
 

VERÖFFENTLICHUNGEN 
 

des Grundbauinstitutes 
der Technischen Universität Berlin  

  

Herausgegeben von S.A. Savidis 
 
 
 

HEFT 44 
 
 
 

Differential Geometry Applied to Continuum 
Mechanics 

 
 

M

x ◦ φ ◦ X−1

X(U)

N

P φ(P )

V
U

φ

x(V)

x(φ(P ))

X
x

φ−1(V)

φ(U)

X(P )

 
 
 

Daniel Aubram 
 

Berlin 2009 



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Copyright  Shaker  Verlag  2009
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8322-8154-0
ISSN 0342-3905

Shaker  Verlag  GmbH  •  P.O. BOX 101818  •  D-52018  Aachen
Phone:  0049/2407/9596-0   •   Telefax:  0049/2407/9596-9
Internet: www.shaker.de   •   e-mail: info@shaker.de

Adresse des Instituts:

Fachgebiet Grundbau und Bodenmechanik - Degebo
Technische Universität Berlin
Sekr. TIB1-B7
Gustav-Meyer-Allee 25
13355 Berlin

Telefon: (030) 314-72341
Telefax: (030) 314-72343
E-Mail: info@grundbau.tu-berlin.de
Internet: http://www.grundbau.tu-berlin.de



Preface by the Editor

The astonishing pace in the development of the finite element method (FEM) in engi-
neering sciences and its broad application in the industry and in engineering practice
have entered the areas of soil mechanics and geotechnical engineering long ago. Al-
though the perception of a soil continuum is a controversial issue, it is generally ac-
cepted that numerical simulations based on FEM can considerably improve the under-
standing of the physical processes involved in situ and the interpretation of measuring
data of experimental tests.

Systematically, the notion of a continuum is part of the mathematic branch of differ-
ential geometry. Therefore, it is advantageous to analyze and to discuss the topics of
continuum mechanics, in particular soil mechanics, by applying the geometric terminol-
ogy. Accordingly, the soil continuum shall be understood as a differentiable manifold
that does not need to have a Euclidian structure, and its stress and density states are
be described by coordinate-independent tensor fields. Engineers not acquainted with
tensor calculus and the geometric method are at a disadvantage, because they do not
have full command of the scientific fundamentals of their discipline and thus can hardly
benefit from new developments. They will moreover run the risk of blindly trusting
the results of numerical simulations instead of questioning them.

The presented work is a fundamental introduction into differential geometry and its
application to continuum mechanics. It is addressed at scientific engineers, but also at
engineers in practice and graduate students interested in the field. Another objective of
the work is to revise the theoretical fundamentals of the Arbitrary Lagrangian-Eulerian
(ALE) formulation of continuum mechanics by placing emphasis on the geometric back-
ground. The ALE formulation can be seen as a unification of the Lagrangian and
Eulerian formulations in order to combine the advantages of both viewpoints. It is
currently a topic of research at the Soil Mechanics and Geotechnical Engineering Di-
vision, in which the penetration of piles into sand is being simulated numerically by
using a finite element model. A publication in the institute series is being prepared.

The author currently is a research associate at the Technical University of Berlin.
He was able to investigate the topic during his research activity, which is gratefully
acknowledged here. Parts of the work on the ALE formulation have been carried out
with the financial support of the DFG (German Research Foundation), which is also
gratefully acknowledged.

Stavros A. Savidis
Berlin, February 2009
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Preface by the Author

In the year 2004/2005, after my studies of civil engineering and becoming a research
associate at the Soil Mechanics and Geotechnical Engineering Division, I attended
a lecture by Prof. Dr.-Ing. Gerd Brunk at the Technical University of Berlin. The
lecture was about tensor analysis and continuum physics, but it made me wonder
since geometry was predominant, and ”index gymnastics” and mechanics were solely
treated in applications. Inspired by this lecture and the famous book by Marsden
and Hughes, I began my research work on an Arbitrary Lagrangian-Eulerian (ALE)
approach to the finite element simulation of penetration processes in sand. Because the
continuum mechanical background is massive and essentially based on the geometry
of point spaces, I have written down this paper with the initial objective to compile
important formulae and basic results. However, the reader will notice that the final
version goes beyond to some extend.

I would like to thank Prof. Dr.-Ing. Stavros A. Savidis who gave me the opportu-
nity to investigate as a geotechnical engineer such a theoretic topic, and my colleague
Dr.-Ing. Frank Rackwitz for discussion and helpful suggestions. Last but not least I
would like to thank the developers of the LATEX program for enabling everyone to do
beautiful typeset of complex mathematics.

Disclaimer

This paper is not intended to serve as a monograph for specialists
about differential geometry and continuum mechanics. Many inter-
esting topics have been omitted and many of the presented key facts
and basic results are stated without proofs; they may be found in
the standard textbooks, e.g. [1, 2, 3, 4, 5, 6, 7, 8]. Comprehensive
treatises on linear geometry and linear algebra are, for example, [9]
and [10].

Daniel Aubram
Berlin, November 2008





Abstract

Differential geometry provides the suitable background to present and discuss con-
tinuum mechanics with an integrative and mathematically precise terminology. By
starting with a review of linear geometry in affine point spaces, the paper introduces
modern differential geometry on manifolds including the following topics: topology,
tensor algebra, bundles and tensor fields, exterior algebra, differential and integral
calculi. The tools worked out are applied subsequently to basic topics of continuum
mechanics. In particular, kinematics of a material body and balance of mass are formu-
lated by applying the geometric terminology, the principles of objectivity and material
frame indifference of constitutive equations are examined, and a clear distinction of the
Lagrangian formulation from the Eulerian formulation is drawn. Moreover, the paper
outlines a generalized Arbitrary Lagrangian-Eulerian (ALE) formulation of continuum
mechanics on differentiable manifolds. As an essential part, the grid manifold intro-
duced therein facilitates a consistent description of the relations between the material
body, the ambient space and the arbitrary reference domain of the ALE formulation.
Not least, the objective of the paper is to provide a compilation of important formulae
and basic results —some of them with a full proof— frequently used by the community.
If practical, point arguments and changes in points within equations will be clearly in-
dicated, and component and direct (or absolute) tensor notation will be applied as
needed, avoiding a single-track approach to the subject.

Keywords: differential geometry; continuum mechanics; large deformations; Arbi-
trary Lagrangian-Eulerian; manifold; tensor analysis





Zusammenfassung

Die Differentialgeometrie bietet den geeigneten Hintergrund, um die Kontinuumsme-
chanik mit einer einheitlichen und mathematisch präzisen Terminologie darzulegen und
zu diskutieren. Ausgehend von einem Rückblick auf die lineare Geometrie in affinen
Punkträumen führt die Arbeit in die moderne Differentialgeometrie auf Mannigfaltig-
keiten unter Berücksichtigung der folgenden Themen ein: Topologie, Tensoralgebra,
Bündel und Tensorfelder, Äußere Algebra sowie Differential- und Integralkalküle. Die
erarbeiteten Werkzeuge werden anschließend auf grundlegende Themen der Kontinu-
umsmechanik angewendet. Insbesondere wird die Kinematik eines materiellen Körpers
und die Massenbilanz vom geometrischen Standpunkt heraus formuliert, das Prinzip
der Objektivität von Tensoren und von Materialgleichungen wird untersucht, und es
wird der Unterschied zwischen der Lagrange’schen und der Euler’schen Formulierung
auf klärende Weise dargestellt. Desweiteren skizziert die Arbeit eine verallgemeiner-
te Arbitrary Lagrangian-Eulerian (ALE) Formulierung der Kontinuumsmechanik auf
differenzierbaren Mannigfaltigkeiten. Als wesentlicher Bestandteil ermöglicht dabei die
eingeführte Gittermannigfaltigkeit eine konsistente Beschreibung der Beziehungen zwi-
schen dem materiellen Körper, dem umgebenden Raum und dem beliebigen Referenz-
gebiet der ALE Formulierung. Nicht zuletzt besteht die Zielsetzung der Arbeit darin,
wichtige Formeln und grundlegende Ergebnisse auf den behandelten Gebieten teilweise
auch mit vollständigem Beweis zusammenzustellen. Sofern es zweckmäßig erscheint,
werden Punktargumente und der Wechsel der Bezugspunkte in den Gleichungen her-
vorgehoben. Außerdem wird je nach Bedarf sowohl die Komponentenschreibweise, als
auch die direkte oder absolute Schreibweise von Tensoren angewendet und dadurch ein
eingleisiges Vorgehen vermieden.

Schlagworte: Differentialgeometrie; Kontinuumsmechanik; große Verformungen; Ar-
bitrary Lagrangian-Eulerian; Mannigfaltigkeit; Tensoranalysis





God is a geometer.

—Plato
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Chapter 1

Introduction

It is unquestioned for a long time that natural sciences can benefit from differential
geometry, since it makes a comprehensive theory of gravitation possible in general
relativity. The so-called geometric mechanics [1, 2, 11, 12, 13, 14, 15, 16], however, has
been implemented more recently and thus it is applied to a lesser extend, especially
in engineering sciences. Important examples are found in the theories of rods and
shells, in the Lagrange-Hamilton formalism, and relativistic elasticity. In the theory of
materials, the Lie derivative serves to obtain objective rates of stress measures, but it
is often used detached from the overall geometric context.

Differential geometry [1, 3, 4, 5, 6, 7] provides the suitable background to present
and discuss the subjects of mechanics, and especially continuum mechanics, with an
integrative and mathematically precise terminology. It clarifies basic concepts and
opens up deep examination even of complex issues. For example, geometry reveals
that the determinant of the Jacobian matrix is not an invariant scalar, and that the
question, whether the first Piola-Kirchhoff stress tensor is symmetric or not, does not
make sense. However, differential geometry demands a large investment of effort and
persistency from its students.

Continuum mechanics [2, 8] is typically prepared for the Euclidian point space. This is
motivated by applications in engineering sciences, which prefer as simple spaces as pos-
sible. In some cases, e.g. for shells, it is reasonable to use local curvilinear coordinates
instead of the global cartesian coordinates. The former are not affine, that is, they do
not transform linearly as cartesian coordinates, and additional terminology —metric,
covariant and contravariant basis vectors etc.— enters. If the shell is understood as
embedded in the Euclidian space, the terms mentioned can refer to the ambient struc-
ture, namely if the position vectors of points are identified with those points. As a
result, the covariant vector basis, for example, arises from the partial derivatives of
the position vector with respect to the curvilinear coordinates of the related point on
the shell. The existence of a global position vector, however, already requires a global
linear structure of space. Without embedding the shell in the Euclidian space, a ter-
minology built on position vectors, and hence the description of the shell’s geometry
and kinematics will collapse.

1



2 CHAPTER 1. INTRODUCTION

The introduction of manifolds [17] facilitates a consistently local description of the
geometry of structures without the need to embed them in a linear point space. The
definition of position vectors is not possible, because no global origin exists. The
creation of a vector basis at every point of the manifold rather succeeds by a one-
to-one mapping between a neighborhood of the point and a local coordinate system,
which necessarily is curvilinear. Instead of defining additional terms (metric, covariant
and contravariant basis vectors etc.) as for curvilinear coordinates in Euclidian spaces,
elementary operations are established of which the structure of space results in a natural
way.

Tensor analysis on manifolds delivers the standard tools to develop observer-invariant
or covariant theories. Covariance is an essential requirement for physical equations
[2, 6, 7, 13, 18, 19]. In its passive interpretation, covariance asks for the form-invariance
of the equation structure; clearly, under coordinate transformations, terms must not be
dropped or added. However, a difficulty of tensor analysis on manifolds rests on the fact
that vectors and tensors are defined locally, and equations have to be formulated such
that point mappings are included. This means that equations of the kind v(P ) = v′(Q),
as known from affine point spaces, are not permitted, because the vectors v, v′ are given
at different points P and Q and, therefore, they cannot be compared. In the literature
one often finds the analogous statement: ”In a manifold there are no vectors”. Thus,
although formulae become more complicated, point arguments and changes in points
will be clearly indicated in the paper.

Some remarks on tensor notation should be made here. In the literature, vectors and
tensors are often reduced to their components by adopting the component notation,
because the split-up of tensors into single components will be necessary anyway if
concrete calculations and implementations into computer programmes are intended. A
tensor, originally proposed as a coordinate-invariant object, is then understood as a
quantity with indices that transforms by a certain rule. The invariance of the tensor,
however, does not result from the transformation of its components alone, since one
needs the background knowledge that its basis transforms inversely. On the other hand,
by applying the so-called direct or absolute notation, tensor equations have the same
form in any coordinate system, as desired, but the computation of such an abstract
tensor equation can be cumbersome in non-cartesian coordinate systems. The third
choice is the local notation of tensors, where the associated tensor basis accompanies
the components. The relation between the absolute tensor and its components is always
available, and the referential coordinate frame is set by the basis. Local notation is also
useful to proof several expressions which are given in absolute resp. direct notation.
However, the notational preference should depend on the problem under consideration,
and the paper thus avoids a single-track approach to the subject.

Continuum mechanics on manifolds from the classic or traditional Lagrangian and Eu-
lerian viewpoints is presented, for example, in [2]. For the solution of initial boundary
value problems involving large material deformations or complex fluid structure in-
teraction, the Arbitrary Lagrangian-Eulerian (ALE) formulation [20, 21, 22] has been
approved as an efficient framework. ALE frameworks implemented in the finite ele-
ment method [23] have become an important numerical simulation tool, e.g. for metal
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forming, free surface flow and impact processes. The Lagrangian and Eulerian for-
mulations are generalized within the ALE formulation, as a time-dependent reference
domain uncoupled from the material body and its configurations in the ambient space
is used to describe the physical quantities under consideration. Due to the general-
ization, however, the governing equations become more complicated, especially when
compared to the Lagrangian formulation in solid mechanics.

In the references cited, the ALE formulation for Euclidian spaces is discussed in detail,
but to the knowledge of the author, no reference is available in which the framework
is extended to manifolds or Riemannian spaces, or which respond closer to the geom-
etry of the ALE formulation. Therefore, another objective of the paper is to extend
the geometric methods of continuum mechanics by the Arbitrary Lagrangian-Eulerian
formulation on manifolds. It will be restricted to the geometry and kinematics of a
body and to the conservation of mass. Other balance equations as well as dynamical
and material theoretical aspects will not be considered.

The structure of the paper is as follows. Chapter 2 reviews some basic results of linear
geometry. In chapter 3, an introduction into the terminology of modern differential
geometry will be given: topology, tensor algebra, bundles and tensor fields, exterior
algebra, differential and integral calculi. After applying the terminology to contin-
uum mechanics in the classic Lagrangian and Eulerian formulations in chapter 4, the
ALE formulation will be geometrically introduced and implemented into the overall
continuum mechanical context. The paper closes with some concluding remarks in
chapter 5.
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Chapter 2

Review of Linear Geometry

The following chapter should motivate the construction of vector spaces and mappings
on general manifolds. It is devoted to the important topics of vector algebra and affine
point spaces used in continuum mechanics and the theory of materials, including the
concept of objectivity.

2.1 Vectors and Linear Maps

Definition 2.1.1. A set V together with an addition

V × V → V
(a, b) �→ a + b = b + a

and a scalar multiplication

R × V → V
(λ, a) �→ λa = aλ , ∀λ ∈ R ,

with existent unique neutral and inverse elements for both addition and scalar multi-
plication, is called vector space or linear space over the body R. The elements of V are
called vectors. ♦

Definition 2.1.2. Let V be a vector space. If there exists a positive bilinear mapping
respectively an inner product

〈·, ·〉 : V × V → R

(a, b) �→ 〈a, b〉 = 〈b, a〉 ,

then V is said to have a metric or to be metrizable, and it is called Euclidian vector
space. ♦

Definition 2.1.3. If the equivalence

a1g1 + a2g2 + . . . + angn = 0 ⇔ ai = 0, ∀ i = 1, 2, . . . , n
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holds, where 0 is the zero vector, then the vectors g1, g2, . . . , gn are called linearly
independent, otherwise linearly dependent. If n vectors gi are linearly independent, but
(n + 1) vectors gi are always linearly dependent, then n ≡ ndim is the dimension of
Vndim

and {g1, g2, . . . , gndim
} ≡ {gi} ∈ Vndim

is called basis of Vndim
. The latter can

then be expressed by
Vndim

= U1 ⊕ U2 ⊕ . . . ⊕ Undim
,

where ⊕ denotes the direct sum (see definition below) of the subspaces Ui ⊂ Vndim
, and

gi ∈ Ui for all i ∈ {1, . . . , ndim}. ♦

Definition 2.1.4. Let U1,U2 ⊂ V be subspaces of a vector space V. The sum U1 +U2

is the subspace of V spanned by the elements of U1 ∪ U2. The direct sum U1 ⊕ U2 is
the sum U1 + U2 together with the property U1 ∩ U2 = {0}. ♦

Proposition 2.1.5. In a vector space Vn, every vector v can be represented by

v = v1g1 + v2g2 + . . . + vngn =

n∑
i=1

vigi ≡ vigi .

where v1, v2, . . . , vn ∈ R and {gi} ∈ Vn is a basis.

Proof. Since {g1, g2, . . . , gn} is linearly independent and {g1, g2, . . . , gn, v} is linearly
dependent, v can be expressed as a linear combination of the gi according to 2.1.3.
The identity on the right hand side of the proposition is due to the Einstein summation
convention. �

Definition 2.1.6. One refers to 2.1.5 as the local notation and to v = vigi as the local
representative of v. The vi are the coordinates or components of v with respect to the
basis {gi}. ♦

By 2.1.3 and 2.1.5, the basis vectors can be arbitrarily chosen. They are, in general,
neither orthogonal nor normalized. Moreover, no origin has been used to define the vi

or gi, that is, points do not exist in vector spaces.

Example 2.1.7. Every row resp. n-tuple {v1, v2, . . . , vn} ∈ Rn, as known from linear
algebra, is a vector, and if {e1, e2, . . . , en} is the canonical basis in Rn, then {v1, v2,
. . . , vn} = viei is the local representative.

Definition 2.1.8. Let V,W be vector spaces. A map A : V → W, with

1. A(v1 + v2) = Av1 + Av2 ∈ W, ∀v1, v2 ∈ V and

2. A(λv) = λ(Av) ∈ W, ∀λ ∈ R ,

where Av ≡ A(v), is called linear transformation, linear map or homomorphism. If
A : V → W is bijective such that A−1 is its inverse and both V and W have the
same dimension, then A is called isomorphism. Linear transformations A : V → V are
called endomorphisms, and isomorphisms with V=W are called automorphisms. ♦

Definition 2.1.9. The linear transformation I : V → V defined through Iv = v,
∀v ∈ V, is called the identity map on V. If A is an automorphism on V, then I =
A−1A = AA−1. ♦
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Definition 2.1.10. Let A : Vndim
→ Wmdim

be a linear transformation and let {gi}
and {hα} be bases of Vndim

and Wmdim
, respectively. The images Agi can be expanded

in the basis hα by
Agi = Aα

ihα

through (mdim×ndim) numbers Aα
i. The matrix arrangement (Aα

i) of these numbers is
referred to as the matrix of the linear transformation A with respect to {hα}, in which
α (the left index) denotes the row index and i is the column index, respectively —this
is because a matrix of a linear transformation A : Vndim

→ Wmdim
is understood as a

map (Aα
i) : R

ndim → R
mdim , where R

ndim denotes the columns having ndim elements. ♦

Corollary 2.1.11. By 2.1.5, the basis vectors hα in 2.1.10 have an expression in the
basis {gi}, say hα = Cj

αgj, yielding Agi = Dj
i gj, where Dj

i = Cj
αAα

i are the
components of A with respect to {gi}.

It can be shown that every linear transformation A : Vndim
→ Wmdim

has a component
matrix (Aα

i), and that this matrix is unique.

Definition 2.1.12. Consider the special situation A = I in 2.1.10, where the base
vectors gi ∈ V are expanded in another basis {gi′} of the same vector space:

gi = Bi′

i gi′ .

In the previous equation, the sum is over primed indices only. The matrix of I, written
(Bi′

i), is called the inverse matrix of the change of basis, that is, (Bi′

i)
−1 = (Bi

i′)
arranges the components of the direct change of basis, gi′ = Bi

i′gi. Thus, gj =

Bi′

j Bi
i′ gi = Bi

i′ B
i′

j gi = δi
j gi and Igj = δi

j gi, where δi
j is called the Kronecker

delta. ♦

Corollary 2.1.13. As a (fixed) vector v = vigi = vi′gi′ = Iv is coordinate-invariant,
under a change of basis gi′ = Bi

i′gi, the components of v transform with the inverse
matrix of the change of basis, that is, vi′ = vi Bi′

i.

Definition 2.1.14. Given a matrix (Bi′

i) and a vector v = vigi, then a transformation
rule

v �→ viBi′

i gi′

has two interpretations. The active transformation changes the vector by a linear map
B defined through Bgi = Bi′

i gi′ , so (Bi′

i) is the matrix of that transformation. From
the second viewpoint, the prescribed rule defines a passive transformation Igi = Bi′

igi′

that keeps the vector fixed. In this case, (Bi′

i) is the inverse matrix of the change
of basis and vi′ = viBi′

i are the components of the same vector with respect to the
changed basis. ♦

As studied later in the text, the passive transformation rule identifies the vector with
a rank-one tensor. However, both interpretations are of fundamental importance in
physics, especially in continuum mechanics.
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Definition 2.1.15. A map A : V → W of Euclidian vector spaces V and W is called
isometry, if

〈Aa, Ab〉W = 〈a, b〉V

for all a, b ∈ V. An isometry A : V → V is called an orthogonal map, having the
properties det A = ±1 and A−1 = AT, where AT is the transpose or adjoint of A. A
more general definition of an orthogonal map includes the isometries A : V → W and
then stipulates ATA = IV and AAT = IW . ♦

Proposition 2.1.16. (Without proof.) A linear map A : V → V is orthogonal, if and
only if its matrix with respect to an orthonormal basis is orthogonal.

2.2 Affine Point Spaces

Definition 2.2.1. Let S = {A, B, C, . . .} be a set of points and V a vector space. The
pair (S,V) —or simply S if the meaning is clear from the context— together with the
map

S × S → V
(A, B) �→ −→

AB

is called an affine point space, if the following axioms are satisfied:

1. For every A ∈ S and every v ∈ V there is a unique A + v = B ∈ S, so that

v =
−→
AB.

2. If
−→
AB =

−−→
CD, then

−→
AC =

−−→
BD also holds (parallelogram axiom).

If V moreover has a metric according to 2.1.2, then (S,V) is called a Euclidian point
space. ♦

Definition 2.2.2. Let S be an affine point space, and A, B, C points, then
−→
AC =−→

AB +
−−→
BC,

−→
BA = −−→

AB and
−→
AA = 0 defines the vector sum, the inverse element and

the neutral element, respectively. ♦

Example 2.2.3. (Rn, Rn) is the simplest affine point space. A point A ∈ Rn is
identified with its coordinates, and, because of A+v = B ∈ Rn by definition, v is also
an element of Rn.

The affine structure imposes a global parallelism on the standard Euclidian point space.
It is notable that parallelism —as well as terminology like distance and angle— does
not make sense in abstract vector spaces, but only in affine spaces.

Corollary 2.2.4. If v(A) =
−→
AB is a vector with base point A, and

−→
AB =

−−→
CD, then

v(A) = v(C) .

Conclude that the parallelogram axiom of definition 2.2.1 renders affine point spaces
flat —this is the fundamental difference between flat spaces and manifolds.
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Definition 2.2.5. Let S be an Euclidian point space and v =
−→
PQ ∈ V, then

d(P, Q) =
√

〈v, v〉 = |v| ,

is the distance of the points P, Q ∈ S. ♦

Definition 2.2.6. Let S be an affine point space, O, P ∈ S, and {gi} ∈ Vndim
a

basis —a basis can be obtained from a set of (ndim + 1) points. The (ndim + 1)-tuple
(O, g1, g2, . . . , gndim

) ≡ (O, gi) is called frame of reference, shortly: frame, in which the
gi are descriptively attached to the origin O (figure 2.1). S then becomes the frame

space, and
−→
OP = x ∈ Vndim

is called position vector of P with respect to O. The local
representative x = xigi includes the affine coordinates {x1, x2, . . . , xndim} ≡ {xi} of P
with respect to the frame (O, gi). ♦

Note that in Euclidian point spaces, ”frame” is used as a synonym for ”Euclidian
observer”.

Definition 2.2.7. Given a frame (O, gi) in the space S, one may construct coordinate
lines by varying one affine coordinate and keeping the other coordinate values fixed,
i.e. by changing one coordinate (component) xi of the position vector. The family of
lines obtained is called affine coordinate system on S and is denoted by the pair (S, x).
If every coordinate line is orthogonal to each of the other coordinate lines, the affine
coordinate system is called cartesian. ♦

Although affine coordinates are uniquely determined by the chosen frame, one should
be careful with the difference between the frame and the coordinate system. Without
a frame it does not make sense to talk about coordinate systems!

One should also be careful with the terminology ”position vector”, because it depends

on the frame, i.e.
−→
OP �= −−→

O′P . It becomes clear that
−→
OP is an honest vector when

viewed from a different frame. The following two important results may help:

Theorem 2.2.8 (Transformation of Affine Coordinates). The coordinate func-
tions of every two affine coordinate systems transform linearly with xi′ = χi′(x1, . . .
, xndim) = Bi′

i xi + ci′, where Bi′

i are the components of the inverse matrix of the change
of basis and ci′ are constants.

Proof. Clearly, the coordinates of the same P ∈ S under a change of framing

(O, gi) �→ (O′, gi′) have to be calculated. To this end, let
−→
OP = x = xigi and−−→

O′P = x̂ = xi′gi′ denote the position vectors of P in the two different frames, that is,
P = O + x = O′ + x̂ (figure 2.1).

Expanded in the primed basis, x becomes
−→
OP {gi′}

= Ix = Bi′

i xigi′ , where 2.1.12 has

been applied. Setting c = ci′gi′ =
−−→
O′O, then in the primed frame the coordinates of−−→

O′P =
−−→
O′O +

−→
OP resp. x̂ = x + c are

xi′ = Bi′

i xi + ci′ = χi′(x1, . . . , xndim)

as desired. �
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P

O

x =
−→
OP

O′

Ix = x

P ′

x̂ =
−−→
O′P

gi

gi′

Figure 2.1: Position vectors of a point P with respect to different frames (O, gi) and
(O′, gi′).

Proposition 2.2.9. A vector of an affine point space (�= position vector!) is coordi-
nate-invariant (or frame-indifferent) and it fits 2.1.13, whereas a position vector does
not.

Proof. Additional to the previously described situation, let Q ∈ S be another point

and let
−→
OQ = yigi and

−−→
O′Q = yi′gi′ denote its position vectors in the two frames.

Then by 2.2.1 and 2.2.2, v = Q − P =
−→
OQ −−→

OP =
−−→
O′Q −−−→

O′P . Apply 2.2.8 to get

v = (yi′ − xi′)gi′ =
(
(Bi′

i yi + ci′) − (Bi′

i xi + ci′)
)

gi′

= (yi − xi)Bi′

igi′ = (yi − xi)gi

in local notation. This is already 2.1.13. On the other hand, Bi′

i xigi′ = xiBi′

iB
j
i′gj =

xigi =
−→
OP is also a vector, but Bi′

i xi �= xi′ if O �= O′ by 2.2.8, i.e. the position of P
with respect to (O, gi) and (O′, gi′) does not transform in terms of 2.1.13. �

Corollary 2.2.10. Let
−−→
OO′ = aigi,

−−→
O′O = ci′gi′ and gi′ = Bi

i′gi be the translation
vectors and the change of basis of two frames (O, gi) and (O′, gi′), respectively. Since−−→
OO′ = −−−→

O′O, one has

ai = −ci′Bi
i′ and ci′ = −aiBi′

i .

Corollary 2.2.11. The Jacobian matrix of the transformation of affine coordinates
2.2.8 is given by the inverse matrix of the change of basis, i.e.

∂χi′

∂xj
= Bi′

i .

Definition 2.2.12. Let (S,V) and (T ,W) be two affine point spaces, O, P, Q ∈ S, and
A : V → W a linear map. A map ξ : S → T is referred to as an affine transformation,

if for every P = O +
−→
OP ,

ξ(P ) = ξ(O) + A(
−→
OP ) ∈ T .
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−−−−−−→
ξ(O)ξ(P ) = A(

−→
OP ) = ξ�(

−→
OP ) is called the pushforward of

−→
OP by ξ. For Euclidian V

and W, the affine transformation ξ is called affine isometry, if

dT (ξ(P ), ξ(Q)) = dS(P, Q) ,

where dS , dT are the distance functions on S and T , respectively. ♦

Definition 2.2.13. Let ξ : S → S, P �→ ξ(P ) = ξ(O) + Q(
−→
OP ), where Q : V →

V is an automorphism, be bijective, then a group of affine transformations can be
established, which should not be presented here. If ξ : S → S is an affine isometry,
then Q is an isometry and orthogonal. Moreover, if ξ preserves orientation, i.e. the
determinant is det Q = +1, then it is called a (superposed) rigid motion and Q —now
proper orthogonal— is called rotation. Rigid motions belong to the so-called special
Euclidian group, denoted as SE(S), and rotations belong to the special orthogonal group
SO(V). ♦

Proposition 2.2.14. Under affine isometries ξ : S → S, every vector v transforms
according to

v′ = Qv ,

where Q is the orthogonal map of ξ.

Proof. Let O, P, Q ∈ S be points, then v = Q − P is a vector. Applying 2.2.12,

v′ = ξ(Q)− ξ(P ) =
(
ξ(O) + Q(

−→
OQ)
)
−
(
ξ(O) + Q(

−→
OP )
)

= Q(
−→
OQ)−Q(

−→
OP ). Since

Q is linear, Q(
−→
OQ −−→

OP ) = Q(Q − P ) and the assertion follows. �

Proposition 2.2.15. Let ξ : S → S, P �→ ξ(P ) = ξ(O) + Q(
−→
OP ) be a superposed

rigid motion, (O, gi) a frame and {gi′} a basis defined through Qgi = Qi′

igi′. The

components of the position vector
−−−−→
Oξ(P ) = x′ with respect to the gi′ are then given by

xi′ = Qi′

i x
i + ci′ ,

where ci′ are the components of the translation vector
−−−−→
Oξ(O) = c, and xi are the

components of
−→
OP = x with respect to the basis {gi}.

Proof. Since Qx = ξ�x by 2.2.12,
−−−−→
Oξ(P ) =

−−−−→
Oξ(O)+

−−−−−−→
ξ(O)ξ(P ) becomes x′ = Qx+c.

The result then is obtained by substituting the local representatives x = xigi, x′ =
xi′gi′ and c = ci′gi′ , and using the definition of the primed basis {gi′}. �

Instead of understanding the affine isometry ξ : S → S as a superposed rigid motion
relative to a fixed Euclidian frame (O, gi′), it may also be interpreted as a change of
Euclidian framing resp. a change of Euclidian observers (O, gi) �→ ξ(O, gi) = (O′, Qgi),
i.e. a relative motion between Euclidian frames (also called a quasi-motion [see 7]). This
can be justified as follows: if (O, gi) is a ”rigid” frame that moves with a rigid motion
ξ, then (O′, Qgi) is the dragged-along frame at O′ = ξ(O) (figure 3.5).

However, an affine isometry only requires both frames to measure the same distance
between points, so Q from the change of a Euclidian framing needs to be orthogonal,
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B

ξ(B)

ξ(P )

PO

ξ(O)

−→
OP

Q(
−→
OP )

ξ

S

P ′

P

O

O′

Qgi

ξ

S

gi

x

Qx

Figure 2.2: Active objectivity of the vector x =
−→
OP in the Euclidian point space S

with respect to a superposed rigid motion of a subset B ⊂ S (left), and with respect
to a change of framing (right).

but not proper orthogonal as for superposed rigid motions. By keeping this difference
in mind, proposition 2.2.15 is equivalent to the following:

Proposition 2.2.16. Let Q be orthogonal resp. an isometry, (O, gi) �→ ξ(O, gi) =
(O′, Qgi) a change of framing in the Euclidian point space S and {gi′} a basis defined

through Qgi = Qi′

igi′. The components of the position vector
−−→
OP ′ = x′ with respect to

the gi′ are then given by
xi′ = Qi′

i x
i + ci′ ,

where ci′ are the components of the translation vector
−−→
OO′ = c, and xi are the compo-

nents of
−→
OP = x with respect to the basis {gi}.

Proof. Isometric Q’s imply that P ′ has the same coordinates with respect to the
frame (O′, Qgi) as P has with respect to (O, gi) —except for reordering of indices if
det Q = −1. Therefore,

−−→
O′P ′ = Q(

−→
OP ) = Qx = xiQgi = Qi′

ix
igi′ ,

and
−−→
OP ′ =

−−→
OO′ +

−−→
O′P ′ resp. x′ = Qx + c as before. Substitution of x′ = xi′gi′ and

c = ci′gi′ then gives the result. �

The connection between the formula 2.2.15 resp. 2.2.16 and the formula 2.2.8 is similar
to that of a map A : V → V and the identity map I in a vector space. Hence, it seems
likely to ”rewrite” definition 2.1.14 for Euclidian point spaces.
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Definition 2.2.17. Let (S,V) be an Euclidian point space. A vector v ∈ V which
transforms according to the rule

v′ = ξ�v ,

is called objective under the transformation ξ�, shortly: objective. The transforma-
tion rule, which depends on the map ξ that belongs to the transformation, has two
interpretations.

By applying the active interpretation of objectivity, the map ξ : S → S is understood

as a superposed rigid motion, transforming every point P = (O +
−→
OP ) into ξ(P ) =

ξ(O) + Q(
−→
OP ) and keeping the Euclidian frame fixed. In this case, ξ�v = Qv as in

2.2.14, where Q ∈ SO(V), and xi′ = Qi′

i x
i + ci′ are the affine coordinates of ξ(P ) in

terms of the coordinates of P and ξ(O) with respect to O. (Qi′

i) is the matrix of Q with

respect to a suitable basis, and ci′ are the components of
−−→
O′O. Another way to define

active objectivity is to interpret ξ as a change of Euclidian framing (O, gi) → (O′, Qgi)
(cf. proposition 2.2.16 and figure 3.5).

On the other hand, if the passive interpretation of objectivity is applied, ξ : (O, gi) →
(O′, gi′) is a change of framing on the fixed Euclidian point space and which keeps
the vector fixed, that is, ξ�v = Iv as in 2.2.9. In this case, xi′ = Bi′

i xi + ci′ are the
affine coordinates of the same (fixed) point in different frames, where (Bi′

i) is the inverse
matrix of the change of basis. Therefore, passive objectivity phrases the transformation
properties of v under a change of affine coordinates. ♦

In general, it is the active interpretation of objectivity that is applied to continuum
mechanics and the theory of materials in Euclidian point spaces; this will be inves-
tigated in section 4.5. The passive interpretation of objectivity, however, relates to
the standard transformation rule for vectors and tensors under a change of basis (or
coordinates).

It is again emphasized that the active and passive interpretations of objectivity in
Euclidian point spaces correspond to the active and passive transformations of vectors
defined in 2.1.14, respectively. The reader should keep track of the active-passive
concepts in the remainder of the paper.
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Chapter 3

Differential Geometry

3.1 Topology and Manifolds

Manifolds are more general affine point spaces. Engineers nowadays accept the term
”manifold” as the mathematical expression for a continuum that has a differentiable
structure, but the rich theory behind is often ignored. However, differentiability as it
stands means that there is some continuity. Topology is the basic field for the study of
continuity and for the creation of a general terminology of space —a manifold is also
a topological space. Descriptively, a topology carries the relations or interconnections
between elements of a point set.

To non-mathematicians, managing books on topology and tensor analysis on manifolds
may become a difficult challenge. The following chapter should assemble the topics
needed by applying a notation consistent with the rest of the text.

Definition 3.1.1. Let S be a set. A topology T is a collection of subsets A,B ⊂ S,
called open sets, which satisfy the following axioms:

1. ∅ ∈ T and S ∈ T . (∅ is the empty set.)

2. If A,B ∈ T , then A∩ B ∈ T also holds.

3. Let I ⊂ N be a set of indices. If Ai ∈ T , ∀ i ∈ I, then
⋃

i∈I Ai ∈ T also holds.

The pair (S, T ) is referred to as the topological space, but write S instead of (S, T )
if the meaning is clear. A subset A ⊂ S is called closed, if S\A ∈ T is open,
i.e. closed sets are the complements of open sets. From the definition, the trivial
topology T = {∅,S} of S is obvious. The elements of a topological space are called
points ; these can be geometric points, material particles, thermodynamic states etc. ♦

Corollary 3.1.2. Since S\S = ∅ and S\∅ = S, the sets S and ∅ are both open and
closed.

Definition 3.1.3. The interior or open cover int(M) of a topological space M ⊂ S is
the union of all open sets U which completely lie in M, i.e. int(M) =

⋃
U {U | U ∈ T

and U ⊂ M} . The closure cl(M) is the smallest closed set which completely includes
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M, i.e. cl(M) = S − ⋃U {U | U ∈ T and U ⊂ (S\M)} . The difference cl(M) −
int(M) = ∂M is called boundary of M. ♦

Definition 3.1.4. A topological space S is called discrete, if it has a discrete topology
T ={A |A⊂S}, that is, if all subsets are open. However, since S\A is also a subset,
all subsets in discrete topological spaces are both open and closed. ♦

Definition 3.1.5. Let S be a topological space with topology T . An (open) neigh-
borhood of a point P ∈ S is an open set U ∈ T such that P ∈ U . A point P is called
isolated, if {P} is open. A basis for the topology of S is a sequence or collection B of
open sets such that every open set of S is a union of elements of B. ♦

Corollary 3.1.6. In a discrete topology every point is isolated.

Example 3.1.7. The set of integers as well as the set of nodes in a finite element
mesh are discrete topological spaces.

Definition 3.1.8. Let I ⊂ N be a set of indices, then a topological space S is called
first countable, if for each P ∈ S there is a countable collection {Ui}i∈I of neighborhoods
U(P ) ⊂ S such that for any U(P ), there is a k ∈ N so Uk(P ) ⊂ U(P ). S is called
second countable, if it has a countable basis, i.e. the topology of S has a finite number
of open sets. ♦

Intuitively, second countable means that there is at least one way of covering the space
with a finite number of sets. Note that every second countable space is also first
countable, but not conversely.

Definition 3.1.9. A topological space S is referred to as a Hausdorff space, if every
two points P, Q ∈ S, P �= Q, can be separated by neighborhoods U(P ) ⊂ S and
V(Q) ⊂ S such that

U ∩ V = ∅ . ♦

Proposition 3.1.10. In a Hausdorff space the singleton sets are closed.

Proof. Let (S, T ) be a Hausdorff space, P ∈ S, then for each Q ∈ S\{P} there is
an (open) neighborhood U(Q) ⊂ S of Q such that P /∈ U , so U ⊂ S\{P}. Hence, by
the first countability condition S\{P} is open, and so {P} = S\(S\{P}) is closed. �

Definition 3.1.11. A homeomorphism is a bijective map h : S → T , where both h
and h−1 are continuous. A homeomorphism preserves the topology of a topological
space. If two topological spaces S, T are homeomorphic, then dim(S) = dim(T ). ♦

Example 3.1.12. Every r-adaption or regularization of a finite element mesh at fixed
mesh topology represents a homeomorphism. By contrast, the map R → Z is no
homeomorphism.

Definition 3.1.13. An n-dimensional topological manifold M is a second countable
Hausdorff space together with a homeomorphism

x : U ⊂ M → X ⊂ R
n

P �→ x(P ) = {x1, x2, . . . , xn}P ≡ {xi}P , ∃x−1 ,
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for any neighborhood U ⊂ M of P . The functions {xi}P are called coordinates of P .
The pair (U , x) including the chart map x(U) = X ⊂ Rn of the neighborhood U(P ) is
called chart or local coordinate system. ♦

Definition 3.1.14. If for a certain system of local coordinates {xi}U = x(U) on U ⊂
M the inverse of the chart function x−1 does not exist, the coordinate system is called
singular, otherwise it is called regular. The inverse x−1 leads to the point P ∈ U
expressed by coordinates:

P = x−1(x1, x2, . . . , xn) . ♦

The quintessence of manifolds is found in the homeomorphism 3.1.13. Charts enable
measurement on manifolds, because every point is assigned to a tuple of real numbers.

Example 3.1.15. The simplest example of a manifold is Rn itself, that has the global
chart (Rn, Id). Any n-dimensional vector space is also a manifold with a global chart:
choose a basis {gi}, then Vn → Rn, v �→ {v1, v2, . . . , vn} is the corresponding chart
map, in which v = vigi.

Example 3.1.16. The thermodynamic state space is a two-dimensional manifold,
because in the chart the state is labelled by two independent quantities, namely pressure
and temperature.

Definition 3.1.17. Let U ,U ′ ⊂ M, U ∩ U ′ �= ∅ an overlap and (U , x), (U ′, x′) regular
charts. Then the continuous map

x′ ◦ x−1
∣∣
x(U∩U ′)

: x (U ∩ U ′) → x′ (U ∩ U ′)

is called chart transition or change of coordinates. ◦ is the composition operator. A
chart transition x′ ◦ x−1|x(U∩U ′) is also called the relabelling of the subset U ∩ U ′. ♦

Definition 3.1.18. A collection A(M) = {(Ui, xi)}i∈I of charts of the manifold M =⋃
i∈I Ui, where I ⊂ N, is called atlas of M. ♦

Definition 3.1.19. A manifold M is called a differentiable manifold, if for every two
charts (U , x), (U ′, x′) ∈ A(M) the chart transition x′ ◦ x−1|x(U∩U ′) is continuous differ-
entiable. If the chart transition is k-fold continuous differentiable, where k ∈ N, then
the manifold is called a Ck-manifold. For k = 0, M is a topological manifold and for
k → ∞ it is called smooth or C∞-manifold. ♦

Definition 3.1.20. Let M be a C1-manifold, U ,U ′ ⊂ M, and U ∩U ′ �= ∅ an overlap.
For a point P ∈ U ∩ U ′, having coordinates {xi}P ∈ x (U) and {xi′}P ∈ x′ (U ′),
respectively, the transformation of the coordinate differentials involves the Jacobian
matrix of the coordinate functions at P ,

dxi′ =

(
∂(xi′ ◦ x−1)

∂xj

)
(P ) dxj ,

in which xi′ ◦ x−1 is in general not linear in xi. ♦
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Definition 3.1.21. Let φ : M → N be a continuous map, where M and N may have
different dimensions. Furthermore, let U(P ) ⊂ M be the neighborhood of a point
P ∈ M, V(φ(P )) ⊂ N a neighborhood of φ(P ) ∈ N , and φ−1(V)∩U �= ∅. Let (U , X),
(V, x) be appropriate charts, then x ◦ φ ◦ X−1 defines the chart transition concerning
φ with respect to X (figure 3.1):

x ◦ φ ◦ X−1
∣∣
X(φ−1(V)∩U)

: X
(
φ−1(V) ∩ U

)
→ x

(
φ−1(V) ∩ U

)
.

The chart transition is also called the local representative or the localization of φ. If
xi denote the coordinate functions of (V, x), one abbreviates φi = xi ◦ φ ◦ X−1, so
xi ◦ φ = φi(X). The map φ is called differentiable at P ∈ φ−1(V) ∩ U , if x ◦ φ ◦X−1 is
differentiable at P . ♦

Note that chart transitions concerning maps φ : M → N reduce to 3.1.17 if φ = Id is
the identity map on M.

M

x ◦ φ ◦ X−1

X(U)

N

P φ(P )

V
U

φ

x(V)

x(φ(P ))

X
x

φ−1(V)

φ(U)

X(P )

Figure 3.1: Localization of a continuous map φ.

Definition 3.1.22. Consider the aforementioned situation. A map φ : M → N is
called regular, if the Jacobian matrix ∂φi

∂XI , with {XI}P ∈ X (U), is invertible at P ∈ M
(cf. theory of parametric surfaces). ♦
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Definition 3.1.23. Let M and N be differentiable manifolds. A bijective differen-
tiable map

φ : M → N , ∃φ−1

is called diffeomorphism, if both φ and φ−1 are continuous differentiable. ♦

Corollary 3.1.24. (i) If φ : M → N is a diffeomorphism and M is a Ck-manifold,
then N = φ(M) is also Ck, that is, diffeomorphisms preserve or hand down the (dif-
ferentiable) structure of M. (ii) Every diffeomorphism is regular.

Definition 3.1.25. Let φ : M → N be a diffeomorphism, U ⊂ M, V ⊂ N subsets,
and let (U , X), (V, x) be appropriate charts, then one refers to φ as the active diffeo-
morphism and to φ̃ = x ◦ φ ◦ X−1 as the passive diffeomorphism, respectively (figure
3.2). ♦

U
X

��

φ �� V
x

��
X ⊂ Rndim

φ̃

�� Y ⊂ Rndim

Figure 3.2: Active diffeomorphism φ and passive diffeomorphism φ̃.

The difference between those maps is often ignored in applications of differential ge-
ometry; φ will be identified with φ̃ also later in this text in order to simplify notation.
However, the difference between φ and φ̃ plays a fundamental role in general relativity,
gauge theory, and even in the theory of materials, since it had been noticed by Einstein
in his famous ”Hole Argument” ([24], pp. 1066-1067, also [18, 19]). A consequence of
this argument is that spacetime in Einstein’s theory of gravitation does not exist in-
dependently of the matter within it. The Hole Argument is embedded in the principle
of general covariance, which will be investigated in section 4.5.

Definition 3.1.26. Let S, N be manifolds, m = dim(S), n = dim(N ) and m ≤ n.
S ⊂ N is called submanifold of N , if for every P ∈ S there exists a neighborhood
U ⊂ N and a chart (U , x), such that for S ∩ U �= ∅,

x(S ∩ U) =
(
R

m × {xm+1 = . . . = xn = 0}
)
∩ x(U) and x(P ) = 0 .

The definition phrases that the charts of S and N have to be compatible, and that the
chart of U in x(S ∩ U) is centered at P . ♦

Example 3.1.27. A shell is an (m=2)-dimensional submanifold in a three-dimensio-
nal space.

3.2 The Tangent Space

In affine point spaces, a vector is identified with parallel translation (see section 2.2): a
specific vector can be attached to every point of the affine point space or, equivalently,



20 CHAPTER 3. DIFFERENTIAL GEOMETRY

affine point spaces are flat and any point could be an origin of that vector. For a
manifold, it is not possible to define a parallel translation, because at this stage reached,
there is not even a connecting path between the points. Consequently, there are no
vectors in the traditional sense.

In order to geometrize manifolds further, this section gives a blue print of the tangent
space, that is, a vector space attached to each point of the manifold, by beginning with
curvilinear coordinates in affine point spaces.

Definition 3.2.1. Let S be an m-dimensional affine point space and y1, . . . , ym the
coordinate functions of an affine coordinate system (S, y). Let (A, x), with coordinate
functions x1, . . . , xn, n ≤ m, be a coordinate system on an n-dimensional manifold
A. A curvilinear coordinate system on A embedded in S —such that A ⊂ S is a
submanifold— is determined by m nonlinear functions f i involved in the map

R
n → R

m

(x1, . . . , xn) �→ yi = f i(x1, . . . , xn) , i = 1, . . . , m ,

so that yi = f i on A in S. ♦

Therefore, the simple rule for the change of affine coordinates 2.2.8, yi′ = χi′(y1, . . . ,
ym) = Bi′

i yi + ci′ , where the Bi′

i and ci′ are constants and do not depend on the point,
changes to yi′ = (χi′◦f i)(x1, . . . , xn) if curvilinear coordinates are involved.

With curvilinear coordinates in Euclidian spaces, a vector basis of the tangent space
at point P ∈ A ⊂ S can be constructed by taking the partial derivatives of the

position vector
−→
OP = x, where O ∈ S is another point, with respect to the curvilinear

coordinates: gi = ∂x
∂xi . Indeed, since dx = dxigi, the gi are linearly independent.

Hence, consulting 2.1.12 and 2.2.11 proofs the following result.

Proposition 3.2.2. Under a transformation xi′ = ζ i′(x1, . . . , xn) of (curvilinear) coor-
dinates, which is assumed to be invertible, the tangent basis vectors transform according
to

gi =
∂x

∂xi
=

∂x

∂xi′

∂ζ i′

∂xi
=

∂ζ i′

∂xi
gi′ ,

that is, the inverse matrix of the change of basis coincides with the Jacobian matrix of
the change of coordinates.

To simplify notation in this section, ∂xi′

∂xi instead of ∂ζi′

∂xi shall denote the Jacobian matrix

of the change of coordinates xi �→ xi′ , and ∂xi

∂xi′
is its inverse.

A linear transformation changes a vector, but the vector itself is a coordinate-invariant

geometric object. For example, parallel translation is invariant because v =
−−→
AA′ =

−−→
BB′

is independent of the origin and no coordinate system is involved. Therefore, v = vigi =
vi′gi′ must hold for arbitrary bases {gi}, {gi′}. By 3.2.2, the basis vectors transform

with the inverse Jacobian matrix of the change of coordinates, i.e. gi′ = ∂xi

∂xi′
gi, so

vi′gi′ = vi′ ∂xi

∂xi′︸ ︷︷ ︸
=vi

gi ⇔ vi′ =
∂xi′

∂xi
vi .
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This transformation rule identifies the vector components with components of a 1-fold
contravariant tensor:

Definition 3.2.3. A set of coordinate-dependent functions ti which transform under
chart transitions (or changes of coordinates) xi �→ xi′ according to the rule

ti
′

=
∂xi′

∂xi
ti

are called components of a 1-fold contravariant tensor. A set of coordinate-dependent
functions ti which transform under the same chart transitions according to the rule

ti′ =
∂xi

∂xi′
ti

are called components of a 1-fold covariant tensor. ♦

The terminology ”covariant” and ”contravariant” is introduced in order to distinct the
behavior under chart transitions, so covariant means ”having the same transformation
rule as the basis vectors”. However, ”subscript” and ”superscript” would be also an
appropriate distinction.

Proposition 3.2.4. On differentiable manifolds there are 1-fold covariant and 1-fold
contravariant tensors.

Proof. Let M be an n-dimensional differentiable manifold, I ⊂ R an open interval
of the real line and s : I → M a curve on M, so that s(t) ∈ U ⊂ M for some open
neighborhood U . In a chart (U , x), s induces the map s(t) �→ xi ◦ s(t) = si(t) ⊂ Rn for
every coordinate line xi. By using the Jacobian matrix defined in 3.1.20, a change of
coordinates xi �→ xi′ transforms the derivations of the parameterized coordinates si at
fixed t according to the scheme

dsi′

dt
=

∂xi′

∂xi

dsi

dt
.

So, by 3.2.3, 1-fold contravariant tensors on differentiable manifolds do exist.

Next, consider a real C1 function resp. a C1 scalar field f̃ : U → R, where U ⊂ M. In
a chart (U , x), f̃ induces the field f(x) = f̃ ◦x−1 ⊂ Rn as a function of the coordinates
xi. A change of coordinates xi �→ xi′ transforms the derivations of f with respect to
the coordinates according to the scheme

∂f ′

∂xi′
=

∂xi

∂xi′

∂f

∂xi
.

Conclude that on differentiable manifolds there are also 1-fold covariant tensors. �

Definition 3.2.5. Let f̃ : M → R be C1, and let f(x) = f̃ ◦ x−1 be its picture in a
chart. One defines the directional derivative of f̃ along a curve s(t) ⊂ M at point s(0)
through

df̃

dt

∣∣∣∣∣
t=0

=
∂f

∂xi

∂si

∂s

ds

dt

∣∣∣∣
t=0

=
∂f

∂xi

dsi

dt

∣∣∣∣
t=0

=
∂f

∂xi
wi = Dwf = w[f ] .
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The wi = dsi

dt

∣∣∣
t=0

= w[xi] are tangential to the curve s(t) through point s(0), and they

are called components of the tangent vector of the curve at s(0). The wi are well-defined
up to re-parametrizations

w̄i =
dsi

dt̄
= wi dt

dt̄
. ♦

Proposition 3.2.6. The directional derivative of a real function is coordinate-invari-
ant.

Proof. By using 3.2.4,

∂f

∂xi′
wi′ =

(
∂xi

∂xi′

∂f

∂xi

)(
∂xi′

∂xi
wi

)
=

∂xi′

∂xi

∂xi

∂xi′

∂f

∂xi
wi =

∂f

∂xi
wi . �

Corollary 3.2.7. If 3.2.5 is written independently of f , then w[·] = wi ∂
∂xi is also

coordinate-invariant. Application to the coordinate functions xi : U → R shows that
the ∂

∂xi ∈ Rndim are linearly independent, clearly: w[xi] = wj ∂xi

∂xj = wjδi
j = wi, so

w = w[xi] ∂
∂xi is a vector. Therefore,

{
∂

∂xi

}
≡
{

∂
∂xi

}
is a vector basis for the wi —the

so-called Gaussian basis—, and Rndim indeed is a vector space.

Definition 3.2.8. Let M be a differentiable manifold, U ⊂ M a subset and (U , x) a
chart, then the tangent space TPM at point P ∈ M is a vector space that is spanned
by the partial derivatives of the coordinates x(P ) = {xi}P (the Gaussian basis) such
that
{

∂
∂xi

}
P
∈ TPM is a basis. Formally, the tangent space can be written as

TPM = {P} × Vndim
.

That is, the tangent space is a vector space attached to a point of the manifold and
which is independent of the tangent space at any other point. Note that the pair(
P, ∂

∂xi

)
is the local version of an affine frame of reference on M that has been intro-

duced in 2.2.6. ♦

Definition 3.2.9. The tangent vector w ∈ TPM associated with tensor components
wi is given by its local representative

wi(P ) ↔ w(P ) = wi(P )
∂

∂xi
(P ) ∈ TPM .

Whenever one talks about a vector w in the manifold, the picture of the wi in the
tangent space is meant. However, to get a local representative of w, the first step is to
choose a chart on M. ♦

Definition 3.2.10. The disjoint union

TM =
⋃

P∈M

TPM

of all tangent spaces at all points P ∈ M is called the tangent bundle of M. ♦
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Definition 3.2.11. A manifold M is called metrizable, if the tangent bundle TM has
a fibre metric, that is, there exists a positive symmetric bilinear mapping

TPM× TPM → R(
∂

∂xi
,

∂

∂xj

)
�→
〈

∂

∂xi
,

∂

∂xj

〉
P

= gij (P )

at every point P ∈ M. The gij = gji are called metric coefficients. If M is also
torsion-free (Γ j

k i = Γ j
i k, see sec. 3.6.1), then M is called a Riemannian manifold. ♦

Definition 3.2.12. A linear form is a map

a∗ : V → R

v �→ a∗(v) ≡ a∗ · v .

So a∗ ∈ V∗, where V∗ is the dual space of V, as it is used in linear algebra. Using
the notation a∗ · v, the map is also called contraction. Note that the · operator is not
commutative and it is not equivalent to the inner product of vectors! ♦

As there are no ”traditional” vectors on manifolds, but only tangent vectors, the def-
inition of a linear form has to be revised. On manifolds, the linear forms are called
differential 1-forms, or shortly 1-forms.

Definition 3.2.13. Let M be an n-dimensional differentiable manifold. The co-
tangent space T ∗

PM is a vector space at point P ∈ M that can be formally written
as T ∗

PM = {P} × V∗
n. The union T ∗M =

⋃
P∈M T ∗

PM is referred to as the cotangent
bundle of M. ♦

Proposition 3.2.14. In a chart (U , x) on a manifold M, where U ⊂ M, the differ-
ential forms dxi are dual to the ∂

∂xi such that the cotangent space is spanned by the
coordinate differentials, that is, {dxi}P ≡ {dxi}P ∈ T ∗

PM is a basis for every P ∈ U .

Proof. It has to be shown that the duality relation dxi · ∂
∂xj = δi

j holds, where δi
j

is the Kronecker delta on M and i, j ∈ {1, 2, . . . , ndim}. However, in R
ndim contraction

reduces to ordinary multiplication such that for every P ∈ U ,

dxi(P )
∂

∂xj
(P ) =

∂xi

∂xj
(P ) = δi

j ⇔ dxi(P ) · ∂

∂xj
(P ) = δi

j . �

In mathematical and physical literature the ∂
∂xi = ∂i with lightface symbols of partial

derivation typically denote the basis vectors of the tangent space, and the dxi denote
their duals. The notation with boldface symbols used here is a reasonable convention
borrowed from [2] and [6]. Note that wi ∂

∂xi may be read as a scalar as well as a tangent
vector and thus may cause confusion. The chosen notation avoids such ambiguity.

Definition 3.2.15. The differential of a C1 scalar field f : M → R is a 1-form given
by df = ∂f

∂xi dxi, in which ∂f
∂xi are the components of df . ♦
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Corollary 3.2.16. (i) By 3.2.14, the contraction of a 1-form a∗ ∈ T ∗
PM and a tangent

vector v ∈ TPM can be written as

a∗ · v =
(
aidxi

)
·
(

vj ∂

∂xj

)
= ai v

j dxi · ∂

∂xj
= ai v

j δi
j = ai v

i ,

where aidxi is the local representative of a∗.

(ii) With 3.2.15, the derivative 3.2.5 of a C1 real function f in the direction w ∈ TPM
can be written as

w[f ] =
∂f

∂xi
wi =

∂f

∂xi
wjδ i

j =
∂f

∂xi
wj dxi · ∂

∂xj
= df · w .

Note that neither the terminology ”co- and contravariant basis vectors” nor a metric
for raising or lowering the indices is involved to perform a∗ · v, as it is typically done
when using curvilinear coordinates in Euclidian spaces. This is an example of how
differential geometry can offer advantages and clarification of the basic theory.

3.3 Tensor Algebra

Definition 3.3.1. A
(

p
q

)
-tensor T (P ) at point P of a manifold M is a multilinear

mapping
T : T ∗

PM× . . . × T ∗
PM︸ ︷︷ ︸

p−fold

×TPM× . . . × TPM︸ ︷︷ ︸
q−fold

→ R , ♦

By multilinearity it is meant that

T
(
a∗

1, . . . , a
∗
p, v1, . . . , λ x, . . . , vq

)
= λ T

(
a∗

1, . . . , a
∗
p, v1, . . . , x, . . . , vq

)
,

for some λ ∈ R, and

T
(
a∗

1, . . . , a
∗
p, v1, . . . , x + y, . . . , vq

)
=

T
(
a∗

1, . . . , a
∗
p, v1, . . . , x, . . . , vq

)
+ T
(
a∗

1, . . . , a
∗
p, v1, . . . , y, . . . , vq

)
,

where a∗
1, . . . , a

∗
p ∈ T ∗

PM and x, y, v1, . . . , vq ∈ TPM.

Definition 3.3.2. A
(

p r
q s

)
-two-point tensor over map φ : M → N is a multilinear

mapping

T : T ∗
QN×. . .×T ∗

QN︸ ︷︷ ︸
p−fold

×TQN×. . .×TQN︸ ︷︷ ︸
q−fold

×T ∗
PM×. . .×T ∗

PM︸ ︷︷ ︸
r−fold

×TPM×. . .×TPM︸ ︷︷ ︸
s−fold

→ R ,

where Q = φ(P ) and T is a function of P . Every
(

p r
q s

)
-tensor is an element of a

(p× q × r × s)-dimensional vector space. One refers to (p+q+r+s) as the rank of the
tensor. ♦
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Example 3.3.3. A differential 1-form a∗ is a
(
0
1

)
-tensor, also called a covariant rank-

one tensor, and a vector v is a
(
1
0

)
-tensor by setting a∗(v) = v(a∗).

Definition 3.3.4. The components of a tensor, that has been defined through 3.3.1,
are obtained by delivering the basis vectors of the cotangent space and of the tangent
space as arguments of the tensor:

T μ1,μ2,...,μp
ν1,ν2,...,νq

= T

(
dxμ1 ,dxμ2 , . . . ,dxμp ,

∂

∂xν1
,

∂

∂xν2
, . . . ,

∂

∂xνq

)
.

Components of two-point tensors are unwrapped analogously. ♦

If the tensor cannot be represented by a single symbol T , it will be put in parentheses
such that (T )μ1,μ2,...,μp

ν1,ν2,...,νq
denote the components of the tensor. Lower case greek

letters are used here as coordinate indices, whereas lower case Latin denote labels. The
nested indication is necessary as p + q index slots exist, and each independently pass
through the numbers 1, 2, . . . , ndim.

Corollary 3.3.5. Let ∂xμ′

∂xμ , ∂xμ

∂xμ′ denote the Jacobian matrix and its inverse, respec-
tively, of a chart transition x (U ∩ U ′) → x′ (U ∩ U ′); U ∩ U ′ �= ∅ being understood.
Then, by 3.2.3, the components of a

(
p
q

)
-tensor transform according to

T
μ′

1,μ′
2,...,μ′

p

ν′
1
,ν′

2
,...,ν′

q
=

∂xμ′
1

∂xμ1

∂xμ′
2

∂xμ2
. . .

∂xμ′
p

∂xμp

∂xν1

∂xν′
1

∂xν2

∂xν′
2

. . .
∂xνq

∂xν′
q

T μ1,μ2,...,μp

ν1,ν2,...,νq
.

For the sake of completeness, some generalization of the tensorial transformation cri-
terion is given here.

Definition 3.3.6. (See also [5], ch. vii; [6], ch. 21; [25], ch. 5; and [4]) Let T be a kind
of
(

p
q

)
-tensor whose components transform according to the rule

T
μ′

1
,...,μ′

p

ν′
1
,...,ν′

q
= f

[
det

(
∂xμ

∂xμ′

)]
∂xμ′

1

∂xμ1
. . .

∂xμ′
p

∂xμp

∂xν1

∂xν′
1

. . .
∂xνq

∂xν′
q

Tμ1,...,μp
ν1,...,νq

,

where f [det( ∂xμ

∂xμ′ )] is a function of the determinant of the inverse Jacobian matrix.

Then T is called an even relative tensor of weight w, if f [det( ∂xμ

∂xμ′ )] = det( ∂xμ

∂xμ′ )w, and

it is called an odd relative tensor of weight w, if f [det( ∂xμ

∂xμ′ )] = | det( ∂xμ

∂xμ′ )|w. Moreover,

T is a pseudotensor, if f [det( ∂xμ

∂xμ′ )] = sign[det( ∂xμ

∂xμ′ )].

The even (odd) relative tensors of weight 1 are also called even (odd) tensor densities,
and the even (odd) relative scalars of weight 1 are also called even (odd) scalar densities.

An absolute tensor (or ordinary tensor) is obtained by setting f [det( ∂xμ

∂xμ′ )] = 1. Except
for special topics of integration theory, this paper solely deals with ordinary (two-point)
tensors. ♦

Definition 3.3.7. Contraction reduces the rank of tensors. For example, contracting
a
(
1
1

)
-tensor T and a

(
1
0

)
-tensor resp. vector v = vi ∂

∂xi yields the
(
1
0

)
-tensor

T · v = T (v) = vi T

(
∂

∂xi

)
, in components T i

j vj .
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The contraction of a
(
1
1

)
-tensor T and a

(
0
1

)
-tensor (1-form) a∗ is

a∗ · T = a∗(T ) , in components T i
j ai .

The contraction two tensors T and S in the i-th covariant slot of T and the j-th con-
travariant slot of S are defined in a similar way, as if the covariant slot is a 1-form and
the contravariant slot is a vector, respectively. The contraction of two tensors T and S

in the i-th contravariant slot of T and the j-th covariant slot of S is straightforward.

Let T abcd and Sijkl be the components of two tensors T and S. Then, without a
specification of slots,

T · S with T abcdSijkd = T̃ abc
ijk

denotes the contraction and

T : S with T abcdSijcd = T̂ ab
ij

the double contraction of T and S, respectively. A single tensor is contracted analo-
gously, provided that the tensor has as well covariant as contravariant slots. ♦

Definition 3.3.8. The contraction of a
(
1
1

)
-tensor is called the trace of the tensor:

trT = T i
i . ♦

Definition 3.3.9. Let the tensors T and S have the same rank and be compatible in
terms of contraction, then 〈T , S〉 denotes the contraction on all index slots resp. the
inner product. Taking the examples of T and S from definition 3.3.7, then

〈T , S〉 = T ijklSijkl . ♦

By the chosen definition of tensors, T is an operator acting on the vector slots and
1-form slots of some other tensor S, that is, T (S) �= S(T ) in general!

Definition 3.3.10. Let T be a
(

p
q

)
-tensor and S a

(
r
s

)
-tensor. The tensor product

T ⊗ S yields an
(

p+r
q+s

)
-tensor

(T ⊗ S)(P ) : T ∗
PM× . . . × T ∗

PM︸ ︷︷ ︸
p−fold

×TPM× . . . × TPM︸ ︷︷ ︸
q−fold

×T ∗
PM× . . . × T ∗

PM︸ ︷︷ ︸
r−fold

×TPM× . . . × TPM︸ ︷︷ ︸
s−fold

→ R

such that

(T ⊗ S)
(
a∗

1, . . . , a
∗
p, v1, . . . , vq, b

∗
1, . . . , b

∗
r, w1, . . . , ws

)
= T
(
a∗

1, . . . , a
∗
p, v1, . . . , vq

)
S (b∗1, . . . , b

∗
r, w1, . . . , ws) ,
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and
(T ⊗ S)

α1,...,αp μ1,...,μr

β1,...,βq ν1,...,νs
= T

α1,...,αp

β1,...,βq
S μ1,...,μr

ν1,...,νs
.

That is, the tensor product generates ordered tuples of basis vectors, and so for a
(

p
q

)
-

tensor T one may abbreviate T ∈ T p
q (M), where T p

q (M) =
⊗p TM⊗⊗q T ∗M is the(

p
q

)
-tensor bundle, and

⊗k denotes the k-th tensor power. ♦

Corollary 3.3.11. By using the definitions 3.3.4, 3.3.7 and 3.3.10, a
(

p
q

)
-tensor has

the local representative

T (P ) = T μ1,μ2,...,μp

ν1,ν2,...,νq

∂

∂xμ1
⊗ ∂

∂xμ2
⊗ . . . ⊗ ∂

∂xμp
⊗ dxν1⊗ dxν2⊗ . . . ⊗ dxνq .

Definition 3.3.12. The definition 3.3.6 can be generalized further by applying the
tensor product. An absolute pseudotensor is obtained by tensor-multiplying an even
and an odd relative tensor of opposite weights, and a relative pseudotensor of weight
w = u + v is the results of the tensor product of an even relative tensor of weight u
(resp. v) and an odd relative tensor of weight v (resp. u). ♦

The reader should carefully distinguish the tensors on manifolds from those in ordinary
vector spaces, as the latter do not carry point information. The following proposition
helps to clarify this aspect.

Proposition 3.3.13. Let V,W be vector spaces and {GI} ∈ V, {gi} ∈ W appropriate
bases, then every linear map A : V → W corresponds with a

(
1
1

)
-tensor.

Proof. Note that from the definitions 2.1.10 and 3.3.2, AV = V I(AGI) = Ai
IV

Igi ∈
W, where V = V IGI is a vector. On the other hand

Ai
IV

Igi = Ai
JV IδJ

Igi = Ai
JV Igi ⊗ GJ · GI =

(
Ai

Jgi ⊗ GJ
)
·
(
V IGI

)
,

so A = Ai
Igi ⊗ GI is the tensor of the linear map. �

An alternative proof of the previous statement can be obtained by showing that the
Ai

I of the linear map transform as the components of a tensor.

To simplify notation, boldface italics are used for both, linear transformations and
tensors. The difference will become clear when the object is applied to a vector v of
the tangent space: Av is the linear map A applied to the vector v, and A · v is the
contraction of the tensor A and the vector v.

Definition 3.3.14. Let M be a manifold and P ∈ M. From the metric coefficients
in 3.2.11, the metric tensor, or shortly metric g(P ) = gij dxi⊗ dxj can be defined, so
that the pair (M, g) is a metric space (just write M instead of (M, g) if there is no
danger of confusion). Through gik gkj = δi

j , an inverse metric g−1(P ) = gij ∂
∂xi ⊗ ∂

∂xj

can be obtained, such that

g · g−1 =
(
gkl dxk⊗ dxl

)
·
(

gij ∂

∂xi
⊗ ∂

∂xj

)
= gklg

ijδi
ldxk ⊗ ∂

∂xj
= dxi ⊗ ∂

∂xi
= IM
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is the second-rank unit tensor on M. ♦

Corollary 3.3.15. Since

gik gkj = gik

〈
∂

∂xk
,

∂

∂xj

〉
= δi

j = dxi · ∂

∂xj

⇔ dxi = gik ∂

∂xk
= gikgkj dxj ,

tensor indices can be raised by the inverse metric coefficients, and lowered by the metric
coefficients.

Definition 3.3.16. Let T = T i
j

∂
∂xi ⊗ dxj be a

(
1
1

)
-tensor, then the associated tensors

of T are

T � = Tij dxi⊗ dxj = gikT
k
j dxi⊗ dxj

and T � = T ij ∂

∂xi
⊗ ∂

∂xj
= T i

kg
kj ∂

∂xi
⊗ ∂

∂xj
,

where � is the index lowering operator and � is the index raising operator, respectively.
If S ∈ T p

q (M), then S� ∈ T 0
p+q(M) is the tensor with all indices lowered, and S� ∈

T p+q
0 (M) is the tensor with all indices raised. ♦

Definition 3.3.17. Let P ∈ M and v ∈ TPM a vector, then define the linear trans-
formation g�(P ) : TPM → T ∗

PM by g�(P ) ·v = 〈v, ·〉P , and its inverse g�(P ) : T ∗
PM →

TPM, such that for T ∈ T 1
1 (M), T � = g� · T and T � = T · g�, respectively. ♦

Corollary 3.3.18. The associated tensors of IM are

I� = gikδ
k
j dxi⊗ dxj = g = g� and I� = δi

kg
kj ∂

∂xi
⊗ ∂

∂xj
= g−1 = g� .

Example 3.3.19. Raising the indices of the differential df of a scalar field gives the
gradient ∇f , which is a vector:

(df)� = ∇f = gij ∂f

∂xi

∂

∂xj
.

Associated tensors are different objects, that is, T �= T � �= T �! In cartesian spaces,
however, the distinction is unnecessary.

Definition 3.3.20. Let M, N be manifolds, T (P ) : TPM → TQN a two-point tensor
over a regular map φ : M → N , where Q = φ(P ), and let U ∈ TPM be a vector on M
and a∗ ∈ T ∗

QN a one form on N . The transpose or adjoint of T , T ∗(Q) : T ∗
Q(φ(M)) →

T ∗
φ−1(Q)M, is then defined through

(a∗ · T (U))Q = (T ∗(a∗) · U )P .

The transpose will be defined slightly different if M and N are metric spaces. Let
v ∈ TQN be a vector, then the transpose T T(Q) : TQ(φ(M)) → Tφ−1(Q)M is defined
through

〈v, T (U)〉Q =
〈
T T(v), U

〉
P

. ♦
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Proposition 3.3.21. If gij(Q) are the metric coefficients on N and GIJ(P ) are the
coefficients of the inverse metric on M, then (i) the components of T T are

(T T)I
i(Q) = gij

(
T j

J ◦ φ−1
) (

GIJ ◦ φ−1
)

,

and (ii) T T = G� · T ∗ · g�.

Proof. To proof (i), let U(P ) ⊂ M, V(Q) ⊂ N be neighborhoods with appropriate
charts (U , X), (V, x), respectively, in which X(U) = {XI}U and x(V) = {xi}V . Then{
dXI
}

∈ T ∗
PM is a dual basis at P and

{
∂

∂xi

}
∈ TQN is a basis at Q, so that

T (P ) = T i
I(P ) ∂

∂xi ⊗dXI is a local representative of T . Set U = U I ∂
∂XI and v = vi ∂

∂xi ,
then,

T (U) = T i
IU

J ∂

∂xi
⊗ dXI · ∂

∂XJ
= T i

IU
I ∂

∂xi

and

〈T (U), v〉Q = vjT i
IU

I

〈
∂

∂xi
,

∂

∂xj

〉
= vjT i

IU
Igij .

On the other hand, T T(v) = (T T)I
iv

j ∂
∂XI ⊗ dxi · ∂

∂xj = (T T)I
iv

i ∂
∂XI , so

〈
U , T T(v)

〉
P

= UJ(T T)I
iv

i

〈
∂

∂XI
,

∂

∂XJ

〉
= UJ(T T)I

iv
iGIJ .

By definition, viUJT j
Jgij = viUJ(T T)I

iGIJ . Multiplying both sides with GJK , and by
noting that U and v are arbitrary, one gets

(T T)I
i = gij T j

J GIJ .

The assertion follows by uncovering the point arguments.

For (ii), let a∗ = v� = g� · v. By definition, T ∗(a∗) = T ∗(g� · v) = (T ∗ · g�)(v) is a
1-form on M, so G� · ((T ∗ ·g�)(v)) = (G� ·T ∗ ·g�)(v) is a vector on M, where the last
identity is due to linearity. Since v is arbitrary, comparison with the second definition
of a transpose gives the result. �

Definition 3.3.22. Let T , U and v be as before. The operations

T−1(P ) · T (P ) = IM and T−1 · T (U) = U

involve the inverse tensor T−1. It is easy to verify that T−1 has the local representative

T−1(P ) = (T−1)I
i(P )

∂

∂XI
⊗ dxi ,

where (T −1)I
i are the components of the inverse of the matrix (T i

I). Define the inverse
transposed tensor T −T(Q) analogously from

T −T(Q) · T T(Q) = IN resp. T −T · T T(v) = v ,

yielding T −T(Q) = (T−T)j
J(Q) ∂

∂xi ⊗ dXI . ♦
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The local representatives of the transpose, the inverse and the inverse transpose of
(one-point) tensors can be obtained easily by choosing P = Q and N = M. It is
notable that T T calls for metrics on M and N , whereas T−1 does not.

Definition 3.3.23. A two-point tensor T : TPM → Tφ(P )N is called orthogonal
provided that

T T · T = IM and T · T T = IN .

T is called proper orthogonal, if it is orthogonal and detT = +1. ♦

Definition 3.3.24. Let N be a metric space. A
(
1
1

)
-tensor S : TN → TN is called

symmetric, if S = ST. ♦

Note that with two-point tensors it does not make sense to talk about symmetry!

Corollary 3.3.25. Let S(Q) = Si
j(Q) ∂

∂xi ⊗ dxj be symmetric, Q ∈ N and gij the
metric coefficients on N . Then by 3.3.21,

Si
j

∂

∂xi
⊗ dxj = gjkS

k
lg

li ∂

∂xi
⊗ dxj = Si

j dxj⊗ ∂

∂xi
.

Definition 3.3.26. Let S : TN → TN be symmetric and dim(N ) = 3, then, by
Cayley-Hamilton’s theorem [9, 2],

S3 − I1(S)S2 + I2(S)S − I3(S)IN = 0 .

I1, I2, I3 are scalar functions of S, which are rotationally invariant, i.e. invariant under
transformations that belong to the special orthogonal group SO(TN ). They are called
the principal invariants of S having the properties

I1(S)=tr S ,

I2(S)=det S (trS−1)=
1

2

(
(trS)2 − tr(S2)

)
,

and I3(S)=det S . ♦

3.4 Bundles and Tensor Fields

3.4.1 Sections of Fibre Bundles

The previous section was about tensors at single points of the manifold. To give an
precise definition of fields of vectors and tensors, the theory of fibre bundles is briefly
introduced. For further studies see, for example, [26] and [1].
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π−1(U) ⊂ E
π

��

y �� U × F

pr1����
�
�
�
�
�
�
�
�
�

U ⊂ M
Figure 3.3: Projection and local trivialization.

Definition 3.4.1. Let E ,M be at least topological spaces, dim(E) = n + m and
dim(M)=m, respectively, and let

π : E → M

be a continuous surjection, then the triple (E , π, M) is called n-dimensional fibre
bundle over M and π is called projection (figure 3.3). E and M are referred to as the
total space and the base space, respectively. If U ⊂ M is a subset, then π|U : E|U → U ,
with E|U = π−1(U), is called the restriction of π to U . For P ∈ U , π−1(P ) = E|P is
called fibre over P , so n is the dimension of the fibre. ♦

Instead of (E , π, M), a frequent notation for fibre bundles is π : E → M, or simply E
if the meaning is clear.

Definition 3.4.2. Let (E , π, M) be an n-dimensional fibre bundle and U ⊂ M a
subset. The pair (W, y) including the homeomorphism y : π−1(U) → U × F , where
π−1(U) = W ⊂ E , is called bundle chart or local trivialization (figure 3.3). F , with
dim(F) = n, is called the fibre space. The term fibre space is legitimate since the
fibre π−1(P ) is homeomorphic to F through y(π−1(P )) = {P} × F . The mappings
pr1 : U ×F → U and pr2 : U ×F → F denote the projections onto the first and second
factor of y(π−1(U)), respectively. ♦

Definition 3.4.3. A collection (yi : π−1(Ui) → Ui × F)i∈I of bundle charts of (E , π,
M), such that

⋃
i∈I Ui = M for I ⊂ N, is called bundle atlas of (E , π, M). ♦

Definition 3.4.4. Let (E , π, M) be a fibre bundle. If all π−1(U), U ⊂ M, are locally
trivializable and π−1(M) → M × F is a homeomorphism, then the fibre bundle is
called globally trivializable. If the total space is the product topology E = M × F ,
and (M, y = Id) is a global bundle chart such that π = pr1 : M × F → M and
π−1(P ) = {P} × F , then (E , π, M) is a trivial bundle. ♦

Definition 3.4.5. If the fibre space is an n-dimensional vector space Vn, a fibre bundle
(E , π, M) is called a vector bundle, and for E = M × Vn it is called a trivial vector
bundle. ♦

Definition 3.4.6. If the fibre of a fibre bundle over M is spanned by the tangent
vectors at each P ∈ M, i.e. π−1(P ) = TPM, then the total space is denoted by TM,
and π = τM : TM → M respectively (TM, τM, M) is referred to as the tangent
bundle over M (cf. 3.2.10). A local trivialization is then assumed to be diffeomorphic,
not only homeomorphic. ♦
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Example 3.4.7. The simplest example of a tangent bundle is found in the affine point
space (Rn, Rn). The set of all vectors v = {v1, . . . , vn} at all points P ∈ Rn, i.e. set of
all pairs (P, v), is just the cartesian product Rn × Rn = TRn. So TRn is trivial, and
{P} × R

n is a tangent space at P .

Example 3.4.8. A tube is a trivial bundle, in which the base space is the circular
cross section S

1, and S
1 × R

1 is the total space. The fibre π−1(P ), P ∈ S
1, is a line on

the tube parallel to the axis. The Möbius strip is a non-trivial bundle over S1. Locally,
tube and Möbius strip are identical.

Proposition 3.4.9. Let M be an n-dimensional differentiable manifold, then (i) TM
is a 2n-dimensional manifold, and (ii) τM : TM → M is a vector bundle.

Proof. (i) Let U ⊂ M be a subset and (U , x) a chart, where x : U → x(U) ⊂ Rn.
Then, by recalling the definitions 3.2.8 and 3.2.10, a natural chart of the tangent bundle
would be (TU , Tx) including the map

Tx : TM|U → x(U) × R
n

(P, v) �→ Tx(P, v) = {ξ1(v(P )), ξ2(v(P )), . . .

. . . , ξn(v(P )), v1(v), v2(v), . . . , vn(v)} .

Therein, ξi(v(P )) = xi(P ) are the local coordinates of P ∈ M, vi(v) = v[xi] are the
components of v(P ) ∈ TPM, and TM|U is the restriction of TM to U .

The natural atlas of TM, then, is the collection TA = {(TUi, Txi)}i∈I of natural
charts, where TM =

⋃
i∈I TUi and I ⊂ N. Hence, TM is homeomorphic to R2n, so

dim(TM) = 2n. As M is Hausdorffian and second countable by definition, and Tx
is a diffeomorphism by 3.4.6, TM is also Hausdorffian and second countable, i.e. a
manifold.

(ii) By the definition of a local chart, x(U) is homeomorphic to U , and TM|U =⋃
P∈U TPM = τ−1

M (U), so

yTM : τ−1
M (U) → U × R

n

v(P ) = (P, v) �→ {P, v1, v2, . . . , vn} ,

vi = v[xi] being understood, is a local trivialization of TM and τ−1
M (P ) = TPM is

a fibre. By 3.2.7 and the example 2.1.7, Rn is also a vector space, so that TPM →
{P} × R

n is an isomorphism. Therefore, TM has a vector bundle structure induced
by the differentiable structure of M. �

Corollary 3.4.10. Let U ⊂ M, M being differentiable, be a subset and (U , x) a chart,
then

Tx : TM|U → x(U) × R
n

defined in 3.4.9(i) is a local tangent bundle map.

Proposition 3.4.11. (Without proof; cf. [1], p. 155.) Let (U , x) and (U ′, x′), U∩U ′ �=
∅, be regular charts on a differentiable manifold M such that the chart transition map
x′ ◦ x−1|x(U∩U ′) : x (U ∩ U ′) → x′ (U ∩ U ′) is a diffeomorphism, then T (x′ ◦ x−1) is a
local tangent bundle isomorphism —meaning that it is an isomorphism on each fibre.
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Definition 3.4.12. Let (E , π, N ) respectively π : E → N be a fibre bundle with fibre
space F and let φ : M → N be a continuous map. The induced bundle or pullback
bundle is defined through

π′ : φ�E → M ,

in which the total space φ�E has the same fibres as E , that is, φ�E = φ(M)×F provided
that E = N × F is trivial. ♦

Vector fields are sections of vector bundles. Moreover, the tensor product of vector
spaces can be transferred to vector bundles to generate tensor bundles, whose sections
are then called tensor fields.

Definition 3.4.13. Let π : E → M be a fibre bundle, then a map

σ : M → E ,

with π(σ(P )) = P, ∀P ∈ M, is called bundle section. If the fibre bundle is a vector
bundle, then σ is called vector field on M. The set of all sections of E is denoted by
Γ(E). ♦

In the physical and mechanical literature, instead of the correct σ ∈ Γ(E) respectively
σ : M → E it is common to write σ(P ) for the field, indicating that σ depends on the
points P ∈ M.

Definition 3.4.14. Let π : E → M be a vector bundle with n-dimensional fibre,
y : π−1(U) → U × Vn a bundle chart and {gi} a basis in Vn, then

σi(P ) = y−1(P, gi) , i = 1, . . . , n ,

defines the local basis sections or local basis vector fields σ1, . . . , σn : U → E|U for
every P ∈ U ⊂ M. ♦

The local basis sections are necessary to express vector fields and tensor fields in local
coordinates, so to get a local representative of tensor fields.

Definition 3.4.15. Let τM : TM → M be a tangent bundle and (TU , Tx) a natural
chart of TM, with the chart map Tx : TM|U → x(U) × Rn, as defined in 3.4.9(i)
resp. 3.4.10. If y ∈ R

n and {ei} : R
n → TR

n are the canonical basis sections in R
n

—so {ei} is the canonical basis at every y—, then

(Tx)−1(y, ei) =

(
x−1(y),

∂

∂xi

)
=

∂

∂xi
(P ) , i = 1, . . . , n ,

defines the local basis sections of TM for all x−1(y) = P ∈ U ⊂ M, that is,{
∂

∂xi
, . . . ,

∂

∂xn

}
: U → TM|U .

If {ei} is the dual basis of {ei}, then (Tx)−1ei = dxi. ♦
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Definition 3.4.16. Let (E1, M, π1) and (E2, M, π2) be vector bundles, P ∈ M, and
let E1 ⊗ E2 be their tensor product. Moreover, let σ1 ∈ Γ(E1), σ2 ∈ Γ(E2) be sections,
then

T (P ) = (σ1 ⊗ σ2)(P ) ∈ Γ(E1 ⊗ E2)

is called second-rank tensor field on M. Therein, the tensor product of the sections
has been applied point-by-point:

(σ1 ⊗ σ2)(P ) = σ1(P ) ⊗ σ2(P ) .

Tensor fields of any rank are defined analogously. A
(

p
q

)
-tensor field on a manifold M

is a section of the tensor bundle T p
q (M). The set Γ(T p

q (M)), resp. Γ∞(T p
q (M)) on

smooth manifolds, is usually written Tp
q(M). ♦

Corollary 3.4.17. Let τM : T 1
1 (M) → M be a

(
1
1

)
-tensor bundle, (U , x) a chart of

U ⊂ M and T (P ) ∈ T 1
1 (M) a tensor at P ∈ U . Then, by 3.4.2 and 3.4.9(ii),

yTM|τ−1

M
(P ) : τ−1

M (P ) → {P} × R
n1+1

T (P ) �→ (T i
j)(P )

is a vector space isomorphism that gives the components of T for all P ∈ U , where
Rn1+1

= Rn × Rn denotes the n × n-matrices (see also [4], ch. 4).

The corollary can be applied in a simmilar form to arbitrary
(

p
q

)
-tensor fields in order

to undress the tensor components at every point where the field is defined.

Definition 3.4.18. Let (E1, M, π1), (φ�E2, M, π′
2) be vector bundles, σ1 ∈ Γ(E1)

and φ�σ2 ∈ Γ(φ�E2) sections, and φ : M → N a continuous map. The section

T (P ) = (σ1 ⊗ φ�σ2)(P ) ∈ Γ(E1 ⊗ φ�E2)

where P ∈ M, is called second-rank two-point tensor field over φ on M, if (φ�E2, M,
π′

2) is the induced bundle of some (E2, N , π2). With this,

φ�σ2 : M → TN

is called induced section or vector field over φ. Note that if σ2(Q) ∈ Γ(E2) and Q =
φ(P ), then

(φ�σ2)(P ) = σ2(φ(P )) . ♦

Example 3.4.19. Two-point tensors and induced sections play an important role in
continuum mechanics. A famous example of a two-point tensor field is the deformation
gradient, as it acts on two different configurations of a material body. The Lagrangian
or particle velocity field is an induced section V t : B → TS, where B is the material
body and S is the ambient space (see section 4.2).

The algebraic operations on tensors defined in section 3.3 all carry over to tensor fields,
by applying the operation to each fibre of the corresponding bundle.
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3.4.2 Action of Maps

The following paragraphs should investigate the action of maps on tensor fields, by
starting with linear transformations and then concentrating on maps φ : M → N
between manifolds.

Definition 3.4.20. Let A : V → W be an isomorphism of vector spaces, T ∈ Tp
q(V)

a
(

p
q

)
-tensor field, a∗

1, . . . , a
∗
p ∈ W∗ and v1, . . . , vq ∈ W. Then

(A�T )
(
a∗

1, . . . , a
∗
p, v1, . . . , vq

)
= T
(
(A∗a∗

1), . . . , (A
∗a∗

p), (A
−1v1), . . . , (A

−1vq)
)

.

is called the pushforward of T by A. The pullback by A is defined through A� =
(A−1)�. ♦

Definition 3.4.21. Let M, N be continuous differentiable manifolds and φ : M → N
a differentiable map. The tangent bundle homeomorphism

Tφ : TM → TN
(P, V ) �→ Tφ (P, V ) = (φ(P ), Dφ(P ) · V )

is called the tangent map or the differential of φ. Dφ(P ) is the derivation of φ at
P ∈ M and Dφ(P ) · V means Dφ(P ) applied to V ∈ TPM as a linear map. Write
TPφ : TPM → Tφ(P )N for the restriction of Tφ to P .

To get a local version of the tangent map, let (U , X), (V, x) be appropriate charts, with
U ⊂ M and V ⊂ N , respectively, so that φi = xi ◦φ ◦X−1 is the coordinate system on
N arising from the coordinate functions XI of (U , X) via φ. Let

{
∂

∂XI

}
∈ TPM and{

∂
∂xi

}
∈ Tφ(P )N be the related bases of the tangent spaces, then

Tφ : TM → TN(
P,

∂

∂XI
(P )

)
�→
(

φ(P ),
∂φi

∂XI
(P )

∂

∂xi
(φ(P ))

)
,

i.e. Dφ = ∂φi

∂XI in coordinates. ♦

Corollary 3.4.22. From the given coordinate expression the chain rule T (ψ ◦ φ) =
Tψ ◦ Tφ can be easily verified.

Corollary 3.4.23. Let V = V I ∂
∂XI be a vector, then

Tφ (V ) (P ) =

(
∂φi

∂XI
V I

)
︸ ︷︷ ︸

=(Tφ(V ))I

(P )
∂

∂xi
(φ(P )) = V I ∂φi

∂XI

∂

∂xi
.

As the tangent map is linear, one may define a two-point tensor F to obtain the same
result:

Tφ (V ) = V I ∂φi

∂XI

∂

∂xi
= V I

(
∂φi

∂XJ

∂

∂xi
⊗ dXJ

)
︸ ︷︷ ︸

=F

· ∂

∂XI
= F · V .

Conclude that the tangent map acts on a vector like a linear transformation.
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Definition 3.4.24. With the conventions of 3.4.21, the inverse tangent map over dif-
feomorphisms φ : N → M is defined through

T (φ−1) : TN → TM
∂

∂xi
�→ ∂(φ−1)I

∂xi

∂

∂XI
,

with (φ−1)I = XI ◦ (φ−1) ◦ x−1. Dual to the tangent map, the cotangent map over φ is
for 1-forms:

T ∗φ : T ∗N → T ∗M

dxi �→ ∂φi

∂XI
dXI ,

so T ∗φ(a∗)(Q) = a∗ · F , where a∗ ∈ T ∗
QN . T ∗φ has the inverse T ∗(φ−1)(dXI) =

∂(φ−1)I

∂xi dxi. ♦

Note that Tφ and T ∗φ, respectively T (φ−1) and T ∗(φ−1), have the same component
matrices, but are evaluated at different points!

For vector fields V : M → TM, the operation Tφ(V ) is also called the tilt of V by φ
[2]. If M and N have different dimensions, the vector Tφ(V ) at point φ(P ) is tangent to
N , but it need not to be tangent to φ(M). This is because Tφ(TM) = T (φ(M)) ⊂ TN
is a subspace of TN .

Definition 3.4.25. A map φ : M → N is called immersion, if its tangent TP φ :
TPM → Tφ(P )N is injective at each P ∈ M. If TP φ is surjective at each P ∈ M, then
φ is called submersion. ♦

Proposition 3.4.26. (Without proof; cf. [1], p. 165.) Let φ : M → N be an immer-
sion, then there is a neighborhood U(P ) ⊂ M such that φ(U) ⊂ N is a submanifold
(see definition 3.1.26) and U → φ(U) is a diffeomorphism.

The preceding proposition does not imply that φ(M) is a submanifold, and even if Tφ
is injective, φ might not be. However, define the following for φ being injective.

Definition 3.4.27. Let φ : M → N be an injective immersion, then φ : M → φ(M)
is a diffeomorphism and φ(M) is called an immersed submanifold in N . An immersion
φ : M → N is called embedding provided that it is a homeomorphism onto φ(M) with
the topology induced by N . ♦

In other words, an immersion φ : M → N is a local embedding, and if φ in an
embedding, then φ(M) ⊂ N is a submanifold and M → φ(M) is a diffeomorphism.

Corollary 3.4.28. An injective immersion φ : M → N is an embedding, if it maps
open (closed) sets in M onto open (closed) sets in N , and inversely —in fact, this is
what the homeomorphism in the definition 3.4.27 of an embedding requires.
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Figure 3.4: Tilt and pushforward of a vector field V ∈ Γ(TM).

Example 3.4.29. The circle is an embedding S1 → R2, and the ”8” is an immersion
S

1 → R
2 that is not injective.

After some tangent map Tφ : TM → TN has been applied to the vector field V :
M → TM, the vector field became a so-called vector field over the map φ : M → N
(see definition 3.4.18), which is not an honest vector field on N . In order to transfer
the field to N with respect to φ, the reference point have also to be switched. The
emerging operations are referred to as the pushforward and the pullback (figure 3.4).

The reader should be warned about different uses in the literature. There is often
no distinction being made between vectors and vector fields, and the tangent map is
carelessly identified as the pushforward.

Definition 3.4.30. Let g : N → R be a scalar field on N , and φ : M → N a
continuous map. The pullback

φ�g = g ◦ φ : M → R

has the same value at P ∈ M, as g has at Q ∈ N , where Q = φ(P ). ♦

Definition 3.4.31. Let f : M → R be a scalar field on M and φ : M → N a
regular map. The pushforward of f to N is defined through φ�f = f ◦ φ−1, that is,
φ� = (φ−1)

�
. ♦

Corollary 3.4.32. (i) If g = φ�f arises from the pushforward of f , then the pullback
is the inverse operation:

φ�(φ�f)(P ) = f ◦ φ−1 ◦ φ (P ) = f(P ) .

(ii) For a composition of maps φ and ψ, the chain rule gives

(ψ ◦ φ)� = φ� ◦ ψ� and (ψ ◦ φ)� = ψ� ◦ φ� .

Definition 3.4.33. Let V : M → TM resp. V ∈ Γ(TM) be an honest vector field
on M and let φ : M → N be a diffeomorphism. The pushforward φ�V : N → TN is
a vector field on N = φ(M) given by

φ�V = Tφ ◦ V ◦ φ−1 . ♦
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Definition 3.4.34. Let w : N → TN be a vector field on N = φ(M). The pullback
φ�w : M → TM is a vector field on M = φ−1(N ) defined through

φ�w = T (φ−1) ◦ w ◦ φ . ♦

Note that φ� also marks induced sections of vector bundles, but the meaning is different!
Induced sections φ�σ : M → TN are not proper vector fields on M (or N ).

Definition 3.4.35. The specification of the pullback and pushforward operators for
fields of differential 1-forms a∗ : N → T ∗N and B∗ : M → T ∗M, respectively, is
straightforward. They are being defined through their action on vector fields. Let
V :M→ TM, then the pullback of a∗ is given by

((φ�a∗) · V )(P ) = (a∗ ◦ φ) · (Tφ ◦ V ) ,

for P ∈ M and φ(P ) ∈ N , clearly,

φ�a∗ = (a∗ ◦ φ) · Tφ .

The pushforward φ�B
∗ : N → T ∗N of B∗ is a 1-form on N defined by

φ�B
∗ = (φ−1)�B∗ = (B∗ ◦ φ−1) · T (φ−1) .

This can be easily obtained from the definition of the pullback of a∗ by setting φ�B
∗ =

a∗. ♦

The pushforward and the pullback of arbitrary tensor fields can be realized through the
application of the pushforward and the pullback of vector fields and fields of 1-forms,
respectively, to all index slots of the tensor.

Definition 3.4.36. Let φ : M → N be regular, T ∈ Tp
q(M) and t ∈ Tp

q(N ), then

(φ�T )(Q)
(
a∗

1, . . . , a
∗
p, w1, . . . , wq

)
= T (P )

(
(φ�a∗

1), . . . , (φ
�a∗

p), (φ
�w1), . . . , (φ

�wq)
)

,

and

(φ�t)(P )
(
B∗

1, . . . , B
∗
p, V 1, . . . , V q

)
= t(Q)

(
(φ�B

∗
1), . . . , (φ�B

∗
p), (φ�V 1), . . . , (φ�V q)

)
,

where P ∈ M and Q = φ(P ). ♦

Proposition 3.4.37. If φ : M → N is a diffeomorphism, then φ� : Tp
q(M) → Tp

q(N )
is an isomorphism.

Proof. This statement is fibrewisely proved by noting that φ� ◦(φ−1)� = (φ ◦ φ−1)� =
Id� is the identity on Tp

q(M). �
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Corollary 3.4.38. Let φ : M → N be a map, s ∈ T0
p(N ) and t ∈ T0

q(N ), then
φ�(s ⊗ t) = φ�s ⊗ φ�t.

Note that if φ = Id : M → M is the identity map, then the pushforward of a tensor
reduces to the transformation under a change of coordinates. Therefore, a differentiable
map φ of manifolds provides the natural analogon of a linear transformation of vector
spaces discussed in section 2.1.

One is now able to obtain expressions of tensor fields in local coordinates.

Definition 3.4.39. Let v ∈ Γ(TN ) be a vector field and (V, x) a chart on N , dim(N )
= n, and let y ∈ Rn and {ei} ∈ Γ(TRn) the canonical basis vector field, then

(x�v)(y) = Tx ◦ v(x−1(y)) = {v1(y), . . . , vn(y)} = vi(y) ei

is called the local representative of v in the chart at every x−1(y) ≡ P ∈ V ⊂ N . The
tangent map Tx has been defined in 3.4.9(i) resp. 3.4.10. ♦

Corollary 3.4.40. Let N , v, x etc., be as before. Since Tx is an isomorphism on
each fibre of TN , x� also is, and thus x� = (x−1)� = (x�)

−1 does exist:

x�(viei) = (Tx)−1 ◦ {v1, . . . , vn} ◦ x = v .

The local representative of 1-forms is defined analogously by adopting 3.4.35 and re-
placing φ by x.

Corollary 3.4.41. Let {ei} and {ei} be the canonical basis sections of TR
n and its

duals, respectively, then from 3.2.14 and 3.4.15, x�(ei) = ∂
∂xi and x�(ei) = dxi, i =

1, . . . , n.

Proposition 3.4.42. Let (V, x), V ⊂ N , be a chart and t ∈ Tp
q(N ) a tensor field,

then the local representative of t on V is

t|V = tμ1,...,μp
ν1,...,νq

∂

∂xμ1
⊗ . . . ⊗ ∂

∂xμp
⊗ dxν1⊗ . . . ⊗ dxνq .

Proof. The components of t at every P ∈ V are the scalar functions

tμ1,...,μp

ν1,...,νq
= t

(
dxμ1 , . . . ,dxμp ,

∂

∂xν1
, . . . ,

∂

∂xνq

)
.

Setting y = x(P ) and applying 3.4.39, the local representative x�t on the subset x(V) ⊂
Rndim would be

x�(t|V) = (tμ1,...,μp
ν1,...,νq

◦ x−1) eμ1
⊗ . . . ⊗ eμp

⊗ eν1 ⊗ . . . ⊗ eνq ,

Application of 3.4.38 and 3.4.41 at every point then proofs the statement. �
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3.5 Exterior Algebra of Differential Forms

Exterior algebra deals with the cross product in three-dimensional vector spaces and
with determinants. On manifolds, exterior algebra is a basic ingredient to detect sym-
metries and orientations, in order to establish measures in n-dimensional non-Euclidian
spaces and to generalize integrals, balance equations and the theorems of Gauß and
Stokes. Fundamental objects of exterior algebra are totally skew-symmetric covariant
tensors, which are generally called alternating multilinear forms respectively differen-
tial forms on manifolds.

In this section, lower case Greeks are used for coordinate indices, and lower case Latins
are used for labels.

Definition 3.5.1. A permutation of a set Sk = {1, . . . , k} ⊂ N is a map π : Sk → Sk.
Note that the set Πk of all permutations {π(1), . . . , π(k)} on Sk has k! elements. Define
the permutation of a k-tuple of any elements (a1, . . . , ak) by

π(a1, . . . , ak) = (aπ(1), . . . , aπ(k)) .

A transposition is a permutation that interchanges only two elements. Every per-
mutation π is composed of even or odd numbers ν of transpositions. An even (odd)
permutation is obtained from an even (odd) number of transpositions. Define the sig-
nature of the permutation by sgn : Πk → {−1, +1}, then set sgn π = +1 for even
permutations, and sgn π = −1 for odd permutations, so that sgnπ = (−1)ν . ♦

Definition 3.5.2. A permutation π ∈ Πk,l ⊂ Πk+l of the set {1, . . . , k, k + 1, . . . ,
k + l} ⊂ N is called a shuffle permutation or (k, l)-shuffle, if π(1) < . . . < π(k) and
π(k + 1) < . . . < π(k + l). ♦

Proposition 3.5.3. The number of all shuffle permutations on {1, . . . , k + l} is(
k + l

k

)
=

(k + l)!

k! l!
.

Proof. A shuffle permutation π {1, . . . , k + l} = {π(1), . . . , π(k + l)} can be realized
as follows. Choose k numbers without repetitions and put the last l numbers behind
them. Reorder if the sequence of numbers does not satisfy π(1) < . . . < π(k) and
π(k + 1) < . . . < π(k + l).

Therefore, the first k of k + l numbers chosen completely determine a shuffle permuta-
tion, and allowing for reordering means that the order does not matter. However, the
number of such combinations without repetitions is just the binomial coefficient

(
k+l
k

)
,

so the assertion follows. �

Definition 3.5.4. Let T (P ) ∈ T 0
k (M) be a

(
0
k

)
-tensor at P ∈ M, i.e. a multilinear

mapping

T (P ) : TPM× TPM× . . . × TPM︸ ︷︷ ︸
k−fold

→ R .
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The alternation mapping Alt : T 0
k (M) → ∧k T ∗M, where

∧k is called k-th exterior
power, is pointwisely defined by

Alt T (v1, . . . , vk) =
1

k!

∑
π∈Πk

(sgn π) T (vπ(1), . . . , vπ(k)) ,

for every P ∈ M and v1, . . . , vk ∈ TPM. π denotes the permutation on {1, . . . , k} and
the factor 1/k! is a convention to avoid double counts. ♦

It should be clear that
∧k T ∗M is a subspace of T 0

k (M). If n is the dimension of M,

then the dimension of
∧k T ∗M is

(
n
k

)
.

Definition 3.5.5. A (differential) k-form ω(P ) ∈ ∧k T ∗
PM at P ∈ M is a

(
0
k

)
-tensor

such that Alt ω = ω. ♦

Corollary 3.5.6. For T ∈ T 0
k (M), Alt T ∈ ∧k T ∗M, thus Alt(Alt T ) = Alt T by

3.5.5.

Proposition 3.5.7. Let ω(P ) ∈ ∧k T ∗
PM be a k-form and v1, . . . , vk ∈ TPM, then

ω(vπ(1), . . . , vπ(k)) = (sgn π) ω(v1, . . . , vk) .

Proof. First, note that (sgnπ)2 = 1 and the number of all permutations on {1, . . . , k}
is k!, that is,

∑
π∈Πk

a = k! a. Then from Alt ω = ω,

1

k!

∑
π∈Πk

(sgnπ) ω(vπ(1), . . . , vπ(k)) = ω(v1, . . . , vk)

=
1

k!

∑
π∈Πk

(sgn π)2 ω(v1, . . . , vk) .

Comparing both sides gives the result. �

Definition 3.5.8. Let T (P ) ∈ T 0
k (M) and S(P ) ∈ T 0

l (M) be tensors, then the exte-

rior product or wedge product (T ∧ S) ∈ ∧k+l T ∗
PM is a (k + l)-form defined by

T ∧ S =
(k + l)!

k! l!
Alt (T ⊗ S) ,

where the point arguments have been omitted. The wedge product for differential
forms ω(P ) ∈ ∧k T ∗

PM and β(P ) ∈ ∧l T ∗
PM is defined in the same manner. ♦

Corollary 3.5.9. Let a∗, b∗ ∈ T ∗
PM be 1-forms, then

a∗∧ b∗ =
(1 + 1)!

1!1!

1

2!
(a∗⊗ b∗ − b∗⊗ a∗) = a∗⊗ b∗ − b∗⊗ a∗

= −(b∗⊗ a∗ − a∗⊗ b∗) = −b∗∧ a∗ .
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Proposition 3.5.10. Let ω(P ) ∈ ∧k T ∗
PM be a k-form, β(P ) ∈ ∧l T ∗

PM an l-form
and v1,. . ., vk+l ∈ TPM vectors, then

(ω ∧ β)(P )(v1, . . . , vk+l) =
∑

π∈Πk,l

(sgn π) ω(vπ(1), . . . , vπ(k))β(vπ(k+1), . . . , vπ(k+l)) ,

where
∑

π∈Πk,l
denotes the sum over all (k, l)-shuffles π on {1, . . . , k + l}.

Proof. By 3.5.7, alternation of ω (or β) reduces to the sum with a single summand:

Alt ω(v1, . . . , vk) =
1

k!

∑
π∈Πk

(sgn π) ω(vπ(1), . . . , vπ(k))

=
∑

π(1)<...<π(k)

ω(vπ(1), . . . , vπ(k)) .

Therefore, the sum in Alt (ω ⊗ β) = Alt (Alt ω ⊗ Alt β) is only over the shuffle permu-
tations that satisfy π(1) < . . . < π(k) and π(k + 1) < . . . < π(k + l). From 3.5.3, the

number of all shuffle permutations is (k+l)!
k! l!

, so

Alt (ω ⊗ β)(v1, . . . , vk+l)

=
k! l!

(k + l)!

∑
π∈Πk,l

(sgn π) ω(vπ(1), . . . , vπ(k))β(vπ(k+1), . . . , vπ(k+l)) ,

where the definition 3.3.10 of the tensor product has been used. Substitution into 3.5.8
then gives the result. �

Proposition 3.5.11. (Without proof.) For a ∈ R and forms ω ∈ ∧k T ∗
PM, β ∈∧l T ∗

PM and γ ∈ ∧m T ∗
PM, the exterior product has the properties

(i) a(ω ∧ β) = aω ∧ β = ω ∧ aβ (bilinearity),

(ii) ω ∧ (β ∧ γ) = (ω ∧ β) ∧ γ (associativity), and

(iii) ω ∧ β = (−1)klβ ∧ ω (supercommutativity).

Corollary 3.5.12. For a 1-form ω ∈ T ∗
PM, ω∧ω = 0 by 3.5.11(iii) (see also corollary

3.5.9). However, if ω ∈ ∧k T ∗
PM, then ω ∧ ω �= 0 in general.

Corollary 3.5.13. Recall 3.3.4 for the components of a tensor, and let (U , x), with
U ⊂ M a subset, be a chart with coordinate functions {xμ}.
(i) If T ∈ T 0

2 (M) is a
(
0
2

)
-tensor, the components of Alt T are

(Alt T )μν = Alt T

(
∂

∂xμ
,

∂

∂xν

)

=
1

2

(
T

(
∂

∂xμ
,

∂

∂xν

)
− T

(
∂

∂xν
,

∂

∂xμ

))
=

1

2
(Tμν − Tνμ) .

(ii) Let α ∈ ∧2 T ∗
PM be a 2-form, then 3.5.7 yields

αμν = α

(
∂

∂xμ
,

∂

∂xν

)
= −α

(
∂

∂xν
,

∂

∂xμ

)
= −ανμ .
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(iii) Let ω ∈ ∧k T ∗
PM and β ∈ ∧l T ∗

PM, then 3.5.10 gives

(ω ∧ β)ν1...νk+l
=
∑

π∈Πk,l

(sgn π) ωπ(ν1)...π(νk) βπ(νk+1)...π(νk+l) ,

where
∑

π∈Πk,l
again denotes the sum over all (k, l)-shuffles in Πk+l.

Proposition 3.5.14. Let P ∈ U ⊂ M, dim(M) = n and (U , x) a chart such that
x(P ) = {xν}P .

(i) A local representative of ω(P ) ∈ ∧k T ∗
PM, k ≤ n, is

ω(P ) =
∑

ν1<...<νk

ων1...νk
(P )dxν1 ∧ . . . ∧ dxνk .

(ii) {dxν1 ∧ . . . ∧ dxνk}, with 1 ≤ ν1 < . . . < νk ≤ n, is a basis of
∧k T ∗

PM, which
therefore has the dimension

(
n
k

)
= n!

k!(n−k)!
.

Proof. (i) Through
∧k T ∗M ⊂ T 0

k (M), every k-form is a
(

0
k

)
-tensor that has a local

representative
ω = ων1...νk

dxν1 ⊗ . . . ⊗ dxνk

in a chart (U , x), U ⊂ M, by 3.3.11. Here ων1...νk
= ω
(

∂
∂xν1

, . . . , ∂
∂xνk

)
, and {dxν1 ⊗

. . . ⊗ dxνk} is the tensor basis of T 0
k (M) at P ∈ U . Alternation and 3.5.8 then gives

ω = Alt ω = ων1...νk
Alt (dxν1 ⊗ . . . ⊗ dxνk) =

1

k!
ων1...νk

dxν1 ∧ . . . ∧ dxνk .

Note that the Einstein summation convention is still in force and the sum runs over
all choices of indices ν1, . . . , νk ∈ {1, . . . , n}, including those where not all indices are
distinct. However, in that latter case, ων1...νk

= 0 from 3.5.12. For the other cases where
ν1, . . . , νk are distinct, applying 3.5.7 for both ω

(
∂

∂xν1
, . . . , ∂

∂xνk

)
and dxν1 ∧ . . .∧dxνk

yields
ων1...νk

dxν1 ∧ . . . ∧ dxνk = ωπ(ν1)...π(νk)dxπ(ν1) ∧ . . . ∧ dxπ(νk)

for any permutation π ∈ Πk and by noting that (sgnπ)2 = 1. Now, since rear-
ranging the indices does not change ων1...νk

dxν1 ∧ . . . ∧ dxνk , the sum needs to be
only over one of the k! index permutations. Choose ν1 < . . . < νk to finally get
ω =
∑

ν1<...<νk
ων1...νk

dxν1 ∧ . . . ∧ dxνk as desired.

(ii) Linear independency of the dxν1∧ . . .∧dxνk can be shown by using the complemen-
tary set dxνk+1 , . . . ,dxνn and the condition (dx1 ∧ . . . ∧ dxn)

(
∂

∂x1 , . . . ,
∂

∂xn

)
= 1 (see,

for example, [1], p. 332). As the number of ways that k coordinate differentials can be
chosen from n coordinate differentials regardless of order (equivalently, with one fixed
order) is just

(
n
k

)
, the assertion follows. �

Corollary 3.5.15. Let ω be a k-form and β an l-form, then in a coordinate system
{xν}, the local representative of ω ∧ β = (Alt ω) ∧ (Alt β) is

ω ∧ β =
1

k! l!
ων1...νk

βνk+1...νk+l
dxν1 ∧ . . . ∧ dxνk ∧ dxνk+1 ∧ . . . ∧ dxνk+l .
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Definition 3.5.16. Let σ∗ : M → T ∗M denote the sections of the cotangent bundle
T ∗M of a manifold M, then a k-form field is defined as a section of the k-th exterior
power of the cotangent bundle,

ω = Alt (σ∗
1 ⊗ σ∗

2 ⊗ . . . ⊗ σ∗
k) ∈ Γ(

∧k T ∗M) ,

where Γ(
∧k T ∗M) is usually written Ωk(M). ♦

Note that in the literature, the term ”k-form” is generally reserved for the sections of∧k T ∗M, and not for the totally skew-symmetric covariant tensors at single points of
a manifold. This is because of their predominance in differential and integral calculus.
By abuse of language, ”k-form” will be adopted for both elements of

∧k T ∗M and
Ωk(M) in the paper, as long as the meaning will be clear from the context.

Proposition 3.5.17. Let φ : M → N be a map, ω ∈ Ωk(N ) and β ∈ Ωl(N ), then
φ�(ω ∧ β) = φ�ω ∧ φ�β.

Proof. Every differential form constitutes a covariant tensor, so 3.4.38 can be applied,
and alternation commutes with the pullback. �

Definition 3.5.18. For ω ∈ Ωk(M), define the interior product or degree-1 derivation
( �= inner product!) by contracting a vector field u ∈ Γ(TM) with the first index of ω

at every P ∈ M:

iu : Ωk(M) → Ωk−1(M)

ω(v1, . . . , vk) �→ iuω(v2, . . . , vk) = ω(u, v1, . . . , vk) .

In local coordinates {xν},

iuω =
1

(k − 1)!
uαωαν2...νk

dxν2∧ . . . ∧ dxνk . ♦

Proposition 3.5.19. (Without proof.) If ω is a k-form and β an l-form, then

iu (ω ∧ β) = iuω ∧ β + (−1)kω ∧ iuβ .

3.6 Differentiation on Manifolds

So far only the algebra of tensor fields on manifolds has been analyzed. However, in
continuum mechanics, tensor fields generally depend on time and location. Due to
the various geometric facilities on manifolds, beyond partial derivatives there are three
possible types of differential calculi: covariant differentiation, Lie differentiation and
exterior differentiation. Each is appropriate for special problems, but all types have to
satisfy Leibniz’ rule

D(AB) = (DA)B + A(DB) .
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D is the differential operator under consideration and A, B are arbitrary tensor fields.
The so-called exterior derivative d satisfies the general Leibniz’ rule

d(ω ∧ β) = dω ∧ β + (−1)kω ∧ dβ ,

where ω ∈ Ωk(M) and β is an arbitrary form. First, the covariant derivative is being
briefly introduced.

3.6.1 Covariant Derivative

Definition 3.6.1. Let U ⊂ M be a subset. A curve c : I → M, where I ⊂ R is
open, is called integral curve of a vector field w : U → TM, if w(c(t)) = dc/dt(t) is a
tangent vector of the curve for every t ∈ I. Clearly, (w ◦ c)(t) = Tc(t, 1), where

Tc : TI = I × R → TM
(t, s) �→ Tc(t, s) =

(
c(t),

dc

dt
(t) s

)
,

and Tc(·, 1) : I → TM. ♦

Corollary 3.6.2. Let c, w be as in 3.6.1. Moreover, let {xi}P = x(P ) be the local
coordinates of P = c(t) ∈ U ⊂ M in a chart (U , x), w = wi ∂

∂xi and ci = xi ◦ c. Then

wi(c(t)) = dxi · w(c(t)) = dxi(Tc(t, 1)) =
dci

dt
(t) = ċi(t) ,

by noting that dci/dt = dxi(dc/dt) through 3.2.5 and 3.2.7.

Definition 3.6.3. A vector field v : M → TM defined along a curve c : I → M
is called locally parallel transported along the curve, if there is an (affine) connection
∇ : Γ(TM) × Γ(TM) → Γ(TM) on M, so that

∇ċv(P ) = 0 .

Vector fields v which fulfill this condition are called covariant-constant. ♦

Definition 3.6.4. Manifolds with connection according to 3.6.3 are called affinely
connected. ♦

In general, parallelism is not global —this holds only for Euclidian point spaces. A
locally parallel transported tangent vector of a curve remains tangent to the curve.
Indeed, the main difference between Euclidian and non-Euclidian geometry rests on
the fact that for the latter any geometric consideration is local, whereas the former
implies the existence of a global parallelism.

The abstract definition 3.6.3 should now be motivated step by step. The total differen-
tial dv of a vector field does not transform as a tensor, hence avoiding invariant results.
This drawback is eliminated by defining the absolute differential.
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Definition 3.6.5. Let vi ∂
∂xi be the local representative of a vector field v ∈ Γ(TM)

in a chart (U , x), where U ⊂ M. Then

Dvi(P ) = dvi + vkdxjΓ i
k j

are referred to as the absolute differentials of the components of v at P ∈ U . If
a∗ = ai dxi ∈ Γ(T ∗M) is a 1-form, then define

Dai(P ) = dai + ajdxkΓ j
k i

in the same chart. The Γ j
k i are called the connection coefficients.

In Riemannian spaces (M, g), the Γ j
k i are called Christoffel symbols of the second kind.

As they depend on the metric coefficients gij and gij in a chart (U , x) of M via

Γ k
i j =

1

2
gkl

(
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
,

which is not shown here, one has Γ j
k i = Γ j

i k. For that reason Riemannian spaces are
called torsion-free, and the connection ∇ on (M, g) is referred to as the Levi-Civita
connection. ♦

Definition 3.6.6. Let (U , x), (U ′, x′) be regular charts on M, and x′ ◦ x−1|x(U∩U ′) :
x (U ∩ U ′) → x′ (U ∩ U ′) the chart transition map, then define

Γ j
k i =

∂(xk′ ◦ x−1)

∂xk

∂(xj ◦ x′−1)

∂xj′

∂(xi′ ◦ x−1)

∂xi
Γ j′

k′ i′ +
∂(xj ◦ x′−1)

∂xm′

∂2(xm′ ◦ x−1)

∂xk∂xi
. ♦

Corollary 3.6.7. The absolute differentials Dvi are proper tensor components.

Definition 3.6.8. Let v = vi ∂
∂xi ∈ Γ(TM) a vector field, then the

∇iv
j(P ) =

(vj + Dvj) − vj

∂xi
(P ) =

Dvj

∂xi
=

∂vj

∂xi
+ vkΓ j

k i

are called the covariant derivatives of the components vi at every P ∈ M. It is not
uncommon to write vi

|j or vi
;j instead of ∇jv

i. ♦

Definition 3.6.9. Since the ∇iv
j are components of a

(
1
1

)
-tensor field, define the co-

variant derivative of v pointwisely through

∇v(P ) = ∇iv
j dxi ⊗ ∂

∂xj
∈ T1

1(M) .

Let w be another vector field, then

∇wv = ∇v(w) = ∇jv
iwj ∂

∂xi
=

(
∂vi

∂xj
wj + vkwjΓ i

k j

)
∂

∂xi

is called the covariant derivative of v along w. Note that the latter gives a condition
for the Γ j

i k:

∇ ∂

∂xj

∂

∂xk
=

∂

∂xj

(
∂

∂xk

)
= Γ i

k j

∂

∂xi
. ♦



3.6. DIFFERENTIATION ON MANIFOLDS 47

Descriptively, the covariant derivative is the deviation of the locally parallel transported
vector from the original vector in the vicinity of a point.

Proposition 3.6.10. For covariant-constant vector fields the absolute differentials of
their components vanish, that is, in a coordinate system {xi}, Dvi = 0 and

∂vi

∂xj
= −vkΓ i

k j .

Proof. In 3.6.9, set w = ċ and use the condition 3.6.3, then

∇ċv = ċj

(
∂vi

∂xj
+ vkΓ i

k j

)
∂

∂xi
= 0 .

As ċ is arbitrary and the ∂
∂xi are linearly independent, the assertion follows. �

Corollary 3.6.11. Let a∗ : M → T ∗M a field of 1-forms, T ∈ T1
1(M) and P ∈ U ⊂

M. By defining

∇a∗(P ) =

(
∂ai

∂xj
− akΓ

k
i j

)
dxi ⊗ dxj

in a chart (U , x), one has

∇iT
j
k(P ) =

∂T j
k

∂xi
+ T l

kΓ
j

l i − T j
lΓ

l
k i ,

and

∇wT (P ) = ∇kT
i
jw

k ∂

∂xi
⊗ dxj

=

(
∂T i

j

∂xk
wk + T l

jw
kΓ i

l k − T i
lw

kΓ l
j k

)
∂

∂xi
⊗ dxj .

Proposition 3.6.12. Let (M, g), g = gijdxi⊗dxj, be a metric space with connection
∇, then

∇g = 0 .

Proof. From 3.6.11 and 3.6.5,

∇igjk =
∂gjk

∂xi
− 2gjlΓ

l
k i =

∂gjk

∂xi
−
(

∂gij

∂xk
+

∂gkj

∂xi
− ∂gki

∂xj

)
= 0 . �

The covariant derivative can also be applied to vector and tensor fields over maps, from
which the following important result can be obtained.

Theorem 3.6.13 (Induced Connection). (See also [3], sec. 5.7) Let N be a mani-
fold with connection ∇ and v ∈ Γ(TN ). A regular map φ : M → N induces a unique
connection ∇

� on M such that for t ∈ TPM, with P ∈ M, one has

∇
�
t(v ◦ φ) = ∇Tφ(t)v ∈ Γ(φ�TN ) ,

where (v ◦ φ) : M → TN is the corresponding vector field over φ.
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Proof. Let P ∈ U ⊂ M and Q ∈ V ⊂ N , and let (U , X), (V, x), respectively, be
appropriate charts such that t(P ) = tI ∂

∂XI and v(Q) = vi ∂
∂xi . Moreover, let F i

I (P ) =
∂xi◦φ◦X−1

∂XI (P ) be the components of the tangent map Tφ : TM → TN , and γ i
j k(Q) the

coefficients of ∇. By 3.6.9 and 3.4.23, locally there is

∇Tφ(t)v = tIF k
I

(
∂vi

∂xk
+ vjγ i

j k

)
∂

∂xi

=

((
∂vi

∂xk
◦ φ

)
F k

I tI +
(
vj ◦ φ

)
tI
(
γ i

j k ◦ φ
)

F k
I

)
∂

∂xi

=

(
∂ (vi ◦ φ)

∂XI
tI +
(
vj ◦ φ

)
tIγ i

j I

)
∂

∂xi
= ∇

�
t(v ◦ φ) ,

where γ i
j I (P ) = (γ i

j k ◦ φ) F k
I are the coefficients of the induced connection ∇

� on
M. �

Corollary 3.6.14. Additional to the previous definitions, let Γ J
I K (P ) be the connec-

tion coefficients at every P ∈ M, and T ∈ Γ(T 1
1 (M) ⊗ φ�T 1

1 (N )) a
(
1 1
1 1

)
-two-point

tensor field over φ : M → N . Use 3.6.11 and 3.6.13 to get

(i) At P ∈ M, the components of the covariant derivative of T are

∇IT
J i
K j =

∂T J i
K j

∂XI
+ TL i

K j Γ J
L I − T J i

L j Γ L
K I + T J k

K j γ i
k l F

l
I − T J i

K k γ k
j l F

l
I ,

where the point arguments have been omitted.

(ii) The covariant derivative of T at P ∈ M along a vector field W ∈ Γ (TM) reads

∇WT = ∇IT
J i
K j W I ∂

∂XJ
⊗dXK⊗ ∂

∂xi
⊗dxj

=

(
∂T J i

K j

∂XI
W I + TL i

K jW
IΓ J

L I − T J i
L jW

IΓ L
K I + T J k

K jW
Iγ i

k lF
l
I

−T J i
K kW

Iγ k
j lF

l
I

)
∂

∂XJ
⊗dXK⊗ ∂

∂xi
⊗dxj .

Here the symbol ∇ should cover the covariant derivative of the TPM- and T ∗
PM-slots,

as well as of the Tφ(P )N - and T ∗
φ(P )N -slots, that is, ∇ in the above constitutes an

operator for two-point-tensorial covariant differentiation. Again, the point arguments
have been omitted.

(iii) Let T (P ) = S ◦ φ, then, by noting that Γ K
J I (P ) = Γ K

J i (P ) F i
I (P ), one has

∇
�
W (S ◦ φ) (P )

= W IF k
I

((
∂SJ i

K j

∂xk
◦ φ

)
+
(
SL i

K j◦ φ
)
Γ J

L k −
(
SJ i

L j ◦ φ
)
Γ L

K k

+
(
SJ l

K j γ i
l k ◦ φ

)
−
(
SJ i

K l γ l
j k ◦ φ

)) ∂

∂XJ
⊗dXK⊗ ∂

∂xi
⊗dxj

= ∇Tφ(W)S .
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The application to arbitrary
(

p
q

)
- and

(
p r
q s

)
-tensor fields is straightforward.

Definition 3.6.15. The divergence of an at least 1-fold contravariant tensor field T

is defined as the contraction of the first covariant and last contravariant slots of ∇T .
For example, let T ∈ T2

0(M), then

(div T )i = ∇j T ij = T ij
|j ,

and for a vector field v,

div v = ∇iv
i =

∂vi

∂xi
+ vjΓ i

j i . ♦

Definition 3.6.16. A vector field v is called solenoidal, if div v = 0. ♦

Proposition 3.6.17. If (M, g) is a Riemannian manifold with metric coefficients gij,
and (U , x), U ⊂ M, a (positively oriented) chart, then

div v =
1√

det gkl

∂

∂xi

(√
det gkl vi

)
.

Proof. The reader probably remembers from linear algebra that the (i, j)-th cofactor
of a matrix A = (Aij) is defined through det A = Aij(CofA)ij, and that

∂ det A

∂Aij

= (CofA)ij ,

assuming the determinant function to be differentiable. Therefore, ∂ det gkl

∂gij
=(det gkl)g

ij,

by noting that g−1 is symmetric, and

∂ det gjk

∂xi
=

∂ det gjk

∂gmn

∂gmn

∂xi
= (det gkl) gmn ∂gmn

∂xi
.

Substitution into Γ k
i j = 1

2
gkl
(

∂gjl

∂xi + ∂gil

∂xj − ∂gij

∂xl

)
yields

Γ i
j i =

1

2
gikl ∂gik

∂xj
=

1

2 det gik

∂ det gik

∂xj
=

1√
det gik

∂
√

det gik

∂xj
,

so finally,

div v =
∂vi

∂xi
+ vj 1√

det gik

∂
√

det gik

∂xj
=

1√
det gkl

∂

∂xi

(√
det gkl vi

)
. �

3.6.2 Lie Derivative

Another choice of calculus on manifolds is the Lie differentiation, which constitutes
a measure for the change of tensor fields under action of maps, i.e. if the manifold
evolves.
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Definition 3.6.18. In a dynamical system, let the states of the system at time t be
represented by points P (t) ∈ M, in which M is then called the state space or phase
space. At starting time s, P (s) = Ps are the starting points that constitute the initial
state. After some time t − s has elapsed, the state changes to

ψt,s(Ps) = P (t)

at time t. The operator ψt,s is referred to as the time-dependent flow on M provided
that

ψt,s ◦ ψs,r = ψt,r and ψt,t = IdM . ♦

Proposition 3.6.19. A time-independent flow is a one-parameter group of mappings

ψ : M× I → M ,

where I ⊂ R is open, ψ(P, t) = ψt(P ) at fixed t and ψt : M → M.

Proof. If the evolution of the dynamical system is time-independent, then the flow
only depends on the difference t − s, i.e. ψt,s = ψt−s, and the terms ”starting time”
and ”ending time” are meaningless. Setting ψt = ψt,0, 3.6.18 becomes

ψt,0 ◦ ψs,0 = ψt ◦ ψs = ψt+s and ψt−t = ψ0 = IdM .

By noting that ψt+s = ψs+t = ψs ◦ ψt also holds, ψt fulfills the group properties. �

Recalling 3.6.1, every integral curve c : I → M defines a field of tangent vectors
u(c(t)) = ċ(t). However, in this section the converse statement is more interesting:

Proposition 3.6.20. Let U ⊂ M be n-dimensional, and u : U → TM a Ck vector
field, where k ≥ 1, i.e. u has k continuous derivatives. Then there exists a R ⊃ I �= ∅
and a unique Ck+1 integral curve c : I → M of u for each P ∈ U such that c(0) = P .

Proof. Let {xi}P = x(P ) be the local coordinates of P = c(t) ∈ U ⊂ M in a chart
(U , x), then from 3.6.2,

ui(c(t)) =
dci

dt
(t) = ċi(t) .

where u = ui ∂
∂xi and ci = xi ◦ c. Moreover, c(0) = P becomes ci(0) = xi ◦ c(0) = xi(P )

in the chart, so there is a system of n ordinary differential equations with given initial
conditions. As u resp. the ui are Ck, by Picard-Lindelöf’s theorem they have a unique
solution satisfying the initial conditions: the Ck+1 functions ci(t). �

Definition 3.6.21. By 3.6.20, the vector field u : M → TM generates integral curves
for every P ∈ M. The totality or collection ψt = {c(t) | t �→ c(t) = ψt(P ), ∀P ∈ M} of
integral curves c(t) through c(0) = ψ0(P ) = P is a one-parameter group of mappings,
thus called the time-independent flow of u.

Note that the flow need not be defined explicitly, but it is implicitly well-established
by the vector field. Therefore, u is called the generating vector field of the flow ψt. ♦
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Definition 3.6.22. Let u(P ), P ∈ M, be the (time-independent) vector field gen-
erating the flow ψt, then the Lie derivative of a possibly time-dependent tensor field
T ∈ Tp

q(M) is defined by

LuT (P ) = lim
t→0

ψ�
t (T (ψt(P ))) − T (P )

t
= lim

t→0

ψ�
t T − ψ�

0T

t
=

d

dt
ψ�

t T

∣∣∣∣
t=0

.

ψ�
t is the pullback concerning ψt. ♦

The Lie derivative approximately answers the question how a tensor field T changes
under some flow.

Definition 3.6.22 is only for time-independent vector fields u. In general, however, the
generating vector field is time-dependent, i.e. u : M×I → TM, where I ⊂ R. What
is the flow that will be generated? Clearly, it is asked for the solution of the differential
equation

ċ(t) = u(c(t), t) and c(s) = Ps ,

where s is the starting time and Ps = c(s) is the initial condition. However, this is
again an ordinary differential equation which has the unique solution c(t) = ψt,s(Ps),
where ψt,s is a time-dependent flow on M —note this is a more general version of
proposition 3.6.20. Again, a proof can be performed with the aid of Picard-Lindelöf’s
theorem, and uniqueness of the solution gives the properties 3.6.18 of the flow (see also
[1], ch. 4; and [4], ch. 5).

Definition 3.6.23. A mapping ψt,s : M → M, ∀ t, s ∈ I ⊂ R, is referred to as the
time-dependent flow of u : M× I → TM, if for each s and P ∈ M

c(t) = ψt,s(Ps) = ψ(Ps, s, t)

is the unique integral curve of u starting at Ps at time t = s, i.e.

ċ(t) =
d

dt
ψt,s(Ps) = u(ψt,s(Ps), t) and c(s) = ψs,s(Ps) = Ps . ♦

Definition 3.6.24. The Lie derivative of a possibly time-dependent tensor field T ∈
Tp

q(M) along a time-dependent vector field u on M is defined by

LuT (Ps, t) = lim
Δt→0

ψ�
t,sT t − T s

Δt
= lim

Δt→0

ψ�
t,sT t − ψ�

s,sT s

Δt
=

d

dt
ψ�

t,sT t

∣∣∣∣
t=s

,

with Δt = t − s and the pullback operator ψ�
t,s concerning the flow ψt,s. Fixing t in

T t = T (·, t) gives the autonomous Lie derivative

lim
Δt→0

ψ�
t,sT s − ψ�

s,sT s

Δt
=

d

dt
ψ�

t,sT s

∣∣∣∣
t=s

= LuT − ∂T

∂t
= £uT .

That is, if T is time-independent, LuT ≡ £uT . Figure 3.5 illustrates the concept. ♦
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u

P (t) = ψt,s(Ps)

Ps = ψs,s(Ps)

v(Ps) = (ψ�
s,sv)(Ps)

Luv Δt

(ψ�
t,sv)(Ps)

v(ψt,s(Ps))

Figure 3.5: Lie derivative of a time-independent vector field v along a time-dependent
vector field u.

Proposition 3.6.25.

LuT = ψ�t,s

d

dt
ψ�

t,sT t ,

that is, the Lie derivative of an arbitrary tensor is obtained by pulling it back from t to
s, performing the time derivative, and then pushing it forward to t again.

Proof. Let t �= s and f : M → R be a differentiable function on M, then

ψ�
t,s(Luf) = ψ�

t,s

d

dr
ψ�

r,tfr

∣∣∣∣
r=t

=
d

dr
fr ◦ ψr,t ◦ ψt,s

∣∣∣∣
r=t

=
d

dr
(ψr,t ◦ ψt,s)

� fr

∣∣∣∣
r=t

=
d

dt
ψ�

t,sft

by the property 3.4.32(ii) of pullbacks. Since this result holds for f replaced by ar-
bitrary, and possibly time-dependent tensor fields T (see [1], sec. 5.4 for a detailed
discussion), the assertion follows. �

Example 3.6.26. Let f : M×I → R be a differentiable time-dependent scalar field,
where ft(P ) = f(P, t) and P ∈ M, and let u(P, t) be a time-dependent vector field
—the time-dependency of P being understood. By 3.4.30, (ψ�

t,sft)(Ps) = ft ◦ ψt,s =
f(ψt,s(Ps), t). Therefore

Luf (P, t) =
d

dt
ψ�

t,sft

∣∣∣∣
t=s

=
d

dt
f(ψt,s(Ps), t)

∣∣∣∣
t=s

=
∂f

∂t
(P, t) +

∂f

∂xi
(P, t)

∂ψi
t,s

∂t
(P ) =

∂f

∂t
(P, t) +

∂f

∂xi
(P, t) ui(P, t) ,

that is, Luf = ∂f
∂t

+ u[f ].



3.6. DIFFERENTIATION ON MANIFOLDS 53

Proposition 3.6.27. (Without proof.) The Lie derivative of a vector field v is

Luv =
∂v

∂t
+ [u, v] ,

where [u, v] =
(

∂vi

∂xj u
j − ∂ui

∂xj v
j
)

∂
∂xi is the so-called Lie bracket of u and v.

Corollary 3.6.28. If ∇ is a connection without torsion, i.e. Γ i
k j = Γ i

j k, and u, v are
vector fields, then

Luv =
∂v

∂t
+ ∇uv − ∇vu .

Some additional properties of the (autonomous) Lie derivative are being stated without
proof:

Proposition 3.6.29. (Without proof.) (i) If T ∈ Tp
q(M) and φ is a diffeomorphism,

then φ�(£uT ) = £φ�u φ�T , that is, £u is natural with the pullback. (ii) If u, v are
vector fields, then £u+v = £u + £v.

Definition 3.6.30. Let (M, g) be a metric space, then a map φ : M → M is called
isometry of g, if φ�g = g. If each map ψt,s of the flow generated by a vector field
u : M× I → TM is an isometry, then u is referred to as a Killing vector field. It is
easy to verify that for Killing vector fields,

Lug = 0 . ♦

3.6.3 Exterior Derivative

The third type of a calculus of differentiation on manifolds involves the exterior deriva-
tive, which is restricted to fields of differential forms.

Definition 3.6.31. Let ω ∈ Ωk(M) be a k-form on M, then its exterior derivative is
the (k + 1)-form

dω = d ∧ ω =
1

k!
dωμ1...μk

∧ dxμ1 ∧ . . . ∧ dxμk

=
1

k!

∂ωμ1...μk

∂xν
dxν ∧ dxμ1 ∧ . . . ∧ dxμk ∈ Ωk+1(M) .

If ω = f is a scalar field, then df is its differential, defined by 3.2.15. ♦

Definition 3.6.32. A k-form ω is called exact, if there exists a (k − 1)-form α such
that dα = ω, and ω is called closed, if dω = 0. ♦

Corollary 3.6.33. (i) Since d ◦ d = 0 from Schwarz’ theorem, every exact form is
closed, but the converse need not hold. (ii) By 3.5.12 and 3.5.14, every (k = ndim)-
form is closed.
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Proposition 3.6.34. (Without proof.) (i) φ�(dω) = d(φ�ω), i.e. the exterior deriva-
tive commutates with the pullback. (ii) Let u be a vector field, then £uω = iudω+diuω

(Cartan’s formula).

Summarizing the preceding sections, the covariant derivative needs an additional struc-
ture on manifolds, whereas the Lie derivative restricts the direction of differentiation.
The exterior derivative is exclusively for differential forms. All three types lead to
proper tensors, whereas the usual partial derivative does not. The coordinate-invariant
or ”covariant” formulation of physical equations, therefore, is ensured when applying
the covariant, Lie, and exterior calculus.

3.7 Integration on Manifolds

A rough introduction of integration calculus will be given in the following section. In
order to define the integral in Riemannian and non-Riemannian spaces, one needs a
more detailed study of the differential n-forms in an n-dimensional manifold, as well
as a terminology for orientation.

As in section 3.5, lower case Greeks are used for coordinate indices and lower case
Latins are used for labels.

3.7.1 Orientation and Determinants

Definition 3.7.1. Let n —here and in the remainder of this section— denote the
dimension of the manifold M. An n-form μ ∈ Ωn(M) such that μ(P ) �= 0 for all
P ∈ M is called volume form, and the set of all volume forms on M is the volume
bundle. If there exists a volume bundle on M, then M is called orientable and the
pair (M, μ) is referred to as a volume manifold. ♦

Definition 3.7.2. Two volume forms μ′, μ are equivalent, if there is some f : M → R

with f(P ) > 0 such that μ′ = fμ. The equivalence classes [μ] and [−μ] of volume forms
are called the orientation and the reverse orientation (which is also an orientation) on
M, respectively. An orientable manifold is referred to as an oriented manifold, if it has
an orientation. ♦

Definition 3.7.3. Let μN be a volume form on the manifold N . A differentiable map
φ : M → N is called volume preserving, if φ�μN = μM is a volume form on M,
i.e. φ�μN �= 0 and the determinant of the Jacobian matrix of φ is non-zero at every
P ∈ M. φ is called orientation preserving, if φ�μN ∈ [μM], and orientation reserving,
if φ�μN ∈ [−μM]. ♦

Note that if φ is volume preserving, it can be either orientation preserving or orientation
reserving, that is, the determinant of the Jacobian matrix of φ is either positive or
negative, respectively. The sign of the determinant, however, is important when it
comes to the definition of volume measures.
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Example 3.7.4. The Moebius strip is a non-orientable manifold, because the equiv-
alence classes [μ] and [−μ] can only be defined locally.

Proposition 3.7.5. Volume forms (and n-forms) have a single component, that is,
dim(Ωn(M)) = 1.

Proof. This follows directly from 3.5.14 by setting k = n. �

Corollary 3.7.6. (i) 3.5.14(i) states that the order of the coordinate differentials in
the basis of

∧k T ∗
PM is arbitrary. So carrying this over to each fibre of Ωk(M) and

using 3.7.5, one obtains a local representative of the volume form μ at P ∈ M in a
coordinate system {xν}U on U ⊂ M:

μ(P ) = μ(P ) dxν1 ∧ . . . ∧ dxνn .

(ii) By 3.7.5, any other volume form μ′ = fμ is a linear combination of the basis
{dxν1 ∧ . . . ∧ dxνn} ∈ Ωn(M), by choosing suitable f : M → R. If f > 0, then
μ′ ∈ [μ], and if f < 0, then μ′ ∈ [−μ].

Definition 3.7.7. Let M be orientable with orientation [μ], P ∈ U and
{

∂
∂xν

}
∈

TPM a basis. If μ(P )
(

∂
∂x1 , . . . ,

∂
∂xn

)
> 0 (resp. < 0) for all P ∈ U , then the basis is

called positively (resp. negatively) oriented relative to the volume form μ. ♦

Definition 3.7.8. For every chart (U , x) on orientable M with orientation [μ], where
x : U → Rn, define a map x� through

x�|U : Ωn(U) → Ωn(x(U)) ,

and set x�(dxν1 ∧ . . . ∧ dxνn) = f dx1∧ . . . ∧ dxn. The chart (U , x) is then called
positively oriented, if x�(μ|U) is equivalent to

dx1∧ . . . ∧ dxn ∈ Ωn(x(U)) ,

the standard volume form on R
n. ♦

The reader should notice that the map x� has been already defined in a similar form to
obtain the local representative of tensor fields. However, for n-forms one sets x�(dxi∧
. . .∧ dxn) = dx1∧ . . .∧ dxn instead of taking x�dxi = ei (see 3.4.41). It can be shown
that x� is an isomorphism on each fibre of

∧n T ∗U , so the inverse map x� indeed exists.

Corollary 3.7.9. For M being orientable, there is an atlas A(M) = {(Ui, xi)}i∈I,
with I ⊂ N, of which all charts are positively oriented, that is, the determinant of the
Jacobian matrix of every two chart transitions xj (Uj ∩ Uk) → xk (Uj ∩ Uk), j �= k ∈ I,
is positive.

Theorem 3.7.10 (Transformation of n-Forms). Let ai = aν
i

∂
∂xν ∈ TPM, where

1 ≤ i ≤ n, be vectors (the subscript labels are for convenience), and let μ ∈ Ωn(M),
then at P ∈ M,

μ (a1, . . . , an) = det (aν
i) μ

(
∂

∂x1
, . . . ,

∂

∂xn

)
,

where (aν
i) is the matrix whose columns are the components of ai.
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Proof. It is convenient to prepare the proof in two steps. First, it will be shown that

(
a∗1 ∧ . . . ∧ a∗n

)( ∂

∂x1
, . . . ,

∂

∂xn

)
= det

(
a∗i

(
∂

∂xν

))
,

where a∗1, . . . , a∗n are 1-forms. For the purpose of this paper it is sufficient to consider
the case n = 2; a generalization can be found in [1], sec. 6.2. Define a∗i = ai

νdxν ∈
T ∗

PM, then, by 3.5.10,

(
a∗1 ∧ a∗2

)( ∂

∂x1
,

∂

∂x2

)
=
∑

π∈Π1,1

(sgn π) a∗1

(
∂

∂xπ(1)

)
a∗2

(
∂

∂xπ(2)

)
= a1

1a
2
2 − a1

2a
2
1 = det

(
ai

ν

)
.

Here
∑

π∈Π1,1
denotes the sum over the two (1, 1)-shuffles π on {1, 2}, and (ai

ν) =(
a∗i
(

∂
∂xν

))
is the matrix whose rows are the components of a∗i, as desired.

Now define μ = a∗1 ∧ . . . ∧ a∗n. As a special case of the previous result is dx1∧ . . . ∧
dxn
(

∂
∂x1 , . . . ,

∂
∂xn

)
= 1, one has

dx1∧ . . . ∧ dxn

(
∂

∂x1
, . . . ,

∂

∂xn

)
= det (aν

i) μ

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

Here (aν
i) is the inverse of the matrix (ai

ν), whose components are aν
i = dxν (ai) and

ai
ν = a∗i

(
∂

∂xν

)
, respectively. It follows that a∗i and ai so defined are dual, such that

a∗i(ai) = ai
νa

μ
idxν

(
∂

∂xμ

)
= ai

νa
μ
iδ

ν
μ = ai

νa
ν
i = 1 (no sum over i) ,

for all i ∈ {1, . . . , n}. From this and by using μ defined above, dx1∧ . . . ∧ dxn
(

∂
∂x1 ,

. . . , ∂
∂xn

)
= μ (a1, . . . , an), which proofs the theorem. �

Proposition 3.7.11. Let φ : M → N be a differentiable map, U ⊂ M, V ⊂ N
and φ−1(V) ∩ U �= ∅. Moreover, let (U , X), (V, x) be appropriate charts such that
x ◦φ ◦X−1 defines the chart map x concerning φ with respect to X. Let {xν}P = x(P )
and {Xα}P = X(P ) for some P ∈ φ−1(V)∩U ⊂ M, and let μN = μdx1∧ . . .∧dxn ∈
Ωn(N ), then

φ�(μdx1∧ . . . ∧ dxn) = det

(
∂xν ◦ φ ◦ X−1

∂Xα

)
(μ ◦ φ)dX1∧ . . . ∧ dXn ,

where
(

∂xν◦φ◦X−1

∂Xα

)
is the Jacobian matrix of φ with respect to x and X.

Proof. Because μ : N → R, one has φ�μ = μ ◦ φ by 3.4.30, so it is left proving

φ�(dx1∧ . . . ∧ dxn) = det

(
∂φν

∂Xα

)
dX1∧ . . . ∧ dXn ,
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where φν = xν ◦ φ ◦ X−1 has been set, and point arguments are omitted. Multiplying
both sides with

(
∂

∂X1 , . . . ,
∂

∂Xn

)
, then the right hand side becomes just det

(
∂φν

∂Xα

)
. On

the left hand side, however,

φ�(dx1∧ . . . ∧ dxn)

(
∂

∂X1
, . . . ,

∂

∂Xn

)

= (dx1∧ . . . ∧ dxn)

(
φ�

(
∂

∂X1

)
, . . . , φ�

(
∂

∂Xn

))

= (dx1∧ . . . ∧ dxn)

(
∂φν

∂X1

∂

∂xν
, . . . ,

∂φν

∂Xn

∂

∂xν

)

= det

(
∂φν

∂Xα

)
(dx1∧ . . . ∧ dxn)

(
∂

∂x1
, . . . ,

∂

∂xn

)

= det

(
∂φν

∂Xα

)
by 3.4.35 and theorem 3.7.10. �

Corollary 3.7.12. Let φ = Id : M → M, and (U , x), (U ′, x′) be regular charts on
M, then by 3.7.11,

(i) Under chart transitions x′ ◦ x−1|x(U∩U ′) : x (U ∩ U ′) → x′ (U ∩ U ′),

dx1′∧ . . . ∧ dxn′

= det

(
∂(xν′ ◦ x−1)

∂xν

)
dx1∧ . . . ∧ dxn .

(ii) If μ = μ′ dx1′∧ . . . ∧ dxn′

= μ dx1∧ . . . ∧ dxn, then

μ′ = det

(
∂(xν′ ◦ x−1)

∂xν

)−1

μ .

Conclude that μ = μ
(

∂
∂x1 , . . . ,

∂
∂xn

)
is not a scalar, and that n-forms are even relative

scalars of weight 1, i.e. even scalar densities in terms of 3.3.6.

Corollary 3.7.13. Recall the definitions in 3.7.11 and let (U ′, X ′), (V ′, x′) be other

charts on M and N , respectively. Then, by using the abbreviation ∂(xν′◦x−1)
∂xν = ∂xν′

∂xν

and applying the standard rule for the determinant of products of matrices,

det

(
∂φν′

∂Xα′

)
= det

(
∂xν′

∂xν

∂φν

∂Xα

∂Xα

∂Xα′

)
= det

(
∂xν′

∂xν

)
det

(
∂φν

∂Xα

)
det

(
∂Xα

∂Xα′

)
.

Thus det( ∂φν

∂Xα ) is not a proper scalar function in general, i.e. it is not coordinate-
invariant.

Definition 3.7.14. Let A : V → W be an isomorphism of vector spaces and μ ∈∧n W an n-form with respect to the vector space W, then, by 3.7.11 and 3.4.20, a
coordinate-free definition of the determinant can be obtained:

A�μ = (det A) μ .

Note that det A = det (Aα
i), where (Aα

i) is the matrix of the linear transformation
(see 2.1.10). ♦
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Definition 3.7.15. Let a∗1, . . . , a∗n ∈ T ∗
PM be 1-forms, then define the n-form-valued

ε-tensor at P ∈ M through

ε(P ) : T ∗
PM× . . . × T ∗

PM︸ ︷︷ ︸
n-fold

→
n∧

T ∗
PM

(
a∗1, . . . , a∗n

)
�→ a∗1 ∧ . . . ∧ a∗n = εν1...νn

a∗ν1 ⊗ . . . ⊗ a∗νn ,

in which εν1...νn
(P ) is the Levi-Civita symbol or permutation symbol, given by

εν1...νn
=

⎧⎨
⎩

+1 if ν1, . . . , νn is an even permutation of 1, . . . , n
−1 if ν1, . . . , νn is an odd permutation of 1, . . . , n

0 if νi = νj for some i �= j

in every coordinate system. ♦

Proposition 3.7.16. The ε-tensor is an even relative tensor of weight −1.

Proof. In a regular chart (U , x) on M, note that ε (dx1, . . . ,dxn) = dx1∧ . . .∧dxn =
εν1...νn

dxν1 ⊗ . . . ⊗ dxνn by definition, and a∗1 ∧ . . . ∧ a∗n = det(aμ
ν)dx1∧ . . . ∧ dxn by

3.7.10, where a∗μ = aμ
νdxν has been set —here lower case Greeks are also used for

labels. Therefore,

ε
(
a∗1, . . . , a∗n

)
= a∗1 ∧ . . . ∧ a∗n = det

(
aμ

ν

)
εν1...νn

dxν1 ⊗ . . . ⊗ dxνn = det
(
aμ

ν

)
ε ,

so that ε = εν1...νn
dxν1 ⊗ . . . ⊗ dxνn is a local representative of ε.

Now, under a chart transition x′ ◦ x−1|x(U∩U ′) : x (U ∩ U ′) → x′ (U ∩ U ′),

dx1′∧ . . . ∧ dxn′

= det

(
∂xν

∂xν′

)−1

dx1∧ . . . ∧ dxn

= det

(
∂xν

∂xν′

)−1

εν1...νn
dxν1 ⊗ . . . ⊗ dxνn

by 3.7.12 and using the abbreviation ∂(xν′◦x−1)
∂xν = ∂xν′

∂xν . But ε is a tensor, so εν′
1
...ν′

n
dxν′

1⊗
. . . ⊗ dxν′

n = εν1...νn

∂xν1

∂xν′
1
. . . ∂xνn

∂xν′n
dxν′

1 ⊗ . . . ⊗ dxν′
n from 3.3.5. Substitution into the

preceding then yields

εν′
1
...ν′

n
= det

(
∂xν

∂xν′

)−1
∂xν1

∂xν′
1

. . .
∂xνn

∂xν′
n

εν1...νn

as desired. �

Note that ε as a tensor has nn components, but only n! are non-zero. Hence, the even
relative ε-tensor of weight −1 boils down to the even relative scalar dx1∧ . . . ∧ dxn =
ε (dx1, . . . ,dxn) of weight −1 when applied to the n-tuple (dx1, . . . ,dxn).
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3.7.2 Stokes’ Theorem and Volume Measures

The n-forms on n-dimensional manifolds have a single component, thus they can be
integrated over open sets by prescribing the following:

Definition 3.7.17. Let X ⊂ Rn be open and f dx1 ∧ . . . ∧ dxn ∈ Ωn(X ), f =
f(x1 . . . xn) being understood, then define∫

X

f dx1∧ . . . ∧ dxn =

∫
X

f dx1. . .dxn ≡
∫
X

f ,

where
∫
X

f is the ordinary Riemann integral of f in Rn. ♦

Theorem 3.7.18 (Change of Variables). (Without proof.) Let M be orientable,
φ : M → N an orientation preserving map and ω ∈ Ωn(φ(M)), then∫

φ�ω =

∫
φ

ω .

This fundamental theorem well-known from the analysis of real functions leads to the
answer of how n-forms are to be integrated over manifolds.

Proposition 3.7.19. Let (U , x), U ⊂ M, be a positively oriented chart and ω ∈
Ωn(M) an n-form, then ∫

U

ω =

∫
x(U)

ω ◦ x−1 .

Proof. Without loss of generality assume that ω(P ) = ω(P ) dx1∧ . . .∧dxn for every
P ∈ M, then

x�(ω|U) = (ω ◦ x−1) dx1∧ . . . ∧ dxn

by 3.7.8 together with 3.4.42, and∫
x(U)

x�ω =

∫
x(U)

ω ◦ x−1

by definition. The result then follows by the change of variables formula. �

In other words, n-forms get access to the calculus of integration of real functions by
defining their integral in the chart as the ordinary Riemann integral in Rn (cf. [1],
sec. 7.1). Clearly, dxν1 ∧ . . .∧dxνn is replaced by its Lebesgue measure, and the 1-form
valued coordinate differentials dxi on U are read as the usual coordinate differentials
dxi of the chart x(U) ⊂ Rn —note that this approach is comparable to the definition
of a differentiable structure on manifolds presented in section 3.1.

If the atlas A(M) = {(Ui, xi)}i∈I of M =
⋃

i∈I Ui contains of more than one chart,
then the integral of ω over M is defined via the sum of integrals over the subsets Ui

by assuming that there is a so-called partition of unity subordinate to the atlas.
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R
n−1

x(U)

M
U

nx = (0, . . . , 0,−1)

x

∂M

− ∂
∂xn

xn = 0

Figure 3.6: Definition of the outward normal on the boundary ∂M.

In continuum mechanics, Stokes’s theorem is of fundamental importance. For its gen-
eral version on manifolds, it is necessary that the oriented manifold M has a compat-
ible oriented boundary ∂M —for M being n-dimensional, note that ∂M is (n−1)-
dimensional.

Remember that the classic Stokes’ theorem for surfaces embedded in R
3 applies the

right-hand rule to achieve compatibility: the outward normal vector of the surface is
linked to the counter-clockwise, i.e. positive orientation of the boundary. This rule is
used to define the positively oriented boundary of a manifold (figure 3.6):

Definition 3.7.20. Let M be oriented and (U , x) a chart, then a basis
{
g1, . . . , gn−1

}
∈ TP (∂M) at P ∈ ∂M is positively oriented, if

{
− ∂

∂xn , g1, . . . , gn−1

}
∈ TPM is posi-

tively oriented in the orientation of M. By this, M induces an orientation on ∂M. ♦

Theorem 3.7.21 (Stokes’ Theorem). (Without proof; see [1] or [4]) Let M be ori-
ented with an oriented boundary ∂M, and let ω be an (n−1)-form, then∫

M

dω =

∫
∂M

ω .

On Riemannian manifolds, i.e. metric spaces, volume forms enable volume measure-
ment. The volume measure should always be non-zero and positive to be consistent
with the specification in ordinary R3.

From linear algebra, the volume of the parallelepiped spanned by the three independent
vectors w1, w2, w3 ∈ R3 is given by Vol(w1, w2, w3) =

√
det 〈wi, wj〉, if w1, w2 and

w3 are positively oriented, and by

Vol(w1, w2, w3) =
√
|det 〈wi, wj〉| ,

if w1, w2 and w3 are negatively oriented. det〈wi, wj〉 denotes the determinant of the
matrix (Wij), whose elements are given by the inner products Wij = 〈wi, wj〉. To
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carry this over to manifolds, one needs to define quantities that involve the absolute
value of a determinant.

Definition 3.7.22. A multilinear mapping

	 : V × . . . × V︸ ︷︷ ︸
n-fold

→ R

over a vector space V is called an α-density, if for every v1, . . . , vn ∈ V and every
endomorphism A : V → V,

	(Av1, . . . , Avn) = |det A|α 	(v1, . . . , vn) .

The set of all α-densities over V is denoted by |∧n|α V. 1-densities (or just densites)
are also called odd or twisted n-forms. ♦

α-densities can be constructed from n-forms as follows: If μ ∈ ∧n V is an n-form, then
the α-density |μ|α ∈ |∧n|α V is defined through |μ|α (v1, . . . , vn) = |μ(v1, . . . , vn)|α.
Conversely, let V be orientable, {gi} ∈ V a positively oriented basis, vi = Agi, and
	 ∈ |∧n| V a 1-density, then

μ�(v1, . . . , vn) = (det A) 	(g1, . . . , gn)

defines an n-form on V. α-densities can be carried over to manifolds in order to derive
the next result.

Corollary 3.7.23. Let φ = Id : M → M and (U , x), (U ′, x′) be regular charts
on a differentiable manifold M. Let 	 ∈ Γ(|∧n|T ∗M) be a twisted n-form and
x′ ◦ x−1|x(U∩U ′) : x (U ∩ U ′) → x′ (U ∩ U ′) the chart transition map, then 3.7.22 carries
over to

	

(
∂

∂x1
, . . . ,

∂

∂xn

)
=

∣∣∣∣det

(
∂(xν′ ◦ x−1)

∂xν

)∣∣∣∣	
(

∂

∂x1′
, . . . ,

∂

∂xn′

)
,

where Avi has been replaced by the tangent map Tφ( ∂
∂xν ) = ∂(xν′◦x−1)

∂xν
∂

∂xν′
. Conclude

that � = 	
(

∂
∂x1 , . . . ,

∂
∂xn

)
is not a scalar, and that twisted n-form are odd relative

scalars of weight 1, i.e. odd scalar densities in the sense of 3.3.6.

With twisted n-forms one can formulate integrals and Stokes’ theorem even on non-
orientable manifolds.

Definition 3.7.24. Let (M, g) be an oriented Riemannian manifold and the set w1,
. . . , wn ∈ Γ(TM) positively oriented, then the Riemannian volume form or g-volume
dv ∈ Ωn(M) is defined by

dv(w1, . . . , wn) =
√

det 〈wμ, wν〉 ,

i.e. dv(w1, . . . , wn) is the volume of the parallelepiped spanned by the vectors w1, . . . ,
wn. More general, and for arbitrary orientations of the w1, . . . , wn, define the Rie-
mannian α-density or g-α-density through

|dv|α (w1, . . . , wn) = |det 〈wμ, wν〉|
α
2 . ♦
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Let {e1, . . . , en} ∈ TPM be a positively oriented orthonormal basis, and {e1, . . . , en} ∈
T ∗

PM its dual. The volume of the parallelepiped spanned by the e1, . . . , en is just
dv(e1, . . . , en) = 1, but from 3.7.10 this is achieved with dv = e1 ∧ . . .∧en. The more
general case follows.

Corollary 3.7.25. In a regular chart (U , x) on (M, g), let
{

∂
∂x1 , . . . ,

∂
∂xn

}
∈ TPM be

a positively oriented basis, then dv( ∂
∂x1 , . . . ,

∂
∂xn ) =

√
det
〈

∂
∂xμ , ∂

∂xν

〉
=
√

det gμν is

the component of the Riemannian volume form such that

dv =
√

det gμν dx1∧ . . . ∧ dxn

is its local representative.

Proposition 3.7.26. Let (M, G), (N , g) be orientable, φ : M → N a diffeomor-
phism, U ⊂ M, V ⊂ N and φ−1(V)∩U �= ∅. Moreover, let (U , X), (V, x) be positively
oriented charts and let φν = xν ◦φ ◦X−1 denote the coordinate functions of x concern-
ing φ with respect to {Xα}P = X(P ), for every P ∈ φ−1(V) ∩ U ⊂ M. Let dV ,dv be
the Riemannian volume forms on M and N , respectively, then

φ�dv = Jφ dV ,

where Jφ(P ) = det
(

∂φν

∂Xα

) (
√

det gμν)◦φ√
det Gαβ

, called the Jacobian of φ, is a proper scalar.

Proof. By 3.7.11,

φ�dv =
(√

det gμν ◦ φ
)

φ�(dx1∧ . . . ∧ dxn)

=
(√

det gμν ◦ φ
)

det

(
∂φν

∂Xα

)
dX1∧ . . . ∧ dXn .

But dX1∧ . . . ∧ dXn = (det Gαβ)−
1

2 dV by 3.7.25, hence φ�dv = Jφ dV as desired.

To proof the second part, i.e. the invariance of Jφ(P ), let (U ′, X ′), (V ′, x′) be other
regular and positively oriented charts on M and N , respectively. Now, since det gμν =

det
(
gμ′ν′

∂xμ′

∂xμ
∂xν′

∂xν

)
, where the abbreviation ∂(xν′◦x−1)

∂xν = ∂xν′

∂xν has been used, it is√
det gμν√
det gμ′ν′

= det

(
∂xν′

∂xν

)
.

Therefore,

J ′
φ = det

(
∂ϕν′

∂Xα′

) √
det(gμ′ν′)√
det(Gα′β′)

= det

(
∂ϕν′

∂Xα′

) √
det(gμ′ν′)√
det(gμν)

√
det(Gαβ)√
det(Gα′β′)

√
det(gμν)√
det(Gαβ)

= det

(
∂ϕν′

∂Xα′

)
det

(
∂xν

∂xν′

)
det

(
∂Xα′

∂Xα

) √
det(gμν)√
det(Gαβ)

= det

(
∂ϕν

∂Xα

) √
det(gμν)√
det(Gαβ)

= Jφ ,
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so Jφ —in contrast to det
(

∂xν′

∂xν

)
, see 3.7.13— indeed is a scalar. �

Proposition 3.7.27. In the light of 3.3.12, Riemannian volume forms are absolute
pseudoscalars such that the formula of 3.7.26 boils down to

dv ◦ φ = Jφ dV .

Proof. For the moment, drop the condition that both (V, x) and (V ′, x′) previously
defined are positively oriented, then

√
det gμν =

√
det

(
gμ′ν′

∂xμ′

∂xμ

∂xν′

∂xν

)
=
√

det gμ′ν′

∣∣∣∣det

(
∂xν′

∂xν

)∣∣∣∣ .
Let dv =

√
det gμν dx1∧ . . .∧dxn =

√
det gμ′ν′ dx1′∧ . . .∧dxn′

, then use 3.7.12(i) to
obtain

√
det gμ′ν′dx1′∧ . . . ∧ dxn′

= det

(
∂xν

∂xν′

)√
det gμ′ν′dx1∧ . . . ∧ dxn

=
det
(

∂xν

∂xν′

)
∣∣∣det
(

∂xν

∂xν′

)∣∣∣
√

det gμν dx1∧ . . . ∧ dxn

= sign

[
det

(
∂xν

∂xν′

)]√
det gμν dx1∧ . . . ∧ dxn ,

as desired. Now since dv is a scalar, one arrives at φ�dv = dv◦φ by applying definition
3.4.30. �

Corollary 3.7.28.
√

det gμν is an odd relative scalar of weight 1, i.e. an odd scalar

density, and dv =
√

det gμν εν1...νn
dxν1 ⊗ . . . ⊗ dxνn =

√
det gμν ε(dx1, . . . ,dxn).

Definition 3.7.29. ε̄ =
√

det gμν ε is called the Levi-Civita tensor. ♦

Corollary 3.7.30. By 3.3.12, 3.7.16 and 3.7.28 the Levi-Civita tensor is an absolute
pseudotensor.

Proposition 3.7.31. (Without proof.) If dv is a Riemannian volume form, then
£udv = d(iudv) = (div u)dv.

Note this characterization of divergence does not require any metric or affine connec-
tion.

Proposition 3.7.32. Let M be a manifold with boundary ∂M, w ∈ Γ(TM) a vector
field and n∗ ∈ Γ(T ∗M) the ”unit normals” on ∂M. Then, on ∂M,

iwdv = (n∗ ·w)da ,

where da, defined through n∗ ∧ da = dv, is called area form.
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Proof. Note that da is effectively the dv for ∂M, thus it also has a single component.
Now let {xν} be a coordinate system for M and choose ∂M to be the plane where
x1 = 0 and n∗ = dx1, then da =

√
det gab dx2∧ . . . ∧ dxn (a, b = 2, . . . , n). By 3.5.18,

3.5.19, and noting that 0! = 1,

iwdv = iw (n∗ ∧ da) = iwn∗ ∧ da − n∗ ∧ iwda

= w1
√

det gab dx2∧ . . . ∧ dxn − dx1 ∧ iw

√
det gab dx2∧ . . . ∧ dxn .

Evaluated on ∂M, i.e. at x1 = 0 = const., the second term vanishes and one is left
with w1

√
det gab dx2∧ . . . ∧ dxn = (n∗ ·w)da . �

Instead of presuming the unit normals to be 1-forms, they may also be interpreted as
a vector field n satisfying indv = da (cf. figure 3.6 and [2], pp. 136-137).

Theorem 3.7.33 (Divergence Theorem).∫
M

(div w)dv =

∫
∂M

(n∗ ·w)da .

Proof. The proof can be obtained by using Stokes’ Theorem 3.7.21 and applying the
propositions 3.7.31 and 3.7.32. �



Chapter 4

Application: Continuum Mechanics

The geometric concepts introduced in the previous chapter should be applied to contin-
uum mechanics in the following. It is being restricted here to the equations of kinemat-
ics with important strain measures, and the conservation of mass as example of balance
equations. The derivations are mainly based on the contributions [2, 11, 12, 13]. The
concept of an abstract material manifold follows Noll [27, 28]. In the last section,
a framework is outlined so as to extend the geometric continuum mechanics by an
Arbitrary Lagrangian-Eulerian (ALE) formulation [e.g. 22] of kinematics on manifolds.

4.1 Material Body and Ambient Space

Definition 4.1.1. Considering the geometrical definition of a continuum, let M denote
a sufficient differentiable material manifold. A submanifold B ⊂ M is referred to as
a material body. Its particles or material points possess the relevant properties of the
material. The material body is placed in the ambient Riemannian space S via the
embedding

κ : B → S ,

and changes in configurations are noticed and measured in S. One refers to B =
κ(B) ⊂ S, where B → κ(B) is a diffeomorphism, as the reference configuration of the
body and to P ∈ B as the particles of the body in the reference configuration. ♦

Definition 4.1.2. Given a reference configuration B, the set C = {ϕt |ϕt : B → S}
of embeddings ϕt is called the configuration space —configuration is used here as a
synonym for deformation. A motion of the body is a family of configurations dependent
on time t ∈ R, i.e. a curve t �→ ϕt ∈ C:

ϕt : B → S
P �→ ϕt(P ) = Q ,

with ϕt(P ) = ϕ(P, t) at fixed t. ϕt(B) is referred to as the current configuration
of the body (figure 4.1). The placement κt at time t, then, can be defined through
ϕt = κt ◦ κ−1. ♦
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BM

B
ϕt(B)

P
Q

S

ϕt

κ
κt

ϕs
ψt,s = ϕt ◦ ϕ−1

s

ϕs(B)

Qs

Figure 4.1: Material body B, reference configuration B, current configuration ϕt(B)
and related mappings.

Corollary 4.1.3. Let ϕ0(B) = B, that is ϕ0 = IdS , then ϕt is a one-parameter group
of mappings (see 3.6.19 for details), and B ≡ B0 is called the initial configuration of
the body at t = 0.

If B is the initial configuration, the particles of the body are identified with its initial
places in S. Although the choice of a initial configuration is not necessary to describe
the kinematics and kinetics of the body, it has historical significance in continuum
mechanics.

To the neighborhoods U(P ) ⊂ B, charts (U , X) with local coordinate functions XI can
be assigned. As S and B are differentiable manifolds, the partial derivatives

{
∂

∂XI

}
∈

TPB establish a basis of the tangent space at each P , and the coordinate differentials{
dXI
}
∈ T ∗

PB is its dual in the cotangent space. Since S is Riemannian, GIJ(P ) =〈
∂

∂XI , ∂
∂XJ

〉
P

are the metric coefficients on B. The current configuration contains the
current places Q = ϕt(P ) ∈ S of the particles of the material body. Charts of the
neighborhoods V(Q) ⊂ S are denoted by the pairs (V, x), with {xi}Q = x(Q) ∈ R3,
that is, xi are the coordinates of the ambient space. The definition of a local base{

∂
∂xi

}
∈ Tϕt(P )S and the dual base {dxi} ∈ T ∗

ϕt(P )S is straightforward. The gij(Q) =〈
∂

∂xi ,
∂

∂xj

〉
Q

are the metric coefficients on S.

As configurations are understood as embeddings, chart transitions from X to x and
vice versa are compatible. Herein, regularity of the local coordinate systems is de-
manded everywhere in order to exclude breaks and cracks of the material respectively
the ambient space.
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The difference between Q and ϕt(P ) is important: the spatial points Q —and also
S— are independent of the motion of the body. By contrast, ϕt(P ) denotes the point
occupied by the particle P at time t in the ambient space, and ϕt(B) only considers
those spatial points which are occupied by the body during its motion.

As a common notation, upper case Latins are used for coordinates (I, J, K, . . . ∈
{1, 2, 3}), vectors and tensors of the reference configuration, or are related to the
Lagrangian formulation defined later on. Lower case Latins are related to the cur-
rent configuration, the ambient space, or to the Eulerian formulation. This is only a
general convention, inconsistency might be useful. Moreover, in order to reduce the
amount of necessary symbols within the text and in formulas, the picture X(P ) in
the chart is often identified with the particle P and a function f(X) = f ◦ X(P ), for
example, is written f(P ). However, it should be emphasised that there is a fundamen-
tal difference between the object in the manifold and its picture or localization in the
chart.

The embedding of the body in space enables the observation of the body, and the mea-
surement of physical properties or deformations, as B benefits from the inner product
in S. In the material manifold M it does not exist any metric because of the arbitrary
choice of the map κ [27, 28]. Lengths and angles change permanently during a defor-
mation process, hence it does not make any sense to define a distance and suchlike
measures. The material manifold is merely a continuous assembly of particles with
certain physical properties. It is indeed a useful construction in fracture mechanics
and in material sciences, for example. Therein, it is used to establish microstruc-
ture of the material or forces on cracks, inclusions and dislocations of crystal lattices
(cf. configuration mechanics, Eshelby mechanics).

It is assumed throughout this chapter that both the ambient space and the body are
three-dimensional. However, for some concepts it is illuminative to include the case
where dim(B) < dim(S). For example, if B is a shell, note that dim(B) = dim(B) =
2, because κ is an embedding. Since ϕt is also an embedding and ϕt(B) ⊂ S is a
submanifold, dim(ϕt(B)) = 2 and charts of ϕt(B) and S are compatible in the sense of
3.1.26. Note that even if B and S have different dimensions, ϕt can be invertible, i.e. a
regular map.

Definition 4.1.4. Let ϕt : B → S be the motion of a material body, and let U ⊂ B,
V ⊂ S and ϕ−1

t (V) ∩ U �= ∅. Additionally, let (U , X), (V, x) be appropriate charts,
then, analogous to definition 3.1.21,

x ◦ ϕt ◦ X−1
∣∣
X(ϕ−1

t (V)∩U) : X
(
ϕ−1

t (V) ∩ U
)

→ x
(
ϕ−1

t (V) ∩ U
)

.

defines the chart transition concerning ϕt or the localization of the motion. If {xi}Q =
x(Q) for Q ∈ V, then abbreviate ϕi

t = xi ◦ϕt ◦X−1, so xi ◦ϕt = ϕi
t are the coordinates

on ϕt(B). ♦
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TB Tϕt �� TS
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−1
t

��

Figure 4.2: Material, Lagrangian and Eulerian velocity fields.

Definition 4.1.5. Let ϕt be a C1-motion of B in S, that is, ϕt is at least 1-fold
continuous differentiable, and let the spatial coordinates xi ◦ ϕt = ϕi

t be given as
functions of the motion ϕt according to 4.1.4, then

V t =
∂ϕi

t

∂t

∣∣∣∣
P

∂

∂xi
= V i

t (P )
∂

∂xi
(Q)

describes the particle velocity field at time t, called the Lagrangian velocity field over
ϕt. Clearly: V t : B → TS, with V t(P ) = V (P, t) at fixed t. The corresponding spatial
or Eulerian velocity field,

vt = V t ◦ ϕ−1
t =

(
∂ϕi

t

∂t

∣∣∣∣
P

◦ ϕ−1
t

)
∂

∂xi
= vi

t(Q)
∂

∂xi
∈ Γ(TS) ,

where Q = ϕ(P, t), is obtained by switching the point arguments (figure 4.2). ♦

vt(Q) = v(Q, t) is a proper vector field on S as it follows the motion on ϕt(B); in
other words, vt is the ”instantaneous” velocity at Q. The Lagrangian velocity field V

is certainly no vector field on B, because ∂
∂xi (Q) ∈ TQS depends on the choice of Q.

Definition 4.1.6. Let ϕt be the motion of B in S, and vt the spatial velocity, then
the vector field vt = ϕ�

t vt ∈ Γ(TB) on the initial configuration is called the material
velocity, that goes along with the use of so-called convected coordinates ξI

t (x(Q)) =
XI ◦ ϕ−1

t . ♦

Corollary 4.1.7. In the chart (U , X), U ⊂ B, set v = vI ∂
∂XI . Then, by noting that

ϕI
ξ(P ) = ξI

t ◦ x ◦ ϕt = XI ◦ ϕ−1
t ◦ ϕt = XI(P ),

V t = Tϕt(vt) =
∂ϕJ

ξ

∂XI
vI

t

∂

∂ξJ
t

= vI
t (P )

∂

∂ξI
t

(Q) .

The ∂
∂ξI (Q, t) are time-dependent basis vectors that are scribed on B and follow its

deformation. For ϕt being a one-parameter group, ∂

∂ξI
t
≡ ∂

∂XI at t = 0.

If B and S have different dimensions, as this is the case for shells, the Eulerian velocity
field vt is tangent to S, but it is not necessarily tangent to ϕt(B). Thus, defining
the material velocity through vt = ϕt�vt has no physical meaning. Note that in the
literature, v is often called the convective velocity. This, however, conflicts the term
used for a fundamental velocity field in the ALE formulation.
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Considering section 3.6.2, every proper vector field vt ∈ Γ(TS) generates a flow ψt,s on
S. Hence, one may ask: what is the flow of the spatial velocity field associated with
the motion ϕt? The following proposition gives the answer (see also [2], p. 95).

Proposition 4.1.8. The time-dependent flow ψt,s on S associated with the regular
motion ϕt : B → S is given by

ψt,s = ϕt ◦ ϕ−1
s : S ⊃ ϕs(B) → ϕt(B) ⊂ S , ∃ψ−1

t,s , t, s ∈ R .

Proof. Note that before reaching Q = ϕt(P ) at time t, the particles pass some points
Qs = ϕs(P ) at t = s (figure 4.1). For the components of the spatial velocity v at Qs,

vi
t(Qs) =

∂ϕi
t

∂t

∣∣∣∣
P

◦ ϕ−1
s =

∂

∂t
ϕi

t

(
ϕ−1

s (Qs)
)

=
∂

∂t
ψi

t,s(Qs) .

Since ψs,s(Qs) = Qs, the assertion follows. �

Proposition 4.1.9. The Lie derivative of arbitrary t ∈ Tp
q(S) along the spatial velocity

is

Lvt = (ϕt ◦ ϕ−1
s )�

d

dt
(ϕt ◦ ϕ−1

s )� t = ϕt� ◦ ϕ�
s

d

dt
(ϕs� ◦ ϕ�

t t) = ϕt�

d

dt
ϕ�

t t .

Proof. This follows from the previous proposition, by recalling the chain rule 3.4.32,
using 3.6.25, and by noting that (ϕ�

s)
−1 = (ϕ−1

s )
�

= ϕs�. �

4.2 Deformation Gradient and Strain Measures

The definitions made in section 4.1, concerning ϕt, B, S, coordinates XI and xi etc.,
are used throughout.

Definition 4.2.1. Let ϕ : B → S be a configuration. According to 3.4.23, a two-point
tensor F , called the deformation gradient, is assigned to the tangent map Tϕ:

Tϕ : TPB → Tϕ(P )S
∂

∂XI
�→ Tϕ

(
∂

∂XI

)
=

∂ϕi

∂XI

∂

∂xi
= F · ∂

∂XJ
,

that is, for each P ∈ B,

F (P ) =
∂ϕi

∂XI

∂

∂xi
⊗ dXI = F i

I(P )
∂

∂xi
⊗ dXI ∈ Γ(ϕ�TS ⊗ T ∗B) .

The expression ϕ�TS denotes the induced bundle of TS over the map ϕ according to
3.4.12, i.e. ∂

∂xi attached to ϕ(P ) being understood. If ϕt is a motion of B in S, then F

depends on both P ∈ B and t ∈ R, that is, F (P, t) = F i
I(P, t) ∂

∂xi ⊗ dXI . ♦
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Corollary 4.2.2. (i) By 3.3.20 and 3.3.21, the transpose of the deformation gradient
is

F T : TS ⊃ T (ϕ(B)) → TB
∂

∂xi
�→ F T · ∂

∂xi
= (F T)I

i

∂

∂XI
= gijF

j
JGIJ ∂

∂XI

for each P = ϕ−1(Q). In fussy local notation this reads

F T(Q) = gij

(
∂ϕj

∂XJ
◦ ϕ−1

)(
GIJ ◦ ϕ−1

) ∂

∂XJ
⊗ dxj

=
(
F i

I ◦ ϕ−1
)
dXI ⊗ ∂

∂xi
.

(ii) Recall 3.3.22 and 3.4.24, then conclude that the inverse deformation gradient
F−1(P ) : Tϕ(P )S → TPB corresponds to the inverse tangent map with switched base
points, i.e. F−1 = T (ϕ−1) ◦ ϕ. Therefore,

F−1(P ) =

(
∂(ϕ−1)I

∂xi
◦ ϕ

)
∂

∂XI
⊗ dxi ,

where (ϕ−1)I = XI ◦ ϕ−1 ◦ x−1 and ∂(ϕ−1)I

∂xi (Q) ◦ ϕ = ∂(ϕ−1)I

∂xi (P ).

(iii) From 3.3.22, also obtain the inverse transpose of the deformation gradient:

F−T(Q) = gij ∂(ϕ−1)J

∂xj

(
GIJ ◦ ϕ−1

) ∂

∂xi
⊗ dXI

=
(
(F−1)I

i ◦ ϕ−1
)
dxi ⊗ ∂

∂XI
.

Applying the relations to 3.4.36 proofs the following corollary concerning the pushfor-
ward and pullback of tensor fields on B and S, respectively.

Corollary 4.2.3. (i) Let T ∈ Tp
q(B), a∗

1, . . . , a
∗
p ∈ Γ(T ∗S) and w1, . . . , wq ∈ Γ(TS),

and let ϕ : B → S be a regular configuration. Then, by dropping the point argument,

ϕ�T
(
a∗

1, . . . , a
∗
p, w1, . . . , wq

)
= T
(
(a∗

1 · F ), . . . , (a∗
p · F ), (F−1 · w1), . . . , (F

−1 · wq)
)

.

(ii) On the other hand, if t ∈ Tp
q(S), B∗

1, . . . , B
∗
p ∈ Γ(T ∗B) and W 1, . . . , W q ∈ Γ(TB),

then

ϕ�t
(
B∗

1, . . . , B
∗
p, W 1, . . . , W q

)
= t
(
(B∗

1 · F−1), . . . , (B∗
p · F−1), (F · W 1), . . . , (F · W q)

)
.
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Example 4.2.4. Let t = tij dxi⊗dxj ∈ T0
2(S) and W k = W I

k
∂

∂XI ∈ Γ(TB), k = 1, 2,
then

ϕ�t (W 1, W 2) = t ((F · W 1), (F · W 2))

= tijW
I
1 W J

2 F k
KF l

L

(
dxi ·
(

∂

∂xk
⊗ dXK · ∂

∂XI

))
⊗
(
dxj ·

(
∂

∂xl
⊗ dXL · ∂

∂XJ

))

= tijW
I
1 W J

2 F k
IF

l
J

(
dxi · ∂

∂xk

)(
dxj · ∂

∂xl

)
= tijW

I
1 W J

2 F i
IF

j
J .

Since W 1, W 2 are arbitrary, (ϕ�t)IJ = tijF
i
IF

j
J .

Proposition 4.2.5. Let t ∈ T0
2(S), then, without point arguments,

ϕ�t = F T · t · F .

Proof. By 4.2.3(ii), ϕ�t (·, ·) = t (F (·), F (·)). However, for t = tij dxi ⊗ dxj ,

t (F (·), F (·)) = tij dxi(F (·)) ⊗ dxj(F (·))

= tijg
ik

〈
∂

∂xk
, F (·)

〉
⊗
(
dxj · F (·)

)
= tijg

ik

〈
F T · ∂

∂xk
, (·)
〉
⊗
(
dxj · F (·)

)
= tij F T · dxi(·) ⊗ dxj · F (·)

= (F T · t · F ) (·, ·)

by 3.3.16 and 3.3.20. It is important to keep in mind that for the proposition to be
valid, a metric structure on S is required. �

Corollary 4.2.6. Operate analogously to show that if (i) s ∈ T2
0(S), then ϕ�s =

F−1 ·s ·F−T. (ii) Let S ∈ T2
0(B), then ϕ�S = F ·S ·F T, and (iii) ϕ�T = F−T ·T ·F−1

for T ∈ T0
2(B).

Definition 4.2.7. In numerical applications of continuum mechanics it is the tangent
map Tϕ = F of the configuration ϕ : B → S that is usually given, and not ϕ itself.
Therefore, it might be convenient to borrow the notation of definition 3.4.20 and to
replace ϕ� by F �, and ϕ� by F �. For example, if Tϕ = R : TPB → TQS is orthogonal
and t ∈ T0

2(S), then R�t = RT · t ·R denotes the pullback of t over pure rotational ϕ,
also called the R-pullback of t. ♦

The deformation gradient includes stretches as well as rigid rotations of the body. There
are different choices to split off the stretches and, therefore, different strain measures
can be defined. Their applicability depends on the problem and is controversially
discussed. However, all strain measures are symmetric tensors by definition.
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Definition 4.2.8. The right Cauchy-Green tensor C : TB → TB, often just called
the deformation tensor, is a so-called Lagrangian strain measure, and it is defined for
every P ∈ B through

C(P ) = (F T ◦ ϕ) · F = GKI (gik ◦ ϕ) F k
KF i

J

∂

∂XI
⊗ dXJ . ♦

Proposition 4.2.9. Let g = gij dxi ⊗ dxj ∈ T0
2(S) be the local representative of the

spatial metric tensor, then
C� = ϕ�g .

Proof. By 4.2.5, 4.2.2(i) and 3.3.16,

ϕ�g(P ) = (F T ◦ ϕ) · (g ◦ ϕ) · F = (gij ◦ ϕ)F i
IF

j
J dXI ⊗ dXJ = C�(P ) . �

Definition 4.2.10. The Green-Lagrange strain tensor or material strain tensor E :
TB → TB is also a Lagrangian strain measure. It is defined through

2E (P ) = (C − IB)(P ) =
(
CI

J − δI
J

)
(P )

∂

∂XI
⊗ dXJ ,

where IB is the second-rank unit tensor and δI
J is the Kronecker delta on B, respec-

tively. Note that E� = 1
2
(C� − G), where G = GIJdXI ⊗ dXJ is the metric on

B. ♦

Definition 4.2.11. Eulerian strain measures can be defined as mappings T ∗S×TS →
R on the current configuration. The left Cauchy-Green tensor on S is

b =
(
F ◦ ϕ−1

)
· F T .

Suppressing the arguments, in local coordinates one has

b = GIJgjkF
i
IF

k
J

∂

∂xi
⊗ dxj .

In contrast to the right Cauchy-Green tensor, the left Cauchy-Green tensor requires
ϕ : B → S to be regular (i.e. invertible). ♦

Definition 4.2.12. Let the configuration map ϕ be regular, then define the Euler-
Almansi strain tensor or spatial strain tensor e : TS → TS through

2e = iS − c =
(
δi

j − ci
j

) ∂

∂xi
⊗ dxj ,

in which c = b−1 is called the Finger tensor, iS is the unit tensor and δi
j is the

Kronecker delta on S, respectively. ♦

Corollary 4.2.13. By 4.2.6, (ϕ�G)ij = (GIJ)−1(F−1)I
i(F

−1)J
j = (g� · b−1)ij, so

ϕ�G = c�. From this and 4.2.9,

ϕ�E
� =

1

2
(ϕ�C

� − ϕ�G) =
1

2
(g − c�) = e� .
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An important observation on manifolds respectively in Riemannian spaces is that there
are indeed strains, but no displacement fields such a kind that u(P ) = (x − X)(P ),
because of the loss of position vectors.

Several problems ask for the rate of strain. Because of the time-dependence of the
motion ϕ(·, t) = ϕt of the material body, all strain measures are time-dependent.

Definition 4.2.14. Let the motion ϕt : B → S be differentiable and C the right
Cauchy-Green tensor, then the Lagrangian or material rate of deformation tensor is
defined by

2D(P, t) =
∂

∂t
C(P, t) .

Note that an equivalent definition is D = ∂E/∂t. ♦

Proposition 4.2.15. The components of D are

2DI
J(P, t) = GKI(gik ◦ ϕt)

[(
∇�

KV k
)
F i

J +
(
∇�

JV i
)
F k

K

]
,

where ϕt(P ) = ϕ(P, t), V i are the components of the Lagrangian velocity, and ∇
� is

the connection on B induced by the connection ∇ on S (see section 3.6.1).

Proof. Let γ j
i k be the coefficients of ∇ on S, then by 3.6.8 and 3.6.13,

∂V i

∂XI
= ∇�

IV
i − V jγ i

j kF k
I = ∇�

IV
i − 1

2
V jF k

Ig
il

(
∂gkl

∂xj
+

∂gjl

∂xk
− ∂gjk

∂xl

)
.

By definition 4.2.8, GIK(P )CI
J(P, t) = (gik ◦ ϕ(P, t))F k

K(P, t)F i
J(P, t) —note that

the metric coefficients GIJ are time-independent. By using the abbreviation ϕi
t(P ) =

xi ◦ ϕt ◦ X−1 and ommiting the arguments, differentiating in t then gives

2GIKDI
J =

∂gik

∂xj
V jF k

KF i
J + gij

∂V j

∂XK
F i

J + gijF
j
K

∂V i

∂XJ
.

Now substitute the identity for ∂V i

∂XI to obtain

2GIKDI
J =

∂gik

∂xj
V jF k

KF i
J

+gik(∇�
KV k)F i

J − 1

2
V jF m

KF i
J

(
∂gmi

∂xj
+

∂gji

∂xm
− ∂gjm

∂xi

)

+gik(∇�
JV i)F k

K − 1

2
V jF i

JF k
K

(
∂gik

∂xj
+

∂gjk

∂xi
− ∂gji

∂xk

)
= gik

[
(∇�

KV k)F i
J + (∇�

JV i)F k
K

]
+ V jF i

JF k
K

∂gik

∂xj

−1

2
V jF i

JF k
K

∂gki

∂xj
− 1

2
V jF i

JF k
K

∂gik

∂xj

= gik

[
(∇�

KV k)F i
J + (∇�

JV i)F k
K

]
,

gij and
∂gij

∂xk evaluated at P being understood. Multiplying both sides with GKL and
relabelling the indices then gives the result. �
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Definition 4.2.16. Let ϕt be a regular motion of B in S, then define the Eulerian or
spatial rate of deformation tensor d, where dt ∈ T1

1(S) for t fixed, through

d� = ϕt�(D
�) ,

or, equivalently, d� = ∂e�/∂t. ♦

Note that for arbitrary tensor fields T , ϕ�(T
�) �= (ϕ�T )� in general!

Proposition 4.2.17. Let v be the spatial velocity and g the spatial metric, then

2d�(Q, t) = Lvg .

Proof. Definition 4.2.16 implies 2D� = ∂
∂t

C�, and from 4.2.14 and proposition 4.2.9
one has

2d� = ϕ�

∂

∂t
ϕ�g .

Now setting ∂
∂t

ϕ� = d
dt

ϕ�
t makes sense, because the pullback describes a curve of tensors

with parameter t. The result then follows from proposition 4.1.9. (Consult [2], p. 98,
for an alternative proof.) �

4.3 Lagrangian and Eulerian Formulations

The following section should give a precise definition of the Lagrangian and Eulerian
formulations of classic resp. traditional continuum mechanics, and it points to the
different use of the term ”convective”.

Definition 4.3.1. A
(

p
q

)
-tensor-valued physical field f on the ambient space S, also

called a spatial field, is a function

f : S × I → T p
q (S) ,

where I ⊂ R. Dependent on the order of p and q, the physical field thus appears as
a tensor-valued function of (Q, t) ∈ (S × I), i.e. a time-dependent scalar, vector or
tensor field f on S. The field is presumed to be measurable on a subset V ⊂ S filled
with matter; however, f would be meaningless in an ”empty space”. ♦

Definition 4.3.2. Let ϕ : B × I → S be the motion of a material body, then the
physical field defined in 4.3.1, but restricted to ϕ(B, t), can be written as

f ◦ ϕ : B × I × I → T p
q (S) .

Here I × I = {(t, t) | t ∈ I} is meant to be the diagonal, i.e. both ”t” in f(ϕ(P, t), t)
take the same value. Depending on whether Q = ϕt(P ) ∈ S or P ∈ B serve as the
independent variables, one refers to ft(Q) = f(Q, t) as the Eulerian formulation, and
to Ft(P ) = ft ◦ ϕt as the Lagrangian formulation of the field at fixed t, respectively. ♦
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Corollary 4.3.3. The
(

p
q

)
-tensor-valued Lagrangian field F is understood as a map

F : B × I → T p
q (S). The difference between F and f ◦ ϕ defined vanishes for fixed t,

that is,

Ft = ft ◦ ϕt : B → T p
q (S) ,

so Ft = ft ◦ ϕt is a
(

p
q

)
-tensor field over ϕt.

It is notable that the distinction between the Lagrangian formulation and the Eulerian
formulation of the same physical field is only valid if there are affine point spaces
resp. general manifolds together with a point map. In ordinary vector spaces, the
equation Ft(P ) = ft ◦ ϕt does not make sense, as the related tensors have no base
points. However, for simplicity, the difference between f, F and their localizations
f ◦ x−1 and F ◦ X−1, respectively, is dropped throughout.

Definition 4.3.4. Another way to formulate the spatial field f in terms of the refer-
ence configuration B is to pull it back by the motion ϕt, such that (ϕ�

tft) ∈ Tp
q(B),

which is then called the convective representative of f at time t [2, 11, 12]. However,
one better uses the term ”material” rather than ”convective”, because in the ALE
community and so within this paper, ”convective” has a different meaning. ♦

Definition 4.3.5. The material time derivative of a physical field f(Q, t) on S is
defined through

ḟ(Q, t) =
∂f

∂t

∣∣∣∣
Q

+ ∇vf = Υ (Q, t) ,

in which Υ (Q, t) denotes a source term, e.g. a constitutive equation. The convective
term ∇vf is the covariant derivative of f along the spatial velocity field v, and ∇

denotes the connection on S. ♦

It should be clear that ∇vf is due to Q = ϕ(P, t), thus legitimating the term ”mate-
rial”.

Corollary 4.3.6. Let f : S × R → R be a scalar field, then

ḟ =
∂f

∂t

∣∣∣∣
Q

+
∂f

∂xi
vi =

∂f

∂t

∣∣∣∣
Q

+ v[f ] = Lvf .

Corollary 4.3.7. Let Ft(P ) = ft◦ϕt be the Lagrangian representative of a spatial field
f(Q, t). By noting that

ḟ(ϕ(P, t), t) =
∂F

∂t
resp. ḟt =

(
∂

∂t
(ft ◦ ϕt)

)
◦ ϕ−1

t

through the chain rule, an important link between the Lagrangian formulation and the
Eulerian formulation is

∂Ft

∂t
◦ ϕ−1

t =
∂f

∂t

∣∣∣∣
Q

+ ∇vf = Υ (Q, t) .
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Definition 4.3.8. Let V t ∈ Γ(ϕ�TS) be the particle velocity resp. the Lagrangian
velocity and ϕt : B → S a C2-motion —that is, ϕt should be twice continuous
differentiable—, then

A(P, t) =
∂

∂t
V (P, t)

is called the particle acceleration or Lagrangian acceleration. The spatial or Eulerian
acceleration, defined by at = At ◦ ϕ−1

t , is a proper vector field on S. ♦

Proposition 4.3.9. Let v be the spatial velocity, then a = v̇.

Proof. Due to V i(P, t) = vi(ϕ(P, t), t) by freezing t, and 4.3.7, one has

∂V i

∂t
=

∂vi

∂t
◦ ϕ +

(
∂vi

∂xj
◦ ϕ

)
V j

for each component, and(
∂V i

∂t
+ V kV j

(
γ i

k j ◦ ϕ
)) ∂

∂xi
=

∂V

∂t
= A(P, t)

by definition 3.6.9 —covariant differentiation is applied here because A should trans-
form as a vector. Substituting A(P, t) = a(ϕ(P, t), t), with Q = ϕ(P, t), then yields

a(Q, t) =
∂v

∂t

∣∣∣∣
Q

+

(
∂vi

∂xj
vj + vkvjγ i

k j

)
∂

∂xi
=

∂v

∂t

∣∣∣∣
Q

+ ∇vv = v̇

as desired. �

4.4 Conservation of Mass and Piola Transformation

Proposition 4.4.1. Let the material manifold be a measure space (M, m) with a non-
negative scalar measure m, called the distributed mass, and a mass m(P) ∈ R should
be assigned to every part P ⊂ B of the material body B ⊂ M. Furthermore, let the
measure be handed down to every orientable placement V = κt(P) ⊂ S in the ambient
space at time t ∈ I ⊂ R, and let dv and

∫
V
dv denote the Riemannian volume form

and the volume measure (Lebesgue measure) of V, respectively, then there is a function
ρ : V × I → R such that

m(P) =

∫
V

ρ dv .

Proof. Note that m(P)=m(V), because P and κt(P) are assumed to have the same
mass measure. The rest of the proof can be done with the aid of Radon-Nikodym’s
theorem, but it should be omitted here. �

Definition 4.4.2. ρ(Q, t) is called spatial or Eulerian mass density at Q ∈ V and time
t, and dm = ρdv is called mass form on V. ♦
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Definition 4.4.3. Let B = κ(B) be the reference configuration of a material body,
ϕt = κt ◦ κ−1 : B → S a motion and U ⊂ B a subset with piecewise continuous differ-
entiable (at least C1) boundary. Then, the spatial mass density ρ obeys conservation
of mass, if

d

dt

∫
ϕt(U)

ρ dv = 0 ,

so that the mass is constant in every (orientable) configuration ϕt(U) of the subset. ♦

Proposition 4.4.4. Let dim(B) = dim(S), and let the motion ϕt = ϕ(·, t) : B → S be
a one-parameter group of C1 diffeomorphisms for each ϕt(B) ⊂ S such that ϕ0(B) ≡ B
is the initial configuration. In addition, let both B and S be orientable, Jϕ the Jacobian
and v the spatial velocity of ϕ, respectively, then

∂Jϕ

∂t
= (div v ◦ ϕt) Jϕ .

Proof. Let dV ,dv be the Riemannian volume forms on B and S, respectively, then
ϕ�

tdv = JϕdV by proposition 3.7.26. Holding t fixed, then by 3.6.25 and 3.7.31 the
time derivative becomes

∂

∂t
Jϕ dV = ϕ�

t£vdv = ϕ�
t ((div v)dv) = (div v ◦ ϕt) Jϕ dV . �

Proposition 4.4.5. Let the motion ϕt : B → S, P �→ Q = ϕt(P ) be as before, then
conservation of mass is equivalent to

(i) ρ(ϕ(P, t), t) Jϕ(P, t) = ρref(P ),

where ρref(P ) = ρ(P, 0) is the mass density of a subset U ⊂ B, and

(ii) ∂ρ
∂t

∣∣
Q

+ div(ρ v) = 0.

Proof. (i) By ϕ0(U) ≡ U , conservation of mass can be written
∫

ϕt(U)
ρ(Q, t)dv =∫

U
ρref(P )dV . Application of the change of variables theorem 3.7.18 and the formula

ϕ�
tdv = JϕdV then gives∫

U

ρ(Q, t) Jϕ(P, t)dV =

∫
U

ρref(P )dV .

Since Q = ϕ(P, t), and U is arbitrary, (i) follows.

(ii) Use 4.4.4 and (i) to obtain

∂

∂t
(ρ Jϕ) = ρ̇ Jϕ + ρ

∂Jϕ

∂t
= ρ̇ Jϕ + (ρ div v)Jϕ = 0 ,

where ρ̇ is the material time derivative of ρ(Q, t). Multiplying both sides with 1/Jϕ

and noting that div(ρ v) = ∂ρ
∂xi v

i + ρ div v then proofs the assertion. �

Definition 4.4.6. One refers to 4.4.5(ii) as the continuity equation, and to ∂
∂t

(ρ Jϕ) = 0
as its conservative form. ♦
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Corollary 4.4.7. By 3.7.3, a motion ϕt is volume preserving, if Jϕ = 1.

Another important geometric concepts in Lagrangian and Eulerian continuum me-
chanics is the Piola transformation, which can be applied to any tensor. The Piola
transform of the Cauchy stress tensor, for example, provides the first Piola-Kirchhoff
stress tensor.

Definition 4.4.8. Let the initial configuration ϕ0(B) ≡ B and the current configu-
ration ϕt(B) ⊂ S of a material body be orientable and w ∈ Γ(TS), then the Piola
transform of w is defined through the proper vector field

W = Jϕ ϕ�
t w = Jϕ F−1

t · (w ◦ ϕt) ∈ Jϕϕ�
t (Γ(TS)) ⊂ Γ(TB) ,

where Jϕ is the Jacobian of ϕt. ♦

Proposition 4.4.9. (Without proof; a proof can be found in [2], p. 117.) Let dV ,dv

be the Riemannian volume forms on B and S, respectively, then W is the Piola trans-
form of w, if and only if for a motion ϕt : B → S,

ϕ�
t (iwdv) = iWdV .

Theorem 4.4.10 (Piola Identity). Let DIV, div denote the divergence operators on
B and S, respectively, and let W be the Piola transform of w with respect to the motion
ϕt : B → S, then

DIV W = (div w ◦ ϕt)Jϕ .

Proof. Note that by 3.6.34, d commutes with pullback, so by propositions 3.7.31,
4.4.9, and the formula ϕ�

tdv = JϕdV ,

(div w ◦ ϕt)Jϕ dV = ϕ�
t ((div w)dv) = ϕ�

td(iwdv) = dϕ�
t (iwdv)

= diWdV = (DIV W )dV ,

that is, DIV W = (div w ◦ ϕt)Jϕ as desired. �

Proposition 4.4.11 (Nanson’s Formula). Let dA, da be the area forms on posi-
tively oriented ∂B and ∂ϕt(B), respectively, then

da (Q, t) = (Jϕ dA · F −1
t ) ◦ ϕ−1

t .

Proof. dA and da are defined through N∗ ∧ dA = dV and n∗ ∧ da = dv, respec-
tively, where N∗ and n∗ are the related unit normals (also consider the remark after
3.7.32). By using the property 3.5.11(i), JϕdV = N∗ ∧ (JϕdA). However, setting
N∗ = ϕ�

tn
∗ and applying 3.5.17 yields

JϕdV = ϕ�
t (n

∗ ∧ da) = N∗ ∧ ϕ�
tda ,

that is, ϕ�
tda = JϕdA. Note that ϕ�

tda is evaluated on ∂B and has a single covariant
component, so pushing forward and recalling 4.2.6(iii) finally gives (point arguments
are suppressed)

da = ϕt�(ϕ
�
tda) = ϕt�(Jϕ dA) = Jϕ dA · F −1

t . �
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4.5 Objectivity and Covariance

4.5.1 Motions, Framings, and the Gauge Freedom

The notion of objectivity has been introduced in section 2.2 for vectors in flat spaces,
in particular Euclidian point spaces, and it should be generalized to arbitrary tensor
fields on differentiable manifolds. By applying the pushforward and pullback operators
for tensor fields derived in section 3.4.2, objectivity is defined as follows:

Definition 4.5.1. Let S, S ′ be differentiable manifolds, t ∈ Tp
q(S) a tensor field on S

and ξ : S → S ′ a diffeomorphism, then

t′ = ξ�t

is called the objective transformation of t under the map ξ. t is called invariant under
the transformation ξ�, if ξ�t = t, where it is being understood that both sides are to
be evaluated at the same point. ♦

In the light of definition 2.2.17 and if S ′ = S, then ξ can be understood actively or
passively. From the passive viewpoint, ξ is understood as a chart transition so that
t′(Q) = ξ�t(Q) is the standard tensor transformation 3.2.3 resp. 3.3.5 at every Q ∈ S.
By definition, however, every honest tensor field is passively objective. Applications in
continuum mechanics —especially within the theory of materials— generally involve
the active form of objectivity, in which t itself will be changed.

It has been shown in section 2.2, that for Euclidian point spaces the active view on
the transformation ξ� respectively on an affine isometry ξ is twofold. It can either
be interpreted as a transformation under superposed rigid motions, as done in 2.2.15,
or as a transformation under change of framings, that is, a quasi-motion (cf. 2.2.16).
Therefore, it is appropriate for continuum mechanical reasons to subdivide active ob-
jectivity into active objectivity under superposed motions and active objectivity with
respect to changes of framings [29, 30].

Definition 4.5.2. Let ϕ : B → S be a configuration of the material body B in the
ambient space S, then a superposed rigid body motion is a regular map ξ : S → S
(time-dependency is dropped for simplicity, but the term motion is used throughout)
such that the tangent map at Q ∈ S, TQξ : TQS → Tξ(Q)S, is proper orthogonal and
the spatial metric g = ξ�g is left unchanged. ♦

Definition 4.5.3. Let ξ : S → S be a superposed rigid body motion, then a spatial
tensor field t ∈ Tp

q(S) is called indifferent with respect to superposed rigid body motions
(IRBM), if it transforms (actively) objective under the map ξ, that is, t′ = ξ�t. ♦

It is necessary to clarify what is meant with a ”change of framing” that is equivalent to
a superposed rigid body motion, so as to define an equivalent pushforward by change
of framing on the manifold. Note that in definition 4.5.3 it is not the motion ξ itself
that needs to be known, but only its tangent Tξ implemented into the pushforward
operator ξ� (see section 3.4.2).
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Definition 4.5.4. Let Q, Q′ ∈ S and R : TQS → TQ′S an orthogonal spatial two-
point tensor, then define the invertible change of framings (Q, v) �→ (Q′, R(Q)·v) for
every spatial vector v, and (Q, a∗) �→ (Q′, a∗ ·R−1(Q)) for every spatial one-form a∗,
respectively, by assuming the inverse R−1 to exist. ♦

Corollary 4.5.5. Let ξ : S → S be a superposed rigid body motion, R : TQS → TQ′S
proper orthogonal (i.e. det R = +1) and Q′ = ξ(Q), then

(i) By 3.4.21, the change of framing (Q, v) �→ (Q′, R · v) for vectors v is the tangent
map of ξ,

Tξ : TS → TS
(Q, v) �→ Tξ (Q, v) = (ξ(Q), Dξ(Q) · v) ,

so that R(Q) ≡ TQξ : TQS → Tξ(Q)S.

(ii) It follows from 3.4.24 that the change of framing (Q, a∗) �→ (Q′, a∗ ·R−1) for
one-forms a∗ is the inverse cotangent map T ∗(ξ−1), and R−1(Q) ≡ T ∗

Q(ξ−1) : T ∗
QS →

T ∗
ξ(Q)S.

Corollary 4.5.5 phrases that changes of framings defined point by point through 4.5.4
are compatible with superposed rigid motions ξ, that is, they can be interchanged
with the differential resp. tangent Tξ. Moreover, changes of framings are invertible for
every Q, Q′ ∈ S by definition, even if R is only orthogonal, but not proper orthogonal.
Therefore, changes of framings —even if S is Riemannian (curved) and not Euclidian
(flat)— can be applied to fields of vectors and one-forms on S as pushforwards and
pullbacks (see section 3.4.2). Finally, the pushforward ξ�t under a change of framing
is well-defined by 3.4.36:

Definition 4.5.6. Let t ∈ Tp
q(S), and t′ = ξ�t its (active) objective transformation

under a change of framing that is compatible with a superposed rigid motion ξ by
means of 4.5.5, then t is called Euclidian frame-indifferent (EFI). To make a notational
differentiation, write t′ = ξEFI

� t for the EFI interpretation and t′ = ξIRBM
� t for the IRBM

interpretation of objectivity, respectively. ♦

Definition 4.5.7. A tensor field t on the ambient space S which transforms objective
under superposed rigid motions ξ : S → S, i.e. under spatial isometries, is just called
objective (the same applies to ξ viewed as a change of framing). If t transforms objec-
tively under arbitrary spatial diffeomorphisms, then it is called spatially covariant. ♦

Objective resp. covariant tensors become manifest in the mathematical formulation of
physical theories, e.g. the theory of materials and also in general relativity. However,
the principle of objectivity applied to the tensor fields of the theory should not be
confused with that of invariance of the governing equations of the theory. While the
former demands the use only of those tensors which are objective with respect to
some group of transformations, i.e. which are geometric objects, the latter requires the
equations set up to be form-invariant (or generally covariant), i.e. to have the same
form before and after a transformation belonging to the group of transformations.
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Definition 4.5.8. Let a physical theory be described by some spatial tensor fields
s, t, . . . ∈ Tp

q(S), and the governing equations of the theory have the form f(s, t, . . .) =
0. The equations are called generally covariant (also called form-invariant or diffeo-
morphism-invariant), if for any diffeomorphism ξ : S → S,

ξ�(f(s, t, . . .)) = f(ξ�s, ξ�t, . . .) ,

so that f remains functionally unchanged under the map ξ. A theory is covariant if all
its governing equations are covariant. Let ξ = IdS , then generally covariance requires
the equations to be form-invariant under arbitrary coordinate transformation, which
is then referred to as their passive diffeomorphism invariance. ♦

Historically, general covariance had solely become manifest in passive diffeomorphism
invariance; the advanced tensor calculus on manifolds presented in this paper was not
available to Einstein when he proposed his theory of gravitation. Since nowadays it is
well-known that any physical theory can be set up passively diffeomorphism-invariant
by using proper tensor equations, some scientists denounced this principle as physically
vacuous (see [19] for a historical survey).

The active view on 4.5.8, however, needs to be analyzed in more detail. By restricting
the tensors s, t, . . . to a subset V ⊂ S, the reader will recognize that the left hand side
of the equation in 4.5.8 is evaluated at some Q ∈ V before it is pushed forward by ξ,
whereas the right hand side is evaluated at Q′ = ξ(Q) ∈ ξ(V). Therefore, definition
4.5.8 implies the following theorem to hold.

Theorem 4.5.9 (Gauge Theorem). (See also [18]) Let f(s, t, . . .) = 0, where s, t,
. . . ∈ Tp

q(S) and S is differentiable, be an equation of a physical theory that is form-
invariant with respect to any regular coordinate transformation, and let ξ : S → S be
an arbitrary diffeomorphism, then f(ξ�s, ξ�t, . . .) = 0 is also an equation of the theory.

Proof. Let (V, x) be a regular chart of V ⊂ S. According to 3.1.17 and 4.5.8,
the form-invariance ”with respect to any regular coordinate transformation” can be
identified with passive diffeomorphism-invariance for fixed V, i.e. with invariance of
f(s, t, . . .) = 0 under arbitrary relabelling of points x → ξ̃ ◦ x, where ξ̃ is a passive dif-
feomorphism in terms of definition 3.1.25. By this definition, then, there are infinitely
many pairs (η, x′) of active diffeomorphisms η : S → S that take V to V ′ = η(V), and
chart maps V ′ → x′(V ′) ⊂ Rndim such that

x′ ◦ η = ξ̃ ◦ x .

What is the consequence? Having the new coordinates of points in V ⊂ S, one cannot
decide whether they result from a relabelling ξ̃ of V, i.e. a chart transition, or a warping
η of S (figure 4.3). Clearly, there is some indeterminism in the physical theory under
consideration, which is also called the gauge freedom.
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V
x

��

η �� V ′

x′

��

x(V)
ξ̃

�� x′ ◦ η(V) = ξ̃ ◦ x(V)

Figure 4.3: Changed coordinates of V ⊂ S can either result from a relabelling ξ̃ of V,
or a warping η of S.

Now by arbitrariness of ξ̃ and ξ : S → S presumed, set ξ ≡ η = x′−1 ◦ ξ̃ ◦ x. Then, by
3.4.21, for a spatial vector field v : S → TS, the tangent map consistent with, that is,
comprising the relabelling of points Q ∈ S, is just

Tξ (Q, v) = (ξ(Q), Dξ(Q) · v) ,

where Dξ = D(x′−1 ◦ ξ̃ ◦ x).

If {xi}, {xi′} denote the local coordinate functions of x and x′, respectively, and ξi′ =
xi′ ◦ ξ ◦ x−1 is the coordinate transition concerning ξ, then ξi′ = xi′ ◦ (x′−1 ◦ ξ̃ ◦ x) ◦ x−1

≡ ξ̃i′. Therefore, the components of the tangent map Tξ are equal to the partial deriva-

tives of the relabelling of points ∂ξ̃i′

∂xi , and thus for a local representative v(P ) = vi ∂
∂xi

of the vector field,

ξ�v = Tξ ◦ v ◦ ξ−1 =

((
∂ξ̃i′

∂xi
vi

)
◦ ξ−1

)
∂

∂xi′

by 3.4.33. Because the pushforward by ξ : S → S of arbitrary
(

p
q

)
-tensor fields on S is

realized in a similar way setting ξi′ ≡ ξ̃i′, the assertion follows. �

The gauge freedom underlying the principle of general covariance is an important
ingredient to restrict or reduce the governing equations of a physical theory considerably
—which is basically the main goal of the endeavor. However, if the particular equation
f(ξ�s, ξ�t, . . .) = 0 is physically substantial or not depends on the physical theory under
consideration.

4.5.2 Material Frame-Indifference

In continuum mechanics, a typical application of the principles of objectivity and gen-
eral covariance can be found in the material frame-indifference of constitutive equations
of materials. The remainder of the section will be devoted to this topic, but only a few
key facts will be outlined using the example of simple hyperelastic material.

Definition 4.5.10. A hyperelastic or Green elastic material is an ideally elastic ma-
terial that relates the configuration resp. deformation ϕ : B → S of the material body
B at every particle P ∈ B (time-dependency will be again omitted) to the stress by
the stored energy at P . ♦
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Proposition 4.5.11. (Without proof; cf. [2]) A hyperelastic constitutive equation can
locally be written in the form

P = P(P, F ) ,

in which F is the deformation gradient at P ∈ B, and P : TPB → Tϕ(P )S is called the
first Piola-Kirchhoff stress tensor.

Note that P is a two-point tensor having the one leg at P and a ”spatial” leg at
Q = ϕ(P ) ∈ S.

Normally, the theory of materials concerns the fields of stress and deformation rather
than their point values. The hyperelastic constitutive equation then becomes P =
P(F ), in which P : B → TS ⊗ T ∗B now is the first Piola-Kirchhoff stress field, and
the constitutive function is a map

P : E → F ,

where E is the bundle over B whose fibre at P ∈ B is Tϕ(P )S ⊗ T ∗
PB, and F = ϕ�TS ⊗

T ∗B.

Definition 4.5.12. Let ξ : S → S be an arbitrary spatial diffeomorphism resp. a
superposed motion taking spatial points Q to Q′ (equivalently, ξ can be understood as
a change of framing), then the hyperelastic constitutive equation P = P(F ) is called
spatially covariant provided that

P ′ = P(F ′) ,

where F ′(P ) : TPB → TQ′S and Q′ = ξ(Q) = ξ(ϕ(P )) ∈ S. Spatial covariance means
that the constitutive equation P itself is form-invariant under spatial diffeomorphisms.
If the spatial diffeomorphism is replaced by a superposed rigid body motion, i.e. a
spatial isometry such that TQξ :TQS→TQ′S is proper orthogonal and P ′= P(F ′) still
holds, then the constitutive equation is called material frame-indifferent (MFI). ♦

Material frame-indifference in Euclidian point spaces has often been the matter in
dispute in the last decades, and it is usually stated as an independent assumption
or axiom. However, it can be derived from the more general principles of Euclidian
frame-indifference and form-invariance:

Proposition 4.5.13. (See also [29, 30].)

(i) Both Euclidian frame-indifference (EFI) and form-invariance (FI) of constitutive
equations together demonstrate material frame-indifference (MFI); conceptually, EFI+
FI = MFI.

(ii) Indifference of constitutive equations with respect to superposed rigid body motions
(IRBM) is equivalent to material frame-indifference; conceptually, IRBM = MFI.

Proof. (i) F ′ = ξ�F = Tξ(F ) ◦ ξ−1, so F transforms objectively (clearly, the spatial
leg of F ), and since P is a two-point tensor of the same class, it also does. Now
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P ′ = ξEFI
� P demands (P(F ))′ = ξEFI

� (P(F )) from the constitutive equation. On
the other hand, form-invariance forces ξEFI

� (P(F )) = P(ξEFI
� F ) = P(F ′), therefore,

P ′ = P(F ′) as desired.

(ii) Indifference of the constitutive equation P with respect to superposed rigid body
motions means that ξIRBM

� P = P(ξIRBM
� F ). As shown in (i), however, P and F

transform objectively in the same manner, so IRBM and MFI are equivalent. �

Basically, proposition 4.5.13(i) derives material frame-indifference from the relative
motion of different Euclidian observers, whereas 4.5.13(ii) involves two motions of a
body —the original motion and the motion overlayed by a rigid one— with respect
to the same observer. However, both viewpoints are equivalent, except for the fact
that the first requires the linear transformation of both frames to be orthogonal, while
the latter includes motions with proper orthogonal tangents only, since rigid motions
necessarily are orientation-preserving.

In their encyclopedia ([8], appendix 19A), Truesdell and Noll summarize that the form
4.5.13(i) is historically connected with the names Zaremba and Jaumann, and 4.5.13(ii)
is a form that has essentially been proposed by Hooke, Poisson and Cauchy. Truesdell
and Noll [8] side themselves with Zaremba and Jaumann, as Noll [31] did already
before; he called material frame-indifference at that time the ”principle of objectivity
of material properties”. Therefore, the following notational differentiation would be
convenient.

Definition 4.5.14. Refer to the fact 4.5.13(i) as the Zaremba-Jaumann-Noll form,
and to 4.5.13(ii) as the Hooke-Poisson-Cauchy form of material frame-indifference. ♦

The reader probably knows that material frame-indifference is a useful concept to
reduce the form of constitutive equations, but not all materials comply with it. For
example, kinetic gas does not fulfill invariance with respect to superposed rigid body
motions and thus it is not material frame-indifferent [29, 30].

4.6 Arbitrary Lagrangian-Eulerian Formulation

Large deformation initial boundary value problems in continuum mechanics are usually
solved by applying the finite element method. In this context, however, the classical
Lagrangian and Eulerian formulations have some shortcomings. In the Lagrangian
finite element formulation, excessive element distortions may occur that may lead to
unstable and inaccurate numerical analyses, or even terminate the calculation. From
the Eulerian viewpoint, the discretized domain is fixed in space and, therefore, following
free surfaces and moving material interfaces becomes a cumbersome task.

The Arbitrary Lagrangian-Eulerian (ALE) formulation succeeds in combining the ad-
vantages of both classic Lagrangian and Eulerian viewpoints by choosing the finite
element mesh as a time-dependent reference domain different from the material (La-
grangian) and spatial (Eulerian) configurations [20, 21, 22]. For the last two decades the
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ALE framework has been developed to a powerful analysis tool for large deformation
problems, especially metal forming processes, free surface flows and fluid-deformable
structure interaction.

Consistent with the geometrical overall context of the paper, the reference domain
underlying the ALE formulation is introduced as a grid manifold that is embedded in
the ambient space, and which is independent of the material and its configurations.
The affine connection and the inner product of the ambient space are used to establish a
covariant derivative on the reference domain and to enable measurement of deformation
of the grid, respectively. It has to be noted that this additional functionality is not
intrinsic, whether to the underlying material manifold, nor to the grid manifold, but
it is induced to the latter’s configurations in space.

The important convective velocity field, which is well-known in the ALE community,
will be defined subsequently as a section of the tangent bundle of the ambient space.
Differential geometry, then, reveals three important facts resulting from the relative
motion between the body and the reference domain. First, the pullback of the convec-
tive velocity concerning the relative motion establishes the so-called referential velocity
field, which is essential for the definition of a material time derivative on the reference
domain. Second, the fundamental ALE operator takes advantage of an induced con-
nection on the reference domain given by the Levi-Civita connection of the ambient
space and, third, mesh regularization or optimization of the mesh, in context of the
ALE finite element method, can be interpreted as the numerical representative of a
time-dependent flow of the reference domain in the ambient space.

4.6.1 Grid Manifold and Velocity Fields

Definition 4.6.1. In order to describe geometry and kinematics of a material body
independent of its reference configuration and current configuration, let G be a man-
ifold, called the grid manifold. A subset R ⊂ G is referred to as the reference grid of
the material body B, shortly: reference grid, provided that the map R → B between
the reference grid and the reference configuration is a homeomorphism. ♦

The required homeomorphism ensures the one-to-one correspondence of grid nodes and
particles of the body. Hence, the grid manifold G is also a continuum and the reference
grid R inherits the topology of the body. The grid cells are infinitely small and every
grid node has a neighborhood containing other grid nodes. Descriptively, the grid is a
prototype of a manifold: it has no further properties besides its topology.

Due to the arbitrary choice of the reference grid, it does not make sense to define an
inner product or an affine connection on the grid manifold. But in order to specify the
state of the grid, that is, stretches of the grid cells and distances of the grid nodes, R

is embedded in the ambient space in the same way as the material body (figure 4.4):

Definition 4.6.2. Considering that the ALE formulation has its origin in computa-
tional mechanics, one may refer to M, defined by the map η : G ⊃ R → M ⊂ S and
being differentiable, as the computational representative or the model of B, that is, M
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is the reference configuration of R in S —this is the same idea as mapping a set of
nodes with topology onto the finite element mesh (i.e. the model) of a work piece. ♦

Definition 4.6.3. A time-dependent configuration or motion of M is a map

μ : M× R → S
(M, t) �→ μ(M, t) = Q̂ ,

with μt(M) = μ(M, t) at fixed t, and μt an embedding of M in S. The current
configuration μt(M) = R ⊂ S at time t is referred to as the reference domain of the
body ( �= reference configuration!). Q̂ is called reference point. ♦

Time-dependency of R can be dropped if desired (as in the Eulerian formulation; see
below). But if existent, it is assumed that the parameter ”time” is universal, i.e. all
processes on R, B and S are synchronous. Otherwise, relativistic effects have to be
considered.

To the neighborhoods W(Q̂) ⊂ R of a reference point Q̂, charts (W, χ) with regular
local coordinates {χα}Q̂ = χ(Q̂) can be assigned. As R ⊂ S is embedded, R is likewise

differentiable and the partial derivatives { ∂
∂χα} ∈ TQ̂R establish a basis of the tangent

space, and the coordinate differentials {dχα} ∈ T ∗
Q̂
R its dual in the cotangent space at

Q̂. The ĝαβ(Q̂) = 〈 ∂
∂χα , ∂

∂χβ 〉Q̂ are the metric coefficients on R. As a general convention,
coordinate indices related to the reference domain will be denoted by lower case Greeks,
with α, β, . . . ∈ {1, 2, 3}. If appropriate, vectors, tensors etc. will be marked with a
hat.

Definition 4.6.4. Let the spatial coordinates xi be given as functions of the C1 grid
motion μt, that is, μi

t(M) = xi ◦ μt ◦ χ−1, then

Ωt(M) =
∂μi

t

∂t

∣∣∣∣
M

∂

∂xi
= Ωi

t(M)
∂

∂xi
(Q)

defines the grid velocity over μt. The corresponding spatial grid velocity field ωt =
Ωt ◦ μ−1

t ∈ Γ(TS)) is obtained by switching the point arguments. ♦

Definition 4.6.5. Let Φt : R → S, Q̂ �→ Q = Φt(Q̂) be a time-dependent embedding
of R in S, and Ψt : R → B, Q̂ �→ P = Ψt(Q̂) a regular map, where Φt(Q̂) = Φ(Q̂, t)
and Ψt(Q̂) = Ψ(Q̂, t) at fixed t. Then Φt and Ψt are called the relative map and the
referential map of R = μt(M), respectively, provided that

ϕt = Φt ◦ Ψ−1
t ,

that is, the physical motion ϕt is a superposed motion of the body relative to the
reference domain. Both Φt and Ψt are in general explicitly time-dependent. ♦

The next theorem states how to specify the flow of the material particles via the flow
of the reference points.



4.6. ARBITRARY LAGRANGIAN-EULERIAN FORMULATION 87
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Figure 4.4: General Arbitrary Lagrangian-Eulerian formulation: reference grid, config-
urations and related mappings.



88 CHAPTER 4. APPLICATION: CONTINUUM MECHANICS

ϕt(B)

ψt,s = ϕt ◦ ϕ−1
s

μt(M)

ψ̂t,s = μt ◦ μ−1
s

Φt

μs(M)

ϕs(B)

Φs

Figure 4.5: Flows associated with the motion ϕt of the body B and the motion μt of
its model M in the ambient space.

Theorem 4.6.6 (Compatibility of Flows). Let ψ̂t,s be the time-dependent flow of
the spatial grid velocity ω, and Φt, Ψt the relative map and referential map of R =
μt(M), respectively, then the flow ψt,s = ϕt ◦ ϕ−1

s of the regular physical motion ϕt :
B → S can be obtained from

ψt,s = Φt ◦ ψ̂t,s ◦ Φ−1
s .

Proof. Since ϕt(B) and μt(M) evolve synchronously, compatibility of the maps re-
quires (see figure 4.5)

Φt ◦ μt ◦ μ−1
s = ϕt ◦ ϕ−1

s ◦ Φs , t, s ∈ R .

Considering 4.1.8 and assuming μt : M → S to be regular, the time-dependent flow
associated with the spatial grid velocity ωt(Q) = ω(Q, t) is

ψ̂t,s = μt ◦ μ−1
s : S ⊃ μs(M) → μt(M) ⊂ S , t, s ∈ R .

Substitution into the previous equation and composing both sides with Φ−1
s from the

right then gives the result. �

Example 4.6.7. In a numerical implementation when using the finite element me-
thod, the discretization of the domain in its current configuration, i.e. the deformed
finite element mesh at time t, is a numerical representative of the reference domain
R = μt(M). A mesh regularization or an r-adaption of the mesh that preserves the
mesh topology, then, represents the discretization of the time-dependent flow ψ̂t,s :
μs(M) → μt(M).

The localizations of the relative map Φt : R → S and the inverse referential map
Ψ−1

t : B → R should be discussed next.
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Definition 4.6.8. Keeping the definitions made in 4.1.4 in mind, let W ⊂ R be an
open neighborhood of Q̂ ∈ R having a chart (W, χ), and V(Φt(Q̂)) ⊂ S a neighborhood
of Φt(Q̂) with a chart (V, x). Moreover, let W ′ ⊂ R be a neighborhood of Q̂′ =
Ψ−1

t (P ) ∈ R having a chart (W ′, χ′), where P ∈ U ⊂ B and (U , X) is a chart of the
material body. Then, by presuming Φ−1

t (V) ∩ W and Ψt(W ′) ∩ U to be non-empty,
define the localizations of Φt and Ψ−1

t by

(Φt)xχ = x ◦ Φt ◦ χ−1
∣∣
χ(Φ−1

t (V)∩W) : χ
(
Φ−1

t (V) ∩W
)

→ x
(
Φ−1

t (V) ∩W
)

and

(Ψ−1
t )χ′X = χ′ ◦ Ψ−1

t ◦ X−1
∣∣
X(Ψt(W ′)∩U)

: X (Ψt(W ′) ∩ U) → χ′ (Ψt(W ′) ∩ U) ,

respectively —for those who want to make a difference between Ψt and (Ψ−1
t )−1: the

latter is meant here. If {xi}Q = x(Q) are the coordinates of Q ∈ V and {χα′}Q̂′ = x(Q̂′)

the coordinates of Q̂′ = Ψ−1
t (P ) ∈ W ′, then abbreviate

Φi
t = xi ◦ Φt ◦ χ−1 and (Ψ−1

t )α′

= χα′ ◦ Ψ−1
t ◦ X−1 ,

where Φi
t(Q̂) = Φi(Q̂, t) and (Ψ−1

t )α′

(P ) = (Ψ−1)α′

(P, t), respectively. ♦

Corollary 4.6.9. Considering the previous definitions, and let ϕt = Φt ◦ Ψ−1
t : B → S

be the motion of a material body and x ◦ϕt ◦X−1 = (ϕt)xX resp. ϕi
t = xi ◦ϕt ◦X−1 its

localization. If W ′ = W, then

(ϕt)xX = (Φt ◦ Ψ−1
t )xX = (Φt)xχ ◦ (Ψ−1

t )χX ,

that is,

ϕi
t = xi ◦ Φt ◦ Ψ−1

t ◦ X−1 resp. ϕi(P, t) = Φi((Ψ−1)(P, t), t) .

Definition 4.6.10. Let Ψ−1
t and Φt be at least C1-continuous, then the referential

velocity field on R is defined by(
∂(Ψ−1

t )α

∂t

∣∣∣∣
P

◦ Ψt

)
∂

∂χα
= να

t (Q̂)
∂

∂χα
= νt ∈ Γ(TR) ,

and (
∂Φi

t

∂t

∣∣∣∣
Q̂

◦ Φ−1
t

)
∂

∂xi
= wi

t(Q)
∂

∂xi
= wt ∈ Γ(TS)

is called the relative velocity field on S, in which νt = ν(·, t) resp. wt = w(·, t) at fixed
t. The referential velocity can be interpreted as the particle velocity measured on the
reference domain, and wt is the spatial velocity of Φt. ♦

The relative velocity wt might be confused with the grid velocity Ωt, but notice there
is the following relation:
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Corollary 4.6.11. The composition (Φt ◦ μt)(M) can be interpreted as a superposed
motion of the model M in S leading to

∂(Φi
t ◦ μt)

∂t

∣∣∣∣
M

= wi
t ◦ Φt ◦ μt +

∂Φi
t

∂μk
t

Ωk
t .

Corollary 4.6.12. By 4.1.8, the time-dependent flow of wt is Φt◦Φ−1
s , where t, s ∈ R.

Definition 4.6.13. The tangent of the map Φt is

TΦt : TR → T (Φt(R)) ⊂ TS
∂

∂χα
�→ ∂Φi

t

∂χα

∂

∂xi
,

and its inverse is given by

T (Φ−1
t ) : TS ⊃ T (Φt(R)) → TR

∂

∂xi
→ ∂(Φ−1

t )α

∂xi

∂

∂χα
,

in which (Φ−1
t )α = χα ◦ Φ−1

t ◦ x−1, i.e. (Φ−1
t )α(x(Q)) = χα ◦ Φ−1

t . ♦

Again, the case should be mentioned where dim(R) < dim(S). Since Φt is an embed-
ding and Φt(R) ⊂ S is a submanifold, TΦt(TR) = T (Φt(R)) ⊂ TS is a subspace of

TS, so that the Jacobian matrix
∂Φi

t

∂χα is invertible at Q̂ ∈ R (cf. definitions 3.1.22 and

3.1.26, and section 4.1).

Definition 4.6.14. The two-point tensor fields F Ψt ∈ Γ(Ψ �
t TB ⊗ T ∗R) and F Φt ∈

Γ(Φ�
tTS ⊗ T ∗R) associated with the tangent maps TΨt and TΦt, respectively, are

defined by

F Ψ (Q̂, t) =
∂Ψ I

t

∂χα

∂

∂XI
⊗ dχα and F Φ(Q̂, t) =

∂Φi
t

∂χα

∂

∂xi
⊗ dχα ,

with Ψ I
t = XI ◦ Ψt ◦ χ−1. F Ψ is called the referential deformation gradient and F Φ is

called the relative deformation gradient. Ψ �
t TB and Φ�

t TS are the tangent bundles on
the reference domain R induced by the tangent bundle of B via Ψt and the tangent
bundle of S via Φt, respectively. ♦

Corollary 4.6.15. By 3.4.22 and 4.6.5, one has Tϕt = T (Φt ◦ Ψ−1
t ) = TΦt ◦ T (Ψ−1

t ).
Therefore, the total deformation gradient is

F t(P ) =
(
F Φt · F −1

Ψt

)
◦ Ψ−1

t ,

where F−1
Ψt (Q̂, t) =

∂(Ψ−1
t )α

∂XI
∂

∂χα ⊗ dXI = (T (Ψ−1
t ) ◦ Ψt) is the inverse of F Ψt.

Theorem 4.6.16. Let v be the spatial velocity of the motion of a material body, w

the spatial velocity of the relative map Φ (i.e. the relative velocity) and ν the referential
velocity (see also 4.6.10 for definitions), then

vt − wt = Φt�νt .
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Proof. Substituting 4.6.9 for the components of the spatial velocity vt (Eulerian
velocity field) gives in detailed expression

vi
t(Q) =

∂ϕi
t

∂t

∣∣∣∣
P

◦ ϕ−1
t =

∂(xi ◦ Φt ◦ (χ−1 ◦ χ) ◦ Ψ−1
t )

∂t

∣∣∣∣
P

◦ ϕ−1
t

=

(
∂Φi

t

∂t

∣∣∣∣
Q̂

◦ Φ−1
t

)
(Q) +

(
∂Φi

t

∂χα
(Q̂) ◦

(
∂(Ψ−1

t )α

∂t

∣∣∣∣
P

◦ Ψt

)
(Q̂) ◦ Φ−1

t

)
(Q)

= wi
t(Q) +

((
∂Φi

t

∂χα
να

t

)
◦ Φ−1

t

)
(Q) .

Recalling 3.4.33, it should be clear that the second term on the right hand side includes
the components of the pushforward of the referential velocity field. More general, for
vector fields ξ ∈ Γ(TR) one has

Φt�ξ = TΦt ◦ ξ ◦ Φ−1
t = (F Φt · ξ) ◦ Φ−1

t ∈ Γ(TS) ,

hence, in direct notation, one is left with vt = wt + Φt�νt. �

Definition 4.6.17. ct = vt − wt = Φt�νt ∈ Γ(TS), where ct(Q) = c(Q, t) at fixed t,
is called the convective velocity field on S. ♦

The convective velocity c should not be confused with the Finger tensor (see definition
4.2.12). However, the meaning will be clear from the context.

Note that the convective velocity is a proper vector field on S, and it provides a
fundamental link between the body, its configurations and the reference domain. It
denotes the relative velocity between the particles P = ϕ−1

t (Q) and the reference points
Q̂ = Φ−1

t (Q) as measured from the places Q.

The Lagrangian formulation and the Euler formulation are special cases of the ALE
formulation. On the one hand, if Ψt = IdS , then w = v and c = 0. The equivalence of
the particle velocity and the velocity of the reference domain, however, identifies the
Lagrangian formulation: the observer moves with the particles. On the other hand,
if Φt = IdS , then w = 0 and c = v, but this is the basic principle of the Eulerian
formulation: the observer permanently takes up the same spatial points.

Proposition 4.6.18. Let t ∈ Tp
q(S) be a time-dependent spatial resp. Eulerian tensor

field, then

Φ�
t (Lvt) = LΦ�

tc
(Φ�

t t) .

Proof. (See also [2], p. 101, and [12], p. 130.) By proposition 3.6.29 and theorem
4.6.16,

Lvt =
∂

∂t
t + £w+Φ�νt =

∂

∂t
t + £wt + Φ�(£ν(Φ�t)) ,
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where the ”time index” is omitted for notational convenience. By 3.6.24, 4.6.10, and
the corollaries 3.4.32 and 4.6.12,

Lvt =
∂

∂t
t + £wt + Φ�(£ν(Φ�t))

=
d

dt
(Φt ◦ Φ−1

s )�tt

∣∣∣∣
t=s

+ Φ�(£ν(Φ�t))

=
d

dt
Φ�

t ◦ (Φ−1
s )�(Φt�(Φ

�
t tt))

∣∣∣∣
t=s

+ Φ�(£ν(Φ�t))

=
d

dt
Φs�(Φ

�
t tt)

∣∣∣∣
t=s

+ Φ�(£ν(Φ�t))

= Φ�

(
d

dt
(Φ�

t tt)

∣∣∣∣
t=s

+ £ν(Φ�t)

)
= Φ�(Lν(Φ�t)) .

The result is obtained by noting that c = Φ�ν, and applying the pullback by Φ on
both sides. �

Proposition 4.6.18 shows that it is possible to compute the Lie derivative of a spatial
tensor field by performing the Lie derivative on the reference domain along the relative
velocity between the body and the reference domain.

4.6.2 The General ALE Operator

Definition 4.6.19. By introducing a reference domain R together with a relative map
Φt onto the ambient space S, and a referential map Ψt onto the material body B, the(

p
q

)
-tensor-valued physical field f : S × I → T p

q (S) defined in 4.3.1 can be referred to
the reference domain by setting

ft = f̂t ◦ Φ−1
t resp. Ft = f̂t ◦ Ψ−1

t

at fixed t. The map f̂ : R×I → T p
q (S), where f̂t ◦Φ−1

t = ft ∈ Tp
q(S), is then called the

Arbitrary Lagrangian-Eulerian (ALE) formulation of the physical field f . In an ALE
formulation, the reference points Q̂ ∈ R serve as the independent point variables. ♦

In section 4.3, the material time derivative of the Eulerian field f(Q, t) has been defined
through ḟ = ∂f

∂t

∣∣
Q

+∇vf , in which the first term on the right hand side represents the

local time derivative at fixed Q, and the second term (the convective term) denotes
the covariant derivative of f along the spatial resp. Eulerian velocity field v. In what
follows, the material time derivative of the ALE field f̂(Q̂, t) should be established.

Proposition 4.6.20. Let f(Q, t) = ft(Q) be (the Eulerian formulation of) a physical
field, and Φt at least C1, then the material time derivative of the ALE field f̂t = ft ◦Φt

on the reference domain R is

˙̂
f =

∂f̂

∂t

∣∣∣∣∣
Q̂

+ ∇
�
νf̂ = Υ̂ (Q̂, t) ,
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in which ν is the referential velocity field from definition 4.6.10 and Υ̂ (Q̂, t) is a source
term accounting for some corresponding response function (e.g. a constitutive equation).
∇

�
νf̂ is the covariant derivative of f̂ along ν in terms of the Φt-induced connection ∇

�

on R.

Proof. Proving the local time derivative is trivial, but the convective term bares
some intricacy. Recall that the Eulerian field ft ∈ Tp

q(S) has been defined in 4.3.1 as

an honest tensor field on S. Therefore, the corresponding ALE field f̂t = ft ◦ Φt is a
tensor field over Φt, that is, an induced section of the tensor bundle T p

q (S) (see definition
3.4.18). As proposed by theorem 3.6.13 in section 3.6, the covariant derivative of an
induced section calls for a connection ∇

� on R that is induced by the connection ∇

on S via the map Φt.

Without loss of generality, for the rest of the proof it will be considered the case where
ft ∈ Γ(TS) is a vector field. In a chart (V, x) on S, ft has the local representative
ft(Q) = f i

t (Q) ∂
∂xi . It then follows that f̂t : R → TS is a vector field over Φt, i.e.

f̂t(Q̂) = (f i
t ◦ Φt)(Q̂)

∂

∂xi
∈ Γ(Φ�

tTS) ,

and ∇
�f̂t ∈ Γ(T ∗R⊗ Φ�

tTS) is a two-point tensor field:

∇
�f̂t =

(
∂(f i

t ◦ Φt)

∂χα
+ (f j

t ◦ Φt)
(
γ i

j k ◦ Φt

)
(F Φt)

k
α

)
dχα ∂

∂xi
.

Therein, γ i
j k(Q) are the coefficients of ∇ on S, and (γ i

j k(F Φt)
k
α)(Q̂), by theorem

3.6.13, are the coefficients of ∇
� on R induced by Φt. Moreover, note that (f i

t ◦ Φt)
above functionally depends on the coordinates {χα}Q̂ = χ(Q̂) of the reference domain
R.

Now f̂ at each pair (Q̂, t) has legs in the tangent space TQS at each Q = Φ(Q̂, t) ∈ S,

so
˙̂
f , as well as ∂f̂

∂t

∣∣∣
Q̂
, at each (Q̂, t) also has. Thus ∇

�f̂ = ∇
�f̂t contracted by some

vector field must also be a vector field over Φt for the proposed material time derivative
for f̂ to make sense. This, however, can only be realized by a honest vector field on R.

For example, taking the referential velocity field νt = να
t

∂
∂χα ∈ Γ(TR) gives

∇
�
νf̂ (Q̂) =

(
∂(f i ◦ Φt)

∂χα
να + να(f j ◦ Φt)

(
γ i

j k ◦ Φt

) ∂Φk
t

∂χα

)
∂

∂xi
∈ Γ(Φ�

tTS) .

On the other hand, for Φt = IdS , the relative map Φt : R → S just becomes a coordinate
transformation or relabelling of points, and the proposed material time derivative for
f̂ must reduce to the material time derivative for the Eulerian field f defined in 4.3.5.
However, in this case one also has ϕt = IdS ◦ Ψ−1

t by 4.6.5, and thus v = (IdS)�ν by
4.6.10. Therefore, the referential velocity is the proper vector field to accomplish the
convective term ∇

�
νf̂ , and to proof the assertion. �
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Theorem 4.6.21 (General ALE Operator). Let F , f and f̂ , respectively, be the
Lagrangian, Eulerian and ALE formulation of the same time-dependent tensor-valued
physical field, then

∂F

∂t
◦ Ψ =

∂f̂

∂t

∣∣∣∣∣
Q̂

+ ∇(c◦Φ)f = Υ̂ (Q̂, t) .

Proof. As Ft = f̂t ◦ Ψ−1
t , by the chain rule one has (see also 4.3.7)

˙̂
f(Ψ−1(P, t), t) =

∂F

∂t
resp.

˙̂
ft =

(
∂

∂t

(
f̂t ◦ Ψ−1

t

))
◦ Ψt .

In addition, from theorem 3.6.13, and noting that ct ◦ Φt = TΦt(νt) by 4.6.17,

∇
�
νf̂ = ∇(c◦Φ)f .

Use both relations to replace the respective terms in 4.6.20, and finally obtain the
desired result. �

Finally, the substitution of the ALE operator for material time derivatives in the bal-
ance equations of continuum mechanics enables the solution of initial boundary value
problems with respect to an arbitrary time-dependent reference domain.

Proposition 4.6.22. Let the material body B, the reference domain R and the ambient
space S have the same dimensions, and let ρ̂(Q̂, t) and ρ(Q, t) be the mass densities on
R and S, respectively, then conservation of mass in ALE setting reads

∂ρ̂

∂t

∣∣∣∣
Q̂

+

(
∂ρ

∂xi
ci + ρ div v

)
◦ Φt = 0 .

Proof. The mass densities ρ and ρ̂ are scalar fields, hence the covariant derivative is

(∇�
νρ̂)(Q̂) =

∂ρ̂

∂χα
να =

∂ρ

∂xi

∂Φi
t

∂χα
να =

(
∂ρ

∂xi
ci

)
◦ Φt = (∇(c◦Φ)ρ)(Q̂) .

Also note that from proposition 4.4.5(ii) and by using the relation ḟt =
˙̂
ft ◦ Ψ−1

t ◦ ϕ−1
t ,

continuity reads
˙̂ρt ◦ Ψ−1

t ◦ ϕ−1
t = −ρ div v ,

By 4.6.21, one is allowed to write(
∂ρ̂

∂t

∣∣∣∣
Q̂

◦ Ψ−1
t ◦ ϕ−1

t

)
+

∂ρ

∂xi
ci + ρ div v = 0 ,

where the left hand side is evaluated at spatial points Q ∈ S. However, since each
term is a proper scalar, the assertion follows by switching the point arguments. �



Chapter 5

Summary and Conclusions

After an introduction to modern differential geometry, some geometric concepts in
continuums mechanics have been reviewed. In particular, the formulation of kinematics
of a body and balance equations benefit from the precise geometric terminology. On
the one hand, a clear and precise distinction of the Lagrangian formulation from the
Eulerian formulation can be drawn. On the other hand, by using a general term
of space, those issues can be revealed, for which the introduction of a metric, an
affine connection or other geometric structures physically make sense, or merely lead
to simplifications.

Subsequent to the classic formulations according to Lagrange and Euler, an implemen-
tation of the geometric concepts in the context of the Arbitrary Lagrangian-Eulerian
formulation has been presented. As an essential component, the introduced grid mani-
fold facilitates a consistent description of the relations between the material, the ambi-
ent space and the reference domain. This also concerns the numerical implementation
by using the finite element method. The grid manifold establishes the topology of
the reference domain respectively the finite element mesh, whereas the time-dependent
placement of the grid in the ambient space represents the configuration of the mesh,
owning the physical properties and the state of the material body. The continuous mesh
regularization in the course of an ALE finite element simulation has been formulated
geometrically as a flow of the grid nodes in the ambient space.

By defining mappings between the introduced manifolds —namely the material body,
its configurations and the reference domain—, pushforward and pullback operators have
been obtained that provide the mapping of arbitrary spatial and material tensor fields
onto the reference domain. As a fundamental result, the convective velocity field on the
current configuration of the body, which is well-known in the ALE community, emerges
from the pushforward of the referential velocity field over the relative motion between
body and grid. Finally, the paper uncovered that the fundamental ALE operator
involves the notion of an induced connection, so that ALE computation can be done
without defining an extra affine connection on the reference domain.
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