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CONVERGENCE OF THE ROTHE METHOD APPLIED TO

OPERATOR DAES ARISING IN ELASTODYNAMICS

R. ALTMANN∗

Abstract. The dynamics of elastic media, constrained by Dirichlet boundary condi-
tions, can be modeled as operator DAE of semi-explicit structure. These models include
flexible multibody systems as well as applications with boundary control. In order to use
adaptive methods in space, we analyse the properties of the Rothe method concerning
stability and convergence for this kind of systems.

For this, we consider a regularization of the operator DAE and prove the weak con-
vergence of the implicit Euler scheme. Furthermore, we consider perturbations in the
semi-discrete systems which correspond to additional errors such as spatial discretization
errors.
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1. Introduction

Within this paper, we prove the convergence of the implicit Euler method applied
to a differential-algebraic equation (DAE) in the abstract setting, i.e., to an operator
DAE. More precisely, we consider the dynamics of elastic media which are constrained by
Dirichlet boundary conditions or by a coupling condition. This also includes the simulation
of flexible multibody systems.

The modeling of mechanical systems often leads to constrained systems of ordinary
and partial differential equations (PDEs), see [Sim98, SGS06]. In this paper, we restrict
the analysis to elastodynamics with constraints on the boundary in the form of Dirichlet
boundary conditions. These constraints are incorporated by the Lagrangian method, since
the Dirichlet data may be unknown a priori [Sim06]. Such systems arise typically in the
field of flexible multibody dynamics [Sha97, GC01, Bau10, Sim13]. Therein, a number of
deformable bodies are coupled through joints. Note, however, that the considered approach
also includes a more general coupling of flexible bodies with any other dynamical system
as well as boundary control. This is possible, since the Dirichlet boundary conditions are
explicitly given in the system equations in form of a constraint. A spatial discretization of
such systems then typically leads to DAEs of differentiation index 3 [Sim06]. The concept
of the differentiation index measures, loosely speaking, how far the DAE is apart from
an ordinary differential equation and thus, provides a measure of difficulty. A general
introduction to DAEs can be found in the monographs [CM99, KM06, Ria08, LMT13],
see also the review on the different index concepts in [Meh13].

If we want to analyse a dynamical system before the spatial discretization, the frame-
work of classical DAEs is too restrictive. Since the elastic behaviour is described by PDEs,
we obtain so-called partial differential-algebraic equations (PDAEs) or, formulated in a
weak functional analytic setting, operator DAEs. Following [Zei90, Ch. 23], we use for this
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CONVERGENCE OF THE ROTHE METHOD IN ELASTODYNAMICS 3

formulation appropriate Sobolev-Bochner spaces and different spaces for the solution and
their derivatives.

Although operator DAEs provide a quick and simple modeling procedure, there is no
general theory for the well-posedness or a classification as for DAEs [Tis03, LMT13]. For
the analysis of such systems we need to explore the interaction of DAE theory and operator
theory.

The basis for the presented convergence analysis of the time integration is the regularized
operator formulation introduced in [Alt13]. Therein, the operator DAE describing the
motion of elastic media was reformulated such that a spatial discretization leads to a DAE
of index 1 rather than index 3. The regularization also improves the sensitivity in terms of
perturbations which is of importance for numerical simulations. This then allows to apply
the Rothe method - which is popular for time-dependent PDEs - also for operator DAEs.
This enables adaptive procedures, especially in the space variable, since the underlying
grid may be changed easily from time step to time step.

The paper is organized as follows. In Section 2 we recall the equations of motion
for the dynamics of elastic media and their formulation as operator DAE. Furthermore,
we present the regularized formulation of this system, which corresponds to the index-1
formulation in finite dimensions. The discretization of the time variable is then subject of
Section 3. Therein, we discuss the solvability of the semi-discrete system and provide
stability estimates. To show the convergence of the Rothe method, we define global
approximations and analyze their behaviour in the limit when the step size goes to zero. In
Section 4 we employ these results and consider additional perturbations. This is important
for the convergence of the Rothe method, since in practice additional errors due to a spatial
discretization appear. Finally, we give some concluding remarks in Section 5.

2. Preliminaries

Since we focus on Dirichlet boundary conditions, the trace operator which extends the
mapping

γ : C(Ω̄)→ C(∂Ω), u 7→ γ(u) := u|∂Ω(2.1)

to Sobolev spaces in of special importance, cf. [AF03]. We introduce the necessary Sobolev
and Sobolev-Bochner spaces of abstract functions. All these spaces are necessary for the
weak formulation of PDEs and their interpretation as operator differential equations. With
this, we formulate the equations of motion as operator DAE in Section 2.3.

2.1. Spaces and Norms. Within this paper, we use the standard notation of Sobolev
spaces, i.e., L2(Ω) denotes the Lebesgue space of square integrable functions and H1(Ω)
the functions with an additional derivative (in the weak sense). Furthermore, H1

ΓD
(Ω)

denotes the subspace of H1(Ω) with vanishing trace on ΓD ⊆ ∂Ω, i.e., with homogeneous

boundary values on ΓD, and H1/2(ΓD) the space of traces, cf. [AF03].
For the weak formulation of elastodynamics we need functions in several components.

For this, we define

V :=
[
H1(Ω)

]d
, VB :=

[
H1

ΓD
(Ω)
]d
, H :=

[
L2(Ω)

]d
, Q∗ := [H1/2(ΓD)]d.

Note that the Hilbert space Q is only defined via its dual space Q∗. For the inner product
in H and the norms in H and V we use the abbreviations

(u, v) := (u, v)H, |u| := ‖u‖H, ‖u‖ := ‖u‖V .
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Note that the spaces V, H, V∗ form a Gelfand triple [Wlo87, Ch. 17.1]. Thus, we have

V d
↪−→ H ∼= H∗

d
↪−→ V∗

with continuous and dense embeddings. The equivalence of the Hilbert spaces H and H∗
follows from the Riesz representation theorem [RR04, Th. 6.52]. Within this setting, the
duality pairing of V and V∗ is the continuous extension of the inner product in H, i.e., for
h ∈ H and v ∈ V, we obtain

〈h, v〉V∗,V = (h, v).

As solutions of the operator equations below, we consider abstract functions, i.e., func-
tions on a time interval [0, T ] which map to a Banach space X. In our case, these Banach
spaces are again the Sobolev spaces introduced above. This leads to Sobolev-Bochner
spaces, see [Rou05, Ch. 7] for an introduction.

In particular, we consider the space L2(0, T ;X) which includes abstract functions
u : [0, T ]→ X with

‖u‖2L2(0,T ;X) =

∫ T

0
‖u(t)‖2X dt <∞.

Similarly, Hk(0, T ;X) denotes the Sobolev-Bochner space of abstract functions which have
time derivatives (in the distributional sense) up to order k in L2(0, T ;X).

The space of continuous functions with values in X is donoted by C([0, T ];X).

2.2. Elastodynamics. We review the governing equations for the dynamics of elastic
media. Throughout this paper, Ω ⊂ Rd denotes a domain with Lipschitz boundary where
ΓD ⊆ ∂Ω denotes the Dirichlet boundary and ΓN = ∂Ω \ ΓD the Neumann boundary.
Note that we do not consider the pure Neumann problem, i.e., ΓN = ∂Ω, since this would
exclude the considered coupling throughout the boundary.

2.2.1. Equations of Motion. The equations of elastodynamics describe the evolution of a
deformable body under the influence of applied forces based on Cauchy’s theorem [Cia88,
Ch. 2]. We consider the theory of linear elasticity for homogeneous and isotropic materials,
i.e., we assume small deformations only. Note that for large deformations the nonlinear
theory has to be applied in order to obtain reasonable results. The corresponding initial-
boundary value problem in the classical form with prescribed Dirichlet data uD and applied
forces β and τ reads

ρü− div(σ(u)) = β in Ω,(2.2a)

u = uD on ΓD,(2.2b)

σ(u) · n = τ on ΓN.(2.2c)

with initial conditions

u(0) = g, u̇(0) = h.(2.2d)

Therein, u denotes the unknown displacement field with linearized strain tensor ε(u) ∈
Rd×dsym and stress tensor σ(u) ∈ Rd×dsym , given by

ε(u) :=
1

2

[
∇u+ (∇u)T

]
, σ(u) := λ tr ε(u)Id + 2µε(u).

Note that the stress depends on the material constants λ and µ, the so-called Lamé
parameters, and that Id denotes the d× d identity matrix whereas tr denotes the trace of
a matrix, i.e., the sum of the diagonal entries. Furthermore, ρ > 0 denotes the constant
density of the material and n the outer normal vector along the boundary.
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With the inner product for matrices, A : B := tr(ABT ) =
∑

i,j AijBij , we define the
linear stiffness operator K : V → V∗ by

〈Ku, v〉V∗,V :=

∫
Ω
σ(u) : ε(v) dx.(2.3)

By Korn’s inequality [BS08, Ch. 11.2], K is coercive on VB if ΓD has positive measure.
Furthermore, K is symmetric and bounded. Thus, there exist positive constants k1 and
k2 such that for all u ∈ VB and v, w ∈ V it holds that

k1‖u‖2 ≤ 〈Ku, u〉V∗,V , 〈Kv, w〉V∗,V ≤ k2‖v‖‖w‖.(2.4)

Note that the symmetry of the operator implies that we may write 〈Ku, u〉V∗,V = |K1/2u|2.

2.2.2. Damping. We like to enrich the mathematical model (2.2) by a dissipation term.
Note that the choice of the damping model is a delicate task and depends strongly on the
desired effects. Often viscous damping [Hug87, Ch. 7.2] is considered which corresponds to
a generalization of Hooke’s law. The popular generalization of the mass proportional and
stiffness proportional damping is called Rayleigh damping [CP03, Ch. 12]. Since this quite
common approach has no physical justification [Wil98, Ch. 19], we allow more general
nonlinear damping terms. For this, we define a nonlinear damping operator D : V → V∗
which is assumed to be Lipschitz continuous and strongly monotone, i.e., there exist
constants d0, d1, and d2 such that for all u, v ∈ V it holds that

‖Du−Dv‖V∗ ≤ d2‖u− v‖, d1‖u− v‖2 − d0|u− v|2 ≤ 〈Du−Dv, u− v〉V∗,V .(2.5)

Furthermore, we may assume w.l.o.g. D(0) = 0, see [ET10a, p. 181], and thus,

‖Du‖V∗ ≤ d2‖u‖, d1‖u‖2 − d0|u|2 ≤ 〈Du, u〉V∗,V .

Remark 2.1. Because of the continuous embedding V ↪→ H, we have | · | ≤ Cemb‖ · ‖. In
the case d0C

2
emb < d1, we can write

〈Du, u〉V∗,V ≥ d1‖u‖2 − d0|u|2 ≥
(
d1 − d0C

2
emb

)
‖u‖2.

Thus, we may assume either d0 = 0 or d0C
2
emb ≥ d1.

2.2.3. Dirichlet Boundary Conditions. We include the inhomogeneous Dirichlet boundary
conditions in a weak form, i.e., with the help of Lagrange multipliers [Sim00, Sim13].
This leads to a dynamic saddle point problem which is advantageous if the Dirichlet
data depends e.g. on the motion of other bodies as in flexible multibody dynamics.
Furthermore, the considered setting includes boundary control [Trö09].

Within this paper, we denote the trace operator, i.e., the extension of (2.1), by B : V →
Q∗. Note that the space VB equals the kernel of the operator B and let Vc denote any
complement such that

V = VB ⊕ Vc.

Since V is a Hilbert space, the canonical choice is the orthogonal complement Vc = (VB)⊥V .
In any case, the operator B is an isomorphism, if restricted to Vc, and B satisfies an inf-sup
condition, i.e., there exists a constant β > 0 with

inf
q∈Q

sup
v∈V

〈Bv, q〉
‖v‖ ‖q‖Q

= β > 0,

In other words, the operator B has a continuous right inverse which we denote by B−.
The corresponding continuity constant is given by CB− , i.e., ‖B− · ‖ ≤ CB−‖ · ‖Q∗ . Finally,
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its dual operator B∗ : Q → Vo
B ⊆ V∗ defines an isomorphism, where Vo

B denotes the polar
set (also called annihilator), i.e.,

Vo
B :=

{
f ∈ V∗ | 〈f, v〉 = 0 for all v ∈ VB

}
.(2.6)

2.3. Formulation as Operator DAE. The weak formulation of equation (2.2a) with
additional damping can be written in operator form. This then equals an operator ODE,
i.e., an ODE in an abstract setting. Including the inhomogeneous boundary conditions
by the Lagrangian method, we add a constraint and thus, we obtain an operator DAE. In
this case, the solution consists of the deformation variable u and the Lagrange multiplier
λ.

We consider two different operator formulations. Either way, we assume for the data of
the right-hand sides F ∈ L2(0, T ;V∗) and G ∈ H2(0, T ;Q∗). Note that the regularity of G
in the time variable is a necessary condition of the existence of solutions.

2.3.1. Original Formulation. To ensure that the introduced operators are defined for the
solution, we assume that the deformation variable satisfies u ∈ H1(0, T ;V) with second
derivative ü ∈ L2(0, T ;V∗). Note that u̇ ∈ L2(0, T ;H) is not sufficient because of the
damping term. As search space for the Lagrange multiplier we consider L2(0, T ;Q). Thus,
the dynamic saddle point problem in operator form reads:

Find u ∈ H1(0, T ;V) with ü ∈ L2(0, T ;V∗) and λ ∈ L2(0, T ;Q) such that

ρü(t) +Du̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗,(2.7a)

Bu(t) = G(t) in Q∗(2.7b)

is satisfied for t ∈ (0, T ) a.e. and initial conditions

u(0) = g ∈ V, u̇(0) = h ∈ H.(2.7c)

Note that the assumed regularity of the solution implies u ∈ C([0, T ];V) and u̇ ∈ C([0, T ];H),
cf. [Rou05, Ch. 7]. Thus, the initial conditions are well-posed for g ∈ V and h ∈ H. As
classical DAEs require consistent initial data, we have to expect a similar condition in the
operator case.

Remark 2.2. Because of the constraint (2.7b), the initial data have to satisfy Bg = G(0).
Thus, we obtain the decomposition g = g0 + B−G(0) with g0 ∈ VB which is a consistency

condition for g. For h we get the decomposition h = h0 +B−Ġ(0) with h0 ∈ H. Note that,

since B−Ġ(0) ∈ Vc ↪→ H, this does not give a restriction for h.

System (2.7) is called an operator DAE, since a spatial discretization by finite elements
yields a DAE of index 3 [Alt13]. Since high-index DAEs are known to be very sensitive
to perturbations, their numerical approximation is a difficult task and numerical time
integration methods may even diverge [LP86]. For a simulation it is therefore advisable
to perform an index reduction which yields an equivalent system of equations which is of
index one. In the infinite-dimensional case, a similar approach is possible.

2.3.2. Regularized Formulation. The regularization of semi-explicit operator DAEs is pre-
sented in [Alt13, Alt15]. This regularization then results in an equivalent operator DAE
whose spatial discretization leads to a DAE of index 1. Thus, the resulting system is
better suited for numerical integration.

The regularization involves an extension of the system by the so-called hidden con-
straints and additional dummy variables. Furthermore, the deformation variable u is split
into u = u1 +u2 where u1 is the differential part in VB and u2 the part of the deformation
which is already fixed due to the given constraint. The system then reads as follows:
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Find u1 ∈ H1(0, T ;VB) with ü1 ∈ L2(0, T ;V∗) as well as u2, v2, w2 ∈ L2(0, T ;Vc) and
λ ∈ L2(0, T ;Q) such that

ρ(ü1 + w2) + D(u̇1 + v2) + K(u1 + u2) + B∗λ = F in V∗,(2.8a)

Bu2 = G in Q∗,(2.8b)

Bv2 = Ġ in Q∗,(2.8c)

Bw2 = G̈ in Q∗,(2.8d)

is satisfied for t ∈ (0, T ) a.e. with initial conditions

u1(0) = g0 ∈ VB, u̇1(0) = h0 ∈ H.(2.8e)

With the given assumptions on the involved operators from Section 2.2, system (2.8) has
a unique solution (u1, u2, v2, w2, λ), see [Alt13]. Furthermore, it has been shown that the
operator DAE is well-posed in the sense that the map(

g0, h0,F ,G
)
7→
(
u1, u2, v2, w2, ü1 +Du̇1 + B∗λ

)
is linear and continuous as mapping

VB ×H× L2(0, T ;V∗)×H2(0, T ;Q∗)→
C([0, T ],V) ∩ C1([0, T ],H)× L2(0, T ;Vc)3 × L2(0, T ;V∗).

Remark 2.3. The used regularization technique also applies to flow equations such as the
Stokes or Oseen equations. In [AH13] it has been shown that this formulation is beneficial
for numerical simulations and even allows semi-explicit time integration schemes.

3. Discretization and Stability

To derive a priori error estimates and the convergence proofs, we apply standard tech-
niques from abstract ODE theory as in [ET10a]. For this, we construct piecewise constant
and linear (in time) approximations of the variables of interest. The a priori estimates
then show the boundedness of the approximation independent of the step size such that a
weakly convergent subsequence can be extracted.

3.1. Time Discretization. In the fields of elastodynamics and multibody dynamics, the
Newmark scheme [New59, GC01] as well as further developments like the generalized-α
methods [CH93, AB07] are widely used. However, these schemes are not suitable for
the convergence of operator equations, since also derivatives of the approximations of the
previous time step are used [EŠT13]. Thus, we restrict ourselves to the scheme which
corresponds to the implicit Euler method applied to the equivalent first-order system.

We only consider equidistant time steps with step size τ . Let uj denote the approxima-
tion of u at time tj = jτ . For the temporal discretization we then replace the derivatives
u̇ and ü at time tj by

u̇(tj)→
uj − uj−1

τ
=: Duj , ü(tj)→

uj − 2uj−1 + uj−2

τ2
=: D2uj .

The convergence of this scheme for index-3 DAEs, i.e., for the finite-dimensional setting
arising in multibody dynamics, is discussed in [LP86]. We emphasize that the analysis
used in [LP86] assumes that the constraint is solved with high accuracy, namely up to the
order of O(τ3). This is not necessary if the index of the system is reduced first.
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3.1.1. Function Evaluations. For the (formal) application of a discretization scheme to an
operator equation, we need function evaluations of the right-hand sides. However, the
given data may not be continuous. Thus, function evaluations of the right-hand side have
to be replaced, e.g., by an integral mean over one time step.

Consider a Bochner integrable function F ∈ L2(0, T ;X) with a real Banach space X
and an equidistant partition 0 = t0 < t1 < · · · < tn = T of [0, T ]. We define F j ∈ X by
the Bochner integral over one time step τ , i.e.,

F j :=
1

τ

∫ tj

tj−1

F(t) dt ∈ X.

Note that this is well-defined for F ∈ L2(0, T ;X). In this way, we define the piecewise
constant (abstract) function Fτ : [0, T ]→ X by

Fτ (t) := F j for t ∈ (tj−1, tj ](3.1)

and a continuous extension in t = 0. An easy calculation shows that Fτ ∈ L2(0, T ;X)
satisfies the inequality

‖Fτ‖2L2(0,T ;X) = τ
n∑
j=1

‖F j‖2X ≤
n∑
j=1

∫ tj

tj−1

‖F(t)‖2X dt = ‖F‖2L2(0,T ;X).(3.2)

One important property of Fτ is the strong convergence to F .

Lemma 3.1 ([Tem77, Ch. III, Lem. 4.9]). Consider F ∈ L2(0, T ;X) with its approxima-
tion Fτ as defined in (3.1). Then, Fτ → F in L2(0, T ;X), i.e., ‖Fτ − F‖L2(0,T ;X) → 0,
as τ → 0.

For continuous functions F ∈ C([0, T ];X) function evaluations are well-defined. In this
case, we may define

Fτ (t) := F(tj) ∈ X for t ∈ (tj−1, tj ].(3.3)

Again we consider a continuous extension in t = 0 and obtain Fτ → F in L2(0, T ;X).
If F ∈ H1(0, T ;X), then we discretize F by means of function evaluations as in (3.3)

and Ḟ by the integral mean as in (3.1). This approach has the nice property that the
discrete derivative of F j equals the approximation of the derivative, i.e.,

DF j =
F j −F j−1

τ
= Ḟ j .

3.1.2. Semi-discrete Equations. Replacing the derivatives by discrete derivatives, i.e., u̇(tj)
by Duj and ü(tj) by D2uj , we obtain from the differential equation

ρ
(
D2uj1 + wj2

)
+D

(
Duj1 + vj2

)
+K

(
uj1 + uj2

)
+ B∗λj = F j .(3.4a)

This equation has to be solved for j = 2, . . . , n and is still stated in the dual space of
V and thus, equals a PDE in the weak formulation. The three constraints (2.8b)-(2.8d)
result in

Buj2 = Gj , Bvj2 = Ġj , Bwj2 = G̈j in Q∗.(3.4b)

Remark 3.1 (Special case G ≡ 0). Consider the case where G vanishes, i.e., the homo-

geneous Dirichlet case. This directly implies uj2 = vj2 = wj2 = 0 and thus, the problem
reduces to an operator ODE on the kernel VB, namely

ρD2uj1 +D
(
Duj1

)
+Kuj1 = F j in V∗B.
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Before we derive stability results for the discrete approximations, we have to discuss
the solvability of the semi-discrete system (3.4).

Lemma 3.2. With the assumptions introduced in Section 2, system (3.4) has a unique

solution (uj1, u
j
2, v

j
2, w

j
2, λ

j) for each time step j = 2, . . . , n if the step size satisfies τ < ρ/d0.
In the case d0 = 0, there is no step size restriction.

Proof. The invertibility of the operator B in Vc implies that the three equations in (3.4b)

give unique approximations uj2, vj2, and wj2, respectively. Consider equation (3.4a) re-
stricted to test functions in VB. We define the operator A : VB → V∗B and the functional
F̄ j ∈ V∗ by

Au :=
ρ

τ2
u+D

(u− uj−1
1

τ
+ vj2

)
+Ku, F̄ j := F j +

ρ

τ2

(
2uj−1

1 − uj−2
1

)
− ρwj2 −Ku

j
2.

Then, equation (3.4a) can be written in the form Auj1 = F̄ j in V∗B. Obviously, the operator
A is continuous. Using (2.4) and (2.5), we also have that A is monotone, since〈

Au−Av, u− v
〉
≥ ρ

τ2
|u− v|2 +

d1

τ
‖u− v‖2 − d0

τ
|u− v|2 + k1‖u− v‖2

=
(
d1/τ + k1

)
‖u− v‖2 +

(
ρ/τ2 − d0/τ

)
|u− v|2.

This shows that 〈Au − Av, u − v〉 ≥ k1‖u − v‖2 for τ < ρ/d0 and thus, the existence

of a solution uj1 ∈ VB using the Browder-Minty theorem [GGZ74, Ch. III, Th. 2.1]. The
strong monotonicity of A also implies the uniqueness of the solution. Finally, the unique
solvability for λj follows from the invertibility of B∗ : Q → Vo

B, cf. Section 2.2.3. �

3.2. Stability Estimates. Within this subsection, we use the abbreviation

vj1 := Duj1 =
uj1 − u

j−1
1

τ
.

Furthermore, we assume u1
1 and v1

1 to be the fixed initial data of the semi-discrete problem
(3.4), i.e., approximations of the initial data u1(0) = g0 and u̇1(0) = h0. Note that this
also defines u0

1 which - in the limit - coincides with u1
1.

In the following lemma we give a stability estimate of the semi-discrete approximations.
Note that this includes a step size restriction due to the nonlinear damping term.

Lemma 3.3 (Stability). Assume right-hand sides F ∈ L2(0, T ;V∗), G ∈ H2(0, T ;Q∗) and

initial approximations u1
1 ∈ VB, v1

1 ∈ H. Let the approximations uj1, uj2, vj2, and wj2 be
given by the semi-discrete system (3.4) and let the step size satisfy τ < ρ/8d0. Then, there
exists a constant c > 0 such that for all k ≥ 2 the inequality

ρ
∣∣vk1 ∣∣2 + ρ

k∑
j=2

∣∣vj1 − vj−1
1

∣∣2 + τd1

k∑
j=2

∥∥vj1∥∥2
+ k1

∥∥uk1∥∥2 ≤ c 28d0T/ρM2(3.5)

is satisfied with a constant M =
[
‖u1

1‖2 + |v1
1|2 + ‖F‖2L2(0,T ;V∗) + ‖G‖2H2(0,T ;Q∗)

]1/2
.

Proof. The equations in (3.4b) directly lead to the estimates

‖uj2‖ ≤ CB−‖Gj‖Q∗ , ‖vj2‖ ≤ CB−‖Ġj‖Q∗ , ‖wj2‖ ≤ CB−‖G̈j‖Q∗ .(3.6)

The remainder of the proof follows the ideas of the proof of [ET10a, Th. 1] although a
different time discretization scheme is used. We only consider the case d0 > 0, since the
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proof for d0 = 0 works in the same manner but with less difficulties. Within the proof, we
take several times advantage of the equality

2(a− b)a = a2 − b2 + (a− b)2.(3.7)

We test equation (3.4a) with the discrete derivative vj1 ∈ VB, j ≥ 2. This leads to

ρ
〈
Dvj1, v

j
1

〉
+
〈
D
(
vj1 + vj2

)
, vj1
〉

+
〈
Kuj1, v

j
1

〉
=
〈
F j , vj1

〉
− ρ
〈
wj2, v

j
1

〉
−
〈
Kuj2, v

j
1

〉
.(3.8)

For the terms on the left-hand side, we estimate separately

ρ
〈
Dvj1, v

j
1

〉
=
ρ

τ

〈
vj1 − v

j−1
1 , vj1

〉 (3.7)
=

ρ

2τ

[∣∣vj1∣∣2 − ∣∣vj−1
1

∣∣2 +
∣∣vj1 − vj−1

1

∣∣2],
for the damping term

〈
D
(
vj1 + vj2

)
, vj1
〉

=
〈
D
(
vj1 + vj2

)
−Dvj2, v

j
1

〉
+
〈
Dvj2, v

j
1

〉
(2.5)

≥ d1‖vj1‖
2 − d0|vj1|

2 − d2‖vj1‖‖v
j
2‖

≥ d1‖vj1‖
2 − d0|vj1|

2 − d1

6
‖vj1‖

2 − 3d2
2

2d1
‖vj2‖

2,

and finally, for the stiffness term

〈
Kuj1, v

j
1

〉
=

1

τ

〈
Kuj1, u

j
1 − u

j−1
1

〉 (3.7)

≥ 1

2τ

∣∣K1/2uj1
∣∣2 − 1

2τ

∣∣K1/2uj−1
1

∣∣2.
Using the Cauchy-Schwarz inequality, followed by an application of Youngs inequality
[Eva98, App. B], for the right-hand side of (3.8) we obtain〈

F j , vj1
〉
−ρ
〈
wj2, v

j
1

〉
−
〈
Kuj2, v

j
1

〉
≤ ‖F j‖V∗‖vj1‖+ ρ|wj2||v

j
1|+ k2‖uj2‖‖v

j
1‖

≤ 3

2d1
‖F j‖2V∗ +

d1

6
‖vj1‖

2 +
ρ2

4d0
|wj2|

2 + d0|vj1|
2 +

3k2
2

2d1
‖uj2‖

2 +
d1

6
‖vj1‖

2.

Thus, a multiplication of (3.8) by 2τ implies with the estimates above that

ρ
[
|vj1|

2 − |vj−1
1 |2 + |vj1 − v

j−1
1 |2

]
+ τd1‖vj1‖

2 − 4τd0|vj1|
2 +

∣∣K1/2uj1
∣∣2 − ∣∣K1/2uj−1

1

∣∣2
≤ τ

[
3

d1
‖F j‖2∗ +

3k2
2

d1
‖uj2‖

2 +
3d2

2

d1
‖vj2‖

2 +
ρ2

2d0
|wj2|

2

]
.(3.9)

With the estimates of uj2, vj2, and wj2 from equation (3.6) we can bound the right-hand

side of (3.9) by cτ
[
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

]
. Here, c > 0 denotes a generic

constant which depends on CB− , ρ, d0, d1, d2, and k2.
Before we sum over j and make benefit of several telescope sums, we have to deal with

the term 4τd0|vj1|2 on the left-hand side of (3.9). For this, we use arguments which are
used to prove discrete versions of the Gronwall lemma [Emm99]. With κ := 4d0/ρ and
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aj := (1− κτ)j , we estimate

ρ
[
aj |vj1|

2 − aj−1|vj−1
1 |2 + aj−1|vj1 − v

j−1
1 |2

]
+ τd1a

j−1‖vj1‖
2 + aj

∣∣K1/2uj1
∣∣2 − aj−1

∣∣K1/2uj−1
1

∣∣2
= aj−1

[
ρ(1− κτ)|vj1|

2 − ρ|vj−1
1 |2 + ρ|vj1 − v

j−1
1 |2 + τd1‖vj1‖

2

+ (1− κτ)
∣∣K1/2uj1

∣∣2 − ∣∣K1/2uj−1
1

∣∣2]
≤ aj−1

[
ρ|vj1|

2 − ρ|vj−1
1 |2 + ρ|vj1 − v

j−1
1 |2 + τd1‖vj1‖

2 − 4τd0|vj1|
2

+
∣∣K1/2uj1

∣∣2 − ∣∣K1/2uj−1
1

∣∣2]
(3.9)

≤ aj−1τc
(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)
.

Note that we have used the fact that, due to the assumption on the step size τ , we have
0 < aj < 1 for all j ≥ 1 and κ ≥ 0. The summation of this estimate for j = 2, . . . , k then
yields

ρak
∣∣vk1 ∣∣2 + ρ

k∑
j=2

aj−1
∣∣vj1 − vj−1

1

∣∣2 + τd1

k∑
j=2

aj−1‖vj1‖
2 + ak

∣∣K1/2uk1
∣∣2

≤ ρa1
∣∣v1

1

∣∣2 + a1
∣∣K1/2u1

1

∣∣2 + τc
k∑
j=2

aj−1
(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)
.

Finally, we divide by ak and use the estimates aj > ak for j < k and a−k ≤ 4κT . The
latter inequality follows from 1/τ > 2κ and the monotonicity of the sequence (1 + x/n)n

by
ak = (1− κτ)k = (1− κT/n)k > (1− κT/n)n ≥ (1− 1/2)2κT = 4−κT .

This then leads to the final result

ρ
∣∣vk1 ∣∣2 + ρ

k∑
j=2

∣∣vj1 − vj−1
1

∣∣2 + τd1

k∑
j=2

∥∥vj1∥∥2
+ k1

∥∥uk1∥∥2

≤ 4κT
{
ρ
∣∣v1

1

∣∣2 + k2

∥∥u1
1

∥∥2
+ τc

k∑
j=2

(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)}
.�

With the stability estimate (3.5) in hand, we are able to show the uniform boundedness
of the approximation sequences defined in the following subsection.

3.3. Global Approximations. In this subsection, we define global approximations of
u1, u2, v2, and w2. First, we define U1,τ , Û1,τ : [0, T ]→ VB by

U1,τ (t) := uj1, Û1,τ (t) := uj1 + (t− tj)vj1
for t ∈ (tj−1, tj ] and j ≥ 2 with U1,τ ≡ Û1,τ ≡ u1

1 on [0, t1]. By the stability estimate (3.5)

of Lemma 3.3 we directly obtain the uniform boundedness of U1,τ and Û1,τ in L∞(0, T ;VB).

Thus, there exists a weak limit U1 ∈ L∞(0, T ;VB) with U1,τ , Û1,τ
∗−⇀ U1 in L∞(0, T ;VB) as

well as U1,τ , Û1,τ ⇀ U1 in L2(0, T ;VB). Note that the limits of the two sequences coincide,
since∥∥Û1,τ − U1,τ

∥∥2

L2(0,T ;H)
=

n∑
j=1

∫ tj

tj−1

∣∣(t− tj)vj1∣∣2 dt ≤
n∑
j=1

τ3
∣∣vj1∣∣2 (3.5)

≤ cτ2M2 → 0.
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From this, the agreement of the limits in L2(0, T ;VB) follows by the assumed embedding
VB ↪→ H given by the Gelfand triple.

In an analogous way, we define the piecewise constant functions U2,τ , V2,τ , W2,τ : [0, T ]→
Vc. We set

U2,τ (t) := uj2, V2,τ (t) := vj2, W2,τ (t) := wj2
for t ∈ (tj−1, tj ] and j ≥ 1 with a continuous extension in t = 0. By equation (3.4b) we

have BU2,τ = Gτ , BV2,τ = Ġτ , and BW2,τ = G̈τ . Thus, Lemma 3.1 implies that

U2,τ → U2, V2,τ → V2, W2,τ →W2 in L2(0, T,V).

Note that the limits U2, V2, and W2 solve the equations BU2 = G, BV2 = Ġ, and BW2 = G̈,
respectively. This means nothing else than the (strong) convergence of U2,τ , V2,τ , and W2,τ

to the solutions of (2.8b)-(2.8d).
Finally, we define two different approximations of the velocity in form of a piecewise

constant and a piecewise linear approximation, namely

V1,τ (t) := vj1, V̂1,τ (t) := vj1 + (t− tj)Dvj1
for t ∈ (tj−1, tj ] and j ≥ 2 with V1,τ ≡ V̂1,τ ≡ v1

1 on [0, t1]. An illustration is given in
Figure 3.1.

t1 t2 t3

V1,τ

V̂1,τ

Figure 3.1. Illustration of the global approximations V1,τ and V̂1,τ of u̇1.

For the piecewise constant approximation, we obtain the estimate

‖V1,τ‖2L2(0,T ;V) =

∫ T

0
‖V1,τ (t)‖2 dt = τ

n∑
j=1

∥∥vj1∥∥2
(3.5)

≤ τ‖v1
1‖2 + cM2.

Up to now, we have only assumed v1
1 ∈ H. In order to obtain a uniform bound of V1,τ , we

have to assume v1
1 ∈ V. This then implies the existence of a weak limit V1 ∈ L2(0, T ;VB),

i.e., V1,τ ⇀ V1 in L2(0, T ;VB). In the same manner we obtain a bound of the piecewise
linear approximation,∥∥V̂1,τ

∥∥2

L2(0,T ;V)
= τ‖v1

1‖2 +

n∑
j=2

∫ tj

tj−1

∥∥vj1 + (t− tj)Dvj1
∥∥2

dt ≤ 4τ

n∑
j=1

∥∥vj1∥∥2
.

As before, we show that V1,τ and V̂1,τ have the same limit V1. For this, by Lemma 3.3 we
calculate that∥∥V̂1,τ − V1,τ

∥∥2

L2(0,T ;H)
=

n∑
j=1

∫ tj

tj−1

∣∣V̂1,τ (t)− V1,τ (t)
∣∣2 dt ≤ τ

n∑
j=2

∣∣vj1 − vj−1
1

∣∣2 ≤ τcM2 → 0.

In the following, we show that the limit function V1 equals the derivative of U1 in the
generalized sense. For this, we use the limits Û1,τ ⇀ U1 and V1,τ ⇀ V1 in L2(0, T ;VB).
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Note, that d
dt Û1,τ = V1,τ a.e. but not in the interval [0, τ ]. Applying the integration by

parts formula with an arbitrary functional f ∈ V∗B and Φ ∈ C∞0 ([0, T ]), we see that∫ T

0

〈
f, U1

〉
Φ̇ dt = lim

τ→0

∫ T

0

〈
f, Û1,τ

〉
Φ̇ dt = − lim

τ→0

∫ T

0

〈
f,

˙̂
U1,τ

〉
Φ dt

= − lim
τ→0

∫ T

0

〈
f, V1,τ

〉
Φ dt−

∫ τ

0

〈
f, v1

1

〉
Φ dt = −

∫ T

0

〈
f, V1

〉
Φ dt.

Note that the integral over [0, τ ] vanishes in the limit, since the integrand is bounded in-
dependently of the step size. As a result, the limit function U1 has a generalized derivative
and U̇1 = V1 ∈ L2(0, T ;VB).

Finally, we mention that also D(V1,τ + V2,τ ) gives a uniformly bounded sequence in
L2(0, T ;V∗) due to the continuity of the damping operator D. Thus, there exists a weak
limit D ∈ L2(0, T ;V∗) with

D(V1,τ + V2,τ ) ⇀ D in L2(0, T ;V∗).

One aim of the next subsection is to show that a equals D(V1 + V2), i.e., the limit of the
damping term equals the damping operator applied to the limit functions.

4. Convergence

This section is devoted to the analysis of the limiting behaviour of the discrete approx-
imations. Furthermore, we analyse the influence of additional perturbations which then
shows the convergence of the Rothe method applied to the operator DAE (2.8).

4.1. Deformation Variable. In order to pass to the limit with τ → 0 it is beneficial
to rewrite equation (3.4a) in terms of the global approximations. In this subsection, we
only consider test functions in VB in order to eliminate the Lagrange multiplier from the
system. The semi-discrete system has the form

ρ
( ˙̂
V1,τ +W2,τ

)
+D

(
V1,τ + V2,τ

)
+K

(
U1,τ + U2,τ

)
= Fτ in V∗B(4.1)

for t ∈ (τ, T ) a.e.. Writing equation (4.1) in its actual meaning with test functions v ∈ VB,
Φ ∈ C∞0 ([0, T ]) and applying the integration by parts formula once, we get∫ T

0
−
〈
ρV̂1,τ , v

〉
Φ̇ +

〈
ρW2,τ , v

〉
Φ +

〈
D
(
V1,τ + V2,τ

)
, v
〉
Φ +

〈
K
(
U1,τ + U2,τ

)
, v
〉
Φ dt

=

∫ T

0

〈
Fτ , v

〉
Φ dt.

Passing to the limit, by the achievements of the previous section we obtain that∫ T

0

〈
ρV1, v

〉
Φ̇ dt =

∫ T

0

〈
ρW2 + D +K

(
U1 + U2

)
−F , v

〉
Φ dt.

Recall that D denotes the weak limit of D(V1,τ + V2,τ ) in L2(0, T ;V∗). This implies that

V1 has a generalized derivative V̇1 ∈ L2(0, T ;V∗B) which satisfies the equation

ρV̇1 + ρW2 + D +K(U1 + U2) = F in V∗B.(4.2)

The remaining part of this subsection is devoted to the proof that the weak limits U1, U2,
V2, and W2 solve the operator DAE (2.8a) in V∗B. With equation (4.2) at hand, it remains
to show that D equals D(V1 + V2). In order to show this, we present two preparatory
lemmata.
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Lemma 4.1. For t = T the sequence V̂1,τ satisfies V̂1,τ (T ) ⇀ V1(T ) in H. Furthermore,

we obtain the estimate lim infτ→0

〈 ˙̂
V1,τ , V1,τ

〉
≥
〈
V̇1, V1

〉
.

Proof. We follow the idea of the proof of [ET10b, Th. 5.1], adapted to the given operator

equation. First we show that V̂1,τ (T ) ⇀ V1(T ) in H as well as V̂1,τ (0) = V1(0). Because

of the stability estimate in Lemma 3.3, the final approximation V̂1,τ (T ) = vn1 is uniformly
bounded in H. Thus, there exists a weak limit ξ ∈ H which satisfies

vn1 = V̂1,τ (T ) ⇀ ξ in H.

Through the integration by parts formula and with w ∈ VB and Φ ∈ C1([0, T ]), we obtain

ρ
(
V1(T ), w

)
Φ(T )− ρ

(
V1(0), w

)
Φ(0)

=
〈
ρV̇1, wΦ

〉
+
〈
ρV1, wΦ̇

〉
(4.2)
=
〈
F − ρW2 − D−K(U1 + U2), wΦ

〉
+
〈
ρV1, wΦ̇

〉
(4.1)
=
〈
F − Fτ , wΦ

〉
− ρ
〈
W2 −W2,τ , wΦ

〉
−
〈
D−D(V1,τ + V2,τ ), wΦ

〉
−
〈
K(U1 + U2)−K(U1,τ + U2,τ ), wΦ

〉
+
〈
ρV1, wΦ̇

〉
+
〈
ρ

˙̂
V1,τ , wΦ

〉
=
〈
F − Fτ , wΦ

〉
− ρ
〈
W2 −W2,τ , wΦ

〉
−
〈
D−D(V1,τ + V2,τ ), wΦ

〉
−
〈
K(U1 + U2)−K(U1,τ + U2,τ ), wΦ

〉
+ ρ
〈
V1 − V̂1,τ , wΦ̇

〉
+ ρ
(
V̂1,τ (T ), w

)
Φ(T )− ρ

(
V̂1,τ (0), w

)
Φ(0)

→ ρ
(
ξ, w

)
Φ(T )− ρ

(
v1

1, w
)
Φ(0).

Thus, we have vn1 = V̂1,τ (T ) ⇀ ξ = V1(T ) in H and V (0) = v1
1. Note that at this point we

need that the embedding VB ↪→ H is dense. A direct consequence of the weak convergence
is that |V1(T )| ≤ lim infτ→0 |vn1 |. With the calculation〈 ˙̂

V1,τ , V1,τ

〉
=

n∑
j=1

〈
vj1 − v

j−1
1 , vj1

〉
≥ −1

2

n∑
j=1

(∣∣vj−1
1

∣∣2 − ∣∣vj1∣∣2) =
1

2
|vn1 |2 −

1

2
|v1

1|2

we finally conclude

lim inf
τ→0

〈 ˙̂
V1,τ , V1,τ

〉
≥ 1

2
lim inf
τ→0

(
|vn1 |2 − |v1

1|2
)
≥ 1

2

∣∣V1(T )
∣∣2 − 1

2

∣∣V1(0)
∣∣2 =

〈
V̇1, V1

〉
. �

Remark 4.1. The fact that V̂1,τ (T ) ⇀ V1(T ) in H and V̂1,τ (0) = V1(0), as shown in
Lemma 4.1, implies that for w ∈ VB and Φ ∈ C2([0, T ]) it holds that

lim
τ→0

〈 ˙̂
V1,τ , wΦ̇

〉
= lim

τ→0
−
〈
V̂1,τ , wΦ̈

〉
+
(
V̂1,τ (T ), w

)
Φ̇(T )−

(
V̂1,τ (0), w

)
Φ̇(0)

= −
〈
V1, wΦ̈

〉
+
(
V1(T ), w

)
Φ̇(T )−

(
V1(0), w

)
Φ̇(0) =

〈
V̇1, wΦ̇

〉
.

In the following lemma, we consider the stiffness operator K.

Lemma 4.2. The sequences U1,τ , U2,τ , and V1,τ satisfy the estimate

lim inf
τ→0

〈
K(U1,τ + U2,τ ), V1,τ

〉
≥
〈
K(U1 + U2), V1

〉
.

Proof. Because of the linearity of K and the strong convergence of U2,τ it is sufficient to
analyse the lim inf of 〈KU1,τ , V1,τ 〉 and show that lim infτ→0〈KU1,τ , V1,τ 〉 ≥ 〈KU1, V1〉. For
this, we proceed as in the proof of Lemma 4.1.
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Lemma 3.3 implies the boundedness of Û1,τ (T ) = un1 in V such that there exists an

element ξ ∈ VB with Û1,τ (T ) ⇀ ξ in VB. We show that K1/2ξ = K1/2U1(T ) and K1/2u1
1 =

K1/2U1(0). Using the limit equation (4.2) and the semi-discrete equation (4.1) with test
functions w ∈ VB and Φ ∈ C2([0, T ]), we obtain〈
KU1(T ),w

〉
Φ(T )−

〈
KU1(0), w

〉
Φ(0)

=
〈
KU̇1, wΦ

〉
+
〈
KU1, wΦ̇

〉
(4.2)
=
〈
KU̇1, wΦ

〉
+
〈
F − ρW2 − D−KU2 − ρV̇1, wΦ̇

〉
(4.1)
=
〈
F − Fτ , wΦ̇

〉
− ρ
〈
W2 −W2,τ , wΦ̇

〉
−
〈
D−D(V1,τ + V2,τ ), wΦ̇

〉
−
〈
KU2 −KU2,τ , wΦ̇

〉
− ρ
〈
V̇1 − ˙̂

V1,τ , wΦ̇
〉

+
〈
KU̇1, wΦ

〉
+
〈
KU1,τ , wΦ̇

〉
.

Passing to the limit, we make use of Remark 4.1 which implies that the term including
V̇1 vanishes. In addition, we use the fact that, passing to the limit, we may replace U1,τ

by Û1,τ , since they have the same limit. Thus, another application of the integration by
parts formula then leads to〈

KU1(T ), w
〉
Φ(T )−

〈
KU1(0), w

〉
Φ(0) =

〈
Kξ, w

〉
Φ(T )−

〈
Ku1

1, w
〉
Φ(0).

Since 〈K·, ·〉 defines an inner product in VB, we conclude that U1(T ) = ξ and U1(0) = u1
1 in

VB. As a result, we obtain K1/2un1 ⇀ K1/2ξ = K1/2U1(T ) in H and K1/2u1
1 = K1/2U1(0).

Since U1,τ and V1,τ are both piecewise linear, as in the proof of Lemma 4.1, we calculate
that 〈

KU1,τ , V1,τ

〉
=

n∑
j=1

〈
Kuj1, u

j
1 − u

j−1
1

〉
≥ 1

2

〈
Kun1 , un1

〉
− 1

2

〈
Ku1

1, u
1
1

〉
+ τ
〈
Ku1

1, v
1
1

〉
=

1

2

∣∣K1/2un1
∣∣2 − 1

2

∣∣K1/2u0
1

∣∣2 + τ
〈
Ku1

1, v
1
1

〉
.

Note that the term τ〈Ku1
1, v

1
1〉 vanishes as τ → 0, since u1

1 and v1
1 are fixed. By the

property |K1/2U1(T )| ≤ lim infτ→0 |K1/2un1 | we finally summarize the partial results to

lim inf
τ→0

〈
KU1,τ , V1,τ

〉
≥ lim inf

τ→0

1

2

∣∣K1/2un1
∣∣2 − 1

2

∣∣K1/2u1
1

∣∣2
≥ 1

2

∣∣K1/2U1(T )
∣∣2 − 1

2

∣∣K1/2U1(0)
∣∣2 =

〈
KU1, U̇1

〉
=
〈
KU1, V1

〉
. �

With the previous two lemmata we are now able to prove that the limit of the damping
term equals the damping operator applied to the limit functions.

Theorem 4.3. Consider problem (2.8) with right-hand sides F ∈ L2(0, T ;V∗), G ∈
H2(0, T ;Q∗) and initial approximations u1

1 = g0, v1
1 = h0 ∈ VB. Then, we have D =

D(V1 + V2) and the (weak) limits U1, U2, V2, and W2 solve the operator equation (2.8a)
for test functions v ∈ VB.

Proof. We consider the semi-discrete equation (4.1) tested by V1,τ and subtract the term
〈D(V1,τ +V2,τ )−Dw, V1,τ +V2,τ −w〉 with w ∈ L2(0, T ;V), which is non-negative because
of the monotonicity of the damping operator, cf. Section 2.2.2. This then leads to

0 ≥
〈
ρ

˙̂
V1,τ , V1,τ

〉
+
〈
ρW2,τ , V1,τ

〉
+
〈
K
(
U1,τ + U2,τ

)
, V1,τ

〉
−
〈
Fτ , V1,τ

〉
+
〈
D
(
V1,τ + V2,τ

)
, w − V2,τ

〉
+
〈
Dw, V1,τ + V2,τ − w

〉
.
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The application of the lim inf on both sides in combination with Lemmata 4.1 and 4.2
then leads to

0 ≥
〈
ρV̇1, V1

〉
+
〈
ρW2, V1

〉
+
〈
K(U1 + U2), V1

〉
−
〈
F , V1

〉
+
〈
D, w − V2

〉
+
〈
Dw, V1 + V2 − w

〉
.

Note that we have used the fact that the sequences V2,τ and W2,τ converge strongly in
L2(0, T ;V) and that D equals the weak limit of D(V1,τ +V2,τ ). Rearranging the terms and
applying the limit equation (4.2), we then obtain〈

Dw,w − V1 − V2

〉
≥
〈
ρV̇1 + ρW2 +K(U1 + U2)−F , V1

〉
+
〈
D, w − V2

〉
(4.2)
= −

〈
D, V1

〉
+
〈
D, w − V2

〉
=
〈
D, w − V1 − V2

〉
.

Following the Minty trick [RR04, Lem. 10.47], i.e., choosing w := V1 + V2 ± sv with an
arbitrary function v ∈ L2(0, T ;V) and s ∈ [0, 1], we conclude that D = D(V1 + V2). Thus,

with V1 = U̇1 the limit equation (4.2) turns to

ρÜ1 + ρW2 +D(U̇1 + V2) +K(U1 + U2) = F in V∗B.

It remains to check whether U1 satisfies the initial conditions. Note that U̇1(0) = V1(0) =
v1

1 = h0 was shown within the proof of Lemma 4.2, whereas U1(0) = u1
1 = g0 was proved

in Lemma 4.1. �

4.2. Lagrange Multiplier. Up to this point, the obtained convergence results exclude
the Lagrange multiplier, since we only considered test functions in the kernel of the con-
straint operator B. To analyse the limiting behaviour of the Lagrange multiplier, we test
equation (3.4a) by functions v ∈ Vc. In terms of the global approximations and with
Λτ (t) := λj for t ∈ (tj−1, tj ], this equation can be written in the form

ρ
( ˙̂
V1,τ +W2,τ

)
+D

(
V1,τ + V2,τ

)
+K

(
U1,τ + U2,τ

)
+ B∗Λτ = Fτ in V∗.(4.3)

Unfortunately, the given setting does not allow to find a uniform bound for Λτ in L2(0, T ;Q).

The reason is the absence of an upper bound of τ
∑n

j=1 ‖Dv
j
1‖2V∗ . We obtain this bound

only within the weaker norm of V∗B. However, we show that the primitive of Λτ , namely

Λ̃τ (t) :=
∫ t

0 Λ(s) ds, converges to the solution of the considered operator DAE in a weaker
sense.

In order to obtain an equation for Λ̃τ , we have to integrate equation (4.3) over the
interval [0, t]. For an arbitrary test function v ∈ V, this then leads to the equation〈

ρ
(
V̂1,τ + W̃2,τ

)
, v
〉

+
〈
D̃, v

〉
+
〈
K
(
Ũ1,τ + Ũ2,τ

)
, v
〉

+
〈
B∗Λ̃τ , v

〉
=
〈
F̃τ , v

〉
+
〈
ρv1

1, v
〉
.

Therein, F̃τ , Ũ1,τ , Ũ2,τ , and W̃2,τ denote the integrals of Fτ , U1,τ , U2,τ , and W2,τ , respec-
tively, and 〈

D̃(t), v
〉

:=

∫ t

0

〈
D
(
V1,τ (s) + V2,τ (s)

)
, v
〉

ds.

Note that the term ρv1
1 = ρV̂1,τ (0) occurs due to the integration of

˙̂
V 1,τ .

We show that Λ̃τ is bounded in C([0, T ];Q). Because of (3.2), Fτ is bounded in

L2(0, T ;V∗) which implies that its primitive F̃τ is uniformly bounded in C([0, T ];V∗).
Furthermore, we have shown the boundedness of U1,τ , U2,τ , and W2,τ in L2(0, T ;V) in
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Section 3.3. Thus, their primitives Ũ1,τ , Ũ2,τ , and W̃2,τ are bounded in C([0, T ];V). With
the Cauchy-Schwarz inequality, we calculate

max
t∈[0,T ]

∣∣〈D̃(t), v
〉∣∣ (2.5)

≤ d2

∫ T

0
‖V1,τ (s) + V2,τ (s)‖‖v‖ds ≤ d2T

1/2‖V1,τ + V2,τ‖L2(0,T ;V)‖v‖.

Recall that the boundedness of V1,τ +V2,τ in L2(0, T ;V) was already shown in Section 3.3.
Finally, the estimate

max
t∈[0,T ]

|V̂1,τ (t)| ≤ max
j
|vj1|

(3.5)

≤ c 24d0T/ρM

shows ∥∥Λ̃τ
∥∥
C([0,T ];Q)

≤ 1

β
max
t∈[0,T ]

sup
v∈V

〈
B∗Λ̃τ (t), v

〉
‖v‖

,

where β is the inf-sup constant. As a result, there exists a limit function Λ̃ ∈ Lp(0, T ;Q)

such that Λ̃τ ⇀ Λ̃ in Lp(0, T ;Q) for all 1 < p < ∞. This then leads to the following
convergence result.

Theorem 4.4. Consider problem (2.8) with right-hand sides F ∈ L2(0, T ;V∗), G ∈
H2(0, T ;Q∗) and initial data u1

1 = g0, v1
1 = h0 ∈ VB. Then, the weak limit Λ̃ ∈ L2(0, T ;Q)

of the sequence Λ̃τ and U1, U2, V2, and W2 solve the operator DAE (2.8) in the weak
distributional sense, meaning that for all v ∈ V and Φ ∈ C∞0 ([0, T ]) it holds that∫ T

0
−ρ
〈
U̇1, v

〉
Φ̇ +

〈
ρW2 +D

(
U̇1 + V2

)
+K

(
U1 + U2

)
−F , v

〉
Φ−

〈
B∗Λ̃, v

〉
Φ̇ dt = 0

as well as BU2 = G, BV2 = Ġ, and BW2 = G̈ in Q∗. Furthermore, U1 satisfies the initial
conditions U1(0) = g0 and U̇1(0) = h0.

Proof. Considering once more equation (4.3) and integrating by parts, for all v ∈ V and
Φ ∈ C∞0 ([0, T ]) we obtain∫ T

0
−ρ
〈
V̂1,τ , v

〉
Φ̇+

〈
ρW2,τ +D

(
V1,τ +V2,τ

)
+K

(
U1,τ +U2,τ

)
−Fτ , v

〉
Φ−

〈
B∗Λ̃τ , v

〉
Φ̇ dt = 0

By the weak convergence of Λ̃τ and the linearity of B∗, we conclude that∫ T

0

〈
B∗Λ̃τ , v

〉
Φ̇ dt →

∫ T

0

〈
B∗Λ̃, v

〉
Φ̇ dt.

The convergence of the remaining terms - also for test functions v ∈ V - as well as the
satisfaction of the initial conditions was already shown in Theorem 4.3. �

In summary, we have shown the strong convergence for u2, v2, and w2, the weak conver-
gence for the differential variable u1, and the convergence in the weak distributional sense
for the Lagrange multiplier λ. This result emphasizes that the Lagrange multiplier behaves
qualitatively different than the deformation variables. This is no surprise since already in
the finite-dimensional DAE case one can observe a different behaviour of differential and
algebraic variables [Arn98].
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4.3. Influence of Perturbations. To show the convergence of the deformation variables
and the Lagrange multiplier, we have always assumed that the stationary PDEs were solved
exactly in every time step. Thinking of the Rothe method, where the solution of these
PDEs would only be approximated, e.g. by the finite element method, additional errors
have to be taken into account. Because of this, we analyse in this subsection the influence
of perturbations in the right-hand sides.

We consider perturbations δj ∈ V∗ as well as θj , ξj , ϑj ∈ Q∗, i.e., we solve system (3.4)

with right-hand sides F j + δj , Gj + θj , Ġj + ξj , and G̈j +ϑj instead of F j , Gj , Ġj , and G̈j .
We denote the solution of the perturbed problem by (ûj1, û

j
2, v̂

j
2, ŵ

j
2, λ̂

j). The differences of
the exact and perturbed solution are then given by

ej1 := ûj1 − u
j
1, ej2 := ûj2 − u

j
2, ejv := v̂j2 − v

j
2, ejw := ŵj2 − w

j
2.(4.4)

The initial errors in u1
1 and v1

1 are denoted by e1
1 and ė1

1, respectively.

Remark 4.2. In some cases, the spatial error of a finite element discretization can be
viewed as a perturbation of the semi-discrete system. Note that the results of this sec-

tion only apply if ej1 ∈ VB, i.e., if we consider conforming methods. If this is the case,
then the residuals may be interpreted as perturbations of the right-hand sides, cf. [Alt15,
Sect. 10.4.2].

Considering test functions in VB, the errors in (4.4) satisfy the equation

ρD2ej1 + ρejw +D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
+K

(
ej1 + ej2

)
= δj .(4.5)

Furthermore, the errors ej2, ejv, and ejw satisfy the equations Bej2 = θj , Bejv = ξj , and

Bejw = ϑj in Q∗ which directly yields

‖ej2‖ ≤ CB−‖θj‖Q∗ , ‖ejv‖ ≤ CB−‖ξj‖Q∗ , ‖ejw‖ ≤ CB−‖ϑj‖Q∗ .

From equation (4.5) we deduce an estimate of the resulting error ej1. For this, we follow

again the lines of Lemma 3.3 and test the equation with Dej1. The only difference takes
place in the estimate of the damping term for which we obtain〈
D
(
v̂j1+v̂j2

)
−D

(
vj1 + vj2

)
, Dej1

〉
=
〈
D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
, Dej1 + ejv

〉
−
〈
D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
, ejv
〉

(2.5)

≥ d1

∥∥Dej1 + ejv
∥∥2 − d0

∣∣Dej1 + ejv
∣∣2 − d2

∥∥Dej1 + ejv
∥∥∥∥ejv∥∥.

Following the remaining parts of the proof of Lemma 3.3, for k ≥ 2 and sufficiently small
step size τ we yield an estimate of the form

ρ
∣∣Dek1∣∣2 + ρ

k∑
j=2

∣∣Dej1 −Dej−1
1

∣∣2 + τd1

k∑
j=2

∥∥Dej1 + ejv
∥∥2

+ k1

∥∥ek1∥∥2 ≤ c 28d0T/ρM2
e .

The constant Me then includes the initial errors as well as the perturbations. More
precisely, assuming perturbations of comparable magnitude, i.e., δj ≈ δ, θj ≈ θ, ξj ≈ ξ,
and ϑj ≈ ϑ, we have

M2
e = ‖e1

1‖2 + |ė1
1|2 + T

[
‖δ‖2V∗B + ‖θ‖2Q∗ + ‖ξ‖2Q∗ + ‖ϑ‖2Q∗

]
.(4.6)

Summarizing the estimates of this subsection, we obtain the following theorem.
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Theorem 4.5. Consider system (3.4) and the assumptions of Lemma 3.3. Furthermore,
let the perturbations δj ∈ V∗ and θj, ξj, ϑj ∈ Q∗ be of the same order of magnitude. Then,
with the constant Me from (4.6) and a sufficiently small step size τ , the errors ek1, ek2, ekv,
and ekw satisfy

‖ek1‖2 + ‖ek2‖2 + ‖ekv‖2 + ‖ekw‖2 ≤ ce4d0T/ρM2
e .

This theorem shows that the errors due to perturbations of the right-hand sides are
bounded by these perturbations. Note that this is only true for the regularized operator
DAE (2.8). If we consider the original formulation (2.7) instead, then the error ek1 gets
amplified by a factor 1/τ2, since ξj has to be replaced roughly by τ−1θj and ϑj by τ−2θj .

Note furthermore that Theorem 4.5 does not include the error in the Lagrange multi-
plier. As already seen in the previous subsection, we are not able to find bounds for the
Lagrange multiplier in the given setting. In the linear case, however, this is possible if we
assume more regularity of the perturbations such as δ ∈ H∗, cf. [Alt15].

5. Conclusion

We have shown that the Rothe method, which is very popular in the finite element
community for solving time-dependent PDEs, can also be applied to (regularized) opera-
tor DAEs, i.e., if we include additional constraints. Similar to the finite-dimensional case,
where it is advisable to consider index-1 formulations, we have used the regularized formu-
lation of the operator DAE. With a splitting of the deformation variable into a differential
part and a constrained part, we were able to use PDE techniques to prove the convergence
of the Euler scheme.

Ongoing research also considers higher-order Runge-Kutta methods. We hope that in
this case, under sufficient smoothness assumptions, also the convergence of the Lagrange
multiplier can be shown.
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