
This version is available at https://doi.org/10.14279/depositonce-7075

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Lal, S., Lucas, J., & Juurlink, B. (2017). E²MC: Entropy Encoding Based Memory Compression for GPUs. In
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
https://doi.org/10.1109/ipdps.2017.101

 Lal, Sohan; Lucas, Jan; Juurlink, Ben

E²MC: Entropy Encoding Based Memory
Compression for GPUs

Accepted manuscript (Postprint)Conference paper |

E2MC: Entropy Encoding Based Memory
Compression for GPUs

Sohan Lal, Jan Lucas, Ben Juurlink
Technische Universität Berlin, Germany

{sohan.lal, j.lucas, b.juurlink}@tu-berlin.de

Abstract—Modern Graphics Processing Units (GPUs) provide
much higher off-chip memory bandwidth than CPUs, but many
GPU applications are still limited by memory bandwidth. Unfor-
tunately, off-chip memory bandwidth is growing slower than the
number of cores and has become a performance bottleneck. Thus,
optimizations of effective memory bandwidth play a significant
role for scaling the performance of GPUs.

Memory compression is a promising approach for improving
memory bandwidth which can translate into higher performance
and energy efficiency. However, compression is not free and
its challenges need to be addressed, otherwise the benefits of
compression may be offset by its overhead. We propose an
entropy encoding based memory compression (E2MC) technique
for GPUs, which is based on the well-known Huffman encoding.
We study the feasibility of entropy encoding for GPUs and show
that it achieves higher compression ratios than state-of-the-art
GPU compression techniques. Furthermore, we address the key
challenges of probability estimation, choosing an appropriate
symbol length for encoding, and decompression with low latency.
The average compression ratio of E2MC is 53% higher than
the state of the art. This translates into an average speedup
of 20% compared to no compression and 8% higher compared
to the state of the art. Energy consumption and energy-delay-
product are reduced by 13% and 27%, respectively. Moreover,
the compression ratio achieved by E2MC is close to the optimal
compression ratio given by Shannon’s source coding theorem.

I. INTRODUCTION

GPUs are high throughput devices which use fine-grained

multi-threading to hide the long latency of accessing off-chip

memory [1]. Threads are grouped into fixed size batches called

warps in NVIDIA terminology. The GPU warp scheduler

chooses a new warp from a pool of ready warps if the

current warp is waiting for data from memory. This is effective

for hiding the memory latency and keeping the cores busy

for compute-bound benchmarks. However, for memory-bound

benchmarks, all warps are usually waiting for data from mem-

ory and performance is limited by off-chip memory bandwidth.

Performance of memory-bound benchmarks increases when

additional memory bandwidth is provided. Figure 1 shows

the speedup of memory-bound benchmarks when the off-

chip memory bandwidth is increased by 2×, 4×, and 8×.

The average speedup is close to 2×, when the bandwidth

is increased by 8×. An obvious way to increase memory

bandwidth is to increase the number of memory channels

and/or their speed. However, technological challenges, cost,

and other limits restrict the number of memory channels and/or

their speed [2], [3]. Moreover, research has already shown

that memory is a significant power consumer [4], [5], [6] and

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
pe

ed
up

2xBW
4xBW
8xBW

Fig. 1: Speedup with increased memory bandwidth

increasing the number of memory channels and/or frequency

elevates this problem. Clearly, alternative ways to tackle the

memory bandwidth problem are required.

A promising technique to increase the effective memory

bandwidth is memory compression. However, compression

incurs overheads such as (de)compression latency which need

to be addressed, otherwise the benefits of compression could

be offset by its overhead. Fortunately, GPUs are not as latency

sensitive as CPUs and they can tolerate latency increases to

some extent. Moreover, GPUs often use streaming workloads

with large working sets that cannot fit into any reasonably

sized cache. The higher throughput of GPUs and streaming

workloads mean bandwidth compression techniques are even

more important for GPUs than CPUs. The difference in the

architectures offers new challenges which need to be tackled

as well as new opportunities which can be harnessed.

Most existing memory compression techniques exploit

simple patterns for compression and trade low compression

ratios for low decompression latency. For example, Frequent-

Pattern Compression (FPC) [7] replaces predefined frequent

data patterns, such as consecutive zeros, with shorter fixed-

width codes. C-Pack [8] utilizes fixed static patterns and

dynamic dictionaries. Base-Delta-Immediate (BDI) compres-

sion [9] exploits value similarity. While these techniques can

decompress with few cycles, their compression ratio is low,

typically only 1.5×. All these techniques originally targeted

CPUs and hence, traded low compression for lower latency.

As GPUs can hide latency to a certain extent, more aggressive

entropy encoding based data compression techniques such as

Huffman compression seems feasible. While entropy encoding

could offer higher compression ratios, these techniques also

have inherent challenges which need to be addressed. The main

challenges are 1) How to estimate probability? 2) What is an

appropriate symbol length for encoding? And 3) How to keep

the decompression latency low? In this paper, we address these

key challenges and propose to use Entropy Encoding based

Memory Compression (E2MC) for GPUs.

We use both offline and online sampling to estimate probabil-

ities and show that small online sampling results in compression

comparable to offline sampling. While GPUs can hide a few

tens cycles of additional latency, too many can still degrade

their performance [10]. We reduce the decompression latency

by decoding multiple codewords in parallel. Although parallel

decoding reduces the compression ratio because additional

information needs to be stored, we show that the reduction

is not much as it is mostly hidden by the memory access

granularity (MAG). The MAG is the minimum amount of data

that is fetched from memory in response to a memory request

and it is a multiple of burst length and memory bus width.

For example, the MAG for GDDR5 is either 32B or 64B

depending upon if the bus width is 32-bit or 64-bit respectively.

Moreover, GPUs are high throughput devices and, therefore,

the compressor and decompressor should also provide high

throughput. We also estimate the area and power needed to

meet the high throughput requirements of GPUs. In summary,

we make the following contributions:

• We show that entropy encoding based memory compres-

sion is feasible for GPUs and delivers higher compression

ratio and performance gain than state-of-the-art techniques.

• We address the key challenges of probability estimation,

choosing a suitable symbol length for encoding, and

low decompression latency by parallel decoding with

negligible or small loss of compression ratio.

• We provide a detailed analysis of the effects of memory

access granularity on the compression ratio.

• We analyze the high throughput requirements of GPUs

and provide an estimate of area and power needed to

support such high throughput.

• We further show that compression ratio achieved is close to

the optimal compression ratio given by Shannon’s source

coding theorem.

This paper is organized as follows. Section II describes

related work. In Section III we present E2MC in detail.

Section IV explains the experimental setup and experimental

results are presented in Section V. Finally, we draw conclusions

in Section VI.

II. RELATED WORK

Frame buffer and texture compression have been adopted

by commercial GPUs. For example, ARM Frame Buffer

Compression [11] is available on Mali GPUs. AFBC is claimed

to reduce the required memory bandwidth by 50% for graphics

workloads. NVIDIA also uses DXT compression techniques

for color compression [12]. However, these techniques only

compress color and texture data and not data for GPGPU

workloads. Furthermore, the micro-architectural details of most

GPU compression techniques are proprietary.

Recent research has shown that compression can be used

for GPGPU workloads [13], [14], [15]. Sathish et al. [13]

use C-Pack [8], a dictionary based compression technique to

compress data transferred through memory I/O links and show

performance gain for memory-bound applications. However,

they do not report compression ratios and their primary focus

is to show that compression can be applied to GPUs and

not how much can be compressed. Lee et al. [15] use BDI

compression [9] to compress data in the register file. They

observe that the computations that depend on the thread-

indices operate on register data that exhibit strong value

similarity and there is a small arithmetic difference between

two consecutive thread registers. Vijaykumar et al. [14] use

underutilized resources to create assist warps that can be used

to accelerate the work of regular warps. These assist warps are

scheduled and executed in hardware. They use assist warps

to compress cache block. In contrast to this, our compression

technique is hardware based and is completely transparent to

the warps. The assist warps may compete with the regular

warps and can potentially affect the performance. Compared

to FPC, C-PACK and BDI, we use entropy encoding based

compression which results in higher compression ratio.

Huffman-based compression has been used for cache com-

pression for CPUs [16], but to the best of our knowledge

no work has used Huffman-based memory compression for

GPUs. In this work Arelakis and Stenstrom [16] sample the

1K most frequent values and use 32-bit symbol length for

compression. In contrast to CPUs, GPUs have been optimized

for FP operations and 32-bit granularity does not work well

for GPUs. We show higher compression ratio and performance

gain for 16-bit symbols instead of 32-bit in E2MC.

III. HUFFMAN-BASED MEMORY BANDWIDTH

COMPRESSION

First, we provide an overview of a system with entropy

encoding based memory compression (E2MC) for GPUs and

its key challenges and then in the subsequent sections address

these challenges in detail.

A. Overview

Figure 2a shows an overview of a system with main

components of the E2MC technique. The memory controller

(MC) is modified to integrate the compressor, decompressor and

metadata cache (MDC). Depending on the memory request type,

either it needs to pass through the compressor or it can directly

access the memory. A memory write request passes through

the compressor while a read request can bypass the compressor.

The MDC is updated with the size of the compressed block and

finally the compressed block is written to memory. A memory

read request first accesses the MDC to determine the memory

request size and then fetches that much data from memory.

(De)compression takes place in the MC and is completely

transparent to the L2 cache and the streaming multiprocessors.

The compressed data is stored in the DRAM. However, the

goal is not to increase the effective capacity of the DRAM but

to increase the effective off-chip memory bandwidth similar

to [13]. Hence, a compressed block is still allocated the same

size in DRAM, although it may require less space. Like [14],

E2MC requires compression when the data is transferred from

CPU to GPU to initialize the MDC. As the (de)compressors

Comp MDC Decomp

MC

NOC

DRAM

(a) System overview

Probability
Estimation

Code
Generation

Compression

(b) Phases of en-
tropy encoding

Fig. 2: System overview and compression phases

are integrated in the MC, data is compressed while transferring

from CPU to GPU and vice versa.

B. Huffman Compression and Key Challenges

Huffman compression is based on the evidence that not all

symbols have same probability. Instead of using fixed-length

codes, Huffman compression uses variable-length codes based

on the relative frequency of different symbols. A fixed-length

code assumes equal probability for all symbols and hence

assigns same length codes to all symbols. In contrast to fixed-

length codes, Huffman compression is based on the principle

to use fewer bits to represent frequent symbols and more

bits to represent infrequent symbols. In general, compression

techniques based on variable-length codes can provide high

compression ratio, but they also have high overhead in terms

of latency, area, and power [16]. Moreover, to achieve high

compression and performance, certain key challenges should

be addressed.

The first challenge is to find an appropriate symbol length
(SL). The choice of SL is a very important factor as it affects

compression ratio, decompression latency and hardware cost.

We evaluate the tradeoffs of using different SLs (4, 8, 16, 32-

bit). The second challenge is accurate probability estimation.

We perform both offline and online sampling of data to estimate

the probability of symbols and show that it is possible to

achieve compression ratio comparable to offline sampling

with small online sampling. The third important factor is low
decompression latency, which affects the performance gain.

We reduce the decompression latency by decoding in parallel.

In the following sections, we discuss these challenges in detail.

1) Choice of Symbol Length: We encode with different SLs

of 4, 8, 16, and 32-bit and evaluate their tradeoffs to make sure

that not only the compression ratio but other aspects are also

compared. Figure 3 shows the compression ratio for different

SLs (Benchmarks are described in Section IV). It can be seen

that 16-bit encoding yields the highest compression ratio for

GPUs. This result is in contrast to [16] where it was shown

that 16 and 32-bit encodings yield almost same compression

ratio for CPUs. The next highest compression ratio is provided

by 8-bit symbols. For some benchmarks (TP, MUM, SPMV),

8-bit encoding offers the highest compression ratio. GPUs often

operate on FP values, but INT values are also not uncommon.

Most of the benchmarks in MARS [17] and Lonestar [18]

suites are INT. Often smaller symbols are more effective for

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

4
6

8
SL4
SL8
SL16
SL32

Fig. 3: Compression ratio for different symbol lengths

FP, while longer symbols are more effective for INT and on

average 16-bit symbols provide good tradeoff for both.

2) Probability Estimation: Figure 2b shows the different

phases of an entropy encoding based compression technique.

In the probability estimation phase, frequencies of the different

symbols are collected. Based on frequencies, variable-length

codes are assigned to different symbols. In the final phase,

compression takes place. Accurate probability estimation is

one of the key components of entropy based compression.

Therefore, in our proposed E2MC technique we use both offline
probability estimation where we estimate the probability of

symbols offline, and online probability estimation where we

sample the probability of symbols during runtime.

a) Offline Probability Estimation: We simulate all bench-

marks and store their load and store data in a database. Then

we profile the database offline to find probability of symbols.

Offline probability estimate is the best estimate we can have. In

Section V it is shown that offline probability yields the highest

compression ratio. However, offline probability can only be

used if approximate entropy characteristics of a data stream

are known in advance.

b) Online Probability Estimation: One of the drawbacks

of entropy based compression techniques is that they may

require online sampling to estimate the frequency of symbols

if entropy characteristics are not known in advance. The

sampling phase is an additional overhead as during sampling no

compression is performed. Fortunately, our experiments show

that it is possible to achieve compression ratio comparable to

offline probability with a very short online sampling phase at

the start of the benchmarks.

During sampling phase every memory request is monitored

at the memory controller to record unique values and their

count. We use a value frequency table (VFT) similar to [16]

to store them. For 4 and 8-bit SLs, we store all values as there

are only 16 and 256 possible values. However, for SLs of 16

and 32-bit we only store the most frequent values (MFVs) and

use them to generate codewords as the total number of values

is very large and storing all of them is not practical.

There are two key decisions to make regarding online

sampling. First, what is the suitable number of MFVs? More

MFVs may help to encode better for some benchmarks at the

cost of increased hardware. Figure 4a shows the compression

ratio for different numbers of MFVs relative to 1K MFVs.

It shows that the compression ratio does not increase much

with the number of MFVs, only 1% on average. Only for

some benchmarks (FWT, TP, SCAN, SPMV) more MFV gives

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.6

0.7

0.8

0.9

1.0

1.1

C
om

pr
es

si
on

ra
tio

1K 2K 4K 8K 16K

(a) Compression ratio with different number of MFVs

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
om

pr
es

si
on

ra
tio

2.
4

2.
1

1.
8

1M 10M 20M 30M 40M 50M 100M

(b) Compression ratio with different sampling durations

Fig. 4: Online sampling decisions

slightly higher compression ratio, FWT being the highest gainer

(6%). Hence, we choose 1K MFVs to construct encoding. In

some cases (PVR, MUM), the compression ratio can even

decrease with the increase in MFVs as the length of the prefix

which is attached to each uncompressed symbol can increase.

For example, for the MUM benchmark, the prefix is 3 bits

long for 2K MFVs and 4 bits long for 4K MFVs. Thus, the

compression ratio is lower for 4K MFVs compared to 2K

MFVs.Please refer to Section III-B2c for more details.

The second decision is: what is the best sampling duration?

Figure 4b shows the compression ratio for sampling durations of

1M, 10M, 20M, 30M, 40M, 50M and 100M instructions relative

to sampling duration of 1M instructions. It shows that sampling

for 20M instructions yields the highest compression ratio.

Hence, we choose 20M instructions for online sampling. The

longer sampling duration can improve probability estimation,

however, there is a trade-off between compression ratio and

improved probability estimation as no compression is done

during sampling duration. Thus, we notice low compression

ratio for sampling durations longer than 20M instructions.

c) Codeword Generation: After the sampling phase, code

generation takes place. Instead of classic Huffman coding,

canonical Huffman coding [19] is used because it is fast to

decode as the codeword length is enough to decode a codeword.

In canonical Huffman coding, codewords of the same length are

consecutive binary numbers. To generate canonical Huffman

codewords (CHCs), first classic codewords are generated by

building a Huffman tree using a minimum heap data structure

as described in [20] and then symbols are sorted according to

their code lengths. The first symbol is assigned a codeword of

all zeros of length equal to the original SL. The next codeword

is just the consecutive binary number if the SL is the same.

When a longer codeword is encountered, the last canonical

codeword is incremented by one and left shifted until its length

is equal to the original SL. The procedure is repeated for all

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.6

0.7

0.8

0.9

1.0

1.1

1.2

S
pe

ed
up

80 40 20 10 0

(a) Effect of compression latency on speedup

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
pe

ed
up

80 40 20 10 0

(b) Effect of decompression latency on speedup

Fig. 5: Effect of latency

symbols. For example, assume we have three symbols (A =

(11)2, B = (0)2, C = (101)2) with classic Huffman codewords.

To convert them to canonical, we first sort symbols according

to code length (B = (0)2, A = (11)2, C = (101)2) and then the

first symbol (B) is assigned code (0)2. The CHC for the next

symbol A is (10)2 which is obtained by incrementing the last

codeword by one and then left shifting to match the original

code length of A. Similarly, CHC for C is (110)2.

To ensure that unnecessarily long codewords are not gener-

ated, we assign a minimum probability to each symbol such

that no codeword is longer than predetermined maximum

length. Our experiments show that there are only few symbols

which have codewords longer than 20-bit for SL 16 and 32-bit.

Hence, we adjust the frequency so that no symbol is assigned

a code longer than 20-bit. Similarly, for SL 4 and 8-bit we fix

the maximum codeword length to 8 and 16-bit, respectively.

Finally, all symbols that are not in MFVs are assigned a single

codeword based on their combined frequency and this codeword

is attached as a prefix to store all such symbols uncompressed.

Since we only need probability estimation and code generation

in the beginning, both of these steps can be done in software.

3) Low Decompression Latency: As already explained,

GPUs are high throughput devices and less sensitive to latency

than CPUs. However, large latency increases can also affect

GPU performance. Figure 5a and 5b shows the speedup when

compression and decompression latency is decreased from 80

cycles to 0 cycles, respectively. It can be seen that there is a

small speedup (geometric mean of 1%) when the compression

latency is decreased to 0 cycles. However, there is a significant

speedup (geometric mean of 9%) when the decompression

latency is decreased to 0 cycles. The speedup is more sensitive

to decompression latency because warps have to stall for loads

from memory, while stores can be done without stalling. The

results clearly show the importance of low decompression

latency. Thus, we perform parallel decoding to decrease the

DDRx BL DDRx BL

DDR1 2 DDR3/4 8

DDR2 4 GDDR5 8

TABLE I: BL across DDRx

CR BF CR BF

1.00 - 1.33 128B 2.00 - 3.99 64B

1.33 - 1.99 96B ≥4.00 32B

TABLE II: CR at MAG

decompression latency as explained in Section III-F1.

C. Memory Access Granularity and Compression

Memory access granularity (MAG) is the number of bytes

fetched from memory at a time and it is a product of the burst

length (BL) and bus width. The BL is decided by DRAM

technology, and it directly determines the MAG. Table I shows

the BL for different generations of DDRx. The BL has increased

over the generations to support high data transfer rates.

The MAG is an important factor for memory compression

as it affects the minimum amount of data that can be fetched

from memory. Assuming 32-bit bus width for DDR4, the MAG

of DDR4 is 32B. Since it is only possible to fetch in multiples

of the MAG, for a compression ratio (CR) that is not an exact

multiple of the MAG, more data needs to be fetched than what

is actually needed. For example, for a block that is compressed

from 128B to 65B (CR of 1.97), the actual amount of fetched

data is 96B (3× 32B). Thus, while the CR looks very close to 2,

the effective CR is only 1.33. Therefore, effective compression

and performance gain could be significantly less than what it

appears at first due to MAG restrictions. Table II shows range

of CR and minimum number of bytes fetched (BF) assuming

32B MAG. We assume the MAG is 32B for this study.

D. Compression Overhead: Metadata Cache

To save memory bandwidth as a result of compression,

we need to only fetch the compressed 32B bursts from a

DRAM. Therefore, the memory controller needs to know how

many bursts to fetch for every memory block. For GDDR5,

the number of bursts varies from 1 to 4. Similar to previous

work [13], [14], we store 2 bits for every memory block as

metadata. For a 32-bit, 4GB DRAM with block size of 128B,

we need 8MB of DRAM for storing the metadata. However,

we cannot afford to access the metadata first from DRAM and

then issue a memory request for the required number of bursts.

This requires two accesses to DRAM and defeats the purpose

of compression to save memory bandwidth. Therefore, like

previous work [13], [14], we cache the most recently used

metadata in a cache. We use a small 8KB 4-way set associate

cache to store the metadata. The 2 bits stored in the metadata

are also used to determine if the block is stored (un)compressed.

The value (11)2 means the block is stored uncompressed.

E. Huffman Compressor

Figure 6 shows an overview of the Huffman compressor.

It can be implemented as a small lookup table (c-LUT) that

stores codewords (CWs) and their code lengths (CLs) as shown

in Figure 6a. The maximum number of CWs is 2N , where N
is the SL. As the maximum number of CWs is only 16 and

256 for SLs 4 and 8-bit, we store all CWs in a c-LUT and

index it directly using symbol bits. However, for SLs 16 and

32-bit such a lookup table is not practical and instead we store

CW CL

Symb

maxCL log2 maxCL

(a) c-LUT

cwj Original CW

Extended CWcwj

Shifted CW

(BL-WP-CL)
cwj

∨

Intermediate

buffer
cwi cwj ...

WP

(b) Placing codewords together

Fig. 6: Huffman compressor

1K MFVs as discussed in Section III-B2b. We use an 8-way

set associative cache to implement c-LUT for 1K MFVs. The

cache is indexed by lower 7-bit of a symbol.

For SLs 4 and 8-bit, we build different Huffman trees

corresponding to different symbols in a word and thus, also use

multiple c-LUTs, one corresponding to each tree. For example,

for SL 8-bit, we use 4 c-LUTs for the four different symbols

in a word. We assume a word size of 32-bit for our study.

Once we obtain a CW from c-LUT, we need to place it

together with other CWs. Figure 6b shows how the CWs are

placed together. We use an intermediate buffer of 2× maxCL

as buffer length (BL), where maxCL is the maximum code

length. To place a CW at its right position, first the CW is

extended to match BL and then the extended CW is left shifted

by BL − WP − CL using a barrel shifter, where WP is

the current write position in the buffer. Finally, the shifted

CW is bitwise ORed with the intermediate buffer and WP is

incremented by CL. When WP ≥ maxCL, compressed data,

equal to maxCL, is moved from the intermediate buffer to the

final buffer. The intermediate buffer is left shifted by maxCL

and WP is decremented by maxCL. Our RTL synthesis shows

that placing the CWs together takes more time than getting

CW and CL from c-LUT. The sum of the lengths of all CWs of

a block determines if a block is stored (un)compressed. When

the sum is ≤ 96B, a block is stored compressed, otherwise

uncompressed. Please refer to Section III-C to understand the

reason to choose compressed size ≤ 96B to decide if a block

is stored (un)compressed.

F. Huffman Decompressor

Figure 7 shows an overview of the Huffman decompressor.

Our design is based on the Huffman decompressor as proposed

in [16], which mainly consists of a barrel shifter, comparators,

and a priority encoder to find the CW and CL. We use a

buffer of length 2× maxCL to store part of the compressed

block. We use buffer length of 2× maxCL instead of maxCL

as in [16] for two reasons. First, we can continue decoding

without shifting data every cycle from the compressed block

to the buffer. Second, it helps to define a fixed-width interface

(maxCL in this case) to input compressed data instead of every

cycle shifting a different number of bits, equal to the matched

CL. A pointer (bufPos) which initially points to the end of the

buffer is used to track the filled size of the buffer. To find a

CW, comparison is done in parallel between all potential CWs

and the First Codewords (FCWs) of all lengths. The FCWs

Barrel shifter

..
.

Zeros

Compressed block

≤bufPos

maxCL

2
×
m
a
x
C
L

bufPos

≥

≥

..
.

Priority encoder

..
.

FCW(1)

FCW(2)

Shift amount (CL)

Matched CW

Extended CW

Sub

Offsets

CL

m
a
x
C
L

De-LUT

Symb

m
a
x
C
L

Fig. 7: Huffman decompressor [16]

P2 P3 P4
... Pn Compressed data

n parallel decoding ways

Fig. 8: Structure of a compressed block

of all lengths are stored in a table. A priority encoder selects

the first CW which is ≥ FCW of length l and ≤ FCW of

length l + 1. The selected CW is extended by padding zeros

to match the maxCL. An offset which depends on the CL and

is calculated during code generation is subtracted from CW to

obtain the index for the De-LUT. The barrel shifter shifts the

buffer by CL and the bufPos is decremented by CL. When the

bufPos ≤ maxCL, the remaining compressed data of length

maxCL is shifted into the buffer from the compressed block

and the bufPos is incremented by maxCL.

Although symbols are stored in consecutive locations in the

De-LUT, canonical CWs of different CLs are not consecutive

binary numbers. Therefore, the De-LUT cannot be indexed

directly using the CW to obtain the decoded symbol. We need to

subtract an offset from the CW to find the index. These offsets

are calculated during code generation. For example, assume

we have three symbols with canonical Huffman codewords

(CHCs) (B = (0)2, A = (10)2, C = (110)2). The symbol B

will be stored at index 0 in the De-LUT, so it has offset 0.

However, A will be stored at index 1, so it has offset 1 ((10)2-

(01)2). Similarly, C will be stored at index 2 and it has offset 4

((110)2-(010)2). The maximum number of offsets is equal to

maximum number of CWs of different lengths. Both offset and

FCW tables are read and writable so that they can be changed

for different benchmarks. We use multiple decompressor units

for different symbols in a word for SLs 4 and 8-bit.

1) Parallel Decoding and Memory Access Granularity:
We need to decode in parallel to reduce the decompression

latency. Unfortunately, Huffman decoding is serial as the start

of the next CW is only known once the previous CW has

been found. Serial decoding requires high latency which can

limit the performance gain. One way to parallelize Huffman

decoding is to explicitly store pointers to CWs where we want

Compressor Decompresor
SL
(Bits)

Freq
(GHz)

BW
(GB/s)

Area
(mm2)

Power
(mW)

Freq
(GHz)

BW
(GB/s)

Area
(mm2)

Power
(mW)

4 1.67 0.84 0.02 1.43 1.11 0.56 0.01 5.12
8 1.54 1.54 0.08 4.01 0.91 0.91 0.04 11.91
16 1.43 2.86 0.11 5.47 0.80 1.60 0.07 11.89
32 1.43 5.72 0.17 9.34 0.80 3.20 0.12 14.30

TABLE III: Frequency, bandwidth, area, and power of a single

unit of compressor and decompressor

Compressor Decompresor GTX580
SL
(Bits)

Units
(#)

Area
(mm2)

Power
(W)

Units
(#)

Area
(mm2)

Power
(W)

Area
(%)

Power
(%)

4 464 7.9 0.7 692 10.3 3.6 3.4 1.7
8 252 20.3 1.0 424 18.1 5.0 7.3 2.5
16 136 14.6 0.7 240 16.4 2.8 5.8 1.5
32 68 11.5 0.6 120 14.3 1.7 4.9 0.9

TABLE IV: #units, area, and power to support 4× 192.4 GB/s

to start decoding in parallel in the compressed block itself. The

number of pointers depends on the number of required parallel

decoding ways (PDWs).

Figure 8 shows the structure of a compressed block. It

consists of n− 1 pointers (P2, P3, ..., Pn) for n PDWs, and

the compressed data. Each pointer consists of N bits where 2N

is the block size in bytes. For example, for a 128B block, 7-bit

are needed for each PDW. The starting codewords for parallel

decoding are byte-aligned while compressing them. These

pointers are overhead and hence will reduce compression ratio.

However, the effective loss in compression ratio is usually much

lower due to the aforementioned memory access granularity

(MAG). Most blocks are compressed to a size that allows

adding extra bits for parallel decoding without reducing their

compression ratio at the MAG. Our experiments show that

even with 4 PDWs where we store 21 extra bits (3∗7) in

the compressed block, there is either no or small loss in

compression ratio. We analyze the loss in compression and the

number of PDWs needed in Section V-A1 and V-C.

G. High Throughput Requirements

To gain from memory compression, the throughput (bytes

(de)compressed per second) of the compressor and decom-

pressor should match the full compressed memory bandwidth

(BW). Suppose we can obtain a maximum compression of

4×, then the compressor and decompressor throughput has to

be 4 times the GPU BW to fully utilize the compressed BW.

Unfortunately, a single (de)compressor unit cannot meet such

high throughput.

Table III shows the frequency, BW, area, and power of

a single compressor and decompressor unit as reported by

the Synopsis design compiler for different SLs. The BW of

NVIDIA GTX580 is 192.4 GB/s (32.1 GB/s per memory con-

troller). However, the combined throughput of the compressor

and decompresor for any SL is far less than 4× 32.1 GB/s.

For example, the combined throughput of the SL 16-bit is only

4.46 GB/s. Clearly, a single (de)compressor unit is not enough

and we need multiple units.

Table IV shows the total number of compressor and de-

compressor units needed to support 4× 192.4 GB/s and the

#SMs 16 L1 $ size/SM 16KB
SM freq (MHz) 822 L2 $ size 768KB

Max #Threads per SM 1536 # Memory controllers 6
Max #CTA per SM 8 Memory type GDDR5

Max CTA size 512 Memory clock 1002 MHz
#FUs per SM 32 Memory bandwidth 192.4 GB/s
#Registers/SM 32K Burst length 8

Shared memory/SM 48KB Bus width 32-bits

TABLE V: Baseline simulator configuration

BDI FPC E2MC4 E2MC8 E2MC16 E2MC32
Compressor latency 1 6 154 84 46 24
Decompressor latency 1 10 233 143 82 42

TABLE VI: Compressor and decompressor latency in cycles

corresponding area and power. The n parallel decoding ways

(n PDWs) utilize n decompressors from these total numbers of

units to decode a single block in parallel. This only decreases

decompression latency and does not add up to the total number

of required units. Thus, no further multiplication of the numbers

shown in Table IV is required for n PDWs.

Table IV also shows the total area and power needed as

percentage of the area and peak power of the GTX580. A

single (de)compressor unit requires less area and power for

smaller SLs. However, the total area and power needed to

support the GTX580 BW is much higher for smaller SLs as

more units are required to meet the BW. We have smaller area

and power for SL 4-bit because the c-LUT and De-LUT have

very small number of entries (16). In general, the area numbers

are likely higher than expected because the memory design

library does not have exact memory designs needed to design

(de)compressor and we have to combine smaller designs to

get the required size. We believe that a custom design will

be denser and will need less area. We found that none of the

related work discussed throughput requirements of GPUs.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe our experimental methodology.

A. Simulator

We use gpgpu-sim v3.2.1 [21] and modify it to integrate

BDI, FPC and E2MC. We configure gpgpu-sim to simulate a

GPU similar to NVIDIA’s GF110 on the GTX580 card. The

baseline simulator configuration is summarized in Table V.

Table VI shows the (de)compressor latencies used to evaluate

BDI, FPC, and E2MC. For E2MC, we evaluate four designs of

SLs 4, 8, 16, and 32-bit denoted by E2MC4, E2MC8, E2MC16,

and E2MC32, respectively. The latencies of the BDI and FPC

are obtained from their published papers [9] and [7]. For E2MC,

we wrote RTL for the compressor and decompressor designs

and then synthesized RTL using Synopsis design compiler

version K-2015.06-SP4 at 32nm technology node to accurately

estimate the frequency, area, and power. The compressor is

pipelined using two stages. The first stage fetches the CW

and CL from the c-LUT, while the second stage combines

CWs together. We find that the critical path delay is in the

second stage of the compressor. The decompressor is pipelined

using three stages. The first stage finds a CW, the second

stage calculates the index for the De-LUT using CW and

Name Abbrev. Data Type Origin
convolSeparable CS Single-precision FP CUDA SDK
fastWalshTrans FWT Single-precision FP CUDA SDK

libor LIB Single-precision FP CUDA SDK
transpose TP Single-precision FP CUDA SDK

scan SCAN INT CUDA SDK
PageViewCount PVC INT MARS
PageViewRank PVR INT MARS

backprop BP Single-precision FP Rodinia
bfs BFS1 INT Rodinia

heartwall HW Mixed Rodinia
kmeans KM1 Mixed Rodinia

mummergpu MUM INT Rodinia
bfs BFS2 INT Lonestar
sssp SSSP INT Lonestar

spmv SPMV Mixed SHOC

TABLE VII: Benchmarks used for experimental evaluation

offsets, and the De-LUT is accessed in the third stage to get

the decoded symbol. We find that the critical path delay is

in the first stage of the decompressor. In E2MC, one symbol

can be (de)compressed in a single cycle of frequency listed in

Table III. The frequency is calculated using critical path delay.

However, the DRAM frequency is 1002 MHz for GTX580.

We scale the (de)compressor frequency and then count the

number of cycles needed to (de)compress a memory block

of size 128B. Furthermore, for each PDW, we assume the

decompressor latency is decreased by the same factor.

For estimating the energy consumption of different bench-

marks, GPUSimPow [5] is modified to integrate the power

model of the compressor and decompressor. The power numbers

obtained by RTL synthesis are used to derive the power model

for the compressor and decompressor.

B. Benchmarks

Table VII shows the benchmarks used for evaluation. We

include benchmarks from the popular CUDA SDK [22],

Rodinia [23], Mars [17], Lonestar [18], and SHOC [24]. A

benchmark can belong to single-precision FP, INT, or mixed

category depending upon its data types. We modified the inputs

of SCAN and FWT benchmarks as the original inputs were

random which are not suitable for any compression technique.

We use SCAN for stream compaction which is an important

application of SCAN and FWT to transform Walsh functions.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of E2MC, we compare compres-

sion ratio (CR) and performance of E2MC for SLs 4, 8, 16, and

32-bit with BDI and FPC. We provide two kinds of compression

ratios, raw CR and CR at memory access granularity (MAG).

The raw CR is the ratio of the total uncompressed size to total

compressed size. For CR at MAG, the total compressed size is

calculated by scaling up the compressed size of each block to

the nearest multiple of MAG, and then adding all the scaled

block sizes.

First, we present CR results using offline and online

probability estimation and discuss CR and parallel decoding

tradeoff. We then compare the speedup of E2MC with BDI

and FPC and show the importance of decoding in parallel.

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

4
68

BDI FPC E2MC4 E2MC8 E2MC16 E2MC32

(a) Raw compression ratio

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

BDI FPC E2MC4 E2MC8 E2MC16 E2MC32

(b) Compression ratio at MAG

Fig. 9: Compression ratio of BDI, FPC and E2MC

Finally, we present the sensitivity analysis of compute-bound

benchmarks to E2MC and study the energy efficiency of E2MC.

A. Compression Ratio using Offline Probability

Figure 9a depicts the raw CR of BDI, FPC, and E2MC with

offline probability. It shows that on average E2MC provides

higher CR than BDI and FPC for all SLs. The geometric

mean of the CR of E2MC for SLs 4, 8, 16 and 32-bit is

1.55×, 1.80×, 1.97×, and 1.76×, respectively, while that of

BDI is only 1.44× and FPC is 1.53×. This shows that entropy

based compression techniques provide higher CR than simple

compression techniques such as BDI and FPC whose CR is

limited. E2MC16 yields the highest CR which is 53% and 42%

higher than the CR of BDI and FPC respectively.

As discussed in Section III-C, data from memory is fetched

in the multiple of MAG. Figure 9b shows the CR of BDI,

FPC and E2MC when this is taken into account. We see that

the CR of all three techniques at MAG is less than the raw

CR. However, the CR of E2MC is still higher compared to

BDI and FPC. The geometric mean of the CR of E2MC for

SLs 4, 8, 16 and 32-bit is 1.36×, 1.53×, 1.62×, and 1.45×,

respectively, while the CR of BDI is only 1.24× and the CR

of FPC is 1.34×. We see that E2MC16 also yields the highest

CR at MAG. So, we select E2MC16 and show CR results only

for it and leave out other SLs for space reasons.

To obtain an estimate how close E2MC16 is to the optimal

CR, we calculate the upper bound on CR using Shannon’s

source coding theorem [25]. The average optimal CR for SL

16-bit is 2.61×, which means there is a gap of 64% that could

be further exploited. However, we think that further narrowing

the gap is difficult as compression is data dependent.

1) Compression Ratio and Parallel Decoding Tradeoff:
As shown in the Section III-B3, low decompression latency

is important for achieving high performance. To reduce the

decompression latency we decode in parallel as discussed in

the Section III-F1. However, parallel decoding is not for free

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

6.
0

5.
8

5.
5

4.
7

BDI FPC E2MC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(a) Raw compression ratio

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

BDI FPC E2MC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(b) Compression ratio at MAG

Fig. 10: Compression ratio of E2MC16 with parallel decoding

as it decreases the CR. Hence, the number of parallel decoding

ways (PDWs) needs to be selected in a way such that the

performance gain is maximal and the loss in CR is minimal.

Figure 10a shows that the CR decreases slightly when the

number of PDWs increases. However, we will see in the

Section V-C, the performance increases with the number of

PDWs as the decompression latency decreases. Moreover, we

see from the Figure 10a that the CR of E2MC16 even for 8

PDWs is still much higher than the CR of BDI and FPC.

We have seen that parallel decoding causes loss in CR.

However, the loss in CR at MAG is much lower than the

loss in raw CR as shown in Figure 10b than Figure 10a. For

example, there is 9% loss in raw CR with 4 PDWs, while at

MAG it is only 4%. The reason for lower CR loss at MAG

is that at MAG we usually need to fetch some extra bytes to

meet the MAG requirements. Using these extra bytes to store

offsets for parallel decoding does not cause loss in CR. This

is not always true, however, and hence we see some loss in

CR even at MAG.

B. Compression Ratio using Online Sampling

As discussed in the Section III-B2b online sampling might

be needed to estimate probability if entropy characteristics are

not known in advance. Figure 11a shows the CR for online

sampling size of 20M instructions. We choose 20M instructions

for online sampling as it gives the highest CR as shown in

the Figure 4b and we only sample at the beginning of each

benchmark. The CR of E2MC16 is 1.79×, which is 35% and

26% higher than the CR of BDI and FPC, respectively. However,

as expected the CR with online sampling is lower by 18% on

average than that of offline sampling.

Figure 11b shows the CR with online sampling at MAG.

The CR of E2MC16 at MAG is 1.52×, which is still 28% and

18% higher than BDI and FPC, respectively. The CR results

show that it is possible to achieve reasonably higher CR with

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

BDI FPC E2MC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(a) Raw compression ratio

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pr
es

si
on

ra
tio

BDI FPC E2EMC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(b) Compression ratio at MAG

Fig. 11: Compression ratio of BDI, FPC and E2MC16 for

online sampling size of 20M instructions

small online sampling. However, the CR at MAG with online

sampling is 10% lower than offline sampling.

C. Speedup

We first establish an upper bound on the speedup assuming

favorable conditions and then use realistic conditions to

study the actual gain. Figure 12a shows the speedup of BDI,

FPC, and E2MC16 when offline probability is used and the

(de)compression latency is only one cycle for all techniques.

BDI and FPC achieve an average speedup of 12% and 16%,

respectively, while the average speedup of E2MC is 16%, 21%,

23%, and 16% for SLs 4, 8, 16, and 32-bit, respectively. The

speedup is due to the decrease in DRAM bandwidth which is

reciprocal of the achieved compression ratio.

Figure 12b and Figure 12c shows the speedup of BDI, FPC

and E2MC16 for offline and online sampling with realistic

latencies as shown in the Table VI. For E2MC we only show

speedup in detail for SL 16-bit with 1 to 8 PDWs because

of the space reasons. A brief discussion of the speedup for

SL 4, 8, and 32-bit is presented later in the section. We see

that the speedup is less for FPC and E2MC16 using realistic

latencies. However, the speedup of BDI does not change as

actual latency is also single cycle. The speedup of E2MC16 with

offline probability (13%) is equal to the speedup of FPC (13%)

and even slightly less with online probability (11%) when no

parallel decoding is used, even though the CR of E2MC16

is much higher than that of FPC. This is because without

parallel decoding the decompression latency of E2MC16 is 82

cycles, which is much higher than the decompression latency

of FPC which is 10 cycles. The speedup increases when we

increase the PDWs from 1 to 4 because each PDW decreases

the decompression latency by half. However, each PDW also

decreases the CR as we need to store the offsets for parallel

decoding and hence there is a tradeoff between the CR and

performance gain. Figure 12b shows that there is no further

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM

0.6

0.8

1.0

1.2

1.4

1.6

S
pe

ed
up

BDI FPC E2MC4 E2MC8 E2MC16 E2MC32

(a) Offline sampling with single cycle latency

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM

0.6

0.8

1.0

1.2

1.4

1.6

S
pe

ed
up

BDI FPC E2MC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(b) Offline sampling with realistic latency

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM

0.6

0.8

1.0

1.2

1.4

1.6

S
pe

ed
up

BDI FPC E2MC16-PDW1 E2MC16-PDW2 E2MC16-PDW4 E2MC16-PDW8

(c) Online sampling with realistic latency

Fig. 12: Speedup of BDI, FPC and E2MC

gain in performance from 4 PDWs to 8 PDWs. This is because

the increase in performance due to further decrease in latency

is nullified by the decrease in CR. Hence, to achieve higher

speedup for E2MC16 we not only need higher CR but also the

decompression latency has to be reasonably low.

Figure 12a shows that the average speedup of E2MC for SL

8-bit with single cycle latency is much higher than the speedup

of BDI and FPC and close to the speedup for SL 16-bit. The

speedup for SLs 4 and 32-bit is also higher or equal to BDI

and FPC. However, when actual latency is used the average

speedup is much lower. The average speedup of E2MC for

SLs 4, 8-bit with 8 PDWs and for SL 32-bit with 4 PDWs is

2%, 14% and 15% respectively. The reason for low speedup

for SLs 4, and 8-bit is their high decompression latency.

We see that both offline and online sampling results in higher

performance gain for E2MC16 than BDI and FPC, provided

decompression latency is reduced by parallel decoding. The

geometric mean of the speedup of E2MC16 with 4 PDWs

is about 20% with offline probability and 17% with online

probability. The average speedup is 8% higher than the state

of the art with offline and 5% higher with online sampling.

D. Sensitivity Analysis of Compute-Bound Benchmarks

We conduct sensitivity analysis to verify that E2MC increases

performance of the memory-bound benchmarks without hurting

the performance of the compute-bound benchmarks. The

CS
FW

T
LIB TP

SCAN
PVC

PVR BP
BFS1

HW
KM1

MUM
BFS2

SSSP
SPMV

GM
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ne

rg
y

an
d

E
D

P

Base E-OFF EDP-OFF E-ON EDP-ON

Fig. 13: Energy and EDP of E2MC16 for offline and online

sampling over baseline

compute-bound benchmarks do not gain from increase in

bandwidth and we compress them using E2MC16. On average

there is only 1% reduction in performance for 1 PDW due

to high decompression latency. However, we propose to use

4 PDWs and we notice no decrease in performance of the

compute-bound benchmarks at 4 PDWs.

E. Effect on Energy

Figure 13 shows the reduction in energy consumption and

energy-delay-product (EDP) over no compression for E2MC16

for offline and online sampling. On average there is 13%

and 27% reduction in energy consumption (E-OFF) and EDP

(EDP-OFF) respectively, for offline sampling and 11% and 24%

reduction in energy consumption (E-ON) and EDP (EDP-ON)

respectively, for online sampling. E2MC16 reduces the energy

consumption by reducing the off-chip memory traffic and total

execution time. We show energy and EDP of E2MC only over

no compression due to lack of power models for BDI and FPC.

VI. CONCLUSIONS

Most previous compression techniques were originally

proposed for CPUs and hence, these techniques tradeoff low

compression for low latency by using simple compression

patterns. However, GPUs are less sensitive to latency than CPUs

and they can tolerate increased latency to some extent. Thus,

we studied the feasibility of relatively more complex entropy

encoding based memory compression (E2MC) technique for

GPUs which has higher compression potential, but also

higher latency. We showed that E2MC is feasible for GPUs

and delivers higher compression ratio and performance gain.

We addressed the key challenges of probability estimation,

choosing an appropriate symbol length, and decompression

with reasonably low latency. E2MC with offline sampling results

in 53% higher compression ratio and 8% increase in speedup

compared to the state-of-the-art techniques and saves 13%

energy and 27% EDP. Online sampling results in 35% higher

compression ratio and 5% increase in speedup compared to

the state of the art and saves 11% energy and 24% EDP. We

also provided an estimate of the area and power needed to

meet the high throughput of GPUs. In the future we plan to

study the effect of multiple encodings and extend E2MC to

other levels of the memory hierarchy.

VII. ACKNOWLEDGMENTS

This work has received funding from the European Union’s

Horizon H2020 research and innovation programme under grant

agreement No. 688759 (Project LPGPU2).

REFERENCES

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, 2011.

[2] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
Proc. 5th IEEE Int. Memory Workshop, IMW, 2013.

[3] “International Technology Roadmap for Semiconductors, ITRS,” 2011.

[4] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in Proc. 40th Int. Symp. on Comp. Arch., ISCA, 2013.

[5] J. Lucas, S. Lal, M. Andersch, M. A. Mesa, and B. Juurlink, “How a
Single Chip Causes Massive Power Bills - GPUSimPow: A GPGPU
Power Simulator,” in Proc. IEEE Int. Symp. on Performance Analysis of
Systems and Software, ISPASS, 2013.

[6] S. Lal, J. Lucas, M. Andersch, M. Alvarez-Mesa, A. Elhossini, and B. Ju-
urlink, “GPGPU Workload Characteristics and Performance Analysis,”
in Proc. 14th Int. Conf. on Embedded Computer Systems: Architectures,
Modeling, and Simulation, SAMOS, 2014.

[7] A. Alameldeen and D. Wood, “Frequent Pattern Compression: A
Significance-Based Compression Scheme for L2 Caches,” in Technical
report, University of Wisconsin-Madison, 2004.

[8] X. Chen, L. Yang, R. Dick, L. Shang, and H. Lekatsas, “C-Pack: A
High-Performance Microprocessor Cache Compression Algorithm,” IEEE
Transactions on VLSI Systems, 2010.

[9] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-Delta-Immediate Compression: Practical Data
Compression for On-chip Caches,” in Proc. 21st Int. Conf. on Parallel
Architectures and Compilation Techniques, PACT, 2012.

[10] M. A. O’Neil and M. Burtscher, “Microarchitectural Performance
Characterization of Irregular GPU Kernels,” in Proc. IEEE Int. Symp.
on Workloads Characterization, IISWC, 2014.

[11] ARM, “Frame Buffer Compression Protocol.” [Online]. Avail-
able: https://www.arm.com/products/multimedia/mali-technologies/arm-
frame-buffer-compression.php

[12] NVIDIA, “GPU Accelerated Texture Compression.” [Online]. Available:
https://developer.nvidia.com/gpu-accelerated-texture-compression

[13] V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and Lossy Memory
I/O Link Compression for Improving Performance of GPGPU Workloads,”
in Proc. 21st Int. Conf. on Parallel Architectures and Compilation
Techniques, PACT, 2012.

[14] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarung-
nirun, C. Das, M. Kandemir, T. Mowry, and O. Mutlu, “A Case for
Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data
Compression With Assist Warps,” in Proc. 42nd Int. Symp. on Comp.
Arch., ISCA, 2015.

[15] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-compression: Enabling Power Efficient GPUs Through Register
Compression,” in Proc. 42nd Int. Symp. on Comp. Arch., ISCA, 2015.

[16] A. Arelakis and P. Stenstrom, “SC2: A Statistical Compression Cache
Scheme,” in Proc. 41st Int. Symp. on Comp. Arch., ISCA, 2014.

[17] W. Fang, B. He, Q. Luo, and N. K. Govindaraju, “Mars: Accelerating
MapReduce with Graphics Processors,” IEEE Transactions on Parallel
and Distributed Systems, 2011.

[18] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali, “Lonestar: A
Suite of Parallel Irregular Programs,” in Proc. Int. Symp. on Performance
Analysis of Systems and Software, ISPASS, 2009.

[19] E. S. Schwartz and B. Kallick, “Generating a Canonical Prefix Encoding,”
ACM Comm., 1964.

[20] D. Salomon, “Variable-Length Codes for Data Compression,” 2007.

[21] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in Proc. IEEE Int.
Symp. on Performance Analysis of Systems and Software, ISPASS, 2009.

[22] NVIDIA, “CUDA: Compute Unified Device Architecture,” 2007,
http://developer.nvidia.com/object/gpucomputing.html.

[23] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,”
in Proc. IEEE Int. Symp. on Workload Characterization, ISWC, 2009.

[24] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous Computing
(SHOC) Benchmark Suite,” in Proc. 3rd Workshop on GPGPUs, 2010.

[25] C. E. Shannon, “A Mathematical Theory of Communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, 2001.

