved accuracy improvement by mcENM.

51



Chapter 5. Elastic Network Model of Maintained Contacts (mcENM)

5.4.1 Experimental Setup

We obtain observed contact changes by examining the differences in the contact maps of start and
end conformation capturing a functional transition of a protein. We chose to use conformational
pairs determined by high-resolution X-ray crystallography as basis for our approach. This is in
contrast to the growing work favoring MD simulations to optimize and benchmark ENMs (see
recent reviews (Fuglebakk et al., 2015, López-Blanco and Chacón, 2016) and citations therein).
Clearly, two conformations capture only part of the structural variability of conformational
ensembles. However, the chosen conformations represent the end points of a functional transition
having largest structural difference among known conformations of a protein family (Amemiya
et al., 2011). This increases the chances that the associated function-related structural changes
are not only relevant but also appear in their coarse-grained contact topology, which may be more
difficult to identify in structural ensembles obtained by MD simulations or Nuclear Magnetic
Resonance. Both have a limited view on actual structural variance due to inaccuracies in sampling
or measurement and still have restrictions on the protein’s size. Further, the captured structural
differences may be too small to effectively change the simplified contact topology. Also, energy
barriers may prevent MD simulations from accessing certain conformational states. Such an
effect is commonly associated with the induced-fit mechanism, where the presence of the binding
partner triggers the required conformational change for successful binding (Stein et al., 2011).

For all tested ENM variants we only analyze ENMs based on unbound (start) protein con-
formations, because they generally capture more of the functional transition than the more
compact bound (end) conformation (Tama and Sanejouand, 2001, Yang et al., 2007, Frappier and
Najmanovich, 2014). However, preliminary results indicate that mcENM is also well suited to
explain the backwards movements starting from the more compact bound conformation. Further
analysis is left out for future research.

Section 4.2 introduces the measures used in this thesis to assess biological accuracy, dimension-
ality of the essential deformation space, and agreement with essential dynamics of conformational
ensembles.

5.4.2 Observed Breaking Contacts Matter

We observe three different types of dynamic contacts, namely breaking, forming, and maintained
ones. Hence, the first step is to identify which of these contact changes is actually relevant to
improve prediction accuracy of ENMs.

Breaking contacts seem to be weaker than maintained ones because they loose contact during
a functional transition. Modeling them as strong as other contacts (uniform springs) thus
inhibits actually accessible movements. The simplest approach to release these artificial/erroneous
constraints is to remove breaking contacts from the initial contact network, yielding mcENM, the
elastic network model of maintained contacts.

Forming contacts, in contrast, establish towards the end of a conformational change due to the
more compact fold of the bound conformation. Hence, they further constrain the initial contact
network. Even if we incorporate them into the less constrained network of maintained contacts to
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build mfcENM, they rather inhibit required movements than enable them. Therefore, we expect
improvement in prediction accuracy for mcENM, but not for mfcENM.

Figure 5.4: Accuracy of mcENM and mfcENM compared to ENM on full data set (90 pro-
teins). Accuracy is measured by the cumulative mode overlap of the first ten low-frequency normal
modes (CO(10)). Proteins are binned based on the cumulative mode overlap reached by ENM
(#proteins per bin is given in brackets). The horizontal lines mark the average accuracy per bin
(absolute improvement of mcENM over ENM given by numbers above each bin). mcENM con-
sistently improves over ENM being particularly effective for proteins poorly captured by ENM (in-
dicated by the gray dotted line). In contrast, mfcENM performs much worse than ENM. Figure
source: Putz and Brock (2017).

In Fig 5.4, we compare the accuracy of mcENM and mfcENM with the baseline ENM in terms
of their cumulative mode overlap. Detailed results for every protein are given in Table C in
supplementary file S2 of our paper (Putz and Brock, 2017). mcENM consistently improves over
ENM, whereas mfcENM drops far below the baseline in almost all cases. This proofs our initial
hypothesis that added forming contacts artificially stiffen the network, thereby preventing the
ENM from capturing the functional transitions. Thus, we identify removing observed breaking
contacts as the relevant contact change that will improve ENM accuracy and exclude mfcENM
from the rest of the evaluation.

mcENM is particularly effective for proteins that are most difficult to capture with ENM
(indicated by a cumulative mode overlap smaller than 0.6). For proteins in these four leftmost
bins, mcENM gains between 7.0% up to 58.7% improvement in accuracy. As expected, mcENM
improves less in accuracy for proteins, whose functional transitions are well captured by ENM.
Furthermore, mcENM substantially increases the number of proteins reaching 60% coverage of
the functional transition with only ten lowest-frequency normal modes (mcENM: 92% of proteins,
ENM: 63%).

Table 5.2 shows that the improvement of mcENM over ENM is consistent over all evaluated
metrics. For detailed results see Table C in supplementary file S2 of our paper (Putz and
Brock, 2017). mcENM more accurately captures the functional transition not only in terms of
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motion directions (overlap, structural variance), but also w.r.t. motion amplitudes (correlations
between fluctuation profiles and temperature factors, where mcENM is on par with ENM).
Further, mcENM reaches higher overlap and better agreement in structural variance for the
best-overlapping mode, which is shifted towards the lower frequency spectrum of modes (rank).
Hence, this mode becomes more dominant, which is desired for the most relevant mode. mcENM
also largely reduces the amount of modes required to explain a certain percentage of cumulative
mode overlap. Only when considering the degree of collectivity, i.e. how many residues are
involved in the movement, mcENM reaches lower values than ENM. We will investigate this
further when analyzing the effect of the refined mcENM-network on the dimensionality of the
essential deformation space below (see 5.4.4).

Table 5.2: Evaluated similarity measures for ENM and mcENM. Table source: Putz and Brock
(2017).

ENM mcENM
(median/mean) (median/mean)

Cumul. Mode Overlap (10) 0.69/0.66 0.82/0.80
Cumul. Fraction of Variance (10) 0.35/0.38 0.57/0.59
CorrCoeff Fluctuations - Displacements (10) 0.52/0.50 0.81/0.78
CorrCoeff Temperature Factors - Betas (10) 0.40/0.40 0.41/0.40
Max Overlap 0.47/0.50 0.60/0.62
Rank (Max Overlap Mode) 1.00/11.08 0.00/1.93
Degree of Collectivity (Max Overlap Mode) 0.38/0.39 0.27/0.31
Fraction of Variance (Max Overlap Mode) 0.05/0.08 0.12/0.20
#Modes Cumul. Mode Overlap (70%) 11.00/34.51 3.00/6.92
#Modes Cumul. Mode Overlap (80%) 35.00/79.07 7.50/19.41
#Modes Cumul. Mode Overlap (90%) 164.50/200.60 39.00/75.56

For several measures we consider only the subset of the first ten low-frequency modes indicated
by (10) after the measure’s name. Except for Rank and Collectivity of the best-overlapping mode
higher values are better. A lower rank of the best overlapping mode with the observed
displacement vector indicates that the most relevant motion captured by the elastic network is
also more dominant. In terms of Degree of Collectivity, we find that lower values indicate that
less collective, localized functional transitions are better captured (see next paragraph for more
details).

Our results indicate that observed breaking contacts actually matter in contrast to forming
ones. Their absence improves ENM accuracy, and is most effective in capturing otherwise poorly
explained function-related movements.
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5.4.3 mcENM Accurately Captures Localized Functional Tran-

sitions

Now we need to show that our strategy works in particular for proteins with localized, functional
transitions. To validate this assumption we analyzed the performance of mcENM w.r.t. the
motion type of the proteins (see 4.1 for details on motion classification of our data set).

Fig 5.5 shows the distribution of cumulative mode overlap of mcENM and ENM for proteins
classified as local vs. domain movers. Both categories are further subdivided into ligand-coupled
or independent motions. mcENM consistently improves over ENM for the shown motion types.
However, proteins with localized functional transitions benefit by far the most. Here, mcENM
captures both coupled (independent) transitions on average 21% (15%) more accurate than ENM.
For the domain motions already well captured by ENM, mcENM still improves between 4% and
7% on average.

mean
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Figure 5.5: Accuracy of mcENM compared to ENM measured by cumulative mode overlap, subset
of local and domain motions (80 proteins). The distribution of cumulative mode overlap is evalu-
ated for the first ten low-frequency normal modes (CO(10)). mcENM consistently improves over
ENM in each motion category. mcENM is particularly effective for proteins with localized func-
tional transitions yielding an improvement between 15% and 21% for independent and coupled local
motions. Figure adapted from: Putz and Brock (2017).

mcENM substantially improves over ENM also in terms of other metrics, such as the structural
variance captured by the lowest frequency modes and the similarity between predicted and observed
fluctuation profiles (Fig 5.6 (A,B)). Again, local movers benefit the most. Correlating predicted
and experimentally observed temperature factors yields comparable performance of mcENM
and ENM (Fig 5.6 (C)). To better capture experimental B-factors ENMs require larger distance
cutoffs (>16 Å) thereby increasing structural stiffness and collectivity of motion (Kondrashov
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et al., 2007). This counteracts our goal to accurately model localized functional transitions with
low degree of collectivity. Hence, this metric has little relevance in our context.
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Figure 5.6: Accuracy of mcENM compared to ENM using additional metrics on proteins grouped
by motion type, subset of local and domain motions (80 proteins). (A) Cumulative Fraction of Vari-
ance (10 modes). (B) Correlation coefficient between predicted residue fluctuations and observed
displacement magnitudes (10 modes). (C) Correlation coefficient between predicted Temperature
factors and experimental Beta factors (10 modes). mcENM consistently outperforms ENM con-
sidering the first two measures. The improvement is largest for proteins with localized functional
transitions. Considering the similarity of temperature factor profiles mcENM and ENM perform
roughly the same. Figure source: Putz and Brock (2017).

Our results show that mcENM, in fact, is able to capture localized, functional transitions
while largely outperforming the distance-cutoff based ENM. Apart from comparing the agreement
between motion directions and magnitude, we will now continue our analysis by evaluating the
complexity of the resulting essential deformation space.
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5.4.4 mcENM Reduces Dimensionality of Essential Deforma-

tion Space

ENMs often guide more fine-grained exploration by narrowing down the search space (essential
deformation space). The computational costs of searching this space increase with dimensionality
(number of spanning modes). Hence, lower dimensional search spaces are desirable as long
as they are accurate enough. As mentioned above, the common strategy to consider between
10-20 lowest-frequency modes works well in capturing highly collective functional transitions,
but fails for localized functional transitions with low degree of collectivity. Here, the relevant
modes (usually less than 10) are often spread among higher frequencies (Cavasotto et al., 2005).
Consequently, a much larger number of ENM modes would need to be considered to capture
them, which in turn yields a higher dimensional search space. In the following, we analyze how
the absence of breaking contacts affects the relationship between desired accuracy and number of
required modes. Again, we focus on local and domain motions.

Fig 5.7 depicts the median number of modes required to achieve a cumulative overlap of 70%,
80%, and 90%. mcENM needs much less modes to be as accurate as ENM, thereby substantially
reducing the dimensionality of the associated deformation space. For instance, to capture 80% of
ligand-coupled local motions mcENM requires a median of 22 modes, whereas ENM needs 95.
Being less constrained, mcENM favors otherwise high-energetic modes that seem to be relevant
to capture the function-related movement. Hence, these modes “shift” towards lower frequencies.
Consequently, mcENM reaches higher accuracy with fewer, but more relevant low-frequency
modes because their individual contribution to the overlap is higher.

This mode shifting is further supported by the large decrease in rank of the best-overlapping
mode of mcENM compared to ENM as shown in Fig 5.8.

mcENM not only captures the direction of this mode much more accurate, but also increases
its contribution to the structural variance to a large extent. Interestingly, the degree of collectivity
of the best-overlapping mode for proteins with localized functional transitions is much smaller
when being analyzed by mcENM instead of ENM. Hence, the best-overlapping mcENM-mode
must be more relevant for the local transition given its higher overlap and larger variance.
A similar "shifting" effect was observed by other groups when analyzing molecular dynamics
trajectories (Orellana et al., 2010, Rueda et al., 2007a) or conformational ensembles (Yang et al.,
2008) by essential dynamics (ED). Fewer ED-modes captured more of the structural variance (i.e.
relative amplitude of deformations) than ENM-modes. Hence, the absence of observed breaking
contacts makes relevant deformations accessible.
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Figure 5.7: Dimensionality of deformation subspaces of mcENM compared to ENM on subset of
local and domain motions (80 proteins). The panels show the median number of normal modes
(spanning the deformation subspace) required to explain between 70% and 90% of the functional
transition (measured in cumulative mode overlap (%)). mcENM consistently requires fewer modes
to capture the same amount of conformational change as ENM. Figure adapted from: Putz and
Brock (2017).

5.4.5 Relationship Between Observed Breaking Contact Oc-

currence and Effect on ENM Accuracy

To the best of our knowledge, mcENM is the first approach to examine the effect of observed
breaking contacts on ENM accuracy. Above we showed that they are a novel source of information,
which helps to capture localized, functional transitions with ENMs. To further explore their
importance, we now analyze how their occurrence and impact are linked depending on motion
type, structural fold, and functional class of the proteins.
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Figure 5.8: Accuracy of mcENM w.r.t. maximum mode overlap related measures compared to base-
line ENM on proteins grouped by motion type, subset of local and domain motions (80 proteins).
(A) Maximum mode overlap of all modes. (B) Rank of best-overlapping mode. (C) Fraction of
variance explained by best-overlapping mode. (D) Degree of collectivity of best-overlapping mode.
Figure source: Putz and Brock (2017).

Dependence on Motion Type

Fig 5.9 relates average accuracy improvement of mcENM over ENM to average amount of removed
breaking contacts by considering the motion type of the studied proteins. For this analysis we
include the categories burying ligand and other types of motions despite their few samples. The
reason is that we want to examine whether removing breaking contacts has any effect on their
predicted motions at all (see 4.1 for details on the motion classification of our data set).
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Figure 5.9: Accuracy improvement of mcENM over ENM in relation to percent of observed break-
ing contacts on full data set (90 proteins) grouped by motion types. The blue bars depict the
absolute accuracy improvement of mcENM over ENM averaged over each group, whereas the green
bars show the average amount of removed breaking contacts. The accuracy improvement is calcu-
lated by the difference between cumulative mode overlap of the first ten low-frequency modes of
mcENM and ENM. Figure adapted from: Putz and Brock (2017).

Figure 5.10: Observed breaking contacts in contact topology of house dust mite allergen Der f. (A)
Unbound and bound conformation (PDB_IDs: 2f08D, 1xwvB) colored blue and white, respectively.
Ligand is shown as magenta spheres. (B) The ligand is proposed to enter the binding site via a
narrow tunnel opening at the left, where the contact density is lower. The residues assumed to form
the tunnel opening are highlighted in yellow (Johannessen et al., 2005). (C) Observed breaking
(green) and maintained (gray) contacts networks. (D) Observed breaking contacts locate around
the proposed tunnel opening. Figure source: Putz and Brock (2017).
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We note that mcENM improves much more in accuracy for local motions than for domain
motions given the amount of removed breaking contacts. Hence, individual breaking contacts
seem to encode more information about motion when they belong to local movers than to domain
movers.

Surprisingly, also proteins that bury a ligand in their end conformation benefit from removing
observed breaking contacts. This is particularly interesting as these proteins show only subtle
differences between unbound and bound conformation (< 1 Å RMSD). Hence, to facilitate a
ligand’s move into the binding the protein must transiently open the entry to the binding pocket.
But there is no guarantee that the structural differences at the pocket entry are large enough
to produce breaking contacts in the coarse-grained contact topology of the protein. We visually
inspected the location of observed breaking contacts for all four proteins in this category whether
it matches the entry of the binding site. Only one protein, depicted in Fig 5.10, shows observed
breaking contacts at the assumed entry of the binding site (Johannessen et al., 2005). Ignoring
those contacts improves mcENM-accuracy by 16.3% compared to ENM for this protein.

Obviously, the occurrence of observed breaking contacts around a binding site entry strongly
depends on the chosen parametrization of distance cutoff and allowed extension of contact distance,
which is used to identify breaking contacts. Nonetheless, mcENM improves prediction accuracy
in all four cases. This indicates that observed breaking contacts should be ignored to predict the
motions of proteins also in this category, despite their small structural differences.

The remaining proteins performing other types of motions improve on average about the same
as independent local movers. The higher average amount of required breaking contacts is caused
by one protein (PDB_ID: 1uorA). It is relatively large with 580 residues and an all alpha fold,
where the 30% observed breaking contacts are distributed between α-helices over the whole
structure. Without this protein, the average amount of observed breaking contacts is in the range
of independent local movers. Hence, proteins with other types of motions benefit about the same
as independent local movers from the refined network of mcENM.

Dependence on Structural Fold

The motions of proteins are largely governed by their structural fold. Therefore, we analyzed
if certain folds promote contact changes more than others and how this relates to the achieved
accuracy improvement of mcENM. Fig 5.11 summarizes the results for the proteins in our data
set averaged over their SCOP classes, which we obtained from the Structural Classification of
Proteins (SCOP) database (Murzin et al., 1995, Fox et al., 2014). The individual correlation
between the observed breaking contact occurrence and improved accuracy for each fold class is
shown in Fig 5.12. Each protein is colored whether it performs local, domain, or another type of
motion.

Remarkably, the only membrane protein in our data set improves by almost 60% in cumulative
overlap despite a relatively small amount of breaking contacts. We will analyze and discuss this
protein in detail in case study 6.4.7 in the following chapter.
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Figure 5.11: Accuracy improvement of mcENM over ENM in relation to percent of observed break-
ing contacts on full data set (90 proteins) grouped by SCOP fold class. The blue bars depict the
absolute accuracy improvement of mcENM over ENM averaged over each group, whereas the green
bars show the average amount of removed breaking contacts. The accuracy improvement is calcu-
lated by the difference between cumulative mode overlap of the first ten low-frequency modes of
mcENM and ENM. Figure adapted from: Putz and Brock (2017).
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Figure 5.12: Correlation between occurrence of observed breaking contacts and achieved accuracy
improvement of mcENM over the baseline ENM by considering structural fold and motion type of
the studied proteins. The accuracy improvement is calculated as the difference between cumulative
mode overlap of the first ten low-frequency modes of mcENM and ENM. The motion classification
is simplified to local (coupled and independent), domain (coupled and independent), and other
motions (burying ligand and other types of motion).
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We also find that all alpha proteins benefit more from removing breaking contacts than the
remaining classes, although individual breaking contacts seem to have less impact than for the
other classes. This may be due to the relatively high structural flexibility of all alpha proteins.
Thus, breaking contacts may even occur in regions not necessarily related to the functional
transition, making them less relevant. This is supported by the observation that a higher number
of observed breaking contact does not always lead to greater improvement of mcENM-accuracy
(Fig 5.12).

In contrast, folds strongly stabilized by a central beta sheet or beta barrel as in the all beta,
a/b, or a+b classes appear to be more robust towards changes in the contact topology. This may
lead to fewer, but larger clusters of breaking contacts, whose absence have larger impact on the
accuracy of mcENM. Further investigation of these hypotheses is beyond the scope of this thesis
and is left our for future research.

Dependence on Functional Class

We also evaluated to what extent the accuracy improvement of mcENM depend on the functional
class of the proteins. Two third of the proteins in our data set are enzymes belonging to six
classes, which we obtained from the PSCDB (Amemiya et al., 2011): Hydrolases (26), Transferases
(15), Oxidoreductases (9), Lyase (4), Isomerase (2), Ligase (1). For the remaining proteins (33),
which are no enzymes, we do not further distinguish between their functional classes due to their
functional diversity1.

Fig 5.14 shows the relation between averaged occurrence of breaking contacts and their averaged
impact on ENM accuracy. The correlation between the observed breaking contact occurrence and
improved accuracy per function class is depicted in Fig 5.14. Each protein is colored according to
whether it performs local, domain, or another type of motion.

Oxidoreductases catalyze the pass of electrons from one molecule to another one (May, 1999).
They have various applications, for instance in medical diagnostics, quality control, or in the
production of agrochemicals, pharmaceuticals, cosmetics, or biofuels (Martinez et al., 2017, Xu,
2005). Despite a relatively small amount of breaking contacts, they show the largest improvement
of accuracy of mcENM because they mostly perform local motions.

Hydrolases build the largest enzyme group in our data set. In the presence of water they
bind smaller molecules at their surface to break chemical bonds, which often requires the
enzymes to deform locally (Koike et al., 2014). Because they function without the need of a
cofactor and bind to various substrates they dominate research and applications in the field
of biotransformations (Faber, 2018). Surprisingly, only half of the hydrolases in our data set
are classified as local movers, whereas for the other half domain motions seem to dominate the
movements. Nonetheless, hydrolases with localized movements are captured much more accurately
when observed breaking contacts are removed in mcENM.

1Based on functional annotations retrieved for each unbound conformation from the Protein Database
(PDB) they fall into classes, such as "Binding Proteins", "Transport Proteins", "Enzyme Inhibitors",
"Hormones", "Toxins", "Viral Proteins", "Signaling Proteins" or "Membrane Proteins".
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Figure 5.13: Accuracy improvement of mcENM over ENM in relation to percent of observed break-
ing contacts on full data set (90 proteins) w.r.t the functional class of the proteins. The blue
bars depict the absolute accuracy improvement of mcENM over ENM averaged over each group,
whereas the green bars show the average amount of removed breaking contacts. The accuracy
improvement is calculated as the difference between cumulative mode overlap of the first ten low-
frequency modes of mcENM and ENM.

5 0 5 10 15 20 25 30 35
10

0
10
20
30
40
50
60
70

∆
 C

um
. M

od
e 

O
ve

rla
p 

(%
) OXIDOREDUCTASES

5 0 5 10 15 20 25 30 35
10

0
10
20
30
40
50
60
70

NO ENZYMES

5 0 5 10 15 20 25 30 35
10

0
10
20
30
40
50
60
70

HYDROLASES

5 0 5 10 15 20 25 30 35
# Obs. Breaking Contacts (%)

10
0

10
20
30
40
50
60
70

LIGASES

5 0 5 10 15 20 25 30 35
# Obs. Breaking Contacts (%)

10
0

10
20
30
40
50
60
70

∆
 C

um
. M

od
e 

O
ve

rla
p 

(%
) LYASES

5 0 5 10 15 20 25 30 35
# Obs. Breaking Contacts (%)

10
0

10
20
30
40
50
60
70

ISOMERASES

5 0 5 10 15 20 25 30 35
# Obs. Breaking Contacts (%)

10
0

10
20
30
40
50
60
70

TRANSFERASES

Motion
local
domain
other

Figure 5.14: Correlation between occurrence of observed breaking contacts and achieved accuracy
improvement of mcENM over the baseline ENM by considering function class and motion type of
all studies proteins (90 proteins). The accuracy improvement is calculated as the difference between
cumulative mode overlap of the first ten low-frequency modes of mcENM and ENM. The motion
classification is simplified to local (coupled and independent), domain (coupled and independent),
and other motions (burying ligand and other types of motion).

The second largest group in our data set are transferases. They bind two molecules at the
same time to enable the transfer of chemical groups between them. Therefore, their binding site
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is usually rather deep and accessible from two sides. About two third of the transferases in our
data set are associated with local conformational changes. However, transferases are suspected
to undergo more complicated conformational transitions that also could involve a hierarchy of
deformation steps (Koike et al., 2014). This may be one of the reasons why a relatively large
amount of breaking contacts causes rather small improvement in accuracy for MC-ENM. In
addition, it may be relevant in which order the contacts "break" during the transaction steps.

The remaining three enzyme classes (lyases (4), isomerases (2), ligase (1)) are not really
representative as they only consist of few proteins.

Another 33 proteins are no enzymes but represent different functional annotations and motion
types. They vary widely in terms of accuracy improvement of mcENM and occurrence of breaking
contacts. As for the other classes mcENM is more effective for local movers among these proteins.

5.5 Conclusion

5.5.1 Summary

Our results in this chapter demonstrate that ENMs are indeed capable of predicting local and
uncorrelated functional motions if they are allowed by the underlying network. mcENM, the
elastic network model based on maintained contacts, naturally meets this condition because it
ignores springs associated with contacts that are observed to break during functional movements.
As a consequence, previously over-constrained local areas in the network get the required mobility
to capture the localized functional motions.

In addition, we have seen that mcENM also overcomes the problem of not knowing how many
and which modes should be considered to explain localized function-related motions (Cavasotto
et al., 2005). In most cases, the relevant mcENM-modes are included in the dominant low-
frequency modes. This reduces computational costs for subsequent applications of ENMs, such
as normal-mode-guided conformational exploration using molecular dynamics, because a lower
dimensional space has to be sampled.

By analyzing the relation between breaking contact occurrence and mcENM-accuracy improve-
ment we found that mcENM is effective for a wide range of motion types and structural folds of
proteins. When considering the enzyme class of the studied proteins, we found that hydrolases
and oxidoreductases benefit the most from the refined network of mcENM, in particular, if they
belong to the category of local movers. We cannot draw such a clear picture for transferases.
While some transferases with local motions gain some improvement, others do not. Same is true
for transferases that perform domain motions. This may be overcome by a time-resolved ENM,
which considers in which order the observed breaking contacts need to break in order to facilitate
the complex hierarchical motions found in transferases (Koike et al., 2014).

Our results also show that improving the general applicability of ENMs is possible without the
need to change model resolution and potential function. mcENM builds upon the same contact
network between Cα-atoms representing a protein’s structural connectivity and relies on uniform
spring stiffness as the baseline ENM. Hence, the key to expand the range of motions that can be
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captured by ENMs is to leverage information about dynamic changes in their underlying simplified
model, i.e. contacts that break throughout a protein’s motion. Of course, by optimizing spring
stiffness as proposed by several other approaches (Orellana et al., 2010, Lezon and Bahar, 2010,
Kovacs et al., 2004, Hinsen et al., 2000) the performance of mcENM may be further improved as
indicated by preliminary results. However, if more than one conformation of a protein is known,
mcENM has demonstrated to be a valuable alternative to the widely used, distance-cutoff based
ENMs.

5.5.2 Limitations

mcENM has one important limitation. To identify the erroneous restrictions, i. e. observed
breaking contacts, it requires a known end conformation, which is usually not available. But as
we will see in the next chapter it is possible to predict breaking contacts instead of observing
them. To do so we leverage information about their local embedding into a protein’s contact
network and its physicochemical and topological properties.
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6
Elastic Network Model of

Learned Maintained Contacts
(lmcENM)

6.1 Introduction

The main hypothesis of this thesis is that in order to enable elastic network models to predict
localized, function-related protein motions they need to account for dynamic changes in the contact
topology of proteins. In the previous chapter we have seen that removing the springs associated
with observed breaking contacts enables ENMs to capture localized functional transitions with
low degree of collectivity. But to identify the breaking contacts we need to know start and
end conformation representing a protein’s functional transition, which are usually not available.
Hence, to employ ENMs in the standard case when only a single protein conformation is known,
we must be able to predict these breaking contacts given that single conformation.

In this chapter we present the core contribution of this thesis: the ability to predict the dynamic
behavior of contacts (whether they break or are maintained). To do so, we leverage information
encoded in the physicochemical characteristics of local parts of the protein structure. These parts
largely maintain their structural shape but move with respect to each other controlled by the
strength of their physicochemical interactions. As a consequence, some contacts break in the
underlying contact topology depending on the type of movement. We predict these breaking
contacts using machine learning based on a graph-based representation of their structural context.
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Figure 6.1: Flowchart overview of lmcENM construction and analysis. The first step to build
lmcENM is to predict the breaking contacts by: (i) constructing the contact graphs from the local
contact environments, (ii) deriving features from these graphs that characterize the physicochemical
properties of a contact’s structural context, and (iii) classify contacts as breaking or maintained.
Next, we remove the springs associated with the predicted breaking contacts from the initial elastic
network model of the start conformation, resulting in the network of learned maintained contacts
(lmcENM). Last, we analyze mcENM using normal mode analysis (NMA) to predict the intrin-
sic deformations (normal modes) of the protein (image generated with ANM 2.0 web server (Eyal
et al., 2015)). The illustration of the breaking contact prediction is inspired by Schneider and Brock
(2014).

Based on the predicted contact changes we propose a novel elastic network model of
learned maintained contacts (lmcENM, see Fig 6.1). It learns how to adjust its network
without increasing the complexity of the original ENM approach, i.e. resolution and potential
function remain the same. Instead, lmcENM encodes information about dynamic changes of the
contact topology by ignoring the predicted breaking contacts in the same way that mcENM does
with observed breaking contacts.

In contrast to mcENM presented in the previous chapter, lmcENM does not need to know
a target conformation to identify possibly erroneous constraints blocking localized functional
movements. Thus, it is applicable to the standard case of predicting the structure-encoded
motions of proteins where only a single conformation is known.

We evaluate the performance of lmcENM on a set of 90 conformational pairs of proteins
that perform different types of function-related motions, including highly collective domain
motions as well as localized, uncorrelated movements. We will see that, in contrast to the widely
used distance-cutoff ENM and three reference ENM variants, lmcENM is capable of predicting
functional transitions that are localized. We also show that lmcENM is particularly suited to
explain functional transitions that involve the binding of a ligand. These localized movements
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remain largely underestimated by the other ENM variants, whereas the adjusted network of
lmcENM makes them accessible. This alleviates a major shortcoming of ENMs.

We will also see that lmcENM mitigates the problem of not knowing how many and which
modes to consider to effectively capture localized functional transitions. lmcENM requires fewer
modes than the other ENM variants because the relevant lmcENM-modes become more dominant,
i.e. already reside in the low-frequency range, due to the removed predicted breaking contacts.
Furthermore, we evaluate lmcENM in detail by presenting case studies of three biologically
interesting proteins selected from our data set, the outer membrane transporter FecA, the fatty
acids oxidizing enzyme Arachidonate 15-Lipoxygenase, and SopA–a salmonella effector protein.
Finally, we analyze and discuss which features contribute the most to correctly differentiate
breaking from maintained contacts.

6.1.1 Contributions

In this chapter, we make the following contributions:

Conceptual Contributions

• We propose to predict the dynamic behavior of contacts, i.e. whether they break or are
maintained when the protein moves, by leveraging information from the protein’s structure.
This information is encoded in the physicochemical properties of local parts of the structure,
which capture the relative motions between these parts as well as their deformability.
Accounting for the associated dynamic changes in the contact topology of proteins expands
the range of motion types that can be explained by elastic network models (ENMs).

Technical Contributions

• We present a novel machine-learning based classifier that predicts breaking contacts based
on a graph-based encoding of their structural context. We developed a set of features that
characterize the physicochemical, structural, and topological properties of this local contact
environment and its embedding into the overall protein structure. The classifier outputs
the likeliness of a contact to break given a protein’s initial contact topology.

• We introduce a novel elastic network model of learned maintained contacts (lmcENM) that
accounts for these predicted dynamic changes in the contact topology of proteins. lmcENM
adjusts its initial network by removing the springs corresponding to the predicted breaking
contacts. While preserving the simplicity of the original ENM, lmcENM is better suited to
capture localized, functional transitions of proteins. It can be applied to proteins, where
only a single conformation is known.
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Empirical Contributions

• We show that the prediction of breaking contacts by leveraging information about their
structural context is possible and accurate enough to substantially improve ENM accuracy.
Without the predicted breaking contacts lmcENM requires only a small subset of low-
frequency modes to explain localized functional transitions that would otherwise be barely
accessible for the network. lmcENM expands the range of motions that can be captured by
ENMs, thereby increasing their practical relevance.

• We present evidence that the dynamic behavior of contacts, and thus protein motion, most
likely results from the interplay of a broader set of features characterizing the properties
of their structural context. Our approach provides a unified and extensible framework
for exploring, using, and correlating additional features to advance our understanding of
protein motion.

6.1.2 Outline

The rest of this chapter is organized as follows:

• Section 6.2 Methods introduces our approach to leverage information about the dynamic
behavior of contacts, how this information is used to predict breaking contacts, and how
lmcENM, the network of learned maintained contacts, is built based on the predicted
contacts. It also introduces how we assess the performance of our classifier and the
evaluated ENMs as well as the used protein data set.

• Section 6.3 Implementation describes the implementation details of our algorithm. This
includes the parametrization of lmcENM and the reference ENMs used for validation of
our approach, the external software used to generate features and to analyze and present
our results, and the training procedure of the SVM-classifier.

• Section 6.4 Results and Discussion describes the experimental setup and analyzes and
discusses the experimental results. It starts with an evaluation of the classifier performance
followed by a thorough assessment of the performance of lmcENM compared to the reference
ENM variants.

• Section 6.5 Relevance of Features to Predict Breaking Contacts presents an
analysis, which features contribute the most to accurately predicting breaking contacts,
and discusses the results.

• Section 6.6 Conclusion summarizes the findings of this chapter, discusses its limitations,
and establishes predicted breaking contacts as novel source of information to improve
prediction accuracy and general applicability of ENMs.
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6.2 Methods

In this section we introduce the algorithm to build the elastic network model of learned maintained
contacts (lmcENM). First, we explain how we leverage information about the dynamic behavior
of contacts, which is captured in the physicochemical characteristics of their structural context.
We introduce how the contact environment is encoded in a graph-based representation that allows
us to derive features characterizing its properties. These features then serve as input to train the
SVM-classifier. Its implementation details are described in 6.3.4.

Second, we introduce the three stages to construct the network of lmcENM. We start by
explaining how breaking contacts are predicted using the trained SVM-model. Next, we present
the strategies to select a subset of highest scoring predicted breaking contacts as removal candidates.
The last step is to remove the springs associated with the selected removal candidates from the
initial network of lmcENM.

6.2.1 Leveraging Information About the Dynamic Behavior of

Contacts

In the previous chapter we found that the absence of observed breaking contacts enables ENMs to
capture localized functional transitions of proteins. In contrast, adding observed forming contacts
hurts ENM accuracy (see 5.2.2). This leaves us two types of contacts that need to be predicted:
breaking and maintained contacts. Hence, we face a binary classification problem, which we
tackle by using a support vector machine (SVM) (see 6.3.4).

In the following we introduce the graph-based representation of the local contact environment as
well as its embedding into the overall protein structure. Next, we give an overview of the features
that we developed to characterize the physicochemical, structural, and topological properties of
this structural context of a contact. They serve as input to train the SVM in order to distinguish
breaking from maintained contacts.

Contact Neighborhood Graph

To encode the local contact environment, we use the immediate neighborhood graph (INij) of a
contact (Schneider and Brock, 2014) that is depicted in Fig. 6.2. The graph consists of residues
(nodes) and edges (between residues in contact). It captures the direct environment of the contact
between residues i and j. This includes residues i and j and their first-shell neighbors, i.e. residues
in direct contact.

In the neighborhood graph, nodes and edges are labeled. Node labels carry characteristics of
individual residues, whereas edge labels characterize individual contacts. A detailed description
of the labels can be found in the appendix (Tables A.1 and A.2). The labels are referred to as
features and will be used to train and test the SVM classifier.
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 Figure 6.2: Definition of Immediate
Neighborhood Graph of a Residue-
Residue Contact. Nodes represent
residues that are linked by an edge if
the are in contact, i.e. they are within
a pre-defined distance cutoff. The im-
mediate neighborhood graph includes
residues i and j (red stroke) and their
direct neighboring residues in contact
colored in dark gray. Figure adapted
from: Schneider and Brock (2014).

Secondary Structure Graph

To characterize the embedding of a contact within the global structural topology of a protein, we
define the secondary structure element (SSE) graph. Fig 6.3 shows an example for such a graph
attributed by a small set of structural and physicochemical properties.

The nodes correspond to secondary structure elements, i.e. α-helices, β-strands, or loops with
a minimum length of three residues. Two nodes are connected by an edge if the corresponding
SSEs are in contact, i.e. they share at least one residue-residue contact. Node labels capture
the characteristics of individual SSEs, whereas edge labels characterize the interface between
two SSEs in contact. Based on the SSE-graph we distinguish between intra-SSE and inter-SSE
contacts.

The structural context of a contact can now be characterized by a set of features derived from
its neighborhood graph and the secondary structure graph of the protein. The features capture its
physicochemical, structural, and topological properties and serve as input for our SVM-classifier.
An overview of the designed features is given below.

Overview of Features

We use a set of 75 features to characterize the properties of the local contact environment and
its embedding into the overall structural topology. We concatenate these features into a feature
vector that is then used to train and test our classifier. Continuous features are encoded as single,
real-valued inputs, whereas categorical features are specified as a set of binary values. In total,
the feature vector is 170-dimensional.

In addition to novel features specifically tailored to our problem, we add or adapt some features
used by Schneider and Brock (2014). Several of the latter features have been introduced by
Cheng and Baldi (2007) and Li et al. (2012) (see 6.3.3 for details). The features are grouped into
seven categories (see Table 6.1): pairwise, graph topology, graph spectrum, single node, node
label statistics, edge label statistics, and whole protein features. Appendix A contains a detailed
description of the individual features in each category and reports. Re-used or extended features
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Figure 6.3: Example of a secondary structure element (SSE) graph of a protein structure. Nodes
represent secondary structure elements. Edges link secondary structure elements that are in contact,
i.e. at least one residue of element A is within a pre-defined distance with a residue in element B.
Nodes and edges are characterized by structural and physicochemical properties.

are marked accordingly (Tables A.3-A.9). We now introduce each feature category with some
examples.

Pairwise features encode properties of an individual contact. As contacts seldom change their
distance in isolation, many of the pairwise features are defined on their associated secondary
structure element(s) (SSEs). The features capture for instance SSE types, sequential and three-
dimensional distance between the SSEs, hydrogen bonding between SSEs, closeness to empty
pockets, or closeness to binding site.

To capture topological characteristics of the local contact environment we re-use the graph-
topology, graph spectrum, and single node features from Schneider and Brock (2014), part of
which have been introduced by Li et al. (2012). For instance, one feature captures that contacts
embedded into a highly constrained neighborhood are less likely to change than contacts in
sparsely connected local contact networks. The average number of neighbors of each node in the
local contact environment can be characterized by the average degree centrality.

Node and edge label statistics encode properties of the contact’s neighborhood not captured by
its topology. For example, local contact networks with high symmetry coverage, i.e. where most
residues belong to a symmetric segment of the protein, are likely to maintain their connectivity
even when the protein moves. This can be measured by the normalized number of symmetric
residues.

We further collect properties of the whole protein, such as the connectivity class based on the
total number of contacts, and the distribution of secondary structure types. These features now
serve as input to train and test our classifier, whose implementation details will be described
below (see 6.3.4).

We will now explain how we adjust the network of the original ENM approach based on
the predicted breaking contacts to build our novel elastic network model of learned maintained
contacts, lmcENM.
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Table 6.1: Overview of used features. Table lists the features used by our classifier to predict
function-related contact changes in the contact topology of proteins. Added or adapted features
from Schneider et al. (Schneider and Brock, 2014) are marked. If all features in one category
are added from Schneider and Brock (2014) the category is marked instead of the individual fea-
tures. Appendix A describes individual features and their implementation in detail. Table adapted
from: (Putz and Brock, 2017).

Group Feature examples Number of inputs

Pairwise Secondary structure element (SSE) type1, sequence
separation between SSEs, distance between SSE cen-
troids, symmetry coverage of SSE(s), intra-SSE con-
tact and intra-SSE topology descriptors, inter-SSE
contact and inter-SSE interface descriptors, contact
residues part of terminal SSEs, hydrogen bonding2,
side-chain contact, contact with pocket and number of
atom contacts with pocket, pocket descriptors (polar-
ity, hydrophobicity, volume, drug score), contained in
symmetric segments, distance to symmetry plane, 4-
bin contact depth and residue depth difference classes,
mutual information1

63

Graph topology1 Number of nodes, number of edges, average degree
centrality, average closeness centrality, average be-
tweenness centrality, graph radius, graph diameter,
average eccentricity, number of end points, average
clustering coefficient

10

Graph spectrum1 Largest two eigenvalues, number of different eigenval-
ues, sum of eigenvalues, energy of adjacency matrix

5

Single node1 Degree, closeness centrality, betweenness centrality,
sequence separation from N/C-terminus, sequence
conservation and sequence neighborhood conservation
for i and j

12

Node label statistics Chemical type of residues1, secondary structure
descriptors1, solvent accessibility1, hydrogen bonding2,
average free solvation energy1, 4-bin solvation energy
distribution1, entropy of labels, neighborhood impu-
rity degree2, average distance from centroid1, symme-
try coverage, average degree of symmetry, average
residue depth, 5-bin distribution of residue depth,
average lower/upper half-sphere exposure, sequence
conservation1, sequence neighborhood conservation1

57

Edge label statistics Link impurity2, 5-bin mutual information distribution1,
cumulative mutual information1

13

Whole protein Secondary structure composition1, 5-bin connectivity
class based on number of contacts, symmetry coverage

10

170
1 Added from Schneider et al. (Schneider and Brock, 2014).
2 Adapted from Schneider et al. (Schneider and Brock, 2014).
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6.2.2 Construction of lmcENM

lmcENM consists of three stages described in detail below:

1. scoring of each contact with its probability to break based on the initial contact topology,

2. selecting removal candidates from the top scoring breaking contacts, and

3. removing the selected candidates from the initial contact topology to build lmcENM.

Prediction of Breaking Contacts

The SVM classifier scores all contacts in the initial contact topology of a protein between residues
at least four sequence positions apart. We chose to exclude shorter-range contacts from the
classification for two reasons: First, removing them caused network instabilities in several cases for
both ENMs proposed in this thesis, mcENM and lmcENM (see 6.3.1). Second, the improvement
in ENM accuracy was negligible for those networks that remained stable without them. The
classifier outputs a rank-ordered list of contacts by decreasing confidence score, which indicates
their likeliness to break.

Selection of Removal Candidates

To adjust the network of lmcENM, we now seek a function to select how many top scoring
predicted breaking contacts should be removed. We expect that the amount of breaking contacts
depends on the collectivity of the function-related movement. We have seen in the previous
chapter (see 5.4.5) that local, uncorrelated motions require on average more initial contacts to
break than large-scale, collective motions. However, in most cases the nature of the functional
transition is unknown a priori and furthermore depends on various properties of the protein. This
makes it difficult to find such a function.

Therefore, we tested three simple strategies to select the subset of predicted breaking contacts
to be removed, which are based on a:

constant cutoff that removes the top n predicted breaking contacts. It is based on the rationale
that the amount of breaking contacts is limited in number and variance among different
proteins. Given our observation that removing breaking contacts is highly relevant to
capture localized, functional transitions (see 5.4.5), we would expect that they concentrate
on particular regions of the protein. The spatial extent of these regions should be rather
small and not necessarily depend on the protein’s size.

relative cutoff that removes the top n percent of predicted breaking contacts. Opposite to the
previous strategy we now assume that the amount of breaking contacts is affected by the
total number of contacts of the protein.

score-dependent cutoff that removes all predicted breaking contacts with probability larger
than a predefined cutoff score. Here, we assume that prediction accuracy of the classifier is
comparable among different proteins.
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We evaluated each strategy on a predefined set of cutoff values to empirically determine the most
effective strategy and associated cutoff value in our setting (see 6.3.1).

Building the Network of Learned Maintained Contacts

Finally, we adjust the initial contact topology of a protein by removing the selected predicted
breaking contacts. This results in the elastic network of learned maintained contacts, which we
call lmcENM.

In the following we introduce how we evaluate the performance of the SVM classifier and which
evaluation measures we employ to assess the performance of lmcENM compared to the reference
ENMs.

6.2.3 Protein Data Set

To train and test our classifier we use the data set of 90 conformational protein pairs categorized
by motion type that we introduced in detail in section 4.1. We also utilize these conformational
pairs to evaluate the performance of the ENM variants w.r.t. to different types of function-related
protein motions, such as collective domain motions or localized motions involved in ligand binding.

6.2.4 Evaluation of Binary Classifiers

A binary classifier is trained on examples of two classes, a positive and a negative one. For an
unknown sample it predicts one of two possible outcomes, i.e. whether it belongs to the positive
class (1) or not (0). Given a test data set we can evaluate a binary classifier using the so-called
confusion matrix or contingency table (see Tab. 6.2). It compares the predicted output of a
binary classifier with the actual value of the samples, which are known (gold standard) or may
result from another reference classifier.

Table 6.2: Confusion matrix for a binary classification problem.

Actual
+ -

Predicted 1 True Positive (TP)1 False Positive (FP)2
0 False Negative (FN)3 True Negative (TN)4

1 positive sample correctly classified as positive
2 negative sample misclassified as positive
3 negative sample correctly classified as negative
4 positive sample misclassified as negative

The total size of the data set is given by the summing up all true and false positive and negative
predictions. Based on counting the number of predicted samples in each of the above categories,
different measures can be specified to evaluate the performance of a binary classifier.

In this thesis, we aim to differentiate breaking contacts (positive class) from maintained
contacts (negative class). We define the gold standard by comparing the contact topologies of
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start and end conformation of the proteins in our data set (see 5.3.1). Hence, the actual values of
the predicted contacts are given by the observed breaking and maintained contacts. Our SVM
classifier estimates the probability of each contact to break and outputs these predictions as a
rank-ordered list. From this list we choose a subset of top-scoring predicted breaking contacts to
build our novel elastic network model of learned maintained contacts, lmcENM. Therefore, we
evaluate the performance of our SVM classifier w.r.t. the chosen subset of predictions using the
following common measures:

Precision measures the probability of a correct positive prediction, defined as Prec=TP/(TP+FP).

Coverage specifies the percentage of true positives captured by a subset of predictions. It
is given by Cov = TPfrac/TPall, where TPfrac refers to the number of true positive
predictions in a selected fraction (subset) of all predicted contacts, and TPall is the total
number of true positives for a protein. This is a useful measure because we consider only a
top scoring subset of all predicted breaking contacts (see 6.2.2). A coverage of 1 indicates
that all true positives of a protein are contained in the selected fraction.

Area Under the Receiver Operator Characteristic (AUROC) (Fawcett, 2006) estimates
the probability that a positive sample reaches higher score than a negative one if both
are chosen randomly. The ROC curve visualizes the trade-off between true positive rate
(TPR=TP/(TP+FN)) and false positive rate (FPR=FP/(FP+TN)) at different thresholds.
A predictor with AUROC of 1 is considered perfect, whereas it is random at a value of 0.5.

6.2.5 Evaluation of Elastic Network Models

We evaluated all tested ENM variants in this thesis using a variety of common measures that are
introduced in detail in section 4.2. For convenience, we provide a short summary here.

We assess the performance of all evaluated ENMs in terms of their biological accuracy and the
dimensionality of their essential deformation space. Both properties are relevant to effectively
use low-frequency ENM-modes as guidance for subsequent applications, such as conformational
exploration or ensemble generation for protein docking. Biological accuracy indicates how much
we can trust the guidance of ENMs. The dimensionality of the essential deformation space
determines the computational cost for search.

Assessing the Biological Accuracy of the ENMs We use the mode overlap (Marques
and Sanejouand, 1995, Tama and Sanejouand, 2001) and cumulative mode overlap (Yang
et al., 2007) of the first ten low-frequency modes to measure the alignment between predicted
motion directions and actual conformational displacement. We employ the Pearson correlation
coefficient to assess the similarity between predicted and actual residue fluctuation profiles.
We evaluate how much structural variance can be explained by individual or a subset of low-
frequency modes by the (cumulative) fraction of variance. Finally, we use the degree of
collectivity (Brüschweiler, 1995) to quantify the amount of residues involved in the protein’s
motion.
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Assessing the Dimensionality of the Essential Deformation Space We analyze the
number of modes that are required to capture 70%, 80%, and 90% of the actual conformational
displacement. For the mode with maximum overlap among the first ten low-frequency modes we
report its overlap as well as its rank, collectivity, and fraction of variance.

Comparison against Essential Dynamics of Conformational Ensembles Finally,
we evaluate the agreement between mobility of the first ten low-frequency modes and the actual
structural variance of conformational ensembles determined by Essential Dynamics (ED). Again
we use the Pearson correlation coefficient to compare the predicted and actual fluctuation
profiles. In addition, we evaluate the similarity of deformation spaces spanned by the first ten-low
frequency ENM-modes and the first ten principal components identified by ED using the root
mean square inner product (RMSIP) (Amadei et al., 1999) and its extension, the root
weighted square inner product (RWSIP) (Carnevale et al., 2007).

6.3 Implementation

We now describe the implementation details of our novel lmcENM and the reference ENM variants
evaluated in this chapter. This includes their parametrization and references to the software
packages that we used for their implementation and in the context of the SVM classification as
well as additional software used to analyze and present the results in this thesis.

We evaluate lmcENM with respect of two boundaries: First, a lower bound defined by
the original performance of the widely, used distance-cutoff based anisotropic network model
introduced in 3.3.3. We will refer to it simply as ENM or baseline ENM for the rest of this thesis.
Second, an upper bound marked by the theoretical maximum improvement reached by mcENM
that we introduced in the previous chapter. We call it theoretical maximum improvement because
mcENM relies on the knowledge of a usually not available target conformation to identify observed
breaking contacts.

A detailed description of the parametrization of the baseline ENM is presented in 4.3.1. We
find that a cutoff distance of 10Å yields the best performance of the baseline ENM in terms
of capturing the functional transitions in our data set while maintaining network stability by
enforcing the four-neighbor-connectedness criterion. mcENM relies on the same distance cutoff
but ignores observed breaking contacts. Due to network instabilities only contacts between
residues at least four sequence positions apart are removed (see 5.3.1).
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6.3.1 Parametrization of lmcENM

To build the initial network of lmcENM we use the distance-cutoff 10Å as the baseline ENM.
This allows us to solely focus on the effect of the changed contact topology when evaluating our
approach. Above we introduced three strategies to determine the amount of top scoring predicted
contacts to be removed from lmcENM using a: (i) constant cutoff, (ii) a relative cutoff, and (iii)
a score-dependent cutoff.

For each strategy we evaluated how it affects lmcENM accuracy along a range of cutoff values:

• constant cutoff every 5th value between [5− 50] and every 10th value between [60− 200],
where each value denotes the number of highest scoring breaking contacts that are removed

• relative cutoff every value between [1− 20] and every 5th value between [25− 50], where
each value refers to the percentage of highest scoring breaking contacts that are removed

• score-dependent cutoff every score value between [0.1− 1.0], where 1.0 denotes maxi-
mum confidence of the classifier

To facilitate a fair comparison we determine the best cutoff for each strategy as the one that
maximizes the average over all proteins in our data set. We empirically find that the top n = 60
(constant cutoff), top n = 16% (relative), and SVM score > 0.4 (score-dependent) work best in
our setting.

6.3.2 Parametrization of Reference ENMs

In addition, we evaluate lmcENM with respect to three ENM variants exploiting different sources
of information to refine connectivity and stiffness of the network:

• HCA - a cutoff-free model with distance-dependent spring constants (Hinsen et al., 2000)

• OFC-ENM - a model analyzing structural properties of NMR ensembles to optimize force
constants for secondary structure elements (Lezon and Bahar, 2010)

• edENM - a hybrid model using a combination of bond-cutoff strategy in the local sequential
neighborhood and distance-dependent force constants to model remote interactions (Orellana
et al., 2010).

A detailed description of their potential functions and parametrization can be found in
subsection 4.3 of the methods chapter.
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6.3.3 Used Software

We use several software packages to generate the features used to discriminate breaking from
maintained contacts given their structural context. For features introduced or inspired by others
we list the relevant publications. In addition, we credit all software used to analyze and visualize
our results in this chapter.

Generation of Features

We detect pockets and cavities in protein structures and analyze their properties, such as volume,
size, and druggability score with FPocket (Guilloux et al., 2009). We identify symmetric parts and
symmetry axes using SymD (Kim et al., 2010). Residue depth is computed with Biopython (Cock
et al., 2009).

We use or extend several of the pairwise features introduced by Cheng and Baldi (2007), which
have also been used by Schneider and Brock (2014) to predict residue contacts in the context of
protein structure prediction. For completeness, we also list the involved software packages and
relevant publications to generate the features.

Solvent accessibility and free solvation energies are calculated using POPS (Cavallo et al.,
2003). Secondary structure types and hydrogen bonds are assigned based on STRIDE (Frishman
and Argos, 1995). Features capturing sequence conservation are calculated as proposed by Fischer
et al. (2008).

The Python library NetworkX (Hagberg et al., 2008) is used to generate the graphs and to
extract topological and spectral graph features as well as label statistics, many of which have
been introduced by Li et al. (2012).

Finally, to predict breaking contacts, we use the SVM library of scikit-learn (Pedregosa et al.,
2011) that internally builds on LIBSVM (Chang and Lin, 2011).

Analysis and Visualization of Results

We implemented and analyzed all evaluated ENM variants using the open-source Python framework
ProDy in version 1.8.2 (Bakan et al., 2011), which provides various tools and methods to analyze
protein structural dynamics.

To produce the figures, tables, and plots presented in this chapter we used ProDy (Bakan et al.,
2011), Matplotlib (Hunter, 2007), Seaborn (mwa), Pandas (McKinney et al., 2010), IPython (Pérez
and Granger, 2007), Jupyter (Kluyver et al., 2016), and Pymol (Schrödinger, LLC, 2015).
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6.3.4 SVM Learning

We train a support vector machine (SVM) to differentiate breaking from maintained contacts,
given the features described above (see 6.2.1). This classifier builds upon an in-house contact
prediction framework (Schneider and Brock, 2014). For a detailed introduction into support vector
machines please refer to the background chapter (see 3.2.1). In the following, we describe the
handling of class imbalance in our training data, the estimation of probabilities for the predicted
breaking contacts, and the training and hyperparameter tuning of the SVM classifier.

Handling Imbalanced Data

The number of observed breaking contacts per protein is rather low in our data set (on average
4.5% of the total number of contacts in a protein). Thus our labeled input data to train the
SVM is highly imbalanced because we have much more maintained examples (negative class)
than breaking ones (positive class). A standard approach to tackle this problem is random
undersampling of the majority class (He and Garcia, 2009).

We have empirically found that taking all observed breaking contacts as positive samples,
while randomly picking three times as many maintained contacts as negatives maximizes the
prediction accuracy in our data set. In addition, we adjust the cost (C) for misclassification
by a class-dependent weighting factor (w = {breaking : 3,maintained : 1}), which penalizes the
misclassification of breaking contacts more than that of maintained contacts. This increases the
importance of correctly classifying positive samples (Pedregosa et al., 2011).

Estimating Probabilities

The SVM classifier yields a probability score for each sample to belong to the positive class, i.e.
to be a breaking contact. This probability is estimated using Platt’s scaling method (Wu et al.,
2004). It performs logistic regression on binary classification scores of the SVM using additional
cross-validation as implemented in scikit-learn (Pedregosa et al., 2011).

SVM Training, Kernels, and Tuning of Hyperparameters

We tested two different common kernels to train the SVM classifier on our data, the linear
kernel and the Gaussian radial basis function (RBF) kernel using leave-one-out-cross-validation
(LOOCV) on our data set. Both kernels yield similar performance with slight advances for the
RBF kernel in our setting (see 6.5 for details on their performance). Thus, we chose the SVM
with RBF-kernel to implement our classifier.

The generalization performance of SVMs depends on the choice of its hyperparameters. They
have to be tuned in order to avoid overfitting. The Gaussian RBF-kernel has two hyperparameters,
cost C and the kernel parameter γ, which controls the width of the Gaussians.
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A standard approach is to tune these parameters w.r.t. to an optimization objective using grid
search. We chose the precision (Prec=TP/(TP+FP))1 of the L/5 contacts with highest SVM
probability as optimization objective, where L refers to the length of the protein. We find that
cost C = 100 and kernel width γ = 0.00001 determined in leave-one-out-cross validation perform
best in our setting after evaluating cost values ranging between [0.1, 1, 10, 100, 1000, 10000] and
gamma values in [0.01, 0.001, 0.0001, 0.00001, 0.000001] using grid search.

6.3.5 Experimental Setup

For all tested ENM variants we focus on analyzing the intrinsic motions based on the unbound
(start) conformation of the proteins in our data set. It has been shown that unbound conforma-
tions generally capture more of the functional transition than the more compact bound (end)
conformation (Tama and Sanejouand, 2001, Yang et al., 2007, Frappier and Najmanovich, 2014).
However, our third case study (see 6.4.7) below indicates that lmcENM is also well suited to
explain the backwards movements starting from the more compact bound conformation. Further
analysis is left out for future research.

We compare the predicted ENM-motions to the actual structural displacement between the
two conformations of each protein. In addition, we compare the essential deformation space of
the ENMs with essential dynamics of conformational ensembles.

Section 4.2 introduces the measures used in this thesis to assess biological accuracy, dimension-
ality of the essential deformation space, and agreement with essential dynamics of conformational
ensembles.

6.4 Results and Discussion

lmcENM is built in three steps: (i) we predict the most likely breaking contacts with our machine
learning based classifier, (ii) we choose a highest scoring subset of contacts, and (iii) we remove
them from the initial contact network of the unbound conformation.

Therefore, we structure the evaluation of lmcENM as follows: First, we identify the best
strategy to select an appropriate subset of top-scoring predicted breaking contacts. Given this
subset of contacts we then evaluate the ability of our classifier to identify correct and, most
importantly, relevant breaking contacts. Next, we assess the performance of lmcENM w.r.t the
baseline ENM, the theoretical upper bound reached by mcENM, and three reference ENM variants.
To do so, we compare the predicted mobility to the actual mobility captured by conformational
pairs as well as conformational ensembles. Then, we present three detailed case studies selected
from our data set. Last, we analyze which features contribute the most to a correct classification.

1TP stands for true positives and refers to predicted breaking contacts that have been observed,
whereas FP denotes false positive predictions, where the predicted breaking contacts are actually observed
maintained contacts.
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6.4. Results and Discussion

Please note that starting with the previous chapter 5 we use “baseline ENM” or simply “ENM”
interchangeably to refer to the original, distance-cutoff based ANM on which our approach is
based on.

6.4.1 Choosing How Many Top Scoring Predicted Contacts to

Remove

We tested three simple selection strategies to select an appropriate subset of highest scoring
predicted breaking contacts to be removed from the network of lmcENM (see 6.2.2 for details).
In the following, we analyze and discuss the performance of the selection strategies based on:
(i) a constant cutoff, (ii) a relative cutoff (percent), and (iii) a score-dependent cutoff. We also
performed a control experiment that removes the same amount of contacts as the best performing
selection strategy but chooses them randomly.

Performance of Selection Strategies Fig 6.4 shows the accuracy distribution of each
strategy grouped by motion type. For each strategy we choose the cutoff value that maximizes
lmcENM-accuracy averaged over all proteins in our data set (see 6.3.1 for details). We found that
top n = 60 (constant cutoff), top n = 16% (relative), and SVM score > 0.4 (score-dependent)
work best in our setting.
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ALL (90)

Relative Cutoff (top16%) Constant Cutoff (top60) Score-dependent Cutoff (>0.4)

Figure 6.4: Effect of breaking contact selection strategies on lmcENM accuracy for proteins
grouped by motion type. For each strategy we chose the cutoff value that maximizes the accu-
racy of lmcENM averaged over all proteins in our data set (90). The panels show the distributions
as box plot, where boxes show the quartiles of the data. The numbers above each box report the
mean. The selection strategies achieve similar performance with small advances for the relative
cutoff strategy. Figure adapted from: Putz and Brock (2017).

Overall, the strategies perform similar with small advances for the relative-cutoff strategy.
Except, for proteins with independent motions, we observe that the constant-cutoff strategy
performs considerably worse than the other two. We attribute this to the fact that, on average,
fewer breaking contacts are removed than with the relative cutoff. This indicates that either not
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Chapter 6. Elastic Network Model of Learned Maintained Contacts (lmcENM)

enough breaking contacts have been removed to reach the “critical mass” or that some relevant
breaking contacts simply were missed due to the smaller amount of removed contacts.

For coupled domain movers the constant-cutoff strategy results in smaller variance as compared
to the other two strategies. Given that domain movers typically have fewer observed breaking
contacts (see 5.4.5) also removing fewer predicted breaking contacts by choosing the constant-
cutoff strategy seems to be better. This is supported by our finding below (see 6.4.2) that for
domain movers a considerably lower relative cutoff (around top5%) would be optimal than the
one optimized over all proteins (top16%)).

Given its better overall performance, we chose the relative-cutoff strategy to select the removal
candidates and build lmcENM by removing the top16% predicted breaking contacts. For a
detailed report on the contact statistics for each protein, such as initial number of contacts
and removed breaking contacts for both, lmcENM and mcENM, we refer to the supplementary
information of our paper (Putz and Brock (2017), Table B in the supplementary file S2).

Control Experiment We also performed a control experiment by removing the same amount
of randomly selected contacts from the initial contact topology of the proteins as with the chosen
relative-cutoff strategy above. We refer to this network as rmcENM.

Table 6.3 lists the prediction accuracy of rmcENM compared to the baseline ENM and lmcENM.
As expected we find no accuracy improvement over the baseline ENM (detailed results for each
protein are reported in Table C of supplement S2 in Putz and Brock (2017)).

Table 6.3: Performance of rmcENM without randomly selected breaking contacts compared to
baseline ENM and lmcENM on the full data set (90 proteins). Cumulative overlap of the first ten
low-frequency modes (mean and median) are reported for the proteins grouped by their motion
types. The number of proteins in each category is given in brackets after the motion labels. The
last row reports the average values for all proteins. rmcENM does not improve over the baseline
ENM, which shows that removing actually relevant breaking contacts matters.

Motion Type ENM rmcENM lmcENM

Coupled Local Motions (28) 0.53/0.52 0.51/0.52 0.66/0.64
Independent Local Motions (18) 0.48/0.53 0.47/0.53 0.58/0.58
Coupled Domain Motions (20) 0.94/0.88 0.94/0.88 0.94/0.89
Independent Domain Motions (14) 0.85/0.83 0.85/0.83 0.85/0.85
Burying Ligand Motions (4) 0.75/0.75 0.75/0.76 0.75/0.76
Other Types of Motions (9) 0.62/0.61 0.63/0.61 0.65/0.60

All (90) 0.69/0.67 0.69/0.66 0.73/0.72

This experiment demonstrates that the predicted breaking contacts indeed carry relevant
information to improve the prediction accuracy of ENMs. It clearly matters which contacts are
removed from the network to do so.

To summarize, our results indicate that finding a good selection strategy most likely depends
on more factors besides protein motion type and classifier performance. Nonetheless, even such a
simple strategy as our chosen one already leads to substantial accuracy improvements of lmcENM.
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6.4. Results and Discussion

6.4.2 SVM Predicts Correct and Relevant Breaking Contacts

Given the above chosen fraction of top-scoring breaking contacts (top16%), we now can evaluate
the SVM classifier. We use the common measures precision (Prec=TP/(TP+FP)) and coverage
(Cov = TPfrac/TPall), where TP denotes true positive and FP false positive predicted breaking
contacts. TPfrac are the true positives among the selected fraction, whereas TPall is the total
number of true positives for a protein. Furthermore, we report the area under the receiver
operator characteristic (ROC) curve (AUROC) (Fawcett, 2006). It estimates the probability of
scoring a positive sample higher than a negative one if both are chosen randomly. An AUROC of
1 indicates a perfect predictor, a value of 0.5 refers to a random predictor.

Fig 6.5A shows the prediction performance of the classifier along the protein motion types.
The results for the proteins grouped by motion type are listed in Table 6.4, whereas individual
results can be found in Table A of supplement S2 of our paper (Putz and Brock, 2017).

Coupled (28) Independent (18) Independent (14) Coupled (20)

LOCAL MOTIONS DOMAIN MOTIONSA

B
Precision (top16%)

Relative Cutoff (%)

Coverage (top16%) AUROC (top16%)

max(median(CO)) Best Median Cutoff = argmax(median(CO))Proteins

Relative Cutoff (%)Relative Cutoff (%) Relative Cutoff (%)

Figure 6.5: Classifier performance and sensitivity analysis of breaking contacts selection strategy,
subset of local and domain motions (80 proteins). (A) Performance evaluation of classifier based
on top16% predicted breaking contacts. The panels show precision, coverage, and area under re-
ceiver operator characteristic (AUROC) as swarmplot for each motion category. (B) Dependence of
lmcENM accuracy on removed topN% predicted breaking contacts ranked by decreasing SVM score.
The blue lines depict how the lmcENM-accuracy evolves for individual proteins when gradually re-
moving more breaking contacts from their network. The cumulative mode overlap of protein with
local motions often “jumps” upwards, which indicates that the removed breaking contacts causing
the accuracy improvement are more relevant compared to the previously removed ones. Accuracy
drops if too many breaking contacts have been removed. Figure source: Putz and Brock (2017).

Overall, the precision of the classifier is rather low. However, proteins with coupled local
motions show higher precision on average. Interestingly, for some proteins–mostly domain movers–
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Table 6.4: SVM performance overview of the top16% predicted breaking contacts on the full data
set (90 proteins). Different performance measures (mean and median) are reported for the proteins
grouped by their motion types. The number of proteins in each category is given in brackets after
the motion labels. The last row reports the average values for all proteins. Table source: Putz and
Brock (2017).

Motion Type Precision Coverage AUC1

Coupled Local Motions (28) 0.24/0.27 0.41/0.44 0.62/0.61
Independent Local Motions (18) 0.22/0.25 0.40/0.41 0.56/0.58
Coupled Domain Motions (20) 0.18/0.18 0.43/0.44 0.64/0.62
Independent Domain Motions (14) 0.15/0.16 0.39/0.37 0.62/0.63
Burying Ligand Motions (4) 0.13/0.19 0.32/0.30 0.49/0.51
Other Types of Motions (9) 0.20/0.30 0.25/0.28 0.55/0.55

All (90) 0.19/0.23 0.41/0.41 0.61/0.60
1 Area under curve (AUC) of receiver operator characteristic (ROC)

coverage is good despite a low precision. The fact that these proteins possess rather few observed
breaking contacts might increase the chances of a TP among the top16% selected contacts.

We also performed a sensitivity analysis to test whether some predicted breaking contacts are
more relevant for capturing the functional transition than others. Starting from the top1% until
the top50% breaking contacts, we gradually removed more predicted contacts, while evaluating
the reached accuracy.

Fig 6.5B shows the results for proteins with local and domain motions. Most steps yield only
small accuracy improvements. But sometimes they cause a “jump” to a significantly higher or
drop to a substantially lower value. This indicates that the associated breaking contacts are
either more relevant than the previously removed ones or that they were required to reach the
“critical mass” to be effective. In particular, proteins with coupled local motions show the largest
jumps in lmcENM accuracy. We also find substantial drops in accuracy, which most likely result
from removing too many false positive predicted breaking contacts.

Hence, despite its deficiencies in precision and coverage, our classifier seems to be able to identify
breaking contacts that are not only correct but also relevant to improve lmcENM accuracy.

6.4.3 Predicted Breaking Contacts Matter

The only difference between the original, distance-cutoff based ENM and lmcENM is that the
latter ignores the predicted breaking contacts. We now evaluate the impact of removing these
contacts on ENM accuracy by comparing the performance of lmcENM to the baseline ENM and
the theoretical maximum reached by mcENM.

Fig 6.6 summarizes the results for the proteins binned by cumulative mode overlap of the first
ten low-frequency modes (extended version of Fig 5.4, see Table C of supplement S2 in Putz and
Brock (2017) for individual results).

Overall, lmcENM substantially outperforms the baseline ENM in accuracy, in particular, for
proteins poorly captured by the baseline ENM. For these proteins lmcENM achieves on average
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6.4. Results and Discussion

Figure 6.6: Accuracy of lmcENM (our method) compared to ENM (baseline) and mcENM (theo-
retical upper bound) on our data set (90 proteins). The accuracy is measured by the cumulative
mode overlap of the first ten low-frequency normal modes (CO(10)). Proteins are binned based
on the cumulative mode overlap reached by ENM (number of proteins per bin is given in brackets).
The horizontal blue, gray and red lines mark the average accuracy per bin of lmcENM, mcENM,
and ENM, respectively (numbers above each bin denote the absolute improvement of lmcENM
over ENM in percent). lmcENM is most effective for proteins that largely remain elusive for ENM
(CO(10) < 0.6). It is on par with ENM for the remaining proteins that are already accurately
explained by ENM. Figure source: Putz and Brock (2017).

more than 60% of the improvement reached by mcENM (theoretical maximum). Individual
accuracy improvements range between 1.5% up to 59.8% and sometimes even exceed the theoretical
maximum reached by mcENM (see Table C of supplement S2 in Putz and Brock (2017)). As
expected, proteins well captured by the original ENM benefit less from lmcENM.

We also find that lmcENM substantially increases the number of proteins reaching 60% coverage
of the functional transition with only the ten lowest-frequency normal modes, albeit not as much
as mcENM (theoretical upper bound) (lmcENM: 78% of proteins, ENM: 63%, mcENM: 92%; see
Table C of supplement S2 in Putz and Brock (2017)).

The overall improvement of lmcENM by 5.5% on average (4.5% median) over the baseline ENM
might appear small given the computational overhead of the machine-learning based classifier (see
Table C of supplement S2 in Putz and Brock (2017)). However, in relation to the performance
of the reference ENMs (OFC-ENM: 0.95%/-1.35%(mean/median), edENM: 0.83%/-1.0%, HCA:
1.24%/-0.10%) on our data set it becomes evident that general applicability of ENMs might
require such additional computational costs.

For eight proteins, lmcENM accuracy drops notably below the baseline (more than -5.0%;
see Table 6.5 and Table C of supplement S2 in Putz and Brock (2017)).

Two of them (PDB_IDs: 2v8iA, 1lfhA) are domain movers. In both cases, lmcENM removes
too many contacts due to the chosen selection cutoff (top 16% predicted breaking contacts). With
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an optimal selection cutoff removing fewer contacts, lmcENM would perform as good as the
baseline ENM (Table 6.6). Nonetheless, the performance of lmcENM is still good (above 0.85
CO(10) for both proteins).

Table 6.6: Optimal selection cutoff (topN percent) of lmcENM and corresponding cumulative
overlap of the first ten low-frequency modes for proteins, where lmcENM performs significantly
worse than ENM (baseline). For ease of comparison, also the cumulative overlap of ENM and
lmcENM based on the chosen selection cutoff of top16% as well as corresponding precision and
coverage of the SVM is shown. Fig 6.7 shows how the cumulative overlap for these proteins evolves,
when gradually removing more predicted breaking contacts. Table source: Putz and Brock (2017).

ENM lmcENM CO10best Cutoffbest (%) SVM SVM
Unbound Precision Coverage

1dx9C 0.340 0.238 0.328 3 0.153 0.308
2dh3B 0.439 0.331 0.384 4 0.218 0.300
1gohA 0.467 0.355 0.469 1 0.101 0.185
1a8dA 0.523 0.440 0.547 3 0.164 0.411
2jepB 0.635 0.458 0.618 1 0.064 0.338
1kp9A 0.739 0.652 0.738 1 0.434 0.429
2v8iA 0.910 0.854 0.912 1 0.043 0.137
1lfhA 0.931 0.828 0.932 4 0.108 0.289

Also for three other cases (PDB_IDs: 1gohA, 1a8dA, 1kp9A)–all local movers–the optimal
selection cutoff would yield comparable performance of lmcENM. Notably, 1kp9A, is the only
case with SVM precision and coverage above average of the motion category. Yet even with an
optimal selection cutoff it would not improve over ENM. Given that mcENM improves over ENM
by 5.9%, lmcENM most likely predicted breaking contacts that were correct but not relevant.
Fig 6.7 (leftmost panel) supports this view.

Gradually removing more predicted breaking contacts yields continuously decreasing cumulative
overlap. In particular for proteins with independent local motions or domain motions a better
selection strategy may help to reduce the overall amount of removed breaking contacts, thereby
decreasing the number of removed false-positive contacts (see the marked best median cutoff for
individual motion types in Fig 6.5).

For the remaining three cases (PDB_IDs: 1dx9C, 2dh3B, 2jepB) even the optimal selection
cutoff yields between 1.2% and 5.5% lower cumulative mode overlap than the baseline ENM.
Fig 6.8 shows the networks with breaking and maintained contacts for 2dh3B accompanied by
a plot depicting the fluctuation profiles of the different ENM variants scaled to the observed
displacements.

Although lmcENM partially captures true-positive breaking contacts, it misses observed ones
(indicated by the dark arrows) in particular at the interface between two helices in the center
performing a shear motion as well as between their connecting loop and the right helix (arrow
a2). Consequently, the flexibility of these regions is underestimated (mostly around the most
flexible center of the loops), whereas it is largely overestimated around two solvent-exposed loops
(arrow 4), where only few breaking contacts have been observed. Hence, our feature capturing
the location (border vs center) of a contact on a loop seems to be not discriminative enough.
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Figure 6.7: Sensitivity analysis of lmcENM-selection cutoff (topN percent) for the eight proteins,
where lmcENM drops by more than 5% in accuracy compared to ENM (baseline). Dependence
of lmcENM accuracy on removed topN% predicted breaking contacts ranked by decreasing SVM
score for the eight proteins grouped by their motion type. The lines depict how lmcENM-accuracy
evolves for individual proteins when gradually removing more breaking contacts from their network.
In all cases the accuracy drops almost starting from the beginning. The optimal topN percent
cutoff for each protein is reported in Table 6.6 above. Figure source: Putz and Brock (2017).

The situation for the other two proteins is highly similar. We also note that four out of the
eight cases are proteins with independent local motions, i.e. not coupled to a ligand. For such
proteins designing better features or training an ensemble of SVMs may help to improve the
performance of the classifier. When using an SVM ensemble, each SVM could be trained to
capture specific properties of a single motion category, which are then combined into an ensemble
of classifiers for prediction. Such ensemble classifiers have been successfully applied in the context
of protein contact prediction (Schneider and Brock, 2014), for instance.

In addition to the mode overlap, we also evaluated other metrics that are commonly used
to assess the performance of ENMs. The performance of lmcENM compared to all other ENM
variants w.r.t. to these metrics is summarized in Table 6.7.
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Figure 6.8: Example protein (2dh3B), where lmcENM performance significantly drops below ENM
(baseline). (A) Observed breaking and maintained contact networks. Unbound and bound confor-
mation colored blue and white, respectively. (B) Predicted true-positive (TP), false-positive (FP)
breaking, and maintained networks. (C) Fluctuation profiles of all ENM variants scaled to observed
displacements. The dark arrows point to parts, where lmcENM substantially underestimates the
flexibility between residues 106-109 (a1), 160-220 (a2: helix-loop-helix), 360-380 (a3) because
relevant observed breaking contacts mostly constraining flexible loops have not been predicted.
Between residues 260-290 (a4) it largely overestimates flexibility due to the removal of too many
false-positives. Figure adapted from: Putz and Brock (2017).

We find that lmcENM consistently outperforms all other ENM variants (apart from mcENM
(theoretical upper bound)) in all metrics except for the correlation between temperature factors and
maximum overlap (considering all modes). Detailed results are given in Table C of supplement S2
of our paper (Putz and Brock, 2017). In the following we will discuss these results in more detail.

lmcENM improves over the other ENM variants in capturing motion directions (overlap,
structural variance, number of modes to explain up to X percent cumulative mode overlap) as
well as motion amplitudes (correlation between fluctuation profiles) of the functional transition.
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edENM reaches a comparable cumulative fraction of variance (10 lowest-frequency modes) and
is the best method to explain experimental b-factor profiles with predicted temperature factors
(squared residue fluctuations of the first ten low-frequency modes scaled to b-factors). We attribute
this to the carefully optimized stiffness constants of edENM based on MD simulations.

In terms of maximum overlap, all ENM variants reach similar values. A closer look at the
results for different motion types reveals more variation as we will see in the following (see 6.4.4).
Considering the fraction of variance explained by the best-overlapping mode lmcENM and edENM
perform the best on average. Although the median rank of the best-overlapping mode is 1 for
all ENM variants, the average rank shows that lmcENM effectively shifted the best-overlapping
mode towards lower frequencies (lmcENM: 2.8 (best), ENM: 11.1 (2nd best), mcENM: 1.9).

Interestingly, lmcENM and mcENM yield much lower degree of collectivity for the best
overlapping mode, whereas the other ENM variants reach higher values compared to the baseline
ENM. Hence, elastic networks without observed/predicted breaking contacts seem to better
capture localized transitions with lower degree of collectivity. We will further investigate this
observation in the following (see 6.4.4).

To summarize, our results show that the selected, learned breaking contacts in fact contain
valuable information to improve ENM accuracy. lmcENM is most effective for proteins that are
poorly captured by ENM, suggesting that it helps where it is most needed.

6.4.4 lmcENM is Most Effective For Coupled Localized Func-

tional Transitions

In the previous chapter 5 we showed that observed breaking contacts matter to capture localized
functional transitions. To evaluate whether this holds true also for the chosen predicted breaking
contacts we analyze the performance of lmcENM considering the motion type of the proteins.
Fig 6.9 shows the results. Median and mean values for each motion type are listed in Table B.1.

lmcENM consistently outperforms ENM in accuracy regardless of the depicted motion type,
being most effective for proteins with ligand-coupled local motions (lmcENM: 12% improvement,
mcENM: 21%, HCA: 2%, edENM and OFC-ENM: 1% on average). Proteins with independent
local motions improve less due to lower classification accuracy (see Fig 6.5A).

We also find that lmcENM captures domain motions slightly better than other ENM variants
or is on par despite the relatively poor classifier accuracy (see Fig 6.5A). We attribute this to the
fact that proteins performing domain motions are structurally more rigid than proteins with local
motions. Hence, the former seem to be more robust against removing false positive predictions,
which have higher chances to be a redundant constraint that has no influence on the overall
motion of the protein.

Considering the total variance captured by the first ten low-frequency modes, lmcENM largely
improves over the other ENM variants, closely followed by edENM (Fig 6.10).

We attribute this to the fact that by removing predicted breaking contacts lmcENM effectively
compensates for the overestimated rigidity in the baseline ENM (Orellana et al., 2010). Hence,
the lmcENM-modes with more relevance–as indicated by the larger cumulative mode overlap
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Figure 6.9: Dependence of accuracy of evaluated ENM variants on motion type of protein, subset
of local and domain motions (80 proteins). Accuracy is measured by the cumulative mode overlap
of the first ten low-frequency normal modes (CO(10)). lmcENM consistently improves over ENM
in each motion category, being particularly effective for proteins with coupled localized functional
transitions. Figure adapted from: Putz and Brock (2017).

above–become easier accessible and contribute more to the total variance of the system. In the
other ENM variants these modes are spread among a wider range, which decreases their individual
contribution as well as their captured total variance. Given that removing breaking contacts is a
purely topological change, our work supports the findings by Orellana et al. (2010) that such an
effect cannot be achieved by refining spring stiffness alone.

Taking into account the correlation coefficients between predicted and observed fluctuations,
only coupled local and independent domain motions are better captured by lmcENM, while it is
on par with the other ENM variants for the remaining motion types (Fig 6.10(B)). Experimental
b-factors are best explained by edENM followed by HCA, whereas lmcENM does not improve
over the baseline ENM (Fig 6.10(C)). This can be explained by the fact that lmcENM only
adjusts the network topology without refining the stiffness of the springs that is typically tuned
for ENMs to better match B-factor profiles. Also, larger distance cutoffs (>16 Å) are usually
required to gain better agreement with experimental B-factors thereby increasing structural
stiffness and collectivity of motion (Kondrashov et al., 2007). Given our aim to improve the
prediction accuracy of ENMs for localized functional transitions with low degree of collectivity,
this metric is of limited use in our context.

We also note that edENM improves little over the baseline ENM for coupled local motions
and even drops below it for independent local motions. This is unexpected given the reported
performance of edENM in the original publication (Orellana et al., 2010). The main difference
between lmcENM and edENM is the protein-size dependent cutoff used by the latter to identify
remote interactions. edENM also scales the stiffness constants depending on sequence or spatial
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Figure 6.10: Accuracy of lmcENM compared to reference ENM variants using additional metrics
on our protein data set grouped by motion type. (A) Cumulative Fraction of Variance (10 modes).
lmcENM and edENM consistently capture by far largest amount of structural variance with the
lowest frequency modes, with slight advances for lmcENM except for coupled local motions. They
perform as good or better than mcENM (theoretical upper bound). (B) Correlation coefficient
between predicted residue fluctuations and observed displacement magnitudes (10 modes). For cou-
pled local and independent domain motions lmcENM reaches largest agreement between predicted
and observed fluctuation profiles. For the other two motion types lmcENM performs as good as the
other ENM variants or slightly worse. (C) Correlation coefficient between predicted Temperature
factors and experimental Beta factors (10 modes). Considering the similarity of temperature factor
profiles lmcENM and ENM perform roughly the same. The largest agreement for all motion types
is achieved by edENM. Figure source: Putz and Brock (2017).

distance. But this cannot explain the large difference in cumulative mode overlap between
edENM and lmcENM. Thus, we analyzed how well this protein-size dependent cutoff matches
the (theoretical) optimum cutoff of the baseline ENM per protein.

Fig 6.11 compares the best cutoff yielding largest cumulative mode overlap of the first ten
low-frequency modes with the protein-size dependent cutoff of edENM. Most of the proteins do
not follow the proposed logarithmic function. Consequently, the protein-size dependent cutoff
seems to largely over-constrain the network for most proteins in our data set compared to the
distance-cutoff used by the baseline ENM, lmcENM, and mcENM. This explains why edENM on
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average does not improve in cumulative mode overlap over the basic ENM for proteins with local
function-related movements (see Table C of supplement S2 in Putz and Brock (2017)).

Figure 6.11: Scatter plot of cutoff distance against protein length. In blue the best cutoff values
(in range 8-18Å) of the baseline ENM are shown, which yield the largest cumulative mode overlap
considering the first ten low-frequency modes. In green the protein-size dependent cutoff is shown
as proposed by Orellana et al. (2010). The dotted horizontal line indicates the median best ENM
cutoff. In our set of proteins we find no correlation between optimum cutoff and protein size. The
protein-size dependent cutoff largely over-constrains the network for most proteins in our data set.
Figure source: Putz and Brock (2017).

To summarize, our results demonstrate that the predicted breaking contacts are in fact relevant
to capture localized functional transitions, in particular if they are coupled to the binding of a
ligand.

6.4.5 lmcENM Reduces Dimensionality of Essential Deforma-

tion Space

In the previous chapter we showed that mcENM substantially narrows down the essential
deformation space of proteins used for subsequent fine-grained exploration (see 5.4.4). We cannot
expect such a drastic dimensionality reduction for lmcENM because the classifier only partially
covers the observed breaking contacts and additionally outputs many false positives. Nonetheless,
there should be some effect.

Fig 6.12 shows the median number of modes required for each ENM variant to reach a
cumulative overlap of 70%, 80%, and 90%. As expected, lmcENM cannot compete with mcENM.
But regardless of motion type, lmcENM requires a considerable smaller amount of low-frequency
normal modes than the baseline ENM to capture up to 90% of the functional transition with one
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exception. To reach 90% overlap for proteins with independent motions the baseline ENM needs
on average fewer modes than lmcENM.

Coupled (28)

Independent (18) Independent (14)

Coupled (20)

LOCAL MOTIONS DOMAIN MOTIONS

Figure 6.12: Dependence of dimensionality of deformation subspaces of ENM variants on motion
type of protein, subset of local and domain motions (80 proteins). The panels show the median
number of normal modes (spanning the deformation subspace) required to explain between 70%
and 90% of the functional transition (measured in cumulative mode overlap (%)). lmcENM consis-
tently requires fewer modes to capture the same amount of conformational change as ENM. Figure
adapted from: Putz and Brock (2017).

Also the other ENM variants are able to reduce the number of required modes compared to the
baseline ENM, albeit not as much as done by lmcENM in most cases. For instance, to capture
coupled local motions with 80% overlap lmcENM needs about half as much modes as the baseline
ENM (lmcENM: 47, ENM: 95), whereas the next best other ENM variant is OFC-ENM with
70 modes.

Reaching a desired overlap with fewer modes only works if individual modes capture more
of the conformational transition. Hence, lmcENM is able to reveal actually relevant modes,
particularly for coupled localized functional transitions.

Another way to investigate this is to look at the best overlapping mode out of all modes. For
highly collective protein motions usually a single low-frequency mode captures the movement
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quite well. Thus, a large overlap together with a low rank of this mode indicates that the ENM is
able to accurately explain the movement.

However, localized functional transitions with low degree of collectivity (i.e. fewer residues are
involved in the movement) require more modes (usually less than 10) to be captured (Cavasotto
et al., 2005). These modes are often spread among higher frequencies yielding rather low overlaps
in the low-frequency mode spectrum. Hence, apart from higher overlap and lower rank also lower
collectivity of the best-overlapping mode is desirable in this case. This is because lower collectivity
indicates that an actually relevant mode has been successfully shifted towards lower frequencies.
We evaluate this by reporting the reached maximum overlap, the rank of this mode among all
modes, the fraction of variance explained by this mode as well as its degree of collectivity (see 4.2
for details). Fig 6.13 shows the results.

In particular for localized transitions, lmcENM improves in maximum overlap over the other
ENM variants (except mcENM). The best overlapping modes of lmcENM have not only much
lower rank but also contribute more to the structural variance compared to the other ENM
variants. This is because they more likely represent a localized transition due to their lower degree
of collectivity.

We also find that the best overlapping mode of mcENM has even lower collectivity, although
it reaches a higher overlap. This indicates that lmcENM missed to capture some of the localized
transitions. In contrast, for domain motions lmcENM shows smaller maximum overlap. Especially
for independent domain movers the best overlapping lmcENM-modes are less collective compared
to the other ENM variants, which is not desired for this motion type. Due to the chosen selection
cutoff lmcENM removes much more predicted breaking contacts than it would be optimal for
this class of proteins (see Fig 6.5B, not for coupled domain movers). As a consequence, actually
irrelevant movements with low degree of collectivity become accessible and may contribute more
to the predicted deformability than the relevant collective ones. However, despite this smaller
maximum mode overlap lmcENM still outperforms the other ENM variants in cumulative mode
overlap as shown above (see 6.4.4).

Taken together, these results show that lmcENM effectively “shifts” modes that are relevant
to explain localized motions towards lower frequencies. Nonetheless, in several cases lmcENM
still requires more than 100 modes to capture 70% of the conformational change (see for instance
1a8dA (lmcENM: 102, ENM: 136, OFC-ENM: 112, edENM: 121, HCA: 108, mcENM: 33) or
1bsqA (lmcENM: 126, ENM: 219, OFC-ENM: 155, edENM: 114, HCA: 179, mcENM: 21) in
Table C of supplement S2 in Putz and Brock (2017)). In such cases neither of the evaluated
ENM variants is able to significantly narrow down the essential deformation space, which is the
actual advantage of ENMs over other prediction methods in particular for proteins with collective
motions.

However, mcENM (based on the removal of observed breaking contacts) clearly demonstrates
that this advantage does exist also for the cases that are difficult to capture by standard ENM.
For 83/90 proteins, mcENM needs less than 20 modes to capture 70% of the conformational
change. lmcENM is able to do so for 67/90 proteins, which is an improvement of 11% over
the second best method, OFC-ENM, that is successful in 57/90 cases. Thus, we believe that
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Figure 6.13: Accuracy of lmcENM w.r.t. maximum mode overlap related measures compared to
reference ENM variants on LMC_all data set grouped by motion type (A) Maximum mode overlap
of all modes. (B) Rank of best-overlapping mode. (C) Fraction of variance explained by best-overlapping
mode. (D) Degree of collectivity of best-overlapping mode. Figure source: Putz and Brock (2017).

lmcENM–despite its current limitations–provides the necessary means to advance the predictive
power of ENMs for yet poorly captured proteins.

99



Chapter 6. Elastic Network Model of Learned Maintained Contacts (lmcENM)

6.4.6 Validating Against Essential Dynamics of Conforma-

tional Ensembles

Finally, we validate our method against the structural flexibility captured by redundant confor-
mational ensembles. Due to the rapid growth of the Protein Data Bank (PDB) such ensembles
recently emerged as valuable source characterizing the conformational diversity around the native
state (Best et al., 2006, Burra et al., 2009, Monzon et al., 2016).

Amongst others, the CoDNaS 2.0 database (Monzon et al., 2016) provides such a redundant
collection of conformers obtained under different conditions for the requested protein. To
adequately capture the native conformational diversity a minimum ensemble size of ten is
recommended (Best et al., 2006, Monzon et al., 2016). For 35 proteins in our dataset we could
retrieve an ensemble with at least ten conformers (see Table D of supplement S2 in Putz and Brock
(2017)). Principal component analysis (PCA) identifies the Essential Dynamics (ED) captured by
the conformational ensembles, which can be compared to the normal modes of ENMs (David and
Jacobs, 2014). A basic introduction into PCA is provided in the background chapter (see 3.2.3).

Fig 6.14 shows how well lmcENM explains the native conformational diversity compared to the
other ENM variants. Detailed results for each protein can be found in Table E of supplement S2
of our paper (Putz and Brock, 2017).

We measure the similarity of PCA space and ENM spaces by (i) comparing fluctuation profiles
of the first ten low-frequency modes (subfigure A), (ii) the subspace overlap (also called RMSIP10)
of the same mode set (subfigure B), and the weighted overlap (RWSIP) of both spaces (subfigure
C). While the first two measures only consider the agreement in either magnitudes or directions
of motion, respectively, the latter accounts for their interplay. In addition, RWSIP has no limit
on the size of the compared spaces. Despite the wide use of RMSIP, RWSIP is considered the
more comprehensive measure to assess vector space similarity (Carnevale et al., 2007, Fuglebakk
et al., 2012). For more details on these measures we refer to 4.2.3 in the methods chapter.

In fact, all ENM variants reach comparable subspace overlap thereby limiting the information
gain of RMSIP. The comparison of slow-frequency fluctuation profiles reveals rather small advances
for lmcENM except for coupled domain motions, where lmcENM performs even slightly worse
than the baseline ENM. However, in terms of RWSIP lmcENM clearly performs the best, followed
by edENM and OFC-ENM.

These results confirm the outcome of the previous experiments. Conformational ensembles,
e.g. from X-Ray, NMR, or MD simulations, provide another rich source of information about
the dynamic behavior of inter-residue contacts that could be encoded in additional features. For
instance, simple counting of contact occurrence in predicted candidate protein structures is a
very successful method for ab initio protein contact prediction (Eickholt et al., 2011). Training
the classifier with these additional features may improve its prediction accuracy, which will in
turn positively impact the performance of lmcENM.
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Figure 6.14: Ability of lmcENM to capture structural flexibility of conformational ensembles com-
pared to ENM (baseline), mcENM (theoretical upper bound) and three other ENM variants on
subset of 35 proteins having at least 10 conformational states. The panels grouped by motion
type show the similarity of fluctuation profiles (magnitudes) considering the first ten low-frequency
modes (A), the subspace overlap (directions) of the same mode set (B), and the weighted overlap
(directions and magnitudes) of both spaces (C). lmcENM clearly outperforms the other ENM vari-
ants in the most robust measure, which is the weighted overlap (RWSIP) that takes into account
motion directions and magnitudes captured by the full deformation spaces. The 2nd best method
is edENM, which performs slightly worse for coupled local motions and comparable for coupled
domain motions. Figure source: Putz and Brock (2017).
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6.4.7 Case Studies

In the following we discuss the performance of lmcENM in more detail on three biologically
interesting proteins selected from our data set: the outer membrane transporter FecA, the fatty
acids oxidizing enzyme Arachidonate 15-Lipoxygenase, and SopA–a salmonella effector protein.

FecA - an outer membrane transporter protein

The outer membrane protein FecA has two main functions: First, to actively transport iron
(ferric citrate) into the cells of Escherichia coli through their outer membrane (Ferguson et al.,
2002). Second, to trigger the transcription of genes responsible for the iron uptake. Fooling this
iron-transport mechanism allows to infiltrate antibiotics into the cells of multi-drug resistant
bacteria, which makes FecA a biologically interesting target (Górska et al., 2014). We picked
FecA for this case study because lmcENM captures its functional transition almost 40% more
accurate than ENM although it is the only membrane protein in our data set.

FecA is a three-domain protein (Ferguson et al., 2002) consisting of (i) a β-barrel spanning
the membrane, (ii) a “plug” domain comprised by a mixed four-stranded β-sheet blocking direct
diffusion through the barrel, and (iii) an NH-domain in the periplasm (not resolved in the crystal
structure). Fig 6.15, A and D, depict the functional transition of FecA marked by unbound and
ligand-bound conformation (PDB-ids: 1pnzA (Yue et al., 2003) and 1kmpA (Ferguson et al.,
2002)). Two large extracellular loops (7 and 8) of the β-barrel dominate the transition by covering
the ligand in the binding site (Ferguson et al., 2002, Piggot et al., 2013). Being propagated
through the plug-domain these movements then cause an unwinding of the H1-helix (“switch”
helix) to trigger the gene transcription process.

Fig 6.15, B and E, reveal that initially both loops are tightly constrained within the contact
network of the unbound conformation. However, most of these surrounding contacts are observed
to break (highlighted in green) to facilitate the major conformational changes of loops 7 and 8.
Remarkably, the learned breaking contacts (true positives (TP), yellow) closely resemble the
observed ones in the most relevant core region of both loops. Only towards their less flexible
anchor points fewer contacts have been predicted to break (Fig 6.15, C and F).

However, we also notice many false positive predicted breaking contacts (FP, violet) that
have not been observed, for instance around loops 3, 4, and 5 (Fig 6.16(A)). Interestingly,
there is a single observed breaking contact between loops 4 and 5, which indicates that a more
strict extension threshold would have identified more contacts as breaking around these loops
(Fig 6.15B). In fact, for this protein the optimal extension threshold to identify observed breaking
contacts for mcENM would be 3% (CO10: 0.839) instead of the used 9% (CO10: 0.809), which is
the optimal threshold averaged over the whole data set (tested for distance cutoff within 8-18Å
and extension thresholds between 3 and 25%). Based on this optimal extension threshold the
agreement between predicted and observed breaking contacts would improve, in particular in
loops 4 and 5 (Fig 6.17).

Hence, the predicted increased flexibility for these loops may be actually correct. This hypothesis
is supported by experimentally observed structural differences between these two loops (Ferguson
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Figure 6.15: Conformational transition of outer membrane transporter FecA compared to observed
and learned changes in its contact topology. (A,D): Function-related movement from unbound
to bound conformation. The highlighted loops 7 (red) and 8 (blue) move the most to cover the
ligand (green spheres) in the binding pocket. (B,E) Observed contact network of the unbound
conformation mostly residing around the two highlighted loops. (C,F) Learned contact network.
True positive (TP) predicted breaking contacts accurately match the observed ones around loop
7 and 8. The top view (C) reveals a cluster of false positive (FP, violet) predictions around loops
3, 4, and 5. Between loop 4 and 5 a single breaking contact is observed, which is not predicted.
Some more FP breaking contacts are predicted around the plug domain within the β-barrel and
turn 4 at the bottom of the barrel (F). For clarity, we omit drawing short-range contacts (sequence
separation < 4 residues). Figure source: Putz and Brock (2017).
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Figure 6.16: Outer membrane transporter FecA: False positive predicted breaking contacts. (A)
Top view of the transition between unbound and bound conformation (left) compared to the loca-
tion of predicted breaking contacts (right). Loops 7 and 8 dominate the conformational change.
Most of the predicted breaking contacts around these loops are true positives (TP). Some more
breaking contacts are predicted at the opposite side of these loops, but considered false positive
predictions (FP). (B) Bottom view of FecA in unbound and bound state. Only the learned breaking
contacts are shown for clarity. Many false positive predicted breaking contacts locate around the
switch helix (orange). Although the helix retains its shape between the two conformations, MD
simulations revealed reversible unwinding of the helix that is involved in the functional behavior
of FecA. Hence, these FP predictions may be correct. Some more FP breaking contacts reside
between the plug domain and the surrounding β-barrel. Figure source: Putz and Brock (2017).

et al., 2002) as well as fast fluctuations of loop 5 in order to interact with membrane environment
and ligand, which have been revealed by MD simulations (Piggot et al., 2013).

Additional false positive predicted contacts locate between plug-domain and β-barrel, as well as
around the switch-helix (Fig 6.16(B)). To enable the passage of the ligand through the protein the
plug-domain is supposed to move within the β-barrel (Ferguson et al., 2002), yet MD simulations
revealed only small positional changes (Piggot et al., 2013). Also, the switch-helix, not captured
in the bound conformation, transiently unfolded in MD simulations (Piggot et al., 2013). Taken
together, our results suggest that our classifier might generalize much better than indicated by
its relatively low prediction accuracy over the full data set (Table 6.4).

We also analyzed how accurate lmcENM predicts the motion directions compared to the other
ENM variants. Fig 6.18A shows the cumulative mode overlap of the top 50 lowest-frequency
modes. With the first ten modes lmcENM explains more than 60% of the functional transition,
an improvement of 40% compared to the baseline ENM and other ENM variants. Only edENM
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Figure 6.17: Contact networks for outer membrane transporter FecA based on the optimal exten-
sion threshold determined for this protein only. (A) Top view of the observed breaking contacts
identified based on the optimal extension threshold of 3% that maximizes the cumulative mode
overlap of the first ten low-frequency modes of this protein. Please note that the optimal extension
averaged over our full data set is 9%. (B) Location of predicted breaking contacts of lmcENM.
Given this stricter extension threshold observed and predicted breaking contacts would agree much
better, especially around loops 4 and 5. Many of the false positive predictions actually match ob-
served breaking contacts in this case. This indicates that the classifier may has correctly predicted
more flexibility in these regions, which is supported by the observed fluctuations for loop 5 in MD
simulations. Figure source: Putz and Brock (2017).

captures almost 40% of the movement, but eventually aligns with the other ENMs significantly
below lmcENM when considering more modes. This shift of relevant modes towards lower
frequencies also becomes evident w.r.t. the lower rank of the best-overlapping mode (lmcENM:
6, ENM: 15, edENM: 7, mcENM: 0) and reduced number of modes required to capture, for
instance, 70% of the cumulative overlap (lmcENM: 13, ENM: 187, edENM: 82, mcENM: 3). The
improvement of lmcENM over the baseline ENM and the reference ENMs is consistent for all
evaluated measures (Table C of supplement S2 in Putz and Brock (2017)).

While the mode overlap of lmcENM seems to be robust against false positive predicted contacts,
they clearly have negative impact on the correlation of predicted and observed fluctuation patterns.
Fig 6.18B shows that only mcENM is able to capture the observed displacement magnitudes. All
other ENM variants, including lmcENM, reach poor agreement with the observed fluctuations.
In particular, turns 4 and 3 connecting the strands at the bottom of the β-barrel become way
too flexible due to the removed false positive predicted breaking contacts in lmcENM. Also the
other ENM variants overestimate the flexibility of these turns. Despite the many true positive
breaking contacts around loop 7 the SVM classifier missed relevant observed ones towards the
anchor points (Fig 6.15F) and within the helical part, which unfolds completely in the bound
conformation. Such an unfolding of helical parts of a loop is currently not explicitly captured by
our features. Instead the classifier treats the helix-like part as rather stable.

However, lmcENM has lower tendency to overestimate the flexibility of the other loops and
turns than the other ENMs. This together with the closer match of the highly flexible extracellular
loop 8 accounts for the slightly higher correlation of lmcENM with the observed fluctuations. One
way to reduce the amount of false positive predictions could be to filter the predicted contacts
using corroborating evidence. The idea is that predicted breaking contacts close to each other
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Figure 6.18: Performance of ENM variants for the outer membrane transporter FecA. (A) Reached
cumulative overlap (curves) of the first 50 normal modes with the conformational transition. The
bars depict how much of the movement individual modes capture. lmcENM largely outperforms the
baseline ENM and the reference ENM variants (color coding is the same as in panel B). The verti-
cal dotted line marks the cumulative mode overlaps reached with the first ten low-frequency modes.
(B) Residue fluctuations along the first ten low-frequency modes scaled to fit the observed dis-
placement magnitudes (filled gray curve) between the two conformations. The Pearson correlation
coefficient is given in brackets behind the ENM labels. lmcENM resembles the higher flexibility of
loop 8 more accurately than ENM and other ENM variants, but largely underestimates the flexibility
of loop 7. Also, loops 4 and 5 are captured well by lmcENM. But due to the removal of too many
false positive predicted breaking contacts (see Fig 6.15F), lmcENM largely overestimates the flex-
ibility of turns 4 and 3 connecting the strands at the bottom of the β-barrel. Figure source: Putz
and Brock (2017).

increase their individual likelihood to be a correct prediction. The SVM classifies each contact
individually without knowing whether contacts in the neighborhood have been assigned a high
probability to break. Such an approach has been successful to filter predicted contacts in an
ab initio contact prediction approach (Bohlke-Schneider, 2016).

Nonetheless, the overall performance of lmcENM for FecA w.r.t. to all other metrics is
remarkable given that it is the only membrane protein in our data set. Even though our SVM-
classifier was not specifically trained on membrane proteins it correctly predicted relevant breaking
contacts. This indicates that proteins may share similar local structural parts that are involved in
similar movements although they differ in their overall structure. In fact, previous work proposed
that protein dynamics and deformation patterns may be evolutionary conserved and shared
among proteins (Marsh and Teichmann, 2014, Micheletti, 2013, Hensen et al., 2012, Liu and
Bahar, 2012). However, further research is required to confirm this hypothesis.

106



6.4. Results and Discussion

Arachidonate 15-Lipoxygenase - a fatty acids oxidizing enzyme

Arachidonate 15-Lipoxygenase (15S-LOX1) belongs to a class of fatty acids oxidizing enzymes
that are involved in inflammatory diseases. Understanding how these enzymes move may advance
successful inhibitor design (Choi et al., 2008). 15S-LOX1 is a two-domain protein exhibiting
domain and local conformational changes. But only the local motions within the larger, catalytic
domain enable the ligand binding (Choi et al., 2008). We selected this enzyme for the second
case study because lmcENM explains this functional transition even more accurate than mcENM
(theoretical maximum) with the first ten low-frequency modes, thereby substantially outperforming
all other ENM variants.
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catalytic
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Figure 6.19: Conformational transition of Arachidonate 15-Lipoxygenase compared to observed
and learned changes in the contact topology. (A) To accomodate the ligand (green spheres) in
the binding site mostly the two highlighted helices (blue and magenta) move between unbound
and bound conformation. (B) Most observed breaking contacts reside at the interface of the α2-
helix (blue) to the rest of the structure. (C) The learned breaking contacts match most of the
observed ones near the two helices. Most false positive contacts are predicted between the two
domains, which seems actually be correct given the high mobility of the N-terminal domain in MD
simulations. Figure source: Putz and Brock (2017).

Fig 6.19A depicts unbound and bound conformation (PDB-ids: 2p0mA and 2p0mB (Choi
et al., 2008)) of the functional transition. Accomodating the ligand in the narrow pocket mainly
requires movement and partial unfolding of the two highlighted helices (proposed induced-fit
mechanism) (Choi et al., 2008). Not surprisingly, most observed breaking contacts reside around
these helices (Fig 6.19B). Our method correctly predicts most of the observed breaking contacts,
but overestimates the occurrence of breaking contacts (false positives, FP) in other parts of the
network (Fig 6.19C) and in particular between the two domains (Fig 6.20).

Although the domain motion is not captured by the X-ray conformations, MD simulations
reveal large inter-domain movement. Hence, the FP breaking contacts between the two domains
seem to be correct. The other false positives around solvent exposed loop regions indicate that
our classifier may overemphasize the relevance of such loops.

Fig 6.21A shows the cumulative mode overlap of lmcENM of the first 50 low-frequency normal
modes compared to ENM (baseline) and mcENM (theoretical maximum). The first ten lmcENM-
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Figure 6.20: Observed and predicted breaking contacts of Arachidonate 15-Lipoxygenase (side
view). (A) Most observed breaking contacts reside at the interface of the α2-helix (blue) to the
rest of the structure. (B) The learned breaking contacts match most of the observed ones near the
helices. Experimental studies indicate that the false positive predictions between the highly flexible
N-terminal β-barrel domain and the catalytic C-terminal domain may actually be correct. Figure
source: Putz and Brock (2017).

modes capture 89% of the functional transition. With the same number of modes, ENM explains
only 29%, mcENM 86% overlap. edENM (43%) and HCA (40%) slightly improve over the baseline
ENM. Hence, lmcENM substantially improves over the baseline and the reference ENMs even
when considering up to 50 modes.

lmcENM even outperforms mcENM (theoretical upper bound) w.r.t. to the first ten modes.
This is surprising because mcENM contains not only the removed false-positive predicted breaking
contacts in lmcENM but also lacks observed breaking contacts that have not been detected by
lmcENM. The reason is that the three most relevant lmcENM-modes are spread among modes 1,
2, and 4, which account for translation and upwards swinging of the α-helix. The corresponding
mcENM-modes distribute among modes 1, 3, and 10. Thus, lmcENM seems to capture the
network topology around this helix slightly more accurate than mcENM, maybe due to the
missed breaking contacts between the shorter helix (red) and a larger helix (Fig 6.20). As a
result lmcENM-modes focus more on the movement of the large helix (blue). Nonetheless, both
methods perform about the same when considering more than ten modes.

Fig 6.21B shows that the changed contact topology of lmcENM also accounts for a much better
match between predicted and observed residue fluctuations, in particular for the most flexible
helix (α2-helix). The other ENM variants, including the baseline ENM, largely underestimate the
flexibility of this helix. lmcENM consistently improves over the other ENM variants also w.r.t.
all other measures (Table C of supplement S2 in Putz and Brock (2017)).

15S-LOX1 is not the only protein, where lmcENM is more accurate than mcENM. Overall,
eight of the 90 proteins in our data set are better captured by lmcENM than by mcENM (see
Table C of supplement S2 in Putz and Brock (2017)). This further underlines the potential of
our method to explain functional transitions that can not be captured otherwise.
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Figure 6.21: Performance of ENM variants for 15S-LOX1 - a fatty acids oxidizing enzyme. (A)
Reached cumulative overlap (curves) of the first 50 normal modes with the conformational tran-
sition. The bars depict how much of the movement individual modes capture. lmcENM largely
outperforms the baseline ENM and the reference ENM variants (color coding is the same as in
panel B). The vertical dotted line marks the cumulative mode overlaps reached with the first ten
low-frequency modes. (B) Residue fluctuations along the first ten low-frequency modes scaled to
fit the observed displacement magnitudes (filled gray curve) between the two conformations. The
Pearson correlation coefficient is given in brackets behind the ENM labels. Figure source: Putz and
Brock (2017).

SopA - a salmonella effector protein

Another interesting case is the conformational transition of SopA (Diao et al., 2008), a salmonella
effector protein (PDB-ids: 2qzaA, 2qyuA). When analyzing this pair of conformations we found
that it describes the transition from bound to unbound state instead of the expected transition
from unbound to bound. The reason is that 2qyuA–the actual native unbound conformation (Diao
et al., 2008)–has been erroneously labeled as the bound conformation in the PSCDB database1.
While the open-to-closed transition from 2qyuA (unbound) to 2qzaA (bound) is a classical hinge
motion, accurately captured by ENMs, our analyzed direction from closed to open is much more
difficult to explain by ENMs. This is because ENMs based on closed conformations tend to
be overconstrained due to their compact structure. As a result, they often underestimate the
mobility of structural parts involved in the opening of the binding pocket to allow the entry of a
ligand. Therefore, the closed-to-open transition from 2qzaA to 2qyuA is an interesting test case.

Fig 6.22 shows the conformational transition of SopA together with the different contact
networks. Most observed breaking contacts reside in the interface between the moving C-terminal
domain and the other two domains (Fig 6.22B). Some more breaking contacts are observed in the
lower right corner of the central domain. The predicted breaking contacts capture most of the
observed ones, in particular, at the interface between the domains (Fig 6.22C). These true positive
breaking contacts are surrounded by false positives. However, these false positives contribute
little to the overall deformability of the protein due to the globular and compact shape of the
individual domains. Additional false positives are found in less constrained regions of the protein.

1http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/093.html
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Figure 6.22: Conformational transition from SopA, a salmonella effector protein, and networks with
observed and predicted breaking contacts. (A) Hinge-like opening motion from 2qzaA (closed) to
2quaA (open) indicated by the arrow (arrow icon by Michael Kussmaul, Noun Project). (B) Net-
work of maintained contacts with highlighted observed breaking contacts, mostly at the interface
between the moving and the other two domains. (C) Network of maintained contacts with high-
lighted predicted breaking contacts. True positive breaking contacts closely resemble the most
relevant observed ones in the domain interface. False positives surround the true positives at the
domain interface. However, their effect on the overall deformability is negligible due to the globular
and compact structure of the individual domains.

Overall, lmcENM performs as good as mcENM (theoretical upper bound), followed by edENM
and HCA. The cumulative mode overlaps of the different ENM variants in Fig 6.23A reveal that
eventually all are able to capture the observed conformational change when enough modes are
considered (around 20). But we also note that the first two low-frequency modes of mcENM and
lmcENM are sufficient to reach an overlap above 0.8, whereas the other ENM variants need more
than 13 modes to do so.
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Figure 6.23: Performance of ENM variants for SopA, a salmonella effector protein. (A) Comparison
of cumulative mode overlap of the first 50 low-frequency modes (lines). Individual mode overlaps
are depicted by the bars. (B) Comparison of fluctuation profiles of the ENM variants with the
magnitudes of the observed displacements considering the first ten low-frequency modes.

We also find that lmcENM largely outperforms the other ENM variants considering the match
between predicted and actual residue fluctuations (Fig 6.23B). While the other ENM variants over-
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or underestimate the fluctuations in large parts, lmcENM resembles them much more accurately.
Detailed results for this protein can be found in Table C of supplement S2 in Putz and Brock
(2017).

Overall, lmcENM is clearly the best method among the tested ENM variants to capture the
conformational transition of SopA. Removing the predicted breaking contacts makes the most
relevant hinge-like opening motion of this transition accessible with a single mode, well separated
from the others, as it is typical for hinge-like motions. These results suggest that lmcENM is
well suited to accurately capture conformational transitions in both directions, i.e. from open
to closed and vice versa. Furthermore, the direction of the conformational change seems to be
irrelevant for the classifier in order to distinguish between potentially breaking and maintained
contacts. The required information to correctly predict the relevant breaking contacts is captured
by the properties of the local contact environment of either conformation.

6.5 Relevance of Features to Predict Breaking Con-

tacts

Our classifier relies on a broad range of features to differentiate breaking from maintained contacts.
As mentioned before, these features characterize the physicochemical, structural and topological
properties of the structural context of a contact and its embedding in the protein’s structure.
Hence, the question arises, which features contribute the most to a correct classification. This
section aims to present initial answers to this question based on the most relevant features
identified by a feature selection method.

6.5.1 Experimental Setup

One of the fastest methods to select relevant features using SVMs is to rank them by the weights
obtained after the classifier was trained on all features (Guyon et al., 2002). This works well for
SVMs with linear kernel but not for non-linear Gaussian radial-basis-function (RBF) kernel SVMs,
which we used in our approach. However, we found that a linear-kernel SVM as implemented
in scikit-learn (Pedregosa et al., 2011, Fan et al., 2008) trained and tested on our problem
by Leave-One-Out Cross-Validation performed only slightly worse than the RBF-kernel SVM.
Table 6.8 shows the classification performance in terms of precision and coverage for linear and
RBF-kernel SVM.

The impact of the different kernels on lmcENM-accuracy is shown in Table 6.9. lmcENM based
on the linear SVM performs almost as good as lmcENM based on the RBF-kernel SVM. Thus,
the feature weights of the linear SVM should be a reasonable indicator of feature importance in
our classification problem.
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Table 6.8: Performance of linear SVM (cost=100) and RBF-kernel SVM (cost=100, γ=0.00001)
on the full data set (90 proteins). Performance is measured by precision and coverage of the L/5
contacts with highest SVM score, where L refers to the length of the protein. The linear SVM
performs slightly worse than the lRBF-kernel SVM. Table source: Putz and Brock (2017).

Precision Coverage

linear SVM 0.294 0.455
RBF-kernel SVM 0.307 0.470

Table 6.9: Performance of lmcENM based on linear SVM and lmcENM based on RBF-kernel SVM
(our presented approach) compared to ENM (baseline), and mcENM (theoretical upper bound) on
the full data set (90 proteins). Performance is measured by the cumulative mode overlap of the
first ten low-frequency modes. Both lmcENM-variants reach largest overlap when removing the
top16% predicted breaking contacts. lmcENM based on linear SVM performs slightly worse. Table
source: Putz and Brock (2017).

ENM lmcENM lmcENM mcENM
(linear SVM) (RBF-kernel SVM)

Cumul. Mode Overlap (10) 69/0.66 0.72/0.71 0.73/0.72 0.82/0.80

6.5.2 Results and Discussion

Fig 6.24 shows the 20 features with largest (top) and lowest (bottom) weights. Features with
positive weight contribute to identify breaking contacts, whereas features with negative weight
help to classify maintained contacts. The magnitude of the weights indicates the importance of
the feature. The majority of selected features characterizes topology, spectrum, or label statistics
of the neighborhood graph capturing the local context of an individual contact (see Tables A.3-A.9
in appendix A for detailed feature description).

On the extremes of the importance spectrum are number of nodes (positive end) and number
of edges (negative end). Contacts in larger but weakly connected (sparse) local neighborhoods
are more likely to break than contacts in highly constrained (dense) regions, which have higher
probability to be maintained. The latter is also supported by the feature with second largest
negative weight, the energy of the immediate neighborhood graph. High graph energy seems to
be an important property of maintained contacts because it is usually larger for dense graphs
than for sparser ones (Shatto and Çetinkaya, 2017, Li et al., 2012).

The large positive weight of largest and second largest eigenvalue may be interpreted in terms
of their gap (Lovász, 2007). Taken individually, they provide not much information, however their
gap may hold relevant information about the graph connectivity. Although we did not include
this gap as explicit feature, the SVM classifier may have exposed an implicit relation between
both pointing towards breaking contacts.

Also, high degree of solvent accessibility and exposure indicate breaking contacts, especially
when the impurity degree in the local context is higher. Further, long helices (3D length), a larger
amount of turn residues, low amount of hydrogen bonds in the neighborhood, as well as a larger
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Figure 6.24: Top20 and Bottom20 features ranked by weight of the linearSVM. Features with
largest weight are most important to classify breaking contacts, while features with minimum neg-
ative weight serve to identify maintained contacts. The graph refers to the neighborhood graph
defining the local context of a single contact (see 6.2.1). Features characterizing the different
properties of this graph seem to dominate the classification. Figure adapted from Putz and Brock
(2017).

sequential distance of the secondary structure elements holding the contact seem to promote its
breaking.

On the contrary, maintained contacts seem to populate rather buried neighborhoods (number
of buried (helical/coil) residues, entropy of solvent accessibility, residue depth) with high degree
of sequence conservation (mutual information distribution). In fact, Liu and Bahar (2012) have
shown that there is a strong link between sequence conservation and intrinsic deformability for
enzymes. Although some sequence correlations may be irrelevant for protein dynamics, certain
amino acids involved in substrate recognition tend to be both, more mobile, while also coevolve
more often. This points towards a breaking contact, whereas high sequence conservation rather
characterizes maintained contacts.

We also find that a high degree of symmetry leads to enhanced structural stability (maintained
contacts) in the symmetric parts, while weakly attached parts are more likely to move to facilitate
a functional transition. The outer membrane transporter, FecA, presented in the case study

113



Chapter 6. Elastic Network Model of Learned Maintained Contacts (lmcENM)

above (6.4.7) exemplifies the effect of stable symmetric core allowing motion within the barrel as
well as at the entrances.

The average 3D length of turns intuitively measures the spatial extension of a turn. Largely
extended turns or coils are restricted in their mobility due to stronger interactions with the
neighborhood along their full length, which indicates rather maintained contacts.

Being in contact with pockets of larger volume, also seems to be associated with maintained
contacts. A contact with a pocket is established if at least one of the contacting residues touches
the surface of one of the alpha spheres characterizing the pocket’s shape as determined by
fPocket (Guilloux et al., 2009). A possible explanation could be that large pockets may tend to
maintain their shape and hence the contact topology. Breaking contacts are more likely to be
found at the pocket entrance to accommodate for ligand binding.

One might argue that several of our features are captured by other approaches. For instance,
residue depth or solvent exposure of a contact are implicitly modeled by its embedding into a
highly or weakly constrained part of an ENM, respectively. Also the influence of contact order,
secondary structure type, and hydrogen bonding have been used to refine ENMs (see (Lezon and
Bahar, 2010, Orellana et al., 2010, Jeong et al., 2006), for instance). However, Fig 6.24 reveals
that only the topmost feature as well as the three bottommost features are clearly separated
from the other features in terms of their weight/importance, whereas the importance of the other
features shows a much smaller spread. In fact, the ranking and weight of these features slightly
varies for the different motion categories (Table A.7). This has two implications: First, to reliably
predict dynamic changes in the coarse-grained model of a protein and thereby its motions a
broader set of features should be considered instead of only a few ones. Second, depending on the
protein this specific feature/property combination may also vary. Both effects may be difficult to
capture implicitly by modeling specific interactions, such as hydrogen bonds or disulfide bridges.

Overall, the strongest of our features seems to be the graph-based encoding of the local contact
environment itself. With the presented feature set it holds valuable information about protein
dynamics and can easily be extended by additional features. Yet, to improve the classifier by
removing irrelevant features and to gain deeper understanding about features driving protein
motion more advanced methods for features selection such as recursive feature elimination (SVM-
RFE) (Guyon et al., 2002) could be used. Such methods also provide information about the
importance and interplay of feature groups as opposed to their individual importance, which was
analyzed by our approach. Nonetheless, the interplay of features is partially captured by our
approach. We use the neighborhood graph of a contact to combine individual properties of its
environment into aggregated features.
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6.6 Conclusion

6.6.1 Summary

In the previous chapter we demonstrated that ENMs are able to capture localized, function-related
motions if they account for dynamic changes in the contact topology of proteins. In particular,
we showed that the absence of springs associated with observed breaking contacts makes localized
functional transitions accessible for ENMs. The goal in this chapter was to present a way to
predict the dynamic behavior to be able to adjust the ENM network in the standard case, when
only a single protein conformation is known.

We proposed to predict the dynamic behavior of contacts, i.e. whether they break or are
maintained when the protein moves, by leveraging information from their structural context.
This context is built by the local contact environment and its embedding into the overall protein
structure. We demonstrated that differentiating breaking from maintained contacts is possible
by using a graph-based encoding of their structural context. We introduced an SVM classifier
to predict breaking contacts using features derived from this graph-based representation. They
characterize the physicochemical, structural, and topological properties of a contact’s structural
context. Our results show that the predicted breaking contacts closely resemble the observed
ones, especially for proteins with localized function-related movements.

We also proposed that accounting for these predicted dynamic changes in the contact topology
of proteins expands the range of motions that can be modeled by ENMs. We demonstrated
this with lmcENM, a novel elastic network model of learned maintained contacts, which remain
after removing the predicted breaking ones from the initial network. Our results show that
the predicted breaking contacts are relevant and accurate enough to substantially improve the
accuracy of lmcENM over the reference ENM variants, in particular for proteins that require
localized movements to perform their function.

We have also seen that due to the absence of predicted breaking contacts lmcENM requires a
substantially smaller subset of low-frequency modes to accurately capture localized functional
transition than the reference ENMs. This has two implications: First, searching a lower-
dimensional space reduces computational costs for normal-mode-guided conformational exploration
or ensemble generation. Second, the essential deformation space of lmcENM more likely guides
towards the right direction, in particular when a protein performs localized functional transitions
with low degree of collectivity. This is of high practical relevance because the type of motion
exhibited by proteins is usually unknown a priori.

lmcENM confirms the findings of chapter 5 that accounting for dynamic contact changes,
i.e. the absence of predicted breaking contacts, is key to capture localized functional transition
with ENMs. There is no need to adjust network resolution or potential function. Nonetheless,
preliminary results indicate that the accuracy of lmcENM may be further improved by optimizing
spring stiffness similar to other approaches (Orellana et al., 2010, Lezon and Bahar, 2010, Kovacs
et al., 2004, Hinsen et al., 2000).
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In contrast to mcENM introduced in the previous chapter, lmcENM can be applied in the
standard prediction case, where only a single conformation of a protein is known. Overall, our
results demonstrate that without increasing the complexity of the underlying model, lmcENM
offers a promising route towards improving the general applicability of ENMs and thereby their
practical relevance.

Finally, we presented evidence that the dynamic behavior of contacts, and thus protein motion,
most likely results from the interplay of a broader set of features characterizing the properties of
their structural context, which may be difficult to be encoded into the ENM model implicitly.
We introduced an easily extensible framework for exploring additional features to further advance
our understanding of protein motion.

6.6.2 Limitations

lmcENM relies on the same model resolution and uniform spring stiffness as the classical distance-
cutoff based ENM. Hence, the computational costs to analyze their deformations, i.e. the intrinsic
motions of a protein, are the same. However, lmcENM requires additional computation to predict
the breaking contacts to adjust its contact network. The actual amount of computation largely
depends on the protein’s size and summarizes over two steps: feature generation and contact
prediction.

Feature generation ranges from a few minutes for small proteins (> 100 residues) up to half
an hour for our largest protein, FecA, with 647 residues on a single CPU. The prediction step
is much faster taking seconds for small proteins up to six minutes for FecA. Nonetheless, the
gain in accuracy of lmcENM should compensate for these additional computational costs. Only
training of the classifier is computationally more intense. But in principle, it has to be done only
once and runs parallelized. A web service to run lmcENM for single-chain proteins is currently in
preparation.

Furthermore, the effectiveness of lmcENM is currently mostly focused on proteins with local
motions coupled to ligand binding as shown in Fig 6.25. It reaches about two-third of the
theoretical maximum accuracy achieved by mcENM (see also Table N of supplement S2 in Putz
and Brock (2017)). For proteins with independent local motions, lmcENM is able to capture
about half of them better than ENM, whereas the other half reaches only small if any improvement
over ENM (baseline). Also, domain movers cannot benefit from lmcENM to the extent as local
movers, mostly due to the removal of too many predicted breaking contacts.
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Coupled (28) Independent (18) Independent (14)Coupled (20)

LOCAL MOTIONS DOMAIN MOTIONS

Figure 6.25: Distribution of lmcENM-, mcENM-, and ENM-accuracy, subset of local and domain
motions (80 proteins). lmcENM closely resembles the accuracy distribution of mcENM (theoretical
upper bound) for proteins with coupled local motions and domain motions. But, it only slightly
improves in accuracy for proteins with independent local motions. Nonetheless, mcENM clearly
demonstrates that also the latter type of motions can be captured with high accuracy with a refined
contact topology.

Despite these limitations, our results clearly demonstrate that the absence of predicted breaking
contacts enables lmcENM to explain otherwise poorly captured localized functional transitions.
This further underlines the potential of our approach to further expand the range of motion types
that can be modeled by ENMs.
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7
Conclusion

7.1 Summary of Main Findings

We presented in this thesis a novel elastic network model based on learned maintained contacts,
lmcENM (chapter 6), which addresses a major shortcoming of elastic network models (ENMs).
ENMs exploit the fact that a protein’s motions are largely encoded in its contact topology. While
ENMs accurately explain functional transitions of proteins that are large-scale and collective,
they fail to capture localized, uncorrelated ones. Hence, the movements predicted by an ENM
may be wrong or misleading, which limits the practical relevance of ENMs because the motion
type of proteins is in general unknown a priori.

lmcENM overcomes this limitation by leveraging a novel source of information, i.e. dynamic
changes in the contact topology of a protein. lmcENM refines its initial network by removing
springs associated with contacts that have been predicted to break during the motion. To predict
these contacts we developed a machine-learning based classifier that differentiates breaking from
maintained contacts by leveraging information about their structural context, which influences
their dynamic behavior. Our approach is a first step towards a “deformation-invariant” contact
topology to study protein motions of any type on a coarse-grained scale.

Our approach is based on two key insights: First, the ability of ENMs to capture function-related
transitions critically depends on a contact topology that remains maintained throughout the
movement. While this is naturally fulfilled for highly collective movements, localized functional
transitions often cause substantial changes in the contact topologies between start and end
conformation. We showed that ENMs can accurately capture these localized movements if
observed breaking contacts are removed from their initial contact topology (chapter 5). But, to
predict protein motions with ENMs we also need to predict these breaking contacts.

Second, the additional information required to predict breaking contacts is hidden in the
physicochemical characteristics of local parts of the protein structure. These characteristics
capture how tightly different parts of the protein are bound to each other, how this affects their

119



Chapter 7. Conclusion

movements, and ultimately their contact topology. We presented a way to access this novel source
of information using a graph-based encoding of a contact’s structural context and features that
characterize the properties of this environment.

We showed that lmcENM predicts function-related protein motions more accurate than the
classical, distance-cutoff based ENM and three other reference ENM variants. lmcENM is
particularly effective in capturing ligand-coupled localized functional transitions that remain
largely unexplained by all reference ENMs.

Furthermore, we showed that lmcENM reduces the complexity of the deformation space relevant
to capture function-related movements. This has also implications for subsequent applications,
such as generating conformational ensembles for protein-ligand docking, which often involves
localized, functional transitions. These applications utilize the deformation space spanned by the
lowest-frequency modes as guidance. Hence, they may benefit from a lower dimensional space
that reduces the computational costs for sampling.

We presented further evidence that protein motion likely results from the interplay of a broader
set of properties/features characterizing the mobility of local structural parts. We also believe
that combining different information sources (e.g. conformational ensembles obtained by MD,
NMR, X-ray, or other experimental methods) will make the identification of relevant properties
even more robust and accurate than relying on a single source alone. With our presented approach
we provide a novel, unified, and extensible way to examine, exploit and relate additional features
captured by each of these information sources in order to further advance our understanding of
protein motion.

Last, my thesis unlocks breaking contacts, or generally dynamic contact changes, as a novel
source of information that has proven valuable in coarse-grained prediction of protein motion.
Because they are defined on a simplified model of the structural connectivity of a protein, they
are insensitive to structural details that would otherwise make their identification and prediction
more difficult. This makes them a valuable target for future research that aims to improve
coarse-grained prediction of protein motion.

7.2 Future Work

In the following we discuss ideas to further advance the approaches presented in this thesis
and potential applications that would benefit from the additional information leveraged by our
methods.
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7.2.1 Advancing the Proposed Methods

We now propose several ideas to improve the proposed methods in this thesis.

Additional Graph Features

To predict breaking contacts we use graph features that characterize the physicochemical properties
of their structural context. In our current implementation the structural context of a contact
considers its local environment build by its immediate neighbors, and its embedding within the
overall structure captured by the secondary structure elements graph. However, proteins can share
the same fold, i.e. similar arrangement of secondary structure, which influences its structural
stability, mobility, and function. Features based on the type of secondary structure arrangement
could help to better distinguish maintained from breaking contacts.

Another idea is to devise features that capture the “freedom” of secondary structure elements
to move or deform. Obviously, elements in the core of the protein have less freedom to move than
elements at the surface of the protein. Incorporating these or similar features would improve
the characterization of breaking and maintained contacts and thereby lead to more accurate
predictions.

Additional Information Sources

We used start and end conformation of a functional transition to identify breaking and maintained
contacts. Thereby we ensured that the conformational change is functionally relevant and large
enough to affect the contact topology of the protein. Nonetheless, conformational ensembles
obtained by experimental methods (X-ray or NMR) or sampled by computational approaches
(MD, Monte Carlo, geometric sampling (Greener et al., 2017)) could make the identification of
breaking contacts even more robust, for instance by incorporating occurrence statistics (Eickholt
et al., 2011) as additional features. However, care must be taken to preserve the discriminative
power of the current implementation. Contacts wrongly labeled as breaking could reduce the
prediction performance of the classifier.

Representation Learning on Graphs

With the advent of deep learning representation learning on graphs became highly popular (Good-
fellow et al., 2016, Xie et al., 2016, Hamilton et al., 2018). Instead of time-consuming, error-prone
manual feature engineering, such algorithms learn a lower-dimensional embedding of the structure
of a graph on their own. An additional advantage of these algorithms is that they can be used for
semi-supervised learning, where only a small portion of training instances are labeled. This reduces
the risk of over-fitting, which is often observed for supervised learning approaches. Graph convo-
lutional neural networks have recently be applied in the context of disease predictions (Parisot
et al., 2018), e.g. Alzheimer’s.
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Corroborating Evidence

Our classifier predicts breaking contacts in isolation, i.e. it has no knowledge whether the
contacts close to this contacts will also be classified as breaking or not. As we have seen in
chapter 6 breaking contacts are only effective if they occur together and reach a “critical mass”
that results in a substantial change in the network topology of ENMs. One way to tackle this
is to use corroborating evidence between predicted breaking contacts to filter out false positive
predictions. Such an approach has been used in the context of contact prediction for protein
structure prediction and to refine restraints from cross-linking experiments (Bohlke-Schneider,
2016).

Optimizing Spring Stiffness

The two ENMs proposed in this thesis (see chapter 5 and 6) purely alter their underlying contact
topology by removing observed/predicted breaking contacts. This choice was made on purpose
to demonstrate that the ability to explain localized funtion-related changes by ENMs depends
on an accurate contact topology. The substantial improvement of our ENMs compared to the
reference ENMs showed that this cannot be achieved by optimizing spring stiffness. Nonetheless,
preliminary experiments revealed that combining our ENMs with, for instance, edENM (Orellana
et al., 2010) would lead to smaller improvements w.r.t. their current prediction accuracy.

Larger Data Set and Multimers

Although lmcENM substantially improves in accuracy based on the predicted contact changes,
the prediction accuracy of the classifier itself is rather low (see chapter 6). This has two obvious
reasons: First, the classifier accuracy is measured on the selected top-scoring predicted breaking
contacts based on a cutoff that is not necessarily optimal for domain proteins. This has a negative
effect on the overall accuracy of the classifier. Second, our data set is relatively small due to
specific requirements, such as significant conformational change, annotation by motion type, or
restriction to single chain proteins (see 4.1). While this ensures high quality of the data set and
low bias towards either local or domain motions, more data, including multimers, would certainly
help to improve the accuracy of the classifier, to reduce bias, and to expand the applicability of
our approach. Nonetheless, constructing such a data set is a laborious and time-consuming step
and there is no guarantee that the test set fits to the evaluation set (Jonschkowski, 2018).
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7.2.2 Potential Applications of lmcENM

Above we showed that lmcENM alleviates a major shortcoming of ENMs being less suited to
capture localized functional transitions with low degree of collectivity. By removing predicted
breaking contacts, lmcENM substantially improves the prediction accuracy for proteins performing
local function-related movements. As a result, lmcENM largely increases the chances that a
protein’s motion is accurately modeled no matter if it performs a local or domain motion, thereby
expanding the practical relevance of ENMs. In the following we will discuss some potential
applications of ENMs that could benefit from using lmcENM and the predicted breaking contacts.

Generating Conformational Ensembles for Protein Ligand Docking

A logical first step would be to apply lmcENM in the context of protein ligand docking. The
ability of ENM to capture collective protein motions with only a few modes allows to narrow down
the accessible deformation space of the unbound conformation (Bahar et al., 2010a, López-Blanco
and Chacón, 2016). Hence, conformational sampling in this reduced space not only requires less
computation, but also increases the chances to sample good candidate conformations for the
actual docking. Kurkcuoglu and Doruker (2016), for instance, generate such a pool of candidate
conformations by applying an iterative scheme of deforming a protein structure along most
dominant normal modes and subsequently minimizing its energy to reduce unrealistic structural
distortions in order to prepare it for the next round of NMA analysis.

However, Dietzen et al. (2012) showed that in small-protein docking conformational ensembles
generated by sampling along ENM-modes often yield no improvement. The major obstacle seems
to be that existing ENM variants often fail to capture the localized movements associated with
ligand binding by the first few low-frequency modes. Although usually a few modes (less than
ten) suffice to explain local transitions they are often spread among higher frequencies (Cavasotto
et al., 2005). This makes it difficult to decide how many modes should be included to accurately
sample the relevant deformation space.

Our results show that lmcENM effectively reduces the essential deformation space for localized
functional transitions in most cases. Thus, it would be interesting to see whether a subset of for
instance the first 20 low-frequency modes of lmcENM would improve small-molecule docking. In
addition, lmcENM may also be helpful for the most difficult cases involving induced-fit movements
that are triggered by the presence of a ligand. Training a SVM classifier specifically on such
protein pairs may help to shift the most relevant lmcENM-modes toward lower frequencies. This
would alleviate the problem of identifying the relevant modes for a specific ligand because they
already reside in the low-frequency mode spectrum.
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Guiding Conformational Sampling

For the same reasons, lmcENM could also provide more accurate guidance for more fine-grained
conformational sampling, especially for larger proteins performing localized functional transitions.
Gur et al. (2013), for instance, sample candidate structures in the deformation space spanned by
the first few low-frequency normal modes. The candidate structures serve as starting points for
MD runs that generate physically accurate conformations at full atomic detail.

This guided sampling can be used, for instance, to explore the conformational space accessible
to the unbound conformation, to predict transition pathways between two end points of a
function-related movement, or to refine low-resolution experimental model (Costa et al., 2015).
Alternatively, ENM-modes have also been used to guide robotics-based sampling methods (Kirillova
et al., 2008, Al-Bluwi et al., 2013, Shehu and Plaku, 2016) to explore the conformational space
with reduced computational costs.

The quality of the guidance obviously depends on the accuracy of the predicted lowest-frequency
modes. lmcENM offers a way to improve this guidance for proteins exhibiting localized functional
transitions that are difficult to capture by existing ENM variants.

Constructing Multi-Scale Models

The predicted breaking contacts to construct lmcENM may also be useful when constructing
multi-scale ENMs, such as RCNMA (Ahmed and Gohlke, 2006), to predict motions of large
proteins or complexes at a coarse-grained scale. While the occurrence of predicted breaking
contacts reveals parts of the network requiring higher resolution, their absence indicates parts
that could be further simplified. This would help to analyze only relevant parts of the protein
and their motions in more detail, thereby reducing computational demands. However, to explore
this further we would first need to extend our SVM prediction framework to accept multi-chain
proteins and optimize the feature generation part in our pipeline to reduce computation time of
breaking contact prediction.

Predicting Targets for Elastic Network based Interpolation of Motion
Pathways

Another interesting application for lmcENM would be in the context of predicting pathways
between start and end of functional transitions with a two-state ENM such as proposed by Das
et al. (2014). Based on the ENMs of the two endpoints they construct a combined potential that
allows to transition from one state to the other via an low-energy path. Such methods obviously
require the knowledge of start and end conformation of a functional transition. However, in
case the actual target conformation is unknown, the predicted network of learned maintained
contacts of lmcENM could be used as an estimate of the coarse-grained representation of the
target conformation. Nonetheless, the prediction accuracy of the current SVM classifier may need
to be improved before attempting such an experiment.
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7.3 Epilogue

Leveraging information about dynamic changes in the contact topology substantially impacts the
prediction capabilities of elastic network models: it expands the range of protein motions that
can be explained by elastic network models, thereby improving their practical relevance.

Key to leveraging relevant information is that its extraction must be guided by the right
problem domain, which means in our case: To improve a simplified model that aims to predict
protein motions we need to exploit information about its dynamic changes. Or more concrete in
the context of elastic network models and their underlying contact topology: Which properties of
local parts of the protein structure promote breaking contacts when the protein moves and which
do not.

In this thesis we identified breaking contacts and the physicochemical characteristics of their
structural context as valuable source of information to incorporate knowledge about their dynamic
behavior into elastic network models. We believe that further sources of information are readily
available and should be studied.

This thesis provides a novel, unified, and extensible way to examine, exploit and relate additional
features captured by each of these information sources. This will help to further improve coarse-
grained prediction of protein motion, which ultimately advances our understanding of protein
motion.
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A
Appendix - Features for Breaking Contact

Prediction

The following detailed description of features used to predict the dynamic behavior of inter-residue
contacts, i.e. whether they break or are maintained when the protein moves, has been previously
published in the supporting material of the following paper:

Putz I, Brock O (2017) Elastic network model of learned maintained contacts to predict protein
motion. PLOS ONE 12(8): e0183889. https://doi.org/10.1371/journal.pone.0183889

A.1 Graphs for modeling physicochemical context

To model the local contact environment of breaking and maintained contacts we use the graph-
based encoding developed by Schneider and Brock (2014). Nodes in the contact graph refer to
residues, which are connected by edges if they are in contact. Schneider and Brock (2014) predict
native-like contacts from ab initio predicted candidate structures (decoys) using physicochemical
information. They rely on a quite general definition of node and edge labels that also applies to
our problem domain. However, we extend these labels by more specific ones in our context.

Tables A.1 and A.2) summarize the node and edge labels and mark which labels are reused,
extended, or novel. For convenience, we also recap the explanations of the reused and extended
labels introduced in Schneider and Brock (2014).
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Table A.1: Summary of node labels. Table source: Putz and Brock (2017).

Node label Possible labels

Chemical typea Discrete value
Secondary structurea Discrete value
Solvent accessibilitya Discrete value
Free solvation energya Continuous value
Secondary structure lengtha Discrete value
Secondary structure 3D lengtha Continuous value
Secondary structure burieda Continuous value
Secondary structure exposeda Continuous value
Hydrogen bondingb Discrete value
Distance to the centroida Continuous value
Sequence conservationa Continuous value
Sequence neighborhood conservationa Continuous value
Secondary structure unique ID Continuous value
Part of symmetric element Discrete value
Depth Continuous value

aReused node label from Schneider and Brock (2014).
bExtended node label from Schneider and Brock (2014).

A.1.1 Node labels

Chemical type: A residue can be non-polar, polar, acidic, or basic.

Secondary structure: A residue can be part of a helix, sheet, turn, or coil.

Solvent accessibility: distinguishes between buried and exposed residues. The former have
a relative solvent accessibility (calculated by POPS (Cavallo et al., 2003)) ≤ 25%, while the latter
are above this cutoff.

Free solvation energy: calculated by POPS (Cavallo et al., 2003).
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Secondary structure length: Length of the secondary structure element associated with
the residue, measured along the sequence.

Secondary structure 3D length: Three-dimensional distance (in Å) between first and
last residue of the secondary structure element calculated between their Cα atoms.

Secondary structure buried: Specifies how buried the residue’s secondary structure element
is based on its average number of buried residues.

Secondary structure exposed: Specifies how exposed the residue’s secondary structure
element is based on its average number of exposed residues.
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Hydrogen bonding: Residue can be donor, acceptor or not part of a hydrogen bond.

Distance to the centroid: Three-dimensional distance (in Å) between the Cα atom of the
residue and the centroid of the protein structure.

Sequence conservation: Specifies the degree of sequence conservation of the residue obtained
from a multiple-sequence alignment (based on (Janda et al., 2013, Fischer et al., 2008)).

Sequence neighborhood conservation: Specifies the degree of sequence conservation
within the local neighborhood of the residue up to three sequence positions away (i− 3, i− 2

i− 1, i+ 3, i+ 2 i+ 1) as in (Janda et al., 2013, Fischer et al., 2008).
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Secondary structure unique ID: Unique identifier of the secondary structure element the
residue belongs to.

Part of symmetric segment: Specifies whether the residue is part of symmetric segment in
protein (calculated by SymD (Kim et al., 2010)).

Structural depth: Specifies the depth of the residue w.r.t. the solvent accessible surface
by averaging the distance of its atoms to the surface vertices (calculated with BioPython (Cock
et al., 2009)).
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Half Sphere Exposure: Specifies the degree of exposure of a residue by counting the contacts
within the upper and lower half-sphere (default radius 12Å) around the residue’s Cα atom. The
sphere is cut into two halves by a plane centered at the Cα-atom, which is perpendicular to the
vector between the Cα- and a pseudo-Cα-atom. (calculated with BioPython (Cock et al., 2009)
based on (Hamelryck, 2005)).

A.1.2 Edge labels

Table A.2: Summary of edge labels. Table source: Putz and Brock (2017).

Edge label Possible labels

3D distancea Continuous value
Mutual informationa Continuous value

aReused node label from Schneider and Brock (2014).

3D distance: Specifies how far away the two residues of the contact are in 3D by calculating
the distance between their Cα.

Mutual information: The mutual information in the multiple-sequence alignment between
the two residue positions of the contact.

A.2 Features listing and implementation details

The dynamic behavior of contacts depends on their immediate local context as well as their
embedding into the overall arrangement of local structural parts. The physicochemical interactions
between these parts control their movement with respect to each other, which ultimately influences
the contact topology between them. We use a set of features to characterize the properties of the
local neighborhood of a contact as well as its associated secondary structure elements. Feature
can be a single real-value input or encode categorical properties by a set of binary values. Unless
stated otherwise, a categorical feature with k states is encoded by an k-dimensional binary input
vector. The individual features are concatenated into a single vector that serves as input for the
SVM to differentiate breaking from maintained contacts. This feature vector has a total length of
170 input values.

We designed features specific to our problem domain, as well as reuse or extend features used in
previous work from our group (Schneider and Brock, 2014). The features fall into eight categories:
Pairwise, graph topology, graph spectrum, single node, node label statistics, edge label statistics
and whole protein features. In the following we introduce in detail the features in each category
and mark all reused or extended features respectively.
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A.2.1 Pairwise residue features

Pairwise features encode properties of an individual contact. As contacts seldom change their
distance in isolation, many of the pairwise features are defined on their associated secondary
structure element(s) (SSEs). Table A.3 lists the individual features together with their number
of input values in the feature vector. For all features that are not self-explanatory a detailed
description of the feature and its generation is given in the text.

Distance between secondary structures elements along protein chain (SSE):

Distance between relative index positions of SSEs associated with residue i and j along the
protein chain (1 inputs).

SSE-contact type: Contacts can be within a SSE (intra-SSE) or between (inter-SSE). While
the dynamic behavior of intra-SSE contacts mostly depends on the intrinsic flexibility of the
SSE, inter-SSE contacts are influenced by the strength of the interface (1 input). Intrinsic
SSE-flexibility or SSE-interface strength are characterized by the following features.

SSE-interface contact position: Position of an inter-SSE contact within the SSE-interface.
Contacts located at the border of the interface have a higher probability to break than more
central ones. Contacts with at least one residue in the border region (outer 10% of interface
length measured in residue position) are encoded by [1,0], core contacts by [0,1] (2 inputs).

SSE-interface hydrogen bonding: Fraction of hydrogen bonds in SSE-interface relative to
total number of hydrogen bonds in the structure. 0 for intra-SSE contact. (1 input)

SSE-interface density: Density of SSE-interface indicating the degree of connectedness of
the two SSEs. Strongly connected SSE-interfaces are likely to be maintained. The interface of
two SSEs can be represented as a bipartite graph, where the two disjunct node sets refer to the
interface-residues of the two SSEs. The density of the SSE-interface is then calculated as actual
number of contacts between these two node sets divided by the maximal possible number of
contacts of a fully connected bipartite graph. 0 for intra-SSE contact. (1 input).

SSE-interface degree: Averaged number of interface connections of residues i and j, respec-
tively. Indicates how much the contacting residues contribute to the SSE-interface strength. 0 for
intra-SSE contact. (1 input).
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Table A.3: Pairwise features between contacting residues i and j or their associated secondary structure
elements (SSEs). Table source: Putz and Brock (2017).

Feature Description Number of inputs

Distance between SSEs Relative distance between position of
along protein chain SSEs along protein chain 1
Centroid distance 3D-distance between centroids
between SSEs of SSEs 1
SSE-contact type Contact within same SSE (intra-SSE) or

between different SSEs (inter-SSE) 1
SSE-interface hydrogen bonding See text 1
SSE-interface contact position See text 4a

SSE-interface density See text 1
SSE-interface balanced See text 1
SSE-interface degree See text 1
SSE-interface redundancy See text 1
SSE-intra hydrogen bonding See text 1
SSE-intra degree See text 1
Contact with highest ranked pocket See text 3a

Contact with a pocket See text 3a

Exposure to pocket See text 1
Polarity of pocket See text 1
Hydrophobicity of pocket See text 1
Druggability score of pocket See text 1
Volume of pocket See text 1
Side chain contact See text 1
Contact depth See text 4a

Residue depth difference See text 4a

SSE-symmetry coverage See text 1
Contact symmetry coverage See text 3
Distance to symmetry plane See text 6
Contact between terminal SSEs See text 5
Secondary structure typeb Secondary structure of the contacting

residues: helix, sheet, turn, coil 10a

Hydrogen bondingc See text 3a

Mutual informationb Sequence mutual information 1

Total inputs 63

aBinary inputs
bReused from Schneider and Brock (2014).
cExtended from Schneider and Brock (2014).

SSE-interface redundancy: Fraction of other contacting residues of residues i or j in
SSE-interface that would remain in contact in a one-mode projection even if i or j would be
removed (Latapy et al., 2008). This could be viewed as a measure of the importance of individual
SSE-interface residues to maintain the connectivity of the interface. 0 for intra-SSE contact (1
input).
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SSE-interface balanced: Equal number of residues participating in SSE-interface on both
sides or not. Indicates whether the SSE-interface has “exposed” contacts with rather long distance
(imbalanced SSE-interface). Due to a lower degree of connectivity in their neighborhood such
contacts are more likely to break than shorter, highly constrained ones. 0 for intra-SSE contact.
(1 input).

Contact between terminal SSEs: Terminal regions of the protein chain often possess
more flexibility. This feature captures if the contacting residues belong to one of the two terminal
secondary structure element along the protein chain (5 binary inputs in total). We distinguish five
cases: If the contact is an intra-SSE contact, the SSE can be terminal or not (2 binary inputs). If
the contact is between different SSEs, both SSEs can be terminal, only one, or none (3 binary
inputs).

SSE-intra hydrogen bonding: Fraction of hydrogen bonds within SSE relative to total
number of hydrogen bonds of the protein. Hydrogen bonds increase the stability of a SSE-interface.
0 for inter-SSE contact (1 input).

SSE-intra degree: Averaged intra-SSE degree of residue i and j, i.e. the number of contacts
within SSE of each residue. α-helices, for instance, have a lower probability to unfold compared
to loops that have fewer internal constraints. 0 for intra-SSE contact (1 input).

Contact with highest ranked pocket: This feature captures if both residues, i and j,
are “in-contact” with the highest ranked pocket, or only one of the residues, or none. (3 inputs).
Location and properties of pockets used to generate all pocket-related features are calculated
with FPocket (Guilloux et al., 2009). FPocket reports detected pockets ranked by a probability
score to be the functional-active binding site. Contacts around the binding pocket have higher
propensity to change. They may be involved in movements to accomodate the ligand in the
binding site or to shield it from the solvent.

Contact with a pocket: This feature captures if both residues, i and j, are “in-contact”
with any detected pocket, or only one of the residues, or none. (3 inputs). Being in touch with
any pocket, not necessarily the binding pocket, increases the changes for secondary structure
elements to move into this “free space”. Such movements may be required to propagate, for
instance, allosteric signals and may result in changes of the local contact topology.
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Exposure to pocket: Sum of atom contacts to closest pocket of residues i and j. A high
number of atom contacts indicates that the residue extends into the pocket, i.e. has a high degree
of exposure into the pocket (1 input).

Polarity of pocket: Average polarity of pocket(s) in contact with residues i and j (1 input).
The polarity of a pocket is a measure for its hydrophilicity (calculated with FPocket (Guilloux
et al., 2009)).

Hydrophobicity of pocket: Average hydrophobicity of pocket(s) in contact with residues i

and j (1 input). This feature measures the degree of hydrophobicity of a pocket (in contrast to
the polarity above, calculated with FPocket (Guilloux et al., 2009)).

Druggability score of pocket: Average druggability score of pocket(s) in contact with
residues i and j (1 input). This score estimates the probability of a pocket to bind small drug
like molecules (calculated with FPocket (Guilloux et al., 2009))

Volume of pocket: Average volume of pocket(s) in contact with residues i and j (1 input,
calculated with FPocket (Guilloux et al., 2009)).

Side chain contact: Captures if contact is also a side chain contact. Two residues are in
side chain contact if at least one pair of heavy side chain atoms is within 4.5Ådistance to each
other (1 input).

Contact depth: Captures the depth of a contact based on the normalized structural depth of
its residues (4 inputs). The residue depth is binned into four states: really deep (lower than 0.25),
deep (between 0.25 and 0.5), exposed (between 0.5 and 0.75) and very exposed (larger than 0.75).
If the depth class of the contacting residues differs, the class of the deeper residue determines the
contact depth. Deeply buried contacts are more likely to be maintained than contacts close to
the surface.

Residue depth difference: Measures the binned difference in structural depth of the
contacting residues. The normalized depth difference bins are: ∆depth < 0.25, 0.25 <= ∆depth <

0.5, 0.5 <= ∆depth < 0.75,∆depth > 0.75. Depending on the actual contact depth, also the
difference in depth of the contacting residues may influence the contact’s dynamic behavior. A
large depth difference increases the chances that a contact may break (4 inputs).
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SSE-symmetry coverage: (Average) fraction of residues being part of symmetric structural
parts of the SSE(s) associated with the contact (see section A.1.1). Symmetric parts of a protein
structure often stabilize the overall fold. For instance, β-barrels, β-sheets, or mixed α-β-barrels
(TIM-barrels), are strongly stabilized by hydrogen bonds. Hence, contacts between SSEs involved
in symmetric arrangements are likely to be maintained. (1 input).

Contact symmetry coverage: Captures if both residues of a contact are part of symmetric
segment (see section A.1.1), only one or none (3 inputs).

Distance to symmetry plane: This feature captures the distance of the contacting residues
to the symmetry plane (6 binary inputs in total). Both residues can be far apart (normalized
distance ≥ 0.7) from the symmetry plane either on the positive or negative side (2 binary inputs).
Or both residues are on either positive or negative side, but only one is far away from the symmetry
plane (2 binary inputs). Or one residue is on the positive and the other one on the negative side
(1 binary input). If no symmetry plane exists all except the last input are 0. Contacts closer to
the core of a symmetric part of the protein structure may benefit more from its higher stability.
Hence, they are likely to be maintained. However, contacts close to the border of a symmetric
part, such as a β-barrel, may have a higher chance to be involved in the functional activity of the
protein. We discuss an example of a highly symmetric membrane protein in detail in case study
II (see Results and Discussion in main document).

Secondary structure: The secondary structures types (helix, sheet, turn or coil) of the
protein are obtained with STRIDE (Frishman and Argos, 1995) (10 inputs).

Solvent accessibility: The solvent accessibility of residues is classified into solvent exposed
or buried (see section A.1.1) (3 inputs).

Hydrogen bonding: Residues of a contact can be bonded by an hydrogen bond, or be donor
or acceptor of another hydrogen bond, or not involved in hydrogen bonding. A.1.1) (3 inputs).

Mutual information: The mutual information in the multiple-sequence alignment between
positions i and j (1 input).

A.2.2 Graph features

Our work is based on the assumption that breaking contacts and maintained contacts show
differences in the properties of their local neighborhood. To specify these differences we re-use
the graph-topology (Tab. A.4), graph spectrum (Tab. A.5), and single node features (Tab. A.6)
from Schneider and Brock (2014). These topological features and node/edge label statistics
characterize the properties of the local context of a contact defined by its immediate neighborhood
graph (see section 6.2.1) and help us to distinguish breaking from maintained contacts.
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For convenience we list the re-used features in the following tables (Tables A.4, A.5,and A.6).
We introduced the graph-theoretic basics of these features in section 3.1. Some more details can
be found in the original publication (Schneider and Brock, 2014) as well as their source Li et al.
(2012).

Table A.4: Graph topology featuresa. Table source: Putz and Brock (2017).

Feature Description Number of inputs

Number of nodes Number of nodes in the graph 1
Number of edges Number of edges in the graph 1
Average degree centrality Average number of node neighbors

indicating packing density of graph. 1
Average closeness Average reciprocal distance of each node
centrality to all other nodes in the graph. 1
Average betweenness Average number of shortest paths passing through
centrality each node of the graph indicating the degree of

influence of individual nodes onto the network. 1
Average eccentricity Average maximum distance between each node

and all other nodes in the graph. 1
Graph radius Smallest eccentricity in the graph. 1
Graph diameter Largest eccentricity in the graph. 1
Number of end points Number of nodes with only one neighbor. 1
Average clustering Average number of actual neighbors divided by
coefficient possible neighbors of each node in the graph

measuring the degree of transitivity in the network. 1

Total inputs 10

aReused from Schneider and Brock (2014).

Table A.5: Graph spectrum features derived from the adjacency matrixa. Table source: Putz and Brock
(2017).

Feature Description Number of inputs

Largest eigenvalue Largest eigenvalue 1
Second largest eigenvalue Second largest eigenvalue 1
Number of different eigenvalues Number of different eigenvalues 1
Sum of eigenvalues Trace of the adjacency matrix 1
Energy Sum of squared eigenvalues 1

Total inputs 5

aReused from Schneider and Brock (2014).
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Table A.6: Single node featuresa. Table source: Putz and Brock (2017).

Feature Description Number of inputs

Degree centrality Number of node neighbors of node i and j. 2
Closeness centrality Reciprocal average distance from nodes i and

j to all other nodes in the graph. 2
Betweenness Number of shortest paths that
centrality pass through nodes i and j. 2
Sequence separation Distance in sequence position of i
from N/C-terminus to N-terminus and j to C-terminus 2
Sequence conservation Conservation of residue position of i and j

in multiple sequence alignment. 2
Sequence neighborhood Conservation of neighboring residues of i and j
conservation in multiple-sequence alignment. 2

Total inputs 12

aReused from Schneider and Brock (2014).

Node label statistics

Node label statistics, listed in Table A.7, capture the frequency of different node labels in the
graph.

Average degree of symmetry: The degree of symmetry for a single node is the fraction of
neighbor nodes that belong to symmetric segments. Average degree of symmetry is the average
over all nodes in the graph (1 input).

Neighborhood impurity degree: Normalized number of neighbor nodes with different
labels in the graph. Schneider and Brock (2014) evaluated the neighborhood impurity degree for
the node labels chemical type, secondary structure, solvent accessibility. We extend this node
label list by unique secondary structure identifier (SSE_ID), symmetry coverage, large positive
distance to symmetry plane, large negative distance to symmetry plane (7 inputs).

Edge label statistics

Edge label statistics, listed in Table A.8, capture the frequency of different edge labels in the
graph.
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Table A.7: Node label statistics. Table source: Putz and Brock (2017).

Feature Description Number of inputs

Symmetry coverage Average number of nodes covered by symmetry 1
Average degree of symmetry Average fraction of node neighbors that are

covered by symmetry for all nodes in the graph 1
Residue depth Average residue depth in graph 1
Residue depth distribution 5-bin distribution of residue depth in graph 5
Average half-sphere exposure Average lower/upper half-sphere exposure in graph 2
Neighborhood impurity Average number of neighbors
degreeb with different labels 7
Hydrogen bondingb Average numbers of nodes that act as donor,

acceptor or do not form hydrogen bonds 3
Label entropya Entropy of the different labels, calculated

for chemical type, secondary structure, and
solvent accessibility. 3

Chemical typea Number of polar, non-polar,
acidic, basic labels 4

Secondary structure Number of nodes with helix, sheet,
distributiona turn, coil labels 4
Secondary structure Average length of secondary structure
lengtha element in amino acids 4
Secondary structure 3D Average 3D length of secondary structure
lengtha element 4
Secondary structure Average number of buried residues per ss_type
burieda (helix, sheet, turn, coil) 4
Secondary structure Average number of exposed residues per ss_type
exposeda (helix, sheet, turn, coil) 4
Solvent accessibilitya Average number of exposed/buried nodes 2
Average solvation energya Average free solvation energy 1
Solvation energy 4-bin distribution of
distributiona free solvation energy 4
Distance to Average distance of
centroida nodes to the centroid 1
Sequence conservationa Average sequence conservation of nodes 1
Sequence neighborhood Average sequence neighborhood
conservationa conservation of nodes 1

Total inputs 57

aReused from Schneider and Brock (2014).
aExtended from Schneider and Brock (2014).

Link impurity: Normalized number of edges between nodes with different labels in the graph.
Schneider and Brock (2014) evaluated the link impurity for the edge labels chemical type,
secondary structure, solvent accessibility. We extend this edge label list by unique secondary
structure identifier (SSE_ID), symmetry coverage, large positive distance to symmetry plane,
large negative distance to symmetry plane (7 inputs).
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Table A.8: Edge label statistics. Table source: Putz and Brock (2017).

Feature Description Number of inputs

Link impurityb Number of edges connecting two nodes
with different labels 7

Mutual information 5-bin distribution of mutual information
distributiona 5
Cumulative mutual Cumulative mutual information over all edges
informationa 1

Total inputs 13

aReused from Schneider and Brock (2014).
bExtended from Schneider and Brock (2014).

Mutual information distribution: Fraction of edges between nodes with different ranges
of sequence separation (adjacent, 2-6, 7-11, 12-23, >24), yielding a 5-bin distribution of the
mutual information of the graph. (5 inputs).

A.2.3 Whole protein features

These features characterize global properties of the whole protein (Table A.9). We reused one
feature from Schneider and Brock (2014) in this category, which is marked.

Table A.9: Whole protein features. Table source: Putz and Brock (2017).

Feature Description Number of inputs

Secondary structure Distribution of secondary structure types in protein
compositionb (helix, sheet, turn, coil). 4a

Connectivity class Binned number of contacts of protein
(<500, 501-1000, 1001-2000,2001-3000 >3000). 5a

Symmetry coverage Normalized number of residues in symmetric segments. 1

Total inputs 10

aBinary inputs
bReused from Schneider and Brock (2014).
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B.1 Supplementary Table

Table B.1: Performance overview of lmcENM compared to baseline ENM and mcENM (theoret-
ical upper bound), as well as three other reference ENM variants on the whole protein data set
(90 proteins). The performance is measured by the cumulative mode overlap (CO) of the first ten
low-frequency modes. lmcENM consists of the learned maintained contacts after removing the
top16% predicted breaking contacts. For each ENM variant the median and mean CO is reported
of the proteins grouped by their motion types (coupled/independent local motions (CLM and ILM),
coupled/independent domain motions (CDM and IDM), burying ligand motions (BLM), and other
types of motions (OTM)). The number of proteins in each category is given in brackets after the
motion labels. The last row reports the average values for all proteins. While the other ENM vari-
ants perform about the same, lmcENM clearly improves in capturing localized functional transitions
over their common baseline, thereby reaching almost half of the improvement made by mcENM.
Table source: Putz and Brock (2017).

Motion types ENM OFC-ENM edENM HCA lmcENM mcENM

Coupled Local Motions (28) 0.53/0.52 0.57/0.54 0.55/0.53 0.58/0.54 0.66/0.64 0.74/0.73
Independent Local Motions (18) 0.48/0.53 0.49/0.53 0.46/0.51 0.48/0.53 0.58/0.58 0.68/0.69
Coupled Domain Motions (20) 0.94/0.88 0.94/0.88 0.94/0.89 0.94/0.88 0.94/0.89 0.96/0.92
Independent Domain Motions (14) 0.85/0.83 0.85/0.83 0.87/0.85 0.85/0.85 0.85/0.86 0.90/0.90
Burying Ligand Motions (4) 0.75/0.75 0.77/0.75 0.81/0.80 0.78/0.77 0.75/0.76 0.87/0.88
Other Types of Motions (6) 0.62/0.61 0.63/0.62 0.64/0.60 0.64/0.60 0.65/0.60 0.82/0.76

All (90) 0.69/0.66 0.67/0.67 0.68/0.67 0.68/0.68 0.73/0.72 0.82/0.80
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