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ZusammenfassungDie vorliegende Dissertation beshreibt ein neuartiges Verfahren zur gänz-lih disaggregierten Nahführung des Mobilitätsverhaltens von Autofahrern aufGrundlage aggregierterMessungen von Verkehrs�üssen, -dihten oder -geshwin-digkeiten, welhe durh eine begrenzte Anzahl von Sensoren im Netzwerk auf-genommen werden. Das Problem wird mittels eines bayesshen Ansatzes gelöst,wobei das gegebene a priori Wissen über die Auswahlverteilung der Verhal-tensalternativen eines jeden Individuums mit der Likelihood-Funktion der ver-fügbaren Messungen in eine geshätzte a posteriori Verhaltensverteilung kom-biniert wird. Der Ansatz ist insofern simulationsbasiert, als daÿ (i) allein einSimulationssystem zur Repräsentation der a priori Verhaltensannahmen benö-tigt wird und (ii) das Verfahren ausshlieÿlih Ziehungen aus der a posterioriVerhaltensverteilung generiert.Das Verfahren behandelt den Simulator des a priori Verhaltens soweit wie mög-lih als eine Blak Box. Die nahführbaren Verhaltensdimensionen reihen voneinfaher Routenwahl bis hin zur Auswahl von Plänen für einen ganzen Tag.Eine gleihgewihtsbasierte Modellierungsannahme ist ebenso zulässig wie einTelematikmodell unvollständig informierter Fahrer.Die Verwendung aggregierter Sensordaten zur disaggregierten Verhaltensshät-zung wird durh eine kombinierte mikroskopishe/makroskopishe Mobilitätssi-mulation ermögliht, welhe individuelle Fahrzeuge auf Grundlage eines makro-skopishen Modells der Verkehrs�ussdynamik bewegt. Das Modell erlaubt einelineare Vorhersage des E�ektes von individuellem Verhalten auf den aggregiertenVerkehrszustand und ermögliht auf diese Weise eine lineare Approximation derlogarithmierten Likelihood-Funktion der Sensordaten in Abhängigkeit von demVerhalten der Fahrerpopulation. Diese Linearisierung wird von zwei operativenbayesshen Shätzern genutzt.Der aept/rejet estimator maht keine weitergehenden Annahmen über die apriori Verhaltensverteilung. Er zieht eine Anzahl von Realisierungen aus dieserVerteilung und behält nur eine Teilmenge dieser Ziehungen bei. Diese Teilmen-ge wird unter Berüksihtigung der Likelihood-Funktion der Messungen derar-tig ausgewählt, daÿ sie näherungsweise äquivalent zu einer Stihprobe aus dera posteriori Verhaltensverteilung ist. Der utility-modi�ation estimator addierteinen Korrekturterm zu der Nutzenfunktion einer jeden Verhaltensalternative,die ein simulierter Reisender vor einer Entsheidung auswertet. Diese Korrekturist ebenfalls durh die Likelihood-Funktion der Messungen bestimmt. Für einebestimmte Form der a priori Verhaltensverteilung ist das resultierende Verhalten3



näherungsweise äquivalent zu einer Ziehung aus der a posteriori Verhaltensver-teilung.Für die experimentellen Untersuhungen dient ein erweitertes ell-transmissionmodel als Mobilitätssimulation und ein randomisierter Kurzwegalgorithmus alsPlatzhalter für eine vollständige Verhaltenssimulation. Die Experimente werdenunter synthetishen Bedingungen durhgeführt, wobei die Sensordaten durheine externe Modellinstanz erzeugt werden. Der Testfall umfasst ein Netzwerkvon 2 459 Kanten und eine mikroskopishe Population von 206 353 Fahrern. Dieexperimentellen Ergebnisse zeigen, daÿ das implementierte Verfahren die fol-genden Eigenshaften aufweist: (i) Es nutzt in e�zienter Weise eine begrenzteMenge verfügbarer Verkehrszählungen, um das individuelle Routenwahlverhal-ten in der Population derartig nahzuführen, daÿ eine deutlih realistishereglobale Verkehrslage resultiert. (ii) Es ist sowohl auf ein gleihgewihtsbasiertesSimulationssystem als auh auf einen Simulator ohne Gleihgewihtsannahmeanwendbar. (iii) Wenngleih der verfügbare Testfall etwas zu groÿ ist, um inEhtzeit nahgeführt zu werden, sind in dieser Hinsiht realisierbare Szenarienniht um Gröÿenordnungen kleiner.
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AbstratThis dissertation desribes a novel method for the fully disaggregate estimationof motorist behavior from aggregate measurements of �ows, densities or velo-ities that are obtained at a limited set of network loations. The problem issolved in a Bayesian setting, where the prior assumption about an individual'shoie distribution is ombined with the available measurements' likelihood intoan estimated posterior hoie distribution. The approah is simulation-based inthat it (i) only requires a simulation system to represent the behavioral priordistribution and (ii) only generates realizations from the behavioral posteriordistribution.The estimator treats the behavioral simulation system as a blak box to thegreatest possible extent. The possibly estimated behavioral aspets range fromsingle route hoie to the seletion of full-day plans, and an equilibrium-basedmodeling assumption is just as feasible as a telematis model of imperfetlyinformed drivers.The inorporation of aggregate sensor data into this behaviorally disaggregateestimation proedure is enabled by a mixed miro/maro mobility simulationthat moves individual drivers through a marosopi model of tra� �ow dy-namis. This model allows to linearly predit the e�et of individual behavioron aggregate tra� onditions, and through this it provides a linear approxima-tion of the sensor data's log-likelihood given a partiular behavioral pattern inthe driver population. This linearization is utilized by two operational Bayesianestimators.The aept/rejet estimator funtions without further assumptions about thebehavioral prior distribution. Its takes a number of draws from this prior andretains only a subset of these draws. This subset is hosen in onsideration ofthe measurements' likelihood suh that it is equivalent to a sample from the be-havioral posterior. The utility-modi�ation estimator adds a orretion term tothe utility of every behavioral alternative a simulated traveler evaluates beforemaking a hoie. This orretion also is a funtion of the measurements' likeli-hood. Given a partiular form of the behavioral prior, the resulting behavior isequivalent to a draw from the behavioral posterior.For experimental investigations, an extended ell-transmission model is imple-mented as the mobility simulation, and a randomized best-path routing logiserves as a plaeholder for a full behavioral simulator. The experiments areonduted in a syntheti setting, where the sensor data is generated by an ex-ternal model instane. The test ase omprises a network of 2 459 links and a5



mirosopi population of 206 353 drivers. The experimental results show thatthe implemented estimator has the following properties: (i) It e�iently utilizeslimited tra� ounts to adjust the population's individual-level route hoiesuh that a signi�antly more realisti global tra� situation results. (ii) Itis equally appliable to an equilibrium-based and to a non-equilibrium-basedsimulation system. (iii) While the available test ase is somewhat too large tobe monitored in real-time, a feasible senario for an online appliation of theestimator is not smaller by orders of magnitude.
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Chapter 1IntrodutionThe 2007 world limate report emphasizes the signi�ant in�uene of fossil fuelburning on the urrent and future limate hange [81, 82℄, whereas a large shareof the global greenhouse gas prodution stems from present transportation sys-tems [105℄. Mobility is an essential good that justi�es a ertain environmentalprie. However, its neessity as well as the very prie it entails make it highlydesirable to operate transportation systems at working points of greatest e�-ieny and to optimally exploit the available infrastruture. This goal needs tobe pursued both in long-term planning onsiderations and in short-term tra�management e�orts.From an engineering perspetive, a powerful tool to ahieve suh objetives arealgorithms for model-based predition and ontrol. They allow to evaluate theperformane of a tra� system in various settings before hoosing the mostpromising measure. Pivotal to the suess of these approahes is the availabilityof a realisti model. Usually, this is ahieved by building a struturally orretmodel whih is alibrated based on omparisons of its outputs and availablemeasurements. Numerous methods have been developed to more or less auto-matially solve the latter task.This thesis ontributes to that �eld. It desribes a method to estimate the travelbehavior of individual motorists from measurements of aggregate tra� featuressuh as �ows, densities or veloities that are obtained at a limited set of networkloations. Knowing what trips people will make allows to predit and possiblyredue ongestion. But no matter if this information is used to hoose ontrolmeasures, for driver information servies or to ollet long-term data: It alwaysprovides a valuable basis for prosperous deision making.1.1 De�nition of Problem DomainTra� state estimation is a broad �eld, whih neessitates the preliminariesgiven in this setion. Their purpose is to outline this dissertation's work sopeand to introdue some terminology. 16



A model-based estimation approah is pursued. �Blind� modeling tehniquesthat provide general-purpose mappings of a system's inputs to its outputs with-out an underlying problem-spei� model struture are exluded from onsid-eration. For example, a neural network that maps loal tra� volumes onnetwork-wide travel times does not ontain a strutural model and thus is notin the sope of this thesis.The notion of �state estimation� is introdued informally as the measurement-based adjustment of a strutural model's time-dependent properties. This ter-minology is made inreasingly preise as the onsidered lass of models is spe-i�ed throughout Chapters 2 and 3. This order of presentation aompanies theoverall omposition of this work, whih is geared by the transportation spei�aspets of the estimation problem.1.1.1 Maro- and MirosimulationMarosopi tra� models treat a population of travelers as a ontinuous quan-tity and express mobility in terms of equally marosopi tra� streams. Realtravelers are disrete entities. This requires their aggregation into su�ientlylarge homogeneous groups for this approah to work. While being partiularlyamenable to a mathematial treatment, marosopi models are unable to repre-sent highly heterogeneous traveler populations. The possibilities to marosop-ially represent behavioral onstraints, whih often are of a rule-based natureand might greatly vary aross a population, are limited as well.Mirosimulations apture travelers and their behavior individually. This givesthem a greater expressive power. Still, sine their population model an only bea sample of the real population, it is inherently stohasti. The inreased realismof a struturally detailed mapping of the real world on a mirosopi simulationsystem also introdues the real world's mathematial intratabilities into themodel. This opens a gap between the ease of implementing a mirosopi modeland the di�ulties in understanding the resulting model dynamis.This work adopts a mirosimulation approah to the estimation of individualbehavior. Mirosimulation greatly simpli�es the modeling and likewise ompli-ates the estimation task. Consequently, every property of the model that is tobe estimated has to be arefully mathed by a formal representation that allowsfor a mathematial treatment. The formal requirements set up in this thesisaim to apture a wide variety of mirosopi aspets while ensuring tratabilityof the mathematial estimation problem.1.1.2 Behavioral and Physial SimulationMirosimulations of vehiular tra� usually onsist of at least two sub-models,one of tra� �ow dynamis and one of travel behavior:
• Tra� �ow dynamis desribe the physial laws of the tra� systemunder onsideration. They determine how well a road network serves atraveler's need of driving most onveniently along a route to a destina-tion in a potentially ongested tra� situation. To serve the purpose of17



this thesis, driver behavior in terms of breaking, aeleration, and lanehanging is subsumed in the physial representation of tra� �ow.
• Travel behavior results from the demand for mobility aross a network.Various aspets suh as route, destination, and departure time hoie anbe modeled one a representation for the traveler population itself is found[71, 128℄. If only motorists are onsidered, mode hoie winds down to thedeision if a ar trip is made or not. Long-term deisions suh as arownership and residential hoie are beyond the time sales onsidered inthis thesis.This work is restrited to the estimation of behavioral aspets. That is, thepresent approah assumes the tra� �ow dynamis to be modeled without error.A possible augmentation towards the onurrent estimation of behavior andphysis is outlined as a subjet of future researh.Given the fous on behavioral estimation, no di�erentiation between freeway andintra-urban tra� is neessary in priniple sine their major di�erene onsistsin their tra� dynamis. Only the granularity of the physial modeling has alimiting e�et on the proposed method's appliability.1.1.3 Transportation Planning and TelematisMirosimulation an be applied both in transportation planning and transporta-tion telematis, and the proposed estimation method is appliable in both �eldsas well.At �rst glane, this is not surprising sine planning and telematis onstitutetwo di�erent views of the same system. Planning methods have evolved overmany deades, while telematis appeared quite reently as an o�spring of trans-portation planning and adopted many methods from this �eld. Still, there aresystemati di�erenes that must be aounted for:
• Planning models usually assume that travelers obtain global knowledgeof average system states through many days of exploration and that the re-sulting behavioral patterns resemble some kind of equilibrium. Typially,suh models work at the granularity of average within-day trajetoriesbut do not reprodue within-day �utuations of the system states as theyour in reality due to the stohasti nature of tra� [35℄.
• Telematis models expliitly deal with �utuations within a day. Theyneither assume global driver knowledge nor do they assume an equilibrium.The behavioral model omponent in suh a system may represent driverreations to new and possibly unforeseeable tra� situations, to providedinformation, and to guidane [24, 25℄. Without these �utuations, therewould be little use in guiding the system in one way or another sineunder normal onditions travelers have already found good travel optionsvia day-to-day experimentation [74℄.18



This distintion arries over to the temporal onstraints for a tra� state es-timation algorithm. In a planning appliation, there is at least one night toadjust a model to reently olleted measurements. This is onsidered as ano�ine estimation problem. In a telematis appliation, usually just a few min-utes are available to inorporate the most reent measurements into the urrentestimate. The adjustment takes plae while the model progresses through (real)time, onstituting an online estimation problem. However, a telematis esti-mator may also be used in o�ine mode for the ex post analysis of a partiularday's tra� situation.While the above distintion is lear, that of appliable estimation methods isnot. Coneptually, it does not make a di�erene to a reursive algorithm if itis used for inremental over-night adjustment of a planning model or on a 5-minutes time sale in a real-time ontext. However, the portability of traditionalplanning tools to telematis appliations is limited. The need for substantialresearh in this �eld has been reognized about two deades ago, e.g., [160℄, andhas spawned ongoing investigation e�orts both nationally, e.g., [123, 169℄, andinternationally, e.g., [42, 58, 143℄. Still, many methodologial potentials are yetto be explored [139℄.But there are not only limitations. Mutual bene�ts of di�erent estimation ap-proahes naturally result from their ommon objet of investigation. Onlinetra� monitoring systems usually rely on some kind of a priori knowledge aboutthe average system behavior as provided by a planning simulation. Vie versa,the daily generation of high-resolution state estimates provides valuable datafor the ontinuous alibration of a planning model.The proposed estimator is ompatible with both a planning and a telematismodeling assumption. However, its immediate bene�ts are greatest in onlinetra� monitoring, and further proessing of its outputs is likely to be neessaryfor typial planning purposes. The following literature review therefore fouseson the online tra� state estimation problem and gives referenes to more tra-ditional planning methods only where their interplay with the online problemis of relevane.1.2 State of the ArtMany approahes to the online tra� state estimation problem draw from trans-portation planning's established methods and enhane them by a dynamialomponent. Arguably, the most frequently adopted methods are those of statiorigin-destination (OD) matrix estimation. An OD matrix models the demandof a given time interval in terms of the number of trips from every origin toevery destination of a tra� system. The originally onsidered problem was toestimate suh a matrix from observed link volumes given a linear assignmentmapping of demand on link �ows (�assignment matrix�). Various methods suhas entropy maximization and information minimization [168℄, Bayesian estima-tion [113℄, generalized least squares [12, 34℄, and maximum likelihood estimation[162℄ have been proposed to solve this task. Early overviews on this subjet anbe found in [37, 180℄. Nonlinear assignment mappings an be inorporated by abilevel-approah that iterates between a nonlinear assignment and a linearized19



estimation problem [114, 181, 182℄ until a �xed point of this mutual mapping isreahed [39℄. The ombined estimation of OD matries at subsequent time slieswas demonstrated in [36℄, and many originally stati methods have been appliedto dynamial problems in this vein, e.g., [111, 158℄ and the referenes in Setion1.2.2.2. Beyond the di�erent modeling requirements, temporal onstraints aremost ritial to the online deployment of these approahes.Many advaned online appliations employ systems engineering methodologiesto a suitably formalized tra� model. The most prominent of these methodsis without doubt the Kalman �lter in one of its many guises. Assuming astohasti disturbane upon an originally linear dynamial system [90℄, it hasevolved to an estimator for systems with smooth, nonlinear dynamis [161℄ aswell as for systems with a merely simulation-based representation [88, 89℄. Moregenerally appliable partile �lters even trak multimodal state distributions [6℄.These developments have made Kalman �ltering inreasingly appliable to thehigh omplexity of tra� systems. However, with these apabilities omes agrowing omputational burden that renders the real-time observation of trulylarge-sale systems still impossible. Beause of its equivalene with a reursiveleast squares estimator, the Kalman �lter an also be reformulated as a problemof mathematial programming, whih broadens the �eld of potentially appliablealgorithms [23℄.The following presentation is organized with respet to the underlying model.It di�erentiates between estimation methods that use a behavioral model andthose that do not. At the limit of this lassi�ation are approahes that rely onspatially non-orrelated probabilities of turning move ourrenes at interse-tions. These methods represent route hoie merely as a sequene of independentturning deisions and thus are not onsidered to be based on a behavioral model.1.2.1 Estimation Without Behavioral ModelingNo strutural modeling at all is required if general-purpose system representa-tions are used. Auto-regressive moving average models and arti�ial neural net-works learn a regression-type relation between urrent measurements and ur-rent or future tra� states. Pattern mathing tehniques suh as nonparametriregression or lustering methods ompare previously olleted tra� state tra-jetories to urrently available information and provide most similar historialdata for estimation and foreast. Laking a strutural model, these approahesare mentioned only for ompleteness. A omprehensive overview of data-drivenmethods in tra� estimation and predition is given in [46℄.A linear road does not allow for the type of behavioral deisions onsidered inthesis but is amenable to the modeling of tra� �ow dynamis. Sine tra��ow is a dynamially rather restrited system, this yields useful additional in-formation. Models for �ow on a link have gone from the fundamental diagram(where density and veloity are uniquely related, and �ow is a funtion of eitherdensity or veloity [72℄) via the Lighthill-Whitham-Rihards theory of kinematiwaves (where the fundamental diagram is inserted into an equation of ontinuity[108, 151℄) to seond-order models (where a seond equation introdues inertia[144℄). 20



Various approahes based on Kalman �lters (and, more reently, partile �lters)have been proposed to estimate parameters and/or states of tra� �ow mod-els from loal measurements in a variety of settings, e.g., [75, 112, 122, 165℄.As a typial example of these, the RENAISSANCE approah is desribed fur-ther below. ASDA and FOTO (�Automatishe Staudynamikanalyse: AutomatiTraing of Moving Tra� Jams� and �Foreasting of Tra� Objets�) onstitutea pattern-based monitoring and predition system that traks tra� jams alonga freeway [95, 96℄. The �adaptive smoothing method� uses a nonlinear �lterthat aounts for the di�erent diretions of disturbane propagation in free andongested tra� onditions to interpolate and extrapolate stationary detetordata on freeways [167℄.If network tra� is onsidered, turning deisions at intersetions need to bemodeled. If no suh model is at hand, a simple approah is to de�ne turningprobabilities. The simulation of individual vehiles by this method results in pa-rameterized random walks through the network. In a marosopi model, �owsaross an intersetion diverge at ingoing links aording to turning frations thatequal these probabilities and additively merge at outgoing links. For the result-ing linear model, (reursive) least squares and Kalman �ltering an be appliedto trak the turning frations from link volume measurements [13, 50, 107, 135℄.The inorporation of signal timing information was proposed in [93, 117℄, andthe provision of estimated turning �ows as supplementary measurements to anetwork-wide OD matrix estimator was found to signi�antly inrease the over-all estimation quality in [68, 118℄.The �Urban Tra� Analyzer� UTA uses a marosopi queuing model of inner-urban tra� �ow to predit network-wide �ows and travel times. However, itrequires that likewise network-wide measurements of urrent �ows and turn-ing frations are available, and no data fusion beyond a temporal averaging ofmeasurements is desribed [94, 95℄.A system that is in ontinuous operation in Germany is OLSIM (�Online Traf-� Simulation�) [45, 137, 174℄. It uses a mirosopi tra� model. Additionalvehiles are inserted where sensors reord more vehiles than the model, andvehiles are removed where sensors reord fewer vehiles than the model [92℄.Measurements are extrapolated by having the vehiles move forward along linksaording to realisti driving rules and having them turn at intersetions aord-ing to historial or diretly measured turning probabilities [116℄. The systempredits network onditions based on a pre-lustering of typial measurementtrajetories: At a given point in time, the measurements themselves are pre-dited as a weighted average of the most reent observations and representa-tive historial trajetories. Based on this predition, the aforementioned sensoradaptation proedure is ontinued into the future [46℄.Reently, the RENAISSANCE (�Real-Time Freeway Network Tra� Surveil-lane Tool�) tra� monitoring and predition system has been operationalized[178℄. Its estimation module onsists of an extended Kalman �lter [175, 176,177℄, whih is applied to the marosopi tra� �ow model METANET [101℄. Arandom walk assumption is imposed on model parameters suh as road apa-ities, free �ow veloities, and turning frations, whih allows to estimate theseparameters together with the tra� �ow model's density and veloity states.Suhlike observed parameters improve the state estimation quality, e.g., in ase21



of varying weather onditions, and serve as inidents indiators.Methods that rely on a priori olleted turning proportions an be expeted towork well in normal situations but to be rather problemati during exeptionalevents when turning frations deviate from pre-spei�ed values. In priniple,every turning-probability driven approah an be supplied with a behavioralmodel for the generation of these parameters. However, this alone does notlarify how to adjust the behavioral model itself to given measurements. Thisproblem is onsidered next.1.2.2 Estimation With Behavioral Modeling1.2.2.1 Stati Tra� AssignmentThe lassial planning method for the modeling of network tra� is stati as-signment. The problem is stated as to assign a given demand of �ows betweenorigin-destination pairs (OD pairs) on the network. Typial assignment riteriaare a Nash equilibrium (all atually used routes for eah OD pair have equalost and no unused route has smaller ost; also alled user equilibrium (UE))or stohasti user equilibrium (SUE; the assignment of OD �ows on routes fol-lows a given distribution whih is based on link ost). In so-alled ongestedassignment, ost on a link is an inreasing funtion of link �ow whih is gener-ated by �ows on routes that use the link. Links that are heavily used beome�expensive�, thus diverting some of the �ow to other routes, e.g., [35℄.The only way to approximate within-day dynamis by means of stati assign-ment is to run independent simulations on onseutive time slies. Within limitsand in ombination with dynamial model omponents, this approah an beintegrated into a pratially aeptable system representation for telematispurposes, as the following two examples show.The naming �path �ow estimator� (PFE) is usually assoiated with the approahproposed in [17℄. It desribes a marosopi one-step network observer thatestimates stati path �ows from link volume measurements based on a SUEmodeling assumption in a ongested network [14℄. The estimation problemis transformed into one of smooth optimization, whih is iteratively solved.The model has been enhaned by multiple user lasses and a simple analytialqueuing model to represent tra� �ow dynamis [16℄ and has been suessfullyimplemented in various researh and development projets [15℄. The limitationsassoiated with its original assumption of a logit path hoie model (�overlappingpath problem�, e.g., [18℄) have been mitigated by the implementation of a C-logitpath hoie model [38, 173℄. The PFE's stati UE ounterpart was proposed in[157, 159℄ and has been further advaned in [133, 134℄.The tra� management enter of Berlin (�Verkehrsmanagementzentrale� VMZ)also operates an online tra� monitoring system [170℄. The fully marosopimethod omprises a substantial number of di�erent adjustment steps. It preditsmeasurement trajetories by a lustering approah similar to that of OLSIM anduses either a stati or a simpli�ed queue-dynamial model to interpolate tra��ows between sensors. Route hoie is assumed to be in a stati UE that issimulated in time slies of one hour. The assigned OD matrix is seleted based22



on a similarity measure between urrently prevailing measurements and thosethe matrix had previously been alibrated with [171℄.A omputationally ostly but methodologially straightforward approah totrak route hoie at an aggregate level is to estimate the assignment matrixitself onurrently with the OD matrix. The resulting estimation problem isin general highly under-determined, so a prior assignment matrix is inorpo-rated in muh the same way a prior OD matrix ensures a unique solution to theommon OD matrix estimation problem [109, 110℄.1.2.2.2 Dynami Tra� AssignmentThe following presentation onentrates on simulation-based approahes to dy-nami tra� assignment (DTA). This is justi�ed by their mirosopi vehilerepresentation whih is a fundamental modeling assumption of this thesis. Anoverview of DTA that inludes analytial approahes an be found in [146℄.Most urrent network loading models use similar tehniques [8, 19, 57, 115, 136℄:They have individual, deision-making partiles (�driver vehile units (DVUs)�)whih usually are sampled from an OD matrix and are moved forward alonglinks using funtions that in some way or other ouple speed to density. Mostmodels inlude storage apaities on their links, that is, the density of vehilesis limited and one a link is full, no more vehiles an enter. This implies thatupstream links form queues of vehiles that annot leave the link beause thedownstream link is full.Time-dependent Nash equilibria are omputed on suh models via iterations[130℄: Start with some version of time-dependent demand whih gives, for eahtime slot and OD pair, the number of vehiles leaving the origin during that timeslot. Have eah vehile follow a pre-omputed route. After the network loadinghas run, re-ompute the time-dependent path hoie information. For example,give some fration of travelers a new route that would have been fastest inthe last iteration (�best response�), or distribute travelers between path optionsaording to a distribution funtion, e.g., a path size logit or a C-logit model[18, 38℄. This proedure is iterated until an approximate �xed point is reahed[132℄.As noted before, a dynami equilibrium is a reasonable assumption for planningpurposes, while the modeling of within-day �utuations requires additional ef-forts. Even more in suh a setting, simulation-based approahes are the methodof hoie beause of their inherent ability to deal with individual and sponta-neous driver behavior.There are two projets in the United States, namely DynaMIT (�Dynami Net-work Assignment for the Management of Information to Travelers�, [19, 60℄) andDYNASMART (�Dynami Network Assignment Simulation Model for AdvanedRoad Telematis�, [61, 115℄), whih pursue oneptually similar approahes. Forillustration, a minimal online state estimation senario is outlined in the follow-ing. More elaborate desriptions an be found in [3, 7℄ for DynaMIT and in[183℄ for DYNASMART. 23



• Beyond strutural information, both systems require at least a stati ODmatrix and an initial set of tra� ounts to prepare their online (within-day) estimation shemes. They proeed by estimating a time-dependentOD matrix, using methods whih are in priniple similar to the seminaltehniques proposed in [36℄.
• In online operations, either system uses a linear Kalman �lter to estimatethe deviation of OD �ows from average historial trajetories. This allowsto inorporate the latters' strutural information. Both systems apturethe dynamis of a time-dependent OD matrix in the Kalman �lter's statetransition equation: DynaMIT assumes that the OD �ow deviations followa within-day autoregressive proess with a priori estimated parameters.DYNASMART uses a polynomial trend representation of the OD traje-tories, whih yields a linear state equation for the temporal evolution ofthese polynomials' derivatives. In either ase, the dynamial model allowsfor a demand predition and (by simulation) for a network-wide preditionof tra� onditions.
• Loading a urrent demand estimate on the network yields a dynami as-signment matrix that linearly maps OD �ows on link �ows and thus relatesstate variables and tra� ounts. This mapping onstitutes the Kalman�lter's measurement equation.
• Both systems run in a rolling horizon mode where two proedures taketurns: (i) The Kalman �lter generates a urrent demand estimate basedon the most reent assignment matrix and the urrent measurements.(ii) The network loading proedure assigns the estimated demand on thenetwork in order to predit tra� onditions and to provide an updatedassignment matrix.
• Both systems use the estimated demand trajetories of a given day to up-date a historial OD matrix as a basis for the next day's online estimationproblem. While for DynaMIT various smoothing methods are proposed,DYNASMART assumes a day-to-day random walk of the true OD ma-trix, onsiders the demand estimate of a single day as measurement ofthis matrix, and updates the historial OD matrix by another Kalman�lter.Muh like in the stati ase, a time-dependent assignment matrix an be es-timated together with the demand. This results in a signi�ant state spaeinrease and requires nonlinear �ltering tehniques [7℄. The state vetor analso be extended by time-dependent network parameters. This improves theadaptive properties of the overall monitoring system but again requires non-linear estimators, various of whih are ompared in [3℄. The inorporation ofadditional data soures suh as probe vehile samples [4, 183℄ is subjet of ongo-ing researh as well as advaned numerial solution algorithms [5, 23℄. Reently,the DynaMIT system shifted from the Kalman �ltering approah to a sparseleast squares solution proedure [179℄, whih, however, does not impair the on-eptual orretness of the outline given above.24



1.2.2.3 Multi-Agent Tra� SimulationThis approah is haraterized by the fully disaggregate representation of trav-elers throughout the entire modeling proess, while in DTA time-dependent ODmatries are typially disaggregated and re-aggregated whenever onvenient.The multi-agent approah is attrative in the tra� domain sine it appearsnatural to represent every traveler by a software objet, to put these individualmodels into a representation of the physial world of mobility, and to observethe resulting mobility patterns. Due to its strutural resemblane of real-worldproesses, the method is easily ommuniated and inreasingly applied in trans-portation modeling (see, e.g., the olletion of artiles in [100℄).Multi-Agent Simulation (MASim) an go beyond other simulation methods byinluding travelers' goals and ommitments into the modeling. For example, itis possible with MASim to di�erentiate between a delayed person with a freeevening and a delayed person with a time-restrited day-are pik-up. MASimfor transportation planning appliations typially onsists of the following mod-ules [10, 11, 65, 130, 149℄:
• A syntheti population generation module generates, from demographidata, a syntheti population that, in all its statistial aspets, orrespondsto the real population under investigation, while at the same time preserv-ing privay.
• An ativity-based demand generation module generates, for eah memberof the syntheti population, omplete daily plans inluding a sequene ofativities (suh as home, work, shop, leisure), ativity loations, and atemporal shedule. Conseutive ativities at di�erent loations generatethe demand for travel.
• A router module omputes how that demand is atually exeuted on thenetwork, possibly inluding mode hoie. At this point, all syntheti trav-elers have plans that desribe what they intend to do.
• There is now always some kind of module that puts the syntheti travelersin a simulated version of the physial network and has them exeute theirplans simultaneously. The physial interation in that system generatesongestion. Depending on the spei� fous, this simulation has di�erentnames: supply simulation, network loading, tra� �ow simulation.It is not possible to ompute the system in the linear way indiated abovesine plans depend on ongestion but ongestion is a onsequene of the plans.This is solved by iterations that an be seen as modeling human day-to-daylearning. This learning takes plae on various time sales. On the long term,there are aspets suh as hoie of residene and employment. These and furtherharateristis of an agent onstitute onstraints on deisions that take plaewithin dimensions of days, suh as ativity sheduling, loation hoie, and routehoie. Although there are no strit temporal domains for di�erent elements of aplan, a rough distintion with respet to transportation planning and telematisan be made by a separation of elements that are modi�ed only on a day-to-daybasis and those that an be reonsidered within a day.25



The estimation of fully disaggregate travel behavior from aggregate sensor datawith a multi-agent tra� simulation is a novel venture. In order to larify thisstatement, the following related yet di�erent problems need to be mentioned:
• The alibration of a mobility simulation from aggregate sensor data hasbeen widely addressed in the literature, e.g., [47, 48, 59, 97, 103, 141, 142℄.However, these approahes do not arry over to a alibration of the be-havioral simulation omponent (unless one adopts a di�erent terminologythan de�ned in Setion 1.1.2 and attributes, e.g., ar-following parametersto the behavioral model).
• A DTA-based OD matrix estimator aptures various behavioral aspets,yet only on an aggregate level. Sine a time-dependent OD matrix maps(origin, destination, departure time) tuples on demand levels, it diretlyrepresents destination and departure time hoie. A motorist OD matrixre�ets mode hoie at least in terms of deisions for or against the ve-hiular mode. Route hoie, however, onstitutes no additional degree offreedom but is a funtion of demand de�ned by the DTA proedure. Theonly exeption to this are the (behaviorally stati) path �ow estimatorsmentioned above.1.3 Thesis Contribution and Outline1.3.1 Coneptual OutlineThe omplexity of modern tra� simulation systems renders the tehnologialdesign of a �exibly appliable estimator a nontrivial task. Extensive prototyp-ial programming was onduted in order to validate the proposed method'sappliability. Sine the resulting arhiteture struturally re�ets the estima-tor's working, it is outlined before methodologial ontributions are desribed.In order to be ompatible with the proposed estimator, a tra� simulationsystem must be separable into the omponents shown in Figure 1.1. Most ofthe employed terminology is adopted from [27℄.
• The mobility simulation moves individual vehiles along their hosenroutes through the road network. All physial interations our withinthis omponent. A linearizable state spae representation of the mobilitysimulation must be available. This dissertation demonstrates that suh arequirement is ompatible with a mirosopi driver representation.
• The trip sequene of every vehile in the mobility simulation is hosenby an individual agent that represents the driver of that vehile. Thetravel behavior of an agent is realized by one or two further omponents.Whenever a deision is required, the agent provides these omponents withits individual parameters.� The utility funtion provides an individually parameterized mapfrom the network onditions on the systemati utility of any be-havioral alternative available to the agent. This may inlude utilities26



Figure 1.1: SimulationLogial struture of a mirosopi tra� simulator that is amenable to the proposedestimation methodology. The utility funtion is an optional omponent that may beomitted. for partial hoies if suh a deomposition is required by the deisionprotool. For example, a route hoie deision protool may onlyrequest utilities for single links in the network. The utility funtionis an optional omponent that may be omitted.� The (likewise individually parameterized) deision protool prob-abilistially generates a single deision based on this utility informa-tion. If there is no utility funtion, the hoie is diretly based onthe network onditions. A deision protool an be deomposed inthe two aspets of hoie set generation and hoie. It may bedeliberative in that the hoie set of available alternatives is oneenumerated before a hoie is made. Alternatively, a reative searhmay be implemented that iterates between the generation of some al-ternatives and their evaluation. In either ase, one hoie is �nallyrealized by the agent.This struture is independent of a partiular planning or telematis ontext. Forexperimental purposes, all simulator omponents were exemplarily implementedsimilar to the aording omponents of the MATSim (�Multi-Agent TransportSimulation Toolkit�) simulation system [119℄, in the ontext of whih this workwas onduted.Estimation is based on reasonable mathematial inferene but follows a sim-ple tehnial logi. As illustrated in Figure 1.2, the simulation struture is nothanged at all. An estimator omponent is inserted between the deision pro-tool and the remaining simulation system. It is implemented transparently inthat it provides unmodi�ed interfaes to both the deision protool and the re-maining system. The estimator ompares the output of the mobility simulationto sensor data from a surveillane system. Based on this omparison, it alters27



Figure 1.2: EstimationEstimation is failitated by the addition of a logial wrapper around the deisionprotool. All interfaes within the original simulation system remain unhanged.the data and ontrol �ow around the deision protool suh that the resultingagent behavior is most plausible given the measurements.Two small route hoie examples illustrate how this minor system extensionallows to adjust simulated behavior:
• If the surveillane system observes a tra� jam where there is none in thesimulation, the estimator inreases the systemati utility of the aordinglinks until the agents start to favor these links and reate the ongestionas observed in reality. Vie versa, if there is ongestion in the simulationbut not in reality, the estimator dereases the involved links' utility untilthe agents start to avoid the ritial area.
• Likewise, the estimator an enourage a ertain behavioral pattern byasking the deision protool to draw several alternatives in idential on-ditions for eah agent. From this set of options, the estimator then passesonly those deisions on to the mobility simulation that are most plausiblegiven the measurements.Either approah aesses only a subset of the interfaes touhed by the estimatorin Figure 1.2. This further relaxes the strutural requirements on the simulationsystem. The apparent simpliity of this approah is onfronted with (i) thedi�ulties to relate aggregate measurements and individual behavior throughnonlinear tra� �ow dynamis on large networks of general topology and (ii) theintention to be ompatible with a broad variety of behavioral implementations.The software prototype is single-threaded and written in the Java programminglanguage [84℄. Its interfae-based design relies on standard software design pat-28



terns [70℄ in order to simplify the (re-)omposition of available software ompo-nents. Likewise experimental implementations for the simulation of spontaneousroute swithing behavior [79, 80℄ and route guidane by feedbak ontrol [154℄are integrated in the system.1.3.2 Methodologial ContributionThis thesis presents a novel approah to the fully disaggregate estimation ofmotorist behavior with a multi-agent simulation. The problem is solved by aombination of prior knowledge about the driver behavior with available mea-surements into most likely posterior estimates of this behavior:
• The prior knowledge about the driver behavior onsists of two parts. First,an individually modeled agent exhibits likewise individual features thatin�uene its behavior, e.g., soioeonomi features, preferenes, and infor-mation availability. Seond, every suh agent has one or more individuallygenerated plans it adheres to. These plans speify what the agent intendsto do during a day.
• The measurements of aggregate tra� features suh as �ows, densities orveloities are available at a limited set of network loations. Beyond linkrelated quantities, turning move ounts an be diretly utilized by theestimator. The amount of measurements may be arbitrarily small sinethe availability of individual plans guarantees an existing solution to theestimation problem.Based on this information, arbitrary behavioral aspets ranging from singleroute hoie to plan seletion for a whole day are estimated in a fully disag-gregate manner, agent by agent. Estimation methods of di�erent omplexityare proposed that allow for a problem-spei� balane between omputationalspeed and estimation preision. Experimental results are given and indiate theestimator's pratial appliability.The estimator an be used in a planning ontext (with an underlying equilib-rium assumption) and for real time tra� monitoring (with a behavioral modelthat aounts for inomplete driver information and spontaneous behavior). Ifwithin-day estimates are fed bak to a planning system for inremental adjust-ments on a day-to-day basis, improved prior information for the following day'sonline estimation problem an be generated.The following results are also onsidered to be relevant ontributions. They areobtained as intermediate steps on the way to a working estimator.
• A marosopi tra� �ow simulator is developed that is onsistent withthe phenomenology of the ell-transmission model and the requirementsof �rst order tra� �ow theory. It e�iently alulates linearized tra��ow dynamis, while its advaned simulation logi upholds a high ompu-tational performane that allows to simulate large networks of arbitrarytopology. While linearization is required for estimation, the lass of ap-pliable mobility simulations is not restrited to this partiular model.29



• A simulation logi is proposed that runs a marosopi tra� �ow modelbased on the travel behavior of a fully mirosopi agent population. Thisontribution to the �eld of �mesosopi� modeling provides a broadly ap-pliable link between behavioral mirosimulation and physial marosim-ulation.
• A method is developed that steers the behavior of simulated travelerssuh that a general objetive funtion of aggregate network onditions isimproved. Spei�ally, this result is employed to express and solve oneinstane of the behavioral state estimation problem. More generally, themethod holds promise for further appliations suh as the generation ofroad priing strategies.1.3.3 Struture of ThesisThe remainder of this doument is organized as follows. Chapter 2 desribes themarosopi mobility simulation. Chapter 3 treats the disaggregate modelingof behavior. Its �rst part desribes how individual motorists are simulated in amarosopi mobility simulation. Its seond part spei�es a formalism of driverbehavior that is amenable to a mathematial estimator. Chapter 4 formulatesthe behavioral estimation problem and disusses di�erent solution approahes.Chapter 5 veri�es the estimator's omputational feasibility for an appliationof pratially relevant size. Finally, the work is onluded in Chapter 6, and adisussion of future researh topis is given.
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Chapter 2Marosopi MobilitySimulationA model of physial reality maps demand for travel on network onditions.Basially, an inverse mapping is needed if travel behavior is to be dedued fromthese onditions. Suh an inversion does generally not exist. Alternatively, alinearization of the mapping is used, and nonlinearities are aounted for in aniterative manner.This hapter desribes a mobility simulation that an be linearized. A readerwith only a asual interest in tra� �ow modeling may skip this material andontinue reading at Setion 2.7 without muh loss of ontinuity.2.1 Design ChoiesThe neessity of linearization alls for a marosopi model. An aggregation oftravelers into homogeneous groups an be avoided by the behavioral simulationsheme introdued later in Chapter 3 so that only single-ommodity tra� isonsidered here.Sine the experimental validation of new phenomenologial proposals would ex-eed the sope of this thesis, the model must build on established �ndings. Thisand the need to realize a large-sale test ase alls for the simplest availablemodel that still aptures the most relevant tra� features with reasonable pre-ision. Arguably, this is the kinemati wave model (KWM) [108, 151℄. Withinits phenomenologial limitations, it is able to represent both freeway and intra-urban tra� �ow. The hoie of this model is well justi�ed in light of theongoing debate if more omplex models yield a reasonable gain in expressivepower [78, 131℄.For numerial simulation of the KWM, the ell-transmission model (CTM)is adopted [53, 54, 55℄. Various other marosopi models had been onsid-ered before this hoie was made [73, 76, 86, 101℄. However, one higher or-der models are exluded from onsideration, the CTM remains as the by far31



most established model, with various appliations, e.g., in freeway ramp meter-ing and signal optimization [1, 66, 164℄, and thorough experimental validations[28, 126, 127℄. The CTM is losely related to another implementation of theKWM, the STRADA model [29, 30℄. Both approahes base on the numerialGodunov solution method [102, 106℄.The model must allow to simulate a large and omplex road network, provide lin-earized tra� �ow dynamis, and maintain a high omputational performane.These requirements motivate three in large parts novel adaptations of the CTM:
• To allow for linearization, all �ow alulation rules of the CTM are uni�edin a formal alulation sheme, for whih sensitivity analysis is onduted.
• Sine the original CTM only spei�es network topologies where at mostthree roads meet at an intersetion, its established phenomenology istransferred to the modeling of general intersetions.
• Spatially disretized marosopi models imply a relatively high omputa-tional ost beause of their large number of simulated entities. To ensurefeasibility of large-sale appliations, a simulation logi is adopted thatassigns an individual simulation time step duration to every link in thenetwork. The additional numerial impreision introdued by this modi�-ation is investigated and is found to be ountervailed by its omputationalbene�ts.A simpli�ed linearization of the CTM has been desribed before [125, 126℄. Thisapproah swithes between linear sub-models aording to the ongestion statusof a onsidered freeway streth. It is a simpli�ation even of the CTM and is notappliable to network tra�. A likewise onstrained linearization is desribed in[165℄. The originality of an earlier ontribution is also aknowledged where CTMmerges and diverges are reombined to generate more omplex intersetions anda simulation logi with variable time step lengths is enabled by the nesting ofdi�erently fast tiking ells [104℄.Some elements of the KWM theory are given in Setion 2.2. Before the CTMis onsidered, a general and linearizable �ow alulation sheme is introduedin Setion 2.3. The CTM and its extensions are then expressed in terms ofthis formalism in Setion 2.4. The simulation logi on variable time sales isdesribed in Setion 2.5, a suitable spatiotemporal network disretization logiis proposed in Setion 2.6, and, �nally, a general state spae representation ofthe mobility simulation is given in Setion 2.7.2.2 The Kinemati Wave ModelThe KWM requires a minimal set of assumptions to model tra� �ow on a linearroad. Denote by x ∈ R a loation on that road and by t ∈ R the ontinuous time.

̺(x, t) is the loal density of tra� (in vehiles1 (veh) per length unit), q(x, t)1In the ontext of a marosopi model, the notion of a �vehile� is to be understood as a�marosopi vehile unit�. 32



its �ow (in vehiles per time unit), and v(x, t) its veloity. These quantities arerelated by the �rst onstituent equation of the KWM:
q(x, t) = v(x, t)̺(x, t). (2.1)The seond modeling assumption is that of vehile onservation. On smoothonditions, it is expressed by the ontinuity equation

∂̺

∂t
+

∂q

∂x
= 0. (2.2)Finally, loal �ow is spei�ed as a funtion only of loal density. This relationis usually denoted as the fundamental diagram:

q(x, t) = Q(̺(x, t), x). (2.3)Sine these spei�ations an still result in ambiguities, an additional onditionmust be instrumented to selet the physially relevant solution. Given a onavefundamental diagram, the priniple of loal demand and supply provides a on-venient tehnique to ensure uniqueness [102℄. Denote by x− (x+) the loationimmediately upstream (downstream) of x. For every x, the loal �ow q(x, t) isthen de�ned as the minimum of loal �ow demand ∆(̺(x−, t), x−) and loal�ow supply Σ(̺(x+, t), x+):
q(x, t) = min{∆(̺(x−, t), x−), Σ(̺(x+, t), x+)}. (2.4)Figure 2.1 illustrates this funtion.To begin with, (2.4) re�ets the self-evident onstraint that loal tra� �owis bounded by the �ow that an be dismissed from the immediate upstreamloation and by the �ow that an be absorbed by the immediately downstreamloation. But furthermore, the loal �ow is maximized subjet to these on-straints. This property enfores the physially relevant solution of the KWM-model [102℄. Phenomenologially, it is a statement of drivers' ride impulse [2℄,whih is equivalently expressed by the mirosimulation rule for ellular automata�Drive as fast as you an and stop if you have to!� [45℄.Beyond its ability to uniquely apture tra� �ow along a link, this priniplealso holds for the modeling of general intersetions, as illustrated in Figure 2.2.In suh a setting, every upstream link i provides a demand ∆i(t) equal to itsgreatest possible out�ow towards the intersetion, and every downstream link

j provides a supply Σj(t) equal to its greatest possible in�ow. Additional phe-nomenologial modeling is failitated sine these boundaries alone are generallynot su�ient to uniquely de�ne the �ows aross an intersetion. However, everyreasonable spei�ation must adhere to the priniple of loal �ow maximization.2.3 Intersetion Flow Calulation ShemeThis setion desribes a formalism for intersetion tra� �ow modeling denotedas the general proess of resoure onsumption (GPRC). Sine sensitivity33



Figure 2.1: Loal supply and demand omprise a fundamental diagramThe pieewise linear demand funtion ∆(̺) onforms to the original spei�ation ofthe CTM, where it is denoted as the sending funtion. It onsists of an inreasingpart with its slope equal to the free �ow speed, and it is limited by the �ow apaity
q̂. The supply funtion Σ(̺) (also onsistent with the original CTM, where it is alledreeiving funtion) is also limited by the �ow apaity. The slope of its delining partequals the bakward wave speed and intersets the absissa at the greatest possibledensity ˆ̺. The minimum of both funtions yields a fundamental diagram.

Figure 2.2: A point-like intersetion with I ingoing and J outgoing linksEvery upstream link i provides a demand ∆i equal to its greatest possible out�owtowards the intersetion, and every downstream link j provides a supply Σj equal toits greatest possible in�ow.
34



Algorithm 1 General proess of resoure onsumption
ξ(0) is given
D(0) = {i; ξ

(0)
i > 0}

m = 0while (∃i ∈ D(m) : ϕi(D
(m)) > 0), do {for all i ∈ D(m), do: θ

(m)
i = ξ

(m)
i /ϕi(D

(m))

θ(m) = min
i∈D(m)

{θ(m)
i }

B(m) = arg min
i∈D(m)

{θ(m)
i }

ξ(m+1) = ξ(m) − θ(m)ϕ(D(m))
D(m+1) = D(m)\B(m)

m + +}
M = manalysis for the GPRC is available, every intersetion model that onforms toits spei�ation an be linearized.Consider a dynamial proess with time step index m = 0 . . .M . Every element
ξ
(m)
i ∈ [0,∞) of its state vetor ξ(m) = (ξ

(m)
i ) is onsidered as a resoure thatis used up during the proess. Its rate of onsumption equals a non-negativeand �nite value ϕ

(m)
i , whih is onstant throughout every time step m. Denotethe duration of step m by θ(m). The proess dynamis are then de�ned by

ξ(m+1) = ξ(m) − θ(m)ϕ(m) where ϕ(m) = (ϕ
(m)
i ). The resoures must notbeome negative suh that all zero states must have a zero onsumption rateand θ(m) ≤ ξ

(m)
i /ϕ

(m)
i must hold for all nonzero states i.The set D(m) = {i; ξ

(m)
i > 0} ontains all resoures that are stritly positive atthe beginning of step m. The proess terminates if all elements in D(m) havea zero onsumption rate. Consumption rates only depend on the set D(m) ofurrently available resoures suh that ϕ(m) = ϕ(D(m)). Consequently, it isphrased that �step m is under regime D(m)�. The maximum duration of step

m in exlusive onsideration of resoure i is θ
(m)
i = ξ

(m)
i /ϕ

(m)
i ∈ (0,∞). Sineevery step m is spei�ed to last until at least one resoure in D(m) reahesa zero value, its duration is θ(m) = mini∈D(k){θ(m)

i } > 0. The set B(m) =

arg mini∈D(m){θ(m)
i } ontains all resoures that run dry at the end of step m.2This allows to give D(m+1) = D(m)\B(m) as an update equation.The temporal aspet of this proess is not to be interpreted physially. Onlyits �nal state is of relevane to the physial simulation. Algorithm 1 gives anoverview. An e�ient implementation of the involved integer sets is desribedin Appendix A.Sensitivity analysis for the GPRC is provided in Appendix B, where the fol-lowing result is derived. It ensures linearizability of the subsequently developedtra� �ow model.If all onsumption rates are monotonously inreasing with respet to the numberof available resoures, i.e., if ϕi(D ∪ {j}) ≥ ϕi(D) ∀i, j, and if the availability2The argmin funtion returns the set of all minimizing indies.35



Figure 2.3: A straight onnetionThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resoures
ξ is spei�ed in (2.5).of a resoure with a zero onsumption rate does not in�uene the proess dy-namis, i.e., if ϕi(D∪{i}) = 0 ⇒ ϕ(D\{i}) = ϕ(D∪{i}), then an approximateJaobian ∂ξ(M)/∂ξ(0) an e�iently be omputed onurrently with the GPRC.If, furthermore, the onsumption rates are parameterized with a onstant pa-rameter vetor β and the sensitivities ∂ϕ(D)/∂β are provided, an approximateJaobian ∂ξ(M)/∂β an be omputed in a likewise e�ient way.2.4 Intersetion Spei�ationThe CTM runs in disrete time and spae. Denote the physial simulationtime step length by T , the physial simulation time step ounter by k, andthe spatial segments of a link as ells. A onnetor is plaed between everygroup of adjaent ells. Eah suh onnetor runs a GPRC implementation thatalulates the �ow transmissions between these ells.3The demand ∆i(k) of upstream ells i = 1 . . . I and the supply Σj(k) of down-stream ells j = 1 . . . J (both in vehiles per time step duration) are mapped onindividual GPRC resoures by

ξ
(0)
i (k) = T∆i(k) for i upstream

ξ
(0)
I+j(k) = TΣj(k) for j downstream.

(2.5)Transmitted vehile ounts and equivalent average out- and in�ow rates qouti (k),
qinj (k) result after the GPRC's termination from

Tqouti (k) = ξ
(0)
i (k) − ξ

(M)
i (k) for i upstream

Tqinj (k) = ξ
(0)
I+j(k) − ξ

(M)
I+j (k) for j downstream.

(2.6)The original CTM �ow alulation rules and their ontinuation into a generalintersetion model an now be expressed by appropriate spei�ations of theresoure onsumption rates ϕ(D).2.4.1 Straight ConnetionsThe CTM's basi �ow alulation rule states that the number of transmittedvehiles between two sueeding ells equals the minimum of the available ve-hiles upstream, the available spae downstream, and an upper �ow onstraint.This is the disrete-time equivalent of (2.4). The aording straight onnetor3Sine a �yweight design pattern is used for implementation [70℄, the number of atuallyreated GPRC objets winds down to the number of di�erent intersetion topologies.36



Figure 2.4: A merge with I ingoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resoures
ξ is spei�ed in (2.5).has one predeessor and one suessor ell. Speaking in terms of the GPRC, itsresoure vetor ξ = (ξ1 ξ2)

T is two-dimensional: ξ1 represents the number ofavailable upstream vehiles and ξ2 equals the available downstream spae, f.Figure 2.3. The supersript T denotes the transpose. The resoure onsumptionvetor
ϕ({1, 2}) = (1 1)T (2.7)orresponds to the only regime {1, 2} with a nonzero onsumption rate. Theresulting one-step GPRC run yields an idential vehile transmission as theoriginal CTM.2.4.2 MergesThe original CTM allows for merge onnetions between exatly two upstreamells and one downstream ell. The aording �ow alulation rules state thatboth predeessors are allowed to send all their available vehiles as long as thesean be aepted by the suessor ell. If this is not the ase, the suessor'savailable spae is shared between the predeessors in a ratio aording to theirpriorities α1 ∈ [0, 1] and α2 = 1− α1. If this auses all available vehiles of onepredeessor to be transmitted but still leaves available spae in the suessor,this spae is �lled up as muh as possible with vehiles from the omplementarypredeessor.In terms of the GPRC, the merge resoure vetor is ξ = (ξ1 ξ2 ξ3)

T where ξ1and ξ2 denote the available vehiles in the predeessor ells and ξ3 equals theavailable spae in the suessor ell. The evolution of the proess is fully de�nedby three non-zero onsumption rate vetors ϕ({1, 2, 3}) = (α1 α2 α1 +α2)
T ,

ϕ({1, 3}) = (α1 0 α1)
T , and ϕ({2, 3}) = (0 α2 α2)

T . Here, the priorities do nothave to sum up to 1 but are required to be stritly positive. An inspetion ofthe regime sequenes {1, 2, 3} → {1, 3} and {1, 2, 3} → {2, 3} shows that thissetup yields an idential behavior as the original CTM.General merge onnetors have an arbitrary number of I ≥ 2 predeessor ells, asshown in Figure 2.4. The �rst I elements of the aording resoure vetor are theavailable vehiles ξi in the predeessor ells i = 1 . . . I. The available spae ξI+1in the suessor ell makes up one additional resoure: ξ = (ξ1 . . . ξI ξI+1)
T .37



Figure 2.5: A diverge with J outgoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resoures
ξ is spei�ed in (2.5).A straightforward ontinuation of the CTM merge logi is

ϕ(D) =

(

ϕ1(D) . . . ϕI(D)

I
∑

i=1

ϕi(D)

)T

ϕi(D) =

{

αi {i, I + 1} ⊆ D
0 otherwise, (2.8)where {i, I + 1} ⊆ D indiates that both the upstream ell i and the onlydownstream ell provide nonzero resoures. For I = 2, this reprodues theoriginal CTM merge. Sine the total vehile transmission is only bounded bythe available upstream vehiles and the downstream spae, �ow maximizationis ensured.A generalization of the CTM merge logi to more than two predeessors haspreviously been referred to as �very ompliated� [86℄. With the GPRC athand, this di�ulty ollapses into spei�ation (2.8).2.4.3 DivergesDiverges of the original CTM split the �ow from one predeessor ell into ex-atly two suessor ells. The splitting frations are denoted by β1 ∈ [0, 1]and β2 = 1 − β1. Here, the resoure vetor ξ = (ξ1 ξ2 ξ3)

T is omprised ofthe single predeessor's available vehiles ξ1 and the available spae ξ2 and ξ3in the suessor ells. Allowing for only one non-zero onsumption rate ve-tor ϕ({1, 2, 3}) = (1 β1 β2)
T implies the assumption of exatly one upstreamlane: If a vehile at the head of the queue on this lane is unable to enter itsdownstream ell, it ompletely bloks the diverge. This logi is reasonable forlarge-sale appliations [54, 119℄. The resulting total out�ow from the prede-essor is min{ξ1, ξ2/β1, ξ3/β2}, just as for the original CTM.The simulation of J ≥ 2 suessors for a general diverge, as shown in Figure2.5, is straightforward by the introdution of an extended resoure vetor ξ =

(ξ1 ξ2 . . . ξ1+J )T and an aording onsumption rate vetor
ϕ({1, 2, . . . , 1 + J}) = (1 β1 . . . βJ)T (2.9)for the only non-zero onsumption regime {1, 2, . . . , 1+J}. For J = 2, this yieldsidential �ow transmissions as the original CTM. The �ow is again maximizedsubjet to the availability onstraints and the additional splitting rule.38



Figure 2.6: A general onnetion with I ingoing and J outgoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resoures
ξ is spei�ed in (2.5).Choosing zero onsumption rates for all regimes but {1, . . . , J, 1+J} is neessaryto ensure ontinuity of the �ow transmissions with respet to the turning fra-tions, whih is required for the linearization of the model: If tra� ould passthe diverge unhindered given an unavailable suessor j with βj = 0, inreasing
βj by an arbitrarily small amount would instantaneously blok the diverge. Thisdisontinuity is avoided by letting the diverge blok even if βj = 0 as soon assuessor j beomes unavailable. This restrition an be dropped if ontinuityis not required and vanishes anyway in the ombined miro/maro simulationsheme of the next hapter where all turning frations are guaranteed to bestritly positive.2.4.4 General ConnetionsA general onnetor is shown in Figure 2.6. Denote by P = {1, . . . , I} theset of its upstream ells, by S = {I + 1, . . . , I + J} the set of its downstreamells, and by βij the prespei�ed turning fration from predeessor i towardssuessor j. Given a predeessor onsumption rate ϕi(D), the spei�ation ofsuessor oriented onsumption rates ϕij(D) = βijϕi(D) maintains onsistenywith diverge logi (2.9). A priority rule equivalent to merge logi (2.8) is ensuredby letting ϕi(D) = αi for all available predeessors i as long as the intersetionis not bloked by an unavailable suessor. The omplete resoure vetor ξ =
(ξ1 . . . ξI ξI+1 . . . ξI+J)T is then onsumed by

ϕ(D) = (ϕ1(D) . . . ϕI(D) ϕI+1(D) . . . ϕI+J(D))T

i ∈ P : ϕi(D) =

{

αi i ∈ D, S ⊆ D
0 otherwise

j ∈ S : ϕj(D) =
∑

i∈P

βijϕi(D).

(2.10)Again, all priorities must be stritly positive. The same statements about zeroturning frations hold as for a diverge. This general onnetor omprises allpreviously de�ned onnetor types as an be seen from hoosing I = 1 and/or
J = 1. Still, it has no immediate ounterpart in the CTM. Its logi resultsas the limiting ase of a merge whih is onneted by an in�nitely short linkto a diverge whose turning frations βj result via βj =

∑I
i=1 βijqi/

∑I
i=1 qifrom the �ow omposition q1, . . . , qI transmitted by the merge. No additionalphenomenologial speulations are introdued in this model.39



It remains to show that the original CTM's onsisteny with the KWM ismaintained, i.e., that spei�ation (2.10) is still �ow-maximizing. In unon-gested onditions, the intersetion winds down to a linear superposition of Idiverges and inherits their properties. In ongested onditions, the total �owthrough the intersetion is limited by at least one downstream ell j∗ with
Σj∗ =

∑I
i=1 βij∗qi, aording to (2.9). Assume that ∑I

i=1 q′i >
∑I

i=1 qi waspossible for an altered on�guration q′1, . . . , q
′
I of merging in�ows. The down-stream diverge logi still requires Σj∗ ≥

∑I
i=1 βij∗q′i, and the merge logi de-mands q′i ≥ qi for all i = 1 . . . I if more downstream spae beomes available.Thus, Σj∗ ≥

∑I
i=1 βij∗q′i ≥

∑I
i=1 βij∗qi = Σj∗ , whih implies q′i = qi for all i.In onsequene, the general intersetion inherits the �ow-maximizing propertyof its merge and diverge omponent.Spei�ation (2.10) omplies with the GPRC's requirements for linearization,as stated in Setion 2.3. The relations between demands/supplies and GPRCresoures (2.5) and between GPRC resoures and �ow rates (2.6) are alreadylinear. Combined, this ensures the availability of �ow rate sensitivities withrespet to demands ∆, supplies Σ, and turning proportions β.2.5 Simulation LogiDisrete time network simulation is straightforward if a uniform time step length

T is used. Every link with maximum veloity v̂ is disassembled into ells ofminimum ell length = T v̂. (2.11)A simulation step (tik) then onsists of two parts:1. Every onnetor alulates the vehile transmissions between its adjaentells.2. Every ell updates its oupany aording to these transmissions.The oupany of a ell (link) is de�ned as the number of vehile units thatare loated in that ell (link).The simulation of a heterogeneous urban network requires relatively small ellsin order to model densely meshed regions. This alls for a small T and inturn implies an unneessarily preise modeling of longer road segments. Theuse of larger ells running on the same temporal grid somewhat mildens thisproblem at the ost of a greater numerial dispersion [55, 102, 127℄. However, asigni�ant share of urban network omputations is inurred by the intersetionlogi. Thus, a simulation logi that minimizes the number of simulation tiksthemselves is needed.The spatiotemporal dynamis within an isolated link are uniquely de�ned ifan initial density pro�le as well as feasible upstream in�ows and downstreamout�ows are provided. Given an individually hosen time step length and anappropriate spatial disretization, the standard CTM logi failitates a KWM-onsistent simulation. Sine all spatial dynamis are enlosed within the link,40



it an be viewed from the outside as a disrete-time, nonlinear, ordinary dy-namial system with two inputs (in- and out�ows) and two outputs (upstream�ow supply and downstream �ow demand). The same argument holds for in-dividual ells. Likewise, the intersetion model of Setion 2.4.4 alulates �owsonsistently with the KWM. For any hosen time step length, it onstitutes amemoryless, disrete-time, nonlinear system with its upstream �ow demandsand downstream �ow supplies as inputs and the resulting �ow transmissions asoutputs.Adopting a tehnial point of view, these systems an immediately be linked.The outputs of systems with a larger time step are held onstant when neededas inputs for faster tiking systems, and the outputs of faster tiking systemsare integrated/averaged before they are fed into slower tiking systems. Sinesuh holding and averaging a�et system dynamis mainly in terms of a delaythat is proportional to the involved time step lengths, a reasonable balanebetween additionally introdued impreision and omputational speedup anbe ahieved. This is on�rmed by the experimental results given in Setion2.5.4.The remainder of this setion details this simulation logi. A ell i (onnetor c)is denoted as due at disrete simulation time step k if k is an integer multipleof its individual time step length Ti (Tc). The duration of a simulation timestep is generally assumed to be 1 seond. Two proedures are exeuted at everysimulation time step k:1. Every ell i that is due aording to its individual time step length Tialulates its supply and demand boundary from its urrent oupanyand keeps these results onstant for the next Ti seonds.2. Every onnetor c that is due aording to its individual time step length
Tc alulates its average �ow rates that hold for the next Tc seonds andnoti�es its adjaent ells of the resulting vehile transmissions.Setions 2.5.1, 2.5.2, and 2.5.3 detail these steps.2.5.1 Cell BoundariesEvery ell i has exatly one preeding and one sueeding onnetor. Its o-upany during simulation time step k is denoted by xi(k) ∈ [0, x̂i] where x̂iis its maximum oupany. While the ell has an individual time step length

Ti, it is embedded in a system potentially running at a 1-seond time sale.This requires its demand ∆i(k) and supply Σi(k) to be de�ned at every seond.Sine these boundaries are stati funtions only of i's oupany, it is su�ientto speify xi in every simulation time step by
xi(rTi + s) = xi(rTi) r ∈ N, s ∈ {0, . . . , Ti − 1}. (2.12)The original CTM boundary spei�ations an now be applied:

∆i(k) = min

{

q̂i,
v̂ixi(k)

Li

}

Σi(k) = min

{

q̂i,
wi(x̂i − xi(k))

Li

} (2.13)41



where q̂i denotes the ell's �ow apaity (in vehiles per time unit), Li its length,and wi its bakward wave speed. These equations an approximately be lin-earized with respet to xi(k) if at points of non-smoothness the average ofleft- and right-sided sensitivity is used. Alternative spei�ations are possible[55, 102℄.2.5.2 Connetor Flow Rate UpdateEvery onnetor c has a set Pc of preeding ells and a set Sc of sueedingells. Its individual time step length Tc is hosen suh that (i) the onnetorrealulates its �ow rates whenever an adjaent ell boundary hanges and (ii)the overall omputational load is minimized. This is ahieved by hoosing Tc asthe largest ommon divisor of all adjaent ells' time step durations:
Tc = ld

i∈Pc∪Sc

{Ti}. (2.14)Arbitrary ell time step durations might yield low omputational savings be-ause of possibly small Tc values resulting from this equation, so they are on-strained to be powers of two. This turns the onnetor time step length intothe minimum of its adjaent ells' time step durations.2.5.3 Cell State UpdateEven if a ell i's state xi hanges only every Ti seonds, its adjaent onnetorsmight run at a higher frequeny. On the �nest temporal sale, this implies
xi(rTi + Ti) = xi(rTi) + 1 s Ti−1

∑

s=0

(

qini (rTi + s) − qouti (rTi + s)
)

. (2.15)Denote by pi (si) the preeding (sueeding) onnetor of ell i. Beause of(2.14), Ti/Tpi
and Ti/Tsi

are integer values. This allows for the following sim-pli�ation:
xi(rTi + Ti) = xi(rTi)

+ Tpi

Ti/Tpi
−1

∑

s=0

qini (rTi + sTpi
)

− Tsi

Ti/Tsi
−1

∑

s=0

qouti (rTi + sTsi
).

(2.16)Therefore, it is su�ient to notify ell i every ld{Tpi
, Tsi

} seonds of possible�ow rate hanges. This is done independently by its upstream and downstreamonnetor every Tpi
and Tsi

seonds by transmitting the appropriate addend in(2.16) to the ell. Sine the ell's boundaries are held onstant for a possiblylonger duration aording to (2.12) and (2.13), the transmitted vehiles areintermediately ahed by the ell. Equation (2.16) is di�erentiable with respetto in- and out�ow rates. 42



Table 2.1: Link parameters in linear test networkmax. density 1 veh / 7.5 m ≈ 133 veh/km�ow apaity 2000 veh/hmax. veloity 50 km/hell length 50 km/h · 1 s ≈ 13.9 mlink length 32 ells/link · 13.9 m ≈ 444 m2.5.4 Experimental Investigation of Simulation PreisionA linear test network is onsidered. It onsists of a sequene of 5 idential linksthe parameters of whih are given in Table 2.1. The simulation boundariesresemble the onditions in whih the CTM was �rst investigated [53℄: A lineardensity gradient from zero to maximum density is plaed on the network, withzero density at its upstream end and maximum density at its downstream end.No tra� is allowed to enter or leave the network. The simulation is run untila steady state is reahed.Figure 2.7 shows the resulting spae-time plots in various disretization settings.Plot 2.7(a) provides a good approximation to the exat solution. Initially, twoshokwaves our: an upstream shokwave moving at positive veloity and adownstream shokwave moving at negative veloity. They merge in the enterof the network and persist as a stationary density disontinuity with all tra�being queued up in the downstream half of the network. For omparison, thesimulation results with a muh oarser but still homogeneous disretization areshown in plot 2.7(b).The results with heterogeneous simulation time steps niely re�et the workingof the underlying Godunov method. In every simulation time step, the Godunovsheme solves a Riemann problem at all ell boundaries. Sine ondition (2.11)ensures that the resulting shokwaves or rarefation fans do not ross beyondone ell during a single time step, these problems an be solved independentlyin a omputationally e�ient way [102, 106℄. Plaing fast tiking ells next toslower ells expliitly displays these shokwaves, as it an be seen best in plot2.7(). While these artifats are unequivoally owed to the simulation logi onvariable time sales, they are put into relation by plot 2.7(d). It shows the sameresult after it has been averaged on a temporal grid aording to the largestinvolved time step duration. The artifats are niely smeared out while theoriginal shokwaves are maintained with a preision that is at least omparableto plot 2.7(b). Analogial statements holds for plots 2.7(e) and 2.7(f).These results indiate that the overall simulation error remains in the order ofthe largest involved time step duration, as it has been previously hypothesized.Artifats an our at the boundaries between slowly and fast tiking ells butan also be removed by a temporal averaging of the simulation output beforefurther proessing. No ampli�ation of artifats is observed. These experimentsannot replae a thorough theoretial investigation. They are, however, onsid-ered as su�ient indiations that the simulation logi on variable time salesperforms well enough to be be applied in the further ourse of this dissertation.43



(a) All links have a time step durationof 1 seond and onsist of 32 ells eah. (b) All links have a time step durationof 8 seonds and onsist of 4 ells eah.
() All but the seond and fourth linkhave an 8 seond time step duration. (d) The same data as () but averagedon a temporal grid of 8 seonds.
(e) Only the seond and fourth link havean 8 seond time step duration. (f) The same data as (e) but averaged ona temporal grid of 8 seonds.Figure 2.7: Spae-time plots with variable spatiotemporal disretizationsColors enode densities as follows: green is zero density, yellow is half of maximumdensity, and red is maximum density. See also Table 2.1. The parenthesized numbersbelow the links indiate their individual time step durations.
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2.6 Network Disretization2.6.1 Spei�ationSpei�ations of large road networks usually onsist of an attributed graphwhere nodes represent intersetions and links represent roads, e.g., [119, 147,163℄. The ell struture of suh a network an be generated by the followingsteps:1. Choose a maximum simulation time step length T̂ . This network timeonstant ompromises between a high simulation resolution (small T̂ )and a high omputational performane (large T̂ ).2. For every link a in the network, do:(a) Selet the individual time step duration Ta of link a as large as pos-sible subjet to the following onstraints:
• Ta is stritly positive and not larger than T̂ .
• Ta is an integer power of two.
• It is required that link a an be partitioned into at least two ellsof equal length La/2. Sine (2.11) must hold for eah of theseells, Ta ≤ La/(2v̂a) is required.If link a is so short that no feasible Ta exists, inrease La just until

Ta = 1 s beomes a feasible solution.(b) Partition link a into na idential ells of length La/na. In order tominimize dispersion, hoose na as large as possible without violatingondition (2.11). That is, na ≤ La/(v̂aTa) must hold. The previoushoie of Ta ensures that this yields at least two ells in link a.3. Plae a onnetor c between every set of adjaent ells, and alulate itsindividual time step length Tc via (2.14).The network entrane of tra� is failitated by entry ells in onsisteny withthe original CTM implementation [40℄. Entry ells an hold an arbitrary ou-pany, have no upstream onnetor, and a maximum out�ow equal to the entireoupany that waits in the ell to enter the system. One entry ell is onnetedto the innermost onnetor of every link. The existene of suh a onnetor isensured sine every link onsists of at least two ells. A spei�ation of the net-work exit of tra� is postponed to Setion 3.1 where multi-ommodity tra� isintrodued. The alloation of demand entry points to links and not to nodes ishosen in onsisteny with the MATSim demand spei�ation [119℄.2.6.2 Berlin Test CaseThe test ase of this thesis is modeled after the road network of Greater Berlin,whih is illustrated in Figure 2.8. This network onsists of 1 083 nodes and 2 459unidiretional links. It is quite heterogeneous in that the inner-urban area is45



Figure 2.8: Major road network of Greater BerlinThe two lippings indiate a loally high network resolution.
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Figure 2.9: E�et of network time onstant on ell ountNumber of ells over log
2
(T̂ ). Sine the network geometry has a limiting e�et on theell sizes, T̂ values beyond 26 s do not result in a notably inreased oarsening.

Figure 2.10: Time step duration histogramHistogram of logarithmi intersetion onnetor time step durations given a networktime onstant of T̂ = 64 s. 47



modeled in relatively high resolution, whereas the surrounding freeway ring isomprised of several links that are many kilometers long.Figure 2.9 shows the e�et of the network time onstant T̂ on the number ofells in the network. As T̂ inreases, the number of ells approahes a minimumvalue of 2 · 2 459. This mirrors the above requirement of at least two ells perlink. A histogram of intersetion onnetor time step lengths for T̂ = 64 s isgiven in Figure 2.10. The high number of intersetions with a relatively lowtime step duration is owed to the �nely meshed interurban network, whih ispreluded from a slower simulation lok. The relation between network timeonstant and omputational performane is investigated in Setion 3.1.4.2.7 State Spae NotationFor greatest generality, the remainder of this thesis is deoupled from spei�tra� �ow modeling assumptions by the following state spae representation ofthe mobility simulation:
xms(0) = xms

0

xms(k + 1) = fms[xms(k), β(k), k].
(2.17)Vetor xms(k) denotes the mobility simulation's physial state in time step k.For a spatially disretized �rst order model, it ontains one element for everyell i in the network: xms = (xi). Single-ommodity turning frations β(k) =

(βij(k)) are provided as exogenous parameters to the model. Vetor-valuedtransition funtion fms de�nes the system's evolution through time. It fullyenapsulates the spei�ally hosen mobility simulation. The formal modelingof demand soures and sinks is postponed to the next hapter.For the subsequent analysis, it is required that at least approximate Jaobians
∂fms[. . . , k]/∂xms(k) and ∂fms[. . . , k]/∂β(k) are available. This ondition isful�lled by the mobility simulation proposed in this hapter sine

• ell state update equation (2.16) is linear with respet to in- and out�owrates,
• these �ow rates an be linearized with respet to ell boundaries andturning frations, f. (2.5), (2.6), and Setion 2.4.4, and
• ell boundary spei�ation (2.13) is linearizable with respet to the ellstates.
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Chapter 3Mirosopi BehavioralSimulationThis hapter prepares a formal link between individual driver behavior andaggregate harateristis of tra� �ow.First, motorist driving deisions are expressed as ontrol measures that at ona state spae model of marosopi tra� dynamis. The resulting formalismis quite general and allows to link di�erent marosopi mobility simulationsand mirosopi behavioral models. In partiular, it allows to predit the lin-earized e�et of individual driver behavior on global network onditions withoutrepeated simulations.Seond, the deision making proess of a driver is formalized in a way that isompatible with the aforementioned miro/maromobility simulation. This rep-resentation omprises a broad variety of possible behavioral simulators. Somemore spei� modeling approahes are also presented. Apart from their illus-trative purpose, they introdue modeling aspets that are referred to in laterhapters.3.1 Coupling Miro- and MarosimulationTwo di�erent onepts an be enountered in the literature on ombined mi-ro/maro mobility simulations.Hybrid approahes link simulations that work on di�erent degrees of aggregationat well-de�ned loations in the network [32, 64℄. This approah is attrative ifthe required simulation �delity varies spatially but does not serve the purposeof this work where a network-wide marosopi model is needed.Mesosopi simulations move individual vehiles based on aggregate laws ofmotion in order to inrease the omputational performane while retaining amirosopi representation of behavior [31, 35℄. Simulation-based DTA usuallyemploys suh models, f. Setion 1.2.2.2 and the referenes therein. Theirounterpart in physis are smoothed partile hydrodynamis (SPH) [124, 155℄.49



The approah desribed here is a mesosopi model with a distint marosopiaspet. In this way, mathematial feasibility (linearization of the marosopimodel) and expressive power (mirosimulation of behavior) are ombined. Highomputational performane is maintained by a simulation sheme on variabletime sales.3.1.1 Representation of Behavioral HeterogeneityPursuing a stritly marosopi approah, heterogeneous driver behavior ouldbe aptured by splitting tra� volumes into partial �ows (ommodities) withindividual behavioral features. For example, destination-bound ommoditieswould exhibit di�erent turning behavior at intersetions in order to reah theirdestinations. The appliability of this approah is limited by the omputationalost of traking partial �ows for every ommodity on every link in the network.A mesosopi simulation easily keeps trak of behavioral aspets by attahingthem to individual DVUs. A ontinuation of the mesosopi method towardssomewhat more marosopi modeling is pursued here. A fully marosopirepresentation of the underlying physial model is maintained. The behav-ioral information is represented by massless partiles that are dispersed in themarosopi �ow. They drift along with the �ow aording to its spatiotemporalveloity �eld. If one maintains the marosopi multi-ommodity point of view,these partiles an be interpreted as draws from the ommodity distribution ofthe �ow entering the network. Commodity information for any spatiotemporalsegment of the network an be reovered by ounting the aording partileswithin that segment.If one suh partile is dismissed into the system together with the marosopiounterpiee of one vehile, an interpretation as a DVU is obvious. However, thenumber of partiles is not onstrained by this and an be hosen as a ompromisebetween behavioral modeling resolution and omputational performane.3.1.2 Partile Movement3.1.2.1 Spei�ationThe marosopi tra� �ow model is required to speify a loal veloity vi(k)in every ell i in every time step k. The veloity alulation logi employed inall experiments of this thesis is desribed in Appendix C.Consider a set of partiles n = 1 . . .N (a population of travelers, agents orvehiles) that are �oating through the system. Partiles have no �mass� insofaras they do not ontribute to the marosopi oupany in a ell. At the timeof a partile's entrane into the network, an appropriate amount of marosopi�ow is also dismissed into the system, resulting in a mass balane betweenpartiles and total marosopi oupany.In any time step k of duration T , eah partile advanes aording to the loalveloity in its urrent ell. Partile loations within a ell are ontinuous vari-ables and their movement is regarded as ontinuous in time as well: When a50



Figure 3.1: Partile movement aross ell boundariesA partile approahes the upstream end of a ongested road segment. The time stepduration is T = 8 s. The partile needs 5 s to reah the end of ell i at vi = 40 km/h.During the remaining 3 s, it advanes another 16.5m in ell j at vj = 20 km/h.partile rosses a ell boundary during a single move of duration T , it an freelyhoose its next ell (if there is more than one downstream ell) and ontinuewith the veloity enountered there until its available move time ends. Thisproedure is illustrated in Figure 3.1. The partile evaluates all traversed ells'veloities at the start time of its move. In onsequene, this simulation sheme isimpreise in the order of a time step length, just as the marosopi simulationlogi itself.When a partile reahes its destination, it is removed from the system and anappropriate amount of marosopi �ow is also �ltered out of the tra� streampassing the exit loation.3.1.2.2 Simulation on Variable Time SalesThe previous hapter desribes how a marosopi simulation an be run withvariable time step lengths for di�erent network elements. This approah an beextended to the movement of partiles and requires the following ompletion ofthe simulation proedure given in Setion 2.5, p.41. It is illustrated in Figure3.2.1. Every ell i that is due aording to its individual time step length Tialulates its supply and demand boundary from its urrent oupanyand keeps these results onstant for the next Ti seonds.2. Eah partile that urrently resides in a ell i that is due is moved forwardaording to the following rules:(a) The partile moves for a duration equal to the time step length Ti ofits start ell i. It might ross several ells during this move if ell ihas a larger Ti than its downstream ells.(b) If the partile has used up its time of movement and has arrived ina ell j with Tj > Ti, it ontinues its move until it has moved foran overall duration of Tj . This ontinued move never enters anotherell beause of ondition (2.11) and aounts for the expeted waitingtime Tj − Ti until the partile is again due for movement.51



Figure 3.2: Partile movement on variable time salesA homogeneous veloity �eld is assumed so that a orret partile trajetory is repre-sented by a straight line in the spae-time plot. The onsidered partile starts its movein ell i at spae-time point P0. During its initial move of duration Ti, it traversestwo small intermediate ells and �nally arrives in ell j at point P1. If the move was�nished there, it would not be ontinued until Tj −Ti seonds later from point P ′
2 be-ause of ell j's greater time step length Tj . This would be inorret as the unstraightblue trajetory indiates. The partile has to aount for the waiting time on ell jby ontinuing its move for another Tj − Ti seonds, whih results in the linear andtherefore orret red trajetory through point P2.3. Every onnetor c that is due aording to its individual time step length

Tc alulates its average �ow rates that hold for the next Tc seonds andnoti�es its adjaent ells of the resulting vehile transmissions.Sine the partile still evaluates all traversed ells' veloities at the start time ofits move, the resulting impreisions remain in the order of the largest involvedtime step duration.3.1.3 Partile Route Choie3.1.3.1 Spei�ationHaving stated the in�uene of marosopi dynamis on individual partiles, theonverse problem of synhronizing marosopi �ows with individual partilebehavior is onsidered next.The route hoie of partile n is expressed by a vetor un(k) = (uij,n(k)) ofturning move indiators
uij,n(k) =

{

1 if n proeeds from ell i to j at time step k
0 otherwise. (3.1)An additional state vetor xnt(k) = (xij(k)) is introdued. Eah element xij(k)represents the aumulated ount of partiles having turned from ell i to j until52



time step k. The dynamis of these turning ounters are de�ned by
xnt(0) = 0

xnt(k + 1) = xnt(k) +

N
∑

n=1

un(k).
(3.2)The marosopi turning frations β(k) = (βij(k)) an now be spei�ed as afuntion β(xnt(k)) = (βij(x

nt(k))) of the turning ounters where
βij(x

nt(k)) =
xij(k)
∑

l xil(k)
. (3.3)This is a maximum likelihood estimator of the turning probabilities if the turningmoves follows a stationary multinomial distribution [87℄. The resulting estimatesan be diretly fed into the marosopi model by a substitution of β in (2.17).In order to avoid unde�ned 0/0 divisions at the beginning of a simulation, theturning ounters an be initialized with small positive values instead of all zeros.While the update equation in (3.2) assumes stationary turning probabilities,a straightforward approah to introdue time dependeny is to de�ne an ad-ditional forgetting parameter w ∈ (0, 1) in a modi�ed turning ounter updateequation

xnt(k + 1) = wxnt(k) + (1 − w)

N
∑

n=1

un(k). (3.4)In the absene of newly observed turning moves, this sheme auses an expo-nential forgetting of previously observed ounts. A useful property of this �lteris its in�nite memory: Even if no partiles arrive at an intersetion for a while,the turning ounts remain stritly positive and thus ensure well-de�ned �owsplits in (3.3).One possible problem with (3.4) is the danger of gridlok. If a tra� jam inone of an intersetion's downstream ells auses all upstream ells' veloities todrop, it might take a long time until new partiles reah the intersetion andprovide fresh turning move indiators that re�et these drivers' avoidane of theunavailable outgoing ell. An appropriate gridlok resolution logi is desribedin Appendix D.A state spae representation of the ombined system (2.17) and (3.4) an nowbe given. De�ning
x(k) =

[

xms(k)
xnt(k)

] (3.5)and
f [x(k),u1(k) . . .uN (k), k] =

[

fms[xms(k), β(xnt(k)), k]

wxnt(k) + (1 − w)
∑N

n=1 un(k)

]

, (3.6)one obtains
x(k + 1) = f [x(k),u1(k) . . .uN (k), k]. (3.7)Aording to the notational onventions of ontrol theory, the turning moveindiators un at as ontrol variables in this model. In fat, the individual53



driver behavior steers the marosopi tra� �ow. x is subsequently denotedas the marosopi state of the mobility simulation. Note that x does notaount for the mirosopi states of individual partiles. The ombined statetransition funtion f is linearizable with respet to x and all un beause ofthe linearizability of its onstituting funtions (2.17), (3.3), and (3.4). Thisimplies that the e�et of an agent's route hoie on the marosopi states anbe linearly predited as the sum of the e�ets of its turning moves.The state spae model desribed so far aptures mobility only within the networkbut does not aount for vehile entries and exits. These extensions require themore onise formalization of travel demand given in the seond half of thishapter. Regarding linearizability, it an already be stated that the marosopie�et of a partile's entry or exit an be linearly approximated sine an entry orexit move orrespondsmarosopially merely to a loal oupany modi�ation.3.1.3.2 Simulation on Variable Time SalesIf the marosopi mobility simulation runs on variable time steps, the rows of(3.4) are evaluated at likewise variable frequenies:
xij(rTc + s) = xij(rTc) r ∈ N, s ∈ {0, . . . , Tc − 1}

xij(rTc + Tc) = wcxij(rTc) + (1 − wc)
1

Tc

Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)
(3.8)where Tc is the time step duration of the onnetor c that is rossed by turningmove ij. An individual weight wc is neessary for every suh onnetor in orderto maintain the same degree of averaging for all turning ounters.If the number∑N

n=1 uij,n(k) of mirosopially simulated ij turning moves dur-ing a single simulation time step is Poissonian with expetation and variane
λij , the variane of xij as de�ned in (3.8) approahes

lim
r→∞

VAR{xij(rTc)} =
1 − wc

1 + wc

λij

Tc
. (3.9)A derivation of this equation an be found in Appendix E. The network timeonstant T̂ de�ned in Setion 2.6 is now employed to postulate that a turningounter's variability must be independent of its onnetor's time step lengthand, more spei�ally, idential toVAR



1

T̂

T̂−1
∑

s=0

N
∑

n=1

uij,n(rT̂ + s)







=
λij

T̂
. (3.10)This variane would result if the turning ounters were averaged non-reursivelyon a temporal grid as oarse as the network time onstant. Equating (3.9) and(3.10) yields

wc =
T̂ − Tc

T̂ + Tc

. (3.11)An in�nite turning ounter memory is guaranteed if all Tc are hosen stritlysmaller than T̂ . The working of this spei�ation is illustrated in Figure 3.3.54



Figure 3.3: Turning ounter dynamisThree turning ounters (red) with time step durations of 1, 2, and 4 seonds trak a Poissonian signal (blue) for a duration of 100 seonds. Thesignal's expetation jumps from 0 to 5 after 10 seonds and returns to 0 after another 60 seonds. The network time onstant T̂ is 8 seonds in allases. All ounters exhibit a similar variability and speed of adaptation.
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For a simulation time step length of one seond, the requirement of an in�-nite memory ditates a minimum network time onstant of two seonds. Giventhis inertia, a preise marosopi traking of individual vehiles is not pos-sible. However, suh a preision is rather undesirable for the purpose of thiswork. The simulated driver population is an output of MATSim, the mobilitysimulation of whih is a queuing model with relatively limited expressive powerbut a high omputational performane [41℄. It aounts for signalized inter-setions merely by average �ow apaity redutions, whih results in relativelyundisturbed tra� streams. Maintaining this modeling �delity, a marosopireprodution of individual vehile movements would only introdue additionaldisretization noise into (3.7) � an utmost undesirable e�et sine this model isto be linearized.In a planning ontext, a network time onstant of several minutes is a goodhoie. It must not be too large sine otherwise the marosopi model even-tually looses trak of the driver behavior. A reasonable upper bound for thenetwork time onstant is the time interval at whih tra� information is aver-aged before it is fed bak to the simulated travelers who in turn reat to thisinformation by possible turning move hanges.3.1.4 Computational Model InvestigationThe miro/maro model's preision and the aelerating e�et of the simulationlogi on variable time sales are investigated. All experiments are onduted ona 1.7 GHz Pentium 4 mahine with 1 GB RAM, using the Sun Java RuntimeEnvironment 5.0 [84℄.A syntheti population of 206 353 motorist travelers with omplete daily plansis available for the Berlin network introdued in Setion 2.6.2 [153℄. This is a10 perent sample of Berlin's true motorist population. Thus, 10 marosopivehile units need to be inserted together with one partile into the simulation.However, sine the simulations are run on a thinned out version of the full Berlinnetwork, the use of 2 instead of 10 marosopi vehile units per partile alreadyreates realisti ongestion patterns.The following experiments onsider the morning rush hour from 6 to 12 am.Figure 3.4 shows the total number of moving vehiles as a funtion of time. Morethan 16 000 partiles, i.e., 32 000 marosopi vehile units, are onurrentlysimulated during the rush hour peak at approximately 8:30 am.3.1.4.1 Preision of Miro/Maro CouplingThe mirosopi behavior in�uenes the marosopi �ow splits via the turn-ing ounter mehanism, whereas the mirosopi movements are guided by themarosopi veloity �eld. The preision of this miro/maro model synhro-nization is investigated here.Figure 3.5 shows the mirosopi and marosopi tra� density trajetoriesfor two seleted links of the Berlin network. Marosopi density is the ratioof marosopi vehile units on a link to the link's spae apaity. The spae56



Figure 3.4: Simulated Berlin morning peakA simulation of the Berlin morning peak between 6 and 12 am. The urve shows themarosopi number of moving vehiles over time.apaity of a link is de�ned as its length times its number of lanes. Mirosopidensity is alulated here as the quotient between twie the mirosopi partileount on a link and its spae apaity. The fator of two aounts for the fatthat one partile represents two vehile units in the given experimental setting.Link (a) is only 25 meters long, whereas link (b) has a length of 1611 meters.This di�erene is re�eted in the muh greater variane of the mirosopi den-sity on the shorter link. Both marosopi density trajetories trak the miro-sopi trends with high preision and almost no lag. The strong disretizationnoise partiularly on the shorter link is signi�antly redued.In order to avoid arbitrariness, these links were automatially hosen aordingto the following riteria: Link (a) exhibits the largest ratio of density to spaeapaity during the rush hour peak, whereas link (b) arries the largest totalamount of vehile units, i.e., the largest produt of density and spae apaity,in the same time interval. That is, the �rst riterion prefers small links, andthe seond riterion prefers large links. Both riteria favor ongested links sineunongested onditions prevail anyway before the rush hour sets in.The marosopi densities beyond 133 veh/km indiate that the gridlok res-olution mehanism desribed in Appendix D atively in�uenes the tra� dy-namis. This shows that the purely marosopi gridlok resolution logi isompatible with the mirosopi model omponents.The network time onstant is hosen as large as 5 minutes. This is justi�edin light of the 15 minute time bins in whih MATSim averages travel timesbefore feeding them bak to the simulated travelers in its iterative simulationproedure, f. Setions 1.2.2.3 and 3.2.2.3.The di�erene between this model and a typial mesosopi approah is empha-sized. The presented marosopi trajetories are not alulated by some kind57



(a) Mirosopi and marosopi density trajetory for a short link of 25 m lengthunder heavy ongestion. The disrete value domain of the mirosopi urve re�etsthe strong vehile disretization noise. The marosopi urve removes most of thisnoise. Unrealistially high mirosopi densities are possible beause of the masslesspartiles. The marosopi urve, however, is within bounds.

(b) Mirosopi and marosopi density trajetory for a 1.6 km long link underheavy ongestion. The disretization noise has a weaker e�et sine a greater numberof partiles is averaged in the mirosopi density alulations. The mirosopi signaltrend is traked very well by the marosopi urve.Figure 3.5: Preision of miro/maro model synhronization58



Figure 3.6: Mean normalized bias and error trajetoriesMean normalized bias MNB and mean normalized error MNE as de�ned in (3.12)and (3.13). The intermediate mirosopi exess in MNB of about 1 per mille isnegligible and owed to the partile entrane mehanism whih puts partiles ahead oftheir marosopi �ow into the system. Likewise, there is a similar undershoot as thepartiles leave the system ahead of their marosopi �ow at the end of the rush hour.of mirosopi vehile ount averaging. Rather, they impliitly result from on-tinuously traked turning frations that guide an appropriate amount of trulymarosopi �ow aross eah link.A network-wide point of view is adopted by means of the following two hara-teristis: MNB(k) =
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(3.13)is the mean normalized error.Figure 3.6 shows that MNB �utuates unsystematially around 0 perent. Thisindiates that the mass balane between mirosopi and marosopi �ow iswell maintained. The maximum value of approximately 3 perent for MNE ismoderate and plausible in onsideration of Figure 3.5.These results show that the miro- and the maro-model are well synhronizeddespite of their sparse interations. The resulting marosopi tra� hara-teristis exhibit a signi�antly lower disretization noise than a simple averageover the mirosopi partiles. 59



Figure 3.7: Mirosopi and marosopi omputation timesMirosopi and marosopi omputation times over log2 of the greatest allowed timestep duration. The simulated time span is 6 hours.3.1.4.2 Computational PerformaneThe impreisions introdued by the simulation sheme on variable time sales arenow justi�ed by their ountervailing omputational bene�ts. The same morningpeak senario as before is onsidered.The omputational e�ort for the miro- and for the marosimulation is distin-guished in the following way. The marosimulation omprises all proesses de-sribed in Chapter 2 plus the turning ounter traking desribed in Setion 3.1.3.The mirosimulation omprises the additional operations neessary to updatethe individual partile loations as desribed in Setion 3.1.2. In onsequene,the total omputational e�ort is the sum of miro- and marosimulation.Figure 3.7 shows the mirosopi and marosopi omputation time over log2of the greatest allowed simulation time step duration, whih is roughly thesame as the network time onstant T̂ .1 The overall number of omputations isproportional to the number of network elements and to the frequenies at whihthese elements are updated. An inreased T̂ a�ets both, the element ountand the alulation frequeny. Thus, the omputation times initially dereasequikly with T̂ but then stabilize beause of the geometrial onstraints on thelink and node time step durations. Choosing large ells and long time stepsdoes not only redue the number of marosopi alulations but also dereasesthe frequenies at whih the mirosopi partiles are updated.Figure 3.8 shows the real time ratio, i.e., the ratio of simulated time to the timerequired to run the simulation. The aomplished maximum value is 90. This1More preisely, the network time onstant T̂ is slightly larger than the greatest allowedsimulation time step duration in order to ensure an in�nite turning ounter memory, f.Setion 3.1.3.2. 60



Figure 3.8: Real time ratioReal time ratio over log2 of the largest simulation time step duration in the network.These values aount for all operations of the simulation system and inlude a numberof supplementary proedures. In onsequene, the evaluated running time is slightlylarger than the sum of pure miro- and marosimulation.shows that the model is ready for real-time simulations of large-sale senarios.In summary, its omputational e�ieny is owed to the following properties:
• The model does not require a realisti number of partiles. If, for example,only a 10 perent sample of the omplete population is loaded on thenetwork, the marosopi equivalent of 10 vehiles is inserted into thesystem together with every partile. The hosen sample size must belarge enough to properly represent the atual population's behavior butotherwise an be minimized for high omputational performane.
• The marosopi mobility simulation only moves single-ommodity �ows.No are has to be taken of partial densities as it would be the ase ifbehavioral aspets were represented marosopially.
• Every link is simulated with a ell size and a time step length that areoptimally adjusted to its harateristis.Altogether, two results obtained in this setion are useful independently of astate estimation problem. First, it is shown how a general marosopi tra��ow model an be employed to simulate mirosopi travel behavior. A usefulfeature of this approah is its ability to remove vehile disretization noise.Seond, the marosopi simulation logi on variable time sales, f. Setion2.5, is extended towards this miro/maro oupling sheme and exhibits a highomputational performane.Important for estimation, the linearizability of state spae model (3.7) is main-tained throughout the entire development. This provides the sensitivity infor-61



mation that is subsequently applied to predit the linearized e�et of an indi-vidual driver's turning move sequene on the global network onditions withoutrepeated simulations.3.2 Simulation of Drivers' ChoiesThe �rst part of this hapter spei�es physially observable driver behavior asa sequene of turning moves. In the following, the deisions that preede thisbehavior are disussed and formalized in a way that allows for a seamless linkageto the previously desribed miro/maro mobility simulation. The resultingbehavioral representation is logially ompatible with the estimation algorithmdeveloped in the next hapter and tehnially ompatible with a MATSim-likesimulation system. Sine this dissertation does not ontribute to the �eld ofbehavioral modeling itself, the following disussion is kept problem-spei� andis not exhaustive from a behavioral modeling point of view.3.2.1 Choie FormalismIt is assumed that, whenever a traveler is faed with a situation that alls fora deision, this traveler hooses preisely one element from a nonempty set ofdisrete alternatives. The deision making proess itself is strutured aordingto the framework given in [21℄:1. de�nition of the hoie problem,2. generation of alternatives,3. evaluation of attributes of alternatives,4. hoie,5. implementation.These steps are made preise in the remainder of this setion. Note that areative deision protool as de�ned in Setion 1.3.1 may repeat steps 2 and 3several times before a hoie is made.The disussion omits spei� modeling assumptions and algorithmi details thatwould be neessary for the realization of an appliable behavioral model. Thisis justi�ed by the intention to provide an estimator that is ompatible with abroad range of behavioral models and by the rather tehnial assumption thatthe estimator is likely to be attahed to an existing tra� simulator, f. Setion1.3.1. Only a few seleted modeling aspets that are referred to in the laterdevelopments are disussed at the end of this hapter.3.2.1.1 De�nition of the Choie ProblemMost of the terminology introdued here is onsistent with the MATSim sys-tem spei�ation given in [149℄. However, the underlying oneptions are moreuniversally appliable to the modeling of travel behavior and are not on�nedto this software. 62



Plans The ativity and traveling intentions of an individual are denoted asher plan. For simpliity, only plans for a single day are onsidered. Physially,a plan desribes a round trip through the transportation network. This roundtrip omprises a sequene of legs that onnet intermediate stops during whihativities are onduted. The �rst and last ativity of a plan typially take plaeat the individual's home loation.Ativities are de�ned in terms of their type (e.g., work, leisure), loation (alink in the network), start time, and end time or prespei�ed duration. Twosubsequent ativities are onneted by a leg. While in general a leg an beassoiated with di�erent modes (e.g., ar, publi transport, walking), this thesisonsiders only individual motorist travelers suh that a leg always implies avehiular movement through the road network. A motorist leg is parameterizedby origin and destination link, route (a sequene of links that onnets origin anddestination), and departure time. Only a desired arrival time an be prespei�edsine the atual time of arrival depends on the prevailing tra� onditions.When a traveler hooses her ourse of ation for a given day, she equivalentlyhooses a plan for that day. It is possible to disaggregate the hoie of a planinto a logial or temporal sequene of deisions [27, 99℄. The latter methodis naturally appliable to within-day replanning, where a traveler ontinuouslyreonsiders and adjusts her urrent plan aording to pre- and en-trip olletedinformation. Formally, the hoie of a plan segment where some degrees offreedom are �xed is not di�erent from the hoie of a full plan, and no suhdi�erentiation is made in the following. For example, an en-trip route swithingmodel maintains all ativity loations and timings of the present plan. Equiv-alently, route swithing an be represented as the hoie of a ompletely newplan where all degrees of freedom apart from route hoie are onstrained to beidential to those of the original plan.Generalized Paths The oneption of a plan is now formalized in a way thatis amenable to the likewise formal derivation of a behavioral estimator.A simple route U onnets two subsequent ativity loations. It is de�ned as a(physially feasible) sequene of turning moves
U = . . .u(k − 1),u(k),u(k + 1) . . . = {u(k)}k (3.14)with u(k) spei�ed in (3.1). The representation of a route as a sequene ofturning moves rather than a sequene of links maintains onsisteny with themirosopi driver representation spei�ed in the �rst half of this hapter. Itan be thought of as an ordinary edge sequene in an �inverted� network wherevertexes represent links and edges represent turning moves, f. Figure 3.9. Asequene of turning moves uniquely de�nes a sequene of original links, and vieversa.The round trip that physially orresponds to an all-day plan is formalized asa (yli) path by minor modi�ations to the inverted network. Every vertex

v of the inverted network that represents an ativity loation is omplementedwith an additional vertex v′ that represents the atual exeution of an ativityat this loation. The start of an ativity is then equivalent to a turning move
v → v′, and its end an be identi�ed by a v′ → v move. A plan's full sequene63



Figure 3.9: Route hoieThe original road network is drawn in blue. Three of its links serve as ativity loations(o�e, mall, home). The inverted network for route representation is drawn on top inblak. It represents every original link by a vertex and every possible turning move byan edge.of ativities and legs now omprises a single round trip through the invertednetwork, with yles at the ativity loations. Figure 3.10 provides an example.This formalism simpli�es notation sine it allows to represent all physiallyrelevant aspets of a full plan onsistently with (3.14) in terms of a generalizedpath U . If only a plan segment is to be represented, its generalized path segmentalso ontains only the orresponding subset of turning moves. Subsequently, thenotions of a path and a generalized path will be used synonymially wheneverthe ontext allows to distinguish them from a simple route that only onnetstwo links in the network.Tra� �ow model (3.7) an be steered by generalized paths instead of simpleroutes without formal modi�ation. Sine the e�et of entering and exitingvehiles an be linearly approximated by this model, it is also linearizable withrespet to the newly introdued turning moves that represent suh entries andexits. This implies that the e�et of an agent's plan hoie on the marosopinetwork onditions an be linearly predited in the same vein as it has beendemonstrated for route hoie in Setion 3.1.3.1.Sine a generalized path U is a formal representation of an individual's inten-tions, it represents an aspet of that individual's mental state. Its notationin terms of the typial ontrol symbol �u� is maintained here sine the largestportion of this thesis deals with the steering e�et of driver behavior on maro-sopi tra� dynamis. The de�nition of a full state spae model for a ombinedmiro/maro tra� system that inludes some kind of mental dynamis is notneessary for the purpose of this dissertation.3.2.1.2 Generation of AlternativesThe hoie set of behavioral alternatives available to deision maker n is de-noted by Cn. The elements of this set are plans, formally represented by (gen-eralized) paths U . It is reasonable to assume that Cn is signi�antly smallerthan the set of all thinkable plans: The elements in Cn must be ompatiblewith the goals and ommitments of a traveler, f. Setion 1.2.2.3. The limited64



Figure 3.10: Generalized path hoieThe same physial network as shown in Figure 3.9. Cyles are added to all pos-sible ativity loations. An exemplary plan that onsists of the ativity sequenehome→work→shop→home now onsists of one round trip through the inverted net-work, with yles at the ativity loations. Its equivalent sequene of vertexes is
h′, h, . . . , o, o′, o, . . . , m, m′, m, . . . , h, h′.knowledge of the deision maker exludes all unknown options from onsidera-tion. Physial, legal, and individual (e.g., �nanial, onstitutional) onstraintsfurther redue the hoie set. If a traveler reonsiders only a segment of her ur-rent plan, an additional onstraint on Cn is that everything but this segmentmust remain unhanged in all alternative plans.It is required that a non-empty hoie set Cn is available to every agent n inevery situation that alls for a deision. This hoie set may be spei�ed in twodi�erent ways, depending on the deployed deision protool, f. Setion 1.3.1:

• A reative deision protool inrementally onstruts a set of onsideredalternatives given a partiular hoie situation. Di�erent suhlike setsmay be generated in repetitions of otherwise idential onditions beauseof probabilisti omponents in the generation proedure. In this ase, Cnomprises all possibly generated alternatives.
• In a deliberative deision protool, the hoie set has typially been gen-erated prior to the atual hoie situation. That is, Cn is expliitly anddeterministially presribed, even if it was originally generated by a ran-domized algorithm.The goal of this work is to treat the deision protool as muh as a blak box aspossible. The only requirement implied by the above listing is that there existsa nonempty set Cn of alternatives that ontains all possible hoies of agent nin a given situation. However, an enumeration of this set is not required.3.2.1.3 Evaluation of Attributes of AlternativesThe systemati (deterministi) utility of an alternative, represented by areal-valued number, is a model of the bene�ts a deision maker expets from65



hoosing this alternative. It re�ets the deision maker's preferenes. Utilitypereption an vary among deision makers, and learly utility an di�er amongalternatives. Formally, a systemati (deterministi) utility Vn(U) is assoiatedwith every plan U in the hoie set Cn of traveler n.The utility of a plan is omprised of two omponents: positive utility for theexeution of ativities and negative utility (disutility, ost) for travel itself. Typ-ial aspets of route (dis)utility are travel time, distane traveled, number ofleft-turns, number of signalized intersetions, and ontat with inseure neigh-borhoods [18, 20℄. The utility of an ativity varies depending on the type ofativity, its ontext within the entire plan, and the timing of its exeution [43℄.If a utility-driven modeling approah is adopted, it is required that the system-ati utility for every plan of any agent an be alulated by the utility funtionshown in Figure 1.1 and that the resulting utility ombines all of the afore-mentioned (dis)utility omponents in a single number. This evaluation onlyhas to be available on request and on a per-plan basis. It is not required thatthe hoie set is enumerated for a omplete evaluation before a hoie is made.Furthermore, if the deision protool sequentially omposes a hoie, e.g., byinrementally building a plan as a sequene of ativities and legs, the utilityfuntion may be limited to an evaluation of the aording plan omponents.3.2.1.4 ChoieThe hoie of a ertain plan (segment) is modeled non-deterministially. Theprobability that deision maker n hooses plan U ∈ Cn is denoted by Pn(U).This hoie distribution may be parameterized in an agent-spei� way butotherwise is required to depend only on the attributes of the elements in Cn. Ifthe hoie model is utility driven, the attributes of a plan must be representedby its utility.A probabilisti hoie logi may represent randomness in human behavior oraount for modeling impreisions [21℄. The spei� modeling assumptions thatunderly a partiular deision protool are not relevant for the subsequentlydeveloped estimation approah beyond the fat that behavior is unertain atall. Otherwise, there would be no sope for a behavioral adjustment.Neither an enumeration of the hoie set nor an expliit (e.g., losed-form)representation of the implemented hoie distribution need to be available. Onlyrealizations of hoies must generated by the behavioral simulation system.3.2.1.5 ImplementationThe implementation of a hoie requires its realization in the mobility simu-lation. However, an agent with an imperfet knowledge of the atual tra�onditions may observe an inonsisteny between what it wants to do and whatis physially possible. In partiular, the generalized path representation of aplan omprises a sequene of turning move indiators that prespeify the timingof every turning move and every entry/exit move in the network. It is unlikelythat the (ongested) tra� onditions admit preisely this timing.66



It therefore is assumed that a plan is robust in that it annot be invalidatedby �nite hanges in travel times. An example of a robust plan is one where(i) the ativities have no �xed start time but rather a prespei�ed durationand (ii) the legs only speify a sequene of links but not the timing of theirentry. Consequently, a one hosen plan an always be exeuted in the mobilitysimulation without further replanning. The MATSim plans are robust in thisregard.A preise formalization of this situation would require to supplement the mo-bility simulation (3.7) with another model omponent that updates the plans
Un = {un(k)}k for all agents n = 1 . . .N in every simulation time step k suhthat their onsisteny with the physial situation is maintained. However, sinethe atually implemented mobility simulation does not require the generalizedpath abstration at all, the �titious existene of suh a model omponent merelymaintains formal onsisteny whenever it is stated that �U1 . . .UN are loadedon the network� or �U1 . . .UN are fed into the mobility simulation�.The generalized paths U1 . . .UN uniquely speify both the intended and theimplemented driver behavior. Therefore, no formal di�erentiation between theseaspets is subsequently made.3.2.2 Spei� Modeling AssumptionsThe strutural outline given above is made preise in terms of two fairly di�erentmodeling approahes.Random utility models (RU models, RUMs) onstitute a broadly appliable lassof hoie models that are based on reasonable behavioral assumptions and soundmathematial inferene. The simple mathematial struture of ertain RUMs isexploited in the derivation of a behavioral estimator.MATSim's behavioral model basially relies on a dynamial systems assumptionabout human learning. Sine the resulting model behavior is de�ned ratherimpliitly through this learning proess, and sine the dynamis of this proessare not yet well-understood, MATSim onstitutes a partiularly hallengingmodel for a behavioral estimator.3.2.2.1 Random Utility ModelsRUMs onstitute the mainstay of travel behavior modeling, and a spei� im-plementation of the deision protool is likely to be based on RU theory [21, 22℄.The RU modeling assumptions are outlined below.It is assumed that a deision maker n always hooses the alternative of greatestpereived utility from her prespei�ed hoie set Cn. The systemati utility
Vn(U) onstitutes only an imperfet model of her true utility pereption. Inorder to re�et this impreision, a random error omponent εU ,n is added to thesystemati utility of every alternative U . The probability Pn(U) that U is hosenthus equals the probability that the random utility of U is greatest among allalternatives:

Pn(U) = Pr(Vn(U) + εU ,n ≥ Vn(V) + εV,n, ∀V ∈ Cn). (3.15)67



Closed-form expressions for these hoie probabilities an be obtained for ertainjoint distributions of the error omponents. But even if no suh losed form anbe found, a simulation of hoies that are onsistent with (3.15) is possible. Theproedure requires (i) to draw a disturbane from the joint error distributionfor all alternatives, possibly through a simulation proedure as desribed below,and (ii) to deterministially hoose the alternative of greatest disturbed utility.3.2.2.2 Models of Route ChoieThe two major modeling approahes to route hoie have already been addressedin Setion 1.2.2.2: Either route (re)planning is realized by the alulation of abest path, or a route is hosen probabilistially from a prespei�ed hoie set.Behaviorally, the alulation of a best path is an idealization. It implies globalnetwork knowledge and an optimal hoie mehanism given a ertain objetivefuntion suh as trip travel time. The e�etive alulation of a best path requiresroute ost to be additive in link ost whih ignores existing evidene for nonlinearost pereption. Probabilisti route hoie allows for greater realism. A hoieset of routes an be generated in a way that is onsistent with a driver's (usuallylimited) knowledge of available alternatives. There is no limitation of link-additive osts. The random hoie omponent properly re�ets behavioral andmodeling unertainties [148℄.Computationally, best path has an edge over probabilisti hoie. Routing prob-lems have been intensively studied in omputational siene and e�ient solutionalgorithms are available for problems with link-additive ost [83℄. In ontrast,probabilisti hoie implies some omputational overhead. Choie set genera-tion itself is a nontrival task [20, 148℄. Every agent's individual hoie set hasto be stored and proessed during simulation, and every alternative needs to beevaluated for the simulation of a single hoie. Contrarily, the e�ieny of bestpath algorithms is owed to their avoidane of path enumeration [130℄.The realism of probabilisti hoie and the e�ieny of routing algorithms anbe ombined. Sine best path routing is a ost minimization proedure, itan be applied to model a deision maker's rational hoie given a simulatederror of utility pereption. This oinides with the aforementioned simulationproedure for RUMs. In this ontext, it is interesting to inspet a variationof the route hoie model implemented in the MATSim planning simulation.MATSim models the day-to-day evolution of driver behavior as a ontinuouslearning proess. Speaking only in terms of routes, a ertain fration of driversis allowed to realulate new routes at the beginning of every simulated day.These routes are generated based on previously simulated link traversal ostsby a time-dependent best path algorithm. The simultaneous exeution of allroutes results in experiened osts that are likely to di�er from those ostsbased on whih the new routes were alulated. This impliitly simulates apereptional error that is idential for all replanning agents and equal to thedi�erene between the atually experiened osts and the osts assumed duringreplanning. This logi even avoids the expliit generation of pereptional errorsbut is not derived from RU theory.The path size logit (PS-logit) model de�nes losed-form route hoie proba-bilities. Its derivation from RU theory an be found in [67℄. This model is68



Figure 3.11: Three routes exampleA simple route hoie example with three alternative routes A (omprised of link 1),
B (omprised of link sequene 2 →3a), and C (omprised of links 2→3b). The lengthof link 1 is l, that of links 3a and 3b is dl, and that of link 2 is l − dl.presented here sine its partiular struture allows for some formal manipula-tions that greatly simplify the behavioral estimation problem. PS-logit spei�esthe probability that individual n hooses route U ∈ Cn by

Pn(U) =
eµVn(U)+lnPSn(U)

∑

V∈Cn
eµVn(V)+lnPSn(V)

=
PSn(U)eµVn(U)

∑

V∈Cn
PSn(V)eµVn(V)

.

(3.16)It is instrutive to start the disussion with all PS parameters set to one. Then,spei�ation (3.16) ollapses into the multinomial logit (MNL) model, the ar-guably simplest and most popular RUM. The positive sale parameter µ ontrolsto what degree routes of higher systemati utility are preferred. If µ → 0, allroutes are hosen with equal probability, whereas µ → ∞ deterministially se-lets a route of maximum utility.In a route hoie ontext, the major drawbak of MNL is its inability to modelsituations with overlapping routes. This is most easily demonstrated by anexample. Figure 3.11 shows a simple four-link network. Three routes A, B, and
C onnet the leftmost to the rightmost node. All routes have equal utility V̄suh that MNL invariably predits a uniform route split (P (A) P (B) P (C)) =
(1/3 1/3 1/3). This is not realisti beause routes B and C have a large overlapand therefore are likely to be pereived as a single alternative. Behaviorallyreasonable route splits thus approah (1/2 1/4 1/4) as the overlap of B and C getslarger.PS-logit orrets the MNL model by speifyingPSn(U) =

∑

a∈ΓU

la
LU

1
∑

V∈Cn
δaV

(3.17)where ΓU is the set of all links in route U , la is the length of link a, LU is thelength of route U , and δaV is one if link a is ontained in route V and zerootherwise. That is, ∑V∈Cn
δaV ounts how many routes in Cn ontain link a.Eah addend in (3.17) represents the ontribution of a single link to the path sizeof route U , and PS(U) measures to what degree route U is pereived as a distintalternative. It is one if U has no overlap with other routes, and it approahes zerothe greater U 's overlap with other routes beomes. A perfet overlap of routes B69



and C in the above example yields path sizes (PS(A) PS(B) PS(C)) = (1 1/2 1/2)that generate the behaviorally reasonable route splits (1/2 1/4 1/4) when insertedin (3.16).The purposeful nature of these examples is emphasized. Alternative utilityorretion terms and path size de�nitions have been proposed in the literature[38, 67℄ as well as alternative RU models that are not limited to the simplestruture of (3.16) [18, 20, 148℄.3.2.2.3 Models of Plan ChoieEven with realisti restritions on possible ativity sequenes, loations, andtimings, and with a likewise restrited route hoie set, the ombinatorial num-ber of available plans quikly beomes intratable. For a single day, roughly
1017 alternative behavioral patterns per traveler are estimated in [27℄. It is notrealisti to assume that travelers possess the omputational resoures to proesssuh a hoie set. However, they do make a deision in some way, and there-fore it appears justi�ed to simulate plan hoie by simplifying heuristis thatresemble human deision making [71℄.This approah is also hosen in the MATSim planning simulation. A traveler'splan is �sored� by a utility funtion that omprises positive addends for ativityexeution and negative addends representing travel osts [43℄. Every simulatedtraveler strives to maximize its sore by explorative day-to-day learning. Thisis realized as a simpli�ed lassi�er system [149℄: A small set of (typially �ve)alternative plans is memorized by an agent. Every simulated day, one of theseplans is exeuted and the experiened sore is memorized. Oasionally, a newplan is generated, exeuted, and the worst plan is disarded. New plans aregenerated by variations of old ones. Routes are realulated as best paths basedon previously observed link traversal osts [130℄, and ativity timings are hosenby a variety of heuristis suh as random searh [10℄, reinforement learning [44℄,and evolutionary algorithms [43, 120℄.Plan seletion itself is implemented as a simple RU model. However, the on-tinuous hoie set evolution by explorative learning prevents a straightforwardRU interpretation and also ompliates a mapping on the strutural systemrequirements that are presupposed for estimation. There are three di�ulties.1. The plan hoie set is variable. If it was �xed after a limited number ofiterations, the simulation until that point ould be regarded only as a fairlyheavyweight hoie set generation proess. However, the limited numberof memorized plans in suh a setting (rather a tehnologial problem)ould raise an issue of behavioral variability.2. Plan hoie is not based on deterministi utilities but on ontinuouslyupdated sores. While sore expetations are tehnially easy to estimateby reursive averaging, their very existene requires that the simulationonverges towards a stationary distribution of network onditions. Thisproperty is yet to be established [132℄.3. A newly generated plan is immediately seleted for exeution. This isneessary sine a plan's sore an only be identi�ed through simulation.70



Still, this leads to a not yet lari�ed oinidene of hoie set generationand hoie itself. Again, an oasionally stabilized hoie set would resolvethis issue.This is not to say that these aspets of MATSim are inompatible with the pro-posals of this dissertation. Rather, they require the more speialized treatmentgiven later in Setion 6.4.5.MATSim's learning-based approah is a spei� instane in a broad model rangeproposed in the �eld of ativity based demand modeling, e.g., [27, 98, 99, 172℄,and the strutural outline given in Setion 3.2.1 is likely to apply to a greatervariety of demand models. Still, the MATSim-related development of this worknaturally suggests a presentation in terms of this system.Conluding, the seond part of this hapter formalizes a behavioral simulationsystem but leaves the behavioral model itself unspei�ed for the most part. Thispresentation is not given as an end in itself. The next hapter identi�es whatbehavioral estimates are possible in this setting.
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Chapter 4EstimationThe previous two hapters desribe a simulation system that onsists of twoomponents: a mobility simulation and a representation of human behavior.The spei� properties of these omponents are now exploited in the formulationand solution of a tra� state estimation problem.As outlined in the introdution, the task is to use spatially and temporally in-omplete sensor information to reonstrut spatially and temporally ompletesystem state information. Examples for sensors are loop detetors that measure�ow rates at road ross-setions [91℄, ground- or airborne ameras that identifytra� densities on road segments [62, 77, 150℄, and �oating ars that mea-sure link veloities [156℄. Only aggregate measurements are onsidered. Whilethe importane of advaned tra� monitoring tehnologies suh as vehile re-identi�ation systems is likely to inrease in the future, they are not yet in broadappliation.Marosopially, the system states to be reonstruted are represented by statevetor sequene
X = {x(k)}k (4.1)of tra� �ow model (3.7). This model unfolds deterministially given an initialstate x(0) = x0 and a driver population's behavior U1 . . .UN . Sine U1 . . .UNomprise all aspets of the individual drivers' mental states that are neessaryto de�ne all marosopi states X in the model, the state estimation problembeomes to identify ontrol sequenes U1 . . .UN that steer X towards most likelyvalues given the available measurements and the behavioral a priori knowledge.The mapping from individual driver behavior on marosopi system states isnonlinear. The proposed estimator deals with this di�ulty by repeated lin-earizations of the marosopi model. Sine the model is dynamial, this re-quires to alulate system state sensitivities through simulated time. In result,the linearized e�et of a single driver's deision in any time step k on the maro-sopi states in any later time step k + ∆k an be predited. Given a distanemeasure between true and simulated tra� onditions, these sensitivities thenprovide diretional information for behavioral adjustments. Coneptually, thisapproah has a ounterpart for example in meteorology, where the linearizedversion of a dynamial weather model is denoted as its �adjoint model�. The72



spatiotemporal sensitivities it provides are used to iteratively improve the fullmodel's onsisteny with real world observations, e.g., for the purpose of short-term weather foreasting [63℄.The remainder of this hapter is organized in four parts.First, the problem of how to steer the behavior of simulated travelers by sys-temati manipulation of their utility pereption is investigated in Setion 4.1.Apart from being of pratial interest itself, this setion prepares a number oftehnial results that simplify the subsequent presentation. This inludes theaforementioned linearization logi.Seond, a �rst heuristi estimator is proposed in Setion 4.2. It applies thepreviously developed method to steer agents towards a plausible reprodutionof available sensor data. However, this approah is not yet based on a solidstatistial foundation.Third, a Bayesian formulation of the estimation problem is given in Setion 4.3.Starting with a oneptually straightforward but omputationally umbersomeformulation, various simpli�ations are adopted that allow for a �exible balanebetween mathematial preision and omputational e�ieny.Fourth, Setion 4.4 illustrates the theoretial developments with a small exam-ple. A test ase of realisti size is postponed to Chapter 5.4.1 Steering Agent BehaviorThe problem is investigated of how to in�uene the behavior of simulated trav-elers by hanging their pereption of systemati utility. The objetive aordingto whih agent behavior is to be in�uened is represented by a one di�erentiablefuntion
Φ(X ) =

K
∑

k=1

ϕ[x(k), k] (4.2)that maps the marosopi system states in simulation time steps 1 through Kon a real number. An improved ful�llment of the objetive is re�eted by aninrease of this funtion.This problem statement is related to that of a dynami system optimal tra�assignment. The latter seeks to identify a tra� pattern that minimizes theaverage ost experiened by all travelers. It is behaviorally not realisti sine itimplies that travelers ooperate in their e�orts to minimize ost, but it is a goodmeasure to estimate the greatest e�etiveness of a tra� system or to identifyoptimal ontrol strategies [35, 121℄.Sine the problem onsidered here is not to attain a strit system optimum butrather a ompromise between individual driver objetives and global objetive(4.2), and sine only limited measures to a�et agent behavior are available, thenotion of a system optimal tra� assignment is avoided. The results obtainedhere only improve a mirosopi assignment with respet to a global objetive.73



4.1.1 Modi�ed Utility PereptionThe agents' behavior is to be in�uened by a modi�ation of their systematiutility evaluation. Beause of the deision protool's probabilisti nature, f.Setion 3.2.1, there is no guarantee that a single hoie based on suh a modi-�ed utility does indeed improve the global objetive. However, it is reasonableto assume that, one the e�et of agent behavior on the global objetive is iden-ti�ed, a utility modi�ation that favors advantageous generalized paths alsoleads to hoie distributions that improve the global objetive on average. Un-less otherwise noted, the notion of a path now represents an arbitrary behavioralpattern ranging from a single route to an all-day plan.The problem of steering agent behavior is therefore posed as an ordinary as-signment problem with modi�ed systemati utility
Wn(U) = Vn(U) + Φ(X (U1 . . .Un−1,U ,Un+1 . . .UN ))/µ (4.3)for every agent n and path U ∈ Cn. That is, agent n evaluates Φ as a funtion ofits individual path hoie with the behavior of all other agents being �xed. Thestritly positive parameter µ determines the weight of individual utility whenompared to the global objetive. Its hoie is left to the analyst.This problem statement is given yet independently of an estimation problemand requires no suh interpretation. Sine the subsequently developed methodto steer simulated travelers holds promise for appliations that go beyond tra�state estimation, its spei� deployment for estimation purposes is postponedto Setion 4.2.A straightforward implementation of the above would require the following:1. �Unsteered� population behavior U1 . . .UN is given.2. For eah agent n = 1 . . .N , do:(a) Replae Vn by Wn aording to (4.3).(b) Draw U ′

n from Cn based on Wn(U).3. �Steered� population behavior is U ′

1 . . .U ′

N .The following subsetions operationalize this proedure.4.1.2 Linearization of Global Objetive FuntionEvery evaluation of Wn(U) requires an evaluation of Φ(X (. . .U . . .)) and there-fore a run of the entire mobility simulation. Sine Φ is evaluated separatelyby all agents that make deisions based on their modi�ed utility Wn(U), astraightforward implementation of this approah is omputationally intratable.This problem an be irumvented if the mapping from individual path hoie
U on Φ is linearized. Given U ′ = U + ∆U , this linearization essentially is
W (U ′) ≈ V (U ′) + Φ(X (. . .U . . .)) + ∆U · dΦ/dU . It will turn out that it isfeasible to ompute the sensitivities dΦ/dU simultaneously for all agents. In74



onsequene, it is possible to linearly predit the e�et of behavioral variations
∆U on the global objetive funtion Φ for all agents with just one run of themobility simulation.The linearization must aount for the oupling between U and X throughdynamial system onstraint (3.7) that represents the mobility simulation. Thisdi�ulty an be dealt with by well-known methods from ontrol theory [101,138, 145℄. A self-ontained exposition is given in the following.Denote

Φ(k) =
K
∑

κ=k

ϕ[x(κ), κ] (4.4)for k = 1 . . .K. This is the remaining ontribution to Φ(X ) from time step kon. It an be reursively written as
Φ(k) =

{

ϕ[x(k), k] + Φ(k + 1) k = 1 . . .K − 1
ϕ[x(K), K] k = K.

(4.5)As a �rst step, sensitivities with respet to states are omputed by
dΦ(k)

dx(k)
=















∂ϕ[x(k), k]

∂x(k)
+

dΦ(k + 1)

dx(k)
k = 1 . . . K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(4.6)Sine the interplay between variables in di�erent time steps is fully de�ned bystate equation (3.7),
dΦ(k + 1)

dx(k)
=

(

∂f [x(k),u1(k) . . .uN (k), k]

∂x(k)

)T
dΦ(k + 1)

dx(k + 1)
(4.7)holds for k < K, where x(k + 1) = f [. . .] is used.Now, sensitivities with respet to ontrol variables u1(k) . . .uN (k) result from

dΦ(X )

dun(k)
=

(

∂f [x(k),u1(k) . . .uN (k), k]

∂u(k)

)T
dΦ(k + 1)

dx(k + 1)
. (4.8)Here, ∂ϕ[x(k), k]/∂un(k) disappears sine un(k) in�uenes no state earlier than

x(k + 1). ∂f [. . .]/∂u(k) denotes the partial derivative of f [. . .] with respet toany un(k), whih is independent of n. This independene allows to entirelyomit the n subsript in Φ's sensitivities and to subsequently write dΦ(X )/du(k)instead of dΦ(X )/dun(k), and it allows to ompute all sensitivities for all agentssimultaneously.In summary, dΦ(X )/du(k) is obtained in a two-pass-proedure:1. Using (4.7), solve (4.6) reursively for k = K . . . 1. Moving bakwardsthrough time introdues a �far sightedness� into the alulations that isneessary to predit the in�uene of present state variations on futuresystem states. 75



2. Determine the in�uene of ontrol variables by (4.8) for k = 0 . . .K − 1.Sine this expression is idential for all agents, it needs to be evaluatedonly one for the entire population.One obtains the following linearization of Φ(X ) with respet to U1 . . .UN :
Φ(X (U1 . . .UN )) ≈ Φ(X 0) +

K−1
∑

k=0

(

dΦ(X 0)

du(k)

)T N
∑

n=1

(un(k) − u0
n(k)) (4.9)where u0

n(k) is the ontrol vetor of traveler n in time step k around whih thelinearization takes plae and X 0 is the resulting marosopi state sequene.De�ning the sensitivity sequene
Λ =

{

dΦ(X 0)

du(k)

}

k

(4.10)and the �inner produt�
〈Λ,U〉 =

∑

k

(

dΦ(X 0)

du(k)

)T

u(k), (4.11)(4.9) an be rewritten as
Φ(X (U1 . . .UN )) ≈

N
∑

n=1

〈Λ,Un〉 + onst (4.12)where the onstant addend ontains all terms independent of U1 . . .UN . Theelements of Λ are sensitivities of the global objetive funtion with respet toindividual turning moves, and as suh they serve as oe�ients that are multi-plied with the turning move indiators ontained in the populations' path set
U1 . . .UN .Marosopi tra� dynamis are linear in good approximation with respet toa single agent's behavior sine individual ontrol variables uij,n(k) ∈ {0, 1} aresmall ompared to atual turning ounts in a ongested network. Thus, for asingle agent, a linearization yields a reasonable approximation to the nonlinearproblem, and

Wn(U) = Vn(U) + Φ(X (U1 . . .Un−1,U ,Un+1 . . .UN ))/µ

≈ Vn(U) + 〈Λ,U〉/µ + onst (4.13)holds with good preision. The onstant addend is idential for all alternativesavailable to an agent. Sine it is reasonable to assume that the preferenes ofa deision maker are not in�uened by a onstant shift in the utilities of allalternatives,1
Wn(U) = Vn(U) + 〈Λ,U〉/µ (4.14)de�nes as from now the modi�ed utility of agent n's option U ∈ Cn. Usingthe same Λ for all agents re�ets the fat that the sensitivity of Φ to a turning1This is always true for RUMs, f. (3.15).76



move (sequene) is independent of whih agent is atually moving. Here, theelements of Λ onstitute (up to a saling oe�ient µ) utility orretions forevery single turning move in the network, and the modi�ed utility of a spei�path is identi�ed by adding up these orretions along that path. This an beseen most learly if 〈Λ,U〉 is fully expanded:
〈Λ,U〉 =

∑

k

∑

ij

dΦ(X 0)

duij(k)
uij(k). (4.15)Only suh omponents of Λ are summed up in 〈Λ,U〉 that orrespond to turningmoves that are atually represented by path U through non-zero turning moveindiators. In light of this, Λ is denoted either as a sequene of sensitivities orof utility orretions, depending on the ontext.The above linearization proedure is onsiderably aelerated if the underlyingmobility simulation runs on variable time sales as proposed in Setion 2.5.Sine the mobility simulation's sensitivities vary on the same temporal grid asits marosopi states, the overall number of sensitivity evaluations is reduedin the same order as the number of �ow transmissions during a simulation.The importane of this omputationally still expensive linearization beomeslear in omparison with a simplisti approximation. Assume that the maro-sopi system state X is omposed of vehile oupanies on all road segmentsin all time steps. Then, the e�et of a vehile's path hoie U might appear pre-ditable by simply inreasing the oupany of every link in U for the durationof this link's traversal time. In a way, this does predit the e�et of U on Xand thus on Φ without any linearization. Still, it does not apture the globale�et of driver behavior in ongested onditions. A vehile that tries to enter aongested link is slowed down, and in turn it slows down all vehiles behind it.That is, it also a�ets upstream links that are not ontained in its path. A fulllinearization of tra� �ow dynamis aounts for these interdependenies andthus is superior in all but trivially unongested tra� onditions.4.1.3 Consistent Linearization for Many AgentsThe linearization of Φ relies on the relatively small in�uene of a single trav-eler on the global tra� situation. This argument does not hold if an entirepopulation is onsidered sine any utility orretion Λ that is obtained by alinearization around a ertain state trajetory X 0 may result in a populationreation U1 . . .UN that auses a signi�antly di�erent network state trajetory

X and thus invalidates the underlying linearization.For a non-stohasti planning or telematis simulation, a utility orretion Λis onsistent if the population behavior given this Λ generates network states
X suh that a repeated linearization of Φ reprodues the original Λ values, f.Figure 4.1. Formally, a �xed point of the ombined map �sim(ulation), followedby lin(earization)� is required: Λ = lin ◦ sim(Λ).Sine there are stohasti elements in the simulation, its outome X given aspei� Λ is stohasti as well, and the reproduibility of Λ alls for a likewisestohasti interpretation. One may assume that only a randomly distorted map77



Figure 4.1: Fixed point of utility orretionsConsistent utility orretions Λ are attained if a linearization of Φ around simulationoutome X results in the same Λ orretions that have previously been applied in thesimulation.lin ◦ sim(Λ) + E an be evaluated where E is a zero mean disturbane of thesame dimension as Λ. Sine no algorithm is known that de�nitely onverges toa deterministi Λ �xed point in suhlike noisy onditions for the whole rangeof possibly implemented simulation mappings, and sine not even the existeneof suh a �xed point is asertained, a pragmati ourse of ation is taken: Theexistene of a �xed point is merely assumed, and an elementary stohasti ap-proximation (SA) method is employed for its identi�ation [26℄.2 This partiularmethod is hosen here beause of its simpliity and larity. Possible algorithmi-al improvements are indiated in Setion 6.4.1.3.The proposed SA approah is outlined in Algorithm 2. It assumes an iterativesimulation logi, whih is equally appliable to a SUE-based planning modeland to a telematis model of spontaneous and imperfetly informed drivers.The oneptual di�erene is that a SUE deision protool typially utilizes allinformation from the most reent network loading, whereas a telematis deisionprotool generates every elementary deision within a plan only based on thatsubset of this information that ould have atually been gathered up to theonsidered point in simulated time [26℄. A full implementation of this algorithmis experimentally investigated in the next hapter.4.1.4 Behavioral Justi�ationSine the modi�ed utility deviates from the originally modeled agent pereption,any behavior that is based on the modi�ed utility is not reasonable in itself. Apath U that is hosen by traveler n based on a modi�ed utility funtion Wnonly is onsistent with the behavioral model if n's utility pereption is indeedrepresented by Wn instead of the original Vn. Thus, the method's appliabilitydepends on the possibility to reinterpret utility pereption itself. Three �eldswhere this is possible are identi�ed below:
• The method is developed with behavioral tra� state estimation in mindand is appliable for this purpose. Given a spei�ation of Φ that re�ets2A self-ontained onvergene proof for the SA method an be found in [69℄. However, itsrequirements annot be established in the setting onsidered here.78



Algorithm 2 Steering a population of agents1. Initialization.(a) Set iteration ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do: Use Wn(U) = Vn(U) + 〈Λ̄(m),U〉/µ insteadof Vn(U) in the deision protool when drawing U (m)
n .(b) Load U (m)

1 . . .U (m)
N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) Inrease m by one.(b) Goto step 2.the quality of measurement reprodution, the resulting Wn is interpretedas an estimate of individual n's most likely utility pereption given thesemeasurements. Here, the original Vn onstitutes a model-based a prioriassumption that is orreted by the estimation proedure suh that Φ isimproved. The belief in the behavioral prior information is re�eted byweight parameter µ. A disussion of possible ambiguities in this interpre-tation is given in Setion 4.4.3.

• Φ may also represent a general utility of system operations. Applying theabove proedure, the resulting Λ oe�ients de�ne a toll on all turningmoves in the network. An agent n whih hooses its path based on theresulting Wn strives to maximize a weighted ombination of individualand system utility. Clearly, a physially implementable toll must meet anumber of additional onstraints that are beyond the sope of this thesis.
• An iterative planning simulation requires large amounts of omputationtime. If a spei�ation of Φ was found that (i) re�ets the degree ofsuh a simulation's onvergene and (ii) has a vanishing in�uene upononvergene, it may help to redue the number of required iterations untilan equilibrium is reahed. Here, utility pereption is modi�ed only duringthe transient phase of an iterative algorithm but not in its outome. Still,this appliation is of rather hypothetial nature sine no suh version of

Φ is proposed in this dissertation.In all ases, Wn onstitutes a modi�ed utility pereption of driver n that is inone way or the other onsistent with the original assumption of utility-driven be-79



havior, and this modi�ation is generated suh that a problem-spei� instaneof Φ is improved.4.2 Heuristi EstimationA similarity measure between simulated and observed sensor data is hosen asthe global objetive funtion Φ, and the agents are steered towards an inreaseof this funtion.4.2.1 Modeling of Aggregate Tra� MeasurementsA likelihood funtion suggests itself to quantify a model's measurement �t. Inthis subsetion, the likelihood of aggregate tra� measurements is formallyrelated to individual agent behavior.Marosopi state spae model (3.7) is supplemented with an output equation
y(k) = g[x(k), ǫ(k)] (4.16)that maps system state x(k) by a one di�erentiable funtion g on output ve-tor y(k) of marosopi observables. The latter may inlude �ows, veloities,and densities generated by sensors suh as indutive loops, �oating ars, andtra� surveillane ameras. The in�uene of various soures of error on theseobservations is aounted for by random disturbane vetor ǫ(k) that turns y(k)into a random variable itself. Equation (4.16) de�nes y(k)'s probability densityfuntion (p.d.f.)

p(y(k)|x(k)) =

∫

δ(y(k) − g[x(k), ǫ])p(ǫ)dǫ (4.17)where δ is the Dira funtion and p(ǫ) is the known p.d.f. of ǫ. A lower-ase pgenerally denotes a p.d.f., whereas an upper-ase P represents a disrete prob-ability. Subsuming the above expression in terms of trajetories Y = {y(k)}kand X = {x(k)}k yields
p(Y|X ) =

∏

k

p(y(k)|x(k)) (4.18)where stohasti independene between outputs at di�erent time steps is as-sumed. This is, so far, the not unexpeted result that all spatiotemporal mea-surements an be probabilistially desribed if all spatiotemporal system states
X are known � no behavioral information is needed diretly.Nevertheless, the states X are indiretly aused by the population behavior
U1 . . .UN . This allows to de�ne the behavioral likelihood l(U1 . . .UN |Y) giventhe measurements Y as a funtion of U1 . . .UN :

l(U1 . . .UN |Y) = p(Y|X (U1 . . .UN )). (4.19)80



This funtion is linearizable with respet to U1 . . .UN if the p.d.f. of Y given
X is di�erentiable with respet to X . Frequently, the (likewise linearizable)log-likelihood funtion

L(U1 . . .UN |Y) = ln l(U1 . . .UN |Y) (4.20)is also referred to.Others than link-related measurements are possible. Sine the state vetor ofmodel (3.7) ontains smoothed turning ounts, observations of these an bediretly inorporated in the output equation. The additional value of suhmeasurements is pointed out in the literature review of Setion 1.2.1.4.2.2 Steering Agents Towards the MeasurementsMaximum likelihood estimation is the arguably most popular approah to sta-tistial parameter identi�ation, e.g., [140℄. It is an established method for theidenti�ation of OD matries from tra� ounts [162℄, and its appliation foragent-based behavioral estimation is ompliated in the same way as traditionalOD matrix estimation: The available number of link-related measurements isusually muh smaller than the number of parameters to be identi�ed � theproblem is extremely under-determined.Typially, a prior OD matrix is integrated in the likelihood funtion as a supple-mentary measurement that resolves this under-determinedness. Sine no suhprior is available here, a di�erent and statistially less rigorous approah is pur-sued. Algorithm 2 is employed, with its general objetive funtion de�ned asthe measurement log-likelihood, i.e.,
Φ(X (U1 . . .UN )) = L(U1 . . .UN |Y). (4.21)The resulting overall objetive funtion (4.3) of any agent n is the weighted sum

Vn(U) + Φ(X (...U ...))/µ of its individual utility funtion and the log-likelihood.The weighting parameter µ determines the importane of the behavioral priorinformation represented by the original utility pereption. If µ is hosen verylarge, the likelihood term vanishes and the agent ats in a way that is fullyprespei�ed by its original utility funtion. The smaller µ gets the more weightis put on the likelihood and the more the agent adjusts its behavior towardsan inrease of the likelihood. While µ is used here as a mere weighting param-eter, the Bayesian problem reformulation given in the next setion enables itsinterpretation as a behavioral model parameter.Spei�ally, if mutually independent normal measurement distributions are as-sumed, (4.21) yields a global objetive funtion
Φ(X ) = −

∑

a

∑

k

(ya(k) − ga[x(k)])2

2σ2
a

(4.22)where ya(k) is the sensor information available for link a in time step k, ga[x(k)]is its simulated expetation, and σ2
a is its variane.3 This is the arguably sim-3The log-likelihood of mutually independent measurements ya(k) is L(U1 . . .UN |Y) =

P

ak ln p(ya(k)|x(k)). Assuming ya(k) = ga[x(k)] + εa(k), a normally distributed εa(k) withzero expetation and variane σ2
a implies p(ya(k)|x(k)) ∝ exp[−(ya(k) − ga[x(k)])2/2σ2

a].Consequently, L(U1 . . .UN |Y) = −
P

ak(ya(k) − ga[x(k)])2/2σ2
a + onst.81



plest approah to the behavioral estimation problem: De�ne a quadrati dis-tane measure between observed and simulated tra� harateristis, hoosea �reasonable� weight parameter µ, and let the general method to steer agentbehavior push the simulation towards a redution of this error funtion.The partiular assumption of independent normal measurements yields an ob-jetive funtion (4.22) of greatest simpliity. Still, di�erent distributional as-sumptions are feasible. In partiular, orrelated measurements with a knownovariane struture an be aounted for in terms of a multivariate (normal)distribution.Providing a modi�ed utility that omprises a weighted sum of individual utilitypereption and measurement log-likelihood to the deision protool does notresult in an overall maximum likelihood estimator for two reasons: (i) The indi-vidual utility addend permits no interpretation as a log-likelihood omponent,and (ii) the deision protool draws a hoie instead of deterministially maxi-mizing the modi�ed utility. For these reasons, a more systemati derivation ofa statistial estimator is given in the following.4.3 Bayesian EstimationSetion 4.1 prepares a general tool to steer simulated travelers. This tool fa-ilitates the proposal of a �rst heuristi estimator in Setion 4.2. Here, theestimation problem is reonsidered in a statistially more rigorous setting. Thepresentation starts with a oneptually straightforward but omputationallyumbersome formulation. Several simpli�ations are then adopted that signif-iantly inrease the omputational feasibility and result in the proposal of twooperational estimators. Ultimately, the heuristi estimator is redisovered, thistime, however, with a better understanding of its properties and limitations.It has been stated before that aggregate measurements Y alone do not providesu�ient information for a unique estimate of population behavior U1 . . .UNsine usually there are many behavioral ombinations that generate the sameobservations. Here, this problem is resolved by the inorporation of additionalbehavioral information in a Bayesian setting. In order to build on a solid foun-dation, the Bayesian estimator is designed from srath. While some previouslydeveloped results suh as the linearization of a log-likelihood funtion in dy-namial onditions are reused in this setion, no onstitutional dependeny onthe heuristi estimator itself is allowed for.4.3.1 General Formulation of EstimatorAn arbitrary implementation of the deision protool is assumed. It drawshoies U ∈ Cn aording to an individual hoie distribution Pn(U) for everyagent n = 1 . . .N . Only realizations of this distribution an be observed, f.Setion 3.2.1.4. U may still represent any of the behavioral dimensions desribedin Setion 3.2.1.1, ranging from a single route to an all-day plan. Given mutuallyindependent traveler deisions, the behavioral prior for the whole population82



is de�ned as
P (U1 . . .UN) =

N
∏

n=1

Pn(Un). (4.23)The assumption of mutually independent hoies is to be understood in theontext of the iterative simulation logi outlined in Setion 4.1.3 in that (4.23)desribes the population's plan hoie distribution in a partiular iteration ofthe simulator given the network onditions only from the previous iteration(s).The available measurements Y parameterize a likelihood l(U1 . . .UN |Y) of thepopulation's path hoie as spei�ed in (4.19). Bayes' theorem allows to ombinethese two soures of information into a behavioral posterior
P (U1 . . .UN |Y) =

l(U1 . . .UN |Y)P (U1 . . .UN )
∑

V1∈C1
· · ·
∑

VN∈CN
l(V1 . . .VN |Y)P (V1 . . .VN )

, (4.24)where the denominator results from
p(Y) =

∑

V1∈C1

· · ·
∑

VN∈CN

p(Y|V1 . . .VN )P (V1 . . .VN ). (4.25)The estimation objetive is to have the population hoose its behavior aordingto the posterior (4.24) instead of the prior (4.23). This an be enfored if drawsare taken from the prior but are rejeted with a ertain probability that dependson the measurements. Denote by φ(U1 . . .UN ) the probability to aept a draw
U1 . . .UN from the prior. If this probability is spei�ed by

φ(U1 . . .UN ) = l(U1 . . .UN |Y)/D

D ≥ max
V1∈C1...VN∈CN

l(V1 . . .VN |Y), (4.26)then the following aept/rejet proedure draws from the posterior:1. Draw andidate hoies U1 . . .UN from the prior (4.23).2. With probability 1 − φ(U1 . . .UN ), disard the andidates and goto 1.3. The �rst aepted U1 . . .UN onstitute a draw from the posterior (4.24).The orretness of this simple algorithm is shown by straightforward manipula-tions. Noting that the overall probability of a rejetion is
φrejet = 1 −

∑

V1∈C1

· · ·
∑

VN∈CN

φ(V1 . . .VN )P (V1 . . .VN ), (4.27)the probability that U1 . . .UN is the �rst aepted draw is
∞
∑

d=0

φdrejetφ(U1 . . .UN )P (U1 . . .UN )

=
φ(U1 . . .UN )P (U1 . . .UN )

1 − φrejet
=

φ(U1 . . .UN )P (U1 . . .UN)
∑

V1∈C1
· · ·∑VN∈CN

φ(V1 . . .VN )P (V1 . . .VN )

= P (U1 . . .UN |Y).

(4.28)
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The behavioral posterior an thus be generated by suppressing ertain drawsfrom the prior. Somewhat oarsely expressed: (i) The simulation is run manytimes with di�erent random seeds, (ii) a large portion of these runs is �thrownaway�, based on the above rejetion riterion, and (iii) the remaining runs aredraws from an aurate Bayesian ombination of the behavioral prior and themeasurements.Although appealing beause of its simpliity, this approah is in this form om-putationally intratable in all but trivial ases. There are two major problems:1. It is omputationally infeasible to evaluate all possible l(U1 . . .UN |Y) val-ues beforehand sine every suh evaluation requires a full network loadingin order to map U1 . . .UN on a marosopi state sequene X that entersthe likelihood via (4.19). However, these evaluations are required in or-der to guarantee a feasible denominator for the aeptane probabilities(4.26). Furthermore, the need for a hoie set enumeration implies thatthe estimation logi is aware of this set, whih onstitutes an unwanteddependeny of the estimator on modeling details.2. Even if the aeptane probabilities' denominator is replaed by an es-timate in order to mitigate problem 1, a single draw from the posteriormight still require a substantial number of mobility simulation runs sineevery draw from the prior needs to be loaded on the network at least oneand sine it annot be guaranteed that an �aept� ours after a �xednumber of draws from the prior.In light of these di�ulties, simplifying assumptions that speed up the sim-ulation of the posterior are highly desirable even at the ost of some loss inauray. Two suhlike simpli�ed estimators are proposed in the following twosetions.4.3.2 Operational Aept/Rejet EstimatorThe Bayesian estimator is onsiderably simpli�ed if the full likelihood is replaedby an approximation. In Setion 4.1.2, a general funtion Φ of the marosopisystem states is linearized with respet to the population's path hoie. Pro-eeding in this respet similarly to the heuristi estimator of Setion 4.2.2, thisresult is now utilized to linearize the measurement log-likelihood. Let
Φ(X (U1 . . .UN )) = L(U1 . . .UN |Y). (4.29)A linearization of Φ yields the approximation

L(U1 . . .UN |Y) ≈
N
∑

n=1

〈Λ,Un〉 + onst (4.30)with the Λ oe�ients de�ned in (4.10) through (4.12). The resulting likelihoodapproximation is
l(U1 . . .UN |Y) ≈ onst · N

∏

n=1

e〈Λ,Un〉. (4.31)84



A substitution of this and the behavioral prior (4.23) in the behavioral posterior(4.24) yields
P (U1 . . .UN |Y) ≈

∏N
n=1 e〈Λ,Un〉Pn(Un)

∑

V1∈C1
· · ·∑VN∈CN

∏N
n=1 e〈Λ,Vn〉Pn(Vn)

. (4.32)The denominator of this expression requires some attention. It is a sum overall possible ombinations of behavioral patterns V1 . . .VN in the population,whereas the e〈··· 〉 terms result from a linearization around a partiular maro-sopi state sequene. The feasibility of this approximation results from theobservation that, even if individuals exhibit variable behavior, the resultingmarosopi tra� patterns are relatively onentrated in state spae. All de-terministi tra� assignment e�orts rely on this assumption. Thus, the majorityof behavioral draws results in tra� patterns over whih a linearization an bejusti�ed. Behavioral patterns V1 . . .VN that generate physial states far awayfrom this domain are assumed to have suh low probabilities ∏N
n=1 Pn(Vn) thatthe aording addends in the denominator an be negleted.Applying the distributive law to (4.32), one obtains

P (U1 . . .UN |Y) ≈
∏N

n=1 e〈Λ,Un〉Pn(Un)
∏N

n=1

∑

Vn∈Cn
e〈Λ,Vn〉Pn(Vn)

=

N
∏

n=1

e〈Λ,Un〉Pn(Un)
∑

Vn∈Cn
e〈Λ,Vn〉Pn(Vn)

.

(4.33)The linearization is bene�ial in two ways. First, the population's joint pos-terior (4.33) is deomposed into a produt of individual posteriors that an beevaluated agent by agent. These individual posteriors are subsequently denotedby
Pn(U|Y) =

e〈Λ,U〉Pn(U)
∑

V∈Cn
e〈Λ,V〉Pn(V)

. (4.34)Seond, only a single run of the mobility simulation (plus one alulation of the
Λ oe�ients) is needed to parameterize these posteriors for all agents in thepopulation.The aept/rejet proedure an now be applied to every agent individually.The aeptane probability for path U from agent n's hoie set is de�ned as

φn(U) = e〈Λ,U〉/Dn

Dn ≥ max
V∈Cn

e〈Λ,V〉,
(4.35)but otherwise the method remains unhanged. The only simplifying assump-tion made here is that the log-likelihood an be linearized with su�ient prei-sion. Sine this linearization is likely to be di�erent given either the behavioralprior or the posterior, an iterative approah similar to the �xed point searhof Algorithm 2 is appropriate: Starting from the behavioral prior, suessivelyimproved linearizations are generated from iteration to iteration until a stablestate is reahed where the estimator draws from the behavioral posterior based85



Algorithm 3 Aept/rejet estimator1. Initialization.(a) Set iteration ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do:i. Draw andidate hoie U (m)
n from n's behavioral prior.ii. With probability 1 − φn(U (m)

n ) (where Λ̄(m) is substituted for Λin (4.35)), disard the andidate and goto 2(a)i.iii. Retain the �rst aepted hoie U (m)
n .(b) Load U (m)

1 . . .U (m)
N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) Inrease m by one.(b) Goto step 2.on a linearization that in turn is most appropriate given this very posterior.This approah is subsequently denoted as the aept/rejet (AR) estima-tor. It is summarized in Algorithm 3. Again, only a basi SA �xed point searhproedure is deployed for greatest larity.The type of behavior to be estimated and the prior implemented by the deisionprotool are arbitrary. Sine a hoie set enumeration is only required to providea lower bound for the aeptane probabilities' denominator de�ned in (4.35), itan be avoided if this denominator is treated as a tuning parameter: Choosing alarge value is likely to omply with the (unknown) lower bound but also to resultin low aeptane probabilities and inreased omputational ost. Vie versa, asmaller denominator yields faster but also inreasingly impreise estimates. Theloss in preision an be appraised by observing the frequeny at whih infeasibleprobabilities greater one our in (4.35) that need to be trunated. This providesa pratially attrative balaning mehanism between estimation preision andomputational e�ieny, whih does not rely on a hoie set enumeration.Computational di�ulties remain if a behavioral draw is expensive, e.g., be-ause it involves some kind of optimization proedure, suh as a (randomized)best path alulation. One alternative would be not to disard unwanted drawsbut to dupliate desired ones and to use these in a number of repeated hoiesituations. However, sine this would introdue possibly unwanted serial or-relations, it is at odds with the intention to develop a transparent estimation86



layer. A omputationally more e�ient yet not as broadly appliable estimatoris presented next.4.3.3 Operational Utility-Modi�ation EstimatorThe behavioral posterior (4.34) for a single agent onstitutes the starting pointof this development. It is restated here for ease of referene:
Pn(U|Y) =

e〈Λ,U〉Pn(U)
∑

V∈Cn
e〈Λ,V〉Pn(V)

. (4.36)The PS-logit model prepared in Setion 3.2.2.2 is now used as a distributionalassumption about the prior hoie probabilities, i.e.,
Pn(U) =

PSn(U)eµVn(U)

∑

V∈Cn
PSn(V)eµVn(V)

. (4.37)Reall that the PS oe�ients aount for path overlap in a route hoie ontext.If they are omitted, a plain MNL model results. A substitution of (4.37) in (4.36)yields
Pn(U|Y) =

PSn(U)eµ(Vn(U)+〈Λ,U〉/µ)

∑

V∈Cn
PSn(V)eµ(Vn(V)+〈Λ,V〉/µ)

. (4.38)This posterior is struturally idential to its prior. Only the addition of 〈Λ,U〉/µto Vn(U) is di�erent. This allows to fore a deision protool that implementsa PS-logit prior to immediately draw from the posterior only by adding a or-retion term 〈Λ,U〉/µ to every alternative U 's systemati utility. The PS oe�-ients need not be known to the estimator for the generation of these orretions.Consequently, this approah is feasible for all priors that exhibit the funtionalform of the PS-logit model, even if the PS oe�ients result from a di�erentspei�ation than given in (3.17). Suh priors are said to be �of PS-logit stru-ture�. Note that this inludes the plain MNL model.This approah is subsequently denoted as the utility-modi�ation (UM)estimator. Its requirements are more restritive than those of the AR estimatorsine a deision protool of PS-logit struture needs to be available. However, ifsuh a behavioral prior is given, the UM estimator and the AR estimator yieldequivalent results sine both rely on the same linearization-based approximation(4.36) of the posterior. In this ase, the UM estimator is to be preferred overthe AR estimator sine it is omputationally more e�ient in that it rejets nodraws from the prior but immediately draws from the posterior.Setion 4.2's estimation heuristi oinides struturally with the UM estimator:In either ase, the modi�ed utility is de�ned by (4.14), and the Λ oe�ientsare identially generated by a linearization of the measurement log-likelihoodfuntion. The heuristi's weight oe�ient µ oinides with the sale param-eter of the PS-logit prior. For ompleteness, the UM estimator is spei�ed inAlgorithm 4. 87



Algorithm 4 Utility-modi�ation estimator1. Apply Algorithm 2 with the global utility funtion Φ de�ned by (4.21) asthe measurement log-likelihood funtion.2. This estimator has the following properties.(a) It is idential to the heuristi estimator of Setion 4.2.(b) If the behavioral prior is of PS-logit struture, this estimator is equiv-alent to the AR estimator spei�ed in Algorithm 3.4.3.4 Appliability of Heuristi EstimatorTehnially, the UM estimator an be applied in onjuntion with an arbitraryutility-driven behavioral prior for the estimation of anything from routes to all-day plans. In suh a general setting, it oinides with the heuristi estimatorof Setion 4.2. This analysis identi�es the oneptual limitations of suh anapproah and thus lari�es the appliability of the heuristi estimator itself.Assume that deision maker n disposes of a hoie set Cn and that prespei-�ed utilities V 0
n (U) for every U ∈ Cn are given. Based on these utilities, thedeision protool draws from well-de�ned but to the estimator unknown hoieprobabilities P 0
n(U). These hoie probabilities an be perfetly reprodued bya model of PS-logit struture if the PS oe�ients are re-de�ned asPSn(U) =

P 0
n(U)

eµV 0
n (U)

. (4.39)The resulting hoie probabilities are
Pn(U) =

P 0
n(U)eµ(Vn(U)−V 0

n (U))

∑

V∈Cn
P 0

n(V)eµ(Vn(V)−V 0
n (V))

(4.40)suh that Vn(U) = V 0
n (U) results in Pn(U) = P 0

n(U) for all U ∈ Cn. Looselyspeaking, any behavioral prior an be approximated up to 0th order in this way.The adequay of this approximation for others than the prespei�ed utilitiesonly depends on the approximated prior's elastiities, i.e., the way relative utilityhanges indue relative hanges in the hoie probabilities.The elastiities of the PS-logit hoie probabilities with respet to deterministiutilities are struturally idential to those of the MNL model:
∂Pn(U)

∂Vn(V)

Vn(V)

Pn(U)
=

{

µVn(U)(1 − Pn(U)) U = V
−µVn(V)Pn(V) otherwise. (4.41)In partiular, if alternative V beomes more (less) attrative, its inreased (de-reased) hoie probability redues (inreases) the hoie probabilities of allother alternatives U 6= V by the same relative amount.Reall that the UM estimator funtions without expliit knowledge of the PS o-e�ients. This implies that an appliation of the UM estimator an be justi�ed88



Figure 4.2: Three routes example, repeatedA simple route hoie example with three alternative routes A (omprised of link 1),
B (omprised of link sequene 2 →3a), and C (omprised of links 2→3b).by approximation (4.40) even if the P 0

n and V 0
n values that (re-)de�ne the PSoe�ients in (4.39) are unknown. However, it is required that the elastiities ofthe prior hoie distribution are su�iently well aptured by (4.41). Sine theUM estimator's working oinides with that of Setion 4.2's heuristi estimator,idential limitations hold for that heuristi.4.4 Illustrative ExampleThe proposed estimators are illustrated with a simple example. For larity, onlya route hoie problem is onsidered, and stationary onditions are assumedinstead of a full dynamial model.4.4.1 Senario DesriptionThe example network of Setion 3.2.2.2 is reonsidered. It is repeated in Figure4.2. A hoie set of three routes A,B, and C onnets the origin node at thevery left to the destination node at the very right. The systemati utility of allroutes is identially and invariably V̄ . The assumption of a onstant systematiutility is adequate either in unongested onditions or in a telematis settingwhere drivers are a priori unaware of atually prevailing network onditions.(An example with an underlying equilibrium assumption is given in the nexthapter.)Sine routes B and C have almost perfet overlap, a behaviorally reasonableroute split is (P (A) P (B) P (C))=(1/2 1/4 1/4). However, for the purpose of thisexample, a plain MNL model that does not aount for route overlap is hosenas the behavioral prior:

P (U) ∝ eµV̄ , U = A,B, C, (4.42)where µ, V̄ = 1 in all numerial experiments. This results in prior route splits
(P (A) P (B) P (C)) = (1/3 1/3 1/3). (4.43)The model is mirosopi in that every departing driver n = 1 . . .N individuallyhooses a route. Sine stationary onditions are assumed, a traveler's turning89



move �sequene� Un = {un} and the resulting state �sequene� X = {x} onlyonsist of a single vetor eah:
un = (uA,n uB,n uC,n)T (4.44)
x = (xA xB xC)T . (4.45)The elements of u indiate a driver's initial turn into route A, B or C: u =

(1 0 0)T represents the hoie of route A, u = (0 1 0)T stands for route B,and (0 0 1)T indiates route C. Sine no tra� �ow dynamis are modeled, thenetwork states are de�ned as the total route volumes
x =

N
∑

n=1

un. (4.46)A single �ow sensor is loated on route A. Its output y is modeled by themeasurement equation
y = xA + ǫ (4.47)where ǫ is a normal error with zero mean and σ2 variane. The resulting log-likelihood (4.20) of population route hoie U1 . . .UN given measurement �se-quene� Y = {y} is

L(U1 . . .UN |Y) = − (y − xA)2

2σ2

= −

(

y −∑N
n=1uA,n

)2

2σ2 .

(4.48)A linearization of this funtion with respet to individual route hoie is easierthan in the general ase of Setion 4.1.2 sine no dynamial onstraints areinvolved. Maintaining the formalism of that setion, Φ(X (U1 . . .UN )) is de�nedto be L(U1 . . .UN |Y), Φ is linearized, and (4.10) yields a �sequene�
Λ =

{

((y − x0
A)/σ2 0 0)T

} (4.49)of Φ's sensitivities evaluated at a state �sequene� X 0 = {x0}. Aording to(4.11), the approximate e�et of a single agent that hooses route A, B or C onthe log-likelihood is
〈Λ,A〉 = (y − x0

A)/σ2

〈Λ,B〉 = 0

〈Λ, C〉 = 0.

(4.50)These expressions aount for the e�et of adding an agent to a route butignore the e�et of removing it from its previously hosen route. This is feasiblebeause, one the e�et of route hoie is linearized, removing an agent fromits original route does not hange the linear e�et of its reassignment to a newroute. Sine every hoie implies that any previous hoie is disarded, only thenewly made hoie is relevant for estimation. Formally, the e�et of disardingan outdated hoie is subsumed in the onstant addend of (4.12).90



4.4.2 Aept/Rejet EstimatorThe hoie set {A,B, C} is known and sampling from the prior (4.42) is easy,so the AR estimator an be applied without di�ulty. Sine all agents haveidential hoie sets, the aeptane probabilities (4.35) are likewise identialfor all agents:
φ(A) = e〈Λ,A〉/D = e(y−x0

A)/σ2

/D

φ(B) = e〈Λ,B〉/D = 1/D

φ(C) = e〈Λ,C〉/D = 1/D

D = max{e(y−x0
A)/σ2

, 1}.

(4.51)That is, draws of route A are preferred over those of routes B and C if theexponent in φ(A) is positive, and they are suppressed if it is negative. Sine apositive exponent indiates that less vehiles than measured are simulated onroute A and a negative exponent indiates that too many simulated vehileshoose this route, the AR mehanism funtions like a ontroller that worksagainst the measurement error.The aeptane probabilities of routes B and C are equal. This re�ets the lak ofmeasurement information that ould justify a preferene for either route. Theequal aeptane probabilities in onjuntion with the onstant deterministiutilities also imply that the prior ratio of the hoie probabilities for B and Cis not a�eted by estimation. (If, however, the deterministi utilities were afuntion of the route volumes, the deision protool may reat to a hange inestimated tra� onditions with a likewise hanged ratio of B's and C's hoieprobabilities.)An adopted version of Algorithm 3 that aounts for the simpli�ed mobilitysimulation and the homogeneous driver population of this example is givenbelow.1. Initialization.(a) Set iteration ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) Calulate aeptane probabilities φ(m)(U) for U = A,B, C (where
Λ̄(m) is substituted for Λ in (4.51)).(b) For n = 1 . . .N , do:i. Draw andidate route U (m)

n from the prior (4.43).ii. With probability 1−φ(m)(U (m)
n ), disard the andidate and gotostep 2(b)i.iii. Retain the �rst aepted hoie U (m)

n .() As a stationary surrogate for a full network loading, use (4.46) tomap U (m)
1 . . .U (m)

N on X (m).91



3. Linearize the log-likelihood funtion by (4.49) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) Inrease m by one.(b) Goto step 2.For simulative investigations, a total demand of N = 1000 drivers is gen-erated, and a single measurement yA = 500 is assumed on route A. Thisvalue is what one would expet on average if a model was used that real-istially aounts for route overlap by distributing the demand aording to

(P (A) P (B) P (C))=(1/2 1/4 1/4).The estimation onvergene of 100 AR iterations for di�erent measurement vari-anes σ2 = 1000, 100, and 10 is illustrated in Figure 4.3. The realisti volumesof 500 vehiles on route A and 250 vehiles on routes B and C are reproduedbetter with dereasing σ2. An improved measurement reprodution omes atthe ost of a lengthened settling time until the estimator draws from an appar-ently stable posterior. This is owed to the log-likelihood's inreased steepnessthat ompliates the identi�ation of a �xed point. The ratio of route B and C'sshare is not in�uened by the estimation, as it has been previously hypothesized.The perentage of aepted draws is 92%, 74%, and 64% for σ2 = 1000, 100, and
10. The smaller the measurement variane the more pronouned the di�erenebetween prior and posterior and the more draws from the prior need to berejeted to generate the posterior. The number of draws required by the ARestimator generally inreases the more the likelihood ontradits the prior.4.4.3 Utility-Modi�ation EstimatorThe UM estimator spei�ed in Algorithm 4 is employed. The same experimentalsetting as for the AR estimator is hosen, and the same adjustments are madein order to aount for the simpli�ed nature of this example. Sine every drawbased on the modi�ed utilities is aepted, the omputational overhead of theAR estimator is avoided. Furthermore, sine the MNL prior route hoie dis-tribution (4.42) is of PS-logit struture, the resulting estimates are draws froman idential posterior distribution as for the AR estimator. Their illustration istherefore omitted.In this simple example, the utility orretions generated by the UM estima-tor allow to reonstrut the PS oe�ients that are disregarded in the plainMNL prior (4.42): Given P (U) ∝ eµV̄ , the UM estimator generates a posterior
P (U|Y) ∝ e〈Λ,U〉eµV̄ , f. (4.36). Comparing this to a hypothetial PS-logit prior
P (U) ∝ PS(U)eµV̄ that properly aounts for route overlap, one noties that
e〈Λ,U〉 an indeed be onsidered as an estimate of PS(U).Figure 4.4 plots e〈Λ̄

(m),U〉 for U = A,B, C over the iteration ounter m. Appar-ently, these values onverge towards (e〈Λ̄
(∞),A〉 e〈Λ̄

(∞),B〉 e〈Λ̄
(∞),C〉) = (2 1 1) for92



Figure 4.3: Measurement �tEstimated route volumes over the iteration ounter for various measurement varianes. An inreasing belief in the measurement results in a loserreprodution of the true route splits but also in a lengthened settling time.
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Figure 4.4: Estimated path sizesTrajetories of path size estimates e〈Λ̄
(m),U〉 for U = A,B, C over iteration ounter m. For dereasing σ2, these estimates approah values that areproportional to the real path sizes based on whih the utilized measurement was generated.
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small measurement varianes. This is a merely saled version of the path size o-e�ients (PS(A) PS(B) PS(C)) = (1 1/2 1/2) that were derived for this senarioin Setion 3.2.2.2. These path sizes yield the plausible route hoie probabilities
(P (A) P (B) P (C))=(1/2 1/4 1/4) based on whih the utilized measurement wasgenerated.It was hypothesized in Setion 4.1.4 that an estimated utility modi�ation ap-tures those systemati features of an alternative that are not inluded in itsoriginal utility. However, in the present example, systemati utility is perfetlymodeled, and the UM estimator only aounts for the overlap of routes B and
C. This shows, given a RUM-based deision protool, that the orretion termsonly represent unmodeled systemati utilities if all orrelations in the utilityerrors are properly modeled. Otherwise, unmodeled orrelations may also beaounted for by the estimator. In general, a distint interpretation of the re-sults is impossible. Still, this observation does not impair the orretness of theestimated posterior distributions themselves.Conluding, this hapter provides a number of methods for the estimation ofindividual-level motorist behavior. All methods have the same Bayesian originbut di�er in their adopted simpli�ations. A small example lari�es the proposedalgorithms. A large test ase is investigated in the next hapter.
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Chapter 5Test CaseThis hapter investigates the appliability of the proposed estimation approahto a syntheti senario of pratially relevant size. It fouses on omputationalfeasibility and logial orretness. Sine various simpli�ations are neessaryto implement the test ase, its limitations likewise on�ne the sope of theseinvestigations. However, the results learly establish that the estimator exhibitssu�ient preision, robustness, and omputational performane to be studiedin more realisti settings and in onjuntion with more sophistiated modelingomponents.5.1 Experimental Overall Setting5.1.1 Senario DesriptionA senario onsists of two omponents: (i) invariable settings that desribethe strutural features of this test ase and (ii) a partiular hoie of variablesettings.5.1.1.1 Invariable SettingsAll experiments utilize the Berlin network desribed in Setion 2.6.2. The re-spetive driver population is introdued in Setion 3.1.4. Behavioral estimationfor a 206 353-agent population on a 2 459-link network is a nontrivial problem.All experiments are onstrained to the time span from 6 to 9 am. This intervalexhibits the most variable tra� onditions beause of the morning rush hour.Sine only plaeholder omponents for the behavioral simulator are available, thesole degree of freedom onsidered here is route hoie. That is, all behavioralaspets apart from route hoie are retained unhanged in the original plansgenerated by MATSim. This setting is motivated in two ways. First, MATSim'sbasi approah to route hoie is relatively simple to simulate but at the sametime non-trivial from an estimation point of view, f. Setion 3.2.2.2. Seond,route hoie an be generalized to plan hoie by minor modi�ations to the96



Figure 5.1: Inner-urban part of BerlinA time-independent toll of 0.24 EUR/km is harged on the olored links.original network, f. Setion 3.2.1.1. This suggests that an e�etive route hoieestimator is likely to be appliable in a more general setting as well.In all experiments, a time-independent toll of 0.24 EUR/km is harged in theity enter shown in Figure 5.1, and no toll is harged outside of this area. Theunitless utility of a route U is
Vn(U) =

(

−tt(U) − toll(U)VOTn

)

/ 1 s (5.1)where tt(U) is the travel time on route U , toll(U) is the toll aumulated alongroute U , and VOTn is individual n's value of time in EUR/h. For omparison,the e�et of a 0.24 EUR/km toll is equivalent to a travel time inrease by onethe free-�ow travel time given a 12 EUR/h VOT and a 50 km/h speed limit.5.1.1.2 Variable SettingsCombining the invariable settings given above with a partiular VOT de�nesa senario. For simpliity, it is assumed that all drivers within one senariohave an idential value of time, i.e., VOTn = VOT, n = 1 . . .N . Clearly, thissetting disregards a multi-agent model's prominent advantage of apturing aheterogeneous driver population. However, the purpose of these experimentsis not to re-iterate the well-known features of a multi-agent simulation but toinvestigate an estimator's performane in ontrolled onditions. A homogeneousVOT simpli�es the setup of the experiments and their interpretation. SineVOT is an agent-spei� parameter that is entirely transparent to the estimator,no oneptual di�ulty exists in estimating the behavior of a population that isheterogeneous in this regard. Finally, no VOT information is ontained in thesyntheti population available for this dissertation anyway beause the urrentMATSim implementation provides no suh information.97



Depending on the partiular modeling assumptions, a planning senario anda telematis senario an be distinguished onsistently with the terminologyof Setion 1.1.3: If drivers are aware of a reently implemented toll but not yetof the resulting hanges in tra� onditions, the hitherto prevailing equilibriumonditions are invalidated and a transient phase emerges. This senario anonly be represented by a telematis simulation that does not rely on a (S)UEassumption. If drivers are aware of the toll but also have learned the resultinghanges in tra� patterns, the transient phase stabilizes again. This senarioan be addressed by a planning simulation the equilibrium assumption of whihis approximately satis�ed here.5.1.2 Simulation and Estimation LogiThe following two subsetions elaborate on the applied simulation and estima-tion logi. The simulator is desribed �rst. Sine the estimator �wraps around�an existing simulation system, f. Figure 1.2, the simulator is entirely indepen-dent of the subsequently seleted estimation approah.5.1.2.1 SimulationTra� �ow dynamis are represented by the mobility simulation desribedin Chapters 2 and 3.1. For behavioral simulation, the simple logi outlinedin Setion 3.2.2.2 is applied with minor modi�ations. Basially, 10 perentof all agents realulate a new route in every iteration. Only pre-trip route(re)planning is onsidered.1 The implemented deision protool exeutes hoieset generation and hoie in a deliberative manner, f. Setion 1.3.1.Whenever an agent starts a trip, it has one already generated route U at hand.This is either the route hosen in the previous iteration or, at the initial iteration,the route provided in the MATSim plans �le. The agent also is aware of the mostreently observed travel times. An alternative route is generated by randomlyhoosing a VOT from the set {6, 12, 18,∞} (all in EUR/h) and running a time-dependent best path algorithm that maximizes the resulting generalized utilityspei�ed in (5.1). The in�nite VOT serves as a notational proxy for a no-tollase sine it e�etively eliminates the toll addend from the utility. The newlyalulated route is denoted by V . This yields a hoie set of two elements: theoriginal route U and the new route V .The agent then selets from {U ,V} the route of higher utility based on the sim-ulated senario's atual VOT and the most reently observed tra� onditions.Sine the tra� onditions vary from iteration to iteration, this hoie may notbe optimal in hindsight.This model is hosen beause of its similarity to the original MATSim routereplanning logi. Altogether, a single iteration of this simple DTA simulatoronsists of two steps, and repeated exeutions of these iterations onstitute asimulation run:1The sole onsideration of pre-trip replanning keeps the modeling simple. The estimatoritself is appliable to en-trip replanning as well, f. Setion 4.3.1.98



1. For all agents n = 1 . . .N , do: With probability 0.9, maintain n's route.Otherwise, generate an alternative route based on a randomly generatedVOT and the most reently observed travel times, and selet the betterone of these two alternatives aording to the senario's atual VOT.2. Load all agents on the network.This proedure an be applied to simulate both a planning and a telematissenario. The planning senario assumes that drivers learn from iteration toiteration. If one looks at relaxed iterations only, i.e., suh iterations wheretra� onditions have attained a stable distribution, then an alternative inter-pretation is that the situation of interest is one where drivers are aware of globaltra� onditions. This is realized if route-replanning is based on the previousiteration's travel times. For a telematis senario, however, it is neessary to runiterations while drivers remain on their initial level of knowledge. This knowl-edge is generated beforehand by running many iterations of a relaxed planningsimulation and saving the travel times of every iteration. These travel times arethen used by replanning travelers in the iterated telematis simulation.Even this simple simulator exhibits fairly omplex dynamis. Sine an elaborateanalysis of these dynamis is beyond the sope of this dissertation, the notionof a �relaxed simulation� that reahes �stable network onditions� is to be un-derstood informally and only in a given experimental ontext. Consequently,all �onvergene� statements regarding the subsequently desribed simulation-based estimator are of likewise experimental nature.5.1.2.2 EstimationThe estimator adjusts a prior senario to measurements that are observationsfrom a true senario. (Measurement generation is desribed further below.)The prior and the true senario only di�er in their VOT. The true senario rep-resents a syntheti reality that would in a real-world appliation be replaedby reality itself.At this stage of researh, a real-world test ase would rather obsure than larifythe estimator's working sine (i) no guidelines for its appliation are yet avail-able, (ii) unontrollable error soures would ompliate an interpretation of theestimation results, and (iii) only a simulated reality is perfetly observable fora omparison to its estimated ounterpart. Furthermore, merely an outdatedBerlin network and driver population are available sine the MATSim researhe�orts shifted towards the ity of Zurih around the beginning of 2007. Thishange ourred too late to be traed by this researh.The UM estimator is applied in all experiments. This is required by the impliitnature of the behavioral model. As explained in Setion 3.2.2.2, route realu-lations based on a previous iteration's travel times model a pereptional errorthat does not beome observable until the next network loading is exeuted.Sine this error is generated in hindsight, there is no variability within a singlehoie situation. The AR estimator is generally not appliable to this type of99



�best response� simulation.2 Furthermore, sine no PS-logit route hoie modelis used, only a heuristi appliation of the UM estimator is possible. This alsoputs its robustness with regard to a behavioral prior that is not guaranteed tobe of PS-logit struture to test, f. Setion 4.3.4.Sine the UM estimator is tehnially equivalent to the heuristi estimator ofSetion 4.2.2, the following presentation is given in terms of the latter. Theheuristi estimator adds a global utility funtion Φ to the individual utility ofevery agent, where Φ is a similarity measure between simulated and observedsensor data. More preisely, the estimator replaes any driver n's original utilitypereption Vn(U) as de�ned in (5.1) by a modi�ed utility Wn(U) = Vn(U) +
〈Λ,U〉/µ where the seond addend is a linearized and saled version of Φ. In allsubsequent experiments, Φ is spei�ed by

Φ(X ) = −
∑

a

∑

k

(ya(k) − ga[x(k)])2

2σ2 (5.2)where ya(k) is a measurement on sensor-equipped link a in time step k and
ga[x(k)] is its simulated ounterpart. An interpretation of this funtion as thelog-likelihood of mutually independent normal measurements with idential vari-anes σ2 is possible but, in light of the overall heuristi setting, not mandatory.
Φ is e�etively saled by σ−2. Sine this multipliation an be applied eitherbefore or after the linearization, it is assumed that the Λ values result from alinearization of Φ(X ) = −

∑

ak(ya(k)− ga[x(k)])2/2 and that the σ2 parameteris aounted for afterwards:
Wn(U) = Vn(U) +

〈Λ,U〉
µσ2 . (5.3)Only the produt of µ and σ2 is relevant to the estimation problem. Sine itre�ets the belief in the prior information represented by the original utilitypereption Vn(U), it is subsequently represented by a prior weight

wprior =

√

µσ2. (5.4)For interpretation, given a unit sale parameter µ, wprior is equivalent to anormal measurement's standard deviation. An experimental parameter tuningapproah is adopted for its seletion. This also is likely to be the ourse of ationin a real-world appliation [171℄.The estimation logi approahes a �xed-point of the Λ values by means of theSA algorithm desribed in Setion 4.1.3. This proedure iterates between alinearization of (5.2) and an iteration of the tra� simulator. That is, in everyiteration of the estimator, 10 perent of all departing agents replan based onthe most reently obtained utility orretions, a single network loading is run,and the utility orretions are immediately updated. The omplete estimationlogi is given below:2Speaking in terms of the partiularly hosen model: The route hoie set is generatedbased on a randomized VOT one per iteration, but it is �xed throughout that iteration.That is, repeated best response hoies within a single iteration invariably yield the sameresult. 100



1. Initialization.(a) Set iteration ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do with probability 0.1:i. Choie set generation. Generate an alternative route based on arandomly generated VOT and the most reent travel times.ii. Choie. Evaluate Wn(U) = Vn(U) + 〈Λ̄(m),U〉/w2prior instead of
Vn(U) when seleting U (m)

n . Vn(U) is evaluated based on theprior senario's atual VOT.(b) Load U (m)
1 . . .U (m)

N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) Inrease m by one.(b) Goto step 2.Note that the hoie set generation is based on the original utility Vn and arandomized VOT, whereas the hoie is based on the modi�ed utility Wn andthe prior senario's atual VOT. This ensures that every one in a while thehoie set ontains a route that is onsistent with the true senario's VOT.3 Thequestion thus beomes in how far the estimator, given the above set of behavioralalternatives but only a limited number of measurements, an pull the systemaway from the �wrong� VOT of the prior senario towards the �orret� VOT ofthe true senario.If there are no measurements, the Λ oe�ients are invariably zero and the abovealgorithm merely repeats steps 2a and 2b. That is, it funtions as a simulatorthat, upon stabilization in relaxed onditions, produes a sequene of draws fromthe behavioral prior distribution. As measurements beome available, nonzero

Λ values result, and the estimator stabilizes in di�erent relaxed onditions.Every iteration then generates a draw from the behavioral posterior given thepartiular prior senario and the available measurements from the true senario.Tehnially, the estimation problem is to identify a �xed point of the Λ oef-�ients. Sine the mapping from Λ on itself is e�etively from Λ on X on Λ,f. Figure 4.1, the existene of a Λ �xed point indiates the existene of a X�xed point, and vie versa. This justi�es the exlusive evaluation of the readilyinterpretable system states X to monitor the estimator's onvergene, as it isdesribed in the next setion.3There is no guarantee that running a best path algorithm diretly on modi�ed link utilitiesever produes a likewise realisti alternative. Setion 5.4 elaborates on this matter.101



Figure 5.2: Exemplary sensor loations50 automatially seleted sensor loations. One �ow sensor is loated in the enter ofeah olored link.5.1.3 Sensor and Validation DataThe estimator utilizes a limited amount of �ow measurements as sensor data.The estimation results are validated based on network-wide oupany informa-tion.5.1.3.1 Sensor DataFlow measurements, i.e., tra� ounts at road ross-setions per time interval,are used in all experiments as synthetially generated sensor data. The termmeasurement data is equivalently used. All suh data is averaged in 5 minutetime bins.For every estimation experiment, 50 sensor loations are seleted based on aomparison of the tra� onditions in the aording prior and true senario.The loations are automatially hosen by a simple tool that prefers links onwhih the average �ow di�erene between both senarios is largest and at thesame time seeks to maintain independent measurement loations. Sensor lo-ations are hosen for all senarios individually in order to provide equallyadvantageous preonditions for better omparability. An example of suhlikegenerated loations is given in Figure 5.2. The true tra� onditions utilizedby this proedure are of ourse unknown in a real-world appliation, where,however, prespei�ed sensor loations an be expeted to be available.The mapping from driver behavior on tra� �ows is nonlinear. In partiular,the intermediate mapping from tra� densities on �ow rates is ambiguous inthat every non-maximum �ow an be explained by two di�erent densities, f.Setion 2.2. Sine the estimation is based on repeated linearizations, suh non-linearities inrease the danger of loal onvergene. Therefore, an additional102



soure of information is employed. Even a simple single-loop detetor does notonly measure �ow rates but also the fration of time it is overed by a vehi-le. This information is likely to be too noisy to provide immediately usefultra� density information, but it does allow to distinguish free and ongestedtra� onditions [49℄. The estimator uses this information in its linearizationstep where it reognizes that in unongested onditions the log-likelihood of anymeasurement is only sensitive to the upstream tra� situation and in ongestedonditions it is only sensitive to the downstream situation.5.1.3.2 Validation DataOne may argue that an appraisal of the estimation quality should be diretlybased on routes. However, sine every agent may hoose any yle-free route to-wards its destination, it is unlikely that an estimated and a true route oinide.In priniple, the measure of route overlap proposed in [148℄ is appliable here.Still, the ontinuous variability of the simulated tra� onditions and of theresulting routes ompliates suh a omparison, and a more viable validationapproah is at hand: In the onsidered model, simulated �ows result deter-ministially from marosopi system states, whih in turn are onsequenesof mirosopi driver behavior, f. Setion 3.1.3. Marosopi link oupan-ies thus onstitute intermediate states that are easy to proess and interpret.4Sine the route hoie model is based on travel times whih are deterministi-ally dependent on marosopi link states, an estimator that reprodues linkstates well is likely to also generate realisti routes. Partiularly, the behavioralmodel plaeholder is by design su�iently restrited to unequivoally asribeany systemati hange in aggregate tra� onditions to the behavioral aspetof toll-avoidane.In onsequene, network-wide oupany information, i.e., the average numberof vehile units on every link in every 5-minute time bin, is used as the valida-tion data based on whih global tra� onditions are ompared. More generalexperiments are likely to also all for more powerful behavioral monitoring tools,whih onstitutes a researh question in its own right.5.1.3.3 Quantitative Error MeasuresThe notion of a run is subsequently used as a generi term for both a simulationrun and an estimation run. The di�erene of a run to a referene data set isevaluated in terms of a root mean square error measureRMS(m)
z [run] =

√

∑

a∈A

∑

k (z(m)
a (k) − zrefa (k))2

K|A| (5.5)where z
(m)
a (k) is the onsidered tra� harateristi (�ow, oupany) of thestudied run in iteration m on link a in time bin k, and zrefa (k) is the aordingreferene value. K is the total number of time bins and A is the set of links for4The hitherto used notion of oupany as the number of vehile units loated in a ell orlink is not to be onfused with the ommon notion of an indutive loop's oupany as thefration of time it is overed by a vehile. The latter is not employed here.103



whih tra� harateristis are evaluated. [run℄ is a shortut for the evaluatedrun. Unique referene data sets are used in all planning experiments and inall telematis experiments respetively. Whenever the dependeny of RMS oniteration ounter m is omitted, the last RMS value in a prespei�ed sequeneof iterations is referred to.It is frequently required to ompare a run's (reursively) averaged harateristis
z̄(m)

a (k) =











z(m)
a (k) m < m0

1

m − m0 + 1

m
∑

m′=m0

z(m′)
a (k) m ≥ m0

(5.6)to the referene data, where m0 is always hosen large enough to ensure thatthe onsidered run reahes a stable distribution of network onditions before theaveraging starts. This allows for the de�nition of an additional error measureRMSA(m)
z [run] =

√

∑

a∈A

∑

k (z̄(m)
a (k) − zrefa (k))2

K|A| , (5.7)where the only di�erene to RMSz is that z
(m)
a (k) is now replaed by the averagevalue z̄

(m)
a (k).The following partiular error measures are used.

• The measurement error RMSAq is an instane of (5.7) that representsthe deviation of an estimation run from its measurement data set. That is,the referene data used here is idential to the measurement data used forestimation. Consequently, only the �ow rates at the prespei�ed 50 sensorloations are evaluated. Note that the measurement error is basially asaled version of √−Φ, f. (5.2). Its unit is veh/h, whih is subsequentlyomitted for brevity.
• The validation error RMS(A)x is an instane of (5.5) or (5.7) that rep-resents the deviation of a simulation run or an estimation run from itsvalidation data set. At this, it ompares the oupanies on all links inthe network. Its unit is veh, whih also is subsequently omitted.5.2 Planning Experiments (Equilibrium Situation)A planning-like setting is onsidered �rst. SUE onditions are modeled by pro-viding global knowledge about the previous iteration's tra� onditions to allreplanning agents in the iterative DTA proedure desribed in Setion 5.1.2.1.All experiments use sensor data from a true senario that is based on one par-tiular VOT, whereas the prior senario assumed by the estimator is based ona di�erent VOT.The experiments given here examine the logial orretness and overall preisionof the estimator. Sine omputational performane is not of primary onernin an o�ine planning appliation, its investigation is postponed to Setion 5.3where a telematis ase study in simulated online onditions is desribed.104



Figure 5.3: RMSx and RMSAx [6 EUR/h VOT simulation℄Three simulation runs of 500 iterations eah are onduted in order to investigatethe stability of the 6 EUR/h VOT senario. The �utuating RMSx values e�etivelyrepresent the Eulidean distane between the referene data and the simulated ou-panies of a partiular iteration. The reursive state averaging is turned on after 100iterations suh that a smooth RMSAx urve branhes o� eah RMSx urve.5.2.1 Senario GenerationGiven the above overall settings, one planning simulation is run for a senariowithout toll, and three further simulations are run for toll-senarios with VOTsof 6, 12, and 18 EUR/h. Eah simulation is exeuted for 500 iterations. Theseinitial runs are subsequently denoted as the �no-toll� and the �6 (12,18) EUR/hVOT� referene simulations of their respetive planning senarios. Link �owsand oupanies are averaged over the last 400 iterations of eah referene sim-ulation aording to (5.6). These average values onstitute the referene datasets for all RMS and RMSA error measures given in the subsequent planningexperiments, f. Setion 5.1.3.3.5.2.1.1 Investigation of Senario StabilityTo test the robustness of this set-up, another three simulations are run for everysenario. They are ompared to their respetive referene senario by trakingthe validation errors RMSx and RMSAx over 500 iterations, as shown in Figures5.3 through 5.6.All experiments start with an idential plans �le. This results in di�erent tran-sients during the �rst iterations. Sine these transients represent no relaxednetwork onditions, the reursive state averaging is turned on not before it-eration 100 where a RMSAx urve branhes o� eah RMSx urve. Sine thisbranhing in onjuntion with muh smoother dynamis is harateristi for allRMSAx urves, they are not expliitly labeled in the plots.The RMSAx urves approah small values when ompared to their RMSx oun-terparts. This indiates that all simulations for a partiular VOT attain similar105



Figure 5.4: RMSx and RMSAx [12 EUR/h VOT simulation℄Three simulations of the 12 EUR/h VOT senario. See Figure 5.3 for further expla-nations.

Figure 5.5: RMSx and RMSAx [18 EUR/h VOT simulation℄Three simulations of the 18 EUR/h VOT senario. See Figure 5.3 for further expla-nations.
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Figure 5.6: RMSx and RMSAx [no-toll simulation℄Three simulations of the no-toll senario. See Figure 5.3 for further explanations.average system states. The RMSx urves stabilize at a onstant degree of vari-ability. A visual inspetion shows a positive auto-orrelation within eah urve.This results from the simulation logi that invariably opies 90 perent of allroutes from one iteration to the next. Altogether, the network states exhibit a�utuating and possibly yling behavior. Sine no systemati drift is observed,onvergene towards a stable state distribution annot be disproved.All RMS urves are loated above their RMSA ounterparts. However, thisobservation does not prove a systemati di�erene between the average systemstates and the single-iteration draws. It rather is a onsequene of the hosenerror measures, and the same RMS vs. RMSA onstellation would result evenif the relaxed system states were perfetly normally distributed: The surfaeof an (n + 1)-dimensional sphere with radius r is proportional to rn. Theprobability that a single network state is simulated r distane units away fromits expetation therefore results from an integration of its p.d.f. over a domainthe size of whih is proportional to rn. Sine the referene data used in RMS(A)onsists of average network harateristis that approximate this expetation, asmall RMS value is as unlikely to our as a small r value, whereas vanishingRMSA values merely result from the law of large numbers.5.2.1.2 Measurement and Validation Data GenerationAn aurate generation of the syntheti measurements for a single day requiresto take one relaxed iteration of the true senario, to extrat the �ow data atall sensor loations, and to randomly disturb this data aording to a distribu-tional assumption about the measurement error. Based on this information, the(planning) estimator is run with the goal to reprodue the true distribution oftra� onditions. In onsequene, an �exhaustive� validation proedure mustompare two full distributions of tra� onditions.Within the sope of this work, distributions are ompared in terms of their107



expetations. The similarity of an estimated and a true distribution of net-work onditions an thus be quanti�ed by an RMSA error measure. This errormeasure is a random variable itself sine it depends on the partiular draw ofmeasurement data Y that is used for estimation, i.e., RMSA = RMSA(Y). Areliable appraisal of the estimation quality would therefore require to gener-ate a large number of measurement data sets Y and to run the estimator foreah of these sets individually. An expeted error E{RMSA(Y)} ould then beidenti�ed by averaging RMSA(Y) over all experiments.Sine strong variability an be observed in the simulations, many omputa-tionally demanding experiments would be needed to identify the estimator'sexpeted performane.5 Even if this e�ort was shouldered, the validity of theresulting assessment would be limited by that of the deployed model plaehold-ers. These reservations motivate a less rigorous yet omputationally more viableapproah.A single, most representative measurement data set is used for eah true se-nario. The stability analysis of Setion 5.2.1.1 shows that repeated simulationsof a partiular senario onverge to similar average network states. The initiallygenerated referene data sets for eah senario are therefore used as sensor andvalidation data in all planning experiments. Averaging the data instead of av-eraging the evaluation results is equivalent to the learly idealized assumptionthat E{RMSA(Y)} ≈ RMSA(E{Y}) is a feasible approximation.No additive sensor noise is simulated sine only its zero expetation appears inE{Y}. This underlines the idealized experimental setting sine the true level ofsensor noise will in reality ertainly impair the estimation performane. How-ever, sine there is no guarantee that the average of many physially possiblesystem states is itself physially feasible, a systemati error may be introdued.These aspets must be aounted for when interpreting the estimation results.This simpli�ation may even be realisti in a setting where the sensor dataavailable for planning purposes has been averaged over many days. However,the e�etive motivation for this approah is to limit the degrees of freedom thatneed to be experimentally investigated. One should reall that the purpose ofthese experiments is to demonstrate the estimator's logial orretness. Onethis is ahieved, su�ient oneptual bakground is provided in Chapter 4 formore extensive investigations in likewise more realisti experimental settings.5.2.1.3 Comparison of SenariosFigure 5.7 provides an impression of the di�erene between the syntheti realityon the one hand and the prior senario assumed later during estimation on theother hand. It ontains six satterplots that ompare the �ow and oupanydata of the 12 EUR/h VOT referene simulation to the 6 EUR/h VOT, the 18EUR/h VOT, and the no-toll referene simulation.The �rst olumn ompares the referene �ow rates and the seond olumn om-pares the referene oupanies. All satterplots ontain data points for all links5Reent experimental results milden this onern. However, sine these results were ob-tained too late to be aounted for in this dissertation, they are only indiated in this and afew subsequent footnotes. 108



Figure 5.7: Satterplots for omparison of planning referene simulationsThe satterplots ompare data from the 12 EUR/h VOT planning referene simulation(on the ordinate) to the other planning referene simulations (on the absissa). The�rst olumn ompares �ow rates and the seond olumn ompares oupanies. Allsatterplots ontain data points for all links in the network. The data points apply tothe simulation time interval from 8:30 to 8:35 and represent average values over 400iterations. 109



in the network. That is, the �ow satterplots ontain more information than theRMSAq measurement error, whih only aounts for data at sensor loations.The measurement error indiates to what degree the estimator is able to reon-strut available sensor data, whereas the satterplots allow for a network-wideomparison of tra� onditions.All data points apply to the simulation time interval from 8:30 to 8:35. At�rst glane, the deviations appear moderate in onsideration of the broad rangeof VOTs. However, reall that all referene data sets are averaged over 400iterations. An inspetion of the simulation dynamis in Figures 5.3 through 5.6shows that variability is muh larger without averaging. Using average dataallows to asribe all pereptible deviations in the satterplots to systematiauses.The �ow satterplots in the left olumn give an impression of the amount ofinformation e�etively available to the estimator. The stronger the �ow devi-ations between two senarios the more useful are �ow measurements to adjustone senario to another. Vie versa, if two senarios di�er only slightly in their�ows, the estimator has only little information at hand. In all plots, the �owsexhibit no distint bias in that they are sattered unsystematially around themain diagonal. The reason for this is that route hoie is the only behavioraldegree of freedom: Every driver who bypasses the downtown area invariabledrives through the �inverse� of that area, and vie versa, suh that the �ows anmerely be realloated among links.The seond olumn ontains oupany satterplots. This type of data alsode�nes the RMSAx validation error. The degree of variability among di�erentsenarios follows the same order as for the �ows.6 However, systemati di�er-enes between the senarios an now be observed. Sine the toll is not designedto maximize tra� throughput, it auses inreased ongestion outside the ityenter. This e�et beomes more pronouned for smaller VOTs, whih model agreater behavioral sensitivity to the toll. The nonlinear ongestion e�ets arere�eted in unsymmetrial plots: The positive e�et of the toll (less vehilesdowntown) is not as pronouned as its negative ounterpart (more vehiles onthe bypass roads). Suh an e�et an be justi�ed if there are other motives thanongestion relief for the introdution of the toll. One should keep in mind thatthis is a syntheti senario with no ambition to evaluate road priing strategiesthemselves.5.2.2 Experimental Results12 EUR/h is a reasonable a priori guess for an average VOT. The estimatortherefore adjusts a 12 EUR/h VOT prior senario to the referene measure-ments of a true no-toll senario, a true 6 EUR/h VOT senario, and a true18 EUR/h VOT senario. Every estimation run starts with a plans �le that is6A prominent outlier at oordinates (312/175) in the �6 vs 12 EUR/h VOT� oupanysatterplot an be observed. This is the western segment of �Frankfurter Allee�, leadingimmediately into the toll zone. It has 3 lanes and is almost 3 kilometers long. The lower thevalue of time the more drivers try to divert at at the downstream end of this road into theinreasingly ongested bypasses and ause the observed spillbak.110



drawn from the 12 EUR/h prior distribution. That is, in the absene of measure-ments, the estimator immediately draws from the prior, and if measurementsare available, all transients towards the posterior an be unequivoally asribedto the measurements. Experiments with various prior weights wprior as de�nedin (5.4) are onduted in order to investigate the estimator's robustness againstsuboptimal parameter settings. Three estimation runs are evaluated in everyon�guration in order to inrease the statistial reliability of the results.75.2.2.1 Desription of ResultsFigure 5.8 shows the resulting error measures over di�erent wprior values forsensor data generated from the 6 EUR/h VOT, the 18 EUR/h VOT, and theno-toll referene senario. These settings are subsequently denoted as �no-tollestimation� and �6(18) EUR/h VOT estimation�. Measurement errors RMSAqare given in the �rst olumn and validation errors RMSAx are shown in theseond olumn. For omparison, error measures for the 12 EUR/h VOT refer-ene simulation and for the additional three simulation runs onduted in thestability analysis of Setion 5.2.1.1 are also given in eah diagram. They areequivalent to running the estimator without sensor input. For ease of ompari-son, they are re-drawn over every onsidered wprior value in red olor. The threeestimation results per wprior value are drawn in blue. All experiments are runfor 250 iterations. Flow and oupany averaging is started after a settling timeof 50 iterations.All results are fairly stable in that there is limited variability among repeatedruns. Often enough, the dots lie on top of eah other and annot be distin-guished. Reproduible onvergene is a desirable and not at all self-evidentfeature for a nonlinear estimator. In these experiments, it an be observed withgood preision. However, this result is at least partially owed to the use ofa representative measurement data set in all experiments for a partiular truesenario. Another general observation is that the oupany error levels arerelatively small. This is a onsequene of the network-wide point of view whihaounts for many links in the periphery that are hardly a�eted by the toll.The �rst olumn of Figure 5.8 shows that the measurement error RMSAq de-reases monotonously with wprior. This is plausible: the smaller the belief in thebehavioral model the more weight is put on measurement reprodution. Theresults di�er in the previously hypothesized way in that a large di�erene be-tween �ows in the prior and the true senario provides substantial informationthat an be failitated for estimation, whereas smaller �ow di�erenes result ina less foused searh: The 12 EUR/h VOT prior senario is most di�erent fromthe no-toll senario, less di�erent from the 6 EUR/h VOT senario, and leastdi�erent from the 18 EUR/h VOT senario. Aordingly, the greatest estima-tion improvements over a plain simulation of the prior are 86%, 63%, and 58%,respetively.7All results apart from the performane benhmarks of Setion 5.3.3.3 are obtained on aomputing luster where the nodes are equipped with AMD 2.6 GHz Opteron proessors andhave at least 2 GB of RAM. On suh a node, the omputing time of an estimation run asdesribed in this setion is in the order of one day.111



Figure 5.8: Result overview for planning experimentsThe left olumn shows measurement errors RMSAq and the right olumns shows val-idation errors RMSAx over di�erent wprior values for a true 6 EUR/h VOT senario,a true 18 EUR/h VOT senario, and a true no-toll senario. The three estimationresults per wprior value are represented by blue dots. For omparison, the error mea-sures for four plain simulations of the 12 EUR/h VOT prior senario are representedby red dots. All experiments are run for 250 iterations. Flow and oupany averagingstarted after a settling time of 50 iterations.112



The seond olumn of Figure 5.8 shows a non-monotonous relation between
wprior and the validation error RMSAx. As wprior grows, the measurements'in�uene vanishes and the estimation quality graefully deteriorates towardsthat of a plain simulation . However, as wprior dereases, a minimum valueof RMSAx is invariably enountered, after whih a further derease of wpriorresults in an inreased validation error. The attained minimum RMSAx valuere�ets the estimator's ability to spatiotemporally extrapolate the available �owmeasurements. The RMSAx improvements follow the same order as the RMSAqresults. When ompared to the 12 EUR/h VOT prior senario, the estimatorahieves a 48% improvement for the true no-toll senario at wprior = 0.72 or
1.44, a 36% improvement for the true 6 EUR/h VOT senario at wprior = 2.88,and even for the subtle true 18 EUR/h VOT senario a 20% improvement anbe observed at wprior = 2.88. The last improvement is partiularly noteworthysine fairly little di�erene between the 12 and the 18 EUR/h VOT senarioan be identi�ed in Figure 5.7 at all. This indiates that the estimator is quitepreise in that it reognizes even suh subtle di�erenes. Reall that all of theseextrapolation results are obtained using only 50 measurement loations out ofaltogether 2 459 links.Figures 5.9 and 5.10 provide �ow and oupany satterplots that result fromthe best on�guration in eah experimental setting. Here and subsequently,the �best� on�guration orresponds to the wprior value that yields the smallestvalidation error on average. From the aording three estimation runs, theseond best is hosen for illustration. The �rst olumn of eah �gure repeatsthe data obtained during the preparatory simulations, f. Figure 5.7, and theseond olumn shows the orresponding estimation results. All data points areaveraged over many relaxed iterations suh that all di�erenes between left andright olumn an be asribed to a systemati e�et of the estimator. Overall,the visual impression a�rms the quantitative error measures. Reall that thepreviously given RMSAq values only aount for the 50 sensor loations, whereasthe �ow satterplots ontain data points for all links in the network.5.2.2.2 Disussion of ResultsThree explanations an be given for the inreased validation errors at small
wprior values. The �rst is over-�tting. Even if the representative measurementsare not orrupted by sensor noise, their averaging may result in an inonsistenywith the dynamis of the underlying nonlinear tra� �ow model.8 The seondexplanation is under-determinedness in ombination with nonlinear dynamis.There may be many global tra� situations that reprodue the measurementsequally well. As the behavioral model's e�et vanishes with dereasing wprior,insu�ient behavioral information is available as a guidane towards a plausi-ble solution, and the estimator gets loally stuk. This e�et is possible eventhough the �ow sensors provide supplementary information about free and on-gested tra� onditions sine this data is still insu�ient to uniquely de�ne thetra� onditions in the further surroundings of a sensor. Finally, a small wpriore�etively ats like a large gain on the log-likelihood funtion, and the steepnessof this funtion an have a negative e�et on the onvergene of the underlying8The reent experimental results on�rm this hypothesis.113



Figure 5.9: Comparison of true and estimated �ows (planning)The �rst olumn repeats the preparatory �ow satterplots of Figure 5.7. The se-ond olumn shows the aording estimation results where the referene �ows (on theabsissa) are ompared to their estimated ounterparts (on the ordinate). That is,every row ontains one satterplot that ompares a partiular true senario to theprior senario, and it ontains another satterplot that ompares the true senarioto the estimation result. These plots already represent average values suh that alldi�erenes between left and right olumn an be asribed to a systemati e�et of theestimator. 114



Figure 5.10: Comparison of true and estimated oupanies (planning)The �rst olumn repeats the preparatory oupany satterplots of Figure 5.7. Theseond olumn shows the aording estimation results where the referene oupanies(on the absissa) are ompared to their estimated ounterparts (on the ordinate). SeeFigure 5.9 for further explanations. 115



Figure 5.11: RMSx and RMSAx [6 EUR/h VOT estimation℄Validation errors over 250 iterations for the three best experiments with a true 6EUR/h VOT senario. RMSx e�etively represents the Eulidean distane of the 6EUR/h VOT referene oupanies to the estimation results of a partiular iteration.The reursive state averaging is turned on after 50 iterations suh that a smoothRMSAx urve branhes o� eah RMSx urve.SA �xed point searh algorithm. In either ase, a trustworthy behavioral modelthat alls for a su�iently large wprior avoids the problem.Rephrasing this observation in more general terms, a good state reprodutiondepends ruially on data and modeling quality, whih annot be ompensatedfor by the estimation logi itself. The measurements need to ontain su�ientinformation for a spatiotemporal extrapolation, and the behavioral simulatormust be struturally orret in that it generates hoies that are ompatiblewith the measurements.Overall, the ahieved measures of estimation quality must be onsidered in lightof the idealized setting in whih they were obtained. The use of representativemeasurement data that is free of sensor errors is an idealization. In a real-worldappliation, the over-�tting of ertainly existing measurement errors must beavoided. This is likely to require larger wprior values than used here and wouldonsequently yield a redued measurement and validation data �t. However, itan be onluded that the estimator performs struturally orret and that theestimation results in a spei� appliation will mainly depend on the availabledata and modeling quality.5.2.2.3 Estimation DynamisFinally, a loser look at the estimation dynamis is provided in Figures 5.11through 5.13 for the 6 EUR/h estimation, the 18 EUR/h estimation, and theno-toll estimation. Eah �gure shows all three RMSx and RMSAx trajetoriesfor the respetive best wprior on�guration over 250 iterations. Most RMSx tra-jetories osillate fairly stable in the temporally auto-orrelated manner known116



Figure 5.12: RMSx and RMSAx [18 EUR/h VOT estimation℄Validation errors over 250 iterations for the three best experiments with a true 18EUR/h VOT senario. See Figure 5.11 for further explanations.

Figure 5.13: RMSx and RMSAx [no-toll estimation℄Validation errors over 250 iterations for the three best experiments with a true no-tollsenario. See Figure 5.11 for further explanations.
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from the preparatory simulation runs. The eventual outliers, partiularly theblue urve in Figure 5.11, may be due to a yet imperfetly relaxed posteriordistribution. However, similar periods of �disarranged� dynamis an also befound in the preparatory simulations, where no estimation was involved.All RMSAx urves stabilize well in the available 250 iterations. Their speed andreliability of onvergene inreases as the prior and the true senario beomemore similar. The 18 EUR/h VOT estimation onverges fastest, the 6 EUR/hVOT estimation is somewhat slower yet still very reliable, and the no-toll esti-mation exhibits the least onsistent onvergene behavior. This may result fromthe fat that the more distant prior and true senario are the longer the estima-tor's way through state spae beomes. In nonlinear onditions, the hane of�branhing o�� towards di�erent loal solutions is likely to inrease as this waygets longer.Altogether, the estimator onsistently generates distint state reonstrutionimprovements. It extrats the relevant information out of limited �ow mea-surements even for very subtle di�erenes between prior and true senario. Itsability to funtion in the planning-like setting given here shows its appliabil-ity in onjuntion with a non-deterministi, equilibrium-based dynami tra�simulator.5.3 Telematis Experiments (Non-Equilibrium Sit-uation)The seond half of this hapter applies the proposed estimator in onjuntionwith a telematis model that replaes the hitherto assumed SUE onditions byan assumption of imperfetly informed drivers. This has a signi�ant in�ueneon the tra� onditions when ompared to the planning senario, and the es-timator has, even under strit running time onstraints, a substantially moredistint e�et in this setting.Experiments are onduted in o�ine and simulated online onditions, f. Setion1.1.3. In o�ine onditions, a set of beforehand olleted measurement data isproessed �en blok�. In a telematis ontext, this is useful for the ex postanalysis of a partiular day. The online estimator runs in a rolling horizonmode where the estimation of the tra� state for a ertain point in time hasonly measurements from earlier times available. This setting is harateristifor a ontinuous tra� monitoring problem. The experiments in simulatedonline onditions allow to investigate the estimator's real time apabilities andto onlude about the senario size its urrent implementation an handle.5.3.1 Rolling Horizon EstimationA rolling horizon logi is implemented that runs the estimator in simulatedonline onditions. The time period of investigation still is 6 to 9 am. While oneiteration of an o�ine estimator failitates all measurements from this intervalat one, online onditions imply that the measurements beome available bit bybit as the simulated real time proeeds.118



The online estimation starts at 6:30 simulated real time. Only measurementsuntil this moment are available. The estimator iteratively adjusts the simulateddriver behavior to these measurements aording to the by now established es-timation logi of Setion 5.1.2.2. During this �rst estimation period, only asimulation from 6:00 to 6:30 is iteratively adjusted. After a prespei�ed numberof iterations, the simulated real time is advaned to 6:35, the most reent simu-lation is ontinued until 7:00 to evaluate the estimator's preditive apabilities,the measurements from 6:30 to 6:35 beome available, and the next estimationperiod from 6:05 to 6:35 begins. All driver behavior until 6:05 is now �xedaording to the last iteration of the previous estimation period.It is noteworthy that suh a simulation logi is attrative not only for telem-atis purposes in online onditions. Being able to iterate ritial time intervalsmore frequently than others allows to deploy omputational resoures in a morefoused way. This also appears useful during the �rst iterations of a planningsimulation where the system is far away from an equilibrium. An eventualsequene of �full� planning iterations eliminates the arued tendeny of loalonvergene. The danger of imperfet onvergene also needs to be aountedfor in online estimation and alls for the more elaborate disussion given next.In rolling horizon estimation, behavior is adjusted only within a limited estima-tion period that ends at or shortly before the urrent point in time. As timeproeeds, this estimation period is also shifted. In the subsequent period, alldriver deisions that have fallen out of the estimation time window are kept �xedat their last values. This is neessitated by the estimation window's onstantlength, whih in turn is enfored by the real time requirement of a onstantalulation time per estimation period. Sine the estimator ontinues to adjustbehavior to measurements, it may hange agent deisions within the given es-timation period in an attempt to ompensate for imperfet estimates at earliertimes.The problem of suboptimal rolling horizon estimation has already been inves-tigated for tra� monitoring problems with aggregate models [23℄. Sine anindividual-level analysis is pursued here, a behaviorally more desriptive pointof view is adopted. The question arises to what degree it is feasible to substitutethe behavior of di�erent travelers when mathing sensor data without aumu-lating inorret behavioral estimates from one estimation period to the next.Feasibility is not to be onfused with individual-level realism � no real traveleraounts for what others do and ompares it to tra� ounts. It rather meansthat the learly suboptimal behavioral preditions for agents that ompensatefor imperfet estimates of earlier periods still result in future tra� onditionsthat are more realisti than an a priori guess without estimation. For example,distorting the behavior of a few travelers at a ritial time and loation in thenetwork might prevent an unrealisti gridlok in the simulation. This also pre-vents the likewise unrealisti reations of many other agents to this gridlok. Inonsequene, agents that replan in later estimation periods do so in more real-isti onditions and thus with more realisti results � even if no measurementsare aounted for in these later periods.It is worthwhile to adopt a more formal view on this matter. The behavioralposterior
P (U1 . . .UN |Y) ∝ l(U1 . . .UN |Y)P (U1 . . .UN) (5.8)119



di�ers from its prior P (U1 . . .UN ) only beause of the information ontained inthe measurement likelihood l(U1 . . .UN |Y), f. (4.19) and (4.24). Fixing thebehavior of some agents at unreasonable values degrades the estimation qualityby means of this likelihood.This e�et an be substantially mildened by the behavioral simulator itself. Ahameleoni behavioral prior that admits even highly unrealisti ations with alow yet non-zero probability is likely to be inappliable in onjuntion with asuboptimal estimator. If, in suboptimal onditions, the likelihood is badly ap-proximated, the hoie probabilities of implausible ations may be exessivelyinreased. However, if the behavioral model simply does not generate implau-sible ations, i.e., if implausible hoies are seleted with zero probability, noBayesian estimator an ever generate a positive hoie probability by mere mul-tipliation in fundamental relation (5.8). The behavioral model plaeholder usedhere is robust in this regard sine it generates alternative routes only based onreasonable VOT variations. Its simpliity prevents it from ever generating a�strange� route that may even be seleted during estimation beause of a poorlikelihood approximation.A omputational impliation of these observations relates to the fat that theestimator linearizes the log-likelihood. If the likelihood is impreise, there islittle meaning in running a large number of iterations per estimation periodin order to �nally draw from a posterior that is based on an utmost preiselinearization of the aording log-likelihood. The experiments of Setion 5.3.3.2provide more insight into this issue.5.3.2 Senario Generation5.3.2.1 Simulation of Imperfetly Informed DriversThe �rst day after the implementation of the toll is simulated. In this set-ting, drivers are aware of typial travel times without toll and of the toll itself.However, they have not yet learned the alterations in tra� onditions thatresult from other travelers' hanged behavior in response to the toll. Suhlikeimperfetly informed drivers are simulated in the following way.1. A planning simulation without toll is run. When the simulation attainsrelaxed onditions, time-dependent travel times for all links are writtento �le over a long sequene of iterations. The travel time distributionaptured by these �les is used in all subsequent experiments as a repre-sentation of drivers' memory of the no-toll situation.2. When running the telematis simulation, this sequene of �les is pro-vided to pre-trip replanning travelers instead of the last iteration's traveltimes. The travelers base their routing deisions on this memory, plus the(known) toll. This allows to run the simulation in an iterative mannerand to maintain variability in the tra� onditions while avoiding a learn-ing e�et that results if atually simulated travel times are fed bak forreplanning. 120



Figure 5.14: RMS(A)x [no-toll planning/telematis simulation℄The red urves show RMS(A)x [no-toll planning simulation℄ and the blue urves showRSM(A)
x
[no-toll telematis simulation℄ over 500 iterations. The validation data fromthe no-toll referene planning senario is used as referene data in all error measures.Sine the simulations start with an already relaxed plans �le, the reursive state av-eraging is turned on from the very �rst.For estimation, the overall logi of Setion 5.1.2.2 is maintained, only that re-planning is now based on the previously generated driver memory. The onlystrutural di�erene between a prior and a true telematis senario is a di�erentVOT. Sine every estimation starts with a plans �le that is drawn from a sta-ble simulation of its respetive prior senario, all transients during estimationre�et the transition from the prior to the estimated posterior distribution.5.3.2.2 Investigation of Senario StabilityFigure 5.14 shows, in red olor, the RMSx and RMSAx urves for 500 iterationsof a planning simulation in the no-toll ase when ompared to the referene datafor that senario. Sine these iterations start from an already relaxed plans �le,the reursive state averaging is turned on from the very �rst. Three furtherurve pairs are drawn in blue. They result from an idential set-up as the �rstrun, only that the travel times on whih replanning is based are now taken fromthe memory �les that were written during the �rst simulation.Using the memory �les results in an inreased variability of the tra� onditions.This an be seen from the greater variability of the blue RMSAx urves, whihindiates that the network states are drawn from a wider distribution than inthe initial simulation. The higher overall levels of the blue RMSAx urves alsoshow that a moderate additional error is introdued. The higher level of the blueRMSx urves results from the ombination of both e�ets. However, all blueRMSx urves exhibit a similar struture. This shows that, even if the telematislogi has a side e�et on the simulation dynamis, this e�et is fairly stable.The soure of the di�erene between the original simulation and the telemat-is simulations is that the replanning agents are seleted at random in every121



iteration. That is, even if the available information itself is idential in all sim-ulations, di�erent travelers at di�erent loations and with di�erent destinationsreat to it. The resulting deviations in the tra� onditions are not aountedfor by the replanning agents. This an be seen as an inreased pereptionalerror, whih, in the given setting, also inreases the variability of the resultingtra� onditions.5.3.2.3 Measurement and Validation Data GenerationThe previous setion shows that the dynamis of telematis simulations are evenless well-behaved than their planning ounterparts suh that the argumentationof Setion 5.2.1.2 applies here with even stronger emphasis.Consequently, representative measurement and validation data sets are againgenerated by averaging. That is, a telematis referene simulation is run forthe no-toll senario and for the 6,12, and 18 EUR/h VOT senario.9 Flows andoupanies are averaged over 400 stable iterations of eah simulation. Theseaverage values onstitute the measurement and validation data sets used as thereferene data in all subsequent evaluations and RMS(A) error measures.There is a oneptual di�erene in the validation of a planning and a telematisestimator. In a planning appliation, the goal is to estimate a posterior that issimilar to the true distribution of tra� states (from whih a draw is realizedevery day). In a telematis setting, reality onsists of a single day only. Con-sequently, a telematis posterior must represent the knowledge about a singlerealization of tra� onditions only. This di�erene is disregarded in the sim-pli�ed setting onsidered here sine only a single, representative referene dataset is used to validate the planning and the telematis estimator respetively.5.3.2.4 Comparison of SenariosFigure 5.15 ompares �ows and oupanies of the 12 EUR/h VOT (telematis)referene simulation to the 6 EUR/h VOT referene simulation, the 18 EUR/hVOT referene simulation, and the no-toll referene simulation. Again, all datapoints are 400-iteration averages, and, again, they apply to the simulated timeinterval from 8:30 until 8:35 am.The 12 EUR/h VOT senario deviates remarkably from the no-toll senario butdoes not di�er muh from the other simulations with a non-zero toll. This is aresult of the laking equilibrium assumption: At the �rst day of the toll's im-plementation, the presumably most advantageous route hoie for most driversthat so far have traversed the toll area is now to avoid it but to bypass it assharply as possible in order to minimize the inrease in travel time. This, how-ever, auses an unforeseeable ongestion on the roads that immediately enirlethe toll zone. The no-toll senario is the only senario in whih this ongestiondoes not our.9The no-toll telematis referene simulation di�ers somewhat from the no-toll planningreferene simulation beause of the �le-based driver memory in the telematis simulationlogi. 122



Figure 5.15: Satterplots for omparison of telematis referene simulationsThe satterplots ompare data from the 12 EUR/h VOT telematis referene simula-tion (on the ordinate) to the other telematis referene simulations (on the absissa).The �rst olumn ompares �ow rates and the seond olumn ompares oupanies.All satterplots ontain data points for all links in the network. The data points applyto the simulation time interval from 8:30 to 8:35. All data points represent averagevalues over 400 iterations. 123



Figure 5.16: Result overview for telematis o�ine experimentsThe left diagram shows measurement errors RMSAq and the right diagram shows val-idation errors RMSAx over di�erent wprior values for a 12 EUR/h VOT prior senarioand a true no-toll senario. The three estimation errors per wprior value are representedby blue dots. For omparison, the error measures for three plain simulations of theprior senario are represented by red dots. All experiments are run for 250 iterations.Flow and oupany averaging is started after a settling time of 50 iterations.Sine the estimator's ability to trak rather subtle deviations is already demon-strated in the planning experiments, only the no-toll senario is subsequentlyused as the syntheti reality. This implies that the real drivers e�etively ignorethe toll's e�et. Keeping in mind that only the �rst day after the installationof the toll is simulated, suh a behavior may either result from unawareness orfrom uriosity about the involved tehnial installations. Again, the purpose ofthese experiments is to sound the apabilities of the estimator, not to disussroad priing issues themselves.105.3.3 Experimental ResultsIn all telematis experiments, the estimator adjusts a 12 EUR/h VOT priorsenario to measurements that are obtained from a true no-toll senario.5.3.3.1 O�ine EstimationTo begin with, the rolling horizon mode is not failitated and a sequene ofo�ine estimations is run over the entire 6 to 9 am time period. Figure 5.16shows the resulting error measures over di�erent wprior values. The measurementerror RMSAq is given on the left, and the validation error RMSAx is given on10The reent experimental results indiate that the estimator works equally well if the priorsenario and the syntheti reality are exhanged. Suh a setting, where the real reation to thetoll is muh stronger that a priori expeted, ould result from an overreation of the driversto the toll. 124



the right. The results of three plain simulation runs of the 12 EUR/h VOTprior senario are represented by red dots, and the three estimation results per
wprior value are drawn in blue. All experiments are run for 250 iterations. Thereursive state averaging turned on after a settling period of 50 iterations.Both, the simulation and the estimation results are very stable; most dots lie ontop of eah other. This even greater stability than in the planning ase despiteof the greater di�erene between the prior and the true senario is asribed tothe simpler simulation logi that now dispenses with the equilibrium-generatingtravel time feedbak between subsequent iterations. The estimator generatesremarkable improvements. For wprior = 2.88, it improves RMSAq by 78% andRMSAx by 82% over a plain simulation of the prior senario. The severe onges-tion of the 12 EUR/h VOT prior senario that does not our in the simulatedreality is suessfully prevented by the estimator. The �ows and oupaniesof the best estimation run (seleted aording to the same riterion as in theplanning experiments) are opposed to the referene data for the true senario inthe satterplots of Figure 5.17. Sine these data points are averaged over manyiterations, their di�erenes leave no doubt about the estimator's systemati andbene�ial in�uene.115.3.3.2 Online Estimation in Rolling Horizon ModeThe same estimation problem as before is now takled in rolling horizon mode.With a real-time appliation in mind, an evaluation of the estimator perfor-mane in terms of average system states that are obtained over hundreds ofiterations is now inappropriate. Therefore, only the RMSx validation error issubsequently evaluated. A temporally disaggregate point of view is adopted byonsidering eah estimation period individually. Preditive apabilities are alsoinvestigated.A rolling horizon appliation hallenges the estimator more than the previouso�ine experiments beause of the di�erent use of the travel time memory �les.An idential memory �le sequene is used for measurement generation and foro�ine estimation. The rolling horizon estimator still uses the same �les butloads a new �le in every iteration of every estimation period. Sine these �lesare now applied in a temporal ontext that is di�erent from the setting in whihthe measurements were generated, any advantage the estimator may have hadduring o�ine estimation is now preluded.A prior weight of wprior = 2.88 is maintained in all runs sine this settingahieved the best results in the preparatory o�ine experiments. Figure 5.18provides separate results for every 30-minute estimation period ending at 7through 9 am. The blue bars represent (from left to right) the RMSx validationerrors obtained at the end of 5, 10, 20, 30, 40, and 50 iterations per estimationperiod. They are drawn on top of red validation error bars that result from plainrolling horizon simulations with respetive iteration numbers. These simulationsfollow an idential logi as the estimator, only that the measurements are notaounted for.11Results of omparable quality were reently obtained in a setting where the sensor data isnot averaged over many iterations but where it is taken from a single iteration of the telematissimulation that generates the syntheti reality.125



Figure 5.17: Comparison of true and estimated �ows/oupanies (telematis)The �rst row ontains �ow satterplots, and the seond row shows oupany satter-plots. The �rst olumn repeats the �no-toll vs. 12 EUR/h VOT� satterplots of Figure5.15. The seond olumn shows the aording estimation results where the referenedata (on the absissa) is ompared to its estimated ounterpart (on the ordinate).That is, every row ontains one satterplot that ompares the true no-toll senario tothe 12 EUR/h VOT prior senario, and it ontains another satterplot that omparesthe true senario to the estimation result. These plots already represent average valuessuh that all di�erene between left and right olumn an be asribed to a systematie�et of the estimator.
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Figure 5.18: RMSx [30 min. rolling horizon estimation℄The blue bars represent (from left to right) validation error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations per estimation period.They are drawn on top of red error bars that result from plain rolling horizon simulations with respetive iteration numbers.
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The estimation and simulation errors rise over time as the tra� volumes in-rease in the morning rush hour. The plain simulation errors do not system-atially depend on the number of iterations sine the deployed initial plans �lealready results from a stable telematis simulation. A pronouned di�erene be-tween simulation and estimation an be observed as the ongestion around thetoll zone beomes severe in the prior senario. Overall, the estimator reduesRMSx by up to 70% in the later periods. Conduting only 5 or 10 iterationsper estimation period results in lower improvements when ompared to 20 iter-ations and more. However, running beyond 20 iterations yields only marginalimprovements.Figure 5.19 shows the same setup of validation errors as before, only that nowthe average predition errors over a 0 to 30 minute time interval are given. Thisand the previous diagram math temporally in the following way: An estimationerror drawn, e.g., over the 8:30 label is generated at this partiular time andthus applies to the interval from 8:00 to 8:30. A predition result that is drawnover the 8:30 label is generated at 8:00 for a 30 minute predition window andonsequently applies to the same interval. A omparison of both �gures yieldsthe expeted diagnosis that the estimation quality is generally higher than thepredition quality. However, an estimation-based predition is learly betterthan a plain simulation. Again, the predition results for 5 and 10 iterationsper estimation period are inferior when ompared to those with 20 iterationsand more. The omputational e�ort of exeuting more than 20 iterations perestimation period does not result in signi�antly improved preditions. Overall,the estimator redues the RMSx predition error by 50% to 60% in the latertime periods.Figures 5.20, 5.21, and 5.22 provide separate RMSx plots for the predition in-tervals from 5 to 10, 15 to 20, and 25 to 30 minutes ahead in time. Here, thetime labels simply indiate when the predition is made. The quality deterio-rates graefully as the predition time inreases, starting from a 60% to 65%improvement for 5 to 10 minutes, attaining 55% to 60% for 15 to 20 minutes, andyielding around 50% even for the 25 to 30 minute predition. This remarkablysustained improvement an be traed bak to the rather restrited behavioraldegrees of freedom a simulated traveler faes. It also bene�ts from the fat thatonly pre-trip replanning is aounted for suh that a one estimated deision ismaintained for the entire duration of a trip. Finally, the deterministi tra�dynamis ertainly have a positive in�uene on preditability. However, evenafter all these words of reservation, the results show learly that a rolling hori-zon estimation and predition for this partiular senario is near-optimal if 20iterations per 5-minute estimation period are allowed for.5.3.3.3 Computational PerformaneThe urrent implementation of the estimator aomplishes 6 iterations per 5-minute interval in the given senario. That is, near-optimal results requireanother estimation speedup of 3 to 4. Given the onsidered problem's size,this is an enouraging result. After all, one iteration onsists of a 30 minutetra� simulation during the morning rush hour, omprises a behavioral modelthat relies on time-dependent best path alulations, and onduts a omplete128



Figure 5.19: RMSx [0-30 min. rolling horizon predition℄The blue bars represent (from left to right) 0-30 minute predition error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respetive iteration numbers.
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Figure 5.20: RMSx [5-10 min. rolling horizon predition℄The blue bars represent (from left to right) 5-10 minute predition error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respetive iteration numbers.
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Figure 5.21: RMSx [15-20 min. rolling horizon predition℄The blue bars represent (from left to right) 15-20 minute predition error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respetive iteration numbers.
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Figure 5.22: RMSx [25-30 min. rolling horizon predition℄The blue bars represent (from left to right) 25-30 minute predition error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respetive iteration numbers.
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spatiotemporal linearization of the resulting tra� dynamis. Even with only6 iterations per 5 minutes, the estimator yields substantial improvements whenompared to the prior senario, whih, however, is likely to bene�t from thesimple behavioral model as explained in Setion 5.3.1.12The omputing times are obtained on a 3.2 GHz Pentium 4 stand-alone mahinewith 2 GB of RAM. File i/o onstitutes a major bottlenek in the urrentlysingle-threaded implementation of the estimator. A large fration of this �lei/o results from the neessity to alulate sensitivities of marosopi systemdynamis bakwards through simulated time, f. Setion 4.1.2. This requiresto store all marosopi states during the simulation and to proess them bak-wards during the linearization. Even if the sparsity of this data beause of thesimulation sheme on variable time sales is aounted for, f. Setion 2.5, thisadds up to 3.2 MB of binary data per minute of simulation. Sine the resulting
4 608 MB for a whole day exeed the available RAM of most mahines deployedin this work, the data is written to hard disk in 5-minute hunks of 16 MB duringthe simulation. These �les are then reloaded for the linearization. This allowsto estimate the given senario on a mahine with 2 GB of memory. However,for a limited estimation period of only 30 minutes, the data ould be kept inRAM as well. Therefore, the approximate 25% of running time that are spentwaiting for �le i/o are omitted when measuring the estimator's omputationalperformane.Altogether, the estimator ahieves signi�ant improvements in a telematis set-ting. Even if the available senario is somewhat too large to allow for near-optimal results in real-time onditions, feasible problems have the same orderof magnitude: Sine the omputational e�ort rises at least linearly with thenetwork and population size, a 600+ link senario with 50 000+ agents is imme-diately approahable by the urrent implementation in real time.13 A more ex-tensive preproessing of the Berlin network illustrated in Figure 2.8 that mergesthe many detailed intersetions into single nodes might already su�e to runthis very senario in real-time.5.4 Further DisussionThe demonstrated estimator does not depend on a hoie set enumeration. Thissuggests its appliation for hoie set generation itself. Sine only best pathalulations are used in the present example, why not run these alulationsdiretly based on the modi�ed utilities instead of �rst making a well-informedguess about possible routing alternatives and only then hoosing a route basedon these modi�ations? To make a long story short: Choie set generation is amodeling problem, and tra� ounts alone do not provide su�ient informationto substitute for the strutural information ontained in suh a model. However,12The reent experiments in whih the sensor data is not averaged over many iterationsonverge in roughly half as many iterations but stabilize at somewhat higher error levels.Apparently, the estimator spends signi�ant amounts of time in the experiments given heretrying to extrapolate ontraditory measurements that result from the averaging over manyiterations.13The reent results allow for a 1 200+ link senario with 100 000+ agents.133



this neither implies that tra� ounts are useless for hoie set generation northat the proposed estimator is ategorially unsuited for this purpose.The onsidered behavioral model generates its hoie set by running a bestpath algorithm that minimizes travel times whih are generated by the mobilitysimulation. These travel times exhibit a partiular orrelation struture thatresults from the simulated tra� dynamis. This very property enables thegeneration of variable routes only based on best path alulations without everresorting to the expliit simulation of a pereptional error by drawing from amultidimensional travel time distribution with an expliitly known ovarianematrix.In ontrast, the estimator only disposes of loal measurement information andproesses this information in a likewise loal (linearization-based) manner. Ifonly few sensors are available, the measurement data is sparsely distributed overthe network. In order to infer a driver's global utility pereption from this infor-mation, a model is required that aptures the network-wide orrelation of traveltimes. In the given simulation system, this orrelation is not aounted for bythe time-dependent best path algorithm itself but results from the simulatedtravel times based on whih this algorithm is run. If sparse utility orretionsare added to these travel times during the hoie set generation, routes resultthat loally aount for the orretion terms but globally still adhere to theorrelation struture of the a priori assumed travel times. If suhlike generatedroutes di�er su�iently from those that atually aused the measurements, theestimator an only selet among inappropriate prior routes and newly generatedroutes that are likewise unrealistially strutured. The result is loal onver-gene to a poor solution.A visual inspetion of routes that are generated based on estimated utility or-retions has been onduted. Their interpretation is di�ult sine suh routesinvariably aount for both travel times and utility orretions. However, adistint inrease in zig-zagging as one might expet in onsequene of the loalutility orretions annot be observed. Still, even plausibly looking routes anonsist of turning move sequenes that are implausible given a ertain orrela-tion pattern of the travel times. Within the sope of this work, it is onludedthat a more rigorous analysis of the simulation-based best-path route hoiemodel itself is neessary before its impliations for the estimation an be lari-�ed. Reall that this partiular model is only implemented as plaeholder andthat the estimator is not onstrained to its deployment.Again, the above disussion addresses a modeling problem. The estimator is notunable to provide useful information for hoie set generation; it just is unableto solve the generally impossible task of inferring a network-wide utility pat-tern from arbitrarily few observations. If a model was at hand to meaningfullyomplete loally estimated utility orretions, hoie set generation ould besupported by measurements. This type of model would represent a rather om-mon aspet of travelers' information proessing. For example, a radio messageregarding a single onstrution site is likely to motivate a driver to irum-navigate the surroundings of this site as well sine experiene teahes that theresulting obstrutions are not onentrated at the single loation indiated onthe radio. That is, the driver is aware of orrelations in the network onditions.One might argue that full sensor overage should allow for hoie set generation134



without further modeling support. However, this also would require to aountfor measurement orrelations in the likelihood funtion. This is avoided here byhoosing sparse sensor loations. Sine travel times are one partiular type oflink-related measurements, the problem of orrelation modeling would not besolved but only be shifted in a di�erent ontext. In addition, full sensor overageannot be expeted in real-world onditions.A meaningful interpretation of the loal utility orretions in the losing exampleof Chapter 4 was possible beause of its simple struture. In the more generalsetting onsidered here, suh an interpretation su�ers from the same problemsas the diret appliation of utility orretions for route generation: Every singleturning move's utility orretion is only meaningful given the behavioral modelthat is used for its identi�ation. That is, the utility orretions are meaningfulon route level � with the route generated based on simulated travel times witha partiular orrelation struture � but not neessarily on turning-move level.The behavioral model represents the global ontext that annot be aptured byloal utility orretions. This interplay of modeling and estimation does notinvalidate the estimator's ability to funtion with an arbitrary implementationof the behavioral simulator. It does, however, neessitate an interpretation ofthe estimation results in terms of the partiular behavioral model based onwhih they are obtained.Summarizing, this hapter demonstrates the proposed estimator's appliabilityin onjuntion with a fully dynamial planning or telematis simulator andveri�es its omputational feasibility for a senario of pratially relevant size.
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Chapter 6Summary and OutlookThis hapter summarizes the present dissertation, highlights its key �ndings,and gives an outlook on further researh topis.6.1 Reapitulation of WorkThe goal of this researh is (i) to develop a behavioral tra� state estimator fora multi-agent simulation and (ii) to demonstrate its appliability to a senarioof pratially relevant size. Sine a model-based estimation approah is hosen,experimental investigations all for exeutable models of reasonable performaneand realism. This applies to both the behavioral and the physial simulator.The development of a marosopi tra� �ow model in Chapter 2 results ina omputationally e�ient mobility simulation that is appliable to generalnetworks and has linearizable dynamis. Its omputational performane alsoontributes to an e�ient solution of the estimation problem itself. The modelis enapsulated in a general state spae representation and thus an be replaedby a di�erent implementation, if required.This marosopi mobility simulation is ombined with a mirosopi driverrepresentation in a mathematially tratable way by the mixed miro/marosimulation logi presented in the �rst half of Chapter 3. This logi links anymarosopi mobility simulation that takes �ow splits as input parameters to anymirosopi behavioral model that generates individual-level turning deisionsat intersetions and network entry/exit points. The representation of arbitrarymobility patterns in terms of suh turning deisions is demonstrated in theseond half of Chapter 3.These modeling e�orts establish a linearizable relation between individual driverbehavior and aggregate tra� harateristis. Based on this tehnially pivotalresult, a number of behavioral estimators is developed in Chapter 4. First,a heuristi approah is presented. It is based on a more generally appliablemethod to steer simulated travelers suh that a general objetive funtion ofmarosopi system states is inreased. For estimation purposes, this objetive136



funtion is hosen as the log-likelihood of the available aggregate sensor data,and the agents are steered towards a ful�llment of the measurements.Seond, a statistially more rigorous reonsideration of the estimation prob-lem is given, and two operational Bayesian estimators are developed: (i) Theaept/rejet estimator funtions without further assumptions about the behav-ioral prior. Its takes an inreased number of draws from this prior and retainsonly a subset of these draws. This subset is representative for the behavioralposterior. (ii) The utility-modi�ation estimator adds a orretion term to thesystemati utility of every evaluated alternative. Given a partiular form ofthe behavioral prior, the simulation system then draws immediately from thebehavioral posterior. The heuristi estimator is found to oinide tehniallywith the UM estimator and an thus be re-analyzed in the Bayesian setting.The development of these estimators is aimed at but not tailored to an applia-tion in onjuntion with the MATSim simulation software. Sine MATSim wasin a transitional period of re-implementation during this work, stable interfaesould not be set up and MATSim's emerging modeling apabilities ould not befailitated. In hindsight, this is not onsidered as a disadvantageous situation.Sine no predetermined simulator implementation was at hand, no �exibilitywas given away by restriting the developments towards a partiular systemdesign. At the time of this writing, an appliation in onjuntion with MATSimis oneptually and tehnologially feasible. Guidelines for this undertaking aregiven in Setion 6.4.5. Still, the estimators' appliability to systems di�erentfrom MATSim is not hindered by a on�nement to this partiular software.Experimental results are presented in Chapter 5. Sine the proposed estimationsystem is of substantial omplexity, it is advisable to obtain a good understand-ing of its working by an initially syntheti test ase that allows for greatestexperimental ontrol. It is demonstrated that the method is able to adjustindividual-level behavior based on a limited amount of tra� ounts suh thata signi�antly improved piture of the global tra� situation is obtained. Themethod is found to be omputationally apable of dealing with senarios of pra-tially relevant size and to be appliable in both a planning and a telematissetting. The simple behavioral model plaeholder implemented for experimentalpurposes is found to onstitute a major limitation of ontinuative investigations,and the need for advaned behavioral modeling is aentuated.Additional real world experiments would go beyond the sope of this work.The expeted e�ort to prepare and implement suh a test ase is substantial[129℄. The syntheti experiments given here level the ground for this undertak-ing. Guidane on how to proeed towards real-world experiments is provided inSetion 6.4.1.6.2 Researh ContributionsThe key results of this work are highlighted in this setion. The listing is on�nedto novel ontributions to the state of the art.1. Development of a marosopi mobility simulation with the following fea-tures: 137



• phenomenologial onsisteny with the ell-transmission model,
• simulation of nodes with an arbitrary number of upstream and down-stream links,
• approximate linearization of tra� �ow dynamis with respet to elloupanies (system states) and turning frations (exogenous param-eters),
• fast exeution by a simulation logi that runs all network elementson individual time sales.2. Development of a ombined miro/maro mobility simulation with thefollowing features:
• ompatibility with broad lasses of marosopi tra� �ow modelsand mirosopi driver representations,
• linearizability in that the e�et of any driver's behavior on the globalnetwork onditions an be linearly predited,
• omputational e�ieny in that only a sample of the mirosopidriver population is required for simulation,
• omputational e�ieny by ompatibility with the marosopi sim-ulation logi on variable time sales,
• removal of most vehile disretization noise from the marosopitra� harateristis.3. Formalization of the physial aspets of a partial or whole-day plan as asequene of turning moves on a slightly expanded network suh that thelinearizability of the global network onditions with respet to individualplan hoie is maintained.4. Development of a general method to steer mirosopi agent behaviorsuh that a general objetive funtion of marosopi tra� onditions isimproved.5. Development of two operational behavioral estimators with the followingommon features:
• estimation of fully disaggregate behavior from aggregate tra� mea-surements and prior behavioral knowledge,
• ompatibility with a purely simulation-based representation of thebehavioral prior information,
• no requirement of a hoie set enumeration,
• omputational e�ieny that allows for an appliation to large se-narios.6. In partiular, development of the following distint estimators:
• an aept/rejet estimator that takes an inreased number of drawsfrom an arbitrary behavioral prior and retains only a subset of thesedraws that is representative for the behavioral posterior,138



Figure 6.1: Estimated quantitiesTwo state estimation problems and two parameter identi�ation problems are illus-trated in this �gure: (1) estimation of behavior (mental states), (2) estimation oftra� onditions (physial states), (3) identi�ation of physial model parameters, (4)identi�ation of behavioral model parameters.
• a utility-modi�ation estimator that orrets the systemati utilityof every evaluated alternative suh that, given a ertain struture ofthe behavioral prior, the simulation system draws immediately fromthe behavioral posterior. A heuristi appliation of this estimator fordi�erent or unknown priors is possible.7. Experimental investigations in a syntheti yet fully dynamial setting withthe following onlusions:
• Given only a limited amount of tra� ounts, the global orretness of(i) a SUE planning simulation and (ii) a (rolling-horizon) telematissimulation is onsistently and signi�antly improved by the proposedestimator;
• the method is apable of handling online estimation problems of pra-tially relevant size in real time;
• sine aggregate tra� measurements ontain only limited informa-tion, a struturally orret behavioral model is essential for goodestimator performane.6.3 Classi�ation of ResultsAs a transition to some of the further researh topis, Figure 6.1 illustratesthe simulation system in terms of only two omponents, the behavioral modeland the mobility simulation. The lower feedbak loop indiates that not onlybehavior in�uenes tra� onditions, but also tra� onditions a�et behavior.The estimator ompares simulated and real tra� onditions and adjusts thesimulation system based on this omparison.Four di�erent types of adjustment are identi�ed in this �gure. Number 1, esti-mation of behavior, is treated in this dissertation: The estimation of a plan set

U1 . . .UN omprises all aspets of the individual drivers' mental states that are139



neessary to de�ne all marosopi states X in the mobility simulation. Thisestimation approah relies on (i) a deterministi mobility simulation and (ii)an available parameterization of the underlying behavioral and physial modelomponents.A relaxation of these assumptions leads to the three further estimation tasksindiated in Figure 6.1. They are: (2) estimation of non-deterministi physi-al system states, (3) parameter identi�ation for the mobility simulation, and(4) parameter identi�ation for the behavioral model. Items (2) and (3) aredisussed in Setion 6.4.2, and item (4) is onsidered in Setion 6.4.4.6.4 Further Researh TopisVarious diretions for future researh are thinkable in ontinuation of this dis-sertation. This setion strutures these topis and provides guidane on furtherdevelopments.6.4.1 Towards a Real-World AppliationThis work was onduted with a real-world appliation in mind and onse-quently aounts for typial data requirements, performane issues, and modesof operation. The following matters need to be addressed in the preparation ofa real-world test ase.6.4.1.1 Model Calibration and ValidationModel-based state estimation ruially depends on strutural model orretness.Only a good understanding of reality allows to meaningfully inter- and extrapo-late the information ontained in limited measurements. This statement equallyapplies to the physial and the behavioral model omponents.The proposed mobility simulation exhibits several novel features: general inter-setions, variable time sales, and the ombined miro/maro simulation logi.These developments were neessary to realize an estimator prototype that isappliable to general senarios of realisti size. While the syntheti nature ofthe presented experiments irumvents the need to alibrate and validate thephysial model, additional e�ort in this regard is neessary before a real-worldappliation an be attempted. Sine the marosopi mobility simulation is en-apsulated within a general state spae representation, it may even be replaedby an entirely di�erent model that is more appliable in a partiular setting.As to behavioral modeling, a struturally orret behavioral simulator must beexternally provided. RUMs are partiularly appliable here beause of theirsophistiated alibration and validation proedures. However, the estimatoritself is indi�erent to the applied model's degree of mathematization, and asimple rule-based model is tehnially just as feasible for estimation as a full-blown RUM. 140



6.4.1.2 Measurement Soures and Sensor TypesThe experimental investigations of this work fous on �ow measurements be-ause of their predominant role in tra� monitoring. However, the generalformalism presented in Setion 4.2.1 allows to utilize a greater variety of sensordata. As noted there, any aggregate measurement that is a funtion of the stateof a link or a turning ounter an diretly be fed into the estimation proedure.If the measurements are not statistially independent, their ovariane strutureneeds to be identi�ed before the behavioral estimator an be applied.Some advaned data soures are addressed below. While they are not aountedfor in this dissertation, the fully disaggregate behavioral modeling assumptionis at least struturally adequate for their future onsideration.Any vehile that is equipped with a GPS reeiver an serve as a tra� sensor.If its spatiotemporal trajetory is mapped on a representation of the underlyingnetwork, a wealth of disaggregate information beomes available that is wellsuited for the alibration of a behavioral model [67℄. This type of informationmay also be available at a more aggregate level. For example, GPS-equippedtaxis typially report their urrent position to a dispath enter every few min-utes. This data an be transformed into loal veloity information, e.g., [156℄,whih in turn an be utilized by the proposed estimator. Unlike tra� ountsfrom indutive loops, suh �oating ar data is available at variable loations.It also requires di�erent distributional assumptions about the derived veloityinformation: A slowly driving vehile might do so for several reasons and thusis only an imperfet indiator of dense tra�. On the other hand, a quiklyadvaning vehile is a reliable indiator of unongested tra� onditions.Vehile re-identi�ation systems provide similar information at a oarser level.The time span between two detetions of a vehile is the sum of all link traveltimes along an unobserved route that onnets the two identi�ation points and,furthermore, inludes the duration of all intermediate stops. In onsequene,additional modeling assumptions regarding at least route hoie are neessaryto relate this type of information to the link- or turning move-related states ofa marosopi mobility simulation [4, 183℄.6.4.1.3 Performane TuningThe urrently implemented estimator already takles online problems of non-trivial size. However, further performane tuning is possible.Algorithmially, the estimation requires to identify a �xed point of a nonlinearand stohasti mapping that omprises a omplete tra� simulator, f. Setion4.1.3. Only a basi SA proedure is utilized in this work, and advaned �xedpoint searh algorithms should be onsidered for this purpose. The researh onthe �onsistent antiipatory route guidane generation problem� has produeda number of promising results in this regard [26, 51, 52℄.Operationally, the estimator is not yet optimized. Its implementation re�et itsexperimental nature that fouses on �exibility and robustness. One a partiu-lar mode of operation is spei�ed, this implementation should be �ne-tuned and141



stripped of omputational ballast. For example, the urrently realized rolling-horizon estimator runs the same SA logi as used in o�ine operations indepen-dently in every estimation period, f. Setion 5.3.1. However, the results ofone estimation period ontain valuable information for the subsequent estima-tion periods. This information should be aounted for in a more �ne-tunedimplementation.6.4.2 Combined Behavioral and Physial EstimationSo far, it is assumed that the mobility simulation is modeled without error. Apossible relaxation of this assumption is outlined in this setion.Unertain tra� �ow dynamis are modeled by adding a temporally unorre-lated zero-mean random disturbane vetor η(k) to state equation (2.17):
xms(k + 1) = fms[xms(k), β(k), η(k), k] (6.1)where xms is the mobility simulation's physial state vetor and β represents thesingle-ommodity turning frations. Equation (6.1) replaes the deterministitra� �ow model omponent of the mixed miro/maro state spae model (3.7).The relation between xms and the available measurements y is represented bythe likewise randomly disturbed output equation

y(k) = g[xms(k), ǫ(k)], (6.2)whih orresponds to (4.16) without loss of generality. The two above equationsan be linearized. Given a parameterization {β(k)}k, they onstitute a non-linear, dynamial system that is amenable to the marosopi state estimationtehniques reviewed in Setion 1.2.All behavioral estimators of this thesis disregard the stohasti error η in (6.1).Without exeption, they ontain a step in whih �U1 . . .UN are loaded on thenetwork and X is obtained�, f. Algorithms 2 through 4. That is, the behav-ioral estimation problem is solved given a partiular mapping of the behavior
U1 . . .UN on the marosopi states X .The β parameters in (6.1) result from the behavior of individual partiles in themixed miro/maro mobility simulation of Setion 3.1. This partile behavior isfully determined by a plan set U1 . . .UN . The network loading step an thereforebe replaed by a physial state estimator that formally operates exlusively onthe model spei�ations (6.1) and (6.2) with an externally provided {β(k)}kparameterization that is internally generated by an exeution of U1 . . .UN . Thephysial estimator utilizes the same sensor data Y = {y(k)}k as the behavioralestimator.Consequently, the behavioral estimation problem is still solved given a partiu-lar mapping of the behavior U1 . . .UN on the marosopi states X , only thatthis mapping now inorporates a physial state estimation proedure. This alsoenables the traking of time-dependent physial model parameters by an appro-priate extension of the marosopi state vetor, e.g., [3, 175℄. The straightfor-wardness of this approah is owed to the minimal interfae between the miro-sopi and the marosopi modeling omponents.142



6.4.3 Combined Telematis and Planning EstimationMutual bene�ts an be expeted if a telematis and a planning estimator areapplied onertedly. Two possibilities to realize suh a oupling are outlined inthis setion. In either ase, it is assumed that an online estimator generatesresults on a daily basis that are used to improve the outome of a planningsimulation. This enables the latter to provide improved behavioral priors forthe next day's online estimation problem.The ability to provide an improved prior does not imply that a suhlike ad-justed planning simulation an also be applied to predit struturally di�erentsenarios, where, for example, infrastrutural hanges are onsidered. This abil-ity would require not only to estimate what hoies are made by the travelersin a given senario but also to identify the underlying behavioral parametersthat trigger these hoies. This setion only onsiders the problem of how toadjust a planning simulation for purposes of �inremental� online tra� moni-toring. The behavioral parameter estimation problem is disussed in subsequentSetion 6.4.4.6.4.3.1 Fusion of Λ Coe�ientsThe di�erene between a behavioral prior and an estimated posterior is fullyaptured by the Λ oe�ients. The most straightforward approah to failitatethe oe�ients Λd obtained by the online estimator at a ertain day d is toinorporate them in baseline oe�ients Λ̄ that are used as starting values inthe next day's online estimation problem. These baseline oe�ients an alsobe aounted for in a planning model if updated prior information is to besimulated. A similar proedure an be found in the ontext of OD matrixestimation where a within-day estimated ODmatrix is used to update a planningOD matrix, f. Setion 1.2.2.2. Possible update methods are reursive averaging[7℄ and Kalman �ltering. The latter assumes that Λ̄ follows a random walk andthat one noisy measurement Λd of Λ̄ beomes available per day [183℄.6.4.3.2 Choie Set Modi�ationsChoie set generation is a omputationally demanding step that is likely to beperformed at least in part o�ine. In online operations, omputational onsider-ations might require a relatively small hoie set per agent that in onsequeneneeds to be hosen with partiular are. If the online estimator has seleteda ertain plan rather infrequently, this indiates that this plan is unlikely tobelong to the onsidered traveler's hoie set and thus should be replaed by amore reasonable alternative. This allows for an inremental o�ine hoie set ad-justment that should also result in an improved online estimation performane.6.4.4 Behavioral Parameter EstimationThe proposed estimator also holds promise to provide information about param-eters that underlie the estimated hoies, i.e., to address parameter estimation143



problem (4) in Figure 6.1. Two suh approahes are disussed in this setion.16.4.4.1 Estimation of Population ParametersA syntheti population needs to be reated before an agent-based simulationof tra� is possible, f. Setion 1.2.2.3. Typially, its generation relies ona sequene of sampling proedures where agent parameters are drawn frombeforehand spei�ed distributions that apply to homogeneous subsets of thepopulation [9℄. For example, the ativity patterns for all male workers of anurban population may be drawn from a single distribution, the work loationsfor all employees that live in a ertain tra� zone may be drawn from yetanother distribution, and so forth.Sine the distributions that underlie this generation proedure are themselvesestimates of imperfet preision, aggregate tra� measurements may help toimprove the realism of the syntheti population. Sine this implies that thesensor data is used to adjust strutural features of the multi-agent model, theresulting population should be appliable in a wider variety of senarios thatmay onsiderably di�er from the onditions in whih the measurements areobtained. An appliation of the proposed behavioral state estimator for thispurpose is desribed hereafter.A subset M ⊆ {1 . . .N} of the syntheti population is onsidered. This subsetis homogeneous with respet to the distribution PM (θ) of a ertain populationparameter θ ∈ Θ where Θ is a disrete and permissibly non-ordinal domain.Disregarding the sensor data, a single draw of this parameter is assigned toevery individual n ∈ M . All plans of an agent in M are thus parameterizeddiretly or indiretly by this value. When the simulation is run, the agentlearns individually optimal behavioral patterns, and when the iterations havestabilized, the agent exhibits a reasonable plan hoie distribution given itspartiular θ value.Assume that there is unertainty about the true distribution of θ. Sine M ishomogeneous with respet to this distribution, it is feasible to provide everyagent in M with two instead of one parameter values, say θ1 and θ2, and to1A uni�ed Bayesian formulation of both parameter estimation problems onsidered in thissetion was found shortly after the submission of this dissertation. Let the deision protoolbe parameterized with an individual-level parameter vetor θn for every agent n = 1 . . . N ,denote the individually parameterized hoie distributions by Pn(Un|θn), and assume that aprior p.d.f. p(θn) is available for the parameters. In omplete analogy to the derivation givenin Setion 4.3.2, an individual-level posterior
pn(Un, θn|Y) =

e〈Λ,Un〉Pn(Un|θn)p(θn)
P

V∈Cn
e〈Λ,V〉

R

Pn(V|θ′)p(θ′)dθ
′of agent n's joint hoie and parameter distribution given the measurements an be formulated.The following version of the AR estimator draws from this posterior:1. Draw θn from p(θn).2. Draw Un from Pn(Un|θn).3. Aept (Un, θn) with the original aeptane probability φn(Un) de�ned in (4.35).Otherwise, goto 1.Note that this estimator is equally appliable to the identi�ation of disrete-valued parame-ters. 144



parameterize one half of its plans with θ1 and the other half with θ2. The re-sulting parameter ourrenes still follow the original distribution PM (θ) in thatthe probability that an individual in M gets assigned two partiular parameters
θ1 and θ2 is PM (θ1)PM (θ2).The estimator now adjusts the population's behavior to the sensor data Y. Theresulting hoie frequeny of any partiular θ value in M is

PM (θ|Y) ≈ 1

R|M |

R
∑

r=1

∑

n∈M

I(Ur
n ∼ θ) (6.3)where r = 1 . . . R iterations are onsidered, Ur

n is the plan seleted by individual
n in iteration r, and I(U ∼ θ) is one if plan U is parameterized with θ and zerootherwise. This simulated posterior distribution of θ given the measurementsan be applied to re-sample the parameters of the population subset M and tore-run the estimation. This is repeated until onsisteny of the prior and theposterior parameter distribution is attained.A preaution is neessary to avoid biases in this approah. If there is no sensordata, the estimator is redued to a plain simulator, and the result of suh asimulation is that every individual in M disards the θ value of inferior subjetiveperformane. If, for example, θ represents a leisure loation and all else is equal,the plans that ontain the more distant leisure loation are disarded beausethey impliate longer travel times. That is, the plan seletion mehanism itselfgenerates a drift in the parameter distribution.A remedy to this problem is to split the plan set of every individual aordingto the di�erent θ values. Every agent in M now has two hoie sets C1

n (allelements of whih are parameterized with θ1) and C2
n (parameterized with θ2)of equal size. When making a deision, the agent �rst hooses a hoie set withuniform probability and then selets a plan from that set aording to its be-havioral model. In result, the agent exhibits a dual behavior. This should notintrodue systemati side e�ets in the simulation sine the whole subpopula-tion's parameterization is still onsistent with PM (θ). If now the AR estimatoris applied, all resulting hanges in the θ seletion frequenies an be attributedexlusively to the sensor data. The UM estimator is not appliable here sineit has no in�uene on the uniform distribution used for hoie set seletion.6.4.4.2 Estimation of RUM ParametersTypially, the deterministi utility of a RUM is linear in parameters:

Vn(U) = θTxU ,n + kU (6.4)where xU ,n is a vetor that represents the features of deision maker n and ofalternative U ∈ Cn, and θ is a vetor of real-valued parameters. The alternative-spei� onstant kU aptures all hoie-relevant aspets of U that are indepen-dent of xU ,n.The UM estimator of Setion 4.3.3 a�ets estimated behavior via additive utilityorretions:
Wn(U) = Vn(U) + 〈Λ,U〉/µ

= θT xU ,n + kU + 〈Λ,U〉/µ.
(6.5)145



That is, the UM estimator e�etively adjusts the alternative-spei� onstants ofan underlying RUM. The preditive power of suhlike adjusted RUMs dependson the stability of the alternative-spei� onstants aross di�erent senarios.If the θ parameters themselves admit improvements, an inorporation of sensordata into the RUM alibration proedure is a desirable goal. RUM parametersare typially identi�ed by maximum likelihood estimation [21℄, whih requiresa likelihood funtion l(θ|Y) = p(Y|θ) to be available. Noting that the sensordata Y is not diretly dependent on θ, one obtains
l(θ|Y) =

∑

U1∈C1

. . .
∑

UN∈CN

p(Y | U1 . . .UN )P (U1 . . .UN |θ)

= E {l(U1 . . .UN |Y) |θ} .

(6.6)That is, the likelihood of θ given the sensor data an be expressed as the expe-tation of the available likelihood l(U1 . . .UN |Y) = p(Y | U1 . . .UN ), f. Setion4.2.1, given that the population's plan hoie distribution is parameterized by
θ. A Monte Carlo approximation of this expetation is possible:E {l(U1 . . .UN |Y) |θ } ≈ 1

R

R
∑

r=1

l(Ur
1 . . .Ur

N |Y) (6.7)where R is the number of draws and Ur
n is the plan hosen by individual nin simulation r given parameter θ. Parameter estimation based on a suhlikesimulated likelihood is possible in priniple [166℄, but it is omputationally ex-tremely demanding sine every draw requires a full run of the tra� simulator.An interesting question is to what degree a linearization-based approximationof the network loading proedure an help to aelerate this proess.6.4.5 Integration with MATSim6.4.5.1 Coneptual AspetsSetion 3.2 haraterizes a behavioral simulation system that is appliable inonjuntion with the proposed estimator. It is observed there that the followingproperties of the MATSim planning simulation are not immediately ompatiblewith this spei�ation:1. variable plan hoie set,2. ontinuously updated (learned) plan utilities (sores),3. immediate exeution of a newly generated plan.Problems 1 and 3 are resolved olletively. An invariable hoie set results if anagent is assumed not only to selet from its urrently memorized plans but alsoalso from all other plans that an possibly be generated by the MATSim replan-ning mehanisms desribed in Setion 3.2.2.3. The overall probability that anew plan is generated in a given iteration is denoted by Pnew. Aordingly, theseletion probability of any existing plan is 1−Pnew times its hoie probability146



without plan generation, whereas the seletion probability of any newly gener-ated plan is Pnew times its probability of generation. Thus, every agent disposesof a well-de�ned (albeit possibly very large) hoie set, and a hoie probabilityfor eah element in this set exists. Sine neither the expliit availability of theseprobabilities nor an enumeration of the hoie set is required, an appliationof the AR is oneptually feasible at every single MATSim iteration. However,sine the generation of new plans is not utility-driven, the UM estimator is notappliable here.Item 2 is related to the strong orrelation between subsequent MATSim itera-tions. Travel behavior is not simulated based on systemati utilities that areaveraged over a long time horizon but relies more strongly on the most reentiterations: The sores of exeuted plans are updated by a reursive �lter thathas an in�nite but exponentially deaying memory. The route realulationsutilize only the most reent iteration's travel times. Thus, even after a largenumber of iterations, a situation in whih the tra� onditions of subsequentiterations �utuate unorrelatedly around stable average values is unlikely toour. This e�et an also be observed throughout the experiments given inChapter 5.The estimation proedure, however, fundamentally relies on the Λ oe�ientsthat represent the sensitivities of the measurement log-likelihood to the driverbehavior. These sensitivities are averaged over many iterations, f. Setion4.1.3, and the resulting averages may stabilize even if the overall system ex-hibits a yli behavior, as it is likely to our in MATSim. Sine this implies asystemati deviation between the atually ourring sensitivities and their av-erage values, a delined estimator performane may result. However, no generalstatement about MATSim's dynamis an be made at this point.The AR estimator repeats a single hoie situation several times. It requiresthat repeated draws are independent and identially distributed. This estimatoris not impaired by the orrelation between subsequent MATSim iterations aslong as the behavioral distribution of an agent is invariable within a singleiteration. MATSim evolves as a Markov proess, with its state being de�nedthrough the urrent agent memory (in terms of available plans) and the lastiteration's tra� onditions (used for the generation of new plans). In everysingle iteration, the AR estimator orrets the transition probabilities of thisproess in a most plausible way. Thus, it is reasonable to expet that theresulting iteration dynamis of MATSim are likewise improved.The estimator's oneptual ability to funtion even in onjuntion with thisrather untypial model of dynamial tra� evolution indiates its �exibilityand independene of a spei� system design. The following setion exempli�esthe tehnial steps that are neessary to assert the above hypotheses in pratie.6.4.5.2 Tehnial AspetsSeveral exemplary Java ode snippets are provided that represent the arguablysimplest way to attah the estimator to the MATSim system as implemented inOtober 2007. For simpliity, only the seletion of full plans is onsidered andthe ode is stripped of all oneptually irrelevant elements. Of ourse, variousalternative implementations that ahieve the same e�et are thinkable.147



For the purpose of this presentation, it is su�ient to speify an agent by aPerson interfae that provides aess to the set of its available Plan instanes.interfae Person {Set getPlans();}The utility funtion is an implementation of a SoringFuntion interfae thatmaps a Plan on a utility value as pereived by a partiular Person.interfae SoringFuntion {double getSore(Plan p, Person n);}The deision protool is represented by a PlanSeletor lass that implementsa seletPlan(Person, SoringFuntion) funtion. This funtion returns asingle draw from the Person's Plan set.lass PlanSeletor {Plan seletPlan(Person n, SoringFuntion sF) {Plan result;// Choie logi implemented here. Examples:// * aess hoie set via n.getPlans();// * evaluate a plan p via sF.getSore(p, n);return result;}}An appliation of the UM estimator requires to modify the implemented Soring-Funtion. An appropriate tehnique is to implement a wrapper lass UMSoring-Funtion around the original SoringFuntion and to pass this wrapper in-stead of the original implementation to the PlanSeletor.lass UMSoringFuntion implements SoringFuntion {SoringFuntion sF;UMSoringFuntion(SoringFuntion sF) {this.sF = sF;}double getSore(Plan p, Person n) {return sF.getSore(p, n) + 〈Λ,U〉/µ;// U is turning move sequene of Plan p.// 〈Λ,U〉/µ addend is defined in (4.14).}}The AR estimator requires a modi�ation of the plan seletion logi itself. Thisan be realized by funtion overriding. A sublass ARPlanSeletor is derivedfrom PlanSeletor, the seletPlan(..) funtion is overridden, and the orig-inal PlanSeletor is replaed by an instane of the ARPlanSeletor.
148



lass ARPlanSeletor extends PlanSeletor {Plan seletPlan(Person n, SoringFuntion sF) {Plan result;do {result = super.seletPlan(n, sF);} while (Math.random() >= φn(U));// U is turning move sequene of Plan result.// φn(U) is aeptane probability (4.35).return result;}}Both the UMSoringFuntion and the ARPlanSeletor need referenes to the
Λ oe�ients for the alulation of utility orretions and aeptane proba-bilities. The linearization logi that generates these oe�ients is part of themarosopi mobility simulation. In onjuntion with MATSim, the easiest wayof aessing this data is via �les: In every iteration, the behavioral simulationsystem writes out a �le that ontains the seleted plans of all agents. The mobil-ity simulation then loads these plans, exeutes them, and in turn writes out the
Λ oe�ients plus all further data that is required for agent replanning. Thisbasi implementation suggests itself for �rst experimental investigations. Theprogramming e�ort of a tighter oupling by diret funtion alls would mainlypay o� in terms of an inreased exeution speed beause of the avoided �le i/o.6.4.6 Strutural Model Re�nements6.4.6.1 Physial SimulationThe miro/maro oupling logi does not di�erentiate among vehile types.Within limits, this is possible by a spei�ation of di�erent marosopi �sizes�for passenger ars, truks, buses, and so forth. Continuative modeling may alsodi�erentiate the dynamis of di�erent vehile lasses within the marosopi mo-bility simulation. This is likely to require a representation of multi-ommodity�ows within the marosopi model omponent [33℄.Inner-urban tra� �ow is dominated by signaling. While the employed mobilitysimulation does not aount for this aspet, the modeling of signalized interse-tions has already been demonstrated in onjuntion with a ell-transmissionmodel [1℄. This requires a network model at the granularity of individual lanesin order to avoid unrealisti spill-baks at simulated intersetions that in realityhave turning pokets. In suh a setting, it might prove useful to swith o� theexponential turning ounter forgetting mehanism (3.4) for the duration of ared phase.There is an important issue regarding adaptive signaling. Adaptive ontrolsmay swith strategies based on threshold values and thus may introdue dison-tinuities in the mobility simulation: A small behavioral hange of a single driverthat auses a sensor output to exeed a threshold value might hange the entireontrol strategy and thus might have a large e�et on the marosopi systemstates. However, sine adaptive signaling is sensor driven, the aording sensordata an be made available to the estimator as well. This allows to reprodue149



the true ontrol strategy without error, either by a reonstrution of its logi inthe simulator or by a diret observation of the real signaling. Sine suhlike sim-ulated signaling is a perfet image of reality, no adaptivity is neessary withinthe mobility simulation suh that its ontinuity with respet to plan hoie ispreserved.6.4.6.2 Behavioral SimulationFlexibility as to di�erent behavioral implementations is a main objetive of thiswork, and few limitations are imposed on a re�ned behavioral simulator.Swithing from single-day plans to weekly plans disloses new potentials formid-term foreasting. Sine weekly plans introdue a logial relation betweentravel behavior at subsequent days, single-day plan estimates provide informa-tion about upoming behavior that an be failitated for predition and, inpartiular, as an improved prior for the next day's estimation problem.Tra� monitoring is not onduted as an end in itself. In online operations,a tra� predition that is based on the most reent tra� state estimate anbe utilized to provide various information servies to travelers. However, if thisguidane is not arefully hosen, the resulting driver reations might invalidatethe underlying predition. This antiipatory guidane generation problem isdeoupled from the state estimation problem sine all disseminated informationis known up to the present point in time at whih the online estimation ends.In onsequene, the estimator only requires a behavioral model that properlyaounts for the most reently generated guidane, but it is indi�erent withrespet to the partiular nature of this guidane [19℄.
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Appendix AImplementation of GPRCInteger SetsThe GPRC requires many integer set operations. Sine all set implementationsprovided by the Java Colletions Framework [85℄ rely on objet representationsof their elements, they arry a formidable overhead if only primitive types arerequired. This appendix desribes a set implementation that is tailored towardsthe GPRC.A GPRC integer set ontains elements from a small value domain 1 . . . I + Jwhere I (J) is the number of upstream (downstream) links of the onsideredintersetion. Equivalently, a value domain 0 . . . I + J − 1 is assumed here inorder to allow for an array-based implementation that starts ounting at zero.The subsequently provided Java ode fragments onstitute the basis of a lassNSet. publi lass NSet {// ode fragments here}This lass ontains a primitive and two array members of integer type.private int size;private final int[℄ values;private final int[℄ indies;size holds the number of entries in a given instane of NSet. The �rst size�elds of the values-array ontain these entries. If indies[x℄ equals -1, thenx is not ontained in the set. Otherwise, indies[x℄ ontains the index of x invalues, that is, values[indies[x℄℄==x if x is ontained in the set. Duringonstrution, both arrays are initialized aording to the maximum size maxSizeallowed for this set. 151



publi NSet(int maxSize) {size = 0;values = new int[maxSize℄;indies = new int[maxSize℄;for (int i = 0; i < maxSize; i++)indies[i℄ = -1;}This data struture has a onstant memory requirement of 2(I +J)+1 integers.The following three funtions provide aess to the ontent of this set. Parameterrange heks are omitted for larity.publi boolean ontains(int value) {return (indies[value℄ != -1);}publi void add(int value) {if (!ontains(value)) {indies[value℄ = size;values[size℄ = value;size++;}}publi void remove(int value) {if (ontains(value)) {size--;final int removedIndex = indies[value℄;if (removedIndex != size && size > 0) {final int movedValue = values[size℄;values[removedIndex℄ = movedValue;indies[movedValue℄ = removedIndex;}indies[value℄ = -1;}}If only these three funtions were required, a single boolean array that simplyindiates the existene of an entry would be roughly twie as e�ient. However,an iteration over the elements of suh a set would require to aess every arrayentry in order to hek if the aording marker is set. The following imple-mentation of the iterator design pattern [70℄ provides a more e�ient solution.It is just as fast as looping only through the �rst size elements of an array.This is partiularly advantageous if there are relatively few entries in the datastruture.publi NSet.Iterator iterator() {return new NSet.Iterator();} 152



publi lass Iterator {private int index;private Iterator() {index = 0;}publi boolean hasNext() {return index < size;}publi int next() {return values[index++℄;}}The implementation of Iterator as an inner lass of NSet is a ommon Javatehnique that supports data enapsulation.
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Appendix BSensitivity Analysis for theGPRCThis appendix provides alulation shemes for ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂βwhere ξ(0)(ξ(M)) is the GPRC's initial (�nal) state vetor and β = (βq) isa vetor of onstant onsumption rate parameters with an available Jaobian
∂ϕ(. . .)/∂β. The notational overlap of β with the turning frations βij of Se-tion 2.4 is intended but not required. The omplete notation for the GPRC anbe found in Setion 2.3.The subsequent analysis builds on the following preliminaries:

• If state index j is the only element in B(m), then the duration θ(m) of step
m is θ(m) = ξ

(m)
j /ϕj(D

(m)) suh that a small variation δξ
(m)
j of resoure

j at the beginning of step m implies a likewise small variation δθ(m) of
θ(m):

B(m) = {j} ⇒ δθ(m) = δξ
(m)
j /ϕj(D

(m)). (B.1)
• The onsumption rate of any resoure must be monotonously inreasingwith the number of nonzero resoures:

ϕi(D ∪ {j}) ≥ ϕi(D) ∀i, j. (B.2)A resoure is denoted as bloked if it is nonzero but has a zero on-sumption rate. The monotoniity property implies that (i) available andpreviously non-bloked resoures annot blok from the addition of re-soures to D and (ii) one bloked resoures stay bloked sine D onlygets redued during a run of the GPRC.
• The state of a bloked resoure i has no in�uene on the resoure on-sumption rates:

ϕi(D ∪ {i}) = 0 ⇒ ϕ(D\{i}) = ϕ(D ∪ {i}). (B.3)154



Algorithm 5 GPRC sensitivity alulation logi1. Initialize ∂ξ(0)/∂ξ(0) and ∂ξ(0)/∂β. See Setion B.1.2. At the end of every GPRC step m = 0, 1, . . ., do:(a) Calulate ∂ξ(m+1/2)/∂ξ(0) and ∂ξ(m+1/2)/∂β. See Setion B.2 andAlgorithm 6.(b) Calulate ∂ξ(m+1)/∂ξ(0) and ∂ξ(m+1)/∂β. See Setion B.3, B.4, andAlgorithm 7.3. Complete ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂β. See Setion B.5.Approximations of ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂β are built inrementally while theGPRC runs through m = 0 . . .M . For notational onveniene, these approxi-mations are denoted by the same symbols as the exat partial derivatives. Everystep m is again split in two segments of equal length θ(m)/2, whih neessitatestwo sensitivity updates in every step m and the notion of an �intermediate� step
m + 1/2. This somewhat in�ates the presentation but is neessary to handle sit-uations where several resoures run dry simultaneously. Algorithm 5 providesan overview. The remainder of this appendix desribes the details of this logi.B.1 Initialization of SensitivitiesThis is straightforward: ∂ξ(0)/∂ξ(0) = I (identity matrix) implies that resouresannot have interated before the proess has started, and ∂ξ(0)/∂β = 0 (allzero matrix) states that the onsumption rate parameters β annot have hadan in�uene before the onsumption has taken plae.B.2 Calulation of ∂ξ(m+1/2)/∂ξ(0) and ∂ξ(m+1/2)/∂βIf j ∈ D(m), resoure j is stritly positive at m + 1/2. A variation δξ

(m)
j annotause any intermediate regimes but only punhes through to ξ

(m+1/2)
j = ξ

(m)
j −

θ(m)

2
ϕj(D

(m)), resulting in δξ
(m+1/2)
j = δξ

(m)
j , as illustrated in Figure B.1(a). Avariation δβ

[m,m+1/2]
q of onsumption rate parameter βq that ours exlusivelyduring [m, m+1/2] generates δξ

(m+1/2)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m,m+1/2]

q , as shownin Figure B.1(b).If j /∈ D(m), resoure j is originally zero during step m, whih makes it indi�erentto onsumption rate variations and only allows for a positive variation δξ
(m)
j >

0. If ϕj(D
(m) ∪ {j}) = 0, (B.3) ensures that j does not interat with otherresoures suh that the variation only punhes through to ξ

(m+1/2)
j , resulting in

δξ
(m+1/2)
j = δξ

(m)
j , see Figure B.1(). 155



(a) (b)

() (d)Figure B.1: Resoure variations for �rst half of GPRC sensitivity alulationAll diagrams show resoure trajetories over �GPRC time�. Within eah diagram,the left arrow represents the ausative variation, and the right arrow represents theindued variation. Varied resoures are drawn in red, and in�uened resoures (if any)are drawn in blue. Original trajetories are solid, and their variations are dashed.
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If j /∈ D(m) and ϕj(D
(m)∪{j}) > 0, resoure j runs dry again after its variationand a new regime D′ = D(m) ∪ {j} ours at the very beginning of step m. D′is limited by B′ = {j} suh that (B.1) an be used to obtain its duration δθ′ =

δξ
(m)
j /ϕj(D

′). During δθ′, all resoures i ∈ D(m) are redued by onsumptionrates ϕi(D
′) instead of ϕi(D

(m)). Equation (B.2) ensures that these resouresdo not blok beause of j's addition, whih guarantees ontinuity. This varies
ξ
(m+1/2)
i by δξ

(m+1/2)
i = (ϕi(D

(m)) − ϕi(D
′))δθ′, see Figure B.1(d).Summarized, the e�ets of variations δξ

(m)
j and δβ

[m,m+1/2]
q until step m + 1/2are:

δξ
(m+1/2)
i

δξ
(m)
j

=















I(i = j) j ∈ D(m) ∨ ϕj(D
′) = 0

ϕi(D
(m)) − ϕi(D

′)

ϕj(D
′)

i ∈ D(m) ∧ j /∈ D(m)

. . . ∧ ϕj(D
′) > 0

0 otherwise (B.4)
δξ

(m+1/2)
i

δβ[m,m+1/2]
q

=







−θ(m)

2

∂ϕi(D
(m))

∂βq
i ∈ D(m)

0 otherwise (B.5)where I(A) is one if A is true and zero if A is false. The full sensitivities untilstep m + 1/2 an now reursively be evaluated via
∂ξ

(m+1/2)
i

∂ξ(0)
=

∑

j

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂ξ(0)
(B.6)

∂ξ
(m+1/2)
i

∂β
=

δξ
(m+1/2)
i

δβ[m,m+1/2]
+
∑

j

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂β
. (B.7)A alulation sheme for these Jaobians is given in Algorithm 6.B.3 Calulation of ∂ξ(m+1)/∂ξ(0)If j ∈ D(m+1), resoure j is stritly positive at step m + 1 so that any variation

δξ
(m+1/2)
j only punhes through to ξ

(m+1)
j . Figure B.1(a) aptures a similarsituation. If j /∈ D(m), it originally has run dry before regime D(m). A (positive)variation δξ

(m+1/2)
j an only our if a positive variation δξ

(m)
j has aused theresoure to blok. As stated before, this implies that j will stay bloked withoutin�uening other resoures, so the variation δξ

(m+1/2)
j only punhes throughto ξ

(m+1)
j , similarly to Figure B.1(). These ases an be ombined in that

δξ
(m+1)
j = δξ

(m+1/2)
j holds for (j ∈ D(m+1) ∨ j /∈ D(m)) ≡ j /∈ B(m).If j ∈ B(m), then ϕj(D

(m)) must have been greater 0, and therefore ξ
(m+1/2)
j > 0an be varied in both diretions. A positive variation δξ

(m+1/2)
j only punhesthrough to ξ

(m+1)
j , see Figure B.2(a). Given a negative variation δξ

(m+1/2)
j , a newregime D′′ = D(m)\{j} ours diretly before the end of step m, as illustratedin Figure B.2(b). The new regime D′′ is limited only by B′′ = {j}, so (B.1)157



Algorithm 6 First half of GPRC sensitivity alulationfor all j ∈ D(m), do {
∂ξ

(m+1/2)
j

∂ξ(0)
=

∂ξ
(m)
j

∂ξ(0)

∂ξ
(m+1/2)
j

∂β
=

∂ξ
(m)
j

∂β
− θ(m)

2

∂ϕj(D
(m))

∂β}for all j /∈ D(m), do {
ϕ′ = ϕ(D(m) ∪ {j})if (ϕ′

j = 0) {
∂ξ
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j

∂ξ(0)
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∂ξ
(m)
j

∂ξ(0)

∂ξ
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j
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(m)
j

∂β} else {
∂ξ
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j

∂ξ(0)
= 0

∂ξ
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j

∂β
= 0for all i ∈ D(m), do {

δξ
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i
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(m)
j

=
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i

ϕ′
j

∂ξ
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i
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j
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(m)
j

∂ξ(0)

∂ξ
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(a) (b)

() (d)Figure B.2: Resoure variations for seond half of GPRC sensitivity alulationAll diagrams show resoure trajetories over �GPRC time�. Within eah diagram,the left arrow represents the ausative variation, and the right arrow represents theindued variation. Varied resoures are drawn in red, and in�uened resoures (if any)are drawn in blue. Original trajetories are solid, and their variations are dashed.
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an be used to obtain its duration δθ′′ = −δξ
(m+1/2)
j /ϕj(D

(m)). (The negativesign in this expression is owed to the fat that δξ
(m+1/2)
j redues θ(m) and that

δθ′′ is the negative of this redution.) During δθ′′, all states i ∈ D(m), i 6= j,are redued by onsumption rates ϕi(D
′′) instead of ϕi(D

(m)). This varies thesubsequent ξ
(m+1)
i by δξ

(m+1)
i = (ϕi(D

(m))−ϕi(D
′′))δθ′′. If a suhlike a�eted

i belongs to B(m) itself, (B.2) ensures that ϕi(D
(m)) ≥ ϕi(D

(m)\{j}) suh that
δξ

(m+1)
i ≥ 0 results from a negative variation δξ

(m+1/2)
j < 0. This eliminates thepossibility of additional regime ourrenes at the end of D′′.Averaging the sensitivities for positive and negative variations δξ

(m+1/2)
j , oneobtains

δξ
(m+1)
i

δξ
(m+1/2)
j

=























1 i = j /∈ B(m)

1/2 i = j ∈ B(m)

ϕi(D
′′) − ϕi(D

(m))

2ϕj(D
(m))

i 6= j ∧ i ∈ D(m) ∧ j ∈ B(m)

0 otherwise. (B.8)This allows to alulate the full sensitivities via
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(m+1)
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∂ξ(0)
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∑

j

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ξ
(m+1/2)
j

∂ξ(0)
. (B.9)B.4 Calulation of ∂ξ(m+1)/∂βIf j ∈ D(m+1), resoure j is stritly positive at step m + 1 so that any variation

δβ
[m+1/2,m+1]
q of parameter βq during [m + 1/2, m + 1] only a�ets to ξ

(m+1)
j .This yields δξ

(m+1)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q , similarly to the e�etillustrated in Figure B.1(b). If j /∈ D(m), it is insensitive to onsumption ratevariations.If j ∈ B(m), resoure j an be a�eted by a variation δβ
[m+1/2,m+1]
q . If thisvariation auses a derease δϕ

[m+1/2,m+1]
j < 0 of j's onsumption rate, ξ

(m+1)
jinreases by δ

(m+1)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q , see Figure B.2(). Givena positive δϕ
[m+1/2,m+1]
j , resoure j is onsumed faster, whih auses a regime

D′′ = D\{j} to our immediately before m + 1. The duration of D′′ is
δθ′′ = − ∂

∂βq

(

ξ
(m+1/2)
j

ϕj(D
(m))

)

δβ[m+1/2,m+1]
q

=
ξ
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j

ϕ2
j (D
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∂ϕj(D
(m))

∂βq
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∣

∣

∣

∣
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2ϕj(D
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(B.10)
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see Figure B.2(d). The e�et of D′′ is idential to that desribed in the previoussetion.Averaging the sensitivities for positive and negative variations δβ
[m+1/2,m+1]
q ,one obtains

δξ
(m+1)
i

δβ[m+1/2,m+1]
q
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∂ϕi(D
(m))

∂βq
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0 otherwise
. . . −
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∑
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j 6=i

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ϕj(D
(m))

∂βq
i ∈ D(m)

0 otherwise,(B.11)where (B.8) ould be reused beause of the idential e�et of D′′ in this and theprevious setion.A alulation of the full sensitivities is now possible via
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(m+1)
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(m+1/2)
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∂β
. (B.12)A logi for the synhronous alulation of the seond half of the state andparameter sensitivities is given in Algorithm 7.B.5 Completition of SensitivitiesWhen the proess has terminated at step M , the sensitivity alulations areompleted by a last run of Algorithm 6 in order to aount for resoure variationsaround m = M . Beyond M , all resoures are either bloked or zero and requireno further sensitivity updates.
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Algorithm 7 Seond half of GPRC sensitivity alulationfor all i, do {if (i ∈ B(m)) {
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Appendix CCalulation of Cell VeloitiesThe CTM alulates �ow rates diretly from ell oupanies. The elementaryrelationship q = v̺ is used to determine ell veloity v from �ow q and density
̺.Consider a ell that holds a density ̺ at the beginning of its next time stepof duration T . The ell's length is L, and its maximum veloity is v̂. Themarosopi simulation logi provides in- and out�ow rates qin and qout (perlane) that persist for the duration of the next time step. The resulting densityhange is (qin − qout)T/L. A substitution of the average density ̺ + 0.5(qin −
qout)T/L and the average �ow 0.5(qin + qout) in v = q/̺ yields

v =
(qin + qout)

2̺ + (qin − qout)T/L
. (C.1)Two further modi�ations are neessary to make this formula operational.First, this logi fails for an empty network beause of an unde�ned 0/0 division.This an be avoided by the introdution of small addends δ̺ > 0 and δq = v̂δ̺in

v =
(qin + qout) + v̂δ̺

2̺ + (qin − qout)T/L + δ̺
. (C.2)This yields v = v̂ for an empty network. For larger oupanies, the modi�a-tion's in�uene vanishes quikly.Seond, the resulting veloity is not limited by v̂. Assume that ̺ = 0 ⇒ qout = 0and δ̺ → 0. This yields v = L/T ≥ v̂ aording to (2.11). Therefore,

v = min

{

v̂,
(qin + qout) + v̂δ̺

2̺ + δ̺ + (qin − qout)T/L

}

. (C.3)The trunation only has an e�et during transient dynamis. In stationaryonditions with qin = qout = q, the veloity beomes v = q/̺, whih annotexeed v̂ of the fundamental diagram from whih q is obtained as a funtion of
̺.All experiments of this dissertation are based on veloity de�nition (C.3). Se-tion 3.1.4.1 shows that the resulting vehile movements are well-synhronizedwith the marosopi �ow. 163



Appendix DGridlok ResolutionGridlok is a known problem in tra� simulations that also ours in reality[56, 152℄. Sine the models employed in this thesis are relatively simple andonly roughly alibrated, it is hypothesized that a simulated gridlok is likelyto result from modeling impreisions and thus needs to be resolved within thesimulation. For this purpose, a simple modi�ation to the tra� �ow dynamisof Chapter 2 is subsequently desribed.A minimum veloity vmin that is smaller than the free �ow speed of any link ishosen. A reasonable value is the walking speed of 4 km/h, whih implies thattaking a ar yields some time savings over walking. Preventing veloities below
vmin bounds the network learane time, thus resolves any gridlok in �niteduration, and redues the risk of gridlok ourrene by limiting queue spillovers.The minimum veloity is enfored by two modi�ations of the simulation logi.The following presentation assumes a single-lane ell. For multiple lanes, �owrates must be aordingly saled.First, the upper �ow onstraint of every ell's demand funtion is replaed bya funtion that inreases linearly with slope vmin, as illustrated in Figure D.1.This still omplies with the demand/supply logi of the KWM sine onav-ity is maintained. Phenomenologially, it also has little e�et sine all supplyfuntions still have a horizontal �ow limit.Seond, it is ensured for every ell i with a urrent density ̺i that its out�ow
qouti is not smaller than vmin̺i. This is equivalent to an �enfored� demand
∆min(̺) = vmin̺ that is pushed downstream whatever the ongestion level is.The modi�ed upper bound of the demand funtion ensures that the enforeddemand never exeeds the original demand.The seond modi�ation is not onsistent with the KWM. The lower veloitybound implies that beyond a ertain density �ow is an inreasing funtion ofdensity even in ongested onditions. Consequently, densities above jam den-sity are possible. Although the resulting �fundamental diagram� of Figure D.1has no ounterpiee in reality, the resulting tra� dynamis give a satisfatoryimpression. The densities in most ells of the network stay in the feasible partof the fundamental diagram. An inreased �ow that is squeezed through rit-ial setions is observed mainly at bottleneks and roundabouts. These loal164



Figure D.1: Modi�ed fundamental diagramE�et of gridlok resolution on the fundamental diagram of a homogeneous road. Theupper �ow onstraint of the demand funtion ∆(̺) is bent upwards at the slope of theenfored demand ∆min(̺) suh that these two lines do not interset. The minimumoperation that originally ombines demand and supply is supplemented by a lower�ow bound that takes e�et only at high densities.�ow modi�ations avoid the unrealistially heavy spillbaks that may ause adomino e�et of gridlok throughout the network.Sine all involved funtions are ontinuous, the gridlok-resolved tra� �owdynamis an still be linearized.
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Appendix EStationary Limit of TurningCounter VarianeThis appendix derives (3.9) in Setion 3.1.3.2.First, the variane of the left- and right-hand side of turning ounter stateequation (3.8) is noted:
xij(rTc + Tc) = wcxij(rTc) + (1 − wc)

1

Tc

Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)

⇒ VAR{xij(rTc + Tc)} = w2
cVAR{xij(rTc)}

+
(1 − wc)

2

T 2
c

VAR{Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)

}

. (E.1)Assuming that ∑N
n=1 uij,n(k) is Poissonian with expetation and variane λij ,the stationary limit of a turning ounter's variane results from the followingmanipulations:VAR{xij(rTc + Tc)} = w2

cVAR{xij(rTc)} +
(1 − wc)

2

Tc
λij

⇒ lim
r→∞

VAR{xij(rTc + Tc)} = w2
c lim

r→∞
VAR{xij(rTc)} +

(1 − wc)
2

Tc
λij
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r→∞

VAR{xij(rTc)} =
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1 + wc

λij
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. (E.2)

166



Bibliography[1℄ E. Almasri and B. Friedrih. Online o�set optimisation in urban networksbased on ell transmission model. In Proeedings of the 5th EuropeanCongress on Intelligent Transport Systems and Servies, Hannover, Ger-many, June 2005.[2℄ R. Ansorge. What does the entropy ondition mean in tra� �ow theory.Transportation Researh Part B, 24(2):133�143, 1990.[3℄ C. Antoniou. On-line Calibration for Dynami Tra� Assignment. PhDthesis, Massahusetts Institute of Tehnology, 2004.[4℄ C. Antoniou, M. Ben-Akiva, and H. N. Koutsopoulos. Dynami tra�demand predition using onventional and emerging data soures. IEEProeedings Intelligent Transport Systems, 153(1):97�104, 2006.[5℄ C. Antoniou, H.N. Koutsopoulos, and G. Yannis. An e�ient non-linearKalman �ltering algorithm using simultaneous pertubation and applia-tions in tra� estimation and predition. In Proeedings of the 10th IEEEIntelligent Transportation Systems Conferene, pages 217�222, Seattle,USA, September/Otober 2007.[6℄ S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on par-tile �lters for on-line non-linear/non-Gaussian Bayesian traking. IEEETransations on Signal Proessing, 50(2):174�188, 2002.[7℄ K. Ashok. Estimation and Predition of Time-Dependent Origin-Destination Flows. PhD thesis, Massahusetts Institute of Tehnology,1996.[8℄ V. Astarita, K. Er-Ra�a, M. Florian, M. Mahut, and S. Velan. A om-parison of three methods for dynami network loading. TransportationResearh Reord, 1771:179�190, 2001.[9℄ M. Balmer, K.W. Axhausen, and K. Nagel. Agent-based demand-modeling framework for large-sale mirosimulations. Transportation Re-searh Reord, 1985:125�134, 2006.[10℄ M. Balmer, B. Raney, and K. Nagel. Adjustment of ativity timing andduration in an agent-based tra� �ow simulation. In H.J.P. Timmermans,editor, Progress in Ativity-Based Analysis, pages 91�114. Elsevier, 2005.167



[11℄ R.J. Bekman et al. TRANSIMS�release 1.0 � The Dallas-Fort Worthase study. Los Alamos unlassi�ed report (LA-UR) 97-4502, Los AlamosNational Laboratory, Los Alamos, NM, http://transims.tsasa.lanl.gov, a-essed 2008, 1997.[12℄ M.G.H. Bell. The estimation of origin-destination matries by onstrainedgeneralised least squares. Transportation Researh Part B, 25(1):13�22,1991.[13℄ M.G.H. Bell. The real time estimation of origin-destination �ows inthe presene of platoon dispersion. Transportation Researh Part B,25(2/3):115�125, 1991.[14℄ M.G.H. Bell. Stohasti user equilibrium assignment in networks withqueues. Transportation Researh Part B, 29(2):125�137, 1995.[15℄ M.G.H. Bell and S. Grosso. Estimating path �ows from tra� ounts.In W. Brilon, F. Huber, M. Shrekenberg, and H. Wallentowitz, editors,Tra� and Mobility: Simulation�Eonomis�Environment, pages 85�102.Springer, 1999.[16℄ M.G.H. Bell, W.H.K. Lam, and Y. Iida. A time-dependent multi-lasspath �ow estimator. In J.-B. Lesort, editor, Proeedings of the 13th Inter-national Symposium on Transportation and Tra� Theory, pages 173�193,Lyon, Frane, July 1996. Pergamon.[17℄ M.G.H. Bell, C.M. Shield, F. Bush, and G. Kruse. A stohasti user equi-librium path �ow estimator. Transportation Researh Part C, 5(3/4):197�210, 1997.[18℄ M. Ben-Akiva and M. Bierlaire. Disrete hoie methods and their appli-ations to to short-term travel deisions. In R. Hall, editor, Handbook ofTransportation Siene, pages 5�34. Kluwer, 1999.[19℄ M. Ben-Akiva, M. Bierlaire, D. Burton, H.N. Koutsopoulos, and R. Misha-lani. Network state estimation and predition for real�time transportationmanagement appliations. Networks and Spatial Eonomis, 1:293�318,2001.[20℄ M. Ben-Akiva, M.S. Ramming, and S. Bekhor. Route hoie models. InM. Shrekenberg and R. Selten, editors, Human Behaviour and Tra�Networks, pages 23�45. Springer, 2004.[21℄ M.E. Ben-Akiva and S.R. Lerman. Disrete Choie Analysis. MIT Pressseries in transportation studies. The MIT Press, 1985.[22℄ M. Bierlaire. Disrete hoie models. In M. Labbe, G. Laporte, K. Tanzos,and Ph. Toint, editors, Vol. 166 of NATO ASI Series, Series F: Computerand Systems Sienes, Operations Researh in Tra� and TransportationManagement, pages 203�227. Springer, 1998.[23℄ M. Bierlaire and F. Crittin. An e�ient algorithm for real-time estimationand predition of dynami od table. Operations Researh, 52(1):116�127,2004. 168



[24℄ P. Bonsall. Information systems and other intelligent transport system in-novations. In D.A. Hensher and K.J. Button, editors, Handbook of Trans-port Modelling, pages 481�496. Elsevier, 2000.[25℄ J. Bottom, M. Ben-Akiva, M. Bierlaire, I. Chabini, H. Koutsopoulos, andQ. Yang. Investigation of route guidane generation issues by simulationwith DynaMIT. In A. Ceder, editor, Proeedings of the 14th Interna-tional Symposium on Transportation and Tra� Theory, pages 577�600.Pergamon, Jerusalem, Israel, July 1999.[26℄ J.A. Bottom. Consistent Antiipatory Route Guidane. PhD thesis, Mas-sahusetts Institute of Tehnology, 2000.[27℄ J.L. Bowman and M. Ben-Akiva. Ativity-based travel foreasting. InAtivity-Based Travel Foreasting Conferene: Summary, Reommenda-tions and Compendium of Papers, New Orleans, Louisiana, June 1996.http://tmip.fhwa.dot.gov/learinghouse/, aessed 2008.[28℄ E. Brokfeld and P. Wagner. Validating mirosopi tra� �ow models.In Proeedings of the 9th IEEE Intelligent Transportation Systems Con-ferene, pages 1604�1608, Toronto, Canada, September 2006.[29℄ C. Buisson, J.P. Lebaque, and J.B. Lesort. STRADA. A disretizedmarosopi model of vehiular tra� �ow in omplex networks based onthe Godunov sheme. In Symposium on Modelling, Analysis and Sim-ulation, held at CESA 1996 IMACS Multionferene, volume 2, pages976�981, Lille, Frane, July 1996.[30℄ C. Buisson, J.P. Lebaque, J.B. Lesort, and H. Mongeot. The STRADAmodel for dynami assignment. In Proeedings of the 1996 ITS Conferene,Orlando, USA, 1996.[31℄ W. Burghout. Mesosopi simulation models for short-term predi-tion. PREDIKT projet report CTR2005:03, Centre for Tra� Researh(CTR) of Royal Institute of Tehnology (KTH), Swedish National Roadand Transport Researh Institute (VTI), and University of Linköping,http://www.infra.kth.se/tr/publiations/tr2005_03.pdf, aessed 2008,2005.[32℄ W. Burghout, H. Koutsopoulos, and I. Andreasson. Hybrid mesosopi-mirosopi tra� simulation. Transportation Researh Reord, 1934:218�225, 2005.[33℄ C. Caligaris, S. Saone, and S. Siri. Freeway tra� modeling: extensionto di�erent vehile lasses and numerial analysis. In Proeedings of the10th IEEE Intelligent Transportation Systems Conferene, pages 325�330,Seattle, USA, September/Otober 2007.[34℄ E. Casetta. Estimation of trip matries from tra� ounts and surveydata: a generalised least squares estimator. Transportation Researh PartB, 18(4/5):289�299, 1984.[35℄ E. Casetta. Transportation Systems Engineering: Theory and Methods.Kluwer Aademi Publishers, 2001.169



[36℄ E. Casetta, D. Inaudi, and G. Marquis. Dynami estimators of origin-destination matries using tra� ounts. Transportation Siene, 27:363�373, 1993.[37℄ E. Casetta and S. Nguyen. A uni�ed framework for estimating or up-dating origin/destination matries from tra� ounts. Transportation Re-searh Part B, 22(6):437�455, 1988.[38℄ E. Casetta, A. Nuzzolo, F. Russo, and A. Vitetta. A modi�ed logit routehoie model overoming path overlapping problems. Spei�ation andsome alibration results for interurban networks. In J.-B. Lesort, editor,Proeedings of the 13th International Symposium on Transportation andTra� Theory, pages 697�711, Lyon, Frane, July 1996. Pergamon.[39℄ E. Casetta and N.N. Posterino. Fixed point approahes to the estimationof o/d matries using tra� ounts on ongested networks. TransportationSiene, 35(2):134�147, 2001.[40℄ R. Cayford, W.-H. Lin, and C.F. Daganzo. The NETCELL simulationpakage: tehnial desription. California PATH researh report UCB-ITS-PRR-97-23, University of California, Berkeley, 1997.[41℄ N. Cetin, A. Burri, and K. Nagel. A large-sale agent-based tra� mi-rosimulation based on queue model. In Proeedings of the 3rd SwissTransport Researh Conferene, Monte Verita/Asona, Marh 2003.[42℄ E. Chin-Ping Chang. Improving tra� estimation and predition throughdynami tra� assignment development. In Proeedings of the 2004 IEEEInternational Conferene on Networking, Sensing and Control, pages1313�1316, Taipei, Taiwan, Marh 2004.[43℄ D. Charypar and K. Nagel. Generating omplete all-day ativity planswith geneti algorithms. Transportation, 32(4):369�397, 2005.[44℄ D. Charypar and K. Nagel. Q-learning for �exible learning of daily ativityplans. Transportation Researh Reord, 1935:163�169, 2005.[45℄ R. Chrobok, A. Pottmeier, J. Wahle, and M. Shrekenberg. Tra�foreast using a ombination of on-line simulation and tra� data. InM. Fukui, Y. Sugiyama, M. Shrekenberg, and D.E. Wolf, editors, Traf-� and Granular Flow '01, pages 345�350. Springer, 2003.[46℄ Roland Chrobok. Theory and Appliation of Advaned Tra� ForeastMethods. PhD thesis, Universität Duisburg-Essen, Germany, 2005.[47℄ L. Chu, H.X. Liu, J.-S. Oh, and W. Reker. A alibration proedure formirosopi tra� simulation. In Proeedings of the 6th IEEE IntelligentTransportation Systems Conferene, volume 2, pages 1574�1579, Shang-hai, Otober 2003.[48℄ S.L. Cohen. An approah to alibration and validation of tra� simulationmodels. In Proeedings of the 83. Annual Meeting of the TransportationResearh Board, Washington, DC, USA, 2004.170



[49℄ B. Coifman. Improved veloity estimation using single loop detetors.Transportation Researh Part A, 35(10):863�880, 2001.[50℄ M. Cremer and H. Keller. A new lass of dynami methods for the iden-ti�ation of origin-destination �ows. Transportation Researh Part B,21(2):117�132, 1987.[51℄ F. Crittin and M. Bierlaire. A generalization of seant methods for solvingnonlinear systems of equations. In Proeedings of the 3rd Swiss TransportResearh Conferene, Monte Verita/Asona, Marh 2003.[52℄ F. Crittin and M. Bierlaire. Solving the antiipatory route guidane gen-eration problem using a generalization of seant methods. In Proeedingsof the 3rd Swiss Transport Researh Conferene, Monte Verita/Asona,Marh 2003.[53℄ C.F. Daganzo. The ell transmission model: a dynami representation ofhighway tra� onsistent with the hydrodynami theory. TransportationResearh Part B, 28(4):269�287, 1994.[54℄ C.F. Daganzo. The ell transmission model, part II: network tra�. Trans-portation Researh Part B, 29(2):79�93, 1995.[55℄ C.F. Daganzo. A �nite di�erene approximation of the kinemati wavemodel of tra� �ow. Transportation Researh Part B, 29(4):261�276,1995.[56℄ C.F. Daganzo. Queue spillovers in transportation networks with a routehoie. Transportation Siene, 32(1):3�11, 1998.[57℄ A. De Palma and F. Marhal. Real ases appliations of the fully dynamiMETROPOLIS tool-box: an advoay for large-sale mesosopi trans-portation systems. Networks and Spatial Eonomis, 2:347�369, 2002.[58℄ ITS program of the US department of transport web site.http://www.its.dot.gov, aessed 2008.[59℄ R. Dowling, A. Skarbadonis, J. Halkias, G.M. Hale, and G. Zammit. Guid-lines for alibration of mirosimulation models: framework and applia-tions. In Proeedings of the 83. Annual Meeting of the TransportationResearh Board, Washington, DC, USA, 2004.[60℄ DynaMIT web site. http://mit.edu/its/dynamit.html, aessed 2008.[61℄ DYNASMART web site. http://www.dynasmart.om, aessed 2007.[62℄ I. Ernst, M. Hetsher, K. Thiessenhusen, M. Ruhe, A. Börner, and S. Zuev.New approahes for real time tra� data aquisition with airborne sys-tems. In Proeedings of the 84. Annual Meeting of the TransportationResearh Board, Washington, DC, USA, 2005.[63℄ R.M. Errio. What is an adjoint model? Bulletin of the Amerian Mete-orologial Soiety, 78(11):2577�2591, 1997.171



[64℄ S. Espie, D. Gattuso, and F. Galante. A hybrid tra� model ouplingmaro and behavioral miro simulation. In Proeedings of the 85. AnnualMeeting of the Transportation Researh Board, Washington, DC, USA,2006.[65℄ J. Esser and K. Nagel. Iterative demand generation for transportationsimulations. In D. Hensher and J. King, editors, The Leading Edge ofTravel Behavior Researh, pages 659�681. Pergamon, 2001.[66℄ O. Feldman and M.J. Maher. The optimisation of tra� signals using aell transmission model. In Proeedings of the 9th Meeting of the EUROWorking Group on Transportation, pages 503�507, Bari, Italy, June 2002.[67℄ E. Frejinger and M. Bierlaire. Capturing orrelation with subnetworksin route hoie models. Transportation Researh Part B, 41(3):363�378,2007.[68℄ B. Friedrih. Tra� monitoring and ontrol in metropolitan areas. InProeedings of the 2nd International Symposium Networks for Mobility,Stuttgart, Germany, 2004.[69℄ K. Fukunaga. Introdution to Statistial Pattern Reognition. EletrialSiene Series. Aademi Press, New York and London, 1972. Chapter 7:Suessive Parameter Estimation.[70℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.Addison�Wesley Professional Computing Series. Addison�Wesley, 1994.[71℄ T. Gärling. The feasible infeasibility of ativity sheduling. In M. Shrek-enberg and R. Selten, editors, Human Behaviour and Tra� Networks,pages 231�250. Springer, 2004.[72℄ B.D. Greenshields. A study of tra� apaity. In Proeedings of theAnnual Meeting of the Highway Researh Board, volume 14, pages 448�477, 1935.[73℄ H. Haj Salem, J. Chrisoulakis, M. Papageorgiou, N. Elloumi, and P. Pa-padakos. The use of metaor tool for integrated urban and interurban traf-� ontrol. evaluation in orridor peripherique, Paris. In Proeedings of theVehile Navigation and Information Systems Conferene, pages 645�650,Yokohama, Japan, August/September 1994.[74℄ R.W. Hall. Non-reurrent ongestion: how big is the problem? Are trav-eler information systems the solution? Transportation Researh Part C,1(1):89�103, 1993.[75℄ A. Hegyi, D. Girimonte, R. Babuska, and B. De Shutter. A omparison of�lter on�gurations for freeway tra� state estimation. In Proeedings ofthe 9th IEEE Intelligent Transportation Systems Conferene, pages 1029�1034, Toronto, Canada, September 2006.[76℄ D. Helbing. A setion-based queuing-theoretial model for ongestion andtravel time analysis in networks. Journal of Physis A: Mathematial andGeneral, 36:L593�L598, 2003. 172



[77℄ S. Hinz, D. Lenhart, and J. Leitlo�. Detetion and traking of vehilesin low framerate aerial image sequenes. In ISPRS Workshop, High Res-olution Earth Imaging for Geospatial Information, Hannover, Germany,May/June 2007.[78℄ S.P. Hoogendoorn and P.H.L. Bovy. State-of-the-art of vehiular tra��ow modelling. Proeedings of the Institution of Mehanial Engineers.Part I: Journal of Systems and Control Engineering, 215(4):283�303, 2001.[79℄ J. Illenberger. Agent-based modeling of route swithing behavior. Studentresearh projet, Berlin Institute of Tehnology, 2007.[80℄ J. Illenberger, G. Flötteröd, and K. Nagel. Enhaning MATSim withapabilities of within-day re-planning. In Proeedings of the 10th IEEEIntelligent Transportation Systems Conferene, pages 94�99, Seattle, USA,September/Otober 2007.[81℄ Intergovernmental Panel on Climate Change. Climate hange 2007: thephysial siene basis, summary for poliymakers. Tehnial report,http://www.ip.h/, aessed 2008, 2007.[82℄ Intergovernmental Panel on Climate Change web site.http://www.ip.h, aessed 2008.[83℄ R.R. Jaob, M.V. Marathe, and K. Nagel. A omputational study ofrouting algorithms for realisti transportation networks. ACM Journal ofExperimental Algorithms, 6, 1999.[84℄ Java web site. http://java.sun.om, aessed 2008.[85℄ Java olletions framework web site. http://java.sun.om/j2se/1.5.0/dos/guide/olletions/overview.html, aessed 2008.[86℄ W.L. Jin and H.M. Zhang. On the distribution shemes for determining�ows through a merge. Transportation Researh Part B, 37(6):521�540,2003.[87℄ M.C. Jones and S.K. Vines. Choosing the smoothing parameter for un-ordered multinomial data. Soiedad de Estadistia e Investigaion Oper-ativa Test, 7(2):411�424, 1998.[88℄ S.J. Julier and J.K. Uhlmann. A new extension of the Kalman �lter tononlinear systems. In Proeedings of the 11th Annual International Sym-posium on Aerospae/Defense Sensing, Simulation, and Controls, pages182�193, Orlando, Florida, USA, April 1997.[89℄ S.J. Julier and J.K. Uhlmann. Unsented �ltering and nonlinear estima-tion. Proeedings of the IEEE, 92(3):401�422, 2004.[90℄ R.E. Kalman. A new approah to linear �ltering and predition problems.Transations of the ASME � Journal of Basi Engineering, 82D:35�45,1960. 173



[91℄ J. Kamata and T. Oda. Detetors for road tra�. In M. Papageorgiou,editor, Conise Enylopedia of Tra� and Transportation Systems, pages96�101. Pergamon, 1991.[92℄ O. Kaumann, K. Froese, R. Chrobok, J. Wahle, L. Neubert, andM. Shrekenberg. Online simulation of the freeway network of NRW.In D. Helbing, H.J. Hermann, M. Shrekenberg, and D.E. Wolf, editors,Tra� and Granular Flow '99, pages 351�356. Springer, 2000.[93℄ H. Keller and G. Ploss. Real-time identi�ation of o-d network �ows fromounts for urban tra� ontrol. In N.H. Gardner and N.H.M. Wilson, ed-itors, Proeedings of the 10th International Symposium on Transportationand Tra� Theory, pages 267�284, Cambridge, Massahusetts, USA, July1987. Elsevier.[94℄ B. Kerner. Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrs-geregelten Netzknoten (Tra� prognosis method for a network with tra�ontrolled intersetions). Patentshrift (patent spei�ation) DE 199 40957 C2, 2001.[95℄ B. Kerner. The Physis of Tra�. Springer, 2004. Part IV: EngineeringAppliations.[96℄ B.S. Kerner. Traing and foreasting of ongested patterns for highwaytra� management. In Proeedings of the 4th IEEE Intelligent Trans-portation Systems Conferene, pages 88�93, Oakland, CA, USA, August2001.[97℄ S.-J. Kim, W. Kim, and L.R. Rilett. Calibration of miro-simulationmodels using non-parametri statistial tehniques. In Proeedings of the84. Annual Meeting of the Transportation Researh Board, Washington,DC, USA, 2005.[98℄ R. Kitamura. An evaluation of ativity-based travel analysis. Transporta-tion, 15:9�34, 1988.[99℄ R. Kitamura. Appliations of models of ativity behavior for ativity baseddemand foreasting. In Proeedings of the Ativity-Based Travel Foreast-ing Conferene, pages 119�150, New Orleans, LA, USA, June 1996.[100℄ F. Klügl, A. Bazzan, and S. Ossowski, editors. Appliations of AgentTehnology in Tra� and Transportation. Birkhäuser, 2005.[101℄ A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middel-ham. Tra� �ow modeling of large-sale motorway networks using themarosopi modeling tool METANET. IEEE Transations on Intelli-gent Transportation Systems, 3(4):282�292, 2002.[102℄ J.P. Lebaque. The Godunov sheme and what it means for �rst ordertra� �ow models. In J.-B. Lesort, editor, Proeedings of the 13th Inter-national Symposium on Transportation and Tra� Theory, Lyon, Frane,July 1996. Pergamon. 174



[103℄ D.-H. Lee, X. Yang, and P. Chandrasekar. Parameter alibration forPARAMICS using geneti algorithm. In Proeedings of the 80. AnnualMeeting of the Transportation Researh Board, Washington, DC, USA,2001.[104℄ S. Lee. A ell transmission based assignment-simulation model for inte-grated freeway/surfae street systems. Master thesis, Ohio State Univer-sity, 1996.[105℄ M. Lenzen, C. Dey, and C. Hamilton. Climate hange. In D.A. Heshnerand K.J. Button, editors, Handbook of Transport and the Environment,pages 37�60. Elsevier, 2003.[106℄ R.J. LeVeque. Numerial Methods for Conservation Laws. Letures inMathematis: ETH Zürih. Birkhäuser, 1992.[107℄ B. Li and B. De Moor. Reursive estimation based on the equality-onstrained optimization for intersetion origin-destination matries.Transportation Researh Part B, 33(3):203�214, 1999.[108℄ M.J. Lighthill and J.B. Witham. On kinemati waves II. a theory oftra� �ow on long rowded roads. Proeedings of the Royal Soiety A,229:317�345, 1955.[109℄ H.P. Lo, N. Zhang, and W. H. K. Lam. Estimation of an origin-destinationmatrix with random link hoie proportions: a statistial approah. Trans-portation Researh Part B, 30(4):309�324, 1996.[110℄ H.P. Lo, N. Zhang, and W.H.K. Lam. Deomposition algorithm for sta-tistial estimation of od matrix with random link hoie proportions fromtra� ounts. Transportation Researh Part B, 33(5):369�385, 1999.[111℄ F. Logi, M. Ullrih, and H. Keller. Tra� estimation in Munih: prati-al problems and pragmatial solutions. In Proeedings of the 4th IEEEIntelligent Transportation Systems Conferene, pages 416�421, Oakland,CA, USA, August 2001.[112℄ S. Lorkowski and P. Wagner. Parameter alibration of tra� models inmirosopi online simulations. In Proeedings of the 84. Annual Meetingof the Transportation Researh Board, Washington, DC, USA, 2005.[113℄ M. Maher. Inferenes on trip matries from observations on link vol-umes: a Bayesian statistial approah. Transportation Researh Part B,17(6):435�447, 1983.[114℄ M.J. Maher, X. Zhang, and D. Van Vliet. A bi-level programmingapproah for trip matrix estimation and tra� ontrol problems withstohasti user equilibrium link �ows. Transportation Researh Part B,35(1):23�40, 2001.[115℄ H. S. Mahmassani. Dynami network tra� assignment and simulationmethodology for advaned system management appliations. Networksand Spatial Eonomis, 1(3/4):267�292, 2001.175



[116℄ S. Marinosson, R. Chrobok, A. Pottmeier, J. Wahle, and M. Shrek-enberg. Simulation framework for the autobahn tra� in North Rhine-Westphalia. In S. Bandini, B.B. Chopard, and M. Tomassini, editors,Proeedings of the 5th International Conferene on Cellular Automata forResearh and Industry, pages 315�324, Geneve, Switzerland, 2002.[117℄ I. Matshke and B. Friedrih. Dynami od estimation using additionalinformation from tra� signal lights timing. In Proeedings of the 4thTriennial Symposium on Transportation Analysis, Sao Miguel, Azores,Portugal, June 2001.[118℄ I. Matshke, B. Friedrih, and K. Heinig. Data fusion tehnique in theontext of tra� state estimation. In Proeedings of the 5th TriennialSymposium on Transportation Analysis, Le Gosier, Guadaloupe, FrenhWest Indies, June 2004.[119℄ MATSim web site. http://www.matsim.org, aessed 2008.[120℄ K. Meister, M. Balmer, K.W. Axhausen, and K. Nagel. planomat: aomprehensive sheduler for a large-sale multi-agent transportation sim-ulation. In Proeedings of the 11th International Conferene on TravelBehaviour Researh, Kyoto, August 2006.[121℄ D.K. Merhant and G.L. Nemhauser. A model and an algorithm for thedynami tra� assignment problems. Transportation Siene, 12(3):183�199, 1978.[122℄ L. Mihaylova and R. Boel. A partile �lter for freeway tra� estimation.In Proeedings of the 43th IEEE Conferene on Deision and Control,pages 2106�2111, Atlantis, Paradise Island, Bahamas, Deember 2004.[123℄ Leitprojekte Mobilität in Ballungsräumen (pilot projet "mobilityin urban enters") web site. http://www.tuvpt.de/abgeshlossene-projekte/mobilitaet-in-ballungsraeumen.html, aessed 2008.[124℄ R.A. Gingold J.J. Monaghan. Smoothed partile hydrodynamis - the-ory and appliation to non-spherial stars. Monthly Noties of the RoyalAstronomial Soiety, 181:375�389, 1977.[125℄ L. Munoz, X. Sun, R. Horowitz, and L. Alvarez. Tra� density estimationwith the ell transmission model. In Proeedings of the Amerian ControlConferene, pages 3750�3755, Denver, Colorado, June 2003.[126℄ L. Munoz, X. Sun, R. Horowitz, and L. Alvarez. A pieewise-linearizedell transmission model and parameter alibration methodology. In Pro-eedings of the 85. Annual Meeting of the Transportation Researh Board,Washington, DC, USA, 2006.[127℄ L. Munoz, X. Sun, D. Sun, and G. Gomez nd R. Horowitz. Methodologialalibration of the ell transmission model. In Proeedings of the AmerianControl Conferene, pages 798�803, Denver, Colorado, June 2004.[128℄ K. Nagel and K.W. Axhausen. Mirosimulation. In D. Hensher andJ. King, editors, The Leading Edge of Travel Behavior Researh, pages239�246. Pergamon, 2001. 176



[129℄ K. Nagel and G. Flötteröd. State estimation for tra� simulation. appli-ation for DFG funding, granted in May 2007, 2006.[130℄ K. Nagel and F. Marhal. Computational methods for multi-agent simu-lations of travel behaviour. In K.W. Axhausen, editor, Moving ThroughNets: The Physial and Soial Dimensions of Travel. Seleted Papers fromthe 10th International Conferene on Travel Behaviour Researh, pages131�188. Elsevier, 2007.[131℄ K. Nagel and P. Nelson. A ritial omparison of the kinemati-wavemodel with observational data. In H.S. Mahmassani, editor, Proeedings ofthe 16th International Symposium on Transportation and Tra� Theory,pages 145�163, Maryland, USA, July 2005. Elsevier.[132℄ K. Nagel, M. Rikert, P.M. Simon, and M. Piek. The dynamis of iteratedtransportation simulations. In Proeedings of the 3rd Triennial Symposiumon Transportation Analysis, San Juan, Puerto Rio, 1998.[133℄ Y. Nie and D.-H. Lee. An unoupled method for the equilibrium-basedlinear path �ow estimator for origin-destination trip matries. Transporta-tion Researh Reord, 1783:72�79, 2002.[134℄ Y. Nie, H.M. Zhang, and W.W. Reker. Inferring origin-destination tripmatries with a deoupled GLS path �ow estimator. Transportation Re-searh Part B, 39(6):497�518, 2005.[135℄ N.L. Nihan and G.A. Davis. Reursive estimation of origin-destinationmatries from input/output ounts. Transportation Researh Part B,21(2):149�163, 1987.[136℄ K. Nökel and M. Shmidt. Parallel DYNEMO: meso-sopi tra� �owsimulation on large networks. Networks and Spatial Eonomis, 2(4):387�403, 2002.[137℄ OLSIM web site. http://www.autobahn.nrw.de, aessed 2008.[138℄ M. Papageorgiou. Optimierung: statishe, dynamishe, stohastishe Ver-fahren für die Anwendung. Oldenbourg, 1996. exhausted.[139℄ M. Papageorgiou. Shwierigkeiten bei der Anwendung von Opti-mierungsmethoden im Verkehrswesen (Di�ulties in the appliation ofoptimization methods in transport engineering). Tehnial report, OptiVprojet, http://www.optiv.de, aessed 2008, 2006.[140℄ A. Papoulis and S.U. Pillai. Probability, Random Variables and StohastiProesses. MGraw-Hill Series in Eletrial and Computer Engineering.MGraw-Hill, 2002.[141℄ B. Park and H. Qi. Development and evaluation of simulation modelalibration proedure. In Proeedings of the 84. Annual Meeting of theTransportation Researh Board, Washington, DC, USA, 2005.[142℄ B. Park and J.D. Shneeberger. Mirosopi simulation model alibrationand validation: a ase study of VISSIM for a oordinated atuated signalsystem. Transportation Researh Reord, 1856:185�192, 2003.177



[143℄ California PATH program web site. http://www.path.berkeley.edu, a-essed 2008.[144℄ H.J. Payne. Models of freeway tra� and ontrol. InMathematial Modelsof Publi Systems, volume 1, pages 51�61. Simulation Counil, La Jolla,CA, USA, 1971.[145℄ J.B. Pearson and R. Sridhar. A disrete optimal ontrol problem. IEEETransations on Automati Control, 11(2):171�174, 1966.[146℄ S. Peeta and A.K. Ziliaskopoulos. Foundations of dynami tra� as-signment: the past, the present and the future. Networks and SpatialEonomis, 1(3/4):233�265, 2001.[147℄ PTV AG. Benutzerhandbuh VISUM 9.2 (user manual), 2004.[148℄ M.S. Ramming. Network Knowledge and Route Choie. PhD thesis, Mas-sahusetts Institute of Tehnology, 2002.[149℄ B. Raney and K. Nagel. An improved framework for large-sale multi-agent simulations of travel behavior. In P. Rietveld, B. Jourquin, andK. Westin, editors, Towards better performing European TransportationSystems, pages 305�347. Routledge, 2006.[150℄ P. Reinartz, T. Krauss, M. Pötsh, H. Runge, and S. Zuev. Tra� moni-toring with serial images from airborne ameras. In ISPRS Workshop:High-Resolution Earth Imaging for Geospatial Information, Hannover,May 2005.[151℄ P.I. Rihards. Shok waves on highways. Operations Researh, 4:42�51,1956.[152℄ M. Rieser and K. Nagel. Network breakdown "at the edge of haos"in multi-agent tra� simulations. The European Physial Journal B �Condensed Matter and Complex Systems, 63(3):321�327, 2008.[153℄ M. Rieser, K. Nagel, U. Beuk, M. Balmer, and J. Rümenapp. Trulyagent-oriented oupling of an ativity-based demand generation with amulti-agent tra� simulation. In Proeedings of the 86. Annual Meetingof the Transportation Researh Board, Washington, DC, USA, 2007.[154℄ C. Rommel. Automati feedbak ontrol applied to mirosopially simu-lated tra�. Master thesis, University of Uppsala, 2007.[155℄ S. Rosswog and P. Wagner. Car�SHP: a Lagrangian partile sheme forthe solution of the marosopi tra� �ow equations. In D. Helbing,H.J. Herrmann, M. Shrekenberg, and D.E. Wolf, editors, Tra� andGranular Flow '99: Soial, Tra�, and Granular Dynamis, pages 401�406. Springer, 2000.[156℄ R.-P. Shäfer, K.-U. Thiessenhusen, and P. Wagner. A tra� informationsystem by means of real-time �oating-ar data. In Proeedings of the ITSWorld Congress, Chiago, USA, Otober 2002.178



[157℄ H.D. Sherali, A.Narayan, and R. Sivanandan. Estimation of origin-destination trip-tables based on a partial set of tra� link volumes. Trans-portation Researh Part B, 37(9):815�836, 2003.[158℄ H.D. Sherali and T. Park. Estimation of dynami origin-destination triptables for a general network. Transportation Researh Part B, 35(3):217�235, 2001.[159℄ H.D. Sherali, R. Sivanandan, and A.G. Hobeika. A linear programmingapproah for synthesizing origin-destination trip tables from link tra�volumes. Transportation Researh Part B, 28(3):213�233, 1994.[160℄ S.E. Shladover. PATH at 20 � history and major milestones. In Pro-eedings of the 9th IEEE Intelligent Transportation Systems Conferene,pages 584�592, Toronto, Canada, September 2006.[161℄ H. W. Sorensen. Least-squares estimation: from Gauss to Kalman. IEEESpetrum, 7:63�68, July 1970.[162℄ H. Spiess. A maximum likelihood model for estimating origin-destinationmodels. Transportation Researh Part B, 21(5):395�412, 1987.[163℄ SUMO web site. http://soureforge.net/projets/sumo, aessed 2008.[164℄ X. Sun, L. Munoz, and R. Horowitz. Highway tra� state estimation usingimproved mixture Kalman �lters for e�etive ramp metering ontrol. InProeedings of the 42th IEEE Conferene on Deision and Control, pages6333�6338, Maui, Hawaii, USA, 2003.[165℄ C.M.J. Tampere and L.H. Immers. An extended Kalman �lter applia-tion for tra� state estimation using CTM with impliit mode swith-ing and dynami parameters. In Proeedings of the 10th IEEE Intelli-gent Transportation Systems Conferene, pages 209�216, Seattle, USA,September/Otober 2007.[166℄ K.E. Train. Disrete Choie Methods with Simulation. Cambridge Uni-versity Press, 2003.[167℄ M. Treiber and D. Helbing. An adaptive smoothing method for tra� stateidenti�ation from inomplete information. In H. Emmerih, B. Nestler,and M. Shrekenberg, editors, Interfae and Transport Dynamis: Com-putational Modelling, pages 343�360. Springer, 2003.[168℄ H. van Zuylen and L. G. Willumsen. The most likely trip matrix estimatedfrom tra� ounts. Transportation Researh Part B, 14(3):281�293, 1980.[169℄ Forshungsshwerpunkt Verkehrsmanagement 2010 (researh fous "tra�management 2010") web site. http://www.vm2010.de, aessed 2008.[170℄ VMZ Berlin web site. http://www.vmzberlin.de, aessed 2008.[171℄ P. Vortish. Modellunterstützte Messwertpropagierung zurVerkehrslageshätzung in Stadtstrassennetzen (Model-SupportedPropagation of Measured Values for Real-Time Tra� State179



Estimation in Urban Road Networks). PhD thesis, Univer-sität Karlsruhe (TH), 2005. English version available athttp://www.ptvameria.om/dos/ModelSupportedProp.pdf, aessed2008.[172℄ P. Vovsha, M. Bradley, and J.L. Bowman. Ativity-based travel fore-asting models in the United States: progress sine 1995 and prospetsfor the future. In Proeedings of the EIRASS Conferene on Progress inAtivity-Based Analysis, Maastriht, The Netherlands, May 2004.[173℄ M. Vrti, K.W. Axhausen, M.G. H. Bell, S. Grosso, and W. Matthews.Methoden zu Erstellung und Aktualisierung von Wunshlinienmatrizenim motorisierten Individualverkehr � methods for estimating and updat-ing of origin-destination matries from tra� ounts. Tehnial Report2000/379, Bundesamt für Strassen, UEVK, Bern, 2004.[174℄ J. Wahle, R. Chrobok, A. Pottmeier, and M. Shrekenberg. A mirosopisimulator for freeway tra�. Networks and Spatial Eonomis, 2(4):371�386, 2002.[175℄ Y. Wang and M. Papageorgiou. Real-time freeway tra� state estimationbased on extended Kalman �lter: a general approah. TransportationResearh Part B, 39(2):141�167, 2005.[176℄ Y. Wang, M. Papageorgiou, and A. Messmer. An adaptive freeway tra�state estimator and its real-data testing part I: basi properties. In Pro-eedings of the 8th IEEE Intelligent Transportation Systems Conferene,pages 531�536, Vienna, Austria, September 2005.[177℄ Y. Wang, M. Papageorgiou, and A. Messmer. An adaptive freeway tra�state estimator and its real-data testing part II: adaptive apabilities. InProeedings of the 8th IEEE Intelligent Transportation Systems Confer-ene, pages 537�542, Vienna, Austria, September 2005.[178℄ Y. Wang, M. Papageorgiou, and A. Messmer. RENAISSANCE: a real-timefreeway network tra� surveillane tool. In Proeedings of the 9th IEEEIntelligent Transportation Systems Conferene, pages 839�844, Toronto,Canada, September 2006.[179℄ Y. Wen, R. Balakrishna, M. Ben-Akiva, and S. Smith. Online deploymentof dynami tra� assignment: arhiteture and run-time management.IEE Proeedings Intelligent Transport Systems, 153(1):76�84, 2006.[180℄ L.G. Willumsen. Origin-destination matrix: stati estimation. In M. Pa-pageorgiou, editor, Conise Enylopedia of Tra� and TransportationSystems, pages 315�322. Pergamon, 1991.[181℄ H. Yang. Heuristi algorithms for the bilevel origin/destination matrixestimation problem. Transportation Researh Part B, 29(4):231�242, 1995.[182℄ H. Yang, T. Sasaki, and Y. Iida. Estimation of origin-destination matriesfrom link tra� ounts on ongested networks. Transportation ResearhPart B, 26(6):417�434, 1992. 180



[183℄ X. Zhou. Dynami Origin-Destination Demand Estimation and Preditionfor O��Line and On�Line Dynami Tra� Assignment Operation. PhDthesis, University of Maryland, College Park, 2004.

181


	Introduction
	Definition of Problem Domain
	Macro- and Microsimulation
	Behavioral and Physical Simulation
	Transportation Planning and Telematics

	State of the Art
	Estimation Without Behavioral Modeling
	Estimation With Behavioral Modeling
	Static Traffic Assignment
	Dynamic Traffic Assignment
	Multi-Agent Traffic Simulation


	Thesis Contribution and Outline
	Conceptual Outline
	Methodological Contribution
	Structure of Thesis


	Macroscopic Mobility Simulation
	Design Choices
	The Kinematic Wave Model
	Intersection Flow Calculation Scheme
	Intersection Specification
	Straight Connections
	Merges
	Diverges
	General Connections

	Simulation Logic
	Cell Boundaries
	Connector Flow Rate Update
	Cell State Update
	Experimental Investigation of Simulation Precision

	Network Discretization
	Specification
	Berlin Test Case

	State Space Notation

	Microscopic Behavioral Simulation
	Coupling Micro- and Macrosimulation
	Representation of Behavioral Heterogeneity
	Particle Movement
	Specification
	Simulation on Variable Time Scales

	Particle Route Choice
	Specification
	Simulation on Variable Time Scales

	Computational Model Investigation
	Precision of Micro/Macro Coupling
	Computational Performance


	Simulation of Drivers' Choices
	Choice Formalism
	Definition of the Choice Problem
	Generation of Alternatives
	Evaluation of Attributes of Alternatives
	Choice
	Implementation

	Specific Modeling Assumptions
	Random Utility Models
	Models of Route Choice
	Models of Plan Choice



	Estimation
	Steering Agent Behavior
	Modified Utility Perception
	Linearization of Global Objective Function
	Consistent Linearization for Many Agents
	Behavioral Justification

	Heuristic Estimation
	Modeling of Aggregate Traffic Measurements
	Steering Agents Towards the Measurements

	Bayesian Estimation
	General Formulation of Estimator
	Operational Accept/Reject Estimator
	Operational Utility-Modification Estimator
	Applicability of Heuristic Estimator

	Illustrative Example
	Scenario Description
	Accept/Reject Estimator
	Utility-Modification Estimator


	Test Case
	Experimental Overall Setting
	Scenario Description
	Invariable Settings
	Variable Settings

	Simulation and Estimation Logic
	Simulation
	Estimation

	Sensor and Validation Data
	Sensor Data
	Validation Data
	Quantitative Error Measures


	Planning Experiments (Equilibrium Situation)
	Scenario Generation
	Investigation of Scenario Stability
	Measurement and Validation Data Generation
	Comparison of Scenarios

	Experimental Results
	Description of Results
	Discussion of Results
	Estimation Dynamics


	Telematics Experiments (Non-Equilibrium Situation)
	Rolling Horizon Estimation
	Scenario Generation
	Simulation of Imperfectly Informed Drivers
	Investigation of Scenario Stability
	Measurement and Validation Data Generation
	Comparison of Scenarios

	Experimental Results
	Offline Estimation
	Online Estimation in Rolling Horizon Mode
	Computational Performance


	Further Discussion

	Summary and Outlook
	Recapitulation of Work
	Research Contributions
	Classification of Results
	Further Research Topics
	Towards a Real-World Application
	Model Calibration and Validation
	Measurement Sources and Sensor Types
	Performance Tuning

	Combined Behavioral and Physical Estimation
	Combined Telematics and Planning Estimation
	Fusion of  Coefficients
	Choice Set Modifications

	Behavioral Parameter Estimation
	Estimation of Population Parameters
	Estimation of RUM Parameters

	Integration with MATSim
	Conceptual Aspects
	Technical Aspects

	Structural Model Refinements
	Physical Simulation
	Behavioral Simulation



	Implementation of GPRC Integer Sets
	Sensitivity Analysis for the GPRC
	Initialization of Sensitivities
	Calculation of bold0mu mumu gamma-1994(m+12)/bold0mu mumu gamma-1994(0) and bold0mu mumu gamma-1994(m+12)/bold0mu mumu gamma-1994
	Calculation of bold0mu mumu gamma-1994(m+1)/bold0mu mumu gamma-1994(0)
	Calculation of bold0mu mumu gamma-1994(m+1)/bold0mu mumu gamma-1994
	Completition of Sensitivities

	Calculation of Cell Velocities
	Gridlock Resolution
	Stationary Limit of Turning Counter Variance

