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ZusammenfassungDie vorliegende Dissertation bes
hreibt ein neuartiges Verfahren zur gänz-li
h disaggregierten Na
hführung des Mobilitätsverhaltens von Autofahrern aufGrundlage aggregierterMessungen von Verkehrs�üssen, -di
hten oder -ges
hwin-digkeiten, wel
he dur
h eine begrenzte Anzahl von Sensoren im Netzwerk auf-genommen werden. Das Problem wird mittels eines bayess
hen Ansatzes gelöst,wobei das gegebene a priori Wissen über die Auswahlverteilung der Verhal-tensalternativen eines jeden Individuums mit der Likelihood-Funktion der ver-fügbaren Messungen in eine ges
hätzte a posteriori Verhaltensverteilung kom-biniert wird. Der Ansatz ist insofern simulationsbasiert, als daÿ (i) allein einSimulationssystem zur Repräsentation der a priori Verhaltensannahmen benö-tigt wird und (ii) das Verfahren auss
hlieÿli
h Ziehungen aus der a posterioriVerhaltensverteilung generiert.Das Verfahren behandelt den Simulator des a priori Verhaltens soweit wie mög-li
h als eine Bla
k Box. Die na
hführbaren Verhaltensdimensionen rei
hen voneinfa
her Routenwahl bis hin zur Auswahl von Plänen für einen ganzen Tag.Eine glei
hgewi
htsbasierte Modellierungsannahme ist ebenso zulässig wie einTelematikmodell unvollständig informierter Fahrer.Die Verwendung aggregierter Sensordaten zur disaggregierten Verhaltenss
hät-zung wird dur
h eine kombinierte mikroskopis
he/makroskopis
he Mobilitätssi-mulation ermögli
ht, wel
he individuelle Fahrzeuge auf Grundlage eines makro-skopis
hen Modells der Verkehrs�ussdynamik bewegt. Das Modell erlaubt einelineare Vorhersage des E�ektes von individuellem Verhalten auf den aggregiertenVerkehrszustand und ermögli
ht auf diese Weise eine lineare Approximation derlogarithmierten Likelihood-Funktion der Sensordaten in Abhängigkeit von demVerhalten der Fahrerpopulation. Diese Linearisierung wird von zwei operativenbayess
hen S
hätzern genutzt.Der a

ept/reje
t estimator ma
ht keine weitergehenden Annahmen über die apriori Verhaltensverteilung. Er zieht eine Anzahl von Realisierungen aus dieserVerteilung und behält nur eine Teilmenge dieser Ziehungen bei. Diese Teilmen-ge wird unter Berü
ksi
htigung der Likelihood-Funktion der Messungen derar-tig ausgewählt, daÿ sie näherungsweise äquivalent zu einer Sti
hprobe aus dera posteriori Verhaltensverteilung ist. Der utility-modi�
ation estimator addierteinen Korrekturterm zu der Nutzenfunktion einer jeden Verhaltensalternative,die ein simulierter Reisender vor einer Ents
heidung auswertet. Diese Korrekturist ebenfalls dur
h die Likelihood-Funktion der Messungen bestimmt. Für einebestimmte Form der a priori Verhaltensverteilung ist das resultierende Verhalten3



näherungsweise äquivalent zu einer Ziehung aus der a posteriori Verhaltensver-teilung.Für die experimentellen Untersu
hungen dient ein erweitertes 
ell-transmissionmodel als Mobilitätssimulation und ein randomisierter Kurzwegalgorithmus alsPlatzhalter für eine vollständige Verhaltenssimulation. Die Experimente werdenunter synthetis
hen Bedingungen dur
hgeführt, wobei die Sensordaten dur
heine externe Modellinstanz erzeugt werden. Der Testfall umfasst ein Netzwerkvon 2 459 Kanten und eine mikroskopis
he Population von 206 353 Fahrern. Dieexperimentellen Ergebnisse zeigen, daÿ das implementierte Verfahren die fol-genden Eigens
haften aufweist: (i) Es nutzt in e�zienter Weise eine begrenzteMenge verfügbarer Verkehrszählungen, um das individuelle Routenwahlverhal-ten in der Population derartig na
hzuführen, daÿ eine deutli
h realistis
hereglobale Verkehrslage resultiert. (ii) Es ist sowohl auf ein glei
hgewi
htsbasiertesSimulationssystem als au
h auf einen Simulator ohne Glei
hgewi
htsannahmeanwendbar. (iii) Wennglei
h der verfügbare Testfall etwas zu groÿ ist, um inE
htzeit na
hgeführt zu werden, sind in dieser Hinsi
ht realisierbare Szenarienni
ht um Gröÿenordnungen kleiner.
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Abstra
tThis dissertation des
ribes a novel method for the fully disaggregate estimationof motorist behavior from aggregate measurements of �ows, densities or velo
-ities that are obtained at a limited set of network lo
ations. The problem issolved in a Bayesian setting, where the prior assumption about an individual's
hoi
e distribution is 
ombined with the available measurements' likelihood intoan estimated posterior 
hoi
e distribution. The approa
h is simulation-based inthat it (i) only requires a simulation system to represent the behavioral priordistribution and (ii) only generates realizations from the behavioral posteriordistribution.The estimator treats the behavioral simulation system as a bla
k box to thegreatest possible extent. The possibly estimated behavioral aspe
ts range fromsingle route 
hoi
e to the sele
tion of full-day plans, and an equilibrium-basedmodeling assumption is just as feasible as a telemati
s model of imperfe
tlyinformed drivers.The in
orporation of aggregate sensor data into this behaviorally disaggregateestimation pro
edure is enabled by a mixed mi
ro/ma
ro mobility simulationthat moves individual drivers through a ma
ros
opi
 model of tra�
 �ow dy-nami
s. This model allows to linearly predi
t the e�e
t of individual behavioron aggregate tra�
 
onditions, and through this it provides a linear approxima-tion of the sensor data's log-likelihood given a parti
ular behavioral pattern inthe driver population. This linearization is utilized by two operational Bayesianestimators.The a

ept/reje
t estimator fun
tions without further assumptions about thebehavioral prior distribution. Its takes a number of draws from this prior andretains only a subset of these draws. This subset is 
hosen in 
onsideration ofthe measurements' likelihood su
h that it is equivalent to a sample from the be-havioral posterior. The utility-modi�
ation estimator adds a 
orre
tion term tothe utility of every behavioral alternative a simulated traveler evaluates beforemaking a 
hoi
e. This 
orre
tion also is a fun
tion of the measurements' likeli-hood. Given a parti
ular form of the behavioral prior, the resulting behavior isequivalent to a draw from the behavioral posterior.For experimental investigations, an extended 
ell-transmission model is imple-mented as the mobility simulation, and a randomized best-path routing logi
serves as a pla
eholder for a full behavioral simulator. The experiments are
ondu
ted in a syntheti
 setting, where the sensor data is generated by an ex-ternal model instan
e. The test 
ase 
omprises a network of 2 459 links and a5



mi
ros
opi
 population of 206 353 drivers. The experimental results show thatthe implemented estimator has the following properties: (i) It e�
iently utilizeslimited tra�
 
ounts to adjust the population's individual-level route 
hoi
esu
h that a signi�
antly more realisti
 global tra�
 situation results. (ii) Itis equally appli
able to an equilibrium-based and to a non-equilibrium-basedsimulation system. (iii) While the available test 
ase is somewhat too large tobe monitored in real-time, a feasible s
enario for an online appli
ation of theestimator is not smaller by orders of magnitude.
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Chapter 1Introdu
tionThe 2007 world 
limate report emphasizes the signi�
ant in�uen
e of fossil fuelburning on the 
urrent and future 
limate 
hange [81, 82℄, whereas a large shareof the global greenhouse gas produ
tion stems from present transportation sys-tems [105℄. Mobility is an essential good that justi�es a 
ertain environmentalpri
e. However, its ne
essity as well as the very pri
e it entails make it highlydesirable to operate transportation systems at working points of greatest e�-
ien
y and to optimally exploit the available infrastru
ture. This goal needs tobe pursued both in long-term planning 
onsiderations and in short-term tra�
management e�orts.From an engineering perspe
tive, a powerful tool to a
hieve su
h obje
tives arealgorithms for model-based predi
tion and 
ontrol. They allow to evaluate theperforman
e of a tra�
 system in various settings before 
hoosing the mostpromising measure. Pivotal to the su

ess of these approa
hes is the availabilityof a realisti
 model. Usually, this is a
hieved by building a stru
turally 
orre
tmodel whi
h is 
alibrated based on 
omparisons of its outputs and availablemeasurements. Numerous methods have been developed to more or less auto-mati
ally solve the latter task.This thesis 
ontributes to that �eld. It des
ribes a method to estimate the travelbehavior of individual motorists from measurements of aggregate tra�
 featuressu
h as �ows, densities or velo
ities that are obtained at a limited set of networklo
ations. Knowing what trips people will make allows to predi
t and possiblyredu
e 
ongestion. But no matter if this information is used to 
hoose 
ontrolmeasures, for driver information servi
es or to 
olle
t long-term data: It alwaysprovides a valuable basis for prosperous de
ision making.1.1 De�nition of Problem DomainTra�
 state estimation is a broad �eld, whi
h ne
essitates the preliminariesgiven in this se
tion. Their purpose is to outline this dissertation's work s
opeand to introdu
e some terminology. 16



A model-based estimation approa
h is pursued. �Blind� modeling te
hniquesthat provide general-purpose mappings of a system's inputs to its outputs with-out an underlying problem-spe
i�
 model stru
ture are ex
luded from 
onsid-eration. For example, a neural network that maps lo
al tra�
 volumes onnetwork-wide travel times does not 
ontain a stru
tural model and thus is notin the s
ope of this thesis.The notion of �state estimation� is introdu
ed informally as the measurement-based adjustment of a stru
tural model's time-dependent properties. This ter-minology is made in
reasingly pre
ise as the 
onsidered 
lass of models is spe
-i�ed throughout Chapters 2 and 3. This order of presentation a

ompanies theoverall 
omposition of this work, whi
h is geared by the transportation spe
i�
aspe
ts of the estimation problem.1.1.1 Ma
ro- and Mi
rosimulationMa
ros
opi
 tra�
 models treat a population of travelers as a 
ontinuous quan-tity and express mobility in terms of equally ma
ros
opi
 tra�
 streams. Realtravelers are dis
rete entities. This requires their aggregation into su�
ientlylarge homogeneous groups for this approa
h to work. While being parti
ularlyamenable to a mathemati
al treatment, ma
ros
opi
 models are unable to repre-sent highly heterogeneous traveler populations. The possibilities to ma
ros
op-i
ally represent behavioral 
onstraints, whi
h often are of a rule-based natureand might greatly vary a
ross a population, are limited as well.Mi
rosimulations 
apture travelers and their behavior individually. This givesthem a greater expressive power. Still, sin
e their population model 
an only bea sample of the real population, it is inherently sto
hasti
. The in
reased realismof a stru
turally detailed mapping of the real world on a mi
ros
opi
 simulationsystem also introdu
es the real world's mathemati
al intra
tabilities into themodel. This opens a gap between the ease of implementing a mi
ros
opi
 modeland the di�
ulties in understanding the resulting model dynami
s.This work adopts a mi
rosimulation approa
h to the estimation of individualbehavior. Mi
rosimulation greatly simpli�es the modeling and likewise 
ompli-
ates the estimation task. Consequently, every property of the model that is tobe estimated has to be 
arefully mat
hed by a formal representation that allowsfor a mathemati
al treatment. The formal requirements set up in this thesisaim to 
apture a wide variety of mi
ros
opi
 aspe
ts while ensuring tra
tabilityof the mathemati
al estimation problem.1.1.2 Behavioral and Physi
al SimulationMi
rosimulations of vehi
ular tra�
 usually 
onsist of at least two sub-models,one of tra�
 �ow dynami
s and one of travel behavior:
• Tra�
 �ow dynami
s des
ribe the physi
al laws of the tra�
 systemunder 
onsideration. They determine how well a road network serves atraveler's need of driving most 
onveniently along a route to a destina-tion in a potentially 
ongested tra�
 situation. To serve the purpose of17



this thesis, driver behavior in terms of breaking, a

eleration, and lane
hanging is subsumed in the physi
al representation of tra�
 �ow.
• Travel behavior results from the demand for mobility a
ross a network.Various aspe
ts su
h as route, destination, and departure time 
hoi
e 
anbe modeled on
e a representation for the traveler population itself is found[71, 128℄. If only motorists are 
onsidered, mode 
hoi
e winds down to thede
ision if a 
ar trip is made or not. Long-term de
isions su
h as 
arownership and residential 
hoi
e are beyond the time s
ales 
onsidered inthis thesis.This work is restri
ted to the estimation of behavioral aspe
ts. That is, thepresent approa
h assumes the tra�
 �ow dynami
s to be modeled without error.A possible augmentation towards the 
on
urrent estimation of behavior andphysi
s is outlined as a subje
t of future resear
h.Given the fo
us on behavioral estimation, no di�erentiation between freeway andintra-urban tra�
 is ne
essary in prin
iple sin
e their major di�eren
e 
onsistsin their tra�
 dynami
s. Only the granularity of the physi
al modeling has alimiting e�e
t on the proposed method's appli
ability.1.1.3 Transportation Planning and Telemati
sMi
rosimulation 
an be applied both in transportation planning and transporta-tion telemati
s, and the proposed estimation method is appli
able in both �eldsas well.At �rst glan
e, this is not surprising sin
e planning and telemati
s 
onstitutetwo di�erent views of the same system. Planning methods have evolved overmany de
ades, while telemati
s appeared quite re
ently as an o�spring of trans-portation planning and adopted many methods from this �eld. Still, there aresystemati
 di�eren
es that must be a

ounted for:
• Planning models usually assume that travelers obtain global knowledgeof average system states through many days of exploration and that the re-sulting behavioral patterns resemble some kind of equilibrium. Typi
ally,su
h models work at the granularity of average within-day traje
toriesbut do not reprodu
e within-day �u
tuations of the system states as theyo

ur in reality due to the sto
hasti
 nature of tra�
 [35℄.
• Telemati
s models expli
itly deal with �u
tuations within a day. Theyneither assume global driver knowledge nor do they assume an equilibrium.The behavioral model 
omponent in su
h a system may represent driverrea
tions to new and possibly unforeseeable tra�
 situations, to providedinformation, and to guidan
e [24, 25℄. Without these �u
tuations, therewould be little use in guiding the system in one way or another sin
eunder normal 
onditions travelers have already found good travel optionsvia day-to-day experimentation [74℄.18



This distin
tion 
arries over to the temporal 
onstraints for a tra�
 state es-timation algorithm. In a planning appli
ation, there is at least one night toadjust a model to re
ently 
olle
ted measurements. This is 
onsidered as ano�ine estimation problem. In a telemati
s appli
ation, usually just a few min-utes are available to in
orporate the most re
ent measurements into the 
urrentestimate. The adjustment takes pla
e while the model progresses through (real)time, 
onstituting an online estimation problem. However, a telemati
s esti-mator may also be used in o�ine mode for the ex post analysis of a parti
ularday's tra�
 situation.While the above distin
tion is 
lear, that of appli
able estimation methods isnot. Con
eptually, it does not make a di�eren
e to a re
ursive algorithm if itis used for in
remental over-night adjustment of a planning model or on a 5-minutes time s
ale in a real-time 
ontext. However, the portability of traditionalplanning tools to telemati
s appli
ations is limited. The need for substantialresear
h in this �eld has been re
ognized about two de
ades ago, e.g., [160℄, andhas spawned ongoing investigation e�orts both nationally, e.g., [123, 169℄, andinternationally, e.g., [42, 58, 143℄. Still, many methodologi
al potentials are yetto be explored [139℄.But there are not only limitations. Mutual bene�ts of di�erent estimation ap-proa
hes naturally result from their 
ommon obje
t of investigation. Onlinetra�
 monitoring systems usually rely on some kind of a priori knowledge aboutthe average system behavior as provided by a planning simulation. Vi
e versa,the daily generation of high-resolution state estimates provides valuable datafor the 
ontinuous 
alibration of a planning model.The proposed estimator is 
ompatible with both a planning and a telemati
smodeling assumption. However, its immediate bene�ts are greatest in onlinetra�
 monitoring, and further pro
essing of its outputs is likely to be ne
essaryfor typi
al planning purposes. The following literature review therefore fo
useson the online tra�
 state estimation problem and gives referen
es to more tra-ditional planning methods only where their interplay with the online problemis of relevan
e.1.2 State of the ArtMany approa
hes to the online tra�
 state estimation problem draw from trans-portation planning's established methods and enhan
e them by a dynami
al
omponent. Arguably, the most frequently adopted methods are those of stati
origin-destination (OD) matrix estimation. An OD matrix models the demandof a given time interval in terms of the number of trips from every origin toevery destination of a tra�
 system. The originally 
onsidered problem was toestimate su
h a matrix from observed link volumes given a linear assignmentmapping of demand on link �ows (�assignment matrix�). Various methods su
has entropy maximization and information minimization [168℄, Bayesian estima-tion [113℄, generalized least squares [12, 34℄, and maximum likelihood estimation[162℄ have been proposed to solve this task. Early overviews on this subje
t 
anbe found in [37, 180℄. Nonlinear assignment mappings 
an be in
orporated by abilevel-approa
h that iterates between a nonlinear assignment and a linearized19



estimation problem [114, 181, 182℄ until a �xed point of this mutual mapping isrea
hed [39℄. The 
ombined estimation of OD matri
es at subsequent time sli
eswas demonstrated in [36℄, and many originally stati
 methods have been appliedto dynami
al problems in this vein, e.g., [111, 158℄ and the referen
es in Se
tion1.2.2.2. Beyond the di�erent modeling requirements, temporal 
onstraints aremost 
riti
al to the online deployment of these approa
hes.Many advan
ed online appli
ations employ systems engineering methodologiesto a suitably formalized tra�
 model. The most prominent of these methodsis without doubt the Kalman �lter in one of its many guises. Assuming asto
hasti
 disturban
e upon an originally linear dynami
al system [90℄, it hasevolved to an estimator for systems with smooth, nonlinear dynami
s [161℄ aswell as for systems with a merely simulation-based representation [88, 89℄. Moregenerally appli
able parti
le �lters even tra
k multimodal state distributions [6℄.These developments have made Kalman �ltering in
reasingly appli
able to thehigh 
omplexity of tra�
 systems. However, with these 
apabilities 
omes agrowing 
omputational burden that renders the real-time observation of trulylarge-s
ale systems still impossible. Be
ause of its equivalen
e with a re
ursiveleast squares estimator, the Kalman �lter 
an also be reformulated as a problemof mathemati
al programming, whi
h broadens the �eld of potentially appli
ablealgorithms [23℄.The following presentation is organized with respe
t to the underlying model.It di�erentiates between estimation methods that use a behavioral model andthose that do not. At the limit of this 
lassi�
ation are approa
hes that rely onspatially non-
orrelated probabilities of turning move o

urren
es at interse
-tions. These methods represent route 
hoi
e merely as a sequen
e of independentturning de
isions and thus are not 
onsidered to be based on a behavioral model.1.2.1 Estimation Without Behavioral ModelingNo stru
tural modeling at all is required if general-purpose system representa-tions are used. Auto-regressive moving average models and arti�
ial neural net-works learn a regression-type relation between 
urrent measurements and 
ur-rent or future tra�
 states. Pattern mat
hing te
hniques su
h as nonparametri
regression or 
lustering methods 
ompare previously 
olle
ted tra�
 state tra-je
tories to 
urrently available information and provide most similar histori
aldata for estimation and fore
ast. La
king a stru
tural model, these approa
hesare mentioned only for 
ompleteness. A 
omprehensive overview of data-drivenmethods in tra�
 estimation and predi
tion is given in [46℄.A linear road does not allow for the type of behavioral de
isions 
onsidered inthesis but is amenable to the modeling of tra�
 �ow dynami
s. Sin
e tra�
�ow is a dynami
ally rather restri
ted system, this yields useful additional in-formation. Models for �ow on a link have gone from the fundamental diagram(where density and velo
ity are uniquely related, and �ow is a fun
tion of eitherdensity or velo
ity [72℄) via the Lighthill-Whitham-Ri
hards theory of kinemati
waves (where the fundamental diagram is inserted into an equation of 
ontinuity[108, 151℄) to se
ond-order models (where a se
ond equation introdu
es inertia[144℄). 20



Various approa
hes based on Kalman �lters (and, more re
ently, parti
le �lters)have been proposed to estimate parameters and/or states of tra�
 �ow mod-els from lo
al measurements in a variety of settings, e.g., [75, 112, 122, 165℄.As a typi
al example of these, the RENAISSANCE approa
h is des
ribed fur-ther below. ASDA and FOTO (�Automatis
he Staudynamikanalyse: Automati
Tra
ing of Moving Tra�
 Jams� and �Fore
asting of Tra�
 Obje
ts�) 
onstitutea pattern-based monitoring and predi
tion system that tra
ks tra�
 jams alonga freeway [95, 96℄. The �adaptive smoothing method� uses a nonlinear �lterthat a

ounts for the di�erent dire
tions of disturban
e propagation in free and
ongested tra�
 
onditions to interpolate and extrapolate stationary dete
tordata on freeways [167℄.If network tra�
 is 
onsidered, turning de
isions at interse
tions need to bemodeled. If no su
h model is at hand, a simple approa
h is to de�ne turningprobabilities. The simulation of individual vehi
les by this method results in pa-rameterized random walks through the network. In a ma
ros
opi
 model, �owsa
ross an interse
tion diverge at ingoing links a

ording to turning fra
tions thatequal these probabilities and additively merge at outgoing links. For the result-ing linear model, (re
ursive) least squares and Kalman �ltering 
an be appliedto tra
k the turning fra
tions from link volume measurements [13, 50, 107, 135℄.The in
orporation of signal timing information was proposed in [93, 117℄, andthe provision of estimated turning �ows as supplementary measurements to anetwork-wide OD matrix estimator was found to signi�
antly in
rease the over-all estimation quality in [68, 118℄.The �Urban Tra�
 Analyzer� UTA uses a ma
ros
opi
 queuing model of inner-urban tra�
 �ow to predi
t network-wide �ows and travel times. However, itrequires that likewise network-wide measurements of 
urrent �ows and turn-ing fra
tions are available, and no data fusion beyond a temporal averaging ofmeasurements is des
ribed [94, 95℄.A system that is in 
ontinuous operation in Germany is OLSIM (�Online Traf-�
 Simulation�) [45, 137, 174℄. It uses a mi
ros
opi
 tra�
 model. Additionalvehi
les are inserted where sensors re
ord more vehi
les than the model, andvehi
les are removed where sensors re
ord fewer vehi
les than the model [92℄.Measurements are extrapolated by having the vehi
les move forward along linksa

ording to realisti
 driving rules and having them turn at interse
tions a

ord-ing to histori
al or dire
tly measured turning probabilities [116℄. The systempredi
ts network 
onditions based on a pre-
lustering of typi
al measurementtraje
tories: At a given point in time, the measurements themselves are pre-di
ted as a weighted average of the most re
ent observations and representa-tive histori
al traje
tories. Based on this predi
tion, the aforementioned sensoradaptation pro
edure is 
ontinued into the future [46℄.Re
ently, the RENAISSANCE (�Real-Time Freeway Network Tra�
 Surveil-lan
e Tool�) tra�
 monitoring and predi
tion system has been operationalized[178℄. Its estimation module 
onsists of an extended Kalman �lter [175, 176,177℄, whi
h is applied to the ma
ros
opi
 tra�
 �ow model METANET [101℄. Arandom walk assumption is imposed on model parameters su
h as road 
apa
-ities, free �ow velo
ities, and turning fra
tions, whi
h allows to estimate theseparameters together with the tra�
 �ow model's density and velo
ity states.Su
hlike observed parameters improve the state estimation quality, e.g., in 
ase21



of varying weather 
onditions, and serve as in
idents indi
ators.Methods that rely on a priori 
olle
ted turning proportions 
an be expe
ted towork well in normal situations but to be rather problemati
 during ex
eptionalevents when turning fra
tions deviate from pre-spe
i�ed values. In prin
iple,every turning-probability driven approa
h 
an be supplied with a behavioralmodel for the generation of these parameters. However, this alone does not
larify how to adjust the behavioral model itself to given measurements. Thisproblem is 
onsidered next.1.2.2 Estimation With Behavioral Modeling1.2.2.1 Stati
 Tra�
 AssignmentThe 
lassi
al planning method for the modeling of network tra�
 is stati
 as-signment. The problem is stated as to assign a given demand of �ows betweenorigin-destination pairs (OD pairs) on the network. Typi
al assignment 
riteriaare a Nash equilibrium (all a
tually used routes for ea
h OD pair have equal
ost and no unused route has smaller 
ost; also 
alled user equilibrium (UE))or sto
hasti
 user equilibrium (SUE; the assignment of OD �ows on routes fol-lows a given distribution whi
h is based on link 
ost). In so-
alled 
ongestedassignment, 
ost on a link is an in
reasing fun
tion of link �ow whi
h is gener-ated by �ows on routes that use the link. Links that are heavily used be
ome�expensive�, thus diverting some of the �ow to other routes, e.g., [35℄.The only way to approximate within-day dynami
s by means of stati
 assign-ment is to run independent simulations on 
onse
utive time sli
es. Within limitsand in 
ombination with dynami
al model 
omponents, this approa
h 
an beintegrated into a pra
ti
ally a

eptable system representation for telemati
spurposes, as the following two examples show.The naming �path �ow estimator� (PFE) is usually asso
iated with the approa
hproposed in [17℄. It des
ribes a ma
ros
opi
 one-step network observer thatestimates stati
 path �ows from link volume measurements based on a SUEmodeling assumption in a 
ongested network [14℄. The estimation problemis transformed into one of smooth optimization, whi
h is iteratively solved.The model has been enhan
ed by multiple user 
lasses and a simple analyti
alqueuing model to represent tra�
 �ow dynami
s [16℄ and has been su

essfullyimplemented in various resear
h and development proje
ts [15℄. The limitationsasso
iated with its original assumption of a logit path 
hoi
e model (�overlappingpath problem�, e.g., [18℄) have been mitigated by the implementation of a C-logitpath 
hoi
e model [38, 173℄. The PFE's stati
 UE 
ounterpart was proposed in[157, 159℄ and has been further advan
ed in [133, 134℄.The tra�
 management 
enter of Berlin (�Verkehrsmanagementzentrale� VMZ)also operates an online tra�
 monitoring system [170℄. The fully ma
ros
opi
method 
omprises a substantial number of di�erent adjustment steps. It predi
tsmeasurement traje
tories by a 
lustering approa
h similar to that of OLSIM anduses either a stati
 or a simpli�ed queue-dynami
al model to interpolate tra�
�ows between sensors. Route 
hoi
e is assumed to be in a stati
 UE that issimulated in time sli
es of one hour. The assigned OD matrix is sele
ted based22



on a similarity measure between 
urrently prevailing measurements and thosethe matrix had previously been 
alibrated with [171℄.A 
omputationally 
ostly but methodologi
ally straightforward approa
h totra
k route 
hoi
e at an aggregate level is to estimate the assignment matrixitself 
on
urrently with the OD matrix. The resulting estimation problem isin general highly under-determined, so a prior assignment matrix is in
orpo-rated in mu
h the same way a prior OD matrix ensures a unique solution to the
ommon OD matrix estimation problem [109, 110℄.1.2.2.2 Dynami
 Tra�
 AssignmentThe following presentation 
on
entrates on simulation-based approa
hes to dy-nami
 tra�
 assignment (DTA). This is justi�ed by their mi
ros
opi
 vehi
lerepresentation whi
h is a fundamental modeling assumption of this thesis. Anoverview of DTA that in
ludes analyti
al approa
hes 
an be found in [146℄.Most 
urrent network loading models use similar te
hniques [8, 19, 57, 115, 136℄:They have individual, de
ision-making parti
les (�driver vehi
le units (DVUs)�)whi
h usually are sampled from an OD matrix and are moved forward alonglinks using fun
tions that in some way or other 
ouple speed to density. Mostmodels in
lude storage 
apa
ities on their links, that is, the density of vehi
lesis limited and on
e a link is full, no more vehi
les 
an enter. This implies thatupstream links form queues of vehi
les that 
annot leave the link be
ause thedownstream link is full.Time-dependent Nash equilibria are 
omputed on su
h models via iterations[130℄: Start with some version of time-dependent demand whi
h gives, for ea
htime slot and OD pair, the number of vehi
les leaving the origin during that timeslot. Have ea
h vehi
le follow a pre-
omputed route. After the network loadinghas run, re-
ompute the time-dependent path 
hoi
e information. For example,give some fra
tion of travelers a new route that would have been fastest inthe last iteration (�best response�), or distribute travelers between path optionsa

ording to a distribution fun
tion, e.g., a path size logit or a C-logit model[18, 38℄. This pro
edure is iterated until an approximate �xed point is rea
hed[132℄.As noted before, a dynami
 equilibrium is a reasonable assumption for planningpurposes, while the modeling of within-day �u
tuations requires additional ef-forts. Even more in su
h a setting, simulation-based approa
hes are the methodof 
hoi
e be
ause of their inherent ability to deal with individual and sponta-neous driver behavior.There are two proje
ts in the United States, namely DynaMIT (�Dynami
 Net-work Assignment for the Management of Information to Travelers�, [19, 60℄) andDYNASMART (�Dynami
 Network Assignment Simulation Model for Advan
edRoad Telemati
s�, [61, 115℄), whi
h pursue 
on
eptually similar approa
hes. Forillustration, a minimal online state estimation s
enario is outlined in the follow-ing. More elaborate des
riptions 
an be found in [3, 7℄ for DynaMIT and in[183℄ for DYNASMART. 23



• Beyond stru
tural information, both systems require at least a stati
 ODmatrix and an initial set of tra�
 
ounts to prepare their online (within-day) estimation s
hemes. They pro
eed by estimating a time-dependentOD matrix, using methods whi
h are in prin
iple similar to the seminalte
hniques proposed in [36℄.
• In online operations, either system uses a linear Kalman �lter to estimatethe deviation of OD �ows from average histori
al traje
tories. This allowsto in
orporate the latters' stru
tural information. Both systems 
apturethe dynami
s of a time-dependent OD matrix in the Kalman �lter's statetransition equation: DynaMIT assumes that the OD �ow deviations followa within-day autoregressive pro
ess with a priori estimated parameters.DYNASMART uses a polynomial trend representation of the OD traje
-tories, whi
h yields a linear state equation for the temporal evolution ofthese polynomials' derivatives. In either 
ase, the dynami
al model allowsfor a demand predi
tion and (by simulation) for a network-wide predi
tionof tra�
 
onditions.
• Loading a 
urrent demand estimate on the network yields a dynami
 as-signment matrix that linearly maps OD �ows on link �ows and thus relatesstate variables and tra�
 
ounts. This mapping 
onstitutes the Kalman�lter's measurement equation.
• Both systems run in a rolling horizon mode where two pro
edures taketurns: (i) The Kalman �lter generates a 
urrent demand estimate basedon the most re
ent assignment matrix and the 
urrent measurements.(ii) The network loading pro
edure assigns the estimated demand on thenetwork in order to predi
t tra�
 
onditions and to provide an updatedassignment matrix.
• Both systems use the estimated demand traje
tories of a given day to up-date a histori
al OD matrix as a basis for the next day's online estimationproblem. While for DynaMIT various smoothing methods are proposed,DYNASMART assumes a day-to-day random walk of the true OD ma-trix, 
onsiders the demand estimate of a single day as measurement ofthis matrix, and updates the histori
al OD matrix by another Kalman�lter.Mu
h like in the stati
 
ase, a time-dependent assignment matrix 
an be es-timated together with the demand. This results in a signi�
ant state spa
ein
rease and requires nonlinear �ltering te
hniques [7℄. The state ve
tor 
analso be extended by time-dependent network parameters. This improves theadaptive properties of the overall monitoring system but again requires non-linear estimators, various of whi
h are 
ompared in [3℄. The in
orporation ofadditional data sour
es su
h as probe vehi
le samples [4, 183℄ is subje
t of ongo-ing resear
h as well as advan
ed numeri
al solution algorithms [5, 23℄. Re
ently,the DynaMIT system shifted from the Kalman �ltering approa
h to a sparseleast squares solution pro
edure [179℄, whi
h, however, does not impair the 
on-
eptual 
orre
tness of the outline given above.24



1.2.2.3 Multi-Agent Tra�
 SimulationThis approa
h is 
hara
terized by the fully disaggregate representation of trav-elers throughout the entire modeling pro
ess, while in DTA time-dependent ODmatri
es are typi
ally disaggregated and re-aggregated whenever 
onvenient.The multi-agent approa
h is attra
tive in the tra�
 domain sin
e it appearsnatural to represent every traveler by a software obje
t, to put these individualmodels into a representation of the physi
al world of mobility, and to observethe resulting mobility patterns. Due to its stru
tural resemblan
e of real-worldpro
esses, the method is easily 
ommuni
ated and in
reasingly applied in trans-portation modeling (see, e.g., the 
olle
tion of arti
les in [100℄).Multi-Agent Simulation (MASim) 
an go beyond other simulation methods byin
luding travelers' goals and 
ommitments into the modeling. For example, itis possible with MASim to di�erentiate between a delayed person with a freeevening and a delayed person with a time-restri
ted day-
are pi
k-up. MASimfor transportation planning appli
ations typi
ally 
onsists of the following mod-ules [10, 11, 65, 130, 149℄:
• A syntheti
 population generation module generates, from demographi
data, a syntheti
 population that, in all its statisti
al aspe
ts, 
orrespondsto the real population under investigation, while at the same time preserv-ing priva
y.
• An a
tivity-based demand generation module generates, for ea
h memberof the syntheti
 population, 
omplete daily plans in
luding a sequen
e ofa
tivities (su
h as home, work, shop, leisure), a
tivity lo
ations, and atemporal s
hedule. Conse
utive a
tivities at di�erent lo
ations generatethe demand for travel.
• A router module 
omputes how that demand is a
tually exe
uted on thenetwork, possibly in
luding mode 
hoi
e. At this point, all syntheti
 trav-elers have plans that des
ribe what they intend to do.
• There is now always some kind of module that puts the syntheti
 travelersin a simulated version of the physi
al network and has them exe
ute theirplans simultaneously. The physi
al intera
tion in that system generates
ongestion. Depending on the spe
i�
 fo
us, this simulation has di�erentnames: supply simulation, network loading, tra�
 �ow simulation.It is not possible to 
ompute the system in the linear way indi
ated abovesin
e plans depend on 
ongestion but 
ongestion is a 
onsequen
e of the plans.This is solved by iterations that 
an be seen as modeling human day-to-daylearning. This learning takes pla
e on various time s
ales. On the long term,there are aspe
ts su
h as 
hoi
e of residen
e and employment. These and further
hara
teristi
s of an agent 
onstitute 
onstraints on de
isions that take pla
ewithin dimensions of days, su
h as a
tivity s
heduling, lo
ation 
hoi
e, and route
hoi
e. Although there are no stri
t temporal domains for di�erent elements of aplan, a rough distin
tion with respe
t to transportation planning and telemati
s
an be made by a separation of elements that are modi�ed only on a day-to-daybasis and those that 
an be re
onsidered within a day.25



The estimation of fully disaggregate travel behavior from aggregate sensor datawith a multi-agent tra�
 simulation is a novel venture. In order to 
larify thisstatement, the following related yet di�erent problems need to be mentioned:
• The 
alibration of a mobility simulation from aggregate sensor data hasbeen widely addressed in the literature, e.g., [47, 48, 59, 97, 103, 141, 142℄.However, these approa
hes do not 
arry over to a 
alibration of the be-havioral simulation 
omponent (unless one adopts a di�erent terminologythan de�ned in Se
tion 1.1.2 and attributes, e.g., 
ar-following parametersto the behavioral model).
• A DTA-based OD matrix estimator 
aptures various behavioral aspe
ts,yet only on an aggregate level. Sin
e a time-dependent OD matrix maps(origin, destination, departure time) tuples on demand levels, it dire
tlyrepresents destination and departure time 
hoi
e. A motorist OD matrixre�e
ts mode 
hoi
e at least in terms of de
isions for or against the ve-hi
ular mode. Route 
hoi
e, however, 
onstitutes no additional degree offreedom but is a fun
tion of demand de�ned by the DTA pro
edure. Theonly ex
eption to this are the (behaviorally stati
) path �ow estimatorsmentioned above.1.3 Thesis Contribution and Outline1.3.1 Con
eptual OutlineThe 
omplexity of modern tra�
 simulation systems renders the te
hnologi
aldesign of a �exibly appli
able estimator a nontrivial task. Extensive prototyp-i
al programming was 
ondu
ted in order to validate the proposed method'sappli
ability. Sin
e the resulting ar
hite
ture stru
turally re�e
ts the estima-tor's working, it is outlined before methodologi
al 
ontributions are des
ribed.In order to be 
ompatible with the proposed estimator, a tra�
 simulationsystem must be separable into the 
omponents shown in Figure 1.1. Most ofthe employed terminology is adopted from [27℄.
• The mobility simulation moves individual vehi
les along their 
hosenroutes through the road network. All physi
al intera
tions o

ur withinthis 
omponent. A linearizable state spa
e representation of the mobilitysimulation must be available. This dissertation demonstrates that su
h arequirement is 
ompatible with a mi
ros
opi
 driver representation.
• The trip sequen
e of every vehi
le in the mobility simulation is 
hosenby an individual agent that represents the driver of that vehi
le. Thetravel behavior of an agent is realized by one or two further 
omponents.Whenever a de
ision is required, the agent provides these 
omponents withits individual parameters.� The utility fun
tion provides an individually parameterized mapfrom the network 
onditions on the systemati
 utility of any be-havioral alternative available to the agent. This may in
lude utilities26



Figure 1.1: SimulationLogi
al stru
ture of a mi
ros
opi
 tra�
 simulator that is amenable to the proposedestimation methodology. The utility fun
tion is an optional 
omponent that may beomitted. for partial 
hoi
es if su
h a de
omposition is required by the de
isionproto
ol. For example, a route 
hoi
e de
ision proto
ol may onlyrequest utilities for single links in the network. The utility fun
tionis an optional 
omponent that may be omitted.� The (likewise individually parameterized) de
ision proto
ol prob-abilisti
ally generates a single de
ision based on this utility informa-tion. If there is no utility fun
tion, the 
hoi
e is dire
tly based onthe network 
onditions. A de
ision proto
ol 
an be de
omposed inthe two aspe
ts of 
hoi
e set generation and 
hoi
e. It may bedeliberative in that the 
hoi
e set of available alternatives is on
eenumerated before a 
hoi
e is made. Alternatively, a rea
tive sear
hmay be implemented that iterates between the generation of some al-ternatives and their evaluation. In either 
ase, one 
hoi
e is �nallyrealized by the agent.This stru
ture is independent of a parti
ular planning or telemati
s 
ontext. Forexperimental purposes, all simulator 
omponents were exemplarily implementedsimilar to the a

ording 
omponents of the MATSim (�Multi-Agent TransportSimulation Toolkit�) simulation system [119℄, in the 
ontext of whi
h this workwas 
ondu
ted.Estimation is based on reasonable mathemati
al inferen
e but follows a sim-ple te
hni
al logi
. As illustrated in Figure 1.2, the simulation stru
ture is not
hanged at all. An estimator 
omponent is inserted between the de
ision pro-to
ol and the remaining simulation system. It is implemented transparently inthat it provides unmodi�ed interfa
es to both the de
ision proto
ol and the re-maining system. The estimator 
ompares the output of the mobility simulationto sensor data from a surveillan
e system. Based on this 
omparison, it alters27



Figure 1.2: EstimationEstimation is fa
ilitated by the addition of a logi
al wrapper around the de
isionproto
ol. All interfa
es within the original simulation system remain un
hanged.the data and 
ontrol �ow around the de
ision proto
ol su
h that the resultingagent behavior is most plausible given the measurements.Two small route 
hoi
e examples illustrate how this minor system extensionallows to adjust simulated behavior:
• If the surveillan
e system observes a tra�
 jam where there is none in thesimulation, the estimator in
reases the systemati
 utility of the a

ordinglinks until the agents start to favor these links and 
reate the 
ongestionas observed in reality. Vi
e versa, if there is 
ongestion in the simulationbut not in reality, the estimator de
reases the involved links' utility untilthe agents start to avoid the 
riti
al area.
• Likewise, the estimator 
an en
ourage a 
ertain behavioral pattern byasking the de
ision proto
ol to draw several alternatives in identi
al 
on-ditions for ea
h agent. From this set of options, the estimator then passesonly those de
isions on to the mobility simulation that are most plausiblegiven the measurements.Either approa
h a

esses only a subset of the interfa
es tou
hed by the estimatorin Figure 1.2. This further relaxes the stru
tural requirements on the simulationsystem. The apparent simpli
ity of this approa
h is 
onfronted with (i) thedi�
ulties to relate aggregate measurements and individual behavior throughnonlinear tra�
 �ow dynami
s on large networks of general topology and (ii) theintention to be 
ompatible with a broad variety of behavioral implementations.The software prototype is single-threaded and written in the Java programminglanguage [84℄. Its interfa
e-based design relies on standard software design pat-28



terns [70℄ in order to simplify the (re-)
omposition of available software 
ompo-nents. Likewise experimental implementations for the simulation of spontaneousroute swit
hing behavior [79, 80℄ and route guidan
e by feedba
k 
ontrol [154℄are integrated in the system.1.3.2 Methodologi
al ContributionThis thesis presents a novel approa
h to the fully disaggregate estimation ofmotorist behavior with a multi-agent simulation. The problem is solved by a
ombination of prior knowledge about the driver behavior with available mea-surements into most likely posterior estimates of this behavior:
• The prior knowledge about the driver behavior 
onsists of two parts. First,an individually modeled agent exhibits likewise individual features thatin�uen
e its behavior, e.g., so
ioe
onomi
 features, preferen
es, and infor-mation availability. Se
ond, every su
h agent has one or more individuallygenerated plans it adheres to. These plans spe
ify what the agent intendsto do during a day.
• The measurements of aggregate tra�
 features su
h as �ows, densities orvelo
ities are available at a limited set of network lo
ations. Beyond linkrelated quantities, turning move 
ounts 
an be dire
tly utilized by theestimator. The amount of measurements may be arbitrarily small sin
ethe availability of individual plans guarantees an existing solution to theestimation problem.Based on this information, arbitrary behavioral aspe
ts ranging from singleroute 
hoi
e to plan sele
tion for a whole day are estimated in a fully disag-gregate manner, agent by agent. Estimation methods of di�erent 
omplexityare proposed that allow for a problem-spe
i�
 balan
e between 
omputationalspeed and estimation pre
ision. Experimental results are given and indi
ate theestimator's pra
ti
al appli
ability.The estimator 
an be used in a planning 
ontext (with an underlying equilib-rium assumption) and for real time tra�
 monitoring (with a behavioral modelthat a

ounts for in
omplete driver information and spontaneous behavior). Ifwithin-day estimates are fed ba
k to a planning system for in
remental adjust-ments on a day-to-day basis, improved prior information for the following day'sonline estimation problem 
an be generated.The following results are also 
onsidered to be relevant 
ontributions. They areobtained as intermediate steps on the way to a working estimator.
• A ma
ros
opi
 tra�
 �ow simulator is developed that is 
onsistent withthe phenomenology of the 
ell-transmission model and the requirementsof �rst order tra�
 �ow theory. It e�
iently 
al
ulates linearized tra�
�ow dynami
s, while its advan
ed simulation logi
 upholds a high 
ompu-tational performan
e that allows to simulate large networks of arbitrarytopology. While linearization is required for estimation, the 
lass of ap-pli
able mobility simulations is not restri
ted to this parti
ular model.29



• A simulation logi
 is proposed that runs a ma
ros
opi
 tra�
 �ow modelbased on the travel behavior of a fully mi
ros
opi
 agent population. This
ontribution to the �eld of �mesos
opi
� modeling provides a broadly ap-pli
able link between behavioral mi
rosimulation and physi
al ma
rosim-ulation.
• A method is developed that steers the behavior of simulated travelerssu
h that a general obje
tive fun
tion of aggregate network 
onditions isimproved. Spe
i�
ally, this result is employed to express and solve oneinstan
e of the behavioral state estimation problem. More generally, themethod holds promise for further appli
ations su
h as the generation ofroad pri
ing strategies.1.3.3 Stru
ture of ThesisThe remainder of this do
ument is organized as follows. Chapter 2 des
ribes thema
ros
opi
 mobility simulation. Chapter 3 treats the disaggregate modelingof behavior. Its �rst part des
ribes how individual motorists are simulated in ama
ros
opi
 mobility simulation. Its se
ond part spe
i�es a formalism of driverbehavior that is amenable to a mathemati
al estimator. Chapter 4 formulatesthe behavioral estimation problem and dis
usses di�erent solution approa
hes.Chapter 5 veri�es the estimator's 
omputational feasibility for an appli
ationof pra
ti
ally relevant size. Finally, the work is 
on
luded in Chapter 6, and adis
ussion of future resear
h topi
s is given.
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Chapter 2Ma
ros
opi
 MobilitySimulationA model of physi
al reality maps demand for travel on network 
onditions.Basi
ally, an inverse mapping is needed if travel behavior is to be dedu
ed fromthese 
onditions. Su
h an inversion does generally not exist. Alternatively, alinearization of the mapping is used, and nonlinearities are a

ounted for in aniterative manner.This 
hapter des
ribes a mobility simulation that 
an be linearized. A readerwith only a 
asual interest in tra�
 �ow modeling may skip this material and
ontinue reading at Se
tion 2.7 without mu
h loss of 
ontinuity.2.1 Design Choi
esThe ne
essity of linearization 
alls for a ma
ros
opi
 model. An aggregation oftravelers into homogeneous groups 
an be avoided by the behavioral simulations
heme introdu
ed later in Chapter 3 so that only single-
ommodity tra�
 is
onsidered here.Sin
e the experimental validation of new phenomenologi
al proposals would ex-
eed the s
ope of this thesis, the model must build on established �ndings. Thisand the need to realize a large-s
ale test 
ase 
alls for the simplest availablemodel that still 
aptures the most relevant tra�
 features with reasonable pre-
ision. Arguably, this is the kinemati
 wave model (KWM) [108, 151℄. Withinits phenomenologi
al limitations, it is able to represent both freeway and intra-urban tra�
 �ow. The 
hoi
e of this model is well justi�ed in light of theongoing debate if more 
omplex models yield a reasonable gain in expressivepower [78, 131℄.For numeri
al simulation of the KWM, the 
ell-transmission model (CTM)is adopted [53, 54, 55℄. Various other ma
ros
opi
 models had been 
onsid-ered before this 
hoi
e was made [73, 76, 86, 101℄. However, on
e higher or-der models are ex
luded from 
onsideration, the CTM remains as the by far31



most established model, with various appli
ations, e.g., in freeway ramp meter-ing and signal optimization [1, 66, 164℄, and thorough experimental validations[28, 126, 127℄. The CTM is 
losely related to another implementation of theKWM, the STRADA model [29, 30℄. Both approa
hes base on the numeri
alGodunov solution method [102, 106℄.The model must allow to simulate a large and 
omplex road network, provide lin-earized tra�
 �ow dynami
s, and maintain a high 
omputational performan
e.These requirements motivate three in large parts novel adaptations of the CTM:
• To allow for linearization, all �ow 
al
ulation rules of the CTM are uni�edin a formal 
al
ulation s
heme, for whi
h sensitivity analysis is 
ondu
ted.
• Sin
e the original CTM only spe
i�es network topologies where at mostthree roads meet at an interse
tion, its established phenomenology istransferred to the modeling of general interse
tions.
• Spatially dis
retized ma
ros
opi
 models imply a relatively high 
omputa-tional 
ost be
ause of their large number of simulated entities. To ensurefeasibility of large-s
ale appli
ations, a simulation logi
 is adopted thatassigns an individual simulation time step duration to every link in thenetwork. The additional numeri
al impre
ision introdu
ed by this modi�-
ation is investigated and is found to be 
ountervailed by its 
omputationalbene�ts.A simpli�ed linearization of the CTM has been des
ribed before [125, 126℄. Thisapproa
h swit
hes between linear sub-models a

ording to the 
ongestion statusof a 
onsidered freeway stret
h. It is a simpli�
ation even of the CTM and is notappli
able to network tra�
. A likewise 
onstrained linearization is des
ribed in[165℄. The originality of an earlier 
ontribution is also a
knowledged where CTMmerges and diverges are re
ombined to generate more 
omplex interse
tions anda simulation logi
 with variable time step lengths is enabled by the nesting ofdi�erently fast ti
king 
ells [104℄.Some elements of the KWM theory are given in Se
tion 2.2. Before the CTMis 
onsidered, a general and linearizable �ow 
al
ulation s
heme is introdu
edin Se
tion 2.3. The CTM and its extensions are then expressed in terms ofthis formalism in Se
tion 2.4. The simulation logi
 on variable time s
ales isdes
ribed in Se
tion 2.5, a suitable spatiotemporal network dis
retization logi
is proposed in Se
tion 2.6, and, �nally, a general state spa
e representation ofthe mobility simulation is given in Se
tion 2.7.2.2 The Kinemati
 Wave ModelThe KWM requires a minimal set of assumptions to model tra�
 �ow on a linearroad. Denote by x ∈ R a lo
ation on that road and by t ∈ R the 
ontinuous time.

̺(x, t) is the lo
al density of tra�
 (in vehi
les1 (veh) per length unit), q(x, t)1In the 
ontext of a ma
ros
opi
 model, the notion of a �vehi
le� is to be understood as a�ma
ros
opi
 vehi
le unit�. 32



its �ow (in vehi
les per time unit), and v(x, t) its velo
ity. These quantities arerelated by the �rst 
onstituent equation of the KWM:
q(x, t) = v(x, t)̺(x, t). (2.1)The se
ond modeling assumption is that of vehi
le 
onservation. On smooth
onditions, it is expressed by the 
ontinuity equation

∂̺

∂t
+

∂q

∂x
= 0. (2.2)Finally, lo
al �ow is spe
i�ed as a fun
tion only of lo
al density. This relationis usually denoted as the fundamental diagram:

q(x, t) = Q(̺(x, t), x). (2.3)Sin
e these spe
i�
ations 
an still result in ambiguities, an additional 
onditionmust be instrumented to sele
t the physi
ally relevant solution. Given a 
on
avefundamental diagram, the prin
iple of lo
al demand and supply provides a 
on-venient te
hnique to ensure uniqueness [102℄. Denote by x− (x+) the lo
ationimmediately upstream (downstream) of x. For every x, the lo
al �ow q(x, t) isthen de�ned as the minimum of lo
al �ow demand ∆(̺(x−, t), x−) and lo
al�ow supply Σ(̺(x+, t), x+):
q(x, t) = min{∆(̺(x−, t), x−), Σ(̺(x+, t), x+)}. (2.4)Figure 2.1 illustrates this fun
tion.To begin with, (2.4) re�e
ts the self-evident 
onstraint that lo
al tra�
 �owis bounded by the �ow that 
an be dismissed from the immediate upstreamlo
ation and by the �ow that 
an be absorbed by the immediately downstreamlo
ation. But furthermore, the lo
al �ow is maximized subje
t to these 
on-straints. This property enfor
es the physi
ally relevant solution of the KWM-model [102℄. Phenomenologi
ally, it is a statement of drivers' ride impulse [2℄,whi
h is equivalently expressed by the mi
rosimulation rule for 
ellular automata�Drive as fast as you 
an and stop if you have to!� [45℄.Beyond its ability to uniquely 
apture tra�
 �ow along a link, this prin
iplealso holds for the modeling of general interse
tions, as illustrated in Figure 2.2.In su
h a setting, every upstream link i provides a demand ∆i(t) equal to itsgreatest possible out�ow towards the interse
tion, and every downstream link

j provides a supply Σj(t) equal to its greatest possible in�ow. Additional phe-nomenologi
al modeling is fa
ilitated sin
e these boundaries alone are generallynot su�
ient to uniquely de�ne the �ows a
ross an interse
tion. However, everyreasonable spe
i�
ation must adhere to the prin
iple of lo
al �ow maximization.2.3 Interse
tion Flow Cal
ulation S
hemeThis se
tion des
ribes a formalism for interse
tion tra�
 �ow modeling denotedas the general pro
ess of resour
e 
onsumption (GPRC). Sin
e sensitivity33



Figure 2.1: Lo
al supply and demand 
omprise a fundamental diagramThe pie
ewise linear demand fun
tion ∆(̺) 
onforms to the original spe
i�
ation ofthe CTM, where it is denoted as the sending fun
tion. It 
onsists of an in
reasingpart with its slope equal to the free �ow speed, and it is limited by the �ow 
apa
ity
q̂. The supply fun
tion Σ(̺) (also 
onsistent with the original CTM, where it is 
alledre
eiving fun
tion) is also limited by the �ow 
apa
ity. The slope of its de
lining partequals the ba
kward wave speed and interse
ts the abs
issa at the greatest possibledensity ˆ̺. The minimum of both fun
tions yields a fundamental diagram.

Figure 2.2: A point-like interse
tion with I ingoing and J outgoing linksEvery upstream link i provides a demand ∆i equal to its greatest possible out�owtowards the interse
tion, and every downstream link j provides a supply Σj equal toits greatest possible in�ow.
34



Algorithm 1 General pro
ess of resour
e 
onsumption
ξ(0) is given
D(0) = {i; ξ

(0)
i > 0}

m = 0while (∃i ∈ D(m) : ϕi(D
(m)) > 0), do {for all i ∈ D(m), do: θ

(m)
i = ξ

(m)
i /ϕi(D

(m))

θ(m) = min
i∈D(m)

{θ(m)
i }

B(m) = arg min
i∈D(m)

{θ(m)
i }

ξ(m+1) = ξ(m) − θ(m)ϕ(D(m))
D(m+1) = D(m)\B(m)

m + +}
M = manalysis for the GPRC is available, every interse
tion model that 
onforms toits spe
i�
ation 
an be linearized.Consider a dynami
al pro
ess with time step index m = 0 . . .M . Every element
ξ
(m)
i ∈ [0,∞) of its state ve
tor ξ(m) = (ξ

(m)
i ) is 
onsidered as a resour
e thatis used up during the pro
ess. Its rate of 
onsumption equals a non-negativeand �nite value ϕ

(m)
i , whi
h is 
onstant throughout every time step m. Denotethe duration of step m by θ(m). The pro
ess dynami
s are then de�ned by

ξ(m+1) = ξ(m) − θ(m)ϕ(m) where ϕ(m) = (ϕ
(m)
i ). The resour
es must notbe
ome negative su
h that all zero states must have a zero 
onsumption rateand θ(m) ≤ ξ

(m)
i /ϕ

(m)
i must hold for all nonzero states i.The set D(m) = {i; ξ

(m)
i > 0} 
ontains all resour
es that are stri
tly positive atthe beginning of step m. The pro
ess terminates if all elements in D(m) havea zero 
onsumption rate. Consumption rates only depend on the set D(m) of
urrently available resour
es su
h that ϕ(m) = ϕ(D(m)). Consequently, it isphrased that �step m is under regime D(m)�. The maximum duration of step

m in ex
lusive 
onsideration of resour
e i is θ
(m)
i = ξ

(m)
i /ϕ

(m)
i ∈ (0,∞). Sin
eevery step m is spe
i�ed to last until at least one resour
e in D(m) rea
hesa zero value, its duration is θ(m) = mini∈D(k){θ(m)

i } > 0. The set B(m) =

arg mini∈D(m){θ(m)
i } 
ontains all resour
es that run dry at the end of step m.2This allows to give D(m+1) = D(m)\B(m) as an update equation.The temporal aspe
t of this pro
ess is not to be interpreted physi
ally. Onlyits �nal state is of relevan
e to the physi
al simulation. Algorithm 1 gives anoverview. An e�
ient implementation of the involved integer sets is des
ribedin Appendix A.Sensitivity analysis for the GPRC is provided in Appendix B, where the fol-lowing result is derived. It ensures linearizability of the subsequently developedtra�
 �ow model.If all 
onsumption rates are monotonously in
reasing with respe
t to the numberof available resour
es, i.e., if ϕi(D ∪ {j}) ≥ ϕi(D) ∀i, j, and if the availability2The argmin fun
tion returns the set of all minimizing indi
es.35



Figure 2.3: A straight 
onne
tionThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resour
es
ξ is spe
i�ed in (2.5).of a resour
e with a zero 
onsumption rate does not in�uen
e the pro
ess dy-nami
s, i.e., if ϕi(D∪{i}) = 0 ⇒ ϕ(D\{i}) = ϕ(D∪{i}), then an approximateJa
obian ∂ξ(M)/∂ξ(0) 
an e�
iently be 
omputed 
on
urrently with the GPRC.If, furthermore, the 
onsumption rates are parameterized with a 
onstant pa-rameter ve
tor β and the sensitivities ∂ϕ(D)/∂β are provided, an approximateJa
obian ∂ξ(M)/∂β 
an be 
omputed in a likewise e�
ient way.2.4 Interse
tion Spe
i�
ationThe CTM runs in dis
rete time and spa
e. Denote the physi
al simulationtime step length by T , the physi
al simulation time step 
ounter by k, andthe spatial segments of a link as 
ells. A 
onne
tor is pla
ed between everygroup of adja
ent 
ells. Ea
h su
h 
onne
tor runs a GPRC implementation that
al
ulates the �ow transmissions between these 
ells.3The demand ∆i(k) of upstream 
ells i = 1 . . . I and the supply Σj(k) of down-stream 
ells j = 1 . . . J (both in vehi
les per time step duration) are mapped onindividual GPRC resour
es by

ξ
(0)
i (k) = T∆i(k) for i upstream

ξ
(0)
I+j(k) = TΣj(k) for j downstream.

(2.5)Transmitted vehi
le 
ounts and equivalent average out- and in�ow rates qouti (k),
qinj (k) result after the GPRC's termination from

Tqouti (k) = ξ
(0)
i (k) − ξ

(M)
i (k) for i upstream

Tqinj (k) = ξ
(0)
I+j(k) − ξ

(M)
I+j (k) for j downstream.

(2.6)The original CTM �ow 
al
ulation rules and their 
ontinuation into a generalinterse
tion model 
an now be expressed by appropriate spe
i�
ations of theresour
e 
onsumption rates ϕ(D).2.4.1 Straight Conne
tionsThe CTM's basi
 �ow 
al
ulation rule states that the number of transmittedvehi
les between two su

eeding 
ells equals the minimum of the available ve-hi
les upstream, the available spa
e downstream, and an upper �ow 
onstraint.This is the dis
rete-time equivalent of (2.4). The a

ording straight 
onne
tor3Sin
e a �yweight design pattern is used for implementation [70℄, the number of a
tually
reated GPRC obje
ts winds down to the number of di�erent interse
tion topologies.36



Figure 2.4: A merge with I ingoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resour
es
ξ is spe
i�ed in (2.5).has one prede
essor and one su

essor 
ell. Speaking in terms of the GPRC, itsresour
e ve
tor ξ = (ξ1 ξ2)

T is two-dimensional: ξ1 represents the number ofavailable upstream vehi
les and ξ2 equals the available downstream spa
e, 
f.Figure 2.3. The supers
ript T denotes the transpose. The resour
e 
onsumptionve
tor
ϕ({1, 2}) = (1 1)T (2.7)
orresponds to the only regime {1, 2} with a nonzero 
onsumption rate. Theresulting one-step GPRC run yields an identi
al vehi
le transmission as theoriginal CTM.2.4.2 MergesThe original CTM allows for merge 
onne
tions between exa
tly two upstream
ells and one downstream 
ell. The a

ording �ow 
al
ulation rules state thatboth prede
essors are allowed to send all their available vehi
les as long as these
an be a

epted by the su

essor 
ell. If this is not the 
ase, the su

essor'savailable spa
e is shared between the prede
essors in a ratio a

ording to theirpriorities α1 ∈ [0, 1] and α2 = 1− α1. If this 
auses all available vehi
les of oneprede
essor to be transmitted but still leaves available spa
e in the su

essor,this spa
e is �lled up as mu
h as possible with vehi
les from the 
omplementaryprede
essor.In terms of the GPRC, the merge resour
e ve
tor is ξ = (ξ1 ξ2 ξ3)

T where ξ1and ξ2 denote the available vehi
les in the prede
essor 
ells and ξ3 equals theavailable spa
e in the su

essor 
ell. The evolution of the pro
ess is fully de�nedby three non-zero 
onsumption rate ve
tors ϕ({1, 2, 3}) = (α1 α2 α1 +α2)
T ,

ϕ({1, 3}) = (α1 0 α1)
T , and ϕ({2, 3}) = (0 α2 α2)

T . Here, the priorities do nothave to sum up to 1 but are required to be stri
tly positive. An inspe
tion ofthe regime sequen
es {1, 2, 3} → {1, 3} and {1, 2, 3} → {2, 3} shows that thissetup yields an identi
al behavior as the original CTM.General merge 
onne
tors have an arbitrary number of I ≥ 2 prede
essor 
ells, asshown in Figure 2.4. The �rst I elements of the a

ording resour
e ve
tor are theavailable vehi
les ξi in the prede
essor 
ells i = 1 . . . I. The available spa
e ξI+1in the su

essor 
ell makes up one additional resour
e: ξ = (ξ1 . . . ξI ξI+1)
T .37



Figure 2.5: A diverge with J outgoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resour
es
ξ is spe
i�ed in (2.5).A straightforward 
ontinuation of the CTM merge logi
 is

ϕ(D) =

(

ϕ1(D) . . . ϕI(D)

I
∑

i=1

ϕi(D)

)T

ϕi(D) =

{

αi {i, I + 1} ⊆ D
0 otherwise, (2.8)where {i, I + 1} ⊆ D indi
ates that both the upstream 
ell i and the onlydownstream 
ell provide nonzero resour
es. For I = 2, this reprodu
es theoriginal CTM merge. Sin
e the total vehi
le transmission is only bounded bythe available upstream vehi
les and the downstream spa
e, �ow maximizationis ensured.A generalization of the CTM merge logi
 to more than two prede
essors haspreviously been referred to as �very 
ompli
ated� [86℄. With the GPRC athand, this di�
ulty 
ollapses into spe
i�
ation (2.8).2.4.3 DivergesDiverges of the original CTM split the �ow from one prede
essor 
ell into ex-a
tly two su

essor 
ells. The splitting fra
tions are denoted by β1 ∈ [0, 1]and β2 = 1 − β1. Here, the resour
e ve
tor ξ = (ξ1 ξ2 ξ3)

T is 
omprised ofthe single prede
essor's available vehi
les ξ1 and the available spa
e ξ2 and ξ3in the su

essor 
ells. Allowing for only one non-zero 
onsumption rate ve
-tor ϕ({1, 2, 3}) = (1 β1 β2)
T implies the assumption of exa
tly one upstreamlane: If a vehi
le at the head of the queue on this lane is unable to enter itsdownstream 
ell, it 
ompletely blo
ks the diverge. This logi
 is reasonable forlarge-s
ale appli
ations [54, 119℄. The resulting total out�ow from the prede-
essor is min{ξ1, ξ2/β1, ξ3/β2}, just as for the original CTM.The simulation of J ≥ 2 su

essors for a general diverge, as shown in Figure2.5, is straightforward by the introdu
tion of an extended resour
e ve
tor ξ =

(ξ1 ξ2 . . . ξ1+J )T and an a

ording 
onsumption rate ve
tor
ϕ({1, 2, . . . , 1 + J}) = (1 β1 . . . βJ)T (2.9)for the only non-zero 
onsumption regime {1, 2, . . . , 1+J}. For J = 2, this yieldsidenti
al �ow transmissions as the original CTM. The �ow is again maximizedsubje
t to the availability 
onstraints and the additional splitting rule.38



Figure 2.6: A general 
onne
tion with I ingoing and J outgoing linksThe mapping of upstream demands ∆ and downstream supplies Σ on GPRC resour
es
ξ is spe
i�ed in (2.5).Choosing zero 
onsumption rates for all regimes but {1, . . . , J, 1+J} is ne
essaryto ensure 
ontinuity of the �ow transmissions with respe
t to the turning fra
-tions, whi
h is required for the linearization of the model: If tra�
 
ould passthe diverge unhindered given an unavailable su

essor j with βj = 0, in
reasing
βj by an arbitrarily small amount would instantaneously blo
k the diverge. Thisdis
ontinuity is avoided by letting the diverge blo
k even if βj = 0 as soon assu

essor j be
omes unavailable. This restri
tion 
an be dropped if 
ontinuityis not required and vanishes anyway in the 
ombined mi
ro/ma
ro simulations
heme of the next 
hapter where all turning fra
tions are guaranteed to bestri
tly positive.2.4.4 General Conne
tionsA general 
onne
tor is shown in Figure 2.6. Denote by P = {1, . . . , I} theset of its upstream 
ells, by S = {I + 1, . . . , I + J} the set of its downstream
ells, and by βij the prespe
i�ed turning fra
tion from prede
essor i towardssu

essor j. Given a prede
essor 
onsumption rate ϕi(D), the spe
i�
ation ofsu

essor oriented 
onsumption rates ϕij(D) = βijϕi(D) maintains 
onsisten
ywith diverge logi
 (2.9). A priority rule equivalent to merge logi
 (2.8) is ensuredby letting ϕi(D) = αi for all available prede
essors i as long as the interse
tionis not blo
ked by an unavailable su

essor. The 
omplete resour
e ve
tor ξ =
(ξ1 . . . ξI ξI+1 . . . ξI+J)T is then 
onsumed by

ϕ(D) = (ϕ1(D) . . . ϕI(D) ϕI+1(D) . . . ϕI+J(D))T

i ∈ P : ϕi(D) =

{

αi i ∈ D, S ⊆ D
0 otherwise

j ∈ S : ϕj(D) =
∑

i∈P

βijϕi(D).

(2.10)Again, all priorities must be stri
tly positive. The same statements about zeroturning fra
tions hold as for a diverge. This general 
onne
tor 
omprises allpreviously de�ned 
onne
tor types as 
an be seen from 
hoosing I = 1 and/or
J = 1. Still, it has no immediate 
ounterpart in the CTM. Its logi
 resultsas the limiting 
ase of a merge whi
h is 
onne
ted by an in�nitely short linkto a diverge whose turning fra
tions βj result via βj =

∑I
i=1 βijqi/

∑I
i=1 qifrom the �ow 
omposition q1, . . . , qI transmitted by the merge. No additionalphenomenologi
al spe
ulations are introdu
ed in this model.39



It remains to show that the original CTM's 
onsisten
y with the KWM ismaintained, i.e., that spe
i�
ation (2.10) is still �ow-maximizing. In un
on-gested 
onditions, the interse
tion winds down to a linear superposition of Idiverges and inherits their properties. In 
ongested 
onditions, the total �owthrough the interse
tion is limited by at least one downstream 
ell j∗ with
Σj∗ =

∑I
i=1 βij∗qi, a

ording to (2.9). Assume that ∑I

i=1 q′i >
∑I

i=1 qi waspossible for an altered 
on�guration q′1, . . . , q
′
I of merging in�ows. The down-stream diverge logi
 still requires Σj∗ ≥

∑I
i=1 βij∗q′i, and the merge logi
 de-mands q′i ≥ qi for all i = 1 . . . I if more downstream spa
e be
omes available.Thus, Σj∗ ≥

∑I
i=1 βij∗q′i ≥

∑I
i=1 βij∗qi = Σj∗ , whi
h implies q′i = qi for all i.In 
onsequen
e, the general interse
tion inherits the �ow-maximizing propertyof its merge and diverge 
omponent.Spe
i�
ation (2.10) 
omplies with the GPRC's requirements for linearization,as stated in Se
tion 2.3. The relations between demands/supplies and GPRCresour
es (2.5) and between GPRC resour
es and �ow rates (2.6) are alreadylinear. Combined, this ensures the availability of �ow rate sensitivities withrespe
t to demands ∆, supplies Σ, and turning proportions β.2.5 Simulation Logi
Dis
rete time network simulation is straightforward if a uniform time step length

T is used. Every link with maximum velo
ity v̂ is disassembled into 
ells ofminimum 
ell length = T v̂. (2.11)A simulation step (ti
k) then 
onsists of two parts:1. Every 
onne
tor 
al
ulates the vehi
le transmissions between its adja
ent
ells.2. Every 
ell updates its o

upan
y a

ording to these transmissions.The o

upan
y of a 
ell (link) is de�ned as the number of vehi
le units thatare lo
ated in that 
ell (link).The simulation of a heterogeneous urban network requires relatively small 
ellsin order to model densely meshed regions. This 
alls for a small T and inturn implies an unne
essarily pre
ise modeling of longer road segments. Theuse of larger 
ells running on the same temporal grid somewhat mildens thisproblem at the 
ost of a greater numeri
al dispersion [55, 102, 127℄. However, asigni�
ant share of urban network 
omputations is in
urred by the interse
tionlogi
. Thus, a simulation logi
 that minimizes the number of simulation ti
ksthemselves is needed.The spatiotemporal dynami
s within an isolated link are uniquely de�ned ifan initial density pro�le as well as feasible upstream in�ows and downstreamout�ows are provided. Given an individually 
hosen time step length and anappropriate spatial dis
retization, the standard CTM logi
 fa
ilitates a KWM-
onsistent simulation. Sin
e all spatial dynami
s are en
losed within the link,40



it 
an be viewed from the outside as a dis
rete-time, nonlinear, ordinary dy-nami
al system with two inputs (in- and out�ows) and two outputs (upstream�ow supply and downstream �ow demand). The same argument holds for in-dividual 
ells. Likewise, the interse
tion model of Se
tion 2.4.4 
al
ulates �ows
onsistently with the KWM. For any 
hosen time step length, it 
onstitutes amemoryless, dis
rete-time, nonlinear system with its upstream �ow demandsand downstream �ow supplies as inputs and the resulting �ow transmissions asoutputs.Adopting a te
hni
al point of view, these systems 
an immediately be linked.The outputs of systems with a larger time step are held 
onstant when neededas inputs for faster ti
king systems, and the outputs of faster ti
king systemsare integrated/averaged before they are fed into slower ti
king systems. Sin
esu
h holding and averaging a�e
t system dynami
s mainly in terms of a delaythat is proportional to the involved time step lengths, a reasonable balan
ebetween additionally introdu
ed impre
ision and 
omputational speedup 
anbe a
hieved. This is 
on�rmed by the experimental results given in Se
tion2.5.4.The remainder of this se
tion details this simulation logi
. A 
ell i (
onne
tor c)is denoted as due at dis
rete simulation time step k if k is an integer multipleof its individual time step length Ti (Tc). The duration of a simulation timestep is generally assumed to be 1 se
ond. Two pro
edures are exe
uted at everysimulation time step k:1. Every 
ell i that is due a

ording to its individual time step length Ti
al
ulates its supply and demand boundary from its 
urrent o

upan
yand keeps these results 
onstant for the next Ti se
onds.2. Every 
onne
tor c that is due a

ording to its individual time step length
Tc 
al
ulates its average �ow rates that hold for the next Tc se
onds andnoti�es its adja
ent 
ells of the resulting vehi
le transmissions.Se
tions 2.5.1, 2.5.2, and 2.5.3 detail these steps.2.5.1 Cell BoundariesEvery 
ell i has exa
tly one pre
eding and one su

eeding 
onne
tor. Its o
-
upan
y during simulation time step k is denoted by xi(k) ∈ [0, x̂i] where x̂iis its maximum o

upan
y. While the 
ell has an individual time step length

Ti, it is embedded in a system potentially running at a 1-se
ond time s
ale.This requires its demand ∆i(k) and supply Σi(k) to be de�ned at every se
ond.Sin
e these boundaries are stati
 fun
tions only of i's o

upan
y, it is su�
ientto spe
ify xi in every simulation time step by
xi(rTi + s) = xi(rTi) r ∈ N, s ∈ {0, . . . , Ti − 1}. (2.12)The original CTM boundary spe
i�
ations 
an now be applied:

∆i(k) = min

{

q̂i,
v̂ixi(k)

Li

}

Σi(k) = min

{

q̂i,
wi(x̂i − xi(k))

Li

} (2.13)41



where q̂i denotes the 
ell's �ow 
apa
ity (in vehi
les per time unit), Li its length,and wi its ba
kward wave speed. These equations 
an approximately be lin-earized with respe
t to xi(k) if at points of non-smoothness the average ofleft- and right-sided sensitivity is used. Alternative spe
i�
ations are possible[55, 102℄.2.5.2 Conne
tor Flow Rate UpdateEvery 
onne
tor c has a set Pc of pre
eding 
ells and a set Sc of su

eeding
ells. Its individual time step length Tc is 
hosen su
h that (i) the 
onne
torre
al
ulates its �ow rates whenever an adja
ent 
ell boundary 
hanges and (ii)the overall 
omputational load is minimized. This is a
hieved by 
hoosing Tc asthe largest 
ommon divisor of all adja
ent 
ells' time step durations:
Tc = l
d

i∈Pc∪Sc

{Ti}. (2.14)Arbitrary 
ell time step durations might yield low 
omputational savings be-
ause of possibly small Tc values resulting from this equation, so they are 
on-strained to be powers of two. This turns the 
onne
tor time step length intothe minimum of its adja
ent 
ells' time step durations.2.5.3 Cell State UpdateEven if a 
ell i's state xi 
hanges only every Ti se
onds, its adja
ent 
onne
torsmight run at a higher frequen
y. On the �nest temporal s
ale, this implies
xi(rTi + Ti) = xi(rTi) + 1 s Ti−1

∑

s=0

(

qini (rTi + s) − qouti (rTi + s)
)

. (2.15)Denote by pi (si) the pre
eding (su

eeding) 
onne
tor of 
ell i. Be
ause of(2.14), Ti/Tpi
and Ti/Tsi

are integer values. This allows for the following sim-pli�
ation:
xi(rTi + Ti) = xi(rTi)

+ Tpi

Ti/Tpi
−1

∑

s=0

qini (rTi + sTpi
)

− Tsi

Ti/Tsi
−1

∑

s=0

qouti (rTi + sTsi
).

(2.16)Therefore, it is su�
ient to notify 
ell i every l
d{Tpi
, Tsi

} se
onds of possible�ow rate 
hanges. This is done independently by its upstream and downstream
onne
tor every Tpi
and Tsi

se
onds by transmitting the appropriate addend in(2.16) to the 
ell. Sin
e the 
ell's boundaries are held 
onstant for a possiblylonger duration a

ording to (2.12) and (2.13), the transmitted vehi
les areintermediately 
a
hed by the 
ell. Equation (2.16) is di�erentiable with respe
tto in- and out�ow rates. 42



Table 2.1: Link parameters in linear test networkmax. density 1 veh / 7.5 m ≈ 133 veh/km�ow 
apa
ity 2000 veh/hmax. velo
ity 50 km/h
ell length 50 km/h · 1 s ≈ 13.9 mlink length 32 
ells/link · 13.9 m ≈ 444 m2.5.4 Experimental Investigation of Simulation Pre
isionA linear test network is 
onsidered. It 
onsists of a sequen
e of 5 identi
al linksthe parameters of whi
h are given in Table 2.1. The simulation boundariesresemble the 
onditions in whi
h the CTM was �rst investigated [53℄: A lineardensity gradient from zero to maximum density is pla
ed on the network, withzero density at its upstream end and maximum density at its downstream end.No tra�
 is allowed to enter or leave the network. The simulation is run untila steady state is rea
hed.Figure 2.7 shows the resulting spa
e-time plots in various dis
retization settings.Plot 2.7(a) provides a good approximation to the exa
t solution. Initially, twosho
kwaves o

ur: an upstream sho
kwave moving at positive velo
ity and adownstream sho
kwave moving at negative velo
ity. They merge in the 
enterof the network and persist as a stationary density dis
ontinuity with all tra�
being queued up in the downstream half of the network. For 
omparison, thesimulation results with a mu
h 
oarser but still homogeneous dis
retization areshown in plot 2.7(b).The results with heterogeneous simulation time steps ni
ely re�e
t the workingof the underlying Godunov method. In every simulation time step, the Godunovs
heme solves a Riemann problem at all 
ell boundaries. Sin
e 
ondition (2.11)ensures that the resulting sho
kwaves or rarefa
tion fans do not 
ross beyondone 
ell during a single time step, these problems 
an be solved independentlyin a 
omputationally e�
ient way [102, 106℄. Pla
ing fast ti
king 
ells next toslower 
ells expli
itly displays these sho
kwaves, as it 
an be seen best in plot2.7(
). While these artifa
ts are unequivo
ally owed to the simulation logi
 onvariable time s
ales, they are put into relation by plot 2.7(d). It shows the sameresult after it has been averaged on a temporal grid a

ording to the largestinvolved time step duration. The artifa
ts are ni
ely smeared out while theoriginal sho
kwaves are maintained with a pre
ision that is at least 
omparableto plot 2.7(b). Analogi
al statements holds for plots 2.7(e) and 2.7(f).These results indi
ate that the overall simulation error remains in the order ofthe largest involved time step duration, as it has been previously hypothesized.Artifa
ts 
an o

ur at the boundaries between slowly and fast ti
king 
ells but
an also be removed by a temporal averaging of the simulation output beforefurther pro
essing. No ampli�
ation of artifa
ts is observed. These experiments
annot repla
e a thorough theoreti
al investigation. They are, however, 
onsid-ered as su�
ient indi
ations that the simulation logi
 on variable time s
alesperforms well enough to be be applied in the further 
ourse of this dissertation.43



(a) All links have a time step durationof 1 se
ond and 
onsist of 32 
ells ea
h. (b) All links have a time step durationof 8 se
onds and 
onsist of 4 
ells ea
h.
(
) All but the se
ond and fourth linkhave an 8 se
ond time step duration. (d) The same data as (
) but averagedon a temporal grid of 8 se
onds.
(e) Only the se
ond and fourth link havean 8 se
ond time step duration. (f) The same data as (e) but averaged ona temporal grid of 8 se
onds.Figure 2.7: Spa
e-time plots with variable spatiotemporal dis
retizationsColors en
ode densities as follows: green is zero density, yellow is half of maximumdensity, and red is maximum density. See also Table 2.1. The parenthesized numbersbelow the links indi
ate their individual time step durations.
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2.6 Network Dis
retization2.6.1 Spe
i�
ationSpe
i�
ations of large road networks usually 
onsist of an attributed graphwhere nodes represent interse
tions and links represent roads, e.g., [119, 147,163℄. The 
ell stru
ture of su
h a network 
an be generated by the followingsteps:1. Choose a maximum simulation time step length T̂ . This network time
onstant 
ompromises between a high simulation resolution (small T̂ )and a high 
omputational performan
e (large T̂ ).2. For every link a in the network, do:(a) Sele
t the individual time step duration Ta of link a as large as pos-sible subje
t to the following 
onstraints:
• Ta is stri
tly positive and not larger than T̂ .
• Ta is an integer power of two.
• It is required that link a 
an be partitioned into at least two 
ellsof equal length La/2. Sin
e (2.11) must hold for ea
h of these
ells, Ta ≤ La/(2v̂a) is required.If link a is so short that no feasible Ta exists, in
rease La just until

Ta = 1 s be
omes a feasible solution.(b) Partition link a into na identi
al 
ells of length La/na. In order tominimize dispersion, 
hoose na as large as possible without violating
ondition (2.11). That is, na ≤ La/(v̂aTa) must hold. The previous
hoi
e of Ta ensures that this yields at least two 
ells in link a.3. Pla
e a 
onne
tor c between every set of adja
ent 
ells, and 
al
ulate itsindividual time step length Tc via (2.14).The network entran
e of tra�
 is fa
ilitated by entry 
ells in 
onsisten
y withthe original CTM implementation [40℄. Entry 
ells 
an hold an arbitrary o

u-pan
y, have no upstream 
onne
tor, and a maximum out�ow equal to the entireo

upan
y that waits in the 
ell to enter the system. One entry 
ell is 
onne
tedto the innermost 
onne
tor of every link. The existen
e of su
h a 
onne
tor isensured sin
e every link 
onsists of at least two 
ells. A spe
i�
ation of the net-work exit of tra�
 is postponed to Se
tion 3.1 where multi-
ommodity tra�
 isintrodu
ed. The allo
ation of demand entry points to links and not to nodes is
hosen in 
onsisten
y with the MATSim demand spe
i�
ation [119℄.2.6.2 Berlin Test CaseThe test 
ase of this thesis is modeled after the road network of Greater Berlin,whi
h is illustrated in Figure 2.8. This network 
onsists of 1 083 nodes and 2 459unidire
tional links. It is quite heterogeneous in that the inner-urban area is45



Figure 2.8: Major road network of Greater BerlinThe two 
lippings indi
ate a lo
ally high network resolution.
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Figure 2.9: E�e
t of network time 
onstant on 
ell 
ountNumber of 
ells over log
2
(T̂ ). Sin
e the network geometry has a limiting e�e
t on the
ell sizes, T̂ values beyond 26 s do not result in a notably in
reased 
oarsening.

Figure 2.10: Time step duration histogramHistogram of logarithmi
 interse
tion 
onne
tor time step durations given a networktime 
onstant of T̂ = 64 s. 47



modeled in relatively high resolution, whereas the surrounding freeway ring is
omprised of several links that are many kilometers long.Figure 2.9 shows the e�e
t of the network time 
onstant T̂ on the number of
ells in the network. As T̂ in
reases, the number of 
ells approa
hes a minimumvalue of 2 · 2 459. This mirrors the above requirement of at least two 
ells perlink. A histogram of interse
tion 
onne
tor time step lengths for T̂ = 64 s isgiven in Figure 2.10. The high number of interse
tions with a relatively lowtime step duration is owed to the �nely meshed interurban network, whi
h ispre
luded from a slower simulation 
lo
k. The relation between network time
onstant and 
omputational performan
e is investigated in Se
tion 3.1.4.2.7 State Spa
e NotationFor greatest generality, the remainder of this thesis is de
oupled from spe
i�
tra�
 �ow modeling assumptions by the following state spa
e representation ofthe mobility simulation:
xms(0) = xms

0

xms(k + 1) = fms[xms(k), β(k), k].
(2.17)Ve
tor xms(k) denotes the mobility simulation's physi
al state in time step k.For a spatially dis
retized �rst order model, it 
ontains one element for every
ell i in the network: xms = (xi). Single-
ommodity turning fra
tions β(k) =

(βij(k)) are provided as exogenous parameters to the model. Ve
tor-valuedtransition fun
tion fms de�nes the system's evolution through time. It fullyen
apsulates the spe
i�
ally 
hosen mobility simulation. The formal modelingof demand sour
es and sinks is postponed to the next 
hapter.For the subsequent analysis, it is required that at least approximate Ja
obians
∂fms[. . . , k]/∂xms(k) and ∂fms[. . . , k]/∂β(k) are available. This 
ondition isful�lled by the mobility simulation proposed in this 
hapter sin
e

• 
ell state update equation (2.16) is linear with respe
t to in- and out�owrates,
• these �ow rates 
an be linearized with respe
t to 
ell boundaries andturning fra
tions, 
f. (2.5), (2.6), and Se
tion 2.4.4, and
• 
ell boundary spe
i�
ation (2.13) is linearizable with respe
t to the 
ellstates.
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Chapter 3Mi
ros
opi
 BehavioralSimulationThis 
hapter prepares a formal link between individual driver behavior andaggregate 
hara
teristi
s of tra�
 �ow.First, motorist driving de
isions are expressed as 
ontrol measures that a
t ona state spa
e model of ma
ros
opi
 tra�
 dynami
s. The resulting formalismis quite general and allows to link di�erent ma
ros
opi
 mobility simulationsand mi
ros
opi
 behavioral models. In parti
ular, it allows to predi
t the lin-earized e�e
t of individual driver behavior on global network 
onditions withoutrepeated simulations.Se
ond, the de
ision making pro
ess of a driver is formalized in a way that is
ompatible with the aforementioned mi
ro/ma
romobility simulation. This rep-resentation 
omprises a broad variety of possible behavioral simulators. Somemore spe
i�
 modeling approa
hes are also presented. Apart from their illus-trative purpose, they introdu
e modeling aspe
ts that are referred to in later
hapters.3.1 Coupling Mi
ro- and Ma
rosimulationTwo di�erent 
on
epts 
an be en
ountered in the literature on 
ombined mi-
ro/ma
ro mobility simulations.Hybrid approa
hes link simulations that work on di�erent degrees of aggregationat well-de�ned lo
ations in the network [32, 64℄. This approa
h is attra
tive ifthe required simulation �delity varies spatially but does not serve the purposeof this work where a network-wide ma
ros
opi
 model is needed.Mesos
opi
 simulations move individual vehi
les based on aggregate laws ofmotion in order to in
rease the 
omputational performan
e while retaining ami
ros
opi
 representation of behavior [31, 35℄. Simulation-based DTA usuallyemploys su
h models, 
f. Se
tion 1.2.2.2 and the referen
es therein. Their
ounterpart in physi
s are smoothed parti
le hydrodynami
s (SPH) [124, 155℄.49



The approa
h des
ribed here is a mesos
opi
 model with a distin
t ma
ros
opi
aspe
t. In this way, mathemati
al feasibility (linearization of the ma
ros
opi
model) and expressive power (mi
rosimulation of behavior) are 
ombined. High
omputational performan
e is maintained by a simulation s
heme on variabletime s
ales.3.1.1 Representation of Behavioral HeterogeneityPursuing a stri
tly ma
ros
opi
 approa
h, heterogeneous driver behavior 
ouldbe 
aptured by splitting tra�
 volumes into partial �ows (
ommodities) withindividual behavioral features. For example, destination-bound 
ommoditieswould exhibit di�erent turning behavior at interse
tions in order to rea
h theirdestinations. The appli
ability of this approa
h is limited by the 
omputational
ost of tra
king partial �ows for every 
ommodity on every link in the network.A mesos
opi
 simulation easily keeps tra
k of behavioral aspe
ts by atta
hingthem to individual DVUs. A 
ontinuation of the mesos
opi
 method towardssomewhat more ma
ros
opi
 modeling is pursued here. A fully ma
ros
opi
representation of the underlying physi
al model is maintained. The behav-ioral information is represented by massless parti
les that are dispersed in thema
ros
opi
 �ow. They drift along with the �ow a

ording to its spatiotemporalvelo
ity �eld. If one maintains the ma
ros
opi
 multi-
ommodity point of view,these parti
les 
an be interpreted as draws from the 
ommodity distribution ofthe �ow entering the network. Commodity information for any spatiotemporalsegment of the network 
an be re
overed by 
ounting the a

ording parti
leswithin that segment.If one su
h parti
le is dismissed into the system together with the ma
ros
opi

ounterpie
e of one vehi
le, an interpretation as a DVU is obvious. However, thenumber of parti
les is not 
onstrained by this and 
an be 
hosen as a 
ompromisebetween behavioral modeling resolution and 
omputational performan
e.3.1.2 Parti
le Movement3.1.2.1 Spe
i�
ationThe ma
ros
opi
 tra�
 �ow model is required to spe
ify a lo
al velo
ity vi(k)in every 
ell i in every time step k. The velo
ity 
al
ulation logi
 employed inall experiments of this thesis is des
ribed in Appendix C.Consider a set of parti
les n = 1 . . .N (a population of travelers, agents orvehi
les) that are �oating through the system. Parti
les have no �mass� insofaras they do not 
ontribute to the ma
ros
opi
 o

upan
y in a 
ell. At the timeof a parti
le's entran
e into the network, an appropriate amount of ma
ros
opi
�ow is also dismissed into the system, resulting in a mass balan
e betweenparti
les and total ma
ros
opi
 o

upan
y.In any time step k of duration T , ea
h parti
le advan
es a

ording to the lo
alvelo
ity in its 
urrent 
ell. Parti
le lo
ations within a 
ell are 
ontinuous vari-ables and their movement is regarded as 
ontinuous in time as well: When a50



Figure 3.1: Parti
le movement a
ross 
ell boundariesA parti
le approa
hes the upstream end of a 
ongested road segment. The time stepduration is T = 8 s. The parti
le needs 5 s to rea
h the end of 
ell i at vi = 40 km/h.During the remaining 3 s, it advan
es another 16.5m in 
ell j at vj = 20 km/h.parti
le 
rosses a 
ell boundary during a single move of duration T , it 
an freely
hoose its next 
ell (if there is more than one downstream 
ell) and 
ontinuewith the velo
ity en
ountered there until its available move time ends. Thispro
edure is illustrated in Figure 3.1. The parti
le evaluates all traversed 
ells'velo
ities at the start time of its move. In 
onsequen
e, this simulation s
heme isimpre
ise in the order of a time step length, just as the ma
ros
opi
 simulationlogi
 itself.When a parti
le rea
hes its destination, it is removed from the system and anappropriate amount of ma
ros
opi
 �ow is also �ltered out of the tra�
 streampassing the exit lo
ation.3.1.2.2 Simulation on Variable Time S
alesThe previous 
hapter des
ribes how a ma
ros
opi
 simulation 
an be run withvariable time step lengths for di�erent network elements. This approa
h 
an beextended to the movement of parti
les and requires the following 
ompletion ofthe simulation pro
edure given in Se
tion 2.5, p.41. It is illustrated in Figure3.2.1. Every 
ell i that is due a

ording to its individual time step length Ti
al
ulates its supply and demand boundary from its 
urrent o

upan
yand keeps these results 
onstant for the next Ti se
onds.2. Ea
h parti
le that 
urrently resides in a 
ell i that is due is moved forwarda

ording to the following rules:(a) The parti
le moves for a duration equal to the time step length Ti ofits start 
ell i. It might 
ross several 
ells during this move if 
ell ihas a larger Ti than its downstream 
ells.(b) If the parti
le has used up its time of movement and has arrived ina 
ell j with Tj > Ti, it 
ontinues its move until it has moved foran overall duration of Tj . This 
ontinued move never enters another
ell be
ause of 
ondition (2.11) and a

ounts for the expe
ted waitingtime Tj − Ti until the parti
le is again due for movement.51



Figure 3.2: Parti
le movement on variable time s
alesA homogeneous velo
ity �eld is assumed so that a 
orre
t parti
le traje
tory is repre-sented by a straight line in the spa
e-time plot. The 
onsidered parti
le starts its movein 
ell i at spa
e-time point P0. During its initial move of duration Ti, it traversestwo small intermediate 
ells and �nally arrives in 
ell j at point P1. If the move was�nished there, it would not be 
ontinued until Tj −Ti se
onds later from point P ′
2 be-
ause of 
ell j's greater time step length Tj . This would be in
orre
t as the unstraightblue traje
tory indi
ates. The parti
le has to a

ount for the waiting time on 
ell jby 
ontinuing its move for another Tj − Ti se
onds, whi
h results in the linear andtherefore 
orre
t red traje
tory through point P2.3. Every 
onne
tor c that is due a

ording to its individual time step length

Tc 
al
ulates its average �ow rates that hold for the next Tc se
onds andnoti�es its adja
ent 
ells of the resulting vehi
le transmissions.Sin
e the parti
le still evaluates all traversed 
ells' velo
ities at the start time ofits move, the resulting impre
isions remain in the order of the largest involvedtime step duration.3.1.3 Parti
le Route Choi
e3.1.3.1 Spe
i�
ationHaving stated the in�uen
e of ma
ros
opi
 dynami
s on individual parti
les, the
onverse problem of syn
hronizing ma
ros
opi
 �ows with individual parti
lebehavior is 
onsidered next.The route 
hoi
e of parti
le n is expressed by a ve
tor un(k) = (uij,n(k)) ofturning move indi
ators
uij,n(k) =

{

1 if n pro
eeds from 
ell i to j at time step k
0 otherwise. (3.1)An additional state ve
tor x
nt(k) = (xij(k)) is introdu
ed. Ea
h element xij(k)represents the a

umulated 
ount of parti
les having turned from 
ell i to j until52



time step k. The dynami
s of these turning 
ounters are de�ned by
x
nt(0) = 0

x
nt(k + 1) = x
nt(k) +

N
∑

n=1

un(k).
(3.2)The ma
ros
opi
 turning fra
tions β(k) = (βij(k)) 
an now be spe
i�ed as afun
tion β(x
nt(k)) = (βij(x


nt(k))) of the turning 
ounters where
βij(x


nt(k)) =
xij(k)
∑

l xil(k)
. (3.3)This is a maximum likelihood estimator of the turning probabilities if the turningmoves follows a stationary multinomial distribution [87℄. The resulting estimates
an be dire
tly fed into the ma
ros
opi
 model by a substitution of β in (2.17).In order to avoid unde�ned 0/0 divisions at the beginning of a simulation, theturning 
ounters 
an be initialized with small positive values instead of all zeros.While the update equation in (3.2) assumes stationary turning probabilities,a straightforward approa
h to introdu
e time dependen
y is to de�ne an ad-ditional forgetting parameter w ∈ (0, 1) in a modi�ed turning 
ounter updateequation

x
nt(k + 1) = wx
nt(k) + (1 − w)

N
∑

n=1

un(k). (3.4)In the absen
e of newly observed turning moves, this s
heme 
auses an expo-nential forgetting of previously observed 
ounts. A useful property of this �lteris its in�nite memory: Even if no parti
les arrive at an interse
tion for a while,the turning 
ounts remain stri
tly positive and thus ensure well-de�ned �owsplits in (3.3).One possible problem with (3.4) is the danger of gridlo
k. If a tra�
 jam inone of an interse
tion's downstream 
ells 
auses all upstream 
ells' velo
ities todrop, it might take a long time until new parti
les rea
h the interse
tion andprovide fresh turning move indi
ators that re�e
t these drivers' avoidan
e of theunavailable outgoing 
ell. An appropriate gridlo
k resolution logi
 is des
ribedin Appendix D.A state spa
e representation of the 
ombined system (2.17) and (3.4) 
an nowbe given. De�ning
x(k) =

[

xms(k)
x
nt(k)

] (3.5)and
f [x(k),u1(k) . . .uN (k), k] =

[

fms[xms(k), β(x
nt(k)), k]

wx
nt(k) + (1 − w)
∑N

n=1 un(k)

]

, (3.6)one obtains
x(k + 1) = f [x(k),u1(k) . . .uN (k), k]. (3.7)A

ording to the notational 
onventions of 
ontrol theory, the turning moveindi
ators un a
t as 
ontrol variables in this model. In fa
t, the individual53



driver behavior steers the ma
ros
opi
 tra�
 �ow. x is subsequently denotedas the ma
ros
opi
 state of the mobility simulation. Note that x does nota

ount for the mi
ros
opi
 states of individual parti
les. The 
ombined statetransition fun
tion f is linearizable with respe
t to x and all un be
ause ofthe linearizability of its 
onstituting fun
tions (2.17), (3.3), and (3.4). Thisimplies that the e�e
t of an agent's route 
hoi
e on the ma
ros
opi
 states 
anbe linearly predi
ted as the sum of the e�e
ts of its turning moves.The state spa
e model des
ribed so far 
aptures mobility only within the networkbut does not a

ount for vehi
le entries and exits. These extensions require themore 
on
ise formalization of travel demand given in the se
ond half of this
hapter. Regarding linearizability, it 
an already be stated that the ma
ros
opi
e�e
t of a parti
le's entry or exit 
an be linearly approximated sin
e an entry orexit move 
orrespondsma
ros
opi
ally merely to a lo
al o

upan
y modi�
ation.3.1.3.2 Simulation on Variable Time S
alesIf the ma
ros
opi
 mobility simulation runs on variable time steps, the rows of(3.4) are evaluated at likewise variable frequen
ies:
xij(rTc + s) = xij(rTc) r ∈ N, s ∈ {0, . . . , Tc − 1}

xij(rTc + Tc) = wcxij(rTc) + (1 − wc)
1

Tc

Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)
(3.8)where Tc is the time step duration of the 
onne
tor c that is 
rossed by turningmove ij. An individual weight wc is ne
essary for every su
h 
onne
tor in orderto maintain the same degree of averaging for all turning 
ounters.If the number∑N

n=1 uij,n(k) of mi
ros
opi
ally simulated ij turning moves dur-ing a single simulation time step is Poissonian with expe
tation and varian
e
λij , the varian
e of xij as de�ned in (3.8) approa
hes

lim
r→∞

VAR{xij(rTc)} =
1 − wc

1 + wc

λij

Tc
. (3.9)A derivation of this equation 
an be found in Appendix E. The network time
onstant T̂ de�ned in Se
tion 2.6 is now employed to postulate that a turning
ounter's variability must be independent of its 
onne
tor's time step lengthand, more spe
i�
ally, identi
al toVAR



1

T̂

T̂−1
∑

s=0

N
∑

n=1

uij,n(rT̂ + s)







=
λij

T̂
. (3.10)This varian
e would result if the turning 
ounters were averaged non-re
ursivelyon a temporal grid as 
oarse as the network time 
onstant. Equating (3.9) and(3.10) yields

wc =
T̂ − Tc

T̂ + Tc

. (3.11)An in�nite turning 
ounter memory is guaranteed if all Tc are 
hosen stri
tlysmaller than T̂ . The working of this spe
i�
ation is illustrated in Figure 3.3.54



Figure 3.3: Turning 
ounter dynami
sThree turning 
ounters (red) with time step durations of 1, 2, and 4 se
onds tra
k a Poissonian signal (blue) for a duration of 100 se
onds. Thesignal's expe
tation jumps from 0 to 5 after 10 se
onds and returns to 0 after another 60 se
onds. The network time 
onstant T̂ is 8 se
onds in all
ases. All 
ounters exhibit a similar variability and speed of adaptation.
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For a simulation time step length of one se
ond, the requirement of an in�-nite memory di
tates a minimum network time 
onstant of two se
onds. Giventhis inertia, a pre
ise ma
ros
opi
 tra
king of individual vehi
les is not pos-sible. However, su
h a pre
ision is rather undesirable for the purpose of thiswork. The simulated driver population is an output of MATSim, the mobilitysimulation of whi
h is a queuing model with relatively limited expressive powerbut a high 
omputational performan
e [41℄. It a

ounts for signalized inter-se
tions merely by average �ow 
apa
ity redu
tions, whi
h results in relativelyundisturbed tra�
 streams. Maintaining this modeling �delity, a ma
ros
opi
reprodu
tion of individual vehi
le movements would only introdu
e additionaldis
retization noise into (3.7) � an utmost undesirable e�e
t sin
e this model isto be linearized.In a planning 
ontext, a network time 
onstant of several minutes is a good
hoi
e. It must not be too large sin
e otherwise the ma
ros
opi
 model even-tually looses tra
k of the driver behavior. A reasonable upper bound for thenetwork time 
onstant is the time interval at whi
h tra�
 information is aver-aged before it is fed ba
k to the simulated travelers who in turn rea
t to thisinformation by possible turning move 
hanges.3.1.4 Computational Model InvestigationThe mi
ro/ma
ro model's pre
ision and the a

elerating e�e
t of the simulationlogi
 on variable time s
ales are investigated. All experiments are 
ondu
ted ona 1.7 GHz Pentium 4 ma
hine with 1 GB RAM, using the Sun Java RuntimeEnvironment 5.0 [84℄.A syntheti
 population of 206 353 motorist travelers with 
omplete daily plansis available for the Berlin network introdu
ed in Se
tion 2.6.2 [153℄. This is a10 per
ent sample of Berlin's true motorist population. Thus, 10 ma
ros
opi
vehi
le units need to be inserted together with one parti
le into the simulation.However, sin
e the simulations are run on a thinned out version of the full Berlinnetwork, the use of 2 instead of 10 ma
ros
opi
 vehi
le units per parti
le already
reates realisti
 
ongestion patterns.The following experiments 
onsider the morning rush hour from 6 to 12 am.Figure 3.4 shows the total number of moving vehi
les as a fun
tion of time. Morethan 16 000 parti
les, i.e., 32 000 ma
ros
opi
 vehi
le units, are 
on
urrentlysimulated during the rush hour peak at approximately 8:30 am.3.1.4.1 Pre
ision of Mi
ro/Ma
ro CouplingThe mi
ros
opi
 behavior in�uen
es the ma
ros
opi
 �ow splits via the turn-ing 
ounter me
hanism, whereas the mi
ros
opi
 movements are guided by thema
ros
opi
 velo
ity �eld. The pre
ision of this mi
ro/ma
ro model syn
hro-nization is investigated here.Figure 3.5 shows the mi
ros
opi
 and ma
ros
opi
 tra�
 density traje
toriesfor two sele
ted links of the Berlin network. Ma
ros
opi
 density is the ratioof ma
ros
opi
 vehi
le units on a link to the link's spa
e 
apa
ity. The spa
e56



Figure 3.4: Simulated Berlin morning peakA simulation of the Berlin morning peak between 6 and 12 am. The 
urve shows thema
ros
opi
 number of moving vehi
les over time.
apa
ity of a link is de�ned as its length times its number of lanes. Mi
ros
opi
density is 
al
ulated here as the quotient between twi
e the mi
ros
opi
 parti
le
ount on a link and its spa
e 
apa
ity. The fa
tor of two a

ounts for the fa
tthat one parti
le represents two vehi
le units in the given experimental setting.Link (a) is only 25 meters long, whereas link (b) has a length of 1611 meters.This di�eren
e is re�e
ted in the mu
h greater varian
e of the mi
ros
opi
 den-sity on the shorter link. Both ma
ros
opi
 density traje
tories tra
k the mi
ro-s
opi
 trends with high pre
ision and almost no lag. The strong dis
retizationnoise parti
ularly on the shorter link is signi�
antly redu
ed.In order to avoid arbitrariness, these links were automati
ally 
hosen a

ordingto the following 
riteria: Link (a) exhibits the largest ratio of density to spa
e
apa
ity during the rush hour peak, whereas link (b) 
arries the largest totalamount of vehi
le units, i.e., the largest produ
t of density and spa
e 
apa
ity,in the same time interval. That is, the �rst 
riterion prefers small links, andthe se
ond 
riterion prefers large links. Both 
riteria favor 
ongested links sin
eun
ongested 
onditions prevail anyway before the rush hour sets in.The ma
ros
opi
 densities beyond 133 veh/km indi
ate that the gridlo
k res-olution me
hanism des
ribed in Appendix D a
tively in�uen
es the tra�
 dy-nami
s. This shows that the purely ma
ros
opi
 gridlo
k resolution logi
 is
ompatible with the mi
ros
opi
 model 
omponents.The network time 
onstant is 
hosen as large as 5 minutes. This is justi�edin light of the 15 minute time bins in whi
h MATSim averages travel timesbefore feeding them ba
k to the simulated travelers in its iterative simulationpro
edure, 
f. Se
tions 1.2.2.3 and 3.2.2.3.The di�eren
e between this model and a typi
al mesos
opi
 approa
h is empha-sized. The presented ma
ros
opi
 traje
tories are not 
al
ulated by some kind57



(a) Mi
ros
opi
 and ma
ros
opi
 density traje
tory for a short link of 25 m lengthunder heavy 
ongestion. The dis
rete value domain of the mi
ros
opi
 
urve re�e
tsthe strong vehi
le dis
retization noise. The ma
ros
opi
 
urve removes most of thisnoise. Unrealisti
ally high mi
ros
opi
 densities are possible be
ause of the masslessparti
les. The ma
ros
opi
 
urve, however, is within bounds.

(b) Mi
ros
opi
 and ma
ros
opi
 density traje
tory for a 1.6 km long link underheavy 
ongestion. The dis
retization noise has a weaker e�e
t sin
e a greater numberof parti
les is averaged in the mi
ros
opi
 density 
al
ulations. The mi
ros
opi
 signaltrend is tra
ked very well by the ma
ros
opi
 
urve.Figure 3.5: Pre
ision of mi
ro/ma
ro model syn
hronization58



Figure 3.6: Mean normalized bias and error traje
toriesMean normalized bias MNB and mean normalized error MNE as de�ned in (3.12)and (3.13). The intermediate mi
ros
opi
 ex
ess in MNB of about 1 per mille isnegligible and owed to the parti
le entran
e me
hanism whi
h puts parti
les ahead oftheir ma
ros
opi
 �ow into the system. Likewise, there is a similar undershoot as theparti
les leave the system ahead of their ma
ros
opi
 �ow at the end of the rush hour.of mi
ros
opi
 vehi
le 
ount averaging. Rather, they impli
itly result from 
on-tinuously tra
ked turning fra
tions that guide an appropriate amount of trulyma
ros
opi
 �ow a
ross ea
h link.A network-wide point of view is adopted by means of the following two 
hara
-teristi
s: MNB(k) =
100

|A|
∑

a∈A

̺mi
ro
a (k) − ̺ma
ro

a (k)

ˆ̺
(3.12)represents the mean normalized bias where ̺ma
ro

a (k) (̺mi
ro
a (k)) is the ma
ro-s
opi
 (mi
ros
opi
) vehi
le density on link a in time step k, ˆ̺ is the ma
ros
opi
jam density of 133 veh/km, and A is the set of all links in the network. These
ond 
hara
teristi
MNE(k) =

100

|A|
∑

a∈A

∣

∣̺mi
ro
a (k) − ̺ma
ro

a (k)
∣

∣

ˆ̺
(3.13)is the mean normalized error.Figure 3.6 shows that MNB �u
tuates unsystemati
ally around 0 per
ent. Thisindi
ates that the mass balan
e between mi
ros
opi
 and ma
ros
opi
 �ow iswell maintained. The maximum value of approximately 3 per
ent for MNE ismoderate and plausible in 
onsideration of Figure 3.5.These results show that the mi
ro- and the ma
ro-model are well syn
hronizeddespite of their sparse intera
tions. The resulting ma
ros
opi
 tra�
 
hara
-teristi
s exhibit a signi�
antly lower dis
retization noise than a simple averageover the mi
ros
opi
 parti
les. 59



Figure 3.7: Mi
ros
opi
 and ma
ros
opi
 
omputation timesMi
ros
opi
 and ma
ros
opi
 
omputation times over log2 of the greatest allowed timestep duration. The simulated time span is 6 hours.3.1.4.2 Computational Performan
eThe impre
isions introdu
ed by the simulation s
heme on variable time s
ales arenow justi�ed by their 
ountervailing 
omputational bene�ts. The same morningpeak s
enario as before is 
onsidered.The 
omputational e�ort for the mi
ro- and for the ma
rosimulation is distin-guished in the following way. The ma
rosimulation 
omprises all pro
esses de-s
ribed in Chapter 2 plus the turning 
ounter tra
king des
ribed in Se
tion 3.1.3.The mi
rosimulation 
omprises the additional operations ne
essary to updatethe individual parti
le lo
ations as des
ribed in Se
tion 3.1.2. In 
onsequen
e,the total 
omputational e�ort is the sum of mi
ro- and ma
rosimulation.Figure 3.7 shows the mi
ros
opi
 and ma
ros
opi
 
omputation time over log2of the greatest allowed simulation time step duration, whi
h is roughly thesame as the network time 
onstant T̂ .1 The overall number of 
omputations isproportional to the number of network elements and to the frequen
ies at whi
hthese elements are updated. An in
reased T̂ a�e
ts both, the element 
ountand the 
al
ulation frequen
y. Thus, the 
omputation times initially de
reasequi
kly with T̂ but then stabilize be
ause of the geometri
al 
onstraints on thelink and node time step durations. Choosing large 
ells and long time stepsdoes not only redu
e the number of ma
ros
opi
 
al
ulations but also de
reasesthe frequen
ies at whi
h the mi
ros
opi
 parti
les are updated.Figure 3.8 shows the real time ratio, i.e., the ratio of simulated time to the timerequired to run the simulation. The a

omplished maximum value is 90. This1More pre
isely, the network time 
onstant T̂ is slightly larger than the greatest allowedsimulation time step duration in order to ensure an in�nite turning 
ounter memory, 
f.Se
tion 3.1.3.2. 60



Figure 3.8: Real time ratioReal time ratio over log2 of the largest simulation time step duration in the network.These values a

ount for all operations of the simulation system and in
lude a numberof supplementary pro
edures. In 
onsequen
e, the evaluated running time is slightlylarger than the sum of pure mi
ro- and ma
rosimulation.shows that the model is ready for real-time simulations of large-s
ale s
enarios.In summary, its 
omputational e�
ien
y is owed to the following properties:
• The model does not require a realisti
 number of parti
les. If, for example,only a 10 per
ent sample of the 
omplete population is loaded on thenetwork, the ma
ros
opi
 equivalent of 10 vehi
les is inserted into thesystem together with every parti
le. The 
hosen sample size must belarge enough to properly represent the a
tual population's behavior butotherwise 
an be minimized for high 
omputational performan
e.
• The ma
ros
opi
 mobility simulation only moves single-
ommodity �ows.No 
are has to be taken of partial densities as it would be the 
ase ifbehavioral aspe
ts were represented ma
ros
opi
ally.
• Every link is simulated with a 
ell size and a time step length that areoptimally adjusted to its 
hara
teristi
s.Altogether, two results obtained in this se
tion are useful independently of astate estimation problem. First, it is shown how a general ma
ros
opi
 tra�
�ow model 
an be employed to simulate mi
ros
opi
 travel behavior. A usefulfeature of this approa
h is its ability to remove vehi
le dis
retization noise.Se
ond, the ma
ros
opi
 simulation logi
 on variable time s
ales, 
f. Se
tion2.5, is extended towards this mi
ro/ma
ro 
oupling s
heme and exhibits a high
omputational performan
e.Important for estimation, the linearizability of state spa
e model (3.7) is main-tained throughout the entire development. This provides the sensitivity infor-61



mation that is subsequently applied to predi
t the linearized e�e
t of an indi-vidual driver's turning move sequen
e on the global network 
onditions withoutrepeated simulations.3.2 Simulation of Drivers' Choi
esThe �rst part of this 
hapter spe
i�es physi
ally observable driver behavior asa sequen
e of turning moves. In the following, the de
isions that pre
ede thisbehavior are dis
ussed and formalized in a way that allows for a seamless linkageto the previously des
ribed mi
ro/ma
ro mobility simulation. The resultingbehavioral representation is logi
ally 
ompatible with the estimation algorithmdeveloped in the next 
hapter and te
hni
ally 
ompatible with a MATSim-likesimulation system. Sin
e this dissertation does not 
ontribute to the �eld ofbehavioral modeling itself, the following dis
ussion is kept problem-spe
i�
 andis not exhaustive from a behavioral modeling point of view.3.2.1 Choi
e FormalismIt is assumed that, whenever a traveler is fa
ed with a situation that 
alls fora de
ision, this traveler 
hooses pre
isely one element from a nonempty set ofdis
rete alternatives. The de
ision making pro
ess itself is stru
tured a

ordingto the framework given in [21℄:1. de�nition of the 
hoi
e problem,2. generation of alternatives,3. evaluation of attributes of alternatives,4. 
hoi
e,5. implementation.These steps are made pre
ise in the remainder of this se
tion. Note that area
tive de
ision proto
ol as de�ned in Se
tion 1.3.1 may repeat steps 2 and 3several times before a 
hoi
e is made.The dis
ussion omits spe
i�
 modeling assumptions and algorithmi
 details thatwould be ne
essary for the realization of an appli
able behavioral model. Thisis justi�ed by the intention to provide an estimator that is 
ompatible with abroad range of behavioral models and by the rather te
hni
al assumption thatthe estimator is likely to be atta
hed to an existing tra�
 simulator, 
f. Se
tion1.3.1. Only a few sele
ted modeling aspe
ts that are referred to in the laterdevelopments are dis
ussed at the end of this 
hapter.3.2.1.1 De�nition of the Choi
e ProblemMost of the terminology introdu
ed here is 
onsistent with the MATSim sys-tem spe
i�
ation given in [149℄. However, the underlying 
on
eptions are moreuniversally appli
able to the modeling of travel behavior and are not 
on�nedto this software. 62



Plans The a
tivity and traveling intentions of an individual are denoted asher plan. For simpli
ity, only plans for a single day are 
onsidered. Physi
ally,a plan des
ribes a round trip through the transportation network. This roundtrip 
omprises a sequen
e of legs that 
onne
t intermediate stops during whi
ha
tivities are 
ondu
ted. The �rst and last a
tivity of a plan typi
ally take pla
eat the individual's home lo
ation.A
tivities are de�ned in terms of their type (e.g., work, leisure), lo
ation (alink in the network), start time, and end time or prespe
i�ed duration. Twosubsequent a
tivities are 
onne
ted by a leg. While in general a leg 
an beasso
iated with di�erent modes (e.g., 
ar, publi
 transport, walking), this thesis
onsiders only individual motorist travelers su
h that a leg always implies avehi
ular movement through the road network. A motorist leg is parameterizedby origin and destination link, route (a sequen
e of links that 
onne
ts origin anddestination), and departure time. Only a desired arrival time 
an be prespe
i�edsin
e the a
tual time of arrival depends on the prevailing tra�
 
onditions.When a traveler 
hooses her 
ourse of a
tion for a given day, she equivalently
hooses a plan for that day. It is possible to disaggregate the 
hoi
e of a planinto a logi
al or temporal sequen
e of de
isions [27, 99℄. The latter methodis naturally appli
able to within-day replanning, where a traveler 
ontinuouslyre
onsiders and adjusts her 
urrent plan a

ording to pre- and en-trip 
olle
tedinformation. Formally, the 
hoi
e of a plan segment where some degrees offreedom are �xed is not di�erent from the 
hoi
e of a full plan, and no su
hdi�erentiation is made in the following. For example, an en-trip route swit
hingmodel maintains all a
tivity lo
ations and timings of the present plan. Equiv-alently, route swit
hing 
an be represented as the 
hoi
e of a 
ompletely newplan where all degrees of freedom apart from route 
hoi
e are 
onstrained to beidenti
al to those of the original plan.Generalized Paths The 
on
eption of a plan is now formalized in a way thatis amenable to the likewise formal derivation of a behavioral estimator.A simple route U 
onne
ts two subsequent a
tivity lo
ations. It is de�ned as a(physi
ally feasible) sequen
e of turning moves
U = . . .u(k − 1),u(k),u(k + 1) . . . = {u(k)}k (3.14)with u(k) spe
i�ed in (3.1). The representation of a route as a sequen
e ofturning moves rather than a sequen
e of links maintains 
onsisten
y with themi
ros
opi
 driver representation spe
i�ed in the �rst half of this 
hapter. It
an be thought of as an ordinary edge sequen
e in an �inverted� network wherevertexes represent links and edges represent turning moves, 
f. Figure 3.9. Asequen
e of turning moves uniquely de�nes a sequen
e of original links, and vi
eversa.The round trip that physi
ally 
orresponds to an all-day plan is formalized asa (
y
li
) path by minor modi�
ations to the inverted network. Every vertex

v of the inverted network that represents an a
tivity lo
ation is 
omplementedwith an additional vertex v′ that represents the a
tual exe
ution of an a
tivityat this lo
ation. The start of an a
tivity is then equivalent to a turning move
v → v′, and its end 
an be identi�ed by a v′ → v move. A plan's full sequen
e63



Figure 3.9: Route 
hoi
eThe original road network is drawn in blue. Three of its links serve as a
tivity lo
ations(o�
e, mall, home). The inverted network for route representation is drawn on top inbla
k. It represents every original link by a vertex and every possible turning move byan edge.of a
tivities and legs now 
omprises a single round trip through the invertednetwork, with 
y
les at the a
tivity lo
ations. Figure 3.10 provides an example.This formalism simpli�es notation sin
e it allows to represent all physi
allyrelevant aspe
ts of a full plan 
onsistently with (3.14) in terms of a generalizedpath U . If only a plan segment is to be represented, its generalized path segmentalso 
ontains only the 
orresponding subset of turning moves. Subsequently, thenotions of a path and a generalized path will be used synonymi
ally wheneverthe 
ontext allows to distinguish them from a simple route that only 
onne
tstwo links in the network.Tra�
 �ow model (3.7) 
an be steered by generalized paths instead of simpleroutes without formal modi�
ation. Sin
e the e�e
t of entering and exitingvehi
les 
an be linearly approximated by this model, it is also linearizable withrespe
t to the newly introdu
ed turning moves that represent su
h entries andexits. This implies that the e�e
t of an agent's plan 
hoi
e on the ma
ros
opi
network 
onditions 
an be linearly predi
ted in the same vein as it has beendemonstrated for route 
hoi
e in Se
tion 3.1.3.1.Sin
e a generalized path U is a formal representation of an individual's inten-tions, it represents an aspe
t of that individual's mental state. Its notationin terms of the typi
al 
ontrol symbol �u� is maintained here sin
e the largestportion of this thesis deals with the steering e�e
t of driver behavior on ma
ro-s
opi
 tra�
 dynami
s. The de�nition of a full state spa
e model for a 
ombinedmi
ro/ma
ro tra�
 system that in
ludes some kind of mental dynami
s is notne
essary for the purpose of this dissertation.3.2.1.2 Generation of AlternativesThe 
hoi
e set of behavioral alternatives available to de
ision maker n is de-noted by Cn. The elements of this set are plans, formally represented by (gen-eralized) paths U . It is reasonable to assume that Cn is signi�
antly smallerthan the set of all thinkable plans: The elements in Cn must be 
ompatiblewith the goals and 
ommitments of a traveler, 
f. Se
tion 1.2.2.3. The limited64



Figure 3.10: Generalized path 
hoi
eThe same physi
al network as shown in Figure 3.9. Cy
les are added to all pos-sible a
tivity lo
ations. An exemplary plan that 
onsists of the a
tivity sequen
ehome→work→shop→home now 
onsists of one round trip through the inverted net-work, with 
y
les at the a
tivity lo
ations. Its equivalent sequen
e of vertexes is
h′, h, . . . , o, o′, o, . . . , m, m′, m, . . . , h, h′.knowledge of the de
ision maker ex
ludes all unknown options from 
onsidera-tion. Physi
al, legal, and individual (e.g., �nan
ial, 
onstitutional) 
onstraintsfurther redu
e the 
hoi
e set. If a traveler re
onsiders only a segment of her 
ur-rent plan, an additional 
onstraint on Cn is that everything but this segmentmust remain un
hanged in all alternative plans.It is required that a non-empty 
hoi
e set Cn is available to every agent n inevery situation that 
alls for a de
ision. This 
hoi
e set may be spe
i�ed in twodi�erent ways, depending on the deployed de
ision proto
ol, 
f. Se
tion 1.3.1:

• A rea
tive de
ision proto
ol in
rementally 
onstru
ts a set of 
onsideredalternatives given a parti
ular 
hoi
e situation. Di�erent su
hlike setsmay be generated in repetitions of otherwise identi
al 
onditions be
auseof probabilisti
 
omponents in the generation pro
edure. In this 
ase, Cn
omprises all possibly generated alternatives.
• In a deliberative de
ision proto
ol, the 
hoi
e set has typi
ally been gen-erated prior to the a
tual 
hoi
e situation. That is, Cn is expli
itly anddeterministi
ally pres
ribed, even if it was originally generated by a ran-domized algorithm.The goal of this work is to treat the de
ision proto
ol as mu
h as a bla
k box aspossible. The only requirement implied by the above listing is that there existsa nonempty set Cn of alternatives that 
ontains all possible 
hoi
es of agent nin a given situation. However, an enumeration of this set is not required.3.2.1.3 Evaluation of Attributes of AlternativesThe systemati
 (deterministi
) utility of an alternative, represented by areal-valued number, is a model of the bene�ts a de
ision maker expe
ts from65




hoosing this alternative. It re�e
ts the de
ision maker's preferen
es. Utilityper
eption 
an vary among de
ision makers, and 
learly utility 
an di�er amongalternatives. Formally, a systemati
 (deterministi
) utility Vn(U) is asso
iatedwith every plan U in the 
hoi
e set Cn of traveler n.The utility of a plan is 
omprised of two 
omponents: positive utility for theexe
ution of a
tivities and negative utility (disutility, 
ost) for travel itself. Typ-i
al aspe
ts of route (dis)utility are travel time, distan
e traveled, number ofleft-turns, number of signalized interse
tions, and 
onta
t with inse
ure neigh-borhoods [18, 20℄. The utility of an a
tivity varies depending on the type ofa
tivity, its 
ontext within the entire plan, and the timing of its exe
ution [43℄.If a utility-driven modeling approa
h is adopted, it is required that the system-ati
 utility for every plan of any agent 
an be 
al
ulated by the utility fun
tionshown in Figure 1.1 and that the resulting utility 
ombines all of the afore-mentioned (dis)utility 
omponents in a single number. This evaluation onlyhas to be available on request and on a per-plan basis. It is not required thatthe 
hoi
e set is enumerated for a 
omplete evaluation before a 
hoi
e is made.Furthermore, if the de
ision proto
ol sequentially 
omposes a 
hoi
e, e.g., byin
rementally building a plan as a sequen
e of a
tivities and legs, the utilityfun
tion may be limited to an evaluation of the a

ording plan 
omponents.3.2.1.4 Choi
eThe 
hoi
e of a 
ertain plan (segment) is modeled non-deterministi
ally. Theprobability that de
ision maker n 
hooses plan U ∈ Cn is denoted by Pn(U).This 
hoi
e distribution may be parameterized in an agent-spe
i�
 way butotherwise is required to depend only on the attributes of the elements in Cn. Ifthe 
hoi
e model is utility driven, the attributes of a plan must be representedby its utility.A probabilisti
 
hoi
e logi
 may represent randomness in human behavior ora

ount for modeling impre
isions [21℄. The spe
i�
 modeling assumptions thatunderly a parti
ular de
ision proto
ol are not relevant for the subsequentlydeveloped estimation approa
h beyond the fa
t that behavior is un
ertain atall. Otherwise, there would be no s
ope for a behavioral adjustment.Neither an enumeration of the 
hoi
e set nor an expli
it (e.g., 
losed-form)representation of the implemented 
hoi
e distribution need to be available. Onlyrealizations of 
hoi
es must generated by the behavioral simulation system.3.2.1.5 ImplementationThe implementation of a 
hoi
e requires its realization in the mobility simu-lation. However, an agent with an imperfe
t knowledge of the a
tual tra�

onditions may observe an in
onsisten
y between what it wants to do and whatis physi
ally possible. In parti
ular, the generalized path representation of aplan 
omprises a sequen
e of turning move indi
ators that prespe
ify the timingof every turning move and every entry/exit move in the network. It is unlikelythat the (
ongested) tra�
 
onditions admit pre
isely this timing.66



It therefore is assumed that a plan is robust in that it 
annot be invalidatedby �nite 
hanges in travel times. An example of a robust plan is one where(i) the a
tivities have no �xed start time but rather a prespe
i�ed durationand (ii) the legs only spe
ify a sequen
e of links but not the timing of theirentry. Consequently, a on
e 
hosen plan 
an always be exe
uted in the mobilitysimulation without further replanning. The MATSim plans are robust in thisregard.A pre
ise formalization of this situation would require to supplement the mo-bility simulation (3.7) with another model 
omponent that updates the plans
Un = {un(k)}k for all agents n = 1 . . .N in every simulation time step k su
hthat their 
onsisten
y with the physi
al situation is maintained. However, sin
ethe a
tually implemented mobility simulation does not require the generalizedpath abstra
tion at all, the �
titious existen
e of su
h a model 
omponent merelymaintains formal 
onsisten
y whenever it is stated that �U1 . . .UN are loadedon the network� or �U1 . . .UN are fed into the mobility simulation�.The generalized paths U1 . . .UN uniquely spe
ify both the intended and theimplemented driver behavior. Therefore, no formal di�erentiation between theseaspe
ts is subsequently made.3.2.2 Spe
i�
 Modeling AssumptionsThe stru
tural outline given above is made pre
ise in terms of two fairly di�erentmodeling approa
hes.Random utility models (RU models, RUMs) 
onstitute a broadly appli
able 
lassof 
hoi
e models that are based on reasonable behavioral assumptions and soundmathemati
al inferen
e. The simple mathemati
al stru
ture of 
ertain RUMs isexploited in the derivation of a behavioral estimator.MATSim's behavioral model basi
ally relies on a dynami
al systems assumptionabout human learning. Sin
e the resulting model behavior is de�ned ratherimpli
itly through this learning pro
ess, and sin
e the dynami
s of this pro
essare not yet well-understood, MATSim 
onstitutes a parti
ularly 
hallengingmodel for a behavioral estimator.3.2.2.1 Random Utility ModelsRUMs 
onstitute the mainstay of travel behavior modeling, and a spe
i�
 im-plementation of the de
ision proto
ol is likely to be based on RU theory [21, 22℄.The RU modeling assumptions are outlined below.It is assumed that a de
ision maker n always 
hooses the alternative of greatestper
eived utility from her prespe
i�ed 
hoi
e set Cn. The systemati
 utility
Vn(U) 
onstitutes only an imperfe
t model of her true utility per
eption. Inorder to re�e
t this impre
ision, a random error 
omponent εU ,n is added to thesystemati
 utility of every alternative U . The probability Pn(U) that U is 
hosenthus equals the probability that the random utility of U is greatest among allalternatives:

Pn(U) = Pr(Vn(U) + εU ,n ≥ Vn(V) + εV,n, ∀V ∈ Cn). (3.15)67



Closed-form expressions for these 
hoi
e probabilities 
an be obtained for 
ertainjoint distributions of the error 
omponents. But even if no su
h 
losed form 
anbe found, a simulation of 
hoi
es that are 
onsistent with (3.15) is possible. Thepro
edure requires (i) to draw a disturban
e from the joint error distributionfor all alternatives, possibly through a simulation pro
edure as des
ribed below,and (ii) to deterministi
ally 
hoose the alternative of greatest disturbed utility.3.2.2.2 Models of Route Choi
eThe two major modeling approa
hes to route 
hoi
e have already been addressedin Se
tion 1.2.2.2: Either route (re)planning is realized by the 
al
ulation of abest path, or a route is 
hosen probabilisti
ally from a prespe
i�ed 
hoi
e set.Behaviorally, the 
al
ulation of a best path is an idealization. It implies globalnetwork knowledge and an optimal 
hoi
e me
hanism given a 
ertain obje
tivefun
tion su
h as trip travel time. The e�e
tive 
al
ulation of a best path requiresroute 
ost to be additive in link 
ost whi
h ignores existing eviden
e for nonlinear
ost per
eption. Probabilisti
 route 
hoi
e allows for greater realism. A 
hoi
eset of routes 
an be generated in a way that is 
onsistent with a driver's (usuallylimited) knowledge of available alternatives. There is no limitation of link-additive 
osts. The random 
hoi
e 
omponent properly re�e
ts behavioral andmodeling un
ertainties [148℄.Computationally, best path has an edge over probabilisti
 
hoi
e. Routing prob-lems have been intensively studied in 
omputational s
ien
e and e�
ient solutionalgorithms are available for problems with link-additive 
ost [83℄. In 
ontrast,probabilisti
 
hoi
e implies some 
omputational overhead. Choi
e set genera-tion itself is a nontrival task [20, 148℄. Every agent's individual 
hoi
e set hasto be stored and pro
essed during simulation, and every alternative needs to beevaluated for the simulation of a single 
hoi
e. Contrarily, the e�
ien
y of bestpath algorithms is owed to their avoidan
e of path enumeration [130℄.The realism of probabilisti
 
hoi
e and the e�
ien
y of routing algorithms 
anbe 
ombined. Sin
e best path routing is a 
ost minimization pro
edure, it
an be applied to model a de
ision maker's rational 
hoi
e given a simulatederror of utility per
eption. This 
oin
ides with the aforementioned simulationpro
edure for RUMs. In this 
ontext, it is interesting to inspe
t a variationof the route 
hoi
e model implemented in the MATSim planning simulation.MATSim models the day-to-day evolution of driver behavior as a 
ontinuouslearning pro
ess. Speaking only in terms of routes, a 
ertain fra
tion of driversis allowed to re
al
ulate new routes at the beginning of every simulated day.These routes are generated based on previously simulated link traversal 
ostsby a time-dependent best path algorithm. The simultaneous exe
ution of allroutes results in experien
ed 
osts that are likely to di�er from those 
ostsbased on whi
h the new routes were 
al
ulated. This impli
itly simulates aper
eptional error that is identi
al for all replanning agents and equal to thedi�eren
e between the a
tually experien
ed 
osts and the 
osts assumed duringreplanning. This logi
 even avoids the expli
it generation of per
eptional errorsbut is not derived from RU theory.The path size logit (PS-logit) model de�nes 
losed-form route 
hoi
e proba-bilities. Its derivation from RU theory 
an be found in [67℄. This model is68



Figure 3.11: Three routes exampleA simple route 
hoi
e example with three alternative routes A (
omprised of link 1),
B (
omprised of link sequen
e 2 →3a), and C (
omprised of links 2→3b). The lengthof link 1 is l, that of links 3a and 3b is dl, and that of link 2 is l − dl.presented here sin
e its parti
ular stru
ture allows for some formal manipula-tions that greatly simplify the behavioral estimation problem. PS-logit spe
i�esthe probability that individual n 
hooses route U ∈ Cn by

Pn(U) =
eµVn(U)+lnPSn(U)

∑

V∈Cn
eµVn(V)+lnPSn(V)

=
PSn(U)eµVn(U)

∑

V∈Cn
PSn(V)eµVn(V)

.

(3.16)It is instru
tive to start the dis
ussion with all PS parameters set to one. Then,spe
i�
ation (3.16) 
ollapses into the multinomial logit (MNL) model, the ar-guably simplest and most popular RUM. The positive s
ale parameter µ 
ontrolsto what degree routes of higher systemati
 utility are preferred. If µ → 0, allroutes are 
hosen with equal probability, whereas µ → ∞ deterministi
ally se-le
ts a route of maximum utility.In a route 
hoi
e 
ontext, the major drawba
k of MNL is its inability to modelsituations with overlapping routes. This is most easily demonstrated by anexample. Figure 3.11 shows a simple four-link network. Three routes A, B, and
C 
onne
t the leftmost to the rightmost node. All routes have equal utility V̄su
h that MNL invariably predi
ts a uniform route split (P (A) P (B) P (C)) =
(1/3 1/3 1/3). This is not realisti
 be
ause routes B and C have a large overlapand therefore are likely to be per
eived as a single alternative. Behaviorallyreasonable route splits thus approa
h (1/2 1/4 1/4) as the overlap of B and C getslarger.PS-logit 
orre
ts the MNL model by spe
ifyingPSn(U) =

∑

a∈ΓU

la
LU

1
∑

V∈Cn
δaV

(3.17)where ΓU is the set of all links in route U , la is the length of link a, LU is thelength of route U , and δaV is one if link a is 
ontained in route V and zerootherwise. That is, ∑V∈Cn
δaV 
ounts how many routes in Cn 
ontain link a.Ea
h addend in (3.17) represents the 
ontribution of a single link to the path sizeof route U , and PS(U) measures to what degree route U is per
eived as a distin
talternative. It is one if U has no overlap with other routes, and it approa
hes zerothe greater U 's overlap with other routes be
omes. A perfe
t overlap of routes B69



and C in the above example yields path sizes (PS(A) PS(B) PS(C)) = (1 1/2 1/2)that generate the behaviorally reasonable route splits (1/2 1/4 1/4) when insertedin (3.16).The purposeful nature of these examples is emphasized. Alternative utility
orre
tion terms and path size de�nitions have been proposed in the literature[38, 67℄ as well as alternative RU models that are not limited to the simplestru
ture of (3.16) [18, 20, 148℄.3.2.2.3 Models of Plan Choi
eEven with realisti
 restri
tions on possible a
tivity sequen
es, lo
ations, andtimings, and with a likewise restri
ted route 
hoi
e set, the 
ombinatorial num-ber of available plans qui
kly be
omes intra
table. For a single day, roughly
1017 alternative behavioral patterns per traveler are estimated in [27℄. It is notrealisti
 to assume that travelers possess the 
omputational resour
es to pro
esssu
h a 
hoi
e set. However, they do make a de
ision in some way, and there-fore it appears justi�ed to simulate plan 
hoi
e by simplifying heuristi
s thatresemble human de
ision making [71℄.This approa
h is also 
hosen in the MATSim planning simulation. A traveler'splan is �s
ored� by a utility fun
tion that 
omprises positive addends for a
tivityexe
ution and negative addends representing travel 
osts [43℄. Every simulatedtraveler strives to maximize its s
ore by explorative day-to-day learning. Thisis realized as a simpli�ed 
lassi�er system [149℄: A small set of (typi
ally �ve)alternative plans is memorized by an agent. Every simulated day, one of theseplans is exe
uted and the experien
ed s
ore is memorized. O

asionally, a newplan is generated, exe
uted, and the worst plan is dis
arded. New plans aregenerated by variations of old ones. Routes are re
al
ulated as best paths basedon previously observed link traversal 
osts [130℄, and a
tivity timings are 
hosenby a variety of heuristi
s su
h as random sear
h [10℄, reinfor
ement learning [44℄,and evolutionary algorithms [43, 120℄.Plan sele
tion itself is implemented as a simple RU model. However, the 
on-tinuous 
hoi
e set evolution by explorative learning prevents a straightforwardRU interpretation and also 
ompli
ates a mapping on the stru
tural systemrequirements that are presupposed for estimation. There are three di�
ulties.1. The plan 
hoi
e set is variable. If it was �xed after a limited number ofiterations, the simulation until that point 
ould be regarded only as a fairlyheavyweight 
hoi
e set generation pro
ess. However, the limited numberof memorized plans in su
h a setting (rather a te
hnologi
al problem)
ould raise an issue of behavioral variability.2. Plan 
hoi
e is not based on deterministi
 utilities but on 
ontinuouslyupdated s
ores. While s
ore expe
tations are te
hni
ally easy to estimateby re
ursive averaging, their very existen
e requires that the simulation
onverges towards a stationary distribution of network 
onditions. Thisproperty is yet to be established [132℄.3. A newly generated plan is immediately sele
ted for exe
ution. This isne
essary sin
e a plan's s
ore 
an only be identi�ed through simulation.70



Still, this leads to a not yet 
lari�ed 
oin
iden
e of 
hoi
e set generationand 
hoi
e itself. Again, an o

asionally stabilized 
hoi
e set would resolvethis issue.This is not to say that these aspe
ts of MATSim are in
ompatible with the pro-posals of this dissertation. Rather, they require the more spe
ialized treatmentgiven later in Se
tion 6.4.5.MATSim's learning-based approa
h is a spe
i�
 instan
e in a broad model rangeproposed in the �eld of a
tivity based demand modeling, e.g., [27, 98, 99, 172℄,and the stru
tural outline given in Se
tion 3.2.1 is likely to apply to a greatervariety of demand models. Still, the MATSim-related development of this worknaturally suggests a presentation in terms of this system.Con
luding, the se
ond part of this 
hapter formalizes a behavioral simulationsystem but leaves the behavioral model itself unspe
i�ed for the most part. Thispresentation is not given as an end in itself. The next 
hapter identi�es whatbehavioral estimates are possible in this setting.
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Chapter 4EstimationThe previous two 
hapters des
ribe a simulation system that 
onsists of two
omponents: a mobility simulation and a representation of human behavior.The spe
i�
 properties of these 
omponents are now exploited in the formulationand solution of a tra�
 state estimation problem.As outlined in the introdu
tion, the task is to use spatially and temporally in-
omplete sensor information to re
onstru
t spatially and temporally 
ompletesystem state information. Examples for sensors are loop dete
tors that measure�ow rates at road 
ross-se
tions [91℄, ground- or airborne 
ameras that identifytra�
 densities on road segments [62, 77, 150℄, and �oating 
ars that mea-sure link velo
ities [156℄. Only aggregate measurements are 
onsidered. Whilethe importan
e of advan
ed tra�
 monitoring te
hnologies su
h as vehi
le re-identi�
ation systems is likely to in
rease in the future, they are not yet in broadappli
ation.Ma
ros
opi
ally, the system states to be re
onstru
ted are represented by stateve
tor sequen
e
X = {x(k)}k (4.1)of tra�
 �ow model (3.7). This model unfolds deterministi
ally given an initialstate x(0) = x0 and a driver population's behavior U1 . . .UN . Sin
e U1 . . .UN
omprise all aspe
ts of the individual drivers' mental states that are ne
essaryto de�ne all ma
ros
opi
 states X in the model, the state estimation problembe
omes to identify 
ontrol sequen
es U1 . . .UN that steer X towards most likelyvalues given the available measurements and the behavioral a priori knowledge.The mapping from individual driver behavior on ma
ros
opi
 system states isnonlinear. The proposed estimator deals with this di�
ulty by repeated lin-earizations of the ma
ros
opi
 model. Sin
e the model is dynami
al, this re-quires to 
al
ulate system state sensitivities through simulated time. In result,the linearized e�e
t of a single driver's de
ision in any time step k on the ma
ro-s
opi
 states in any later time step k + ∆k 
an be predi
ted. Given a distan
emeasure between true and simulated tra�
 
onditions, these sensitivities thenprovide dire
tional information for behavioral adjustments. Con
eptually, thisapproa
h has a 
ounterpart for example in meteorology, where the linearizedversion of a dynami
al weather model is denoted as its �adjoint model�. The72



spatiotemporal sensitivities it provides are used to iteratively improve the fullmodel's 
onsisten
y with real world observations, e.g., for the purpose of short-term weather fore
asting [63℄.The remainder of this 
hapter is organized in four parts.First, the problem of how to steer the behavior of simulated travelers by sys-temati
 manipulation of their utility per
eption is investigated in Se
tion 4.1.Apart from being of pra
ti
al interest itself, this se
tion prepares a number ofte
hni
al results that simplify the subsequent presentation. This in
ludes theaforementioned linearization logi
.Se
ond, a �rst heuristi
 estimator is proposed in Se
tion 4.2. It applies thepreviously developed method to steer agents towards a plausible reprodu
tionof available sensor data. However, this approa
h is not yet based on a solidstatisti
al foundation.Third, a Bayesian formulation of the estimation problem is given in Se
tion 4.3.Starting with a 
on
eptually straightforward but 
omputationally 
umbersomeformulation, various simpli�
ations are adopted that allow for a �exible balan
ebetween mathemati
al pre
ision and 
omputational e�
ien
y.Fourth, Se
tion 4.4 illustrates the theoreti
al developments with a small exam-ple. A test 
ase of realisti
 size is postponed to Chapter 5.4.1 Steering Agent BehaviorThe problem is investigated of how to in�uen
e the behavior of simulated trav-elers by 
hanging their per
eption of systemati
 utility. The obje
tive a

ordingto whi
h agent behavior is to be in�uen
ed is represented by a on
e di�erentiablefun
tion
Φ(X ) =

K
∑

k=1

ϕ[x(k), k] (4.2)that maps the ma
ros
opi
 system states in simulation time steps 1 through Kon a real number. An improved ful�llment of the obje
tive is re�e
ted by anin
rease of this fun
tion.This problem statement is related to that of a dynami
 system optimal tra�
assignment. The latter seeks to identify a tra�
 pattern that minimizes theaverage 
ost experien
ed by all travelers. It is behaviorally not realisti
 sin
e itimplies that travelers 
ooperate in their e�orts to minimize 
ost, but it is a goodmeasure to estimate the greatest e�e
tiveness of a tra�
 system or to identifyoptimal 
ontrol strategies [35, 121℄.Sin
e the problem 
onsidered here is not to attain a stri
t system optimum butrather a 
ompromise between individual driver obje
tives and global obje
tive(4.2), and sin
e only limited measures to a�e
t agent behavior are available, thenotion of a system optimal tra�
 assignment is avoided. The results obtainedhere only improve a mi
ros
opi
 assignment with respe
t to a global obje
tive.73



4.1.1 Modi�ed Utility Per
eptionThe agents' behavior is to be in�uen
ed by a modi�
ation of their systemati
utility evaluation. Be
ause of the de
ision proto
ol's probabilisti
 nature, 
f.Se
tion 3.2.1, there is no guarantee that a single 
hoi
e based on su
h a modi-�ed utility does indeed improve the global obje
tive. However, it is reasonableto assume that, on
e the e�e
t of agent behavior on the global obje
tive is iden-ti�ed, a utility modi�
ation that favors advantageous generalized paths alsoleads to 
hoi
e distributions that improve the global obje
tive on average. Un-less otherwise noted, the notion of a path now represents an arbitrary behavioralpattern ranging from a single route to an all-day plan.The problem of steering agent behavior is therefore posed as an ordinary as-signment problem with modi�ed systemati
 utility
Wn(U) = Vn(U) + Φ(X (U1 . . .Un−1,U ,Un+1 . . .UN ))/µ (4.3)for every agent n and path U ∈ Cn. That is, agent n evaluates Φ as a fun
tion ofits individual path 
hoi
e with the behavior of all other agents being �xed. Thestri
tly positive parameter µ determines the weight of individual utility when
ompared to the global obje
tive. Its 
hoi
e is left to the analyst.This problem statement is given yet independently of an estimation problemand requires no su
h interpretation. Sin
e the subsequently developed methodto steer simulated travelers holds promise for appli
ations that go beyond tra�
state estimation, its spe
i�
 deployment for estimation purposes is postponedto Se
tion 4.2.A straightforward implementation of the above would require the following:1. �Unsteered� population behavior U1 . . .UN is given.2. For ea
h agent n = 1 . . .N , do:(a) Repla
e Vn by Wn a

ording to (4.3).(b) Draw U ′

n from Cn based on Wn(U).3. �Steered� population behavior is U ′

1 . . .U ′

N .The following subse
tions operationalize this pro
edure.4.1.2 Linearization of Global Obje
tive Fun
tionEvery evaluation of Wn(U) requires an evaluation of Φ(X (. . .U . . .)) and there-fore a run of the entire mobility simulation. Sin
e Φ is evaluated separatelyby all agents that make de
isions based on their modi�ed utility Wn(U), astraightforward implementation of this approa
h is 
omputationally intra
table.This problem 
an be 
ir
umvented if the mapping from individual path 
hoi
e
U on Φ is linearized. Given U ′ = U + ∆U , this linearization essentially is
W (U ′) ≈ V (U ′) + Φ(X (. . .U . . .)) + ∆U · dΦ/dU . It will turn out that it isfeasible to 
ompute the sensitivities dΦ/dU simultaneously for all agents. In74




onsequen
e, it is possible to linearly predi
t the e�e
t of behavioral variations
∆U on the global obje
tive fun
tion Φ for all agents with just one run of themobility simulation.The linearization must a

ount for the 
oupling between U and X throughdynami
al system 
onstraint (3.7) that represents the mobility simulation. Thisdi�
ulty 
an be dealt with by well-known methods from 
ontrol theory [101,138, 145℄. A self-
ontained exposition is given in the following.Denote

Φ(k) =
K
∑

κ=k

ϕ[x(κ), κ] (4.4)for k = 1 . . .K. This is the remaining 
ontribution to Φ(X ) from time step kon. It 
an be re
ursively written as
Φ(k) =

{

ϕ[x(k), k] + Φ(k + 1) k = 1 . . .K − 1
ϕ[x(K), K] k = K.

(4.5)As a �rst step, sensitivities with respe
t to states are 
omputed by
dΦ(k)

dx(k)
=















∂ϕ[x(k), k]

∂x(k)
+

dΦ(k + 1)

dx(k)
k = 1 . . . K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(4.6)Sin
e the interplay between variables in di�erent time steps is fully de�ned bystate equation (3.7),
dΦ(k + 1)

dx(k)
=

(

∂f [x(k),u1(k) . . .uN (k), k]

∂x(k)

)T
dΦ(k + 1)

dx(k + 1)
(4.7)holds for k < K, where x(k + 1) = f [. . .] is used.Now, sensitivities with respe
t to 
ontrol variables u1(k) . . .uN (k) result from

dΦ(X )

dun(k)
=

(

∂f [x(k),u1(k) . . .uN (k), k]

∂u(k)

)T
dΦ(k + 1)

dx(k + 1)
. (4.8)Here, ∂ϕ[x(k), k]/∂un(k) disappears sin
e un(k) in�uen
es no state earlier than

x(k + 1). ∂f [. . .]/∂u(k) denotes the partial derivative of f [. . .] with respe
t toany un(k), whi
h is independent of n. This independen
e allows to entirelyomit the n subs
ript in Φ's sensitivities and to subsequently write dΦ(X )/du(k)instead of dΦ(X )/dun(k), and it allows to 
ompute all sensitivities for all agentssimultaneously.In summary, dΦ(X )/du(k) is obtained in a two-pass-pro
edure:1. Using (4.7), solve (4.6) re
ursively for k = K . . . 1. Moving ba
kwardsthrough time introdu
es a �far sightedness� into the 
al
ulations that isne
essary to predi
t the in�uen
e of present state variations on futuresystem states. 75



2. Determine the in�uen
e of 
ontrol variables by (4.8) for k = 0 . . .K − 1.Sin
e this expression is identi
al for all agents, it needs to be evaluatedonly on
e for the entire population.One obtains the following linearization of Φ(X ) with respe
t to U1 . . .UN :
Φ(X (U1 . . .UN )) ≈ Φ(X 0) +

K−1
∑

k=0

(

dΦ(X 0)

du(k)

)T N
∑

n=1

(un(k) − u0
n(k)) (4.9)where u0

n(k) is the 
ontrol ve
tor of traveler n in time step k around whi
h thelinearization takes pla
e and X 0 is the resulting ma
ros
opi
 state sequen
e.De�ning the sensitivity sequen
e
Λ =

{

dΦ(X 0)

du(k)

}

k

(4.10)and the �inner produ
t�
〈Λ,U〉 =

∑

k

(

dΦ(X 0)

du(k)

)T

u(k), (4.11)(4.9) 
an be rewritten as
Φ(X (U1 . . .UN )) ≈

N
∑

n=1

〈Λ,Un〉 + 
onst (4.12)where the 
onstant addend 
ontains all terms independent of U1 . . .UN . Theelements of Λ are sensitivities of the global obje
tive fun
tion with respe
t toindividual turning moves, and as su
h they serve as 
oe�
ients that are multi-plied with the turning move indi
ators 
ontained in the populations' path set
U1 . . .UN .Ma
ros
opi
 tra�
 dynami
s are linear in good approximation with respe
t toa single agent's behavior sin
e individual 
ontrol variables uij,n(k) ∈ {0, 1} aresmall 
ompared to a
tual turning 
ounts in a 
ongested network. Thus, for asingle agent, a linearization yields a reasonable approximation to the nonlinearproblem, and

Wn(U) = Vn(U) + Φ(X (U1 . . .Un−1,U ,Un+1 . . .UN ))/µ

≈ Vn(U) + 〈Λ,U〉/µ + 
onst (4.13)holds with good pre
ision. The 
onstant addend is identi
al for all alternativesavailable to an agent. Sin
e it is reasonable to assume that the preferen
es ofa de
ision maker are not in�uen
ed by a 
onstant shift in the utilities of allalternatives,1
Wn(U) = Vn(U) + 〈Λ,U〉/µ (4.14)de�nes as from now the modi�ed utility of agent n's option U ∈ Cn. Usingthe same Λ for all agents re�e
ts the fa
t that the sensitivity of Φ to a turning1This is always true for RUMs, 
f. (3.15).76



move (sequen
e) is independent of whi
h agent is a
tually moving. Here, theelements of Λ 
onstitute (up to a s
aling 
oe�
ient µ) utility 
orre
tions forevery single turning move in the network, and the modi�ed utility of a spe
i�
path is identi�ed by adding up these 
orre
tions along that path. This 
an beseen most 
learly if 〈Λ,U〉 is fully expanded:
〈Λ,U〉 =

∑

k

∑

ij

dΦ(X 0)

duij(k)
uij(k). (4.15)Only su
h 
omponents of Λ are summed up in 〈Λ,U〉 that 
orrespond to turningmoves that are a
tually represented by path U through non-zero turning moveindi
ators. In light of this, Λ is denoted either as a sequen
e of sensitivities orof utility 
orre
tions, depending on the 
ontext.The above linearization pro
edure is 
onsiderably a

elerated if the underlyingmobility simulation runs on variable time s
ales as proposed in Se
tion 2.5.Sin
e the mobility simulation's sensitivities vary on the same temporal grid asits ma
ros
opi
 states, the overall number of sensitivity evaluations is redu
edin the same order as the number of �ow transmissions during a simulation.The importan
e of this 
omputationally still expensive linearization be
omes
lear in 
omparison with a simplisti
 approximation. Assume that the ma
ro-s
opi
 system state X is 
omposed of vehi
le o

upan
ies on all road segmentsin all time steps. Then, the e�e
t of a vehi
le's path 
hoi
e U might appear pre-di
table by simply in
reasing the o

upan
y of every link in U for the durationof this link's traversal time. In a way, this does predi
t the e�e
t of U on Xand thus on Φ without any linearization. Still, it does not 
apture the globale�e
t of driver behavior in 
ongested 
onditions. A vehi
le that tries to enter a
ongested link is slowed down, and in turn it slows down all vehi
les behind it.That is, it also a�e
ts upstream links that are not 
ontained in its path. A fulllinearization of tra�
 �ow dynami
s a

ounts for these interdependen
ies andthus is superior in all but trivially un
ongested tra�
 
onditions.4.1.3 Consistent Linearization for Many AgentsThe linearization of Φ relies on the relatively small in�uen
e of a single trav-eler on the global tra�
 situation. This argument does not hold if an entirepopulation is 
onsidered sin
e any utility 
orre
tion Λ that is obtained by alinearization around a 
ertain state traje
tory X 0 may result in a populationrea
tion U1 . . .UN that 
auses a signi�
antly di�erent network state traje
tory

X and thus invalidates the underlying linearization.For a non-sto
hasti
 planning or telemati
s simulation, a utility 
orre
tion Λis 
onsistent if the population behavior given this Λ generates network states
X su
h that a repeated linearization of Φ reprodu
es the original Λ values, 
f.Figure 4.1. Formally, a �xed point of the 
ombined map �sim(ulation), followedby lin(earization)� is required: Λ = lin ◦ sim(Λ).Sin
e there are sto
hasti
 elements in the simulation, its out
ome X given aspe
i�
 Λ is sto
hasti
 as well, and the reprodu
ibility of Λ 
alls for a likewisesto
hasti
 interpretation. One may assume that only a randomly distorted map77



Figure 4.1: Fixed point of utility 
orre
tionsConsistent utility 
orre
tions Λ are attained if a linearization of Φ around simulationout
ome X results in the same Λ 
orre
tions that have previously been applied in thesimulation.lin ◦ sim(Λ) + E 
an be evaluated where E is a zero mean disturban
e of thesame dimension as Λ. Sin
e no algorithm is known that de�nitely 
onverges toa deterministi
 Λ �xed point in su
hlike noisy 
onditions for the whole rangeof possibly implemented simulation mappings, and sin
e not even the existen
eof su
h a �xed point is as
ertained, a pragmati
 
ourse of a
tion is taken: Theexisten
e of a �xed point is merely assumed, and an elementary sto
hasti
 ap-proximation (SA) method is employed for its identi�
ation [26℄.2 This parti
ularmethod is 
hosen here be
ause of its simpli
ity and 
larity. Possible algorithmi-
al improvements are indi
ated in Se
tion 6.4.1.3.The proposed SA approa
h is outlined in Algorithm 2. It assumes an iterativesimulation logi
, whi
h is equally appli
able to a SUE-based planning modeland to a telemati
s model of spontaneous and imperfe
tly informed drivers.The 
on
eptual di�eren
e is that a SUE de
ision proto
ol typi
ally utilizes allinformation from the most re
ent network loading, whereas a telemati
s de
isionproto
ol generates every elementary de
ision within a plan only based on thatsubset of this information that 
ould have a
tually been gathered up to the
onsidered point in simulated time [26℄. A full implementation of this algorithmis experimentally investigated in the next 
hapter.4.1.4 Behavioral Justi�
ationSin
e the modi�ed utility deviates from the originally modeled agent per
eption,any behavior that is based on the modi�ed utility is not reasonable in itself. Apath U that is 
hosen by traveler n based on a modi�ed utility fun
tion Wnonly is 
onsistent with the behavioral model if n's utility per
eption is indeedrepresented by Wn instead of the original Vn. Thus, the method's appli
abilitydepends on the possibility to reinterpret utility per
eption itself. Three �eldswhere this is possible are identi�ed below:
• The method is developed with behavioral tra�
 state estimation in mindand is appli
able for this purpose. Given a spe
i�
ation of Φ that re�e
ts2A self-
ontained 
onvergen
e proof for the SA method 
an be found in [69℄. However, itsrequirements 
annot be established in the setting 
onsidered here.78



Algorithm 2 Steering a population of agents1. Initialization.(a) Set iteration 
ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do: Use Wn(U) = Vn(U) + 〈Λ̄(m),U〉/µ insteadof Vn(U) in the de
ision proto
ol when drawing U (m)
n .(b) Load U (m)

1 . . .U (m)
N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) In
rease m by one.(b) Goto step 2.the quality of measurement reprodu
tion, the resulting Wn is interpretedas an estimate of individual n's most likely utility per
eption given thesemeasurements. Here, the original Vn 
onstitutes a model-based a prioriassumption that is 
orre
ted by the estimation pro
edure su
h that Φ isimproved. The belief in the behavioral prior information is re�e
ted byweight parameter µ. A dis
ussion of possible ambiguities in this interpre-tation is given in Se
tion 4.4.3.

• Φ may also represent a general utility of system operations. Applying theabove pro
edure, the resulting Λ 
oe�
ients de�ne a toll on all turningmoves in the network. An agent n whi
h 
hooses its path based on theresulting Wn strives to maximize a weighted 
ombination of individualand system utility. Clearly, a physi
ally implementable toll must meet anumber of additional 
onstraints that are beyond the s
ope of this thesis.
• An iterative planning simulation requires large amounts of 
omputationtime. If a spe
i�
ation of Φ was found that (i) re�e
ts the degree ofsu
h a simulation's 
onvergen
e and (ii) has a vanishing in�uen
e upon
onvergen
e, it may help to redu
e the number of required iterations untilan equilibrium is rea
hed. Here, utility per
eption is modi�ed only duringthe transient phase of an iterative algorithm but not in its out
ome. Still,this appli
ation is of rather hypotheti
al nature sin
e no su
h version of

Φ is proposed in this dissertation.In all 
ases, Wn 
onstitutes a modi�ed utility per
eption of driver n that is inone way or the other 
onsistent with the original assumption of utility-driven be-79



havior, and this modi�
ation is generated su
h that a problem-spe
i�
 instan
eof Φ is improved.4.2 Heuristi
 EstimationA similarity measure between simulated and observed sensor data is 
hosen asthe global obje
tive fun
tion Φ, and the agents are steered towards an in
reaseof this fun
tion.4.2.1 Modeling of Aggregate Tra�
 MeasurementsA likelihood fun
tion suggests itself to quantify a model's measurement �t. Inthis subse
tion, the likelihood of aggregate tra�
 measurements is formallyrelated to individual agent behavior.Ma
ros
opi
 state spa
e model (3.7) is supplemented with an output equation
y(k) = g[x(k), ǫ(k)] (4.16)that maps system state x(k) by a on
e di�erentiable fun
tion g on output ve
-tor y(k) of ma
ros
opi
 observables. The latter may in
lude �ows, velo
ities,and densities generated by sensors su
h as indu
tive loops, �oating 
ars, andtra�
 surveillan
e 
ameras. The in�uen
e of various sour
es of error on theseobservations is a

ounted for by random disturban
e ve
tor ǫ(k) that turns y(k)into a random variable itself. Equation (4.16) de�nes y(k)'s probability densityfun
tion (p.d.f.)

p(y(k)|x(k)) =

∫

δ(y(k) − g[x(k), ǫ])p(ǫ)dǫ (4.17)where δ is the Dira
 fun
tion and p(ǫ) is the known p.d.f. of ǫ. A lower-
ase pgenerally denotes a p.d.f., whereas an upper-
ase P represents a dis
rete prob-ability. Subsuming the above expression in terms of traje
tories Y = {y(k)}kand X = {x(k)}k yields
p(Y|X ) =

∏

k

p(y(k)|x(k)) (4.18)where sto
hasti
 independen
e between outputs at di�erent time steps is as-sumed. This is, so far, the not unexpe
ted result that all spatiotemporal mea-surements 
an be probabilisti
ally des
ribed if all spatiotemporal system states
X are known � no behavioral information is needed dire
tly.Nevertheless, the states X are indire
tly 
aused by the population behavior
U1 . . .UN . This allows to de�ne the behavioral likelihood l(U1 . . .UN |Y) giventhe measurements Y as a fun
tion of U1 . . .UN :

l(U1 . . .UN |Y) = p(Y|X (U1 . . .UN )). (4.19)80



This fun
tion is linearizable with respe
t to U1 . . .UN if the p.d.f. of Y given
X is di�erentiable with respe
t to X . Frequently, the (likewise linearizable)log-likelihood fun
tion

L(U1 . . .UN |Y) = ln l(U1 . . .UN |Y) (4.20)is also referred to.Others than link-related measurements are possible. Sin
e the state ve
tor ofmodel (3.7) 
ontains smoothed turning 
ounts, observations of these 
an bedire
tly in
orporated in the output equation. The additional value of su
hmeasurements is pointed out in the literature review of Se
tion 1.2.1.4.2.2 Steering Agents Towards the MeasurementsMaximum likelihood estimation is the arguably most popular approa
h to sta-tisti
al parameter identi�
ation, e.g., [140℄. It is an established method for theidenti�
ation of OD matri
es from tra�
 
ounts [162℄, and its appli
ation foragent-based behavioral estimation is 
ompli
ated in the same way as traditionalOD matrix estimation: The available number of link-related measurements isusually mu
h smaller than the number of parameters to be identi�ed � theproblem is extremely under-determined.Typi
ally, a prior OD matrix is integrated in the likelihood fun
tion as a supple-mentary measurement that resolves this under-determinedness. Sin
e no su
hprior is available here, a di�erent and statisti
ally less rigorous approa
h is pur-sued. Algorithm 2 is employed, with its general obje
tive fun
tion de�ned asthe measurement log-likelihood, i.e.,
Φ(X (U1 . . .UN )) = L(U1 . . .UN |Y). (4.21)The resulting overall obje
tive fun
tion (4.3) of any agent n is the weighted sum

Vn(U) + Φ(X (...U ...))/µ of its individual utility fun
tion and the log-likelihood.The weighting parameter µ determines the importan
e of the behavioral priorinformation represented by the original utility per
eption. If µ is 
hosen verylarge, the likelihood term vanishes and the agent a
ts in a way that is fullyprespe
i�ed by its original utility fun
tion. The smaller µ gets the more weightis put on the likelihood and the more the agent adjusts its behavior towardsan in
rease of the likelihood. While µ is used here as a mere weighting param-eter, the Bayesian problem reformulation given in the next se
tion enables itsinterpretation as a behavioral model parameter.Spe
i�
ally, if mutually independent normal measurement distributions are as-sumed, (4.21) yields a global obje
tive fun
tion
Φ(X ) = −

∑

a

∑

k

(ya(k) − ga[x(k)])2

2σ2
a

(4.22)where ya(k) is the sensor information available for link a in time step k, ga[x(k)]is its simulated expe
tation, and σ2
a is its varian
e.3 This is the arguably sim-3The log-likelihood of mutually independent measurements ya(k) is L(U1 . . .UN |Y) =

P

ak ln p(ya(k)|x(k)). Assuming ya(k) = ga[x(k)] + εa(k), a normally distributed εa(k) withzero expe
tation and varian
e σ2
a implies p(ya(k)|x(k)) ∝ exp[−(ya(k) − ga[x(k)])2/2σ2

a].Consequently, L(U1 . . .UN |Y) = −
P

ak(ya(k) − ga[x(k)])2/2σ2
a + 
onst.81



plest approa
h to the behavioral estimation problem: De�ne a quadrati
 dis-tan
e measure between observed and simulated tra�
 
hara
teristi
s, 
hoosea �reasonable� weight parameter µ, and let the general method to steer agentbehavior push the simulation towards a redu
tion of this error fun
tion.The parti
ular assumption of independent normal measurements yields an ob-je
tive fun
tion (4.22) of greatest simpli
ity. Still, di�erent distributional as-sumptions are feasible. In parti
ular, 
orrelated measurements with a known
ovarian
e stru
ture 
an be a

ounted for in terms of a multivariate (normal)distribution.Providing a modi�ed utility that 
omprises a weighted sum of individual utilityper
eption and measurement log-likelihood to the de
ision proto
ol does notresult in an overall maximum likelihood estimator for two reasons: (i) The indi-vidual utility addend permits no interpretation as a log-likelihood 
omponent,and (ii) the de
ision proto
ol draws a 
hoi
e instead of deterministi
ally maxi-mizing the modi�ed utility. For these reasons, a more systemati
 derivation ofa statisti
al estimator is given in the following.4.3 Bayesian EstimationSe
tion 4.1 prepares a general tool to steer simulated travelers. This tool fa-
ilitates the proposal of a �rst heuristi
 estimator in Se
tion 4.2. Here, theestimation problem is re
onsidered in a statisti
ally more rigorous setting. Thepresentation starts with a 
on
eptually straightforward but 
omputationally
umbersome formulation. Several simpli�
ations are then adopted that signif-i
antly in
rease the 
omputational feasibility and result in the proposal of twooperational estimators. Ultimately, the heuristi
 estimator is redis
overed, thistime, however, with a better understanding of its properties and limitations.It has been stated before that aggregate measurements Y alone do not providesu�
ient information for a unique estimate of population behavior U1 . . .UNsin
e usually there are many behavioral 
ombinations that generate the sameobservations. Here, this problem is resolved by the in
orporation of additionalbehavioral information in a Bayesian setting. In order to build on a solid foun-dation, the Bayesian estimator is designed from s
rat
h. While some previouslydeveloped results su
h as the linearization of a log-likelihood fun
tion in dy-nami
al 
onditions are reused in this se
tion, no 
onstitutional dependen
y onthe heuristi
 estimator itself is allowed for.4.3.1 General Formulation of EstimatorAn arbitrary implementation of the de
ision proto
ol is assumed. It draws
hoi
es U ∈ Cn a

ording to an individual 
hoi
e distribution Pn(U) for everyagent n = 1 . . .N . Only realizations of this distribution 
an be observed, 
f.Se
tion 3.2.1.4. U may still represent any of the behavioral dimensions des
ribedin Se
tion 3.2.1.1, ranging from a single route to an all-day plan. Given mutuallyindependent traveler de
isions, the behavioral prior for the whole population82



is de�ned as
P (U1 . . .UN) =

N
∏

n=1

Pn(Un). (4.23)The assumption of mutually independent 
hoi
es is to be understood in the
ontext of the iterative simulation logi
 outlined in Se
tion 4.1.3 in that (4.23)des
ribes the population's plan 
hoi
e distribution in a parti
ular iteration ofthe simulator given the network 
onditions only from the previous iteration(s).The available measurements Y parameterize a likelihood l(U1 . . .UN |Y) of thepopulation's path 
hoi
e as spe
i�ed in (4.19). Bayes' theorem allows to 
ombinethese two sour
es of information into a behavioral posterior
P (U1 . . .UN |Y) =

l(U1 . . .UN |Y)P (U1 . . .UN )
∑

V1∈C1
· · ·
∑

VN∈CN
l(V1 . . .VN |Y)P (V1 . . .VN )

, (4.24)where the denominator results from
p(Y) =

∑

V1∈C1

· · ·
∑

VN∈CN

p(Y|V1 . . .VN )P (V1 . . .VN ). (4.25)The estimation obje
tive is to have the population 
hoose its behavior a

ordingto the posterior (4.24) instead of the prior (4.23). This 
an be enfor
ed if drawsare taken from the prior but are reje
ted with a 
ertain probability that dependson the measurements. Denote by φ(U1 . . .UN ) the probability to a

ept a draw
U1 . . .UN from the prior. If this probability is spe
i�ed by

φ(U1 . . .UN ) = l(U1 . . .UN |Y)/D

D ≥ max
V1∈C1...VN∈CN

l(V1 . . .VN |Y), (4.26)then the following a

ept/reje
t pro
edure draws from the posterior:1. Draw 
andidate 
hoi
es U1 . . .UN from the prior (4.23).2. With probability 1 − φ(U1 . . .UN ), dis
ard the 
andidates and goto 1.3. The �rst a

epted U1 . . .UN 
onstitute a draw from the posterior (4.24).The 
orre
tness of this simple algorithm is shown by straightforward manipula-tions. Noting that the overall probability of a reje
tion is
φreje
t = 1 −

∑

V1∈C1

· · ·
∑

VN∈CN

φ(V1 . . .VN )P (V1 . . .VN ), (4.27)the probability that U1 . . .UN is the �rst a

epted draw is
∞
∑

d=0

φdreje
tφ(U1 . . .UN )P (U1 . . .UN )

=
φ(U1 . . .UN )P (U1 . . .UN )

1 − φreje
t
=

φ(U1 . . .UN )P (U1 . . .UN)
∑

V1∈C1
· · ·∑VN∈CN

φ(V1 . . .VN )P (V1 . . .VN )

= P (U1 . . .UN |Y).

(4.28)
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The behavioral posterior 
an thus be generated by suppressing 
ertain drawsfrom the prior. Somewhat 
oarsely expressed: (i) The simulation is run manytimes with di�erent random seeds, (ii) a large portion of these runs is �thrownaway�, based on the above reje
tion 
riterion, and (iii) the remaining runs aredraws from an a

urate Bayesian 
ombination of the behavioral prior and themeasurements.Although appealing be
ause of its simpli
ity, this approa
h is in this form 
om-putationally intra
table in all but trivial 
ases. There are two major problems:1. It is 
omputationally infeasible to evaluate all possible l(U1 . . .UN |Y) val-ues beforehand sin
e every su
h evaluation requires a full network loadingin order to map U1 . . .UN on a ma
ros
opi
 state sequen
e X that entersthe likelihood via (4.19). However, these evaluations are required in or-der to guarantee a feasible denominator for the a

eptan
e probabilities(4.26). Furthermore, the need for a 
hoi
e set enumeration implies thatthe estimation logi
 is aware of this set, whi
h 
onstitutes an unwanteddependen
y of the estimator on modeling details.2. Even if the a

eptan
e probabilities' denominator is repla
ed by an es-timate in order to mitigate problem 1, a single draw from the posteriormight still require a substantial number of mobility simulation runs sin
eevery draw from the prior needs to be loaded on the network at least on
eand sin
e it 
annot be guaranteed that an �a

ept� o

urs after a �xednumber of draws from the prior.In light of these di�
ulties, simplifying assumptions that speed up the sim-ulation of the posterior are highly desirable even at the 
ost of some loss ina

ura
y. Two su
hlike simpli�ed estimators are proposed in the following twose
tions.4.3.2 Operational A

ept/Reje
t EstimatorThe Bayesian estimator is 
onsiderably simpli�ed if the full likelihood is repla
edby an approximation. In Se
tion 4.1.2, a general fun
tion Φ of the ma
ros
opi
system states is linearized with respe
t to the population's path 
hoi
e. Pro-
eeding in this respe
t similarly to the heuristi
 estimator of Se
tion 4.2.2, thisresult is now utilized to linearize the measurement log-likelihood. Let
Φ(X (U1 . . .UN )) = L(U1 . . .UN |Y). (4.29)A linearization of Φ yields the approximation

L(U1 . . .UN |Y) ≈
N
∑

n=1

〈Λ,Un〉 + 
onst (4.30)with the Λ 
oe�
ients de�ned in (4.10) through (4.12). The resulting likelihoodapproximation is
l(U1 . . .UN |Y) ≈ 
onst · N

∏

n=1

e〈Λ,Un〉. (4.31)84



A substitution of this and the behavioral prior (4.23) in the behavioral posterior(4.24) yields
P (U1 . . .UN |Y) ≈

∏N
n=1 e〈Λ,Un〉Pn(Un)

∑

V1∈C1
· · ·∑VN∈CN

∏N
n=1 e〈Λ,Vn〉Pn(Vn)

. (4.32)The denominator of this expression requires some attention. It is a sum overall possible 
ombinations of behavioral patterns V1 . . .VN in the population,whereas the e〈··· 〉 terms result from a linearization around a parti
ular ma
ro-s
opi
 state sequen
e. The feasibility of this approximation results from theobservation that, even if individuals exhibit variable behavior, the resultingma
ros
opi
 tra�
 patterns are relatively 
on
entrated in state spa
e. All de-terministi
 tra�
 assignment e�orts rely on this assumption. Thus, the majorityof behavioral draws results in tra�
 patterns over whi
h a linearization 
an bejusti�ed. Behavioral patterns V1 . . .VN that generate physi
al states far awayfrom this domain are assumed to have su
h low probabilities ∏N
n=1 Pn(Vn) thatthe a

ording addends in the denominator 
an be negle
ted.Applying the distributive law to (4.32), one obtains

P (U1 . . .UN |Y) ≈
∏N

n=1 e〈Λ,Un〉Pn(Un)
∏N

n=1

∑

Vn∈Cn
e〈Λ,Vn〉Pn(Vn)

=

N
∏

n=1

e〈Λ,Un〉Pn(Un)
∑

Vn∈Cn
e〈Λ,Vn〉Pn(Vn)

.

(4.33)The linearization is bene�
ial in two ways. First, the population's joint pos-terior (4.33) is de
omposed into a produ
t of individual posteriors that 
an beevaluated agent by agent. These individual posteriors are subsequently denotedby
Pn(U|Y) =

e〈Λ,U〉Pn(U)
∑

V∈Cn
e〈Λ,V〉Pn(V)

. (4.34)Se
ond, only a single run of the mobility simulation (plus one 
al
ulation of the
Λ 
oe�
ients) is needed to parameterize these posteriors for all agents in thepopulation.The a

ept/reje
t pro
edure 
an now be applied to every agent individually.The a

eptan
e probability for path U from agent n's 
hoi
e set is de�ned as

φn(U) = e〈Λ,U〉/Dn

Dn ≥ max
V∈Cn

e〈Λ,V〉,
(4.35)but otherwise the method remains un
hanged. The only simplifying assump-tion made here is that the log-likelihood 
an be linearized with su�
ient pre
i-sion. Sin
e this linearization is likely to be di�erent given either the behavioralprior or the posterior, an iterative approa
h similar to the �xed point sear
hof Algorithm 2 is appropriate: Starting from the behavioral prior, su

essivelyimproved linearizations are generated from iteration to iteration until a stablestate is rea
hed where the estimator draws from the behavioral posterior based85



Algorithm 3 A

ept/reje
t estimator1. Initialization.(a) Set iteration 
ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do:i. Draw 
andidate 
hoi
e U (m)
n from n's behavioral prior.ii. With probability 1 − φn(U (m)

n ) (where Λ̄(m) is substituted for Λin (4.35)), dis
ard the 
andidate and goto 2(a)i.iii. Retain the �rst a

epted 
hoi
e U (m)
n .(b) Load U (m)

1 . . .U (m)
N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) In
rease m by one.(b) Goto step 2.on a linearization that in turn is most appropriate given this very posterior.This approa
h is subsequently denoted as the a

ept/reje
t (AR) estima-tor. It is summarized in Algorithm 3. Again, only a basi
 SA �xed point sear
hpro
edure is deployed for greatest 
larity.The type of behavior to be estimated and the prior implemented by the de
isionproto
ol are arbitrary. Sin
e a 
hoi
e set enumeration is only required to providea lower bound for the a

eptan
e probabilities' denominator de�ned in (4.35), it
an be avoided if this denominator is treated as a tuning parameter: Choosing alarge value is likely to 
omply with the (unknown) lower bound but also to resultin low a

eptan
e probabilities and in
reased 
omputational 
ost. Vi
e versa, asmaller denominator yields faster but also in
reasingly impre
ise estimates. Theloss in pre
ision 
an be appraised by observing the frequen
y at whi
h infeasibleprobabilities greater one o

ur in (4.35) that need to be trun
ated. This providesa pra
ti
ally attra
tive balan
ing me
hanism between estimation pre
ision and
omputational e�
ien
y, whi
h does not rely on a 
hoi
e set enumeration.Computational di�
ulties remain if a behavioral draw is expensive, e.g., be-
ause it involves some kind of optimization pro
edure, su
h as a (randomized)best path 
al
ulation. One alternative would be not to dis
ard unwanted drawsbut to dupli
ate desired ones and to use these in a number of repeated 
hoi
esituations. However, sin
e this would introdu
e possibly unwanted serial 
or-relations, it is at odds with the intention to develop a transparent estimation86



layer. A 
omputationally more e�
ient yet not as broadly appli
able estimatoris presented next.4.3.3 Operational Utility-Modi�
ation EstimatorThe behavioral posterior (4.34) for a single agent 
onstitutes the starting pointof this development. It is restated here for ease of referen
e:
Pn(U|Y) =

e〈Λ,U〉Pn(U)
∑

V∈Cn
e〈Λ,V〉Pn(V)

. (4.36)The PS-logit model prepared in Se
tion 3.2.2.2 is now used as a distributionalassumption about the prior 
hoi
e probabilities, i.e.,
Pn(U) =

PSn(U)eµVn(U)

∑

V∈Cn
PSn(V)eµVn(V)

. (4.37)Re
all that the PS 
oe�
ients a

ount for path overlap in a route 
hoi
e 
ontext.If they are omitted, a plain MNL model results. A substitution of (4.37) in (4.36)yields
Pn(U|Y) =

PSn(U)eµ(Vn(U)+〈Λ,U〉/µ)

∑

V∈Cn
PSn(V)eµ(Vn(V)+〈Λ,V〉/µ)

. (4.38)This posterior is stru
turally identi
al to its prior. Only the addition of 〈Λ,U〉/µto Vn(U) is di�erent. This allows to for
e a de
ision proto
ol that implementsa PS-logit prior to immediately draw from the posterior only by adding a 
or-re
tion term 〈Λ,U〉/µ to every alternative U 's systemati
 utility. The PS 
oe�-
ients need not be known to the estimator for the generation of these 
orre
tions.Consequently, this approa
h is feasible for all priors that exhibit the fun
tionalform of the PS-logit model, even if the PS 
oe�
ients result from a di�erentspe
i�
ation than given in (3.17). Su
h priors are said to be �of PS-logit stru
-ture�. Note that this in
ludes the plain MNL model.This approa
h is subsequently denoted as the utility-modi�
ation (UM)estimator. Its requirements are more restri
tive than those of the AR estimatorsin
e a de
ision proto
ol of PS-logit stru
ture needs to be available. However, ifsu
h a behavioral prior is given, the UM estimator and the AR estimator yieldequivalent results sin
e both rely on the same linearization-based approximation(4.36) of the posterior. In this 
ase, the UM estimator is to be preferred overthe AR estimator sin
e it is 
omputationally more e�
ient in that it reje
ts nodraws from the prior but immediately draws from the posterior.Se
tion 4.2's estimation heuristi
 
oin
ides stru
turally with the UM estimator:In either 
ase, the modi�ed utility is de�ned by (4.14), and the Λ 
oe�
ientsare identi
ally generated by a linearization of the measurement log-likelihoodfun
tion. The heuristi
's weight 
oe�
ient µ 
oin
ides with the s
ale param-eter of the PS-logit prior. For 
ompleteness, the UM estimator is spe
i�ed inAlgorithm 4. 87



Algorithm 4 Utility-modi�
ation estimator1. Apply Algorithm 2 with the global utility fun
tion Φ de�ned by (4.21) asthe measurement log-likelihood fun
tion.2. This estimator has the following properties.(a) It is identi
al to the heuristi
 estimator of Se
tion 4.2.(b) If the behavioral prior is of PS-logit stru
ture, this estimator is equiv-alent to the AR estimator spe
i�ed in Algorithm 3.4.3.4 Appli
ability of Heuristi
 EstimatorTe
hni
ally, the UM estimator 
an be applied in 
onjun
tion with an arbitraryutility-driven behavioral prior for the estimation of anything from routes to all-day plans. In su
h a general setting, it 
oin
ides with the heuristi
 estimatorof Se
tion 4.2. This analysis identi�es the 
on
eptual limitations of su
h anapproa
h and thus 
lari�es the appli
ability of the heuristi
 estimator itself.Assume that de
ision maker n disposes of a 
hoi
e set Cn and that prespe
i-�ed utilities V 0
n (U) for every U ∈ Cn are given. Based on these utilities, thede
ision proto
ol draws from well-de�ned but to the estimator unknown 
hoi
eprobabilities P 0
n(U). These 
hoi
e probabilities 
an be perfe
tly reprodu
ed bya model of PS-logit stru
ture if the PS 
oe�
ients are re-de�ned asPSn(U) =

P 0
n(U)

eµV 0
n (U)

. (4.39)The resulting 
hoi
e probabilities are
Pn(U) =

P 0
n(U)eµ(Vn(U)−V 0

n (U))

∑

V∈Cn
P 0

n(V)eµ(Vn(V)−V 0
n (V))

(4.40)su
h that Vn(U) = V 0
n (U) results in Pn(U) = P 0

n(U) for all U ∈ Cn. Looselyspeaking, any behavioral prior 
an be approximated up to 0th order in this way.The adequa
y of this approximation for others than the prespe
i�ed utilitiesonly depends on the approximated prior's elasti
ities, i.e., the way relative utility
hanges indu
e relative 
hanges in the 
hoi
e probabilities.The elasti
ities of the PS-logit 
hoi
e probabilities with respe
t to deterministi
utilities are stru
turally identi
al to those of the MNL model:
∂Pn(U)

∂Vn(V)

Vn(V)

Pn(U)
=

{

µVn(U)(1 − Pn(U)) U = V
−µVn(V)Pn(V) otherwise. (4.41)In parti
ular, if alternative V be
omes more (less) attra
tive, its in
reased (de-
reased) 
hoi
e probability redu
es (in
reases) the 
hoi
e probabilities of allother alternatives U 6= V by the same relative amount.Re
all that the UM estimator fun
tions without expli
it knowledge of the PS 
o-e�
ients. This implies that an appli
ation of the UM estimator 
an be justi�ed88



Figure 4.2: Three routes example, repeatedA simple route 
hoi
e example with three alternative routes A (
omprised of link 1),
B (
omprised of link sequen
e 2 →3a), and C (
omprised of links 2→3b).by approximation (4.40) even if the P 0

n and V 0
n values that (re-)de�ne the PS
oe�
ients in (4.39) are unknown. However, it is required that the elasti
ities ofthe prior 
hoi
e distribution are su�
iently well 
aptured by (4.41). Sin
e theUM estimator's working 
oin
ides with that of Se
tion 4.2's heuristi
 estimator,identi
al limitations hold for that heuristi
.4.4 Illustrative ExampleThe proposed estimators are illustrated with a simple example. For 
larity, onlya route 
hoi
e problem is 
onsidered, and stationary 
onditions are assumedinstead of a full dynami
al model.4.4.1 S
enario Des
riptionThe example network of Se
tion 3.2.2.2 is re
onsidered. It is repeated in Figure4.2. A 
hoi
e set of three routes A,B, and C 
onne
ts the origin node at thevery left to the destination node at the very right. The systemati
 utility of allroutes is identi
ally and invariably V̄ . The assumption of a 
onstant systemati
utility is adequate either in un
ongested 
onditions or in a telemati
s settingwhere drivers are a priori unaware of a
tually prevailing network 
onditions.(An example with an underlying equilibrium assumption is given in the next
hapter.)Sin
e routes B and C have almost perfe
t overlap, a behaviorally reasonableroute split is (P (A) P (B) P (C))=(1/2 1/4 1/4). However, for the purpose of thisexample, a plain MNL model that does not a

ount for route overlap is 
hosenas the behavioral prior:

P (U) ∝ eµV̄ , U = A,B, C, (4.42)where µ, V̄ = 1 in all numeri
al experiments. This results in prior route splits
(P (A) P (B) P (C)) = (1/3 1/3 1/3). (4.43)The model is mi
ros
opi
 in that every departing driver n = 1 . . .N individually
hooses a route. Sin
e stationary 
onditions are assumed, a traveler's turning89



move �sequen
e� Un = {un} and the resulting state �sequen
e� X = {x} only
onsist of a single ve
tor ea
h:
un = (uA,n uB,n uC,n)T (4.44)
x = (xA xB xC)T . (4.45)The elements of u indi
ate a driver's initial turn into route A, B or C: u =

(1 0 0)T represents the 
hoi
e of route A, u = (0 1 0)T stands for route B,and (0 0 1)T indi
ates route C. Sin
e no tra�
 �ow dynami
s are modeled, thenetwork states are de�ned as the total route volumes
x =

N
∑

n=1

un. (4.46)A single �ow sensor is lo
ated on route A. Its output y is modeled by themeasurement equation
y = xA + ǫ (4.47)where ǫ is a normal error with zero mean and σ2 varian
e. The resulting log-likelihood (4.20) of population route 
hoi
e U1 . . .UN given measurement �se-quen
e� Y = {y} is

L(U1 . . .UN |Y) = − (y − xA)2

2σ2

= −

(

y −∑N
n=1uA,n

)2

2σ2 .

(4.48)A linearization of this fun
tion with respe
t to individual route 
hoi
e is easierthan in the general 
ase of Se
tion 4.1.2 sin
e no dynami
al 
onstraints areinvolved. Maintaining the formalism of that se
tion, Φ(X (U1 . . .UN )) is de�nedto be L(U1 . . .UN |Y), Φ is linearized, and (4.10) yields a �sequen
e�
Λ =

{

((y − x0
A)/σ2 0 0)T

} (4.49)of Φ's sensitivities evaluated at a state �sequen
e� X 0 = {x0}. A

ording to(4.11), the approximate e�e
t of a single agent that 
hooses route A, B or C onthe log-likelihood is
〈Λ,A〉 = (y − x0

A)/σ2

〈Λ,B〉 = 0

〈Λ, C〉 = 0.

(4.50)These expressions a

ount for the e�e
t of adding an agent to a route butignore the e�e
t of removing it from its previously 
hosen route. This is feasiblebe
ause, on
e the e�e
t of route 
hoi
e is linearized, removing an agent fromits original route does not 
hange the linear e�e
t of its reassignment to a newroute. Sin
e every 
hoi
e implies that any previous 
hoi
e is dis
arded, only thenewly made 
hoi
e is relevant for estimation. Formally, the e�e
t of dis
ardingan outdated 
hoi
e is subsumed in the 
onstant addend of (4.12).90



4.4.2 A

ept/Reje
t EstimatorThe 
hoi
e set {A,B, C} is known and sampling from the prior (4.42) is easy,so the AR estimator 
an be applied without di�
ulty. Sin
e all agents haveidenti
al 
hoi
e sets, the a

eptan
e probabilities (4.35) are likewise identi
alfor all agents:
φ(A) = e〈Λ,A〉/D = e(y−x0

A)/σ2

/D

φ(B) = e〈Λ,B〉/D = 1/D

φ(C) = e〈Λ,C〉/D = 1/D

D = max{e(y−x0
A)/σ2

, 1}.

(4.51)That is, draws of route A are preferred over those of routes B and C if theexponent in φ(A) is positive, and they are suppressed if it is negative. Sin
e apositive exponent indi
ates that less vehi
les than measured are simulated onroute A and a negative exponent indi
ates that too many simulated vehi
les
hoose this route, the AR me
hanism fun
tions like a 
ontroller that worksagainst the measurement error.The a

eptan
e probabilities of routes B and C are equal. This re�e
ts the la
k ofmeasurement information that 
ould justify a preferen
e for either route. Theequal a

eptan
e probabilities in 
onjun
tion with the 
onstant deterministi
utilities also imply that the prior ratio of the 
hoi
e probabilities for B and Cis not a�e
ted by estimation. (If, however, the deterministi
 utilities were afun
tion of the route volumes, the de
ision proto
ol may rea
t to a 
hange inestimated tra�
 
onditions with a likewise 
hanged ratio of B's and C's 
hoi
eprobabilities.)An adopted version of Algorithm 3 that a

ounts for the simpli�ed mobilitysimulation and the homogeneous driver population of this example is givenbelow.1. Initialization.(a) Set iteration 
ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) Cal
ulate a

eptan
e probabilities φ(m)(U) for U = A,B, C (where
Λ̄(m) is substituted for Λ in (4.51)).(b) For n = 1 . . .N , do:i. Draw 
andidate route U (m)

n from the prior (4.43).ii. With probability 1−φ(m)(U (m)
n ), dis
ard the 
andidate and gotostep 2(b)i.iii. Retain the �rst a

epted 
hoi
e U (m)

n .(
) As a stationary surrogate for a full network loading, use (4.46) tomap U (m)
1 . . .U (m)

N on X (m).91



3. Linearize the log-likelihood fun
tion by (4.49) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) In
rease m by one.(b) Goto step 2.For simulative investigations, a total demand of N = 1000 drivers is gen-erated, and a single measurement yA = 500 is assumed on route A. Thisvalue is what one would expe
t on average if a model was used that real-isti
ally a

ounts for route overlap by distributing the demand a

ording to

(P (A) P (B) P (C))=(1/2 1/4 1/4).The estimation 
onvergen
e of 100 AR iterations for di�erent measurement vari-an
es σ2 = 1000, 100, and 10 is illustrated in Figure 4.3. The realisti
 volumesof 500 vehi
les on route A and 250 vehi
les on routes B and C are reprodu
edbetter with de
reasing σ2. An improved measurement reprodu
tion 
omes atthe 
ost of a lengthened settling time until the estimator draws from an appar-ently stable posterior. This is owed to the log-likelihood's in
reased steepnessthat 
ompli
ates the identi�
ation of a �xed point. The ratio of route B and C'sshare is not in�uen
ed by the estimation, as it has been previously hypothesized.The per
entage of a

epted draws is 92%, 74%, and 64% for σ2 = 1000, 100, and
10. The smaller the measurement varian
e the more pronoun
ed the di�eren
ebetween prior and posterior and the more draws from the prior need to bereje
ted to generate the posterior. The number of draws required by the ARestimator generally in
reases the more the likelihood 
ontradi
ts the prior.4.4.3 Utility-Modi�
ation EstimatorThe UM estimator spe
i�ed in Algorithm 4 is employed. The same experimentalsetting as for the AR estimator is 
hosen, and the same adjustments are madein order to a

ount for the simpli�ed nature of this example. Sin
e every drawbased on the modi�ed utilities is a

epted, the 
omputational overhead of theAR estimator is avoided. Furthermore, sin
e the MNL prior route 
hoi
e dis-tribution (4.42) is of PS-logit stru
ture, the resulting estimates are draws froman identi
al posterior distribution as for the AR estimator. Their illustration istherefore omitted.In this simple example, the utility 
orre
tions generated by the UM estima-tor allow to re
onstru
t the PS 
oe�
ients that are disregarded in the plainMNL prior (4.42): Given P (U) ∝ eµV̄ , the UM estimator generates a posterior
P (U|Y) ∝ e〈Λ,U〉eµV̄ , 
f. (4.36). Comparing this to a hypotheti
al PS-logit prior
P (U) ∝ PS(U)eµV̄ that properly a

ounts for route overlap, one noti
es that
e〈Λ,U〉 
an indeed be 
onsidered as an estimate of PS(U).Figure 4.4 plots e〈Λ̄

(m),U〉 for U = A,B, C over the iteration 
ounter m. Appar-ently, these values 
onverge towards (e〈Λ̄
(∞),A〉 e〈Λ̄

(∞),B〉 e〈Λ̄
(∞),C〉) = (2 1 1) for92



Figure 4.3: Measurement �tEstimated route volumes over the iteration 
ounter for various measurement varian
es. An in
reasing belief in the measurement results in a 
loserreprodu
tion of the true route splits but also in a lengthened settling time.
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Figure 4.4: Estimated path sizesTraje
tories of path size estimates e〈Λ̄
(m),U〉 for U = A,B, C over iteration 
ounter m. For de
reasing σ2, these estimates approa
h values that areproportional to the real path sizes based on whi
h the utilized measurement was generated.
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small measurement varian
es. This is a merely s
aled version of the path size 
o-e�
ients (PS(A) PS(B) PS(C)) = (1 1/2 1/2) that were derived for this s
enarioin Se
tion 3.2.2.2. These path sizes yield the plausible route 
hoi
e probabilities
(P (A) P (B) P (C))=(1/2 1/4 1/4) based on whi
h the utilized measurement wasgenerated.It was hypothesized in Se
tion 4.1.4 that an estimated utility modi�
ation 
ap-tures those systemati
 features of an alternative that are not in
luded in itsoriginal utility. However, in the present example, systemati
 utility is perfe
tlymodeled, and the UM estimator only a

ounts for the overlap of routes B and
C. This shows, given a RUM-based de
ision proto
ol, that the 
orre
tion termsonly represent unmodeled systemati
 utilities if all 
orrelations in the utilityerrors are properly modeled. Otherwise, unmodeled 
orrelations may also bea

ounted for by the estimator. In general, a distin
t interpretation of the re-sults is impossible. Still, this observation does not impair the 
orre
tness of theestimated posterior distributions themselves.Con
luding, this 
hapter provides a number of methods for the estimation ofindividual-level motorist behavior. All methods have the same Bayesian originbut di�er in their adopted simpli�
ations. A small example 
lari�es the proposedalgorithms. A large test 
ase is investigated in the next 
hapter.
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Chapter 5Test CaseThis 
hapter investigates the appli
ability of the proposed estimation approa
hto a syntheti
 s
enario of pra
ti
ally relevant size. It fo
uses on 
omputationalfeasibility and logi
al 
orre
tness. Sin
e various simpli�
ations are ne
essaryto implement the test 
ase, its limitations likewise 
on�ne the s
ope of theseinvestigations. However, the results 
learly establish that the estimator exhibitssu�
ient pre
ision, robustness, and 
omputational performan
e to be studiedin more realisti
 settings and in 
onjun
tion with more sophisti
ated modeling
omponents.5.1 Experimental Overall Setting5.1.1 S
enario Des
riptionA s
enario 
onsists of two 
omponents: (i) invariable settings that des
ribethe stru
tural features of this test 
ase and (ii) a parti
ular 
hoi
e of variablesettings.5.1.1.1 Invariable SettingsAll experiments utilize the Berlin network des
ribed in Se
tion 2.6.2. The re-spe
tive driver population is introdu
ed in Se
tion 3.1.4. Behavioral estimationfor a 206 353-agent population on a 2 459-link network is a nontrivial problem.All experiments are 
onstrained to the time span from 6 to 9 am. This intervalexhibits the most variable tra�
 
onditions be
ause of the morning rush hour.Sin
e only pla
eholder 
omponents for the behavioral simulator are available, thesole degree of freedom 
onsidered here is route 
hoi
e. That is, all behavioralaspe
ts apart from route 
hoi
e are retained un
hanged in the original plansgenerated by MATSim. This setting is motivated in two ways. First, MATSim'sbasi
 approa
h to route 
hoi
e is relatively simple to simulate but at the sametime non-trivial from an estimation point of view, 
f. Se
tion 3.2.2.2. Se
ond,route 
hoi
e 
an be generalized to plan 
hoi
e by minor modi�
ations to the96



Figure 5.1: Inner-urban part of BerlinA time-independent toll of 0.24 EUR/km is 
harged on the 
olored links.original network, 
f. Se
tion 3.2.1.1. This suggests that an e�e
tive route 
hoi
eestimator is likely to be appli
able in a more general setting as well.In all experiments, a time-independent toll of 0.24 EUR/km is 
harged in the
ity 
enter shown in Figure 5.1, and no toll is 
harged outside of this area. Theunitless utility of a route U is
Vn(U) =

(

−tt(U) − toll(U)VOTn

)

/ 1 s (5.1)where tt(U) is the travel time on route U , toll(U) is the toll a

umulated alongroute U , and VOTn is individual n's value of time in EUR/h. For 
omparison,the e�e
t of a 0.24 EUR/km toll is equivalent to a travel time in
rease by on
ethe free-�ow travel time given a 12 EUR/h VOT and a 50 km/h speed limit.5.1.1.2 Variable SettingsCombining the invariable settings given above with a parti
ular VOT de�nesa s
enario. For simpli
ity, it is assumed that all drivers within one s
enariohave an identi
al value of time, i.e., VOTn = VOT, n = 1 . . .N . Clearly, thissetting disregards a multi-agent model's prominent advantage of 
apturing aheterogeneous driver population. However, the purpose of these experimentsis not to re-iterate the well-known features of a multi-agent simulation but toinvestigate an estimator's performan
e in 
ontrolled 
onditions. A homogeneousVOT simpli�es the setup of the experiments and their interpretation. Sin
eVOT is an agent-spe
i�
 parameter that is entirely transparent to the estimator,no 
on
eptual di�
ulty exists in estimating the behavior of a population that isheterogeneous in this regard. Finally, no VOT information is 
ontained in thesyntheti
 population available for this dissertation anyway be
ause the 
urrentMATSim implementation provides no su
h information.97



Depending on the parti
ular modeling assumptions, a planning s
enario anda telemati
s s
enario 
an be distinguished 
onsistently with the terminologyof Se
tion 1.1.3: If drivers are aware of a re
ently implemented toll but not yetof the resulting 
hanges in tra�
 
onditions, the hitherto prevailing equilibrium
onditions are invalidated and a transient phase emerges. This s
enario 
anonly be represented by a telemati
s simulation that does not rely on a (S)UEassumption. If drivers are aware of the toll but also have learned the resulting
hanges in tra�
 patterns, the transient phase stabilizes again. This s
enario
an be addressed by a planning simulation the equilibrium assumption of whi
his approximately satis�ed here.5.1.2 Simulation and Estimation Logi
The following two subse
tions elaborate on the applied simulation and estima-tion logi
. The simulator is des
ribed �rst. Sin
e the estimator �wraps around�an existing simulation system, 
f. Figure 1.2, the simulator is entirely indepen-dent of the subsequently sele
ted estimation approa
h.5.1.2.1 SimulationTra�
 �ow dynami
s are represented by the mobility simulation des
ribedin Chapters 2 and 3.1. For behavioral simulation, the simple logi
 outlinedin Se
tion 3.2.2.2 is applied with minor modi�
ations. Basi
ally, 10 per
entof all agents re
al
ulate a new route in every iteration. Only pre-trip route(re)planning is 
onsidered.1 The implemented de
ision proto
ol exe
utes 
hoi
eset generation and 
hoi
e in a deliberative manner, 
f. Se
tion 1.3.1.Whenever an agent starts a trip, it has one already generated route U at hand.This is either the route 
hosen in the previous iteration or, at the initial iteration,the route provided in the MATSim plans �le. The agent also is aware of the mostre
ently observed travel times. An alternative route is generated by randomly
hoosing a VOT from the set {6, 12, 18,∞} (all in EUR/h) and running a time-dependent best path algorithm that maximizes the resulting generalized utilityspe
i�ed in (5.1). The in�nite VOT serves as a notational proxy for a no-toll
ase sin
e it e�e
tively eliminates the toll addend from the utility. The newly
al
ulated route is denoted by V . This yields a 
hoi
e set of two elements: theoriginal route U and the new route V .The agent then sele
ts from {U ,V} the route of higher utility based on the sim-ulated s
enario's a
tual VOT and the most re
ently observed tra�
 
onditions.Sin
e the tra�
 
onditions vary from iteration to iteration, this 
hoi
e may notbe optimal in hindsight.This model is 
hosen be
ause of its similarity to the original MATSim routereplanning logi
. Altogether, a single iteration of this simple DTA simulator
onsists of two steps, and repeated exe
utions of these iterations 
onstitute asimulation run:1The sole 
onsideration of pre-trip replanning keeps the modeling simple. The estimatoritself is appli
able to en-trip replanning as well, 
f. Se
tion 4.3.1.98



1. For all agents n = 1 . . .N , do: With probability 0.9, maintain n's route.Otherwise, generate an alternative route based on a randomly generatedVOT and the most re
ently observed travel times, and sele
t the betterone of these two alternatives a

ording to the s
enario's a
tual VOT.2. Load all agents on the network.This pro
edure 
an be applied to simulate both a planning and a telemati
ss
enario. The planning s
enario assumes that drivers learn from iteration toiteration. If one looks at relaxed iterations only, i.e., su
h iterations wheretra�
 
onditions have attained a stable distribution, then an alternative inter-pretation is that the situation of interest is one where drivers are aware of globaltra�
 
onditions. This is realized if route-replanning is based on the previousiteration's travel times. For a telemati
s s
enario, however, it is ne
essary to runiterations while drivers remain on their initial level of knowledge. This knowl-edge is generated beforehand by running many iterations of a relaxed planningsimulation and saving the travel times of every iteration. These travel times arethen used by replanning travelers in the iterated telemati
s simulation.Even this simple simulator exhibits fairly 
omplex dynami
s. Sin
e an elaborateanalysis of these dynami
s is beyond the s
ope of this dissertation, the notionof a �relaxed simulation� that rea
hes �stable network 
onditions� is to be un-derstood informally and only in a given experimental 
ontext. Consequently,all �
onvergen
e� statements regarding the subsequently des
ribed simulation-based estimator are of likewise experimental nature.5.1.2.2 EstimationThe estimator adjusts a prior s
enario to measurements that are observationsfrom a true s
enario. (Measurement generation is des
ribed further below.)The prior and the true s
enario only di�er in their VOT. The true s
enario rep-resents a syntheti
 reality that would in a real-world appli
ation be repla
edby reality itself.At this stage of resear
h, a real-world test 
ase would rather obs
ure than 
larifythe estimator's working sin
e (i) no guidelines for its appli
ation are yet avail-able, (ii) un
ontrollable error sour
es would 
ompli
ate an interpretation of theestimation results, and (iii) only a simulated reality is perfe
tly observable fora 
omparison to its estimated 
ounterpart. Furthermore, merely an outdatedBerlin network and driver population are available sin
e the MATSim resear
he�orts shifted towards the 
ity of Zuri
h around the beginning of 2007. This
hange o

urred too late to be tra
ed by this resear
h.The UM estimator is applied in all experiments. This is required by the impli
itnature of the behavioral model. As explained in Se
tion 3.2.2.2, route re
al
u-lations based on a previous iteration's travel times model a per
eptional errorthat does not be
ome observable until the next network loading is exe
uted.Sin
e this error is generated in hindsight, there is no variability within a single
hoi
e situation. The AR estimator is generally not appli
able to this type of99



�best response� simulation.2 Furthermore, sin
e no PS-logit route 
hoi
e modelis used, only a heuristi
 appli
ation of the UM estimator is possible. This alsoputs its robustness with regard to a behavioral prior that is not guaranteed tobe of PS-logit stru
ture to test, 
f. Se
tion 4.3.4.Sin
e the UM estimator is te
hni
ally equivalent to the heuristi
 estimator ofSe
tion 4.2.2, the following presentation is given in terms of the latter. Theheuristi
 estimator adds a global utility fun
tion Φ to the individual utility ofevery agent, where Φ is a similarity measure between simulated and observedsensor data. More pre
isely, the estimator repla
es any driver n's original utilityper
eption Vn(U) as de�ned in (5.1) by a modi�ed utility Wn(U) = Vn(U) +
〈Λ,U〉/µ where the se
ond addend is a linearized and s
aled version of Φ. In allsubsequent experiments, Φ is spe
i�ed by

Φ(X ) = −
∑

a

∑

k

(ya(k) − ga[x(k)])2

2σ2 (5.2)where ya(k) is a measurement on sensor-equipped link a in time step k and
ga[x(k)] is its simulated 
ounterpart. An interpretation of this fun
tion as thelog-likelihood of mutually independent normal measurements with identi
al vari-an
es σ2 is possible but, in light of the overall heuristi
 setting, not mandatory.
Φ is e�e
tively s
aled by σ−2. Sin
e this multipli
ation 
an be applied eitherbefore or after the linearization, it is assumed that the Λ values result from alinearization of Φ(X ) = −

∑

ak(ya(k)− ga[x(k)])2/2 and that the σ2 parameteris a

ounted for afterwards:
Wn(U) = Vn(U) +

〈Λ,U〉
µσ2 . (5.3)Only the produ
t of µ and σ2 is relevant to the estimation problem. Sin
e itre�e
ts the belief in the prior information represented by the original utilityper
eption Vn(U), it is subsequently represented by a prior weight

wprior =

√

µσ2. (5.4)For interpretation, given a unit s
ale parameter µ, wprior is equivalent to anormal measurement's standard deviation. An experimental parameter tuningapproa
h is adopted for its sele
tion. This also is likely to be the 
ourse of a
tionin a real-world appli
ation [171℄.The estimation logi
 approa
hes a �xed-point of the Λ values by means of theSA algorithm des
ribed in Se
tion 4.1.3. This pro
edure iterates between alinearization of (5.2) and an iteration of the tra�
 simulator. That is, in everyiteration of the estimator, 10 per
ent of all departing agents replan based onthe most re
ently obtained utility 
orre
tions, a single network loading is run,and the utility 
orre
tions are immediately updated. The 
omplete estimationlogi
 is given below:2Speaking in terms of the parti
ularly 
hosen model: The route 
hoi
e set is generatedbased on a randomized VOT on
e per iteration, but it is �xed throughout that iteration.That is, repeated best response 
hoi
es within a single iteration invariably yield the sameresult. 100



1. Initialization.(a) Set iteration 
ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. Simulation.(a) For all n = 1 . . .N , do with probability 0.1:i. Choi
e set generation. Generate an alternative route based on arandomly generated VOT and the most re
ent travel times.ii. Choi
e. Evaluate Wn(U) = Vn(U) + 〈Λ̄(m),U〉/w2prior instead of
Vn(U) when sele
ting U (m)

n . Vn(U) is evaluated based on theprior s
enario's a
tual VOT.(b) Load U (m)
1 . . .U (m)

N on the network and obtain X (m).3. Linearize Φ(X (m)) and obtain Λ(m).4. Update Λ̄(m+1) =
m

m + 1
Λ̄(m) +

1

m + 1
Λ(m).5. If another iteration is desired:(a) In
rease m by one.(b) Goto step 2.Note that the 
hoi
e set generation is based on the original utility Vn and arandomized VOT, whereas the 
hoi
e is based on the modi�ed utility Wn andthe prior s
enario's a
tual VOT. This ensures that every on
e in a while the
hoi
e set 
ontains a route that is 
onsistent with the true s
enario's VOT.3 Thequestion thus be
omes in how far the estimator, given the above set of behavioralalternatives but only a limited number of measurements, 
an pull the systemaway from the �wrong� VOT of the prior s
enario towards the �
orre
t� VOT ofthe true s
enario.If there are no measurements, the Λ 
oe�
ients are invariably zero and the abovealgorithm merely repeats steps 2a and 2b. That is, it fun
tions as a simulatorthat, upon stabilization in relaxed 
onditions, produ
es a sequen
e of draws fromthe behavioral prior distribution. As measurements be
ome available, nonzero

Λ values result, and the estimator stabilizes in di�erent relaxed 
onditions.Every iteration then generates a draw from the behavioral posterior given theparti
ular prior s
enario and the available measurements from the true s
enario.Te
hni
ally, the estimation problem is to identify a �xed point of the Λ 
oef-�
ients. Sin
e the mapping from Λ on itself is e�e
tively from Λ on X on Λ,
f. Figure 4.1, the existen
e of a Λ �xed point indi
ates the existen
e of a X�xed point, and vi
e versa. This justi�es the ex
lusive evaluation of the readilyinterpretable system states X to monitor the estimator's 
onvergen
e, as it isdes
ribed in the next se
tion.3There is no guarantee that running a best path algorithm dire
tly on modi�ed link utilitiesever produ
es a likewise realisti
 alternative. Se
tion 5.4 elaborates on this matter.101



Figure 5.2: Exemplary sensor lo
ations50 automati
ally sele
ted sensor lo
ations. One �ow sensor is lo
ated in the 
enter ofea
h 
olored link.5.1.3 Sensor and Validation DataThe estimator utilizes a limited amount of �ow measurements as sensor data.The estimation results are validated based on network-wide o

upan
y informa-tion.5.1.3.1 Sensor DataFlow measurements, i.e., tra�
 
ounts at road 
ross-se
tions per time interval,are used in all experiments as syntheti
ally generated sensor data. The termmeasurement data is equivalently used. All su
h data is averaged in 5 minutetime bins.For every estimation experiment, 50 sensor lo
ations are sele
ted based on a
omparison of the tra�
 
onditions in the a

ording prior and true s
enario.The lo
ations are automati
ally 
hosen by a simple tool that prefers links onwhi
h the average �ow di�eren
e between both s
enarios is largest and at thesame time seeks to maintain independent measurement lo
ations. Sensor lo-
ations are 
hosen for all s
enarios individually in order to provide equallyadvantageous pre
onditions for better 
omparability. An example of su
hlikegenerated lo
ations is given in Figure 5.2. The true tra�
 
onditions utilizedby this pro
edure are of 
ourse unknown in a real-world appli
ation, where,however, prespe
i�ed sensor lo
ations 
an be expe
ted to be available.The mapping from driver behavior on tra�
 �ows is nonlinear. In parti
ular,the intermediate mapping from tra�
 densities on �ow rates is ambiguous inthat every non-maximum �ow 
an be explained by two di�erent densities, 
f.Se
tion 2.2. Sin
e the estimation is based on repeated linearizations, su
h non-linearities in
rease the danger of lo
al 
onvergen
e. Therefore, an additional102



sour
e of information is employed. Even a simple single-loop dete
tor does notonly measure �ow rates but also the fra
tion of time it is 
overed by a vehi-
le. This information is likely to be too noisy to provide immediately usefultra�
 density information, but it does allow to distinguish free and 
ongestedtra�
 
onditions [49℄. The estimator uses this information in its linearizationstep where it re
ognizes that in un
ongested 
onditions the log-likelihood of anymeasurement is only sensitive to the upstream tra�
 situation and in 
ongested
onditions it is only sensitive to the downstream situation.5.1.3.2 Validation DataOne may argue that an appraisal of the estimation quality should be dire
tlybased on routes. However, sin
e every agent may 
hoose any 
y
le-free route to-wards its destination, it is unlikely that an estimated and a true route 
oin
ide.In prin
iple, the measure of route overlap proposed in [148℄ is appli
able here.Still, the 
ontinuous variability of the simulated tra�
 
onditions and of theresulting routes 
ompli
ates su
h a 
omparison, and a more viable validationapproa
h is at hand: In the 
onsidered model, simulated �ows result deter-ministi
ally from ma
ros
opi
 system states, whi
h in turn are 
onsequen
esof mi
ros
opi
 driver behavior, 
f. Se
tion 3.1.3. Ma
ros
opi
 link o

upan-
ies thus 
onstitute intermediate states that are easy to pro
ess and interpret.4Sin
e the route 
hoi
e model is based on travel times whi
h are deterministi-
ally dependent on ma
ros
opi
 link states, an estimator that reprodu
es linkstates well is likely to also generate realisti
 routes. Parti
ularly, the behavioralmodel pla
eholder is by design su�
iently restri
ted to unequivo
ally as
ribeany systemati
 
hange in aggregate tra�
 
onditions to the behavioral aspe
tof toll-avoidan
e.In 
onsequen
e, network-wide o

upan
y information, i.e., the average numberof vehi
le units on every link in every 5-minute time bin, is used as the valida-tion data based on whi
h global tra�
 
onditions are 
ompared. More generalexperiments are likely to also 
all for more powerful behavioral monitoring tools,whi
h 
onstitutes a resear
h question in its own right.5.1.3.3 Quantitative Error MeasuresThe notion of a run is subsequently used as a generi
 term for both a simulationrun and an estimation run. The di�eren
e of a run to a referen
e data set isevaluated in terms of a root mean square error measureRMS(m)
z [run] =

√

∑

a∈A

∑

k (z(m)
a (k) − zrefa (k))2

K|A| (5.5)where z
(m)
a (k) is the 
onsidered tra�
 
hara
teristi
 (�ow, o

upan
y) of thestudied run in iteration m on link a in time bin k, and zrefa (k) is the a

ordingreferen
e value. K is the total number of time bins and A is the set of links for4The hitherto used notion of o

upan
y as the number of vehi
le units lo
ated in a 
ell orlink is not to be 
onfused with the 
ommon notion of an indu
tive loop's o

upan
y as thefra
tion of time it is 
overed by a vehi
le. The latter is not employed here.103



whi
h tra�
 
hara
teristi
s are evaluated. [run℄ is a short
ut for the evaluatedrun. Unique referen
e data sets are used in all planning experiments and inall telemati
s experiments respe
tively. Whenever the dependen
y of RMS oniteration 
ounter m is omitted, the last RMS value in a prespe
i�ed sequen
eof iterations is referred to.It is frequently required to 
ompare a run's (re
ursively) averaged 
hara
teristi
s
z̄(m)

a (k) =











z(m)
a (k) m < m0

1

m − m0 + 1

m
∑

m′=m0

z(m′)
a (k) m ≥ m0

(5.6)to the referen
e data, where m0 is always 
hosen large enough to ensure thatthe 
onsidered run rea
hes a stable distribution of network 
onditions before theaveraging starts. This allows for the de�nition of an additional error measureRMSA(m)
z [run] =

√

∑

a∈A

∑

k (z̄(m)
a (k) − zrefa (k))2

K|A| , (5.7)where the only di�eren
e to RMSz is that z
(m)
a (k) is now repla
ed by the averagevalue z̄

(m)
a (k).The following parti
ular error measures are used.

• The measurement error RMSAq is an instan
e of (5.7) that representsthe deviation of an estimation run from its measurement data set. That is,the referen
e data used here is identi
al to the measurement data used forestimation. Consequently, only the �ow rates at the prespe
i�ed 50 sensorlo
ations are evaluated. Note that the measurement error is basi
ally as
aled version of √−Φ, 
f. (5.2). Its unit is veh/h, whi
h is subsequentlyomitted for brevity.
• The validation error RMS(A)x is an instan
e of (5.5) or (5.7) that rep-resents the deviation of a simulation run or an estimation run from itsvalidation data set. At this, it 
ompares the o

upan
ies on all links inthe network. Its unit is veh, whi
h also is subsequently omitted.5.2 Planning Experiments (Equilibrium Situation)A planning-like setting is 
onsidered �rst. SUE 
onditions are modeled by pro-viding global knowledge about the previous iteration's tra�
 
onditions to allreplanning agents in the iterative DTA pro
edure des
ribed in Se
tion 5.1.2.1.All experiments use sensor data from a true s
enario that is based on one par-ti
ular VOT, whereas the prior s
enario assumed by the estimator is based ona di�erent VOT.The experiments given here examine the logi
al 
orre
tness and overall pre
isionof the estimator. Sin
e 
omputational performan
e is not of primary 
on
ernin an o�ine planning appli
ation, its investigation is postponed to Se
tion 5.3where a telemati
s 
ase study in simulated online 
onditions is des
ribed.104



Figure 5.3: RMSx and RMSAx [6 EUR/h VOT simulation℄Three simulation runs of 500 iterations ea
h are 
ondu
ted in order to investigatethe stability of the 6 EUR/h VOT s
enario. The �u
tuating RMSx values e�e
tivelyrepresent the Eu
lidean distan
e between the referen
e data and the simulated o

u-pan
ies of a parti
ular iteration. The re
ursive state averaging is turned on after 100iterations su
h that a smooth RMSAx 
urve bran
hes o� ea
h RMSx 
urve.5.2.1 S
enario GenerationGiven the above overall settings, one planning simulation is run for a s
enariowithout toll, and three further simulations are run for toll-s
enarios with VOTsof 6, 12, and 18 EUR/h. Ea
h simulation is exe
uted for 500 iterations. Theseinitial runs are subsequently denoted as the �no-toll� and the �6 (12,18) EUR/hVOT� referen
e simulations of their respe
tive planning s
enarios. Link �owsand o

upan
ies are averaged over the last 400 iterations of ea
h referen
e sim-ulation a

ording to (5.6). These average values 
onstitute the referen
e datasets for all RMS and RMSA error measures given in the subsequent planningexperiments, 
f. Se
tion 5.1.3.3.5.2.1.1 Investigation of S
enario StabilityTo test the robustness of this set-up, another three simulations are run for everys
enario. They are 
ompared to their respe
tive referen
e s
enario by tra
kingthe validation errors RMSx and RMSAx over 500 iterations, as shown in Figures5.3 through 5.6.All experiments start with an identi
al plans �le. This results in di�erent tran-sients during the �rst iterations. Sin
e these transients represent no relaxednetwork 
onditions, the re
ursive state averaging is turned on not before it-eration 100 where a RMSAx 
urve bran
hes o� ea
h RMSx 
urve. Sin
e thisbran
hing in 
onjun
tion with mu
h smoother dynami
s is 
hara
teristi
 for allRMSAx 
urves, they are not expli
itly labeled in the plots.The RMSAx 
urves approa
h small values when 
ompared to their RMSx 
oun-terparts. This indi
ates that all simulations for a parti
ular VOT attain similar105



Figure 5.4: RMSx and RMSAx [12 EUR/h VOT simulation℄Three simulations of the 12 EUR/h VOT s
enario. See Figure 5.3 for further expla-nations.

Figure 5.5: RMSx and RMSAx [18 EUR/h VOT simulation℄Three simulations of the 18 EUR/h VOT s
enario. See Figure 5.3 for further expla-nations.
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Figure 5.6: RMSx and RMSAx [no-toll simulation℄Three simulations of the no-toll s
enario. See Figure 5.3 for further explanations.average system states. The RMSx 
urves stabilize at a 
onstant degree of vari-ability. A visual inspe
tion shows a positive auto-
orrelation within ea
h 
urve.This results from the simulation logi
 that invariably 
opies 90 per
ent of allroutes from one iteration to the next. Altogether, the network states exhibit a�u
tuating and possibly 
y
ling behavior. Sin
e no systemati
 drift is observed,
onvergen
e towards a stable state distribution 
annot be disproved.All RMS 
urves are lo
ated above their RMSA 
ounterparts. However, thisobservation does not prove a systemati
 di�eren
e between the average systemstates and the single-iteration draws. It rather is a 
onsequen
e of the 
hosenerror measures, and the same RMS vs. RMSA 
onstellation would result evenif the relaxed system states were perfe
tly normally distributed: The surfa
eof an (n + 1)-dimensional sphere with radius r is proportional to rn. Theprobability that a single network state is simulated r distan
e units away fromits expe
tation therefore results from an integration of its p.d.f. over a domainthe size of whi
h is proportional to rn. Sin
e the referen
e data used in RMS(A)
onsists of average network 
hara
teristi
s that approximate this expe
tation, asmall RMS value is as unlikely to o

ur as a small r value, whereas vanishingRMSA values merely result from the law of large numbers.5.2.1.2 Measurement and Validation Data GenerationAn a

urate generation of the syntheti
 measurements for a single day requiresto take one relaxed iteration of the true s
enario, to extra
t the �ow data atall sensor lo
ations, and to randomly disturb this data a

ording to a distribu-tional assumption about the measurement error. Based on this information, the(planning) estimator is run with the goal to reprodu
e the true distribution oftra�
 
onditions. In 
onsequen
e, an �exhaustive� validation pro
edure must
ompare two full distributions of tra�
 
onditions.Within the s
ope of this work, distributions are 
ompared in terms of their107



expe
tations. The similarity of an estimated and a true distribution of net-work 
onditions 
an thus be quanti�ed by an RMSA error measure. This errormeasure is a random variable itself sin
e it depends on the parti
ular draw ofmeasurement data Y that is used for estimation, i.e., RMSA = RMSA(Y). Areliable appraisal of the estimation quality would therefore require to gener-ate a large number of measurement data sets Y and to run the estimator forea
h of these sets individually. An expe
ted error E{RMSA(Y)} 
ould then beidenti�ed by averaging RMSA(Y) over all experiments.Sin
e strong variability 
an be observed in the simulations, many 
omputa-tionally demanding experiments would be needed to identify the estimator'sexpe
ted performan
e.5 Even if this e�ort was shouldered, the validity of theresulting assessment would be limited by that of the deployed model pla
ehold-ers. These reservations motivate a less rigorous yet 
omputationally more viableapproa
h.A single, most representative measurement data set is used for ea
h true s
e-nario. The stability analysis of Se
tion 5.2.1.1 shows that repeated simulationsof a parti
ular s
enario 
onverge to similar average network states. The initiallygenerated referen
e data sets for ea
h s
enario are therefore used as sensor andvalidation data in all planning experiments. Averaging the data instead of av-eraging the evaluation results is equivalent to the 
learly idealized assumptionthat E{RMSA(Y)} ≈ RMSA(E{Y}) is a feasible approximation.No additive sensor noise is simulated sin
e only its zero expe
tation appears inE{Y}. This underlines the idealized experimental setting sin
e the true level ofsensor noise will in reality 
ertainly impair the estimation performan
e. How-ever, sin
e there is no guarantee that the average of many physi
ally possiblesystem states is itself physi
ally feasible, a systemati
 error may be introdu
ed.These aspe
ts must be a

ounted for when interpreting the estimation results.This simpli�
ation may even be realisti
 in a setting where the sensor dataavailable for planning purposes has been averaged over many days. However,the e�e
tive motivation for this approa
h is to limit the degrees of freedom thatneed to be experimentally investigated. One should re
all that the purpose ofthese experiments is to demonstrate the estimator's logi
al 
orre
tness. On
ethis is a
hieved, su�
ient 
on
eptual ba
kground is provided in Chapter 4 formore extensive investigations in likewise more realisti
 experimental settings.5.2.1.3 Comparison of S
enariosFigure 5.7 provides an impression of the di�eren
e between the syntheti
 realityon the one hand and the prior s
enario assumed later during estimation on theother hand. It 
ontains six s
atterplots that 
ompare the �ow and o

upan
ydata of the 12 EUR/h VOT referen
e simulation to the 6 EUR/h VOT, the 18EUR/h VOT, and the no-toll referen
e simulation.The �rst 
olumn 
ompares the referen
e �ow rates and the se
ond 
olumn 
om-pares the referen
e o

upan
ies. All s
atterplots 
ontain data points for all links5Re
ent experimental results milden this 
on
ern. However, sin
e these results were ob-tained too late to be a

ounted for in this dissertation, they are only indi
ated in this and afew subsequent footnotes. 108



Figure 5.7: S
atterplots for 
omparison of planning referen
e simulationsThe s
atterplots 
ompare data from the 12 EUR/h VOT planning referen
e simulation(on the ordinate) to the other planning referen
e simulations (on the abs
issa). The�rst 
olumn 
ompares �ow rates and the se
ond 
olumn 
ompares o

upan
ies. Alls
atterplots 
ontain data points for all links in the network. The data points apply tothe simulation time interval from 8:30 to 8:35 and represent average values over 400iterations. 109



in the network. That is, the �ow s
atterplots 
ontain more information than theRMSAq measurement error, whi
h only a

ounts for data at sensor lo
ations.The measurement error indi
ates to what degree the estimator is able to re
on-stru
t available sensor data, whereas the s
atterplots allow for a network-wide
omparison of tra�
 
onditions.All data points apply to the simulation time interval from 8:30 to 8:35. At�rst glan
e, the deviations appear moderate in 
onsideration of the broad rangeof VOTs. However, re
all that all referen
e data sets are averaged over 400iterations. An inspe
tion of the simulation dynami
s in Figures 5.3 through 5.6shows that variability is mu
h larger without averaging. Using average dataallows to as
ribe all per
eptible deviations in the s
atterplots to systemati

auses.The �ow s
atterplots in the left 
olumn give an impression of the amount ofinformation e�e
tively available to the estimator. The stronger the �ow devi-ations between two s
enarios the more useful are �ow measurements to adjustone s
enario to another. Vi
e versa, if two s
enarios di�er only slightly in their�ows, the estimator has only little information at hand. In all plots, the �owsexhibit no distin
t bias in that they are s
attered unsystemati
ally around themain diagonal. The reason for this is that route 
hoi
e is the only behavioraldegree of freedom: Every driver who bypasses the downtown area invariabledrives through the �inverse� of that area, and vi
e versa, su
h that the �ows 
anmerely be reallo
ated among links.The se
ond 
olumn 
ontains o

upan
y s
atterplots. This type of data alsode�nes the RMSAx validation error. The degree of variability among di�erents
enarios follows the same order as for the �ows.6 However, systemati
 di�er-en
es between the s
enarios 
an now be observed. Sin
e the toll is not designedto maximize tra�
 throughput, it 
auses in
reased 
ongestion outside the 
ity
enter. This e�e
t be
omes more pronoun
ed for smaller VOTs, whi
h model agreater behavioral sensitivity to the toll. The nonlinear 
ongestion e�e
ts arere�e
ted in unsymmetri
al plots: The positive e�e
t of the toll (less vehi
lesdowntown) is not as pronoun
ed as its negative 
ounterpart (more vehi
les onthe bypass roads). Su
h an e�e
t 
an be justi�ed if there are other motives than
ongestion relief for the introdu
tion of the toll. One should keep in mind thatthis is a syntheti
 s
enario with no ambition to evaluate road pri
ing strategiesthemselves.5.2.2 Experimental Results12 EUR/h is a reasonable a priori guess for an average VOT. The estimatortherefore adjusts a 12 EUR/h VOT prior s
enario to the referen
e measure-ments of a true no-toll s
enario, a true 6 EUR/h VOT s
enario, and a true18 EUR/h VOT s
enario. Every estimation run starts with a plans �le that is6A prominent outlier at 
oordinates (312/175) in the �6 vs 12 EUR/h VOT� o

upan
ys
atterplot 
an be observed. This is the western segment of �Frankfurter Allee�, leadingimmediately into the toll zone. It has 3 lanes and is almost 3 kilometers long. The lower thevalue of time the more drivers try to divert at at the downstream end of this road into thein
reasingly 
ongested bypasses and 
ause the observed spillba
k.110



drawn from the 12 EUR/h prior distribution. That is, in the absen
e of measure-ments, the estimator immediately draws from the prior, and if measurementsare available, all transients towards the posterior 
an be unequivo
ally as
ribedto the measurements. Experiments with various prior weights wprior as de�nedin (5.4) are 
ondu
ted in order to investigate the estimator's robustness againstsuboptimal parameter settings. Three estimation runs are evaluated in every
on�guration in order to in
rease the statisti
al reliability of the results.75.2.2.1 Des
ription of ResultsFigure 5.8 shows the resulting error measures over di�erent wprior values forsensor data generated from the 6 EUR/h VOT, the 18 EUR/h VOT, and theno-toll referen
e s
enario. These settings are subsequently denoted as �no-tollestimation� and �6(18) EUR/h VOT estimation�. Measurement errors RMSAqare given in the �rst 
olumn and validation errors RMSAx are shown in these
ond 
olumn. For 
omparison, error measures for the 12 EUR/h VOT refer-en
e simulation and for the additional three simulation runs 
ondu
ted in thestability analysis of Se
tion 5.2.1.1 are also given in ea
h diagram. They areequivalent to running the estimator without sensor input. For ease of 
ompari-son, they are re-drawn over every 
onsidered wprior value in red 
olor. The threeestimation results per wprior value are drawn in blue. All experiments are runfor 250 iterations. Flow and o

upan
y averaging is started after a settling timeof 50 iterations.All results are fairly stable in that there is limited variability among repeatedruns. Often enough, the dots lie on top of ea
h other and 
annot be distin-guished. Reprodu
ible 
onvergen
e is a desirable and not at all self-evidentfeature for a nonlinear estimator. In these experiments, it 
an be observed withgood pre
ision. However, this result is at least partially owed to the use ofa representative measurement data set in all experiments for a parti
ular trues
enario. Another general observation is that the o

upan
y error levels arerelatively small. This is a 
onsequen
e of the network-wide point of view whi
ha

ounts for many links in the periphery that are hardly a�e
ted by the toll.The �rst 
olumn of Figure 5.8 shows that the measurement error RMSAq de-
reases monotonously with wprior. This is plausible: the smaller the belief in thebehavioral model the more weight is put on measurement reprodu
tion. Theresults di�er in the previously hypothesized way in that a large di�eren
e be-tween �ows in the prior and the true s
enario provides substantial informationthat 
an be fa
ilitated for estimation, whereas smaller �ow di�eren
es result ina less fo
used sear
h: The 12 EUR/h VOT prior s
enario is most di�erent fromthe no-toll s
enario, less di�erent from the 6 EUR/h VOT s
enario, and leastdi�erent from the 18 EUR/h VOT s
enario. A

ordingly, the greatest estima-tion improvements over a plain simulation of the prior are 86%, 63%, and 58%,respe
tively.7All results apart from the performan
e ben
hmarks of Se
tion 5.3.3.3 are obtained on a
omputing 
luster where the nodes are equipped with AMD 2.6 GHz Opteron pro
essors andhave at least 2 GB of RAM. On su
h a node, the 
omputing time of an estimation run asdes
ribed in this se
tion is in the order of one day.111



Figure 5.8: Result overview for planning experimentsThe left 
olumn shows measurement errors RMSAq and the right 
olumns shows val-idation errors RMSAx over di�erent wprior values for a true 6 EUR/h VOT s
enario,a true 18 EUR/h VOT s
enario, and a true no-toll s
enario. The three estimationresults per wprior value are represented by blue dots. For 
omparison, the error mea-sures for four plain simulations of the 12 EUR/h VOT prior s
enario are representedby red dots. All experiments are run for 250 iterations. Flow and o

upan
y averagingstarted after a settling time of 50 iterations.112



The se
ond 
olumn of Figure 5.8 shows a non-monotonous relation between
wprior and the validation error RMSAx. As wprior grows, the measurements'in�uen
e vanishes and the estimation quality gra
efully deteriorates towardsthat of a plain simulation . However, as wprior de
reases, a minimum valueof RMSAx is invariably en
ountered, after whi
h a further de
rease of wpriorresults in an in
reased validation error. The attained minimum RMSAx valuere�e
ts the estimator's ability to spatiotemporally extrapolate the available �owmeasurements. The RMSAx improvements follow the same order as the RMSAqresults. When 
ompared to the 12 EUR/h VOT prior s
enario, the estimatora
hieves a 48% improvement for the true no-toll s
enario at wprior = 0.72 or
1.44, a 36% improvement for the true 6 EUR/h VOT s
enario at wprior = 2.88,and even for the subtle true 18 EUR/h VOT s
enario a 20% improvement 
anbe observed at wprior = 2.88. The last improvement is parti
ularly noteworthysin
e fairly little di�eren
e between the 12 and the 18 EUR/h VOT s
enario
an be identi�ed in Figure 5.7 at all. This indi
ates that the estimator is quitepre
ise in that it re
ognizes even su
h subtle di�eren
es. Re
all that all of theseextrapolation results are obtained using only 50 measurement lo
ations out ofaltogether 2 459 links.Figures 5.9 and 5.10 provide �ow and o

upan
y s
atterplots that result fromthe best 
on�guration in ea
h experimental setting. Here and subsequently,the �best� 
on�guration 
orresponds to the wprior value that yields the smallestvalidation error on average. From the a

ording three estimation runs, these
ond best is 
hosen for illustration. The �rst 
olumn of ea
h �gure repeatsthe data obtained during the preparatory simulations, 
f. Figure 5.7, and these
ond 
olumn shows the 
orresponding estimation results. All data points areaveraged over many relaxed iterations su
h that all di�eren
es between left andright 
olumn 
an be as
ribed to a systemati
 e�e
t of the estimator. Overall,the visual impression a�rms the quantitative error measures. Re
all that thepreviously given RMSAq values only a

ount for the 50 sensor lo
ations, whereasthe �ow s
atterplots 
ontain data points for all links in the network.5.2.2.2 Dis
ussion of ResultsThree explanations 
an be given for the in
reased validation errors at small
wprior values. The �rst is over-�tting. Even if the representative measurementsare not 
orrupted by sensor noise, their averaging may result in an in
onsisten
ywith the dynami
s of the underlying nonlinear tra�
 �ow model.8 The se
ondexplanation is under-determinedness in 
ombination with nonlinear dynami
s.There may be many global tra�
 situations that reprodu
e the measurementsequally well. As the behavioral model's e�e
t vanishes with de
reasing wprior,insu�
ient behavioral information is available as a guidan
e towards a plausi-ble solution, and the estimator gets lo
ally stu
k. This e�e
t is possible eventhough the �ow sensors provide supplementary information about free and 
on-gested tra�
 
onditions sin
e this data is still insu�
ient to uniquely de�ne thetra�
 
onditions in the further surroundings of a sensor. Finally, a small wpriore�e
tively a
ts like a large gain on the log-likelihood fun
tion, and the steepnessof this fun
tion 
an have a negative e�e
t on the 
onvergen
e of the underlying8The re
ent experimental results 
on�rm this hypothesis.113



Figure 5.9: Comparison of true and estimated �ows (planning)The �rst 
olumn repeats the preparatory �ow s
atterplots of Figure 5.7. The se
-ond 
olumn shows the a

ording estimation results where the referen
e �ows (on theabs
issa) are 
ompared to their estimated 
ounterparts (on the ordinate). That is,every row 
ontains one s
atterplot that 
ompares a parti
ular true s
enario to theprior s
enario, and it 
ontains another s
atterplot that 
ompares the true s
enarioto the estimation result. These plots already represent average values su
h that alldi�eren
es between left and right 
olumn 
an be as
ribed to a systemati
 e�e
t of theestimator. 114



Figure 5.10: Comparison of true and estimated o

upan
ies (planning)The �rst 
olumn repeats the preparatory o

upan
y s
atterplots of Figure 5.7. These
ond 
olumn shows the a

ording estimation results where the referen
e o

upan
ies(on the abs
issa) are 
ompared to their estimated 
ounterparts (on the ordinate). SeeFigure 5.9 for further explanations. 115



Figure 5.11: RMSx and RMSAx [6 EUR/h VOT estimation℄Validation errors over 250 iterations for the three best experiments with a true 6EUR/h VOT s
enario. RMSx e�e
tively represents the Eu
lidean distan
e of the 6EUR/h VOT referen
e o

upan
ies to the estimation results of a parti
ular iteration.The re
ursive state averaging is turned on after 50 iterations su
h that a smoothRMSAx 
urve bran
hes o� ea
h RMSx 
urve.SA �xed point sear
h algorithm. In either 
ase, a trustworthy behavioral modelthat 
alls for a su�
iently large wprior avoids the problem.Rephrasing this observation in more general terms, a good state reprodu
tiondepends 
ru
ially on data and modeling quality, whi
h 
annot be 
ompensatedfor by the estimation logi
 itself. The measurements need to 
ontain su�
ientinformation for a spatiotemporal extrapolation, and the behavioral simulatormust be stru
turally 
orre
t in that it generates 
hoi
es that are 
ompatiblewith the measurements.Overall, the a
hieved measures of estimation quality must be 
onsidered in lightof the idealized setting in whi
h they were obtained. The use of representativemeasurement data that is free of sensor errors is an idealization. In a real-worldappli
ation, the over-�tting of 
ertainly existing measurement errors must beavoided. This is likely to require larger wprior values than used here and would
onsequently yield a redu
ed measurement and validation data �t. However, it
an be 
on
luded that the estimator performs stru
turally 
orre
t and that theestimation results in a spe
i�
 appli
ation will mainly depend on the availabledata and modeling quality.5.2.2.3 Estimation Dynami
sFinally, a 
loser look at the estimation dynami
s is provided in Figures 5.11through 5.13 for the 6 EUR/h estimation, the 18 EUR/h estimation, and theno-toll estimation. Ea
h �gure shows all three RMSx and RMSAx traje
toriesfor the respe
tive best wprior 
on�guration over 250 iterations. Most RMSx tra-je
tories os
illate fairly stable in the temporally auto-
orrelated manner known116



Figure 5.12: RMSx and RMSAx [18 EUR/h VOT estimation℄Validation errors over 250 iterations for the three best experiments with a true 18EUR/h VOT s
enario. See Figure 5.11 for further explanations.

Figure 5.13: RMSx and RMSAx [no-toll estimation℄Validation errors over 250 iterations for the three best experiments with a true no-tolls
enario. See Figure 5.11 for further explanations.
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from the preparatory simulation runs. The eventual outliers, parti
ularly theblue 
urve in Figure 5.11, may be due to a yet imperfe
tly relaxed posteriordistribution. However, similar periods of �disarranged� dynami
s 
an also befound in the preparatory simulations, where no estimation was involved.All RMSAx 
urves stabilize well in the available 250 iterations. Their speed andreliability of 
onvergen
e in
reases as the prior and the true s
enario be
omemore similar. The 18 EUR/h VOT estimation 
onverges fastest, the 6 EUR/hVOT estimation is somewhat slower yet still very reliable, and the no-toll esti-mation exhibits the least 
onsistent 
onvergen
e behavior. This may result fromthe fa
t that the more distant prior and true s
enario are the longer the estima-tor's way through state spa
e be
omes. In nonlinear 
onditions, the 
han
e of�bran
hing o�� towards di�erent lo
al solutions is likely to in
rease as this waygets longer.Altogether, the estimator 
onsistently generates distin
t state re
onstru
tionimprovements. It extra
ts the relevant information out of limited �ow mea-surements even for very subtle di�eren
es between prior and true s
enario. Itsability to fun
tion in the planning-like setting given here shows its appli
abil-ity in 
onjun
tion with a non-deterministi
, equilibrium-based dynami
 tra�
simulator.5.3 Telemati
s Experiments (Non-Equilibrium Sit-uation)The se
ond half of this 
hapter applies the proposed estimator in 
onjun
tionwith a telemati
s model that repla
es the hitherto assumed SUE 
onditions byan assumption of imperfe
tly informed drivers. This has a signi�
ant in�uen
eon the tra�
 
onditions when 
ompared to the planning s
enario, and the es-timator has, even under stri
t running time 
onstraints, a substantially moredistin
t e�e
t in this setting.Experiments are 
ondu
ted in o�ine and simulated online 
onditions, 
f. Se
tion1.1.3. In o�ine 
onditions, a set of beforehand 
olle
ted measurement data ispro
essed �en blo
k�. In a telemati
s 
ontext, this is useful for the ex postanalysis of a parti
ular day. The online estimator runs in a rolling horizonmode where the estimation of the tra�
 state for a 
ertain point in time hasonly measurements from earlier times available. This setting is 
hara
teristi
for a 
ontinuous tra�
 monitoring problem. The experiments in simulatedonline 
onditions allow to investigate the estimator's real time 
apabilities andto 
on
lude about the s
enario size its 
urrent implementation 
an handle.5.3.1 Rolling Horizon EstimationA rolling horizon logi
 is implemented that runs the estimator in simulatedonline 
onditions. The time period of investigation still is 6 to 9 am. While oneiteration of an o�ine estimator fa
ilitates all measurements from this intervalat on
e, online 
onditions imply that the measurements be
ome available bit bybit as the simulated real time pro
eeds.118



The online estimation starts at 6:30 simulated real time. Only measurementsuntil this moment are available. The estimator iteratively adjusts the simulateddriver behavior to these measurements a

ording to the by now established es-timation logi
 of Se
tion 5.1.2.2. During this �rst estimation period, only asimulation from 6:00 to 6:30 is iteratively adjusted. After a prespe
i�ed numberof iterations, the simulated real time is advan
ed to 6:35, the most re
ent simu-lation is 
ontinued until 7:00 to evaluate the estimator's predi
tive 
apabilities,the measurements from 6:30 to 6:35 be
ome available, and the next estimationperiod from 6:05 to 6:35 begins. All driver behavior until 6:05 is now �xeda

ording to the last iteration of the previous estimation period.It is noteworthy that su
h a simulation logi
 is attra
tive not only for telem-ati
s purposes in online 
onditions. Being able to iterate 
riti
al time intervalsmore frequently than others allows to deploy 
omputational resour
es in a morefo
used way. This also appears useful during the �rst iterations of a planningsimulation where the system is far away from an equilibrium. An eventualsequen
e of �full� planning iterations eliminates the a

rued tenden
y of lo
al
onvergen
e. The danger of imperfe
t 
onvergen
e also needs to be a

ountedfor in online estimation and 
alls for the more elaborate dis
ussion given next.In rolling horizon estimation, behavior is adjusted only within a limited estima-tion period that ends at or shortly before the 
urrent point in time. As timepro
eeds, this estimation period is also shifted. In the subsequent period, alldriver de
isions that have fallen out of the estimation time window are kept �xedat their last values. This is ne
essitated by the estimation window's 
onstantlength, whi
h in turn is enfor
ed by the real time requirement of a 
onstant
al
ulation time per estimation period. Sin
e the estimator 
ontinues to adjustbehavior to measurements, it may 
hange agent de
isions within the given es-timation period in an attempt to 
ompensate for imperfe
t estimates at earliertimes.The problem of suboptimal rolling horizon estimation has already been inves-tigated for tra�
 monitoring problems with aggregate models [23℄. Sin
e anindividual-level analysis is pursued here, a behaviorally more des
riptive pointof view is adopted. The question arises to what degree it is feasible to substitutethe behavior of di�erent travelers when mat
hing sensor data without a

umu-lating in
orre
t behavioral estimates from one estimation period to the next.Feasibility is not to be 
onfused with individual-level realism � no real travelera

ounts for what others do and 
ompares it to tra�
 
ounts. It rather meansthat the 
learly suboptimal behavioral predi
tions for agents that 
ompensatefor imperfe
t estimates of earlier periods still result in future tra�
 
onditionsthat are more realisti
 than an a priori guess without estimation. For example,distorting the behavior of a few travelers at a 
riti
al time and lo
ation in thenetwork might prevent an unrealisti
 gridlo
k in the simulation. This also pre-vents the likewise unrealisti
 rea
tions of many other agents to this gridlo
k. In
onsequen
e, agents that replan in later estimation periods do so in more real-isti
 
onditions and thus with more realisti
 results � even if no measurementsare a

ounted for in these later periods.It is worthwhile to adopt a more formal view on this matter. The behavioralposterior
P (U1 . . .UN |Y) ∝ l(U1 . . .UN |Y)P (U1 . . .UN) (5.8)119



di�ers from its prior P (U1 . . .UN ) only be
ause of the information 
ontained inthe measurement likelihood l(U1 . . .UN |Y), 
f. (4.19) and (4.24). Fixing thebehavior of some agents at unreasonable values degrades the estimation qualityby means of this likelihood.This e�e
t 
an be substantially mildened by the behavioral simulator itself. A
hameleoni
 behavioral prior that admits even highly unrealisti
 a
tions with alow yet non-zero probability is likely to be inappli
able in 
onjun
tion with asuboptimal estimator. If, in suboptimal 
onditions, the likelihood is badly ap-proximated, the 
hoi
e probabilities of implausible a
tions may be ex
essivelyin
reased. However, if the behavioral model simply does not generate implau-sible a
tions, i.e., if implausible 
hoi
es are sele
ted with zero probability, noBayesian estimator 
an ever generate a positive 
hoi
e probability by mere mul-tipli
ation in fundamental relation (5.8). The behavioral model pla
eholder usedhere is robust in this regard sin
e it generates alternative routes only based onreasonable VOT variations. Its simpli
ity prevents it from ever generating a�strange� route that may even be sele
ted during estimation be
ause of a poorlikelihood approximation.A 
omputational impli
ation of these observations relates to the fa
t that theestimator linearizes the log-likelihood. If the likelihood is impre
ise, there islittle meaning in running a large number of iterations per estimation periodin order to �nally draw from a posterior that is based on an utmost pre
iselinearization of the a

ording log-likelihood. The experiments of Se
tion 5.3.3.2provide more insight into this issue.5.3.2 S
enario Generation5.3.2.1 Simulation of Imperfe
tly Informed DriversThe �rst day after the implementation of the toll is simulated. In this set-ting, drivers are aware of typi
al travel times without toll and of the toll itself.However, they have not yet learned the alterations in tra�
 
onditions thatresult from other travelers' 
hanged behavior in response to the toll. Su
hlikeimperfe
tly informed drivers are simulated in the following way.1. A planning simulation without toll is run. When the simulation attainsrelaxed 
onditions, time-dependent travel times for all links are writtento �le over a long sequen
e of iterations. The travel time distribution
aptured by these �les is used in all subsequent experiments as a repre-sentation of drivers' memory of the no-toll situation.2. When running the telemati
s simulation, this sequen
e of �les is pro-vided to pre-trip replanning travelers instead of the last iteration's traveltimes. The travelers base their routing de
isions on this memory, plus the(known) toll. This allows to run the simulation in an iterative mannerand to maintain variability in the tra�
 
onditions while avoiding a learn-ing e�e
t that results if a
tually simulated travel times are fed ba
k forreplanning. 120



Figure 5.14: RMS(A)x [no-toll planning/telemati
s simulation℄The red 
urves show RMS(A)x [no-toll planning simulation℄ and the blue 
urves showRSM(A)
x
[no-toll telemati
s simulation℄ over 500 iterations. The validation data fromthe no-toll referen
e planning s
enario is used as referen
e data in all error measures.Sin
e the simulations start with an already relaxed plans �le, the re
ursive state av-eraging is turned on from the very �rst.For estimation, the overall logi
 of Se
tion 5.1.2.2 is maintained, only that re-planning is now based on the previously generated driver memory. The onlystru
tural di�eren
e between a prior and a true telemati
s s
enario is a di�erentVOT. Sin
e every estimation starts with a plans �le that is drawn from a sta-ble simulation of its respe
tive prior s
enario, all transients during estimationre�e
t the transition from the prior to the estimated posterior distribution.5.3.2.2 Investigation of S
enario StabilityFigure 5.14 shows, in red 
olor, the RMSx and RMSAx 
urves for 500 iterationsof a planning simulation in the no-toll 
ase when 
ompared to the referen
e datafor that s
enario. Sin
e these iterations start from an already relaxed plans �le,the re
ursive state averaging is turned on from the very �rst. Three further
urve pairs are drawn in blue. They result from an identi
al set-up as the �rstrun, only that the travel times on whi
h replanning is based are now taken fromthe memory �les that were written during the �rst simulation.Using the memory �les results in an in
reased variability of the tra�
 
onditions.This 
an be seen from the greater variability of the blue RMSAx 
urves, whi
hindi
ates that the network states are drawn from a wider distribution than inthe initial simulation. The higher overall levels of the blue RMSAx 
urves alsoshow that a moderate additional error is introdu
ed. The higher level of the blueRMSx 
urves results from the 
ombination of both e�e
ts. However, all blueRMSx 
urves exhibit a similar stru
ture. This shows that, even if the telemati
slogi
 has a side e�e
t on the simulation dynami
s, this e�e
t is fairly stable.The sour
e of the di�eren
e between the original simulation and the telemat-i
s simulations is that the replanning agents are sele
ted at random in every121



iteration. That is, even if the available information itself is identi
al in all sim-ulations, di�erent travelers at di�erent lo
ations and with di�erent destinationsrea
t to it. The resulting deviations in the tra�
 
onditions are not a

ountedfor by the replanning agents. This 
an be seen as an in
reased per
eptionalerror, whi
h, in the given setting, also in
reases the variability of the resultingtra�
 
onditions.5.3.2.3 Measurement and Validation Data GenerationThe previous se
tion shows that the dynami
s of telemati
s simulations are evenless well-behaved than their planning 
ounterparts su
h that the argumentationof Se
tion 5.2.1.2 applies here with even stronger emphasis.Consequently, representative measurement and validation data sets are againgenerated by averaging. That is, a telemati
s referen
e simulation is run forthe no-toll s
enario and for the 6,12, and 18 EUR/h VOT s
enario.9 Flows ando

upan
ies are averaged over 400 stable iterations of ea
h simulation. Theseaverage values 
onstitute the measurement and validation data sets used as thereferen
e data in all subsequent evaluations and RMS(A) error measures.There is a 
on
eptual di�eren
e in the validation of a planning and a telemati
sestimator. In a planning appli
ation, the goal is to estimate a posterior that issimilar to the true distribution of tra�
 states (from whi
h a draw is realizedevery day). In a telemati
s setting, reality 
onsists of a single day only. Con-sequently, a telemati
s posterior must represent the knowledge about a singlerealization of tra�
 
onditions only. This di�eren
e is disregarded in the sim-pli�ed setting 
onsidered here sin
e only a single, representative referen
e dataset is used to validate the planning and the telemati
s estimator respe
tively.5.3.2.4 Comparison of S
enariosFigure 5.15 
ompares �ows and o

upan
ies of the 12 EUR/h VOT (telemati
s)referen
e simulation to the 6 EUR/h VOT referen
e simulation, the 18 EUR/hVOT referen
e simulation, and the no-toll referen
e simulation. Again, all datapoints are 400-iteration averages, and, again, they apply to the simulated timeinterval from 8:30 until 8:35 am.The 12 EUR/h VOT s
enario deviates remarkably from the no-toll s
enario butdoes not di�er mu
h from the other simulations with a non-zero toll. This is aresult of the la
king equilibrium assumption: At the �rst day of the toll's im-plementation, the presumably most advantageous route 
hoi
e for most driversthat so far have traversed the toll area is now to avoid it but to bypass it assharply as possible in order to minimize the in
rease in travel time. This, how-ever, 
auses an unforeseeable 
ongestion on the roads that immediately en
ir
lethe toll zone. The no-toll s
enario is the only s
enario in whi
h this 
ongestiondoes not o

ur.9The no-toll telemati
s referen
e simulation di�ers somewhat from the no-toll planningreferen
e simulation be
ause of the �le-based driver memory in the telemati
s simulationlogi
. 122



Figure 5.15: S
atterplots for 
omparison of telemati
s referen
e simulationsThe s
atterplots 
ompare data from the 12 EUR/h VOT telemati
s referen
e simula-tion (on the ordinate) to the other telemati
s referen
e simulations (on the abs
issa).The �rst 
olumn 
ompares �ow rates and the se
ond 
olumn 
ompares o

upan
ies.All s
atterplots 
ontain data points for all links in the network. The data points applyto the simulation time interval from 8:30 to 8:35. All data points represent averagevalues over 400 iterations. 123



Figure 5.16: Result overview for telemati
s o�ine experimentsThe left diagram shows measurement errors RMSAq and the right diagram shows val-idation errors RMSAx over di�erent wprior values for a 12 EUR/h VOT prior s
enarioand a true no-toll s
enario. The three estimation errors per wprior value are representedby blue dots. For 
omparison, the error measures for three plain simulations of theprior s
enario are represented by red dots. All experiments are run for 250 iterations.Flow and o

upan
y averaging is started after a settling time of 50 iterations.Sin
e the estimator's ability to tra
k rather subtle deviations is already demon-strated in the planning experiments, only the no-toll s
enario is subsequentlyused as the syntheti
 reality. This implies that the real drivers e�e
tively ignorethe toll's e�e
t. Keeping in mind that only the �rst day after the installationof the toll is simulated, su
h a behavior may either result from unawareness orfrom 
uriosity about the involved te
hni
al installations. Again, the purpose ofthese experiments is to sound the 
apabilities of the estimator, not to dis
ussroad pri
ing issues themselves.105.3.3 Experimental ResultsIn all telemati
s experiments, the estimator adjusts a 12 EUR/h VOT priors
enario to measurements that are obtained from a true no-toll s
enario.5.3.3.1 O�ine EstimationTo begin with, the rolling horizon mode is not fa
ilitated and a sequen
e ofo�ine estimations is run over the entire 6 to 9 am time period. Figure 5.16shows the resulting error measures over di�erent wprior values. The measurementerror RMSAq is given on the left, and the validation error RMSAx is given on10The re
ent experimental results indi
ate that the estimator works equally well if the priors
enario and the syntheti
 reality are ex
hanged. Su
h a setting, where the real rea
tion to thetoll is mu
h stronger that a priori expe
ted, 
ould result from an overrea
tion of the driversto the toll. 124



the right. The results of three plain simulation runs of the 12 EUR/h VOTprior s
enario are represented by red dots, and the three estimation results per
wprior value are drawn in blue. All experiments are run for 250 iterations. There
ursive state averaging turned on after a settling period of 50 iterations.Both, the simulation and the estimation results are very stable; most dots lie ontop of ea
h other. This even greater stability than in the planning 
ase despiteof the greater di�eren
e between the prior and the true s
enario is as
ribed tothe simpler simulation logi
 that now dispenses with the equilibrium-generatingtravel time feedba
k between subsequent iterations. The estimator generatesremarkable improvements. For wprior = 2.88, it improves RMSAq by 78% andRMSAx by 82% over a plain simulation of the prior s
enario. The severe 
onges-tion of the 12 EUR/h VOT prior s
enario that does not o

ur in the simulatedreality is su

essfully prevented by the estimator. The �ows and o

upan
iesof the best estimation run (sele
ted a

ording to the same 
riterion as in theplanning experiments) are opposed to the referen
e data for the true s
enario inthe s
atterplots of Figure 5.17. Sin
e these data points are averaged over manyiterations, their di�eren
es leave no doubt about the estimator's systemati
 andbene�
ial in�uen
e.115.3.3.2 Online Estimation in Rolling Horizon ModeThe same estimation problem as before is now ta
kled in rolling horizon mode.With a real-time appli
ation in mind, an evaluation of the estimator perfor-man
e in terms of average system states that are obtained over hundreds ofiterations is now inappropriate. Therefore, only the RMSx validation error issubsequently evaluated. A temporally disaggregate point of view is adopted by
onsidering ea
h estimation period individually. Predi
tive 
apabilities are alsoinvestigated.A rolling horizon appli
ation 
hallenges the estimator more than the previouso�ine experiments be
ause of the di�erent use of the travel time memory �les.An identi
al memory �le sequen
e is used for measurement generation and foro�ine estimation. The rolling horizon estimator still uses the same �les butloads a new �le in every iteration of every estimation period. Sin
e these �lesare now applied in a temporal 
ontext that is di�erent from the setting in whi
hthe measurements were generated, any advantage the estimator may have hadduring o�ine estimation is now pre
luded.A prior weight of wprior = 2.88 is maintained in all runs sin
e this settinga
hieved the best results in the preparatory o�ine experiments. Figure 5.18provides separate results for every 30-minute estimation period ending at 7through 9 am. The blue bars represent (from left to right) the RMSx validationerrors obtained at the end of 5, 10, 20, 30, 40, and 50 iterations per estimationperiod. They are drawn on top of red validation error bars that result from plainrolling horizon simulations with respe
tive iteration numbers. These simulationsfollow an identi
al logi
 as the estimator, only that the measurements are nota

ounted for.11Results of 
omparable quality were re
ently obtained in a setting where the sensor data isnot averaged over many iterations but where it is taken from a single iteration of the telemati
ssimulation that generates the syntheti
 reality.125



Figure 5.17: Comparison of true and estimated �ows/o

upan
ies (telemati
s)The �rst row 
ontains �ow s
atterplots, and the se
ond row shows o

upan
y s
atter-plots. The �rst 
olumn repeats the �no-toll vs. 12 EUR/h VOT� s
atterplots of Figure5.15. The se
ond 
olumn shows the a

ording estimation results where the referen
edata (on the abs
issa) is 
ompared to its estimated 
ounterpart (on the ordinate).That is, every row 
ontains one s
atterplot that 
ompares the true no-toll s
enario tothe 12 EUR/h VOT prior s
enario, and it 
ontains another s
atterplot that 
omparesthe true s
enario to the estimation result. These plots already represent average valuessu
h that all di�eren
e between left and right 
olumn 
an be as
ribed to a systemati
e�e
t of the estimator.
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Figure 5.18: RMSx [30 min. rolling horizon estimation℄The blue bars represent (from left to right) validation error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations per estimation period.They are drawn on top of red error bars that result from plain rolling horizon simulations with respe
tive iteration numbers.
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The estimation and simulation errors rise over time as the tra�
 volumes in-
rease in the morning rush hour. The plain simulation errors do not system-ati
ally depend on the number of iterations sin
e the deployed initial plans �lealready results from a stable telemati
s simulation. A pronoun
ed di�eren
e be-tween simulation and estimation 
an be observed as the 
ongestion around thetoll zone be
omes severe in the prior s
enario. Overall, the estimator redu
esRMSx by up to 70% in the later periods. Condu
ting only 5 or 10 iterationsper estimation period results in lower improvements when 
ompared to 20 iter-ations and more. However, running beyond 20 iterations yields only marginalimprovements.Figure 5.19 shows the same setup of validation errors as before, only that nowthe average predi
tion errors over a 0 to 30 minute time interval are given. Thisand the previous diagram mat
h temporally in the following way: An estimationerror drawn, e.g., over the 8:30 label is generated at this parti
ular time andthus applies to the interval from 8:00 to 8:30. A predi
tion result that is drawnover the 8:30 label is generated at 8:00 for a 30 minute predi
tion window and
onsequently applies to the same interval. A 
omparison of both �gures yieldsthe expe
ted diagnosis that the estimation quality is generally higher than thepredi
tion quality. However, an estimation-based predi
tion is 
learly betterthan a plain simulation. Again, the predi
tion results for 5 and 10 iterationsper estimation period are inferior when 
ompared to those with 20 iterationsand more. The 
omputational e�ort of exe
uting more than 20 iterations perestimation period does not result in signi�
antly improved predi
tions. Overall,the estimator redu
es the RMSx predi
tion error by 50% to 60% in the latertime periods.Figures 5.20, 5.21, and 5.22 provide separate RMSx plots for the predi
tion in-tervals from 5 to 10, 15 to 20, and 25 to 30 minutes ahead in time. Here, thetime labels simply indi
ate when the predi
tion is made. The quality deterio-rates gra
efully as the predi
tion time in
reases, starting from a 60% to 65%improvement for 5 to 10 minutes, attaining 55% to 60% for 15 to 20 minutes, andyielding around 50% even for the 25 to 30 minute predi
tion. This remarkablysustained improvement 
an be tra
ed ba
k to the rather restri
ted behavioraldegrees of freedom a simulated traveler fa
es. It also bene�ts from the fa
t thatonly pre-trip replanning is a

ounted for su
h that a on
e estimated de
ision ismaintained for the entire duration of a trip. Finally, the deterministi
 tra�
dynami
s 
ertainly have a positive in�uen
e on predi
tability. However, evenafter all these words of reservation, the results show 
learly that a rolling hori-zon estimation and predi
tion for this parti
ular s
enario is near-optimal if 20iterations per 5-minute estimation period are allowed for.5.3.3.3 Computational Performan
eThe 
urrent implementation of the estimator a

omplishes 6 iterations per 5-minute interval in the given s
enario. That is, near-optimal results requireanother estimation speedup of 3 to 4. Given the 
onsidered problem's size,this is an en
ouraging result. After all, one iteration 
onsists of a 30 minutetra�
 simulation during the morning rush hour, 
omprises a behavioral modelthat relies on time-dependent best path 
al
ulations, and 
ondu
ts a 
omplete128



Figure 5.19: RMSx [0-30 min. rolling horizon predi
tion℄The blue bars represent (from left to right) 0-30 minute predi
tion error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respe
tive iteration numbers.
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Figure 5.20: RMSx [5-10 min. rolling horizon predi
tion℄The blue bars represent (from left to right) 5-10 minute predi
tion error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respe
tive iteration numbers.
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Figure 5.21: RMSx [15-20 min. rolling horizon predi
tion℄The blue bars represent (from left to right) 15-20 minute predi
tion error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respe
tive iteration numbers.
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Figure 5.22: RMSx [25-30 min. rolling horizon predi
tion℄The blue bars represent (from left to right) 25-30 minute predi
tion error measures RMSx obtained after 5, 10, 20, 30, 40, and 50 iterations perestimation period. They are drawn on top of red error bars that result from plain rolling horizon simulations with respe
tive iteration numbers.
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spatiotemporal linearization of the resulting tra�
 dynami
s. Even with only6 iterations per 5 minutes, the estimator yields substantial improvements when
ompared to the prior s
enario, whi
h, however, is likely to bene�t from thesimple behavioral model as explained in Se
tion 5.3.1.12The 
omputing times are obtained on a 3.2 GHz Pentium 4 stand-alone ma
hinewith 2 GB of RAM. File i/o 
onstitutes a major bottlene
k in the 
urrentlysingle-threaded implementation of the estimator. A large fra
tion of this �lei/o results from the ne
essity to 
al
ulate sensitivities of ma
ros
opi
 systemdynami
s ba
kwards through simulated time, 
f. Se
tion 4.1.2. This requiresto store all ma
ros
opi
 states during the simulation and to pro
ess them ba
k-wards during the linearization. Even if the sparsity of this data be
ause of thesimulation s
heme on variable time s
ales is a

ounted for, 
f. Se
tion 2.5, thisadds up to 3.2 MB of binary data per minute of simulation. Sin
e the resulting
4 608 MB for a whole day ex
eed the available RAM of most ma
hines deployedin this work, the data is written to hard disk in 5-minute 
hunks of 16 MB duringthe simulation. These �les are then reloaded for the linearization. This allowsto estimate the given s
enario on a ma
hine with 2 GB of memory. However,for a limited estimation period of only 30 minutes, the data 
ould be kept inRAM as well. Therefore, the approximate 25% of running time that are spentwaiting for �le i/o are omitted when measuring the estimator's 
omputationalperforman
e.Altogether, the estimator a
hieves signi�
ant improvements in a telemati
s set-ting. Even if the available s
enario is somewhat too large to allow for near-optimal results in real-time 
onditions, feasible problems have the same orderof magnitude: Sin
e the 
omputational e�ort rises at least linearly with thenetwork and population size, a 600+ link s
enario with 50 000+ agents is imme-diately approa
hable by the 
urrent implementation in real time.13 A more ex-tensive prepro
essing of the Berlin network illustrated in Figure 2.8 that mergesthe many detailed interse
tions into single nodes might already su�
e to runthis very s
enario in real-time.5.4 Further Dis
ussionThe demonstrated estimator does not depend on a 
hoi
e set enumeration. Thissuggests its appli
ation for 
hoi
e set generation itself. Sin
e only best path
al
ulations are used in the present example, why not run these 
al
ulationsdire
tly based on the modi�ed utilities instead of �rst making a well-informedguess about possible routing alternatives and only then 
hoosing a route basedon these modi�
ations? To make a long story short: Choi
e set generation is amodeling problem, and tra�
 
ounts alone do not provide su�
ient informationto substitute for the stru
tural information 
ontained in su
h a model. However,12The re
ent experiments in whi
h the sensor data is not averaged over many iterations
onverge in roughly half as many iterations but stabilize at somewhat higher error levels.Apparently, the estimator spends signi�
ant amounts of time in the experiments given heretrying to extrapolate 
ontradi
tory measurements that result from the averaging over manyiterations.13The re
ent results allow for a 1 200+ link s
enario with 100 000+ agents.133



this neither implies that tra�
 
ounts are useless for 
hoi
e set generation northat the proposed estimator is 
ategori
ally unsuited for this purpose.The 
onsidered behavioral model generates its 
hoi
e set by running a bestpath algorithm that minimizes travel times whi
h are generated by the mobilitysimulation. These travel times exhibit a parti
ular 
orrelation stru
ture thatresults from the simulated tra�
 dynami
s. This very property enables thegeneration of variable routes only based on best path 
al
ulations without everresorting to the expli
it simulation of a per
eptional error by drawing from amultidimensional travel time distribution with an expli
itly known 
ovarian
ematrix.In 
ontrast, the estimator only disposes of lo
al measurement information andpro
esses this information in a likewise lo
al (linearization-based) manner. Ifonly few sensors are available, the measurement data is sparsely distributed overthe network. In order to infer a driver's global utility per
eption from this infor-mation, a model is required that 
aptures the network-wide 
orrelation of traveltimes. In the given simulation system, this 
orrelation is not a

ounted for bythe time-dependent best path algorithm itself but results from the simulatedtravel times based on whi
h this algorithm is run. If sparse utility 
orre
tionsare added to these travel times during the 
hoi
e set generation, routes resultthat lo
ally a

ount for the 
orre
tion terms but globally still adhere to the
orrelation stru
ture of the a priori assumed travel times. If su
hlike generatedroutes di�er su�
iently from those that a
tually 
aused the measurements, theestimator 
an only sele
t among inappropriate prior routes and newly generatedroutes that are likewise unrealisti
ally stru
tured. The result is lo
al 
onver-gen
e to a poor solution.A visual inspe
tion of routes that are generated based on estimated utility 
or-re
tions has been 
ondu
ted. Their interpretation is di�
ult sin
e su
h routesinvariably a

ount for both travel times and utility 
orre
tions. However, adistin
t in
rease in zig-zagging as one might expe
t in 
onsequen
e of the lo
alutility 
orre
tions 
annot be observed. Still, even plausibly looking routes 
an
onsist of turning move sequen
es that are implausible given a 
ertain 
orrela-tion pattern of the travel times. Within the s
ope of this work, it is 
on
ludedthat a more rigorous analysis of the simulation-based best-path route 
hoi
emodel itself is ne
essary before its impli
ations for the estimation 
an be 
lari-�ed. Re
all that this parti
ular model is only implemented as pla
eholder andthat the estimator is not 
onstrained to its deployment.Again, the above dis
ussion addresses a modeling problem. The estimator is notunable to provide useful information for 
hoi
e set generation; it just is unableto solve the generally impossible task of inferring a network-wide utility pat-tern from arbitrarily few observations. If a model was at hand to meaningfully
omplete lo
ally estimated utility 
orre
tions, 
hoi
e set generation 
ould besupported by measurements. This type of model would represent a rather 
om-mon aspe
t of travelers' information pro
essing. For example, a radio messageregarding a single 
onstru
tion site is likely to motivate a driver to 
ir
um-navigate the surroundings of this site as well sin
e experien
e tea
hes that theresulting obstru
tions are not 
on
entrated at the single lo
ation indi
ated onthe radio. That is, the driver is aware of 
orrelations in the network 
onditions.One might argue that full sensor 
overage should allow for 
hoi
e set generation134



without further modeling support. However, this also would require to a

ountfor measurement 
orrelations in the likelihood fun
tion. This is avoided here by
hoosing sparse sensor lo
ations. Sin
e travel times are one parti
ular type oflink-related measurements, the problem of 
orrelation modeling would not besolved but only be shifted in a di�erent 
ontext. In addition, full sensor 
overage
annot be expe
ted in real-world 
onditions.A meaningful interpretation of the lo
al utility 
orre
tions in the 
losing exampleof Chapter 4 was possible be
ause of its simple stru
ture. In the more generalsetting 
onsidered here, su
h an interpretation su�ers from the same problemsas the dire
t appli
ation of utility 
orre
tions for route generation: Every singleturning move's utility 
orre
tion is only meaningful given the behavioral modelthat is used for its identi�
ation. That is, the utility 
orre
tions are meaningfulon route level � with the route generated based on simulated travel times witha parti
ular 
orrelation stru
ture � but not ne
essarily on turning-move level.The behavioral model represents the global 
ontext that 
annot be 
aptured bylo
al utility 
orre
tions. This interplay of modeling and estimation does notinvalidate the estimator's ability to fun
tion with an arbitrary implementationof the behavioral simulator. It does, however, ne
essitate an interpretation ofthe estimation results in terms of the parti
ular behavioral model based onwhi
h they are obtained.Summarizing, this 
hapter demonstrates the proposed estimator's appli
abilityin 
onjun
tion with a fully dynami
al planning or telemati
s simulator andveri�es its 
omputational feasibility for a s
enario of pra
ti
ally relevant size.
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Chapter 6Summary and OutlookThis 
hapter summarizes the present dissertation, highlights its key �ndings,and gives an outlook on further resear
h topi
s.6.1 Re
apitulation of WorkThe goal of this resear
h is (i) to develop a behavioral tra�
 state estimator fora multi-agent simulation and (ii) to demonstrate its appli
ability to a s
enarioof pra
ti
ally relevant size. Sin
e a model-based estimation approa
h is 
hosen,experimental investigations 
all for exe
utable models of reasonable performan
eand realism. This applies to both the behavioral and the physi
al simulator.The development of a ma
ros
opi
 tra�
 �ow model in Chapter 2 results ina 
omputationally e�
ient mobility simulation that is appli
able to generalnetworks and has linearizable dynami
s. Its 
omputational performan
e also
ontributes to an e�
ient solution of the estimation problem itself. The modelis en
apsulated in a general state spa
e representation and thus 
an be repla
edby a di�erent implementation, if required.This ma
ros
opi
 mobility simulation is 
ombined with a mi
ros
opi
 driverrepresentation in a mathemati
ally tra
table way by the mixed mi
ro/ma
rosimulation logi
 presented in the �rst half of Chapter 3. This logi
 links anyma
ros
opi
 mobility simulation that takes �ow splits as input parameters to anymi
ros
opi
 behavioral model that generates individual-level turning de
isionsat interse
tions and network entry/exit points. The representation of arbitrarymobility patterns in terms of su
h turning de
isions is demonstrated in these
ond half of Chapter 3.These modeling e�orts establish a linearizable relation between individual driverbehavior and aggregate tra�
 
hara
teristi
s. Based on this te
hni
ally pivotalresult, a number of behavioral estimators is developed in Chapter 4. First,a heuristi
 approa
h is presented. It is based on a more generally appli
ablemethod to steer simulated travelers su
h that a general obje
tive fun
tion ofma
ros
opi
 system states is in
reased. For estimation purposes, this obje
tive136



fun
tion is 
hosen as the log-likelihood of the available aggregate sensor data,and the agents are steered towards a ful�llment of the measurements.Se
ond, a statisti
ally more rigorous re
onsideration of the estimation prob-lem is given, and two operational Bayesian estimators are developed: (i) Thea

ept/reje
t estimator fun
tions without further assumptions about the behav-ioral prior. Its takes an in
reased number of draws from this prior and retainsonly a subset of these draws. This subset is representative for the behavioralposterior. (ii) The utility-modi�
ation estimator adds a 
orre
tion term to thesystemati
 utility of every evaluated alternative. Given a parti
ular form ofthe behavioral prior, the simulation system then draws immediately from thebehavioral posterior. The heuristi
 estimator is found to 
oin
ide te
hni
allywith the UM estimator and 
an thus be re-analyzed in the Bayesian setting.The development of these estimators is aimed at but not tailored to an appli
a-tion in 
onjun
tion with the MATSim simulation software. Sin
e MATSim wasin a transitional period of re-implementation during this work, stable interfa
es
ould not be set up and MATSim's emerging modeling 
apabilities 
ould not befa
ilitated. In hindsight, this is not 
onsidered as a disadvantageous situation.Sin
e no predetermined simulator implementation was at hand, no �exibilitywas given away by restri
ting the developments towards a parti
ular systemdesign. At the time of this writing, an appli
ation in 
onjun
tion with MATSimis 
on
eptually and te
hnologi
ally feasible. Guidelines for this undertaking aregiven in Se
tion 6.4.5. Still, the estimators' appli
ability to systems di�erentfrom MATSim is not hindered by a 
on�nement to this parti
ular software.Experimental results are presented in Chapter 5. Sin
e the proposed estimationsystem is of substantial 
omplexity, it is advisable to obtain a good understand-ing of its working by an initially syntheti
 test 
ase that allows for greatestexperimental 
ontrol. It is demonstrated that the method is able to adjustindividual-level behavior based on a limited amount of tra�
 
ounts su
h thata signi�
antly improved pi
ture of the global tra�
 situation is obtained. Themethod is found to be 
omputationally 
apable of dealing with s
enarios of pra
-ti
ally relevant size and to be appli
able in both a planning and a telemati
ssetting. The simple behavioral model pla
eholder implemented for experimentalpurposes is found to 
onstitute a major limitation of 
ontinuative investigations,and the need for advan
ed behavioral modeling is a

entuated.Additional real world experiments would go beyond the s
ope of this work.The expe
ted e�ort to prepare and implement su
h a test 
ase is substantial[129℄. The syntheti
 experiments given here level the ground for this undertak-ing. Guidan
e on how to pro
eed towards real-world experiments is provided inSe
tion 6.4.1.6.2 Resear
h ContributionsThe key results of this work are highlighted in this se
tion. The listing is 
on�nedto novel 
ontributions to the state of the art.1. Development of a ma
ros
opi
 mobility simulation with the following fea-tures: 137



• phenomenologi
al 
onsisten
y with the 
ell-transmission model,
• simulation of nodes with an arbitrary number of upstream and down-stream links,
• approximate linearization of tra�
 �ow dynami
s with respe
t to 
ello

upan
ies (system states) and turning fra
tions (exogenous param-eters),
• fast exe
ution by a simulation logi
 that runs all network elementson individual time s
ales.2. Development of a 
ombined mi
ro/ma
ro mobility simulation with thefollowing features:
• 
ompatibility with broad 
lasses of ma
ros
opi
 tra�
 �ow modelsand mi
ros
opi
 driver representations,
• linearizability in that the e�e
t of any driver's behavior on the globalnetwork 
onditions 
an be linearly predi
ted,
• 
omputational e�
ien
y in that only a sample of the mi
ros
opi
driver population is required for simulation,
• 
omputational e�
ien
y by 
ompatibility with the ma
ros
opi
 sim-ulation logi
 on variable time s
ales,
• removal of most vehi
le dis
retization noise from the ma
ros
opi
tra�
 
hara
teristi
s.3. Formalization of the physi
al aspe
ts of a partial or whole-day plan as asequen
e of turning moves on a slightly expanded network su
h that thelinearizability of the global network 
onditions with respe
t to individualplan 
hoi
e is maintained.4. Development of a general method to steer mi
ros
opi
 agent behaviorsu
h that a general obje
tive fun
tion of ma
ros
opi
 tra�
 
onditions isimproved.5. Development of two operational behavioral estimators with the following
ommon features:
• estimation of fully disaggregate behavior from aggregate tra�
 mea-surements and prior behavioral knowledge,
• 
ompatibility with a purely simulation-based representation of thebehavioral prior information,
• no requirement of a 
hoi
e set enumeration,
• 
omputational e�
ien
y that allows for an appli
ation to large s
e-narios.6. In parti
ular, development of the following distin
t estimators:
• an a

ept/reje
t estimator that takes an in
reased number of drawsfrom an arbitrary behavioral prior and retains only a subset of thesedraws that is representative for the behavioral posterior,138



Figure 6.1: Estimated quantitiesTwo state estimation problems and two parameter identi�
ation problems are illus-trated in this �gure: (1) estimation of behavior (mental states), (2) estimation oftra�
 
onditions (physi
al states), (3) identi�
ation of physi
al model parameters, (4)identi�
ation of behavioral model parameters.
• a utility-modi�
ation estimator that 
orre
ts the systemati
 utilityof every evaluated alternative su
h that, given a 
ertain stru
ture ofthe behavioral prior, the simulation system draws immediately fromthe behavioral posterior. A heuristi
 appli
ation of this estimator fordi�erent or unknown priors is possible.7. Experimental investigations in a syntheti
 yet fully dynami
al setting withthe following 
on
lusions:
• Given only a limited amount of tra�
 
ounts, the global 
orre
tness of(i) a SUE planning simulation and (ii) a (rolling-horizon) telemati
ssimulation is 
onsistently and signi�
antly improved by the proposedestimator;
• the method is 
apable of handling online estimation problems of pra
-ti
ally relevant size in real time;
• sin
e aggregate tra�
 measurements 
ontain only limited informa-tion, a stru
turally 
orre
t behavioral model is essential for goodestimator performan
e.6.3 Classi�
ation of ResultsAs a transition to some of the further resear
h topi
s, Figure 6.1 illustratesthe simulation system in terms of only two 
omponents, the behavioral modeland the mobility simulation. The lower feedba
k loop indi
ates that not onlybehavior in�uen
es tra�
 
onditions, but also tra�
 
onditions a�e
t behavior.The estimator 
ompares simulated and real tra�
 
onditions and adjusts thesimulation system based on this 
omparison.Four di�erent types of adjustment are identi�ed in this �gure. Number 1, esti-mation of behavior, is treated in this dissertation: The estimation of a plan set

U1 . . .UN 
omprises all aspe
ts of the individual drivers' mental states that are139



ne
essary to de�ne all ma
ros
opi
 states X in the mobility simulation. Thisestimation approa
h relies on (i) a deterministi
 mobility simulation and (ii)an available parameterization of the underlying behavioral and physi
al model
omponents.A relaxation of these assumptions leads to the three further estimation tasksindi
ated in Figure 6.1. They are: (2) estimation of non-deterministi
 physi-
al system states, (3) parameter identi�
ation for the mobility simulation, and(4) parameter identi�
ation for the behavioral model. Items (2) and (3) aredis
ussed in Se
tion 6.4.2, and item (4) is 
onsidered in Se
tion 6.4.4.6.4 Further Resear
h Topi
sVarious dire
tions for future resear
h are thinkable in 
ontinuation of this dis-sertation. This se
tion stru
tures these topi
s and provides guidan
e on furtherdevelopments.6.4.1 Towards a Real-World Appli
ationThis work was 
ondu
ted with a real-world appli
ation in mind and 
onse-quently a

ounts for typi
al data requirements, performan
e issues, and modesof operation. The following matters need to be addressed in the preparation ofa real-world test 
ase.6.4.1.1 Model Calibration and ValidationModel-based state estimation 
ru
ially depends on stru
tural model 
orre
tness.Only a good understanding of reality allows to meaningfully inter- and extrapo-late the information 
ontained in limited measurements. This statement equallyapplies to the physi
al and the behavioral model 
omponents.The proposed mobility simulation exhibits several novel features: general inter-se
tions, variable time s
ales, and the 
ombined mi
ro/ma
ro simulation logi
.These developments were ne
essary to realize an estimator prototype that isappli
able to general s
enarios of realisti
 size. While the syntheti
 nature ofthe presented experiments 
ir
umvents the need to 
alibrate and validate thephysi
al model, additional e�ort in this regard is ne
essary before a real-worldappli
ation 
an be attempted. Sin
e the ma
ros
opi
 mobility simulation is en-
apsulated within a general state spa
e representation, it may even be repla
edby an entirely di�erent model that is more appli
able in a parti
ular setting.As to behavioral modeling, a stru
turally 
orre
t behavioral simulator must beexternally provided. RUMs are parti
ularly appli
able here be
ause of theirsophisti
ated 
alibration and validation pro
edures. However, the estimatoritself is indi�erent to the applied model's degree of mathematization, and asimple rule-based model is te
hni
ally just as feasible for estimation as a full-blown RUM. 140



6.4.1.2 Measurement Sour
es and Sensor TypesThe experimental investigations of this work fo
us on �ow measurements be-
ause of their predominant role in tra�
 monitoring. However, the generalformalism presented in Se
tion 4.2.1 allows to utilize a greater variety of sensordata. As noted there, any aggregate measurement that is a fun
tion of the stateof a link or a turning 
ounter 
an dire
tly be fed into the estimation pro
edure.If the measurements are not statisti
ally independent, their 
ovarian
e stru
tureneeds to be identi�ed before the behavioral estimator 
an be applied.Some advan
ed data sour
es are addressed below. While they are not a

ountedfor in this dissertation, the fully disaggregate behavioral modeling assumptionis at least stru
turally adequate for their future 
onsideration.Any vehi
le that is equipped with a GPS re
eiver 
an serve as a tra�
 sensor.If its spatiotemporal traje
tory is mapped on a representation of the underlyingnetwork, a wealth of disaggregate information be
omes available that is wellsuited for the 
alibration of a behavioral model [67℄. This type of informationmay also be available at a more aggregate level. For example, GPS-equippedtaxis typi
ally report their 
urrent position to a dispat
h 
enter every few min-utes. This data 
an be transformed into lo
al velo
ity information, e.g., [156℄,whi
h in turn 
an be utilized by the proposed estimator. Unlike tra�
 
ountsfrom indu
tive loops, su
h �oating 
ar data is available at variable lo
ations.It also requires di�erent distributional assumptions about the derived velo
ityinformation: A slowly driving vehi
le might do so for several reasons and thusis only an imperfe
t indi
ator of dense tra�
. On the other hand, a qui
klyadvan
ing vehi
le is a reliable indi
ator of un
ongested tra�
 
onditions.Vehi
le re-identi�
ation systems provide similar information at a 
oarser level.The time span between two dete
tions of a vehi
le is the sum of all link traveltimes along an unobserved route that 
onne
ts the two identi�
ation points and,furthermore, in
ludes the duration of all intermediate stops. In 
onsequen
e,additional modeling assumptions regarding at least route 
hoi
e are ne
essaryto relate this type of information to the link- or turning move-related states ofa ma
ros
opi
 mobility simulation [4, 183℄.6.4.1.3 Performan
e TuningThe 
urrently implemented estimator already ta
kles online problems of non-trivial size. However, further performan
e tuning is possible.Algorithmi
ally, the estimation requires to identify a �xed point of a nonlinearand sto
hasti
 mapping that 
omprises a 
omplete tra�
 simulator, 
f. Se
tion4.1.3. Only a basi
 SA pro
edure is utilized in this work, and advan
ed �xedpoint sear
h algorithms should be 
onsidered for this purpose. The resear
h onthe �
onsistent anti
ipatory route guidan
e generation problem� has produ
eda number of promising results in this regard [26, 51, 52℄.Operationally, the estimator is not yet optimized. Its implementation re�e
t itsexperimental nature that fo
uses on �exibility and robustness. On
e a parti
u-lar mode of operation is spe
i�ed, this implementation should be �ne-tuned and141



stripped of 
omputational ballast. For example, the 
urrently realized rolling-horizon estimator runs the same SA logi
 as used in o�ine operations indepen-dently in every estimation period, 
f. Se
tion 5.3.1. However, the results ofone estimation period 
ontain valuable information for the subsequent estima-tion periods. This information should be a

ounted for in a more �ne-tunedimplementation.6.4.2 Combined Behavioral and Physi
al EstimationSo far, it is assumed that the mobility simulation is modeled without error. Apossible relaxation of this assumption is outlined in this se
tion.Un
ertain tra�
 �ow dynami
s are modeled by adding a temporally un
orre-lated zero-mean random disturban
e ve
tor η(k) to state equation (2.17):
xms(k + 1) = fms[xms(k), β(k), η(k), k] (6.1)where xms is the mobility simulation's physi
al state ve
tor and β represents thesingle-
ommodity turning fra
tions. Equation (6.1) repla
es the deterministi
tra�
 �ow model 
omponent of the mixed mi
ro/ma
ro state spa
e model (3.7).The relation between xms and the available measurements y is represented bythe likewise randomly disturbed output equation

y(k) = g[xms(k), ǫ(k)], (6.2)whi
h 
orresponds to (4.16) without loss of generality. The two above equations
an be linearized. Given a parameterization {β(k)}k, they 
onstitute a non-linear, dynami
al system that is amenable to the ma
ros
opi
 state estimationte
hniques reviewed in Se
tion 1.2.All behavioral estimators of this thesis disregard the sto
hasti
 error η in (6.1).Without ex
eption, they 
ontain a step in whi
h �U1 . . .UN are loaded on thenetwork and X is obtained�, 
f. Algorithms 2 through 4. That is, the behav-ioral estimation problem is solved given a parti
ular mapping of the behavior
U1 . . .UN on the ma
ros
opi
 states X .The β parameters in (6.1) result from the behavior of individual parti
les in themixed mi
ro/ma
ro mobility simulation of Se
tion 3.1. This parti
le behavior isfully determined by a plan set U1 . . .UN . The network loading step 
an thereforebe repla
ed by a physi
al state estimator that formally operates ex
lusively onthe model spe
i�
ations (6.1) and (6.2) with an externally provided {β(k)}kparameterization that is internally generated by an exe
ution of U1 . . .UN . Thephysi
al estimator utilizes the same sensor data Y = {y(k)}k as the behavioralestimator.Consequently, the behavioral estimation problem is still solved given a parti
u-lar mapping of the behavior U1 . . .UN on the ma
ros
opi
 states X , only thatthis mapping now in
orporates a physi
al state estimation pro
edure. This alsoenables the tra
king of time-dependent physi
al model parameters by an appro-priate extension of the ma
ros
opi
 state ve
tor, e.g., [3, 175℄. The straightfor-wardness of this approa
h is owed to the minimal interfa
e between the mi
ro-s
opi
 and the ma
ros
opi
 modeling 
omponents.142



6.4.3 Combined Telemati
s and Planning EstimationMutual bene�ts 
an be expe
ted if a telemati
s and a planning estimator areapplied 
on
ertedly. Two possibilities to realize su
h a 
oupling are outlined inthis se
tion. In either 
ase, it is assumed that an online estimator generatesresults on a daily basis that are used to improve the out
ome of a planningsimulation. This enables the latter to provide improved behavioral priors forthe next day's online estimation problem.The ability to provide an improved prior does not imply that a su
hlike ad-justed planning simulation 
an also be applied to predi
t stru
turally di�erents
enarios, where, for example, infrastru
tural 
hanges are 
onsidered. This abil-ity would require not only to estimate what 
hoi
es are made by the travelersin a given s
enario but also to identify the underlying behavioral parametersthat trigger these 
hoi
es. This se
tion only 
onsiders the problem of how toadjust a planning simulation for purposes of �in
remental� online tra�
 moni-toring. The behavioral parameter estimation problem is dis
ussed in subsequentSe
tion 6.4.4.6.4.3.1 Fusion of Λ Coe�
ientsThe di�eren
e between a behavioral prior and an estimated posterior is fully
aptured by the Λ 
oe�
ients. The most straightforward approa
h to fa
ilitatethe 
oe�
ients Λd obtained by the online estimator at a 
ertain day d is toin
orporate them in baseline 
oe�
ients Λ̄ that are used as starting values inthe next day's online estimation problem. These baseline 
oe�
ients 
an alsobe a

ounted for in a planning model if updated prior information is to besimulated. A similar pro
edure 
an be found in the 
ontext of OD matrixestimation where a within-day estimated ODmatrix is used to update a planningOD matrix, 
f. Se
tion 1.2.2.2. Possible update methods are re
ursive averaging[7℄ and Kalman �ltering. The latter assumes that Λ̄ follows a random walk andthat one noisy measurement Λd of Λ̄ be
omes available per day [183℄.6.4.3.2 Choi
e Set Modi�
ationsChoi
e set generation is a 
omputationally demanding step that is likely to beperformed at least in part o�ine. In online operations, 
omputational 
onsider-ations might require a relatively small 
hoi
e set per agent that in 
onsequen
eneeds to be 
hosen with parti
ular 
are. If the online estimator has sele
teda 
ertain plan rather infrequently, this indi
ates that this plan is unlikely tobelong to the 
onsidered traveler's 
hoi
e set and thus should be repla
ed by amore reasonable alternative. This allows for an in
remental o�ine 
hoi
e set ad-justment that should also result in an improved online estimation performan
e.6.4.4 Behavioral Parameter EstimationThe proposed estimator also holds promise to provide information about param-eters that underlie the estimated 
hoi
es, i.e., to address parameter estimation143



problem (4) in Figure 6.1. Two su
h approa
hes are dis
ussed in this se
tion.16.4.4.1 Estimation of Population ParametersA syntheti
 population needs to be 
reated before an agent-based simulationof tra�
 is possible, 
f. Se
tion 1.2.2.3. Typi
ally, its generation relies ona sequen
e of sampling pro
edures where agent parameters are drawn frombeforehand spe
i�ed distributions that apply to homogeneous subsets of thepopulation [9℄. For example, the a
tivity patterns for all male workers of anurban population may be drawn from a single distribution, the work lo
ationsfor all employees that live in a 
ertain tra�
 zone may be drawn from yetanother distribution, and so forth.Sin
e the distributions that underlie this generation pro
edure are themselvesestimates of imperfe
t pre
ision, aggregate tra�
 measurements may help toimprove the realism of the syntheti
 population. Sin
e this implies that thesensor data is used to adjust stru
tural features of the multi-agent model, theresulting population should be appli
able in a wider variety of s
enarios thatmay 
onsiderably di�er from the 
onditions in whi
h the measurements areobtained. An appli
ation of the proposed behavioral state estimator for thispurpose is des
ribed hereafter.A subset M ⊆ {1 . . .N} of the syntheti
 population is 
onsidered. This subsetis homogeneous with respe
t to the distribution PM (θ) of a 
ertain populationparameter θ ∈ Θ where Θ is a dis
rete and permissibly non-ordinal domain.Disregarding the sensor data, a single draw of this parameter is assigned toevery individual n ∈ M . All plans of an agent in M are thus parameterizeddire
tly or indire
tly by this value. When the simulation is run, the agentlearns individually optimal behavioral patterns, and when the iterations havestabilized, the agent exhibits a reasonable plan 
hoi
e distribution given itsparti
ular θ value.Assume that there is un
ertainty about the true distribution of θ. Sin
e M ishomogeneous with respe
t to this distribution, it is feasible to provide everyagent in M with two instead of one parameter values, say θ1 and θ2, and to1A uni�ed Bayesian formulation of both parameter estimation problems 
onsidered in thisse
tion was found shortly after the submission of this dissertation. Let the de
ision proto
olbe parameterized with an individual-level parameter ve
tor θn for every agent n = 1 . . . N ,denote the individually parameterized 
hoi
e distributions by Pn(Un|θn), and assume that aprior p.d.f. p(θn) is available for the parameters. In 
omplete analogy to the derivation givenin Se
tion 4.3.2, an individual-level posterior
pn(Un, θn|Y) =

e〈Λ,Un〉Pn(Un|θn)p(θn)
P

V∈Cn
e〈Λ,V〉

R

Pn(V|θ′)p(θ′)dθ
′of agent n's joint 
hoi
e and parameter distribution given the measurements 
an be formulated.The following version of the AR estimator draws from this posterior:1. Draw θn from p(θn).2. Draw Un from Pn(Un|θn).3. A

ept (Un, θn) with the original a

eptan
e probability φn(Un) de�ned in (4.35).Otherwise, goto 1.Note that this estimator is equally appli
able to the identi�
ation of dis
rete-valued parame-ters. 144



parameterize one half of its plans with θ1 and the other half with θ2. The re-sulting parameter o

urren
es still follow the original distribution PM (θ) in thatthe probability that an individual in M gets assigned two parti
ular parameters
θ1 and θ2 is PM (θ1)PM (θ2).The estimator now adjusts the population's behavior to the sensor data Y. Theresulting 
hoi
e frequen
y of any parti
ular θ value in M is

PM (θ|Y) ≈ 1

R|M |

R
∑

r=1

∑

n∈M

I(Ur
n ∼ θ) (6.3)where r = 1 . . . R iterations are 
onsidered, Ur

n is the plan sele
ted by individual
n in iteration r, and I(U ∼ θ) is one if plan U is parameterized with θ and zerootherwise. This simulated posterior distribution of θ given the measurements
an be applied to re-sample the parameters of the population subset M and tore-run the estimation. This is repeated until 
onsisten
y of the prior and theposterior parameter distribution is attained.A pre
aution is ne
essary to avoid biases in this approa
h. If there is no sensordata, the estimator is redu
ed to a plain simulator, and the result of su
h asimulation is that every individual in M dis
ards the θ value of inferior subje
tiveperforman
e. If, for example, θ represents a leisure lo
ation and all else is equal,the plans that 
ontain the more distant leisure lo
ation are dis
arded be
ausethey impli
ate longer travel times. That is, the plan sele
tion me
hanism itselfgenerates a drift in the parameter distribution.A remedy to this problem is to split the plan set of every individual a

ordingto the di�erent θ values. Every agent in M now has two 
hoi
e sets C1

n (allelements of whi
h are parameterized with θ1) and C2
n (parameterized with θ2)of equal size. When making a de
ision, the agent �rst 
hooses a 
hoi
e set withuniform probability and then sele
ts a plan from that set a

ording to its be-havioral model. In result, the agent exhibits a dual behavior. This should notintrodu
e systemati
 side e�e
ts in the simulation sin
e the whole subpopula-tion's parameterization is still 
onsistent with PM (θ). If now the AR estimatoris applied, all resulting 
hanges in the θ sele
tion frequen
ies 
an be attributedex
lusively to the sensor data. The UM estimator is not appli
able here sin
eit has no in�uen
e on the uniform distribution used for 
hoi
e set sele
tion.6.4.4.2 Estimation of RUM ParametersTypi
ally, the deterministi
 utility of a RUM is linear in parameters:

Vn(U) = θTxU ,n + kU (6.4)where xU ,n is a ve
tor that represents the features of de
ision maker n and ofalternative U ∈ Cn, and θ is a ve
tor of real-valued parameters. The alternative-spe
i�
 
onstant kU 
aptures all 
hoi
e-relevant aspe
ts of U that are indepen-dent of xU ,n.The UM estimator of Se
tion 4.3.3 a�e
ts estimated behavior via additive utility
orre
tions:
Wn(U) = Vn(U) + 〈Λ,U〉/µ

= θT xU ,n + kU + 〈Λ,U〉/µ.
(6.5)145



That is, the UM estimator e�e
tively adjusts the alternative-spe
i�
 
onstants ofan underlying RUM. The predi
tive power of su
hlike adjusted RUMs dependson the stability of the alternative-spe
i�
 
onstants a
ross di�erent s
enarios.If the θ parameters themselves admit improvements, an in
orporation of sensordata into the RUM 
alibration pro
edure is a desirable goal. RUM parametersare typi
ally identi�ed by maximum likelihood estimation [21℄, whi
h requiresa likelihood fun
tion l(θ|Y) = p(Y|θ) to be available. Noting that the sensordata Y is not dire
tly dependent on θ, one obtains
l(θ|Y) =

∑

U1∈C1

. . .
∑

UN∈CN

p(Y | U1 . . .UN )P (U1 . . .UN |θ)

= E {l(U1 . . .UN |Y) |θ} .

(6.6)That is, the likelihood of θ given the sensor data 
an be expressed as the expe
-tation of the available likelihood l(U1 . . .UN |Y) = p(Y | U1 . . .UN ), 
f. Se
tion4.2.1, given that the population's plan 
hoi
e distribution is parameterized by
θ. A Monte Carlo approximation of this expe
tation is possible:E {l(U1 . . .UN |Y) |θ } ≈ 1

R

R
∑

r=1

l(Ur
1 . . .Ur

N |Y) (6.7)where R is the number of draws and Ur
n is the plan 
hosen by individual nin simulation r given parameter θ. Parameter estimation based on a su
hlikesimulated likelihood is possible in prin
iple [166℄, but it is 
omputationally ex-tremely demanding sin
e every draw requires a full run of the tra�
 simulator.An interesting question is to what degree a linearization-based approximationof the network loading pro
edure 
an help to a

elerate this pro
ess.6.4.5 Integration with MATSim6.4.5.1 Con
eptual Aspe
tsSe
tion 3.2 
hara
terizes a behavioral simulation system that is appli
able in
onjun
tion with the proposed estimator. It is observed there that the followingproperties of the MATSim planning simulation are not immediately 
ompatiblewith this spe
i�
ation:1. variable plan 
hoi
e set,2. 
ontinuously updated (learned) plan utilities (s
ores),3. immediate exe
ution of a newly generated plan.Problems 1 and 3 are resolved 
olle
tively. An invariable 
hoi
e set results if anagent is assumed not only to sele
t from its 
urrently memorized plans but alsoalso from all other plans that 
an possibly be generated by the MATSim replan-ning me
hanisms des
ribed in Se
tion 3.2.2.3. The overall probability that anew plan is generated in a given iteration is denoted by Pnew. A

ordingly, thesele
tion probability of any existing plan is 1−Pnew times its 
hoi
e probability146



without plan generation, whereas the sele
tion probability of any newly gener-ated plan is Pnew times its probability of generation. Thus, every agent disposesof a well-de�ned (albeit possibly very large) 
hoi
e set, and a 
hoi
e probabilityfor ea
h element in this set exists. Sin
e neither the expli
it availability of theseprobabilities nor an enumeration of the 
hoi
e set is required, an appli
ationof the AR is 
on
eptually feasible at every single MATSim iteration. However,sin
e the generation of new plans is not utility-driven, the UM estimator is notappli
able here.Item 2 is related to the strong 
orrelation between subsequent MATSim itera-tions. Travel behavior is not simulated based on systemati
 utilities that areaveraged over a long time horizon but relies more strongly on the most re
entiterations: The s
ores of exe
uted plans are updated by a re
ursive �lter thathas an in�nite but exponentially de
aying memory. The route re
al
ulationsutilize only the most re
ent iteration's travel times. Thus, even after a largenumber of iterations, a situation in whi
h the tra�
 
onditions of subsequentiterations �u
tuate un
orrelatedly around stable average values is unlikely too

ur. This e�e
t 
an also be observed throughout the experiments given inChapter 5.The estimation pro
edure, however, fundamentally relies on the Λ 
oe�
ientsthat represent the sensitivities of the measurement log-likelihood to the driverbehavior. These sensitivities are averaged over many iterations, 
f. Se
tion4.1.3, and the resulting averages may stabilize even if the overall system ex-hibits a 
y
li
 behavior, as it is likely to o

ur in MATSim. Sin
e this implies asystemati
 deviation between the a
tually o

urring sensitivities and their av-erage values, a de
lined estimator performan
e may result. However, no generalstatement about MATSim's dynami
s 
an be made at this point.The AR estimator repeats a single 
hoi
e situation several times. It requiresthat repeated draws are independent and identi
ally distributed. This estimatoris not impaired by the 
orrelation between subsequent MATSim iterations aslong as the behavioral distribution of an agent is invariable within a singleiteration. MATSim evolves as a Markov pro
ess, with its state being de�nedthrough the 
urrent agent memory (in terms of available plans) and the lastiteration's tra�
 
onditions (used for the generation of new plans). In everysingle iteration, the AR estimator 
orre
ts the transition probabilities of thispro
ess in a most plausible way. Thus, it is reasonable to expe
t that theresulting iteration dynami
s of MATSim are likewise improved.The estimator's 
on
eptual ability to fun
tion even in 
onjun
tion with thisrather untypi
al model of dynami
al tra�
 evolution indi
ates its �exibilityand independen
e of a spe
i�
 system design. The following se
tion exempli�esthe te
hni
al steps that are ne
essary to assert the above hypotheses in pra
ti
e.6.4.5.2 Te
hni
al Aspe
tsSeveral exemplary Java 
ode snippets are provided that represent the arguablysimplest way to atta
h the estimator to the MATSim system as implemented inO
tober 2007. For simpli
ity, only the sele
tion of full plans is 
onsidered andthe 
ode is stripped of all 
on
eptually irrelevant elements. Of 
ourse, variousalternative implementations that a
hieve the same e�e
t are thinkable.147



For the purpose of this presentation, it is su�
ient to spe
ify an agent by aPerson interfa
e that provides a

ess to the set of its available Plan instan
es.interfa
e Person {Set getPlans();}The utility fun
tion is an implementation of a S
oringFun
tion interfa
e thatmaps a Plan on a utility value as per
eived by a parti
ular Person.interfa
e S
oringFun
tion {double getS
ore(Plan p, Person n);}The de
ision proto
ol is represented by a PlanSele
tor 
lass that implementsa sele
tPlan(Person, S
oringFun
tion) fun
tion. This fun
tion returns asingle draw from the Person's Plan set.
lass PlanSele
tor {Plan sele
tPlan(Person n, S
oringFun
tion sF) {Plan result;// Choi
e logi
 implemented here. Examples:// * a

ess 
hoi
e set via n.getPlans();// * evaluate a plan p via sF.getS
ore(p, n);return result;}}An appli
ation of the UM estimator requires to modify the implemented S
oring-Fun
tion. An appropriate te
hnique is to implement a wrapper 
lass UMS
oring-Fun
tion around the original S
oringFun
tion and to pass this wrapper in-stead of the original implementation to the PlanSele
tor.
lass UMS
oringFun
tion implements S
oringFun
tion {S
oringFun
tion sF;UMS
oringFun
tion(S
oringFun
tion sF) {this.sF = sF;}double getS
ore(Plan p, Person n) {return sF.getS
ore(p, n) + 〈Λ,U〉/µ;// U is turning move sequen
e of Plan p.// 〈Λ,U〉/µ addend is defined in (4.14).}}The AR estimator requires a modi�
ation of the plan sele
tion logi
 itself. This
an be realized by fun
tion overriding. A sub
lass ARPlanSele
tor is derivedfrom PlanSele
tor, the sele
tPlan(..) fun
tion is overridden, and the orig-inal PlanSele
tor is repla
ed by an instan
e of the ARPlanSele
tor.
148




lass ARPlanSele
tor extends PlanSele
tor {Plan sele
tPlan(Person n, S
oringFun
tion sF) {Plan result;do {result = super.sele
tPlan(n, sF);} while (Math.random() >= φn(U));// U is turning move sequen
e of Plan result.// φn(U) is a

eptan
e probability (4.35).return result;}}Both the UMS
oringFun
tion and the ARPlanSele
tor need referen
es to the
Λ 
oe�
ients for the 
al
ulation of utility 
orre
tions and a

eptan
e proba-bilities. The linearization logi
 that generates these 
oe�
ients is part of thema
ros
opi
 mobility simulation. In 
onjun
tion with MATSim, the easiest wayof a

essing this data is via �les: In every iteration, the behavioral simulationsystem writes out a �le that 
ontains the sele
ted plans of all agents. The mobil-ity simulation then loads these plans, exe
utes them, and in turn writes out the
Λ 
oe�
ients plus all further data that is required for agent replanning. Thisbasi
 implementation suggests itself for �rst experimental investigations. Theprogramming e�ort of a tighter 
oupling by dire
t fun
tion 
alls would mainlypay o� in terms of an in
reased exe
ution speed be
ause of the avoided �le i/o.6.4.6 Stru
tural Model Re�nements6.4.6.1 Physi
al SimulationThe mi
ro/ma
ro 
oupling logi
 does not di�erentiate among vehi
le types.Within limits, this is possible by a spe
i�
ation of di�erent ma
ros
opi
 �sizes�for passenger 
ars, tru
ks, buses, and so forth. Continuative modeling may alsodi�erentiate the dynami
s of di�erent vehi
le 
lasses within the ma
ros
opi
 mo-bility simulation. This is likely to require a representation of multi-
ommodity�ows within the ma
ros
opi
 model 
omponent [33℄.Inner-urban tra�
 �ow is dominated by signaling. While the employed mobilitysimulation does not a

ount for this aspe
t, the modeling of signalized interse
-tions has already been demonstrated in 
onjun
tion with a 
ell-transmissionmodel [1℄. This requires a network model at the granularity of individual lanesin order to avoid unrealisti
 spill-ba
ks at simulated interse
tions that in realityhave turning po
kets. In su
h a setting, it might prove useful to swit
h o� theexponential turning 
ounter forgetting me
hanism (3.4) for the duration of ared phase.There is an important issue regarding adaptive signaling. Adaptive 
ontrolsmay swit
h strategies based on threshold values and thus may introdu
e dis
on-tinuities in the mobility simulation: A small behavioral 
hange of a single driverthat 
auses a sensor output to ex
eed a threshold value might 
hange the entire
ontrol strategy and thus might have a large e�e
t on the ma
ros
opi
 systemstates. However, sin
e adaptive signaling is sensor driven, the a

ording sensordata 
an be made available to the estimator as well. This allows to reprodu
e149



the true 
ontrol strategy without error, either by a re
onstru
tion of its logi
 inthe simulator or by a dire
t observation of the real signaling. Sin
e su
hlike sim-ulated signaling is a perfe
t image of reality, no adaptivity is ne
essary withinthe mobility simulation su
h that its 
ontinuity with respe
t to plan 
hoi
e ispreserved.6.4.6.2 Behavioral SimulationFlexibility as to di�erent behavioral implementations is a main obje
tive of thiswork, and few limitations are imposed on a re�ned behavioral simulator.Swit
hing from single-day plans to weekly plans dis
loses new potentials formid-term fore
asting. Sin
e weekly plans introdu
e a logi
al relation betweentravel behavior at subsequent days, single-day plan estimates provide informa-tion about up
oming behavior that 
an be fa
ilitated for predi
tion and, inparti
ular, as an improved prior for the next day's estimation problem.Tra�
 monitoring is not 
ondu
ted as an end in itself. In online operations,a tra�
 predi
tion that is based on the most re
ent tra�
 state estimate 
anbe utilized to provide various information servi
es to travelers. However, if thisguidan
e is not 
arefully 
hosen, the resulting driver rea
tions might invalidatethe underlying predi
tion. This anti
ipatory guidan
e generation problem isde
oupled from the state estimation problem sin
e all disseminated informationis known up to the present point in time at whi
h the online estimation ends.In 
onsequen
e, the estimator only requires a behavioral model that properlya

ounts for the most re
ently generated guidan
e, but it is indi�erent withrespe
t to the parti
ular nature of this guidan
e [19℄.
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Appendix AImplementation of GPRCInteger SetsThe GPRC requires many integer set operations. Sin
e all set implementationsprovided by the Java Colle
tions Framework [85℄ rely on obje
t representationsof their elements, they 
arry a formidable overhead if only primitive types arerequired. This appendix des
ribes a set implementation that is tailored towardsthe GPRC.A GPRC integer set 
ontains elements from a small value domain 1 . . . I + Jwhere I (J) is the number of upstream (downstream) links of the 
onsideredinterse
tion. Equivalently, a value domain 0 . . . I + J − 1 is assumed here inorder to allow for an array-based implementation that starts 
ounting at zero.The subsequently provided Java 
ode fragments 
onstitute the basis of a 
lassNSet. publi
 
lass NSet {// 
ode fragments here}This 
lass 
ontains a primitive and two array members of integer type.private int size;private final int[℄ values;private final int[℄ indi
es;size holds the number of entries in a given instan
e of NSet. The �rst size�elds of the values-array 
ontain these entries. If indi
es[x℄ equals -1, thenx is not 
ontained in the set. Otherwise, indi
es[x℄ 
ontains the index of x invalues, that is, values[indi
es[x℄℄==x if x is 
ontained in the set. During
onstru
tion, both arrays are initialized a

ording to the maximum size maxSizeallowed for this set. 151



publi
 NSet(int maxSize) {size = 0;values = new int[maxSize℄;indi
es = new int[maxSize℄;for (int i = 0; i < maxSize; i++)indi
es[i℄ = -1;}This data stru
ture has a 
onstant memory requirement of 2(I +J)+1 integers.The following three fun
tions provide a

ess to the 
ontent of this set. Parameterrange 
he
ks are omitted for 
larity.publi
 boolean 
ontains(int value) {return (indi
es[value℄ != -1);}publi
 void add(int value) {if (!
ontains(value)) {indi
es[value℄ = size;values[size℄ = value;size++;}}publi
 void remove(int value) {if (
ontains(value)) {size--;final int removedIndex = indi
es[value℄;if (removedIndex != size && size > 0) {final int movedValue = values[size℄;values[removedIndex℄ = movedValue;indi
es[movedValue℄ = removedIndex;}indi
es[value℄ = -1;}}If only these three fun
tions were required, a single boolean array that simplyindi
ates the existen
e of an entry would be roughly twi
e as e�
ient. However,an iteration over the elements of su
h a set would require to a

ess every arrayentry in order to 
he
k if the a

ording marker is set. The following imple-mentation of the iterator design pattern [70℄ provides a more e�
ient solution.It is just as fast as looping only through the �rst size elements of an array.This is parti
ularly advantageous if there are relatively few entries in the datastru
ture.publi
 NSet.Iterator iterator() {return new NSet.Iterator();} 152



publi
 
lass Iterator {private int index;private Iterator() {index = 0;}publi
 boolean hasNext() {return index < size;}publi
 int next() {return values[index++℄;}}The implementation of Iterator as an inner 
lass of NSet is a 
ommon Javate
hnique that supports data en
apsulation.
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Appendix BSensitivity Analysis for theGPRCThis appendix provides 
al
ulation s
hemes for ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂βwhere ξ(0)(ξ(M)) is the GPRC's initial (�nal) state ve
tor and β = (βq) isa ve
tor of 
onstant 
onsumption rate parameters with an available Ja
obian
∂ϕ(. . .)/∂β. The notational overlap of β with the turning fra
tions βij of Se
-tion 2.4 is intended but not required. The 
omplete notation for the GPRC 
anbe found in Se
tion 2.3.The subsequent analysis builds on the following preliminaries:

• If state index j is the only element in B(m), then the duration θ(m) of step
m is θ(m) = ξ

(m)
j /ϕj(D

(m)) su
h that a small variation δξ
(m)
j of resour
e

j at the beginning of step m implies a likewise small variation δθ(m) of
θ(m):

B(m) = {j} ⇒ δθ(m) = δξ
(m)
j /ϕj(D

(m)). (B.1)
• The 
onsumption rate of any resour
e must be monotonously in
reasingwith the number of nonzero resour
es:

ϕi(D ∪ {j}) ≥ ϕi(D) ∀i, j. (B.2)A resour
e is denoted as blo
ked if it is nonzero but has a zero 
on-sumption rate. The monotoni
ity property implies that (i) available andpreviously non-blo
ked resour
es 
annot blo
k from the addition of re-sour
es to D and (ii) on
e blo
ked resour
es stay blo
ked sin
e D onlygets redu
ed during a run of the GPRC.
• The state of a blo
ked resour
e i has no in�uen
e on the resour
e 
on-sumption rates:

ϕi(D ∪ {i}) = 0 ⇒ ϕ(D\{i}) = ϕ(D ∪ {i}). (B.3)154



Algorithm 5 GPRC sensitivity 
al
ulation logi
1. Initialize ∂ξ(0)/∂ξ(0) and ∂ξ(0)/∂β. See Se
tion B.1.2. At the end of every GPRC step m = 0, 1, . . ., do:(a) Cal
ulate ∂ξ(m+1/2)/∂ξ(0) and ∂ξ(m+1/2)/∂β. See Se
tion B.2 andAlgorithm 6.(b) Cal
ulate ∂ξ(m+1)/∂ξ(0) and ∂ξ(m+1)/∂β. See Se
tion B.3, B.4, andAlgorithm 7.3. Complete ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂β. See Se
tion B.5.Approximations of ∂ξ(M)/∂ξ(0) and ∂ξ(M)/∂β are built in
rementally while theGPRC runs through m = 0 . . .M . For notational 
onvenien
e, these approxi-mations are denoted by the same symbols as the exa
t partial derivatives. Everystep m is again split in two segments of equal length θ(m)/2, whi
h ne
essitatestwo sensitivity updates in every step m and the notion of an �intermediate� step
m + 1/2. This somewhat in�ates the presentation but is ne
essary to handle sit-uations where several resour
es run dry simultaneously. Algorithm 5 providesan overview. The remainder of this appendix des
ribes the details of this logi
.B.1 Initialization of SensitivitiesThis is straightforward: ∂ξ(0)/∂ξ(0) = I (identity matrix) implies that resour
es
annot have intera
ted before the pro
ess has started, and ∂ξ(0)/∂β = 0 (allzero matrix) states that the 
onsumption rate parameters β 
annot have hadan in�uen
e before the 
onsumption has taken pla
e.B.2 Cal
ulation of ∂ξ(m+1/2)/∂ξ(0) and ∂ξ(m+1/2)/∂βIf j ∈ D(m), resour
e j is stri
tly positive at m + 1/2. A variation δξ

(m)
j 
annot
ause any intermediate regimes but only pun
hes through to ξ

(m+1/2)
j = ξ

(m)
j −

θ(m)

2
ϕj(D

(m)), resulting in δξ
(m+1/2)
j = δξ

(m)
j , as illustrated in Figure B.1(a). Avariation δβ

[m,m+1/2]
q of 
onsumption rate parameter βq that o

urs ex
lusivelyduring [m, m+1/2] generates δξ

(m+1/2)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m,m+1/2]

q , as shownin Figure B.1(b).If j /∈ D(m), resour
e j is originally zero during step m, whi
h makes it indi�erentto 
onsumption rate variations and only allows for a positive variation δξ
(m)
j >

0. If ϕj(D
(m) ∪ {j}) = 0, (B.3) ensures that j does not intera
t with otherresour
es su
h that the variation only pun
hes through to ξ

(m+1/2)
j , resulting in

δξ
(m+1/2)
j = δξ

(m)
j , see Figure B.1(
). 155



(a) (b)

(
) (d)Figure B.1: Resour
e variations for �rst half of GPRC sensitivity 
al
ulationAll diagrams show resour
e traje
tories over �GPRC time�. Within ea
h diagram,the left arrow represents the 
ausative variation, and the right arrow represents theindu
ed variation. Varied resour
es are drawn in red, and in�uen
ed resour
es (if any)are drawn in blue. Original traje
tories are solid, and their variations are dashed.
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If j /∈ D(m) and ϕj(D
(m)∪{j}) > 0, resour
e j runs dry again after its variationand a new regime D′ = D(m) ∪ {j} o

urs at the very beginning of step m. D′is limited by B′ = {j} su
h that (B.1) 
an be used to obtain its duration δθ′ =

δξ
(m)
j /ϕj(D

′). During δθ′, all resour
es i ∈ D(m) are redu
ed by 
onsumptionrates ϕi(D
′) instead of ϕi(D

(m)). Equation (B.2) ensures that these resour
esdo not blo
k be
ause of j's addition, whi
h guarantees 
ontinuity. This varies
ξ
(m+1/2)
i by δξ

(m+1/2)
i = (ϕi(D

(m)) − ϕi(D
′))δθ′, see Figure B.1(d).Summarized, the e�e
ts of variations δξ

(m)
j and δβ

[m,m+1/2]
q until step m + 1/2are:

δξ
(m+1/2)
i

δξ
(m)
j

=















I(i = j) j ∈ D(m) ∨ ϕj(D
′) = 0

ϕi(D
(m)) − ϕi(D

′)

ϕj(D
′)

i ∈ D(m) ∧ j /∈ D(m)

. . . ∧ ϕj(D
′) > 0

0 otherwise (B.4)
δξ

(m+1/2)
i

δβ[m,m+1/2]
q

=







−θ(m)

2

∂ϕi(D
(m))

∂βq
i ∈ D(m)

0 otherwise (B.5)where I(A) is one if A is true and zero if A is false. The full sensitivities untilstep m + 1/2 
an now re
ursively be evaluated via
∂ξ

(m+1/2)
i

∂ξ(0)
=

∑

j

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂ξ(0)
(B.6)

∂ξ
(m+1/2)
i

∂β
=

δξ
(m+1/2)
i

δβ[m,m+1/2]
+
∑

j

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂β
. (B.7)A 
al
ulation s
heme for these Ja
obians is given in Algorithm 6.B.3 Cal
ulation of ∂ξ(m+1)/∂ξ(0)If j ∈ D(m+1), resour
e j is stri
tly positive at step m + 1 so that any variation

δξ
(m+1/2)
j only pun
hes through to ξ

(m+1)
j . Figure B.1(a) 
aptures a similarsituation. If j /∈ D(m), it originally has run dry before regime D(m). A (positive)variation δξ

(m+1/2)
j 
an only o

ur if a positive variation δξ

(m)
j has 
aused theresour
e to blo
k. As stated before, this implies that j will stay blo
ked withoutin�uen
ing other resour
es, so the variation δξ

(m+1/2)
j only pun
hes throughto ξ

(m+1)
j , similarly to Figure B.1(
). These 
ases 
an be 
ombined in that

δξ
(m+1)
j = δξ

(m+1/2)
j holds for (j ∈ D(m+1) ∨ j /∈ D(m)) ≡ j /∈ B(m).If j ∈ B(m), then ϕj(D

(m)) must have been greater 0, and therefore ξ
(m+1/2)
j > 0
an be varied in both dire
tions. A positive variation δξ

(m+1/2)
j only pun
hesthrough to ξ

(m+1)
j , see Figure B.2(a). Given a negative variation δξ

(m+1/2)
j , a newregime D′′ = D(m)\{j} o

urs dire
tly before the end of step m, as illustratedin Figure B.2(b). The new regime D′′ is limited only by B′′ = {j}, so (B.1)157



Algorithm 6 First half of GPRC sensitivity 
al
ulationfor all j ∈ D(m), do {
∂ξ

(m+1/2)
j

∂ξ(0)
=

∂ξ
(m)
j

∂ξ(0)

∂ξ
(m+1/2)
j

∂β
=

∂ξ
(m)
j

∂β
− θ(m)

2

∂ϕj(D
(m))

∂β}for all j /∈ D(m), do {
ϕ′ = ϕ(D(m) ∪ {j})if (ϕ′

j = 0) {
∂ξ

(m+1/2)
j

∂ξ(0)
=

∂ξ
(m)
j

∂ξ(0)

∂ξ
(m+1/2)
j

∂β
=

∂ξ
(m)
j

∂β} else {
∂ξ

(m+1/2)
j

∂ξ(0)
= 0

∂ξ
(m+1/2)
j

∂β
= 0for all i ∈ D(m), do {

δξ
(m+1/2)
i

δξ
(m)
j

=
ϕi(D

(m)) − ϕ′
i

ϕ′
j

∂ξ
(m+1/2)
i

∂ξ(0)
+ =

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂ξ(0)

∂ξ
(m+1/2)
i

∂β
+ =

δξ
(m+1/2)
i

δξ
(m)
j

∂ξ
(m)
j

∂β}}}
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(a) (b)

(
) (d)Figure B.2: Resour
e variations for se
ond half of GPRC sensitivity 
al
ulationAll diagrams show resour
e traje
tories over �GPRC time�. Within ea
h diagram,the left arrow represents the 
ausative variation, and the right arrow represents theindu
ed variation. Varied resour
es are drawn in red, and in�uen
ed resour
es (if any)are drawn in blue. Original traje
tories are solid, and their variations are dashed.
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an be used to obtain its duration δθ′′ = −δξ
(m+1/2)
j /ϕj(D

(m)). (The negativesign in this expression is owed to the fa
t that δξ
(m+1/2)
j redu
es θ(m) and that

δθ′′ is the negative of this redu
tion.) During δθ′′, all states i ∈ D(m), i 6= j,are redu
ed by 
onsumption rates ϕi(D
′′) instead of ϕi(D

(m)). This varies thesubsequent ξ
(m+1)
i by δξ

(m+1)
i = (ϕi(D

(m))−ϕi(D
′′))δθ′′. If a su
hlike a�e
ted

i belongs to B(m) itself, (B.2) ensures that ϕi(D
(m)) ≥ ϕi(D

(m)\{j}) su
h that
δξ

(m+1)
i ≥ 0 results from a negative variation δξ

(m+1/2)
j < 0. This eliminates thepossibility of additional regime o

urren
es at the end of D′′.Averaging the sensitivities for positive and negative variations δξ

(m+1/2)
j , oneobtains

δξ
(m+1)
i

δξ
(m+1/2)
j

=























1 i = j /∈ B(m)

1/2 i = j ∈ B(m)

ϕi(D
′′) − ϕi(D

(m))

2ϕj(D
(m))

i 6= j ∧ i ∈ D(m) ∧ j ∈ B(m)

0 otherwise. (B.8)This allows to 
al
ulate the full sensitivities via
∂ξ

(m+1)
i

∂ξ(0)
=
∑

j

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ξ
(m+1/2)
j

∂ξ(0)
. (B.9)B.4 Cal
ulation of ∂ξ(m+1)/∂βIf j ∈ D(m+1), resour
e j is stri
tly positive at step m + 1 so that any variation

δβ
[m+1/2,m+1]
q of parameter βq during [m + 1/2, m + 1] only a�e
ts to ξ

(m+1)
j .This yields δξ

(m+1)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q , similarly to the e�e
tillustrated in Figure B.1(b). If j /∈ D(m), it is insensitive to 
onsumption ratevariations.If j ∈ B(m), resour
e j 
an be a�e
ted by a variation δβ
[m+1/2,m+1]
q . If thisvariation 
auses a de
rease δϕ

[m+1/2,m+1]
j < 0 of j's 
onsumption rate, ξ

(m+1)
jin
reases by δ

(m+1)
j = −θ(m)

2

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q , see Figure B.2(
). Givena positive δϕ
[m+1/2,m+1]
j , resour
e j is 
onsumed faster, whi
h 
auses a regime

D′′ = D\{j} to o

ur immediately before m + 1. The duration of D′′ is
δθ′′ = − ∂

∂βq

(

ξ
(m+1/2)
j

ϕj(D
(m))

)

δβ[m+1/2,m+1]
q

=
ξ
(m+1/2)
j

ϕ2
j (D

(m))

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q

∣

∣

∣

∣

∣

ξ
(m+1/2)
j

ϕj(D
(m))

=
θ(m)

2

=
θ(m)

2ϕj(D
(m))

∂ϕj(D
(m))

∂βq
δβ[m+1/2,m+1]

q ,

(B.10)
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see Figure B.2(d). The e�e
t of D′′ is identi
al to that des
ribed in the previousse
tion.Averaging the sensitivities for positive and negative variations δβ
[m+1/2,m+1]
q ,one obtains

δξ
(m+1)
i

δβ[m+1/2,m+1]
q

= −























θ(m)

2

∂ϕi(D
(m))

∂βq
i ∈ D(m+1)

θ(m)

4

∂ϕi(D
(m))

∂βq
i ∈ B(m)

0 otherwise
. . . −



















θ(m)

2

∑

j∈B(m)

j 6=i

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ϕj(D
(m))

∂βq
i ∈ D(m)

0 otherwise,(B.11)where (B.8) 
ould be reused be
ause of the identi
al e�e
t of D′′ in this and theprevious se
tion.A 
al
ulation of the full sensitivities is now possible via
∂ξ

(m+1)
i

∂β
=

δξ
(m+1)
i

δβ[m+1/2,m+1]
+
∑

j

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ξ
(m+1/2)
j

∂β
. (B.12)A logi
 for the syn
hronous 
al
ulation of the se
ond half of the state andparameter sensitivities is given in Algorithm 7.B.5 Completition of SensitivitiesWhen the pro
ess has terminated at step M , the sensitivity 
al
ulations are
ompleted by a last run of Algorithm 6 in order to a

ount for resour
e variationsaround m = M . Beyond M , all resour
es are either blo
ked or zero and requireno further sensitivity updates.
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Algorithm 7 Se
ond half of GPRC sensitivity 
al
ulationfor all i, do {if (i ∈ B(m)) {
∂ξ

(m+1)
i

∂ξ(0)
=

1

2

∂ξ
(m+1/2)
i

∂ξ(0)

∂ξ
(m+1)
i

∂β
=

1

2

∂ξ
(m+1/2)
i

∂β
− θ(m)

4

∂ϕi(D
(m))

∂β} else {
∂ξ

(m+1)
i

∂ξ(0)
=

∂ξ
(m+1/2)
i

∂ξ(0)

∂ξ
(m+1)
i

∂β
=

∂ξ
(m+1/2)
i

∂βif (i ∈ D(m))
∂ξ

(m+1)
i

∂β
− =

θ(m)

2

∂ϕi(D
(m))

∂β}}for all j ∈ B(m), do {
ϕ′′ = ϕ(D(m)\{j})for all i ∈ D(m), i 6= j, do {

δξ
(m+1)
i

δξ
(m+1/2)
j

=
ϕ′′

i − ϕi(D
(m))

2ϕj(D
(m))

∂ξ
(m+1)
i

∂ξ(0)
+ =

δξ
(m+1)
i

δξ
(m+1/2)
j

∂ξ
(m+1/2)
j

∂ξ(0)

∂ξ
(m+1)
i

∂β
+ =

δξ
(m+1)
i

δξ
(m+1/2)
j

(

∂ξ
(m+1/2)
j

δβ
− θ(m)

2

∂ϕj(D
(m))

∂β

)}}
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Appendix CCal
ulation of Cell Velo
itiesThe CTM 
al
ulates �ow rates dire
tly from 
ell o

upan
ies. The elementaryrelationship q = v̺ is used to determine 
ell velo
ity v from �ow q and density
̺.Consider a 
ell that holds a density ̺ at the beginning of its next time stepof duration T . The 
ell's length is L, and its maximum velo
ity is v̂. Thema
ros
opi
 simulation logi
 provides in- and out�ow rates qin and qout (perlane) that persist for the duration of the next time step. The resulting density
hange is (qin − qout)T/L. A substitution of the average density ̺ + 0.5(qin −
qout)T/L and the average �ow 0.5(qin + qout) in v = q/̺ yields

v =
(qin + qout)

2̺ + (qin − qout)T/L
. (C.1)Two further modi�
ations are ne
essary to make this formula operational.First, this logi
 fails for an empty network be
ause of an unde�ned 0/0 division.This 
an be avoided by the introdu
tion of small addends δ̺ > 0 and δq = v̂δ̺in

v =
(qin + qout) + v̂δ̺

2̺ + (qin − qout)T/L + δ̺
. (C.2)This yields v = v̂ for an empty network. For larger o

upan
ies, the modi�
a-tion's in�uen
e vanishes qui
kly.Se
ond, the resulting velo
ity is not limited by v̂. Assume that ̺ = 0 ⇒ qout = 0and δ̺ → 0. This yields v = L/T ≥ v̂ a

ording to (2.11). Therefore,

v = min

{

v̂,
(qin + qout) + v̂δ̺

2̺ + δ̺ + (qin − qout)T/L

}

. (C.3)The trun
ation only has an e�e
t during transient dynami
s. In stationary
onditions with qin = qout = q, the velo
ity be
omes v = q/̺, whi
h 
annotex
eed v̂ of the fundamental diagram from whi
h q is obtained as a fun
tion of
̺.All experiments of this dissertation are based on velo
ity de�nition (C.3). Se
-tion 3.1.4.1 shows that the resulting vehi
le movements are well-syn
hronizedwith the ma
ros
opi
 �ow. 163



Appendix DGridlo
k ResolutionGridlo
k is a known problem in tra�
 simulations that also o

urs in reality[56, 152℄. Sin
e the models employed in this thesis are relatively simple andonly roughly 
alibrated, it is hypothesized that a simulated gridlo
k is likelyto result from modeling impre
isions and thus needs to be resolved within thesimulation. For this purpose, a simple modi�
ation to the tra�
 �ow dynami
sof Chapter 2 is subsequently des
ribed.A minimum velo
ity vmin that is smaller than the free �ow speed of any link is
hosen. A reasonable value is the walking speed of 4 km/h, whi
h implies thattaking a 
ar yields some time savings over walking. Preventing velo
ities below
vmin bounds the network 
learan
e time, thus resolves any gridlo
k in �niteduration, and redu
es the risk of gridlo
k o

urren
e by limiting queue spillovers.The minimum velo
ity is enfor
ed by two modi�
ations of the simulation logi
.The following presentation assumes a single-lane 
ell. For multiple lanes, �owrates must be a

ordingly s
aled.First, the upper �ow 
onstraint of every 
ell's demand fun
tion is repla
ed bya fun
tion that in
reases linearly with slope vmin, as illustrated in Figure D.1.This still 
omplies with the demand/supply logi
 of the KWM sin
e 
on
av-ity is maintained. Phenomenologi
ally, it also has little e�e
t sin
e all supplyfun
tions still have a horizontal �ow limit.Se
ond, it is ensured for every 
ell i with a 
urrent density ̺i that its out�ow
qouti is not smaller than vmin̺i. This is equivalent to an �enfor
ed� demand
∆min(̺) = vmin̺ that is pushed downstream whatever the 
ongestion level is.The modi�ed upper bound of the demand fun
tion ensures that the enfor
eddemand never ex
eeds the original demand.The se
ond modi�
ation is not 
onsistent with the KWM. The lower velo
itybound implies that beyond a 
ertain density �ow is an in
reasing fun
tion ofdensity even in 
ongested 
onditions. Consequently, densities above jam den-sity are possible. Although the resulting �fundamental diagram� of Figure D.1has no 
ounterpie
e in reality, the resulting tra�
 dynami
s give a satisfa
toryimpression. The densities in most 
ells of the network stay in the feasible partof the fundamental diagram. An in
reased �ow that is squeezed through 
rit-i
al se
tions is observed mainly at bottlene
ks and roundabouts. These lo
al164



Figure D.1: Modi�ed fundamental diagramE�e
t of gridlo
k resolution on the fundamental diagram of a homogeneous road. Theupper �ow 
onstraint of the demand fun
tion ∆(̺) is bent upwards at the slope of theenfor
ed demand ∆min(̺) su
h that these two lines do not interse
t. The minimumoperation that originally 
ombines demand and supply is supplemented by a lower�ow bound that takes e�e
t only at high densities.�ow modi�
ations avoid the unrealisti
ally heavy spillba
ks that may 
ause adomino e�e
t of gridlo
k throughout the network.Sin
e all involved fun
tions are 
ontinuous, the gridlo
k-resolved tra�
 �owdynami
s 
an still be linearized.
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Appendix EStationary Limit of TurningCounter Varian
eThis appendix derives (3.9) in Se
tion 3.1.3.2.First, the varian
e of the left- and right-hand side of turning 
ounter stateequation (3.8) is noted:
xij(rTc + Tc) = wcxij(rTc) + (1 − wc)

1

Tc

Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)

⇒ VAR{xij(rTc + Tc)} = w2
cVAR{xij(rTc)}

+
(1 − wc)

2

T 2
c

VAR{Tc−1
∑

s=0

N
∑

n=1

uij,n(rTc + s)

}

. (E.1)Assuming that ∑N
n=1 uij,n(k) is Poissonian with expe
tation and varian
e λij ,the stationary limit of a turning 
ounter's varian
e results from the followingmanipulations:VAR{xij(rTc + Tc)} = w2

cVAR{xij(rTc)} +
(1 − wc)

2

Tc
λij

⇒ lim
r→∞

VAR{xij(rTc + Tc)} = w2
c lim

r→∞
VAR{xij(rTc)} +

(1 − wc)
2

Tc
λij

⇒ lim
r→∞

VAR{xij(rTc)} =
1 − wc

1 + wc

λij

Tc
. (E.2)
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