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Abstract. The interactions between physical systems generally lead to the formation of
correlations. In this paper we consider the phenomena of entanglement and “quantumness of
correlations”, such as quantum discord, with particular emphasis on their energetic consequences
for the participating systems. We describe a number of theoretical models that are commonly
employed in this context, highlighting the general character of one of their most intriguing
results: In contradiction to conventional expectations, erasure (decay, consumption) of quantum
correlations may be a source of work, i.e. may have “negative energetic costs”. We report
experimental evidence of this surprising effect obtained within the framework of an elementary
scattering experiment, namely ultrafast neutron Compton scattering from normal-state liquid
4He. The general theory of quantumness of correlations provides a natural way of interpreting
the reported results, which stand in blatant contrast to the conventional theory of scattering,
where neutron-atom-environment quantum correlations and decoherence play no role. Moreover,
they provide a new operational meaning of discord and related measures of quantumness.

1. Introduction: “Information is Physical”

Correlations between physical (chemical, biological etc.) systems are created by interactions and
thus are ubiquitous in Nature. They play a significant role in classical and quantum physics. The
emergent behaviour of many complex systems cannot simply be derived from their individual
components, since their properties fundamentally depend on the delicate correlations between
their subsystems; cf. [1]. Such a situation might be expressed by the old saying: “the whole is
more than the sum of its parts”, which expresses a holistic in contrast to reductionist view of
nature.

To prevent possible confusion, it should be emphasized that the well-known quantum
mechanical correlations due to the indistinguishability of identical particles (as treated in most
textbooks of quantum mechanics) play no role in the following investigations. Namely we will
deal with quantum correlations between distinguishable quantum systems only. For instance,
below we will consider specific quantum correlations between a neutron (which is a fermion)
and a 4He atom (a boson). Additionally, classical correlations (e.g. as appearing in classical
statistical mechanics and condensed matter theory) are also excluded from our considerations.
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In quantum mechanics, correlations can be essential for the description of quantum systems,
in ways that, in some cases, are in blatant contrast to every expectation based on classical
physics. A particular kind of quantum correlations which have been shown to exhibit distinctive
non-classical features are known as quantum entanglement [2, 3, 4, 5, 6, 7], and are related to the
phenomenon of non-locality [8]. Nowadays entanglement is recognized to be an indispensable
resource for quantum information, computing and communication, and thus plays a central role
in the associated field of quantum information processing (QIP); see e.g. [9].

The correlations between two quantum systems (say, A and B) are associated with
information, as for instance in the case of DNA, where the correlations between base pairs
encode genetic information. In statistical physics and thermodynamics, the crucial role of
correlations became obvious when Maxwell [10], in an attempt to clarify the limitations
of thermodynamics, introduced his famous demon, which also plays an important role in
information theory [11]. Generally, thermodynamics and information theory possess several
links, as e.g. indicated by the formal similarity of the formulas of the Shannon and the von
Neumann entropies. Finally Landauer [12] succeeded to “exorcize” Maxwell’s demon through
his information erasure theorem; see also the related work by Bennett [13, 14]. There is no
doubt that the intricate information-thermodynamics relation also implies a thermodynamic
cost for information acquisition. Likewise, any information acquisition process is expected to
be ultimately limited by the Second Law of thermodynamics. In short, as Landauer puts it:
“Information is physical”. For recent comprehensive works about the physics of (classical and
quantum) Maxwell’s demons and their relation to correlation, information and thermodynamics,
see Refs. [15, 16, 11].

In 2001, the latest chapter in the story of the relation between correlations and information
theory began when the pioneering works by Ollivier and Zurek [17] and Henderson and Vedral
[18] revealed that, beyond entanglement, there exists another, more general kind of correlation
in quantum physics. These correlations are popularly known as “quantum discord” [19], or
more generally “quantumness of correlations”. Discord and related concepts (like e.g. quantum
(work) deficit, measurement-induced disturbance [20] etc.) have recently entered the field of
QIP and are subject to numerous investigations regarding their operational meaning; see e.g.
the review articles [21, 22]. As they concern the physics of Maxwell’s demon, they also have
entered the foundations of (quantum) thermodynamics.

In the present paper, we consider the possibility of applying these phenomena (i.e.,
entanglement, discord, decoherence, etc.) and their dynamics in a concrete experimental context,
namely elementary scattering processes. We will particularly point out the “energetic costs”
of quantumness of correlations and their experimental measurability, which then establishes
additional physical insight into the phenomenon. We then proceed by employing the presented
concepts to interpret experimental results obtained from neutron scattering (qualitatively, for the
time being), which contradict conventional expectations. We believe that these results illustrate
a new operational meaning (or interpretation) of quantum correlations in the context of a real
experiment.

In this regard it should be mentioned that the importance of the phenomena described
above has thus far not been recognized in the context of scattering experiments, e.g. neutron
scattering [24, 25], electron scattering [26], or inelastic x-ray scattering from condensed matter
[27]. Although it is, for instance, well known that neutron scattering from H2 molecules may
reveal quantum correlations between the two protons of the H2 (such as the different scattering
properties of ortho-H2 and para-H2 [23]), possible quantum correlations (or even entanglement)
between the neutron and the struck nucleus, which may be created by the scattering interaction,
are absent in conventional theory; see section 4.

The paper is organized as follows.
(A) Section 2 is devoted to certain aspects of the aforementioned quantum correlations. First,
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in sect. 2.1 we quickly consider the well established concepts of entanglement and non-locality.
Second, in sect. 2.2, we present in more detail the new concept or quantumness of correlations
beyond entanglement like discord. Needless to say, this section is not meant to provide a complete
account of the topic under consideration.

(B) Section 3 considers some thermodynamic and energetic consequences of quantum
correlations, starting with two examples about “quantum thermal engines” (sect. 3.1), and
then presenting two specific theoretical examples of direct energetic consequences of decaying
quantum correlations, i.e. decoherence. The unexpected common feature of both these
theoretical results is that, surprisingly, decoherence and erasure of quantum correlations can
lead to work production (instead to dissipate work).

(C) An experimental observation of, or related with, this phenomenon is described in section
4, which also presents a short description of a conceptually simple scattering experiment and
related experimental results obtained with neutron Compton scattering from liquid 4He. The
findings illustrate the significance of quantum correlations and their dynamics in the framework
of neutron scattering. This extends the physical insights provided in the context of QIP by
offering an additional operational meaning of quantumness of correlations.

2. Quantumness of Correlations

2.1. On Non-Locality and Quantum Entanglement
Quantum entanglement (QE) has been recognized as the most emblematic feature, or even the
essence, of standard (non-relativistic) quantum theory [2, 4, 5], raising widespread interest in
various branches of natural science as well as quantum information processing (QIP) and the
related emerging quantum technologies; cf. [9].

It was Einstein, Podolsky, Rosen [2] and Schrödinger [3] who first recognized a “spooky
action at a distance” feature of the formalism of quantum mechanics which has absolutely no
classical analogue or any intuitive interpretation. This novel phenomenon, known as quantum
entanglement (or simply entanglement, originally called by Schrödinger “Verschränkung”), lies
at the center of interest of physics and quantum technology of the 21st century. Entanglement
implies the existence of global states of a composite system which cannot be written as a product
of the states of individual subsystems. As a consequence, there exist quantum statistical relations
between subsystems of a compound quantum system which are by far much stronger than any
conceivable classical correlations between the subsystems. Thus it may be said that entanglement
represents the most nonclassical manifestation of the quantum formalism. Entanglement also
contradicts the so-called Einstein’s locality principle. Based on this, Einstein et al. concluded
that the quantum description of physical reality is not complete [2].

About 30 years later, this conclusion, and related suggestions for introducing so-called
“hidden variables” in order to make quantum mechanics a “complete theory”, led Bell to
the discovery of the famous Bell inequalities [4] which are experimentally testable. With his
work, Bell proved that quantum mechanics is an inherently nonlocal theory that is incompatible
with any physical theory in which the principle of locality holds. For instance, two spatially
well separated observers measuring states of two entangled systems observe strong correlations
between the results of their measurements—correlations that can be so strong that they violate
Bell’s inequalities. This phenomenon, called quantum non-locality, has been repeatedly observed
and confirmed experimentally—which also invalidates the conclusions of [2]. For insightful
presentations, one may consult the textbook by Peres [6] or the recent review by Horodecki
et al. [7].

In this context, it may be noted that entanglement and non-locality are often considered
as two facets of the same physical phenomenon. But now they are recognized as two different
physical resources, as Gisin and collaborators have demonstrated [8]. However, the relation
between them is yet to be fully understood. While entanglement is necessary for quantum non-
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locality, it is not always sufficient. Indeed, entangled states exist which are local, i.e. which do
not violate any Bell’s inequality.

Despite its fundamental physical significance, however, quantum entanglement was considered
by many as a rather “philosophical issue” having no concrete impact in “real physical fields” (like
e.g. solid state physics) and/or concrete technological applications (like electronic devices and
telecommunication). So it has had to wait about 70 years to enter laboratories as a novel resource
as real as e.g. energy. For compound quantum systems, entanglement involves nonclassical
correlations between subsystems and has been recognized to have potential for novel quantum
processes even of technological relevance, like e.g. quantum cryptography, quantum dense coding
and quantum teleportation [7, 9].

2.2. Quantumness of Correlations Beyond Entanglement—Discord
In this subsection, we mainly follow the presentation in Ref. [21] by Modi et al.

Coherent interactions that generate negligible entanglement can still exhibit unique quantum
behaviour. This observation has motivated a search beyond entanglement for a complete
description of all quantum correlations [17, 18]. Classicality and quantumness of correlations
belong to the realm of information theory.

Quantum correlations, seminally quantified by the quantum discord and related measures of
quantumness [21], are general manifestations of non-classicality in composite systems. They can
be revealed in the process of locally measuring a subsystem, even in states where entanglement
or non-locality are absent. Despite a massive surge in recent studies investigating interpretation,
quantification, and applications of discord and related quantifiers of quantum correlations,
cf. [21], it is a fact that these newly discovered quantities remain far less understood than
entanglement. Therefore, going beyond the beautiful mathematical results achieved in this fast
developing field, every result about the concrete physical meaning and/or “operational meaning”,
of discord (and the other measures) is of highest importance.

In simple terms one can say that two systems are correlated if together they contain more
information than taken separately. If we measure the lack of information by entropy, this
definition of correlations is captured by the mutual information

I(A : B) ≡ S(A) + S(B)− S(AB), (1)

where S(X) is the Shannon entropy

S(X) = −
∑
x

px log px (2)

if X is a classical variable with values x occurring with probability px, or S(X) is the von
Neumann entropy

S(X) = −Tr(ρX log ρX) (3)

if ρX is a quantum state of system X (all logarithms are base two). For classical variables,
Bayes’ rule defines a conditional probability as px|y = pxy/py. This implies an equivalent form
for the classical mutual information

Jcl(B|A) = S(B)− S(B|A), (4)

where the conditional entropy
S(B|A) =

∑
a

paS(B|a) (5)

is the average of entropies
S(B|a) = −

∑
b

pb|a log pb|a. (6)
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The classical correlations can therefore be interpreted as information gain about one subsystem
resulting from a measurement on the other.

In contradistinction to the classical case, in the quantum analog there are many different
measurements that can be performed on a system, and measurements generally disturb the
quantum state. A measurement on subsystem A is described by a positive-operator-valued
measure (POVM) [9] with elements Ea = M †

aMa, where Ma is the measurement operator and
a is the classical outcome of the associated measurement. The initial state ρAB is transformed
under the measurement (with unknown result) to

ρAB → ρ′AB =
∑
a

MaρABM
†
a , (7)

where the subsystem A yields outcome a with probability pa = Tr(EaρAB) and B has the
conditional state ρB|a = TrA(EaρAB)/pa. This allows us to define a so-called classical-quantum
version of the conditional entropy,

S(B|{Ea}) ≡
∑
a

paS(ρB|a), (8)

and introduce classical correlations of the state ρAB in analogy with Eq. 4, [18]:

J(B|{Ea}) ≡ S(B)− S(B|{Ea}). (9)

To quantify the classical correlations of the state independently of a measurement, J(B|{Ea})
is maximized over all measurements (on subsystem A),

J(B|A) ≡ max
{Ea}

J(B|{Ea}). (10)

When the measurement is carried out by a set of rank-one orthogonal projections {Πa}, the
state on the right hand side of Eq. 7 has the form

χaB =
∑
a

paΠa ⊗ ρB|a, (11)

which involves only fully-distinguishable states for A and some indistinguishable states for B.
Such states are often called classical-quantum states. It is important to note that for a classical-
quantum state there exists a von Neumann measurement of A which does not perturb the state.
By exchanging the roles of A and B, one defines quantum-classical states (QC) by

χAb =
∑
b

pbρA|b ⊗Πb, (12)

The quantum discord of a state ρAB under a measurement {Ea} is defined as a difference
between total correlations, as given by the quantum mutual information in Eq. (1), and the
classical correlations Eq. (9), [17]:

D(B|A) ≡ I(A : B)− J(B|A)

= min
{Ea}

∑
a

paS(ρB|a) + S(A)− S(AB). (13)

Note that the minimization here is equivalent to maximization in Eq. 10. This is just a difference
between two classically-equivalent versions of conditional entropy

D(B|A) = min
{Ea}

S(B|{Ea})− S(B|A), (14)
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where S(B|A) = S(AB) − S(A) is the usual conditional entropy, see e.g. [9]. This equivalence
holds for rank-one POVM measurements [9] which, in classical theory, correspond to questions
about a value of a classical random variable.

Here some properties of quantum discord may be noted [21, 22, 23]:
(a) It is not symmetric, i.e. in general D(B|A) �= D(A|B), which may be expected because

conditional entropy is not symmetric. Some theorists consider this as a weakness. However,
in the context of concrete experiments this asymmetry makes sense, as the following example
shows: Knowledge about system A (say, a neutron in the n-He scattering experiment presented
below) is not equivalent to knowledge about system B (say, the struck He). Or in other terms,
it is natural to expect that measurements on A may provide another information content about
the composite system AB than measurements on B; cf. Eq. (13).

(b) Discord is nonnegative, D ≥ 0, which is a direct consequence of the concavity of
conditional entropy.

(c) Discord is invariant under local unitary transformations, i.e. it is the same for state ρAB

and state (UA ⊗ UB)ρAB(UA ⊗ UB)
†. This follows from the fact that discord is defined via

entropies, and the value obtained for measurement {Ea} on the state ρAB can also be achieved

with measurement {UAEaU
†
A} on the transformed state. Note that discord is not contractive

under general local operations, and therefore should not be regarded as a strict measure of
correlations. However, J(B|A) is contractive under general local operations.

(d) Quantum discord D(B|A) vanishes if and only if the state is classical-quantum [28].
In the last part of this section we point at three particular specializations of the above topics

which may be appropriate in context with the experimental scattering measurements presented
below (see section 4). These are focusing on the connection of quantum discord (and related
measures of quantumness, including entanglement) with the process of quantum measurement.
At last, an additional subsection about the recently discovered thermodynamic meaning of
negative conditional entropy is presented.

2.2.1. Using Measurement-Induced Disturbance to Characterize Correlations. The above
mentioned quantifiers of quantumness of correlations are based on an extremalization procedure
involving the set of POVM’s, which is a very difficult task to do. Additionally, while in the
classical description of nature measurements can be carried out without disturbance, in the
quantum description, generic measurements usually disturb the system. Thus classical states
are characterized in terms of non-disturbance under a quantum measurement. Formalizing
these observations, Luo has proposed a correlation quantifier based on the disturbance that the
measurement processes causes in a system [20], called measurement-induced disturbance (MID).

This quantity, is defined as the difference between the quantum mutual information of the
state, ρAB, and that one of the completely dephased state, χAB

MID (ρAB) = I (ρAB)− I (χAB) . (15)

The dephasing takes place in the marginal basis, leaving the marginal states unchanged. The
suitability of MID and its relation to quantum discord and various other correlation measures
are discussed in Refs. [22, 21].

It should be mentioned that all quantum correlation quantifiers discussed in this article vanish
for the so-called classical-classical (CC) states

χAB =
∑
a,b

pabΠa ⊗Πb. (16)

Since all projectors in this decomposition correspond to fully distinguishable states, the
probability pab can be regarded as a classical joint probability of random variables a and b.

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012005 doi:10.1088/1742-6596/538/1/012005

6



It was then proved that that certain separable states, e.g. quantum-quantum states

ρAB =
∑
i

piρ
A
i ⊗ ρBi , (17)

(where ρAi and ρBi are local states pertinent to subsystems A and B) still possess correlations
of a quantum nature. He also showed that the specific quantum correlations contained in these
mixed quantum-quantum states correspond to a “generalization” of the concept of entanglement
[20].

2.2.2. Linking Quantum Discord to Entanglement in a Measurement. The focus of this work,
as mentioned earlier, lies on the experimental context of elementary scattering processes in
condensed systems and molecules. In this context, the interacting two systems A and B are
“disturbed” (or “measured”, or “observed”) by another system C, e.g. by adjacent particles
of the “environment”. Thus it is natural to mention here some related works in which the
measurement process may have effect on the quantumness of correlations of the composite
system A+B.

Recently Streltsov et al. [29] have introduced an alternative approach to quantum correlations
via an interpretation of a quantum measurement, especially on one of the subsystems of a
composite system.

In carrying out a von Neumann measurement on a system S in the quantum state ρS ,
correlations between the system and the measurement apparatus M must be created. E.g.,
consider a von Neumann measurement in the eigenbasis |i〉 of the mixed state

ρS =
∑
i

pi|i
S〉〈iS | (18)

with the eigenvalues pi. One then expects the final state of the total system to be

ρfinal =
∑
i

pi|i
M 〉〈iM | ⊗ |iS〉〈iS |, (19)

where |iM 〉 are orthogonal states of the measurement apparatus M . This ρfinal is a classical-
classical state (see above), i.e. the correlations between M and S are purely classical.

The situation changes completely if we consider partial von Neumann measurements, i.e.
von Neumann measurements which are restricted to a subsystem A of the system AB. (Indeed,
these correspond to the usual case in real experiments; cf. section 4.) Streltsov et al. showed
that in this case creation of entanglement is usually unavoidable. They also showed the close
connection of this approach to the one-way information deficit [30, 22, 21] and the quantum
discord. In short, they showed that the one-way information deficit is equal to the minimal
distillable entanglement [15, 7] between the measurement apparatus M and the system AB
which has to be created in a von Neumann measurement on subsystem A. The quantum discord
is then equal to the corresponding minimal partial distillable entanglement. (The minimization
is done over all unitaries U which realize a von Neumann measurement on A; see Theorem 2
of [29].) Additionally, it was shown that this approach can be generalized to multipartite von
Neumann measurements [29].

2.2.3. On the Thermodynamic Meaning of Negative Conditional Entropy. In the preceding
derivations of quantumness of correlations, the concept of conditional entropy (or conditional
infomation) plays a considerable role. Very recently, del Rio et al. [31] showed that the standard
formulation and implications of Landauers principle [12, 13] (cf. Introduction) are no longer valid
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in the presence of quantum information. Their main result is that the work cost of erasure of
information is determined by the entropy of the system, conditioned on the quantum information
an observer has about it: the more an observer knows about the system carrying the information,
the less it costs to erase the information. Obviously this result gives a direct thermodynamic
significance to conditional entropy, which plays a dominant role in the theory of quantumness
of correlations, see above.

The main result characterizes the work, W (A|Q), that an observer with access to a quantum
memory Q correlated with the system A, needs to perform to erase system A. In the
“thermodynamic limit”, where the observer erases many identical copies of A jointly, the authors
have found a specific erasure process [31] whose work cost does not exceed

W (A|Q) = S(A|Q) kT ln(2) (20)

per copy of A; (k: Boltzmann constant, T : temperature). Here S(A|Q) is the conditional von
Neumann entropy,

S(A|Q) = S(AQ)− S(Q). (21)

This work cost is shown to be optimal, under the assumption that Landauers principle holds for
a classical observer.

In the quantum case, however, novel features may arise. In particular, the last equation
implies that the work required for erasure may be negative for an observer with a quantum
memory Q: the process may result in a net gain of work. For instance, the combined system AQ
may be closed and in a pure state, and thus its von Neumann entropy will be zero, S(AQ) = 0,
whereas the reduced state of the memory Q is mixed and has positive entropy S(Q) > 0, which
finally yields S(A|Q) < 0. This provides a thermodynamic operational meaning for negative
conditional entropies, which earlier only had information-theoretical interpretations [31, 21].
Moreover, it was noted that the obtained results suggest that quantum discord can quantify the
difference between the respective work costs of erasure using quantum and classical memories.

Furthermore, it was pointed out that the above surprising result does not violate the Second
Law of thermodynamics, because the proposed process is not cyclic. That is, the negative work
cost is associated with the consumption of entanglement between system and quantum memory,
which can only be restored by doing work (i.e., with positive work costs). The overall work costs
are then expected to be positive or zero; see addendum of [31].

3. Quantum Correlations and Decoherence—Thermodynamic and Energetic

Consequences

Decoherence is the ubiquitous phenomenon that destroys quantum correlations (state
superpositions, quantum interference, quantum phases) thus leading to the “appearance of a
classical world in quantum theory”; cf. [32]. Decoherence, similarly to many other irreversible
mechanisms, is a time-oriented process, i.e. it breaks the time-inversion invariance of the
Schrödinger equation. Moreover, it is known to be much faster than energy dissipation (say,
due to friction or T1 relaxation). A considerable number of models of decoherence, based on a
variety of physical motivations, have been proposed and investigated in the scientific literature,
cf. [32].

3.1. On the Quantum Carnot Engines of Lloyd and of Scully et al.—Thermodynamic
Consequences
The quantum heat engine concept has attracted considerable interest since it provides novel
insights into the fundamental physics of heat–information–energy conversion. Hence this also
concerns our purposes, see section 4 below.
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Lloyd [16] analyzed the effects of the quantum Maxwell demon. He found that a quantum
device acquiring information in a measurement process and the associated decoherence disturb
the system and act as a source of thermodynamic inefficiency. The quantum demon has been
realized in the concrete context of nuclear magnetic resonance (NMR) [16, 9]. Of particular
interest appears the result that this cost of quantum measurement is realized when decoherence
occurs, which destroys the non-diagonal matrix elements of the system’s density matrix ρ.
(Studying special processes with ρ remaining always diagonal, the quantum demon reaches the
well known Carnot efficiency.) In other words, the extra information introduced by quantum
measurement and decoherence has been identified as the cause of decrease of the efficiency of
the Carnot engine [16].

This interesting result pointing out the role of decoherence should be contrasted with the
associated result of the well known Lindblad equation presented below in subsection 3.2.1.

Here let us proceed to a second example of a quantum heat engine. Scully et al. [33] proposed
and analyzed a new kind of quantum Carnot engine powered by a special quantum heat bath.
It was shown to allow extraction of work even from a single thermal reservoir. For this type
of heat engine the piston is driven by radiation pressure. The working fluid (say, analogous to
steam of a conventional machine) finds its counterpart in the radiation, which is generated by a
beam of hot atoms (constituting the thermal reservoir).

In the “regular” case of two-level thermal atoms, the engine’s efficiency cannot exceed the
well-known Carnot limit. In the case of hot specific three-level atoms constituting a heat bath
things look quite different, i.e. when the nearly degenerate lower levels feature a small amount of
quantum coherence. The corresponding quantum phase φ can be varied as a control parameter
to effectively increase the temperature of the radiation field. In this scenario work is obtained
even when only one single heat bath is present. Consumption of quantum coherence is shown
to produce work.

The deep physics behind the Second Law of thermodynamics, however, is not violated. The
assumed atomic coherence itself causes energetic costs, as e.g. it must be generated by the
passage of the atoms through a suitable microwave field. An explicit estimation of the necessary
microwave field’s energy to produce the assumed appreciable coherence between the atomic levels
was shown to be greater than the extracted work in the above process. Consequently and in line
with the Second Law of thermodynamics, the total entropy of the whole system is constantly
increasing [33].

3.2. Pure Decoherence—Energetic Consequences
Pure decoherence (i.e. without dissipation) is usually described with the well-known master
equations of Lindblad form, which ensure positivity of the systems reduced density operator.

Quite unexpectedly, it turns out that “pure” decoherence may have a perplexing, peculiar
consequence. Notably, as shown below (subsections 3.2.1-2) in the frame of two independent
theoretical models, pure decoherence turns out to be intrinsically connected with an increase (!)
of mean energy of the system, i.e. with negative energy costs — in the absence of any direct
interaction with other systems. This is certainly unexpected, since erasure of quantum phases
and/or correlations is not widely acknowledged as a source of energy. The presentations below
will show that this theoretical result can be of rather general character, under the restrictive
condition that the characteristic time of the process is sufficiently short [50].

In the following two subsections we mainly follow the presentation of Ref. [34].

3.2.1. Lindblad Equation and Spontaneous Energy Increase. To describe the dynamics of open
quantum systems and decoherence, various generalizations of the Schrödinger equation have been
proposed; see the textbooks [32]. Among these theoretical approaches, the Born-Markov master
equation plays an enormously important role. Master equations of the so-called Lindblad form
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refer to a particular (albeit quite general) class of Markovian master equations, which ensure
positivity of the reduced density operator ρ(t) describing the system, i.e. 〈ρ(t)〉 ≥ 0, for any
pure state |ψ〉 of the system and for all t. The most general mathematical form of such equations
was derived by Gorini, Kossakowski and Sudarshan [35] and Lindblad [36].

Consider the simplest Lindblad-type ansatz for the master equation for the statistical operator
ρ of an open quantum system, which includes only a single Lindblad operator L; in a real system
we would have a multitude of such dynamical variables. We set

∂ρ

∂t
= −

i

h̄
[H, ρ]− Λ [L, [L, ρ]] (22)

where Λ > 0 is a positive constant and H is the Hamiltonian. The first term on the right-hand
side (rhs) describes the usual unitary time evolution of the state. The double commutator term
describes decoherence (and/or dephasing). It may be noted that this equation, by suitable choice
of L, may describe “pure” decoherence only. Namely, it does not contain any term describing
friction explicitly, as is done in Caldeira-Leggett-type equations, cf. [32]. In the following we
consider only the case of pure decoherence (i.e. destruction of quantum coherence).

Considering Eq. (22) in the position representation, the double commutator term takes the
form

−Λ(r − r′)2〈r|ρ|r′〉

which, since Λ > 0, leads to an exponential decay of the non-diagonal elements of the density
matrix:

〈r|ρ(t)|r′〉 = 〈r|ρ(0)|r′〉 exp(−Λ(r − r′)2t) for 0 ≤ t (23)

where t = 0 is the initial time [32]. Obviously, this result does not hold for t ≤ 0. In other
words, coherent superpositions of different states |r〉 and |r′〉 will be suppressed over time. The
most well-known specialization of Eq. (22) is the case of an one-particle system that interacts
with an external (thermal) environment, in which case L is taken to be the position operator,
q. This corresponds to the Joos-Zeh master equation [37].

It is well known that Eq. (22) preserves the normalization Trρ = 1 [36], which is satisfactory.
However, Ballentine [38] realized that the expectation value of the energy, 〈H〉 = Tr(Hρ) is in
general not conserved. Namely,

d〈H〉

dt
=

d

dt
Tr(Hρ) = Tr

(
H
∂ρ

∂t

)
= −ΛTr([H,L][L, ρ]) (24)

(Recall the operator identity Tr(A[B,C]) = Tr([A,B]C).) Obviously, if the Hamiltonian and
the Lindblad operator L do not commute, 〈H〉 is not conserved for every state ρ.

The significance of this result becomes immediately obvious in the special case of a free
particle —e.g. represented by a wave packet, not by a plane wave with constant wavevector—
moving in one dimension with Hamiltonian H = p2/2m. In various well-known theoretical
models, the decoherence in position owing to the “environment” is described by taking L to be
the particle’s position operator q; for details see [37, 38, 32]. Then, since [p, q] = h̄/i and

[p2, q] = p2q − qp2 = (p2q − pqp) + (pqp− qp2) = p[p, q] + [p, q]p =
2h̄

i
p

one obtains

d〈H〉

dt
= −ΛTr([p2/2m, q][q, ρ])

= −
Λ

2m

2h̄

i
T r(p[q, ρ]) = −

Λ

2m

2h̄

i
T r([p, q]ρ)

= +
Λh̄2

m
> 0 (25)
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Thus the system appears to steadily gain energy at a constant rate [38].
This surprising result holds also in three dimensions, and for inclusion of scalar and/or vector

potentials. It also remains valid for more general cases, e.g. even in cases with the decoherence
factor Λ becoming a function of the “distance” |r − r′|; for details see [38, 39].

Undoubtedly, this result seems quite disturbing as it contradicts every conventional
expectation about what the consequences of decoherence should be (besides the expected
destruction of coherent superpositions of quantum states). Namely, theorem (25) seems to
represent a serious weakness of the theory, because it implies that the mean energy of a free
paricle should always increase; or, in other terms, the environment causing decoherence seems
to act as an inexhaustible source of kinetic energy. Moreover, this continuous gain of kinetic
energy is clearly incompatible with the system’s attainment of equilibrium [38]. For a thorough
discussion of these paradoxical findings, see [38, 39, 40].

Parenthetically, another surprising consequence of the Lindblad equation and pure
decoherence may be shortly noted here. Recently, a “first principles” description of scattering
from open quantum systems subject to a Lindblad-type dynamics was provided [41]. It was
shown that this time evolution may cause a reduction of the system’s transition rate being
effectuated by scattering. This is tantamount to a shortfall of scattering intensity [41, 42], or
“intensity deficit”, which represents a witness of quantumness of correlations. This effect has
been observed experimentally [43, 44, 45, 46, 47, 48, 49].

3.2.2. The Theoretical Model by Schulman and Gaveau. Surprisingly, a recent independent and
more general theoretical analysis by Schulman and Gaveau [50, 51] appears to lead essentially
to the same result. A short description of the general model is as follows.

A quantum system A, e.g. a quantum oscillator, with free Hamiltonian HA makes an elastic
collision with a second system B with free HamiltonianHB. Let the interaction potential be VAB.
The total Hamiltonian is H = HA+HB+VAB . Before the collision, the two systems are assumed
to be not entangled and so the complete density matrix ρ(0) should be ρ(0) = ρA(0) ⊗ ρB(0).
In general, subsequent to their collision they become entangled and the exact density operator

ρ(t) = U(t) ρ(0)U †(t)

(U(t): time evolution operator) is not a product state of individual density operators ρA(t) =
TrBρ(t) and ρB(t) = TrAρ(t).

However, it is widely believed that once the particles are separated the quantum correlations
can be dropped (provided one does not perform an experiment of Einstein-Podolsky-Rosen type),
simply because measurements of physical quantities of each of the two particles cannot depend
on their correlations. Thus the replacement

ρ(t) → ρA(t)⊗ ρB(t) , (26)

i.e. the erasure of quantum correlations, is usually assumed to be “innocuous” and e.g., not
affect the energies of the systems.

The striking result by Schulman and Gaveau [50] contradicts this intuitive expectation.
Putting

Δρ(t) = ρA(t)⊗ ρB(t)− ρ(t)

and for a particular form of the interaction Hamiltonian, they show that for sufficiently short
times the following relation holds:

ΔE ≡ Tr(Δρ(t)H) = Tr(Δρ(t)VAB) > 0 . (27)

See Ref. [51] for a detailed derivation of this inequality. In simple words, the replacement of
the entangled ρ(t) by the non-entangled state ρA(t) ⊗ ρB(t) necessarily increases the system’s
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energy [50, 51]. This appears highly paradoxical since, as Schulman and Gaveau put it: “...losing
quantum correlations should not heat the gas. You do not burn your finger because of a partial
trace over a density matrix” [50].

Moreover, this result was shown to be valid for a large class of potentials, e.g. for two-
body interactions, although it does not hold universally [51]. This is an interesting detail, and
therefore the following details should be mentioned. The spin-boson model Hamiltonian

H = HA +HB + VSB = ωaa
†a+ ωbb

†b+ g(a† + a)(b† + b)

was shown to exhibit the considered effect, in clear contrast to the related Jaynes-Cummings
model

H = HA +HB + VJC = ωaa
†a+ ωbb

†b+ g(a†b+ b†a) ,

in which the effect is absent [50].
In view of the counter-intuitive character of the result (27), one may object that it is

unphysical since seems to violate energy conservation. However this is not the case, as the
detailed discussions of Ref. [50] explained. It was stressed that, in the situation contemplated,
the coupling Hamiltonian must be considered as time dependent, because the physical approach
and separation of the particles leads to a time-dependent coupling coefficient. Thus, energy
conservation need not apply. Moreover, it was discussed that this “additional” energy ΔE > 0
is supplied by the translational degrees of freedom of A and B [50], which do not appear explicitly
in the Hamiltonian and thus may be considered to represent an effective “environment”.

4. Experimental Consequences

4.1. Conventional Neutron Scattering Formalism
Let us briefly consider some basic formulas of conventional neutron scattering theory [24, 52, 53].
The partial differential cross section d2σ/dωdΩ and the associated dynamic structure factor
S(q, ω) are determined from the experiment. For scattering by a system of N identical atoms
they are related according to:

d2σ

dωdΩ
= Nb2

k1
k0
S(q, ω) (28)

(b: bound scattering length of atom; k0, k1: absolute values of wavevectors of incident and
scattered neutrons; dΩ: small solid angle subtended by the neutron detector in direction of
k1 at the target). h̄q and h̄ω are the momentum and energy transfers from the neutron to a
scattering nucleus, respectively, i.e, h̄q = h̄k0 − h̄k1 and h̄ω = E0 −E1. The subscripts “0” and
“1” refer to quantities before and after the collision.

It is assumed that the neutron-nucleus interaction is well represented by the Fermi pseudo-
potential [52, 24]

V (r) =
2πh̄2

m
b δ(r) (29)

(m: neutron mass; δ(r): delta function) which phenomenologically describes the short-range
strong interaction. According to the basic van Hove theory [52] S(q, ω) is given by

S(q, ω) =
1

2π

∫ ∞

−∞
exp(−iωt)F (q, t) dt (30)

where

F (q, t) =
1

N

N∑
j,k

〈exp(−iq · rj(0)) exp(−iq · rk(t))〉. (31)
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is the so-called intermediate correlation function. 〈...〉 stands for the thermodynamic average of
the quantum expectation values of the enclosed operators, and the rj(t) denotes the position
operator of atom j at time t in the Heisenberg representation [52, 24].

The derivations of the above formulas are based on Fermi’s golden rule, which, for scattering
processes, is equivalent to the first Born approximation [52, 24]. Recall that both these
approximations are special cases of general first-order perturbation theory, which, however, does
not hold for a singular potential like Eq. (29). The justification for the use of Fermi’s golden
rule in neutron scattering is that, in combination with Eq. (29), it gives the required result of
isotropic (s-wave) scattering for a single fixed nucleus; see [24] for further discussions.

In the limit of sufficiently high momentum and energy transfers, q = |q| 
 2π/d with d being
the nearest-neighbor distance of scattering particles, terms with j �= k are negligible (i.e. the
incoherent approximation holds [24, 25]) and one obtains

F (q, t) = 〈exp(−iq · r(0)) exp(+iq · r(t)), 〉 (32)

see [24, 25]) for the derivation. Note that r(t) is in general aN -body operator, despite the (rather
misleading) notation of “position operator of a scattering atom”. Furthermore, for sufficiently
fast scattering, the impulse approximation (IA) [25, 54] applies, and the corresponding expression
for the dynamic structure factor simplifies to:

SIA(q, ω) =

∫
n(p) δ(h̄ω − h̄ωr − h̄q · p/M) dp , (33)

Here, n(p) is the (one-body) momentum distribution of the scattering nucleus before the
collision,

h̄ωr = h̄2q2/2M (34)

is the so-called recoil energy of the nucleus, and M is the mass of the scattering nucleus. The
delta-function represents energy conservation in the binary neutron-nucleus scattering process.

Eq. (33) is the basic formula describing neutron Compton scattering (NCS) [25, 54], also
known as deep inelastic neutron scattering (DINS). It follows that the measured recoil peak is
centred at an energy transfer h̄ωr, i.e. at the recoil energy. The width of the peak is given by the
term h̄q · p/M , i.e. the projection of the nuclear momentum before the collision on the measured
momentum transfer. This term represents the well-know Doppler effect [25, 54]. Generally, the
recoil peak obtained from liquid 4He is broadened due to the momentum of the classical atomic
motion and the atomic confinement in the effective potential caused by the atom’s environment
[54].

From the viewpoint of conventional scattering theory [52, 24, 25], NCS is expected to measure
“single particle” quantities, e.g. the mean kinetic energy of an atom. In various cases, an effective
Born-Oppenheimer potential for the atom is assumed to exist, which then can be extracted from
the measured Compton profile [25].

With respect to electron–atom Compton scattering [47, 48], Bonham et al. provided a
thorough analysis in the frame of conventional theory, which (as also NCS) is based on the
first Born and Born-Oppenheimer approximations [55].

In this context, it is important to stress that the characteristic scattering time of the processes
under consideration is very short; e.g. it is about one femtosecond in the real experiment
considered below. This is of the order of the characteristic electronic rearrangement processes
in molecules and condensed matter.

The above considerations show that neutron-nucleus entanglement and/or more general
quantum correlations do not play any role in conventional neutron scattering theory.

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012005 doi:10.1088/1742-6596/538/1/012005

13



100 200 300 400 500

b

a

Moderator Beam 
stop

Sample

Detector bank

θ

Analyzer foil

O/Al

DH

time of flight [μμμμs]

Figure 1. (a) Schematic representation of time-of-flight (TOF) spectrometer eVS/Vesuvio of
ISIS. (b) A TOF-spectrum of a 20:80 H2O-D2O mixture in an Al cell. The H and D recoil peaks
are well separated from each other and from the joint O/Al peak; adapted from [43].

4.2. On Time-of-Flight (TOF) Technique
The time-of-flight (TOF) scattering technique (cf. Fig. 1) allows the measurement of the partial
differential cross section d2σ/dωdΩ and the associated dynamic structure factor S(q, ω) [56].
The TOF t of each detected neutron is determined by

t =
L0

v0
+
L1

v1
+ t0 . (35)

Here L0 is the source–sample distance, L1 is the sample–detector distance. The detector is
positioned at the scattering angle θ. v0 and v1 are the velocities of the incident and scattered
neutron, respectively. t0 is a small time offset due largely to electronic delays. We used values
for L0, L1, θ and t0 for the individual detectors as provided by the instrument parameter file
IP0002 of the ISIS experimental report [57]; see Table 1.

The used spectrometer [57] is a so-called “inverse geometry” instrument meaning that the
final velocity v1 (and thus the wavevector k1) of the neutrons is fixed, and v0 varies. The final
neutron energy is fixed at E1 = 4906 meV (the resonance energy of 197Au used as analyzer foil

[58]), corresponding to a velocity v1 = 3.063× 104 m/s and wavevector k1 = 48.663 Å
−1

.
Note that the geometric quantities L0, L1 and θ can be determined by appropriate methods;

cf. [57]. It follows from Eq. (35) that each t corresponds to an initial velocity v0 and thus to an
energy transfer

h̄ω =
1

2
mv20 −

1

2
mv21 =

(h̄k0)
2

2m
−

(h̄k1)
2

2m
(36)

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012005 doi:10.1088/1742-6596/538/1/012005

14



For the corresponding momentum transfer h̄q from the neutron to the struck atom, h̄q =
h̄k0 − h̄k1, where

q =
√
k2
0
+ k2

1
− 2k0k1 cos θ . (37)

It should be emphasized that, for each value of t, the associated momentum (h̄q) and energy
(h̄ω) transfers from the neutron to the struck particle are uniquely determined. (Note that both
q and ω vary over the TOF-range of the recoil peak, which is measured by a detector positioned
at a fixed scattering angle θ.)

For scattering from free atoms with zero initial momentum, p = 0, conservation of kinetic
energy and momentum in an elastic neutron-atom collision yield the kinematic relation

v1
v0

=
k1
k0

=
cos θ +

√
(M/m)2 − sin2 θ

M/m+ 1
. (38)

m and M are the masses of the neutron and struck nucleus, respectively. This equation
corresponds to neutrons detected at the center of the measured recoil peak; cf. Fig. 1. For
a concise account of the above kinematic formulas, see [44].

4.3. Conventional Results in View of Quantumness of Correlations
Let us first “reformulate” the preceding basic formula (33) of NCS by including the neutron
state explicitly into the considerations.

First, recall that momentum conservation

p/h̄+ k0 = (p/h̄+ q) + (k0 − q) = (p/h̄+ q) + kθ
1 (39)

(k0 − q = kθ
1 by definition; superscript θ indicates the scattering angle at which a specific

detector is positioned) and energy conservation

(h̄k0)
2

2m
−

(h̄k1)
2

2m
=

(p+ h̄q)2

2M
−

(p)2

2M
= h̄ωr + h̄q · p/M (40)

hold in the binary collision. The assumed quantum state of the neutron-nucleus system before
collision is factorizable,

ρinit =

(∫
dpn(p) |p〉〈p|

)
⊗ |k0〉〈k0| (41)

Since conventional theory takes the neutron’s final state to be pure (a plane wave with well
defined and fixed kθ

1), the state of the neutron-scatterer system after scattering is still factorizable
(i.e. not entangled),

ρθfinal =

(∫∫ �

dq dpn(p) |p/h̄+ q〉〈p/h̄+ q|

)
⊗ |kθ

1〉〈k
θ
1| (42)

where the � on the integral denotes restriction to momentum and energy conservation. Recall
that k0 is not fixed, and thus the conservation conditions can be fulfilled by various pairs of
values of p and q. (We use both notations |p/h̄+q〉 and |p+qh̄〉 to represent the same physical
state.) Clearly, these two-body initial and final states of conventional theory are not entangled
and, moreover, classical-classical; see section 2.2. Thus they have zero quantum discord.
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4.3.1. Relation to Quantumness of Correlations. We now proceed in reconsidering the
derivations and the basic formula (33) of NCS in the light of the modern understanding of
the quantumness of correlations; see section 2. Against this background, the basic formulas of
the conventional theory of NCS appear to have a serious weakness. Notably, in conventional
theory the neutron represents a classical particle, its quantum degrees of freedom are not taken
into account. (k0, k1 and also q are not operator quantities but only c-numbers.) Moreover the
quantum states of the neutron “disappear”, since the average operation 〈...〉 in the formulas of
section 4.1 contains quantum states of the scattering particles only.

According to basic quantum mechanical principles, on the other hand, one generally would
expect that a collision of two particles A and B results in entanglement of these particles.
E.g., for s-wave scattering, the final state is given by a spherical outgoing wavefunction (in the
center-of-mass system) of their relative coordinate r = |rA − rB|,

ΨAB ∝
exp (ikr)

r
(43)

(k: suitable constant) and, due to the strict validity of momentum conservation, A and B will
generally become entangled in momentum space after scattering. [This entangling process should
not be assumed to be equivalent to the well-known separation of centre-of-mass and relative
coordinate motions, which appears also in the two-body problem of classical mechanics.]

Then why the neutron-scatterer entanglement (or more general quantum correlations) does
not play a role in the formulas of conventional theory? The final state of the neutron is
here assumed to be a well defined plane wave |k1〉, which is a pure one-particle state. This
assumption is necessary in order to apply the first Born approximation (and the Fermi golden
rule) and to derive the scattering probability in the k1-direction in which the neutron detector
stands. Obviously, this is tantamount to tacitly presume a collaps of the entangled (or quantum
correlated) neutron-nucleus state and assume a factorizable final state |k1〉⊗|p/h̄+q〉, in which
the neutron and the scatterer are in pure final states |k

1
〉 and |p/h̄ + q〉, with well defined

momenta. In other words, the existing entanglement between neutron and scatterer has been
“removed by hand”. As shown below, this “removal” appears to have measurable energetic
consequences which contradict conventional theory.

In the context of the following considerations it is important to observe that the scattering
atom (nucleus) is not free in a real experiment but interacts with its environment. Moreover,
the characteristic scattering time τscatt of NCS is very short but finite (about 1 femtosecond
and less [43, 44]), and thus this interaction is expected to cause a partial degradation of the
considered entanglement, which may still lead to states containing quantum discord.

The same conclusion is achieved in the general frame of the theoretical work by Streltsov et
al. [29] discussed above: Namely, M of [29] corresponds to the neutron, the subsystem A to the
single scattering nucleus X, B to the environment E of the stuck nucleus or atom, and AB to
the complete N-body system constituting the sample, X + E . The latter, being an interacting
system, may be naturally expected to be quantum correlated with nonzero discord. Then, the
neutron scattering process creates entanglement between the neutron and the scattering sample
[29].

Now let us consider the concrete physical context of NCS from normal liquid 4He, which we
also study in the context of a real experiment (see below). Recalling the fact that NCS transfers
momentum h̄q to one He atom (with, say q ∼ 100 Å−1), we can reasonably assume the struck
atom to strongly interact with adjacent He atoms (i.e. the environment E) a few Ångströms
apart, after an ultrashort time (of the order of one femtosecond) following the impulsive neutron-
He collision. Note that the scattered neutron is still very near, also a few Ångströms apart. The
scattered neutron reaches the detector without further disturbance, at a distance of about 0.6 m
away and after some tens of microseconds (see below)—about 9 orders of magnitude later than
the previous process.
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These estimates suggest the following important insights:
At and shortly after the moment of collision, the neutron and the struck He should become

entangled, as explained above, see Eq. (43). Due to the “monogamy” of entanglement [21],
one may expect that any entanglement of the struck He atom with adjacent atoms existing
previously (i.e. before collision) will be removed.

The first object that interacts with (or “measures”) the neutron-He binary system and
disturbs and/or reduces its state (say, by a POVM) is not the neutron detector, but the
environment E of the struck He. (Recall that we are considering liquid He.) This happens
on timescales of the order of 1 femtosecond after the initial collision, which is a time difference
similar to the so-called characteristic scattering time τscatt of NCS [44, 25]. Due to its many-body
characteristics, this He-E interaction can not reasonably be assumed to lead to a pure “final”
state of the He atom. So let ρHe

λ (index λ indicating the states) instead be one of the typical
mixed reduced states of He, and correspondingly let ρnλ be the associated mixed reduced states
of the scattered neutron. These states may still be partially entangled. Nevertheless one might
make the ansatz of a separable state

ρn,He(t ∼ τscatt) ≈

∫
dλ p(λ) ρn(λ)⊗ ρHe(λ), (44)

of the type of Eq. (17), section 2.2.1, which is a quantum-quantum state and thus in
general exhibits discord. In other words, the environment E is continuously “measuring” the
“neutron+He” system, thus continuously changing its quantum correlations.

Later, after a characteristic relaxation or equilibration time τrelax, the struck He should be
well equilibrated with its environment and again constitute an N-body state ρHe,E of the same
physical nature as that before the collision. The neutron assumes a mixed state ρn, which due
to the process of detection is further selected and can approximately represented as a pure state
|kθ

1〉〈k
θ
1| of conventional theory. The final measurement of the neutron by the detector can, due

to the principle of causality, not affect the dynamics and/or the correlations of the neutron-He
collisional process.

The following presents a schematic summary of the physical processes that, according to our
point of view, describe the dynamics of a NCS experiment:

t = −∞ : ρn ⊗ ρHe,E (45)

collision : t ≈ 0 : ρn,He ⊗ ρE (46)

t ≤ τscatt ∼ 10−15s :

(∫
dλ p(λ) ρn(λ)⊗ ρHe(λ)

)
⊗ ρE (47)

t > τrelax : ρHe,E ⊗ ρn (48)

t = +∞ : ρHe,E ⊗ |kθ
1〉〈k

θ
1| (49)

(Note: A symbol appearing in more than one line may refer to varying physical quantities; e.g.
ρHe,E in first line should be significantly different from that in line 4.)

4.4. Experiment
We investigated NCS from normal-state liquid 4He at T ≈ 2 K and saturated vapor pressure.
The original data [59] were kindly provided by ISIS under the “ISIS Data Policy”, cf. [60].

Here we present results obtained from TOF-spectra measured with nine detectors (see Table
1) in backscattering, at mean scattering angle θ = 134.594◦±0.2324◦. The mean sample-detector
distance is L1 = (0.6392 ± 0.0038) m; the mean time offset is t0 = (−0.3246 ± 0.0943) · 10−6

s. The L0 length is given as L0 = 11.0050 m. These specific detectors were selected because
their parameters, and especially their angles, are very similar and thus the TOF spectra can be
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Figure 2. The accumulated TOF spectrum (9 detectors, see Table 1; as measured) of 4He at
about 2 K and saturated vapor pressure; see the text. According to the instrument parameters,
Table 1, the conventionally expected position of the peak is given by the vertical bar. The
observed peak displacement corresponds to a transfer energy increased by ca. 110 meV. This
effect has no conventional interpretation; see the text.

Table 1. The instrument parameters of the detectors used in the data analysis; reproduced
from file IP0002.DAT [57]

Det. No θ (degrees) t0 (μsec) L0 (m) L1 (m)
10 134.3881 -0.2896000 11.0050 0.6410817
11 134.8883 -0.3632000 11.0050 0.6379817
12 134.7490 -0.1396000 11.0050 0.6374661
14 134.5436 -0.2448000 11.0050 0.6318235
18 134.9788 -0.3489000 11.0050 0.6433660
54 134.3012 -0.4116000 11.0050 0.6416131
56 134.4089 -0.3321000 11.0050 0.6421713
58 134.5938 -0.4649000 11.0050 0.6356288
62 134.4992 -0.3263000 11.0050 0.6414817

directly accumulated in order to improve signal to noise ratio. The resulting accumulated TOF
spectrum (as measured) is shown in Figure 2.

Table 1 contains the data of the used detectors, and is reproduced from the file containing
instrument parameters, IP0002.DAT, in Ref. [57], pages 39-41.

Using the aforementioned final neutron energy E1 = 4906 meV, one obtains k1 = 48.663 Å
−1

.
For scattering from 4He, and using the formulas of subsection 4.2, the corresponding initial

wavevector at θ is k0 = 75.517 Å
−1

, and the related momentum transfer is h̄q with q =

115.027 Å
−1

. The associated recoil energy (or energy transfer) is h̄ωr = 6908.7 meV.
These numerical values, which are obtained from conventional theory, and the basic formula

Eq. (35) predict the TOF position of the 4He recoil (Compton) peak to be at tconv = 252.067
μs. This value is shown with a vertical bar in Figure 2. One observes a significant displacement
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of the measured recoil peak to shorter TOF’s, and equivalently to larger energy transfers (since
the instrument is of “inverse geometry”; see above). The observed displacement ΔQt of the peak
maximum is about one microsecond, ΔQt ≈ 1.0 μs. This corresponds to an increased initial
velocity (and energy) of the neutron, and thus to an energy transfer increased by

ΔQE ≈ 110 meV. (50)

Due to the uncertainty of the TOF-position of the peak, we estimate the error of ΔQE to be
about ±10%.

It may be noted that the intrinsic width of the recoil peak of 4He is very narrow, and thus
the width shown in Figure 2 is mostly due to the instrumental resolution. Hence ΔQE should
not be considered as being “too small”.

4.4.1. Quantum Maxwell demon and ΔQE > 0. Note that the epithermal neutron, the struck
4He atom, and the adjacent 4He atoms (being strongly disturbed by the former) do not represent
thermalized systems or baths, due to the smallness of the characteristic time window τscatt, see
above. Thus the experimental result (50) cannot be directly compared with the well know
theoretical result

ΔW =WQ −WC = kTD(A|B) (51)

(k: Boltzmann constant; T : temperature) connecting quantum discord [61], Eq. (13), with the
difference between the work-extraction efficiency of the quantum and classical demons, which
may extract works WQ and WC , respectively. The quantity ΔW is also called work deficit,
cf. [21].

However, using the traditional demon’s scenario, one may obtain an associated result as
follows. Let the neutron correspond to the subsystem A, and the struck 4He atom together with
certain adjacent 4He atoms interacting with it to subsystem B. The demon continuously “reads
off”, or erases, quantum correlations (i.e. information) encoded in A+B during the time window
τscatt of the collision. For a classical demon, this erasure should have an inherent positive work
cost [12], e.g. it may dissipate some kinetic energy of A, resulting to a smaller energy transfer
h̄ωr −WC for the binary neutron-4He collision than the conventional recoil energy h̄ωr. In the
case of a quantum demon, however, this process may have “negative costs of erasure” [31], e.g. it
may “extract” some additional work WQ, resulting to a larger energy transfer h̄ωr +WQ for the
binary collision than the conventionally expected value h̄ωr. Thus we can define the “efficiency”
of the quantum demon by the ratio:

WQ −WC

h̄ωr
≥

measured E-transfer− h̄ωr

h̄ωr
=

110 meV

6908.7 meV
≈ 1.6 % (52)

In other words, the Maxwell demon observing the actual NCS process from 4He is a quantum
one—and about 1.6% more efficient than any classical demon.

5. Discussion and Conclusions

At first glance, one obvious objection to the theoretical arguments presented is that the observed
shift of the NCS peak might have a more simple explanation. For instance, the following
possibility might be proposed: The observed mean energy transfer is slightly higher than the
one predicted by standard theory. Could it not be interpreted simply as being caused by a
slightly higher effective mass of the scatterer? The assumption of a free scatterer is clearly a
crude (although very common) approximation. If the scatterer is partially bound with adjacent
particles, one scatters on a seemingly little heavier object, as the environment to which it is
bound has a certain mass. This effective increase of mass might be due to some simply classical
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binding (e.g., the extreme case would be analogous to the well known Mössbauer effect, where the
crystal as a whole acts as a scatterer. Similarly in solid state physics it is common to talk about
heavy electrons, which is nothing more than simply a breakdown of the independent particle
scatterer approximation due to correlation which causes an apparent heavier mass). However, the
proposed consideration demonstrates quite the opposite of what is intended. Namely, according
to standard theory of binary collisions, the mentioned higher effective mass of the scattering
4He must necessarily cause a lower (not higher!) energy transfer (e.g. collision with a scatterer
of infinite mass causes no energy transfer at all). In other terms, and in the light of the above
remarks, it is clear that no classical partial bonding to the environment can lead to a smaller
effective mass of the scatterer—which would then provide a conventional interpretation of the
experimentally measured increased energy transfer.

The experimental results discussed in the previous section can be understood by noting that
erasure of quantum correlations in the system “neutron+4He”, which is interacting with the
environment, may have negative work costs [31] that affect the quantum dynamics of neutron
scattering on ultrafast timescales. First indications of this effect have been recently observed in
scattering from molecular H2 [62] and D2 [63].

The aforementioned theoretical considerations for the interpretation of the experimental
finding (50) in the frame of quantum information theory are qualitative; a quantitative
theoretical model for calculating the positive energy-transfer shift of the NCS-recoil peak is
presently not available.

The phenomena of entanglement, discord and decoherence are not considered in conventional
neutron scattering theory [25, 24, 52, 53]. As mentioned above, the observed positive energy-
transfer deviation, ΔQE > 0, contradicts all conventional expectations. This becomes even more
evident by considering the opposite (and conventionally expected) case of a negative ΔQE, which
is attributed to so-called final-state-effects [25]. Such effects arise if the energy transfer is not
sufficient to validate the impulse approximation [25, 54], in which case the struck particle is not
“fully free” and a part of the neutron’s kinetic energy must be used to overcome the particle-
environment binding forces, resulting in a reduction of the energy transferred to the struck
particle.

In contrast to conventional theory, and based on the aforementioned theoretical understanding
of quantum correlations and their dynamics accompanying elementary scattering processes, we
attribute the result ΔQE > 0 to “negative energetic costs” of correlations-erasure discussed in
sections 2 and 3. In particular we refer to the qualitatively similar results following from the
Lindblad equation [38] (sect. 3.2.1), the result of the Schulman-Gaveau analysis [50] (sect. 3.2.2),
and the “negative work costs” of negative conditional entropy by del Rio et al. [31] (sect. 2.2.3).
Note that in all these cases the quantumness of correlations leads to higher work-values as
compared to the associated processes in the absence of quantum correlations. The same holds
for quantum Maxwell demons, which can extract more work from quantum correlations than
classical demons; cf. [21, 22, 61].

In view of these remarks and considerations, our scattering effect offers new physical insights
into entanglement, discord and other measures of quantumness of correlations, as well as on
their operational meaning. Moreover, the general character of its causes suggests that this
effect may be observed in other experimental areas involving scattering (e.g. inelastic x-ray
scattering, electron-atom Compton scattering, etc.), and also in a lower energy-transfer range
(e.g. in vibrational spectroscopy with neutrons [64, 65, 66, 67]). Related work is in progress [68].
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