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Zusammenfassung

Die vorliegende Dissertation beschreibt ein neuartiges Verfahren zur ginz-
lich disaggregierten Nachfiihrung des Mobilitétsverhaltens von Autofahrern auf
Grundlage aggregierter Messungen von Verkehrsfliissen, -dichten oder -geschwin-
digkeiten, welche durch eine begrenzte Anzahl von Sensoren im Netzwerk auf-
genommen werden. Das Problem wird mittels eines bayesschen Ansatzes gelOst,
wobei das gegebene a priori Wissen {iber die Auswahlverteilung der Verhal-
tensalternativen eines jeden Individuums mit der Likelihood-Funktion der ver-
fligbaren Messungen in eine geschitzte a posteriori Verhaltensverteilung kom-
biniert wird. Der Ansatz ist insofern simulationsbasiert, als daf (i) allein ein
Simulationssystem zur Reprisentation der a priori Verhaltensannahmen bend-
tigt wird und (ii) das Verfahren ausschlieklich Ziehungen aus der a posteriori
Verhaltensverteilung generiert.

Das Verfahren behandelt den Simulator des a priori Verhaltens soweit wie mog-
lich als eine Black Box. Die nachfiihrbaren Verhaltensdimensionen reichen von
einfacher Routenwahl bis hin zur Auswahl von Plinen fiir einen ganzen Tag.
Eine gleichgewichtsbasierte Modellierungsannahme ist ebenso zuléssig wie ein
Telematikmodell unvollstindig informierter Fahrer.

Die Verwendung aggregierter Sensordaten zur disaggregierten Verhaltensschiit-
zung wird durch eine kombinierte mikroskopische/makroskopische Mobilittssi-
mulation ermdglicht, welche individuelle Fahrzeuge auf Grundlage eines makro-
skopischen Modells der Verkehrsflussdynamik bewegt. Das Modell erlaubt eine
lineare Vorhersage des Effektes von individuellem Verhalten auf den aggregierten
Verkehrszustand und erméglicht auf diese Weise eine lineare Approximation der
logarithmierten Likelihood-Funktion der Sensordaten in Abhéngigkeit von dem
Verhalten der Fahrerpopulation. Diese Linearisierung wird von zwei operativen
bayesschen Schitzern genutzt.

Der accept/reject estimator macht keine weitergehenden Annahmen iiber die a
priori Verhaltensverteilung. Er zieht eine Anzahl von Realisierungen aus dieser
Verteilung und behélt nur eine Teilmenge dieser Ziehungen bei. Diese Teilmen-
ge wird unter Beriicksichtigung der Likelihood-Funktion der Messungen derar-
tig ausgewdhlt, dafs sie ndherungsweise dquivalent zu einer Stichprobe aus der
a posteriori Verhaltensverteilung ist. Der wtility-modification estimator addiert
einen Korrekturterm zu der Nutzenfunktion einer jeden Verhaltensalternative,
die ein simulierter Reisender vor einer Entscheidung auswertet. Diese Korrektur
ist ebenfalls durch die Likelihood-Funktion der Messungen bestimmt. Fiir eine
bestimmte Form der a priori Verhaltensverteilung ist das resultierende Verhalten



ndherungsweise dquivalent zu einer Ziehung aus der a posteriori Verhaltensver-
teilung.

Fiir die experimentellen Untersuchungen dient ein erweitertes cell-transmission
model als Mobilitdtssimulation und ein randomisierter Kurzwegalgorithmus als
Platzhalter fiir eine vollsténdige Verhaltenssimulation. Die Experimente werden
unter synthetischen Bedingungen durchgefiihrt, wobei die Sensordaten durch
eine externe Modellinstanz erzeugt werden. Der Testfall umfasst ein Netzwerk
von 2459 Kanten und eine mikroskopische Population von 206 353 Fahrern. Die
experimentellen Ergebnisse zeigen, daf das implementierte Verfahren die fol-
genden Eigenschaften aufweist: (i) Es nutzt in effizienter Weise eine begrenzte
Menge verfiigharer Verkehrszéhlungen, um das individuelle Routenwahlverhal-
ten in der Population derartig nachzufiihren, dafl eine deutlich realistischere
globale Verkehrslage resultiert. (ii) Es ist sowohl auf ein gleichgewichtsbasiertes
Simulationssystem als auch auf einen Simulator ohne Gleichgewichtsannahme
anwendbar. (iii) Wenngleich der verfiighare Testfall etwas zu groff ist, um in
Echtzeit nachgefiihrt zu werden, sind in dieser Hinsicht realisierbare Szenarien
nicht um Grofenordnungen kleiner.



Abstract

This dissertation describes a novel method for the fully disaggregate estimation
of motorist behavior from aggregate measurements of flows, densities or veloc-
ities that are obtained at a limited set of network locations. The problem is
solved in a Bayesian setting, where the prior assumption about an individual’s
choice distribution is combined with the available measurements’ likelihood into
an estimated posterior choice distribution. The approach is simulation-based in
that it (i) only requires a simulation system to represent the behavioral prior
distribution and (ii) only generates realizations from the behavioral posterior
distribution.

The estimator treats the behavioral simulation system as a black box to the
greatest possible extent. The possibly estimated behavioral aspects range from
single route choice to the selection of full-day plans, and an equilibrium-based
modeling assumption is just as feasible as a telematics model of imperfectly
informed drivers.

The incorporation of aggregate sensor data into this behaviorally disaggregate
estimation procedure is enabled by a mixed micro/macro mobility simulation
that moves individual drivers through a macroscopic model of traffic flow dy-
namics. This model allows to linearly predict the effect of individual behavior
on aggregate traffic conditions, and through this it provides a linear approxima-
tion of the sensor data’s log-likelihood given a particular behavioral pattern in
the driver population. This linearization is utilized by two operational Bayesian
estimators.

The accept/reject estimator functions without further assumptions about the
behavioral prior distribution. Its takes a number of draws from this prior and
retains only a subset of these draws. This subset is chosen in consideration of
the measurements’ likelihood such that it is equivalent to a sample from the be-
havioral posterior. The utility-modification estimator adds a correction term to
the utility of every behavioral alternative a simulated traveler evaluates before
making a choice. This correction also is a function of the measurements’ likeli-
hood. Given a particular form of the behavioral prior, the resulting behavior is
equivalent to a draw from the behavioral posterior.

For experimental investigations, an extended cell-transmission model is imple-
mented as the mobility simulation, and a randomized best-path routing logic
serves as a placeholder for a full behavioral simulator. The experiments are
conducted in a synthetic setting, where the sensor data is generated by an ex-
ternal model instance. The test case comprises a network of 2459 links and a



microscopic population of 206 353 drivers. The experimental results show that
the implemented estimator has the following properties: (i) It efficiently utilizes
limited traffic counts to adjust the population’s individual-level route choice
such that a significantly more realistic global traffic situation results. (ii) It
is equally applicable to an equilibrium-based and to a non-equilibrium-based
simulation system. (iii) While the available test case is somewhat too large to
be monitored in real-time, a feasible scenario for an online application of the
estimator is not smaller by orders of magnitude.
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Chapter 1

Introduction

The 2007 world climate report emphasizes the significant influence of fossil fuel
burning on the current and future climate change [R1, 82|, whereas a large share
of the global greenhouse gas production stems from present transportation sys-
tems [I05]. Mobility is an essential good that justifies a certain environmental
price. However, its necessity as well as the very price it entails make it highly
desirable to operate transportation systems at working points of greatest effi-
ciency and to optimally exploit the available infrastructure. This goal needs to
be pursued both in long-term planning considerations and in short-term traffic
management efforts.

From an engineering perspective, a powerful tool to achieve such objectives are
algorithms for model-based prediction and control. They allow to evaluate the
performance of a traffic system in various settings before choosing the most
promising measure. Pivotal to the success of these approaches is the availability
of a realistic model. Usually, this is achieved by building a structurally correct
model which is calibrated based on comparisons of its outputs and available
measurements. Numerous methods have been developed to more or less auto-
matically solve the latter task.

This thesis contributes to that field. It describes a method to estimate the travel
behavior of individual motorists from measurements of aggregate traffic features
such as flows, densities or velocities that are obtained at a limited set of network
locations. Knowing what trips people will make allows to predict and possibly
reduce congestion. But no matter if this information is used to choose control
measures, for driver information services or to collect long-term data: It always
provides a valuable basis for prosperous decision making.

1.1 Definition of Problem Domain

Traffic state estimation is a broad field, which necessitates the preliminaries
given in this section. Their purpose is to outline this dissertation’s work scope
and to introduce some terminology.
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A model-based estimation approach is pursued. “Blind” modeling techniques
that provide general-purpose mappings of a system’s inputs to its outputs with-
out an underlying problem-specific model structure are excluded from consid-
eration. For example, a neural network that maps local traffic volumes on
network-wide travel times does not contain a structural model and thus is not
in the scope of this thesis.

The notion of “state estimation” is introduced informally as the measurement-
based adjustment of a structural model’s time-dependent properties. This ter-
minology is made increasingly precise as the considered class of models is spec-
ified throughout Chapters Pland Bl This order of presentation accompanies the
overall composition of this work, which is geared by the transportation specific
aspects of the estimation problem.

1.1.1 Macro- and Microsimulation

Macroscopic traffic models treat a population of travelers as a continuous quan-
tity and express mobility in terms of equally macroscopic traffic streams. Real
travelers are discrete entities. This requires their aggregation into sufficiently
large homogeneous groups for this approach to work. While being particularly
amenable to a mathematical treatment, macroscopic models are unable to repre-
sent highly heterogeneous traveler populations. The possibilities to macroscop-
ically represent behavioral constraints, which often are of a rule-based nature
and might greatly vary across a population, are limited as well.

Microsimulations capture travelers and their behavior individually. This gives
them a greater expressive power. Still, since their population model can only be
a sample of the real population, it is inherently stochastic. The increased realism
of a structurally detailed mapping of the real world on a microscopic simulation
system also introduces the real world’s mathematical intractabilities into the
model. This opens a gap between the ease of implementing a microscopic model
and the difficulties in understanding the resulting model dynamics.

This work adopts a microsimulation approach to the estimation of individual
behavior. Microsimulation greatly simplifies the modeling and likewise compli-
cates the estimation task. Consequently, every property of the model that is to
be estimated has to be carefully matched by a formal representation that allows
for a mathematical treatment. The formal requirements set up in this thesis
aim to capture a wide variety of microscopic aspects while ensuring tractability
of the mathematical estimation problem.

1.1.2 Behavioral and Physical Simulation

Microsimulations of vehicular traffic usually consist of at least two sub-models,
one of traffic flow dynamics and one of travel behavior:

e Traffic flow dynamics describe the physical laws of the traffic system
under consideration. They determine how well a road network serves a
traveler’s need of driving most conveniently along a route to a destina-
tion in a potentially congested traffic situation. To serve the purpose of
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this thesis, driver behavior in terms of breaking, acceleration, and lane
changing is subsumed in the physical representation of traffic flow.

e Travel behavior results from the demand for mobility across a network.
Various aspects such as route, destination, and departure time choice can
be modeled once a representation for the traveler population itself is found
1, [128]. If only motorists are considered, mode choice winds down to the
decision if a car trip is made or not. Long-term decisions such as car
ownership and residential choice are beyond the time scales considered in
this thesis.

This work is restricted to the estimation of behavioral aspects. That is, the
present approach assumes the traffic flow dynamics to be modeled without error.
A possible augmentation towards the concurrent estimation of behavior and
physics is outlined as a subject of future research.

Given the focus on behavioral estimation, no differentiation between freeway and
intra-urban traffic is necessary in principle since their major difference consists
in their traffic dynamics. Only the granularity of the physical modeling has a
limiting effect on the proposed method’s applicability.

1.1.3 Transportation Planning and Telematics

Microsimulation can be applied both in transportation planning and transporta-
tion telematics, and the proposed estimation method is applicable in both fields
as well.

At first glance, this is not surprising since planning and telematics constitute
two different views of the same system. Planning methods have evolved over
many decades, while telematics appeared quite recently as an offspring of trans-
portation planning and adopted many methods from this field. Still, there are
systematic differences that must be accounted for:

e Planning models usually assume that travelers obtain global knowledge
of average system states through many days of exploration and that the re-
sulting behavioral patterns resemble some kind of equilibrium. Typically,
such models work at the granularity of average within-day trajectories
but do not reproduce within-day fluctuations of the system states as they
occur in reality due to the stochastic nature of traffic [35].

e Telematics models explicitly deal with fluctuations within a day. They
neither assume global driver knowledge nor do they assume an equilibrium.
The behavioral model component in such a system may represent driver
reactions to new and possibly unforeseeable traffic situations, to provided
information, and to guidance [24, 25]. Without these fluctuations, there
would be little use in guiding the system in one way or another since
under normal conditions travelers have already found good travel options
via day-to-day experimentation [74].
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This distinction carries over to the temporal constraints for a traffic state es-
timation algorithm. In a planning application, there is at least one night to
adjust a model to recently collected measurements. This is considered as an
offline estimation problem. In a telematics application, usually just a few min-
utes are available to incorporate the most recent measurements into the current
estimate. The adjustment takes place while the model progresses through (real)
time, constituting an online estimation problem. However, a telematics esti-
mator may also be used in offline mode for the ex post analysis of a particular
day’s traffic situation.

While the above distinction is clear, that of applicable estimation methods is
not. Conceptually, it does not make a difference to a recursive algorithm if it
is used for incremental over-night adjustment of a planning model or on a 5-
minutes time scale in a real-time context. However, the portability of traditional
planning tools to telematics applications is limited. The need for substantial
research in this field has been recognized about two decades ago, e.g., [I60], and
has spawned ongoing investigation efforts both nationally, e.g., [I23| [[69], and
internationally, e.g., [42, B8, [T43]. Still, many methodological potentials are yet
to be explored [139].

But there are not only limitations. Mutual benefits of different estimation ap-
proaches naturally result from their common object of investigation. Online
traffic monitoring systems usually rely on some kind of a priori knowledge about
the average system behavior as provided by a planning simulation. Vice versa,
the daily generation of high-resolution state estimates provides valuable data
for the continuous calibration of a planning model.

The proposed estimator is compatible with both a planning and a telematics
modeling assumption. However, its immediate benefits are greatest in online
traffic monitoring, and further processing of its outputs is likely to be necessary
for typical planning purposes. The following literature review therefore focuses
on the online traffic state estimation problem and gives references to more tra-
ditional planning methods only where their interplay with the online problem
is of relevance.

1.2 State of the Art

Many approaches to the online traffic state estimation problem draw from trans-
portation planning’s established methods and enhance them by a dynamical
component. Arguably, the most frequently adopted methods are those of static
origin-destination (OD) matrix estimation. An OD matrix models the demand
of a given time interval in terms of the number of trips from every origin to
every destination of a traffic system. The originally considered problem was to
estimate such a matrix from observed link volumes given a linear assignment
mapping of demand on link flows (“assignment matrix”). Various methods such
as entropy maximization and information minimization [T68], Bayesian estima-
tion [I13], generalized least squares [I2, B4], and maximum likelihood estimation
[162] have been proposed to solve this task. Early overviews on this subject can
be found in [37, [IR0]. Nonlinear assignment mappings can be incorporated by a
bilevel-approach that iterates between a nonlinear assignment and a linearized
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estimation problem [IT4} [I8T] [I82] until a fixed point of this mutual mapping is
reached [39]. The combined estimation of OD matrices at subsequent time slices
was demonstrated in [36], and many originally static methods have been applied
to dynamical problems in this vein, e.g., [I11}, [[58] and the references in Section
[CZZA Beyond the different modeling requirements, temporal constraints are
most critical to the online deployment of these approaches.

Many advanced online applications employ systems engineering methodologies
to a suitably formalized traffic model. The most prominent of these methods
is without doubt the Kalman filter in one of its many guises. Assuming a
stochastic disturbance upon an originally linear dynamical system [90], it has
evolved to an estimator for systems with smooth, nonlinear dynamics [I61] as
well as for systems with a merely simulation-based representation [88, 89]. More
generally applicable particle filters even track multimodal state distributions [6].
These developments have made Kalman filtering increasingly applicable to the
high complexity of traffic systems. However, with these capabilities comes a
growing computational burden that renders the real-time observation of truly
large-scale systems still impossible. Because of its equivalence with a recursive
least squares estimator, the Kalman filter can also be reformulated as a problem
of mathematical programming, which broadens the field of potentially applicable
algorithms [23].

The following presentation is organized with respect to the underlying model.
It differentiates between estimation methods that use a behavioral model and
those that do not. At the limit of this classification are approaches that rely on
spatially non-correlated probabilities of turning move occurrences at intersec-
tions. These methods represent route choice merely as a sequence of independent
turning decisions and thus are not considered to be based on a behavioral model.

1.2.1 Estimation Without Behavioral Modeling

No structural modeling at all is required if general-purpose system representa-
tions are used. Auto-regressive moving average models and artificial neural net-
works learn a regression-type relation between current measurements and cur-
rent or future traffic states. Pattern matching techniques such as nonparametric
regression or clustering methods compare previously collected traffic state tra-
jectories to currently available information and provide most similar historical
data for estimation and forecast. Lacking a structural model, these approaches
are mentioned only for completeness. A comprehensive overview of data-driven
methods in traffic estimation and prediction is given in [46].

A linear road does not allow for the type of behavioral decisions considered in
thesis but is amenable to the modeling of traffic low dynamics. Since traffic
flow is a dynamically rather restricted system, this yields useful additional in-
formation. Models for flow on a link have gone from the fundamental diagram
(where density and velocity are uniquely related, and flow is a function of either
density or velocity [72]) via the Lighthill-Whitham-Richards theory of kinematic
waves (where the fundamental diagram is inserted into an equation of continuity
[I08, T51]) to second-order models (where a second equation introduces inertia

[4).
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Various approaches based on Kalman filters (and, more recently, particle filters)
have been proposed to estimate parameters and/or states of traffic flow mod-
els from local measurements in a variety of settings, e.g., [0, 12, [T65].
As a typical example of these, the RENAISSANCE approach is described fur-
ther below. ASDA and FOTO (“Automatische Staudynamikanalyse: Automatic
Tracing of Moving Traffic Jams” and “Forecasting of Traffic Objects”) constitute
a pattern-based monitoring and prediction system that tracks traffic jams along
a freeway [05, @6]. The “adaptive smoothing method” uses a nonlinear filter
that accounts for the different directions of disturbance propagation in free and
congested traffic conditions to interpolate and extrapolate stationary detector
data on freeways [167].

If network traffic is considered, turning decisions at intersections need to be
modeled. If no such model is at hand, a simple approach is to define turning
probabilities. The simulation of individual vehicles by this method results in pa-
rameterized random walks through the network. In a macroscopic model, flows
across an intersection diverge at ingoing links according to turning fractions that
equal these probabilities and additively merge at outgoing links. For the result-
ing linear model, (recursive) least squares and Kalman filtering can be applied
to track the turning fractions from link volume measurements |13}, B0, [T07, [T35].
The incorporation of signal timing information was proposed in [93] [[T7], and
the provision of estimated turning flows as supplementary measurements to a
network-wide OD matrix estimator was found to significantly increase the over-

all estimation quality in [68, [IT8]].

The “Urban Traffic Analyzer” UTA uses a macroscopic queuing model of inner-
urban traffic flow to predict network-wide flows and travel times. However, it
requires that likewise network-wide measurements of current flows and turn-
ing fractions are available, and no data fusion beyond a temporal averaging of
measurements is described [94, 95].

A system that is in continuous operation in Germany is OLSIM (“Online Traf-
fic Simulation”) [45), T37, [I74]. It uses a microscopic traffic model. Additional
vehicles are inserted where sensors record more vehicles than the model, and
vehicles are removed where sensors record fewer vehicles than the model [92].
Measurements are extrapolated by having the vehicles move forward along links
according to realistic driving rules and having them turn at intersections accord-
ing to historical or directly measured turning probabilities [I16]. The system
predicts network conditions based on a pre-clustering of typical measurement
trajectories: At a given point in time, the measurements themselves are pre-
dicted as a weighted average of the most recent observations and representa-
tive historical trajectories. Based on this prediction, the aforementioned sensor
adaptation procedure is continued into the future [46].

Recently, the RENAISSANCE (“Real-Time Freeway Network Traffic Surveil-
lance Tool”) traffic monitoring and prediction system has been operationalized
[[78]. Its estimation module consists of an extended Kalman filter [I75, [I76,
[T77), which is applied to the macroscopic traffic flow model METANET [I0T]. A
random walk assumption is imposed on model parameters such as road capac-
ities, free flow velocities, and turning fractions, which allows to estimate these
parameters together with the traffic flow model’s density and velocity states.
Suchlike observed parameters improve the state estimation quality, e.g., in case
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of varying weather conditions, and serve as incidents indicators.

Methods that rely on a priori collected turning proportions can be expected to
work well in normal situations but to be rather problematic during exceptional
events when turning fractions deviate from pre-specified values. In principle,
every turning-probability driven approach can be supplied with a behavioral
model for the generation of these parameters. However, this alone does not
clarify how to adjust the behavioral model itself to given measurements. This
problem is considered next.

1.2.2 Estimation With Behavioral Modeling
1.2.2.1 Static Traffic Assignment

The classical planning method for the modeling of network traffic is static as-
signment. The problem is stated as to assign a given demand of flows between
origin-destination pairs (OD pairs) on the network. Typical assignment criteria
are a Nash equilibrium (all actually used routes for each OD pair have equal
cost and no unused route has smaller cost; also called user equilibrium (UE))
or stochastic user equilibrium (SUE; the assignment of OD flows on routes fol-
lows a given distribution which is based on link cost). In so-called congested
assignment, cost on a link is an increasing function of link flow which is gener-
ated by flows on routes that use the link. Links that are heavily used become
“expensive”; thus diverting some of the flow to other routes, e.g., [35].

The only way to approximate within-day dynamics by means of static assign-
ment is to run independent simulations on consecutive time slices. Within limits
and in combination with dynamical model components, this approach can be
integrated into a practically acceptable system representation for telematics
purposes, as the following two examples show.

The naming “path flow estimator” (PFE) is usually associated with the approach
proposed in [I7]. Tt describes a macroscopic one-step network observer that
estimates static path flows from link volume measurements based on a SUE
modeling assumption in a congested network [I4]. The estimation problem
is transformed into one of smooth optimization, which is iteratively solved.
The model has been enhanced by multiple user classes and a simple analytical
queuing model to represent traffic flow dynamics [I6] and has been successfully
implemented in various research and development projects [I4]. The limitations
associated with its original assumption of a logit path choice model (“overlapping
path problem”, e.g., [I8]) have been mitigated by the implementation of a C-logit
path choice model [38, [I73]. The PFE’s static UE counterpart was proposed in

[[57, [T59] and has been further advanced in [T33], T34].

The traffic management center of Berlin (“Verkehrsmanagementzentrale” VMZ)
also operates an online traffic monitoring system [I70]. The fully macroscopic
method comprises a substantial number of different adjustment steps. It predicts
measurement, trajectories by a clustering approach similar to that of OLSIM and
uses either a static or a simplified queue-dynamical model to interpolate traffic
flows between sensors. Route choice is assumed to be in a static UE that is
simulated in time slices of one hour. The assigned OD matrix is selected based
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on a similarity measure between currently prevailing measurements and those
the matrix had previously been calibrated with [T7T].

A computationally costly but methodologically straightforward approach to
track route choice at an aggregate level is to estimate the assignment matrix
itself concurrently with the OD matrix. The resulting estimation problem is
in general highly under-determined, so a prior assignment matrix is incorpo-
rated in much the same way a prior OD matrix ensures a unique solution to the
common OD matrix estimation problem [I09, [TT0].

1.2.2.2 Dynamic Traffic Assignment

The following presentation concentrates on simulation-based approaches to dy-
namic traffic assignment (DTA). This is justified by their microscopic vehicle
representation which is a fundamental modeling assumption of this thesis. An
overview of DTA that includes analytical approaches can be found in [T46].

Most current network loading models use similar techniques [8] [TT5, [T36]:
They have individual, decision-making particles (“driver vehicle units (DVUs)”)
which usually are sampled from an OD matrix and are moved forward along
links using functions that in some way or other couple speed to density. Most
models include storage capacities on their links, that is, the density of vehicles
is limited and once a link is full, no more vehicles can enter. This implies that
upstream links form queues of vehicles that cannot leave the link because the
downstream link is full.

Time-dependent Nash equilibria are computed on such models via iterations
[130]: Start with some version of time-dependent demand which gives, for each
time slot and OD pair, the number of vehicles leaving the origin during that time
slot. Have each vehicle follow a pre-computed route. After the network loading
has run, re-compute the time-dependent path choice information. For example,
give some fraction of travelers a new route that would have been fastest in
the last iteration (“best response”), or distribute travelers between path options
according to a distribution function, e.g., a path size logit or a C-logit model
18 B8]. This procedure is iterated until an approximate fixed point is reached
32,

As noted before, a dynamic equilibrium is a reasonable assumption for planning
purposes, while the modeling of within-day fluctuations requires additional ef-
forts. Even more in such a setting, simulation-based approaches are the method

of choice because of their inherent ability to deal with individual and sponta-
neous driver behavior.

There are two projects in the United States, namely DynaMIT (“Dynamic Net-
work Assignment for the Management of Information to Travelers”, [I9, [60]) and
DYNASMART (“Dynamic Network Assignment Simulation Model for Advanced
Road Telematics”, [61L, [IT5]), which pursue conceptually similar approaches. For
illustration, a minimal online state estimation scenario is outlined in the follow-
ing. More elaborate descriptions can be found in [3| [7] for DynaMIT and in
[I83] for DYNASMART.
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e Beyond structural information, both systems require at least a static OD
matrix and an initial set of traffic counts to prepare their online (within-
day) estimation schemes. They proceed by estimating a time-dependent
OD matrix, using methods which are in principle similar to the seminal
techniques proposed in [36].

e In online operations, either system uses a linear Kalman filter to estimate
the deviation of OD flows from average historical trajectories. This allows
to incorporate the latters’ structural information. Both systems capture
the dynamics of a time-dependent OD matrix in the Kalman filter’s state
transition equation: DynaMIT assumes that the OD flow deviations follow
a within-day autoregressive process with a priori estimated parameters.
DYNASMART uses a polynomial trend representation of the OD trajec-
tories, which yields a linear state equation for the temporal evolution of
these polynomials’ derivatives. In either case, the dynamical model allows
for a demand prediction and (by simulation) for a network-wide prediction
of traffic conditions.

e Loading a current demand estimate on the network yields a dynamic as-
signment matrix that linearly maps OD flows on link flows and thus relates
state variables and traffic counts. This mapping constitutes the Kalman
filter’s measurement equation.

e Both systems run in a rolling horizon mode where two procedures take
turns: (i) The Kalman filter generates a current demand estimate based
on the most recent assignment matrix and the current measurements.
(if) The network loading procedure assigns the estimated demand on the
network in order to predict traffic conditions and to provide an updated
assignment, matrix.

e Both systems use the estimated demand trajectories of a given day to up-
date a historical OD matrix as a basis for the next day’s online estimation
problem. While for DynaMIT various smoothing methods are proposed,
DYNASMART assumes a day-to-day random walk of the true OD ma-
trix, considers the demand estimate of a single day as measurement of
this matrix, and updates the historical OD matrix by another Kalman
filter.

Much like in the static case, a time-dependent assignment matrix can be es-
timated together with the demand. This results in a significant state space
increase and requires nonlinear filtering techniques [7]. The state vector can
also be extended by time-dependent network parameters. This improves the
adaptive properties of the overall monitoring system but again requires non-
linear estimators, various of which are compared in [3]. The incorporation of
additional data sources such as probe vehicle samples [, [I83] is subject of ongo-
ing research as well as advanced numerical solution algorithms [B, 23]. Recently,
the DynaMIT system shifted from the Kalman filtering approach to a sparse
least squares solution procedure [I79], which, however, does not impair the con-
ceptual correctness of the outline given above.
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1.2.2.3 Multi-Agent Traffic Simulation

This approach is characterized by the fully disaggregate representation of trav-
elers throughout the entire modeling process, while in DTA time-dependent OD
matrices are typically disaggregated and re-aggregated whenever convenient.
The multi-agent approach is attractive in the traffic domain since it appears
natural to represent every traveler by a software object, to put these individual
models into a representation of the physical world of mobility, and to observe
the resulting mobility patterns. Due to its structural resemblance of real-world
processes, the method is easily communicated and increasingly applied in trans-
portation modeling (see, e.g., the collection of articles in [T00]).

Multi-Agent Simulation (MASim) can go beyond other simulation methods by
including travelers’ goals and commitments into the modeling. For example, it
is possible with MASim to differentiate between a delayed person with a free
evening and a delayed person with a time-restricted day-care pick-up. MASim
for transportation planning applications typically consists of the following mod-

ules [I01, [TTL 63, (T30, [149):

e A synthetic population generation module generates, from demographic
data, a synthetic population that, in all its statistical aspects, corresponds
to the real population under investigation, while at the same time preserv-
ing privacy.

e An activity-based demand generation module generates, for each member
of the synthetic population, complete daily plans including a sequence of
activities (such as home, work, shop, leisure), activity locations, and a

temporal schedule. Consecutive activities at different locations generate
the demand for travel.

e A router module computes how that demand is actually executed on the
network, possibly including mode choice. At this point, all synthetic trav-
elers have plans that describe what they intend to do.

e There is now always some kind of module that puts the synthetic travelers
in a simulated version of the physical network and has them execute their
plans simultaneously. The physical interaction in that system generates
congestion. Depending on the specific focus, this simulation has different
names: supply simulation, network loading, traffic flow simulation.

It is not possible to compute the system in the linear way indicated above
since plans depend on congestion but congestion is a consequence of the plans.
This is solved by iterations that can be seen as modeling human day-to-day
learning. This learning takes place on various time scales. On the long term,
there are aspects such as choice of residence and employment. These and further
characteristics of an agent constitute constraints on decisions that take place
within dimensions of days, such as activity scheduling, location choice, and route
choice. Although there are no strict temporal domains for different elements of a
plan, a rough distinction with respect to transportation planning and telematics
can be made by a separation of elements that are modified only on a day-to-day
basis and those that can be reconsidered within a day.
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The estimation of fully disaggregate travel behavior from aggregate sensor data
with a multi-agent traffic simulation is a novel venture. In order to clarify this
statement, the following related yet different problems need to be mentioned:

e The calibration of a mobility simulation from aggregate sensor data has
been widely addressed in the literature, e.g., [A7, B8, K9l 07, 103, T4, 142].
However, these approaches do not carry over to a calibration of the be-
havioral simulation component (unless one adopts a different terminology
than defined in Section and attributes, e.g., car-following parameters
to the behavioral model).

e A DTA-based OD matrix estimator captures various behavioral aspects,
yet only on an aggregate level. Since a time-dependent OD matrix maps
(origin, destination, departure time) tuples on demand levels, it directly
represents destination and departure time choice. A motorist OD matrix
reflects mode choice at least in terms of decisions for or against the ve-
hicular mode. Route choice, however, constitutes no additional degree of
freedom but is a function of demand defined by the DTA procedure. The
only exception to this are the (behaviorally static) path flow estimators
mentioned above.

1.3 Thesis Contribution and Outline

1.3.1 Conceptual Outline

The complexity of modern traffic simulation systems renders the technological
design of a flexibly applicable estimator a nontrivial task. Extensive prototyp-
ical programming was conducted in order to validate the proposed method’s
applicability. Since the resulting architecture structurally reflects the estima-
tor’s working, it is outlined before methodological contributions are described.

In order to be compatible with the proposed estimator, a traffic simulation
system must be separable into the components shown in Figure [CT1 Most of
the employed terminology is adopted from [27].

e The mobility simulation moves individual vehicles along their chosen
routes through the road network. All physical interactions occur within
this component. A linearizable state space representation of the mobility
simulation must be available. This dissertation demonstrates that such a
requirement is compatible with a microscopic driver representation.

e The trip sequence of every vehicle in the mobility simulation is chosen
by an individual agent that represents the driver of that vehicle. The
travel behavior of an agent is realized by one or two further components.
Whenever a decision is required, the agent provides these components with
its individual parameters.

— The utility function provides an individually parameterized map
from the network conditions on the systematic utility of any be-
havioral alternative available to the agent. This may include utilities
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Figure 1.1: Simulation
Logical structure of a microscopic traffic simulator that is amenable to the proposed
estimation methodology. The utility function is an optional component that may be
omitted.

for partial choices if such a decomposition is required by the decision
protocol. For example, a route choice decision protocol may only
request utilities for single links in the network. The utility function
is an optional component that may be omitted.

— The (likewise individually parameterized) decision protocol prob-
abilistically generates a single decision based on this utility informa-
tion. If there is no utility function, the choice is directly based on
the network conditions. A decision protocol can be decomposed in
the two aspects of choice set generation and choice. It may be
deliberative in that the choice set of available alternatives is once
enumerated before a choice is made. Alternatively, a reactive search
may be implemented that iterates between the generation of some al-
ternatives and their evaluation. In either case, one choice is finally
realized by the agent.

This structure is independent of a particular planning or telematics context. For
experimental purposes, all simulator components were exemplarily implemented
similar to the according components of the MATSim (“Multi-Agent Transport
Simulation Toolkit”) simulation system [IT9], in the context of which this work
was conducted.

Estimation is based on reasonable mathematical inference but follows a sim-
ple technical logic. As illustrated in Figure the simulation structure is not
changed at all. An estimator component is inserted between the decision pro-
tocol and the remaining simulation system. It is implemented transparently in
that it provides unmodified interfaces to both the decision protocol and the re-
maining system. The estimator compares the output of the mobility simulation
to sensor data from a surveillance system. Based on this comparison, it alters
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Figure 1.2: Estimation
Estimation is facilitated by the addition of a logical wrapper around the decision
protocol. All interfaces within the original simulation system remain unchanged.

the data and control flow around the decision protocol such that the resulting
agent behavior is most plausible given the measurements.

Two small route choice examples illustrate how this minor system extension
allows to adjust simulated behavior:

e If the surveillance system observes a traffic jam where there is none in the
simulation, the estimator increases the systematic utility of the according
links until the agents start to favor these links and create the congestion
as observed in reality. Vice versa, if there is congestion in the simulation
but not in reality, the estimator decreases the involved links’ utility until
the agents start to avoid the critical area.

e Likewise, the estimator can encourage a certain behavioral pattern by
asking the decision protocol to draw several alternatives in identical con-
ditions for each agent. From this set of options, the estimator then passes
only those decisions on to the mobility simulation that are most plausible
given the measurements.

Either approach accesses only a subset of the interfaces touched by the estimator
in Figure[LA This further relaxes the structural requirements on the simulation
system. The apparent simplicity of this approach is confronted with (i) the
difficulties to relate aggregate measurements and individual behavior through
nonlinear traffic flow dynamics on large networks of general topology and (ii) the
intention to be compatible with a broad variety of behavioral implementations.

The software prototype is single-threaded and written in the Java programming
language [84]. Its interface-based design relies on standard software design pat-
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terns [Z0] in order to simplify the (re-)composition of available software compo-
nents. Likewise experimental implementations for the simulation of spontaneous
route switching behavior [79, R] and route guidance by feedback control [T54]
are integrated in the system.

1.3.2 Methodological Contribution

This thesis presents a novel approach to the fully disaggregate estimation of
motorist behavior with a multi-agent simulation. The problem is solved by a
combination of prior knowledge about the driver behavior with available mea-
surements into most likely posterior estimates of this behavior:

e The prior knowledge about the driver behavior consists of two parts. First,
an individually modeled agent exhibits likewise individual features that
influence its behavior, e.g., socioeconomic features, preferences, and infor-
mation availability. Second, every such agent has one or more individually
generated plans it adheres to. These plans specify what the agent intends
to do during a day.

e The measurements of aggregate traffic features such as flows, densities or
velocities are available at a limited set of network locations. Beyond link
related quantities, turning move counts can be directly utilized by the
estimator. The amount of measurements may be arbitrarily small since
the availability of individual plans guarantees an existing solution to the
estimation problem.

Based on this information, arbitrary behavioral aspects ranging from single
route choice to plan selection for a whole day are estimated in a fully disag-
gregate manner, agent by agent. Estimation methods of different complexity
are proposed that allow for a problem-specific balance between computational
speed and estimation precision. Experimental results are given and indicate the
estimator’s practical applicability.

The estimator can be used in a planning context (with an underlying equilib-
rium assumption) and for real time traffic monitoring (with a behavioral model
that accounts for incomplete driver information and spontaneous behavior). If
within-day estimates are fed back to a planning system for incremental adjust-
ments on a day-to-day basis, improved prior information for the following day’s
online estimation problem can be generated.

The following results are also considered to be relevant contributions. They are
obtained as intermediate steps on the way to a working estimator.

e A macroscopic traffic flow simulator is developed that is consistent with
the phenomenology of the cell-transmission model and the requirements
of first order traffic flow theory. It efficiently calculates linearized traffic
flow dynamics, while its advanced simulation logic upholds a high compu-
tational performance that allows to simulate large networks of arbitrary
topology. While linearization is required for estimation, the class of ap-
plicable mobility simulations is not restricted to this particular model.
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e A simulation logic is proposed that runs a macroscopic traffic flow model
based on the travel behavior of a fully microscopic agent population. This
contribution to the field of “mesoscopic” modeling provides a broadly ap-
plicable link between behavioral microsimulation and physical macrosim-
ulation.

e A method is developed that steers the behavior of simulated travelers
such that a general objective function of aggregate network conditions is
improved. Specifically, this result is employed to express and solve one
instance of the behavioral state estimation problem. More generally, the
method holds promise for further applications such as the generation of
road pricing strategies.

1.3.3 Structure of Thesis

The remainder of this document is organized as follows. Chapter ] describes the
macroscopic mobility simulation. Chapter Bl treats the disaggregate modeling
of behavior. Its first part describes how individual motorists are simulated in a
macroscopic mobility simulation. Its second part specifies a formalism of driver
behavior that is amenable to a mathematical estimator. Chapter H formulates
the behavioral estimation problem and discusses different solution approaches.
Chapter Bl verifies the estimator’s computational feasibility for an application
of practically relevant size. Finally, the work is concluded in Chapter B and a
discussion of future research topics is given.
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Chapter 2

Macroscopic Mobility
Simulation

A model of physical reality maps demand for travel on network conditions.
Basically, an inverse mapping is needed if travel behavior is to be deduced from
these conditions. Such an inversion does generally not exist. Alternatively, a
linearization of the mapping is used, and nonlinearities are accounted for in an
iterative manner.

This chapter describes a mobility simulation that can be linearized. A reader
with only a casual interest in traffic flow modeling may skip this material and
continue reading at Section 27 without much loss of continuity.

2.1 Design Choices

The necessity of linearization calls for a macroscopic model. An aggregation of
travelers into homogeneous groups can be avoided by the behavioral simulation
scheme introduced later in Chapter Bl so that only single-commodity traffic is
considered here.

Since the experimental validation of new phenomenological proposals would ex-
ceed the scope of this thesis, the model must build on established findings. This
and the need to realize a large-scale test case calls for the simplest available
model that still captures the most relevant traffic features with reasonable pre-
cision. Arguably, this is the kinematic wave model (KWM) [I08, 151]. Within
its phenomenological limitations, it is able to represent both freeway and intra-
urban traffic flow. The choice of this model is well justified in light of the
ongoing debate if more complex models yield a reasonable gain in expressive

power [Z8, [T31].

For numerical simulation of the KWM, the cell-transmission model (CTM)
is adopted [53, B4, B5]. Various other macroscopic models had been consid-
ered before this choice was made [73, [86l, M0OT]. However, once higher or-
der models are excluded from consideration, the CTM remains as the by far
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most established model, with various applications, e.g., in freeway ramp meter-
ing and signal optimization [T} 66, [[64], and thorough experimental validations
28, [[27. The CTM is closely related to another implementation of the
KWM, the STRADA model [29, BO]. Both approaches base on the numerical
Godunov solution method [I02 [T06].

The model must allow to simulate a large and complex road network, provide lin-
earized traffic flow dynamics, and maintain a high computational performance.
These requirements motivate three in large parts novel adaptations of the CTM:

e To allow for linearization, all flow calculation rules of the CTM are unified
in a formal calculation scheme, for which sensitivity analysis is conducted.

e Since the original CTM only specifies network topologies where at most
three roads meet at an intersection, its established phenomenology is
transferred to the modeling of general intersections.

e Spatially discretized macroscopic models imply a relatively high computa-
tional cost because of their large number of simulated entities. To ensure
feasibility of large-scale applications, a simulation logic is adopted that
assigns an individual simulation time step duration to every link in the
network. The additional numerical imprecision introduced by this modifi-
cation is investigated and is found to be countervailed by its computational
benefits.

A simplified linearization of the CTM has been described before [I25, [126]. This
approach switches between linear sub-models according to the congestion status
of a considered freeway stretch. It is a simplification even of the CTM and is not
applicable to network traffic. A likewise constrained linearization is described in
[I65]. The originality of an earlier contribution is also acknowledged where CTM
merges and diverges are recombined to generate more complex intersections and
a simulation logic with variable time step lengths is enabled by the nesting of
differently fast ticking cells [T04].

Some elements of the KWM theory are given in Section Before the CTM
is considered, a general and linearizable flow calculation scheme is introduced
in Section The CTM and its extensions are then expressed in terms of
this formalism in Section Z4 The simulation logic on variable time scales is
described in Section a suitable spatiotemporal network discretization logic
is proposed in Section X8, and, finally, a general state space representation of
the mobility simulation is given in Section 271

2.2 The Kinematic Wave Model

The KWM requires a minimal set of assumptions to model traffic flow on a linear
road. Denote by x € R alocation on that road and by ¢ € R the continuous time.
o(z,t) is the local density of traffic (in vehicled] (veh) per length unit), ¢(z,t)

n the context of a macroscopic model, the notion of a “vehicle” is to be understood as a
“macroscopic vehicle unit”.
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its flow (in vehicles per time unit), and v(z, t) its velocity. These quantities are
related by the first constituent equation of the KWM:

q(z,t) = v(z,t)o(z,t). (2.1)

The second modeling assumption is that of vehicle conservation. On smooth
conditions, it is expressed by the continuity equation

do | Oq
—+—=0. 2.2
ot " ox (22)
Finally, local flow is specified as a function only of local density. This relation
is usually denoted as the fundamental diagram:

Q(xvt) :Q(g(x,t),z). (23)

Since these specifications can still result in ambiguities, an additional condition
must be instrumented to select the physically relevant solution. Given a concave
fundamental diagram, the principle of local demand and supply provides a con-
venient technique to ensure uniqueness [I02]. Denote by x— (a+) the location
immediately upstream (downstream) of x. For every z, the local flow ¢(x,t) is
then defined as the minimum of local flow demand A(o(xz—,t),z—) and local
flow supply X(o(z+,t), x+):

q(z,t) = min{A(o(z—,t), z—), 2(o(z+, 1), x+)}. (2.4)

Figure 2l illustrates this function.

To begin with, ) reflects the self-evident constraint that local traffic flow
is bounded by the flow that can be dismissed from the immediate upstream
location and by the flow that can be absorbed by the immediately downstream
location. But furthermore, the local flow is maximized subject to these con-
straints. This property enforces the physically relevant solution of the KWM-
model [I02]. Phenomenologically, it is a statement of drivers’ ride impulse [2],
which is equivalently expressed by the microsimulation rule for cellular automata
“Drive as fast as you can and stop if you have to!” [43].

Beyond its ability to uniquely capture traffic flow along a link, this principle
also holds for the modeling of general intersections, as illustrated in Figure
In such a setting, every upstream link ¢ provides a demand A;(t) equal to its
greatest possible outflow towards the intersection, and every downstream link
j provides a supply X;(¢) equal to its greatest possible inflow. Additional phe-
nomenological modeling is facilitated since these boundaries alone are generally
not sufficient to uniquely define the flows across an intersection. However, every
reasonable specification must adhere to the principle of local flow maximization.

2.3 Intersection Flow Calculation Scheme

This section describes a formalism for intersection traffic flow modeling denoted
as the general process of resource consumption (GPRC). Since sensitivity
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Figure 2.1: Local supply and demand comprise a fundamental diagram
The piecewise linear demand function A(p) conforms to the original specification of
the CTM, where it is denoted as the sending function. It consists of an increasing
part with its slope equal to the free flow speed, and it is limited by the flow capacity
4. The supply function 3(p) (also consistent with the original CTM, where it is called
receiving function) is also limited by the flow capacity. The slope of its declining part
equals the backward wave speed and intersects the abscissa at the greatest possible
density 9. The minimum of both functions yields a fundamental diagram.

A T,
A; %,
A, X,

Figure 2.2: A point-like intersection with [ ingoing and J outgoing links
Every upstream link ¢ provides a demand A; equal to its greatest possible outflow
towards the intersection, and every downstream link j provides a supply X; equal to

its greatest possible inflow.
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Algorithm 1 General process of resource consumption

5(0) is given

DO = {i: & > 0}

m =0

while (3i € D™ : ;(D™) > 0), do {
for all i € D™, do: 6™ = £™ /o, (D)
0™ = min {9§m)}

ieD(m)
(m) _ . (m)
B aurgierlgl(r}n){é’z }
g+l = glm) _ 6(™) p(D™))
D(m+1) — D(m)\B(m)
m+ +

M=m

analysis for the GPRC is available, every intersection model that conforms to
its specification can be linearized.

Consider a dynamical process with time step index m = 0... M. Every element
fi(m) € [0, 00) of its state vector &™) = (51-(’")) is considered as a resource that
is used up during the process. Its rate of consumption equals a non-negative
and finite value <p§m), which is constant throughout every time step m. Denote
the duration of step m by #("). The process dynamics are then defined by
gt — glm) _ g(m) p(m) where (M) = (cpz(-m)). The resources must not
become negative such that all zero states must have a zero consumption rate

and 0™ < ™ /o™ must hold for all nonzero states 1.

The set D™ = {i; ¢™ > 0} contains all resources that are strictly positive at
the beginning of step m. The process terminates if all elements in D(™ have
a zero consumption rate. Consumption rates only depend on the set D) of
currently available resources such that ¢(™) = ga(D(m)). Consequently, it is
phrased that “step m is under regime D(™”, The maximum duration of step
m in exclusive consideration of resource i is 6™ = ¢ /o™ € (0, 00). Since
every step m is specified to last until at least one resource in D("™) reaches
a zero value, its duration is (™) = minieD(k){t?Em)} > 0. The set B(™ =
arg min,c pem) {95’")} contains all resources that run dry at the end of step mH
This allows to give D(™+1) = D(m)\B(m) as an update equation.

The temporal aspect of this process is not to be interpreted physically. Only
its final state is of relevance to the physical simulation. Algorithm [ gives an
overview. An efficient implementation of the involved integer sets is described
in Appendix [Al

Sensitivity analysis for the GPRC is provided in Appendix where the fol-
lowing result is derived. It ensures linearizability of the subsequently developed
traffic flow model.

If all consumption rates are monotonously increasing with respect to the number
of available resources, i.e., if p;(DU{j}) > w;(D) Vi, j, and if the availability

2The argmin function returns the set of all minimizing indices.
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Figure 2.3: A straight connection
The mapping of upstream demands A and downstream supplies ¥ on GPRC resources

¢ is specified in (Z0)).

of a resource with a zero consumption rate does not influence the process dy-
namics, i.e., if o;(DU{i}) =0= @(D\{i}) = p(DU{i}), then an approximate
Jacobian 8€(M)/8£(0) can efficiently be computed concurrently with the GPRC.
If, furthermore, the consumption rates are parameterized with a constant pa-
rameter vector 3 and the sensitivities dp(D) /0B are provided, an approximate
Jacobian 8£(M)/8,6 can be computed in a likewise efficient way.

2.4 Intersection Specification

The CTM runs in discrete time and space. Denote the physical simulation
time step length by 7', the physical simulation time step counter by k, and
the spatial segments of a link as cells. A connector is placed between every
group of adjacent cells. Each such connector runs a GPRC implementation that
calculates the flow transmissions between these cellsf

The demand A;(k) of upstream cells ¢ = 1...I and the supply ¥;(k) of down-
stream cells j = 1...J (both in vehicles per time step duration) are mapped on
individual GPRC resources by

f-(o)(k) = TA;(k) for i upstream

{ 2.5
§§(.)£j(k) = T%,(k) for j downstream. (2:5)

Transmitted vehicle counts and equivalent average out- and inflow rates ¢?"*(k),
¢ (k) result after the GPRC’s termination from

Tt (k) = €9%) —¢™ (k) for i upstream (2.6)
Tqgr(k) = fg)j(k) - f}lfj)(k) for j downstream. '

The original CTM flow calculation rules and their continuation into a general
intersection model can now be expressed by appropriate specifications of the
resource consumption rates (D).

2.4.1 Straight Connections

The CTM’s basic flow calculation rule states that the number of transmitted
vehicles between two succeeding cells equals the minimum of the available ve-
hicles upstream, the available space downstream, and an upper flow constraint.
This is the discrete-time equivalent of [Z4). The according straight connector

3Since a flyweight design pattern is used for implementation [70], the number of actually
created GPRC objects winds down to the number of different intersection topologies.
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Figure 2.4: A merge with I ingoing links
The mapping of upstream demands A and downstream supplies 2 on GPRC resources

¢ is specified in (Z0)).

has one predecessor and one successor cell. Speaking in terms of the GPRC, its
resource vector & = (&1 &)7 is two-dimensional: & represents the number of
available upstream vehicles and & equals the available downstream space, cf.
FigureZ3 The superscript 7" denotes the transpose. The resource consumption
vector

e({1,2})=011)" (2.7)

corresponds to the only regime {1,2} with a nonzero consumption rate. The
resulting one-step GPRC run yields an identical vehicle transmission as the
original CTM.

2.4.2 Merges

The original CTM allows for merge connections between exactly two upstream
cells and one downstream cell. The according flow calculation rules state that
both predecessors are allowed to send all their available vehicles as long as these
can be accepted by the successor cell. If this is not the case, the successor’s
available space is shared between the predecessors in a ratio according to their
priorities o € [0,1] and e = 1 — . If this causes all available vehicles of one
predecessor to be transmitted but still leaves available space in the successor,
this space is filled up as much as possible with vehicles from the complementary
predecessor.

In terms of the GPRC, the merge resource vector is £ = (& & &3)7 where &
and & denote the available vehicles in the predecessor cells and &3 equals the
available space in the successor cell. The evolution of the process is fully defined
by three non-zero consumption rate vectors ¢({1,2,3}) = (a1 as aj+az)T,
»({1,3}) = (a1 0 a1)T, and p({2,3}) = (0 g a2)T. Here, the priorities do not
have to sum up to 1 but are required to be strictly positive. An inspection of
the regime sequences {1,2,3} — {1,3} and {1,2,3} — {2,3} shows that this
setup yields an identical behavior as the original CTM.

General merge connectors have an arbitrary number of I > 2 predecessor cells, as
shown in FigureZ4l The first I elements of the according resource vector are the

available vehicles ¢; in the predecessor cells = 1...1. The available space 741
in the successor cell makes up one additional resource: & = (&1 ... & &141)7.
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£\0=TA & =T,

Em"=TX,

Figure 2.5: A diverge with J outgoing links
The mapping of upstream demands A and downstream supplies ¥ on GPRC resources

& is specified in (ZI)).

A straightforward continuation of the CTM merge logic is

I T
p(D) = (@1(13) ... w1(D) Z%(D))
i=1 (2.8)
- a; {i,I+1}CD
pi(D) = { 0 otherwise,
where {i,7 + 1} C D indicates that both the upstream cell ¢ and the only
downstream cell provide nonzero resources. For I = 2, this reproduces the
original CTM merge. Since the total vehicle transmission is only bounded by
the available upstream vehicles and the downstream space, flow maximization
is ensured.

A generalization of the CTM merge logic to more than two predecessors has
previously been referred to as “very complicated” [86]. With the GPRC at
hand, this difficulty collapses into specification (ZJ]).

2.4.3 Diverges

Diverges of the original CTM split the flow from one predecessor cell into ex-
actly two successor cells. The splitting fractions are denoted by 81 € [0,1]
and B2 = 1 — B;. Here, the resource vector & = (& & fg)T is comprised of
the single predecessor’s available vehicles & and the available space & and &3
in the successor cells. Allowing for only one non-zero consumption rate vec-
tor p({1,2,3}) = (1 B1 B2)T implies the assumption of exactly one upstream
lane: If a vehicle at the head of the queue on this lane is unable to enter its
downstream cell, it completely blocks the diverge. This logic is reasonable for
large-scale applications [24, [IT9]. The resulting total outflow from the prede-
cessor is min{&y,&2/01,&s/02}, just as for the original CTM.

The simulation of J > 2 successors for a general diverge, as shown in Figure
is straightforward by the introduction of an extended resource vector & =
(&1 & ... &4 7)T and an according consumption rate vector

(1,2, 1+ ) =16 ... 5" (2.9)

for the only non-zero consumption regime {1,2,...,14J}. For J = 2, this yields
identical flow transmissions as the original CTM. The flow is again maximized
subject to the availability constraints and the additional splitting rule.
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Figure 2.6: A general connection with I ingoing and J outgoing links
The mapping of upstream demands A and downstream supplies ¥ on GPRC resources

¢ is specified in (Z0)).

Choosing zero consumption rates for all regimes but {1, ..., J, 1+J} is necessary
to ensure continuity of the flow transmissions with respect to the turning frac-
tions, which is required for the linearization of the model: If traffic could pass
the diverge unhindered given an unavailable successor j with 3; = 0, increasing
B3; by an arbitrarily small amount would instantaneously block the diverge. This
discontinuity is avoided by letting the diverge block even if 3; = 0 as soon as
successor j becomes unavailable. This restriction can be dropped if continuity
is not required and vanishes anyway in the combined micro/macro simulation
scheme of the next chapter where all turning fractions are guaranteed to be
strictly positive.

2.4.4 General Connections

A general connector is shown in Figure Zl Denote by P = {1,...,1} the
set of its upstream cells, by S = {I + 1,...,I + J} the set of its downstream
cells, and by (;; the prespecified turning fraction from predecessor i towards
successor j. Given a predecessor consumption rate ¢;(D), the specification of
successor oriented consumption rates ¢;;(D) = §;;¢:(D) maintains consistency
with diverge logic 3)). A priority rule equivalent to merge logic (Z8) is ensured
by letting ;(D) = «; for all available predecessors i as long as the intersection
is not blocked by an unavailable successor. The complete resource vector & =

(€1... &1 &1 ... &r0)T is then consumed by

(D) = (p1(D)...01(D) pre1(D) ... or45(D))"
. (67} i€ D, S Q D
1€ P pi(D) = { 0 otherwise (2.10)
j€S (D)= Biei(D).
icP

Again, all priorities must be strictly positive. The same statements about zero
turning fractions hold as for a diverge. This general connector comprises all
previously defined connector types as can be seen from choosing I = 1 and/or
J = 1. Still, it has no immediate counterpart in the CTM. Its logic results
as the limiting case of a merge which is connected by an infinitely short link
to a diverge whose turning fractions §; result via 3; = Zfil Bijai/ Ef:l gi
from the flow composition qi, ..., q; transmitted by the merge. No additional
phenomenological speculations are introduced in this model.
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It remains to show that the original CTM’s consistency with the KWM is
maintained, i.e., that specification ([ZI) is still flow-maximizing. In uncon-
gested conditions, the intersection winds down to a linear superposition of I
diverges and inherits their properties. In congested conditions, the total flow
through the intersection is limited by at least one downstream cell j* with
T = Zle Bij*qi, according to ([ZI). Assume that 25:1 q. > Zle qi was
possible for an altered configuration ¢f,...,q¢; of merging inflows. The down-
stream diverge logic still requires ¥;- > Zfil Bij=q;, and the merge logic de-
mands ¢, > ¢; for all i = 1...T if more downstream space becomes available.
Thus, X, > Zle Bij«q; > Zle Bij+qi = X+, which implies ¢, = ¢; for all i.
In consequence, the general intersection inherits the flow-maximizing property
of its merge and diverge component.

Specification (ZI0) complies with the GPRC’s requirements for linearization,
as stated in Section 23 The relations between demands/supplies and GPRC
resources ([Z3) and between GPRC resources and flow rates [ZH) are already
linear. Combined, this ensures the availability of flow rate sensitivities with
respect to demands A, supplies X, and turning proportions [.

2.5 Simulation Logic

Discrete time network simulation is straightforward if a uniform time step length
T is used. Every link with maximum velocity © is disassembled into cells of

minimum cell length = T'0. (2.11)

A simulation step (tick) then consists of two parts:

1. Every connector calculates the vehicle transmissions between its adjacent
cells.

2. Every cell updates its occupancy according to these transmissions.

The occupancy of a cell (link) is defined as the number of vehicle units that
are located in that cell (link).

The simulation of a heterogeneous urban network requires relatively small cells
in order to model densely meshed regions. This calls for a small 7" and in
turn implies an unnecessarily precise modeling of longer road segments. The
use of larger cells running on the same temporal grid somewhat mildens this
problem at the cost of a greater numerical dispersion [23], [127]. However, a
significant share of urban network computations is incurred by the intersection
logic. Thus, a simulation logic that minimizes the number of simulation ticks
themselves is needed.

The spatiotemporal dynamics within an isolated link are uniquely defined if
an initial density profile as well as feasible upstream inflows and downstream
outflows are provided. Given an individually chosen time step length and an
appropriate spatial discretization, the standard CTM logic facilitates a KWM-
consistent simulation. Since all spatial dynamics are enclosed within the link,
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it can be viewed from the outside as a discrete-time, nonlinear, ordinary dy-
namical system with two inputs (in- and outflows) and two outputs (upstream
flow supply and downstream flow demand). The same argument holds for in-
dividual cells. Likewise, the intersection model of Section EZZ4] calculates flows
consistently with the KWM. For any chosen time step length, it constitutes a
memoryless, discrete-time, nonlinear system with its upstream flow demands
and downstream flow supplies as inputs and the resulting flow transmissions as
outputs.

Adopting a technical point of view, these systems can immediately be linked.
The outputs of systems with a larger time step are held constant when needed
as inputs for faster ticking systems, and the outputs of faster ticking systems
are integrated/averaged before they are fed into slower ticking systems. Since
such holding and averaging affect system dynamics mainly in terms of a delay
that is proportional to the involved time step lengths, a reasonable balance
between additionally introduced imprecision and computational speedup can
be achieved. This is confirmed by the experimental results given in Section

24

The remainder of this section details this simulation logic. A cell 7 (connector ¢)
is denoted as due at discrete simulation time step k if k£ is an integer multiple
of its individual time step length T; (7¢.). The duration of a simulation time
step is generally assumed to be 1 second. Two procedures are executed at every
simulation time step k:

1. Every cell ¢ that is due according to its individual time step length T;
calculates its supply and demand boundary from its current occupancy
and keeps these results constant for the next T; seconds.

2. Every connector ¢ that is due according to its individual time step length
T, calculates its average flow rates that hold for the next T, seconds and
notifies its adjacent cells of the resulting vehicle transmissions.

Sections EE01] Z0 2, and detail these steps.

2.5.1 Cell Boundaries

Every cell i has exactly one preceding and one succeeding connector. Its oc-
cupancy during simulation time step k is denoted by xz;(k) € [0,%;] where Z;
is its maximum occupancy. While the cell has an individual time step length
T;, it is embedded in a system potentially running at a 1-second time scale.
This requires its demand A;(k) and supply ¥;(k) to be defined at every second.
Since these boundaries are static functions only of i’s occupancy, it is sufficient
to specify x; in every simulation time step by

z(rTi+s) =a;(rTy) reN, se{0,...,T; — 1}. (2.12)
The original CTM boundary specifications can now be applied:

Ai(k) = min {q @mﬂf)}

(2.13)



where §; denotes the cell’s flow capacity (in vehicles per time unit), L; its length,
and w; its backward wave speed. These equations can approximately be lin-
earized with respect to x;(k) if at points of non-smoothness the average of
left- and right-sided sensitivity is used. Alternative specifications are possible

55, M02).

2.5.2 Connector Flow Rate Update

Every connector ¢ has a set P. of preceding cells and a set S. of succeeding
cells. Its individual time step length T, is chosen such that (i) the connector
recalculates its flow rates whenever an adjacent cell boundary changes and (ii)
the overall computational load is minimized. This is achieved by choosing 7. as
the largest common divisor of all adjacent cells’ time step durations:

T.= led {T;}. 2.14
© iePCUSC{ il (2.14)
Arbitrary cell time step durations might yield low computational savings be-
cause of possibly small T, values resulting from this equation, so they are con-

strained to be powers of two. This turns the connector time step length into
the minimum of its adjacent cells’ time step durations.

2.5.3 Cell State Update

Even if a cell i’s state x; changes only every T; seconds, its adjacent connectors
might run at a higher frequency. On the finest temporal scale, this implies

T;—1
2T+ 1) = 2(rT) + 15 Y (¢ (rTi + 5) — ¢ ('Ts + 9)) - (2.15)
s=0

Denote by p; (s;) the preceding (succeeding) connector of cell . Because of
&I, 7;/T,, and T;/T;, are integer values. This allows for the following sim-
plification:

vi(rT; + 1) = ;(rTy)
Ty /Ty, —1
+ T, ¢ (rT; + sTp,)
' g ' (2.16)
T, /Ty, —1
- TS'L Z q?ut (TTZ + STSi)'
s=0

Therefore, it is sufficient to notify cell 7 every led{T,,,Ts, } seconds of possible
flow rate changes. This is done independently by its upstream and downstream
connector every 7}, and T, seconds by transmitting the appropriate addend in
E&I8) to the cell. Since the cell’s boundaries are held constant for a possibly
longer duration according to (ZIZ) and ZI3), the transmitted vehicles are
intermediately cached by the cell. Equation (I8 is differentiable with respect
to in- and outflow rates.
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Table 2.1: Link parameters in linear test network

max. density 1 veh /7.5 m &~ 133 veh/km
flow capacity 2000 veh/h

max. velocity 50 km/h

cell length 50 km/h - 1s~ 13.9m

link length 32 cells/link - 13.9 m ~ 444 m

2.5.4 Experimental Investigation of Simulation Precision

A linear test network is considered. It consists of a sequence of 5 identical links
the parameters of which are given in Table Il The simulation boundaries
resemble the conditions in which the CTM was first investigated [23]: A linear
density gradient from zero to maximum density is placed on the network, with
zero density at its upstream end and maximum density at its downstream end.
No traffic is allowed to enter or leave the network. The simulation is run until
a steady state is reached.

Figure Zshows the resulting space-time plots in various discretization settings.
Plot EZ7(a) provides a good approximation to the exact solution. Initially, two
shockwaves occur: an upstream shockwave moving at positive velocity and a
downstream shockwave moving at negative velocity. They merge in the center
of the network and persist as a stationary density discontinuity with all traffic
being queued up in the downstream half of the network. For comparison, the
simulation results with a much coarser but still homogeneous discretization are
shown in plot EZZ(b).

The results with heterogeneous simulation time steps nicely reflect the working
of the underlying Godunov method. In every simulation time step, the Godunov
scheme solves a Riemann problem at all cell boundaries. Since condition T
ensures that the resulting shockwaves or rarefaction fans do not cross beyond
one cell during a single time step, these problems can be solved independently
in a computationally efficient way [[02, [[06]. Placing fast ticking cells next to
slower cells explicitly displays these shockwaves, as it can be seen best in plot
E7(c). While these artifacts are unequivocally owed to the simulation logic on
variable time scales, they are put into relation by plot ZZd). It shows the same
result after it has been averaged on a temporal grid according to the largest
involved time step duration. The artifacts are nicely smeared out while the
original shockwaves are maintained with a precision that is at least comparable
to plot ZZb). Analogical statements holds for plots EXl(e) and EZZ(f).

These results indicate that the overall simulation error remains in the order of
the largest involved time step duration, as it has been previously hypothesized.
Artifacts can occur at the boundaries between slowly and fast ticking cells but
can also be removed by a temporal averaging of the simulation output before
further processing. No amplification of artifacts is observed. These experiments
cannot replace a thorough theoretical investigation. They are, however, consid-
ered as sufficient indications that the simulation logic on variable time scales
performs well enough to be be applied in the further course of this dissertation.
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[1] [1] (1] (1] 11
(a) All links have a time step duration
of 1 second and consist of 32 cells each.

X

[8] (1 (8] (1 [8]
(c) All but the second and fourth link
have an 8 second time step duration.
t

X

[1] [8] (1] (8] [1]
(e) Only the second and fourth link have
an 8 second time step duration.

X

[8] [8] (8] (8] [8]
(b) All links have a time step duration
of 8 seconds and consist of 4 cells each.

X

[8] (11 (81 (11 [81
(d) The same data as (c) but averaged
on a temporal grid of 8 seconds.
t

X

[1] (8] (1] (8] [1]

(f) The same data as (e) but averaged on

a temporal grid of 8 seconds.

Figure 2.7: Space-time plots with variable spatiotemporal discretizations
Colors encode densities as follows: green is zero density, yellow is half of maximum
density, and red is maximum density. See also Table LTl The parenthesized numbers
below the links indicate their individual time step durations.
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2.6 Network Discretization

2.6.1 Specification

Specifications of large road networks usually consist of an attributed graph
where nodes represent intersections and links represent roads, e.g., [119, 147,
[163]. The cell structure of such a network can be generated by the following
steps:

1. Choose a maximum simulation time step length 7. This network time
constant compromises between a high simulation resolution (small 7')
and a high computational performance (large T).

2. For every link a in the network, do:

(a) Select the individual time step duration Ty, of link a as large as pos-
sible subject to the following constraints:

e T, is strictly positive and not larger than T.

e T, is an integer power of two.

e It is required that link a can be partitioned into at least two cells
of equal length L,/2. Since [ZII) must hold for each of these
cells, Ty, < L, /(20,) is required.

If link @ is so short that no feasible T, exists, increase L, just until
T, = 1 s becomes a feasible solution.

(b) Partition link a into n, identical cells of length L,/n,. In order to
minimize dispersion, choose n, as large as possible without violating
condition [ZII)). That is, n, < L,/(0,T,) must hold. The previous
choice of T, ensures that this yields at least two cells in link a.

3. Place a connector ¢ between every set of adjacent cells, and calculate its
individual time step length T, via (ZI4).

The network entrance of traffic is facilitated by entry cells in consistency with
the original CTM implementation [#0]. Entry cells can hold an arbitrary occu-
pancy, have no upstream connector, and a maximum outflow equal to the entire
occupancy that waits in the cell to enter the system. One entry cell is connected
to the innermost connector of every link. The existence of such a connector is
ensured since every link consists of at least two cells. A specification of the net-
work exit of traffic is postponed to Section Bl where multi-commodity traffic is
introduced. The allocation of demand entry points to links and not to nodes is
chosen in consistency with the MATSim demand specification [TT9].

2.6.2 Berlin Test Case

The test case of this thesis is modeled after the road network of Greater Berlin,
which is illustrated in Figure Z8 This network consists of 1 083 nodes and 2 459
unidirectional links. It is quite heterogeneous in that the inner-urban area is
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Figure 2.8: Major road network of Greater Berlin
The two clippings indicate a locally high network resolution.
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Figure 2.9: Effect of network time constant on cell count
Number of cells over log,(T"). Since the network geometry has a limiting effect on the
cell sizes, T' values beyond 2°%s do not result in a notably increased coarsening.

0.30
0.27
0.24
0.21
0.18
0.15
0.12
0.09
0.06 —
0.03
0.00 —

frequency

0 1 2 3 4 5 6

1d (time step duration)

Figure 2.10: Time step duration histogram
Histogram of logarithmic intersection connector time step durations given a network

time constant of 7' = 64s.
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modeled in relatively high resolution, whereas the surrounding freeway ring is
comprised of several links that are many kilometers long.

Figure B shows the effect of the network time constant 7' on the number of
cells in the network. As 7" increases, the number of cells approaches a minimum
value of 2 - 2459. This mirrors the above requirement of at least two cells per
link. A histogram of intersection connector time step lengths for 7' = 645 is
given in Figure ZT0 The high number of intersections with a relatively low
time step duration is owed to the finely meshed interurban network, which is
precluded from a slower simulation clock. The relation between network time
constant and computational performance is investigated in Section BT

2.7 State Space Notation

For greatest generality, the remainder of this thesis is decoupled from specific
traffic flow modeling assumptions by the following state space representation of
the mobility simulation:

x™(0) = xp°
ms ms [, mS (2'17)

x"(k+1) = "[x"(k),B(k), k]
Vector x™*(k) denotes the mobility simulation’s physical state in time step k.
For a spatially discretized first order model, it contains one element for every
cell 7 in the network: x™* = (z;). Single-commodity turning fractions 8(k) =
(Bij(k)) are provided as exogenous parameters to the model. Vector-valued
transition function f™% defines the system’s evolution through time. It fully
encapsulates the specifically chosen mobility simulation. The formal modeling
of demand sources and sinks is postponed to the next chapter.

For the subsequent analysis, it is required that at least approximate Jacobians
Of™s[.. . k]/Oox™ (k) and Of™%[...,k]/O0B(k) are available. This condition is
fulfilled by the mobility simulation proposed in this chapter since

e cell state update equation (ZIM) is linear with respect to in- and outflow
rates,

e these flow rates can be linearized with respect to cell boundaries and

turning fractions, cf. [Z3), (H), and Section ZZA and

e cell boundary specification ([ZI3) is linearizable with respect to the cell
states.
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Chapter 3

Microscopic Behavioral
Simulation

This chapter prepares a formal link between individual driver behavior and
aggregate characteristics of traffic flow.

First, motorist driving decisions are expressed as control measures that act on
a state space model of macroscopic traffic dynamics. The resulting formalism
is quite general and allows to link different macroscopic mobility simulations
and microscopic behavioral models. In particular, it allows to predict the lin-
earized effect of individual driver behavior on global network conditions without
repeated simulations.

Second, the decision making process of a driver is formalized in a way that is
compatible with the aforementioned micro/macro mobility simulation. This rep-
resentation comprises a broad variety of possible behavioral simulators. Some
more specific modeling approaches are also presented. Apart from their illus-
trative purpose, they introduce modeling aspects that are referred to in later
chapters.

3.1 Coupling Micro- and Macrosimulation

Two different concepts can be encountered in the literature on combined mi-
cro/macro mobility simulations.

Hybrid approaches link simulations that work on different degrees of aggregation
at well-defined locations in the network [32, [64]. This approach is attractive if
the required simulation fidelity varies spatially but does not serve the purpose
of this work where a network-wide macroscopic model is needed.

Mesoscopic simulations move individual vehicles based on aggregate laws of
motion in order to increase the computational performance while retaining a
microscopic representation of behavior [B1, B5]. Simulation-based DTA usually
employs such models, cf. Section [CZZA and the references therein. Their
counterpart in physics are smoothed particle hydrodynamics (SPH) [124, [T53].
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The approach described here is a mesoscopic model with a distinct macroscopic
aspect. In this way, mathematical feasibility (linearization of the macroscopic
model) and expressive power (microsimulation of behavior) are combined. High
computational performance is maintained by a simulation scheme on variable
time scales.

3.1.1 Representation of Behavioral Heterogeneity

Pursuing a strictly macroscopic approach, heterogeneous driver behavior could
be captured by splitting traffic volumes into partial flows (commodities) with
individual behavioral features. For example, destination-bound commodities
would exhibit different turning behavior at intersections in order to reach their
destinations. The applicability of this approach is limited by the computational
cost of tracking partial flows for every commodity on every link in the network.

A mesoscopic simulation easily keeps track of behavioral aspects by attaching
them to individual DVUs. A continuation of the mesoscopic method towards
somewhat more macroscopic modeling is pursued here. A fully macroscopic
representation of the underlying physical model is maintained. The behav-
ioral information is represented by massless particles that are dispersed in the
macroscopic flow. They drift along with the flow according to its spatiotemporal
velocity field. If one maintains the macroscopic multi-commodity point of view,
these particles can be interpreted as draws from the commodity distribution of
the flow entering the network. Commodity information for any spatiotemporal
segment of the network can be recovered by counting the according particles
within that segment.

If one such particle is dismissed into the system together with the macroscopic
counterpiece of one vehicle, an interpretation as a DVU is obvious. However, the
number of particles is not constrained by this and can be chosen as a compromise
between behavioral modeling resolution and computational performance.

3.1.2 Particle Movement
3.1.2.1 Specification

The macroscopic traffic flow model is required to specify a local velocity v;(k)
in every cell 7 in every time step k. The velocity calculation logic employed in
all experiments of this thesis is described in Appendix

Consider a set of particles n = 1...N (a population of travelers, agents or
vehicles) that are floating through the system. Particles have no “mass” insofar
as they do not contribute to the macroscopic occupancy in a cell. At the time
of a particle’s entrance into the network, an appropriate amount of macroscopic
flow is also dismissed into the system, resulting in a mass balance between
particles and total macroscopic occupancy.

In any time step k of duration 7', each particle advances according to the local
velocity in its current cell. Particle locations within a cell are continuous vari-
ables and their movement is regarded as continuous in time as well: When a
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Figure 3.1: Particle movement across cell boundaries
A particle approaches the upstream end of a congested road segment. The time step
duration is 7' = 8s. The particle needs 5s to reach the end of cell ¢ at v; = 40 km/h.
During the remaining 3s, it advances another 16.5m in cell j at v; = 20km/h.

particle crosses a cell boundary during a single move of duration 7', it can freely
choose its next cell (if there is more than one downstream cell) and continue
with the velocity encountered there until its available move time ends. This
procedure is illustrated in Figure BXl The particle evaluates all traversed cells’
velocities at the start time of its move. In consequence, this simulation scheme is
imprecise in the order of a time step length, just as the macroscopic simulation
logic itself.

When a particle reaches its destination, it is removed from the system and an
appropriate amount of macroscopic flow is also filtered out of the traffic stream
passing the exit location.

3.1.2.2 Simulation on Variable Time Scales

The previous chapter describes how a macroscopic simulation can be run with
variable time step lengths for different network elements. This approach can be
extended to the movement of particles and requires the following completion of
the simulation procedure given in Section EE3, pHEIl It is illustrated in Figure

1. Every cell ¢ that is due according to its individual time step length T;
calculates its supply and demand boundary from its current occupancy
and keeps these results constant for the next T; seconds.

2. Each particle that currently resides in a cell 7 that is due is moved forward
according to the following rules:

(a) The particle moves for a duration equal to the time step length T; of
its start cell 4. It might cross several cells during this move if cell i
has a larger T; than its downstream cells.

(b) If the particle has used up its time of movement and has arrived in
a cell j with T} > Tj, it continues its move until it has moved for
an overall duration of 7). This continued move never enters another
cell because of condition (ZT1l) and accounts for the expected waiting
time T — 7 until the particle is again due for movement.
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Figure 3.2: Particle movement on variable time scales

A homogeneous velocity field is assumed so that a correct particle trajectory is repre-
sented by a straight line in the space-time plot. The considered particle starts its move
in cell 7 at space-time point Py. During its initial move of duration 7j, it traverses
two small intermediate cells and finally arrives in cell j at point P;. If the move was
finished there, it would not be continued until T; — T; seconds later from point Pj he-
cause of cell j’s greater time step length 7). This would be incorrect as the unstraight
blue trajectory indicates. The particle has to account for the waiting time on cell j
by continuing its move for another 7T; — T; seconds, which results in the linear and
therefore correct red trajectory through point Ps.

3. Every connector ¢ that is due according to its individual time step length
T. calculates its average flow rates that hold for the next 7, seconds and
notifies its adjacent cells of the resulting vehicle transmissions.

Since the particle still evaluates all traversed cells’ velocities at the start time of
its move, the resulting imprecisions remain in the order of the largest involved
time step duration.

3.1.3 Particle Route Choice
3.1.3.1 Specification

Having stated the influence of macroscopic dynamics on individual particles, the
converse problem of synchronizing macroscopic flows with individual particle
behavior is considered next.

The route choice of particle n is expressed by a vector u, (k) = (ui;n(k)) of
turning move indicators

(3.1)

(k) = 1 if n proceeds from cell ¢ to j at time step k
Ui \") =10 otherwise.

An additional state vector x*™ (k) = (x;;(k)) is introduced. Each element z;; (k)
represents the accumulated count of particles having turned from cell 7 to j until
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time step k. The dynamics of these turning counters are defined by
x"0) = 0

N 3.2
cht(k+1) _ cht(k)+2un(k). ( )

The macroscopic turning fractions B(k) = (8;;(k)) can now be specified as a
function B(x " (k)) = (B;;(x"(k))) of the turning counters where
xij (k)
Bij (x"(k)) = =1t 3.3

This is a maximum likelihood estimator of the turning probabilities if the turning
moves follows a stationary multinomial distribution [87]. The resulting estimates
can be directly fed into the macroscopic model by a substitution of 3 in ([ZI1).
In order to avoid undefined 0/0 divisions at the beginning of a simulation, the
turning counters can be initialized with small positive values instead of all zeros.

While the update equation in ([B2)) assumes stationary turning probabilities,
a straightforward approach to introduce time dependency is to define an ad-
ditional forgetting parameter w € (0,1) in a modified turning counter update
equation

X (k4 1) = wx™ (k) + (1 —w) Y un(k). (3.4)

In the absence of newly observed turning moves, this scheme causes an expo-
nential forgetting of previously observed counts. A useful property of this filter
is its infinite memory: Even if no particles arrive at an intersection for a while,
the turning counts remain strictly positive and thus ensure well-defined flow

splits in (B3).

One possible problem with [&4) is the danger of gridlock. If a traffic jam in
one of an intersection’s downstream cells causes all upstream cells’ velocities to
drop, it might take a long time until new particles reach the intersection and
provide fresh turning move indicators that reflect these drivers’ avoidance of the
unavailable outgoing cell. An appropriate gridlock resolution logic is described
in Appendix [0l

A state space representation of the combined system ([ZI7) and Bd]) can now

be given. Defining
x(k) = { X" (k) } (3.5)

cht(k)
and
fox(t). o )k b = | e 3PS 6o
one obtains
x(k+1) =f[x(k),u1(k)...un(k), k] (3.7

According to the notational conventions of control theory, the turning move
indicators u, act as control variables in this model. In fact, the individual

53



driver behavior steers the macroscopic traffic flow. x is subsequently denoted
as the macroscopic state of the mobility simulation. Note that x does not
account for the microscopic states of individual particles. The combined state
transition function f is linearizable with respect to x and all u, because of
the linearizability of its constituting functions &Id), B3), and ). This
implies that the effect of an agent’s route choice on the macroscopic states can
be linearly predicted as the sum of the effects of its turning moves.

The state space model described so far captures mobility only within the network
but does not account for vehicle entries and exits. These extensions require the
more concise formalization of travel demand given in the second half of this
chapter. Regarding linearizability, it can already be stated that the macroscopic
effect of a particle’s entry or exit can be linearly approximated since an entry or
exit move corresponds macroscopically merely to a local occupancy modification.

3.1.3.2 Simulation on Variable Time Scales

If the macroscopic mobility simulation runs on variable time steps, the rows of
B3 are evaluated at likewise variable frequencies:

zi;(rTe +s) = wzy;(rT.) reN, se{0,....,T,—1}
1 ety (3.8)
i (rTe+T,) = wewi;(rTe)+(1— wc)? Z Z Uijn (T1Te + )
€ s=0 n=1

where T, is the time step duration of the connector ¢ that is crossed by turning
move ij. An individual weight w, is necessary for every such connector in order
to maintain the same degree of averaging for all turning counters.

If the number 22;1 u;j.n (k) of microscopically simulated ¢j turning moves dur-
ing a single simulation time step is Poissonian with expectation and variance
Aij, the variance of z;; as defined in () approaches
1 —we Aij

lim VAR{z;;(rT,)} = ——= L. 3.9

Jim VAR{zy; (7,)} = e 2 (39)
A derivation of this equation can be found in Appendix [l The network time
constant 7" defined in Section is now employed to postulate that a turning
counter’s variability must be independent of its connector’s time step length
and, more specifically, identical to

1T—1 N Ao
VAR — Wiin(rT +5) $ = 22, 3.10
T;; g ) 7 (3.10)

This variance would result if the turning counters were averaged non-recursively
on a temporal grid as coarse as the network time constant. Equating [3) and

BId) yields

~

— — Tc
T+ T
An infinite turning counter memory is guaranteed if all 7¢. are chosen strictly
smaller than T'. The working of this specification is illustrated in Figure

(3.11)

We

54



Y

—T=1s —T=2s —T=4s

* M T I
M va\\ T R

(filtered) vehicle count
© = N W A U O O O
=
=N
=
—

second 1 through 100 second 1 through 100 second 1 through 100

Figure 3.3: Turning counter dynamics
Three turning counters (red) with time step durations of 1, 2, and 4 seconds track a Poissonian signal (blue) for a duration of 100 seconds. The
signal’s expectation jumps from 0 to 5 after 10 seconds and returns to 0 after another 60 seconds. The network time constant 7" is 8 seconds in all

cases. All counters exhibit a similar variability and speed of adaptation.



For a simulation time step length of one second, the requirement of an infi-
nite memory dictates a minimum network time constant of two seconds. Given
this inertia, a precise macroscopic tracking of individual vehicles is not pos-
sible. However, such a precision is rather undesirable for the purpose of this
work. The simulated driver population is an output of MATSim, the mobility
simulation of which is a queuing model with relatively limited expressive power
but a high computational performance [AI]. It accounts for signalized inter-
sections merely by average flow capacity reductions, which results in relatively
undisturbed traffic streams. Maintaining this modeling fidelity, a macroscopic
reproduction of individual vehicle movements would only introduce additional
discretization noise into [B7) — an utmost undesirable effect since this model is
to be linearized.

In a planning context, a network time constant of several minutes is a good
choice. It must not be too large since otherwise the macroscopic model even-
tually looses track of the driver behavior. A reasonable upper bound for the
network time constant is the time interval at which traffic information is aver-
aged before it is fed back to the simulated travelers who in turn react to this
information by possible turning move changes.

3.1.4 Computational Model Investigation

The micro/macro model’s precision and the accelerating effect of the simulation
logic on variable time scales are investigated. All experiments are conducted on
a 1.7 GHz Pentium 4 machine with 1 GB RAM, using the Sun Java Runtime
Environment 5.0 [84].

A synthetic population of 206 353 motorist travelers with complete daily plans
is available for the Berlin network introduced in Section [[53]. This is a
10 percent sample of Berlin’s true motorist population. Thus, 10 macroscopic
vehicle units need to be inserted together with one particle into the simulation.
However, since the simulations are run on a thinned out version of the full Berlin
network, the use of 2 instead of 10 macroscopic vehicle units per particle already
creates realistic congestion patterns.

The following experiments consider the morning rush hour from 6 to 12 am.
FigureBdlshows the total number of moving vehicles as a function of time. More
than 16 000 particles, i.e., 32000 macroscopic vehicle units, are concurrently
simulated during the rush hour peak at approximately 8:30 am.

3.1.4.1 Precision of Micro/Macro Coupling

The microscopic behavior influences the macroscopic flow splits via the turn-
ing counter mechanism, whereas the microscopic movements are guided by the
macroscopic velocity field. The precision of this micro/macro model synchro-
nization is investigated here.

Figure shows the microscopic and macroscopic traffic density trajectories
for two selected links of the Berlin network. Macroscopic density is the ratio
of macroscopic vehicle units on a link to the link’s space capacity. The space
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Figure 3.4: Simulated Berlin morning peak
A simulation of the Berlin morning peak between 6 and 12 am. The curve shows the
macroscopic number of moving vehicles over time.

capacity of a link is defined as its length times its number of lanes. Microscopic
density is calculated here as the quotient between twice the microscopic particle
count on a link and its space capacity. The factor of two accounts for the fact
that one particle represents two vehicle units in the given experimental setting.

Link (a) is only 25 meters long, whereas link (b) has a length of 1611 meters.
This difference is reflected in the much greater variance of the microscopic den-
sity on the shorter link. Both macroscopic density trajectories track the micro-
scopic trends with high precision and almost no lag. The strong discretization
noise particularly on the shorter link is significantly reduced.

In order to avoid arbitrariness, these links were automatically chosen according
to the following criteria: Link (a) exhibits the largest ratio of density to space
capacity during the rush hour peak, whereas link (b) carries the largest total
amount of vehicle units, i.e., the largest product of density and space capacity,
in the same time interval. That is, the first criterion prefers small links, and
the second criterion prefers large links. Both criteria favor congested links since
uncongested conditions prevail anyway before the rush hour sets in.

The macroscopic densities beyond 133 veh/km indicate that the gridlock res-
olution mechanism described in Appendix [0 actively influences the traffic dy-
namics. This shows that the purely macroscopic gridlock resolution logic is
compatible with the microscopic model components.

The network time constant is chosen as large as 5 minutes. This is justified
in light of the 15 minute time bins in which MATSim averages travel times
before feeding them back to the simulated travelers in its iterative simulation

procedure, cf. Sections [[ZZ3 and BEZZ3

The difference between this model and a typical mesoscopic approach is empha-
sized. The presented macroscopic trajectories are not calculated by some kind
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(a) Microscopic and macroscopic density trajectory for a short link of 25 m length
under heavy congestion. The discrete value domain of the microscopic curve reflects
the strong vehicle discretization noise. The macroscopic curve removes most of this
noise. Unrealistically high microscopic densities are possible because of the massless
particles. The macroscopic curve, however, is within bounds.
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(b) Microscopic and macroscopic density trajectory for a 1.6 km long link under
heavy congestion. The discretization noise has a weaker effect since a greater number
of particles is averaged in the microscopic density calculations. The microscopic signal
trend is tracked very well by the macroscopic curve.

Figure 3.5: Precision of micro/macro model synchronization
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Figure 3.6: Mean normalized bias and error trajectories
Mean normalized bias MNB and mean normalized error MNE as defined in (BI2)
and (BI3). The intermediate microscopic excess in MNB of about 1 per mille is
negligible and owed to the particle entrance mechanism which puts particles ahead of
their macroscopic flow into the system. Likewise, there is a similar undershoot as the
particles leave the system ahead of their macroscopic flow at the end of the rush hour.

of microscopic vehicle count averaging. Rather, they implicitly result from con-
tinuously tracked turning fractions that guide an appropriate amount of truly
macroscopic flow across each link.

A network-wide point of view is adopted by means of the following two charac-
teristics:

micro macro

0

represents the mean normalized bias where ™2™ (k) (o™ (k)) is the macro-
scopic (microscopic) vehicle density on link a in time step k, ¢ is the macroscopic
jam density of 133 veh/km, and A is the set of all links in the network. The
second characteristic

rmcro macro (k/’)’

(3.13)

is the mean normalized error.

Figure Bl shows that MNB fluctuates unsystematically around 0 percent. This
indicates that the mass balance between microscopic and macroscopic flow is
well maintained. The maximum value of approximately 3 percent for MNE is
moderate and plausible in consideration of Figure

These results show that the micro- and the macro-model are well synchronized
despite of their sparse interactions. The resulting macroscopic traffic charac-
teristics exhibit a significantly lower discretization noise than a simple average
over the microscopic particles.
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Figure 3.7: Microscopic and macroscopic computation times
Microscopic and macroscopic computation times over log, of the greatest allowed time
step duration. The simulated time span is 6 hours.

3.1.4.2 Computational Performance

The imprecisions introduced by the simulation scheme on variable time scales are
now justified by their countervailing computational benefits. The same morning
peak scenario as before is considered.

The computational effort for the micro- and for the macrosimulation is distin-
guished in the following way. The macrosimulation comprises all processes de-
scribed in Chapter Bl plus the turning counter tracking described in Section B3
The microsimulation comprises the additional operations necessary to update
the individual particle locations as described in Section BEILA In consequence,
the total computational effort is the sum of micro- and macrosimulation.

Figure B shows the microscopic and macroscopic computation time over log,
of the greatest allowed simulation time step duration, which is roughly the
same as the network time constant 7'[] The overall number of computations is
proportional to the number of network elements and to the frequencies at which
these elements are updated. An increased T affects both, the element count
and the calculation frequency. Thus, the computation times initially decrease
quickly with T but then stabilize because of the geometrical constraints on the
link and node time step durations. Choosing large cells and long time steps
does not only reduce the number of macroscopic calculations but also decreases
the frequencies at which the microscopic particles are updated.

Figure B8 shows the real time ratio, i.e., the ratio of simulated time to the time
required to run the simulation. The accomplished maximum value is 90. This

IMore precisely, the network time constant T is slightly larger than the greatest allowed
simulation time step duration in order to ensure an infinite turning counter memory, cf.

Section B L3
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Figure 3.8: Real time ratio
Real time ratio over log, of the largest simulation time step duration in the network.
These values account for all operations of the simulation system and include a number
of supplementary procedures. In consequence, the evaluated running time is slightly
larger than the sum of pure micro- and macrosimulation.

shows that the model is ready for real-time simulations of large-scale scenarios.
In summary, its computational efficiency is owed to the following properties:

e The model does not require a realistic number of particles. If, for example,
only a 10 percent sample of the complete population is loaded on the
network, the macroscopic equivalent of 10 vehicles is inserted into the
system together with every particle. The chosen sample size must be
large enough to properly represent the actual population’s behavior but
otherwise can be minimized for high computational performance.

e The macroscopic mobility simulation only moves single-commodity flows.
No care has to be taken of partial densities as it would be the case if
behavioral aspects were represented macroscopically.

e Every link is simulated with a cell size and a time step length that are
optimally adjusted to its characteristics.

Altogether, two results obtained in this section are useful independently of a
state estimation problem. First, it is shown how a general macroscopic traffic
flow model can be employed to simulate microscopic travel behavior. A useful
feature of this approach is its ability to remove vehicle discretization noise.
Second, the macroscopic simulation logic on variable time scales, cf. Section
23 is extended towards this micro/macro coupling scheme and exhibits a high
computational performance.

Important for estimation, the linearizability of state space model () is main-
tained throughout the entire development. This provides the sensitivity infor-
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mation that is subsequently applied to predict the linearized effect of an indi-
vidual driver’s turning move sequence on the global network conditions without
repeated simulations.

3.2 Simulation of Drivers’ Choices

The first part of this chapter specifies physically observable driver behavior as
a sequence of turning moves. In the following, the decisions that precede this
behavior are discussed and formalized in a way that allows for a seamless linkage
to the previously described micro/macro mobility simulation. The resulting
behavioral representation is logically compatible with the estimation algorithm
developed in the next chapter and technically compatible with a MATSim-like
simulation system. Since this dissertation does not contribute to the field of
behavioral modeling itself, the following discussion is kept problem-specific and
is not exhaustive from a behavioral modeling point of view.

3.2.1 Choice Formalism

It is assumed that, whenever a traveler is faced with a situation that calls for
a decision, this traveler chooses precisely one element from a nonempty set of
discrete alternatives. The decision making process itself is structured according
to the framework given in [21]:

1. definition of the choice problem,
2. generation of alternatives,

3. evaluation of attributes of alternatives,
4. choice,
5

. implementation.

These steps are made precise in the remainder of this section. Note that a
reactive decision protocol as defined in Section [[31] may repeat steps Bl and
several times before a choice is made.

The discussion omits specific modeling assumptions and algorithmic details that
would be necessary for the realization of an applicable behavioral model. This
is justified by the intention to provide an estimator that is compatible with a
broad range of behavioral models and by the rather technical assumption that
the estimator is likely to be attached to an existing traffic simulator, cf. Section
X1 Only a few selected modeling aspects that are referred to in the later
developments are discussed at the end of this chapter.

3.2.1.1 Definition of the Choice Problem

Most of the terminology introduced here is consistent with the MATSim sys-
tem specification given in [I49]. However, the underlying conceptions are more
universally applicable to the modeling of travel behavior and are not confined
to this software.
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Plans The activity and traveling intentions of an individual are denoted as
her plan. For simplicity, only plans for a single day are considered. Physically,
a plan describes a round trip through the transportation network. This round
trip comprises a sequence of legs that connect intermediate stops during which
activities are conducted. The first and last activity of a plan typically take place
at the individual’s home location.

Activities are defined in terms of their type (e.g., work, leisure), location (a
link in the network), start time, and end time or prespecified duration. Two
subsequent activities are connected by a leg. While in general a leg can be
associated with different modes (e.g., car, public transport, walking), this thesis
considers only individual motorist travelers such that a leg always implies a
vehicular movement through the road network. A motorist leg is parameterized
by origin and destination link, route (a sequence of links that connects origin and
destination), and departure time. Ounly a desired arrival time can be prespecified

since the actual time of arrival depends on the prevailing traffic conditions.

When a traveler chooses her course of action for a given day, she equivalently
chooses a plan for that day. It is possible to disaggregate the choice of a plan
into a logical or temporal sequence of decisions [27, @9]. The latter method
is naturally applicable to within-day replanning, where a traveler continuously
reconsiders and adjusts her current plan according to pre- and en-trip collected
information. Formally, the choice of a plan segment where some degrees of
freedom are fixed is not different from the choice of a full plan, and no such
differentiation is made in the following. For example, an en-trip route switching
model maintains all activity locations and timings of the present plan. Equiv-
alently, route switching can be represented as the choice of a completely new
plan where all degrees of freedom apart from route choice are constrained to be
identical to those of the original plan.

Generalized Paths The conception of a plan is now formalized in a way that
is amenable to the likewise formal derivation of a behavioral estimator.

A simple route U connects two subsequent activity locations. It is defined as a
(physically feasible) sequence of turning moves

U= ulk—1)ulk),ulk+1)...={ulk)} (3.14)

with u(k) specified in (BI). The representation of a route as a sequence of
turning moves rather than a sequence of links maintains consistency with the
microscopic driver representation specified in the first half of this chapter. It
can be thought of as an ordinary edge sequence in an “inverted” network where
vertexes represent links and edges represent turning moves, cf. Figure A
sequence of turning moves uniquely defines a sequence of original links, and vice
versa.

The round trip that physically corresponds to an all-day plan is formalized as
a (cyclic) path by minor modifications to the inverted network. Every vertex
v of the inverted network that represents an activity location is complemented
with an additional vertex v’ that represents the actual execution of an activity
at this location. The start of an activity is then equivalent to a turning move
v — v/, and its end can be identified by a v" — v move. A plan’s full sequence
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Figure 3.9: Route choice
The original road network is drawn in blue. Three of its links serve as activity locations
(office, mall, home). The inverted network for route representation is drawn on top in
black. It represents every original link by a vertex and every possible turning move by
an edge.

of activities and legs now comprises a single round trip through the inverted
network, with cycles at the activity locations. Figure B0 provides an example.

This formalism simplifies notation since it allows to represent all physically
relevant aspects of a full plan consistently with (BId) in terms of a generalized
path /. If only a plan segment is to be represented, its generalized path segment
also contains only the corresponding subset of turning moves. Subsequently, the
notions of a path and a generalized path will be used synonymically whenever
the context allows to distinguish them from a simple route that only connects
two links in the network.

Traffic flow model 1) can be steered by generalized paths instead of simple
routes without formal modification. Since the effect of entering and exiting
vehicles can be linearly approximated by this model, it is also linearizable with
respect to the newly introduced turning moves that represent such entries and
exits. This implies that the effect of an agent’s plan choice on the macroscopic
network conditions can be linearly predicted in the same vein as it has been
demonstrated for route choice in Section B3l

Since a generalized path U/ is a formal representation of an individual’s inten-
tions, it represents an aspect of that individual’s mental state. Its notation
in terms of the typical control symbol “u” is maintained here since the largest
portion of this thesis deals with the steering effect of driver behavior on macro-
scopic traffic dynamics. The definition of a full state space model for a combined
micro/macro traffic system that includes some kind of mental dynamics is not
necessary for the purpose of this dissertation.

3.2.1.2 Generation of Alternatives

The choice set of behavioral alternatives available to decision maker n is de-
noted by C,,. The elements of this set are plans, formally represented by (gen-
eralized) paths U. It is reasonable to assume that C,, is significantly smaller
than the set of all thinkable plans: The elements in C,, must be compatible
with the goals and commitments of a traveler, cf. Section [LZZ3 The limited
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Figure 3.10: Generalized path choice
The same physical network as shown in Figure Cycles are added to all pos-

sible activity locations. An exemplary plan that consists of the activity sequence
home—work—shop—home now consists of one round trip through the inverted net-
work, with cycles at the activity locations. Its equivalent sequence of vertexes is
h,h,...,0,0,0,....,m,m',m,...,h,h.

knowledge of the decision maker excludes all unknown options from considera-
tion. Physical, legal, and individual (e.g., financial, constitutional) constraints
further reduce the choice set. If a traveler reconsiders only a segment of her cur-
rent plan, an additional constraint on C,, is that everything but this segment
must remain unchanged in all alternative plans.

It is required that a non-empty choice set C,, is available to every agent n in
every situation that calls for a decision. This choice set may be specified in two
different ways, depending on the deployed decision protocol, cf. Section [Tk

e A reactive decision protocol incrementally constructs a set of considered
alternatives given a particular choice situation. Different suchlike sets
may be generated in repetitions of otherwise identical conditions because
of probabilistic components in the generation procedure. In this case, C),
comprises all possibly generated alternatives.

e In a deliberative decision protocol, the choice set has typically been gen-
erated prior to the actual choice situation. That is, C), is explicitly and
deterministically prescribed, even if it was originally generated by a ran-
domized algorithm.

The goal of this work is to treat the decision protocol as much as a black box as
possible. The only requirement implied by the above listing is that there exists

a nonempty set C,, of alternatives that contains all possible choices of agent n
in a given situation. However, an enumeration of this set is not required.

3.2.1.3 Evaluation of Attributes of Alternatives

The systematic (deterministic) utility of an alternative, represented by a
real-valued number, is a model of the benefits a decision maker expects from
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choosing this alternative. It reflects the decision maker’s preferences. Utility
perception can vary among decision makers, and clearly utility can differ among
alternatives. Formally, a systematic (deterministic) utility V,, (i) is associated
with every plan U/ in the choice set (), of traveler n.

The utility of a plan is comprised of two components: positive utility for the
execution of activities and negative utility (disutility, cost) for travel itself. Typ-
ical aspects of route (dis)utility are travel time, distance traveled, number of
left-turns, number of signalized intersections, and contact with insecure neigh-
borhoods [I8, 20]. The utility of an activity varies depending on the type of
activity, its context within the entire plan, and the timing of its execution [43].

If a utility-driven modeling approach is adopted, it is required that the system-
atic utility for every plan of any agent can be calculated by the utility function
shown in Figure [[T] and that the resulting utility combines all of the afore-
mentioned (dis)utility components in a single number. This evaluation only
has to be available on request and on a per-plan basis. It is not required that
the choice set is enumerated for a complete evaluation before a choice is made.
Furthermore, if the decision protocol sequentially composes a choice, e.g., by
incrementally building a plan as a sequence of activities and legs, the utility
function may be limited to an evaluation of the according plan components.

3.2.1.4 Choice

The choice of a certain plan (segment) is modeled non-deterministically. The
probability that decision maker n chooses plan U € C,, is denoted by P, (U).
This choice distribution may be parameterized in an agent-specific way but
otherwise is required to depend only on the attributes of the elements in C,,. If
the choice model is utility driven, the attributes of a plan must be represented
by its utility.

A probabilistic choice logic may represent randomness in human behavior or
account for modeling imprecisions [21]. The specific modeling assumptions that
underly a particular decision protocol are not relevant for the subsequently
developed estimation approach beyond the fact that behavior is uncertain at
all. Otherwise, there would be no scope for a behavioral adjustment.

Neither an enumeration of the choice set nor an explicit (e.g., closed-form)
representation of the implemented choice distribution need to be available. Only
realizations of choices must generated by the behavioral simulation system.

3.2.1.5 Implementation

The implementation of a choice requires its realization in the mobility simu-
lation. However, an agent with an imperfect knowledge of the actual traffic
conditions may observe an inconsistency between what it wants to do and what
is physically possible. In particular, the generalized path representation of a
plan comprises a sequence of turning move indicators that prespecify the timing
of every turning move and every entry/exit move in the network. It is unlikely
that the (congested) traffic conditions admit precisely this timing.
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It therefore is assumed that a plan is robust in that it cannot be invalidated
by finite changes in travel times. An example of a robust plan is one where
(i) the activities have no fixed start time but rather a prespecified duration
and (ii) the legs only specify a sequence of links but not the timing of their
entry. Consequently, a once chosen plan can always be executed in the mobility
simulation without further replanning. The MATSim plans are robust in this
regard.

A precise formalization of this situation would require to supplement the mo-
bility simulation (BZ) with another model component that updates the plans
U, = {u,(k)}y for all agents n = 1...N in every simulation time step k such
that their consistency with the physical situation is maintained. However, since
the actually implemented mobility simulation does not require the generalized
path abstraction at all, the fictitious existence of such a model component merely
maintains formal consistency whenever it is stated that “U; ...UyN are loaded
on the network” or “U; . ..Uy are fed into the mobility simulation”.

The generalized paths U; ...Ux uniquely specify both the intended and the
implemented driver behavior. Therefore, no formal differentiation between these
aspects is subsequently made.

3.2.2 Specific Modeling Assumptions

The structural outline given above is made precise in terms of two fairly different
modeling approaches.

Random utility models (RU models, RUMs) constitute a broadly applicable class
of choice models that are based on reasonable behavioral assumptions and sound
mathematical inference. The simple mathematical structure of certain RUMs is
exploited in the derivation of a behavioral estimator.

MATSim’s behavioral model basically relies on a dynamical systems assumption
about human learning. Since the resulting model behavior is defined rather
implicitly through this learning process, and since the dynamics of this process
are not yet well-understood, MATSim constitutes a particularly challenging
model for a behavioral estimator.

3.2.2.1 Random Utility Models

RUMs constitute the mainstay of travel behavior modeling, and a specific im-
plementation of the decision protocol is likely to be based on RU theory [21], 22].
The RU modeling assumptions are outlined below.

It is assumed that a decision maker n always chooses the alternative of greatest
perceived utility from her prespecified choice set C,,. The systematic utility
V,.(U) constitutes only an imperfect model of her true utility perception. In
order to reflect this imprecision, a random error component €4, is added to the
systematic utility of every alternative &. The probability P, (i) that U is chosen
thus equals the probability that the random utility of I is greatest among all
alternatives:

P, (U) =Pr(Vo,(U) + cun = Vi (V) +epp, YV € C). (3.15)

67



Closed-form expressions for these choice probabilities can be obtained for certain
joint distributions of the error components. But even if no such closed form can
be found, a simulation of choices that are consistent with ([BIH) is possible. The
procedure requires (i) to draw a disturbance from the joint error distribution
for all alternatives, possibly through a simulation procedure as described below,
and (ii) to deterministically choose the alternative of greatest disturbed utility.

3.2.2.2 Models of Route Choice

The two major modeling approaches to route choice have already been addressed
in Section Either route (re)planning is realized by the calculation of a
best path, or a route is chosen probabilistically from a prespecified choice set.

Behaviorally, the calculation of a best path is an idealization. It implies global
network knowledge and an optimal choice mechanism given a certain objective
function such as trip travel time. The effective calculation of a best path requires
route cost to be additive in link cost which ignores existing evidence for nonlinear
cost perception. Probabilistic route choice allows for greater realism. A choice
set of routes can be generated in a way that is consistent with a driver’s (usually
limited) knowledge of available alternatives. There is no limitation of link-
additive costs. The random choice component properly reflects behavioral and
modeling uncertainties [T48].

Computationally, best path has an edge over probabilistic choice. Routing prob-
lems have been intensively studied in computational science and efficient solution
algorithms are available for problems with link-additive cost [83]. In contrast,
probabilistic choice implies some computational overhead. Choice set genera-
tion itself is a nontrival task [20, [48]. Every agent’s individual choice set has
to be stored and processed during simulation, and every alternative needs to be
evaluated for the simulation of a single choice. Contrarily, the efficiency of best
path algorithms is owed to their avoidance of path enumeration [T30].

The realism of probabilistic choice and the efficiency of routing algorithms can
be combined. Since best path routing is a cost minimization procedure, it
can be applied to model a decision maker’s rational choice given a simulated
error of utility perception. This coincides with the aforementioned simulation
procedure for RUMs. In this context, it is interesting to inspect a variation
of the route choice model implemented in the MATSim planning simulation.
MATSim models the day-to-day evolution of driver behavior as a continuous
learning process. Speaking only in terms of routes, a certain fraction of drivers
is allowed to recalculate new routes at the beginning of every simulated day.
These routes are generated based on previously simulated link traversal costs
by a time-dependent best path algorithm. The simultaneous execution of all
routes results in experienced costs that are likely to differ from those costs
based on which the new routes were calculated. This implicitly simulates a
perceptional error that is identical for all replanning agents and equal to the
difference between the actually experienced costs and the costs assumed during
replanning. This logic even avoids the explicit generation of perceptional errors
but is not derived from RU theory.

The path size logit (PS-logit) model defines closed-form route choice proba-
bilities. Its derivation from RU theory can be found in [67]. This model is
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Figure 3.11: Three routes example
A simple route choice example with three alternative routes A (comprised of link 1),

B (comprised of link sequence 2 —3a), and C (comprised of links 2—3b). The length
of link 1 is [, that of links 3a and 3b is dl, and that of link 2 is | — dl.

presented here since its particular structure allows for some formal manipula-
tions that greatly simplify the behavioral estimation problem. PS-logit specifies
the probability that individual n chooses route U € C,, by

ean,(U)-l-ln PS, (U)

Pa(U) = e oV (V)+InPS,, (V)
6 n

P, (1)eHVH ) (3.16)

Z\;ecn psn(y)euvn(v) '

It is instructive to start the discussion with all PS parameters set to one. Then,
specification (BI6) collapses into the multinomial logit (MNL) model, the ar-
guably simplest and most popular RUM. The positive scale parameter p controls
to what degree routes of higher systematic utility are preferred. If © — 0, all
routes are chosen with equal probability, whereas y — oo deterministically se-
lects a route of maximum utility.

In a route choice context, the major drawback of MNL is its inability to model
situations with overlapping routes. This is most easily demonstrated by an
example. Figure BTl shows a simple four-link network. Three routes A, B, and
C connect the leftmost to the rightmost node. All routes have equal utility V/
such that MNL invariably predicts a uniform route split (P(A) P(B) P(C)) =
(1/3 1/3 1/3). This is not realistic because routes B and C have a large overlap
and therefore are likely to be perceived as a single alternative. Behaviorally
reasonable route splits thus approach (1/2 1/4 1/4) as the overlap of B and C gets
larger.

PS-logit corrects the MNL model by specifying

PS,(U) =) b __ 1 (3.17)

a€ly Lu ZVGCTL 6aV

where 'y, is the set of all links in route U, [, is the length of link a, L is the
length of route U, and d,y is one if link a is contained in route V and zero
otherwise. That is, ZVeCn dqy counts how many routes in C), contain link a.
Each addend in BI7) represents the contribution of a single link to the path size
of route U, and PS(U) measures to what degree route U is perceived as a distinct
alternative. It is one if I/ has no overlap with other routes, and it approaches zero
the greater U’s overlap with other routes becomes. A perfect overlap of routes B
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and C in the above example yields path sizes (PS(A) PS(B) PS(C)) = (1 /2 1/2)
that generate the behaviorally reasonable route splits (1/2 1/4 1/4) when inserted
in (BI4).

The purposeful nature of these examples is emphasized. Alternative utility

correction terms and path size definitions have been proposed in the literature
B8, 67] as well as alternative RU models that are not limited to the simple

structure of (BI0) 18 20, [T4]].

3.2.2.3 Models of Plan Choice

Even with realistic restrictions on possible activity sequences, locations, and
timings, and with a likewise restricted route choice set, the combinatorial num-
ber of available plans quickly becomes intractable. For a single day, roughly
10'7 alternative behavioral patterns per traveler are estimated in [27]. It is not
realistic to assume that travelers possess the computational resources to process
such a choice set. However, they do make a decision in some way, and there-
fore it appears justified to simulate plan choice by simplifying heuristics that
resemble human decision making [Z1].

This approach is also chosen in the MATSim planning simulation. A traveler’s
plan is “scored” by a utility function that comprises positive addends for activity
execution and negative addends representing travel costs [43]. Every simulated
traveler strives to maximize its score by explorative day-to-day learning. This
is realized as a simplified classifier system [149]: A small set of (typically five)
alternative plans is memorized by an agent. Every simulated day, one of these
plans is executed and the experienced score is memorized. Occasionally, a new
plan is generated, executed, and the worst plan is discarded. New plans are
generated by variations of old ones. Routes are recalculated as best paths based
on previously observed link traversal costs [I30], and activity timings are chosen
by a variety of heuristics such as random search [I0], reinforcement learning [44],
and evolutionary algorithms [&3], [T20)].

Plan selection itself is implemented as a simple RU model. However, the con-
tinuous choice set evolution by explorative learning prevents a straightforward
RU interpretation and also complicates a mapping on the structural system
requirements that are presupposed for estimation. There are three difficulties.

1. The plan choice set is variable. If it was fixed after a limited number of
iterations, the simulation until that point could be regarded only as a fairly
heavyweight choice set generation process. However, the limited number
of memorized plans in such a setting (rather a technological problem)
could raise an issue of behavioral variability.

2. Plan choice is not based on deterministic utilities but on continuously
updated scores. While score expectations are technically easy to estimate
by recursive averaging, their very existence requires that the simulation
converges towards a stationary distribution of network conditions. This
property is yet to be established [T132].

3. A newly generated plan is immediately selected for execution. This is
necessary since a plan’s score can only be identified through simulation.
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Still, this leads to a not yet clarified coincidence of choice set generation
and choice itself. Again, an occasionally stabilized choice set would resolve
this issue.

This is not to say that these aspects of MATSim are incompatible with the pro-
posals of this dissertation. Rather, they require the more specialized treatment
given later in Section

MATSim’s learning-based approach is a specific instance in a broad model range
proposed in the field of activity based demand modeling, e.g., [27, 08, 99, [172],
and the structural outline given in Section BZZlis likely to apply to a greater
variety of demand models. Still, the MATSim-related development of this work
naturally suggests a presentation in terms of this system.

Concluding, the second part of this chapter formalizes a behavioral simulation
system but leaves the behavioral model itself unspecified for the most part. This
presentation is not given as an end in itself. The next chapter identifies what
behavioral estimates are possible in this setting.

71



Chapter 4

Estimation

The previous two chapters describe a simulation system that consists of two
components: a mobility simulation and a representation of human behavior.
The specific properties of these components are now exploited in the formulation
and solution of a traffic state estimation problem.

As outlined in the introduction, the task is to use spatially and temporally in-
complete sensor information to reconstruct spatially and temporally complete
system state information. Examples for sensors are loop detectors that measure
flow rates at road cross-sections [1], ground- or airborne cameras that identify
traffic densities on road segments [62 [77, [[50], and floating cars that mea-
sure link velocities [I56]. Only aggregate measurements are considered. While
the importance of advanced traffic monitoring technologies such as vehicle re-
identification systems is likely to increase in the future, they are not yet in broad
application.

Macroscopically, the system states to be reconstructed are represented by state
vector sequence
X = {x(k)}x (4.1)

of traffic flow model ([BX). This model unfolds deterministically given an initial
state x(0) = x¢ and a driver population’s behavior U; ...Ux. Since Uy ... Un
comprise all aspects of the individual drivers’ mental states that are necessary
to define all macroscopic states X in the model, the state estimation problem
becomes to identify control sequences U . ..Uy that steer X' towards most likely
values given the available measurements and the behavioral a priori knowledge.

The mapping from individual driver behavior on macroscopic system states is
nonlinear. The proposed estimator deals with this difficulty by repeated lin-
earizations of the macroscopic model. Since the model is dynamical, this re-
quires to calculate system state sensitivities through simulated time. In result,
the linearized effect of a single driver’s decision in any time step k on the macro-
scopic states in any later time step k + Ak can be predicted. Given a distance
measure between true and simulated traffic conditions, these sensitivities then
provide directional information for behavioral adjustments. Conceptually, this
approach has a counterpart for example in meteorology, where the linearized
version of a dynamical weather model is denoted as its “adjoint model”. The
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spatiotemporal sensitivities it provides are used to iteratively improve the full
model’s consistency with real world observations, e.g., for the purpose of short-
term weather forecasting [G3].

The remainder of this chapter is organized in four parts.

First, the problem of how to steer the behavior of simulated travelers by sys-
tematic manipulation of their utility perception is investigated in Section Bl
Apart from being of practical interest itself, this section prepares a number of
technical results that simplify the subsequent presentation. This includes the
aforementioned linearization logic.

Second, a first heuristic estimator is proposed in Section It applies the
previously developed method to steer agents towards a plausible reproduction
of available sensor data. However, this approach is not yet based on a solid
statistical foundation.

Third, a Bayesian formulation of the estimation problem is given in Section
Starting with a conceptually straightforward but computationally cumbersome
formulation, various simplifications are adopted that allow for a flexible balance
between mathematical precision and computational efficiency.

Fourth, Section B4 illustrates the theoretical developments with a small exam-
ple. A test case of realistic size is postponed to Chapter

4.1 Steering Agent Behavior

The problem is investigated of how to influence the behavior of simulated trav-
elers by changing their perception of systematic utility. The objective according
to which agent behavior is to be influenced is represented by a once differentiable
function

K
O(X) =Y lx(k), k] (4.2)
k=1
that maps the macroscopic system states in simulation time steps 1 through K
on a real number. An improved fulfillment of the objective is reflected by an
increase of this function.

This problem statement is related to that of a dynamic system optimal traffic
assignment. The latter seeks to identify a traffic pattern that minimizes the
average cost experienced by all travelers. It is behaviorally not realistic since it
implies that travelers cooperate in their efforts to minimize cost, but it is a good
measure to estimate the greatest effectiveness of a traffic system or to identify
optimal control strategies [35] [TZ1].

Since the problem considered here is not to attain a strict system optimum but
rather a compromise between individual driver objectives and global objective
(E2), and since only limited measures to affect agent behavior are available, the
notion of a system optimal traffic assignment is avoided. The results obtained
here only improve a microscopic assignment with respect to a global objective.
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4.1.1 Modified Utility Perception

The agents’ behavior is to be influenced by a modification of their systematic
utility evaluation. Because of the decision protocol’s probabilistic nature, cf.
Section B2Z] there is no guarantee that a single choice based on such a modi-
fied utility does indeed improve the global objective. However, it is reasonable
to assume that, once the effect of agent behavior on the global objective is iden-
tified, a utility modification that favors advantageous generalized paths also
leads to choice distributions that improve the global objective on average. Un-
less otherwise noted, the notion of a path now represents an arbitrary behavioral
pattern ranging from a single route to an all-day plan.

The problem of steering agent behavior is therefore posed as an ordinary as-
signment problem with modified systematic utility

W U) = VoU) + S(X(Us . . . Up—1, U Ungr - .. UN))/ 1 (4.3)

for every agent n and path U € C),. That is, agent n evaluates ® as a function of
its individual path choice with the behavior of all other agents being fixed. The
strictly positive parameter ;o determines the weight of individual utility when
compared to the global objective. Its choice is left to the analyst.

This problem statement is given yet independently of an estimation problem
and requires no such interpretation. Since the subsequently developed method
to steer simulated travelers holds promise for applications that go beyond traffic
state estimation, its specific deployment for estimation purposes is postponed
to Section

A straightforward implementation of the above would require the following;:

1. “Unsteered” population behavior U, ... Uy is given.

2. For each agent n=1...N, do:

(a) Replace V;, by W, according to ([E3).
(b) Draw U/ from C,, based on W, (U).

3. “Steered” population behavior is L[i .. -U;v-

The following subsections operationalize this procedure.

4.1.2 Linearization of Global Objective Function

Every evaluation of W, (i) requires an evaluation of ®(X(...U ...)) and there-
fore a run of the entire mobility simulation. Since ® is evaluated separately
by all agents that make decisions based on their modified utility W,, (i), a
straightforward implementation of this approach is computationally intractable.
This problem can be circumvented if the mapping from individual path choice
U on O is linearized. Given U’ = U + AU, this linearization essentially is
WU =~ vU') +e(X(...U...))+ AU - dP/dU. Tt will turn out that it is
feasible to compute the sensitivities d®/dlU{ simultaneously for all agents. In

74



consequence, it is possible to linearly predict the effect of behavioral variations
AU on the global objective function ® for all agents with just one run of the
mobility simulation.

The linearization must account for the coupling between U and X through
dynamical system constraint (B7) that represents the mobility simulation. This
difficulty can be dealt with by well-known methods from control theory [I0T],
[T38, [T45]. A self-contained exposition is given in the following.

Denote x
(k) = 3 olx(r), Al (4.4)
r=k

for k = 1...K. This is the remaining contribution to ®(X) from time step k
on. It can be recursively written as

| ex(k),kl+@k+1) k=1...K-1
(k) = { Px(K), K] k=K. (4.5)
As a first step, sensitivities with respect to states are computed by
oplx(k), k]  dP(k+1)
k=1...K—-1
de(k) ox(k) | ax(k) (4.6)
0x(K) '

Since the interplay between variables in different time steps is fully defined by
state equation (B),

db(k+1) _ (8f[x(k), wy (k) ... uy(k), k])T dd(k +1)
dx(k)

holds for k < K, where x(k + 1) = f]...] is used.

Now, sensitivities with respect to control variables ui(k)...uy (k) result from

dd(X) <8f[x(k),u1(k)...uN(k:),k])T d®(k+1) (48)

du, (k) du(k) dx(k+1)"

Here, 0p[x(k), k]/Ou,, (k) disappears since u,, (k) influences no state earlier than
x(k +1). Of[...]/0u(k) denotes the partial derivative of f]...] with respect to
any u,(k), which is independent of n. This independence allows to entirely
omit the n subscript in ®’s sensitivities and to subsequently write d®(X)/du(k)
instead of d®(X)/du,, (k), and it allows to compute all sensitivities for all agents
simultaneously.

In summary, d®(X)/du(k) is obtained in a two-pass-procedure:

1. Using @), solve ([H) recursively for k = K ...1. Moving backwards
through time introduces a “far sightedness” into the calculations that is
necessary to predict the influence of present state variations on future
system states.
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2. Determine the influence of control variables by @X) for k =0... K — 1.
Since this expression is identical for all agents, it needs to be evaluated
only once for the entire population.

One obtains the following linearization of ®(X) with respect to U ...UN:

K—1 0 T N
(XU ... UN)) ~ B(XO) + Y <djéi))> > (un(k) —ud(k)  (4.9)
k=0 n=1

where u! (k) is the control vector of traveler n in time step k around which the
linearization takes place and X° is the resulting macroscopic state sequence.

Defining the sensitivity sequence

{2,

and the “inner product”

B do(X°) Tu
(A U) = zk: ( Tah) ) (k), (4.11)
(E3J) can be rewritten as
(XU ... UN)) = D> (A, Uy) + const (4.12)

where the constant addend contains all terms independent of Uy ...Ux. The
elements of A are sensitivities of the global objective function with respect to
individual turning moves, and as such they serve as coefficients that are multi-
plied with the turning move indicators contained in the populations’ path set
U ... Uy.

Macroscopic traffic dynamics are linear in good approximation with respect to
a single agent’s behavior since individual control variables u;; (k) € {0,1} are
small compared to actual turning counts in a congested network. Thus, for a
single agent, a linearization yields a reasonable approximation to the nonlinear
problem, and

Vi (U) + (A, U) /pu + const (4.13)

%

holds with good precision. The constant addend is identical for all alternatives
available to an agent. Since it is reasonable to assume that the preferences of
a decision maker are not influenced by a constant shift in the utilities of all
alternativesﬂ

Wo (U) = VaU) + (MUY /1 (4.14)

defines as from now the modified utility of agent n’s option U € C,,. Using
the same A for all agents reflects the fact that the sensitivity of ® to a turning

IThis is always true for RUMs, cf. (EI0).
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move (sequence) is independent of which agent is actually moving. Here, the
elements of A constitute (up to a scaling coefficient u) utility corrections for
every single turning move in the network, and the modified utility of a specific
path is identified by adding up these corrections along that path. This can be
seen most clearly if (A,U) is fully expanded:

0
) = ¥ 3 s o), (4.15)
ki Y

Ounly such components of A are summed up in (A, ) that correspond to turning
moves that are actually represented by path U through non-zero turning move
indicators. In light of this, A is denoted either as a sequence of sensitivities or
of utility corrections, depending on the context.

The above linearization procedure is considerably accelerated if the underlying
mobility simulation runs on variable time scales as proposed in Section
Since the mobility simulation’s sensitivities vary on the same temporal grid as
its macroscopic states, the overall number of sensitivity evaluations is reduced
in the same order as the number of flow transmissions during a simulation.

The importance of this computationally still expensive linearization becomes
clear in comparison with a simplistic approximation. Assume that the macro-
scopic system state X is composed of vehicle occupancies on all road segments
in all time steps. Then, the effect of a vehicle’s path choice &/ might appear pre-
dictable by simply increasing the occupancy of every link in U/ for the duration
of this link’s traversal time. In a way, this does predict the effect of U on X
and thus on ® without any linearization. Still, it does not capture the global
effect of driver behavior in congested conditions. A vehicle that tries to enter a
congested link is slowed down, and in turn it slows down all vehicles behind it.
That is, it also affects upstream links that are not contained in its path. A full
linearization of traffic flow dynamics accounts for these interdependencies and
thus is superior in all but trivially uncongested traffic conditions.

4.1.3 Consistent Linearization for Many Agents

The linearization of ® relies on the relatively small influence of a single trav-
eler on the global traffic situation. This argument does not hold if an entire
population is considered since any utility correction A that is obtained by a
linearization around a certain state trajectory X° may result in a population
reaction U; . ..Uy that causes a significantly different network state trajectory
X and thus invalidates the underlying linearization.

For a non-stochastic planning or telematics simulation, a utility correction A
is consistent if the population behavior given this A generates network states
X such that a repeated linearization of ® reproduces the original A values, cf.
Figure 11 Formally, a fixed point of the combined map “sim(ulation), followed
by lin(earization)” is required: A = lin o sim(A).

Since there are stochastic elements in the simulation, its outcome X given a
specific A is stochastic as well, and the reproducibility of A calls for a likewise
stochastic interpretation. One may assume that only a randomly distorted map
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Figure 4.1: Fixed point of utility corrections
Consistent utility corrections A are attained if a linearization of ® around simulation
outcome X results in the same A corrections that have previously been applied in the
simulation.

lin o sim(A) 4+ £ can be evaluated where £ is a zero mean disturbance of the
same dimension as A. Since no algorithm is known that definitely converges to
a deterministic A fixed point in suchlike noisy conditions for the whole range
of possibly implemented simulation mappings, and since not even the existence
of such a fixed point is ascertained, a pragmatic course of action is taken: The
existence of a fixed point is merely assumed, and an elementary stochastic ap-
proximation (SA) method is employed for its identification mﬂ This particular
method is chosen here because of its simplicity and clarity. Possible algorithmi-
cal improvements are indicated in Section

The proposed SA approach is outlined in Algorithm Bl It assumes an iterative
simulation logic, which is equally applicable to a SUE-based planning model
and to a telematics model of spontaneous and imperfectly informed drivers.
The conceptual difference is that a SUE decision protocol typically utilizes all
information from the most recent network loading, whereas a telematics decision
protocol generates every elementary decision within a plan only based on that
subset of this information that could have actually been gathered up to the
considered point in simulated time [26]. A full implementation of this algorithm
is experimentally investigated in the next chapter.

4.1.4 Behavioral Justification

Since the modified utility deviates from the originally modeled agent perception,
any behavior that is based on the modified utility is not reasonable in itself. A
path U that is chosen by traveler n based on a modified utility function W,
only is consistent with the behavioral model if n’s utility perception is indeed
represented by W,, instead of the original V;,. Thus, the method’s applicability
depends on the possibility to reinterpret utility perception itself. Three fields
where this is possible are identified below:

e The method is developed with behavioral traffic state estimation in mind
and is applicable for this purpose. Given a specification of ® that reflects

2 A self-contained convergence proof for the SA method can be found in [69]. However, its
requirements cannot be established in the setting considered here.
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Algorithm 2 Steering a population of agents

1. Initialization.

(a) Set iteration counter m = 0.
(b) Fill A™ (estimate of A fixed point) with all zeros.

2. Simulation.
(a) For all n = 1...N, do: Use W,,(U) = V,,(U) + (A" U)/ ;i instead
of V,,(U) in the decision protocol when drawing U\™.

(b) Load 2™ .. 17" on the network and obtain X (™,

3. Linearize ®(X (™)) and obtain A(™).

1 = 1
4. Update Alm+D) = _M R 4 L A,
m+1 m+1

5. If another iteration is desired:

(a) Increase m by one.
(b) Goto step

the quality of measurement reproduction, the resulting W, is interpreted
as an estimate of individual n’s most likely utility perception given these
measurements. Here, the original V), constitutes a model-based a priori
assumption that is corrected by the estimation procedure such that @ is
improved. The belief in the behavioral prior information is reflected by
weight parameter . A discussion of possible ambiguities in this interpre-
tation is given in Section

e & may also represent a general utility of system operations. Applying the
above procedure, the resulting A coefficients define a toll on all turning
moves in the network. An agent n which chooses its path based on the
resulting W,, strives to maximize a weighted combination of individual
and system utility. Clearly, a physically implementable toll must meet a
number of additional constraints that are beyond the scope of this thesis.

e An iterative planning simulation requires large amounts of computation
time. If a specification of ® was found that (i) reflects the degree of
such a simulation’s convergence and (ii) has a vanishing influence upon
convergence, it may help to reduce the number of required iterations until
an equilibrium is reached. Here, utility perception is modified only during
the transient phase of an iterative algorithm but not in its outcome. Still,
this application is of rather hypothetical nature since no such version of
® is proposed in this dissertation.

In all cases, W,, constitutes a modified utility perception of driver n that is in
one way or the other consistent with the original assumption of utility-driven be-
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havior, and this modification is generated such that a problem-specific instance
of ® is improved.

4.2 Heuristic Estimation

A similarity measure between simulated and observed sensor data is chosen as
the global objective function ®, and the agents are steered towards an increase
of this function.

4.2.1 Modeling of Aggregate Traffic Measurements

A likelihood function suggests itself to quantify a model’s measurement fit. In
this subsection, the likelihood of aggregate traffic measurements is formally
related to individual agent behavior.

Macroscopic state space model 1) is supplemented with an output equation
y(k) = g[x(k), e(k)] (4.16)

that maps system state x(k) by a once differentiable function g on output vec-
tor y(k) of macroscopic observables. The latter may include flows, velocities,
and densities generated by sensors such as inductive loops, floating cars, and
traffic surveillance cameras. The influence of various sources of error on these
observations is accounted for by random disturbance vector e(k) that turns y(k)
into a random variable itself. Equation [I6) defines y(k)’s probability density
function (p.d.f.)

Py (R)x(k)) = / 5y (k) — elx(k), e])p(e)de (4.17)

where § is the Dirac function and p(e) is the known p.d.f. of €. A lower-case p
generally denotes a p.d.f., whereas an upper-case P represents a discrete prob-
ability. Subsuming the above expression in terms of trajectories Y = {y(k)}x
and X = {x(k)}x yields

p(VIX) = [ [ p(y (k) x(k)) (4.18)
k

where stochastic independence between outputs at different time steps is as-
sumed. This is, so far, the not unexpected result that all spatiotemporal mea-
surements can be probabilistically described if all spatiotemporal system states
X are known — no behavioral information is needed directly.

Nevertheless, the states X are indirectly caused by the population behavior
Uy ...Uy. This allows to define the behavioral likelihood (U ... UN|Y) given
the measurements ) as a function of U ...Up:

Z(U1UN|y):p(JJ|X(U1L{N)) (419)
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This function is linearizable with respect to Uy ... Uy if the p.d.f. of Y given
X is differentiable with respect to X. Frequently, the (likewise linearizable)
log-likelihood function

LUy ... UN|Y) =Inl(lUy ... UN|Y) (4.20)
is also referred to.

Others than link-related measurements are possible. Since the state vector of
model ) contains smoothed turning counts, observations of these can be
directly incorporated in the output equation. The additional value of such
measurements is pointed out in the literature review of Section [CZ]

4.2.2 Steering Agents Towards the Measurements

Maximum likelihood estimation is the arguably most popular approach to sta-
tistical parameter identification, e.g., [T40]. It is an established method for the
identification of OD matrices from traffic counts [I62], and its application for
agent-based behavioral estimation is complicated in the same way as traditional
OD matrix estimation: The available number of link-related measurements is
usually much smaller than the number of parameters to be identified — the
problem is extremely under-determined.

Typically, a prior OD matrix is integrated in the likelihood function as a supple-
mentary measurement that resolves this under-determinedness. Since no such
prior is available here, a different and statistically less rigorous approach is pur-
sued. Algorithm B is employed, with its general objective function defined as
the measurement log-likelihood, i.e.,

SX(Uy ... Uy)) = LU ... U|D). (4.21)

The resulting overall objective function 3) of any agent n is the weighted sum
Vo(U) +@(X(..U...))/ 1 of its individual utility function and the log-likelihood.
The weighting parameter p determines the importance of the behavioral prior
information represented by the original utility perception. If p is chosen very
large, the likelihood term vanishes and the agent acts in a way that is fully
prespecified by its original utility function. The smaller i gets the more weight
is put on the likelihood and the more the agent adjusts its behavior towards
an increase of the likelihood. While p is used here as a mere weighting param-
eter, the Bayesian problem reformulation given in the next section enables its
interpretation as a behavioral model parameter.

Specifically, if mutually independent normal measurement distributions are as-
sumed, [EZT]) yields a global objective function

o(x)= -3 (Ya (k) — ga[x(k)])* (422)
a k

2
20,

where y, (k) is the sensor information available for link a in time step k, g.[x(k)]

is its simulated expectation, and o2 is its variancell This is the arguably sim-

3The log-likelihood of mutually independent measurements yq (k) is L(Ui ... UN|Y) =
> e mp(ya(k)|x(k)). Assuming ya (k) = ga[x(k)] + €a(k), a normally distributed e4 (k) with
zero expectation and variance o2 implies p(yq(k)|x(k)) o exp[—(ya(k) — ga[x(k)])%/202].
Consequently, LUy ... UN|Y) = — X o1 Wa (k) — ga[x(k)])? /202 + const.
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plest approach to the behavioral estimation problem: Define a quadratic dis-
tance measure between observed and simulated traffic characteristics, choose
a “reasonable” weight parameter p, and let the general method to steer agent
behavior push the simulation towards a reduction of this error function.

The particular assumption of independent normal measurements yields an ob-
jective function [ZZ) of greatest simplicity. Still, different distributional as-
sumptions are feasible. In particular, correlated measurements with a known
covariance structure can be accounted for in terms of a multivariate (normal)
distribution.

Providing a modified utility that comprises a weighted sum of individual utility
perception and measurement log-likelihood to the decision protocol does not
result in an overall maximum likelihood estimator for two reasons: (i) The indi-
vidual utility addend permits no interpretation as a log-likelihood component,
and (ii) the decision protocol draws a choice instead of deterministically maxi-
mizing the modified utility. For these reasons, a more systematic derivation of
a statistical estimator is given in the following.

4.3 Bayesian Estimation

Section BTl prepares a general tool to steer simulated travelers. This tool fa-
cilitates the proposal of a first heuristic estimator in Section Here, the
estimation problem is reconsidered in a statistically more rigorous setting. The
presentation starts with a conceptually straightforward but computationally
cumbersome formulation. Several simplifications are then adopted that signif-
icantly increase the computational feasibility and result in the proposal of two
operational estimators. Ultimately, the heuristic estimator is rediscovered, this
time, however, with a better understanding of its properties and limitations.

It has been stated before that aggregate measurements )’ alone do not provide
sufficient information for a unique estimate of population behavior U ...Ux
since usually there are many behavioral combinations that generate the same
observations. Here, this problem is resolved by the incorporation of additional
behavioral information in a Bayesian setting. In order to build on a solid foun-
dation, the Bayesian estimator is designed from scratch. While some previously
developed results such as the linearization of a log-likelihood function in dy-
namical conditions are reused in this section, no constitutional dependency on
the heuristic estimator itself is allowed for.

4.3.1 General Formulation of Estimator

An arbitrary implementation of the decision protocol is assumed. It draws
choices U € C,, according to an individual choice distribution P, (i) for every
agent n = 1...N. Only realizations of this distribution can be observed, cf.
Section BEZTAl U may still represent any of the behavioral dimensions described
in Section BZZTl ranging from a single route to an all-day plan. Given mutually
independent traveler decisions, the behavioral prior for the whole population
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is defined as v
PUh ... Uy) =[] Puthn). (4.23)
n=1

The assumption of mutually independent choices is to be understood in the
context of the iterative simulation logic outlined in Section in that {2Z3)
describes the population’s plan choice distribution in a particular iteration of
the simulator given the network conditions only from the previous iteration(s).

The available measurements ) parameterize a likelihood I(U; ...UN|Y) of the
population’s path choice as specified in (EIJ). Bayes’ theorem allows to combine
these two sources of information into a behavioral posterior

Py ... Un[Y) = WU .. . UN|YV)PU .. . Uy) (4.24)

T S vieer Svmeen LV VNIV PO L V)

where the denominator results from

P =3 3 pVri.. . Vn)POVL. V). (4.25)

VieCi VneCnN

The estimation objective is to have the population choose its behavior according
to the posterior ([E24) instead of the prior [(EZ3). This can be enforced if draws
are taken from the prior but are rejected with a certain probability that depends
on the measurements. Denote by ¢(U; ...UN) the probability to accept a draw
Uy ... Uy from the prior. If this probability is specified by

oUy ... Uy) = Ur...Un|Y)/D

b= (V...
o V1€CF}%})§V€CN (Vl VND))a

(4.26)

then the following accept/reject procedure draws from the posterior:

1. Draw candidate choices U; ...Uy from the prior EZJ).
2. With probability 1 — ¢(U; ... UN), discard the candidates and goto [
3. The first accepted U . ..Uy constitute a draw from the posterior (E24).

The correctness of this simple algorithm is shown by straightforward manipula-
tions. Noting that the overall probability of a rejection is

¢reject =1~ Z ce Z ¢(V1 . VN)P(Vl . VN), (427)
VieCy VNECN

the probability that U ... Uy is the first accepted draw is

> iU .. UN)PU .. Uy)
d=0

oUy .. . UN)PUy .. . Uy)
1- ¢reject (4'28)
oUy .. . UN)PU .. . Uy)
Yovieo, T 2vnecy PV VN)PVi L V)
= P ... Ux|Y).
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The behavioral posterior can thus be generated by suppressing certain draws
from the prior. Somewhat coarsely expressed: (i) The simulation is run many
times with different random seeds, (ii) a large portion of these runs is “thrown
away”, based on the above rejection criterion, and (iii) the remaining runs are
draws from an accurate Bayesian combination of the behavioral prior and the
measurements.

Although appealing because of its simplicity, this approach is in this form com-
putationally intractable in all but trivial cases. There are two major problems:

1. It is computationally infeasible to evaluate all possible I(U; ...UN|Y) val-
ues beforehand since every such evaluation requires a full network loading
in order to map Uy ...UxN on a macroscopic state sequence X that enters
the likelihood via ([EIJ). However, these evaluations are required in or-
der to guarantee a feasible denominator for the acceptance probabilities
(E26). Furthermore, the need for a choice set enumeration implies that
the estimation logic is aware of this set, which constitutes an unwanted
dependency of the estimator on modeling details.

2. Even if the acceptance probabilities’” denominator is replaced by an es-
timate in order to mitigate problem [[l a single draw from the posterior
might still require a substantial number of mobility simulation runs since
every draw from the prior needs to be loaded on the network at least once
and since it cannot be guaranteed that an “accept” occurs after a fixed
number of draws from the prior.

In light of these difficulties, simplifying assumptions that speed up the sim-
ulation of the posterior are highly desirable even at the cost of some loss in
accuracy. Two suchlike simplified estimators are proposed in the following two
sections.

4.3.2 Operational Accept/Reject Estimator

The Bayesian estimator is considerably simplified if the full likelihood is replaced
by an approximation. In Section EET.2, a general function ® of the macroscopic
system states is linearized with respect to the population’s path choice. Pro-
ceeding in this respect similarly to the heuristic estimator of Section this
result is now utilized to linearize the measurement log-likelihood. Let

QX (U ... UN)) = LU ... UN|Y). (4.29)

A linearization of ® yields the approximation

N

L(th ... Ux|Y) = > (AU,) + const (4.30)

n=1

with the A coefficients defined in (EI0) through [@TIZ). The resulting likelihood
approximation is

N
U ... Un|Y) ~ const - [ ] et (4.31)

n=1
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A substitution of this and the behavioral prior (fEZ3)) in the behavioral posterior

EZD) yields

[Ty ™) P (Un)
Zvlecl U ZVNECN H’r]:[:1 e(A,Vn>Pn(V77/)

The denominator of this expression requires some attention. It is a sum over
all possible combinations of behavioral patterns V;...Vy in the population,
whereas the ("'} terms result from a linearization around a particular macro-
scopic state sequence. The feasibility of this approximation results from the
observation that, even if individuals exhibit variable behavior, the resulting
macroscopic traffic patterns are relatively concentrated in state space. All de-
terministic traffic assignment efforts rely on this assumption. Thus, the majority
of behavioral draws results in traffic patterns over which a linearization can be
justified. Behavioral patterns V;...Vy that generate physical states far away
from this domain are assumed to have such low probabilities ngl P,(V,) that
the according addends in the denominator can be neglected.

P ... UNY) =~ (4.32)

Applying the distributive law to ([E32), one obtains

[Ty €4 PoUn)
N
Hn:l ZVnECn, e<A7vn>Pn(Vn)
e D)
2t Lv,ec, €V Pa(Vn)

PUy ... Ux|Y)

Q

(4.33)

The linearization is beneficial in two ways. First, the population’s joint pos-
terior ([E33) is decomposed into a product of individual posteriors that can be
evaluated agent by agent. These individual posteriors are subsequently denoted
by

M P, (U)

Yvec, €MV Pa(V)

Second, only a single run of the mobility simulation (plus one calculation of the
A coefficients) is needed to parameterize these posteriors for all agents in the
population.

P,(UY) = (4.34)

The accept/reject procedure can now be applied to every agent individually.
The acceptance probability for path U from agent n’s choice set is defined as

PnU) = e(A’w/Dn
D > max MV (4.35)
" - vel, ’

but otherwise the method remains unchanged. The only simplifying assump-
tion made here is that the log-likelihood can be linearized with sufficient preci-
sion. Since this linearization is likely to be different given either the behavioral
prior or the posterior, an iterative approach similar to the fixed point search
of Algorithm Bis appropriate: Starting from the behavioral prior, successively
improved linearizations are generated from iteration to iteration until a stable
state is reached where the estimator draws from the behavioral posterior based
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Algorithm 3 Accept/reject estimator

1. Initialization.

(a) Set iteration counter m = 0.
(b) Fill A™ (estimate of A fixed point) with all zeros.

2. Simulation.

(a) Forallm=1...N, do:

i. Draw candidate choice U™ from n’s behavioral prior.
ii. With probability 1 — ¢, ( 7(]")) (where A("™) is substituted for A
in (E35)), discard the candidate and goto

iii. Retain the first accepted choice ,(lm).

(b) Load 4™ .. .1 on the network and obtain X (™).

3. Linearize ®(X (™)) and obtain A(™),

1

4. Update Am+1) — 0 _x(m) 4 1A<m>_

m—+1 m +

5. If another iteration is desired:

(a) Increase m by one.
(b) Goto step

on a linearization that in turn is most appropriate given this very posterior.
This approach is subsequently denoted as the accept/reject (AR) estima-
tor. It is summarized in Algorithm Bl Again, only a basic SA fixed point search
procedure is deployed for greatest clarity.

The type of behavior to be estimated and the prior implemented by the decision
protocol are arbitrary. Since a choice set enumeration is only required to provide
a lower bound for the acceptance probabilities’ denominator defined in 30, it
can be avoided if this denominator is treated as a tuning parameter: Choosing a
large value is likely to comply with the (unknown) lower bound but also to result
in low acceptance probabilities and increased computational cost. Vice versa, a
smaller denominator yields faster but also increasingly imprecise estimates. The
loss in precision can be appraised by observing the frequency at which infeasible
probabilities greater one occur in ([E33) that need to be truncated. This provides
a practically attractive balancing mechanism between estimation precision and
computational efficiency, which does not rely on a choice set enumeration.

Computational difficulties remain if a behavioral draw is expensive, e.g., be-
cause it involves some kind of optimization procedure, such as a (randomized)
best path calculation. One alternative would be not to discard unwanted draws
but to duplicate desired ones and to use these in a number of repeated choice
situations. However, since this would introduce possibly unwanted serial cor-
relations, it is at odds with the intention to develop a transparent estimation
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layer. A computationally more efficient yet not as broadly applicable estimator
is presented next.

4.3.3 Operational Utility-Modification Estimator

The behavioral posterior ([E34) for a single agent constitutes the starting point
of this development. It is restated here for ease of reference:

e P U)
Yvec, €M P(V)

The PS-logit model prepared in Section is now used as a distributional
assumption about the prior choice probabilities, i.e.,

B psn(u)euvn(u)
Svec, PSu(V)erVr )

Po(U) (4.37)

Recall that the PS coefficients account for path overlap in a route choice context.
If they are omitted, a plain MNL model results. A substitution of (EE31) in [E30)
yields

PS,, (U)er (Ve @)+ MUY 1)

Svece PS, (V) (Ve M+AV) /1)

This posterior is structurally identical to its prior. Only the addition of (A, U)/u
to V,,(U) is different. This allows to force a decision protocol that implements
a PS-logit prior to immediately draw from the posterior only by adding a cor-
rection term (A,U)/p to every alternative U’s systematic utility. The PS coeffi-
cients need not be known to the estimator for the generation of these corrections.
Consequently, this approach is feasible for all priors that exhibit the functional
form of the PS-logit model, even if the PS coefficients result from a different

specification than given in ([BI7). Such priors are said to be “of PS-logit struc-
ture”. Note that this includes the plain MNL model.

This approach is subsequently denoted as the utility-modification (UM)
estimator. Its requirements are more restrictive than those of the AR estimator
since a decision protocol of PS-logit structure needs to be available. However, if
such a behavioral prior is given, the UM estimator and the AR estimator yield
equivalent results since both rely on the same linearization-based approximation
(E38) of the posterior. In this case, the UM estimator is to be preferred over
the AR estimator since it is computationally more efficient in that it rejects no
draws from the prior but immediately draws from the posterior.

Section E2's estimation heuristic coincides structurally with the UM estimator:
In either case, the modified utility is defined by I, and the A coefficients
are identically generated by a linearization of the measurement log-likelihood
function. The heuristic’s weight coefficient p coincides with the scale param-
eter of the PS-logit prior. For completeness, the UM estimator is specified in
Algorithm H
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Algorithm 4 Utility-modification estimator

1. Apply Algorithm B with the global utility function ® defined by [EZI) as
the measurement log-likelihood function.

2. This estimator has the following properties.

(a) It is identical to the heuristic estimator of Section

(b) If the behavioral prior is of PS-logit structure, this estimator is equiv-
alent to the AR estimator specified in Algorithm

4.3.4 Applicability of Heuristic Estimator

Technically, the UM estimator can be applied in conjunction with an arbitrary
utility-driven behavioral prior for the estimation of anything from routes to all-
day plans. In such a general setting, it coincides with the heuristic estimator
of Section This analysis identifies the conceptual limitations of such an
approach and thus clarifies the applicability of the heuristic estimator itself.

Assume that decision maker n disposes of a choice set C,, and that prespeci-
fied utilities V,0(U) for every U € C,, are given. Based on these utilities, the
decision protocol draws from well-defined but to the estimator unknown choice
probabilities P%(i/). These choice probabilities can be perfectly reproduced by
a model of PS-logit structure if the PS coefficients are re-defined as

Py U)

PS, (U) = I (4.39)

The resulting choice probabilities are

PO (1) eH (Vi @)=V W)
Patt) = — T2 . (4.40)
ZVeCn PS (V)e“(V"' W)=V, (V)

such that V,,(U) = VO(U) results in P, (U) = PP(U) for all U € C,,. Loosely
speaking, any behavioral prior can be approximated up to Oth order in this way.
The adequacy of this approximation for others than the prespecified utilities
only depends on the approximated prior’s elasticities, i.e., the way relative utility
changes induce relative changes in the choice probabilities.

The elasticities of the PS-logit choice probabilities with respect to deterministic
utilities are structurally identical to those of the MNL model:

(4.41)

OP,(U) Vo (V) _ V)1 = P (U) U=V
OV (V) PuU) —uVa(V)P, (V) otherwise.

In particular, if alternative V becomes more (less) attractive, its increased (de-
creased) choice probability reduces (increases) the choice probabilities of all
other alternatives U # V by the same relative amount.

Recall that the UM estimator functions without explicit knowledge of the PS co-
efficients. This implies that an application of the UM estimator can be justified
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Figure 4.2: Three routes example, repeated
A simple route choice example with three alternative routes A (comprised of link 1),
B (comprised of link sequence 2 —3a), and C (comprised of links 2—3b).

by approximation ([EA0) even if the P and V) values that (re-)define the PS
coefficients in (BE39) are unknown. However, it is required that the elasticities of
the prior choice distribution are sufficiently well captured by ([Z). Since the
UM estimator’s working coincides with that of Section EE's heuristic estimator,
identical limitations hold for that heuristic.

4.4 Illustrative Example

The proposed estimators are illustrated with a simple example. For clarity, only
a route choice problem is considered, and stationary conditions are assumed
instead of a full dynamical model.

4.4.1 Scenario Description

The example network of Section is reconsidered. It is repeated in Figure
A choice set of three routes A, B, and C connects the origin node at the
very left to the destination node at the very right. The systematic utility of all
routes is identically and invariably V. The assumption of a constant systematic
utility is adequate either in uncongested conditions or in a telematics setting
where drivers are a priori unaware of actually prevailing network conditions.
(An example with an underlying equilibrium assumption is given in the next
chapter.)

Since routes B and C have almost perfect overlap, a behaviorally reasonable
route split is (P(A) P(B) P(C))=(1/2 1/4 1/4). However, for the purpose of this
example, a plain MNL model that does not account for route overlap is chosen
as the behavioral prior:

PU) x eV, U= A B,C, (4.42)
where p, V' =1 in all numerical experiments. This results in prior route splits
(P(A) P(B) P(C)) = (/3 1/31/3). (4.43)

The model is microscopic in that every departing driver n = 1... N individually
chooses a route. Since stationary conditions are assumed, a traveler’s turning
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move “sequence” U, = {u,} and the resulting state “sequence” X = {x} only
consist of a single vector each:

W, = (upn usntcn)” (4.44)
x = (rawpac). (4.45)

The elements of u indicate a driver’s initial turn into route A, B or C: u =
(1 0 0)” represents the choice of route A, u = (0 1 0)” stands for route B,
and (0 0 1)7 indicates route C. Since no traffic flow dynamics are modeled, the
network states are defined as the total route volumes

N
X=> u, (4.46)
n=1

A single flow sensor is located on route A. Its output y is modeled by the
measurement equation
y=x4+e€ (4.47)

where € is a normal error with zero mean and o2 variance. The resulting log-
likelihood (E20) of population route choice U ... Uy given measurement “se-
quence” Y = {y} is

o 2
L uxly) = WAL
2 (4.48)
- (y - Z'r]:,:luA,n)
- 202

A linearization of this function with respect to individual route choice is easier
than in the general case of Section since no dynamical constraints are
involved. Maintaining the formalism of that section, ®(X (U, ...UN)) is defined
to be L(U; ...UN|Y), ® is linearized, and [I0) yields a “sequence”

A={(ly—a%)/0*00)"} (4.49)

of ®’s sensitivities evaluated at a state “sequence” X° = {x°}. According to
(ETD), the approximate effect of a single agent that chooses route A, B or C on
the log-likelihood is

(AA) = (y—aYy)/o®
(AB) = 0 (4.50)
(AC) = o

These expressions account for the effect of adding an agent to a route but
ignore the effect of removing it from its previously chosen route. This is feasible
because, once the effect of route choice is linearized, removing an agent from
its original route does not change the linear effect of its reassignment to a new
route. Since every choice implies that any previous choice is discarded, only the
newly made choice is relevant for estimation. Formally, the effect of discarding
an outdated choice is subsumed in the constant addend of ([EIZ).
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4.4.2 Accept/Reject Estimator

The choice set {A,B,C} is known and sampling from the prior EZ2) is easy,
so the AR estimator can be applied without difficulty. Since all agents have
identical choice sets, the acceptance probabilities ([E33) are likewise identical
for all agents:

oA = MA/p= e(y—w(i\)/az/D
o(B) = NP /D=1/D (451)
6(c) = ¢™O/D=1/D '

D = max{e(y*z(i‘)/”27 1}.

That is, draws of route A are preferred over those of routes B and C if the
exponent in ¢(A) is positive, and they are suppressed if it is negative. Since a
positive exponent indicates that less vehicles than measured are simulated on
route A and a negative exponent indicates that too many simulated vehicles
choose this route, the AR mechanism functions like a controller that works
against the measurement error.

The acceptance probabilities of routes B and C are equal. This reflects the lack of
measurement information that could justify a preference for either route. The
equal acceptance probabilities in conjunction with the constant deterministic
utilities also imply that the prior ratio of the choice probabilities for B and C
is not affected by estimation. (If, however, the deterministic utilities were a
function of the route volumes, the decision protocol may react to a change in
estimated traffic conditions with a likewise changed ratio of B’s and C’s choice
probabilities.)

An adopted version of Algorithm Bl that accounts for the simplified mobility
simulation and the homogeneous driver population of this example is given
below.

1. Initialization.

(a) Set iteration counter m = 0.
(b) Fill A(™) (estimate of A fixed point) with all zeros.

2. Simulation.

(a) Calculate acceptance probabilities ™ (U) for U = A,B,C (where
A(™) is substituted for A in (EZI)).

(b) Forn=1...N, do:

i. Draw candidate route 2™ from the prior Ez3).
ii. With probability 1 —¢(™ (L{,(lm)), discard the candidate and goto
step

iii. Retain the first accepted choice Z/l,(lm).

(c) As a stationary surrogate for a full network loading, use [EZH) to
map U™ U™ on X (M),
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3. Linearize the log-likelihood function by @Z™) and obtain A™),

_ _ 1
4. Update Atm+1) — L _x(m) f = pA(m),
m+1 m+1

5. If another iteration is desired:

(a) Increase m by one.
(b) Goto step

For simulative investigations, a total demand of N = 1000 drivers is gen-
erated, and a single measurement y4 = 500 is assumed on route A. This
value is what one would expect on average if a model was used that real-
istically accounts for route overlap by distributing the demand according to

(P(A) P(B) P(C))=(1/2 Y/11/4).

The estimation convergence of 100 AR iterations for different measurement vari-
ances o2 = 1000, 100, and 10 is illustrated in Figure B2 The realistic volumes
of 500 vehicles on route A and 250 vehicles on routes B and C are reproduced
better with decreasing 0. An improved measurement reproduction comes at
the cost of a lengthened settling time until the estimator draws from an appar-
ently stable posterior. This is owed to the log-likelihood’s increased steepness
that complicates the identification of a fixed point. The ratio of route B and C’s
share is not influenced by the estimation, as it has been previously hypothesized.

The percentage of accepted draws is 92%, 74%, and 64% for o2 = 1000, 100, and
10. The smaller the measurement variance the more pronounced the difference
between prior and posterior and the more draws from the prior need to be
rejected to generate the posterior. The number of draws required by the AR
estimator generally increases the more the likelihood contradicts the prior.

4.4.3 Utility-Modification Estimator

The UM estimator specified in Algorithm Hlis employed. The same experimental
setting as for the AR estimator is chosen, and the same adjustments are made
in order to account for the simplified nature of this example. Since every draw
based on the modified utilities is accepted, the computational overhead of the
AR estimator is avoided. Furthermore, since the MNL prior route choice dis-
tribution EZD) is of PS-logit structure, the resulting estimates are draws from
an identical posterior distribution as for the AR estimator. Their illustration is
therefore omitted.

In this simple example, the utility corrections generated by the UM estima-
tor allow to reconstruct the PS coefficients that are disregarded in the plain
MNL prior (ZZ2): Given P(U) ox e*V, the UM estimator generates a posterior
PU|Y) o M erV of. ([@3H). Comparing this to a hypothetical PS-logit prior
PU) o PS(U)e*V that properly accounts for route overlap, one notices that
efM) can indeed be considered as an estimate of PS().

Figure B4 plots AU for 1 = A, B,C over the iteration counter m. Appar-
ently, these values converge towards (e<A(°°)’A> e(A.B) e<A(°°)*C>) =(211) for
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small measurement variances. This is a merely scaled version of the path size co-
efficients (PS(.A) PS(B) PS(C)) = (1 1/2 1/2) that were derived for this scenario
in Section These path sizes yield the plausible route choice probabilities
(P(A) P(B) P(C))=(1/2 /4 1/4) based on which the utilized measurement was
generated.

It was hypothesized in Section LT that an estimated utility modification cap-
tures those systematic features of an alternative that are not included in its
original utility. However, in the present example, systematic utility is perfectly
modeled, and the UM estimator only accounts for the overlap of routes B and
C. This shows, given a RUM-based decision protocol, that the correction terms
only represent unmodeled systematic utilities if all correlations in the utility
errors are properly modeled. Otherwise, unmodeled correlations may also be
accounted for by the estimator. In general, a distinct interpretation of the re-
sults is impossible. Still, this observation does not impair the correctness of the
estimated posterior distributions themselves.

Concluding, this chapter provides a number of methods for the estimation of
individual-level motorist behavior. All methods have the same Bayesian origin
but differ in their adopted simplifications. A small example clarifies the proposed
algorithms. A large test case is investigated in the next chapter.
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Chapter 5

Test Case

This chapter investigates the applicability of the proposed estimation approach
to a synthetic scenario of practically relevant size. It focuses on computational
feasibility and logical correctness. Since various simplifications are necessary
to implement the test case, its limitations likewise confine the scope of these
investigations. However, the results clearly establish that the estimator exhibits
sufficient precision, robustness, and computational performance to be studied
in more realistic settings and in conjunction with more sophisticated modeling
components.

5.1 Experimental Overall Setting

5.1.1 Scenario Description

A scenario consists of two components: (i) invariable settings that describe
the structural features of this test case and (ii) a particular choice of variable
settings.

5.1.1.1 Invariable Settings

All experiments utilize the Berlin network described in Section The re-
spective driver population is introduced in Section BETT4l Behavioral estimation
for a 206 353-agent population on a 2459-link network is a nontrivial problem.
All experiments are constrained to the time span from 6 to 9 am. This interval
exhibits the most variable traffic conditions because of the morning rush hour.

Since only placeholder components for the behavioral simulator are available, the
sole degree of freedom considered here is route choice. That is, all behavioral
aspects apart from route choice are retained unchanged in the original plans
generated by MATSim. This setting is motivated in two ways. First, MATSim’s
basic approach to route choice is relatively simple to simulate but at the same
time non-trivial from an estimation point of view, cf. Section Second,
route choice can be generalized to plan choice by minor modifications to the

96



Figure 5.1: Inner-urban part of Berlin
A time-independent toll of 0.24 EUR /km is charged on the colored links.

original network, cf. Section BZZTl This suggests that an effective route choice
estimator is likely to be applicable in a more general setting as well.

In all experiments, a time-independent toll of 0.24 EUR/km is charged in the
city center shown in Figure i1l and no toll is charged outside of this area. The
unitless utility of a route U is

Vo) = (tt(u) - t\?g(zT”:) /1s (5.1)

where tt(U) is the travel time on route U, toll(l/) is the toll accumulated along
route U, and VOT,, is individual n’s value of time in EUR/h. For comparison,
the effect of a 0.24 EUR/km toll is equivalent to a travel time increase by once
the free-flow travel time given a 12 EUR/h VOT and a 50 km/h speed limit.

5.1.1.2 Variable Settings

Combining the invariable settings given above with a particular VOT defines
a scenario. For simplicity, it is assumed that all drivers within one scenario
have an identical value of time, i.e., VOT,, = VOT, n = 1...N. Clearly, this
setting disregards a multi-agent model’s prominent advantage of capturing a
heterogeneous driver population. However, the purpose of these experiments
is not to re-iterate the well-known features of a multi-agent simulation but to
investigate an estimator’s performance in controlled conditions. A homogeneous
VOT simplifies the setup of the experiments and their interpretation. Since
VOT is an agent-specific parameter that is entirely transparent to the estimator,
no conceptual difficulty exists in estimating the behavior of a population that is
heterogeneous in this regard. Finally, no VOT information is contained in the
synthetic population available for this dissertation anyway because the current
MATSim implementation provides no such information.
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Depending on the particular modeling assumptions, a planning scenario and
a telematics scenario can be distinguished consistently with the terminology
of Section [LTZ} If drivers are aware of a recently implemented toll but not yet
of the resulting changes in traffic conditions, the hitherto prevailing equilibrium
conditions are invalidated and a transient phase emerges. This scenario can
only be represented by a telematics simulation that does not rely on a (S)UE
assumption. If drivers are aware of the toll but also have learned the resulting
changes in traffic patterns, the transient phase stabilizes again. This scenario
can be addressed by a planning simulation the equilibrium assumption of which
is approximately satisfied here.

5.1.2 Simulation and Estimation Logic

The following two subsections elaborate on the applied simulation and estima-
tion logic. The simulator is described first. Since the estimator “wraps around”
an existing simulation system, cf. Figure the simulator is entirely indepen-
dent of the subsequently selected estimation approach.

5.1.2.1 Simulation

Traffic flow dynamics are represented by the mobility simulation described
in Chapters Bl and Bl For behavioral simulation, the simple logic outlined
in Section is applied with minor modifications. Basically, 10 percent
of all agents recalculate a new route in every iteration. Only pre-trip route
(re)planning is considered [l The implemented decision protocol executes choice
set generation and choice in a deliberative manner, cf. Section [C31]

Whenever an agent starts a trip, it has one already generated route U at hand.
This is either the route chosen in the previous iteration or, at the initial iteration,
the route provided in the MATSim plans file. The agent also is aware of the most
recently observed travel times. An alternative route is generated by randomly
choosing a VOT from the set {6,12, 18,00} (all in EUR/h) and running a time-
dependent best path algorithm that maximizes the resulting generalized utility
specified in (). The infinite VOT serves as a notational proxy for a no-toll
case since it effectively eliminates the toll addend from the utility. The newly
calculated route is denoted by V. This yields a choice set of two elements: the
original route ¢/ and the new route V.

The agent then selects from {U/, V} the route of higher utility based on the sim-
ulated scenario’s actual VOT and the most recently observed traffic conditions.
Since the traffic conditions vary from iteration to iteration, this choice may not
be optimal in hindsight.

This model is chosen because of its similarity to the original MATSim route
replanning logic. Altogether, a single iteration of this simple DTA simulator
consists of two steps, and repeated executions of these iterations constitute a
simulation run:

IThe sole consideration of pre-trip replanning keeps the modeling simple. The estimator
itself is applicable to en-trip replanning as well, cf. Section EE31}
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1. For all agents n = 1... N, do: With probability 0.9, maintain n’s route.
Otherwise, generate an alternative route based on a randomly generated
VOT and the most recently observed travel times, and select the better
one of these two alternatives according to the scenario’s actual VOT.

2. Load all agents on the network.

This procedure can be applied to simulate both a planning and a telematics
scenario. The planning scenario assumes that drivers learn from iteration to
iteration. If one looks at relaxed iterations only, i.e., such iterations where
traffic conditions have attained a stable distribution, then an alternative inter-
pretation is that the situation of interest is one where drivers are aware of global
traffic conditions. This is realized if route-replanning is based on the previous
iteration’s travel times. For a telematics scenario, however, it is necessary to run
iterations while drivers remain on their initial level of knowledge. This knowl-
edge is generated beforehand by running many iterations of a relaxed planning
simulation and saving the travel times of every iteration. These travel times are
then used by replanning travelers in the iterated telematics simulation.

Even this simple simulator exhibits fairly complex dynamics. Since an elaborate
analysis of these dynamics is beyond the scope of this dissertation, the notion
of a “relaxed simulation” that reaches “stable network conditions” is to be un-
derstood informally and only in a given experimental context. Consequently,
all “convergence” statements regarding the subsequently described simulation-
based estimator are of likewise experimental nature.

5.1.2.2 Estimation

The estimator adjusts a prior scenario to measurements that are observations
from a true scenario. (Measurement generation is described further below.)
The prior and the true scenario only differ in their VOT. The true scenario rep-
resents a synthetic reality that would in a real-world application be replaced
by reality itself.

At this stage of research, a real-world test case would rather obscure than clarify
the estimator’s working since (i) no guidelines for its application are yet avail-
able, (ii) uncontrollable error sources would complicate an interpretation of the
estimation results, and (iii) only a simulated reality is perfectly observable for
a comparison to its estimated counterpart. Furthermore, merely an outdated
Berlin network and driver population are available since the MATSim research
efforts shifted towards the city of Zurich around the beginning of 2007. This
change occurred too late to be traced by this research.

The UM estimator is applied in all experiments. This is required by the implicit
nature of the behavioral model. As explained in Section route recalcu-
lations based on a previous iteration’s travel times model a perceptional error
that does not become observable until the next network loading is executed.
Since this error is generated in hindsight, there is no variability within a single
choice situation. The AR estimator is generally not applicable to this type of
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“best response” simulation A Furthermore, since no PS-logit route choice model
is used, only a heuristic application of the UM estimator is possible. This also
puts its robustness with regard to a behavioral prior that is not guaranteed to
be of PS-logit structure to test, cf. Section EE34

Since the UM estimator is technically equivalent to the heuristic estimator of
Section EEZ2, the following presentation is given in terms of the latter. The
heuristic estimator adds a global utility function ® to the individual utility of
every agent, where ® is a similarity measure between simulated and observed
sensor data. More precisely, the estimator replaces any driver n’s original utility
perception V,(U) as defined in (&J) by a modified utility W, (U) = V,,(U) +
(A, U) /1 where the second addend is a linearized and scaled version of ®. In all
subsequent experiments, ® is specified by

(Ya (k) — galx(k)])?
O(X) == > T (5.2)
o
a k
where y, (k) is a measurement on sensor-equipped link a in time step k and
ga|x(k)] is its simulated counterpart. An interpretation of this function as the
log-likelihood of mutually independent normal measurements with identical vari-
ances o2 is possible but, in light of the overall heuristic setting, not mandatory.

® is effectively scaled by o~2. Since this multiplication can be applied either

before or after the linearization, it is assumed that the A values result from a
linearization of ®(X) = — ", (va(k) — ga[x(k)])?/2 and that the o2 parameter
is accounted for afterwards:

Wath) = Valtd) + 2252, (5.3)

Only the product of p and o2 is relevant to the estimation problem. Since it
reflects the belief in the prior information represented by the original utility
perception V,,(U), it is subsequently represented by a prior weight

Wprior = \/ po. (5.4)

For interpretation, given a unit scale parameter p, wprior is equivalent to a
normal measurement’s standard deviation. An experimental parameter tuning
approach is adopted for its selection. This also is likely to be the course of action
in a real-world application [T71].

The estimation logic approaches a fixed-point of the A values by means of the
SA algorithm described in Section This procedure iterates between a
linearization of (B2 and an iteration of the traffic simulator. That is, in every
iteration of the estimator, 10 percent of all departing agents replan based on
the most recently obtained utility corrections, a single network loading is run,
and the utility corrections are immediately updated. The complete estimation
logic is given below:

2Speaking in terms of the particularly chosen model: The route choice set is generated
based on a randomized VOT once per iteration, but it is fixed throughout that iteration.
That is, repeated best response choices within a single iteration invariably yield the same
result.
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1. Initialization.

(a) Set iteration counter m = 0.
(b) Fill A™ (estimate of A fixed point) with all zeros.

2. Simulation.

(a) For alln =1...N, do with probability 0.1:

i. Choice set generation. Generate an alternative route based on a
randomly generated VOT and the most recent travel times.

ii. Choice. Evaluate W, (U) = Vo (U) + (A, U) /w?;,, instead of

Vo (U) when selecting ) Vo (U) is evaluated based on the
prior scenario’s actual VOT.

(b) Load 4™ ...t on the network and obtain X (™.

3. Linearize ®(X (™)) and obtain A(™).

_ _ 1
4. Update Am+1) — 0 _x(m) f = pA(m),
m+1 m+1

5. If another iteration is desired:

(a) Increase m by one.
(b) Goto step

Note that the choice set generation is based on the original utility V,, and a
randomized VOT, whereas the choice is based on the modified utility W,, and
the prior scenario’s actual VOT. This ensures that every once in a while the
choice set contains a route that is consistent with the true scenario’s VOTH The
question thus becomes in how far the estimator, given the above set of behavioral
alternatives but only a limited number of measurements, can pull the system
away from the “wrong” VOT of the prior scenario towards the “correct” VOT of
the true scenario.

If there are no measurements, the A coefficients are invariably zero and the above
algorithm merely repeats steps Bal and That is, it functions as a simulator
that, upon stabilization in relaxed conditions, produces a sequence of draws from
the behavioral prior distribution. As measurements become available, nonzero
A values result, and the estimator stabilizes in different relaxed conditions.
Every iteration then generates a draw from the behavioral posterior given the
particular prior scenario and the available measurements from the true scenario.

Technically, the estimation problem is to identify a fixed point of the A coef-
ficients. Since the mapping from A on itself is effectively from A on X on A,
cf. Figure BTl the existence of a A fixed point indicates the existence of a X
fixed point, and vice versa. This justifies the exclusive evaluation of the readily
interpretable system states X to monitor the estimator’s convergence, as it is
described in the next section.

3There is no guarantee that running a best path algorithm directly on modified link utilities
ever produces a likewise realistic alternative. Section Xl elaborates on this matter.
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Figure 5.2: Exemplary sensor locations
50 automatically selected sensor locations. One flow sensor is located in the center of
each colored link.

5.1.3 Sensor and Validation Data

The estimator utilizes a limited amount of flow measurements as sensor data.
The estimation results are validated based on network-wide occupancy informa-
tion.

5.1.3.1 Sensor Data

Flow measurements, i.e., traffic counts at road cross-sections per time interval,
are used in all experiments as synthetically generated sensor data. The term
measurement data is equivalently used. All such data is averaged in 5 minute
time bins.

For every estimation experiment, 50 sensor locations are selected based on a
comparison of the traffic conditions in the according prior and true scenario.
The locations are automatically chosen by a simple tool that prefers links on
which the average flow difference between both scenarios is largest and at the
same time seeks to maintain independent measurement locations. Sensor lo-
cations are chosen for all scenarios individually in order to provide equally
advantageous preconditions for better comparability. An example of suchlike
generated locations is given in Figure The true traffic conditions utilized
by this procedure are of course unknown in a real-world application, where,
however, prespecified sensor locations can be expected to be available.

The mapping from driver behavior on traffic flows is nonlinear. In particular,
the intermediate mapping from traffic densities on flow rates is ambiguous in
that every non-maximum flow can be explained by two different densities, cf.
Section Since the estimation is based on repeated linearizations, such non-
linearities increase the danger of local convergence. Therefore, an additional
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source of information is employed. Even a simple single-loop detector does not
only measure flow rates but also the fraction of time it is covered by a vehi-
cle. This information is likely to be too noisy to provide immediately useful
traffic density information, but it does allow to distinguish free and congested
traffic conditions [49]. The estimator uses this information in its linearization
step where it recognizes that in uncongested conditions the log-likelihood of any
measurement, is only sensitive to the upstream traffic situation and in congested
conditions it is only sensitive to the downstream situation.

5.1.3.2 Validation Data

One may argue that an appraisal of the estimation quality should be directly
based on routes. However, since every agent may choose any cycle-free route to-
wards its destination, it is unlikely that an estimated and a true route coincide.
In principle, the measure of route overlap proposed in [I48] is applicable here.
Still, the continuous variability of the simulated traffic conditions and of the
resulting routes complicates such a comparison, and a more viable validation
approach is at hand: In the considered model, simulated flows result deter-
ministically from macroscopic system states, which in turn are consequences
of microscopic driver behavior, cf. Section B3] Macroscopic link occupan-
cies thus constitute intermediate states that are easy to process and interpretE
Since the route choice model is based on travel times which are deterministi-
cally dependent on macroscopic link states, an estimator that reproduces link
states well is likely to also generate realistic routes. Particularly, the behavioral
model placeholder is by design sufficiently restricted to unequivocally ascribe
any systematic change in aggregate traffic conditions to the behavioral aspect
of toll-avoidance.

In consequence, network-wide occupancy information, i.e., the average number
of vehicle units on every link in every 5-minute time bin, is used as the valida-
tion data based on which global traffic conditions are compared. More general
experiments are likely to also call for more powerful behavioral monitoring tools,
which constitutes a research question in its own right.

5.1.3.3 Quantitative Error Measures
The notion of a run is subsequently used as a generic term for both a simulation

run and an estimation run. The difference of a run to a reference data set is
evaluated in terms of a root mean square error measure

S % Suea X (k) — 2 (k)

] (5.5)

where z,gm)(k:) is the considered traffic characteristic (flow, occupancy) of the
studied run in iteration m on link a in time bin k, and 2:¢/(k) is the according
reference value. K is the total number of time bins and A is the set of links for

4The hitherto used notion of occupancy as the number of vehicle units located in a cell or
link is not to be confused with the common notion of an inductive loop’s occupancy as the
fraction of time it is covered by a vehicle. The latter is not employed here.

103



which traffic characteristics are evaluated. [run] is a shortcut for the evaluated
run. Unique reference data sets are used in all planning experiments and in
all telematics experiments respectively. Whenever the dependency of RMS on
iteration counter m is omitted, the last RMS value in a prespecified sequence
of iterations is referred to.

It is frequently required to compare a run’s (recursively) averaged characteristics

2(m) (k) m < mg
2 (k) = 1 % / (5.6)
Za s (m”) .
P — /Z 2" (k) m > mg
m'=mqo

to the reference data, where mg is always chosen large enough to ensure that
the considered run reaches a stable distribution of network conditions before the
averaging starts. This allows for the definition of an additional error measure

g(m) _ re 2
RMSA{™ [run] = \/ 2oca 2k }(lfllr) (k) : (5.7)

where the only difference to RMS, is that z,(lm)(k:) is now replaced by the average

value 2™ (k).

The following particular error measures are used.

e The measurement error RMSA, is an instance of (7)) that represents
the deviation of an estimation run from its measurement data set. That is,
the reference data used here is identical to the measurement data used for
estimation. Consequently, only the flow rates at the prespecified 50 sensor
locations are evaluated. Note that the measurement error is basically a
scaled version of v/—®, cf. (E2). Its unit is veh/h, which is subsequently
omitted for brevity.

e The validation error RMS(A), is an instance of (E3)) or (&) that rep-
resents the deviation of a simulation run or an estimation run from its
validation data set. At this, it compares the occupancies on all links in
the network. Its unit is veh, which also is subsequently omitted.

5.2 Planning Experiments (Equilibrium Situation)

A planning-like setting is considered first. SUE conditions are modeled by pro-
viding global knowledge about the previous iteration’s traffic conditions to all
replanning agents in the iterative DTA procedure described in Section BT 21
All experiments use sensor data from a true scenario that is based on one par-
ticular VOT, whereas the prior scenario assumed by the estimator is based on
a different VOT.

The experiments given here examine the logical correctness and overall precision
of the estimator. Since computational performance is not of primary concern
in an offline planning application, its investigation is postponed to Section
where a telematics case study in simulated online conditions is described.
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Figure 5.3: RMS, and RMSA, [6 EUR/h VOT simulation]
Three simulation runs of 500 iterations each are conducted in order to investigate
the stability of the 6 EUR/h VOT scenario. The fluctuating RMS, values effectively
represent the Euclidean distance between the reference data and the simulated occu-
pancies of a particular iteration. The recursive state averaging is turned on after 100
iterations such that a smooth RMSA, curve branches off each RMS, curve.

5.2.1 Scenario Generation

Given the above overall settings, one planning simulation is run for a scenario
without toll, and three further simulations are run for toll-scenarios with VOTs
of 6, 12, and 18 EUR/h. Each simulation is executed for 500 iterations. These
initial runs are subsequently denoted as the “no-toll” and the “6 (12,18) EUR /h
VOT” reference simulations of their respective planning scenarios. Link flows
and occupancies are averaged over the last 400 iterations of each reference sim-
ulation according to ([2H)). These average values constitute the reference data
sets for all RMS and RMSA error measures given in the subsequent planning
experiments, cf. Section L33

5.2.1.1 Investigation of Scenario Stability

To test the robustness of this set-up, another three simulations are run for every
scenario. They are compared to their respective reference scenario by tracking
the validation errors RMS, and RMSA . over 500 iterations, as shown in Figures
through

All experiments start with an identical plans file. This results in different tran-
sients during the first iterations. Since these transients represent no relaxed
network conditions, the recursive state averaging is turned on not before it-
eration 100 where a RMSA, curve branches off each RMS, curve. Since this
branching in conjunction with much smoother dynamics is characteristic for all
RMSA . curves, they are not explicitly labeled in the plots.

The RMSA, curves approach small values when compared to their RMS, coun-
terparts. This indicates that all simulations for a particular VOT attain similar
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Figure 5.4: RMS, and RMSA, [12 EUR/h VOT simulation]
Three simulations of the 12 EUR/h VOT scenario. See Figure for further expla-

nations.
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Figure 5.5: RMS, and RMSA, [18 EUR/h VOT simulation]
Three simulations of the 18 EUR/h VOT scenario. See Figure for further expla-

nations.
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Figure 5.6: RMS, and RMSA, [no-toll simulation]
Three simulations of the no-toll scenario. See Figure for further explanations.

average system states. The RMS, curves stabilize at a constant degree of vari-
ability. A visual inspection shows a positive auto-correlation within each curve.
This results from the simulation logic that invariably copies 90 percent of all
routes from one iteration to the next. Altogether, the network states exhibit a
fluctuating and possibly cycling behavior. Since no systematic drift is observed,
convergence towards a stable state distribution cannot be disproved.

All RMS curves are located above their RMSA counterparts. However, this
observation does not prove a systematic difference between the average system
states and the single-iteration draws. It rather is a consequence of the chosen
error measures, and the same RMS vs. RMSA constellation would result even
if the relaxed system states were perfectly normally distributed: The surface
of an (n + 1)-dimensional sphere with radius r is proportional to ™. The
probability that a single network state is simulated r distance units away from
its expectation therefore results from an integration of its p.d.f. over a domain
the size of which is proportional to ™. Since the reference data used in RMS(A)
consists of average network characteristics that approximate this expectation, a
small RMS value is as unlikely to occur as a small r value, whereas vanishing
RMSA values merely result from the law of large numbers.

5.2.1.2 Measurement and Validation Data Generation

An accurate generation of the synthetic measurements for a single day requires
to take one relaxed iteration of the true scenario, to extract the flow data at
all sensor locations, and to randomly disturb this data according to a distribu-
tional assumption about the measurement error. Based on this information, the
(planning) estimator is run with the goal to reproduce the true distribution of
traffic conditions. In consequence, an “exhaustive” validation procedure must
compare two full distributions of traffic conditions.

Within the scope of this work, distributions are compared in terms of their
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expectations. The similarity of an estimated and a true distribution of net-
work conditions can thus be quantified by an RMSA error measure. This error
measure is a random variable itself since it depends on the particular draw of
measurement data ) that is used for estimation, i.e., RMSA = RMSA(Y). A
reliable appraisal of the estimation quality would therefore require to gener-
ate a large number of measurement data sets ) and to run the estimator for
each of these sets individually. An expected error E{RMSA())} could then be
identified by averaging RMSA(Y) over all experiments.

Since strong variability can be observed in the simulations, many computa-
tionally demanding experiments would be needed to identify the estimator’s
expected performancell Even if this effort was shouldered, the validity of the
resulting assessment would be limited by that of the deployed model placehold-
ers. These reservations motivate a less rigorous yet computationally more viable
approach.

A single, most representative measurement data set is used for each true sce-
nario. The stability analysis of Section BEZTT] shows that repeated simulations
of a particular scenario converge to similar average network states. The initially
generated reference data sets for each scenario are therefore used as sensor and
validation data in all planning experiments. Averaging the data instead of av-
eraging the evaluation results is equivalent to the clearly idealized assumption
that E{RMSA(Y)} ~ RMSA(E{)}) is a feasible approximation.

No additive sensor noise is simulated since only its zero expectation appears in
E{Y}. This underlines the idealized experimental setting since the true level of
sensor noise will in reality certainly impair the estimation performance. How-
ever, since there is no guarantee that the average of many physically possible
system states is itself physically feasible, a systematic error may be introduced.
These aspects must be accounted for when interpreting the estimation results.

This simplification may even be realistic in a setting where the sensor data
available for planning purposes has been averaged over many days. However,
the effective motivation for this approach is to limit the degrees of freedom that
need to be experimentally investigated. One should recall that the purpose of
these experiments is to demonstrate the estimator’s logical correctness. Once
this is achieved, sufficient conceptual background is provided in Chapter Hl for
more extensive investigations in likewise more realistic experimental settings.

5.2.1.3 Comparison of Scenarios

Figure 7 provides an impression of the difference between the synthetic reality
on the one hand and the prior scenario assumed later during estimation on the
other hand. It contains six scatterplots that compare the flow and occupancy
data of the 12 EUR/h VOT reference simulation to the 6 EUR/h VOT, the 18
EUR/h VOT, and the no-toll reference simulation.

The first column compares the reference flow rates and the second column com-
pares the reference occupancies. All scatterplots contain data points for all links

5Recent experimental results milden this concern. However, since these results were ob-
tained too late to be accounted for in this dissertation, they are only indicated in this and a
few subsequent footnotes.
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Figure 5.7: Scatterplots for comparison of planning reference simulations
The scatterplots compare data from the 12 EUR/h VOT planning reference simulation
(on the ordinate) to the other planning reference simulations (on the abscissa). The
first column compares flow rates and the second column compares occupancies. All
scatterplots contain data points for all links in the network. The data points apply to
the simulation time interval from 8:30 to 8:35 and represent average values over 400
iterations.
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in the network. That is, the flow scatterplots contain more information than the
RMSA, measurement error, which only accounts for data at sensor locations.
The measurement error indicates to what degree the estimator is able to recon-
struct available sensor data, whereas the scatterplots allow for a network-wide
comparison of traffic conditions.

All data points apply to the simulation time interval from 8:30 to 8:35. At
first glance, the deviations appear moderate in consideration of the broad range
of VOTs. However, recall that all reference data sets are averaged over 400
iterations. An inspection of the simulation dynamics in Figures B3 through B0
shows that variability is much larger without averaging. Using average data
allows to ascribe all perceptible deviations in the scatterplots to systematic
causes.

The flow scatterplots in the left column give an impression of the amount of
information effectively available to the estimator. The stronger the flow devi-
ations between two scenarios the more useful are flow measurements to adjust
one scenario to another. Vice versa, if two scenarios differ only slightly in their
flows, the estimator has only little information at hand. In all plots, the flows
exhibit no distinct bias in that they are scattered unsystematically around the
main diagonal. The reason for this is that route choice is the only behavioral
degree of freedom: Every driver who bypasses the downtown area invariable
drives through the “inverse” of that area, and vice versa, such that the flows can
merely be reallocated among links.

The second column contains occupancy scatterplots. This type of data also
defines the RMSA , validation error. The degree of variability among different
scenarios follows the same order as for the flowsfl However, systematic differ-
ences between the scenarios can now be observed. Since the toll is not designed
to maximize traffic throughput, it causes increased congestion outside the city
center. This effect becomes more pronounced for smaller VOTs, which model a
greater behavioral sensitivity to the toll. The nonlinear congestion effects are
reflected in unsymmetrical plots: The positive effect of the toll (less vehicles
downtown) is not as pronounced as its negative counterpart (more vehicles on
the bypass roads). Such an effect can be justified if there are other motives than
congestion relief for the introduction of the toll. One should keep in mind that
this is a synthetic scenario with no ambition to evaluate road pricing strategies
themselves.

5.2.2 Experimental Results

12 EUR/h is a reasonable a priori guess for an average VOT. The estimator
therefore adjusts a 12 EUR/h VOT prior scenario to the reference measure-
ments of a true no-toll scenario, a true 6 EUR/h VOT scenario, and a true
18 EUR/h VOT scenario. Every estimation run starts with a plans file that is

6A prominent outlier at coordinates (312/175) in the “6 vs 12 EUR/h VOT” occupancy
scatterplot can be observed. This is the western segment of “Frankfurter Allee”, leading
immediately into the toll zone. It has 3 lanes and is almost 3 kilometers long. The lower the
value of time the more drivers try to divert at at the downstream end of this road into the
increasingly congested bypasses and cause the observed spillback.
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drawn from the 12 EUR /h prior distribution. That is, in the absence of measure-
ments, the estimator immediately draws from the prior, and if measurements
are available, all transients towards the posterior can be unequivocally ascribed
to the measurements. Experiments with various prior weights wprior as defined
in (B4 are conducted in order to investigate the estimator’s robustness against
suboptimal parameter settings. Three estimation runs are evaluated in every
configuration in order to increase the statistical reliability of the results[]

5.2.2.1 Description of Results

Figure shows the resulting error measures over different wprior values for
sensor data generated from the 6 EUR/h VOT, the 18 EUR/h VOT, and the
no-toll reference scenario. These settings are subsequently denoted as “no-toll
estimation” and “6(18) EUR/h VOT estimation”. Measurement errors RMSA,
are given in the first column and validation errors RMSA, are shown in the
second column. For comparison, error measures for the 12 EUR/h VOT refer-
ence simulation and for the additional three simulation runs conducted in the
stability analysis of Section lEZTl are also given in each diagram. They are
equivalent to running the estimator without sensor input. For ease of compari-
son, they are re-drawn over every considered wprior value in red color. The three
estimation results per wprior value are drawn in blue. All experiments are run
for 250 iterations. Flow and occupancy averaging is started after a settling time
of 50 iterations.

All results are fairly stable in that there is limited variability among repeated
runs. Often enough, the dots lie on top of each other and cannot be distin-
guished. Reproducible convergence is a desirable and not at all self-evident
feature for a nonlinear estimator. In these experiments, it can be observed with
good precision. However, this result is at least partially owed to the use of
a representative measurement data set in all experiments for a particular true
scenario. Another general observation is that the occupancy error levels are
relatively small. This is a consequence of the network-wide point of view which
accounts for many links in the periphery that are hardly affected by the toll.

The first column of Figure shows that the measurement error RMSA, de-
creases monotonously with wpyior. This is plausible: the smaller the belief in the
behavioral model the more weight is put on measurement reproduction. The
results differ in the previously hypothesized way in that a large difference be-
tween flows in the prior and the true scenario provides substantial information
that can be facilitated for estimation, whereas smaller flow differences result in
a less focused search: The 12 EUR/h VOT prior scenario is most different from
the no-toll scenario, less different from the 6 EUR/h VOT scenario, and least
different from the 18 EUR/h VOT scenario. Accordingly, the greatest estima-
tion improvements over a plain simulation of the prior are 86%, 63%, and 58%,
respectively.

7All results apart from the performance benchmarks of Section are obtained on a
computing cluster where the nodes are equipped with AMD 2.6 GHz Opteron processors and
have at least 2 GB of RAM. On such a node, the computing time of an estimation run as
described in this section is in the order of one day.
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Figure 5.8: Result overview for planning experiments

The left column shows measurement errors RMSA, and the right columns shows val-
idation errors RMSA, over different wprior values for a true 6 EUR/h VOT scenario,
a true 18 EUR/h VOT scenario, and a true no-toll scenario. The three estimation
results per wprior value are represented by blue dots. For comparison, the error mea-
sures for four plain simulations of the 12 EUR/h VOT prior scenario are represented
by red dots. All experiments are run for 250 iterations. Flow and occupancy averaging
started after a settling time of 50 iterations.
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The second column of Figure shows a non-monotonous relation between
Wprior and the validation error RMSA,. As wprior grows, the measurements’
influence vanishes and the estimation quality gracefully deteriorates towards
that of a plain simulation . However, as wprior decreases, a minimum value
of RMSA, is invariably encountered, after which a further decrease of wprior
results in an increased validation error. The attained minimum RMSA, value
reflects the estimator’s ability to spatiotemporally extrapolate the available flow
measurements. The RMSA, improvements follow the same order as the RMSA,
results. When compared to the 12 EUR/h VOT prior scenario, the estimator
achieves a 48% improvement for the true no-toll scenario at wprior = 0.72 or
1.44, a 36% improvement for the true 6 EUR/h VOT scenario at wprier = 2.88,
and even for the subtle true 18 EUR/h VOT scenario a 20% improvement can
be observed at wprior = 2.88. The last improvement is particularly noteworthy
since fairly little difference between the 12 and the 18 EUR/h VOT scenario
can be identified in Figure 7 at all. This indicates that the estimator is quite
precise in that it recognizes even such subtle differences. Recall that all of these
extrapolation results are obtained using only 50 measurement locations out of
altogether 2459 links.

Figures and ETd provide flow and occupancy scatterplots that result from
the best configuration in each experimental setting. Here and subsequently,
the “best” configuration corresponds to the wprior value that yields the smallest
validation error on average. From the according three estimation runs, the
second best is chosen for illustration. The first column of each figure repeats
the data obtained during the preparatory simulations, cf. Figure 7l and the
second column shows the corresponding estimation results. All data points are
averaged over many relaxed iterations such that all differences between left and
right column can be ascribed to a systematic effect of the estimator. Overall,
the visual impression affirms the quantitative error measures. Recall that the
previously given RMSA, values only account for the 50 sensor locations, whereas
the flow scatterplots contain data points for all links in the network.

5.2.2.2 Discussion of Results

Three explanations can be given for the increased validation errors at small
Wprior values. The first is over-fitting. Even if the representative measurements
are not corrupted by sensor noise, their averaging may result in an inconsistency
with the dynamics of the underlying nonlinear traffic flow model The second
explanation is under-determinedness in combination with nonlinear dynamics.
There may be many global traffic situations that reproduce the measurements
equally well. As the behavioral model’s effect vanishes with decreasing wprior,
insufficient behavioral information is available as a guidance towards a plausi-
ble solution, and the estimator gets locally stuck. This effect is possible even
though the flow sensors provide supplementary information about free and con-
gested traffic conditions since this data is still insufficient to uniquely define the
traffic conditions in the further surroundings of a sensor. Finally, a small wpyior
effectively acts like a large gain on the log-likelihood function, and the steepness
of this function can have a negative effect on the convergence of the underlying

8The recent experimental results confirm this hypothesis.
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Figure 5.9: Comparison of true and estimated flows (planning)

The first column repeats the preparatory flow scatterplots of Figure Bl The sec-
ond column shows the according estimation results where the reference flows (on the
abscissa) are compared to their estimated counterparts (on the ordinate). That is,
every row contains one scatterplot that compares a particular true scenario to the
prior scenario, and it contains another scatterplot that compares the true scenario
to the estimation result. These plots already represent average values such that all
differences between left and right column can be ascribed to a systematic effect of the
estimator. 114
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Figure 5.10: Comparison of true and estimated occupancies (planning)
The first column repeats the preparatory occupancy scatterplots of Figure il The
second column shows the according estimation results where the reference occupancies
(on the abscissa) are compared to their estimated counterparts (on the ordinate). See
Figure 9 for further explanations.
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Figure 5.11: RMS, and RMSA, [6 EUR/h VOT estimation]
Validation errors over 250 iterations for the three best experiments with a true 6
EUR/h VOT scenario. RMS, effectively represents the Euclidean distance of the 6
EUR/h VOT reference occupancies to the estimation results of a particular iteration.
The recursive state averaging is turned on after 50 iterations such that a smooth
RMSA, curve branches off each RMS,, curve.

SA fixed point search algorithm. In either case, a trustworthy behavioral model
that calls for a sufficiently large wpyior avoids the problem.

Rephrasing this observation in more general terms, a good state reproduction
depends crucially on data and modeling quality, which cannot be compensated
for by the estimation logic itself. The measurements need to contain sufficient
information for a spatiotemporal extrapolation, and the behavioral simulator
must be structurally correct in that it generates choices that are compatible
with the measurements.

Overall, the achieved measures of estimation quality must be considered in light
of the idealized setting in which they were obtained. The use of representative
measurement data that is free of sensor errors is an idealization. In a real-world
application, the over-fitting of certainly existing measurement errors must be
avoided. This is likely to require larger wpior values than used here and would
consequently yield a reduced measurement and validation data fit. However, it
can be concluded that the estimator performs structurally correct and that the
estimation results in a specific application will mainly depend on the available
data and modeling quality.

5.2.2.3 Estimation Dynamics

Finally, a closer look at the estimation dynamics is provided in Figures BT
through for the 6 EUR/h estimation, the 18 EUR/h estimation, and the
no-toll estimation. Each figure shows all three RMS, and RMSA, trajectories
for the respective best wpyior configuration over 250 iterations. Most RMS, tra-
jectories oscillate fairly stable in the temporally auto-correlated manner known
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Figure 5.12: RMS, and RMSA, [18 EUR/h VOT estimation]

Validation errors over 250 iterations for the three best experiments with a true 18
EUR/h VOT scenario. See Figure Il for further explanations.
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Figure 5.13: RMS, and RMSA, [no-toll estimation]
Validation errors over 250 iterations for the three best experiments with a true no-toll
scenario. See Figure T for further explanations.
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from the preparatory simulation runs. The eventual outliers, particularly the
blue curve in Figure BETIl may be due to a yet imperfectly relaxed posterior
distribution. However, similar periods of “disarranged” dynamics can also be
found in the preparatory simulations, where no estimation was involved.

All RMSA, curves stabilize well in the available 250 iterations. Their speed and
reliability of convergence increases as the prior and the true scenario become
more similar. The 18 EUR/h VOT estimation converges fastest, the 6 EUR/h
VOT estimation is somewhat slower yet still very reliable, and the no-toll esti-
mation exhibits the least consistent convergence behavior. This may result from
the fact that the more distant prior and true scenario are the longer the estima-
tor’s way through state space becomes. In nonlinear conditions, the chance of
“branching off” towards different local solutions is likely to increase as this way
gets longer.

Altogether, the estimator consistently generates distinct state reconstruction
improvements. It extracts the relevant information out of limited flow mea-
surements even for very subtle differences between prior and true scenario. Its
ability to function in the planning-like setting given here shows its applicabil-
ity in conjunction with a non-deterministic, equilibrium-based dynamic traffic
simulator.

5.3 Telematics Experiments (Non-Equilibrium Sit-
uation)

The second half of this chapter applies the proposed estimator in conjunction
with a telematics model that replaces the hitherto assumed SUE conditions by
an assumption of imperfectly informed drivers. This has a significant influence
on the traffic conditions when compared to the planning scenario, and the es-
timator has, even under strict running time constraints, a substantially more
distinct effect in this setting.

Experiments are conducted in offline and simulated online conditions, cf. Section
In offline conditions, a set of beforehand collected measurement data is
processed “en block”. In a telematics context, this is useful for the ex post
analysis of a particular day. The online estimator runs in a rolling horizon
mode where the estimation of the traffic state for a certain point in time has
only measurements from earlier times available. This setting is characteristic
for a continuous traffic monitoring problem. The experiments in simulated
online conditions allow to investigate the estimator’s real time capabilities and
to conclude about the scenario size its current implementation can handle.

5.3.1 Rolling Horizon Estimation

A rolling horizon logic is implemented that runs the estimator in simulated
online conditions. The time period of investigation still is 6 to 9 am. While one
iteration of an offline estimator facilitates all measurements from this interval
at once, online conditions imply that the measurements become available bit by
bit as the simulated real time proceeds.
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The online estimation starts at 6:30 simulated real time. Only measurements
until this moment are available. The estimator iteratively adjusts the simulated
driver behavior to these measurements according to the by now established es-
timation logic of Section EE.Z2 During this first estimation period, only a
simulation from 6:00 to 6:30 is iteratively adjusted. After a prespecified number
of iterations, the simulated real time is advanced to 6:35, the most recent simu-
lation is continued until 7:00 to evaluate the estimator’s predictive capabilities,
the measurements from 6:30 to 6:35 become available, and the next estimation
period from 6:05 to 6:35 begins. All driver behavior until 6:05 is now fixed
according to the last iteration of the previous estimation period.

It is noteworthy that such a simulation logic is attractive not only for telem-
atics purposes in online conditions. Being able to iterate critical time intervals
more frequently than others allows to deploy computational resources in a more
focused way. This also appears useful during the first iterations of a planning
simulation where the system is far away from an equilibrium. An eventual
sequence of “full” planning iterations eliminates the accrued tendency of local
convergence. The danger of imperfect convergence also needs to be accounted
for in online estimation and calls for the more elaborate discussion given next.

In rolling horizon estimation, behavior is adjusted only within a limited estima-
tion period that ends at or shortly before the current point in time. As time
proceeds, this estimation period is also shifted. In the subsequent period, all
driver decisions that have fallen out of the estimation time window are kept fixed
at their last values. This is necessitated by the estimation window’s constant
length, which in turn is enforced by the real time requirement of a constant
calculation time per estimation period. Since the estimator continues to adjust
behavior to measurements, it may change agent decisions within the given es-
timation period in an attempt to compensate for imperfect estimates at earlier
times.

The problem of suboptimal rolling horizon estimation has already been inves-
tigated for traffic monitoring problems with aggregate models [23]. Since an
individual-level analysis is pursued here, a behaviorally more descriptive point
of view is adopted. The question arises to what degree it is feasible to substitute
the behavior of different travelers when matching sensor data without accumu-
lating incorrect behavioral estimates from one estimation period to the next.
Feasibility is not to be confused with individual-level realism — no real traveler
accounts for what others do and compares it to traffic counts. It rather means
that the clearly suboptimal behavioral predictions for agents that compensate
for imperfect estimates of earlier periods still result in future traffic conditions
that are more realistic than an a priori guess without estimation. For example,
distorting the behavior of a few travelers at a critical time and location in the
network might prevent an unrealistic gridlock in the simulation. This also pre-
vents the likewise unrealistic reactions of many other agents to this gridlock. In
consequence, agents that replan in later estimation periods do so in more real-
istic conditions and thus with more realistic results — even if no measurements
are accounted for in these later periods.

It is worthwhile to adopt a more formal view on this matter. The behavioral
posterior
P ... UN|Y) < l(Uy .. . UN|V)P(U ... UN) (5.8)
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differs from its prior P(U; ...Uy) only because of the information contained in
the measurement likelihood (U ... UN|Y), cf. EID) and EZ). Fixing the

behavior of some agents at unreasonable values degrades the estimation quality
by means of this likelihood.

This effect can be substantially mildened by the behavioral simulator itself. A
chameleonic behavioral prior that admits even highly unrealistic actions with a
low yet non-zero probability is likely to be inapplicable in conjunction with a
suboptimal estimator. If, in suboptimal conditions, the likelihood is badly ap-
proximated, the choice probabilities of implausible actions may be excessively
increased. However, if the behavioral model simply does not generate implau-
sible actions, i.e., if implausible choices are selected with zero probability, no
Bayesian estimator can ever generate a positive choice probability by mere mul-
tiplication in fundamental relation (£8). The behavioral model placeholder used
here is robust in this regard since it generates alternative routes only based on
reasonable VOT variations. Its simplicity prevents it from ever generating a
“strange” route that may even be selected during estimation because of a poor
likelihood approximation.

A computational implication of these observations relates to the fact that the
estimator linearizes the log-likelihood. If the likelihood is imprecise, there is
little meaning in running a large number of iterations per estimation period
in order to finally draw from a posterior that is based on an utmost precise
linearization of the according log-likelihood. The experiments of Section
provide more insight into this issue.

5.3.2 Scenario Generation
5.3.2.1 Simulation of Imperfectly Informed Drivers

The first day after the implementation of the toll is simulated. In this set-
ting, drivers are aware of typical travel times without toll and of the toll itself.
However, they have not yet learned the alterations in traffic conditions that
result from other travelers’ changed behavior in response to the toll. Suchlike
imperfectly informed drivers are simulated in the following way.

1. A planning simulation without toll is run. When the simulation attains
relaxed conditions, time-dependent travel times for all links are written
to file over a long sequence of iterations. The travel time distribution
captured by these files is used in all subsequent experiments as a repre-
sentation of drivers’ memory of the no-toll situation.

2. When running the telematics simulation, this sequence of files is pro-
vided to pre-trip replanning travelers instead of the last iteration’s travel
times. The travelers base their routing decisions on this memory, plus the
(known) toll. This allows to run the simulation in an iterative manner
and to maintain variability in the traffic conditions while avoiding a learn-
ing effect that results if actually simulated travel times are fed back for
replanning.

120



0.33
0.30
0.27
0.24
0.21

0.18 . |
A
o WL AR i o LA AT

' W
0.09
0.06
0.03
0.00

RMS(A)x [no-toll (telematics) simulation]

iteration 1 through 500

Figure 5.14: RMS(A), [no-toll planning/telematics simulation]
The red curves show RMS(A)_ [no-toll planning simulation] and the blue curves show
RSM(A), [no-toll telematics simulation] over 500 iterations. The validation data from
the no-toll reference planning scenario is used as reference data in all error measures.
Since the simulations start with an already relaxed plans file, the recursive state av-
eraging is turned on from the very first.

For estimation, the overall logic of Section T2 is maintained, only that re-
planning is now based on the previously generated driver memory. The only
structural difference between a prior and a true telematics scenario is a different
VOT. Since every estimation starts with a plans file that is drawn from a sta-
ble simulation of its respective prior scenario, all transients during estimation
reflect the transition from the prior to the estimated posterior distribution.

5.3.2.2 Investigation of Scenario Stability

Figure EETd shows, in red color, the RMS, and RMSA, curves for 500 iterations
of a planning simulation in the no-toll case when compared to the reference data
for that scenario. Since these iterations start from an already relaxed plans file,
the recursive state averaging is turned on from the very first. Three further
curve pairs are drawn in blue. They result from an identical set-up as the first
run, only that the travel times on which replanning is based are now taken from
the memory files that were written during the first simulation.

Using the memory files results in an increased variability of the traffic conditions.
This can be seen from the greater variability of the blue RMSA, curves, which
indicates that the network states are drawn from a wider distribution than in
the initial simulation. The higher overall levels of the blue RMSA, curves also
show that a moderate additional error is introduced. The higher level of the blue
RMS, curves results from the combination of both effects. However, all blue
RMS,, curves exhibit a similar structure. This shows that, even if the telematics
logic has a side effect on the simulation dynamics, this effect is fairly stable.

The source of the difference between the original simulation and the telemat-
ics simulations is that the replanning agents are selected at random in every
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iteration. That is, even if the available information itself is identical in all sim-
ulations, different travelers at different locations and with different destinations
react to it. The resulting deviations in the traffic conditions are not accounted
for by the replanning agents. This can be seen as an increased perceptional
error, which, in the given setting, also increases the variability of the resulting
traffic conditions.

5.3.2.3 Measurement and Validation Data Generation

The previous section shows that the dynamics of telematics simulations are even
less well-behaved than their planning counterparts such that the argumentation
of Section applies here with even stronger emphasis.

Consequently, representative measurement and validation data sets are again
generated by averaging. That is, a telematics reference simulation is run for
the no-toll scenario and for the 6,12, and 18 EUR/h VOT scenariofl Flows and
occupancies are averaged over 400 stable iterations of each simulation. These
average values constitute the measurement and validation data sets used as the
reference data in all subsequent evaluations and RMS(A) error measures.

There is a conceptual difference in the validation of a planning and a telematics
estimator. In a planning application, the goal is to estimate a posterior that is
similar to the true distribution of traffic states (from which a draw is realized
every day). In a telematics setting, reality consists of a single day only. Con-
sequently, a telematics posterior must represent the knowledge about a single
realization of traffic conditions only. This difference is disregarded in the sim-
plified setting considered here since only a single, representative reference data
set is used to validate the planning and the telematics estimator respectively.

5.3.2.4 Comparison of Scenarios

Figure BT compares flows and occupancies of the 12 EUR /h VOT (telematics)
reference simulation to the 6 EUR/h VOT reference simulation, the 18 EUR /h
VOT reference simulation, and the no-toll reference simulation. Again, all data
points are 400-iteration averages, and, again, they apply to the simulated time
interval from 8:30 until 8:35 am.

The 12 EUR/h VOT scenario deviates remarkably from the no-toll scenario but
does not differ much from the other simulations with a non-zero toll. This is a
result of the lacking equilibrium assumption: At the first day of the toll’s im-
plementation, the presumably most advantageous route choice for most drivers
that so far have traversed the toll area is now to avoid it but to bypass it as
sharply as possible in order to minimize the increase in travel time. This, how-
ever, causes an unforeseeable congestion on the roads that immediately encircle
the toll zone. The no-toll scenario is the only scenario in which this congestion
does not occur.

9The no-toll telematics reference simulation differs somewhat from the no-toll planning
reference simulation because of the file-based driver memory in the telematics simulation
logic.
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Figure 5.15: Scatterplots for comparison of telematics reference simulations
The scatterplots compare data from the 12 EUR/h VOT telematics reference simula-
tion (on the ordinate) to the other telematics reference simulations (on the abscissa).
The first column compares flow rates and the second column compares occupancies.
All scatterplots contain data points for all links in the network. The data points apply
to the simulation time interval from 8:30 to 8:35. All data points represent average
values over 400 iterations.
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Figure 5.16: Result overview for telematics offline experiments
The left diagram shows measurement errors RMSA, and the right diagram shows val-
idation errors RMSA, over different wprior values for a 12 EUR/h VOT prior scenario
and a true no-toll scenario. The three estimation errors per wprior value are represented
by blue dots. For comparison, the error measures for three plain simulations of the
prior scenario are represented by red dots. All experiments are run for 250 iterations.
Flow and occupancy averaging is started after a settling time of 50 iterations.

Since the estimator’s ability to track rather subtle deviations is already demon-
strated in the planning experiments, only the no-toll scenario is subsequently
used as the synthetic reality. This implies that the real drivers effectively ignore
the toll’s effect. Keeping in mind that only the first day after the installation
of the toll is simulated, such a behavior may either result from unawareness or
from curiosity about the involved technical installations. Again, the purpose of
these experiments is to sound the capabilities of the estimator, not to discuss
road pricing issues themselves [

5.3.3 Experimental Results

In all telematics experiments, the estimator adjusts a 12 EUR/h VOT prior
scenario to measurements that are obtained from a true no-toll scenario.

5.3.3.1 Offline Estimation

To begin with, the rolling horizon mode is not facilitated and a sequence of
offline estimations is run over the entire 6 to 9 am time period. Figure .10
shows the resulting error measures over different wp,ior values. The measurement
error RMSA, is given on the left, and the validation error RMSA, is given on

10The recent experimental results indicate that the estimator works equally well if the prior
scenario and the synthetic reality are exchanged. Such a setting, where the real reaction to the
toll is much stronger that a priori expected, could result from an overreaction of the drivers
to the toll.
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the right. The results of three plain simulation runs of the 12 EUR/h VOT
prior scenario are represented by red dots, and the three estimation results per
Wprior value are drawn in blue. All experiments are run for 250 iterations. The
recursive state averaging turned on after a settling period of 50 iterations.

Both, the simulation and the estimation results are very stable; most dots lie on
top of each other. This even greater stability than in the planning case despite
of the greater difference between the prior and the true scenario is ascribed to
the simpler simulation logic that now dispenses with the equilibrium-generating
travel time feedback between subsequent iterations. The estimator generates
remarkable improvements. For wprior = 2.88, it improves RMSA, by 78% and
RMSA , by 82% over a plain simulation of the prior scenario. The severe conges-
tion of the 12 EUR/h VOT prior scenario that does not occur in the simulated
reality is successfully prevented by the estimator. The flows and occupancies
of the best estimation run (selected according to the same criterion as in the
planning experiments) are opposed to the reference data for the true scenario in
the scatterplots of Figure EI7 Since these data points are averaged over many
iterations, their differences leave no doubt about the estimator’s systematic and
beneficial influence [

5.3.3.2 Online Estimation in Rolling Horizon Mode

The same estimation problem as before is now tackled in rolling horizon mode.
With a real-time application in mind, an evaluation of the estimator perfor-
mance in terms of average system states that are obtained over hundreds of
iterations is now inappropriate. Therefore, only the RMS, validation error is
subsequently evaluated. A temporally disaggregate point of view is adopted by
considering each estimation period individually. Predictive capabilities are also
investigated.

A rolling horizon application challenges the estimator more than the previous
offline experiments because of the different use of the travel time memory files.
An identical memory file sequence is used for measurement generation and for
offline estimation. The rolling horizon estimator still uses the same files but
loads a new file in every iteration of every estimation period. Since these files
are now applied in a temporal context that is different from the setting in which
the measurements were generated, any advantage the estimator may have had
during offline estimation is now precluded.

A prior weight of wprior = 2.88 is maintained in all runs since this setting
achieved the best results in the preparatory offline experiments. Figure B8
provides separate results for every 30-minute estimation period ending at 7
through 9 am. The blue bars represent (from left to right) the RMS,, validation
errors obtained at the end of 5, 10, 20, 30, 40, and 50 iterations per estimation
period. They are drawn on top of red validation error bars that result from plain
rolling horizon simulations with respective iteration numbers. These simulations
follow an identical logic as the estimator, only that the measurements are not
accounted for.

M Results of comparable quality were recently obtained in a setting where the sensor data is
not averaged over many iterations but where it is taken from a single iteration of the telematics
simulation that generates the synthetic reality.
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Figure 5.17: Comparison of true and estimated flows/occupancies (telematics)
The first row contains flow scatterplots, and the second row shows occupancy scatter-
plots. The first column repeats the “no-toll vs. 12 EUR/h VOT” scatterplots of Figure
The second column shows the according estimation results where the_reference
data (on the abscissa) is compared to its estimated counterpart (on the ordinate).
That is, every row contains one scatterplot that compares the true no-toll scenario to
the 12 EUR/h VOT prior scenario, and it contains another scatterplot that compares
the true scenario to the estimation result. These plots already represent average values
such that all difference between left and right column can be ascribed to a systematic
effect of the estimator.
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Figure 5.18: RMS,, [30 min. rolling horizon estimation]
The blue bars represent (from left to right) validation error measures RMS, obtained after 5, 10, 20, 30, 40, and 50 iterations per estimation period.
They are drawn on top of red error bars that result from plain rolling horizon simulations with respective iteration numbers.



The estimation and simulation errors rise over time as the traffic volumes in-
crease in the morning rush hour. The plain simulation errors do not system-
atically depend on the number of iterations since the deployed initial plans file
already results from a stable telematics simulation. A pronounced difference be-
tween simulation and estimation can be observed as the congestion around the
toll zone becomes severe in the prior scenario. Overall, the estimator reduces
RMS,. by up to 70% in the later periods. Conducting only 5 or 10 iterations
per estimation period results in lower improvements when compared to 20 iter-
ations and more. However, running beyond 20 iterations yields only marginal
improvements.

Figure ETd shows the same setup of validation errors as before, only that now
the average prediction errors over a 0 to 30 minute time interval are given. This
and the previous diagram match temporally in the following way: An estimation
error drawn, e.g., over the 8:30 label is generated at this particular time and
thus applies to the interval from 8:00 to 8:30. A prediction result that is drawn
over the 8:30 label is generated at 8:00 for a 30 minute prediction window and
consequently applies to the same interval. A comparison of both figures yields
the expected diagnosis that the estimation quality is generally higher than the
prediction quality. However, an estimation-based prediction is clearly better
than a plain simulation. Again, the prediction results for 5 and 10 iterations
per estimation period are inferior when compared to those with 20 iterations
and more. The computational effort of executing more than 20 iterations per
estimation period does not result in significantly improved predictions. Overall,
the estimator reduces the RMS, prediction error by 50% to 60% in the later
time periods.

Figures 20 B2l and provide separate RMS,, plots for the prediction in-
tervals from 5 to 10, 15 to 20, and 25 to 30 minutes ahead in time. Here, the
time labels simply indicate when the prediction is made. The quality deterio-
rates gracefully as the prediction time increases, starting from a 60% to 65%
improvement for 5 to 10 minutes, attaining 55% to 60% for 15 to 20 minutes, and
yielding around 50% even for the 25 to 30 minute prediction. This remarkably
sustained improvement can be traced back to the rather restricted behavioral
degrees of freedom a simulated traveler faces. It also benefits from the fact that
only pre-trip replanning is accounted for such that a once estimated decision is
maintained for the entire duration of a trip. Finally, the deterministic traffic
dynamics certainly have a positive influence on predictability. However, even
after all these words of reservation, the results show clearly that a rolling hori-
zon estimation and prediction for this particular scenario is near-optimal if 20
iterations per 5-minute estimation period are allowed for.

5.3.3.3 Computational Performance

The current implementation of the estimator accomplishes 6 iterations per 5-
minute interval in the given scenario. That is, near-optimal results require
another estimation speedup of 3 to 4. Given the considered problem’s size,
this is an encouraging result. After all, one iteration consists of a 30 minute
traffic simulation during the morning rush hour, comprises a behavioral model
that relies on time-dependent best path calculations, and conducts a complete
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Figure 5.19: RMS,, [0-30 min. rolling horizon prediction]
The blue bars represent (from left to right) 0-30 minute prediction error measures RMS, obtained after 5, 10, 20, 30, 40, and 50 iterations per
estimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respective iteration numbers.
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Figure 5.20: RMS,, [5-10 min. rolling horizon prediction]
The blue bars represent (from left to right) 5-10 minute prediction error measures RMS, obtained after 5, 10, 20, 30, 40, and 50 iterations per
estimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respective iteration numbers.
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Figure 5.21: RMS, [15-20 min. rolling horizon prediction]
The blue bars represent (from left to right) 15-20 minute prediction error measures RMS, obtained after 5, 10, 20, 30, 40, and 50 iterations per
estimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respective iteration numbers.
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Figure 5.22: RMS, [25-30 min. rolling horizon prediction]
The blue bars represent (from left to right) 25-30 minute prediction error measures RMS, obtained after 5, 10, 20, 30, 40, and 50 iterations per
estimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respective iteration numbers.



spatiotemporal linearization of the resulting traffic dynamics. Even with only
6 iterations per 5 minutes, the estimator yields substantial improvements when
compared to the prior scenario, which, however, is likely to benefit from the
simple behavioral model as explained in Section

The computing times are obtained on a 3.2 GHz Pentium 4 stand-alone machine
with 2 GB of RAM. File i/o constitutes a major bottleneck in the currently
single-threaded implementation of the estimator. A large fraction of this file
i/o results from the necessity to calculate sensitivities of macroscopic system
dynamics backwards through simulated time, cf. Section This requires
to store all macroscopic states during the simulation and to process them back-
wards during the linearization. Even if the sparsity of this data because of the
simulation scheme on variable time scales is accounted for, cf. Section EZ3 this
adds up to 3.2 MB of binary data per minute of simulation. Since the resulting
4608 MB for a whole day exceed the available RAM of most machines deployed
in this work, the data is written to hard disk in 5-minute chunks of 16 MB during
the simulation. These files are then reloaded for the linearization. This allows
to estimate the given scenario on a machine with 2 GB of memory. However,
for a limited estimation period of only 30 minutes, the data could be kept in
RAM as well. Therefore, the approximate 25% of running time that are spent
waiting for file i/o are omitted when measuring the estimator’s computational
performance.

Altogether, the estimator achieves significant improvements in a telematics set-
ting. Even if the available scenario is somewhat too large to allow for near-
optimal results in real-time conditions, feasible problems have the same order
of magnitude: Since the computational effort rises at least linearly with the
network and population size, a 600+ link scenario with 50 000+ agents is imme-
diately approachable by the current implementation in real timefq A more ex-
tensive preprocessing of the Berlin network illustrated in Figure Z8 that merges
the many detailed intersections into single nodes might already suffice to run
this very scenario in real-time.

5.4 Further Discussion

The demonstrated estimator does not depend on a choice set enumeration. This
suggests its application for choice set generation itself. Since only best path
calculations are used in the present example, why not run these calculations
directly based on the modified utilities instead of first making a well-informed
guess about possible routing alternatives and only then choosing a route based
on these modifications? To make a long story short: Choice set generation is a
modeling problem, and traffic counts alone do not provide sufficient information
to substitute for the structural information contained in such a model. However,

12The recent experiments in which the sensor data is not averaged over many iterations
converge in roughly half as many iterations but stabilize at somewhat higher error levels.
Apparently, the estimator spends significant amounts of time in the experiments given here
trying to extrapolate contradictory measurements that result from the averaging over many
iterations.

13The recent results allow for a 1200+ link scenario with 100 000+ agents.
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this neither implies that traffic counts are useless for choice set generation nor
that the proposed estimator is categorically unsuited for this purpose.

The considered behavioral model generates its choice set by running a best
path algorithm that minimizes travel times which are generated by the mobility
simulation. These travel times exhibit a particular correlation structure that
results from the simulated traffic dynamics. This very property enables the
generation of variable routes only based on best path calculations without ever
resorting to the explicit simulation of a perceptional error by drawing from a
multidimensional travel time distribution with an explicitly known covariance
matrix.

In contrast, the estimator only disposes of local measurement information and
processes this information in a likewise local (linearization-based) manner. If
only few sensors are available, the measurement data is sparsely distributed over
the network. In order to infer a driver’s global utility perception from this infor-
mation, a model is required that captures the network-wide correlation of travel
times. In the given simulation system, this correlation is not accounted for by
the time-dependent best path algorithm itself but results from the simulated
travel times based on which this algorithm is run. If sparse utility corrections
are added to these travel times during the choice set generation, routes result
that locally account for the correction terms but globally still adhere to the
correlation structure of the a priori assumed travel times. If suchlike generated
routes differ sufficiently from those that actually caused the measurements, the
estimator can only select among inappropriate prior routes and newly generated
routes that are likewise unrealistically structured. The result is local conver-
gence to a poor solution.

A visual inspection of routes that are generated based on estimated utility cor-
rections has been conducted. Their interpretation is difficult since such routes
invariably account for both travel times and utility corrections. However, a
distinct increase in zig-zagging as one might expect in consequence of the local
utility corrections cannot be observed. Still, even plausibly looking routes can
consist of turning move sequences that are implausible given a certain correla-
tion pattern of the travel times. Within the scope of this work, it is concluded
that a more rigorous analysis of the simulation-based best-path route choice
model itself is necessary before its implications for the estimation can be clari-
fied. Recall that this particular model is only implemented as placeholder and
that the estimator is not constrained to its deployment.

Again, the above discussion addresses a modeling problem. The estimator is not
unable to provide useful information for choice set generation; it just is unable
to solve the generally impossible task of inferring a network-wide utility pat-
tern from arbitrarily few observations. If a model was at hand to meaningfully
complete locally estimated utility corrections, choice set generation could be
supported by measurements. This type of model would represent a rather com-
mon aspect of travelers’ information processing. For example, a radio message
regarding a single construction site is likely to motivate a driver to circum-
navigate the surroundings of this site as well since experience teaches that the
resulting obstructions are not concentrated at the single location indicated on
the radio. That is, the driver is aware of correlations in the network conditions.

One might argue that full sensor coverage should allow for choice set generation
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without further modeling support. However, this also would require to account
for measurement correlations in the likelihood function. This is avoided here by
choosing sparse sensor locations. Since travel times are one particular type of
link-related measurements, the problem of correlation modeling would not be
solved but only be shifted in a different context. In addition, full sensor coverage
cannot be expected in real-world conditions.

A meaningful interpretation of the local utility corrections in the closing example
of Chapter Hl was possible because of its simple structure. In the more general
setting considered here, such an interpretation suffers from the same problems
as the direct application of utility corrections for route generation: Every single
turning move’s utility correction is only meaningful given the behavioral model
that is used for its identification. That is, the utility corrections are meaningful
on route level — with the route generated based on simulated travel times with
a particular correlation structure — but not necessarily on turning-move level.
The behavioral model represents the global context that cannot be captured by
local utility corrections. This interplay of modeling and estimation does not
invalidate the estimator’s ability to function with an arbitrary implementation
of the behavioral simulator. It does, however, necessitate an interpretation of
the estimation results in terms of the particular behavioral model based on
which they are obtained.

Summarizing, this chapter demonstrates the proposed estimator’s applicability
in conjunction with a fully dynamical planning or telematics simulator and
verifies its computational feasibility for a scenario of practically relevant size.
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Chapter 6

Summary and Outlook

This chapter summarizes the present dissertation, highlights its key findings,
and gives an outlook on further research topics.

6.1 Recapitulation of Work

The goal of this research is (i) to develop a behavioral traffic state estimator for
a multi-agent simulation and (ii) to demonstrate its applicability to a scenario
of practically relevant size. Since a model-based estimation approach is chosen,
experimental investigations call for executable models of reasonable performance
and realism. This applies to both the behavioral and the physical simulator.

The development of a macroscopic traffic low model in Chapter B results in
a computationally efficient mobility simulation that is applicable to general
networks and has linearizable dynamics. Its computational performance also
contributes to an efficient solution of the estimation problem itself. The model
is encapsulated in a general state space representation and thus can be replaced
by a different implementation, if required.

This macroscopic mobility simulation is combined with a microscopic driver
representation in a mathematically tractable way by the mixed micro/macro
simulation logic presented in the first half of Chapter This logic links any
macroscopic mobility simulation that takes flow splits as input parameters to any
microscopic behavioral model that generates individual-level turning decisions
at intersections and network entry/exit points. The representation of arbitrary
mobility patterns in terms of such turning decisions is demonstrated in the
second half of Chapter

These modeling efforts establish a linearizable relation between individual driver
behavior and aggregate traffic characteristics. Based on this technically pivotal
result, a number of behavioral estimators is developed in Chapter @l First,
a heuristic approach is presented. It is based on a more generally applicable
method to steer simulated travelers such that a general objective function of
macroscopic system states is increased. For estimation purposes, this objective
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function is chosen as the log-likelihood of the available aggregate sensor data,
and the agents are steered towards a fulfillment of the measurements.

Second, a statistically more rigorous reconsideration of the estimation prob-
lem is given, and two operational Bayesian estimators are developed: (i) The
accept/reject estimator functions without further assumptions about the behav-
ioral prior. Its takes an increased number of draws from this prior and retains
only a subset of these draws. This subset is representative for the behavioral
posterior. (ii) The utility-modification estimator adds a correction term to the
systematic utility of every evaluated alternative. Given a particular form of
the behavioral prior, the simulation system then draws immediately from the
behavioral posterior. The heuristic estimator is found to coincide technically
with the UM estimator and can thus be re-analyzed in the Bayesian setting.

The development of these estimators is aimed at but not tailored to an applica-
tion in conjunction with the MATSim simulation software. Since MATSim was
in a transitional period of re-implementation during this work, stable interfaces
could not be set up and MATSim’s emerging modeling capabilities could not be
facilitated. In hindsight, this is not considered as a disadvantageous situation.
Since no predetermined simulator implementation was at hand, no flexibility
was given away by restricting the developments towards a particular system
design. At the time of this writing, an application in conjunction with MATSim
is conceptually and technologically feasible. Guidelines for this undertaking are
given in Section Still, the estimators’ applicability to systems different
from MATSim is not hindered by a confinement to this particular software.

Experimental results are presented in Chapter Bl Since the proposed estimation
system is of substantial complexity, it is advisable to obtain a good understand-
ing of its working by an initially synthetic test case that allows for greatest
experimental control. It is demonstrated that the method is able to adjust
individual-level behavior based on a limited amount of traffic counts such that
a significantly improved picture of the global traffic situation is obtained. The
method is found to be computationally capable of dealing with scenarios of prac-
tically relevant size and to be applicable in both a planning and a telematics
setting. The simple behavioral model placeholder implemented for experimental
purposes is found to constitute a major limitation of continuative investigations,
and the need for advanced behavioral modeling is accentuated.

Additional real world experiments would go beyond the scope of this work.
The expected effort to prepare and implement such a test case is substantial
[129]. The synthetic experiments given here level the ground for this undertak-
ing. Guidance on how to proceed towards real-world experiments is provided in

Section B411

6.2 Research Contributions

The key results of this work are highlighted in this section. The listing is confined
to novel contributions to the state of the art.

1. Development of a macroscopic mobility simulation with the following fea-
tures:
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phenomenological consistency with the cell-transmission model,

simulation of nodes with an arbitrary number of upstream and down-
stream links,

approximate linearization of traffic flow dynamics with respect to cell
occupancies (system states) and turning fractions (exogenous param-
eters),

fast execution by a simulation logic that runs all network elements
on individual time scales.

2. Development of a combined micro/macro mobility simulation with the
following features:

compatibility with broad classes of macroscopic traffic flow models
and microscopic driver representations,

linearizability in that the effect of any driver’s behavior on the global
network conditions can be linearly predicted,

computational efficiency in that only a sample of the microscopic
driver population is required for simulation,

computational efficiency by compatibility with the macroscopic sim-
ulation logic on variable time scales,

removal of most vehicle discretization noise from the macroscopic
traffic characteristics.

3. Formalization of the physical aspects of a partial or whole-day plan as a
sequence of turning moves on a slightly expanded network such that the
linearizability of the global network conditions with respect to individual
plan choice is maintained.

4. Development of a general method to steer microscopic agent behavior
such that a general objective function of macroscopic traffic conditions is
improved.

5. Development of two operational behavioral estimators with the following
common features:

estimation of fully disaggregate behavior from aggregate traffic mea-
surements and prior behavioral knowledge,

compatibility with a purely simulation-based representation of the
behavioral prior information,

no requirement of a choice set enumeration,

computational efficiency that allows for an application to large sce-
narios.

6. In particular, development of the following distinct estimators:

an accept/reject estimator that takes an increased number of draws
from an arbitrary behavioral prior and retains only a subset of these
draws that is representative for the behavioral posterior,
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Figure 6.1: Estimated quantities
Two state estimation problems and two parameter identification problems are illus-
trated in this figure: (1) estimation of behavior (mental states), (2) estimation of
traffic conditions (physical states), (3) identification of physical model parameters, (4)
identification of behavioral model parameters.

e a utility-modification estimator that corrects the systematic utility
of every evaluated alternative such that, given a certain structure of
the behavioral prior, the simulation system draws immediately from
the behavioral posterior. A heuristic application of this estimator for
different or unknown priors is possible.

7. Experimental investigations in a synthetic yet fully dynamical setting with
the following conclusions:

e Given only a limited amount of traffic counts, the global correctness of
(i) a SUE planning simulation and (ii) a (rolling-horizon) telematics
simulation is consistently and significantly improved by the proposed
estimator;

e the method is capable of handling online estimation problems of prac-
tically relevant size in real time;

e since aggregate traffic measurements contain only limited informa-
tion, a structurally correct behavioral model is essential for good
estimator performance.

6.3 Classification of Results

As a transition to some of the further research topics, Figure illustrates
the simulation system in terms of only two components, the behavioral model
and the mobility simulation. The lower feedback loop indicates that not only
behavior influences traffic conditions, but also traffic conditions affect behavior.
The estimator compares simulated and real traffic conditions and adjusts the
simulation system based on this comparison.

Four different types of adjustment are identified in this figure. Number 1, esti-
mation of behavior, is treated in this dissertation: The estimation of a plan set
Uy . ..Uy comprises all aspects of the individual drivers’ mental states that are
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necessary to define all macroscopic states X in the mobility simulation. This
estimation approach relies on (i) a deterministic mobility simulation and (ii)
an available parameterization of the underlying behavioral and physical model
components.

A relaxation of these assumptions leads to the three further estimation tasks
indicated in Figure They are: (2) estimation of non-deterministic physi-
cal system states, (3) parameter identification for the mobility simulation, and
(4) parameter identification for the behavioral model. Items (2) and (3) are
discussed in Section A2 and item (4) is considered in Section A

6.4 Further Research Topics

Various directions for future research are thinkable in continuation of this dis-
sertation. This section structures these topics and provides guidance on further
developments.

6.4.1 Towards a Real-World Application

This work was conducted with a real-world application in mind and conse-
quently accounts for typical data requirements, performance issues, and modes
of operation. The following matters need to be addressed in the preparation of
a real-world test case.

6.4.1.1 Model Calibration and Validation

Model-based state estimation crucially depends on structural model correctness.
Only a good understanding of reality allows to meaningfully inter- and extrapo-
late the information contained in limited measurements. This statement equally
applies to the physical and the behavioral model components.

The proposed mobility simulation exhibits several novel features: general inter-
sections, variable time scales, and the combined micro/macro simulation logic.
These developments were necessary to realize an estimator prototype that is
applicable to general scenarios of realistic size. While the synthetic nature of
the presented experiments circumvents the need to calibrate and validate the
physical model, additional effort in this regard is necessary before a real-world
application can be attempted. Since the macroscopic mobility simulation is en-
capsulated within a general state space representation, it may even be replaced
by an entirely different model that is more applicable in a particular setting.

As to behavioral modeling, a structurally correct behavioral simulator must be
externally provided. RUMs are particularly applicable here because of their
sophisticated calibration and validation procedures. However, the estimator
itself is indifferent to the applied model’s degree of mathematization, and a
simple rule-based model is technically just as feasible for estimation as a full-
blown RUM.
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6.4.1.2 Measurement Sources and Sensor Types

The experimental investigations of this work focus on flow measurements be-
cause of their predominant role in traffic monitoring. However, the general
formalism presented in Section EEZT] allows to utilize a greater variety of sensor
data. As noted there, any aggregate measurement that is a function of the state
of a link or a turning counter can directly be fed into the estimation procedure.
If the measurements are not statistically independent, their covariance structure
needs to be identified before the behavioral estimator can be applied.

Some advanced data sources are addressed below. While they are not accounted
for in this dissertation, the fully disaggregate behavioral modeling assumption
is at least structurally adequate for their future consideration.

Any vehicle that is equipped with a GPS receiver can serve as a traffic sensor.
If its spatiotemporal trajectory is mapped on a representation of the underlying
network, a wealth of disaggregate information becomes available that is well
suited for the calibration of a behavioral model [67]. This type of information
may also be available at a more aggregate level. For example, GPS-equipped
taxis typically report their current position to a dispatch center every few min-
utes. This data can be transformed into local velocity information, e.g., [156],
which in turn can be utilized by the proposed estimator. Unlike traffic counts
from inductive loops, such floating car data is available at variable locations.
It also requires different distributional assumptions about the derived velocity
information: A slowly driving vehicle might do so for several reasons and thus
is only an imperfect indicator of dense traffic. On the other hand, a quickly
advancing vehicle is a reliable indicator of uncongested traffic conditions.

Vehicle re-identification systems provide similar information at a coarser level.
The time span between two detections of a vehicle is the sum of all link travel
times along an unobserved route that connects the two identification points and,
furthermore, includes the duration of all intermediate stops. In consequence,
additional modeling assumptions regarding at least route choice are necessary
to relate this type of information to the link- or turning move-related states of
a macroscopic mobility simulation [4l [IR3].

6.4.1.3 Performance Tuning

The currently implemented estimator already tackles online problems of non-
trivial size. However, further performance tuning is possible.

Algorithmically, the estimation requires to identify a fixed point of a nonlinear
and stochastic mapping that comprises a complete traffic simulator, cf. Section
Only a basic SA procedure is utilized in this work, and advanced fixed
point search algorithms should be considered for this purpose. The research on
the “consistent anticipatory route guidance generation problem” has produced
a number of promising results in this regard [26] H1, BZ].

Operationally, the estimator is not yet optimized. Its implementation reflect its
experimental nature that focuses on flexibility and robustness. Once a particu-
lar mode of operation is specified, this implementation should be fine-tuned and
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stripped of computational ballast. For example, the currently realized rolling-
horizon estimator runs the same SA logic as used in offline operations indepen-
dently in every estimation period, cf. Section B3l However, the results of
one estimation period contain valuable information for the subsequent estima-
tion periods. This information should be accounted for in a more fine-tuned
implementation.

6.4.2 Combined Behavioral and Physical Estimation

So far, it is assumed that the mobility simulation is modeled without error. A
possible relaxation of this assumption is outlined in this section.

Uncertain traffic low dynamics are modeled by adding a temporally uncorre-
lated zero-mean random disturbance vector n(k) to state equation ([ZI1):

X (k4 1) = £7° [ (k), B(k), n(k), k] (6.1)

where x™5 is the mobility simulation’s physical state vector and 3 represents the
single-commodity turning fractions. Equation (GI) replaces the deterministic
traffic flow model component of the mixed micro/macro state space model ([B7).
The relation between x™% and the available measurements y is represented by
the likewise randomly disturbed output equation

y(k) = g[x™(k), (k)] (6.2)

which corresponds to ([EEIH) without loss of generality. The two above equations
can be linearized. Given a parameterization {3(k)}x, they constitute a non-
linear, dynamical system that is amenable to the macroscopic state estimation
techniques reviewed in Section

All behavioral estimators of this thesis disregard the stochastic error n in (E1]).
Without exception, they contain a step in which “U; ...Un are loaded on the
network and X is obtained”, cf. Algorithms Bl through Bl That is, the behav-
ioral estimation problem is solved given a particular mapping of the behavior
Uy ...Un on the macroscopic states X.

The B parameters in (G1) result from the behavior of individual particles in the
mixed micro/macro mobility simulation of Section Bl This particle behavior is
fully determined by a plan set U ...Uy. The network loading step can therefore
be replaced by a physical state estimator that formally operates exclusively on
the model specifications (Bl and (E2) with an externally provided {8(k)}
parameterization that is internally generated by an execution of U; ...Uy. The
physical estimator utilizes the same sensor data ) = {y(k)} as the behavioral
estimator.

Consequently, the behavioral estimation problem is still solved given a particu-
lar mapping of the behavior Uy . ..Uy on the macroscopic states X', only that
this mapping now incorporates a physical state estimation procedure. This also
enables the tracking of time-dependent physical model parameters by an appro-
priate extension of the macroscopic state vector, e.g., [3, [[75]. The straightfor-
wardness of this approach is owed to the minimal interface between the micro-
scopic and the macroscopic modeling components.
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6.4.3 Combined Telematics and Planning Estimation

Mutual benefits can be expected if a telematics and a planning estimator are
applied concertedly. Two possibilities to realize such a coupling are outlined in
this section. In either case, it is assumed that an online estimator generates
results on a daily basis that are used to improve the outcome of a planning
simulation. This enables the latter to provide improved behavioral priors for
the next day’s online estimation problem.

The ability to provide an improved prior does not imply that a suchlike ad-
justed planning simulation can also be applied to predict structurally different
scenarios, where, for example, infrastructural changes are considered. This abil-
ity would require not only to estimate what choices are made by the travelers
in a given scenario but also to identify the underlying behavioral parameters
that trigger these choices. This section only considers the problem of how to
adjust a planning simulation for purposes of “incremental” online traffic moni-
toring. The behavioral parameter estimation problem is discussed in subsequent

Section B.44

6.4.3.1 Fusion of A Coefficients

The difference between a behavioral prior and an estimated posterior is fully
captured by the A coefficients. The most straightforward approach to facilitate
the coefficients A¢ obtained by the online estimator at a certain day d is to
incorporate them in baseline coefficients A that are used as starting values in
the next day’s online estimation problem. These baseline coefficients can also
be accounted for in a planning model if updated prior information is to be
simulated. A similar procedure can be found in the context of OD matrix
estimation where a within-day estimated OD matrix is used to update a planning
OD matrix, cf. Section[[LZ2Z Possible update methods are recursive averaging
[7] and Kalman filtering. The latter assumes that A follows a random walk and
that one noisy measurement A% of A becomes available per day [I83].

6.4.3.2 Choice Set Modifications

Choice set generation is a computationally demanding step that is likely to be
performed at least in part offline. In online operations, computational consider-
ations might require a relatively small choice set per agent that in consequence
needs to be chosen with particular care. If the online estimator has selected
a certain plan rather infrequently, this indicates that this plan is unlikely to
belong to the considered traveler’s choice set and thus should be replaced by a
more reasonable alternative. This allows for an incremental offline choice set ad-
justment that should also result in an improved online estimation performance.

6.4.4 Behavioral Parameter Estimation

The proposed estimator also holds promise to provide information about param-
eters that underlie the estimated choices, i.e., to address parameter estimation

143



problem (4) in Figure Two such approaches are discussed in this section [l

6.4.4.1 Estimation of Population Parameters

A synthetic population needs to be created before an agent-based simulation
of traffic is possible, cf. Section [CZ2Z3 Typically, its generation relies on
a sequence of sampling procedures where agent parameters are drawn from
beforehand specified distributions that apply to homogeneous subsets of the
population [9]. For example, the activity patterns for all male workers of an
urban population may be drawn from a single distribution, the work locations
for all employees that live in a certain traffic zone may be drawn from yet
another distribution, and so forth.

Since the distributions that underlie this generation procedure are themselves
estimates of imperfect precision, aggregate traffic measurements may help to
improve the realism of the synthetic population. Since this implies that the
sensor data is used to adjust structural features of the multi-agent model, the
resulting population should be applicable in a wider variety of scenarios that
may considerably differ from the conditions in which the measurements are
obtained. An application of the proposed behavioral state estimator for this
purpose is described hereafter.

A subset M C {1...N} of the synthetic population is considered. This subset
is homogeneous with respect to the distribution Py (#) of a certain population
parameter §# € © where O is a discrete and permissibly non-ordinal domain.
Disregarding the sensor data, a single draw of this parameter is assigned to
every individual n € M. All plans of an agent in M are thus parameterized
directly or indirectly by this value. When the simulation is run, the agent
learns individually optimal behavioral patterns, and when the iterations have
stabilized, the agent exhibits a reasonable plan choice distribution given its
particular 6 value.

Assume that there is uncertainty about the true distribution of #. Since M is
homogeneous with respect to this distribution, it is feasible to provide every
agent in M with two instead of one parameter values, say #; and 6., and to

LA unified Bayesian formulation of both parameter estimation problems considered in this
section was found shortly after the submission of this dissertation. Let the decision protocol
be parameterized with an individual-level parameter vector 6,, for every agent n = 1... N,
denote the individually parameterized choice distributions by Py, (U, |6:), and assume that a
prior p.d.f. p(0,) is available for the parameters. In complete analogy to the derivation given
in Section an individual-level posterior

eiAUn) Py (Un |07)p(6n)
Sveo, €MV [ Pa(V]6)p(6')de’

of agent n’s joint choice and parameter distribution given the measurements can be formulated.
The following version of the AR estimator draws from this posterior:

pn(“ny en‘y) =

1. Draw 6, from p(6y).
2. Draw Uy, from Py, (Un|6r).

3. Accept (Un,6,) with the original acceptance probability ¢, (Uy) defined in (E3H).
Otherwise, goto [l

Note that this estimator is equally applicable to the identification of discrete-valued parame-
ters.
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parameterize one half of its plans with #; and the other half with 5. The re-
sulting parameter occurrences still follow the original distribution Py (6) in that
the probability that an individual in M gets assigned two particular parameters
91 and 92 is PM(91)PM(92)

The estimator now adjusts the population’s behavior to the sensor data ). The
resulting choice frequency of any particular 6 value in M is

R
PulO) ~ gz 30 3 Z04 ~0) (6.3)

r=1neM

where r = 1... R iterations are considered, U, is the plan selected by individual
n in iteration r, and Z(U ~ 0) is one if plan U is parameterized with 6 and zero
otherwise. This simulated posterior distribution of # given the measurements
can be applied to re-sample the parameters of the population subset M and to
re-run the estimation. This is repeated until consistency of the prior and the
posterior parameter distribution is attained.

A precaution is necessary to avoid biases in this approach. If there is no sensor
data, the estimator is reduced to a plain simulator, and the result of such a
simulation is that every individual in M discards the 6 value of inferior subjective
performance. If, for example, 6 represents a leisure location and all else is equal,
the plans that contain the more distant leisure location are discarded because
they implicate longer travel times. That is, the plan selection mechanism itself
generates a drift in the parameter distribution.

A remedy to this problem is to split the plan set of every individual according
to the different 0 values. Every agent in M now has two choice sets C} (all
elements of which are parameterized with 6;) and C? (parameterized with 65)
of equal size. When making a decision, the agent first chooses a choice set with
uniform probability and then selects a plan from that set according to its be-
havioral model. In result, the agent exhibits a dual behavior. This should not
introduce systematic side effects in the simulation since the whole subpopula-
tion’s parameterization is still consistent with Pys(0). If now the AR estimator
is applied, all resulting changes in the 0 selection frequencies can be attributed
exclusively to the sensor data. The UM estimator is not applicable here since
it has no influence on the uniform distribution used for choice set selection.

6.4.4.2 Estimation of RUM Parameters

Typically, the deterministic utility of a RUM is linear in parameters:
VoU) = 0" xp 0 + Ky (6.4)

where xy,, is a vector that represents the features of decision maker n and of
alternatived € C,,, and 0 is a vector of real-valued parameters. The alternative-
specific constant k;; captures all choice-relevant aspects of U that are indepen-
dent of xz; .

The UM estimator of Section EE33] affects estimated behavior via additive utility

corrections:

6.5
= 0"xyp +ky+ (MUY 1 (65
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That is, the UM estimator effectively adjusts the alternative-specific constants of
an underlying RUM. The predictive power of suchlike adjusted RUMs depends
on the stability of the alternative-specific constants across different scenarios.

If the @ parameters themselves admit improvements, an incorporation of sensor
data into the RUM calibration procedure is a desirable goal. RUM parameters
are typically identified by maximum likelihood estimation [21], which requires
a likelihood function 1(0]|)) = p()’|0) to be available. Noting that the sensor
data ) is not directly dependent on @, one obtains

S0 pV U UN)PU - UN|B)

U, €Cy UneCnN (66)
= E{lU...Ux|Y)|0}.

1(6]Y)

That is, the likelihood of @ given the sensor data can be expressed as the expec-
tation of the available likelihood (U ... UN|Y) = p(YV | Uy ... UN), cf. Section
EZT given that the population’s plan choice distribution is parameterized by
6. A Monte Carlo approximation of this expectation is possible:

R
E{IU ... UN|Y) |0} ~ %Zuug...umy) (6.7)

r=1

where R is the number of draws and U, is the plan chosen by individual n
in simulation r given parameter 8. Parameter estimation based on a suchlike
simulated likelihood is possible in principle [I66], but it is computationally ex-
tremely demanding since every draw requires a full run of the traffic simulator.
An interesting question is to what degree a linearization-based approximation
of the network loading procedure can help to accelerate this process.

6.4.5 Integration with MATSim
6.4.5.1 Conceptual Aspects

Section characterizes a behavioral simulation system that is applicable in
conjunction with the proposed estimator. It is observed there that the following
properties of the MATSim planning simulation are not immediately compatible
with this specification:

1. variable plan choice set,

2. continuously updated (learned) plan utilities (scores),

3. immediate execution of a newly generated plan.
Problems [ and [ are resolved collectively. An invariable choice set results if an
agent is assumed not only to select from its currently memorized plans but also
also from all other plans that can possibly be generated by the MATSim replan-
ning mechanisms described in Section BEZZZ3 The overall probability that a

new plan is generated in a given iteration is denoted by Ppew. Accordingly, the
selection probability of any existing plan is 1 — Ppey times its choice probability
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without plan generation, whereas the selection probability of any newly gener-
ated plan is Ppey times its probability of generation. Thus, every agent disposes
of a well-defined (albeit possibly very large) choice set, and a choice probability
for each element in this set exists. Since neither the explicit availability of these
probabilities nor an enumeration of the choice set is required, an application
of the AR is conceptually feasible at every single MATSim iteration. However,
since the generation of new plans is not utility-driven, the UM estimator is not
applicable here.

Ttem B is related to the strong correlation between subsequent MATSim itera-
tions. Travel behavior is not simulated based on systematic utilities that are
averaged over a long time horizon but relies more strongly on the most recent
iterations: The scores of executed plans are updated by a recursive filter that
has an infinite but exponentially decaying memory. The route recalculations
utilize only the most recent iteration’s travel times. Thus, even after a large
number of iterations, a situation in which the traffic conditions of subsequent
iterations fluctuate uncorrelatedly around stable average values is unlikely to
occur. This effect can also be observed throughout the experiments given in
Chapter

The estimation procedure, however, fundamentally relies on the A coefficients
that represent the sensitivities of the measurement log-likelihood to the driver
behavior. These sensitivities are averaged over many iterations, cf. Section
T3 and the resulting averages may stabilize even if the overall system ex-
hibits a cyclic behavior, as it is likely to occur in MATSim. Since this implies a
systematic deviation between the actually occurring sensitivities and their av-
erage values, a declined estimator performance may result. However, no general
statement about MATSim’s dynamics can be made at this point.

The AR estimator repeats a single choice situation several times. It requires
that repeated draws are independent and identically distributed. This estimator
is not impaired by the correlation between subsequent MATSim iterations as
long as the behavioral distribution of an agent is invariable within a single
iteration. MATSim evolves as a Markov process, with its state being defined
through the current agent memory (in terms of available plans) and the last
iteration’s traffic conditions (used for the generation of new plans). In every
single iteration, the AR estimator corrects the transition probabilities of this
process in a most plausible way. Thus, it is reasonable to expect that the
resulting iteration dynamics of MATSim are likewise improved.

The estimator’s conceptual ability to function even in conjunction with this
rather untypical model of dynamical traffic evolution indicates its flexibility
and independence of a specific system design. The following section exemplifies
the technical steps that are necessary to assert the above hypotheses in practice.

6.4.5.2 Technical Aspects

Several exemplary Java code snippets are provided that represent the arguably
simplest way to attach the estimator to the MATSim system as implemented in
October 2007. For simplicity, only the selection of full plans is considered and
the code is stripped of all conceptually irrelevant elements. Of course, various
alternative implementations that achieve the same effect are thinkable.
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For the purpose of this presentation, it is sufficient to specify an agent by a
Person interface that provides access to the set of its available Plan instances.

interface Person {
Set getPlans();
}

The utility function is an implementation of a ScoringFunction interface that
maps a Plan on a utility value as perceived by a particular Person.

interface ScoringFunction {
double getScore(Plan p, Person n);

}

The decision protocol is represented by a PlanSelector class that implements
a selectPlan(Person, ScoringFunction) function. This function returns a
single draw from the Person’s Plan set.

class PlanSelector {
Plan selectPlan(Person n, ScoringFunction sF) {
Plan result;
// Choice logic implemented here. Examples:
// * access choice set via n.getPlans();
// * evaluate a plan p via sF.getScore(p, n);
return result;

}

An application of the UM estimator requires to modify the implemented Scoring-
Function. An appropriate technique is to implement a wrapper class UMScoring-
Function around the original ScoringFunction and to pass this wrapper in-
stead of the original implementation to the PlanSelector.

class UMScoringFunction implements ScoringFunction {
ScoringFunction sF;
UMScoringFunction(ScoringFunction sF) {
this.sF = sF;
}
double getScore(Plan p, Person n) {
return sF.getScore(p, n) + (A,U)/p;
// U is turning move sequence of Plan p.

// {A,U)/p addend is defined in (EI2D .

}

The AR estimator requires a modification of the plan selection logic itself. This
can be realized by function overriding. A subclass ARPlanSelector is derived
from PlanSelector, the selectPlan(..) function is overridden, and the orig-
inal P1lanSelector is replaced by an instance of the ARPlanSelector.
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class ARPlanSelector extends PlanSelector {
Plan selectPlan(Person n, ScoringFunction sF) {
Plan result;
do {
result = super.selectPlan(n, sF);
} while (Math.random() >= ¢,(U));
// U is turning move sequence of Plan result.
// ¢n(U) is acceptance probability E3ZH) .
return result;

}

Both the UMScoringFunction and the ARPlanSelector need references to the
A coefficients for the calculation of utility corrections and acceptance proba-
bilities. The linearization logic that generates these coefficients is part of the
macroscopic mobility simulation. In conjunction with MATSim, the easiest way
of accessing this data is via files: In every iteration, the behavioral simulation
system writes out a file that contains the selected plans of all agents. The mobil-
ity simulation then loads these plans, executes them, and in turn writes out the
A coefficients plus all further data that is required for agent replanning. This
basic implementation suggests itself for first experimental investigations. The
programming effort of a tighter coupling by direct function calls would mainly
pay off in terms of an increased execution speed because of the avoided file i/o.

6.4.6 Structural Model Refinements
6.4.6.1 Physical Simulation

The micro/macro coupling logic does not differentiate among vehicle types.
Within limits, this is possible by a specification of different macroscopic “sizes”
for passenger cars, trucks, buses, and so forth. Continuative modeling may also
differentiate the dynamics of different vehicle classes within the macroscopic mo-
bility simulation. This is likely to require a representation of multi-commodity
flows within the macroscopic model component [33].

Inner-urban traffic flow is dominated by signaling. While the employed mobility
simulation does not account for this aspect, the modeling of signalized intersec-
tions has already been demonstrated in conjunction with a cell-transmission
model [I]. This requires a network model at the granularity of individual lanes
in order to avoid unrealistic spill-backs at simulated intersections that in reality
have turning pockets. In such a setting, it might prove useful to switch off the
exponential turning counter forgetting mechanism (B4l for the duration of a
red phase.

There is an important issue regarding adaptive signaling. Adaptive controls
may switch strategies based on threshold values and thus may introduce discon-
tinuities in the mobility simulation: A small behavioral change of a single driver
that causes a sensor output to exceed a threshold value might change the entire
control strategy and thus might have a large effect on the macroscopic system
states. However, since adaptive signaling is sensor driven, the according sensor
data can be made available to the estimator as well. This allows to reproduce
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the true control strategy without error, either by a reconstruction of its logic in
the simulator or by a direct observation of the real signaling. Since suchlike sim-
ulated signaling is a perfect image of reality, no adaptivity is necessary within
the mobility simulation such that its continuity with respect to plan choice is
preserved.

6.4.6.2 Behavioral Simulation

Flexibility as to different behavioral implementations is a main objective of this
work, and few limitations are imposed on a refined behavioral simulator.

Switching from single-day plans to weekly plans discloses new potentials for
mid-term forecasting. Since weekly plans introduce a logical relation between
travel behavior at subsequent days, single-day plan estimates provide informa-
tion about upcoming behavior that can be facilitated for prediction and, in
particular, as an improved prior for the next day’s estimation problem.

Traffic monitoring is not conducted as an end in itself. In online operations,
a traffic prediction that is based on the most recent traffic state estimate can
be utilized to provide various information services to travelers. However, if this
guidance is not carefully chosen, the resulting driver reactions might invalidate
the underlying prediction. This anticipatory guidance generation problem is
decoupled from the state estimation problem since all disseminated information
is known up to the present point in time at which the online estimation ends.
In consequence, the estimator only requires a behavioral model that properly
accounts for the most recently generated guidance, but it is indifferent with
respect to the particular nature of this guidance [19].
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Appendix A

Implementation of GPRC
Integer Sets

The GPRC requires many integer set operations. Since all set implementations
provided by the Java Collections Framework [85] rely on object representations
of their elements, they carry a formidable overhead if only primitive types are
required. This appendix describes a set implementation that is tailored towards
the GPRC.

A GPRC integer set contains elements from a small value domain 1...7 + J
where I (J) is the number of upstream (downstream) links of the considered
intersection. Equivalently, a value domain 0...7 + J — 1 is assumed here in
order to allow for an array-based implementation that starts counting at zero.

The subsequently provided Java code fragments constitute the basis of a class
NSet.

public class NSet {
// code fragments here

}
This class contains a primitive and two array members of integer type.

private int size;
private final int[] values;
private final int[] indices;

size holds the number of entries in a given instance of NSet. The first size
fields of the values-array contain these entries. If indices[x] equals -1, then
x is not contained in the set. Otherwise, indices[x] contains the index of x in
values, that is, values[indices[x]]==x if x is contained in the set. During
construction, both arrays are initialized according to the maximum size maxSize
allowed for this set.
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public NSet(int maxSize) {
size = 0;
values = new int[maxSize];
indices = new int[maxSize];
for (int i = 0; i < maxSize; i++)
indices[i] = -1;

This data structure has a constant memory requirement of 2(I +.J)+ 1 integers.
The following three functions provide access to the content of this set. Parameter
range checks are omitted for clarity.

public boolean contains(int value) {
return (indices[value] '= -1);

}

public void add(int value) {
if ('contains(value)) {
indices[value] = size;
values[size] = value;
size++;

public void remove(int value) {
if (contains(value)) {

size--;
final int removedIndex = indices[value];
if (removedIndex !'= size && size > 0) {

final int movedValue = values[size];
values[removedIndex] = movedValue;
indices[movedValue] = removedIndex;

}

indices[value] = -1;

If only these three functions were required, a single boolean array that simply
indicates the existence of an entry would be roughly twice as efficient. However,
an iteration over the elements of such a set would require to access every array
entry in order to check if the according marker is set. The following imple-
mentation of the iterator design pattern [{0] provides a more efficient solution.
It is just as fast as looping only through the first size elements of an array.
This is particularly advantageous if there are relatively few entries in the data
structure.

public NSet.Iterator iterator() {
return new NSet.Iterator();

}
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public class Iterator {
private int index;

private Iterator() {
index = 0;

}

public boolean hasNext() {
return index < size;

}

public int next() {
return values[index++];

}

The implementation of Iterator as an inner class of NSet is a common Java
technique that supports data encapsulation.
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Appendix B

Sensitivity Analysis for the
GPRC

This appendix provides calculation schemes for 8€(M)/8£(0) and 8£(M)/8ﬁ
where £€@(¢™)) is the GPRC’s initial (final) state vector and 8 = (Bq) is
a vector of constant consumption rate parameters with an available Jacobian
0p(...)/0B. The notational overlap of B with the turning fractions 3;; of Sec-
tion 4 is intended but not required. The complete notation for the GPRC can
be found in Section

The subsequent analysis builds on the following preliminaries:

e If state index j is the only element in B("™), then the duration (™) of step
mis ™) = §§m)/<pj(D(m)) such that a small variation 55](771) of resource

j at the beginning of step m implies a likewise small variation §6(™ of
9(m).

B™ = {5} = 800 =56 Jip; (D), (B.1)

e The consumption rate of any resource must be monotonously increasing
with the number of nonzero resources:

ei(DU{j}) > wi(D) Vi,j. (B.2)

A resource is denoted as blocked if it is nonzero but has a zero con-
sumption rate. The monotonicity property implies that (i) available and
previously non-blocked resources cannot block from the addition of re-
sources to D and (ii) once blocked resources stay blocked since D only
gets reduced during a run of the GPRC.

e The state of a blocked resource 7 has no influence on the resource con-
sumption rates:

p(DULN =0 = @D\{})=p(DU{}). (B3
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Algorithm 5 GPRC sensitivity calculation logic

1. Initialize 9€© /0€© and 8¢ /88. See Section Bl
2. At the end of every GPRC step m = 0,1, ..., do:

(a) Calculate 9™+ /9¢© and 0£™+/?) /3. See Section and

Algorithm
(b) Calculate 9€™FV /9£©) and 0¢™ Y /0. See Section B3, B4 and
Algorithm [

3. Complete 8£(M)/8£(0) and 8£(M)/8ﬁ. See Section

Approximations of 9 /9¢® and 0¢*) /93 are built incrementally while the
GPRC runs through m = 0... M. For notational convenience, these approxi-
mations are denoted by the same symbols as the exact partial derivatives. Every
step m is again split in two segments of equal length 9(’")/2, which necessitates
two sensitivity updates in every step m and the notion of an “intermediate” step
m+1/2. This somewhat inflates the presentation but is necessary to handle sit-
uations where several resources run dry simultaneously. Algorithm E provides
an overview. The remainder of this appendix describes the details of this logic.

B.1 Initialization of Sensitivities

This is straightforward: 9¢® /9¢(®) = I (identity matrix) implies that resources
cannot have interacted before the process has started, and 9¢” /08 = 0 (all
zero matrix) states that the consumption rate parameters 3 cannot have had
an influence before the consumption has taken place.

B.2 Calculation of 9¢"+7? /9¢© and 9¢™*?) /03

If j € D), resource j is strictly positive at m + /2. A variation 5§j(-m) cannot

cause any intermediate regimes but only punches through to §§m+1/2) = gj(,m) _

o(m) m 2 m
T(pj(D(m)), resulting in 65](. ) = 65](. ), as illustrated in Figure Bd(a). A

ﬁ([lm,m—i-l/ﬂ

variation § of consumption rate parameter 3, that occurs exclusively

) 00m) 9 (D) .
5](_,”4_1/ ) = ——Méﬁgm’er /2] as shown

2 0B,

during [m, m+1/2] generates 6

in Figure BkD).

Ity ¢ D™ resource j is originally zero during step m, which makes it indifferent

to consumption rate variations and only allows for a positive variation 65](-7“) >

0. If ¢;(D™ U {j}) = 0, (B3 ensures that j does not interact with other

€(m+1/2)
J

resources such that the variation only punches through to , resulting in

5§§m+1/2) = 5§§m), see Figure [Bl(c).
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(c) (d)

Figure B.1: Resource variations for first half of GPRC sensitivity calculation
All diagrams show resource trajectories over “GPRC time”. Within each diagram,
the left arrow represents the causative variation, and the right arrow represents the
induced variation. Varied resources are drawn in red, and influenced resources (if any)
are drawn in blue. Original trajectories are solid, and their variations are dashed.
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If j ¢ D™ and @j(D(m) U{j}) > 0, resource j runs dry again after its variation
and a new regime D’ = D(™) U {j} occurs at the very beginning of step m. D’
is limited by B’ = {j} such that ([BJ) can be used to obtain its duration 66" =
5§§m)/goj(D’). During 86, all resources i € D(™ are reduced by consumption
rates ;(D’) instead of o;(D(™). Equation ([B:2) ensures that these resources
do not block because of j’s addition, which guarantees continuity. This varies
¢ by 66U — (0,(D™)) — 0, (D))86, see Figure BKd).

Summarized, the effects of variations 6§J(-m) and 55([1”1»’”“/2] until step m + 1/2
are:
(m+1/2) L0 =) j €DV (D) =0
o T @i(D"™) — (D) ie D™ A j ¢ Dm) (B4)
ogi™ @;(D") A (D) >0
0 otherwise
1 (m) (D(m)
5€§m+ /2) o 79_% i c D(m)
spmmal 2 9p, (B.5)
! 0 otherwise

where Z(A) is one if A is true and zero if A is false. The full sensitivities until
step m + 1/2 can now recursively be evaluated via

(m+1/2) (m+1/2) gelm)

- R - o) 5j<o> (B.6)
o€ ~ s o¢

oelm+/2) selmt1/2) sem+1/2) g (m)

: - ety s (B.7)
o sgmm — 5™ 0p

A calculation scheme for these Jacobians is given in Algorithm

B.3 Calculation of 9¢™*Y /9¢©

If j € D™D resource j is strictly positive at step m + 1 so that any variation
(m+1/2) (m+1) . I
&5 only punches through to ; . Figure BdKa) captures a similar
situation. If j ¢ D("™), it originally has run dry before regime D(™). A (positive)
variation 5§§m+1/2) can only occur if a positive variation 5§§m) has caused the
resource to block. As stated before, this implies that j will stay blocked without

m+1/2)

influencing other resources, so the variation 6«5](- only punches through

to §§m+1), similarly to Figure [Bl(c). These cases can be combined in that
3™ = ¢l holds for (j € DD v j ¢ D) = j ¢ BO™.

m-+1/2)

If j € B then ;(D(™)) must have been greater 0, and therefore «Ej(- >0

£§m+1/2) only punches

can be varied in both directions. A positive variation ¢,
through to §§m+1), see Figure[B2(a). Given a negative variation 5§§m+1/2), anew

regime D" = D™\ {j} occurs directly before the end of step m, as illustrated
in Figure B2(b). The new regime D” is limited only by B” = {j}, so (BI)
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Algorithm 6 First half of GPRC sensitivity calculation

for all j € D™ do {
a€§m+1/2) B a§§m)
55(0) B 35(0)
g™ g™ ™ (D)
B 08 2 B

}

for all j ¢ D™, do {
@' = @D U {j})
if (¢ =0) {
35(0) o 85(0)
a€§m+1/2) _ a§§m)

B B
} else {
o)
A R
e
agj(_er /2) Y
B

for all i € D™ do {
m+1/2 m
ST (D) —

ogy™ ?j
o5 ot og™
9€© 5 DD
oEl ) aelm ) o™
B et OB
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Figure B.2: Resource variations for second half of GPRC sensitivity calculation
All diagrams show resource trajectories over “GPRC time”. Within each diagram,
the left arrow represents the causative variation, and the right arrow represents the
induced variation. Varied resources are drawn in red, and influenced resources (if any)
are drawn in blue. Original trajectories are solid, and their variations are dashed.
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can be used to obtain its duration 50" = 75§§m+1/2)/<pj(D(m)). (The negative
sign in this expression is owed to the fact that 5€§m+1/2) reduces 0™ and that
66" is the negative of this reduction.) During 66", all states i € D™, i # j,
are reduced by consumption rates o;(D") instead of p;(D™)). This varies the
subsequent £ by §¢ Y = (;(D™) — ¢;(D"))80". 1f a suchlike affected
i belongs to B(™) itself, ([B2) ensures that ;(D™)) > ¢;(D™\{j}) such that
5§fm+1) > 0 results from a negative variation 6£§m+1/2) < 0. This eliminates the
possibility of additional regime occurrences at the end of D",

Averaging the sensitivities for positive and negative variations 6§J(-m+1/ 2),

obtains

one

1 i=j¢ BM
5§(m+1) 1/2 i=je BMm
: pi(D") — i(D™)

2p,(D™))
0

i#jNie D™ AjGe BM (B.8)

sl

otherwise.

This allows to calculate the full sensitivities via
agi(erl) 5§Z(m+1) 8§§m+1/2)

= — . (B.9)
35(0) zj: 5‘53( +1/2) 35(0)

B.4 Calculation of 9¢"+Y /93

If j € D™*Y | resource j is strictly positive at step m -+ 1 so that any variation

5ﬂ¢[1m+1/2’m+1] of parameter [, during [m + 1/2,m + 1] only affects to §§m+1).
(M) 9o ( D)
This yields 6£j(.m+1) = _%%5)6@”#1/2%“]’ similarly to the effect
q

illustrated in Figure BdI(b). If j ¢ D™, it is insensitive to consumption rate
variations.

If j € B, resource j can be affected by a variation 5ﬂ¢[1m+1/2’m+1]. If this

variation causes a decrease 5(p£—m+1/2’m+1] < 0 of j’s consumption rate, §j(.m+1)

. (m+1) 00 9p; (D) [m+1/2,m+1] . .

increases by = —TTéﬁq ’ , see Figure[B(c). Given
q

.. 1/2,m+1 .. . .
a positive (5<pg-m+ /2.m+ ], resource j is consumed faster, which causes a regime

D" = D\{j} to occur immediately before m + 1. The duration of D" is

(m+1/2)
o0 = O[5 spimeyame
(m+1/2) m
_ §; 9y (D" ))5ﬁ[m+1/2,m+1]
@?(D(m)) 94 !
_ o™ dip; (D(m)) 55[m-ﬁ-1/2,m+1]7
2p;(D"™) 0B, !

5J(m+1/2) B g(m)

(D) 2

(B.10)
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see Figure[B2(d). The effect of D" is identical to that described in the previous
section.

Averaging the sensitivities for positive and negative variations 6ﬁ£m+1/2’m+1],
one obtains
0 9ps(D™) . pmi
sprnmin =~y 00D L g
a 4 0B,
0 otherwise
(m) (m+1) (D(m)
. ) 55{ i72) BT e p
- jesm 98 9Bq
J#i
0 otherwise,
(B.11)

where ([BR) could be reused because of the identical effect of D" in this and the
previous section.

A calculation of the full sensitivities is now possible via
aé.i(erl) B 6€Z(m+1) . 5§Z(m+1) aé-](_m+l/2)
- [m+1/2,m+1] (m+1/2)
B 63 s op

(B.12)

A logic for the synchronous calculation of the second half of the state and
parameter sensitivities is given in Algorithm [

B.5 Completition of Sensitivities

When the process has terminated at step M, the sensitivity calculations are
completed by a last run of Algorithm Blin order to account for resource variations
around m = M. Beyond M, all resources are either blocked or zero and require
no further sensitivity updates.
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Algorithm 7 Second half of GPRC sensitivity calculation

for all ¢, do {
if (i € BU™) {
e 1 g
85(0) D) 35(0)

op 2 0B 4 op
1 else {
o5 ogmt
55(0) - 55(0)
agi(m-l-l) agi(m-l-l/?)
o8 08

if (i € D™)
9g" Y 9t gy (D)
B ) B

}
}
for all j € B(™, do {

@ = p(D™\{j})
for all i € D™ i # 4, do {

6€£m+1) _ (P;/_(Pi(D(m))
ST 20, (D0)
agi(erl) 6£Z(m+1) 8§§m+1/2)

o¢) a 6€j(m+1/2) o¢®
06" et (067 g gy (D)
B oem 0B 2 o8
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Appendix C

Calculation of Cell Velocities

The CTM calculates flow rates directly from cell occupancies. The elementary
relationship ¢ = vp is used to determine cell velocity v from flow ¢ and density
0.

Consider a cell that holds a density o at the beginning of its next time step
of duration 7. The cell’'s length is L, and its maximum velocity is ©. The
macroscopic simulation logic provides in- and outflow rates ¢ and ¢°“* (per
lane) that persist for the duration of the next time step. The resulting density
change is (¢'™ — ¢°"")T/L. A substitution of the average density o + 0.5(¢"™ —
¢°")T/L and the average flow 0.5(¢"™ + ¢°") in v = q/0 yields

in out
v= (qin+ qout) . (C].)
20+ (¢" —¢"")T/L

Two further modifications are necessary to make this formula operational.

First, this logic fails for an empty network because of an undefined 0/0 division.
This can be avoided by the introduction of small addends dp > 0 and dg = ¥
in
oo (@7 +™) + 000
29+ (qin —qOUt)T/L—f—(SQ.
This yields v = ¢ for an empty network. For larger occupancies, the modifica-
tion’s influence vanishes quickly.

(C.2)

Second, the resulting velocity is not limited by 9. Assume that o = 0 = ¢°%t =0
and dp — 0. This yields v = L/T > ¢ according to (I1). Therefore,

in out N
v = min {1}, (" +4 — ) +Zﬁg } . (C.3)
20+ 60+ (¢" —¢*")T/L

The truncation only has an effect during transient dynamics. In stationary
conditions with ¢'* = ¢°"* = ¢, the velocity becomes v = q/p, which cannot
exceed 0 of the fundamental diagram from which ¢ is obtained as a function of
0.

All experiments of this dissertation are based on velocity definition ([(C3)). Sec-
tion B4l shows that the resulting vehicle movements are well-synchronized
with the macroscopic flow.
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Appendix D

Gridlock Resolution

Gridlock is a known problem in traffic simulations that also occurs in reality
[B6L T52]. Since the models employed in this thesis are relatively simple and
only roughly calibrated, it is hypothesized that a simulated gridlock is likely
to result from modeling imprecisions and thus needs to be resolved within the
simulation. For this purpose, a simple modification to the traffic flow dynamics
of Chapter Blis subsequently described.

A minimum velocity v™" that is smaller than the free flow speed of any link is
chosen. A reasonable value is the walking speed of 4 km /h, which implies that
taking a car yields some time savings over walking. Preventing velocities below
v™" bounds the network clearance time, thus resolves any gridlock in finite
duration, and reduces the risk of gridlock occurrence by limiting queue spillovers.
The minimum velocity is enforced by two modifications of the simulation logic.
The following presentation assumes a single-lane cell. For multiple lanes, flow
rates must be accordingly scaled.

First, the upper flow constraint of every cell’s demand function is replaced by
a function that increases linearly with slope v™", as illustrated in Figure [l
This still complies with the demand/supply logic of the KWM since concav-
ity is maintained. Phenomenologically, it also has little effect since all supply
functions still have a horizontal flow limit.

Second, it is ensured for every cell ¢ with a current density o; that its outflow
@9"t is not smaller than v™®p,. This is equivalent to an “enforced” demand
AMin(p) = y™iny that is pushed downstream whatever the congestion level is.
The modified upper bound of the demand function ensures that the enforced

demand never exceeds the original demand.

The second modification is not consistent with the KWM. The lower velocity
bound implies that beyond a certain density flow is an increasing function of
density even in congested conditions. Consequently, densities above jam den-
sity are possible. Although the resulting ‘fundamental diagram” of Figure [D.1]
has no counterpiece in reality, the resulting traffic dynamics give a satisfactory
impression. The densities in most cells of the network stay in the feasible part
of the fundamental diagram. An increased flow that is squeezed through crit-
ical sections is observed mainly at bottlenecks and roundabouts. These local
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Ao) Z(0)

>

Amin (9)
» 0

q(o)=max{min{A(0).Z(0)},A™"(0)}

Figure D.1: Modified fundamental diagram
Effect of gridlock resolution on the fundamental diagram of a homogeneous road. The
upper flow constraint of the demand function A(p) is bent upwards at the slope of the
enforced demand A™™"(p) such that these two lines do not intersect. The minimum
operation that originally combines demand and supply is supplemented by a lower
flow bound that takes effect only at high densities.

flow modifications avoid the unrealistically heavy spillbacks that may cause a
domino effect of gridlock throughout the network.

Since all involved functions are continuous, the gridlock-resolved traffic flow
dynamics can still be linearized.
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Appendix E

Stationary Limit of Turning
Counter Variance

This appendix derives () in Section BTLIA

First, the variance of the left- and right-hand side of turning counter state
equation ([BF) is noted:

T.—1 N
1 c
i (rTe +T.) = wexj(rle) + (1 — wc)? Z Z Uijn(rTe + )

s=0 n=1

= VAR{z;; rT. +T,)} = wEVAR{xZ—j (rTe)}
(1 —w )2 T.—1 N
+ TCVAR{ Z Z uijyn(rTc + S)} . (El)
¢ s=0 n=1

Assuming that Zivzl u;jn (k) is Poissonian with expectation and variance \;;,
the stationary limit of a turning counter’s variance results from the following
manipulations:

1 —w, 2
VAR{z;;(rT. +T.)} = w2VAR{z;;(rT.)}+ (Tw)xij
. 2 1. (1 — ’UJC)Q
= lim VAR{z;;(rT.+T.)} = w: lim VAR{z;;(rT.)} + T)\ij
. B 1-— We )\ij
= TEH;O VAR{z” (rT.)} = T w. T, (E.2)
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