Constructing Complicated Spheres

vorgelegt von
Master of Arts in Mathematics
Mimi Tsuruga
New York, NY, U.S.A.

Von der Fakultét II - Mathematik und Naturwissenschaften
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr.rer.nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Noemi Kurt

Berichter/Gutachter: Priv.-Doz.Dr. Frank H. Lutz
Berichter /Gutachter: Prof. John M. Sullivan
Berichter /Gutachter: Prof. Konstantin Mischaikow

Tag der wissenschaftlichen Aussprache: 1 Juli 2015

Berlin 2015






for mommy






Acknowledgements

On September 3, 2008, I arrived in Berlin utterly clueless, but excited for
the adventure that lay before me. Now, nearly seven years later, I am
preparing for the next adventure that awaits me in an even stranger land:
California. I am not a new person now, but I am a different one. And I
have many people to thank who helped me to become this changed me.

First and foremost is Frank, of course. Many people before me have
thanked their thesis advisors, but I thank mine for so much more than
just research advice. Frank’s work—Ilife balance; his insatiable curiosity
and true love of science; his dealings with colleagues, with bureaucracy; his
deep understanding of social rules and politics; and his choices to sometimes
ignore them all; the time he spends doing work, the time he spends with
his family; the surprisingly little time he must have not being busy. I am
a better human being—and a better scientist—thanks to Frank and his
guidance.

I've also had the great privilege of getting to personally know the person
who guided Frank—his doctoral supervisor. It’s easy to see the influence
Giinter has had on his students by the way Frank has been with me, and
it is truly no wonder the Berlin Mathematical School is flourishing under
his wing. He was my BMS mentor on paper, but also a great friend.

I also want to thank John for being a great mentor. At the times when
I needed a mentor most, he helped me overcome many challenges. In a
city where signs of home are few and far between, hearing him speak often
brought me calm. He also gets the credit for connecting me with Frank,
and for helping us get our project started (and navigating some of the
bureaucracy that came with it).

But before the project started, I had a baby. And I had a problem
coming back to work. It was not a problem of laziness, it was one of
confidence. Carsten helped me overcome my fears of not being able to
work again, having lost so much time and feeling left behind. He helped
me through the toughest first weeks back from my leave; without him I
may have given up.

And a great, wonderful thanks to the BMS. The Berlin Mathematical
School wasn’t just my source of funding. It became my new friends and
family in this place I called home. Nadja and Tanja and Anja and Jiirg
and Marius and Domi and Chris and Shirley and Christof and Heike and
Noemi and Christian and Sascha and Tim and all the rest. My fellow
students—we happy few—it is for you and because of you that I found
such devotion, dedication in me to give this my all. Eyal, especially,
for suffering alongside me. My friends, in chronological order of my



meeting them: Natasa, Klebert, Tom, Artem, Kaie, Raman, Plamen,
Josch, Matthias, Bruno, Peter, Dror, Sharad, Anna v, Margarita, Felix G,
Irina, JP, Annie, Klaus, Brian, Cesar, Benjamin M, Silvia, Carla, Barbara,
Emmanuel, Christoph, Faniry, Lothar, Isabella, Ella, Konstantin P, Janis,
Florian, Wayne, Anna, Karim, Ahmad, Keita, Benjamin(s), Georg, Albert,
Francesco, Isaac. Thank you.

Some acknowledgements for the content of this thesis: Thank you to
Kontantin Mischaikow and Vidit Nanda for the first applications of our
spheres. To Michael Joswig and his team of developers for all of the work
related to polymake. A special thanks to Benjamin Lorenz for the time
and care he put in to help me diagnose and repair many problems. Thanks
to Javier Arsuaga and Michael Werner for inspiring the new bistellar
code, which is still ongoing. Thanks to Bruno Benedetti for many fruitful
conversations. And to Karim Adiprasito for many great ideas.

I also thank Google for translating my abstract to German, which was
not required for the original graded submission, but apparently necessary
for the library version. The library version also required that I remove
many of my custom fonts, color choices, page formatting styles, etc. to
conform to some standard that will likely no longer be the standard three
years from now. So thank you library—and German bureaucracy—for the
extra stress and headache you put me through while I prepare my family
for a transatlantic move. I have surely become a more patient and more
compliant person during my seven years living here; these reluctant changes
to my character I hope to immediately reconvert upon my return to the
US.

Lastly I want to mention some people who helped me get here. John for
suggesting that I try new things. Robert for being the most understanding
boss ever. George and Bettina for being amazing people I aspire to be like.
All the people at Beckman and Wolfram Research who helped me work
on Syzygy. Iryna and Indy and Wojtek and Jack and Howie for being my
friends. Angie for being my sistah. My brother for being my brother. My
husband for being my husband. My daughter for being my daughter.

Thank you ma for always supporting me. I know it’s been hard for you.
And there’s still more ahead. I'm a better mother because of you. I'm a
harder working, more ambitious woman because of you.

I'm a happier person because of you.

Berlin, August 12, 2015
Mima T'suruga



Preface

My daughter’s default response to “what do you want to do today?” is
“Lego!" We have different kinds of building blocks—wooden ones, magnetic
ones, even a set of plastic tubes that you can send marbles through. But
she always wants to play with those Legos. It might be because I told her
that building with Legos is what I do at work.

Any parent or Lego enthusiast can tell you that Lego produces block sets
that cater to two different types of customers. One customer type goes for
the sets whose box cover displays a particular end product, a Millennium
Falcon, perhaps; in those boxes are a step-by-step illustrated instruction
manual and exactly the blocks required to build that particular version of
the Millennium Falcon, plus or minus a few blocks. For those customers,
finding extra blocks is like winning the lottery, while missing even one block
is so frustrating he may buy a whole new box of the same set because that
rare piece cannot be found elsewhere.

The other customer type does not look at the picture on the box at
all, but she may pay attention to the box itself. Is the box sturdy and
reusable? How many more blocks can it hold? The set comes with multiple
copies of various block shapes in different colors. It is unlikely that this
customer will ever count the blocks contained in this set or notice if any
are missing. At some point more blocks are added to this box—Iike the
ones left over from somebody’s extra Millennium Falcon set. They will be
used and reused many times over producing colorful Millennium Falcons,
princess castles, or even entire zoos where each animal gets to have her own
bed and kitchen. The box does contain a booklet inside, but it only makes
suggestions for what one could build using a subset of the blocks contained
in that box. Lego makes an extra effort to include a variety of suggestions
that uses the blocks in different or not so obvious ways.

This thesis will show that I fall squarely into this second type of Lego
consumer. The blocks we use have a particular shape and, much like the
Legos, will connect to other blocks in a prescribed way. We can use as
many blocks as we like, or as much as our computer’s memory—our box—
can hold. We include an illustrated instruction manual on how to build a
particular set of colorful Millennium Falcons.

But our Millennium Falcon model is just a suggestion; we use it as an
example to introduce the method we developed to build our Millennium
Falcons so that anybody can build their very own Millennium Falcon, or
even a whole new zoo of objects, limited only by their imagination.
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Chapter 1

Introduction

The term simplex comes from the same word in Latin, where it means
“simple” or “plain”. We will use these simple simplices as building blocks to
construct complicated spheres that turned out to be of interest:

> as hard instances for sphere recognition, Chapter 2;

> as hard instances for fundamental group computations, Chapter 3;
and

> as hard instances for homology computations [48].

A handlebody decomposition (detailed in Chapter 3) is yet another way
to build manifolds using building blocks—in this case, topological balls—
which connect to each other in a prescribed way. An “i-handle” is a d-
ball which “attaches” to a d-manifold. They attach to each other along
each other’s boundary—but only a certain portion of the boundary. The
number i indicates what portion of their boundaries will be attached. For
example, if ¢ = 0, then none of the i-handle’s boundary will be attached,
it is just a new ball that does not attach to any part of the existing d-
manifold. If ¢ = d, then the entire boundary of the i-handle will attach
to some appropriate portion of the d-manifold’s boundary. There is also
an “attaching map” which gives directions to where an i-handle will attach
to a d-manifold. One way to define an attaching map is using finite group
presentations (see Section 2.1 and Section 2.2.3).

The Akbulut—Kirby spheres are a family of 4-manifolds that have a
handlebody decomposition described by a certain family of groups that are
nontrivial presentations of the trivial group. They each have one 0-handle,
two 1-handles, two 2-handles, and one 4-handle. The attaching maps for
the two 2-handles is described by:

Gak(r) = (x,y | zyz = yry;a” =y ") forr € Z.

The (smooth) 4-manifolds having these handlebody decompositions are
known to be diffeomorphic to the standard 4-sphere [5]. The objects we
construct, called simplicial complexes, are explicit triangulations of the
Akbulut—Kirby spheres.
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We built triangulations of the Akbulut-Kirby spheres for the following
reasons:

1. In dimension 4, the categories PL=DIFF coincide. In particular,
it follows that a PL triangulation of the Akbulut—Kirby spheres
is PL. homeomorphic to the boundary of a 5-simplex. A finite
PL triangulation can be read into a computer as a combinatorial
object. Using topological software, we can then compute topological
properties of such simplicial complexes, including (heuristically)
whether or not a given complex is PL. homeomorphic to a standard
sphere.

2. In dimension 4, the sphere recognition problem is open, that is, the
existence of an algorithm that can decide whether a given triangulated
4-manifold is a PL 4-sphere is unknown.

3. In dimension 4, the PL (and, therefore, also the smooth) Poincaré
conjecture is still open. Computing the homology and fundamental
group alone (see also reason 4) is not sufficient to say that a PL
4-manifold is a PL sphere.

4. As heuristics to recognize spheres, we use bistellar flips and random
searches for discrete Morse functions. These triangulated Akbulut—
Kirby spheres may be helpful test examples for improving the
implementation of these heuristic algorithms.

5. The Akbulut-Kirby spheres were once exotic candidates for the
smooth Poincaré conjecture in dimension 4. That is, since the
smooth Poincaré conjecture is still open in dimension 4, it is not
known whether there are 4-manifolds that are homeomorphic but
not diffeomorphic to the standard 4-sphere. If the (combination of)
heuristic algorithms we use can successfully recognize the triangulated
Akbulut—Kirby spheres to be PL 4-spheres, we could potentially use
the same method to triangulate current exotic candidates and again
try the heuristic algorithms to recognize them to be PL 4-spheres.

The remainder of this chapter will go over much of the nomenclature
and basic notions that is used throughout this thesis. Chapter 2 discusses
the current state of the sphere recognition problem and, in particular, the
heuristic algorithms being used in the topological software polymake and
their limitations. Chapter 3 is dedicated to the Akbulut—Kirby spheres:
their history, how we construct their triangulations, and the results of
experiments run on these triangulations. Chapter 4 demonstrates the
versatility of the construction method we describe in Chapter 3 by building
Mazur’s 4-manifold (whose boundary is a homology sphere that is not the
standard 3-sphere) and a non-PL 5-ball and non-PL 5-sphere that have
perfect discrete Morse vectors.
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1.1 Basics

This section provides the basic terms and concepts used throughout this
thesis. We take heavily from many of the classic texts from piecewise
linear manifold theory including Hudson [36], Kirby [41], Munkres [56],
Stillwell [69], Whitehead [77|, Zeeman [79], Zomorodian [81] and papers by
Benedetti [9], Bjorner-Lutz [14], Lickorish [46]. Keep in mind that all of
the combinatorial notions described here can be implemented as computer
programs; they, in fact, are implemented in distributed software packages
such as polymake [30] and Regina [16], but we wrote many custom functions
on our own using Mathematica [78], GAP [29], and polymake scripts.

We start with the simplex. A(n abstract) simplex is a finite non-empty
set. A simplex with one element is often called a vertex; a simplex with two
elements, an edge; with three elements, a triangle; and with four elements,
a tetrahedron. More generally, a d-simplex is a finite non-empty set of
exactly d + 1 distinct elements; the order of the elements is arbitrary. A
subset 7 of a simplex ¢ is its face and we write 7 < 0. An i-face 7 of a
simplex o is an i-simplex with 7 < ¢. Our convention for notation may
refer directly to the simplex, like o, or write out the vertices of the simplex
[vo v1 -+ vg). We often abuse notation and refer to a vertex [vg] by its
vertex label vy, that is, we may refer to the element of a O-face of a simplex
as its vertex.

The boundary 0do of a d-simplex ¢ is the collection of all i-faces of o
with ¢ < d. Two simplices may share faces; then we say that they intersect
and refer to the highest dimensional face they share as their intersection.

If two simplices o = [vy -+ v,] and 7 = [wy --- w,] do not intersect, we
can define their join as the (v + p + 1)-simplex [vg -+ v, wy -+ w,] and
write o * T.

A(n abstract) simplicial complex, is a finite non-empty collection of
simplices and all their faces. A simplicial d-complex is a simplicial complex
whose simplices have a maximum dimension of d. A simplex of a d-complex
K who is not a face of any other simplex in K is a facet of K. If every
facet of a d-complex K is of dimension d, then K is said to be pure. From
this point forth we will only work with pure complexes.

A subcomplex J of a d-complex K is a subcollection of K that is
itself a simplicial complex, denoted J C K. The boundary 0K of K,
for example, is a subcomplex of K. For k£ < d, the collection of all -
simplices of a d-complex K with 0 < i < k is a subcomplex called the
l-skeleton of K and write K. The star of a simplex 7 in a d-complex
K is star(1,K) = {f < 0 | T < 0,0 € K}, a d-dimensional subcomplex
whose facets are the d-simplices o of K such that 7 is a face of ¢. The link
of an i-simplex 7 in a d-complex K is link(7, K) ={c € K |T7x0 € K}, a
(d — (i 4+ 1))-dimensional subcomplex of simplices of K whose join with 7
is a simplex of K. Notice that link(r, K) C star(r, K).

The join K; * Ky of a di-complex K; and a dy-complex K5, where K;
and K, are disjoint, is the collection of the join of each of the simplices
of K with each of the simplices of Kj; it is a (d; + ds + 1)-complex. In
particular, star(r, K) = 7 * link(7, K).

13



The join is very different from the union. The union K; + K, of two
d-complexes K7, Ky is just the usual set union, the collection of both of
their simplices; it is a d-complex. [It is not recommended to take the union
of complexes of different dimension as there is a chance you end up with
a complex that is not pure.] Notice that in the case of the join of two
complexes, the simplices of K; and K5 may not have vertices in common
to be able to take the join of them, whereas for a union it is possible
(and likely) that the complexes have simplices that share vertices. For set
difference, we write K; — Ks.

The cone of (or over) a d-complex K is cone(K), a (d + 1)-complex
obtained by taking the join ax K for a new vertex a; this a is called the apex
of the cone. A stellar subdivision of a d-complex K on a simplex o € K
is V,(K) = K — star(o, K) + cone(do * link(o, K)). A combinatorial
d-ball is a pure simplicial d-complex that has a common refinement by
stellar subdivisions as a d-simplex. A combinatorial d-sphere is a pure
simplicial d-complex that has a common refinement by stellar subdivisions
as the boundary of a (d + 1)-simplex.

A d-complex K is a combinatorial manifold (with or without
boundary) if the link of every vertex of K is a combinatorial (d — 1)-sphere
or (d—1)-ball. A (d— 1)-simplex in a combinatorial d-manifold is called a
ridge. A ridge 7 of a d-complex K can be a face of at most 2 facets of K;
if 7 is a face of exactly 2 facets of K, it is said to be an interior face of K;
if 7 is in exactly 1 facet of K, it is a boundary face of K. The boundary
0K of a combinatorial d-manifold K is a subcomplex of K whose facets are
the boundary faces of K. The vertices whose links are combinatorial balls
are the vertices of the boundary 0K of K.

In fact, any combinatorial d-manifold can be equipped with a compatible
PL manifold structure; and conversely, every PL d-manifold can be
triangulated as a combinatorial d-manifold [36, 79]. However, if d > 5,
not all triangulations of a topological d-manifold need to be combinatorial
triangulations. According to Kirby and Siebenmann [42], for d > 5, there
are topological manifolds that don’t admit combinatorial triangulations at
all, that is, all their triangulations are non-PL triangulations. By the double
suspension theorem of Edwards [25] and Cannon [17], it is also possible to
have non-PL triangulations of all PL d-manifolds for d > 5, see for example
the discussion in [14] and references therein.

A bistellar i-move on a (closed) combinatorial d-manifold K of an i-
simplex 0 € K is ®,(K) = K —star(o, K)+71*0o, where T ¢ K is a (d—1)-
simplex and 07 = link(o, K'). Note that a bistellar --move on o cannot be
made unless there is an appropriate 7 satisfying these strict restrictions.
A stellar subdivision, on the other hand, is always possible. A bistellar
d-move on a d-complex K is a stellar subdivision of a facet of K. Two
combinatorial d-manifolds K, L are bistellarly equivalent if there exists
a sequence of bistellar moves from one to the other. Two PL manifolds are
bistellarly equivalent if and only if they are PL homeomorphic [58|. For
example, a combinatorial d-sphere is bistellarly equivalent to the boundary
of a (d + 1)-simplex.
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A discrete vector field V on a simplicial complex K is a collection of
pairs {7 < o} of simplices of K such that 7 is an (i —1)-face of an i-simplex
o and each simplex is in at most one pair of V. A V-path is a sequence
To < 09 > T < 01 = -+ < 0,1 > 7, where each {7,, < 0,} is a pair in
V and for every n, 7, < 0,_1 # o,. If 7 = 79 then the V-path is said
to be closed. A gradient vector field is a discrete vector field V that
has no nontrivial closed V-paths. An i-simplex not contained in a gradient
vector field V is called a critical cell of dimension i. The discrete Morse
vector of a gradient vector field V is the vector (co, ¢y, ..., cq) that counts
the number of critical cells of each dimension. See [27] for more details.

A combinatorial manifold that has a discrete Morse vector having
exactly one critical cell is a combinatorial d-ball [27, 77]. A discrete Morse
vector is spherical if it reads (1,0,...,0,1). A combinatorial manifold
(without boundary) that has a discrete Morse vector having exactly two
critical cells is a combinatorial d-sphere. If K is a combinatorial ball or
sphere, then we simply say their respective discrete Morse vectors are
perfect.
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Notation
d-simplex

T is a face of o

boundary of a simplex o
join of simplices

(abstract) simplicial complex
subcomplex J of K

star of a simplex 7 in K

link of a simplex 7 in K

join of complexes

cone over complex K

stellar subdivision

T<0
0o
oxT
K ={a,p,...
JCK
star(7, K) ={f <o |7 <0,0 € K}
link(r, K) ={oc e K |7*x0 € K}
JxK={ox1|oceJ1eK}
cone(K)=axK, a¢ K
U, (K) =K — star(o, K)

+ cone(do * link(o, K))

,0, T}
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Chapter 2

PL Sphere Recognition

One fundamental question in topology is the homeomorphism problem.
It asks whether a space X; and another space X, can be continuously
transformed from one to the other, and back again. We can answer
this question either by finding an explicit homeomorphism between the
two spaces, or by showing that there exists a topological invariant that
they do not share. Homology and the fundamental group are examples
of topological invariants. Poincaré famously used these two invariants
and conjectured whether they alone are sufficient to determine whether
a topological manifold is homeomorphic to a sphere—and indeed they are.

A related problem is to ask whether one can algorithmically recognize
certain spaces. To do so would require to first input the spaces into a
computer. One option (if possible) is to discretize the topological space
by triangulating it; that way we can work combinatorially on the abstract
simplicial complexes that induced the triangulation. To check whether two
triangulations are then (PL) homeomorphic to each other, we must first
verify that they are both (PL) manifolds.

For a simplicial complex to be a PL manifold, we need to verify
that all its vertex links are PL spheres. Here we can invoke the PL
Poincaré conjecture, which is true in all dimensions except dimension
4. For dimensions d # 4, given a PL d-manifold K, if the homology
groups H.(K) = (Z,0,...,0,Z) and 7 (K) = 1, then K must be PL
homeomorphic to the boundary of a d + 1-simplex. There are (heuristic)
algorithms for computing the homology and fundamental group for the
vertex links. But to use the PL Poincaré conjecture, we need (to not be in
dimension 4 and) to verify that those vertex links are also PL manifolds,
which requires us to check if their vertex links are PL spheres. In this way,
we recursively check for PL spheres—taking extra care in dimension 4.

In this chapter, we will discuss our strategy for recognizing PL spheres.
We begin with some background in Section 2.1. We will then discuss the
tools we use and some of their limitations in Section 2.2. The material
presented here is a portion of joint work with Michael Joswig and Frank
Lutz; more details can be found in our preprint [38].
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2.1 Background

Before we dive into the history, we have to distinguish the different problems
at hand. There is the Poincaré conjecture, of course. There is also the
word and isomorphism problem, the manifold recognition problem, and the
PL sphere recognition problem. For a thorough survey of the results and
history of many of these related problems, we refer the reader to [53] and
[69]. Here we only mention some of the highlights.

TOP and PL and DIFF

The topological category, or TOP, is a category whose objects are topo-
logical spaces with some manifold structure and morphisms are continuous
maps. The piecewise linear category (PL) and smooth category (DIFF)
place different conditions on the structure and maps. In dimensions 2
and 3, the categories TOP=DIFF=PL coincide [55, 63|. In dimensions 4~
6, PL=DIFF coincide, but TOP does not [64]. In dimensions 7 and above,
TOP#PL#DIFF.

The Poincaré Conjecture

The original statement of this famous conjecture is that a compact 3-
dimensional topological manifold that is simply connected (i.e., has trivial
fundamental group) must be homeomorphic to the standard 3-sphere S3.
The Poincaré conjecture in higher dimensions, where there are different
categories to consider, is referred to as the generalized Poincaré conjecture
and states that a simply connected d-manifold with the homology of the
d-sphere is the d-sphere. The topological Poincaré conjecture is true in all
dimensions, d = 3: [59], d = 4: |28], d > 5: [68]. The PL Poincaré conjecture
is true in all d # 4, d = 3 [59], d > 5: [68]. The smooth Poincaré conjecture
istruein d = 2,3, 5,6 and open in d = 4. In dimension d > 7 exotic spheres,
which are homeomorphic but not diffeomorphic to a standard d-sphere, are
known to exist [54].

Poincaré introduced the fundamental group of a manifold in [61]
connecting the geometric study of spaces with groups. His conjecture, then,
motivated the next set of problems in group theory.

The Word, Conjugacy, and Isomorphism Problems

All three problems were first formally posed by Dehn [24]. The three
problems are about finite group presentations. A finitely presented group

G:(xl,...,$n|4ﬂ1,---790m>

has finitely many n generators x; and finitely many m relators ;. The
relators are written as words formed by the x;’s. A finite presentation is
said to be balanced if n = m.

Given a finitely presented group G, the word problem is a decision
problem which asks whether an arbitrary word is trivial in G. The
conjugacy problem, similarly, asks whether two words define conjugate

18



elements of G. The isomorphism problem asks, when given two arbitrary
finite presentations, whether the two groups they present are isomorphic.
In geometric terms, if we think of the group as a presentation of
the fundamental group of a manifold, the word problem corresponds
to determining whether loops are contractible; the conjugacy problem
determines whether two loops are homotopic; and the isomorphism problem
determines whether two manifolds have the same fundamental group.

The word and (therefore also) conjugacy problems are unsolvable in
general [57|. However, in a probabilistic sense, almost all finitely presented
groups have solvable word and conjugacy problems [32|. The isomorphism
problem is unsolvable in general [3, 62].

The Manifold Recognition Problem

The manifold recognition problem asks whether there exists an algorithm
that can decide whether one manifold is homeomorphic to another. The
manifold recognition problem is often referred to as the homeomorphism
problem in the literature. We will make a distinction here: the home-
omorphism problem is the topological problem, the manifold recognition
problem is the corresponding algorithmic decision problem (assuming the
manifolds are presented in some finite encoding).

A.A. Markov [49] showed that for all d > 4, the PL d-manifold
recognition problem is unsolvable, see also [21]. [15] extended it to the
smooth category. In Markov’s proof, he builds a manifold M, which cannot
be recognized; [74] later showed that M is the connected sum of several
copies of S? x §973,

The Sphere Recognition Problem

The sphere recognition problem asks whether there exists an algorithm
that can decide whether a given PL manifold is PL. homeomorphic to the
standard PL sphere. While sphere recognition is trivial in dimensions d < 2,
Sergey P. Novikov showed that the problem is undecidable when d > 5; his
proof can be found in the last chapter of [75], see also [21].

Since then most of the research focused on d = 3. [75] gave and tested!
an algorithm for recognizing 3-spheres which was proven [35] to only be
valid for input manifolds with Heegaard splittings of genus 2. In 1992,
Rubinstein presented the existence of an algorithm for recognizing 3-spheres
using normal surface theory during a workshop in Haifa and later published
the results [65]. Thompson [72| simplified Rubinstein’s proof. The proof
was further generalized from simplicial complexes to handlebodies by [51]
in 1995.

Once 3-sphere recognition was known to be possible, the question was
then to determine its complexity. The first result in this direction was
in 2001 when [37] showed that at least in a special class which he called
Q-triangulations, the problem is in NP (and irreducibly co-NP). In 2011

!They used a Soviet computer BESM 6. Only 355 of these machines were built. It
ran at about 10 MHz and had 192kB of memory.

19



Schleimer [66] proved that generally 3-sphere recognition lies in NP. Hass
and Kuperberg are now preparing a proof that 3-sphere recognition is in
co-NP assuming the Generalized Riemann hypothesis (announced in [33]).

2.2 Tools

The task of recognizing higher dimensional spheres (or manifolds) seems to
be doomed given S.P. Novikov’s non-recognizability result. Still, in many
situations sphere recognition can be solved (easily) even for huge instances
with few exceptions. In this section, we take a look at a few heuristic tools
that have been developed and the success we observed in practice using
these tools for recognizing explicit examples. We also discuss some of their
limitations. Figures 2.1 and 2.2 describe our strategy for sphere recognition.

Key ideas for PL sphere recognition

Given a simplicial d-complex K, determine whether K is a PL d-sphere.
See Figures 2.1 and 2.2 for a flow chart.

e In any dimension d: If K is pure and its ridges are contained in
exactly 2 facets, then K is a pseudo-manifold.

e In dimension d = 1: If K is a pseudo-manifold and connected, then
K is a polygon (which is a PL 1-sphere).

e In dimension d = 2: If K is a pseudo-manifold, has Euler
characteristic x(K) = 2, and vertex links are single circles, then K is
a PL 2-sphere.

e In any dimension d: If K is a pseudo-manifold and all its vertex links
are PL (d — 1)-spheres, then K is a combinatorial d-manifold.

e In dimension d # 4: If K is a combinatorial d-manifold, homology
H.K,Z) = (Z,0,...,0,Z), and the fundamental group 7 (K) = 1,
then K is a PL d-sphere.

e In any dimension d: If K is a combinatorial d-manifold and admits a
spherical discrete Morse vector, then K is a PL d-sphere.

e In any dimension d: If K is bistellarly equivalent to the boundary of
a (d+ 1)-simplex, then K is a PL d-sphere.

Checking whether K is a combinatorial d-manifold, as mentioned earlier,
means we have to recursively check for PL spheres. This is equivalent to
checking for all face links to be PL spheres for faces of K of every dimension.
Despite the fact that exact methods for d = 3 exist |65, 72|, employing a
heuristic approach even in the 3-dimensional case often turns out to be
effective.

20




2.2.1 Preliminaries

Before running any other tests, we will first run some elementary combina-
torial checks:

(1) Is K pure?
(2) Are all ridges of K contained in exactly 2 facets?

(3) Is (the 1-skeleton of) K connected?

These checks are fast; their running time is bounded by a low-degree
polynomial in the number of dimensions, number of facets and number of
vertices. If one of these preliminary tests fail, this will serve as the certificate
that K is not a sphere. Tests (1)—(3) always work and run in polynomial
time; they are used to discard simplicial complexes that for obvious reasons
are not manifolds.

One important remark for these first steps is that it requires us to build
the Hasse diagram. The Hasse diagram will be used in all of the other tests.
In fact, some programs were written in the polymake system specifically to
take advantage of polymake’s fast Hasse diagram computation. Details on
how polymake computes the Hasse diagram of a simplicial complex can be
found in [38].

2.2.2 Homology

A necessary condition for a combinatorial d-manifold K to be a sphere (PL
or not) is Hy(K) = Z and all other (reduced) homology groups vanish. In
this case we say that K has spherical homology. Computing the simplicial
homology groups is a fairly standard procedure. For field coefficients this
reduces to Gauss elimination being applied to the (simplicial) boundary
matrices. Over the integers the computation of the Smith normal forms
of the boundary matrices serves as a replacement; see [56, § 11]. Usually,
we compute with integer coefficients. Current algorithms for computing
the Smith normal form, though polynomial [40], are too slow for explicit
computations on large examples. However, computation time can be
dramatically improved by employing a topological preprocessor, e.g.,
CHomP [22], RedHom [18], Perseus [60]. For example, Perseus reduces the
input complex by what they call iterated discrete Morse reductions. The
idea here, very simply stated, is to find the “best” discrete Morse function
by computing all discrete Morse functions (in the combinatorial sense as
described in Section 1.1) on the complex and keeping track of the faces that
appear relatively frequently. This discrete Morse function is an instruction
for how one can reduce a complex to a complex that has fewer faces. One
can then iterate this process until we reach a “smallest possible” reduced
complex, which we can then compute the homology of directly.

We will not discuss homology here. For most of our tests, we used the
homology client in polymake to compute the homology directly since the
complexes we worked on were relatively small. All of our test examples had
spherical homology, as expected.
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TEST 1:
Is K pure?

YES

TEST 2:
All ridges in
exactly 2 facets?

JzYES

TEST 3:
Is the 1-
skeleton of K
a connected graph?

YES

\Y
(dimension dof K7 ]

Kisa polytope / 7\

K trian gulates Sl All vertex-links ] [ GO TO ]

are single cycles? FIGURE 2.2

YES

\Y
[ Euler xy=27 ]

YES

Vv
[ K triangulates S? ]

Figure 2.1: For a simplicial complex K.
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TEST 4:
random discrete
Morse
(1,0,...,0,1)?

YE \Q(Z

- TEST 5:
PL-sphere of sphere?

Y J]NO

TEST 6:
7y trivial?
YES @)
( d = 47 ) (m 22,2,...7 )
NO YES N J7YES
TEST 7:
K is bistellarly K is NOT
PL-sphere equivalent PL-sphere
to OAEHD?
NO

Figure 2.2: For a combinatorial d-manifold K of dimension d > 3.
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2.2.3 Fundamental Group

A few years before Dehn formally posed the three (word, conjugacy, and
isomorphism) problems, Tietze [73|, in his habilitation, introduced four
operations on group presentations which can be used to check whether the
presentations are isomorphic, which we now know as Tietze moves. Given
a finite group presentation (xi,..., 2, | @1, .., Pm):

e Add a relation ¢,,,1 which is a consequence of 1, ..., @,.

e [ts inverse: Remove a redundant relation, if one exists.

e Add a generator z,,1 along with a relation ¢,, 1 = w(z1, ..., l’m)l’;nlﬂ

where w(xy, ..., x,,) is a word composed of the alphabet {z1, ..., z,}.

e [tsinverse: Find a generator as a word in other generators and replace
it in all relators.

Tietze showed that any two finite presentations of a group are convertible
into each other by a finite sequence of Tietze moves. He even stated 2
that checking for isomorphisms of group presentations is unsolvable decades
before the concept of unsolvability was formalized. Indeed the isomorphism
problem was later shown to be unsolvable [3, 62].

One example of a non-trivial presentation of the trivial group with
only two generators and two relators that are not obviously trivial (using
Andrews—Curtis moves; see Chapter 3) is

Gar(r) = (z,y | wyx = yry;a" =y ") forr € Z.
To see that G4k (r) is trivial, rewrite the first relator as
Y= x’ly’lxyx.

Then take it to the r-th power and

y = (x7ty reyx) (2 y T eya) - (27 y T eya)
_ x_ly_lﬂyzn
— x—lyr—lx

:xr

by substituting the second relator twice. This yields

yr — yr‘fl

or y = e and therefore + = e. Thus G4k(r) is indeed isomorphic to the

trivial group. This group is associated with the Akbulut—Kirby spheres.
In our tests, we derive a presentation of the fundamental group as an

edge-path group of the complex [67] using polymake and then use GAP [29] to

2“Wahrend sich namlich die Gleichheit von zwei Zahlenreihen stets feststellen 1iRt,
ist die Frage, ob zwei Gruppen isomorph seien, nicht allgemein 16sbar.”

24



simplify the resulting presentation. GAP uses known techniques to simplify
group presentations using Tietze transformations [34]. One choice made in
their simplification strategy is that it prefers moves which shorten relations.
One can see easily that the proof shown above of the triviality of the group
G cannot be used for large r (since y” produces a long word). However, it
seems to be particularly difficult to construct a triangulation of a simply
connected manifold for which GAP has been unable to recognize the
presentation of its fundamental group to be trivial. The first such examples
(known to us) are our triangulations of the Akbulut—Kirby spheres; see
Chapter 3.

2.2.4 Dbistellar_simplification

The bistellar_simplification client implemented in polymake by
Nikolaus Witte follows the simulated annealing strategy in [14]. It uses
a local search strategy to determine the PL type of a simplicial complex.
See Section 1.1 for the definition of bistellar moves [58].

The goal of the algorithm is to make these local changes, the bistellar
moves, to the input simplicial complex to lower its f-vector (lexicograph-
ically) as much as possible. Naturally, the algorithm prefers moves that
lower the f-vector (“cooling”). Unfortunately, we may fall into a local
minimum, i.e., when there are no moves to further improve the f-vector. At
that point, we deliberately make moves that increase the f-vector for some
number of rounds (“heating”) then cool again, hoping that this will help
jiggle us out of that local minimum. The threshold for the number of rounds
we tolerate before heating and the amount we heat is changed dynamically
throughout the computation (greater when the complex is large and smaller
when the complex is small).

Since each move only makes local changes, the algorithm only updates
the list of possible moves instead of manipulating and carrying the entire
Hasse diagram, which would be computationally very costly. More
specifically, there is a subset raw_options of all the i-dimensional faces
of the complex that are contained in exactly d — i + 1 facets, 0 < ¢ < d.
The raw_options are updated after each move. But only some of the
raw_options are ‘proper’ options, i.e., potential moves, which must satisfy
the additional condition that performing the move does not introduce a
face that is already present in the complex. (The reason we do not update
the list of proper options is because updating the raw options then checking
that list is faster in the long run.)

The list of raw_options is grouped by dimension. The options that
introduce new faces of lower dimension are heating moves and moves that
introduce faces of higher dimension are cooling moves. During a cooling
period we begin by checking for 0-moves, which will remove a vertex (0-
face) from the complex (and replace its star with a new d-face, where d is
the dimension of the complex). To select the 0-move at random, we start
with the list of raw_options of dimension 0. Create a random permutation
of that list. Then we check each option in that permuted order until we find
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one that is proper. If none were proper, we move on to look for 1-moves,
d

and continue to dimension §] until we come across a proper option.

During a heating period, the story is slightly different. All raw options
of dimension d (of a d-complex) are proper, i.e., all facets can be stellarly
subdivided. For the heating strategy, the dimension of the heating move
is chosen at random respecting a chosen distribution. For example, say we
input a 4-dimensional complex. The default heat distribution for dimension
4 is [10,10,1]; the distribution vector is of length 51 + 1; the first entry
refers to 4]-moves and the last entry refers to d-moves. So if the amount
we heat heating=210, then the algorithm will heat for 210 rounds of which
10 (on average) are 4-moves (adds a vertex), 100 (on average) are 3-moves
(adds an edge) and 100 (on average) are 2-moves (no change to f-vector),
but the order is chosen uniformly at random. In higher dimensions (d > 3)
choosing appropriate parameters for options, like the heating distribution,
is non-trivial.

The triangulations of the Akbulut—Kirby 4-spheres AK (r) in Chapter 3
are the only explicit examples of combinatorial spheres we know of for which

bistellar_simplification did not find the boundary of a simplex.

2.2.5 Random_Discrete_Morse

A randomized search for small discrete Morse vectors was introduced in [10].
This approach traverses the Hasse diagram level-wise from top to bottom.
The free faces for elementary collapses are chosen at random; if there are
no free faces, a face of the current maximal dimension is chosen at random,
marked critical, and removed.

In testing for whether a simplicial complex is a PL sphere, we use the
following result.

THEOREM 2.1 (Whitehead [77|, Forman |26, 27|)

A combinatorial d-manifold (without boundary) is PL-homeomorphic to
the standard PL d-sphere S¢ if and only if it has some subdivision which
admits a spherical discrete Morse vector, i.e., a discrete Morse vector with
exactly one critical 0-cell and exactly one critical d-cell.

So this means that a given combinatorial manifold K is a PL sphere
if Random_Discrete_Morse is able to find the discrete Morse vector
(1,0,...,0,1). However, this algorithm must overcome a number of major
difficulties.

e Deciding whether a discrete Morse function with at most a fixed
number of critical cells exists is NP-hard [39, 45].

e There are combinatorial d-spheres that do not admit any spherical
discrete Morse function [12, 13| (however, there must be some
subdivisions of them which do).
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e Adiprasito and Izmestiev recently showed that a sufficiently large
iterated barycentric subdivision of any PL sphere is polytopal [2] (and
thus admits a spherical discrete Morse function). However, as pointed
out above, for d > 5, recognizing the PL d-sphere is undecidable. This
implies that a priori there is no bound on the number of barycentric
subdivisions required to admit a spherical discrete Morse function.

e In iterated barycentric subdivisions, finding a spherical discrete Morse
function quickly becomes cumbersome [1].

Below we will demonstrate that despite these drawbacks, finding optimal
discrete Morse functions is often surprisingly easy, even for large input; see
also |1, 10]. Not surprising, however, is that there are also other kinds of
input for which our methods fail. A thorough analysis of the reasons for
failure reveals several interesting families of simplicial complexes.

The Random_Discrete_Morse client implemented in polymake has three
random strategies which we call random-random, random-lez-first, and
random-lex-last. Here we outline our implementation and describe the
differences between the three strategies.

Let K be a d-dimensional simplicial complex, which is not necessarily
a manifold. A free face of K is a (d—1)-dimensional face that is contained
in exactly one d-face. In each step we try to pick one of the free faces
and delete both it and the unique facet containing it from K. This is an
elementary collapse, and the two removed faces form a regular pair, which
is a matching edge in the Hasse diagram. The three strategies differ in how
they pick the free face. If we run out of free faces we pick some facet, declare
it critical and remove it. In both cases, after removing a regular pair or
after removing a critical face the dimension of the resulting complex, K’,
may drop to d — 1. This process continues until K’ is zero-dimensional. In
this case K’ only consists of vertices, all of which are declared critical.

For the random-random strategy, we first find all the free faces of K
and collect them in a set or array data type. If this list is not empty, choose
a free face uniformly at random. Taking the uniform distribution means
that each free face has a fair chance of being taken, but this comes at a
price since the sampling itself takes time if there are many free faces to
choose from; see Knuth [44, §3.4.2]. If we run out of free faces the choice
of the critical d-face is again uniformly at random.

Random-random is somehow the obvious strategy but there is a much
cheaper way which maintains a certain amount of randomness. The idea is
to randomly relabel the vertices of K once, at the beginning, and then to
pick the free and critical faces in a deterministic way (which depends on the
resulting labeling). Whenever a free or critical face is chosen, rather than
selecting one at random, we pick the first (in the case of random-lex-first)
or the last (in the case of random-lex-last) one.

The cost of being fair is quite significant when dealing with large
complexes; for example, running the random-lex-first and random-lex-last
strategies on the 4th barycentric subdivision of the boundary of a 4-simplex
took less than 3 minutes per round whereas the random-random strategy
took approximately 2 hours per round.
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d rounds non-perfect percentage

8 10° 12 0.0000012%

9 108 2 0.000002%
10 107 3 0.00003%
11 107 12 0.00012%
12 106 4 0.0004%
13 106 6 0.0006%
14 10° 4 0.004%
15 10° 8 0.008%
16 104 4 0.04%
17 104 10 0.1%
18 103 2 0.2%
19 10° 6 0.6%
20 103 13 1.3%

Table 2.1: Collapsing the d-simplex.

The random-lex-last strategy was called “random-revlex” in [10]. We
changed this here to random-lex-last to avoid confusion with (the term)
reverse lexicographic ordering, which is different.

Limitations for Random_Discrete_Morse
Dimension of the Input

The main difficulty we face is that once we start collapsing a triangulated
sphere (after the removal of an initial critical facet), we might encounter
subcomplexes that are contractible, but non-collapsible. The most promi-
nent example of a non-collapsible, contractible complex is the 2-dimensional
dunce hat [80] which can be obtained from a single triangle by identifying,
in a non-coherent way, its three boundary edges. The dunce hat can be
triangulated as a simplicial complex with 8 vertices (see [11]), while every
contractible complex with fewer vertices is collapsible [8].

Once an initial critical facet is removed from a manifold candidate,
our goal is to show that the remaining simplicial complex collapses to a
vertex and thus is a PL ball (see Theorem 2.1). The most basic example
of a d-dimensional PL ball is a single d-dimensional simplex. [23]| gave
an explicit collapsing sequence from the 7-simplex with 8 vertices to an
8-vertex triangulation of the dunce hat. Our examples below are similar in
spirit.
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discrete Morse vectors count

(10000000 0) 999999988
(111000000) 4
(101100000) 7
(100110000) 1
Table 2.2: Spectrum for 10° runs on the 8-simplex.
discrete Morse vectors count
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0) 987
(1,0, 0,0, 6, 26, 59, 87, 61, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 3, 30, 111, 158, 132, 82, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 183480126155126612710000000000) 1
(1,0, 1,14, 27,24, 13, 3,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 1, 30, 117, 278, 409, 393, 213, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 2, 25, 110, 236, 305, 175, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,3, 5,9, 34, 85, 134, 109, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 1, 19, 82, 150, 161, 90, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 3, 18, 51, 118, 196, 264, 207, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 1, 11, 107, 243, 366, 463, 450, 261, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 1, 5, 30, 95, 160, 163, 124, 72, 27, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0, 6, 48, 182, 377, 657, 876, 801, 493, 170, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1,0,0,0,0,0,0,8, 14, 13, 14, 7,0, 0, 0, 0, 0, 0, 0, 0, 0) 1

Table 2.3: Spectrum for 10% runs on the 20-simplex.

29



Figure 2.3: The four 2-complexes that were left over from attempted
collapses of the 8-simplex.

When we collapse the faces of a d-simplex using strategies random-
lex-first or random-lex-last, we will always reach a single vertex (since
a d-simplex is a cone and the respective collapses are towards an apex).
However, if free faces are chosen randomly for a d-simplex, d > 7, we might
run into the dunce hat, like in the Crowley example, or other contractible,
but non-collapsible subcomplexes.

Table 2.1 displays the results of some of our random experiments. In
dimension 7, all 10° rounds of sequences of random collapses were perfect.
From dimension 8 on, we see a clear increase in the number of non-
perfect discrete Morse vectors encountered, which means that randomly
finding perfect discrete Morse vectors for the d-simplex beyond dimension
20 becomes increasingly more difficult.

Although we have deterministic strategies to determine optimal discrete
Morse vectors for various complexes, such as shellable complexes (which
include single simplices), we cannot expect that running random collapses
on a general ‘random’ input can perform better than on a single simplex.

Tables 2.2 and 2.3 give the actual discrete Morse vectors we found for
the 8-simplex and the 20-simplex, respectively. We observe that we can
get stuck (i.e., run out of free faces at a dimension d > 0) in different
dimensions, as we already see for the 8-simplex in Table 2.2. While in
the case of the 8-simplex we at most picked up two extra critical cells, the
discrete Morse vector

(1,0,6,48, 182,377,657, 876,801,493, 170, 22,0,0,0,0,0,0,0,0,0)

for the 20-simplex in Table 2.3 contains 3632 extra critical cells. Thus, in
higher dimensions (experimentally), not only do we get stuck with non-
collapsible, contractible subcomplexes more often, but when we do get
stuck, the resulting discrete Morse vectors typically are huge. The first time
we get stuck, the remaining complex is still homotopy equivalent to the d-
simplex we started with. In particular, this reduced complex is contractible,
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Figure 2.4: A saw blade labeling. See Definition 2.2.

but non-collapsible. This mean our heuristic procedure can also be used to
search for such complexes.

In high dimensions, randomly finding spherical discrete Morse vectors
for even the boundary d-sphere of a (d + 1)-simplex is difficult, so testing
combinatorial d-spheres that have more vertices and more facets will be
even harder. Thus, a random search for spherical discrete Morse vectors
will fail with high probability for all high-dimensional simplicial complexes,
which renders Random_Discrete_Morse useless in high dimensions.

Let us return to the four examples of 2-dimensional contractible
complexes we got stuck with when collapsing the 8-simplex; we call these
four complexes D, S,, Sy, and SQ. The first of these complexes D is a dunce
hat as displayed on the top left in Figure 2.3. The other three complexes
Sa, Sp, and SQ are not dunce hats, and they have inspired us to define
a nice family of contractible, but non-collapsible 2-dimensional complexes
that generalize the dunce hat.

DEFINITION 2.2

A saw blade complex, see Figure 2.4, is a 2-dimensional simplicial complex
obtained from a triangulated disk by identifying vertices on the boundary
of the disk such that
e the identification of the boundary vertices may not induce identifica-
tions of interior edges,
e the identification of the boundary vertices is 3-to-1, and
e the identification of the boundary edges is 3-to-1.
And after identification
e cvery boundary edge appears exactly twice with the same orientation
and once with opposite orientation, and
e all identified boundary edges form a cycle.

The complexes D, S,, S, in Figure 2.3 are saw blade complexes; also
every triangulation of the dunce hat is a saw blade complex. Saw blade
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complexes with a different number of blades are combinatorially non-
homeomorphic complexes. The complex S(@ is obtained as a quotient of the
sawblade complex Sy,. Notice that the edge [0 4] occurs four times on the
boundary of S@ (the four colored edges in Figure 2.3). If we glue the two
blue edges together and the two pink edges together, then the boundary of
the new 2-disc we obtain is exactly the boundary of S,. We can see there
are an abundance of 2-dimensional contractible, non-collapsible simplicial
complexes on which we can get stuck when randomly searching for simplicial
collapses — and there will be similar constructions in higher dimensions.
See [38] for a more detailed discussion.

Iterated barycentric subdivisions

As remarked earlier, it is often rather easy to find optimal discrete Morse
vectors even for huge (nicely structured) complexes, see [10]. However, for
higher-dimensional simplices or for higher barycentric subdivisions in fixed
dimension d > 4 of boundaries of (d + 1)-simplices [1]| we might get stuck
in substructures like the dunce hat. The probability to indeed encounter
a dunce hat or a similar contractible, but non-collapsible subcomplex is
extremely small in low dimension, as we have seen in our experiments above.

Adiprasito and Izmestiev [2] showed that a sufficiently large iterated
barycentric subdivision of any PL sphere admits a spherical discrete
Morse function. Yet, the average number of critical cells for random
discrete Morse vectors grows exponentially with the number of barycentric
subdivisions [1]. We ran our implementation on higher barycentric
subdivisions of boundaries of simplices. For the 3rd barycentric subdivision
of the boundary of the 4-simplex with f = (12600, 81720, 138240, 69120) the
optimal discrete Morse vector (1,0,0,1) was found in 994 out of 1000 runs
of the random-lex-last version [1| of the random discrete Morse search;
see Table 2.4. For the 4-th barycentric subdivision of the boundary of
the 4-simplex with face vector f = (301680, 1960560, 3317760, 1658880) the
optimal discrete Morse vector (1,0,0, 1) was found in only 844 out of 1000
runs, which may indicate that the horizon for computations lies near the
5-th barycentric subdivision.
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random-random random-lex-first random-lex-last

sd_3_bd_delta_4 with f = (12600,81720,138240,69120)
(1,0,0,1): 1000 (1,0,0,1): 999 (1,0,0,1): 994
(1,1,1,1): 1 (1,1,1,1): 6

sd_4_bd_delta_4 with f = (301680,1960560, 3317760, 1658880)

(1,0,0,1): 20 (1,0,0,1): 829 (1,0,0,1): 844
(1,1,1,1): 143 (1,1,1,1): 107

(1,2,2,1): 19 (1,2,2,1): 30

(2,3,2,1): 3 (1,3,3,1): 9

(2,5,4,1): 2 (1,4,4,1): 4

(1,3,3,1): 2 (2,5,4,1): 2

(1,4,4,1): 1 (1,5,5,1): 2

(1,5,5,1): 1 (2,3,2,1): 1

(2,7,6,1): 1

Table 2.4: Distribution of discrete Morse vectors for barycentric
subdivisions.
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Chapter 3
Akbulut—Kirby Spheres

The Akbulut—Kirby spheres are one of the first examples that appear in
Kirby’s lecture notes “The Topology of 4-manifolds” [41]. They are given
as explicit (and interesting) examples of a handlebody. A handlebody
is a (compact PL') d-manifold M with a handlebody decomposition. A
handlebody decomposition of a compact PL manifold M is a sequence

MQCM1C"'CMS:M,

where (i) My = D¢ = D° x D% and (ii) each M; is obtained from M;_; by
attaching a k-handle. A d-dimensional i-handle H*? is a product of balls
D* x D=k 5 k-handle #*? attaches to M;_; along the S*=1 x D(d—k)
part of its boundary onto the boundary of M;_;.

M; =My Uy, u*4 where f; : 0" — OM,_, is an embedding.

The sequence always starts with My = H%?, a d-dimensional 0-handle. Note
that it is important to distinguish between the dimension of the handlebody
d and the index of the handle k. When the dimension of the handlebody
is understood, we may write H* = H*?. A d-sphere always has at least one
0-handle and one d-handle.

The Akbulut-Kirby spheres form an infinite family of homotopy 4-
spheres that have all been shown to be diffeomorphic to the standard
sphere [5, 31]. They are described by a handlebody description indexed
by a family of nontrivial balanced presentations of the trivial group:
Gakey = (x,y | xyx = zyz,z” = y"') and can be obtained as follows.

e Start with a 4-ball, i.e., a 4-dimensional 0-handle.

e Attach two 4-dimensional 1-handles. Label them z and y and give
them some orientation.

e Attach two 4-dimensional 2-handles according to the relators of
G Ak (r)-

e Attach a 4-dimensional 4-handle.

IKirby defines handlebodies for smooth manifolds. A manifold that admits a smooth
handlebody decomposition will admit a compatible PL handlebody decomposition [9].
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Figure 3.1: The red curve in the interior of H® in dimension 3 ends up on
the boundary of H® x I.

We want to triangulate the Akbulut—Kirby spheres for reasons outlined
in Chapter 1. To do this we follow a similar recipe as the above handlebody
decomposition. However, to have better control over the the way the 2-
handles are attached, we start in dimension 3 and build a 3-ball with two
I-handles. In fact, a 4-dimensional 2-handle is a product D? x D? which is
attached via S x D? along its boundary. This S' x D? is a solid 3-torus
that can be interpreted as a regular neighborhood of the closed circle S*
running through the interior of the 3-ball with the two 1-handles. We then
bring the handlebody up to a higher dimension. In doing so we are able to
“push” the circle out to the boundary so that the 2-handles can be glued
onto the thickened circle. Consider Figure 3.1 as an example. An arbitrary
(closed, tame) red curve lies in the interior of a 3-dimensional handlebody
H®. This red curve represents the S' which is thickened to S' x D?. After
taking the product H® x I, we can find (a copy of) the red curve on the
boundary of H®> x I. So the entire red curve is pushed out to the boundary
of H® x T even though in dimension 3, the red curve was in the interior of
H.

There is much freedom for choosing a construction method for the
triangulation. This is just one example of many design decisions we have
made to produce an automated program that will output three different
triangulation types for the Akbulut-Kirby spheres for any given r. We
begin with a short history of the Akbulut-Kirby spheres in Section 3.1.
Then we describe, in detail, our construction method for producing the
three triangulation types of the Akbulut—Kirby spheres in Section 3.2.
Finally, we discuss the experiments we ran on the triangulations in
Section 3.3

3.1 Background

In the seventies, Cappell and Shaneson [19] introduced an infinite family
of homotopy 4-spheres as exotic candidates, that is, they presented these
spheres as potential counterexamples to the smooth Poincaré conjecture
in dimension 4. They indexed this family of spheres by a conjugacy
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class of Cappell-Shaneson matrices A € SL(3,Z) with det(A — I) =
+1 and a choice of two framings (trivial=untwisted or nontrivial=Gluck
construction). The spheres with the trivial framings were all shown to be
standard by Aitchinson and Rubinstein [4].

Soon after, Akbulut and Kirby [6] simplified one of the twisted cases
with

0 1 0
A=10 0 1
-1 10

to reveal a handlebody whose fundamental group can be read off from a
diagram of the attaching maps of its handles, see Figure 29 in [6], as a
nontrivial, balanced group presentation of the trivial group:

(z,y | zyx = zyz,2° = y*).

This associated group presentation can be generalized over a single
parameter to index an infinite family of homotopy 4-spheres called the
Akbulut-Kirby spheres. Each sphere in this family has two 1-handles,
two 2-handles, and no 3-handles (in addition to the one 0-handle and one
4-handle). The attaching maps for the 2-handles are described by the
presentation

Gary = (x,y | zyz = yxy, 2" =y ") over r € Z. (3.1)

Akbulut and Kirby [6] showed that these manifolds are homeomorphic
to S* and that they naturally occurred as double covers of homotopy
RP*s. Since these so-called fake RP*’s were shown to be exotic by Cappell
and Shaneson [19] some years earlier, these twisted examples became
especially interesting to investigate as potential counterexamples to the
smooth Poincaré conjecture.

Akbulut and Kirby wondered whether the group presentation associ-
ated with these spheres are counterexamples to another conjecture—the
Andrews-Curtis conjecture?. They also noted that these spheres could be
counterexamples to yet another conjecture—the Schoenflies conjecture—
which states that a smoothly embedded 3-sphere in a 4-sphere bounds a
3-ball?.

What started as one interesting example from a large family of Cappell—-
Shaneson 4-spheres had grown to become a mystical dragon that if defeated
could disprove three conjectures. Over three decades after the spheres

2The Andrews-Curtis conjecture |7] states that any finite balanced presentation of
the trivial group can be shown to be trivial by a finite number of Nielson moves (three
moves that changes the relators by: changing one of them with its inverse, swapping
one with another, or combining two of them) plus one other move (changing one with
its conjugate). These algebraic Andrews—Curtis moves correspond to geometric handle
moves. If the presentation is found to be Andrews—Curtis trivial, that sequence of
Andrews-Curtis moves would describe the diffeomorphism from the handlebody to S*.

3In particular, Akbulut and Kirby showed in [6] that B = AK(5) minus the final
4-handle can be smoothly embedded in S* and, furthermore, that 0B = S3.
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were first introduced, the Akbulut—Kirby spheres—and every one of the
Cappell-Shaneson spheres—were shown to be diffeomorphic to S* [5, 31]
disqualifying the Akbulut-Kirby spheres as exotic candidates, and therefore
also disqualifying them as counterexamples to the Schoenflies conjecture?.

The (relative) simplicity of the group presentation and the difficulty
smooth topologists had to prove them to be diffeomorphic to S* suggested
that explicit triangulations of these spheres may produce some interesting
objects to study.

3.2 Construction

In this section we describe our construction for explicit triangulations
of the Akbulut-Kirby spheres. @We begin with the general idea in
Section 3.2.1. Section 3.2.2 explains the three construction types topo-
logically. Section 3.2.3 gives a step-by-step summary of the construction
procedure described in Section 3.2.2. Section 3.2.4 gives the details of the
construction. And, finally, in Section 3.2.5, we discuss some important
considerations with respect to our implementation of the automated
program that produces triangulations of the Akbulut—Kirby sphere for any
given 7.

3.2.1 General Idea

Any finitely presented group G can be the fundamental group of a compact
4—manifold®, see e.g, [50, Ch.IV, Notes| or [69, 9.4]. Start with a ball;
one can think of this as a base point for the fundamental group. Attach
as many l1-handles to the ball as there are generators. Label and orient
these handles. Then for reach relator, glue in a 2-handle whose attaching
map is described by its associated relator; here we pay attention to the
orientation of the 1-handles. This produces a manifold with boundary
whose fundamental group is isomorphic to the group G.

For the Akbulut-Kirby spheres, the group we start with is the above
presentation (3.1) Gag(y of the trivial group. Akbulut and Kirby [6]
showed that for any r, the 4-manifold we obtain is (diffeomorphic to) a

4-ball BiK(r). Glue on a 4-handle and we would get a (homotopy) 4-
sphere.

4The presentation G4 K (3) has been shown to be Andrews—Curtis trivial by Casson,
but » > 3 still remain as candidates for counterexamples to the Andrews—Curtis
conjecture; r < 3 is trivial. We want to further remark that since Akbulut [5] showed that
the entire family of spheres is standard, by Pachner [58] we know that the existence of a
sequence of bistellar moves between any (combinatorial) triangulation of the Akbulut—
Kirby spheres to the boundary of a 5-simplex is guaranteed. How long that sequence
may be or how one can find it is, however, unknown for r > 3. With the Andrews—
Curtis conjecture still open, bistellar flips offers an alternative “sequence of moves” one
can attempt to recognize spheres.

5This was a problem that was asked by Poincaré [61] and answered by Dehn [24]. Tt
was used by Markov [49] for his proof of the unsolvability of the d-manifold recognition
problem for d > 4.
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LEMMA 3.1

Let B be a topological (or PL) d-ball. Then taking the double of B, i.e.,
taking a copy of B and identifying them along their common boundaries
B x {0,1}/ ~, where (x,0) ~ (z,1) for all x € B, is homeomorphic (or
PL-homeomorphic) to attaching a 4-handle to B.

LEMMA 3.2

Let M be a d-dimensional topological manifold with boundary. Then 9(M x
I) is homeomorphic to taking the double of M.

The preceding lemmas merely follow by definition, but will help to
clarify the next statement. Since BY% K(r) r€ proper 4-balls, we can take
8(Bj14K(T) x I), which a priori are homotopy spheres. Gompf [31] (for r = 5)
and Akbulut [5] (for all ) showed that they are also diffeomorphic to the
standard 4—sphere.

Theoretical Procedure

From a (nontrivial) presentation of the trivial group

G:<xla---7$n’901>-"790m>7

construct a topological d-sphere (d > 4) that respects the handlebody
decomposition described by the group G.

Step T1: Start with a d-ball H%<,

Step T2: Attach n 1-handles H;I, ceey H}cn corresponding to the genera-
tors xq,...,x, to HY.

H=n"{ ’61 H,, .
1=
Step T3: Place disjoint curves gy, ..., 0,, on OH according to the relators
@1y vy Pm-

Step T4: Thicken the curves to d — 1 dimensions:
=0 xD¥2 ... T, =0mx D2

Step T5: Glue in 2-handles H? , ..., HZ along 71,. .., Tp:

B:=HUnZ, U---Un, .
Step T6: Take the cross product B x I.

Step T7: Take the d-dimensional boundary (B x I).
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3.2.2 Topological Description of Three Construction
Types

We now explain the topological theory behind our three construction types
for triangulating the Akbulut-Kirby spheres. We begin with the finitely
presented group

GAK(T‘) = <x7 y ‘ Qpblue . Iya’,‘ — yl‘yj QOT'ed : £U7’ — y'r'71> '

To actualize the plan described above, we choose to change the order
slightly. Rather than starting with a d-dimensional space H and finding
(thickened) curves representing the gluing maps for the 2-handles on its
boundary OH, we instead lay the curves first in 3-dimensional space, thicken
them, and fill up the space around the thickened curves with tetrahedra to
obtain H*, making sure to put some buffers between the curves to avoid
unwanted identifications. Then take the cross product H? x 193 to a higher
dimensional space to glue in two d-dimensional 2—-handles.

This gluing of the two 2-handles is the crucial step that motivated our
idea to build H® in dimension 3. Recall Figure 3.1. The 3-dimensional
thickened curves Tyye, Trea (Which correspond to the two relators vpue, @reds
respectively) will be further thickened to dimension 4 to 7y, X I and 7..q X I.
After this process, two copies of Ty, (and two copies of 7,.4) can be found
on the boundary 9(H* x I) = (9H? x I) |J (H? x 9I); we can think of them
as Tywe X {0} and Tpe X {1} (or Treq X {0} and 7.4 x {1}, respectively).
We can then choose one of these, say Ty X {0}, as the attaching map for
the 4-dimensional 2-handle Hil’ or, similarly, 7,.4 x {0} for Hred

NOTATION 3.3
Let M be a PL (d — 1)-manifold with boundary with 7 C M. We will write

(M x ) UT n>d .= (M x 1) UfHZ’d

where f: 0 (M xI) — Ou*? is an embedding and f|, (o) is the identity
map. This means that the 2-handle H*? is a d-ball (D? x D%~2) such that an
St x D472 part of this 2-handle’s boundary, specifically 7x {0}, is identified
with a part of the boundary 0(M x I). That is, 7 x {0} C (M x I) and
7x {0} C Ou*? and 7= S x D?2

Using this notation, we can now attach two 4-dimensional 2-handles
onto H? x T and precisely specify the attaching maps. We then obtain a
topological ball

3 24
=H" x HU Hblue U od Hred'

By Lemmas 3.1 and 3.2, we can now take AK(r) = 9(B? x 1) to obtain
a 4-sphere. This completes our first construction type.

Thlue
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We now describe two other construction types. For our Type 2 and
Type 3 construction, we will glue in the two 2-handles in dimension 5. To
understand the reason we choose to do this, we begin with the following
Corollary, which result from definitions of products and quotients of
topological spaces from basic topology, see, e.g., [56].

COROLLARY 3.4

Let M* be a PL 4-manifold with boundary and let 7 x {0} C 9M* where
72 S'x D?. Let H** be a 4-dimensional 2-handle such that 7x {0} C 9u**.

Then
4 2,4 ~ 4 2,5
(Ml | n )x]I_(M x| w,

where H?S is a 5-ball such that (7 x I) x {0} C 9u>®.

COROLLARY 3.5

Ak =o (@ xJ  mi ) ) = AKu()

Proof. By our construction of H?, we know that 7, = S' x D? and also
Towe C H?. Then 7y x I2 € H® x I? and, in particular, we know that
(Torwe X I) x {0} € O(H? x I2). The same argument applies for 7,.4. We can
construct two 5-balls that have 7y, X I and 7.4 X I on their boundaries.
Then apply Corollary 3.4. m

This completes our Type 2 construction. For the final Type 3
construction, we start with one very simple idea: the 2-simplex A% 2 2

> > [

This leads us to the following Corollary and Type 3 Construction.

COROLLARY 3.6

AKp(y = o (® <A it ui) = AKu(r)

Putting together Corollaries 3.5, 3.6 we obtain:
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COROLLARY 3.7

AK(r) =2 AK(r) = AKp(r)

3.2.3 Procedure for Three Construction Types

Here are step-by-step instructions for constructing triangulated PL 4-
spheres AK(r), AK(r), AK(r), for r > 3, from the group

GAK(T) = <:L‘7y | (,Oblue . :l:'y[[’ — yl‘y’ QD’!‘ed : IT' — yr71> '

Procedure for Constructing H?

Step 1: Imagine an empty 3-dimensional space, which when filled will
have a 3-ball H” with two 1-handles H}, H, for the generators
z,y. (The 1-handles are labeled and oriented.)
H® =n°JulUn.

Step 2: Place disjoint (unlinked, unknotted) curves gpue, 0req in the
empty H3 according to the relators vpue, Vred-

Step 3: Thicken gpye, 0rea to solid tori Tyue, Tred-
- Use chains of triangular prisms to decompose the tori.
- Triangulate the triangular prisms.

Step 4: Fill up the space around the tori with tetrahedra to obtain the
filled H®.
- First add rectangular buffers in the 1-handles Hy, H,.

- Triangulate them.
- Then fill B.

Procedure for Type 1 Construction

Step I.1: Take H? x L.

Step 1.2: Glue in 4-dimensional 2-handles Hzl’ie, Hf’;j.
— T3 2,4 2,4

B}L =H"x1I UTblue Hblue UTTed Hred'

Step 1.3: Take B} x .

(See Notation 3.3.)

Step 1.4: Take the boundary to produce AK;(r) = 9(B7 x I).
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Procedure for Type 2 Construction

Step I1.1: Take H® x I2.

Step I1.2: Glue in 5-dimensional 2-handles Hil’ie, Hf’e“zl.

5 . 13 2 2,5 5
BII =H"x1I UTblueXI[ Hblue UTTedXH Hred‘

Step I1.3: Take the boundary to produce AK;(r) = dB3;.

Procedure for Type 3 Construction

Step III.1: Take H® x A2

Step II1.2: Glue in 5-dimensional 2-handles Hil’ie, Hz’e‘z.

5 . 173 2 2,5 2,5
B =H x A" U, 1 Hyne U ux Hear

Step II1.3: Take the boundary to produce AK ;(r) = B3,

3.2.4 Detailed Construction
Step 1: Setting up H?

The space H?, see Figure 3.2, consists of a 3-ball H* (in the middle) and
attached to it are two 3-dimensional 1-handles H} (on top) and H, (on the
bottom) corresponding to the two generators x and y, respectively.

Next we want to choose two curves that represent the two relators inside
this space.

Step 2: Planning the Curves

We have the freedom to choose any embedding for the curves gpue, 0rea as
long as they run over the two 1-handles H! and H; in a way that corresponds
to the relators e, Preq- Figure 3.3 is a sketch for our choice of the
curves Opue and g..q corresponding to the two relators for the Akbulut—
Kirby sphere with » = 5. We choose this particular arrangement of the

Il
jan)
=}

H3

H

@

Figure 3.2: The handlebody H? := n®Jul |JH!.

Y
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Figure 3.3: The two curves gpue and 0,.4 corresponding to the relators
ryz = yry (blue) and z° = y? (red).

curves to help us achieve certain steps in Step 4, which we explain in detail
below. We call the curve corresponding to the first relator, zyx = yxy, the
blue curve and the second curve corresponding to the relator, ° = y*, the
red curve.

To understand Figure 3.3, let us begin with the blue curve oy
corresponding to the relator zyz = yxy. We read this as xyzy 1z~ ly~! = e,
that is, Qyue = zyxy 'z 'y~'. Remember that H® has two 1-handles: one
of which corresponds to the generator = and the other to y. These handles
are oriented as indicated by the black arrows. To see gy, begin at the
blue dot in Figure 3.3. Similarly for the relator ¢,.4, which is 2°y~*, begin
at the red dot to find 0,¢q.

The crossings indicate which sections of the curves run over or under.
This will matter in Step 4.

Step 3: Thicken the Curves to Solid Tori

In this step, we finally start producing simplices. The simplices of the
simplicial complex will be recorded as a collection of facets. The facets are
now 3-dimensional so they are sets of four vertices as indicated by their
vertex labels.

We thicken the opye, 0req curves to solid tori Tyye, Treq built up of blocks
of triangular prisms. We use triangular prisms for the following reasons.

Figure 3.4: The blue curve from Figure 3.3 is thickened to a chain of
triangular prisms.
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Firstly, a thickened curve needs to be a tubular neighborhood of S!.
Secondly, a prism is P x I for some polygon P. The cheapest polygon—
in terms of memory, that means using the fewest number of vertices—
is a triangle. Finally, a triangular prism is a (2-simplex) x (1-simplex).
There is a systematic way to breakdown such products into tetrahedra
using a method called the product triangulation, see [14] and references
therein. See Section 3.2.5, Figure 3.12 for our implementation of the
product triangulation.

One convenient side effect of this method is that on any rectangular face
(along the sides) of a triangular prism, the diagonal on that rectangular
face will always include the lowest label number. This is an important
feature that we will revisit in the following steps. From now on, whenever
we see a rectangular face, we will always choose to take the diagonal that
includes the lowest label number. If later we, for example, have neighboring
triangular prisms that share a rectangular face, we want the triangulation
of those prisms to predictably and consistently find the same diagonal on
that shared face. In other words, we want to avoid having neighboring
rectangular faces that have two (different) diagonals.

In Figure 3.4, we have the prisms for 7, for the Akbulut—Kirby sphere
with » = 5. Notice that the vertex labels repeat at the ends as they are
identified to form a solid torus. We will cut up the blue curve gy, in
Figure 3.3 into 12 strands, exactly where the curves run into a different
section of the handlebody H? (recall Figure 3.2). There are three strands
on the handle Hy, three on the handle Hy, and six inside H°. One triangular
prism is used for each of these strands and we let the pointy side always
point upwards. We use three vertices every time gy, crosses a black
horizontal line in Figure 3.3. So 12 x 3 = 36 vertices are used to build the
blue solid torus Ty in Figure 3.4. We use (2r +2(r —1)) x 3 = 12r — 6
vertices to build the red solid torus 7,.4. The product triangulation method
will triangulate a triangular prism into three tetrahedra. So we have three
tetrahedra for each triangular prism. The vertex labeling scheme we choose
here (the highest vertex label of each triangular face is on the pointy top
of the face) comes in handy in the next step.

Step 4: Fill H?

Step 4 will be broken up into the three sections of H®. The procedures for
filling 1), and H,, are identical and will be described first.

Fill the 1-handles H} and H;. One reason we chose the particular
arrangement for the curves g,, o, shown in Figure 3.3 is so that we have the
curves running parallel to each other inside of the 1-handles. We want to
add buffers between the tori to avoid having any unwanted identifications.
By arranging the tori this way, we can fill the 1-handles just by filling
the spaces between the triangular prisms with rectangular prisms that run
alongside the triangular prisms. To be clear, we will be using exactly the
vertices from the triangular prisms of Step 3 to form new rectangular prisms
which will lay between certain strands of those triangular prisms.
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Figure 3.5: The 1-handles can be filled using rectangular prisms between
the triangular prisms to avoid unwanted identifications.

Figure 3.5 gives a front view of the handle H. as an example. The three
blue triangles on the two ends are the parts of the blue solid 3-torus 7y,
that are in H!. The red triangles, respectively, correspond to the parts of
the red torus 7,.q in Hi The rectangular prisms between the triangular
prisms are shown in white. We need 2 + 1 + (r — 1) = r + 2 rectangular
buffer prisms for the handle H. and 2 + 1 + (r — 2) = r + 1 rectangular
buffer prisms for the handle H;.

Now we must triangulate these rectangular prisms. Triangulating
rectangular prisms is a two-step process.

Procedure
Triangulating rectangular prisms:
e Break down the rectangular prisms into two triangular prisms.

e Use product triangulation method to break down triangular prisms
into tetrahedra.

Here we will find that the vertex labeling scheme we chose is quite
practical. A nice way to break down a rectangular prism is

(a rectangle) x I = (two triangles) x I

= (one triangle x I) U (the other triangle x I) .

This simple decomposition from a rectangular prism into two triangular
prisms is possible because the labeling scheme we chose for our triangular
prisms fits well, see Figure 3.6. Recall the vertex labeling from Figure 3.4.
The labeling on the triangles of the triangular prisms are so that the largest
label is on the “pointy top” of the triangle and the two smaller ones are
on the “flat bottom” of the triangle. Also, along the “long end” of the
triangular prisms, the labeling goes up predictably by 3, e.g., after vertex
1is4,7,...,34 on Ty. The rectangles of the rectangular prisms take the
vertices of these triangular prisms. Notice that when we split a rectangular
prism into two triangular prisms, like in Figure 3.6, the rectangular faces
that split into two triangles split consistently. Note that the rectangular
face we are talking about now is not one that is along the side of a triangular
prism. So we can split these faces into triangles in any way. We will choose
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to be consistent with the product triangulation method used to triangulate
the triangular prisms and select the diagonal on this face that includes the
smallest vertex label. Our labeling scheme always places the larger vertex
label (of the triangle of the triangular prism) on “top”. Moreover, the next
triangle (on the long end of the triangular prism) is always just +3. If we
choose the diagonal that includes the smallest label (on these rectangular
faces of the rectangular prisms), we will consistently match up on the other
rectangular face of the rectangular prism.

Once the rectangular prisms have been broken up into triangular prisms,
we use the product triangulation again to triangulate the two triangular
prisms into tetrahedra. (For the implementation, there is one extra
consideration, see Section 3.2.5.)

Now the two 1-handles H. and Hé are filled; they are topological balls.
We must do the same for the middle section HY to completely fill the
handlebody H?.

Fill the 0-handle H°. Here we will first try to pair up as many parallel
strands as we can, just like we did for the 1-handles. Let us zoom in to the
middle section representing what will become H?, see Figure 3.7.

The triangular prisms in the middle section HY are not all parallel as
they were along the 1-handles. Some cross each other. Remember that
the vertices of the triangular prisms are all on the same level; let us call
this the ground floor. The prisms themselves, however, may run over or
under other prisms. The arrangement of the curves we chose places most of
the prisms on the same floor—the ground floor 1level:0—and only three on
other floors. We color the lines in Figure 3.7 to help distinguish the different
floors of our ball. The ground floor level:O0 is colored gray; the basement
floor 1level: -1 is colored pink; and the two upper floors are colored green
level:+1 and orange level:+2. Notice that the gray lines on the ground
floor do not cross any other gray line. This arrangement will make filling
each floor easier.

We start on the ground floor, see also Figure 3.8, level:0. First glue in
rectangular buffer prisms between the parallel strands of the ground floor.
The number of buffers needed between the loops of 7,..4 will depend on r
(in Figure 3.7 they are the gray half circles on the top and bottom). The
two pairs of parallel strands from 73, only use one rectangular prism each

] 4 ) 5
3 6 5 o 3 g
2 55
«— match — N
o 39\\\ ’/42 0o 39 12
38 A1 39 42

Figure 3.6: Rectangular prisms are placed as buffers between the triangular
prisms. They can be nicely decomposed into two triangular prisms.
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(in Figure 3.7 they are the two pairs of parallel gray lines on the left and
right). In Figure 3.8, level:0, the buffers are colored gray. After gluing
in the buffers, there will be five solid chunks in level:0. We then glue
in 2-dimensional membranes (like installing a carpet) on the ground floor
between the five solid chunks to close the floor.

For the remaining three floors level:-1, level:+1, level:+2 we use a
method that we call “filling a cupula” which is sketched in Figure 3.9. Say
we have a green disc and a 2-dimensional blue strip whose ends are glued
onto two sections on the boundary of the disc, like a picnic basket. We
can now trace two circles along the boundary of this picnic basket. Make
sure these two circles do not meet. Add a cone over each of the two circles
to form a cupula (a pink dome over the green disc). Insert a vertex inside
the void of this topological 2-sphere and take the cone over the triangles of
that sphere to obtain a 3-ball. The blue strip is a part of the boundary of
a single triangular prism and the tets of that prism lie outside of the dome.

The carpet on the ground floor forms parts of the green disc for the
level:-1-ball and level:+1-ball. The cupula of level:+1—together with
some other triangles from the faces on level:0 and the level:+1 triangular
prism—is the green disc for 1level:+2. We make sure to trace the two circles
without intersecting each other. In Figure 3.8 we draw the two circles on
each level in different colors.

We now have the handlebody H?: a 3-ball with two solid 1-handles.

Glue in the 2-handles H},, and H?

red

To understand a d-dimensional 2-handle, we describe it first in dimension 3.
A 3-dimensional 2-handle is a topological 3-ball H?? = D? x D! glued along
the part of the boundary that is S' x D!, ie., H#*? is a solid cylinder.
Suppose we have a 3-dimensional donut formed by a chain of triangular
prisms which represents the thickened curve along whose boundary the
2-handle will be glued on. Gluing in a 3-dimensional 2-handle onto the
boundary of a 3-dimensional solid torus essentially means filling the hole
of this donut. We will glue H?? along one of the (three) flat sides of 73. In
Figure 3.10 the (rectangular) faces onto which the 2-handle will be glued
are highlighted in green. In this example, we use the side of the triangular
prisms that are positioned on the side that “sees” the center of the donut.
Note that we could very well have chosen any of the sides as long as we
are consistent. We use the inside faces in this demonstration because it is

//‘\
Figure 3.7: The portion that will be filled to become the 3-ball H. The

gray lines are on level:0, the pink line is on level:-1, the green line is
on level:+1, and the orange line is on level:+2.
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The shaded regions

‘ correspond to the

domes of the cupula
of level:+1.

level:+1

level: 0

Use rectangular

prisms as buffers
between parallel
strands.

level:-1

The “carpet” mem-
branes are shaded

gray.

Figure 3.8: The two non-intersecting circles used to form parts of the domes
for each of the cupula of level:-1,1level:+1, and level:+2 are shown in
different colors.
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Figure 3.9: Fill each floor by forming a cupula and taking a cone over it.
‘H“
Figure 3.10: Left: A thickened S! formed by a chain of triangular prisms.

Right: the rectangular faces onto which we attach a 3-dimensional 2-handle
are highlighted in green.

easier to imagine. The donut of triangular prisms will then be triangulated
and the rectangular faces will become two triangles each. The solid cylinder
representing the 2-handle is then constructed by successively adding cones
onto those faces. Figure 3.11 demonstrates how we construct a triangulated
3-dimensional 2-handle to fill the hole in the green cylinder. We begin by
setting T, which consists of the triangles of S x D! (that subdivide the
rectangular faces of Figure 3.10), where the 2-handle will be glued on.

Procedure

Construct a triangulated 3-dimensional 2-handle H? whose gluing map is
already known to be the set of triangles T5

e Take a cone hy over Ty with apex as.

o Let Ty C 0Ty be one of the S'(x D) on the boundary of T,. Take a
joint cone hy over T x ap with apex a;.

e Then H? = hl U hQ.

Notice that the lower indices of Ts, T are keeping track of the dimension
of the faces contained in the set. In higher dimensions, the set T;_; collects
the shared (d — 1)-dimensional faces of the part of the boundary of the
d-dimensional 2-handles (i.e., S* x D@?) and the boundary of the d-
dimensional solid tori depicting the thickened curve of the relators (e.g.,
Thlue, Tred) .

The 3-dimensional 2-handle H?? (glued along a part of the boundary of
a 3-dimensional solid donut) is the collection of all the pink (hy) and orange
(hy) tetrahedra H*® = hy|J h; in Figure 3.11.
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Figure 3.11: Constructing a 2-handle. Left: the green cylinder from Figure
3.10. Middle: take a cone over the green triangles to form the pink
tetrahedra. Right: take the joint cone over the upper boundary of the
green cylinder and the apex of the first cone to form the orange tetrahedra.

For the case of dimensions d > 3, the procedure is not much more
difficult. In fact, the hardest part has already been done in the 3-
dimensional example. We start with a 3-dimensional solid torus 75 C H?
We go up to dimension d by successively taking products with the unit
interval H* x 13, So we will always find the (d-dimensional) solid torus
5 x 1473 c H? x 1“3, On the boundary of H? x 1(¢=3) are then two
copies of the solid torus 75 x 1% see also Figure 3.1.

For a simplicial d-complex K, going up in dimension K X I means that
for each d-simplex ¢ in K, we make a copy of it and then use the product
triangulation to triangulate the prism o x I, see Section 3.2.5 for an example
and details of our implementation. Making a copy means incrementing the
vertex label by a constant k. That constant is always the largest vertex
label used so far so that we do not introduce unintentional identifications.

Then one can easily differentiate between the two copies of 75 x 1% on
the boundary of H?3x 1973 because one is just the same constant & more than
the other on every vertex label. We will always choose the lexicographically
smaller copy, which we can think of as corresponding to 73 x 1974 x {0}.

Procedure

Construct a triangulated d-dimensional 2-handle H?< to be glued onto H? x
1¢¢=3) along a known thickened S' on both of their boundaries.

o Set Ty ; = 73 x I47% x {0}.
e Take a cone hy_1 over Ty 1 with apex ag_1.

e For3<i<d—1,setT;=m3x 103 x {0} C 9T},,.

Take a joint cone h; over T; x ag_1 * - - - * a; 11 with apex a;.

For T5,T} and hs, hy, see preceding Procedure.

o 0 = UL,

Note that the (5-dimensional) 2-handles for both the Type 2 construc-
tion and Type 3 construction are the same (up to shifting the apex vertex

labels).
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Take the boundary

Finally, we take the boundary to obtain our 4-spheres. The boundary of a
d-ball can be found by looking for all of its (d — 1)-faces that are contained
in only one facet. All the other (d — 1)-faces must be contained in exactly
2 facets.

Extra Step

There are a few more tetrahedra we pick up in our construction of H® that
are not mentioned in this section. Those tets are topologically insignificant,
but technically necessary. We include the reasons and procedure for
producing these last few tetrahedra in the next section as it requires some
details about our actual implementation to understand. The description of
our construction serves as proof that if the construction is carried out as we
described, the triangulations we end up with are indeed the triangulations
of the Akbulut—Kirby spheres. For our computer implementation, we built
tools to ensure we indeed produce what we intend to build, for example,
automated checks which test for typos.

3.2.5 Implementation

Our motto, if you will, for designing the construction was to always keep
things simple—choose curves that made filling H° easy, use rectangular
prisms between parallel triangular prisms, try to use as few building blocks
as possible. As a result, in a few areas, we were met with challenges we
may not have encountered had we chosen a construction that, for example,
used more vertices or subdivisions. The prescient warnings in the procedure
described in Section 3.2.3 are a result of having labored over dealing with
many of those challenges. Below we describe some custom programs we
wrote to assist in our construction of the triangulation which can help to
identify problem areas. We describe each tool and give examples of the
possible user errors they can help to identify.

Product triangulation

The standard method for finding the tetrahedra of the product triangula-
tion (triangle) x I is shown in Figure 3.12. First we write the label numbers
of the triangle 7" = [1 2 3| along the bottom of a (3 x 2)-lattice. The
copy of T' is labeled by incrementing each of the vertex labels of T" by the
largest vertex in 7', which is 3; they are written in the lattice above its
corresponding vertex label, in this case 4 = 1+ 3 is above 1, 5 =2+ 3 is
above 2 and 6 = 3 4 3 is above 3.

In our program, we input the vertex labels as an ordered list [12 3 4 5 6]
and the program will convert this into the lattice we just described. The
tetrahedra triangulating this rectangular prism can then be found by
walking along the lattice from the bottom-left corner (1) to the top-right
corner (6) taking only right or left (monotone) moves. Finally we have three
tetrahedra such that each rectangular face of the prism has a diagonal that
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contains the smallest vertex label. For example, on the rectangular face
[1 2 4 5], the diagonal is [1 5], which includes the smallest vertex 1.

The product triangulation method works well when taking a product
between some simplicial complex K and, say, a single p-simplex. The vertex
labels, in such cases, are given anew to the p copies of K, usually by
incrementing every vertex label by some constant greater than or equal
to the maximum label number used in K to avoid producing accidental
identifications. This is exactly what we do to triangulate the triangular
Prisms Tyjye, Tred, and whenever we go up in dimension by taking the product
of a complex and . However, the rectangular prisms that we break up into
triangular prisms (e.g., to fill H., H;) are a different matter. The triangular
prisms we want to triangulate (the two we obtain per rectangular prism)
start with a prism whose vertex labels are already chosen—which may
or may not be ordered in a predictable way—and we ask the product
triangulation method to deliver a triangulation that complies with our
chosen rule that for any rectangular face its diagonal contain the smallest
vertex label.

Compare the example in Figure 3.13 with the earlier example in
Figure 3.12. This new triangular prism has vertex labels that are already
given as [1 5 6] and [2 3 4] on the triangular faces. Recall that the product
triangulation is implemented as a program whose input is an ordered list
of the vertices of the prism.

Notice in our example in Figure 3.13 that the order in which the vertex
labels are inserted into the lattice of the product triangulation method
produces different tetrahedra. In particular, the top input produces the
wrong diagonals; but, the vertex labels of the triangles are in lexicographic
order, which is perhaps the most ordinary order in which one would input
this type of information. Again, the most ordinary input produces the
wrong triangulation. It takes the diagonal [4 5] in the rectangular face
[3 4 5 6]; it should be [3 6]. To make sure we end up with the correct
triangulation, we have to check that every (2 x 2) sub-lattice contains the
minimum vertex label of that sub-lattice on its diagonal. We search for such
a configuration over each permutation of the vertex labels, see Figure 3.14.

In every case where we need to take this extra consideration (i.e.,
any K x I), this process will find a working solution. In higher-dimensions,
this method does not work, e.g., K x (2-simplex) whose vertex labels are
jumbled.

is_Pure

The complex is always recorded as a collection of its facets. Keeping track
of all of the faces is memory heavy and cumbersome. Checking to see if
every facet in the complex is of the same dimension is incredibly fast, but
still useful. This test will fail if, for example, one of the facets repeats a
vertex, [1 2 3 3]. Finding where in the code that bad facet was produced can
help to remove this error. We run this check automatically before running
any other check so that we can catch and deal with such simple errors early.
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Figure 3.12: Use product triangulation method to break down triangular
prisms that guarantees that the diagonal on rectangular faces includes the
vertex having the smallest index.

[1234]

I
1345 ——p 5
4 , 1
2=, (145 6] 6
1 [1234] 6
° 5
1346 —>
1
(135 6] 6

Figure 3.13: Applying the product triangulation method directly is not
enough. We take an extra step to ensure we find the correct diagonals on
every rectangular face.

2 3 4 2 2
1 6 1 6 5
NO NO OK

Figure 3.14: Test various permutations of the vertex labels until we find one
such that the diagonals for every (2 x 2) sub-lattice contains the minimum
vertex label of that sub-lattice.
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The Euler characteristic

The Euler characteristic is also fast and easy to compute. The many parts
of the construction are saved as separate complexes which we union at the
end to obtain the final product. For example,

H* = J{ Tuues Treas Hy-filler, H)filler,
level:-1-ball, level:0-ball, level:+1-ball, level:+2-ball,

extra tets”}.

We can determine in which subcomplex the problem may have occurred by
checking the Euler characteristic of any subset of these 9 subcomplexes. (*
We explain the “extra tets” below.) Figuring out what the correct Euler
characteristic should be for any subset of these parts is a fun exercise.

If the Euler characteristic is not what you expected, it is a sure indicator
that something has gone wrong. The correct Euler characteristic, however,
does not guarantee that everything is fine. Further narrowing down the
source of the problem requires the use of more checks described below.

The ridge check

Another easy check is to see whether ridges, or co-dim-1-faces, are contained
in at most 2 facets. If the check fails, we output the ridge on which the
check failed and the list of the facets it is a face of. This check is usually
an effective way to fix the cases when the Euler characteristic check fails.
Computationally, the ridge check requires many more steps and will take
more time to compute than the Euler characteristic so we usually use the
Euler characteristic test to narrow down the possible source of the problem
before running the ridge check.

For spheres this condition is strengthened to having ridges contained in
exactly 2 facets. In fact, this strengthened check can even be performed
before the final step. The boundary of any ball (like a vertex star) should
also have exactly 2 facets per ridge.

The manifold check

One very important check is to verify the “manifoldness” of the complex.
We want all the vertex links to be PL spheres or balls. For a simplicial
complex to be a closed PL manifold, the vertex links should be PL spheres.
There are different ways to test for this and, in particular, a combination of
heuristic algorithms can be used to solve this decision problem as explained
in Section 2. But we are running these checks to identify the areas of the
construction that produced some sort of badness. Just a “yes” or “no” does
not suffice. Moreover, in our construction we are in dimension 3 most of
the time which makes certain tests easier; for example, recognizing the
1-sphere (a circle) and the 2-sphere is easy. And while we are in the 3-
dimensional part of the construction, we always (should) have a manifold
with boundary. In fact every vertex in our construction is exactly on the
boundary so vertex links are not spheres, they should be 2-balls. We also
checked whether the boundaries of vertex stars are 2-spheres.
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Figure 3.15: The dashed lines represent the diagonals chosen to split the
rectangular prisms into two triangular prisms. We add one tetrahedra
[31 33 b+ 1 b+ 2] so that we can use one wrong diagonal shown in green.

Manifold check
Run for every vertex v in a triangulated 3-manifold K with boundary.

e Ridge check on link(v, K).

Check Euler characteristic: x(link(v, K)) = 1.

Check that boundary Olink(v, K) is a single circle.

Ridge check on Ostar(v, K).

Check Euler characteristic: x(dstar(v, K)) = 2.

Check that for all vertices w € Ostar(v, K), link(w, dstar(v, K)) is a
single circle .

The “extra tets”

The tools we have described so far were helpful for catching small errors,
like typos. But they were also instrumental in helping us making certain
design choices. The following tets were added in addition to the simplices
described in the construction in Section 3.2.3.

Recall that for producing the cupula, we need to first find two non-
intersecting circles which will be coned over to form the dome for the cupula.
To produce the cupula for level:+1, we wanted to use a “forbidden”
diagonal for one of the circles, see Figure 3.15. Notice the rectangular
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Figure 3.16: To remedy the pinched point at b+ 1 we take a cone over the
gray triangles.

face [31 33 b+ 1 b+ 2]. Here we write b because its value depends on r.
Specifically it is b =37+ 3-2r + 1 = 6r + 38.

The rule we set early on for our design is to take the diagonals on
rectangular faces which include the smallest vertex label number. Here,
this would mean the diagonal [31 b + 2|, as indicated by the gray dashed
line (on all rectangular faces). For the circle to form one of the dome pieces,
for the cupula of 1level:+1 we wanted to use the edge [33 b+ 1]. To be able
to use this edge, we add one more facet. Exactly the facet [31 33 b+1 b+2].
We highlight the problem diagonal in Figure 3.15 in green.

At the very end of the construction of H®, we noticed that the
manifold check failed despite all other parts of the construction having
been implemented correctly. It was caused by a pinched point. A pinched
point is a vertex whose link has more than one connected component.
Coincidentally, the problem occurred exactly in the same area as the extra
tet we just added. Running the manifold check revealed that the vertex
[b+ 1], where we had place the “wrong” diagonal was our culprit.

In particular, the link(b+1, dstar(b-+1, H*)) turned out to be two circles,
not one; the star(b + 1, H*) was a wedge of two balls. To fix the pinched
point, we want to “get rid” of one of the extra circles. We do this by taking
a cone over the triangles [b + 1] * (one circle). While the combinatorial
description of how to repair pinched points is simple, the geometric picture
of what we did is also quite nice.

The pinched point is aptly named as you can see in Figure 3.16. Of all
the rectangular faces between the triangles in Figure 3.15, only the triangle
[33 b+ 1 b+ 2| is not shared by two tets. All other rectangular faces are
shared on one side by the tets from the triangulation of the rectangular
prism (on the side of the 1-handles) or by some cupula (on the side of the
H?). This final cone over b + 1 will essentially slap on some play-doh to
fill the ugly gap around the pinched point. These extra tets complete the
construction of H?.
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3.3 Results & Experiments

THEOREM 3.8

The Akbulut-Kirby spheres—4-spheres with handlebody decompositions
described by the group G i (r)—have triangulations for r > 3 with face
vectors:

f(AK(r))

= (48r + 180, 744r + 2766, 24967 + 9284, 30007 + 11160, 12007 + 4464)
f(AK (1))

= (48r + 176, 720r + 2694, 24007 + 9036, 28807 + 10860, 11527 + 4344)
J(AK1i(r))

— (367 + 134, 5167 + 1944, 17047 + 6456, 20407 + 7740, 8167 + 3096)

Vertices

To build the H® part of H?, we need

- the 3 - 12 = 36 vertices of Tye;
- the 3-(2r+2-(r—1)) = 12r — 6 vertices of T,eq4;
- the 2 vertices of the level:0 carpet;

- the 2 vertices to build the dome for the cupula of level:-1 plus 1
vertex taking its cone;

- the 3 vertices for the level:+1 cupula;
- the 3 vertices for the level:+2 cupula; and

- the 1 vertex used to produce the cone of the “extra tets”;

which gives us a total of 12r + 42 vertices. The 1-handles 1) and H,
contribute no vertices. An i-dimensional 2-handle requires i — 1 vertices and
we build two 2-handles in our construction, i.e., Hy,, and HZ,;. Whenever
we go up in dimension, we make a copy of whatever complex we have at
the time and that copy will use exactly as many vertices as its original.
For the Type 3 construction we go up by two dimensions in one step by
crossing with a triangle, so instead of producing a single copy we produce

two copies (plus the original makes three).
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The vertices for the three construction types can be counted as follows:

AK(r): 2 - (2-(12T+42)+2'3) = 48r 4 180

gouptod/:5 / \ \

goup tod =4 vertices of H®  4-dim 2-handles

AKpp(r): (2-(12r +42) ) +2-4 =48 +176

owiies /N N\

go up to d =4 vertices of H° 5-dim 2-handles

AKpp(r): 3-(12r +42) + 2-4 = 36r + 134

cross by A \ '
vertices of H*  5-dim 2-handles

We built AK;(r), AK(r), AK(r) for » = 3,...,20 for all three
construction types. We could have easily built more spheres for many
more r’s but the computation time for the experiments increase as the size
of the complex go up. Already at » = 10, the f-vector for the Type 1
construction is f(AK;(10)) = (660, 10206, 34244, 41160, 16464), which is a
total of 102734 faces and therefore at least as many nodes in its Hasse
diagram—mnot to mention its 370104 edges (corresponding to the incidence
relations of the co-dim-1 faces). The bigger the Hasse diagram, the longer
the computations discussed in Chapter 2 will take.

3.3.1 Homology

For completeness, we include here our results from the homology compu-
tation using polymake. The homology was found to be spherical H, =
(Z,0,0,0,7Z) for all three types for all » = 3,...,20.

Our triangulations have also been used as test examples for a heuristic
algorithm that uses an iterative discrete Morse reduction/co-reduction
scheme as a preprocessor for homology computation. Our spheres were
the first known examples in which the algorithm required more than one
iteration of co-/reduction to reach the optimum. This work with Konstantin
Mischaikow, Vidit Nanda, and Frank H. Lutz is still ongoing [48].

3.3.2 Random_Discrete_Morse

Recall that there are triangulations of contractible manifolds that are
noncollapsible, see 2.2. A consequence of this fact is that a PL sphere

5In polymake, the Hasse diagram also includes a node for the entire complex and
a node for the empty set. The actual numbers for the nodes and edges in the Hasse
diagram are 102736 and 387228, respectively.
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minus a facet is contractible, but may not be collapsible. That is,
there are triangulations of PL spheres that do not admit a discrete
Morse vector of (1,0,0,0,1). In every experiment we attempted using
Random_Discrete_Morse, we have not found a spherical Morse vector. We
do not know whether this is due to the limitations of the algorithm or just
a property of our triangulations. In Figure 3.17, we compare the average
number of critical cells found in 10000 rounds using all three strategies.

In Section 2.2 we discussed that the Random_Discrete_Morse client in
polymake may encounter contractible but noncollapsible complexes when
run on complexes having many facets, even in dimension 3. This may
be the reason the Type 3 construction finds fewer critical cells on average
compared to the other two, and Type 2 finds fewer critical cells than Type 1.
However, the data here suggests that this phenomenon may not be the only
reason the algorithm does not find perfect discrete Morse vectors since, for
example, the number of facets in AK;(5) is 10464 and in AK;(9) is 10440
(or the total face counts are 65294 and 65378, respectively). But the average
number of critical cells that AK;;;(9) finds is greater than that of AK/(5)
as Table 3.1 shows.
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AK;(5) AKp(9)
# of facets 10464 10440
random-random 36.42 44.21
random-lex-first 20.73 24.17
random-lex-last 19.64 21.57

Table 3.1: The average number of critical cells found on AK;;;(9) is greater
than that of AK(5) even though it has about the same number of facets.

3.3.3 bistellar_simplification

The bistellar_simplification client implemented in polymake uses a
simulated annealing technique that prefers moves that lower the f-vector,
which is a reasonable strategy, but not necessarily the best. To be more
precise, the algorithm attempts to reduce the g-vector the best it can. The
g-vector for us is defined as

g=fo—6 and g2=(5-g1) — 15 — fi.

Since the g-vector and f-vector are linearly correlated, minimizing one will
minimize the other, see [14] and references therein.

Attempting to minimize the g-vector is a reasonable strategy for several
reasons:

- bistellar i—(4 —i)-moves change g;11 by %1 so this is a cheap and easy
value to track,

- stacked polytopes have zero g-vectors and stacked polytopes are PL-
homeomorphic to spheres [71],

- only the face numbers fy, fi are needed to determine the remaining
face numbers of the f-vector of a triangulated 4-manifold without
boundary by linear relations [43]; by the definition of the g-vector,
we find that also the entire f-vector is determined by the g-vector.

The biggest problem with this strategy is that for any given g-vector,
there may be an enormous number of different triangulations. Already at
dimension 2, there are over 12 billion non-isomorphic triangulations of a 2-
manifold with only 12 vertices [70]. Moreover, at any given triangulation,
there may be thousands or even hundreds of thousands of available moves
to choose from.

It can happen (quite often!) that the triangulation we have is a local
minimum in terms of the g-vector, but not a global minimum. Say we
have a triangulation T, with g-vector (my, ms) and our goal is to show that

PL
Tw ~ T, where T, has g-vector (ny,ng) with n; < m; and ny < my, see
Figure 3.18. To jiggle out of the local minimum at 7;,, we will have to make

moves that increase the g-vector until we reach some triangulation that can
find a nice downward path to T,.
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However, the g-vector is so cheap to measure and track, we can try

millions of moves in just a few minutes. If in fact Ty, 1?\_9 T,, then there
must exist some sequence of bistellar moves between T, and 7,. And,
as we mentioned earlier, the bistellar_simplification algorithm has
done a reasonably good job at finding those downward paths. That is,
until we tested the algorithm on our triangulations of the Akbulut-Kirby
spheres. To be fair, the algorithm was able to show that the triangulations
for r = 3 of all three construction types are a PL sphere. We ran all of our
“random” tests on several seed numbers, for a discussion on pseudorandom
numbers, see [76]. For r = 3, bistellar_simplification flipped down
our triangulations all the way 16 times out of 20 different seed numbers for
Type 1, 17/20 for Type 2, and 18/20 for Type 3, which gives a computer-
assisted verification of that these examples are indeed standard.

OBSERVATION 3.9

The triangulations AK;(3), AK(3), AK 1(3) of the Akbulut-Kirby
spheres for » = 3 are bistellarly equivalent to the boundary of a 5—simplex,
and therefore are indeed PL 4-spheres.

Figure 3.19 and Figure 3.20 displays our results from the bistellar test for
r =4,...,10 for all three types. The bistellar_simplification client
returned the smallest triangulation in its search. The graphs in Figure 3.19
and Figure 3.20 show the data obtained from the g-vectors of the smallest
triangulations found over 20 different seed numbers.

In Figure 3.19, we see that there is very little difference between
the three construction types. Looking closer at the smallest of and the
average over the 20 g-vectors obtained from the smallest triangulation found
by bistellar_simplification in Figure 3.20, we see that the Type 3
construction seems to behave similarly to the other two types. In the
bottom graph in Figure 3.20, we also include the average number of moves
the algorithm performed to obtain the data shown in Figure 3.19 and
Figure 3.20. We display the average number of moves as opposed to the
runtime since the tests were run on multiple machines and the runtime
will vary depending on the speed of the processor on that machine. The
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Figure 3.19: A summary of the g-vectors of the smallest triangulations
found using 20 different seed numbers for all three types for r = 4,...,10.
The gray area spans the standard deviation from the average. Table 3.2
lists all the minimum (pink) values found over the 20 runs.
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Figure 3.20: Comparing the different three different construction types.
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4 5 6 7 8 9 10 11 12 13 14 15 16 17

Typel |23 23 25 27 28 28 30
Type2 |23 24 26 27 28 28 30
Type3 |23 24 26 27 28 29 30 31 31 32 33 33 34 32

Table 3.2: The number of vertices of the triangulation having the smallest
g-vector found using bistellar_simplification with 20 different seed
numbers. Type 1 and Type 2 took very long to run so we only ran Type 3
for r > 10.

number of moves is a more fair way to get a feel for how much difficulty
the algorithm had in finding the smallest triangulation.

As the number of faces grows, so does the number of moves’ and,
therefore, also the runtime. The amount of memory and runtime the Type 1
and Type 2 constructions use compared to Type 3 seems to be a heavy cost
seeing that the smallest found by the Type 3 construction is about the
same as the other two. Note that in the bottom graph in Figure 3.20,
we also indicated the average runtime (wallclock time) for AK;(10) and
AK7y;(10) for comparison. That is, on average, it took about 73.5 hours to
complete one run of bistellar_simplification on AK;(10), a total of
about 1470.5 hours (760 days) to run all 20 seed numbers. For AK;;7(10),
the average runtime was about 51.5 hours taking a total of about 1029.5
hours (740 days) for 20 runs. It is worth mentioning, however, that
the number of moves and the size of the triangulation obtained are not
correlated.

The middle table in Figure 3.20 shows that the Type 3 construction is
performing slightly worse than the other two construction types. This is
probably due to the fact that because the Type 1 and Type 2 constructions
have more faces, there is initially more room to (bistellarly) shuffle the faces
around making it easier to find downward paths. However, the minimum is
what we are most interesting in finding and the Type 3 construction seems
to go down to around the same as the other two types in that respect.
That is, since the Type 3 construction will run faster, we can just run
more instances (seed numbers) of it and feel fairly confident that the best
triangulation found over those runs will be as good as the best found over
a fewer number of runs of the other two types. And that is exactly what
we did. We stopped the tests on the Type 1 and Type 2 constructions
after » = 10. And we continued to run tests on higher r’s of the Type 3
construction. The table below displays the minimum vertex count found
over those runs. We can see that as the r increases, the harder it was for
bistellar_simplification to find a small triangulation, tho it seems to
taper off a bit.

"The algorithm bistellar_simplification will “give up” when sufficiently many
heating rounds have been run without any improvement to the g-vector. That number
of heating rounds when the algorithm gives up is determined by the size of the complex—
10 times the number of facets, by default. So the algorithm takes longer to run on larger
complexes also by design.
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3.3.4 Fundamental Group

To compute the fundamental group, we use polymake to find the edge-
path group [67] and simplify the resulting presentation using GAP, which
uses Tietze transformations as described in [34].

OBSERVATION 3.10

The presentation of the fundamental group computed using polymake and
GAP on triangulations for AK;(r), AK;;(r), AK(r) for r = 3,...,20 are
all nontrivial presentations of the trivial group.

For r = 4, we started bistellar flips on AK;;;(4) for different random
seeds and then computed the fundamental group on the small triangulations
we obtained. In 100 out of 450 runs a trivial presentation was found for
the fundamental group, giving a certificate that AK;;(4) is a topological
4-sphere (by Freedman’s classification), but failing to give a certificate for
whether AKj;;(4) is a PL 4-sphere (which a priori is known by Akbulut’s
proof 5] that all the examples AK(r), AK(r), AK () are standard).

We tried similar tests on the (bistellarly) simplified triangulations of
different types AK;(r), AK(r), AK;(r) and r = 4,...,10 that we
obtained in the previous experiment using 20 different seed numbers.
One notable observation is that we often (see Table 3.3) encountered
presentations that “resembled” the original presentation Gag(,) up to
rearranging some letters of each relator and/or exchanging one of the
generators with its inverse. Here are a few examples of such presentations.

AK(6)(seed = 16) : (z,y |2 tyz~ty tay ! x4y5x2>
AK(7)(seed = 21) : (z,y \x’ly’lxyxy’l, yr Ty >
AKp(8)(seed = 16) : (x,y |yxy_1x_1y_1a:, y_7m8>

We also give a few examples of presentations that do not resemble G 4x )
for comparison.

AK(4)(seed = 14) : {x,y | x(yx ")y 'z, yayr 3y e, 272y Hay)2e )
AK;7(5)(seed = 20) : {z,y | v yzy tayz ™, y(z ™y ) aya?)
AKr(9)(seed = 14) : (z,y |x_1y2x_1y(xy Doy 2 ()3,

ey @y ey ey Ty T (),
2(y 2wy 1) e )3$‘1y‘1wy5>
AK;1(10)(seed = 28) : (z,y |vy toyx %y, Py toyx yxty T2

The number of these familiar-looking presentations increased as r increased,
see Table 3.3. The number of trivial presentations (the empty presentation),
however, decreased as » went up. We will also mention that the familiar
presentations were found quite often for the triangulation of the spheres
before any bistellar flips were performed. This is not so surprising given
our method of construction. The vertex labels influence the edge-path
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trivial original
4 5 6 7 8 9 10 4 5 6 7 8 9 10
AKi(r)|5 3 0 2 1 0 1 0 0 2310 4
AKp(r) |5 3 3 1.0 2 0 1 05 2 4 2 4
AKi(r) |4 2 2 1 0 0 1 0 1 1 4 8 6 7

Table 3.3: We computed presentations of the fundamental groups of the
smallest triangulations obtained by bistellar_simplification using 20
seed numbers for all three types for » = 4,...,10. The table shows the
number of those presentations that GAP simplified to be the empty set
(trivial on Left) or a presentation that resembled G 4k () (original on Right).

group that is generated and our labeling scheme exactly follows the relators
of Gak(r) by design. It is surprising to find that much of that original
structure is preserved after some 300 million bistellar moves.

We also note that every nontrivial presentation we found always had
two generators. The number of relators was (zero or) two or three, but the
number of generators was always either none or two.

3.3.5 Conclusion

We conclude this chapter with the following titular claim of this disserta-
tion.

OBSERVATION 3.11

The complexes AK(r), AK(r), AK(r) for r > 3 are complicated
triangulations of the PL 4-sphere.
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Chapter 4

Mazur & Friends

To build the Akbulut—Kirby spheres, we start with a ball with two 1-handles
and then attach two 2-handles. Constructing Mazur’s 4-manifold is similar
in that it starts with a ball with one 1-handle and then attaching one 2-
handle. Topologically, however, the Akbulut—Kirby sphere and Mazur’s
4-manifold are of two entirely different species.

With the Akbulut—Kirby spheres, the two 2-handles are attached to kill
off the homology generators (and also the generators of the fundamental
group), that is, they close up the two holes that were created when the
two 1-handles were attached to the ball. The resulting manifold is then
contractible, but, a priori, it is not obvious that it is a (smooth or PL) 4-
ball. Akbulut and Kirby [6] had to prove that the 4-manifold they obtained
was indeed diffeomorphic to a 4-ball. One example where this construction
fails to produce a ball is Mazur’s 4-manifold. The 4-manifold one obtains
after gluing in the 2-handle is contractible, but not a 4-ball.

The construction method we developed to build the triangulation of
the Akbulut—Kirby spheres provided all the tools necessary to triangulate
Mazur’s 4-manifold. And so we did. In Section 4.1, we give a brief
overview of Mazur’s 4-manifold and a construction of interesting non-PL
manifolds described in [9]. In Section 4.2, we describe our construction of
the triangulation of Mazur’s 4-manifold and triangulations (with perfect
discrete Morse vectors) of a non-PL 5-ball and a non-PL 5-sphere which
can be built using the triangulation of Mazur’s 4-manifold. In Section 4.3,
we discuss our results from experiments run on the triangulations.

4.1 Background

Mazur’s 4-manifold [52] is a contractible 4-manifold with a non-simply
connected boundary, a homology 3-sphere that is not S®. The boundary is
an example of a Brieskorn homology sphere (2,5, 7), which is a homology
sphere that bounds a contractible manifold [20].

Cannon|17] and Edwards [25] showed that one can obtain a topological
sphere by taking the double suspension of any homology sphere. As an
example, they took the double suspension of the boundary of Mazur’s 4-
manifold and showed that it is indeed S®.
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Whitehead [77]| proved that any compact manifold with boundary that
has a PL triangulation that is collapsible is a PL ball. A natural question
to ask next is whether there are also non-PL balls that are collapsible.
Benedetti |9] describes Adiprasito’s construction of a collapsible non-PL
triangulation of a 5-ball. For this construction, they, again, use Mazur’s
4-manifold.

4.2 Construction

The construction techniques developed to build the Akbulut—Kirby spheres
in Section 3.2.3 were repurposed for the construction of Mazur’s 4-manifold
which was then used to construct a collapsible non-PL 5-ball, which in
turn was used to build a non-PL 5-sphere (for which subdivisions can
have perfect discrete Morse vectors). In Section 4.2.1, we describe the
construction for the triangulation of Mazur’s 4-manifold. In Section 4.2.2,
we describe the construction for the triangulations of the non-PL 5-ball and
the non-PL 5-sphere.

4.2.1 Mazur’s 4-manifold

In this section we describe the construction of our triangulations M of
Mazur’s 4-manifold. To build M we use a construction procedure similar
to that of the Akbulut—Kirby sphere, see Section 3.2.3, and therefore we
will use similar notation.

1
FIG. 1 HM,2

Figure 4.1: Left: The curve I' used to build a Mazur manifold is taken
from [52]. Right: The same curve using our notation. The blue areas
indicate where we place the vertices for the chain of triangular prisms.

Step 1: Set up the space H),

We, again, will start in 3-space. We build Hy;, a 3-ball with one (3-
dimensional) 1-handle.
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Step 2: Setting up or

Mazur [52] sketches a very specific curve I' that corresponds to a generator
of the first homology group H;(Hy,), see Fig. 4.1 left. To help us with our
construction, we redraw I' in our notation gr, see Figure 4.1 right. We
concentrate any non-parallel lines into one section which we call 1Y, and
keep all the parallel lines in the 1-handle just like we did for the Akbulut—
Kirby spheres. However, here we will split the 1-handle into two parts
Hpo,s H}\“ so that we do not accidentally introduce two edges that share
two vertices. We also split the two crossing loops inside of H}, for the same
reason (the blue dots in Figure 4.1 indicate the respective extra vertices).

Step 3: Building m

Mazur then instructs us to thicken up I' to a tubular I' x I2. Just as
in Section 3.2, we thicken up or to a chain of triangular prisms 7. The
vertices of the triangular prisms are located exactly at the blue horizontal
lines and points in Figure 4.1 right. We chop up or into 5 strands in
HY, and three strands each in the two parts of the 1-handle. There are
(5+2-3) x3 =11 x 3 = 33 vertices in 7. We triangulate the prisms using
the product triangulation method as before.

Next we want to fill the space around 7+ to build a solid one-holed
handlebody H,,.

Step 4: Filling HY,

The two parts of the I-handle Hj; , H},, are easy to fill using rectangular
buffer prisms between the triangular prisms of 7, just as we did in
Section 3.2.3. The remaining piece, H},, will require more care.

Figure 4.2 is a zoomed in view of H},. We begin, as before, by dividing
HY, into different floors so we can use the fill-a-cupula method. As before,
we use different colors to identify the strands on different floors: level:0
in gray, level:-1 in pink, level:+1 in purple and level:+2 in blue. The
green triangular face of b is laying on the carpet of level:O.

We provide sketches that were used for the rest of this step in Figure 4.4.

Finish up M

With 1Y, completed, we will then go up to dimension 4. And finally, glue
in a 4-dimensional 2-handle HZ to obtain M.

4.2.2 A perfect non-PL 5-ball and a perfect non-PL
5-sphere

The following is the procedure for building a non-PL 5-ball that admits

a perfect discrete Morse vector (1,0,0,0,0,0) and a non-PL 5-sphere that

admits a perfect discrete Morse vector (1,0,0,0,0, 1) starting with Mazur’s
4-manifold M.
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[

Figure 4.2: (Left) A zoomed in view of H}, of Figure 4.1. (Right) A view
of H), on level:O0.

Figure 4.3
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Before cupula After cupula
Forming the cupula in level:+1

Before cupula After cupula
Forming the cupula in level:+2

Take a cone for the last extra tets.

Figure 4.4
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Procedure

Construct a non-PL 5-ball B starting with a triangulation of Mazur’s 4-
manifold M. We take some of the notation from [9, Proposition 3.20]

Step B1: Take the boundary H = OM.

Step B2: Let p be a vertex not in M and take the cone(H) =p* H.
Step B3: Let Cy = M |J cone(H).

Step B4: Let a be a vertex not in Cy and take the cone(Cy) = a * Cy.

Step B5: Make a copy cone(C}) of cone(Cy) by incrementing all vertex
labels by the value of a.

Step B6: Build J (see below).
Step B7: Let B = cone(Cy) | cone(CY) | J.

To build a perfect non-PL 5-sphere S starting with B.

Step S1: Let ¢ be a vertex not in B and take the cone(0B) = ¢ * B.

Step S2: Let S = B cone(0B).

Step B6

The J in Step B6 is the collection of the triangulations of the prisms
whose one face is a 4-simplex in cone(H) and the other face is the
corresponding 4-simplex in the copy of cone(H) in Cj. That is, for every
[vo v1 Vo v3 V4] € cone(H) we want to find the triangulation of the prism
[vo v1 Vg V3 Vg Wy Wy we w3 wy] using the product triangulation method
(with our extra check, see 3.2.5), where w; = v; + a fori =0, ..., 4.

This step is equivalent to identifying cone(H ) in Cj to its copy cone(H')
in C{, while avoiding unwanted identifications. That is, C} corresponds
exactly to the suspension C; = 3} from [9].
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4.3 Results & Experiments

4.3.1 Mazur’s 4-manifold

We refer to our triangulation of Mazur’s 4-manifold as M.

THEOREM 4.1

Mazur’s 4-manifold has a triangulation with face vector:
f(M) = (89,850,2175,2151, 738).
All the vertices of M lie on its boundary which has face vector:
f(OM) = (89,701, 1224, 612).

The boundary OM is a triangulation of the Brieskorn homology sphere
¥(2,5,7).

The homology of M is H.(M) = (Z,0,0,0,0,0). It has trivial funda-
mental group. The best discrete Morse vector we obtained was (1,1,1,0,0)
which was found 8349 times out of 10000 runs of Random_Discrete_Morse
using strategy random-random.

The boundary H = 0M has spherical homology. Its fundamental group
was found with GAP to have as one of its presentations:

(,y |y eytey ™2,y (ey ™) eyPa ™).

The best discrete Morse vector we found was (1,2,2,1) which was found
3458 times out of 10000 runs of Random_Discrete_Morse using strategy
random-random.

Furthermore, we attempted bistellar_simplification on H = OM
using several seed numbers. A collection of small triangulations of homology
3-spheres can be found on the webpage [47]. In at least one case, the
simplified complex was found to be isomorphic to the homology sphere
Sigma_2_5_7. We allowed our program to stop running as soon as it found
a match to any of the six spheres listed on that webpage. A match was
found after only ten attempts.

Mazur’s 4-manifold is contractible, but M is not collapsible. By
Whitehead’s theorem 2.1, this is because M as a PL manifold is not a
PL-ball. There are, however, non-PL balls that admit a discrete Morse
vector of (1,0,...,0) and thus are collapsible. The non-PL 5-ball B is one
such example.

One further remark is that this construction of Mazur’s 4-manifold
produces a non-ball because of the choice of Mazur’s I', the generator for
the first homology group. Notice that I' is knotted! inside of the solid torus

"Mazur [52] would perhaps describe T' as “clucky”. “Presumably only particularly
unclucky choices of I' will have [the manifold| simply connected.” This could also be a
typo for clunky. Or, perhaps, lucky.
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in dimensions 3. If we require it to remain in the boundary in dimension 4,
it will still be knotted. However, if we bring the whole torus (with the
thickened I inside) up to dimension 5, we can find (a copy of) the thickened
I' x I3, which in the 4-dimensional boundary will “unclasp”.

As a test, we constructed a 5-manifold gluing in a 5-dimensional 2-
handle along a copy of a thickened I' which we found on the bound-
ary of a (b-dimensional) solid torus. This 5-manifold has f-vector
(133,1743,6319, 9814, 6984, 1878). And, as expected, we found the bound-
ary of this new 5-manifold to be PL-homeomorphic to the boundary
of the 5-simplex; it has f-vector (133,1743,5662,6750,2700). In fact,
polymake’s bistellar_simplification client recognized it to be a sphere
very fast after only 34956 moves (using seed=0); the Akbulut-Kirby sphere
AKr1(3)—when successful—required over 7 million moves on average to
be recognized as a 4-sphere.

4.3.2 A perfect non-PL 5-ball
We refer to our triangulation of the non-PL 5-ball as B.

THEOREM 4.2
The non-PL 5-ball B with face vector:

F(B) = (182, 2938, 13060, 23785, 19242, 5760).

has perfect discrete Morse vector (1,0,0,0,0,0) and thus is collapsible.

The non-PL 5-ball B has homology H.(B) = (Z,0,0,0,0,0). GAP
found its fundamental group to be trivial. And out of 10000 runs of
Random_Discrete_Morse, we found the discrete Morse vector (1,0, 0, 0,0, 0)
every time using any strategy.

Note that [1| describes a non-PL 5-manifold that admits a perfect
discrete Morse vector, but that example is not a 5-ball since its boundary
is not a 4-sphere.

4.3.3 A perfect non-PL 5-sphere

We refer to our triangulation of the non-PL 5-sphere as S.

THEOREM 4.3

The non-PL 5-sphere S has a triangulation with face vector:
f(S) = (183, 3116, 15550, 31985, 29052, 9684)

which contains Mazur’s contractible 4-manifold M in its 4-skeleton.
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The non-PL 5-sphere S has spherical homology. Its fundamen-
tal group is also trivial as is its simplified presentation obtained via
polymake and GAP. The best discrete Morse vector we found using
Random_Discrete_Morse was (1,0, 1,2, 1, 1) which was found 22 out of 100
runs.

According to Adiprasito’s construction [9, Proposition 3.20], after
sufficiently many barycentric subdivisions B’ = sd™(B,m > 0 on B we
can obtain a non-PL 5-sphere S" = B’(Jcone(0B’) which will admit a
perfect discrete Morse vector. However, one barycentric subdivision of
S is a simplicial complex that has 89570 vertices (not counting its other
dimensional faces). We cannot fit the Hasse diagram of such an enormous
object into the memory of our 8GB machines. So we made random stellar
subdivisions of faces of any dimension on the boundary of S to see if any of
these partially subdivided S’ would admit a perfect discrete Morse vector.
Our experiments thus far in this direction have been inconclusive.

Alternatively, we can make a different type of local modification. We
know that bistellar flips preserves the PL-type of (closed) PL manifolds.
But we can also try bistellar flips on non-PL manifolds. A bistellar flip
removes a ball (the star of some face) and replaces it with a topologically
equivalent ball.

We tried bistellar flips (making only 1-4-moves or 2-3-moves so that
we do not change the number of vertices) on S to see if we can find
a triangulation that admits a perfect discrete Morse vector. Out of
over 1500 tries, where in each run we make 100000 bistellar moves, we
found one triangulation 7543 which admitted a triangulation with discrete
Morse vector (1,0,0,1,1,1). We then produced another 100 triangulations
which were obtained by an additional 10000 bistellar moves each on
T5u3. Of those 100 new triangulations, four of them admitted a perfect
discrete Morse vector of (1,0,0,0,0,1), the smallest of which has f-vector
(183, 3281, 16004, 32522, 29424, 9808).

THEOREM 4.4

There is a collapsible non-PL triangulation of S® with face-vector

£ = (183, 3281, 16004, 32522, 29424, 9308).

With enough time and attempts, we expect the stellar subdivision tests
to also find a triangulation that admits a perfect discrete Morse vector.
Each stellar subdivision adds an additional vertex increasing the size of
the complex (and therefore also its Hasse diagram) and as a result, the
stellar subdivision tests take much more time (and memory) compared to
the bistellar tests. Moreover, the fact that we found only one instance out
of 1500 runs of the bistellar test that found a better discrete Morse vector
(which then required further flips) suggests that it may be difficult to find
a random stellar subdivision of B which can be used to construct some S’
that admits a perfect Morse vector.
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Summary

The Akbulut-Kirby spheres are an infinite family of (smooth) 4-manifolds
that are diffeomorphic to the standard sphere; they each have a handlebody
decomposition that is described by a certain nontrivial presentation of the
trivial group. These spheres were proposed as candidate counterexamples
to the smooth Poincaré conjecture in dimension 4. The smooth Poincaré
conjecture in dimension 4 is still open today, but the entire family of
spheres are no longer exotic candidates. In dimension 4, the categories
PL and DIFF coincide, so PL triangulations of the Akbulut—Kirby spheres
are standard PL 4-spheres. We describe three different ways to construct
explicit triangulations of the Akbulut—Kirby spheres.

However, to show that these PL triangulations are indeed PL 4—
spheres is no simple task. The problem of PL sphere recognition in
dimension 4 is also still open. In dimension 3, sphere recognition is
known to be in the complexity class NP. In higher dimensions, PL spheres
are unrecognizable. There are, however, heuristic algorithms that can
recognize spheres effectively on many examples. We will discuss some of
these algorithms and their limitations. Our experiments show that the
heuristics—even when used in combination—were not able to recognize the
majority of the Akbulut—Kirby triangulated PL 4—spheres.

We will also briefly discuss our construction of a triangulation of
Mazur’s 4—manifold, which used many of the tools we designed to build the
triangulated Akbulut—Kirby spheres. Mazur’s 4-manifold is a contractible
4-manifold that has a boundary that is a homology sphere that is not the
standard 3—sphere. We use this triangulation to build a collapsible non-PL
5-ball and a non-PL 5-sphere.
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Zusammenfassung

Die Akbulut-Kirby Sphéren gibt eine unendliche Familie von (glatten) 4—
Mannigfaltigkeiten, die diffeomorph zur Standardsphére sind; sie haben
jeweils eine handlebody Zersetzung, die durch eine bestimmte nicht-triviale
Vorstellung des trivialen Gruppe beschrieben wird. Diese Sphéren wurden
als Kandidaten Gegenbeispiele zum reibungslosen Poincaré-Vermutung in
Dimension 4. Die glatte Poincaré—Vermutung in Dimension 4 vorgeschlagen
wird, ist noch offen heute, sondern die ganze Familie von Kugeln sind nicht
mehr exotisch Kandidaten. In Dimension 4 die Kategorien PL und DIFF
zusammenfallen, so PL Triangulierungen der Akbulut—Kirby Kugeln sind
Standard PL 4-Sphéren. Wir beschreiben drei verschiedene Moglichkeiten,
explizite Triangulierungen der Akbulut-Kirby Sphéren zu konstruieren.

Aber um zu zeigen, dass diese PL Triangulierungen sind in der Tat
PL 4-Sphéren ist keine einfache Aufgabe. Das Problem der PL Kugel
Anerkennung in Dimension 4 ist auch noch offen. In Dimension 3
ist Sphéare Erkennung bekannt, in der Komplexitatsklasse NP sein. In
héheren Dimensionen sind PL Sphéren nicht wiederzuerkennen. Es gibt
jedoch heuristische Algorithmen, die Kugeln effektiv auf vielen Beispielen
erkennen kann. Wir werden einige dieser Algorithmen und ihre Grenzen zu
diskutieren. Unsere Experimente zeigen, dass die Heuristik — selbst wenn
sie in Kombination verwendet werden — nicht in der Lage, den Grofteil
der Akbulut—Kirby erkennen trianguliert PL 4-Sphéren.

Wir werden auch kurz auf unsere Bau einer Triangulation von Mazur
4-Verteiler, die viele der Werkzeuge, die wir entwickelt, um die Dreiecks
Akbulut-Kirby Kugeln bauen verwendet. Mazur 4—Verteilers ist eine
zusammenziehbare 4—Verteiler, der eine Grenze, die eine Homologie Kugel,
die nicht die Standard-3-Kugel hat. Wir verwenden diese Triangulation,
eine zusammenklappbare nicht-PL 5-Ball und eine nicht-PL 5-Sphére zu
bauen.
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