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Preface by the Editor

The astonishing pace in the development of the finite element method (FEM) in engi-
neering sciences and its broad application in the industry and in engineering practice
have entered the areas of soil mechanics and geotechnical engineering long ago. Al-
though the perception of a soil continuum is a controversial issue, it is generally ac-
cepted that numerical simulations based on FEM can considerably improve the under-
standing of the physical processes involved in situ and the interpretation of measuring
data of experimental tests.

Systematically, the notion of a continuum is part of the mathematic branch of differ-
ential geometry. Therefore, it is advantageous to analyze and to discuss the topics of
continuum mechanics, in particular soil mechanics, by applying the geometric terminol-
ogy. Accordingly, the soil continuum shall be understood as a differentiable manifold
that does not need to have a Euclidian structure, and its stress and density states are
be described by coordinate-independent tensor fields. Engineers not acquainted with
tensor calculus and the geometric method are at a disadvantage, because they do not
have full command of the scientific fundamentals of their discipline and thus can hardly
benefit from new developments. They will moreover run the risk of blindly trusting
the results of numerical simulations instead of questioning them.

The presented work is a fundamental introduction into differential geometry and its
application to continuum mechanics. It is addressed at scientific engineers, but also at
engineers in practice and graduate students interested in the field. Another objective of
the work is to revise the theoretical fundamentals of the Arbitrary Lagrangian-Eulerian
(ALE) formulation of continuum mechanics by placing emphasis on the geometric back-
ground. The ALE formulation can be seen as a unification of the Lagrangian and
Eulerian formulations in order to combine the advantages of both viewpoints. It is
currently a topic of research at the Soil Mechanics and Geotechnical Engineering Di-
vision, in which the penetration of piles into sand is being simulated numerically by
using a finite element model. A publication in the institute series is being prepared.

The author currently is a research associate at the Technical University of Berlin.
He was able to investigate the topic during his research activity, which is gratefully
acknowledged here. Parts of the work on the ALE formulation have been carried out
with the financial support of the DFG (German Research Foundation), which is also
gratefully acknowledged.

Stavros A. Savidis
Berlin, February 2009






Preface by the Author

In the year 2004/2005, after my studies of civil engineering and becoming a research
associate at the Soil Mechanics and Geotechnical Engineering Division, I attended
a lecture by Prof. Dr.-Ing. Gerd Brunk at the Technical University of Berlin. The
lecture was about tensor analysis and continuum physics, but it made me wonder
since geometry was predominant, and "index gymnastics” and mechanics were solely
treated in applications. Inspired by this lecture and the famous book by Marsden
and Hughes, I began my research work on an Arbitrary Lagrangian-Eulerian (ALE)
approach to the finite element simulation of penetration processes in sand. Because the
continuum mechanical background is massive and essentially based on the geometry
of point spaces, I have written down this paper with the initial objective to compile
important formulae and basic results. However, the reader will notice that the final
version goes beyond to some extend.

I would like to thank Prof. Dr.-Ing. Stavros A. Savidis who gave me the opportu-
nity to investigate as a geotechnical engineer such a theoretic topic, and my colleague
Dr.-Ing. Frank Rackwitz for discussion and helpful suggestions. Last but not least I
would like to thank the developers of the EIEX program for enabling everyone to do
beautiful typeset of complex mathematics.

Disclaimer

This paper is not intended to serve as a monograph for specialists
about differential geometry and continuum mechanics. Many inter-
esting topics have been omitted and many of the presented key facts
and basic results are stated without proofs; they may be found in
the standard textbooks, e.g. [1, 2, 3, 4, 5, 6, 7, 8]. Comprehensive
treatises on linear geometry and linear algebra are, for example, [9]

and [10].

Daniel Aubram
Berlin, November 2008






Abstract

Differential geometry provides the suitable background to present and discuss con-
tinuum mechanics with an integrative and mathematically precise terminology. By
starting with a review of linear geometry in affine point spaces, the paper introduces
modern differential geometry on manifolds including the following topics: topology,
tensor algebra, bundles and tensor fields, exterior algebra, differential and integral
calculi. The tools worked out are applied subsequently to basic topics of continuum
mechanics. In particular, kinematics of a material body and balance of mass are formu-
lated by applying the geometric terminology, the principles of objectivity and material
frame indifference of constitutive equations are examined, and a clear distinction of the
Lagrangian formulation from the Eulerian formulation is drawn. Moreover, the paper
outlines a generalized Arbitrary Lagrangian-Eulerian (ALE) formulation of continuum
mechanics on differentiable manifolds. As an essential part, the grid manifold intro-
duced therein facilitates a consistent description of the relations between the material
body, the ambient space and the arbitrary reference domain of the ALE formulation.
Not least, the objective of the paper is to provide a compilation of important formulae
and basic results —some of them with a full proof— frequently used by the community.
If practical, point arguments and changes in points within equations will be clearly in-
dicated, and component and direct (or absolute) tensor notation will be applied as
needed, avoiding a single-track approach to the subject.

Keywords: differential geometry; continuum mechanics; large deformations; Arbi-
trary Lagrangian-Eulerian; manifold; tensor analysis






Zusammenfassung

Die Differentialgeometrie bietet den geeigneten Hintergrund, um die Kontinuumsme-
chanik mit einer einheitlichen und mathematisch prazisen Terminologie darzulegen und
zu diskutieren. Ausgehend von einem Riickblick auf die lineare Geometrie in affinen
Punktraumen fiihrt die Arbeit in die moderne Differentialgeometrie auf Mannigfaltig-
keiten unter Beriicksichtigung der folgenden Themen ein: Topologie, Tensoralgebra,
Biindel und Tensorfelder, AuBere Algebra sowie Differential- und Integralkalkiile. Die
erarbeiteten Werkzeuge werden anschliefend auf grundlegende Themen der Kontinu-
umsmechanik angewendet. Insbesondere wird die Kinematik eines materiellen Korpers
und die Massenbilanz vom geometrischen Standpunkt heraus formuliert, das Prinzip
der Objektivitidt von Tensoren und von Materialgleichungen wird untersucht, und es
wird der Unterschied zwischen der Lagrange’schen und der Fuler’schen Formulierung
auf kldrende Weise dargestellt. Desweiteren skizziert die Arbeit eine verallgemeiner-
te Arbitrary Lagrangian-Eulerian (ALE) Formulierung der Kontinuumsmechanik auf
differenzierbaren Mannigfaltigkeiten. Als wesentlicher Bestandteil ermoglicht dabei die
eingefiihrte Gittermannigfaltigkeit eine konsistente Beschreibung der Beziehungen zwi-
schen dem materiellen Koérper, dem umgebenden Raum und dem beliebigen Referenz-
gebiet der ALE Formulierung. Nicht zuletzt besteht die Zielsetzung der Arbeit darin,
wichtige Formeln und grundlegende Ergebnisse auf den behandelten Gebieten teilweise
auch mit vollstindigem Beweis zusammenzustellen. Sofern es zweckmifig erscheint,
werden Punktargumente und der Wechsel der Bezugspunkte in den Gleichungen her-
vorgehoben. Aulerdem wird je nach Bedarf sowohl die Komponentenschreibweise, als
auch die direkte oder absolute Schreibweise von Tensoren angewendet und dadurch ein
eingleisiges Vorgehen vermieden.

Schlagworte: Differentialgeometrie; Kontinuumsmechanik; grofie Verformungen; Ar-
bitrary Lagrangian-Eulerian; Mannigfaltigkeit; Tensoranalysis






God is a geometer.

—Plato
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Chapter 1

Introduction

It is unquestioned for a long time that natural sciences can benefit from differential
geometry, since it makes a comprehensive theory of gravitation possible in general
relativity. The so-called geometric mechanics [1, 2, 11, 12, 13, 14, 15, 16], however, has
been implemented more recently and thus it is applied to a lesser extend, especially
in engineering sciences. Important examples are found in the theories of rods and
shells, in the Lagrange-Hamilton formalism, and relativistic elasticity. In the theory of
materials, the Lie derivative serves to obtain objective rates of stress measures, but it
is often used detached from the overall geometric context.

Differential geometry [1, 3, 4, 5, 6, 7] provides the suitable background to present
and discuss the subjects of mechanics, and especially continuum mechanics, with an
integrative and mathematically precise terminology. It clarifies basic concepts and
opens up deep examination even of complex issues. For example, geometry reveals
that the determinant of the Jacobian matrix is not an invariant scalar, and that the
question, whether the first Piola-Kirchhoff stress tensor is symmetric or not, does not
make sense. However, differential geometry demands a large investment of effort and
persistency from its students.

Continuum mechanics [2, 8| is typically prepared for the Euclidian point space. This is
motivated by applications in engineering sciences, which prefer as simple spaces as pos-
sible. In some cases, e.g. for shells, it is reasonable to use local curvilinear coordinates
instead of the global cartesian coordinates. The former are not affine, that is, they do
not transform linearly as cartesian coordinates, and additional terminology —metric,
covariant and contravariant basis vectors etc.— enters. If the shell is understood as
embedded in the Euclidian space, the terms mentioned can refer to the ambient struc-
ture, namely if the position vectors of points are identified with those points. As a
result, the covariant vector basis, for example, arises from the partial derivatives of
the position vector with respect to the curvilinear coordinates of the related point on
the shell. The existence of a global position vector, however, already requires a global
linear structure of space. Without embedding the shell in the Euclidian space, a ter-
minology built on position vectors, and hence the description of the shell’s geometry
and kinematics will collapse.
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The introduction of manifolds [17] facilitates a consistently local description of the
geometry of structures without the need to embed them in a linear point space. The
definition of position vectors is not possible, because no global origin exists. The
creation of a vector basis at every point of the manifold rather succeeds by a one-
to-one mapping between a neighborhood of the point and a local coordinate system,
which necessarily is curvilinear. Instead of defining additional terms (metric, covariant
and contravariant basis vectors etc.) as for curvilinear coordinates in Euclidian spaces,
elementary operations are established of which the structure of space results in a natural
way.

Tensor analysis on manifolds delivers the standard tools to develop observer-invariant
or covariant theories. Covariance is an essential requirement for physical equations
2,6, 7,13, 18, 19]. In its passive interpretation, covariance asks for the form-invariance
of the equation structure; clearly, under coordinate transformations, terms must not be
dropped or added. However, a difficulty of tensor analysis on manifolds rests on the fact
that vectors and tensors are defined locally, and equations have to be formulated such
that point mappings are included. This means that equations of the kind v(P) = v'(Q),
as known from affine point spaces, are not permitted, because the vectors v, v’ are given
at different points P and ) and, therefore, they cannot be compared. In the literature
one often finds the analogous statement: ”In a manifold there are no vectors”. Thus,
although formulae become more complicated, point arguments and changes in points
will be clearly indicated in the paper.

Some remarks on tensor notation should be made here. In the literature, vectors and
tensors are often reduced to their components by adopting the component notation,
because the split-up of tensors into single components will be necessary anyway if
concrete calculations and implementations into computer programmes are intended. A
tensor, originally proposed as a coordinate-invariant object, is then understood as a
quantity with indices that transforms by a certain rule. The invariance of the tensor,
however, does not result from the transformation of its components alone, since one
needs the background knowledge that its basis transforms inversely. On the other hand,
by applying the so-called direct or absolute notation, tensor equations have the same
form in any coordinate system, as desired, but the computation of such an abstract
tensor equation can be cumbersome in non-cartesian coordinate systems. The third
choice is the local notation of tensors, where the associated tensor basis accompanies
the components. The relation between the absolute tensor and its components is always
available, and the referential coordinate frame is set by the basis. Local notation is also
useful to proof several expressions which are given in absolute resp. direct notation.
However, the notational preference should depend on the problem under consideration,
and the paper thus avoids a single-track approach to the subject.

Continuum mechanics on manifolds from the classic or traditional Lagrangian and Eu-
lerian viewpoints is presented, for example, in [2]. For the solution of initial boundary
value problems involving large material deformations or complex fluid structure in-
teraction, the Arbitrary Lagrangian-Eulerian (ALE) formulation [20, 21, 22| has been
approved as an efficient framework. ALE frameworks implemented in the finite ele-
ment method [23] have become an important numerical simulation tool, e.g. for metal



forming, free surface flow and impact processes. The Lagrangian and Eulerian for-
mulations are generalized within the ALE formulation, as a time-dependent reference
domain uncoupled from the material body and its configurations in the ambient space
is used to describe the physical quantities under consideration. Due to the general-
ization, however, the governing equations become more complicated, especially when
compared to the Lagrangian formulation in solid mechanics.

In the references cited, the ALE formulation for Euclidian spaces is discussed in detail,
but to the knowledge of the author, no reference is available in which the framework
is extended to manifolds or Riemannian spaces, or which respond closer to the geom-
etry of the ALE formulation. Therefore, another objective of the paper is to extend
the geometric methods of continuum mechanics by the Arbitrary Lagrangian-Eulerian
formulation on manifolds. It will be restricted to the geometry and kinematics of a
body and to the conservation of mass. Other balance equations as well as dynamical
and material theoretical aspects will not be considered.

The structure of the paper is as follows. Chapter 2 reviews some basic results of linear
geometry. In chapter 3, an introduction into the terminology of modern differential
geometry will be given: topology, tensor algebra, bundles and tensor fields, exterior
algebra, differential and integral calculi. After applying the terminology to contin-
uum mechanics in the classic Lagrangian and Eulerian formulations in chapter 4, the
ALE formulation will be geometrically introduced and implemented into the overall
continuum mechanical context. The paper closes with some concluding remarks in
chapter 5.
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Chapter 2

Review of Linear (Geometry

The following chapter should motivate the construction of vector spaces and mappings
on general manifolds. It is devoted to the important topics of vector algebra and affine
point spaces used in continuum mechanics and the theory of materials, including the
concept of objectivity.

2.1 Vectors and Linear Maps

Definition 2.1.1. A set V together with an addition
VxyY — YV
(a,b) — a+b=b+a
and a scalar multiplication

RxVY — V
(\,a) — Jda=a)\,VAER,

with existent unique neutral and inverse elements for both addition and scalar multi-
plication, is called vector space or linear space over the body R. The elements of V are
called vectors. o

Definition 2.1.2. Let V be a vector space. If there exists a positive bilinear mapping
respectively an inner product

(): VxV — R
(a,b) — (a,b) = (b,a),

then V is said to have a metric or to be metrizable, and it is called Fuclidian vector
space. o

Definition 2.1.3. If the equivalence

a'g, +a’g, +...+a"g, =0 & ad=0,Vi=1,2,....n
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holds, where 0 is the zero vector, then the vectors g,,g,,...,g, are called linearly
independent, otherwise linearly dependent. If n vectors g, are linearly independent, but
(n + 1) vectors g, are always linearly dependent, then n = ngyy, is the dimension of
Vi a0d {g1. 99, ..., 90, } = {9} € Vi, is called basis of V, The latter can
then be expressed by

dim
Vndim :ul EBUQ EB...EBZ/{ndim,

where @ denotes the direct sum (see definition below) of the subspaces U; C V,,,, , and
g, €U, forallie {1,... ngim}- o

Definition 2.1.4. Let U;,Us C V be subspaces of a vector space V. The sum U; + Us
is the subspace of V spanned by the elements of U; UUs. The direct sum U, & Uy is
the sum U + U, together with the property Uy NUy = {0}. o

Proposition 2.1.5. In a vector space V,, every vector v can be represented by

v=u'g, +vig, +...+v"g, = Zvigi ='g,.
i=1

where v',v?, ... v" € R and {g,;} € V, is a basis.

PROOF. Since {g,,9,,.-.,g,} is linearly independent and {g,, g5, - .., g,, v} is linearly
dependent, v can be expressed as a linear combination of the g, according to 2.1.3.
The identity on the right hand side of the proposition is due to the Einstein summation
convention. n

Definition 2.1.6. One refers to 2.1.5 as the local notation and to v = v'g, as the local
representative of v. The v' are the coordinates or components of v with respect to the

basis {g,}. o

By 2.1.3 and 2.1.5, the basis vectors can be arbitrarily chosen. They are, in general,
neither orthogonal nor normalized. Moreover, no origin has been used to define the v’
or g;, that is, points do not exist in vector spaces.

Ezxample 2.1.7. Every row resp. n-tuple {v!,v? ... 0"} € R", as known from linear
algebra, is a vector, and if {e;,e,,...,e,} is the canonical basis in R™, then {v!, v?,
...,v"} = v'e; is the local representative.

Definition 2.1.8. Let V, W be vector spaces. A map A : V — W, with
1. A(vy +v9) = Avy + Avy €W, Vv, v €V and
2. A(\v) = \Av) e W, VIR,

where Av = A(v), is called linear transformation, linear map or homomorphism. If
A : VYV — W is bijective such that A™' is its inverse and both ¥V and W have the
same dimension, then A is called isomorphism. Linear transformations A : V — V) are
called endomorphisms, and isomorphisms with V=W are called automorphisms. o

Definition 2.1.9. The linear transformation I : V — V defined through Iv = v,
Vv € V, is called the identity map on V. If A is an automorphism on V, then I =
A'A=AA"" o
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Definition 2.1.10. Let A : V,,  — W, be a linear transformation and let {g,}
and {h,} be bases of V,,,, and W,, . , respectively. The images Ag, can be expanded
in the basis h, by

Agz = Aaiha

through (mdim X Naim) numbers A%,. The matrix arrangement (A%;) of these numbers is
referred to as the matriz of the linear transformation A with respect to {h,}, in which
« (the left index) denotes the row index and i is the column index, respectively —this
is because a matrix of a linear transformation A : V, . — W, . is understood as a

map (A%,;) : RMim — R™Mdim - ywhere R™im denotes the columns having ng;, elements.

Corollary 2.1.11. By 2.1.5, the basis vectors hy, in 2.1.10 have an expression in the
basis {g;}, say ho = C’,g;, yielding Ag, = D’;g;, where D’; = C’ A% are the
components of A with respect to {g,}.

It can be shown that every linear transformation A : V,, — W, . has a component
matrix (A%;), and that this matrix is unique.

Definition 2.1.12. Consider the special situation A = I in 2.1.10, where the base
vectors g; € V are expanded in another basis {g, } of the same vector space:

g; = Bi;' g -

In the previous equation, the sum is over primed indices only. The matrix of I, written
(B%), is called the inverse matriz of the change of basis, that is, (B%)™' = (B%)
arranges the components of the direct change of basis, g, = B',g;. Thus, g, =
gljl.tB’i, g, = B/ B';g;, = 0';g;, and Ig; = 0';g;, where 0'; is called the Kronecker
elra. O

Corollary 2.1.13. As a (fived) vector v = v'g;, = v’ g, = Iv is coordinate-invariant,
under a change of basis g, = B',g;, the components of v transform with the inverse
matriz of the change of basis, that is, v* = v’ B,

Definition 2.1.14. Given a matrix (B%) and a vector v = v'g;, then a transformation
rule
v—v'B g,

has two interpretations. The active transformation changes the vector by a linear map
B defined through Bg; = B, g,/, so (B%) is the matrix of that transformation. From
the second viewpoint, the prescribed rule defines a passive transformation Ig, = B%g,
that keeps the vector fixed. In this case, (B%) is the inverse matrix of the change
of basis and v" = v'B" are the components of the same vector with respect to the
changed basis. o

As studied later in the text, the passive transformation rule identifies the vector with
a rank-one tensor. However, both interpretations are of fundamental importance in
physics, especially in continuum mechanics.
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Definition 2.1.15. A map A : V — W of Euclidian vector spaces V and W is called
isometry, if

(Aa, Ab),, = (a,b),

for all a,b € V. An isometry A : V — V is called an orthogonal map, having the
properties det A = +1 and A™' = AT, where A" is the transpose or adjoint of A. A
more general definition of an orthogonal map includes the isometries A : V — W and
then stipulates AT A = I, and AAT = Iy, o

Proposition 2.1.16. (Without proof.) A linear map A :V — V is orthogonal, if and
only if its matriz with respect to an orthonormal basis is orthogonal.

2.2 Affine Point Spaces

Definition 2.2.1. Let S = {A, B,C, ...} be a set of points and V a vector space. The
pair (S,V) —or simply S if the meaning is clear from the context— together with the
map

Sx8 — Vv
(A,B) — AB

is called an affine point space, if the following axioms are satisfied:

1. For every A € § and every v € V there is a unique A +v = B € §, so that
v=AB.

—_— — — —
2. If AB=CD, then AC = BD also holds (parallelogram axiom).

If ¥V moreover has a metric according to 2.1.2, then (S,V) is called a Euclidian point
space. o

Definition 2.2.2. Let S be an affine point space, and A, B, C' points, then A_C>' =
— —_— — — —

AB + BC, BA = —AB and AA = 0 defines the vector sum, the inverse element and
the neutral element, respectively. o

Example 2.2.3. (R",R") is the simplest affine point space. A point A € R™ is
identified with its coordinates, and, because of A+wv = B € R" by definition, v is also
an element of R".

The affine structure imposes a global parallelism on the standard Euclidian point space.
It is notable that parallelism —as well as terminology like distance and angle— does
not make sense in abstract vector spaces, but only in affine spaces.

— —_—  —
Corollary 2.2.4. Ifv(A) = AB is a vector with base point A, and AB = CD, then
v(A) =v(C).

Conclude that the parallelogram axiom of definition 2.2.1 renders affine point spaces
flat —this is the fundamental difference between flat spaces and manifolds.
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Definition 2.2.5. Let § be an Euclidian point space and v = P—Cj €V, then
d(P,Q) = (v, v) = [v] ,

is the distance of the points P, Q) € S. o

Definition 2.2.6. Let S be an affine point space, O, P € S, and {g;} € V,,. a

basis —a basis can be obtained from a set of (ngi, + 1) points. The (ngm + 1)-tuple
(0,91,92,--+9,,,.) = (0,g;) is called frame of reference, shortly: frame, in which the
g, are descriptively attached to the origin O (figure 2.1). S then becomes the frame
space, and OP =z € Va1 called position vector of P with respect to O. The local
representative & = z'g, includes the affine coordinates {x', x?, ... x"an} = {2’} of P
with respect to the frame (O, g;). o

Note that in Euclidian point spaces, ”frame” is used as a synonym for ”Euclidian
observer”.

Definition 2.2.7. Given a frame (O, g;) in the space S, one may construct coordinate
lines by varying one affine coordinate and keeping the other coordinate values fixed,
i.e. by changing one coordinate (component) z’ of the position vector. The family of
lines obtained is called affine coordinate system on S and is denoted by the pair (S, z).
If every coordinate line is orthogonal to each of the other coordinate lines, the affine
coordinate system is called cartesian. o

Although affine coordinates are uniquely determined by the chosen frame, one should
be careful with the difference between the frame and the coordinate system. Without
a frame it does not make sense to talk about coordinate systems!

One should also be careful with the terminology ”position vector”, because it depends

] — — —
on the frame, i.e. OP # O'P. It becomes clear that OP is an honest vector when
viewed from a different frame. The following two important results may help:

Theorem 2.2.8 (Transformation of Affine Coordinates). The coordinate func-
tions of every two affine coordinate systems transform linearly with =¥ = x* (!
,gMam) = BT gl + ¢, where B are the components of the inverse matriz of the change
of basis and ¢’ are constants.

Proor. Clearly, the coordinates of the same P € S under a change of framing
— }

(O g;) — (O’ g,) have to be calculated. To this end, let OP = x = 2'g, and

OP==g 'g, denote the position vectors of P in the two different frames that is,

P=0+x=0"+2z (figure 2.1).

Expanded in the primed basis, x becomes O_P>{g =1z = Bi/ r'g,, where 2.1.12 has

been apphed Settlng c=c'gy = O’ O, then in the primed frame the coordinates of
OP OO+OPresp T =+ care

s/

i’ i i’ i1 ngi
' =B+ =" (a,. .. am)

as desired. m
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Figure 2.1: Position vectors of a point P with respect to different frames (O, g;) and
(0/7 g, ) :

Proposition 2.2.9. A vector of an affine point space (# position vector!) is coordi-
nate-invariant (or frame-indifferent) and it fits 2.1.13, whereas a position vector does
not.

Proor. Additional to the previously described situation, let () € S be another point
— . — y
and let OQ = y'g;, and O'Q) = y" g, denote its position vectors in the two frames.
— = —_— —
Then by 2.2.1 and 222, v=0Q — P=0Q — OP =0'Q) — O'P. Apply 2.2.8 to get

v=(y" ~a")g, = ((Bly'+ ) = (Bia'+ ) gy
=(y' —2")Bigy = (y' —a")g,
in local notation. This is already 2.1.13. On the other hand, B z'g, = xiB";BjZ-,gj =

rlg, = OP is also a vector, but B% x¢ # 2% if O # O by 2.2.8, i.e. the position of P
with respect to (O, g,) and (0, g,/) does not transform in terms of 2.1.13. m

— A — , A
Corollary 2.2.10. Let OO’ = a'g;, O'O = ¢ g; and g, = B',g; be the translation
vectors and the change of basis of two frames (O, g;) and (O',g,), respectively. Since

—

—
00" = -0'0, one has

. S . o,
at = —c" B, and ¢ =—adB".

Corollary 2.2.11. The Jacobian matrix of the transformation of affine coordinates
2.2.8 1s given by the inverse matriz of the change of basis, i.e.

'
X _p

7

oI o

Definition 2.2.12. Let (S, V) and (7, ) be two affine point spaces, O, P, € S, and

A:V — W alinear map. A map & : § — 7 is referred to as an affine transformation,
—

if for every P = O + OP,

£(P)=£(0) + A(OP) €T.
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_— — — —
(0)(P) = A(OP) = &(OP) is called the pushforward of OP by &. For Euclidian V
and W, the affine transformation £ is called affine isometry, if

dT(g(P)7€(Q)) - dS(P7 Q)7

where dg, d7 are the distance functions on S and 7, respectively. o

Definition 2.2.13. Let £ : § — S, P — {(P) = £(0) + Q((ﬁ’)), where Q : V —
Y is an automorphism, be bijective, then a group of affine transformations can be
established, which should not be presented here. If £ : § — § is an affine isometry,
then @ is an isometry and orthogonal. Moreover, if £ preserves orientation, i.e. the
determinant is det Q = +1, then it is called a (superposed) rigid motion and Q —mnow
proper orthogonal— is called rotation. Rigid motions belong to the so-called special
FEuclidian group, denoted as SE(S), and rotations belong to the special orthogonal group

SO(V). o

Proposition 2.2.14. Under affine isometries £ : S — S, every vector v transforms
according to

where Q s the orthogonal map of &.

Proor. Let O, P, € S be points, then v = () — P is a vector. Applying 2.2.12,
v = £(Q)—£(P) = (£(0) + QO0G)) - (£(0) + QOP) ) = Q(OG) — Q(OP). Since
Q is linear, Q(O—Cj — (ﬁ;) = Q(Q — P) and the assertion follows. n

Proposition 2.2.15. Let { : S — S, P — &(P) = £(0) + Q((ﬁ’)) be a superposed
rigid motion, (O,g;) a frame and {g,} a basis defined through Qg; = Q%.g,. The
—

components of the position vector O§(P) = &’ with respect to the g, are then given by

i ¢ i
r=Q" "+

-/ . = .
where ¢ are the components of the translation vector O&(O) = ¢, and ' are the

components ofO_P> = x with respect to the basis {g,}.

PROOF. Since Qx = & by 2.2.12, O£(P) = O£(0)+£(0)E(P) becomes &' = Qx+-c.
The result then is obtained by substituting the local representatives x = z'g;, ©' =
2"g, and ¢ = ¢”g,, and using the definition of the primed basis {g, }. n

Instead of understanding the affine isometry £ : § — & as a superposed rigid motion
relative to a fixed Euclidian frame (O, g, /), it may also be interpreted as a change of
Euclidian framing resp. a change of Euclidian observers (O, g;) — £(0, g,) = (0', Qg,),
i.e. a relative motion between Euclidian frames (also called a quasi-motion [see 7]). This
can be justified as follows: if (O, g;) is a "rigid” frame that moves with a rigid motion
&, then (O, Qg;) is the dragged-along frame at O' = £(O) (figure 3.5).

However, an affine isometry only requires both frames to measure the same distance
between points, so @ from the change of a Euclidian framing needs to be orthogonal,
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Figure 2.2: Active objectivity of the vector & = OP in the Euclidian point space S
with respect to a superposed rigid motion of a subset B C S (left), and with respect
to a change of framing (right).

but not proper orthogonal as for superposed rigid motions. By keeping this difference
in mind, proposition 2.2.15 is equivalent to the following:

Proposition 2.2.16. Let Q be orthogonal resp. an isometry, (O,g;) — £(0,g;) =
(0',Qg;) a change of framing in the Euclidian point space S and {g,} a basis defined
through Qg; = Q";g,. The components of the position vector O—>P’ = a’ with respect to
the g, are then given by

o = Qi+

. —_— .
where ¢ are the components of the translation vector OO’ = ¢, and x* are the compo-
nents of OP = x with respect to the basis {g,}-

PRrROOF. Isometric @Q’s imply that P’ has the same coordinates with respect to the
frame (O, Qg;) as P has with respect to (O, g,) —except for reordering of indices if
det Q = —1. Therefore,

—

Py i i i
O'P'=Q(OP)=Qz =12'Qg, = Q";7'g,

and OP" = OO' 4+ O'P’ resp. €’ = Qx + ¢ as before. Substitution of 2’ = z”g, and
c = c¢'g, then gives the result. n

The connection between the formula 2.2.15 resp. 2.2.16 and the formula 2.2.8 is similar
to that of a map A : V — V and the identity map I in a vector space. Hence, it seems
likely to "rewrite” definition 2.1.14 for Euclidian point spaces.
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Definition 2.2.17. Let (S,V) be an Euclidian point space. A vector v € V which
transforms according to the rule
vl = f*’U )

is called objective under the transformation &, shortly: objective. The transforma-
tion rule, which depends on the map & that belongs to the transformation, has two
interpretations.

By applying the active interpretation of objectivity, the map £ : S — _S> is understood
as a superposed rigid motion, transforming every point P = (O + OP) into £(P) =
£(0) + Q((ﬁ;) and keeping the Euclidian frame fixed. In this case, {v = Qo as in
2.2.14, where Q € SO(V), and ¥ = Q% 2" + ¢ are the affine coordinates of £(P) in
terms of the coordinates of P and £(O) with respect to O. (Q) is the matrix of Q with

) —%
respect to a suitable basis, and ¢ are the components of O'O. Another way to define

active objectivity is to interpret £ as a change of Euclidian framing (O, g;) — (O, Qg,)
(cf. proposition 2.2.16 and figure 3.5).

On the other hand, if the passive interpretation of objectivity is applied, £ : (O, g;) —
(O',g;) is a change of framing on the fixed Euclidian point space and which keeps
the vector fixed, that is, £, = Iv as in 2.2.9. In this case, 7' = B% 2’ 4 ¢’ are the
affine coordinates of the same (fixed) point in different frames, where (B%) is the inverse
matrix of the change of basis. Therefore, passive objectivity phrases the transformation
properties of v under a change of affine coordinates. o

In general, it is the active interpretation of objectivity that is applied to continuum
mechanics and the theory of materials in Euclidian point spaces; this will be inves-
tigated in section 4.5. The passive interpretation of objectivity, however, relates to
the standard transformation rule for vectors and tensors under a change of basis (or
coordinates).

It is again emphasized that the active and passive interpretations of objectivity in
Euclidian point spaces correspond to the active and passive transformations of vectors
defined in 2.1.14, respectively. The reader should keep track of the active-passive
concepts in the remainder of the paper.
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Chapter 3

Differential Geometry

3.1 Topology and Manifolds

Manifolds are more general affine point spaces. Engineers nowadays accept the term
"manifold” as the mathematical expression for a continuum that has a differentiable
structure, but the rich theory behind is often ignored. However, differentiability as it
stands means that there is some continuity. Topology is the basic field for the study of
continuity and for the creation of a general terminology of space —a manifold is also
a topological space. Descriptively, a topology carries the relations or interconnections
between elements of a point set.

To non-mathematicians, managing books on topology and tensor analysis on manifolds
may become a difficult challenge. The following chapter should assemble the topics
needed by applying a notation consistent with the rest of the text.

Definition 3.1.1. Let S be a set. A topology 7 is a collection of subsets A, B C S,
called open sets, which satisfy the following axioms:

1.0e T and Se 7. (0 is the empty set.)
2. If A,B € 7, then AN B € .7 also holds.
3. Let Z C N be a set of indices. If A; € .7, Vi € Z, then |J,.; A; € 7 also holds.

The pair (S, .7) is referred to as the topological space, but write S instead of (S,.7)
if the meaning is clear. A subset A C S is called closed, if S\A € 7 is open,
i.e. closed sets are the complements of open sets. From the definition, the trivial
topology 7 = {0,S} of S is obvious. The elements of a topological space are called
points; these can be geometric points, material particles, thermodynamic states etc. ¢

Corollary 3.1.2. Since S\S = 0 and S\ = S, the sets S and ) are both open and
closed.

Definition 3.1.3. The interior or open cover int(M) of a topological space M C S is
the union of all open sets & which completely lie in M, i.e. int(M) =, {U|U € T
and U C M} . The closure cl(M) is the smallest closed set which completely includes
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M, ie M) =S -, {U|UeT and U C (S\M)}. The difference cl(M) —
int(M) = OM is called boundary of M. N

Definition 3.1.4. A topological space § is called discrete, if it has a discrete topology
T ={A| ACS}, that is, if all subsets are open. However, since S\\A is also a subset,
all subsets in discrete topological spaces are both open and closed. o

Definition 3.1.5. Let S be a topological space with topology 7. An (open) neigh-
borhood of a point P € S is an open set U € 7 such that P € U. A point P is called
isolated, if { P} is open. A basis for the topology of S is a sequence or collection % of
open sets such that every open set of S is a union of elements of A. o

Corollary 3.1.6. In a discrete topology every point is isolated.

Example 3.1.7. The set of integers as well as the set of nodes in a finite element
mesh are discrete topological spaces.

Definition 3.1.8. Let Z C N be a set of indices, then a topological space § is called
first countable, if for each P € S there is a countable collection {U; };c7 of neighborhoods
U(P) C S such that for any U(P), there is a k € N so U (P) C U(P). S is called
second countable, if it has a countable basis, i.e. the topology of § has a finite number
of open sets. o

Intuitively, second countable means that there is at least one way of covering the space
with a finite number of sets. Note that every second countable space is also first
countable, but not conversely.

Definition 3.1.9. A topological space § is referred to as a Hausdorff space, if every
two points P,QQ € S, P # @, can be separated by neighborhoods U(P) C S and
V(Q) C S such that

Z/{ N V - (Z) O

Proposition 3.1.10. In a Hausdorff space the singleton sets are closed.

PROOF. Let (S,.7) be a Hausdorff space, P € S, then for each @ € S\{P} there is
an (open) neighborhood U(Q) C S of @ such that P ¢ U, so U C S\{P}. Hence, by
the first countability condition S\{P} is open, and so {P} = S\(S\{P}) is closed. m

Definition 3.1.11. A homeomorphism is a bijective map h : & — 7, where both h
and h~! are continuous. A homeomorphism preserves the topology of a topological
space. If two topological spaces S, T are homeomorphic, then dim(S) = dim(7). ¢

Example 3.1.12. Every r-adaption or regularization of a finite element mesh at fixed
mesh topology represents a homeomorphism. By contrast, the map R — 7Z is no
homeomorphism.

Definition 3.1.13. An n-dimensional topological manifold M is a second countable
Hausdorff space together with a homeomorphism

r:UCM — XCR"
P — z(P)={z'2% .. ., 2"}p={2'}p, I,
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for any neighborhood U C M of P. The functions {z'}p are called coordinates of P.
The pair (U, x) including the chart map x(U) = X C R™ of the neighborhood U(P) is
called chart or local coordinate system. o

Definition 3.1.14. If for a certain system of local coordinates {z'};; = z(U) on U C
M the inverse of the chart function 7! does not exist, the coordinate system is called
singular, otherwise it is called regular. The inverse ' leads to the point P € U
expressed by coordinates:

P=ax 2! 2% . .. a"). o

The quintessence of manifolds is found in the homeomorphism 3.1.13. Charts enable
measurement on manifolds, because every point is assigned to a tuple of real numbers.

Example 3.1.15. The simplest example of a manifold is R” itself, that has the global
chart (R",Id). Any n-dimensional vector space is also a manifold with a global chart:
choose a basis {g;}, then V, — R" v +— {v',v? ... 0"} is the corresponding chart
map, in which v = v'g,.

Example 3.1.16. The thermodynamic state space is a two-dimensional manifold,
because in the chart the state is labelled by two independent quantities, namely pressure
and temperature.

Definition 3.1.17. Let U, U’ C M, UNU" # D an overlap and (U, x), (U', z") regular
charts. Then the continuous map

z' o x_l{m(umw) cxUNU) — UNU)
is called chart transition or change of coordinates. o is the composition operator. A
chart transition ' o x_l‘x(zmu') is also called the relabelling of the subset U NU'. o

Definition 3.1.18. A collection A(M) = {(U;, z;) },.; of charts of the manifold M =
U,ez Ui, where T C N, is called atlas of M. o

Definition 3.1.19. A manifold M is called a differentiable manifold, if for every two
charts (U, z), (U',z") € A(M) the chart transition 2’ o x*1|$(umu,) is continuous differ-
entiable. If the chart transition is k-fold continuous differentiable, where k € N, then
the manifold is called a C*-manifold. For k = 0, M is a topological manifold and for
k — oo it is called smooth or C'*°-manifold. o

Definition 3.1.20. Let M be a C'-manifold, U, U’ C M, and U NU' # O an overlap.
For a point P € U NU', having coordinates {z'}p € x (U) and {z7}p € 2/ U,
respectively, the transformation of the coordinate differentials involves the Jacobian
matriz of the coordinate functions at P,

Z-, o(z" ox™1) :

1

. . ;! _ . . . . ;
in which 2" ox7" is in general not linear in 2*. o
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Definition 3.1.21. Let ¢ : M — A be a continuous map, where M and N’ may have
different dimensions. Furthermore, let U(P) C M be the neighborhood of a point
P e M, V(¢(P)) C N aneighborhood of ¢(P) € N, and ¢~ 1 (V) NU # (. Let (U, X),
(V,x) be appropriate charts, then z o ¢ o X! defines the chart transition concerning
¢ with respect to X (figure 3.1):

zopo X~ L X (o7 V)NU) — z(o7'WV)NU) .

1

|X(¢—1(V)ﬂu)
The chart transition is also called the local representative or the localization of ¢. If
2’ denote the coordinate functions of (V,z), one abbreviates ¢' = 2’ o ¢ o X!, so
' 0 ¢ = ¢'(X). The map ¢ is called differentiable at P € ¢~ *(V)NU,if zodo X 'is
differentiable at P. o

Note that chart transitions concerning maps ¢ : M — N reduce to 3.1.17 if ¢ = Id is
the identity map on M.

Figure 3.1: Localization of a continuous map ¢.

Definition 3.1.22. Consider the aforementioned situation. A map ¢ : M — N is

called regular, if the Jacobian matrix g—@, with {X!}p € X (U), is invertible at P € M

(cf. theory of parametric surfaces). o
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Definition 3.1.23. Let M and N be differentiable manifolds. A bijective differen-
tiable map

¢p: M — N,Tp !
is called diffeomorphism, if both ¢ and ¢! are continuous differentiable. o

Corollary 3.1.24. (i) If $ : M — N is a diffeomorphism and M is a C*-manifold,
then N' = ¢(M) is also C*, that is, diffeomorphisms preserve or hand down the (dif-
ferentiable) structure of M. (ii) Every diffeomorphism is regular.

Definition 3.1.25. Let ¢ : M — N be a diffeomorphism, 4 € M, V C N subsets,
and let (U, X), (V,x) be appropriate charts, then one refers to ¢ as the active diffeo-
morphism and to ¢ = x o ¢ o X! as the passive diffeomorphism, respectively (figure
3.2). o

U 1%

Xl l

X C Rndim 7) y C Rndim

Figure 3.2: Active diffeomorphism ¢ and passive diffeomorphism ¢.

The difference between those maps is often ignored in applications of differential ge-
ometry; ¢ will be identified with ¢ also later in this text in order to simplify notation.
However, the difference between ¢ and ¢ plays a fundamental role in general relativity,
gauge theory, and even in the theory of materials, since it had been noticed by Einstein
in his famous "Hole Argument” ([24], pp. 1066-1067, also [18, 19]). A consequence of
this argument is that spacetime in Einstein’s theory of gravitation does not exist in-
dependently of the matter within it. The Hole Argument is embedded in the principle
of general covariance, which will be investigated in section 4.5.

Definition 3.1.26. Let S, A/ be manifolds, m = dim(S), n = dim(N) and m < n.
S C N is called submanifold of N, if for every P € S there exists a neighborhood
U C N and a chart (U, x), such that for SNU # 0,

o(SNU) = (R™ x {a" =... =2" =0}) Na(l) and  z(P)=0.

The definition phrases that the charts of S and N have to be compatible, and that the
chart of U in (S NU) is centered at P. o

Example 3.1.27. A shell is an (m=2)-dimensional submanifold in a three-dimensio-
nal space.

3.2 The Tangent Space

In affine point spaces, a vector is identified with parallel translation (see section 2.2): a
specific vector can be attached to every point of the affine point space or, equivalently,
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affine point spaces are flat and any point could be an origin of that vector. For a
manifold, it is not possible to define a parallel translation, because at this stage reached,
there is not even a connecting path between the points. Consequently, there are no
vectors in the traditional sense.

In order to geometrize manifolds further, this section gives a blue print of the tangent
space, that is, a vector space attached to each point of the manifold, by beginning with
curvilinear coordinates in affine point spaces.

Definition 3.2.1. Let S be an m-dimensional affine point space and y!,...,y™ the
coordinate functions of an affine coordinate system (S, y). Let (A, ), with coordinate
functions #',...,2", n < m, be a coordinate system on an n-dimensional manifold
A. A curvilinear coordinate system on A embedded in & —such that A C S is a
submanifold— is determined by m nonlinear functions f? involved in the map

R" — R™
(..., 2" = oy =fit a2, i=1,.. ., m,
so that y' = ffon Ain S. o

Therefore, the simple rule for the change of affine coordinates 2.2.8, v = x* (y',. ..,
y™) = B. y' + ¢, where the B’ and ¢ are constants and do not depend on the point,
changes to 4" = (x" o f*)(z!,...,2") if curvilinear coordinates are involved.

With curvilinear coordinates in Fuclidian spaces, a vector basis of the tangent space
at point P € A C S can be constructed by taking the partial derivatives of the
position vector 0—15 = x, where O € § is another point, with respect to the curvilinear
coordinates: g, = gfﬁ-- Indeed, since de = dz'g;, the g, are linearly independent.
Hence, consulting 2.1.12 and 2.2.11 proofs the following result.

Proposition 3.2.2. Under a transformation z* = (¥ (2!, ..., z") of (curvilinear) coor-
dinates, which is assumed to be invertible, the tangent basis vectors transform according
to

/

oz 0z 9¢" ¢
i~ o5 = 02" 0 or I

that s, the inverse matrix of the change of basis coincides with the Jacobian matrixz of
the change of coordinates.

act’
oz’
is its inverse.

./
ox’
) Ozt

of the change of coordinates =’ — z', and

instead of shall denote the Jacobian matrix
Oz’
oz

To simplify notation in this section

A linear transformation changes a vector, but the vector itself is a coordinate;ix}waria_nt}
geometric object. For example, parallel translation is invariant because v = AA’ = BB’
is independent of the origin and no coordinate system is involved. Therefore, v = v'g, =
v"' g, must hold for arbitrary bases {g,}, {g»}. By 3.2.2, the basis vectors transform
with the inverse Jacobian matrix of the change of coordinates, i.e. g;; = %gi, SO

. o+ O’ P

7 A A 7
Vg =V —9; = Vo= -V .
! x oxt
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This transformation rule identifies the vector components with components of a 1-fold
contravariant tensor:

Definition 3.2.3. A set of coordinate-dependent functions ¢ which transform under
chart transitions (or changes of coordinates) ' — 2% according to the rule

-/
-/ 8372

= ¢
ox'

are called components of a 1-fold contravariant tensor. A set of coordinate-dependent
functions t; which transform under the same chart transitions according to the rule

o
ty = Wt,-
are called components of a 1-fold covariant tensor. o

2

The terminology ”covariant” and ”contravariant” is introduced in order to distinct the
behavior under chart transitions, so covariant means ”having the same transformation
rule as the basis vectors”. However, "subscript” and ”superscript” would be also an
appropriate distinction.

Proposition 3.2.4. On differentiable manifolds there are 1-fold covariant and 1-fold
contravariant tensors.

PrROOF. Let M be an n-dimensional differentiable manifold, Z C R an open interval
of the real line and s : Z — M a curve on M, so that s(t) € U C M for some open
neighborhood Y. In a chart (U, x), s induces the map s(t) — z' o s(t) = s'(t) C R" for
every coordinate line z°. By using the Jacobian matrix defined in 3.1.20, a change of
coordinates z — ¥ transforms the derivations of the parameterized coordinates s' at
fixed t according to the scheme

ds” B ort dst
dt  oxt dt

So, by 3.2.3, 1-fold contravariant tensors on differentiable manifolds do exist.

Next, consider a real C' function resp. a C'! scalar field f U — R, where i C M. In
a chart (U, z), f induces the field f(z) = foxz™' C R" as a function of the coordinates
z'. A change of coordinates z' — z' transforms the derivations of f with respect to
the coordinates according to the scheme

af oxt Of
or’  Or' Oxt
Conclude that on differentiable manifolds there are also 1-fold covariant tensors. u

Definition 3.2.5. Let f : M — R be C*, and let f(z) = f ozt be its picture in a
chart. One defines the directional derivative of f along a curve s(t) C M at point s(0)
through

df
dt

_of 851'%
-~ Oxt Qs dt

t=0

_Of d¢’
o Ozt dt

9f
= azfl.wz = Dyf = wl[f].
=0
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The w' = (if; = w(z’] are tangential to the curve s(t) through point s(0), and they
t=0

are called components of the tangent vector of the curve at s(0). The w* are well-defined
up to re-parametrizations A
_; ds’ ;dt
nW = — = —.
di di ¢

Proposition 3.2.6. The directional derivative of a real function is coordinate-invari-
ant.

PROOF. By using 3.2.4,
of o+ (8Z‘i 8f> (8:6"/ Z-) B ox' ox' of ,  Of

o ox" Ox' or ) T or or or . opi

Corollary 3.2.7. If 8.2.5 is written independently of f, then w[-] = wia‘?ci is also

coordinate-invariant. Application to the coordinate functions z' : U — R shows that
the 8(3:2. S R™im qre linearly independent, clearly: w[z'] = wj% = wj5"j = _w", 50
w = 'w[xl]a‘ii s a vector. Therefore, {%} = {%} s a vector basis for the w* —the

so-called Gaussian basis—, and R"™i= jindeed is a vector space.

Definition 3.2.8. Let M be a differentiable manifold, 4 C M a subset and (U, x) a
chart, then the tangent space TpM at point P € M is a vector space that is spanned
by the partial derivatives of the coordinates z(P) = {z'}p (the Gaussian basis) such

that { 8‘?02. } p € TpM is a basis. Formally, the tangent space can be written as

TPM = {P} X Vndim .
That is, the tangent space is a vector space attached to a point of the manifold and
which is independent of the tangent space at any other point. Note that the pair
(P, 8,) is the local version of an affine frame of reference on M that has been intro-

ox?
duced in 2.2.6. o

Definition 3.2.9. The tangent vector w € Tp M associated with tensor components
w' is given by its local representative

o

w'(P) < w(P)=uw(P) o

(P) GTPM.

Whenever one talks about a vector w in the manifold, the picture of the w’ in the
tangent space is meant. However, to get a local representative of w, the first step is to
choose a chart on M. o

Definition 3.2.10. The disjoint union

TM= | TpM
PeM
of all tangent spaces at all points P € M is called the tangent bundle of M. o
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Definition 3.2.11. A manifold M is called metrizable, if the tangent bundle 7'M has
a fibre metric, that is, there exists a positive symmetric bilinear mapping

TPMXTPM — R
o 0 0 0
(a_a—) - <axw%>f%<”

at every point P € M. The g;; = g;; are called metric coefficients. If M is also
torsion-free (I, = I'.7,, see sec. 3.6.1), then M is called a Riemannian manifold.

Definition 3.2.12. A linear form is a map

a:yY — R

v — d(v)=a"-v.

So a* € V*, where V* is the dual space of V), as it is used in linear algebra. Using
the notation a*- v, the map is also called contraction. Note that the - operator is not
commutative and it is not equivalent to the inner product of vectors! o

As there are no ”traditional” vectors on manifolds, but only tangent vectors, the def-
inition of a linear form has to be revised. On manifolds, the linear forms are called
differential 1-forms, or shortly 1-forms.

Definition 3.2.13. Let M be an n-dimensional differentiable manifold. The co-
tangent space TpM is a vector space at point P € M that can be formally written
as TpM = {P} x V. The union T"M = |Jpcp TpM is referred to as the cotangent
bundle of M. o

Proposition 3.2.14. In a chart (U,x) on a manifold M, where U C M, the differ-

ential forms dz' are dual to the 322- such that the cotangent space is spanned by the

coordinate differentials, that is, {dz'}, = {da'}, € THM is a basis for every P € U.

PROOF. It has to be shown that the duality relation dz’ - 2 = 6"; holds, where §";

is the Kronecker delta on M and i, j € {1,2,...,nqm}. However, in R™im contraction
reduces to ordinary multiplication such that for every P € U,

0 Ox' o

In mathematical and physical literature the a?ci = 0; with lightface symbols of partial

derivation typically denote the basis vectors of the tangent space, and the dz’ denote
their duals. The notation with boldface symbols used here is a reasonable convention
borrowed from [2] and [6]. Note that w’-2: may be read as a scalar as well as a tangent
vector and thus may cause confusion. The chosen notation avoids such ambiguity.

Definition 3.2.15. The differential of a C*! scalar field f : M — R is a 1-form given

by df = ggi dz’, in which 86; are the components of df. o
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Corollary 3.2.16. (i) By 3.2.14, the contraction of a 1-form a* € THM and a tangent
vector v € TpM can be written as
. :al-vjéij =q; v,

a.’v:(aidx)- (’UJ%> —al-vjd:c %

where a;dz’ is the local representative of a*.

(ii) With 8.2.15, the derivative 3.2.5 of a C* real function f in the direction w € TpM
can be written as

wlf) = L =

w

ori . ox

wjéji:gwjdxi-%:df~w.
? T

Note that neither the terminology ”co- and contravariant basis vectors” nor a metric
for raising or lowering the indices is involved to perform a"- v, as it is typically done
when using curvilinear coordinates in Euclidian spaces. This is an example of how
differential geometry can offer advantages and clarification of the basic theory.

3.3 Tensor Algebra

Definition 3.3.1. A (’;)—tensor T(P) at point P of a manifold M is a multilinear

mapping
T:TpMx ... xTpMxTpM x ... xTpM — R, o

TV VvV
p—rfold q—fold

By multilinearity it is meant that

% >k >k %
T(al,...,ap,vl,...,)\az,...,vq) :)\T(al,...,ap,vl,...,a:,...,vq) ,
for some A € R, and
* * _
T (d),....d,vi,....c+y,...,0,) =
>k % % >k
T(al,...,ap,vl,...,:c,...,vq)+T(a1,...,ap,'vl,...,y,...,vq) ,

where @, ..., a, € Tp M and x,y, vy, ..., v, € TP M.

Definition 3.3.2. A (2 :) -two-point tensor over map ¢ : M — N is a multilinear
mapping

T:?5/\/’><...><T5/\/;><TQN><...><TQJ\/;

p—fold q—fold
XTpMX .. XTpM X TpMx.. . XTpM — R,
T‘:led s—fold

where Q = ¢(P) and T is a function of P. Every (S Z)—tensor is an element of a
(p X g X r x s)-dimensional vector space. One refers to (p+¢+r+s) as the rank of the
tensor. o
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Example 3.3.3. A differential 1-form a* is a (?)—tensor, also called a covariant rank-
one tensor, and a vector v is a (é)—tensor by setting a'(v) = v(a").

Definition 3.3.4. The components of a tensor, that has been defined through 3.3.1,
are obtained by delivering the basis vectors of the cotangent space and of the tangent
space as arguments of the tensor:

Az’ dzvz’ ) Qv

0 15) 5]
THUH2 55 =T (dx“l,dx“Q, oo datr, ) .

Components of two-point tensors are unwrapped analogously. o

If the tensor cannot be represented by a single symbol T, it will be put in parentheses
such that (T)"*" = denote the components of the tensor. Lower case greek
letters are used here as coordinate indices, whereas lower case Latin denote labels. The
nested indication is necessary as p + ¢ index slots exist, and each independently pass

through the numbers 1,2, ..., ngim-

Corollary 3.3.5. Let %”’;, 92" denote the Jacobian matriz and its inverse, respec-
xr oxh

tively, of a chart transition x (UNU') — ' UNU'); UNU" # O being understood.
Then, by 3.2.3, the components of a (’;) -tensor transform according to

By OgHa It V1 Q2 Vg
or* Ox Ozt Ox™* Ox ox P2 ety
/

Vi VhyenVy Ot Ok T Ak 8:6”1 axyé T OrYa U1,V2,..Vq °

For the sake of completeness, some generalization of the tensorial transformation cri-
terion is given here.

Definition 3.3.6. (See also [5], ch. vii; [6], ch. 21; [25], ch. 5; and [4]) Let ¥ be a kind
of (5) -tensor whose components transform according to the rule

Eﬂll ----- J7A = f [det (5:10“)] orH ' Oxte Ozt ‘ ox"e ity

Oxt’ ) | Dwr " Qw0 O

where f [det(gf; )] is a function of the determinant of the inverse Jacobian matrix.

Then ¥ is called an even relative tensor of weight w, if f[det(%)] = det(%)w, and

it is called an odd relative tensor of weight w, if f[det(g;”:, )] = |det(%)|w, Moreover,
T is a pseudotensor, if f[det( 8”5“,)] = sign[det( dzh ).

oxH Ozt

The even (odd) relative tensors of weight 1 are also called even (odd) tensor densities,
and the even (odd) relative scalars of weight 1 are also called even (odd) scalar densities.

An absolute tensor (or ordinary tensor) is obtained by setting f[det( ggf:, )] = 1. Except
for special topics of integration theory, this paper solely deals with ordinary (two-point)

tensors. o

Definition 3.3.7. Contraction reduces the rank of tensors. For example, contracting

a (})—tensor T and a (é)—tensor resp. vector v = v’ a?ci yields the (é)—tensor

A P o
T v=T(v)=vT . , in components 7" v’.
ort J
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1

1)—tensor T and a (?)—tensor (1-form) a* is

The contraction of a (
a-T=a(T) , in components T' a;.

The contraction two tensors T' and S in the ¢-th covariant slot of T" and the j-th con-
travariant slot of S are defined in a similar way, as if the covariant slot is a 1-form and
the contravariant slot is a vector, respectively. The contraction of two tensors T" and S
in the ¢-th contravariant slot of T" and the j-th covariant slot of S is straightforward.

Let 79 and Sijrr be the components of two tensors T' and S. Then, without a
specification of slots,

T-S  with TS =T"
denotes the contraction and
T:S with TS, =T",

the double contraction of T" and S, respectively. A single tensor is contracted analo-
gously, provided that the tensor has as well covariant as contravariant slots. o

Definition 3.3.8. The contraction of a G)—tensor is called the trace of the tensor:
trT =1T",. o
Definition 3.3.9. Let the tensors T' and S have the same rank and be compatible in

terms of contraction, then (T',S) denotes the contraction on all index slots resp. the
inner product. Taking the examples of T" and S from definition 3.3.7, then

(T, 8) =T"™Su. o
By the chosen definition of tensors, T is an operator acting on the vector slots and
1-form slots of some other tensor S, that is, T'(S) # S(T') in general!

Definition 3.3.10. Let T be a (Z)—tensor and S a (2)—tensor. The tensor product
T ® S yields an (’;IZ)—tensor

(T ®@8)(P): TpMx ... xTpMxTpM x ... xTpM

p—fold q—fold
KTEM X .. X TEM X ToM % ... x TpM — R
T‘:led s—fold

such that

(T ®S) (a*l,...,a},vl,...,vq,b*l,... b 'wl,...,'ws)

)

:T(aﬁ,...,a”;,vl,...,vq)S(b*l,...,bj,wl,...,ws),
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and
a,...,0p HLseees oy _ aL,...,0p M1 yeesfhr
(T ® S) B1,--.08q =T ﬁlwanqS

V1,...,Vs Vl,..,Vs *

That is, the tensor product generates ordered tuples of basis vectors, and so for a (f; )—
tensor T' one may abbreviate T' € TP(M), where T?(M) = Q" TM @ Q? T"M is the
(’;)-tensor bundle, and Q" denotes the k-th tensor power. o

Corollary 3.3.11. By using the definitions 3.3.4, 3.3.7 and 3.3.10, a (Z) -tensor has
the local representative

T(P) = THbzb 0 39 5. .

V12, g W@)ax“? Yo KA’ dr"”?® ... dx" .

Definition 3.3.12. The definition 3.3.6 can be generalized further by applying the
tensor product. An absolute pseudotensor is obtained by tensor-multiplying an even
and an odd relative tensor of opposite weights, and a relative pseudotensor of weight
w = u + v is the results of the tensor product of an even relative tensor of weight u
(resp. v) and an odd relative tensor of weight v (resp. u). o

The reader should carefully distinguish the tensors on manifolds from those in ordinary
vector spaces, as the latter do not carry point information. The following proposition
helps to clarify this aspect.

Proposition 3.3.13. Let V, W be vector spaces and {G;} € V, {g,} € W appropriate
bases, then every linear map A 1V — W corresponds with a (}) -tensor.

PROOF. Note that from the definitions 2.1.10 and 3.3.2, AV = VI(AG;) = A},Vig, €
W, where V = V!G/ is a vector. On the other hand

Ailvlgi = AiJVI(sJIgi = AiJVIgi ® GJ : GI - (AZJQZ ® GJ) . (VIG[) s
so A = A’,;g, ® G" is the tensor of the linear map. n

An alternative proof of the previous statement can be obtained by showing that the
A’ of the linear map transform as the components of a tensor.

To simplify notation, boldface italics are used for both, linear transformations and
tensors. The difference will become clear when the object is applied to a vector v of
the tangent space: Aw is the linear map A applied to the vector v, and A - v is the
contraction of the tensor A and the vector v.

Definition 3.3.14. Let M be a manifold and P € M. From the metric coefficients
in 3.2.11, the metric tensor, or shortly metric g(P) = ¢;; dz'® da? can be defined, so
that the pair (M, g) is a metric space (just write M instead of (M, g) if there is no
danger of confusion). Through g™ g; = 6%, an inverse metric g=*(P) = ¢ 2@ 2
can be obtained, such that

.0 0
-1 _ k AN 7
79 —(gk:ld$®dl“) (gjaxi®8xj)

_ ij S k o i .
= grng"0"dx ®—8xf =ds' ® o = Iy
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is the second-rank unit tensor on M. o
Corollary 3.3.15. Since

: A o o , .0
ik _ ik St 2
9" 95 =9 <W’@>—%—dx 0w

=4 dzt = ng—axk = glkgkj daz’ y

tensor indices can be raised by the inverse metric coefficients, and lowered by the metric
coefficients.

Definition 3.3.16. Let T = T?% ® da’ be a G)—tensor, then the associated tensors
of T are
T = T dr'® da? = gl-kaj dz'® da’
0 0 .. 0 o
d Tﬁ:T”—. —.:TZ kj - -
an or' © oxi W G © oxl’
where ° is the index lowering operator and ! is the index raising operator, respectively.

If § € TP(M), then Cils T?. (M) is the tensor with all indices lowered, and S* €

TP (M) is the tensor with all indices raised. o
Definition 3.3.17. Let P € M and v € Tp.M a vector, then define the linear trans-
formation g’(P) : TpM — TpM by ¢°(P)-v = (v, ) p, and its inverse g*(P) : Tp M —
TpM, such that for T € T}H(M), T" = g’ - T and T* = T - g*, respectively. o

Corollary 3.3.18. The associated tensors of I o, are

- ; .. 0 o
b k i b f ik -1 f
I’ =gy0",dz'®@da’ =g=g and I_ékg]i:vi@—ﬁxf_g =g°.

Example 3.3.19. Raising the indices of the differential df of a scalar field gives the
gradient V f, which is a vector:

Jf 0O
(dff=vi=gr ol 2

Associated tensors are different objects, that is, T # T* # T°! In cartesian spaces,
however, the distinction is unnecessary.

Definition 3.3.20. Let M, N be manifolds, T'(P) : Tp.M — TN a two-point tensor
over a regular map ¢ : M — N, where Q = ¢(P), and let U € TpM be a vector on M
and a* € THN a one form on . The transpose or adjoint of T, T*(Q) : T4(p(M)) —
T (Q)M, is then defined through

(@-T(U)),=(T(a")-U)p .

The transpose will be defined slightly different if M and N are metric spaces. Let
v € ToN be a vector, then the transpose T (Q) : To(p(M)) — Ty-1()M is defined
through

(v, T(U)), = (T"v),U), . o
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Proposition 3.3.21. If ¢;;(Q) are the metric coefficients on N and G (P) are the
coefficients of the inverse metric on M, then (i) the components of T are

(T")'(Q) = g (T 007") (G 0 07Y)
and (i) T" = G* - T* - ¢’

PRrROOF. To proof (i), let U(P) C M, V(Q) C N be neighborhoods with appropriate
charts (U, X), (V,x), respectively, in which X (i) = {X'};; and (V) = {z'}. Then
{dXI} € TphM is a dual basis at P and {%} € ToN is a basis at @, so that

T(P) =T';(P)2;®dX" is alocal representative of T. Set U = U’ 3% and v = v' 2%,
then,

- o o - o
T — Tz J : XI' — Tz ’ ‘
(U) =T 55 @dX 555 =T 55
and
o 0

(), ’U>Q =/ T4U! <@, %> =T U g5

On the other hand, T"(v) = (T") v/ 52 @ dz'- 2 = (T") 0" 52+, so

. 0 o .
<U, TT(’U)>p = U/(Th) ' <W’ W> = U(T") 'Gyy .

By definition, v'U/T7,g;; = v'U’(TT)!,G ;. Multiplying both sides with G7*, and by
noting that U and v are arbitrary, one gets

(T =g, T, G

The assertion follows by uncovering the point arguments.

For (i), let a* = v’ = g’ - v. By definition, T*(a’) = T*g’ - v) = (T* - g")(v) is a
1-form on M, so G*- ((T* - ¢°)(v)) = (G* - T* - g°)(v) is a vector on M, where the last
identity is due to linearity. Since v is arbitrary, comparison with the second definition
of a transpose gives the result. n

Definition 3.3.22. Let T, U and v be as before. The operations

T 'P)-T(P)=1Iy and T ' -TWU)=U

involve the inverse tensor T'. It is easy to verify that 7! has the local representative

T(P)=(T)i(P) @ da’,

X!

where (T~1)!, are the components of the inverse of the matrix (7%). Define the inverse
transposed tensor T~ (Q) analogously from

TNQ) TYQ) =Ly  resp. T -T'(v)=wv,

yielding T-7(Q) = (T7") ,(Q) g2 ® dX'. o
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The local representatives of the transpose, the inverse and the inverse transpose of
(one-point) tensors can be obtained easily by choosing P = Q and N' = M. It is
notable that T calls for metrics on M and N, whereas T ! does not.

Definition 3.3.23. A two-point tensor T : TpM — TypN is called orthogonal
provided that
TV T=I, and T -T'=1y.

T is called proper orthogonal, if it is orthogonal and det T = +1. o

Definition 3.3.24. Let N be a metric space. A G)—tensor S : TN — TN is called
symmetric, if § = S™. o

Note that with two-point tensors it does not make sense to talk about symmetry!

Corollary 3.3.25. Let S(Q) = S%(Q) 2 @ da? be symmetric, Q@ € N and g;; the

metric coefficients on N'. Then by 3.3.21,

;0
Sjaxz’

ort

Definition 3.3.26. Let S : TN — TN be symmetric and dim(N) = 3, then, by
Cayley-Hamilton’s theorem [9, 2],

S3 — 1,(8)S? + 1,(S)S — I5(S)I = 0.

I, I5, I3 are scalar functions of S, which are rotationally invariant, i.e. invariant under
transformations that belong to the special orthogonal group SO(TN'). They are called
the principal invariants of S having the properties

[1(5):’61"5,

I,(S)=det S (tr S7")== ((tr §)* — tr(S?)),

1
2
and [3(S)=det S. o

3.4 Bundles and Tensor Fields

3.4.1 Sections of Fibre Bundles

The previous section was about tensors at single points of the manifold. To give an
precise definition of fields of vectors and tensors, the theory of fibre bundles is briefly
introduced. For further studies see, for example, [26] and [1].
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Uy cEL—UXF

™
l pry

ucmM

Figure 3.3: Projection and local trivialization.

Definition 3.4.1. Let £, M be at least topological spaces, dim(£) = n + m and
dim (M) =m, respectively, and let

Tm:&— M

be a continuous surjection, then the triple (£, m, M) is called n-dimensional fibre
bundle over M and 7 is called projection (figure 3.3). £ and M are referred to as the
total space and the base space, respectively. If U C M is a subset, then 7|, : £],, — U,
with &|,, = m~}(U), is called the restriction of m to U. For P € U, =~ (P) = &|p is
called fibre over P, so n is the dimension of the fibre. o

Instead of (£, m, M), a frequent notation for fibre bundles is 7 : £ — M, or simply &
if the meaning is clear.

Definition 3.4.2. Let (£, 7, M) be an n-dimensional fibre bundle and Y C M a
subset. The pair (W, y) including the homeomorphism y : 71 (U) — U x F, where
7L U) =W C &, is called bundle chart or local trivialization (figure 3.3). F, with
dim(F) = n, is called the fibre space. The term fibre space is legitimate since the
fibre 771(P) is homeomorphic to F through y(7~'(P)) = {P} x F. The mappings
pry :UXF — U and pr, : U x F — F denote the projections onto the first and second
factor of y(7—'(U)), respectively. o

Definition 3.4.3. A collection (y; : 7' (U;) — U; x F),.; of bundle charts of (€, T,
M), such that (J,.; Uy = M for T C N, is called bundle atlas of (£, m, M). o

Definition 3.4.4. Let (£, m, M) be a fibre bundle. If all #='(U), U C M, are locally
trivializable and 7='(M) — M x F is a homeomorphism, then the fibre bundle is
called globally trivializable. If the total space is the product topology & = M x F,
and (M,y = Id) is a global bundle chart such that 7 = pr; : M x F — M and
71 (P)={P} x F, then (€, w7, M) is a trivial bundle. o

Definition 3.4.5. If the fibre space is an n-dimensional vector space V,,, a fibre bundle
(&€, m, M) is called a vector bundle, and for £ = M x V), it is called a trivial vector
bundle. o

Definition 3.4.6. If the fibre of a fibre bundle over M is spanned by the tangent
vectors at each P € M, i.e. 7~ 1(P) = Tp.M, then the total space is denoted by T'M,
and m = Ty : TM — M respectively (TM, 7o, M) is referred to as the tangent
bundle over M (cf. 3.2.10). A local trivialization is then assumed to be diffeomorphic,
not only homeomorphic. o
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Example 3.4.7. The simplest example of a tangent bundle is found in the affine point
space (R™,R"). The set of all vectors v = {v!,... v"} at all points P € R", i.e. set of
all pairs (P, v), is just the cartesian product R” x R™ = TR™. So TR" is trivial, and
{P} x R™ is a tangent space at P.

Example 3.4.8. A tube is a trivial bundle, in which the base space is the circular
cross section S', and S! x R is the total space. The fibre 77!(P), P € S', is a line on
the tube parallel to the axis. The Mdbius strip is a non-trivial bundle over S!. Locally,
tube and Mobius strip are identical.

Proposition 3.4.9. Let M be an n-dimensional differentiable manifold, then (i) TM
is a 2n-dimensional manifold, and (ii) Tops : TM — M is a vector bundle.

PRrROOF. (i) Let U C M be a subset and (U, x) a chart, where x : U — x(U) C R".
Then, by recalling the definitions 3.2.8 and 3.2.10, a natural chart of the tangent bundle
would be (TU,Tz) including the map

Te: TM|, — zU)xR"
(Pv) = Ta(Pv) ={(v(P)),(v(P)),. ..
L& (P)), vt (v), v (v),...,v"(v)}.

Therein, £ (v(P)) = 2°(P) are the local coordinates of P € M, v'(v) = v[x'] are the
components of v(P) € Tp M, and TM|,, is the restriction of TM to U.

The natural atlas of TM, then, is the collection TR = {(TU;,T'x;)},.; of natural
charts, where TM = J,.; TU; and Z C N. Hence, T’M is homeomorphic to R?", so
dim(TM) = 2n. As M is Hausdorffian and second countable by definition, and 7Tz
is a diffeomorphism by 3.4.6, T M is also Hausdorffian and second countable, i.e. a
manifold.

(ii) By the definition of a local chart, z(U/) is homeomorphic to U, and TM|,, =
Upeu TeM =7 (U), s0

-1

Yrm TaU) — UXR"
v(P) = (P,v) ~— {Pv' v? ... v"},

v' = v[z'] being understood, is a local trivialization of TM and 7/ (P) = TpM is
a fibre. By 3.2.7 and the example 2.1.7, R™ is also a vector space, so that Tp M —
{P} x R™ is an isomorphism. Therefore, TM has a vector bundle structure induced
by the differentiable structure of M. =

Corollary 3.4.10. LetU C M, M being differentiable, be a subset and (U, x) a chart,
then
Tz : TM|, — z(U) x R"

defined in 3.4.9(1) is a local tangent bundle map.

Proposition 3.4.11. (Without proof; cf. [1], p. 155.) Let (U, x) and (U',x"), UNU" #
(0, be reqular charts on a differentiable manifold M such that the chart transition map
a0 eyt UNU) — 2" UNU') is a diffeomorphism, then T(z" o x™") is a
local tangent bundle isomorphism —meaning that it is an isomorphism on each fibre.
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Definition 3.4.12. Let (£, 7, ) respectively 7 : &€ — N be a fibre bundle with fibre
space F and let ¢ : M — N be a continuous map. The induced bundle or pullback
bundle is defined through

7 & — M,

in which the total space ¢*E& has the same fibres as £, that is, ¢*E = ¢(M) x F provided
that &€ = N x F is trivial. o

Vector fields are sections of vector bundles. Moreover, the tensor product of vector
spaces can be transferred to vector bundles to generate tensor bundles, whose sections
are then called tensor fields.

Definition 3.4.13. Let 7 : £ — M be a fibre bundle, then a map
o M—=E,

with (o (P)) = P, VP € M, is called bundle section. If the fibre bundle is a vector
bundle, then o is called vector field on M. The set of all sections of £ is denoted by
I(&). o

In the physical and mechanical literature, instead of the correct o € I'(€) respectively
o : M — £ it is common to write o (P) for the field, indicating that o depends on the
points P € M.

Definition 3.4.14. Let 7 : £ — M be a vector bundle with n-dimensional fibre,
y: 7 '(U) — U x V, abundle chart and {g;} a basis in V,, then

o'z(P):yfl(P,gz)7 i:l)ll.’n,

defines the local basis sections or local basis vector fields o4,...,0, : U — &|,, for
every Pel C M. &

The local basis sections are necessary to express vector fields and tensor fields in local
coordinates, so to get a local representative of tensor fields.

Definition 3.4.15. Let 7o : TM — M be a tangent bundle and (7U,Tz) a natural
chart of TM, with the chart map Tz : TM|, — z(U) x R", as defined in 3.4.9(i)
resp. 3.4.10. If y € R™ and {e;} : R* — TR" are the canonical basis sections in R"
—so {e;} is the canonical basis at every y—, then

Ta)e) = (700 s ) = gaP) i=Tn.

defines the local basis sections of TM for all 27 (y) = P € U C M, that is,

5] 5]

If {e'} is the dual basis of {e;}, then (T'z) 'e’ = da’. o
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Definition 3.4.16. Let (&1, M, m) and (&, M, m5) be vector bundles, P € M, and
let & ® & be their tensor product. Moreover, let oy € T'(€)), o9 € I'(E;) be sections,
then

T(P) = (0’1 ®0’2>(P) c F((‘:l ®52)

is called second-rank tensor field on M. Therein, the tensor product of the sections
has been applied point-by-point:

(01®09)(P) =01(P)®@03(P).

Tensor fields of any rank are defined analogously. A (’;) -tensor field on a manifold M
is a section of the tensor bundle TP(M). The set I'(TP?(M)), resp. I'°(TF(M)) on
smooth manifolds, is usually written T2(M). o

Corollary 3.4.17. Let 7o : TH(M) — M be a (})-tensor bundle, (U, z) a chart of
UC M and T(P) € THM) a tensor at P € U. Then, by 3.4.2 and 3.4.9(7i),

yrmle ey ™M(P) — {P}xR™"
T(P) ~ (T%)(P)

18 a vector space isomorphism that gives the components of T for all P € U, where
R™ "™ = R" x R" denotes the n x n-matrices (see also [4], ch. 4).

The corollary can be applied in a simmilar form to arbitrary (p )—tensor fields in order
to undress the tensor components at every point where the field is defined.

Definition 3.4.18. Let (&, M, 1), (¢*&, M, 7)) be vector bundles, o1 € I'(&;)
and ¢*oy € T'(¢*E,) sections, and ¢ : M — N a continuous map. The section

T(P) = (o1 ® ¢"02)(P) € T'(&1 © ¢7E))

where P € M, is called second-rank two-point tensor field over ¢ on M, if (¢*Ey, M,
7h) is the induced bundle of some (&, N, m3). With this,

(Zﬁ*O'QZM—>TN

is called induced section or vector field over ¢. Note that if o5(Q) € I'(&) and @ =
¢(P), then

(¢0703)(P) = 3((P)) o

Example 3.4.19. Two-point tensors and induced sections play an important role in
continuum mechanics. A famous example of a two-point tensor field is the deformation
gradient, as it acts on two different configurations of a material body. The Lagrangian
or particle velocity field is an induced section V, : B — T'S, where B is the material
body and § is the ambient space (see section 4.2).

The algebraic operations on tensors defined in section 3.3 all carry over to tensor fields,
by applying the operation to each fibre of the corresponding bundle.
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3.4.2 Action of Maps

The following paragraphs should investigate the action of maps on tensor fields, by
starting with linear transformations and then concentrating on maps ¢ : M — N
between manifolds.

Definition 3.4.20. Let A : V — W be an isomorphism of vector spaces, T € (V)
a (’;)—tensor field, a,...,a, € W* and vy,...,v, € W. Then

(AT) (a),...,d,v1,...,0,)

) p?

=T ((A'a)),....(Aa), (A vy), ..., (A7 ) .
is called the pushforward of T by A. The pullback by A is defined through A* =
(Ail)*- ¢
Definition 3.4.21. Let M, N be continuous differentiable manifolds and ¢ : M — N
a differentiable map. The tangent bundle homeomorphism

Te: TM — TN

(P,V) = T¢(PV)=(4(P),Do(P)-V)

is called the tangent map or the differential of ¢. D¢(P) is the derivation of ¢ at

P e M and D¢(P) -V means D¢(P) applied to V € TpM as a linear map. Write
Tp¢ : TpM — TypN for the restriction of T'¢ to P.

To get a local version of the tangent map, let (U, X), (V, z) be appropriate charts, with
U C Mand V C N, respectively, so that ¢* = 2/ 0o X! is the coordinate system on
N arising from the coordinate functions X' of (U, X) via ¢. Let {52} € TpM and
{%} € Ty be the related bases of the tangent spaces, then

Té - T™M — TN |
(P 7)) = (6P Jer(Pigm@P))

ie. D¢ = % in coordinates. o

Corollary 3.4.22. From the given coordinate expression the chain rule T(i o ¢) =
Ty oT¢ can be easily verified.

Corollary 3.4.23. Let V = V! 3%; be a vector, then

0Pt 0 ot 0
16 (V) (P) = (57" ) (P)glo(P) = VI 5 o
——
=(T$(V))*

As the tangent map is linear, one may define a two-point tensor F to obtain the same

result: o5 9 o5 8 5
I T I\ _ .
ToV)=Voxian =V (aXJaxz@dX) ax1 — 1V

=F

J/

Conclude that the tangent map acts on a vector like a linear transformation.
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Definition 3.4.24. With the conventions of 3.4.21, the inverse tangent map over dif-
feomorphisms ¢ : N' — M is defined through

T ): TN — TM
0 o) o
- = -
ox' oxt OX!’

with (¢71)! = X7 o (¢71) ox~!. Dual to the tangent map, the cotangent map over ¢ is
for 1-forms:

T¢: T"'N  — T*M
¢’
oxX1!

dz — dx?’,
so T'¢(a*)(Q) = a* - F, where a* € ToON. T7¢ has the inverse T*(¢7')(dX') =

ORI Up
o —dr’. ¢

Note that T'¢ and T7¢, respectively T(¢~ ') and T*(¢~!), have the same component
matrices, but are evaluated at different points!

For vector fields V' : M — T M, the operation T'¢(V') is also called the tilt of V' by ¢
2]. If M and N have different dimensions, the vector T¢ (V') at point ¢(P) is tangent to
N, but it need not to be tangent to ¢(M). This is because TH(T M) = T'(H(M)) C TN
is a subspace of TN.

Definition 3.4.25. A map ¢ : M — N is called immersion, if its tangent Tpo :
TpM — TypyN is injective at each P € M. If Tp¢ is surjective at each P € M, then
¢ is called submersion. o

Proposition 3.4.26. (Without proof; cf. [1], p. 165.) Let ¢ : M — N be an immer-
sion, then there is a neighborhood U(P) C M such that ¢(U) C N is a submanifold
(see definition 3.1.26) and U — ¢(U) is a diffeomorphism.

The preceding proposition does not imply that ¢(M) is a submanifold, and even if T'¢
is injective, ¢ might not be. However, define the following for ¢ being injective.

Definition 3.4.27. Let ¢ : M — N be an injective immersion, then ¢ : M — (M)
is a diffeomorphism and ¢(M) is called an immersed submanifold in N'. An immersion
¢ : M — N is called embedding provided that it is a homeomorphism onto ¢(M) with
the topology induced by N. o

In other words, an immersion ¢ : M — N is a local embedding, and if ¢ in an

embedding, then ¢(M) C N is a submanifold and M — ¢(M) is a diffeomorphism.

Corollary 3.4.28. An injective immersion ¢ : M — N is an embedding, if it maps
open (closed) sets in M onto open (closed) sets in N, and inversely —in fact, this is
what the homeomorphism in the definition 3.4.27 of an embedding requires.
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T¢

M TN

+V

M———N

Figure 3.4: Tilt and pushforward of a vector field V' € I'(TM).

Example 3.4.29. The circle is an embedding S' — R?, and the ”8” is an immersion
St — R? that is not injective.

After some tangent map T'¢ : TM — TN has been applied to the vector field V :
M — T M, the vector field became a so-called vector field over the map ¢ : M — N
(see definition 3.4.18), which is not an honest vector field on A. In order to transfer
the field to N with respect to ¢, the reference point have also to be switched. The
emerging operations are referred to as the pushforward and the pullback (figure 3.4).

The reader should be warned about different uses in the literature. There is often
no distinction being made between vectors and vector fields, and the tangent map is
carelessly identified as the pushforward.

Definition 3.4.30. Let ¢ : N/ — R be a scalar field on A/, and ¢ : M — N a

continuous map. The pullback
¢9’g=godp: M — R
has the same value at P € M, as g has at Q € N, where Q = ¢(P). o

Definition 3.4.31. Let f : M — R be a scalar field on M and ¢ : M — N a
regular map. The pushforward of f to N is defined through ¢,f = f o ¢!, that is,

¢ = (¢71)". o

Corollary 3.4.32. (i) If g = ¢.f arises from the pushforward of f, then the pullback
18 the inverse operation:

¢ (0. f)(P) = fod™ og(P)= f(P).
(i) For a composition of maps ¢ and 1, the chain rule gives

(o) =¢ o™ and  (Yog) =1hoo..

Definition 3.4.33. Let V : M — T M resp. V € I'(T M) be an honest vector field
on M and let ¢ : M — N be a diffeomorphism. The pushforward ¢,V : N — TN is
a vector field on N' = ¢(M) given by

¢V =TpoVogp ' 3
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Definition 3.4.34. Let w : N' — TN be a vector field on N' = ¢(M). The pullback
¢»*w : M — TM is a vector field on M = ¢~1(N) defined through

pw=T(6") owo . o

Note that ¢* also marks induced sections of vector bundles, but the meaning is different!
Induced sections ¢*o : M — TN are not proper vector fields on M (or N).

Definition 3.4.35. The specification of the pullback and pushforward operators for
fields of differential 1-forms a* : NV — T*N and B* : M — T*M, respectively, is
straightforward. They are being defined through their action on vector fields. Let
V:M— TM, then the pullback of a* is given by

((¢*a") - V)(P) = (" 0¢)  (TpoV),
for P € M and ¢(P) € N, clearly,
o'a = (@ o¢) To.
The pushforward ¢, B* : N'— T*N of B is a 1-form on N defined by
¢B" = (¢7')'B = (B o¢™') - T(¢7).

This can be easily obtained from the definition of the pullback of a* by setting ¢, B* =

*

a . &

The pushforward and the pullback of arbitrary tensor fields can be realized through the
application of the pushforward and the pullback of vector fields and fields of 1-forms,
respectively, to all index slots of the tensor.

Definition 3.4.36. Let ¢ : M — N be regular, T € T8(M) and t € T5(N), then

(6.T)(Q) (..., a5 wy, ..., w,)
=T(P) ((¢°a)),....(¢"a,), (F"wn),.... (6"w,)) ,

and
(¢"t)(P) (By,...,B,,V1,...,V,)
=4Q) ((0.BY), -, (6:By), (6: V1), -, (6.V))
where P € M and @ = ¢(P). o

Proposition 3.4.37. If ¢ : M — N is a diffeomorphism, then ¢, : (M) — TH(N)
18 an isomorphism.

PROOF. This statement is fibrewisely proved by noting that ¢, o (¢ 1), = (po¢™t), =
Id, is the identity on T&(M). [
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Corollary 3.4.38. Let ¢ : M — N be a map, s € TY(N) and t € TY(N), then
Fs@t) = ' © .

Note that if ¢ = 1Id : M — M is the identity map, then the pushforward of a tensor
reduces to the transformation under a change of coordinates. Therefore, a differentiable
map ¢ of manifolds provides the natural analogon of a linear transformation of vector
spaces discussed in section 2.1.

One is now able to obtain expressions of tensor fields in local coordinates.

Definition 3.4.39. Let v € I'(TN) be a vector field and (V, x) a chart on A, dim ()
=n, and let y € R” and {e;} € I'(TR") the canonical basis vector field, then

(z.0)(y) = Tzowv(z ' (y) = {v'(Y), ..., 0" ()} =v'(y) &

is called the local representative of v in the chart at every x='(y) = P € V C N. The
tangent map T’z has been defined in 3.4.9(i) resp. 3.4.10. o

Corollary 3.4.40. Let N, v, x etc., be as before. Since Tx is an isomorphism on
each fibre of TN, z, also is, and thus x* = (z71), = (2,)~" does exist:

v*(v'e;) = (Tz) o {v!,... 0"} oz =w.

The local representative of 1-forms is defined analogously by adopting 3.4.35 and re-
placing ¢ by z.

Corollary 3.4.41. Let {e;} and {e'} be the canonical basis sections of TR" and its
duals, respectively, then from 8.2.14 and 3.4.15, x*(e;) = 8?; and x*(e') = da', i =
1,...,n.

Proposition 3.4.42. Let (V,z), V C N, be a chart and t € TV(N') a tensor field,
then the local representative of t on V is

tl, =t L, —R...0 @dz"®...®@da".

""" Ve §pm Oxtr

o o
Loy — M1 H -
t o Vq—t(dx "“’d“’axw"“’am)‘

Setting y = x(P) and applying 3.4.39, the local representative x,t on the subset z()) C
R™im would be

To(tly) = (v, 0 e, ®...®e, 0" ®...0e",

-----

Application of 3.4.38 and 3.4.41 at every point then proofs the statement. n
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3.5 Exterior Algebra of Differential Forms

Exterior algebra deals with the cross product in three-dimensional vector spaces and
with determinants. On manifolds, exterior algebra is a basic ingredient to detect sym-
metries and orientations, in order to establish measures in n-dimensional non-Euclidian
spaces and to generalize integrals, balance equations and the theorems of Gaufl and
Stokes. Fundamental objects of exterior algebra are totally skew-symmetric covariant
tensors, which are generally called alternating multilinear forms respectively differen-
tial forms on manifolds.

In this section, lower case Greeks are used for coordinate indices, and lower case Latins
are used for labels.

Definition 3.5.1. A permutation of a set S = {1,...,k} C Nisa map 7 : S — k.
Note that the set IIj of all permutations {7 (1),...,7(k)} on S; has k! elements. Define
the permutation of a k-tuple of any elements (ay,...,ax) by

m(ar, ..., ar) = (Qr), - - - Qr(ky) -

A transposition is a permutation that interchanges only two elements. Every per-
mutation 7 is composed of even or odd numbers v of transpositions. An even (odd)
permutation is obtained from an even (odd) number of transpositions. Define the sig-
nature of the permutation by sgn : Il — {—1,+1}, then set sgnm = +1 for even
permutations, and sgnm = —1 for odd permutations, so that sgnm = (—1)". o

Definition 3.5.2. A permutation © € II;; C Iy of the set {1,... .k k+1,...,
k+1} C N is called a shuffle permutation or (k,l)-shuffle, if 7(1) < ... < 7(k) and
mk+1)<...<7w(k+1). o

Proposition 3.5.3. The number of all shuffle permutations on {1,... k+1} is

k+1\  (k+1)
k) Kk

PrOOF. A shuffle permutation 7 {1,...,k+ 1} ={n(1),...,7(k+ 1)} can be realized
as follows. Choose k£ numbers without repetitions and put the last [ numbers behind
them. Reorder if the sequence of numbers does not satisfy n(1) < ... < w(k) and
mk+1)<...<mw(k+1).

Therefore, the first k of k 4+ [ numbers chosen completely determine a shuffle permuta-
tion, and allowing for reordering means that the order does not matter. However, the

number of such combinations without repetitions is just the binomial coefficient (kzl),

so the assertion follows. =

Definition 3.5.4. Let T'(P) € T(M) be a (})-tensor at P € M, i.e. a multilinear
mapping

T(P): TpMXTpMx ... xTpM — R.

~
k—fold
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The alternation mapping Alt : TO(M) — N T*M, where A" is called k-th exterior
power, is pointwisely defined by

1
Alt T(’Ul, .. .,’Uk) = H Z (sgnw) T(’Uﬂ(l), e ,’Uﬂ(k)),

melly

for every P € M and vy, ...,vy € TpM. 7 denotes the permutation on {1,..., k} and
the factor 1/k! is a convention to avoid double counts. o

It should be clear that A" T*M is a subspace of T?(M). If n is the dimension of M,

then the dimension of A" T*M is ()

Definition 3.5.5. A (differential) k-form w(P) € N"TiM at P € M is a (7)-tensor
such that At w = w. o

Corollary 3.5.6. For T € T)(M), AT € A*T*M, thus Ak(ART) = AT by
3.5.5.

Proposition 3.5.7. Let w(P) € N*TsM be a k-form and vy, ..., v, € TpM, then

w(’vﬂ'(l)’ o "’vﬂ'(k)> = (Sgnﬂ-) w(”la s -,'Uk) .

PROOF. First, note that (sgn7)? = 1 and the number of all permutations on {1, ..., k}
is k!, that is, > .y a = kla. Then from Altw = w,

1
ja] Z (sgn7) w(Vr(1y, - - s Var)) = w(V1, ..., V)

melly

1
=0 Z (senm)’ w(vy, ..., vp).

melly
Comparing both sides gives the result. n

Definition 3.5.8. Let T'(P) € TY(M) and S(P) € T(M) be tensors, then the exte-
rior product or wedge product (T A S) € A" T5M is a (k + )-form defined by

(k+1)!

TAS ="

Alt (T ® S),

where the point arguments have been omitted. The wedge product for differential
forms w(P) € A" TpM and B(P) € ' TpM is defined in the same manner. o

Corollary 3.5.9. Let a*,b" € Tp M be 1-forms, then

(1+1)'1
1 2

anb = (@b -bead)=adab -bxa

=—b®a—-—ab)=-bANda.
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Proposition 3.5.10. Let w(P) € A" TsM be a k-form, B(P) € N'TAM an I-form
and vy,. ..,V € Tp M vectors, then

(WAB)P) (w1, vpps) = D (5807) W( V1), - s Vnir))B(Vs(hs1)s - - Vn(isn)) »

melly

where Yy, denotes the sum over all (k,1)-shuffles m on {1,...,k+1}.

PrROOF. By 3.5.7, alternation of w (or 8) reduces to the sum with a single summand:

1
Altw(vy,...,vg) = ] Z (sgnm) W(Vz), - -\ Va(i))

’ 7T€Hk,

= Z (.U('Uw(l), ey vw(k)) .

m(1)<...<m(k)

Therefore, the sum in Alt (w ® 3) = Alt (Altw ® Alt 3) is only over the shuffle permu-
tations that satisfy 7(1) < ... < w(k) and 7(k+1) < ... < 7(k+1{). From 3.5.3, the

number of all shuffle permutations is (’;Ll!)!, SO
Alt ((.(J ® 18><’U17 R karl)
kN
(& +1)! Z SENT) W(Vr(1), - -+ Vn(k) ) B(Vn(rs)s - - Vn(kt))

where the definition 3.3.10 of the tensor product has been used. Substitution into 3.5.8
then gives the result. =

Proposition 3.5.11. (Without proof.) For a € R and forms w € N'TsM, B €
/\l TpM and v € N" Ty M, the exterior product has the properties

(i) a(w A B) = aw A B =w A aB (bilinearity),
(i) w A (BAY) = (wAB) ANy (associativity), and
(iii) w A B = (=1)*B A w (supercommutativity).

Corollary 3.5.12. Fora I-formw € Tp M, wAw = 0 by 3.5.11(iii) (see also corollary
3.5.9). However, if w € N* T M, then w Aw # 0 in general.

Corollary 3.5.13. Recall 3.3.4 for the components of a tensor, and let (U, x), with
U C M a subset, be a chart with coordinate functions {z"}.

(i) If T € TY(M) is a (3)-tensor, the components of Alt T' are

(Alt T),, _AItT< o 9 )
3 (7 (om0x)

A+’ dxv
8 0 1
T (g ) ) =3 T~ Tl
(i) Let o € N> T M be a 2-form, then 3.5.7 yields
a2 2 (0 2\ __
G =X\ Qa9 ) T T\ oa B ) T T
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(iii) Let w € N*TsM and 8 € N' TpM, then 3.5.10 gives

(w /\ /B)Vl...l/k+l - Z (Sgn ﬂ-) wﬂ'(lll)...ﬂ'(ljk) /Bﬂ'(l/k+1)...ﬂ'(l/k+l) ?

7I'€Hkyl

where again denotes the sum over all (k,l)-shuffles in .

melly

Proposition 3.5.14. Let P €¢ U C M, dim(M) = n and (U,x) a chart such that
@(P) = {«"}p.
(i) A local representative of w(P) € N*TsM, k < n, is

wP)= Y w, . (P)da" AL Ada

1 <..<vg
(i) {dz"* A ... Ada* )}, with 1 < vy < ... < v, < n, is a basis of N* T5M, which
therefore has the dimension (Z) = ﬁlk),

PROOF. (i) Through A" T*M C T?(M), every k-form is a (7)-tensor that has a local
representative
w=wy. ,dz" ®... dz"

in a chart (U,x), Y C M, by 3.3.11. Here w,, ,, = w( 9 ...,%), and {dz" ®

axv1)

...®@dz"} is the tensor basis of TP (M) at P € U. Alternation and 3.5.8 then gives
1
w=Atw=uw,, ,, Alt(dz" ®@...®@dz") = gwyl,,.ykdx”l AN s

Note that the Einstein summation convention is still in force and the sum runs over
all choices of indices vy, ..., € {1,...,n}, including those where not all indices are
distinct. However, in that latter case, w,,. ,, = 0 from 3.5.12. For the other cases where
vy, ..., are distinct, applying 3.5.7 for both w (%, ey 85%) and dz” A ... Adat*
yields

(")’/l---VkCl‘rV1 Ao ANda™ = wﬂ(m)--.ﬂ(uk)dl‘ﬂ(yl) A A da™)

for any permutation 7 € II, and by noting that (sgnm)? = 1. Now, since rear-
ranging the indices does not change w,, ,, dz"* A ... A dz", the sum needs to be
only over one of the k! index permutations. Choose v; < ... < v to finally get
w= ZV1<_“<% Wy da” Ao A dar as desired.

(ii) Linear independency of the dz** A...Adx"* can be shown by using the complemen-
tary set da*+!, ... dz’» and the condition (dz' A ... A dz") (%, o 8%'”) =1 (see,
for example, [1], p. 332). As the number of ways that k& coordinate differentials can be
chosen from n coordinate differentials regardless of order (equivalently, with one fixed

order) is just (7), the assertion follows. n

Corollary 3.5.15. Let w be a k-form and 3 an l-form, then in a coordinate system
{z"}, the local representative of w A B = (Altw) A (Alt 8) is

wAB= dz"' AL oAda”F Ada AL A daR

m wlll...l/k 5l’k+1-~~l’k+l
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Definition 3.5.16. Let 0* : M — T* M denote the sections of the cotangent bundle
T*M of a manifold M, then a k-form field is defined as a section of the k-th exterior
power of the cotangent bundle,

w=Alt(c, ®0c,®...00,) e (N"T*M),
where T(A" T* M) is usually written QF(M). o

Note that in the literature, the term ”k-form” is generally reserved for the sections of
/\k T* M, and not for the totally skew-symmetric covariant tensors at single points of
a manifold. This is because of their predominance in differential and integral calculus.
By abuse of language, ”k-form” will be adopted for both elements of /\k T*M and
QF(M) in the paper, as long as the meaning will be clear from the context.

Proposition 3.5.17. Let ¢ : M — N be a map, w € Q*(N) and B € Q' (N), then
¢*(w A B) = ¢*w A ¢*B.

Proor. Every differential form constitutes a covariant tensor, so 3.4.38 can be applied,
and alternation commutes with the pullback. n

Definition 3.5.18. For w € Q%(M), define the interior product or degree-1 derivation
(# inner product!) by contracting a vector field u € I'(T M) with the first index of w
at every P € M:

iy M) —  QFYM)

wvy,...,vr) = fw(vy, ..., V) =w(u,v,..., ;).

In local coordinates {z"},

LW = U Wy v dT? AL A da™E o

(k—1)!
Proposition 3.5.19. (Without proof.) If w is a k-form and B8 an l-form, then

iu (WA B) =iuw A B+ (1w AiB.

3.6 Differentiation on Manifolds

So far only the algebra of tensor fields on manifolds has been analyzed. However, in
continuum mechanics, tensor fields generally depend on time and location. Due to
the various geometric facilities on manifolds, beyond partial derivatives there are three
possible types of differential calculi: covariant differentiation, Lie differentiation and
exterior differentiation. Each is appropriate for special problems, but all types have to
satisfy Leibniz’ rule

D(AB) = (DA)B + A(DB).
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D is the differential operator under consideration and A, B are arbitrary tensor fields.
The so-called exterior derivative d satisfies the general Leibniz’ rule

dwAB)=dwA B+ (-1)'wAdS,

where w € QF(M) and B is an arbitrary form. First, the covariant derivative is being
briefly introduced.

3.6.1 Covariant Derivative

Definition 3.6.1. Let &/ C M be a subset. A curve ¢ : Z — M, where T C R is
open, is called integral curve of a vector field w : U — TM, if w(c(t)) = de/dt(t) is a
tangent vector of the curve for every ¢ € Z. Clearly, (w o ¢)(t) = Tec(t, 1), where

Te: TIT=TxR — TM
(t,s) +— Tec(t,s) = (c(t),%(t) s) :

and Tc(+,1): Z — TM. o

Corollary 3.6.2. Let c,w be as in 8.6.1. Moreover, let {z'}p = x(P) be the local

coordinates of P = c(t) € U C M in a chart (U, z), w = w'g; and ¢ = a'oc. Then

w'(c(t)) = da' - w(c(t)) = da'(Te(t, 1)) = %(t) = ¢'(t),

by noting that dc'/dt = dx'(dc/dt) through 3.2.5 and 3.2.7.

Definition 3.6.3. A vector field v : M — TM defined along a curve ¢ : T — M
is called locally parallel transported along the curve, if there is an (affine) connection

V . T(TM)xT(TM) — T(TM) on M, so that
V{;’U(P) =0.

Vector fields v which fulfill this condition are called covariant-constant. o

Definition 3.6.4. Manifolds with connection according to 3.6.3 are called affinely
connected. o

In general, parallelism is not global —this holds only for Euclidian point spaces. A
locally parallel transported tangent vector of a curve remains tangent to the curve.
Indeed, the main difference between Euclidian and non-Euclidian geometry rests on
the fact that for the latter any geometric consideration is local, whereas the former
implies the existence of a global parallelism.

The abstract definition 3.6.3 should now be motivated step by step. The total differen-
tial dv of a vector field does not transform as a tensor, hence avoiding invariant results.
This drawback is eliminated by defining the absolute differential.
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Definition 3.6.5. Let v':2: be the local representative of a vector field v € T'(TM)

in a chart (U, x), where Y C M. Then

Dv'(P) = dv’ + vkdxjfkij
are referred to as the absolute differentials of the components of v at P € U. If
a = a;dz’ € T'(T*M) is a 1-form, then define

Da;(P) = da; + a;dz*T7,
in the same chart. The iji are called the connection coefficients.

In Riemannian spaces (M, g), the I kji are called Christoffel symbols of the second kind.
As they depend on the metric coefficients g;; and ¢% in a chart (U, z) of M via

rk— lgkl (agjl 99 agij)

A dri " Ox7 Ol
which is not shown here, one has I kji = Fljk For that reason Riemannian spaces are
called torsion-free, and the connection V on (M, g) is referred to as the Levi-Clivita

connection. o

Definition 3.6.6. Let (U, z), (U',2") be regular charts on M, and 2’ o I71|x(UﬁU’) :
x(UNU) — 2 (UNU") the chart transition map, then define

O(z* oz~ 027 o 2'~1) Oz 0z Y) (27 o' 1) (™ o a™ 1)

r’ = . — -
ki ok ox’ ot oxm oxk ozt ¢

7 +
k! i

Corollary 3.6.7. The absolute differentials Dv' are proper tensor components.

Definition 3.6.8. Let v = v'2; € I'(T'M) a vector field, then the

, (v + Dv?) — o7 Dv/ v’ Ko

Y — _ _ j

Viv'(P) = ox? P)= oxi  Oxt ol
are called the covariant derivatives of the components v’ at every P € M. It is not
uncommon to write v’ or v'; instead of V;v". o

Definition 3.6.9. Since the V;v7 are components of a (})—tensor field, define the co-
variant derivative of v pointwisely through

i O 1
Vo(P) =V dz' ® B € T(M).

Let w be another vector field, then

. . 0 ' i) 9
_ — X7 oyt — J kipt ) —
Vuwt = Vo(w) = Vv'w B (8:1:jw + v"w! I, ]) e

is called the covariant derivative of v along w. Note that the latter gives a condition

for the Fijk:
o 0 o .9
V g - f— F Z~ T .
57 0% O (81"“) P9y ¢
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Descriptively, the covariant derivative is the deviation of the locally parallel transported
vector from the original vector in the vicinity of a point.

Proposition 3.6.10. For covariant-constant vector fields the absolute differentials of
their components vanish, that is, in a coordinate system {x'}, Dv' =0 and
o'
oxd

_ ki

ProOF. In 3.6.9, set w = ¢ and use the condition 3.6.3, then

Voo =¢ <8xj +v ij)@xi =0.
As ¢ is arbitrary and the 8?& are linearly independent, the assertion follows. ™

Corollary 3.6.11. Let @ : M — T*M a field of 1-forms, T € T}(M) and P € U C
M. By defining

Va'(P) = ((?x - M}-’?)df @ da?

in a chart (U, x), one has

_ o,

T?, (P .
Vz k:( ) ori

+ lerz]z‘ - TJle:li ;

and

- 7 k

or", ; : 0 ;
= (8:6’“] wh + Th kI — lekﬂlk) 3 & da’ .

Proposition 3.6.12. Let (M, g), g = g;;dz* ®@da?, be a metric space with connection
V, then
Vg=0.

Proor. From 3.6.11 and 3.6.5,

_agjk_ 9g9i; | Ogr;  Ogki —0
ork ~ Oxt  Oxd '

Vigjk = i 29: 1% = Dy

The covariant derivative can also be applied to vector and tensor fields over maps, from
which the following important result can be obtained.

Theorem 3.6.13 (Induced Connection). (See also [3], sec. 5.7) Let N be a mani-
fold with connection V and v € T(TN). A regular map ¢ : M — N induces a unique
connection V* on M such that for t € TpM, with P € M, one has

V:(’U o ¢) = VT¢(,5)’U - F(¢*TN) ,

where (v o @) : M — TN is the corresponding vector field over ¢.
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PROOF. Let P e Y C M and Q € V C N, and let (U, X), (V,z), respectively, be

appropriate charts such that £(P) = t/ 327 and v(Q) = v'5%. Moreover, let F", (P) =

%(P) be the components of the tangent map T'¢ : TM — TN, and fyjik(Q) the

coefficients of V. By 3.6.9 and 3.4.23, locally there is

a'Ui : 8

Virpwyv = tIFkI (axk + U]%' k) 91

o' , ; 0

) ((axk °¢>FW+ (7 00) ' (35 00) ka) o7

8 io . i 3 %
- (%tl—k (v7 0 ¢) t17j 1> i Vi(vog),

where WjiI(P) = ('yjik o ¢) F¥ are the coefficients of the induced connection V* on

M. ]

Corollary 3.6.14. Additional to the previous definitions, let I';7,; (P) be the connec-
tion coefficients at every P € M, and T € I'(TH(M) ® ¢*THN)) a (] ;)-two-point
tensor field over ¢ : M — N. Use 3.6.11 and 3.6.13 to get
(i) At P € M, the components of the covariant derivative of T are

J i

i 8TK' i i i i
VITJKj: 8XIJ +TLK]'FLJ1_TJLJ'FKLI“‘TJK@%lFII_TJKk’ijlFIb

where the point arguments have been omitted.

(ii) The covariant derivative of T at P € M along a vector field W € I'(T M) reads

o ®dXK®i®dxj

T=vV, T W! :
Vw Vil oxX’ oz’

or’t. . . .
— < aXI(IJ WI+ TLKZ]'WIFLJ] - TJLZ]'WIFKL[ 4 TJKkjwl,yklelI

0 ,
K _ j
8>.’J®dX ®8I2®dx

_TJKikWI’ijlFlI)

Here the symbol V should cover the covariant derivative of the Tp M- and TEM-slots,
as well as of the TypN- and T(Z(P)./\/'-slots, that is, V in the above constitutes an
operator for two-point-tensorial covariant differentiation. Again, the point arguments
have been omitted.

(iii) Let T(P) = S o ¢, then, by noting that I';%, (P) = I';%,(P) F; (P), one has
Viv (§0¢)(P)

0870 : .
:WIFkI<< ij O(b) +(SLKZjO¢)FLJk _(SJLZjO¢)FKLk

. . o 0 ,
+ (SJKlj 'k O¢) - (SJKZZ ’lek O<Z5) ) 8XJ®dXK®%®d1:J

= Vrgw)S.
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The application to arbitrary (5)— and (’; g)—tensor fields is straightforward.

Definition 3.6.15. The divergence of an at least 1-fold contravariant tensor field T
is defined as the contraction of the first covariant and last contravariant slots of VT'.
For example, let T' € T2(M), then

. i g i _ g
(divT)' =V, T9 =T%

and for a vector field v,

. .o -
dive = Vv :axz’—HﬂFji' o
Definition 3.6.16. A vector field v is called solenoidal, if divv = 0. o

Proposition 3.6.17. If (M, g) is a Riemannian manifold with metric coefficients g;;,
and (U, z), U C M, a (positively oriented) chart, then

10 i
m% (\/ det gkl U) .

dive =

PROOF. The reader probably remembers from linear algebra that the (i, j)-th cofactor
of a matrix A = (4;;) is defined through det A = A4;;(Cof A)¥, and that

Odet A

= (CofA)"

assuming the determinant function to be differentiable. Therefore, 29t — (det gi1) g%,
0gij

by noting that g~! is symmetric, and

O det g,y _ ddet gjxr Ogpmn — (det gip) g™ OGmn
ox' OGmn O M oxrt
Substitution into Flkj = 1g¥ (% + Qo %) yields
i 1 wOgix 1 ODdetgy _ 1 0v/det gix

71799 95 T 2det g 0xd Vvdet gy, Ozl
so finally,

. o'’ , 1 ov/det g 1 0 .
d = — J : = - y/det ‘).
v ox’ v Vdet gy, Oxd Vdet g 0zt ( o Gu v > "

3.6.2 Lie Derivative

Another choice of calculus on manifolds is the Lie differentiation, which constitutes
a measure for the change of tensor fields under action of maps, i.e. if the manifold
evolves.
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Definition 3.6.18. In a dynamical system, let the states of the system at time t be
represented by points P(t) € M, in which M is then called the state space or phase
space. At starting time s, P(s) = P are the starting points that constitute the initial
state. After some time t — s has elapsed, the state changes to

wt,s(Ps) = P(t)

at time ¢. The operator v, is referred to as the time-dependent flow on M provided
that

z/}t,s o ws,r - z/}t,r and z/}t,t - Id./\/l . &

Proposition 3.6.19. A time-independent flow is a one-parameter group of mappings

b MXxT — M,

where T C R is open, (P, t) = ¢ (P) at fized t and ¢, : M — M.

Proor. If the evolution of the dynamical system is time-independent, then the flow
only depends on the difference ¢ — s, i.e. 9y s = ¥_,, and the terms "starting time”
and "ending time” are meaningless. Setting 1y = 1,9, 3.6.18 becomes

@/)t,o o %,o =1y 0, = Yits and Yy = Yo = Idag

By noting that ¢, s = 951y = 15 0 1, also holds, v, fulfills the group properties. n

Recalling 3.6.1, every integral curve ¢ : Z — M defines a field of tangent vectors
u(c(t)) = ¢(t). However, in this section the converse statement is more interesting:

Proposition 3.6.20. Let U C M be n-dimensional, and w : U — TM a C* vector
field, where k > 1, i.e. w has k continuous derivatives. Then there exists a R D T # ()
and a unique C**1 integral curve ¢ : T — M of w for each P € U such that c¢(0) = P.

PROOF. Let {z'}p = x(P) be the local coordinates of P = ¢(t) € Y C M in a chart
(U, x), then from 3.6.2,
. dct .
‘e(t)) = —(t) = ¢'(1) .
u(e(t)) = () = ()

where u = u’2; and ¢ = 2’ o c. Moreover, ¢(0) = P becomes ¢’(0) = z' o ¢(0) = 2*(P)
in the chart, so there is a system of n ordinary differential equations with given initial
conditions. As w resp. the u’ are C*, by Picard-Lindelof’s theorem they have a unique

solution satisfying the initial conditions: the C**! functions c!(t). ™

Definition 3.6.21. By 3.6.20, the vector field w : M — T M generates integral curves
for every P € M. The totality or collection ¢, = {c(t) |t — c(t) = ¥y (P), ¥V P € M} of
integral curves ¢(t) through ¢(0) = ¢y(P) = P is a one-parameter group of mappings,
thus called the time-independent flow of w.

Note that the flow need not be defined explicitly, but it is implicitly well-established
by the vector field. Therefore, w is called the generating vector field of the flow ;.
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Definition 3.6.22. Let u(P), P € M, be the (time-independent) vector field gen-
erating the flow 1, then the Lie derivative of a possibly time-dependent tensor field
T € T2 (M) is defined by

VE(T(u(P))) = T(P) UiT — T _ d

LuT(P) = lim / =T = aT 1=0
1} is the pullback concerning 1);. o

The Lie derivative approximately answers the question how a tensor field T' changes
under some flow.

Definition 3.6.22 is only for time-independent vector fields w. In general, however, the
generating vector field is time-dependent, i.e. w : M X Z — T M, where Z C R. What
is the flow that will be generated? Clearly, it is asked for the solution of the differential
equation

é(t) =u(c(t),t) and c(s) = P,

where s is the starting time and P; = c¢(s) is the initial condition. However, this is
again an ordinary differential equation which has the unique solution c¢(t) = 1 4(Ps),
where 1) ¢ is a time-dependent flow on M —mnote this is a more general version of
proposition 3.6.20. Again, a proof can be performed with the aid of Picard-Lindel6f’s
theorem, and uniqueness of the solution gives the properties 3.6.18 of the flow (see also
[1], ch. 4; and [4], ch.5).

Definition 3.6.23. A mapping ¢, : M — M, Vt,s € T C R, is referred to as the
time-dependent flow of u : M x T — TM, if for each s and P € M

c(t) = Y5 (Ps) = ¥ (Ps, 5, 1)

is the unique integral curve of u starting at P, at time t = s, i.e.

C(t> = %wt,s (Ps) = u(z/}t,s (Ps)> t) and C(S> = ws,s(Ps) = Ps . &

Definition 3.6.24. The Lie derivative of a possibly time-dependent tensor field T' €
TP(M) along a time-dependent vector field w on M is defined by

. wstt - :,ST
m

LT (P, t) = lim Vi de = Te
“ ST A0 At AL—0 At

s o d o
= Syr T
dtwt?s t . 9
with At = ¢ — s and the pullback operator ¢;, concerning the flow ¢ .. Fixing ¢ in
T, =T(-,t) gives the autonomous Lie derivative
. Z/}Z(STS - w;sTS
m ) 2

1
A}EHO At

d oT
— — T =L, T - —=£t,T.
dt%s # ot

That is, if T' is time-independent, L, T = £,T. Figure 3.5 illustrates the concept.

t=s
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Figure 3.5: Lie derivative of a time-independent vector field v along a time-dependent
vector field u.

Proposition 3.6.25.
d *
LuT - ¢*t,sa¢t75Tt )

that is, the Lie derivative of an arbitrary tensor is obtained by pulling it back from t to
s, performing the time derivative, and then pushing it forward to t again.

PROOF. Let t # s and f: M — R be a differentiable function on M, then

* * d * d
wt,s(Luf> = wt,s Jwr,th = &fr o wr,t o wt,s

r=t r=t

d * _ d *
= a(d}r,t o¢t,s) f?“ - E¢t,sft

r=t

by the property 3.4.32(ii) of pullbacks. Since this result holds for f replaced by ar-
bitrary, and possibly time-dependent tensor fields T' (see [1], sec. 5.4 for a detailed
discussion), the assertion follows. n

Example 3.6.26. Let f: M xZ — R be a differentiable time-dependent scalar field,
where fi(P) = f(P,t) and P € M, and let u(P,t) be a time-dependent vector field
—the time-dependency of P being understood. By 3.4.30, (¢f fi)(Ps) = fi o ¥ps =
f(¥rs(Ps), t). Therefore

Luf (P1) = S0t 5| = S fWa(P.0

P (py = S pay 4 2Ly (.

Ot oxt

_of of
= E(P’ t)+ %(P, t)

that is, Lo f = & + u[f].
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Proposition 3.6.27. (Without proof.) The Lie derivative of a vector field v is

0
Lyv = 8—1; + [u,v]
where [u,v] = (%uj — %?ﬂ) 22 is the so-called Lie bracket of u and v.

Corollary 3.6.28. IfV is a connection without torsion, i.e. Fk"j = Fj"k, and w,v are
vector fields, then

Some additional properties of the (autonomous) Lie derivative are being stated without
proof:

Proposition 3.6.29. (Without proof.) (i) If T € T¢(M) and ¢ is a diffeomorphism,
then ¢*(£,T) = Ly ¢*T, that is, £, is natural with the pullback. (it) If w,v are
vector fields, then £y1p = L4+ £o.

Definition 3.6.30. Let (M, g) be a metric space, then a map ¢ : M — M is called
isometry of g, if ¢*g = g. If each map 1, of the flow generated by a vector field
u: M xZ — TM is an isometry, then wu is referred to as a Killing vector field. 1t is
easy to verify that for Killing vector fields,

Lug:() O

3.6.3 Exterior Derivative

The third type of a calculus of differentiation on manifolds involves the exterior deriva-
tive, which is restricted to fields of differential forms.

Definition 3.6.31. Let w € QF(M) be a k-form on M, then its exterior derivative is
the (k + 1)-form

1
do=dAw= gdwﬂl---ﬂk Adxtt AL A datE

_ 1 8w#1--~#k v 1 Lk k+1
= ou dz” Adz"™ A ... Ade € Q" (M).
If w = f is a scalar field, then df is its differential, defined by 3.2.15. o

Definition 3.6.32. A k-form w is called ezact, if there exists a (k — 1)-form o such
that da = w, and w is called closed, if dw = 0. o

Corollary 3.6.33. (i) Since dod = 0 from Schwarz’ theorem, every exact form is
closed, but the converse need not hold. (ii) By 3.5.12 and 3.5.14, every (k = ngim)-
form is closed.
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Proposition 3.6.34. (Without proof.) (i) ¢*(dw) = d(¢*w), i.e. the exterior deriva-
tive commutates with the pullback. (ii) Let w be a vector field, then £,w = t,dw+diw
(Cartan’s formula,).

Summarizing the preceding sections, the covariant derivative needs an additional struc-
ture on manifolds, whereas the Lie derivative restricts the direction of differentiation.
The exterior derivative is exclusively for differential forms. All three types lead to
proper tensors, whereas the usual partial derivative does not. The coordinate-invariant
or ”covariant” formulation of physical equations, therefore, is ensured when applying
the covariant, Lie, and exterior calculus.

3.7 Integration on Manifolds

A rough introduction of integration calculus will be given in the following section. In
order to define the integral in Riemannian and non-Riemannian spaces, one needs a
more detailed study of the differential n-forms in an n-dimensional manifold, as well
as a terminology for orientation.

As in section 3.5, lower case Greeks are used for coordinate indices and lower case
Latins are used for labels.

3.7.1 Orientation and Determinants

Definition 3.7.1. Let n —here and in the remainder of this section— denote the
dimension of the manifold M. An n-form p € Q"(M) such that pu(P) # 0 for all
P € M is called volume form, and the set of all volume forms on M is the volume
bundle. If there exists a volume bundle on M, then M is called orientable and the
pair (M, p) is referred to as a volume manifold. o

Definition 3.7.2. Two volume forms ', p are equivalent, if there is some f: M — R
with f(P) > 0such that g’ = fu. The equivalence classes [u] and [— ] of volume forms
are called the orientation and the reverse orientation (which is also an orientation) on
M, respectively. An orientable manifold is referred to as an oriented manifold, if it has
an orientation. o

Definition 3.7.3. Let p,, be a volume form on the manifold . A differentiable map
¢ M — N is called volume preserving, if ¢*py = pp is a volume form on M,
i.e. "y # 0 and the determinant of the Jacobian matrix of ¢ is non-zero at every
P e M. ¢ is called orientation preserving, if ¢*py €[], and orientation reserving,

if % € [—pp]- ¢

Note that if ¢ is volume preserving, it can be either orientation preserving or orientation
reserving, that is, the determinant of the Jacobian matrix of ¢ is either positive or
negative, respectively. The sign of the determinant, however, is important when it
comes to the definition of volume measures.
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Example 3.7.4. The Moebius strip is a non-orientable manifold, because the equiv-
alence classes [p| and [—p] can only be defined locally.

Proposition 3.7.5. Volume forms (and n-forms) have a single component, that is,

dim(Q"(M)) = 1.
Proor. This follows directly from 3.5.14 by setting k = n. [

Corollary 3.7.6. (i) 3.5.14(i) states that the order of the coordinate differentials in
the basis of N"T5M is arbitrary. So carrying this over to each fibre of QF(M) and
using 3.7.5, one obtains a local representative of the volume form p at P € M in a
coordinate system {z"}y on U C M:

w(P)=p(P)dz" A...Adx"™.

(ii) By 3.7.5, any other volume form p' = fu is a linear combination of the basis
{dz"* A ... ANdx} € QY(M), by choosing suitable f : M — R. If f > 0, then
p €[], and if f <0, then p/ € [—pl].

Definition 3.7.7. Let M be orientable with orientation [u], P € U and {5%} €

oz
TpM a basis. If p(P) (Lr,..., 52) > 0 (resp. < 0) for all P € U, then the basis is
called positively (resp. negatively) oriented relative to the volume form p. o

Definition 3.7.8. For every chart (U, x) on orientable M with orientation [u], where
x:U — R" define a map x, through

Telyy = Q*(U) — Q" (z(U)),

and set z,(dz"* A ... Adx") = fdatA ... Adz". The chart (U, z) is then called
positively oriented, if x,(p|y) is equivalent to

da'A .. Ada™ € Q" (x(U)),
the standard volume form on R". o

The reader should notice that the map x, has been already defined in a similar form to
obtain the local representative of tensor fields. However, for n-forms one sets z,(dz?A
...Ada™) =da'A ... Adz" instead of taking z,dx’ = e’ (see 3.4.41). It can be shown
that x, is an isomorphism on each fibre of A" T*U, so the inverse map z* indeed exists.

Corollary 3.7.9. For M being orientable, there is an atlas A(M) = {(Ui, ;) },c7,
with T C N, of which all charts are positively oriented, that is, the determinant of the
Jacobian matriz of every two chart transitions x; (U; NUy) — x, (U; NUL), j # k € T,
18 positive.

Theorem 3.7.10 (Transformation of n-Forms). Let a; = a”;3% € TpM, where
1 <i < mn, be vectors (the subscript labels are for convenience), and let p € Q"(M),
then at P € M,

0 o
M(a1,...,an):det(a”i)u(%,...,@) ,

where (a”;) is the matriz whose columns are the components of a;.
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PROOF. It is convenient to prepare the proof in two steps. First, it will be shown that

13) 13) ([ 0
*1 *10 — *1
(a AN...Na )(Bxl"“’—ax") det(a ((‘M”))’

where @', ..., a™ are 1-forms. For the purpose of this paper it is sufficient to consider
the case n = 2; a generalization can be found in [1], sec. 6.2. Define a* = o', dz” €
T5M, then, by 3.5.10,

9 o d 9
*1 *2 _ — Al [ 2
(a, Na ) (—8:61’ 83:2) = E (sgnm)a (8:5“(1)) a (axn(z))

welly g

_ 12 1.2 _ i
—alaQ—aQCLl—det(aV).

Here ) ;. denotes the sum over the two (1,1)-shuffles 7 on {1,2}, and (da',) =
(a*i (%)) is the matrix whose rows are the components of a*, as desired.

Now define g = @™ A ... A @™. As a special case of the previous result is da'A ... A
dz” (%, cee %) =1, one has

o o o o
AL " —,....—— | =det (d"; _— ., = .
den..nde (8:1:1’ ’8:6") et (a Z)u(axl’ ’8:1:”)

Here (a”;) is the inverse of the matrix (a’,), whose components are a”; = dz” (a;) and

al, = a* ( Efzy), respectively. It follows that a* and a; so defined are dual, such that

v

a‘(a;) = a',a";da” (%> =a',ad"6", =a',a"; =1 (no sum over i),

for all i € {1,...,n}. From this and by using p defined above, dz'A ... A da" (%,

. 8%”) =p(ay,...,a,), which proofs the theorem. ™
Proposition 3.7.11. Let ¢ : M — N be a differentiable map, U € M, V C N
and ¢~ (V) NU # 0. Moreover, let (U, X), (V,z) be appropriate charts such that
rogo X1 defines the chart map x concerning ¢ with respect to X. Let {z"}p = z(P)
and {X*}p = X(P) for some P € ¢~*(V)NU C M, and let pyy = pdz'A...Ada" €
Q"(N), then

ox" X!
¢ (nde' A ... Ada™) = det (%) (o d)dX'A ... AdX",
where (%) is the Jacobian matrixz of ¢ with respect to x and X .

PROOF. Because p: N — R, one has ¢*1 = o ¢ by 3.4.30, so it is left proving

B
G

o*(dat A ... Ada™) :det( )Xm/\.../\dX”,
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where ¢” = 2 o ¢ o X! has been set, and point arguments are omitted. Multiplying

both sides with (aXl’ e 3Xn) then the right hand side becomes just det (axa) On
the left hand side, however,
o o
* 1 n
qﬁ(dx/\.../\dx)(aXI,..., )

. o
:(dxl/\,../\dl‘ )(¢* (W)’“"Qﬁ* (8)(”)

)
08" 06" >
o)

_ 1 n
= (dz /\.../\d:c)(8 i PR ”Bx”
_ 8¢V 1 n
—det(8 a)(dx /\.../\dx)(

8¢”
oX«
by 3.4.35 and theorem 3.7.10. m

Corollary 3.7.12. Let ¢ =1d : M — M, and (U,x), (U',2") be reqular charts on
M, then by 3.7.11,

(i) Under chart transitions x' o ™|,y : @ UNU') — 2" UNU'),

V/

ox_l)
oxv
(i) If p = p/ dzV" A ... Ada™ = pda A ... Ada”, then

v/ —1 -1
= det(M) "
ox”

Conclude that 1 = p ( BT s 8%”) is not a scalar, and that n-forms are even relative

scalars of weight 1, i.e. even scalar densities in terms of 3.5.6.

Corollary 3.7.13. Recall the definitions in 3.7.11 and let (U', X'), (V',2") be other
6(@“’/03:’1) o 83:"/

charts on M and N, respectively. Then, by using the abbreviation =" o
and applying the standard rule for the determinant of products of matrices,

9¢” \ o 0 0X*\ Oz’ d¢” 0X°
det (GX ) = det (8$” Ixe 8X°"> = det (81‘”) det <8Xa> det (GXC“ )
Thus det(
mvariant.

dxll/\.../\dx”,:det(a(x )dxl/\.../\dx”.

V . . . . . . .
axa) is not a proper scalar function in general, i.e. it is not coordinate-

Definition 3.7.14. Let A : V — W be an isomorphism of vector spaces and p €
A" W an n-form with respect to the vector space W, then, by 3.7.11 and 3.4.20, a
coordinate-free definition of the determinant can be obtained:

A" = (det A) p

Note that det A = det (A%,;), where (A%) is the matrix of the linear transformation
(see 2.1.10). o
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Definition 3.7.15. Let a*', ..., a" € Tp M be 1-forms, then define the n-form-valued
e-tensor at P € M through

e(P): ThpMx ... xTpM  —  N\TpM
n-fold
(a*l, - a,*") — a'A.. A" =€, ,a"R...Qd",

in which €,, ,, (P) is the Levi-Civita symbol or permutation symbol, given by

+1 if vy,..., 1, is an even permutation of 1,...,n
€vn =< —1 if1y,... 1, is an odd permutation of 1,...,n
0 if v; = v; for some @ # j

in every coordinate system. o
Proposition 3.7.16. The e-tensor is an even relative tensor of weight —1.

PROOF. In a regular chart (U, z) on M, note that € (dz', ..., dz") = dz'A.. . Adz" =
vy dz” @ ... @ dx" by definition, and @' A ... A @™ = det(a”,)dz' A ... Adz™ by

3.7.10, where a* = a*,dz” has been set —here lower case Greeks are also used for
labels. Therefore,

e(a’l,...,d”)=da'AN...Ad" =det (a") €, ,,d2" @ ... @ dz" = det (a")) €,

so that € =€, ,,dz"* ® ... ® dz" is a local representative of e.

Now, under a chart transition @’ o x™"|, ;e 1 2 (UNU') — 2" (UNU'),

v -1
d:vll/\.../\dx”/:det(gx,> dz'A ... Ada”
:EV

oxv \
=det| — €., dr” @ .. @ da"m
ox”

. RSN ¢ e B . o
by 3.7.12 and using the abbreviation =——>— = $=-. But € is a tensor, so eyim%dx 1®

L@ deve = €y .m gmul ...gi—:Z dat @ ... ® da’ from 3.3.5. Substitution into the

!
"1

preceding then yields

oz \ ! oz ox¥r
€ v, = det ce

oz’ Dt D

as desired. u

Note that € as a tensor has n" components, but only n! are non-zero. Hence, the even
relative e-tensor of weight —1 boils down to the even relative scalar da'A ... A dz" =
€ (dx!, ... da") of weight —1 when applied to the n-tuple (d', ..., dz").
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3.7.2 Stokes’ Theorem and Volume Measures

The n-forms on n-dimensional manifolds have a single component, thus they can be
integrated over open sets by prescribing the following:

Definition 3.7.17. Let X C R" be open and fdz'A ... Ada" € QUX), f =
f(z*...2") being understood, then define

/fd:vl/\.../\d:v”:/fdxl...dx”E/f,
X X X

where | + J is the ordinary Riemann integral of f in R". o

Theorem 3.7.18 (Change of Variables). (Without proof.) Let M be orientable,
¢ : M — N an orientation preserving map and w € Q"(¢p(M)), then

Joo [

This fundamental theorem well-known from the analysis of real functions leads to the
answer of how n-forms are to be integrated over manifolds.

Proposition 3.7.19. Let (U,x), U C M, be a positively oriented chart and w €

Q" (M) an n-form, then
/ w = / wox L.
u z(U)

PROOF. Without loss of generality assume that w(P) = w(P) dz'A... Adz"™ for every
P e M, then
r,(wly) = (wox ™ HdatA... Ada"

by 3.7.8 together with 3.4.42, and

/ T, = / wox !
z(U) z(U)

by definition. The result then follows by the change of variables formula. n

In other words, n-forms get access to the calculus of integration of real functions by
defining their integral in the chart as the ordinary Riemann integral in R™ (cf. [1],
sec. 7.1). Clearly, dz"* A...Adz"" is replaced by its Lebesgue measure, and the 1-form
valued coordinate differentials da’ on U are read as the usual coordinate differentials
da’ of the chart z(U) C R™ —note that this approach is comparable to the definition
of a differentiable structure on manifolds presented in section 3.1.

If the atlas A(M) = {(Ui, i) };c; of M = U, U; contains of more than one chart,
then the integral of w over M is defined via the sum of integrals over the subsets U;
by assuming that there is a so-called partition of unity subordinate to the atlas.
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" =0

& (Z/{) Rn— 1
oM

lnx:(O,...,O,—l)

Figure 3.6: Definition of the outward normal on the boundary oM.

In continuum mechanics, Stokes’s theorem is of fundamental importance. For its gen-
eral version on manifolds, it is necessary that the oriented manifold M has a compat-
ible oriented boundary dM —for M being n-dimensional, note that OM is (n—1)-
dimensional.

Remember that the classic Stokes’ theorem for surfaces embedded in R? applies the
right-hand rule to achieve compatibility: the outward normal vector of the surface is
linked to the counter-clockwise, i.e. positive orientation of the boundary. This rule is
used to define the positively oriented boundary of a manifold (figure 3.6):

Definition 3.7.20. Let M be oriented and (U, z) a chart, then a basis {gl, o ,gn_l}
€ Tp(OM) at P € OM is positively oriented, if {—3—‘2%,91, o ,gn_l} € TpM is posi-
tively oriented in the orientation of M. By this, M induces an orientation on M.

Theorem 3.7.21 (Stokes’ Theorem). (Without proof; see [1] or [4]) Let M be ori-
ented with an oriented boundary OM, and let w be an (n—1)-form, then

/dw:/ w.
M oM

On Riemannian manifolds, i.e. metric spaces, volume forms enable volume measure-
ment. The volume measure should always be non-zero and positive to be consistent
with the specification in ordinary R3.

From linear algebra, the volume of the parallelepiped spanned by the three independent
vectors wi, wa, w3 € R? is given by Vol(wq, we, w3) = /det (w;, w;), if w, ws and

w3 are positively oriented, and by

VOl(wl,’LUQ,’lU3) =1/ |det <’LUZ‘,’lUj>| s

if wy, wy and w; are negatively oriented. det(w;, w;) denotes the determinant of the
matrix (WV;;), whose elements are given by the inner products W;; = (w;, w;). To
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carry this over to manifolds, one needs to define quantities that involve the absolute
value of a determinant.

Definition 3.7.22. A multilinear mapping

o: Vx...xVY — R
————
n-fold

over a vector space V is called an «a-density, if for every vy,... v, € V and every
endomorphism A :V — V),

o(Avy, ..., Av,) = |det A|” o(vy,...,v,).

The set of all a-densities over V is denoted by |A"|* V. 1-densities (or just densites)
are also called odd or twisted n-forms. o

a-densities can be constructed from n-forms as follows: If g € A"V is an n-form, then
the a-density |p|® € |A"|"V is defined through || (vy,...,v,) = |p(vy, ..., v,)|"
Conversely, let V be orientable, {g,} € V a positively oriented basis, v; = Ag;, and

0 € |\"|V a l-density, then
I-‘l’g(vla - .,’Un) = (detA) Q(gh' . 7gn)

defines an n-form on V. a-densities can be carried over to manifolds in order to derive
the next result.

Corollary 3.7.23. Let ¢ = Id : M — M and (U,z), (U 2") be regular charts
on a differentiable manifold M. Let o € T(|\"|T*M) be a twisted n-form and
2o x| ey - UNU') — &' (UNU') the chart transition map, then 3.7.22 carries

over to
B O g0 ea) d d
@ Arl’ T oan ) ¢ oY @ ozt oz )’

where Av; has been replaced by the tangent map Tgb(a‘zy) = %@33‘3,. Conclude
that o = o (%, . ..,%) is not a scalar, and that twisted n-form are odd relative

scalars of weight 1, i.e. odd scalar densities in the sense of 3.3.6.

With twisted n-forms one can formulate integrals and Stokes’ theorem even on non-
orientable manifolds.

Definition 3.7.24. Let (M, g) be an oriented Riemannian manifold and the set w;,
.., w, € ['(T M) positively oriented, then the Riemannian volume form or g-volume
dv € Q"(M) is defined by

dv(wy,...,w,) = \/m,

i.e. dv(wy, ..., w,) is the volume of the parallelepiped spanned by the vectors wy, . ..,
w,. More general, and for arbitrary orientations of the wy, ..., w,, define the Rie-
mannian a-density or g-a-density through

|dv|* (wy, ..., w,) = |det (w,,w,)|? . o
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Let {ej,...,e,} € TpM be a positively oriented orthonormal basis, and {e!,... e"} €
ThM its dual. The volume of the parallelepiped spanned by the ey,..., e, is just
dv(ey,...,e,) =1, but from 3.7.10 this is achieved with dv = e' A...Ae". The more
general case follows.

Corollary 3.7.25. In a regular chart (U, x) on (M, g), let {%, ce 83:"} € TpM be

a positively oriented basis, then d’u(8 Ty 8;2”) = \/det <%, 8‘zy> = /det g, is
the component of the Riemannian volume form such that

= \/det g,, dz'A ... Ad2"

18 its local representative.

Proposition 3.7.26. Let (M, G), (N,g) be orientable, ¢ : M — N a diffeomor-
phism, U C M,V CN and ¢~ (V)NU # . Moreover, let (U, X), (V,x) be positively
oriented charts and let ¢V = x* o po X 1 denote the coordinate functions of x concern-
ing ¢ with respect to {X*}p = X (P), for every P € ¢~ '(V)NU C M. Let dV ,dw be
the Riemannian volume forms on M and N, respectively, then

¢*dv = J,dV |

where J5(P) = det (227) (y/det g )oo

ox7) e G called the Jacobian of ¢, is a proper scalar.
Proor. By 3.7.11,

#*dv — («/det G © ¢) ¢*(dat A ... A da™)
)
<\/det G © ¢) det (8;’3 ) dX'A .. AdX".

But dX'A ... AdX"™ = (det Gaﬁ)*% dV by 3.7.25, hence ¢*dv = J, dV as desired.
To proof the second part, i.e. the invariance of Jy(P), let (U’, X’), (V',2’) be other
regular and positively oriented charts on M and N, respectively. Now, since det g,, =

/
dxt dx¥ cogion O@ox™l) o
det (gH V' o oo >, where the abbreviation o =3

, 1t is

Therefore,

v det (g,
J;):det(&” ) ctigyev)
8Xa det(Go/gf)

8901/ \/det(gu’u’) \/det<Goz ) \/det(gm,)
= det ( 3 X“’) 0

Vdet(g) /det(Gup) v/det(Gop)

B Oy ox” ox« det(g,.)
= det (8X ) det <8x ) det(@X°‘> 101 Co)
= det ( Op ) det(guy) qu )

0X«
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so J, —in contrast to det <86$TVV>, see 3.7.13— indeed is a scalar. ™

Proposition 3.7.27. In the light of 3.3.12, Riemannian volume forms are absolute
pseudoscalars such that the formula of 3.7.26 boils down to

dvod=J,dV.
PROOF. For the moment, drop the condition that both (V,z) and (V',2’) previously
defined are positively oriented, then
ozt Oxv oz
Vdet g, = \/det gu,/ g 8:10”) = y/det g, |det (8$”)‘ .

Let dv = \/det g,, dz*A ... Ada™ = \/det g, dz'A...Adz™, then use 3.7.12(i) to

obtain

\/det gufyxdxll/\ . Adz" = det ( ) vdet g, odrt A

det (

‘det (
= sign [det ( )] vdet g, dz' A .

as desired. Now since dwv is a scalar, one arrives at ¢*dv = dvo¢ by applying definition
3.4.30. [ |

ngdm
|

Corollary 3.7.28. /det g,, is an odd relative scalar of weight 1, i.e. an odd scalar
density, and dv = /det g, €, 1, d2" ® ... @ da" = /det g, e(dx!, ... dam).

Definition 3.7.29. € = \/det g, € is called the Levi-Civita tensor. o

Corollary 3.7.30. By 3.3.12, 3.7.16 and 3.7.28 the Levi-Civita tensor is an absolute
pseudotensor.

Proposition 3.7.31. (Without proof.) If dv is a Riemannian volume form, then
£ydv = d(i,dv) = (divu) d.
Note this characterization of divergence does not require any metric or affine connec-

tion.

Proposition 3.7.32. Let M b