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I

The results in this thesis deal with two new constructions for posets, lattices, and
polytopes, theE-constructionand theBier construction.

My interest in the first of these two constructions, theE-construction, originates
from several questions my PhD advisor Günter M. Ziegler asked about inequality
bounds for the flag vector cones of 4-polytopes and 3-sphereswhen I joined the
Discrete Geometry Group at the Technische Universität Berlin. While working on
these questions I read the paper “Fat 4-polytopes and fatter3-spheres” by Eppstein,
Kuperberg, and Ziegler and got interested in theE-construction they define. They
used it for the construction of an infinite family of 2-simpleand 2-simplicial 4-
polytopes. Such polytopes satisfy two of the known flag vector inequalities with
equality, and — at that time — were the “fattest” known 4-polytopes.

The E-construction defined in this thesis is a generalisation of the one intro-
duced by Eppstein, Kuperberg, and Ziegler to graded posets and lattices of any
length and polytopes in any dimension. By means of this construction it is now
easy to produce large numbers of 2-simple and (d− 2)-simpliciald-polytopes (and
also many others) with further interesting properties.

The original E-construction requires as input simplicial 4-polytopes having
their edges tangent to the unit sphere. My first important step towards the definition
of its generalised version was the discovery of explicit geometric coordinates for
some of the 2-simple and 2-simplicial 4-polytopes obtainedfrom theE-construc-
tion, but without assuming edge tangency. Further working with these new poly-
topes, with projective transformations, and with some geometric sequences, I ar-
rived at the first infinite sequence ofrational2-simple and 2-simplicial 4-polytopes.
They arenot tangent to the unit sphere, so theycannotbe obtained with the original
construction. This set off all other results about theE-construction.

Exploring properties and applications of theE-construction were my main oc-
cupation during the past three years. Many other questions and problems I have
looked at were motivated by questions that arose in connection with this. A dif-
ferent construction that came up in this context — theBier construction— is in-
troduced in Chapter5 of this thesis. The Bier posets and spheres defined there
have a close formal similarity to those of theE-construction, but the presented re-
sults have a more topological flavour. In particular, we obtain a large number of
shellable, centrally symmetric andk-nearly neighbourly PL spheres.

Some of the results presented in this thesis are already published elsewhere.
The definition of the generalisedE-construction, its basic properties for Eulerian
lattices, for spheres and for polytopes, together with several applications of it, have
appeared in a joint paper with Günter M. Ziegler inDiscrete& Computational
Geometryin November 2004 [68]. This paper is the basis for Chapter2. Part
of it has moved into Chapter4 and was combined with some results from my
recent preprint on products of polytopes [66]. Both chapters contain new material.
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In particular, in Chapter2 is a simple and useful new method for constructing
polytopal realisations of spheres obtained fromE-construction. Chapter4 contains
lists of known small 2-simple and 2-simplicial 4-polytopes, of known constructions
for such polytopes, and a summary on higher dimensional examples.

The central results of Chapter3 are contained in my preprint “New Polytopes
from Products” [66]. It deals with a large class of polytopes to which theE-
construction applies and the obtained spheres are polytopal. The main application
is a new 2-parameter family of 2-simple and 2-simplicial 4-polytopes with many
other remarkable properties.

Chapter5 is independent of the previous three chapters and reflects the contents
of a joint paper [21] with Anders Björner, Jonas Sjöstrand, and Günter M. Ziegler
on a construction for posets leading to “Bier Spheres and Posets.” It appeared in
the online version ofDiscrete& Computational Geometryin September 2004.

A rough layout of the thesis is as follows. Introductory material from the three
papers is combined into Chapter1. Chapters2–4 are related to each other and deal
with theE-construction, while Chapter5 deals with the Bier construction. A more
detailed account on the three parts is given in the next sections of the introduction.
This thesis is written in British English.

F P  P

The first chapter contains all notations, definitions and facts that we need from the
areas of combinatorics and discrete geometry in this thesis. Even though is short,
it is intended to be self-contained. However, it focuses on notions and results used
in the later chapters and does not give a general introduction into these topics.

We start this introduction with two sections devoted to the four different notions
of posets, lattices, spheres, andpolytopes. The first two terms are of combinatorial
nature; and lattices are posets with some additional structure. We deal with them in
Section1.2. The latter two are of geometric nature; and polytopes are CWspheres
with some additional structure. Both are presented in Section 1.3.

Section1.4gives a brief introduction into the known results on flag vectors of
three and four dimensional polytopes. There is a complete classification in three
dimensions, while in four dimensions (and also all higher dimensions) the picture
is still quite incomplete. The polytopes obtained from theE-construction lie in
areas of the flag vector cone in which only very few polytopes have been known
previously. However, this new information by itself does not suffice to add new
structural results to the classification problem.

Finally, in Section1.5 we give a brief introduction into hyperbolic geometry.
We discuss two standard models of hyperbolic space, the upper half space model
and the Klein model. We introduce geodesics, isometries, and horospheres in hy-
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I

perbolic space, and show that the isometry group is transitive. These facts are nec-
essary for one of our constructions of infinite families of 2-simple and 2-simplicial
4-polytopes in Chapter2.

Here are some textbooks for a more detailed introduction into these topics. I
learnt much of what I know about posets and lattices from the two books of Richard
P. Stanley on “Enumerative Combinatorics” [83, 84]. My favourite book on topol-
ogy is “Topology and Geometry” by Glen E. Bredon [28], and the basics about
polytopes are in Günter M. Ziegler’s book “Lectures on Polytopes” [89]. Poly-
tope constructions are explained in detail in the book on “Convex Polytopes” [44]
by Branko Grünbaum and in the classic text book of H.S.M. Coxeter on “Regu-
lar Polytopes” [30]. For hyperbolic geometry, one could look at the introductory
text “Lectures on Hyperbolic Geometry” of Ricardo Benedetti and Carlo Petronio
[12]. For discrete geometric questions, and some facts about flag vectors, the two
volumes of the “Handbook on Convex Geometry” [43] are always a good source.

E-C

The E-construction for spheres and polytopes was introduced in apaper of Epp-
stein, Kuperberg, and Ziegler. They obtained the first infinite series of 2-simple and
2-simplicial 4-polytopes using this new method. Earlier claims of a construction
of such a family of polytopes reported by Grünbaum in his book[44, p. 82,170],
where this is attributed to Perles and Shephard, turned out to be premature.

In its original version, theE-construction applies to simplicial 4-polytopes hav-
ing all their edges tangent to the unit sphere. It modifies such a simplicial polytope
P by adding the vertices of its polar in a suitable way. However, the edge-tangency
condition prevents most of the polytopes obtained by this construction from being
realised with rational coordinates. Moreover, edge tangency is difficult to achieve
for a simplicial 4-polytope, if it is possible at all. Eppstein, Kuperberg, and Ziegler
use a quite intricate method for the construction of an infinite family of such 4-
polytopes. Their families of polytopes are now a special case of Theorem2.5.15.

In Chapter2 we define a generalised version of theE-construction. It extends
and modifies the originalE-construction in several directions:v The construction is extended to finite graded Eulerian posets, finite graded

Eulerian lattices, PL spheres, and polytopes in any dimension.v The special rôle played by the edges in the original version of the construc-
tion is relaxed by defining a similar construction for any dimensiont of “dis-
tinguished” faces, for a parametert between 0 andd− 1. Hered is either the
dimension of the polytope, or the rank of the poset minus one.v Edge tangency in the case of polytopes is not anymore necessary to obtain
geometric realisations.
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I kept the nameE-constructionalso for the generalised version. To avoid con-
fusion, the dimensiont of the special faces of the polytope is sometimes added
as a subscript, so thatEt(P) denotes the polytope obtained from the construction
applied to faces of dimensiont of a polytopeP.

Defining theE-construction combinatorially on the level of graded Eulerian
posets and lattices allows a much more systematic treatmentof its properties than
by defining it only for polytopes. Consequently, we give two different definitions
of the construction, a combinatorial one in Section2.3 for Eulerian posets and
lattices, and a geometric one for PL spheres and polytopes inSection2.4. The
latter coincides with the former on the level of face lattices.

Eulerian lattices provide a simple model for the combinatorial properties of
convex polytopes. This is a rather recent topic in combinatorics. Eulerianposets
were formalised by Stanley [80] in 1982. Basic ideas for their definition appeared
previously in Klee’s paper [55] from 1964. There are some recent studies of the
flag vectors of Eulerian posets (see e.g. Stanley [82]). However, there is still only
little systematic knowledge and treatment of Eulerianlatticesin the literature.

A priori, the geometric version of the generalisedE-construction applies to a
PL sphereS and associates a new PL sphereE(S) to it. However, such PL spheres
serve only an intermediate tool for our considerations. We are mainly interested in
polytopes, which are PL spheres with some additional geometric structure. So we
introduce in Chapters2 and3 several classes of polytopes with the property that
the PL spheres obtained from theE-construction are in fact polytopal. For most
of these classes we also provide simple methods to constructexplicit geometric
coordinates. In many cases these coordinates will be rational.

Here are some of the key properties of the generalisedE-construction and the
most important classes of polytopes obtained from it.v By Theorem2.3.11, the posets, lattices, and polytopes obtained from theE-

construction are 2-simple andk-simplicial, for somek ≥ 2 depending on the
simplicity and simpliciality of the input.v In Theorem2.5.15is the first infinite family of 2-simple and (d−2)-simplicial
d-polytopes in any dimensiond ≥ 4.v We obtain the first infinite family ofrational 2-simple and 2-simplicial 4-po-
lytopes in Corollary2.5.11. We construct many other such families.v The 2-simple and 2-simplicial 4-polytopes produced with this construction
lie on the boundary of the cone formed by the known flag vector inequalities
of 4-polytopes.v Some of the polytopes have a high fatness. This quantity was introduced by
Ziegler and is defined to be the quotient of the sum of edges andridges of a
polytope divided by the sum of its vertices and facets. Bounds on its range
are of great interest in connection with the classification of flag vectors.
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Iv For several of our families of 2-simple and 2-simplicial polytopes we are
able to provide flexible geometric realisations.v The E-construction applies to all products of polygons. We give explicit
geometric realisations and examine their symmetry groups and realisation
spaces.

In the case of polytopes the generalisedE-construction roughly works as fol-
lows: Given is ad-polytopeP and a dimensiont between 0 andd − 1. Add one
new vertex beyond each facet ofP in such a way, that vertices above facets sharing
a commont-face lie in a common hyperplane with thist-face. If such a choice of
new vertices exists, then the convex hull ofP together with these new vertices is a
polytopeEt(P) that has precisely one facet for eacht-face ofP.

In Chapter2 several properties of this construction on the level of lattices are
proven. They are inspired by the properties one would expectin the geometric
setting. In particular, the construction preserves the length of a poset, and the
lattice E(L) obtained from a latticeL via this construction is finite, graded, and
Eulerian, ifL has these properties.

We transfer the definitions and results into a geometric setting in Section2.4
and apply them to PL spheres. In the rest of Chapter2 we present several classes
of polytopes to which theE-construction applies. We construct one infinite family
of 2-simple and (d− 2)-simpliciald-polytopes for any dimensiond ≥ 4, and many
such families in dimensiond = 4, most of them with rational coordinates.

Chapter3 is entirely devoted to a quite general method for the application of
theE-construction tod-polytopes in the caset = d − 2, which does the following:
Let P0 andP1 be two polytopes of dimensionsd0 andd1, with d0+d1 = d. Suppose
there are polytopal realisations ofEd0−2(P0) and Ed1−2(P1). Theorem3.3.1 now
states that, if these realisations satisfy some additionalconditions, then there is a
polytopal realisation ofEd−2(P0×P1), which can be obtained by suitably combining
the coordinates of the two realisations.

The application of this construction is demonstrated by some simple examples
in all dimensions≥ 4. However, the main application is the construction of yet an-
other infinite 2-parameter familyEmn of 4-polytopes. TheseEmn are obtained from
the E-construction when applied to a product of two polygonsCm andCn with m
andn vertices, form, n ≥ 3. For this, we first show that there is a restricted version
of Theorem3.3.1that allows to look at the two factors separately. By Theorem
3.4.1, there are realisations ofE(Ck) for polygonsCk, k ≥ 3, that satisfy these
restricted conditions. The proof is constructive and we obtain simple geometric
realisations for theEmn. However, in general, the coordinates will not be rational,
as there is one quadratic equation involved in the construction.

The Emn are self-dual 2-simple and 2-simplicial 4-polytopes.E44 is the 24-
cell. For largem andn these polytopes approach the upper bound for fatness of
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E-polytopes obtained from simplicial polytopes. They have alarge combinatorial
symmetry group and geometric realisations that realise many on their combinato-
rial symmetries. However, by Theorem3.5.6, only for m, n = 4 — which is the
24-cell — these two groups coincide for a geometric realisation, namely, the stan-
dard regular realisation of the 24-cell. There are a few other, only slightly less
symmetricEmn described in Theorem3.5.3.

For the two small casesm, n = 3 andm, n = 4 we examine in Theorems
3.5.10and3.5.13the realisation space of these polytopes. For the first example
we provide an explicit way to construct all examples that satisfy the conditions in
Theorem3.4.1. For the second example we only state a 4-parameter family ofre-
alisations, as the explicit construction of all possible realisations is quite technical.

The initial idea to investigate theE-construction of products of polytopes arose
from the interest in the realisability and the symmetry of the polytopesEmn in the
special casem = n. A combinatorial description of these polytopes and some
symmetry properties were obtained independently by Bokowski and Gévay.

Chapter4 is the last chapter on theE-construction. It collects results from
the previous two chapters and compares them to “the outside polytope world.”
Namely, it addresses the relation between 2-simple and 2-simplicial polytopes and
polytopes without this property. We present new results on flag vectors of 2-simple
and 2-simplicial polytopes, look at their fatness, give lower bounds on the number
of 2-simple and 2-simplicial polytopes and show that the flagvector does not fix
the combinatorial type of such polytopes.

Further, Chapter4 contains a summary on the known construction methods for
2-simple and 2-simplicial 4-polytopes. We provide a complete list of these up to
19 vertices, together with many more interesting examples that have a larger num-
ber of vertices. We also give a list of interesting examples in higher dimensions.
This is, however, not complete and the case ofd-polytopes ford ≥ 5 is, despite the
given infinite series of 2-simple and (d − 2)-simpliciald-polytopes, still quite un-
explored. We have provided a wealth of examples in dimension4 with this thesis,
but constructing explicit examples in dimensionsd ≥ 5 is still much more difficult.

B S

Chapter5 deals with a topic different from that of the previous chapters and is joint
work with Anders Björner, Jonas Sjöstrand, and Günter M. Ziegler. It introduces
a second new construction for finite graded posets, theBier construction. This has
some formal similarity to theE-construction of the previous chapters, and some of
the presented theorems and proofs will look familiar. However, it has a different
origin, and the results and properties that we present aboutthis construction have a
much more combinatorial and topological flavour.
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In an unpublished paper from 1992, Thomas Bier introduces a simple con-
struction for a large number of simplicial PL spheres. His construction associates a
simplicial (n−2)-sphereS with up to 2n vertices to any simplicial complex∆ ⊂ 2[n]

on n vertices by forming thedeleted joinof the complex∆ with its combinatorial
Alexander dual. Bier proved that this construction does indeed produce PL spheres,
by verifying that any addition of a new face to the simplicialcomplex∆ amounts
to a bistellar flip in the sphereS.

We generalise Bier’s original construction and define aBier posetBier(P, I ) for
any bounded finite posetP and any proper order idealI ⊂ P in this poset. The
poset Bier(P, I ) consists of all intervals inP that have their minimal element in
I and their maximal element in the complementP \ I , together with an artificial
maximal element̂1. This set is ordered by reversed inclusion.

Our generalised construction contains the original construction of Thomas Bier
as a special case. Namely, ifP is the boolean posetBn, then it can be viewed as the
face poset of the (n − 1)-simplex. Any proper idealI ⊂ Bn may be interpreted as
an abstract simplicial complex∆. The PL spheres that Bier describes in his work
are spheres that have Bier(Bn,∆) as their face lattice.

We prove several new properties of this construction and theobtained posets
and spheres. Here are the key results contained in Chapter5.v We show that the order complex of Bier(P, I ) is PL homeomorphic to that of

the posetP. We prove that this complex may be obtained by a sequence of
stellar subdivisions of edges in the order complex ofP.v Like the E-construction, the Bier construction preserves several properties
of the poset. In particular, ifP is an Eulerian or Cohen-Macaulay poset or
lattice, then Bier(P, I ) will have that property as well.v If L is the face lattice of a regular PL-sphereS, then the lattices Bier(L, I )
for proper idealsI ⊂ L are again face lattices of regular PL-spheres, theBier
spheresof S.v In the case of Bier’s original construction we prove that allthe simplicial
spheres obtained from the construction are shellable.v The number of Bier spheres is so large, that most of the spheres Bier(Bn,∆)
for largen cannot be realisable as polytopes.
Similarly, for special choices of the abstract simplicial complex∆ in Bn,
and evenn, we obtain “many” nearly neighbourly and centrally symmetric
(n− 2)-spheres on 2n vertices.v Theg-vector of a Bier sphere Bier(Bn,∆) can be expressed explicitly in terms
of the f -vector of∆. We show that theseg-vectors actually areK-sequences,
and thus they satisfy a strong form of theg-conjecture for spheres. The
generalised lower bound conjecture is verified for Bier spheres.
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1.1 I

This thesis examines both combinatorial and geometric properties of polytopes
that have some special properties. The constructions in thelater chapters start out
with combinatorial definitions on posets and lattices. These are transfered into a
geometric setting by applying them to face lattices of spheres and polytopes and as-
sociating appropriate geometric structure to the result. In this chapter, we introduce
the necessary combinatorial and geometric notions and givethe properties needed
for the later chapters. Nothing really new is included here,but some material lacks
a concise source in the literature.

The chapter is split into four parts. In the first, we introduce posets and lattices,
and in the second PL spheres and polytopes. In the third, we present some material
about flag vectors of polytopes and the flag vector classification problem. The last
part is about hyperbolic geometry, which we need for one polytope construction in
the end of the second chapter.

1.2 P  L

We introduce posets and lattices, which are the two important concepts of combi-
natorics that we need in this thesis. We restrict our attention to the properties and
theorems that we need later. A more detailed treatment, and abroader view on
these topics, can be found in the two books of Stanley [83] and [84] on “Enumera-
tive Combinatorics”.

1.2.1 P

Roughly, partially ordered sets are sets together with an additional structure intro-
ducing an “order” between some of its elements. The main example of a partially
ordered set occurring in this thesis is theface latticeof a polytopeP. Its underlying
set is the set of all faces ofP. The order relation is given by inclusion of faces. (see
Section1.3.2for an exact statement). Here is the precise definition of a partially
ordered set.

1.2.1 D [Poset]. A partially ordered set(or posetfor short)P is a set
(usually denoted with the same letterP) together with a binary relation� (which
can be viewed as a subset ofP× P) that for anyx, y, z ∈ P satisfies:

(1) x� x, (reflexivity)
(2) x� y andy� x imply x = y, (antisymmetry)
(3) x� y andy� z imply x� z. (transitivity)

We often write�P to emphasise the set on which this relation is defined.
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We usex≺ y to denotex� y andx , y. We also usey� x for x� y andy≻ x for
x≺ y. Two elementsx andy of a posetP arecomparableif either x� y or y� x.
Otherwise they areincomparable. An elementy is said tocoveran elementx if
x≺ y and there is noz ∈ P such thaty≺ z≺ y.

TheHasse diagramof a posetP is a very convenient way of visualisingP inR2: For every element of the poset we draw a point in thex1-x2-plane in such a
way that, for any pairx� y ∈ P, the pointy has a largerx2-coordinate than the point
x. We connect a pair of pointsx andy by an edge ify coversx. See Figures1.1(a)
and1.1(b)for examples.

An induced subposet Qof a posetP is a subset of the elements ofP together
with the induced order relation; that is, two elements ofQ are comparable inQ if
and only if they are comparable as elements ofP. However, the covering relations
may change. Aninterval [x, y] bounded by two elementsx� y in a posetP is the
induced subposet

[x, y] := {z ∈ P : x� z� y}.

See Figure1.1(c) for an example. Amaximal elementin a posetP is an element
y ∈ P such thatx� y for all x ∈ P. Similarly, one definesminimal elements. Note,
that a poset can have several maximal and minimal elements; see Figure1.1(a)for
an illustration of this.

A posetσ is called achain(or total orderor linear order) if any two elements
in σ are comparable. See Figure1.1(b) for an example of a chain. Themaximal
elementof a chainσ is the elementy ∈ σ satisfyingx� y for all x ∈ σ. Similarly,
theminimal elementis the elementx ∈ σ satisfyingx� y for all y ∈ σ. A chain
in P is a subposetσ of P that is a chain with the induced order. A chain inP is
maximalif there is no larger chain inP containing it.

(a) A poset with two maximal and
two minimal elements.

(b) The totally ordered
poset [4]= {1, 2, 3, 4}.

x

y

(c) An interval [x, y] in a poset.

Figure 1.1: Examples of posets I.
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1.2.2 E. Here are some examples of posets together with their Hasse dia-
grams. These posets will reappear frequently in the subsequent chapters.

(1) Let P be the set containing the firstn natural numbers{1, . . . , n}. Equip
this with the order relation induced by the usual “≤” in N. This is a totally
ordered set commonly denoted by [n]. See Figure1.1(b)for an illustration.

(2) Let Bn for n ∈ N be the set of all subsets of [n] (i.e. the power set of [n])
together with the relation given by inclusion (usually referred to as“ordered
by inclusion”). This is theBoolean poseton n elements. Its Hasse diagram
for the casen = 4 is shown in Figure1.2(a).

(3) LetΓ := {0, 1, . . . , k} be an alphabet withk+ 1 letters andω(Γ) the set of all
words overΓ. We say that a wordω1 is smaller thanω2 if ω1 is a substring
of ω2. This defines a poset with infinitely many elements. A small portion
of this poset is in Figure1.2(b).

A posetP is said tohave a zeroif there is a unique element0̂ ∈ P that satisfies
0̂� y for all y ∈ P. Similarly, a poset is said tohave a oneif there is an element̂1
that satisfiesx� 1̂ for all x ∈ P (In a chain, these are the minimal and maximal ele-
ments). The poset in Figure1.3(a)has a zero, but no one, and that in Figure1.3(b)
has a one, but no zero. A poset isboundedif it has a0̂ and a1̂. It is locally finite,
if any interval contains only a finite number of elements, andit is finite, if the setP
itself has only a finite number of elements. The Boolean posetin Example1.2.2(2)
is bounded, the one in Example1.2.2(3) is not. Note, that a bounded poset need
not be finite, and vice versa.

In a bounded posetP we say that an element is anatomof the poset if it covers
0̂, and it is acoatomif it is covered by1̂. The set of all atoms in a poset is denoted
byA(P) and the set of all coatoms byC(P). A posetP is connectedif its Hasse
diagram is connected as a graph. A bounded posetP is strongly connected, if
P\{0̂, 1̂} is connected.

a

b

c

d

e

(a) The Boolean posetB4.

1220

122 120 220

12 22 2010

1 2 0

(b) A small part of the posetω(Γ): The poset of all
subsequences of 1220.

Figure 1.2: Examples of posets II.
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Mostly, the relation in posets that we consider is eitherinclusionor reversed
inclusionfor a set of cells in a CW sphere or of faces in a polytope. Theserelations
are opposite to each other in the following sense.

1.2.3 D [Opposite Poset]. The opposite poset Pop of a posetP with
relation� is a poset with the same underlying set, but reversed order relation. That
is, for all x, y ∈ Pop, we havey� x in Pop if and only if x� y in P. See Figure1.3
for a Hasse diagram of a poset and its opposite poset.

A map m : P → Q between two posetsP and Q is order-preservingif it
respects the order relation. That means, for anyx, y ∈ P, their images underm
should satisfym(x)�m(y) if x� y.

1.2.4 D [Isomorphic Posets]. Two posetsP and Q are isomorphic, if
there exists an bijectionϕ : P→ Q such thatx� y if and only if ϕ(x)�ϕ(y). That
is,ϕ and its inverse are order preserving. We call such a map anautomorphismof
the posetP if Q = P. The set of all automorphisms ofP, together with composition
of maps, forms a group, theautomorphism groupAut(P) of P.

There are several simple constructions that produce new posets from old ones.
We will later need the following two methods, which define twodifferent products
for a pair of posets.

1.2.5 D [Product and Reduced Product]. Let P andQ be two posets
with order relations�P and�Q.v The (direct) productof P andQ is the setP × Q := {(x, y) : x ∈ P, y ∈ Q}

with order relation (x, y)�(x′, y′) if x�P x′ andy�Q y′.v Assume that bothP andQ have a zero. Thereduced product with respect to
0̂ of P andQ is the setP ×red Q := P\{0̂} × Q\{0̂} ⊎ 0̂, with order relation
induced fromP× Q, and0̂≺(x, y) for all x ∈ P\{0̂}, y ∈ Q\{0̂}.

(a) A poset without̂1. (b) and one without̂0.

Figure 1.3: Examples of posets III.
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In the same way, one defines a reduced product for a pair of posets with1̂. With
the obvious adaptions, all results about reduced products with respect tô0 are also
valid for those with respect tô1.

Now we turn to some more powerful structures of posets. LetP be a locally
finite poset. Thelength ℓ(σ) of a chainσ in P is one less than the number of
elements it contains.ℓ(x, y) for two elementsx� y in P denotes the length of the
longest chain in the interval [x, y]. Similarly, thelength of Pis

ℓ(P) := max
{

ℓ(σ) : σ is a chain inP
}

.

We call an interval or posetgraded (or ranked) if all maximal chains have the
same length. Note, that this need not be true in general posets. However, ifP is
graded, then the same is true for any interval [x, y] ⊆ P. This allows the following
(recursive) definition.

1.2.6 D [Rank Function]. A bounded graded posetP can be equipped
with a rank functionρ : P −→ N by defining

(1) ρ(x) := 0 for all minimal elements ofP, and
(2) ρ(y) := ρ(x) + 1 if y coversx.

For any 0≤ k ≤ ℓ(P) define thelevel setof rankk in P by

Pk := { x ∈ P : ρ(x) = k }.

If 1̂ is the maximal element ofP thenρ(1̂) is the length of the poset. Observe
thatℓ(x, y) = ρ(y) − ρ(x) for any twox, y ∈ P.

We indicate a grading of a poset in its Hasse diagram by givingelements the
same height if and only if they have the same rank. Note, that an induced subposet
of a graded poset need not be graded itself, see e.g. Figure1.5(a).

P Q

P× Q P×red Q

Figure 1.4: Products of two posets.
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1.2.7 D [Ideal]. Let P be a poset. Anideal I (also called adown set) in
P is a subset ofP that for anyy ∈ I contains all elementsx ∈ P covered byy. See
Figure1.5(b)for an example. A subsetF ⊆ P is called afilter (or up set) in P, if it
is an ideal in the opposite poset.

The combinatorial properties of a poset are the number of itselements and – in
the graded case – its rank and the covering relations betweenthe elements. For a
graded poset, the next notion captures an aggregated version of this information in
a very convenient form by summing over all elements with equivalent properties.

1.2.8 D [Flag Vector]. Let P be a finite graded poset of lengthℓ. An
S -chainfor any subsetS ⊆ {−1, . . . , ℓ−1} is a chain inP that has length|S| − 1
and contains an elementσ j of rank j + 1 for any j ∈ S. Let fS be the number of all
S-chains inP. Theflag vectorof P is the vector

flag(P) := ( fS)S⊆{−1,...,ℓ−1}

(in some previously fixed order on the power set of{−1, . . . , ℓ−1}). We usually
write fs1s2...sk instead off{s1s2...sk}. The f -vectorof P is the subset

f (P) := ( f−1, f0, f1, . . . , fℓ−1)

of the entries of flag(P).

If P is bounded, then one usually drops the first and last entry in the f -vector,
as they are both one. This is in particular the case forf -vectors of polytopes.
In boundedposets of lengthℓ we know that f{−1, j} = f j and f{ j,ℓ−1} = f j for any
−1 ≤ j ≤ ℓ by definition. This is not true for arbitrary posets.

1.2.9 E.

a

b

c

d

e

(a) A subposet ofB4 in Figure1.2(a). (b) The black elements form an ideal inB4.

Figure 1.5: Examples of posets IV.
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The remaining nontrivial entries of the flag vector aref01 = f02 = f12 = 12
and f012 = 24.

1.2.10 R. The index shift in the definition of the flag vector of a poset
originates in the correspondence of elements of rankj + 1 in the face poset of a
polytope to faces of dimensionj in this polytope. That is, in the case of a face
lattice of a polytope,f0 counts the number of vertices,f1 the number of edges, etc.
f−1 is the empty set, andfd for ad-dimensional polytope is the polytope itself.

LetI(P) denote the set of all intervals inP. TheMöbius functionµ : I(P)→ Z
of a posetP is defined inductively by the following two conditions.

µ([x, x]) := 1 for all x ∈ P

µ([x, y]) := −
∑

x� z≺ y

µ(x, z) for all x, y ∈ P with x≺ y

We usually writeµ(x, y) instead ofµ([x, y]). The Möbius function is a special
function in the algebra of all functions defined onI(P), which is a rather powerful
tool in the theory of posets; see e.g. Stanley’s book [83, pp. 113ff]. For example,
the Möbius function on the poset shown in Figure1.5(a)evaluated on the interval
[a, e] is 0, while all other values are either+1 or −1. In this thesis, we use the
Möbius function only for the following important definition.

1.2.11 D [Eulerian Poset]. A finite and graded posetP is Eulerian if
µ(x, y) = (−1)ℓ(x,y) for all x� y in P.

Eulerian posets are a rather recent topic in combinatorics.Basic ideas appeared
in a paper of Klee in 1964 [55], while a formal definition came only in 1982 by
Stanley [80]. A survey on known results for Eulerian posets is given by Stanley
in [82]. To test, whether a graded poset is Eulerian or not, we will mostly use the
criterion given by the following proposition.

1.2.12 P [Odd and Even Elements]. A finite graded poset P is Eulerian
if and only if all intervals[x, y] of lengthℓ ≥ 1 in P contain an equal number of
elements of odd and even rank.

Proof. Let ρ be the rank function onP andx, y ∈ P two arbitrary elements with
ℓ(x, y) ≥ 1. If P is Eulerian thenµ(x, y) = (−1)ℓ(x,y) and we can compute

0 = (−1)ρ(x)
[

(−1)ℓ(x,y) +
∑

x� z≺ y

µ(x, z)
]
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= (−1)ρ(x)
[

(−1)ρ(y)−ρ(x) +
∑

x� z≺ y

(−1)ℓ(x,z)
]

= (−1)ρ(y) + (−1)ρ(x)
∑

x� z≺ y

(−1)ρ(z)−ρ(x)

= (−1)ρ(y) +
∑

x� z≺ y

(−1)ρ(z) =
∑

x� z� y

(−1)ρ(z).

The other implication follows by induction overℓ := ℓ(x, y). If ℓ = 0, thenx = y
andµ(x, x) = 1 = (−1)ℓ. So, if the claim is true for anyk ≤ ℓ andℓ(x, y) = ℓ+1 ≥ 1,
then

(−1)ρ(x) µ(x, y)
de f.
= − (−1)ρ(x)

∑

x� z≺ y

µ(x, z) = −(−1)ρ(x)
∑

x� z≺ y

(−1)ℓ(x,z)

= −
∑

x� z≺ y

(−1)ρ(z) = (−1)ρ(y).

The last equality uses that the interval [x, y] has the same number of odd and even
rank elements. �

1.2.13 R. By a result of Ehrenborg [32], it suffices to look at the intervals of
even length in the proof of Proposition1.2.12: He proves, that, if in a posetP all
intervals of length up to 2k are Eulerian, then so are the intervals of length 2k + 1.
The proof of this is a lot more involved than the arguments given for the above
proof of Proposition1.2.12.

The special case of Proposition1.2.12for ℓ = 2 tells us that any interval of
length two in an Eulerian poset has precisely two elements inthe middle level.
This is sometimes called thediamond propertyof Eulerian posets.

1.2.14 D [Euler Equation]. Let P be a finite graded poset of lengthℓ. P
is said to satisfy theEuler equationif its f -vector satisfies

f−1 − f0 + f1 ∓ · · · + (−1)ℓ fℓ−1 = 0.

This reduces to the well known Euler formula for 2-spheres: If P is the poset
obtained from a sphere withf facets,e edges andv vertices, then the above for-
mula specialises tov − e+ f = 2. Face posets of polytopes (which we define in
Section1.3.2) are Eulerian. This is proven with the help of the following simple
observation.

1.2.15 P. Let P be a finite graded poset. P is Eulerian if and only if any
interval [x, y] ⊆ P satisfies the Euler equation. �
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The property of being Eulerian is preserved by both product operations that we
have defined in Definition1.2.5.

1.2.16 T. Let P and Q be Eulerian posets. Then both P× Q and P×red Q
are Eulerian.

Proof. Clearly, both products are finite ifP andQ are finite. LetρP andρQ be rank
functions onP andQ. Then

ρ((x, y)) := ρP(x) + ρQ(y)

for (x, y) ∈ P× Q is a rank function on the product and

ρred(x, y) := ρP(x) + ρQ(y) − 1

for (x, y) ∈ P ×red Q andρred(0̂) = 0 is a rank function on the reduced product. It
remains to prove that both products are Eulerian. For this wecount elements of
odd and even rank in intervals.v Any interval of length at least one inP × Q has the form [(x, y), (x′, y′)] =

[x, x′] × [y, y′] for x� x′ andy� y′, and at least one of these relations is strict.
W.l.o.g. assume thaty≺ y′. For anyx in [x, x′], we have equally many ele-
ments of type (x, y), for y ∈ [y, y′], with odd and even rank, asQ is Eulerian.
Summing over allx ∈ [x, x′] gives the result.v For reduced products, the only difference to the previous argument occurs
for intervals [̂0, (x, y)]. For any fixedx ∈ [0̂, x]\{0̂} of evenrank, this interval
contains all elements of type (x, y) for y ∈ [0̂, y]\{0̂}. As Q is Eulerian, this
set has one more element ofoddrank than elements of even rank (compared
to the other product, it lacks the pair (x, 0̂)). Similarly, if ρP(x) is odd, then
it contains one more element withevenrank. Now [̂0, x]\{0̂} has one more
element of odd rank, so summing over allx, and using thatρ(0̂) = 0, we
conclude that [̂0, (x, y)] is Eulerian. �

The Euler equation is the onlynon-trivial linear relation between the entries of
the f -vector of bounded Eulerian posets (the trivial ones aref−1 ≡ 1 ≡ fℓ−1). How-
ever, for flag vectors, there are many more entries that linearly depend on some
others. All such relations are subsumed in thegeneralised Dehn–Sommerville
Equations. They were found by Bayer and Billera in 1985 [10].

1.2.17 T [Generalised Dehn–Sommerville–Equations].Let P be a finite
bounded graded Eulerian poset and S⊆ {0, . . . , d − 1}. If {i, k} ⊆ S ∪ {−1, d − 1},
i < k − 1, and S contains no m such that i< m< k, then

k−1∑

j=i+1

(−1)j−i−1 fS∪{ j} = fS(1− (−1)k−i−1).
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All linear relations between entries of the flag vector are contained in thesegener-
alised Dehn–Sommerville–equations. They reduce the dimension of the affine span
FV(P) of all possible flag vectors from2d to Fd−1, where Fd is the d-th Fibonacci
number. �

For a bounded Eulerian poset of length 4 the Dehn–Sommerville equations
imply that f0 and f2 already carry all information contained in the flag vector:v f1 = 2− f0 − f2 by the Euler equation,v f01 = 2 f1 by takingS = {1}, i = −1 andk = 1,v f02 = f01 by takingS = {0}, i = 0 andk = 3,v f12 = 2 f1 by takingS = {1}, i = 1 andk = 3, andv f012 = 2 f01 by takingS = {0, 1}, i = 1 andk = 3.
The remaining entries of the flag vector follow from these by boundedness. Sim-
ilarly, for any bounded Eulerian poset of length 5 the numbers f0, f2, f3, and f03

suffice. We call thisreducedflag vector theessential flag vectorof the poset.
Clearly, this choice is arbitrary. We could as well takef0, f1, f2 and f02. If we
do not explicitly state otherwise, for posetsP of length 3 we will in the following
always write flag(P) as (f0, f2) in this order, and for posets of length 5 we note
( f0, f2, f3; f03), or (f0, f1, f2, f3; f03) if we want to emphasise some symmetry in the
entries.

With the following definitions we associate some simple geometric structure
with posets.

1.2.18 D [Abstract Simplicial Complex]. An abstract simplicial com-
plex∆ is a finite collection of sets such that, if a setS is contained in∆, then so is
any subset ofS.

With the next construction we find such an abstract simplicial complex∆(P)
for any finite posetP in such a way, that the incidence relations are given by the
order relations inP.

1.2.19 D [Order Complex]. Let P be a finite poset. Define an abstract
simplicial complex∆(P) associated toP by the following two conditions.v The vertices of∆(P) are the elements ofP andv a subsetσ ⊂ P defines ak-face in∆(P) if and only if it is a chain of lengthk

in the posetP.

Given a posetP, we will mostly look at the order complex of theproper partP
of P, which is defined to be the posetP without 0̂ and1̂ (if P has such elements).

1.2.20 P. Let P be a finite graded poset. The order complex of P has a
geometric realisation in someRn.
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Proof. We can realise∆(P) as a subcomplex of the convex hull of then := |P| unit
vectors inRn, which is a (n − 1)-dimensional simplex. The order complex is a
ℓ-dimensional subcomplex of it, whereℓ is the length ofP. �

Usually, one can embed∆(P) also in a lower dimensional space. For example,
the order complex of the posetP in Figure1.6(a)(the Boolean posetB3 without
the0̂) is the barycentric subdivision of the full triangle shownin Figure1.6(b).

1.2.2 L

Let P be a poset with order relation�, andx, y ∈ P. Any elementz ∈ P, such that
x� z andy� z, is called anupper boundof x andy. z is a least upper boundof
x andy, if it is an upper bound, and any other upper boundw of x andy satisfies
z�w. In this casez is called thejoin of x andy, denoted byz= x∨ y. Similarly we
definelower bounds. The greatest lower bound is called themeetof x andy and
denoted byx∧ y. The join of more than two elements can recursively be defined
by

∨

(x1, . . . , xk) := x1 ∨ (
∨

(x2, . . . , xk)). This does not depend on the order of the
xi. Similarly, one can define the meet

∧

(x1, . . . , xk).

1.2.21 D [Lattice]. A lattice L is a poset in which any two elements
x, y ∈ L have a meet and a join.

See Figure1.7 for an example of a poset, that satisfies the lattice property.
The second example is a poset that is not a lattice. We consider only finite lat-
tices. These are necessarilybounded. Furthermore, if we want to check whether
a bounded poset is a lattice, by the next proposition it suffices to check either the
existence of all meets or the existence of all joins. In most cases, we also assume
that the lattices we consider areEulerian.

1 2 3

12 1323

123

(a) A poset . . .

1 2

3

12

13 23123

(b) . . . and its order complex.

Figure 1.6: A poset and its order complex. The order complex of the properpart ofP is the shown
complex without the interior vertex and the full triangles.
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1.2.22 P. Let L be a finite bounded poset in which any two x, y ∈ L have
a meet. Then, any two elements in L also have a join.

Proof. Assume the contrary. So there exist meets for all pairs of elements, but
there is a pairx, y ∈ L that has no join. LetF be the set of all upper bounds ofx
andy. This is a filter inL. Boundedness ofL implies thatF is not empty. Asx and
y have no join by assumption,F must have at least two minimal elementsz1 and
z2. Let z be their meet. Thenz� x, y as otherwisex or y would be a strictly larger
lower bound forz1 andz2. Soz is the join ofx andy. �

Similarly, the existence of all joins implies the existenceof meets. We are
mainly interested in lattices that come from some geometricobjects. These usually
have several additional properties, which we now introduce.

In the same way as for posets, we can definegraded lattices Lwith a rank
functionρ : L→ Z, giving thelengthℓ(L) (or rank(L)) of the latticeL. This allows
us also to computef -vectorsandflag vectorsof lattices.

A bounded latticeL is complemented, if for any x ∈ L there is an elementy ∈ L
such thatx∧y = 0̂ andx∨y = 1̂. If the complementy is unique for allx ∈ L, thenL
is calleduniquely complemented. If also all intervals inL are complemented, then
L is relatively complemented.

If, in a finite latticeL, all elements except̂0 are the join of some of its atoms,
thenL is calledatomic. Similarly, if all elements ofL except1̂ are the meet of some
coatoms, thenL is coatomic. A latticeL is calledmodular, if any two elements that
both coverx∧ y are covered byx∨ y and vice versa.

1.2.23 E. In the boolean posetBn both meets and joins exist for all pairs of
elementsx andy of Bn: The meet ofx andy is their intersection, and the join ofx
andy is their union, viewed as subsets of [n]. It is also Eulerian, as the number of
subsets of [n] with even cardinality equals the number of subsets of odd cardinality.

The Boolean posetBn is uniquely complemented: The complement of a setS
is just [n] \ S. By a similar argument, it is also relatively complemented.

Figure 1.7: The first poset is a lattice, the second is not.
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If n ≥ 3, then, for any two subsetsS1,S2 of [n] that have empty intersection
and partition [n], either |S1| < n − 1 or |S2| < n − 1. Assume the first and pick
y ∈ S2. ThenS1 ∪ {y} , [n]. So Bn for n ≥ 3 is strongly connected. Finally,Bn is
modular, as any two sets covering their intersection differ in only one element.

1.2.24 P [Atom-Coatom-Incidences]. A finite complemented lattice L
is completely defined by its atom-coatom incidence relations.

Proof. LetA be the set of atoms ofL andP(A) its power set. For anyA ∈ P(A)
let C(A) be the set of coatoms that are incident to all elements ofA. We define an
equivalence relation onP(A) by A1 ∼ A2 if C(A1) = C(A2) , for anyA1,A2 ∈ P(A).
Let E be the set of equivalence classes.

For A ∈ P(A) let J(A) :=
∨

a∈A a. ThenJ(A1) = J(A2) if and only if C(A1) =
C(A2), so J is well defined onE. Any x ∈ L is the join of its atoms, so there is a
bijection between the elements ofL\ {0̂, 1̂} andE. Inclusion inE recovers the order
relation inL. �

The following notion of simplicity and simpliciality is thecentral properties of
lattices and polytopes for this thesis.

1.2.25 D [Simplicity and Simpliciality]. Let L be a finite graded lattice
of rankℓ.v L is r-simpleif all intervals [x, 1̂] of lengthr + 1 are boolean.v It is simpleif it is (ℓ−2)-simple.v L is s-simplicialif all intervals [0̂, y] of lengths+ 1 are boolean.v It is simplicial if it is (ℓ−2)-simplicial.

Figure 1.8(a)shows a 2-simplicial lattice.r-simple ands-simplicial lattices
(and polytopes) will turn up quite often in the rest of the thesis. To avoid the
frequent repetition of this lengthy term in the text, we introduce a short notation if
r + s is one less than the length of the lattice.

1.2.26 D [(r, s)-Lattice]. Let L be a graded finite lattice of rankℓ. We
call L an (r, s)-lattice if r + s= ℓ−1 andL is r-simple ands-simplicial.

With the following sequence of propositions we show that foreachℓ there is
only one lattice of rankℓ that can haver + s ≥ ℓ. Hence, being an (r, s)-lattice is
some kind of “extremal” property for a lattice.

1.2.27 P [Simple and Simplicial]. Any simple and simplicial strongly
connected Eulerian lattice L is isomorphic to a boolean poset.

The example in Figure1.8(b)shows that strong connectedness is necessary in
this proposition.
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Proof of Proposition1.2.27. Setℓ := rank(L) and letA(J) denote the set of atoms
of an intervalJ in L. See Figure1.9(a)for an illustration.

Fix a coatomc in L. By assumption, the intervalI := [0̂, c] is boolean, so it has
ℓ−1 atoms and coatoms. Label the coatoms byd1, . . . , dℓ−1. Eachd j is covered
by two coatoms, sinceL is Eulerian. One of these isc. Label the other bycj.
Uniqueness of meets inL implies cj1 , cj2 for j1 , j2, 1 ≤ j1, j2 ≤ ℓ−1. Set
I j := [0̂, cj] for 1 ≤ j ≤ ℓ−1. All I j haveℓ−1 atoms.

Let 1 ≤ j ≤ ℓ−1. Bothc andcj coverd j, hence the intervalsI j andI intersect
in ℓ−2 atoms ofL, so there is precisely one atom inI which is not inI j. Label
this atom bya j. Similarly, there is an atom ˜a j in I j, but not inI . I is boolean, so
a j ≺ dk for k , j, 1 ≤ k ≤ ℓ−1. Hence alsoa j ≺ ck for k , j, 1 ≤ k ≤ ℓ−1. By
simplicity, the coatomsck, 1 ≤ k ≤ ℓ−1, k , j and the coatomc are all coatoms
that are comparable to the atoma j. d j1 , d j2 impliesa j1 , a j2 for 1 ≤ j1, j2 ≤ ℓ−1
and j1 , j2. So we obtain a labelling of all atoms ofI .

Fix 1 ≤ j, k ≤ ℓ−1, j , k. I is boolean, so there is an elementejk covered
by bothd j anddk, and [̂0, ejk] containsℓ−3 atoms. By simplicity,J := [ejk, 1̂]
is boolean and has length 3, so there is one more elementd̃ in L of rank ℓ−2
contained inJ. L is Eulerian, sod < I , but d ∈ I j , Ik. Hence, the atoms ˜a j andãk

must coincide.j andk were arbitrary, soA(
⋂

I j) = {a} and the sublatticeL′ of L
a, a1, . . . , aℓ−1 andc, c1, . . . , cℓ−1 is boolean.

SupposeL′ , L. So there is at least one more coatomc′ in L different from
c, c1, . . . , cℓ−1. The same argument, applied toc′ instead ofc, creates another
boolean sublattice ofL intersectingL only in 0̂ and1̂, like the one shown in1.8(b).
By strong connectedness, this cannot happen. �

1.2.28 P [r-Simple and Simplicial]. A simplicial and r-simple strongly

(a) A 2-simplicial lattice. One Boolean inter-
val is marked.

(b) A finite, Eulerian, simple and simplicial lat-
tice L that is not strongly connected.

Figure 1.8: Examples of lattices.
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connected Eulerian lattice L is boolean if r≥ 3.

Proof. Let ℓ := rank(L). We use induction overr. The proposition is true if
r = ℓ−1 by the previous proposition. See Figure1.9(b)for an illustration.

Assume, that the proposition is true for anyr ≥ m+ 1 and thatL is m-simple.
Let x ∈ L be an element of rankℓ−m− 2. By assumption, the interval [x, 1̂] is
simple and simplicial. So it is boolean by the previous proposition. Hence,L is
(m+ 1)-simple. �

1.2.29 P [r-Simple and s-Simplicial]. A r-simple and s-simplicial
strongly connected Eulerian lattice L is boolean if r+ s≥ rank(L) + 2.

Proof. Let ℓ := rank(L). If s = 2 thenr ≥ ℓ andL is boolean. The caser = 2 is
similar. So we can assume thatr, s ≥ 3 and proceed again by induction to prove
thatL is simplicial. This suffices by the previous proposition. See Figure1.9(c)for
an illustration.

The proposition is true ifr = ℓ−1. So assume the proposition is proven for
any s ≥ m+ 1 ≥ ℓ+2 − r and assume thatL is m-simplicial. Let x ∈ L with
rank(x) = m+ 2. By the previous proposition the interval [0̂, x] is boolean. SoL is
(m+ 1)-simplicial. �

If L is s-simplicial, thenLop is s-simple and vice versa, as the Boolean poset is
isomorphic to its opposite. Lattices with this property have a special name.

1.2.30 D [Self-Duality]. A bounded lattice isself-dualif it is isomorphic
to its opposite lattice.

(a) A simple and simplicial lat-
tice.

(b) An h-simple and simplicial
lattice.

(c) An h-simple and k-
simplicial lattice.

Figure 1.9: Simplicity and simpliciality of lattices.
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1.3 S  P

Now we switch to geometric notions and introduce CW spheres and convex poly-
topes. Again, we focus on results used later, so in particular the treatment of
spheres will be quite brief.

More on spheres can be found in the books of Bredon [28] for general, and
Rourke and Sanderson [73] for PL topology. Good introductions to polytope theory
are the books of Grünbaum [44] and Ziegler [89].

1.3.1 S

Here we briefly introduce CW complexes and PL manifolds. We are not too much
interested in them, but we need them as intermediate tools for some constructions.

1.3.1.1 CW Complexes and Spheres

A (d − 1)-dimensional sphereis a topological manifold that is homeomorphic to
the standard (or unit) sphereSd−1 defined bySd−1 := {x ∈ Rd : ‖x‖ = 1}. The
k-dimensionalopen unit ballis defined asD̊k := {x ∈ Rk : ‖x‖ < 1}, and the
k-dimensionalclosed unit ballasDk := {x ∈ Rk : ‖x‖ ≤ 1. Spheres have trivial
fundamental group, except forS1, which hasπ1(S1) = Z.

We define a very general form of a cell structure for topological spaces, and in
particular for spheres.

1.3.1 D [CW Complex]. A CW complex Xis a Hausdorff topological
space together with a filtrationX(−1) ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ X(k) ⊆ . . . by k-skeleta
that satisfies the following conditions:

(1) X =
⋃

n≥−1 X(n), X(−1) is empty andX(0) is a discrete set of points, the 0-cells.
(2) EitherX(n)=X(n−1) or X(n) is obtained fromX(n−1) by attachingn-cells in the

following way:
Let B be a disjoint union of copiesDn

σ of Dn, whereσ ranges over some
indexing set. These copies are then-cells ofX. Let S be the corresponding
union of the boundaries of these cells and{ f∂σ} a family of continuous maps
f∂σ : Sn−1→ X(n−1) such that anyf∂σ touches only a finite number of (n−1)-
cells inX(n−1). Let f be their unionf : S→ X(n−1). ThenX(n) = X(n−1) ∪ f B.

For eachσ let fσ be the map onDσ defined byf∂σ. The image offσ in X is
a closed cellin X, while the setfσ(Dn

σ − Sn−1
σ ) is anopen cell. The spaceX is

equipped with theweak topology, in which a subsetU ⊆ X is open if and only if
its intersection withX(n) is open for alln ≥ −1.

A CW complexS is called aCW (d − 1)-sphere, if the underlying topological
space ofS is homeomorphic toSd−1 for somed ≥ 0.
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1.3.2 D [Star and Link]. Let X be a CW complex andσ a cell inX.v Thestar star(σ) of σ is the subcomplex ofX formed by all cells that contain
σ in their closure.v Thelink of σ is the set of all cells in the closure of star(σ) whose closure has
empty intersection withσ.

We use only CW complexes that have some additional properties. All com-
plexes we consider arefinite, that is, they have only a finite number of cells. In
particular,X(n) is empty for alln ≥ n0 and somen0 ∈ N. For a “nice” complex one
clearly wants that the cells (i.e. disks) are nicely glued into X(k) along their bound-
ary without any identifications, and without gluing in “unnecessary” cells. This is
not part of the general definition, but is captured in the following two notions.

1.3.3 D [Regular and Strongly Regular]. A complexX is regular if the
attaching mapsf∂σ are embeddings, i.e. there are no identifications on the bound-
aries of the closed cells inX.

The complex isstrongly regularif, in addition, any two cells in the complex
intersect in a single cell (which may be empty).

For example, (geometric) simplicial complexes and polytopes (defined in the
next section) have these properties. A complexX is pure, if all cells, whose in-
terior does not nontrivially intersect the closure of some other cell, have the same
dimension. In this case, thedimensionof X is the dimension of these cells. IfX is
pure and strongly regular, then we sometimes sayfacesinstead of cells, andfacets
for the top dimensional cells.

The boundary complex∂σ of a cellσ in a strongly regular complexX is the
complex of all cells inX whose interior has nonempty intersection with the closure
of σ. This is again a strongly regular cell complex.

A strongly regular CW complexX naturally defines the posetL(X) of all cells
in X, together with the order relationσ� τ between cellsσ, τ ∈ X for which the
closure ofτ intersects the interior ofσ. This is theface posetof X.

1.3.4 P [Face Posets are Lattices].The posetL(X) of a finite strongly
regular CW complex X is a lattice.

Proof. The meet of two cells is given by their geometric intersection, and the join
by the smallest cell containing both in its closure. Strong regularity implies that
these cells exist and are unique. �

1.3.5 D [Face Lattice]. The latticeL(X) of a finite strongly regular CW
complex is called theface latticeof X.

A finite regular CW complexX is strongly regular if its face poset, augmented
with an artificial1̂, is a lattice [20, Prob. 4.47, p. 223].
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1.3.6 D [Combinatorial Equivalence]. Two strongly regular CW com-
plexes arecombinatorially equivalentif their corresponding face lattices are iso-
morphic as posets.

We introduce several methods to modify the cell structure ofa CW complex.
We need them in the next chapter for our construction ofr-simple ands-simplicial
spheres. We restrict to CWspheresin the following considerations.

Let fσ : Dk → Rd be ak-cell andv a point ofRd not in fσ(Sk−1). Thecone
overσ with apex vis

Pv fσ : Sk−1 × [0, 1] −→ Rd

(x, t) 7−→ (1− t) fσ(x) + tv.

The image is a (k+ 1)-disk whose boundary naturally carries a CW structure.

1.3.7 D [Stacking a Cell]. Let S be a strongly regular CW sphere andσ
a face ofS. Stacking overσ in S is defined byv removing all cells in star(σ) from S andv adding a new 0-cellσ0 and all cones over cells in link(σ) with apexσ0,
glued with the canonical attaching maps.

Applying this construction to all facets of the sphere, or toall cells (in a suitable
order), gives the following two important constructions.

1.3.8 D [Stellar Subdivision]. Let S be a strongly regular CW (d − 1)-
sphere. The CW complex obtained from stacking all (d− 1)-cells inS is called the
stellar subdivisionsd(S) of S.

1.3.9 D [Barycentric Subdivision]. Let S be a strongly regular CW
(d−1)-sphere. The barycentric subdivisionBS(S) of S is obtained by first stacking
all (d − 1)-cells ofS, then all (d − 2)-cells etc. down to the 1-cells.

The face lattice of the resulting CW sphere does not depend onthe order in
which we stack cells of the same dimension.

Here is a useful result on the connection between posets and CW spheres, which
we cite from [20, Prop. 4.7.23].

1.3.10 T. A bounded, graded poset P with rank functionρ is the face poset
of a regular CW sphere if the order complex of every interval[0̂, x], x ∈ P, is
homeomorphic to a sphere of dimensionρ(x) − 2. �

A strongly regular CW complexX is asimplicial complexif the induced poset
of any closed cell in the face posetL(X) of X is isomorphic to the Boolean poset.
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This implies in particular, that anyk-cell, 1≤ k ≤ d−1, is incident to preciselyk+1
0-cells. If the simplicial complexX hasn 0-cells, then we can describe any face of
X by a subset of [n]. In Chapter5 we need the following special construction for
simplicial complexes.

1.3.11 D [Deleted Join]. Let S be a simplicial complex. Thedeleted join
is a simplicial complex on the vertex setV(S) × {0, 1} and is given by

S∗∆ := {σ1 ⊎ σ2 : σ1, σ2 ∈ S, σ1 ∩ σ2 = ∅} ,

whereσ1 ⊎ σ2 := σ1 × {0} ∪ σ2 × {1}.

See Matoušek’s book [60, Section 5.5] for a much more detailed treatment
of this. A slight generalisation of a deleted join will be defined in Chapter5 in
connection with our new construction of Bier spheres and posets.

1.3.1.2 PL Spheres

This section is only a brief sketch of PL topology. Proofs forthe given results can
be found in the books of Hudson [47] and Rourke and Sanderson [73]. We start
with the definition of several basic notions of PL topology. Some terms appear
with a different meaning in the rest of the text, so we sometimes add a PL in front
to avoid confusion.

A cone Ca for a compact setC ⊂ Rd with apexa ∈ Rd is the set

Ca :=
{

ta+ (1− t)x : 0 ≤ t ≤ 1, x ∈ C
}

,

if for all x1, x2 ∈ C, x1 , x2, the segmentsta+(1−t)x1 andta+(1−t)x2 intersect only
in the apexa. A cone neighbourhood c(p) of a pointp ∈ Rd is a neighbourhood
of p that can be written as a cone with apexp for some compact subsetC of Rd.
A polyhedronis a setP ⊂ Rd in which all points have a cone neighbourhood. If
p ∈ P, andCp for some compactC ⊂ P is its cone neighbourhood, thenCp is
called astar star(p) of p in P andC is called alink of p in P.

A mapϕ : P → Q between two subsetsP,Q of Rd is aPL map, if all points
p ∈ P have a cone neighbourhoodCp, for some compact basisC, on whichϕ has
the form

ϕ(λp+ (1− λ)x) = λϕ(p) + (1− λ)ϕ(x)

for 0 ≤ λ ≤ 1 and allx ∈ C.

1.3.12 D [PL Manifold]. A d-dimensionalPL manifoldis a topological
manifoldS such that all pointsp in S have a neighbourhood that is PL homeomor-
phic to an open set inRd.
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An n-cellσ in PL topology is a compact convex polyhedron inRd. Boundary
∂σ andinterior σ̊ can be defined in the usual way. For ann-cellσ and some point
x ∈ σ let lσ(x) be the set of all lines inRd that intersectσ in its interior. lσ(x) ∩ σ
is called afaceσx of the cellσ, writtenσx�σ. If this set is empty, then we callσx

a vertex ofσ. If a faceτ�σ satisfiesτ , σ then this face is said to beproper.

1.3.13 P. Letσ be an n-cell.
(1) A cell has only finitely many vertices.
(2) If τ�σ, then the set of vertices ofτ is a subset of the vertices ofσ. Thus, a

cell has only finitely many faces.
(3) σ is the disjoint union of its open faces, and its boundary is the disjoint union

of its open proper faces.
(4) The intersection of two faces ofσ is again a face ofσ. �

Proofs can be found in [73, Chapter 2]. Acell complex Xin PL topology is
now defined in the same way as the CW complex above: It is a finitecollection of
cells such that, whenever a cell is contained in the complex,then so are all its faces.
Theunderlying polyhedron|X| ⊆ Rd is the polyhedron defined by the union of all
cells in the complexX. A subcomplexof X is the complex formed by a subset of
the cells inX together with all their faces. Thek-skeletonof X is the subcomplex
of all cells inX with dimension at mostk.

The boundary of a cell clearly is a PL sphere.Star and link of a cell in a PL
complexX are defined in the same way as for general CW complexes. PL spheres
have the following nice property.

1.3.14 T. The link of a faceσ in a PL cell complex X is a PL sphere. �

This is in contrast to general CW spheres as we defined them above, where we
can only guarantee that the link is a homology sphere. See [20, Theorem 4.7.21]
for a more detailed treatment, and [47, Chapter 1] for the proof.

An equivalent characterisation of this property is the following. In the face
poset of the cell decompositionX, augmented by a maximal element1̂, not only
the order complexes of the lower intervals [0̂, x] with x < 1̂ are spheres, but the
same is true forall intervals [x, y], with the only possible exception of [0̂, 1̂], whose
order complex is homeomorphic to the base space|X|.

1.3.1.3 Shellability

In Chapter5we use a very powerful concept for regular CW spheres and polytopes.
For these objects, one can define a special way to build them upfrom their cells,
adding one cell in each step, in such a way that (1) in each intermediate step we
have a ball and (2) in each step the piece of the ball to which weglue the next cell
is again of this type, but in one dimension lower. Here is a precise definition:
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1.3.15 D [Shelling]. Let S be a pure strongly regulard-dimensional CW
complex.C is shellableif we can find ashellingof C in the following way: There
is a linear orderc1, c2, . . . , ck on its facets such that eitherd = 0, or the following
two conditions are satisfied:

(1) The boundary complex∂c1 of the cellc1 is shellable itself.
(2) For any other cellcj, 2 ≤ j ≤ k the intersection ofcj with

⋃

1≤i≤ j−1 ci is a
non-empty pure (d − 1)-complex that is the beginning of a shelling of∂cj.

It is in general not known, whether a CW sphere, or a PL sphere,are shellable.
One needs some additional properties to obtain such an ordering of the facets. One
such property is polytopality, and we meet shellability in this context again in the
following section. In Chapter5 we present the class of Bier spheres derived from
the Boolean posetBn and prove that they are shellable.

1.3.2 P

This section is aboutpolytopesand their properties, which are the central geometric
object of this thesis. In terms of the previous sections, a polytope is roughly a
strongly regular CW sphere in which all cells are realised byflat embeddings. The
study of polytopes is both a quite old and a quite recent topicin mathematics.

It is old, as polytopes appear already in the mathematical work of several an-
cient Greek mathematicians and philosophers. They found and classified the reg-
ular and semi-regular convex polytopes in three dimensions, like the five Platonic
solids, and the Archimedean semi-regular polytopes. A lot of mathematical effort
went since that time into the study of regularity propertiesof polytopes.

It is recent, as with the emergence of modern computers, the study of discrete
geometric objects (objects, that can be described by a finiteset of input data) be-
comes more and more important. They now play a great rôle in a variety of math-
ematical areas, from combinatorial optimisation to visualisation. This way, there
are now lots of “real world” applications for results about polytopes.

1.3.2.1 Basic Definitions

The following definition of a polytope has two variants, which are equivalent by
the next theorem. We use both variants of the definition for describing a polytope,
and switch between them without always mentioning it.

1.3.16 D [Polytope]. A (geometric convex bounded) polytope Pis defined
by one of the following two characterisations.

(1) A polytopeis the convex hull conv(V) of a finite setV = {v1, . . . , vr } of r
points inRn. We writeP = P(v1, . . . , vr) for a polytope defined byv1, . . . , vr .
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(2) A polytopeis the intersection of a finite set of half spaces inRn, if that
intersection is bounded. If the half spaces are defined bym hyperplanes
〈ai, x〉 = bi for 1 ≤ i ≤ m, with inwards pointing normal vectorsai, then we
denote the polytope byP = P((a1, b1), . . . , (am, bm)).

The first definition of a polytope is sometimes called thevertex description, the
second thehyperplane descriptionof a polytope. The following theorem tells us,
that these definitions are equivalent from a mathematical point of view. There are,
however, huge differences from an algorithmical standpoint: For general polytopes,
algorithms translating one description into the other needexponential time (in the
input and output).

1.3.17 T. The two definitions (1) and (2) of a polytope in Definition1.3.16
are equivalent; that is, the convex hull of a finite set of points can be described as
a finite intersection of half spaces and vice versa. �

A detailed proof of this can be found in Chapter 1 of Ziegler’sbook [89]. It is
rather lengthy, so we only give the key ideas of it.

Let P be ad-polytope withs vertices andV the matrix that has the vertices of
P as columns.P is given by{x ∈ Rd : x = tV, for t ∈ Rs, t ≥ 0,

∑s
j=1 t j = 1}.

Let H be the set{(x, t) ∈ Rd ×Rs : x = Vt, t ≥ 0}. H is defined as an intersection
of half-spaces.Fourier-Motzkin-Eliminationallows us to projectH down while
maintaining a hyperplane description for it. The other direction is done by a reverse
argument.

Note, that in Definition1.3.16(1) we do not require that the convex hull defines
a set of nonzero measure inRn. Similarly, in the hyperplane description, we do
allow half spaces that intersect only in their boundary. We define the dimension of
a polytope in the following way.

1.3.18 D [Dimension]. Thedimensionof a polytopeP is the dimension
d of the smallest affine subspace ofRn that containsP.

1.3.19 E. Here are some simple examples of polytopes. See Figure1.10
for illustrations.
(1) Thestandard d-simplex∆d is the convex hull of thed+1 standard basis vectors

e1, . . . , ed+1 in Rd+1. This is ad-dimensional polytope embedded inRd+1, as
all pointsx = (x1, . . . , xd+1) in the convex hull satisfy the equation

∑d+1
i=1 xi = 1.

(2) The standard unitd-cube�d is the convex hull of the points in{−1,+1}d.
(3) The standardd-cross polytope✚d is the convex hull of the standard basis vec-

tors and their negatives inRd.
(4) Let td : R → Rd be the curvex 7→ (x, x2, . . . , xd). Thecyclic polytope Cdn is

defined to be the convex hull ofndistinct points on this curve. Its combinatorial
properties do not depend on the actual choice of the points onthe curve.
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Any polytopeP comes with a natural cell decomposition induced by the in-
tersection with one or several of its defining hyperplanes (here we assume thatP
is given in the hyperplane description). These cells are thefacesof the polytope.
Theset of all facesof P is denoted by Faces(P). Faces of dimension 0 and 1 are
verticesandedges, faces of codimension 1 and 2 arefacetsandridges. Theset of
all verticesof a polytopeP is denoted byV(P), theset of facetsby F (P). The
polytope has exactly one cell of dimensiond, the polytope itself. All other faces
are calledproper. The cell complex defined by all proper faces of the polytope is
a strongly regular CW sphere, which is called theboundary complex∂P of P. By
construction, it can be realised in such a way, that all its cells are in fact polytopes
glued along faces. Generally, any cell complex, that has such a special geometric
realisation, is calledpolytopal. Thevertex figure P/v of a vertexv in a polytopeP
is the polytope we obtain as the intersection ofP with a hyperplane that intersects
all edges incident tov in their interior.

The set of all faces, together with the order relation given by inclusion, forms
a poset. We usually add an artificialempty facê0 covered by all vertices of the
polytope. This is the minimal element of the poset. The maximal element1̂ is
the polytope itself. With this addition, the poset is bounded and has a natural rank
function

ρ : Faces(P) −→ N
σ 7−→ dim(σ) + 1

induced by the dimension of the faces. We set dim(0̂) = −1. The meet of two faces
of the polytope is the face given by their geometric intersection. This is a unique
face by definition (possibly the empty face0̂). Hence, this poset is a lattice.

(a) The 3-cube. (b) The 3-cross polytope. (c) The 3-simplex.

Figure 1.10:Examples of polytopes.
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1.3.20 D [Face lattice]. Let P be a polytope. The latticeL(P) given by
Faces(P) ∪ 0̂ with the order induced by inclusion is theface latticeof P.

Polytopes are strongly regular CW spheres, so we can apply the definition of
f - and flag vectors to polytopes.

1.3.21 E. Here aref -vectors for some polytopes in Examples1.3.19.v The simplex∆d hasd + 1 vertices. Any subsetF of them forms a face of
dimension|F | − 1. So f j(∆d) =

(
d+1
j+1

)

, for 0≤ j ≤ d− 1. See Figure1.11(a).v The cube�d has 2d vertices. For 0≤ k ≤ d − 1, a subset of them is in a
commonk-face if they coincide ind − k − 1 of their entries. Sofk(�d) =
2d−k

(
d

d−k

)

for 0 ≤ k ≤ d−1. The Hasse diagram ford = 3 is in Figure1.11(b).v The cross polytope✚d has 2d vertices. A subset of them forms ak-face if it
has cardinalityk + 1 and does not contain both a vector and its opposite. So
fk(✚d) = 2k+1

(
d

k+1

)

.

1.3.22 T. Polytopes satisfy the Euler equation of Definition1.2.14, that is,
the f -vector of a d-polytope satisfies

f−1 − f0 + f1 ∓ · · · + (−1)d fd = 0. �

See [89, Corollary 8.17] for a proof. This theorem is a consequence of a
deep Theorem of Bruggesser and Mani [29], which tells us that all polytopes are
shellable. A proof of this is in [89, Section 8.2]

A d-polytopeP is centredif the origin ofRd is an inner point. Clearly, any full-
dimensional polytope can be transformed into a centred one —without changing
its shape and combinatorial properties — by a translation.

1.3.23 D [Dual Polytope]. A polytopeP∆ is calleddual to a polytopeP
if its face latticeL(P∆) is opposite to the face latticeL(P) of P.

(a) The face lattice of the 3-simplex. (b) The face lattice of the 3-cube.

Figure 1.11: Face lattices.
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For example, the simplex is dual to itself, and the cube is dual to the cross
polytope. The regular versions of these polytopes satisfy this in a stronger sense,
which we define now.

1.3.24 D [Polar Polytope]. Let P be a centred polytope. Thepolar poly-
topeis

P⋄ := {x ∈ Rn : 〈x, v〉 ≤ 1 ∀ v ∈ P} , (1.3.1)

which is a bounded polytope in the hyperplane description.

Clearly, the condition onP to be centred is not a severe restriction, as any
polytope can be transformed into a centred one. The next proposition tells us that
the polar polytope ofP is dual toP. So any polytope has a dual.

1.3.25 P. The polar polytope P⋄ of a centred polytope P is dual to P.�

The proof of this proposition is tedious, but not difficult. One shows, that it
suffices to consider the inequalities〈x, v〉 ≤ 1 in Equation (1.3.1) only for the
vertices of the polytopeP, instead of all points. This reduces the description to a
finite number of inequalities. Further, these inequalitiesconstitute the hyperplane
description ofP⋄. Once knowing this, it is simple to compare the vertex–facet
incidences of the two polytopesP andP⋄. A detailed proof of this, and the next
proposition, can be found in Ziegler’s book [89, Section 2.3]. For example, in the
realisation given in1.3.19, the cube is polar to the cross polytope.

If we apply the polar construction twice to a centred polytope, then we get back
to the original polytope.

1.3.26 P. Polarity for a centred polytope P is reflexive, i.e. P⋄⋄ = P. �

Clearly, P ⊆ P⋄⋄. Some linear algebra computations, using the fact that the
vertices suffice in the definition of the polar polytope in Equation (1.3.1), show
that there cannot be a pointw contained inP⋄⋄, but not inP.

Let P be ad-polytope in the hyperplane description. We say that a pointw ∈ Rd

is beyonda facetF of P if it lies outside the half space ofRd defined byF, but
inside all others. It isbeneatha facet if it is contained in the half space defined by
F. More generally, a point isbeyond a k-faceσ of P, if it is outside all half spaces
whose boundary containsσ, and inside all others.

Here is the central property of polytopes for this thesis. Wehad a combinatorial
version of this already in Definition1.2.25. We use this for the statement of the
geometric version.

1.3.27 D [Simple and Simplicial]. A d-polytopeP is s-simplicialif its
face lattice iss-simplicial, and it issimplicial if the face lattice is simplicial.

Similarly, ad-polytope isr-simpleif its face lattice isr-simple, and it issimple,
if the face lattice is simple.
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1.3.28 R. We can characterise these conditions in a purely geometric way.v The Boolean latticeBs+1 is the face lattice of the simplex∆s. So alls-faces
in an s-simplicial d-polytope are simplices. In particular, in a simpliciald-
polytope, all facets are simplices.v r-simpled-polytopes can either be described by the fact that their dual is r-
simplicial (asP∆ has the opposite face lattice) or, without involving the dual,
by the condition, that around any (d − r − 1)-face there arer + 1 facets. In
particular, in a simpled-polytope each vertex is ind facets.

1.3.29 D [(r,s)-Polytopes]. A d-polytopeP is an (r, s)-polytopeif r+s= d
and it isr-simple ands-simplicial.

For example, simplex and cross polytope are simplicial, while the cube is sim-
ple. Propositions1.2.27– 1.2.29apply — with the same proof — also in the ge-
ometric setting. Hence, in any dimensiond ≥ 2, thed-simplex∆d is the only
r-simple ands-simplicial polytope forr + s > d. We present the known examples
of polytopes with 2≤ r, s≤ d − 2 andr + s = d in Chapter4. We construct many
more examples of 2-simple and (d − 2)-simplicial polytopes in the Chapters2 and
3.

Most polytopes that appear in this thesis, are 4-dimensional, so they cannot be
visualised directly. We circumvent this problem in two different ways to provide il-
lustrations anyway. Many of our constructions work (at least partially) also in three
dimensions, so we make three dimensional drawings and pointout the differences.
The other way is to draw aSchlegel diagramof the polytope.

1.3.30 D [Schlegel Diagram]. A Schlegel diagramof a 4-polytope is
the three dimensional image of a central projection of the polytope onto one of its
facets with centre in a point beyond that facet. See Figure1.12for examples.

Figure 1.12: Schlegel diagrams of�4 and✚4.

– 37 –



P, L, S,  P

Clearly, the face lattice of a polytope determines its combinatorial type com-
pletely. By Proposition1.2.24, this is far too much information, the vertex–facet
incidence relations already suffice to determine the type. In general, these inci-
dence relations are also necessary to fix the type, but what happens, if we restrict
the class of polytopes we look at? One interesting subclass of polytopes are the
simplicial polytopes, or dually, the simple polytopes. Forthese, much less infor-
mation is necessary, by a theorem of Blind and Mani [22]. A simpler proof was
given by Kalai [53].

1.3.31 T [Reconstruction Theorem]. The graph of a simple polytope
determines its combinatorial type. �

Hence, a simplicial polytope is determined by its dual graph. There are several
other classes of polytopes that are reconstructible from their graph or dual graph.
See e.g. Joswig [50].

1.3.2.2 Simple Polytope Constructions

For our constructions of 2-simple and 2-simplicial 4-polytopes we need some sim-
ple methods to produce new polytopes from others, by adding either new vertices
or new hyperplanes to the polytope in a controlled way.

1.3.32 D [Stacking]. Let P be a polytope andF one of its faces. Choose
a pointw beyondF. We define a new polytopeF\P by

F\P := conv(P∪ {w}) .

This operation is calledstacking the polytope P above the facet F.

See Figure1.13for an example of this construction. It is not difficult to see that
the combinatorial properties ofF\P do not depend on the precise choice ofw. We

Figure 1.13:A simple 3-polytope, and the same polytope with its top edge stacked.
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mainly use this construction in the case whereF is a facet ofP. The newf -vector
of F\P in this case is

f (F\P) = ( f0(P) + 1, f1(P) + f0(F), . . . , fd−1(P) + fd−2(F)),

where f (P) = ( f0(P), . . . , fd−1(P)) and f (F) = ( f0(F), . . . , fd−2(F)) are the f -
vectors ofP and F. Iterating the construction for a sequence of facets defines
the important class ofstacked polytopes.

1.3.33 D [Stacked Polytopes]. A polytope is calledstacked, if it can be
obtained from the simplex∆d by successively stacking above facets.

Figure1.14shows two examples of stacked polytopes. The stacking construc-
tion produces many combinatorially not equivalent polytopes with the same num-
ber of vertices, as already after two stacking operations, the automorphism group
on the face lattice is not anymore transitive on the facets. Stacking above facets
in different orbits produces different polytopes with the same flag vector. We use
a more precise count of these types for a proof of “many” distinct 2-simple and
2-simplicial 4-polytopes in Chapter4.

There is also a polytope construction which is “dual” to stacking above facets.

1.3.34 D [Vertex Truncation]. Let P be ad-polytope ford ≥ 2, defined
by m hyperplanes〈ai, x〉 = bi, 1 ≤ i ≤ m. Let v be a vertex ofP. Choose a
hyperplaneH := {x : 〈a, x〉 = b} that intersects all edges incident tov in their
interior. Orienta such thatv is not in the positive half space defined byH. Define
thevertex truncationtr(P; v) of P at the vertexv by

tr(P; v) := P((a1, b1), . . . , (am, bm), (a, b)).

See Figure1.15for an example of a truncated cube. More generally, one may
also define the truncation ofk-faces fork ≥ 2, but we do not need this. If a vertex
v of the d-polytopeP has degreec, then truncatingv removes one vertex ofP

Figure 1.14: A once and a thrice stacked simplex.
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and introducesc new vertices. Ifc = d, then the new facet in the truncation is a
simplex. Thef -vector of tr(P; v) does not depend on the choice of the truncation
hyperplane. It is

f (tr(P; v)) = ( f0(P) + f0(V) − 1, f1(P) + f1(V), . . . , fd−2(P) + fd−2(V), fd−1(P) + 1)

if f (P) = ( f0(P), . . . , fd−1(P)) and f (V) = ( f0(V), . . . , fd−2(V)) are thef -vectors of
P and the vertex figureV := P/v of the vertexv in P.

We repeat here the definition of the barycentric subdivisionfrom the previous
section to emphasise that it applies to polytopes in a particularly nice way . Namely,
one can obtain polytopes from it, and not merely CW spheres.

1.3.35 D [Barycentric Subdivision]. The barycentric subdivisionof a
polytopeP is the simplicial polytopal complexBS(P) obtained by first stacking all
facets ofP, then all ridges ofP, etc. until we arrive at the edges.

The order, in which we stack the faces, does not matter, as long as we stack all
faces of one dimension before we proceed to faces of lower dimension.

1.3.2.3 Symmetry Groups

When we say that two polytopes areequivalent, then we usually mean that their
face lattices are isomorphic, i.e. they have the samecombinatorialproperties. This
does usually not imply that — if we have a geometric realisation of both — we can
also find anaffine transformationmapping one polytope onto the other and induc-
ing a given automorphism in the face lattice. This different behaviour of geometric
realisation and combinatorial type is reflected in the following two groups.

v

H

Figure 1.15:A cube with one truncated vertex.
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1.3.36 D [Symmetry Groups]. Let P be a polytope with a given geomet-
ric realisation.v Any affine transformationT of the ambient space, that preservesP set-wise,

is called ageometric symmetry transformation. The set of all such transfor-
mations, together with composition of maps, forms a group, the geometric
symmetry groupAff(P) of the polytopeP.v A combinatorial symmetryof P is an automorphism of the face latticeL(P).
The group of all combinatorial symmetries is thecombinatorial symmetry
groupAut(P) of the polytopeP.

The combinatorial symmetry group is independent of the realisation, while the
geometric symmetry group clearly depends on the actual choice of coordinates for
the vertices.

A geometric symmetry mapsk-faces tok-faces and preserves incidences be-
tween faces. Therefore, any geometric symmetry induces a combinatorial symme-
try and we obtain an injective map

s : Aff(P) ֒→ Aut(P).

Generally speaking, this map is almost never surjective. Itis also not clear, in which
cases we can find — for some chosen combinatorial symmetry — a geometric
realisation such that this combinatorial symmetry is in theimage ofs.

However, up to now, there are not many examples of polytopes recorded in the
literature, where these two groups differ for all possible geometric realisations of
a polytope. Bokowski, Ewald, and Kleinschmidt [25] (a corrected version of the
coordinates was given by Bokowski and Guedes de Oliveira [26] and Altshuler [2])
have provided a 4-dimensional example on ten vertices.

Dimension 4 is smallest possible for such examples, as it is known that for 3-
polytopes, and anyd-polytopes with few vertices ford ≥ 3, there are realisations
in which geometric and combinatorial symmetry group are isomorphic. See the
paper of Mani [59] for the first and the book of Grünbaum [44, p.120] for the
second result. Grünbaum attributes it to Perles.

Asking for special properties of Aff(P) and Aut(P) leads to the large field of
regular and semi-regular polytopes. The strongest property that one could look for
areflag transitiveor regular polytopes. These are polytopes in which the automor-
phism group contains, for any pair of flags in the face lattice, an automorphism that
maps one flag onto the other. They are completely classified inall dimensions. See
e.g. the book of Coxeter [30] for a complete treatment of these.

In dimension three there are five regular polytopes. These are (1) the simplex,
(2) the cube, (3) the cross polytope, (4) the icosahedron (a polytope with 20 trian-
gular facets, and each vertex is incident to five of them), and(5) the dodecahedron
(the dual of the icosahedron).
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More interesting, at least for our purposes, are the regularpolytopes in higher
dimensions. There are three families of such polytopes thathave one member in
each dimensiond ≥ 2, and three additional regular polytopes in dimension four.
The families are (1) the simplex∆d, (2) the cube�d, and (3) its dual, the cross
polytope✚d. The additional regular polytopes are the following.v The 24-cell, which is a self-dual 4-polytope with 24 vertices and facets, and

96 edges and ridges. All facets are regular✚3, and we have six of them
around any vertex. See Figure1.16for the Schlegel diagram.v The 120-cell, which is a simple 4-polytope with 600 vertices, 1200 edges,
720 ridges, and 120 facets. The facets are regular dodecahedra, and there are
four of them around any vertex.v The 600-cell, which is the dual of the 120-cell.

Regular polyhedra will prove quite convenient as input for our constructions, and
in particular for example drawings. They also make the link of our new, and quite
general, constructions for 2-simple and 2-simplicial 4-polytopes to similar older
constructions for regular polytopes.

A weaker property for a polytopeP is vertex transitivityor facet transitivity,
meaning that we can map any vertex or facet ofP onto any other vertex or facet by
a map in Aff(P).

Figure 1.16: A Schlegel diagram of the 24-cell. This polytope will reappear in many variants
throughout the thesis.
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1.3.2.4 Realisations and Realisation Spaces

For geometric realisations of a polytope we have one more important notion that
we want to mention in this introduction. It captures the flexibility that we have in
the choice of coordinates.

1.3.37 D [Realisation Spaces].The realisation spaceof a d-polytopeP
with n vertices is the spaceR(P) of all sets ofn points inRd, whose convex hull is
combinatorially equivalent toP. The setR(P) is a subset ofRd·n.

Theprojective realisation spaceRproj(P) of a polytope is the space of all pos-
sible geometric realisations of a polytope, up to projective equivalence. It is the
quotient space ofR(P), where two realisations are defined to be equivalent if there
is a projective transformation mapping one realisation onto the other.

Computing the dimension of either of these spaces is usuallydifficult. Compare
Richter-Gebert and Ziegler [72] and the book of Richter-Gebert [71] for a more
detailed treatment of realisation spaces.

Here is a simple example. The dimension of the realisation space of the simplex
∆d is d2 + d, but the dimension of its projective realisation space is 0,as any set of
d+ 1 points inRd can be mapped onto any other such set by an affine map.

Not all CW spheres can be realised geometrically as polytopes. In fact, al-
though any strongly regular 2-sphere can be realised as a polytope (this is the The-
orem of Steinitz, see the next section), this fails already badly in dimension 4. Here
e.g. Pfeifle and Ziegler [69] proved that there are 2Ω(n5/4) simplicial 3-spheres with
n vertices. On the other hand, from a result of Goodman and Pollack [41] we know,
that there are at most 2O(n log n) combinatorial types of simplicial 4-polytopes onn
vertices. In higher dimensions, this gap between combinatorial types of CW (d−1)-
spheres and simpliciald-polytopes is a result of Kalai [52]. We introduce the next
notion to distinguish spheres that have a geometric realisation as a polytope from
those that have not.

1.3.38 D [Polytopal Spheres]. A strongly regular CW sphereS is called
polytopal if there is a polytopeP that has a face lattice isomorphic to that ofS.
Any such polytope is apolytopal realisationof the sphere.

If a CW sphere is realisable as a polytope, then we can furtherask for a partic-
ularly nice realisation. The following property is of interest for the computational
treatment and the visualisation of polytopes and their graphs with a computer.

1.3.39 D [Rational Realisation]. A geometric realisation of a polytope
is said to berational, if all vertices have rational coordinates.
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Clearly, all simplicial polytopes do have such a realisation, and dually also all
simple polytopes. For all other polytopes, or for realisations with some additional
properties, it is usually not clear whether such a realisation exists. Already in
dimension two, most of theregular polygons lack a rational realisation. Even the
d-simplex∆d does not have aregular andrational realisation inRd for all d ≥ 2
(observe that the standard realisation of∆d given in Examples1.3.19is regular,
but inRd+1). Perles gave an example of a 8-polytope on 12-vertices thathas no
rational realisation [44, p. 95], and Richter-Gebert [71] later constructed examples
of 4-polytopes without rational realisation.

1.4 F V  F V I

We give an overview over the known (linear and nonlinear) inequalities, i.e. rela-
tions between the numbers of vertices, edges, 2-faces, etc.that hold for the entries
of the f - and flag vectors of polytopes in dimensions up to four.

The cases of two and three dimensional polytopes are completely solved. In
contrast, not much is known in dimension four (and in higher dimensions). How-
ever, there are some promising approaches that will hopefully shed some more
light on the case of 4-polytopes.

The two dimensional case is simple: A convex polygon has as many vertices as
it has edges, and there is one combinatorial type of polygon for any numbern ≥ 3
of vertices, and none forn = 0, 1, 2. The flag vector adds one more entryf01 to
the f -vector, and this is just twice the number of vertices. The three dimensional
case was solved by Ernst Steinitz already in 1906. We presentthe complete classi-
fication in the next section. In dimension 2 and 3 linear inequalities already suffice
for the description of the flag vectors. In dimension 4 we alsohave to consider
nonlinear relations between vertices, edges, ridges, and facets.

Much more is known if one looks only at simplicial (or, dually, simple) poly-
topes. Here thef -vectors are completely classified by theg-Theorem(this involves
theg-vector, which is a vector obtained from thef -vector via a linear transforma-
tion) of Billera and Lee [14, 15] and Stanley [79]. Recently, a combinatorial proof
of the necessity part of theg-theorem was given by McMullen [62]. The statement
of the theorem, and its consequences, is given in the book of Ziegler [89, p. 270].
It requires a lot of new terminology and is based on different arguments compared
to the considerations for generalf -vectors. We do not need it for this thesis, so we
leave it with these references to the literature.

In the following computations of flag vectors, we omit those entries fS of the
flag vector for whichS contains either−1 or d. For polytopes, these entries coin-
cide with fS′ whereS′ := S\{−1, d}. Hence, they do not contribute any additional
information to the flag vector.
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1.4.1 T D

The three dimensional case of thef -vector-classification was solved by Ernst Stei-
nitz in 1906 [85]. The graphΓ(P) of a three dimensional polytopeP is planar,
as we can apply a central projection of the graph onto one of its facets from a
point lying beyond this facet (which is aSchlegel diagramof the polytope).Γ(P)
is 3-connected (i.e. we can remove any pair of vertices and the graph will still be
connected), by a Theorem of Balinski [89, Theorem 3.14]. Steinitz proved that
these two conditions already suffice for a complete characterisation [86].

1.4.1 T. Every planar3-connected graph on n≥ 4 vertices is the graph of
a three dimensional polytope. �

This is a deep theorem. We do not attempt to prove it, but referto [89, Chap-
ter 4] instead. Three-connectedness in particular impliesthat any vertex is adjacent
to at least three edges. Thus 3f0 ≤ 2 f1. Using the Euler equation we obtain

3 f0 ≤ 2 f0 + 2 f2 − 4,

and therefore f0 ≤ 2 f2 − 4. (1.4.1)

By duality also

f2 ≤ 2 f0 − 4. (1.4.2)

See Figure1.17for an illustration of the cone defined by the above two inequal-
ities. These inequalities suffice: Any integral vector having three positive entries
f0, f1 and f2 satisfying these two conditions together with the Euler equation is in
fact the f -vector of a 3-polytope. This is a consequence of the following simple
considerations.

Combining (1.4.1) and (1.4.2) gives f0 ≤ 2 f2 − 4 ≤ 4 f0 − 12. This implies
f0 ≥ 4. Similarly, we obtainf2 ≥ 4. Thus, the smallest possiblef -vector is
(4, 6, 4), which is thef -vector of the simplex. We use the two operations “stacking”
and “vertex truncation” introduced in the Section1.3.2to produce a polytope for
any f -vector in the cone of (1.4.1) and (1.4.2). Stacking above a simplicial facet
adds (1, 3, 2) to the f -vector and truncating a simple vertex adds (2, 3, 1). Both
operations produce at least one triangle face and one simplevertex. Thus, we can
apply both constructions to any polytope we have obtained byan arbitrary sequence
of those operations and we can construct a polytope with a given (f0, f2) in the flag
vector cone from the following three 3-polytopes:v the simplex withf -vector (4, 6, 4),v the pyramid over a square withf -vector (5, 8, 5),v and the pyramid over a pentagon withf -vector (6, 10, 6).
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For most pairs (f0, f2), there are many polytopes realising thisf -vector. For ex-
ample, the pyramid over ann-gon hasf -vector (n+ 1, 2n, n+ 1), but only the two
smallest such, forn = 4 and 5, appear in the above construction.

The flag vectorof a 3-polytope is already determined by itsf -vector: Any
edge has two vertices, sof01 = 2 f1 and any edge is in two facets, sof12 = 2 f1 and
f012 = 4 f1. For any vertex-facet-pair there are two edges incident to both of them,
so f02 = 2 f1.

1.4.2 F D

The situation is not nearly as nice for dimensionsd ≥ 4 as it is for dimensions 2
and 3. The setFV(4) of admissible flag vectors for 4-polytopes is not anymore
defined by linear inequalities. We present a short outline ofthe known properties
of this set. See the surveys of Bayer [9], Ziegler and Höppner [46] and Ziegler [90]
for a detailed and — unfortunately — still quite accurate account of the known
facts for the classification problem.

We know six linear inequalities that restrict the flag vectorof a 4-polytope.
Only one of these is really non-trivial, the others are two simple observations to-
gether with their duals, and one self-dual inequality. The first inequality comes

si
m
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ic
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l

simple

4

4

f0

f2

Figure 1.17: The (f0, f2)-projection of thef -vector-cone for 3-polytopes.f1 is determined by the
Euler equation.
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from the observation that a 4-polytope must have at least fivevertices and — by
looking at the dual polytope — also five facets. Secondly, any2-face of the poly-
tope must have at least three vertices, that is,f02 ≥ 3 f2. Dualising this we get
f13 ≥ 3 f1. Each facet is a 3-polytope, so, by using the inequalities ofthe last sec-
tion, we know that thrice the number of 3-faces in the polytope is less than twice
its number of 2-faces. Summing over all facets we get 3f03 ≤ 2 f02. The only non-
trivial inequality on the entries of the flag vector of a 4-polytope so far was found
by Stanley [81] for rational polytopes, and by Kalai [51] in the general case.

1.4.2 T [Lower Bound Theorem]. The flag vector of a4-polytope satisfies

0 ≤ f03− 3 f0 − 3 f3 + 10 �

The generalised Dehn–Sommerville equations in Theorem1.2.17tell us that
only four of the entries of the flag vector of a 4-polytope are independent. We have
chosenf0, f2, f3 and f03 for this. Transforming the six linear equations that we
have derived into this set of independent entries we obtain

0 ≤ f0 − 5 (1.4.3)

0 ≤ f3 − 5 (1.4.4)

0 ≤ f03 − f2 − 2 f3 (2-simplicial) (1.4.5)

0 ≤ f03 + f3 − f2 − 3 f0 (2-simple) (1.4.6)

0 ≤ 4 f2 − 4 f3 − f03 (centre-boolean) (1.4.7)

0 ≤ f03 − 3 f0 − 3 f3 + 10 (lower bound theorem) (1.4.8)

In the same way as for the 2-faces, one could also consider theminimal number
of vertices or edges a facet must have and obtain bounds forf03 and f13. However,
using Kalai’s inequality, stronger bounds can be derived from the six given ones.

The cone defined by the linear equations (1.4.3) – (1.4.8) is shown in Fig-
ure1.18. It has the seven rays, all starting from the flag vector

flag(∆4) = (5, 10, 10, 5; 20)

of the 4-simplex:

l1 := flag(∆4) + λ (1, 4, 4, 1; 6), l2 := flag(∆4) + λ (0, 1, 1, 0; 1),

l3 := flag(∆4) + λ (0, 1, 2, 1; 4), l4 := flag(∆4) + λ (1, 2, 1, 0; 4), (1.4.9)

l5 := flag(∆4) + λ (1, 4, 6, 3; 12), l6 := flag(∆4) + λ (3, 6, 4, 1; 12),

l7 := flag(∆4) + λ (0, 1, 1, 0; 4),

for λ ≥ 0. Dualising a polytope amounts to reflecting its corresponding point in
the hyperplane orthogonal to the bottom face and running throughl2 andl7.

– 47 –



P, L, S,  P

All stacked polytopes lie on the rayl5. Cyclic 4-polytopesC4
d have the flag

vector
(

n,

(

n
2

)

, 2

(

n
2

)

− 2n,

(

n
2

)

− n; 4

(

n
2

)

− 4n

)

.

Thus, they approximate the rayl3 and their duals the rayl4. In addition to the
simplex, also the hypersimplex (the intersection of the 5-cube with the plane

∑

xi =

2) lies on the rayl1. Until very recently, no other polytopes were known that
lie on this ray. Werner [88] has found a nice small 2-simple and 2-simplicial 4-
polytope withf -vector (9, 26, 26, 9) also lying onl1. Further interesting facts about
this polytope are presented in Section4.3.5. In particular, we prove, that this is
the smallest non-trivial 2-simple and 2-simplicial 4-polytope. No other polytopes
except the simplex are known that lie onl2 or l7, or even just come close to one of
these rays.

The setFV(4) cannot be closed, as there is only one polytope with five ver-
tices, but the rayl3 has f0 ≡ 5. However, it is approximated by cyclic polytopes, so
it cannot be cut off by a stronger inequality.

In the Chapters2 – 4 we provide lots of examples that lie in the intersection of
the inequalities (1.4.5) and (1.4.6). In Figure1.18they lie on the edge betweenl1
and l2. This is an area in the flag vector cone in which only few polytopes have
been known previously.

l1

l2

l3l4

l5
l6

l7

2-
si

m
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m
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e

centre-boolean

Figure 1.18: A section through the flag vector cone for 4-polytopes. The cone is symmetric with
respect to the hyperplane running throughl1, l2 andl7.
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In addition to the linear there are also some simple non-linear bounds on the
flag vector:

(

f0
2

)

≥ f0 + f2 − 5 f3 + f03, (1.4.10)
(

f3
2

)

≥ −4 f0 + f2 + f03, (1.4.11)
(

f0
2

)

≥ f0 − f2 − 5 f3 + 2 f03, (1.4.12)
(

f3
2

)

≥ −6 f0 − f2 + 2 f3 + 2 f03. (1.4.13)

The first inequality is obtained by comparing the maximal number of edges be-
tween f0 vertices and the sum of the real number of edges and the numberof edges
missing in the 2-faces. The second is the dual of the first. Thethird inequality is
obtained by comparing again the number of all possible edgeswith the sum of the
real number of edges and the number of edges missing in the facets. The forth is
the dual of the third. See [9] for a detailed proof of these nonlinear inequalities.

With respect to the linear cone of possible flag vectors of 4-polytopes, the four
non-linear inequalities are concave. That is, they cut out pieces of the cone. For
example, the two cyclic polytopes (5, 10, 10, 5; 20) and (9, 36, 54, 27; 108) both sat-
isfy (1.4.10) with equality, but the linear combination (7, 23, 32, 16; 64) violates it.
There are also “forbidden pairs” of entries in thef -vector. For example, Barnette
[7] showed that (f1, f2) , (18, 16). There are more such pairs, see Barnette and
Reay [8] and the book of Grünbaum [44]. Bayer and Lee [11] give a survey on
these results.

By a complete enumeration of all polytopes with at most sevenvertices we
know that all flag vectors withf0 ≤ 7 satisfying the above linear and nonlinear
inequalities correspond to a polytope, with one exception.There are 29 four di-
mensional polytopes with seven vertices, and there is no polytope with f -vector
(7, 17, 9, 39). A similar approach forf0 = 8 gives a list of all flag vectors of poly-
topes with eight vertices. There are 1294 of them, and 42 non-polytopal spheres.
These were enumerated by Altshuler and Steinberg, see [3] and [4].

1.5 HG

Now we shortly leave the realm of discrete geometry and turn to a more differen-
tial geometric topic. One of the constructions for 2-simpleand (d − 2) simplicial
d-polytopes in Chapter2 requires some tools from hyperbolic geometry. We intro-
duce the necessary facts in this section. This is not comprehensive, and we do not
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attempt to prove the cited facts; the proofs, together with more background, can
be found in the good text books of Benedetti and Petronio [12], Iversen [48], or
Ratcliffe [70].

Thehyperbolic spaceHd of dimensiond is a connected and simply connected
d-dimensional topological space equipped with a Riemannianmetric of constant
sectional curvature−1. Unlike the case of the other two model spaces — those with
constant sectional curvature 0 and+1, the Euclidean space and the unit sphere —
there does not exist a model space forHd which is an embedding into the standard
Euclidean spaceRm for somem ≥ d with the induced metric. However, there
exist several approaches to model such a space in Euclidean space with a different
metric. The most common are thePoincaré model, theupper half space model, and
theKlein model. We discuss the last two models. Our construction can later most
easily be described in the Klein model, but the upper half space model is usually
more intuitive, and the classification of isometries is muchsimpler when one can
switch between different models.

1.5.1 T U H SM

The upper half space model of hyperbolic space uses the “upper half” of the stan-
dard Euclidean space together with a conformally changed metric as a model for
hyperbolic space. More precisely, considerRd

+ := {x ∈ Rd : xd ≥ 0} together with
the metric tensor

gi j :=






1
x2

d
for i = j

0 otherwise

for 1 ≤ i, j ≤ d. LetUd denote the upper half space equipped with this metric.
In this model of hyperbolic space it is easy to check the sectional curvature by

direct computation. Letx = (x1, . . . , xd) be a point inUd with tangent spaceTxUd.
The Christoffel symbols are are given byΓk

i j =
1
xd

for i = d andj = k, j, k , d,
Γk

i j = − 1
xd

for i = j andk = d, andΓk
i j = 0 otherwise.

The Riemannian tensor has the entriesRi ji j = −Ri j ji = − 1
x4

d
for i , j and

Rkli j = 0 otherwise. So, for linearly independent vectorsµ andν in the tangent
space ofx, the sectional curvatureK is computed to be

K(µ ∧ ν) =
Ri jklµ

iµkν jνl

(gikg jl − gi j gkl)µiµkν jνl
=

1
x4

d

∑

i, j µ
iµiν jν j

− 1
x4

d

∑

i, j µ
iµiν jν j

= −1.

This transfers to the Klein model in the next section via an explicit isometry.
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1.5.2 T KM

TheKlein modelof hyperbolic space uses the open unit diskD̊d := {x ∈ Rd : ‖x‖Eucl < 1}

inRd as its underlying space, together with the following metric:

gi j =






1−∑k,i x2
k

(1−‖x‖2Eucl)
2 for i = j

xi xj

(1−‖x‖2Eucl)
2 otherwise,

for 1 ≤ i, j ≤ d. We denote the open unit disk equipped with this metric byKd. An
isometry between the Klein model and the upper half space model is given by the
map

I : Dd −→ Rd

x 7−→ 2
[

1+
√

1− ‖x‖2Eucl

] x+
[

1+
√

1− ‖x‖2Eucl

]

ed

∥
∥
∥
∥
∥
x+

[

1+
√

1− ‖x‖2Eucl

]

ed

∥
∥
∥
∥
∥

2

Eucl

− ed.

Here,ed denotes thed-th unit vector inRn with the Euclidean metric.

1.5.3 I  H

For our construction we need the fact that the hyperbolic isometry group acts tran-
sitively onHd. This allows us to position any pair of facets of two hyperbolic
polytopes in such a way that they coincide. Hence, we can gluethese two poly-
topes along these facets geometrically.

ed

0

Figure 1.19: The upper half space model and the Klein model of hyperbolic space. The given
isometry between the two spaces mapsed onto 0. In each space two geodesics are indicated.
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1.5.1 D [Isometry Group]. The group of isometries of the hyperbolic
spaceHd is denoted by Isom(Hd).

1.5.2 E [Hyperbolic Isometries]. Here are some examples of isometries.
(1) Any orthogonal mapA ∈ O(d) of Rd restricts to an hyperbolic isometry of

the Klein model. Via the isometryI, such a map transforms into an isom-
etry ofUd fixing the tangent spaceTedUd at the pointed and realising the
orthogonal mapA in TedUd.

(2) For anyλ > 0,b ∈ Rd−1×{0} and an orthogonal mapA ∈ O(d) that preserves
theed-axis, define the map

x 7−→ λAx+ b.

Restricted toUd this is an isometry.

These two types of isometries already suffice for the proof that Isom(Hd) acts
transitively onHd.

1.5.3 T [Isom(Hd) is transitive]. For any two points x, y ∈ Hd and any
orthogonal map A: TxHd → TyHd there is an hyperbolic isometry i that maps x
onto y and induces A on the tangent spaces.

Proof. By Example1.5.2(2) there are isometries mappingx andy ontoed inUd. So
we can assumex = y = ed. Switching to the Klein model and looking at Example
1.5.2(1), we see thatA viewed as a map onKd is the required isometry. �

Furthermore, the isometries given in the above two examplesdo already gen-
erate Isom(Hd). Namely, suppose thatj ∈ Isom(Hd). Pick anyx ∈ Hd and set
y := j(x) andA := j∗x : TxHd → TyHd. By the proof of Theorem1.5.3we know
that there is an isometryi mappingx to y and inducingA on the tangent spaces.
But then,i and j must coincide.

1.5.4 D [Geodesic]. A geodesicin Hd is a continuous mapγ : I → Hd

from an intervalI into hyperbolic space such that, for any pointγ(t), t ∈ I̊ , there is
anε > 0 such that for anyt1, t2 ∈ (t − ε, t + ε) the length of the curveγ([t1, t2]) is
equal to the distance ofγ(t1) andγ(t2). Note thatI = R is allowed.

It can be proven that a geodesic is differentiable in its domain of definition, and
in spaces of curvature≤ 0, any geodesic can uniquely be extended to one defined
on the whole real lineR [12, p. 25].

Given a pointx ∈ Hd and a unit vectorv ∈ TxHd, there is a unique geodesicγv

such thatγ(0) = x and γ̇(0) = v. Similarly, given two pointsx, y ∈ Hd there is a
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unique geodesicγxy connecting these two points. This allows us to define, for any
x ∈ Hd, theexponential map

expx : TxHd −→ Hd

v 7−→ γv/‖v‖(‖v‖).
This map is a diffeomorphism betweenTxHd andHd. We equipTxHd with the
usual Euclidean metric.

1.5.5 D [Hyperplane]. A hyperplanein hyperbolic spaceHd is an iso-
metric embedding ofHd−1 into Hd. These are the totally geodesic subspaces
of codimension 1 inHd. (A subspaceS of a manifold istotally geodesicif all
geodesics, that contain a point ofS and are tangent toS in this point, stay inS.)

Via the exponential map, any hyperplane inHd can be described by giving
a point x ∈ Hd and the set of unit vectors contained in a hyperplane inTxHd.
In Euclidean space any two hyperplanes can be mapped onto each other by an
orthogonal map. Hence, using Theorem1.5.3, we may conclude the following
important fact.

1.5.6 T [Transitivity on Hyperplanes]. Any two hyperbolic hyperplanes
can be mapped onto each other by an hyperbolic isometry. �

The angle between two geodesics segmentsγ1 andγ2 intersecting inγ1(0) =
γ2(0) = x is the angle between ˙γ1(0) andγ̇2(0) in TxHd. In the upper half space
model, this angle coincides with the Euclidean angle that wecan “measure” in the
model. In the Klein model it does not. This is one reason why looking at hyperbolic
phenomena in the Klein model is sometimes counterintuitive.

The preservation of angles inUd and their distortion inKd is is immediate
from the fact that the metric tensor inUd at any point is just a scalar multiple of the
Euclidean one, while inKd it has off-diagonal entries ifx is not the origin (where
also in the Klein model Euclidean and hyperbolic angles coincide).

1.5.4 H

We have already noted that any geodesicγ can be extended ontoR. From now
on we assume that this is the case for all geodesics. We assumefurther that they
are parametrised by unit speed (which means thatd(γ(t1), γ(t2)) = |t2 − t1| for all
t1, t2 ∈ R, whered is the distance function onHd defined by the hyperbolic metric).
LetΓd be the set of all (oriented) geodesics inHd, defined by unit speed. We define
a relation∼ on Γd by sayingγ1 ∼ γ2 if d(γ1(t), γ2(t)) stays bounded fort → ∞.
This is invariant under time shiftst 7→ t + a on one of the geodesics. The relation
is clearly reflexive; Transitivity follows from the triangle inequality. So∼ is an
equivalence relation.

– 53 –



P, L, S,  P

1.5.7 D [Sphere at Infinity]. The sphere at infinitySd−1
∞ is the set of

equivalence classes ofΓd.

In our model spaces, we can identify the sphere at infinityv with the boundary of the discDd in the Klein model orv the hyperplane∂Rd−1 := {x ∈ Rd : xd = 0} together with an artificial
element∞, which represents the class of all geodesics that are parallel to the
d-th coordinate axis, in the upper half space model.

Let γ be a unit speed rayγ : [0,∞)→ Hd and

br : Hd −→ R
x 7−→ d(x, γ(r)) − r.

For fixedx this function is decreasing inr and|br(x)| is bounded byd(x, γ(0)). For
any x, y ∈ Hd and anyr ∈ R+ the distance betweenbr(x) andbr(y) is bounded by
the distance ofx andy. Both facts follow from the triangle inequality.

These considerations allow us to define the “limit function”

bγ := lim
r→∞

br .

It satisfies|bγ(x) − bγ(y)| ≤ d(x, y) for all x, y ∈ Hd, |bγ(x)| ≤ d(x, γ(0)) and
bγ(γ(r)) = −r for all r ∈ R+. This function is called theBusemann functionof
the rayγ.

1.5.8 D [Horospheres]. A horosphere Hx in Hd centred at a pointx ∈Sd−1
∞ is the level set of a Busemann function of a ray in the class of rays defining

the pointx.

A horosphere is independent from the actual choice of the representative in the
class ofx. Horospheres are particularly nice objects in hyperbolic space. Here is
the one important fact that we will exploit in our construction.

1.5.9 T [Horospheres are Flat]. The induced metric on horospheres is
flat.

Proof. We check this in the upper half space model. A horosphereHx based atx ∈Hd
∞ is the level set of a Busemann functionbγx corresponding to a rayγx diverging

to x. As the isometry group acts transitively onHd, we can w.l.o.g assume thatx is
the point not inRd−1 ⊂ Hd

∞. Any horosphere tox is then a Euclidean plane parallel
toRd−1. Thus it is defined byxn = c for a constantc. The induced metric onHx is
ds2

Hx
:= 1

c2 (dx2
1 + . . . + dx2

d−1): It is flat. �
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2.1 I

We describe and analyse a new construction that applies to graded posets, lattices,
PL spheres, and polytopes. It produces new posets, lattices, PL spheres, and —
with some restrictions — polytopes. Here are some of the key properties of this
construction:v For suitable input the result isr-simple ands-simplicial.v We obtain the first infinite family of 2-simple and (d − 2)-simpliciald-poly-

topes in any dimensiond ≥ 4.v We obtain the first infinite family ofrational 2-simple and 2-simplicial 4-
polytopes.v The 4-polytopes from this construction lie on the boundary of the cone de-
fined by the known flag vector inequalities of 4-polytopes.v Some of the polytopes have high “fatness” (see Definition4.2.7).v For any number of verticesf0 ≥ 26 it produces “many” combinatorially
different 2-simple and 2-simplicial 4-polytopes.v Also most of the already known 2-simple and 2-simplicial 4-polytopes are
instances of this construction.

A special case of the construction was considered earlier byEppstein, Kuper-
berg, and Ziegler [33], who coined the nameE-constructionfor it. We use this
name also for our generalised version. We sometimes add a subscript t, which
gives a distinguished dimension between 0 andd − 1, if d is the dimension of the
polytope, ord + 1 the rank of the lattice. The original version is only definedfor
the special cased = 4 andt = 1.

Our generalised construction comes in two different flavours, and we conse-
quently give two different definitions of it. We start with a combinatorial definition
in Definition 2.3.1, which applies to posets and lattices. We translate this into a
geometric version in Definition2.4.3. The two versions coincide on the level of
face lattices of spheres and polytopes.

The present chapter introduces the construction, providesseveral ways to ob-
tain geometric realisations of polytopes, and introduces basic examples. The main
result is — apart from the definition and discussion of the general construction —
the introduction of three infinite families of polytopes. InSection2.5.1we present
two families of rational 2-simple and 2-simplicial 4-polytopes. The one defined in
Proposition2.5.12was somehow the “birth” of all this: It was the first family of
2-simple and 2-simplicial 4-polytopes not contained in theoriginal construction.
Meanwhile, other families are more interesting. We introduce several simple ways
for the construction of 2-simple and 2-simplicial 4-polytopes, which can produce
many other infinite families. In Section2.5.3we present a family of 2-simple and
(d − 2)-simpliciald-polytopes in any dimensiond ≥ 4.
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Some Remarks on(2, 2)-Polytopes

Chapter3 is then entirely devoted to another large class of polytopesto which
this construction applies. We work out several properties of these polytopes. In
particular, we will look at their combinatorial and geometric symmetry groups,
and at their realisation spaces.

Chapter4 contains some properties of 2-simple and 2-simplicial 4-polytopes
that can be proven with our methods, and it contains lists of known examples of
2-simple and 2-simplicial 4-polytopes. We also present some other methods to
obtainr-simple ands-simplicial polytopes.

2.2 S R  (2, 2)-P

TheE-constructionwas first considered by Eppstein. In a joint work with Kuper-
berg and Ziegler [33] he used it to produce an infinite family of (2, 2)-polytopes (i.e.
2-simple and 2-simplicial 4-polytopes). Prior to this paper, only a finite number of
(2, 2)-polytopes where known. Most of them occurred in the context of regular and
semi-regular polytopes.

There is a claim in Grünbaum’s book [44, Ex. 9.9.7(iii), p. 169] that Perles and
Shephard had earlier obtained infinitely many (2, d− 2)-polytopes. However, there
is no known proof of this result. Eppstein, Kuperberg, and Ziegler with their work
substantiated this claim in dimension 4 by constructing thefirst infinite family Qn,
n ≥ 1, of (2, 2)-polytopes.

We finally completely prove this claim: In Theorem2.5.15we provide an infi-
nite family of (2, d − 2)-polytopes in all dimensionsd ≥ 4. This family also sheds
some more light on a problem stated by Kalai in [54, 19.5.19], where he asks for
values ofr and s, with r, s ≥ 2, such that there is anr-simple ands-simplicial
d-polytope.

Further, also in Grünbaum’s book [44, Ex. 5.2.13(ii), p. 82], one finds a claim
that Shephard had proven a conjecture of Walkup, stating that (2, 2)-polytopes are
dense among 4-polytopes. However, this was premature. The question is still open
[44, p. 69b], and despite our new methods — which produce a wealthof (2, 2)-
polytopes — we still do not seem to be close to an answer. (Densein this setting
means the following: Given two familiesP andQ of polytopes,P is dense inQ, if
for anyε > 0, and any polytopeQ ∈ Q, there is a polytopeP ∈ P with Hausdorff
distance smaller thanε from Q.)

Roughly, the construction of Eppstein, Kuperberg, and Ziegler works as fol-
lows. It uses anedge-tangentsimplicial 4-polytope as input, and takes the convex
hull of this with its polar polytope. It is not difficult to see that this results in a
(2, 2)-polytope. The hard part in their work is the constructionof sufficiently many
simplicial edge-tangent polytopes. This is quite easy in three, and rather difficult
in all higher dimensions.
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As an application of the results of their construction, Eppstein, Kuperberg, and
Ziegler [33] introduce thefatnessparameterF(P) for a 4-polytope, which is the
quotient of the sum of edges and ridges divided by the sum of vertices and facets.
This concept was further developed by Ziegler [90], and recently in [92]. Eppstein,
Kuperberg and Ziegler gave examples with fatness slightly above five. In Chapter3
we present a family of polytopes obtained from our generalised E-construction
whose fatness approaches six. Either finding an upper bound for this parameter, or
proving that it is unbounded, would produce important information for the classifi-
cation problem of flag vectors introduced in Section1.4.2. It is unbounded for CW
spheres, and Pfeifle and Ziegler [69] have exploited the underlying method for the
construction of a large number of non-polytopal spheres.

The families of (2, 2)-polytopes that we obtain from theE-construction in this
chapter are the first infinite families of (2, 2)-polytopes that haverational coordi-
nates for their geometric realisations. This answers a question of Eppstein, Kuper-
berg, and Ziegler in [33], as their construction only produced examples with (in
the given realisation) non-rational coordinates, due to the edge-tangency condition
in their construction. In contrast to this original version, which is quite rigid, ours
allows great flexibility in the choice of coordinates.

2.3 T E-C  P  L

We begin with a combinatorial description of our generalised version of theE-
construction. It is defined on any graded poset and associates a new graded poset to
it. We show that many properties of the poset are preserved bytheE-construction.
In fact, the result may even satisfy stronger properties than the input.

The construction depends on a parametert specifying a level setPt+1 in the
graded posetP. Roughly, ifP is a graded poset of lengthd + 1 andt a parameter
between 0 andd − 1, then the construction defines a new setEt(P) containing all
elements of rankt+1 and all intervals [x, z] ⊆ P that contain at least one element of
rank t + 1 in their interior (i.e. different fromx andz). This new set can be ordered
by reversed inclusion. Here is the precise definition.

2.3.1 D [The Combinatorial E-Construction]. Let P be a graded poset
of lengthd+ 1 with order relation�P andt an integer between 0 andd− 1. Define
a new posetEt(P) with order relation� in the following way:

(1) The elements ofEt(P) are
(a) The empty set∅,
(b) the elementsy ∈ P with rank(y) = t + 1, and
(c) all intervals [x, z] ⊆ P with rank(x) < t + 1 < rank(z).

(2) We order this set by reversed inclusion of sets inP. So∅ becomes the maxi-
mal element inEt(P) andP itself the minimal.

– 58 –



The E-Construction on Posets and Lattices

See Figure2.1 for an illustration. Note, that we cannot choose the bottom or
top level as the “distinguished” one, as in this case no interval could “cross” the
level. In later sections we consider this construction usually for a fixed parameter
t. In this case, and if no confusion is possible, we omitt in the notation and write
E(P) for the poset obtained fromP via theE-construction.

2.3.2 R. We have two remarks about the choices made in the definition.v It would not make much difference if we order the set by inclusion instead of
reversed inclusion. All posets, lattices, spheres, and polytopes constructed
via this method would just turn into their opposites (or duals, respectively).
We have chosen this order mainly for historical reasons: This way, it is closer
to the original definition of Eppstein, Kuperberg, and Ziegler.v The choice oft + 1 as the distinguished level (instead oft) in the poset is
motivated by the important application of this construction to spheres and
polytopes, which we discuss later in this chapter. Then, theelements of rank
t + 1 in the face lattice of a sphere or polytope correspond to cells or faces of
dimensiont in that sphere or polytope.

2.3.3 E. Here are some simple examples of theE-construction.v The Et-construction applied to a poset of lengthd + 1 is the same asEd−1−t

applied to its opposite, i.e.

Et(P) � Ed−1−t(P
op).

So we can derive the same posets fromP and from its dual. This equality is
rather immediate from the definition.
We use this important fact quite often when constructing polytopes, and
without always mentioning it. In particular, it will prove very convenient
for the enumerations of (2, 2)-polytopes in Section4.3.

d+ 1

t + 1

0

x

z

L d+ 1

0

1

Et(L)

[x, z]

∅

d+1+
ρ(x)−ρ(z)

[atom, 1̂] [0̂, coatom]

{y} d

Figure 2.1: Combinatorial construction ofEt(L).
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Ed−1(P) = P.

Indeed, the new elements of rankd are the same as the old ones. The maxi-
mal element of an interval crossing leveld is 1̂P. An interval [x1, 1̂P] contains
an interval [x2, 1̂] if and only if x1≺P x2. Dually, we also have

E0(P) = Pop.

We will only consider bounded graded posets, so these two cases are not
really interesting for the construction, and we sometimes exclude them from
our considerations.v Figure2.2contains two simple, but non-trivial examples of theE-construc-
tion, shown via their Hasse diagrams.

A chain in the posetEt(P) is an ascending sequence of intervals inP. See
Figure2.3 for an illustration. The posetEt(P) comes with a naturalrank function
induced from inclusion of intervals in the posetP.

2.3.4 D  P [The Rank Function on E(P)]. Let P be a
graded poset of length d+ 1 and 0 ≤ t ≤ d − 1. The poset Et(P) naturally ad-
mits a rank functionρ induced from the rank functionρP of the original poset P:

ρ(α) :=






d + 1 if α = ∅,
d if α is an element of rank t+ 1 in P,

(d + 1)− (

ρP(z) − ρP(x)
) if α = [x, z] is an interval in P

crossing the level t+ 1.

From the properties of the rank functionρP of P it is immediate that this defines a
rank functionρ on Et(P). �

P

a1 a2

b1 b2

c1 c2
E0(P)

b1 b2

[a1,c1] [a1,c2] [a2,c1] [a2,c2]

∅

(a) A simple posetP andE0 applied to it. Note, thatP
is not bounded.

P

a

b

c

d

e E1(P)

[a,d]

∅

c

[b,d]

[b,e]

[a,e]

(b) Another posetP and E1 applied to
it.

Figure 2.2: Some examples of theE-construction.
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2.3.5 P [Length Preservation]. Let P be graded poset of length d+ 1.
Then P and Et(P) have the same length for any0 ≤ t ≤ d − 1.

Proof. Let ρP be the rank function of the posetP. By Proposition2.3.4we know
that Et(P) is graded. A maximal chain inEt(P), translated into its corresponding
intervals inP, has the form

[x0, z0] ≺[x1, z1] ≺ . . .≺[xk, zk] = [xk, xk] ≺∅

where x0 is a minimal element,z0 a maximal element, for any 0≤ i ≤ k − 1
either xi = xi+1 and zi coverszi+1, or xi is covered byxi+1 and zi = zi+1, and
ρP(zk) = ρP(xk) = t + 1. As xi , zi must also satisfyρP(xi) < t + 1 < ρP(zi) for any
1 ≤ i ≤ k− 1, there aret + ((d+ 1)− (t + 2)) = d− 1 increasing steps. The last two
elements, i.e. [xk, xk] and∅, were not included in this count, so in total, the above
chain containsd + 2 elements, so it has lengthd + 1. �

Thus,Et(P) is again agradedposet oflength d+ 1. Its coatomsare the one-
element sets{y}, y ∈ Pt+1, its atomsare the intervals [x, 1̂] for 1 ≤ t ≤ d − 1, and
[0̂, z] for 0 ≤ t ≤ d−2, wherex ranges over the atoms, andzover the coatoms ofP.

It is not hard to compute thef -vectorof the new poset from the flag vector of
the old, as we just have to count intervals of a certain lengthcontaining elements
of rank t + 1.

x0 = x1

x2

x3 = x4

x5

x6 = z6

z0

z1 = z2 = z3

z4 = z5

4-level

[x0, z0] ≺ [x1, z1] ≺ [x2, z2] ≺ [x3, z3] ≺ [x4, z4] ≺ [x5, z5] ≺ [x6, x6] ≺ ∅

Figure 2.3: A maximal chain inE3(P), whereP has rank 7.
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Let P be a poset of lengthd+ 1 and 0≤ t ≤ d − 1. Then

fk(Et(P)) =






∑

i, j fi j (P) for − 1 ≤ k < d − 1,

ft(P) for k = d − 1,

1 for k = d,

(2.3.1)

where the sum in the above formula ranges over all pairsi, j that satisfy

−1 ≤ i < t < j ≤ d and j − i = d − k.

In the same fashion, one can compute all other entries of the flag vector. How-
ever, we need this only in a few cases, where the flag vector is easier computed
differently.

If P is a lattice, then there is a much shorter description of the posetEt(L) for
any parameter t between 0 andd− 1. Namely, in this case, we can just define

Et(L) :=

{
[∧

A,
∨

A
]

: A ⊂ Lt+1

}

,

again ordered by reversed inclusion. Here we interpret [
∧ ∅,∨ ∅] to be∅, which

defines the element1̂ in Et(L). See Figure2.4for an example of theE-construction
applied to a lattice. The next proposition tells us that the property of being a lattice
is preserved by theE-construction.

2.3.6 P [Lattice Property Preservation]. For any bounded and graded
lattice L, and any parameter0 ≤ t ≤ d − 1, the poset Et(L) is a lattice.

Proof. We have to show that any two elements have a join and a meet. LetρL be
the rank function inL andα, β ∈ Et(L) be two arbitrary elements. We show that
they have a meet. We distinguish two cases for this.

L E1(L)

Figure 2.4: A lattice together with the E-Construction applied to the middle level.
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The E-Construction on Posets and Latticesv If α = L, thenα is the minimal element ofEt(L). Clearly, in this case
α ∧ β = α. Similarly if β = L.v In all other cases we can assumeα = [x1, z1] and β = [x2, z2] for some
elementsx1, x2, z1, z2 ∈ L with ρL(x1), ρL(x2) ≤ t+1 andρL(z1), ρL(z2) ≥ t+1.
We allowx1 = z1 or x2 = z2 in this.
Let a := x1∧ x2 andb := z1∨z2. Then clearlyρL(a) ≤ t+1 andρL(b) ≥ t+1.
Considerζ := [a, b]. Then ζ �α and ζ � β, so ζ is a lower bound ofα
andβ. Let ξ be another lower bound. Thenξ = [a′, b′] for some elements
a′, b′ ∈ L, and [x1, z1], [x2, z2] ⊆ [a′, b′]. So a′ is a lower bound forx1 and
x2. But a is their meet, soa′ �L a. Similarly, b′ is an upper bound ofz1 and
z2. As b is their join, we haveb�L b′. This implies [a, b] ⊆ [a′, b′] in L, and
consequentlyξ � ζ in Et(L). Soζ is the meet ofα andβ.

Joins can either be computed in a similar way, or one can use the fact that in
bounded posets the existence of meets already implies the existence of joins, by
Proposition1.2.22. �

2.3.7 R. The converse of Proposition2.3.6 is not true in general.Et(P)
for some parametert can be a lattice althoughP is not. In Figure2.5 is a simple
example of this phenomenon. It shows a poset in which two elements do not have a
meet, soP is not a lattice. However,E1(P) is the face lattice of the polytope shown
in Figure2.6.

2.3.8 P. Let P be a graded bounded poset of length d+ 1 and t a
parameter between0 and d− 1. If P is Eulerian, then Et(P) is also Eulerian.

Proof. This is true fort = 0 and fort = d − 1, which includes all possible values
for t if d ≤ 2. We use induction on the length ofP.

Figure 2.5: The posetP from Remark2.3.7. Note, that the meet of the two outer elements of level
three does not exist. They have two maximal lower bounds.
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First we show that all proper intervals inEt(P) are Eulerian. For any element
[x, z] ∈ Et(P), where (x, z) , (0̂, 1̂), the upper interval

[

[x, z], 1̂
]

of Et(P) is isomor-
phic toEt′([x, z]) for t′ = t − ρ(x). See Figure2.7(a). Hence, all proper upper inter-
vals in Et(P) are produced by theE-construction from Eulerian posets of smaller
length and levelt′, so they are Eulerian by induction.

Similarly, if [x, z] is an element of rank at mostd−1 in Et(P), that is, an interval
of P with x < y < z for somey ∈ Pt+1, then the lower interval

[

0̂, [x, z]
]

of Et(P)
is isomorphic to [̂0, x] × [z, 1̂]op. This is Eulerian by Theorem1.2.16, sinceP is
Eulerian.

If {y} is a coatom ofEt(P), for y ∈ Pt+1, then the lower interval
[

0̂, {y}] is
isomorphic to (P<y)× (P>y)op ⊎ 1̂. Thus, it is the opposite of a reduced product of
two Eulerian posets, which is Eulerian by Theorem1.2.16.

Finally, we have to see thatEt(P) itself has the same number of odd and even
rank elements. For this we use thef -vector ofEt(P), which we have already com-
puted in (2.3.1). Every interval [̂0, z] in P is Eulerian. Hence, for 0≤ j ≤ d−1 and
all z ∈ P j+1 we have

j∑

i=−1

(−1)i fi([0̂, z]) = 0,

which, by summing over allz ∈ P j+1, yields
∑ j

i=−1(−1)i fi j = 0. If j ≥ t we can split
the sum ati = t to obtain

t−1∑

i=−1

(−1)i fi j = −
j∑

i=t

(−1)i fi j . (⋆)

Figure 2.6: A polytope havingE1(P) for the posetP in Figure2.5as face lattice.
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This is one of the generalised Dehn–Sommerville equations,see Theorem1.2.17.
A similar argument for upper intervals shows that

d∑

j=i

(−1)j fi j = (−1)dδid. (⋆⋆)

for i ≤ d. With these two equations, we can compute

d∑

k=−1

(−1)d−k fk(Et(P)) =

= 1− ft +
t−1∑

i=−1

d∑

j=t+1

(−1)j−i fi j = 1− ft +
d∑

j=t+1

(−1)j
t−1∑

i=−1

(−1)i fi j

(⋆)
= 1− ft −

d∑

j=t+1

(−1)j
j∑

i=t

(−1)i fi j = 1−
d∑

j=t

(−1)j
j∑

i=t

(−1)i fi j

= 1−
d∑

i=t

(−1)i
t∑

j=i

(−1)j fi j
(⋆⋆)
= 1−

d∑

i=t

(−1)i(−1)dδid

= 0.

Hence, the posetEt(P) contains as many elements of odd rank as it contains ele-
ments of even rank. This proves the claim. �

2.3.9 R. Alternatively, one may argue from Theorem2.4.1in the next sec-
tion: Since the order complexes ofP and ofEt(P) are homeomorphic, they must
have the same Euler characteristic, which is the Möbius function of P andEt(P),
respectively. This is precisely what we need for [x, z] = [0̂, 1̂].

x

[x,z]

level t′ + 1
in [x, z]

z

0̂

1̂

t+1

(a) Proper intervals.

x

[0̂,x]

[z,1̂]

z

0̂

1̂

t+1

(b) Products of intervals.

y

0̂

1̂

t+1

(c) Reduced products of inter-
vals.

Figure 2.7: The intervals inEt(P).
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The next theorem will be interesting for the comparison of the geometric and
combinatorial symmetry groups of products of polygons and their E-construction
in Chapter3.

2.3.10 P [Symmetry Preservation]. Let P be a graded poset of length
d + 1. Then there is an canonical injective map

i : Aut(P) ֒→ Aut(Et(P))

for any0 ≤ t ≤ d− 1. �

Let a be a automorphism ofP. Theni(a) is the automorphism ofEt(P) sending
an interval [x, z] to [a(x), a(z)]. We will see in Section2.5 that E2 applied to the
face latticeP of a 4-cube is isomorphic to the face lattice of the 24-cell, so the
automorphism group ofEt(P) can be strictly larger than that ofP. Hence,i will in
general not be surjective.

Now we come to the most important property of theE-construction for the
remaining sections of this chapter and the following two chapters. Recall the defi-
nition of simpliciality and simplicity from Definition1.2.25. We repeat a shorthand
notation from Definition1.2.26that we use frequently.

D [(r,s)-Lattices]. Let L be an Eulerian lattice. We say thatL is a (r, s)-
lattice if it has rankℓ = r + s+ 1 and isr-simple ands-simplicial.

We later apply the same notation also to strongly regular spheres and polytopes.
So, a (r, s)-polytope is anr-simple ands-simplicial polytope of dimensionr + s.

2.3.11 T [Simplicity and Simpliciality]. Let L be a bounded Eulerian
lattice of length d+ 1 and t a parameter between1 and d− 2.
(1a) For 0 ≤ k ≤ d − 2, Et(L) is k-simplicial if L is r-simple and s-simplicial for

r ≥ min(k, d− t − 2) and s≥ min(k, t − 1).
(1b) Et(L) is never(d − 1)-simplicial.
(2a) Et(L) is 2-simple if and only if every interval[x, z] with rank(x) = t − 1 and

rank(z) = t + 3 is boolean.
(2b) Et(L) is never3-simple.

Note, that we have excluded the casest = 0 andt = d − 1 in the theorem. By
Examples2.3.3we haveE0(P) = Pop andEd−1(P) = P for bounded posets. With
some adjustments for the caset−1 < 0 or t+3 > d+1, the claims in (1a) and (2a)
are still true fort = 0 andt = d− 1, but (1b) and (2b) are clearly wrong. However,
neither of these two cases is really interesting, so we omitted them.

Proof of Theorem2.3.11. We prove all four different claims in the theorem sepa-
rately. LetρL be the rank function onL, andρ that ofEt(L).
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(1a) The elements of rank at mostk + 1 ≤ d − 1 in Et(L) are the intervals of the
form α = [x, z] ⊆ L with ρL(x) ≤ t, ρL(z) ≥ t + 2 satisfying

ρL(x) + (d + 1)− ρL(z) = ρ(α) ≤ k+ 1.

An elementx ∈ L appears as the lower end of such an interval [x, z] if and
only if

0 ≤ ρL(x) ≤ min{k+ 1, t}.

The same is true for all elementsz ∈ L of corank

0 ≤ d+ 1− ρL(z) ≤ min{k+ 1, d− t − 1}.

The atoms ofEt(L) belowα = [x, z] are given by both the atoms ofL belowx,
whose number is at leastρL(x), and the coatoms ofL abovez, whose number
is at leastd + 1− ρL(z). So the interval has at least

ρL(x) + d+ 1− ρL(z) = k+ 1

atoms, with equality if and only if the intervals [0̂, x] and [z, 1̂] of L are both
boolean.
Thusall lower intervals [̂0, α] of rank k + 1 in Et(L) are boolean if and only
if all intervals [̂0, x] and [z, 1̂] are boolean forρL(x) ≤ min{k + 1, t} resp.
d + 1− ρL(z) ≤ min{k+ 1, d− t − 1}.

(1b) An analysis as for (1a) shows that for any element{y} of rankd in Et(L), i.e.
for y ∈ Lt+1, there are at leastt + 1 atomsa1, . . . , am in L satisfyingai � y
for 1 ≤ i ≤ m and at leastd − t coatomsc1, . . . , cm′ in L satisfyingy� ci for
1 ≤ i ≤ m′. Hence, there are at least

m+m′ ≥ (t + 1)+ (d − t) = d + 1

atoms below{y} in Et(L). Too many for a (d− 1)-simplex.
(2a) Et(L) is 2-simple, if all intervals [β, 1̂] ⊂ Et(L) with β = [x, z] ⊂ L and

ρ(β) = d− 2 are boolean. Equivalently, these intervals must have 3 atoms or
coatoms.
This is the case if and only if every intervalβ = [x, z] ⊂ L of length three, for
ρL(x) < t + 1 < ρL(z), contains precisely three elements of rankt + 1. This
is equivalent to the condition that every interval [x, z] of length four with
ρL(x) = t − 1 andρL(z) = t + 3 is boolean. In terms of the usual flag vector
notation, this can numerically be expressed as

ft−2,t,t+2(L) = 6 ft−2,t+2(L).
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(2b) Similarly to the previous considerations, forEt(L) to be 3-simple we would
need that every interval [x, z] in L of length 4 withρL(x) < t + 1 < ρL(z) and
ρL(z) = ρL(x) + 4 contains exactly 4 elements of rankt + 1.
However, this is impossible for the case whereρL(x) = t−1 andρL(z) = t+3,
where the interval [x, z] has at least 6 elements in its “middle level” (that is,
of rank t + 1) by the Eulerian condition. See Figure2.8for an illustration of
this fact. �

2.3.12 R. The condition in (2a) is in particular satisfied ifL is (t + 2)-
simplicial or (d − t − 1)-simple. We will only use this weaker form in the next
sections, although one can construct examples of polytopesthat are neither (t + 2)-
simplicial nor (d − t − 1)-simple, but theirE-construction still is 2-simple.

Theorem2.3.11gives us the following important corollary. Its geometric ver-
sion, which we state in the next section, will play a central rôle in the construction
of our families of polytopes.

2.3.13 C [(2, d − 2)-Lattices]. Let L be a bounded Eulerian lattice of
length d+ 1 ≥ 4.

(1) If L is simplicial then Ed−3(L) is a (2, d− 2)-lattice.
(2) If L is simple, then E2(L) is a (2, d− 2)-lattice. �

We have now collected all necessary information on the combinatorial proper-
ties of theE-construction.

Figure 2.8: TheE-construction can never produce 3-simple lattices.
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2.4 T E-C  S

There are two different ways in which we want to look at spheres: We present
a morecombinatorialand a moregeometricversion. We begin this section with
a discussion of theorder complexof a bounded Eulerian lattice and and itsE-
construction. We prove that these two order complexes are PLhomeomorphic by
constructing an explicit PL homeomorphism between the two spaces.

In the second part of this section we define — independent fromthe combina-
torial construction — a geometricE-construction for PL spheres. We prove that
this geometric construction coincides with the combinatorial Definition2.3.1if we
look at the face lattices of the PL sphere and itsE-construction.

The presentation of the PL version of theE-construction will not be concise.
It should provide some intuition for the geometric properties of this construction,
rather than giving a formal definition.

2.4.1 O C  S

Here we look at the order complex associated to a posetP. This is the abstract sim-
plicial complex whose vertices are the elements ofP, and whose faces are subsets
of the vertices that form a chain inP. See Definition1.2.19for a precise version.
An abstract simplicial complex can be realised geometrically in someRn, accord-
ing to Proposition1.2.20. We work with PL topology in this section. See Section
1.3.1for the relevant definitions and the necessary facts.

The following result is analogous to simpler results of Walker [87] and con-
structs an explicit PL homeomorphism between the order complex of a posetP
and the order complex of itsE-constructionEt(P), for some admissible parame-
ter t. Basically, this shows that the latter is a subdivision of the former. Recall,
thatP denotes the proper part of a posetP, i.e. the poset without its maximal and
minimal elements, and|X| the underlying topological space of a cell complex.

2.4.1 T [The PL Homeomorphism]. Let P be a finite graded poset of
length d+ 1 and t a parameter between0 and d− 1. Then P and Et(P) are PL
homeomorphic:

|P| � |Et(P)|.

Proof. We verify that∆
(

Et(P)
)

is a subdivision of∆
(

P
)

, and give explicit formulas
for the subdivision map and its inverse. (Compare this to Walker [87, Sects. 4,5].)

If one assumes that there is such a homeomorphism, then it is fairly clear how
it should look like. So we just state the map here and prove that is has the required
properties.
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We define the following map:

π : |∆(Et(P)
)| −→ |∆(P)|,

given on the vertices by

{y} 7−→ y for y ∈ Pt+1,

[x, z] 7−→ 1
2

x+
1
2

z for 0̂ < x < y < z< 1̂, y ∈ Pt+1,

[x, 1̂] 7−→ x for 0̂ < x < y < 1̂, y ∈ Pt+1,

[0̂, z] 7−→ z for 0̂ < y < z< 1̂, y ∈ Pt+1

and linearly extended on the simplices. This map is well-defined and continuous.
Its inverse, a subdivision map, may be described as follows:Any point of∆

(

P
)

is
an affine combination of elements on a chain inP, so it may be written as

x : λ1x1 < · · · < λtxt < λt+1yt+1 < λt+2zt+2 < · · · < λdzd.

with λi ≥ 0 and
∑

i λi = 1. We setx0 := 0̂ andzd+1 := 1̂, with coefficientsλ0 := 1
andλd+1 := 1.

λ1

λ2

λi

λt−1
λt+1

λ j

λd−1

λd

0 1 i t + 1 j d+ 1

f (1)

f (2)

g(d)

...

...

...

...

Figure 2.9: Sketch for the proof of Theorem2.4.1. The height of the shaded rectangle indicates the
size of the coefficientαi, j .
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Now the above point is mapped byπ−1 to

π−1(x) = λt+1 {yt+1} +
∑

1≤i<t, t+1< j≤d

2αi, j [xi , zj] +
∑

i=0, t+1< j≤d or
1≤i≤t, j=d+1

αi, j [xi , zj],

where the coefficientsαi, j are given by

αi, j :=






min
{

f (i), g( j)
} − max

{

f (i + 1), g( j − 1)
}

if this is ≥ 0,

0 otherwise,

with f (t + 1) = g(t + 1) = 0, and

f (i) := λi + λi+1 + . . . + λt for 0 ≤ i ≤ t + 1, and

g( j) := λt+2 + . . . + λ j−1 + λ j for t + 1 ≤ j ≤ d+ 1.

We refer to Figure2.9for an illustration of the construction of theαi j . �

From this theorem we can conclude the following important consequence.

2.4.2 T. If P is the face poset of a regular PL sphere or PL manifold, then
so is Et(P).

Proof. By Proposition2.3.8and its proof, using the PL property, we get the cell
complex. By Theorem2.4.1, this cell complex is homeomorphic to|P|. �

2.4.2 T E-C  PL S

We translate the combinatorialE-construction of Definition2.3.1into the geomet-
ric setting. Nothing new is happening here, as formally thisdescription is imme-
diate from the combinatorial one and the homeomorphism given in the previous
paragraph. However, it might provide some intuition for what the construction is
doing geometrically, and for the problems we face when applying it to polytopes.

2.4.3 D [The E-Construction for Spheres]. Let S be a PL sphere of
dimensiond−1 andt a parameter between 0 andd−1. We define a new PL sphere
by the following three steps:

(1) Take a barycentric subdivisionBS(S) of S. This cell complex has a vertex
for each cell ofS and a (d − 1)-cell for each maximal chain of faces ofS.

(2) Merge all (d − 1)-cells (i.e. all facets) ofBS(S) that share a vertex coming
from at-cell of S into a single new (d − 1)-cell.

(3) Merge allk-dimensional cells, that become “unnecessary” by this operation
in the sense that they intersect in a (k − 1)-cell that is adjacent to no other
k-cell, for 0≤ k ≤ d − 2.

– 71 –



T E-C  L, S,  P

Clearly, this construction applies to any PL sphereS and produces a new PL
sphere. See Figure2.10 for an example ofE1 applied to a 2-sphere. The geo-
metric version of theE-construction corresponds to the combinatorial version of
Definition2.3.1in the following way.

2.4.4 P. Let S be a PL sphere of dimension d− 1 and t a parameter
between0 and d− 1. LetL(S) be the face lattice of S .

Then Et(L(S)) (i.e. the combinatorial version of the E-construction applied to
the face lattice of S ) is the face lattice of Et(S).

Proof. BothL(Et(S)) andEt(L(S)) have ft(S) coatoms. By the third step in Def-
inition 2.4.3, all vertices ofBS(S) vanish if they do not stem from a 0-cell or a
(d − 1)-cell of S. So both lattices also have the same numberf0(S) + fd−1(S) of
atoms. Hence, it suffices to check the vertex–facet incidences.

The cells of the barycentric subdivisionBS(S) can be identified with chains in
the face latticeL(S) of the sphere. Chains containing only one cell correspond to
the vertices, and maximal chains to the facets. If two facetsin BS(S) have a cell of
dimensiont of the original sphereS in common then the corresponding maximal
chains in the lattice intersect in an element of rankt + 1. For anyy ∈ L(S) of rank
t + 1 let Cy denote the set of all maximal chains inL(S) that containy. Letσy be
thet-cell of S represented byy.

As we merge all facets inBS(S) that contain the same cell of dimensiont, such
a setCy canonically correspond to a facet ofEt(S). On the other hand, we may
identify Cy with a coatom ofEt(L(S)) by mappingCy onto{y}.

The atoms ofEt(L(S)) incident to{y} are precisely the atoms and coatoms of
L(S) contained inCy. On the other hand, the 0-cells of the facet inEt(S) defined
by Cy are the 0-cells ofBS(S) coming from (d−1)-cells that containσy. Hence the
vertex–facet incidences of the two latticesL(Et(S)) andEt(L(S)) coincide. �

Figure 2.10:An example for theE-construction on spheres.
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With this correspondence to the combinatorial setting we can restate the proper-
ties about simplicity and simpliciality of lattices obtained from theE-construction
in a geometric language.

2.4.5 T. Let S be a PL sphere of dimension d− 1 and1 ≤ t ≤ d − 2.
(1a) For 0 ≤ k ≤ d − 2, Et(S) is k-simplicial if S is r-simple and s-simplicial for

r ≥ min(k, d− t − 2) and s≥ min(k, t − 1).
(1b) Et(S) is never(d − 1)-simplicial.
(2a) Et(S) is 2-simple if and only if any(t + 2)-cell is3-simple.
(2b) Et(S) is never3-simple.

Proof. This is a direct consequence of Theorem2.4.2and Theorem2.3.11. �

The most important application of this are the following twopossibilities to
create a 2-simple and (d − 2)-simplicial (d − 1)-sphere. For the rest of this chapter
and the whole next chapter we will work mainly with these two cases. The proof
is immediate from the corresponding statement for latticesin Corollary 2.3.13.
Recall, that a (r, s)-sphere is anr-simple ands-simplicial PL (r + s− 1)-sphere.

2.4.6 C [(2, d − 2)-Spheres]. Let d ≥ 3 and S any strongly regular
(d− 1)-dimensional PL sphere S .

(1) If S is simplicial, then Ed−3(S) is a (2, d− 2)-sphere.
(2) Similarly, if S is simple, then E2(S) is a (2, d− 2)-sphere. �

2.5 T E-C  P

The boundary of a polytope naturally carries the structure of a strongly regular PL
sphere. Hence, we can apply theE-construction of PL spheres — as defined in
Section2.4.2— to anyd-polytopeP and obtain a new strongly regular PL sphere
Et(P) for any 0≤ t ≤ d− 1.

However, it is not clear whether this sphere is polytopal, that is, whether the
E-construction applied to a polytopeP produces only a PL sphere or – at least in
some cases – a polytope. The problem hereby clearly arises inthe second step of
Definition 2.4.3, where we have to merge certain cells of the sphere into a single
new cell. To obtain a polytope in this step we have to ensure that the hyperplanes
defined by the facets we want to merge (i.e. facets of the barycentric subdivision of
Pcontaining the samet-cell) can be deformed in such a way that they geometrically
coincide, without changing the combinatorial properties of the sphere.

In the three parts of this section we present techniques thatguarantee, for cer-
tain interesting classes of polytopes, that theirE-construction has a polytopal real-
isation. We construct several infinite families of (2, 2)-polytopes. Lots of further
examples are given in Chapter4.
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The first of our constructions, theD-constructionor vertex truncation, yields
polytopes (PL spheres) that are dual to the polytopes (PL spheres) obtained from
theE-construction. It basically operates by truncating vertices of the polytope in a
suitable way. This — surprisingly simple — construction produces the first infinite
series ofrational (2, 2)-polytopes.

Next, we introduce a construction that is, on the level of face lattices and for
certain classes of polytopes, dual to theD-construction, and produces realisations
of Ed−2(P). However, the two constructions differ in their geometric applicabil-
ity. In many cases it is difficult to construct a polytopal realisation of the sphere
obtained from the construction with one of these two and rather simple with the
other. This second construction will be our main tool for therealisations of (2, 2)-
polytopes in Chapter4.

The third construction is a direct extension of the originalE-construction of
Eppstein, Kuperberg, and Ziegler. It uses polytopes that have theirt-faces tangent
to the unit sphere as input. It applies tod-polytopes in any dimensiond ≥ 4. With
its help, we are able to produce the first infinite family of (2, d − 2)-polytopes for
all d ≥ 4.

2.5.1 A C  V T

For this construction we need a special version of the vertextruncation of a vertex
of a polytopeP as previously described in Definition1.3.34. The polytopesD1(P),
which can be produced with this construction, are — if they are geometrically
realisable — dual toE1(P).

Variants of this construction already turned up previouslyin the literature, in
connection with the construction of regular and semi-regular polytopes from other
such polytopes. Gosset [42] used it for the construction of the regular 24-cell from
a regular cube. A slightly more general version of Gosset’s approach appears in
Coxeter’s book on regular polytopes [30, pp. 145–164]. Vertex cutting techniques
also appear in other parts of this book. Yet another variant is in Gévay’s construc-
tion of Kepler polytopes [35].

2.5.1 D [Truncatable Polytope]. A d-polytopeP is calledtruncatable
if all its vertices can be truncated simultaneously and in such a way, that only one
single (relatively interior) point of each edge ofP remains.
The resultingtruncated polytopeis denoted byD1(P).

See Figure2.11for an example. The connection with theE-construction of the
previous sections is given by the following theorem.

2.5.2 P [ D is dual to E]. Let P be a truncatable d-polytope and d≥ 3.
Then D1(P)∆ is a polytopal realisation of E1(P).
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Proof. The polytopeD1(P) has two types of facets:
(1) The facetsF′ obtained by vertex truncation from the facetsF of P, and
(2) the “new” facetsFv obtained from truncating a vertexv of P.

We have used the conditiond ≥ 3 in the first item, as ford = 2 these facets would
shrink to a point.

The intersection of any two new facetsFv andFw is empty ifv andw are not
adjacent inP. Otherwise, the intersectionFv ∩ Fw consists of one single point,
which is the new vertexue given by the edgee = (v,w). A vertexue lies on a new
facetF of the second type if and only ife is adjacent toF in P.

To check thatD1(P) has the right combinatorics it suffices to check the vertex-
facet incidences, by Theorem1.2.24:

(1) A vertexue lies onF′ if and only if e is an edge ofF, and
(2) ue lies onFv if and only if e is adjacent tov.

This, however, is a description of the reversed atom–coatomincidences ofE1(P),
where we have a facet for every edge ofP, and two such facets share a vertex if
and only if

(1) the corresponding edges share a vertex or
(2) they are adjacent to a common facet inP. �

2.5.3 R. More general — and in the same fashion as the definition ofD1 —
one could define, for ak between 2 andd − 1, the operatorDk assigning to a
polytopeP the new polytopeDk(P) whose vertices are truncated in such a way
that of anyk-face only one relatively interior point remains. Again, for arbitrary
polytopes, this need not result in a polytope with the expected combinatorics. If it

Figure 2.11: The truncation of�3 givesD1(�3) (which is the cuboctahedron).
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does, we call the polytopeP k-truncatable and denote the new polytope byDk(P).
Dk produces a polytope which is dual to the one obtained byEk.

We do not put this operator into a separate definition, as we only use this once
to make a connection to some previously known examples in Chapter4. Otherwise,
we do not know of any useful new applications or constructions for this operator.
Dk clearly applies to regular polytopes, and in this special setting, it appears in
Coxeter’s book [30].

The operatorDk has the same symmetry asEk. So if P is k truncatable and its
dualP∆ is (d − k− 1)-truncatable thenDk(P) � Dd−k−1(P∆).

Also, the operatorDk acts on the facets of a polytope in the same way as on the
polytope itself: The facet ofDk(P) coming from a facetF of P is Dk(F). However,
Dk(P) has also facets coming from the vertices, which are not of this type.

In the following, we will usually omit the index in the operator and writeD(P)
instead ofD1(P).

2.5.4 E. Here are some simple examples of truncatable polytopes.
(1) The simplex∆d for d ≥ 3 is truncatable. Its truncation is the well known

hypersimplex Kd2, which we examine in more detail in Section4.3.1. See
Figure2.12for a three dimensional illustration.

(2) The truncation of the four dimensional regular cross polytope✚4 yields the
regular 24-cell. A Schlegel diagram of this is shown in Figure1.16.

(3) More generally, all simple polytopes are truncatable: Any d points in gen-
eral position define a unique hyperplane inRd. Thus, the convex hull of
any choice of one interior point on each of the edges of the polytope is a
realisation of the truncated polytope.

Figure 2.12:The three dimensional hypersimplex.
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In the rest of this section we present classes of truncatablepolytopes with dif-
ferent properties. We make the following definition to simplify the statements.

2.5.5 D [Edge Realisation]. Let P be ad-polytope. A geometric re-
alisation ofP, in which all edges are tangent to a (suitably centred and scaled)
(d− 1)-sphere, is called anedge realisationof the polytope.
A polytope that has such such a realisation is callededge realisable.

The next proposition shows that such polytopes are always truncatable. A sim-
ilar, but more general, concept will turn up again in Section2.5.3.

2.5.6 P [Edge Realisable Polytopes are Truncatable]. Let P be an
edge realisable d-polytope in dimension d≥ 3. Then it is truncatable.

Proof. Let S be the unit sphere touching all edges ofP. Choose a vertexv of P
and lete1, . . . , ek be the incident edges ofP. See Figure2.13for an illustration of
the proof.

The cone with apexv touchingS intersectsS in a (d − 2)-sphereS′. The
hyperplane defined byS′ contains all points in which the edgese1, . . . , ek touch
S. Thus, the convex hull of all points in which the edges ofP touch the sphereS
defines the vertex truncation ofP. �

We know from the Koebe–Andreev–Thurston Circle Packing Theorem (see
[89, Theorem 4.12]) that any 3-polytope has an edge realisation. Hence, by The-
orem2.5.6 any 3-polytope is truncatable. However, this is not anymoretrue in
higher dimensions. Mostd-polytopes ford ≥ 4 do not have an edge tangent geo-
metric realisation, and, in general, it is unclear how to findsuch a realisation, if it
exists. See also Section4.3.4.

S′

S

v

e1

e2

e3

e4

Figure 2.13: Edge tangent polytopes are truncatable.
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So here is a more powerful class of truncatable polytopes, which does not need
edge tangency for the realisation. Recall the definition of astacked polytope from
Definition1.3.33.

2.5.7 T [Stacked Polytopes are Truncatable]. Let P be a stacked poly-
tope. Then P is truncatable.

Proof. By definition, any stacked polytope is obtained from the simplex ∆d by
successively placing a new vertex beyond a facet and taking the convex hull.

In the following, letPn denote a combinatorially definedn-times stacked poly-
tope. SoP0 is the simplex. We build up a geometric realisation in the course of
the proof. The actual choice of the facets that are stacked inthis process, and the
order in which we do this, is not important, soPn for n ≥ 3 may denote many
combinatorially different polytopes.

We prove the theorem by induction overn. Thed-simplexP0 is truncatable by
the previous proposition. So assume thatPn is truncatable and letH1, . . . ,Hd+n+1

be the sequence of hyperplanes we have used for the truncation of the vertices of
Pn to obtainD(Pn).

v1

v2

v3

w1
w2

w3

G1

G2
G3

p

F

Figure 2.14:Truncation of a stacked polytope.
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Choose a facetF of Pn. F is a (d− 1)-simplex, with verticesv1, v2, . . . , vd. See
Figure2.14for an illustration. Precisely thosed among theH j, 1 ≤ j ≤ d + n+ 1
intersectF, that truncate the verticesvk, 1 ≤ k ≤ d of F. Denote this subsequence
of hyperplanes byG1,G2 . . . ,Gd.

Choose a new vertexp beyond the facetF and beneath all hyperplanesG j,
1 ≤ j ≤ d. Let Pn+1 be the convex hull ofPn and p. The vertexp is adjacent to
d edges connecting it tov1, v2, . . . , vd. These edges intersectG1, . . . ,Gd in d inner
pointsw1, . . . ,wd.

By construction, thed pointsw1, . . . ,wd on the edges are affinely independent.
Hence, there is a unique affine hyperplaneHd+n+2 that contains them. This hyper-
plane separatesp from all other vertices ofPn+1, so it is a valid hyperplane for
truncating the vertexp. Hence, the setH1, . . . ,Hd+n+2 of d + n + 2 hyperplanes
defines a vertex truncation ofPn+1 leading toD(Pn+1). �

2.5.8 R. It is not necessary to start with a simplex in this procedure.We can
start with any simplicial polytopeP and a vertex truncationD(P). In the same way
as in the proof of the theorem, we can stack a facetF of this polytope and obtain
a vertex truncation ofF\P. It even suffices that only the facetF that we stack is
simplicial. We use this in the dual construction presented in the next section.

We have a lot of freedom for the choice of the new vertexp of Pn+1 in the proof
of the last theorem. In particular, we can choose it in such a way that is has rational
coordinates. Hence, we can draw the following conclusion.

2.5.9 C [Rational Truncated Polytopes]. There are infinitely many
combinatorially distinct rational truncated polytopes inany dimension d≥ 3.

Proof. The intersection point of a hyperplane inRd with a line is the solution of
a linear system of equations. Hence, it has rational coordinates, if the hyperplane
is the level set of a rational normal vector at a rational level, and the line contains
at least to two rational points. A hyperplane defined byd rational points can be
represented by a rational normal vector and level.

Clearly, the simplex has a rational realisation and a rational truncation. The
subset ofRd enclosed byF andG1, . . . ,Gd used in the previous proof is open, so
we can choose the new vertexp with rational coordinates. Thus, thed new vertices
of the truncation also have rational coordinates. �

For the rest of the section we specialise to four dimensionalpolytopes, as these
are the most interesting ones for this construction. By Proposition2.5.2, the poly-
topeD(P) is dual toE1(P). Hence, in the case of 4-polytopes, Corollary2.4.6has
the following immediate consequence.

2.5.10 C [(2, 2)-Polytopes]. Let P be a simplicial truncatable4-polyto-
pe. Then D(P) is 2-simple and2-simplicial. �
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Combining this Corollary with the previous one, Corollary2.5.9, we conclude
the following nice fact.

2.5.11 C [ D of Stacked 4-Polytopes].There are infinitely manyrational
2-simple and2-simplicial 4-polytopes D(P4

n). The (essential) flag vector of these
polytopes is given by

flag(D(P4
n)) = (10+ 4n, 30+ 18n, 30+ 18n, 10+ 4n; 50+ 26n). �

There are, for any fixedn ≥ 3, many different combinatorial types of such
polytopes with the same flag vector. In fact, we prove in Proposition4.2.2, that the
number of such polytopes grows exponentially inn. In Table4.3is an enumeration
of the different combinatorial types of such polytopes forn ≤ 8.

Only the first two instances of this family of polytopes were previously known.v n = 0 produces the hypersimplex. Five of its facets are simplices and five
facets are cross polytopes. The primer arise from the truncated vertices, and
the latter are the truncated facets of the simplex. See Figure 2.12for a three
dimensional version.v n = 1 results in a polytope first described by Braden [27] via a gluing of two
cross polytopes. The coordinates of a rational geometric realisation and the
corresponding Schlegel diagram are shown in Figure2.15.

[

−1 1 1 −1
]

[

1 −1 1 −1
]

[

1 1 −1 −1
]

[

−1 1 −1 1
]

[

1 −1 −1 1
]

[

−1 −1 1 1
]

[

−1 −1 −1 1/3
]

[

−1 −1 1/3 −1
]

[

−1 1/3 −1 −1
]

[

1/3 −1 −1 −1
]

[

5/3 1/3 1/3 1/3
]

[

1/3 5/3 1/3 1/3
]

[

1/3 1/3 5/3 1/3
]

[

1/3 1/3 1/3 5/3
]

Figure 2.15:Coordinates and Schlegel diagram of a realisation of Braden’s polytopeD(P4
1).
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Corollary2.5.11is a true generalisation of Proposition2.5.6and the originalE-
construction of Eppstein, Kuperberg, and Ziegler [33]: They show that a polytope
of typePd

n, i.e. an times stackedd-polytope, has an edge realisation if and only if
n ≤ 1 [33, Prop. 8]. See also Section4.3.4.

A similar infinite sequence of rational 2-simple and 2-simplicial 4-polytopes
can be obtained from a stack ofn ≥ 1 cross polytopes. Using suitable coordinates,
we obtain another family of (2, 2)-polytopes withrational coordinates, and the
symmetries of a regular 3-simplex.

2.5.12 P [Glued Cross Polytopes]. There is an infinite sequence of
rational 2-simplicial and2-simple4-polytopes D(C4

n) for n ≥ 1 with essential flag
vectors

flag(D(C4
n)) = (6+ 18n, 12+ 84n, 12+ 84n, 6+ 18n; 24+ 120n).

Proof. An illustration of the construction is given in Figures2.16and2.17. Start
with a regularcross polytopeC1 and place it in such a way that one pair of opposite
facetsF0 and F1 (which are simplices) have normal vectors∓[1, 1, 1, 1]. C1 is
clearly truncatable, by symmetry.

Let H1, . . . ,H4 be the hyperplanes that truncate the vertices ofF1 in C1. Then
F1 together with theHi, 1 ≤ i ≤ 4 encloses a subsetS1 of R4 with nonempty
interior. Let l be the line defined by the vector [1, 1, 1, 1] and running through the
origin. l intersectsS1 by construction.

F0

F1

F0

F1

F2

Figure 2.16: Construction ofD(C3
2): The left figure showsC3

1; the right figure isC3
2. The axis

[1, 1, 1] is pointing upwards in this drawing.
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Pick a pointp on l in the interior ofS1. Let F′0 be a copy ofF0 translated
alongl and containingp. As S1 has nonempty interior, there is aλ > 0 such that
F2 := λF′0 is completely contained inS1. The convex hullC′2 of F0 andF2 is a
cross polytope.

We can extend the truncation of the vertices ofF1 by H1, . . . ,H4 to a truncation
of all vertices ofC′2 by choosing four new hyperplanesG1, . . . ,G4 truncating the
vertices ofF2. Clearly, this is possible in our symmetric setting. The twocross
polytopesC1 andC′2 coincide inF1, so their common convex hull is a stackC2 of
two cross polytopes glued alongF1. The truncation ofC1 together withG1, . . . ,G4

defines a valid truncation ofC2.
We continue iteratively by considering the subset ofR4 defined byF2 and

G1, . . . ,G4 and placing a suitably scaled and translated copyF3 of F1 inside this set,
taking the convex hull withC2 and choosing the new truncation hyperplanes.�

Explicit coordinates for these polytopesD(C4
n) are most easily obtained by

using a projective transformation for translating and scaling theF j in the proof.
Clearly, it is possible to chooserational coordinates for the added vertices in this
construction, so we have another infinite family ofrational (2, 2)-polytopes.

The same construction works in all dimensionsd ≥ 3 (we did the illustration
in d = 3!). However, we restricted the statement of the proposition tod = 4, as the
obtained polytopes are (2, 2)-polytopes only in this case.

There are clearly many more classes of polytopes to which theD-construction
applies. We will meet some other such in Chapter4.

Figure 2.17: Construction ofD(C3
2): The left figure is obtained when three vertices have been

truncated; the right figure displaysD(C3
2).
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2.5.2 A S R  V T

We present a translation of the concept of vertex truncationdefined in the previous
section from simplicial polytopes to simple polytopes. We already proved that for
a stacked polytopeP, if we have a realisation ofD(P) then we can stack any facetF
of P to obtainF\P and construct a realisation ofD(F\P). Here we show the dual:
If we have a realisation ofEd−2(P) for a simple polytopeP, then we can truncate a
vertexv of P and construct a realisation ofEd−2(tr(P; v)).

This will prove quite useful for the task of producing realisations of theE-
construction for some polytopes out of other already realised polytopes. We use
this for the generation of our table of (2, 2)-polytopes in Chapter4.

Let P be a polytope andv a vertex ofP. The polytope tr(P; v) is obtained from
P by intersectingP with a half space that contains all vertices ofP in its interior,
except the vertexv. See also Definition1.3.34.

Here is a way to obtain a polytopal realisation of theE-construction of tr(P; v)
in the caset = d − 2.

2.5.13 P [Truncation Preserves Realisability]. Let P be a polytope
and v a simple vertex of P. Assume that we have a realisation ofEd−2(P) with the
following property.

(V) The vertex set of Ed−2(P) splits into the vertex setV(P) of P and a setVe

that contains, for each facet F of P, a unique vertex beyond beyond F.

Then the PL sphere Ed−2(tr(P; v)) is polytopal. An explicit realisation of it can be
computed from the realisation of Ed−2(P).

Proof. The proof is quite similar to the one of Theorem2.5.7. Suppose thatP is a
polytope having a simple vertexv that satisfies the condition of the theorem.

The facets ofEd−2(P) are bipyramids over the ridges ofP, so we can find a
half spaceH that touchesEd−2(P) only in v. We can perturbH slightly, so that
H contains the vertexv in its interior, but all other vertices still lie outside. The
boundary ofH is a valid truncation hyperplane forv in P.

As v is a simple vertex, the facetFv created by the truncation is a simplex. Let
F1, . . . , Fd be the adjacent facets ofFd in P andv1, . . . , vd the vertices ofEd−2(P)
beyond these. LetHi be the hyperplane defined byvi and thed−1 vertices contained
in Fi, for 1 ≤ i ≤ d (vi and the vertices ofFi are clearly affinely independent).
H1 . . . ,Hd are affinely independent, so they intersect in a single pointw.

Adding H1, . . . ,Hd to the hyperplane description ofEd−2(P) defines a hyper-
plane description ofEd−2(tr(P; v)). It creates the vertexw beyond the facetFv. �
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2.5.3 A C  H G

Here is another method to obtain polytopal realisations of theE-construction. We
extend the originalE-construction of Eppstein, Kuperberg, and Ziegler [33] for
edge tangent simplicial 4-polytopes to all dimensionsd ≥ 3. The goal of this
section are the two Theorems2.5.14and2.5.15.

The first theorem shows that we obtain polytopal realisations of theE-construc-
tion for a fixed parametert from polytopes that have theirt-faces tangent to the unit
sphere. For us, the interesting application of this theoremis that to a simpliciald-
polytopeP that has its (d−3)-faces tangent to the unit sphere. We obtain a polytopal
realisation ofEd−3(P). Corollary2.4.6tells us that this is a (2, d− 2)-polytope, i.e.
a 2-simple and (d− 2)-simpliciald-polytope.

Hence, to obtain an infinite family of (2, d − 2)-polytopes, we need an infinite
family of simplicial d-polytopes that have their (d − 3)-faces tangent to the unit
sphere. The second theorem constructs such a family. Similarly to the proof of the
original four dimensional version we use arguments from hyperbolic geometry for
this. The necessary background is contained in Section1.5.

There are more polytopes that Theorem2.5.14applies to then just the family
given by Theorem2.5.15. For the special case of simplicial 4-polytopes, Eppstein,
Kuperberg, and Ziegler have collected several other instances. We give an overview
of these in Section4.3.4. Observe however, that edge tangent polytopes are easy
to obtain in dimension three, but it is hard to come by with such polytopes in all
higher dimensions.

2.5.14 T [ t-Tangent Realisations]. Let P be a d-polytope and t a parame-
ter between0 and d−1. Assume that P is realised such that its t-faces are tangent to
the unit sphereSd−1 inRd. If P⋄ denotes the polar polytope of P in this realisation,
then Q:= conv(P∪ P⋄) is a realisation of Et(P).

Recall the difference between polar and dual polytope in our notation. The dual
polytope is just a polytope with the opposite face lattice, while the polar polytope
is a special geometric realisation of the dual polytope obtained via the construction
defined in equation (1.3.1).

The main application of this theorem is the following familyof 4-polytopes,
which is obtained from a certain way to stack cross polytopesand glue triples of
simplices to all non-convex ridges of this stack.

2.5.15 T [Infinitely Many ( d−2, 2)-Polytopes]. For every d≥ 3 there are
infinitely many combinatorially distinct2-simple and(d−2)-simplicial d-polytopes.

The theorem is trivial in dimension three as there are infinitely many simple
3-polytopes. Hence, we restrict tod ≥ 4 for the proof.
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Proof of Theorem2.5.14. If t = 0, then the vertices of the polytopeP lie on the
unit sphere. Hence, the vertices lie in the facets of the polar polytopeP⋄ and they
vanish inQ. SoQ � P⋄. Similarly, if t = d − 1, then all facets are tangent to the
sphere, and these contain the vertices of the polar. SoQ is equivalent toP.

By Examples2.3.3we know thatE0(P) = P∆ andEd−1(P) = P, so the theorem
is true fort = 0 andt = d − 1. Hence, we can assume 1≤ t ≤ d − 2 for the rest of
the proof.

Let F be at-face ofP, touching the unit sphere in a pointp. Let TpSd−1 be the
tangent space ofSd−1 in p. TpSd−1 containsF. If v1, . . . , vk are the vertices ofF,
then the polar faceF⋄ of F is the set of all pointsx with

〈

vj , x
〉

= 1 for all 1≤ j ≤ k.
All points of F are positive linear combinations of thevi with coefficients summing
up to one. So in particular〈p, x〉 = 1 and

〈

vj − p, x
〉

= 0 for all x ∈ F⋄. Thus,F⋄

is contained inTpSd−1 and orthogonal toF. As dim(F) + dim(F⋄) = d − 1, their
convex hullB(F) spansTpSd−1. So the set of all facets ofQ contains all orthogonal
sums conv(F ∪ F⋄) of t-faces ofP. The vertices ofB(F) are the vertices ofF and
the vertices ofF⋄. The latter correspond to the facets ofP containingF.

We have to check that all facets ofQ are of this type. For this we show that any
facet ofQ sharing a ridge with a facetB(F) for somet-faceF of P is again of this
type for some othert-faceF′ of P.

F

Sd−1

F◦

Tp

B(F)

p

Figure 2.18: A t-face and its polar.
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Any ridgeR of Q contained inB(F) is a facet ofB(F), so it is the convex hull
of a facetG of F and a facetH of F⋄. G is a (t − 1)-face, andH⋄ is a (t + 1)-face
of P. G is covered byF andH⋄ coversF in the face lattice ofP. As this lattice is
Eulerian, there is exactly one othert-faceF′ of P covered byH⋄ and coveringG.
B(F′) is the desired other facet ofQ that contains the ridgeR.

Thus,Q has a facetB(F) for any t-faceF of P, no other facets, and the same
vertex-facet-incidences asEt(P). �

We want to use this theorem for the proof of Theorem2.5.15. To do this, we
have to construct an infinite family of simpliciald-polytopes whose (d − 3)-faces
are tangent to the unit sphere. We make the following definition to simplify the
notation.

2.5.16 D [Td-polytope]. A Td-polytope is ad-polytope that has all its
(d − 3)-faces tangent to the unit sphereSd−1.

We view the interiorDd of the unit (d − 1)-sphereS(d−1) as hyperbolic space
equipped with the hyperbolic metric in the Klein modelK. See Section1.5.2for
the definitions and properties. The sphereSd−1 becomes the sphere at infinitySd−1

∞ .
In the Klein model model, hyperbolic affine hyperplanes are the intersection ofDd

with Euclidean affine hyperplanes.
The facets and ridges of aTd-polytopeP properly intersectKd, the (d−3)-faces

touch the sphere at infinity, and all lower dimensional faceslie completely outside.
The intersectionPhyp := P∩Kd is therefore a convex unbounded hyperbolic poly-
hedron inKd.

Here is an important caveat: A hyperideal hyperbolic object– even a convex
polytope – can be unfavourably positioned in such a way that it is unbounded as
an Euclidean object (cf. [76, p. 508]). However, we have the following lemma,
which we cite from [33, Lemma 6] in a version generalised to our situation (see
also Springborn [78]):

2.5.17 L. For any convex Td-polytope P whose points of tangency do not lie
in a hyperplane, there is a hyperbolic isometry h whose extension toRd maps P
into a bounded position. �

For some specialTd-polytopes we will now compute the hyperbolic dihedral
angle between adjacent facets. They form the basic buildingblocks for our infinite
family of Td-polytopes.

As facets and ridges of aTd-polytope do at least partially lie insideKd, the di-
hedral angle is well defined as a hyperbolic angle between facets of the hyperbolic
polytopePhyp. By convexity, it must be strictly between 0 andπ.

Clearly, the regulard-simplex, and the regulard-cross polytope, can be scaled
to beTd-polytopes. We denote their intersection withKd by ∆hyp

d and✚
hyp
d . The

following lemma computes their dihedral angles.
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2.5.18 L [Dihedral Angles]. The hyperbolic dihedral angles between two
adjacent facets in∆hyp

d and✚
hyp
d are π3 and π2, respectively.

Proof. We compute the hyperbolic dihedral angle between two facetsF1 andF2

sharing a ridgeRby intersectingRwith a 2-planeH′ � H2 orthogonal to that ridge
in Hd. The angle is independent of the intersection pointx that we choose onR.
Hence, we can in particular choosex as a point of tangency of a (d − 3)-faceE of
R. Let H � H3 be the orthogonal complement toE. ThenH ⊃ H′.

The intersection of the facets ofP adjacent toE with Hd are hyperplanes inHd. Thus, the link ofE in P is the intersection of a sufficiently small horosphereS
based at the pointx with the 3-planeH. See Figure2.19for an illustration.

The metric on horospheres induced by the hyperbolic metric is flat, by Theorem
1.5.9. Thus, the intersection will be anEuclideanpolygon whose edges correspond
to the facets adjacent toE, and the vertices to the ridges adjacent toE. The dihedral
angle of the ridgeR is the usual Euclidean angle at the vertex in that polygon
corresponding toR.

For a regular hyperbolic simplex this polygon is clearly an equilateral triangle,
and for a cross polytope it is a square. This gives the required angles. �

Now we have all necessary tools for the construction of our infinite family of
Td-polytopes in all dimensionsd ≥ 4.

�
�
�
�

��
��
��
��
��

��

����
x

S Kd

Figure 2.19: A horosphere in the Klein model, and the Euclidean square thefacets cut out of it.
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Proof of Theorem2.5.15. The theorem is proven if we can provide an infinite se-
ries ofT-polytopes by Theorem2.5.14.

For the construction of this we basically glue copies of✚
hyp
d at opposite faces.

To do this, we have to position these copies such that the gluing facets coincide
and the dihedral angles at the gluing ridges remain between 0andπ.

By Theorem1.5.6we can map any hyperbolic hyperplane onto any other hy-
perbolic hyperplane inKd. Thus, we can glue any facet of a simplex or cross
polytope onto any facet of another simplex or cross polytope. To obtain convex
polytopes we only have to care about the angles.

Gluing two cross polytopes creates — according to Lemma2.5.18— a dihedral
angle ofπ at all gluing ridges. So constructing a stackCd

n of n cross polytopes by
iteratively gluing a cross polytope onto opposite facets does not produce a polytope
with the expected combinatorics.

However, we can remedy this problem in the following way. Take a copy of a
simplex and glue two other simplices onto two adjacent facets F andF′ sharing a
ridgeR. See Figure2.20for a drawing of this compound. In this glued complex
we have three different dihedral angles. At all ridges contained inF or F′, except
at the ridgeR, the dihedral angle is2π3 . At the ridgeR it is π, and at all other ridges
it is π3.

We glue a copy of this complex to all pairs of facets of our stack of cross
polytopes that share a ridge with dihedral angleπ in such a way, thatR is glued to
that ridge. The link of the (d − 3)-faces looks like the figure shown in Figure2.21
afterwards. Call the resulting complexSCd

n.
Now the straight dihedral angles inCd

n have disappeared in the interior of the

R
F F′

Figure 2.20:Three hyperideal tetrahedra have a bipyramidal facet (the top facet).
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link of
a simplex

link of
a cross polytope

Figure 2.21: The link, with added simplices.

new complex. We have to check that we have not created new ridges with a dihe-
dral angle ofπ or more. None of the ridges of the triple of simplices where two
simplices meet is glued toCd

n. Also, in Cd
n, facets adjacent to a pair of opposite

facets are ridge disjoint ifd ≥ 4 (This is not true for three dimensional cross poly-
topes, as you can see from Figure2.22). Thus, any ridge ofCd

n, to which such a
triple of simplices is glued, has a dihedral angle ofπ

3 +
π
2 =

5π
6 afterwards. SoSCd

n

is aTd-polytope.
The number of vertices ofEd−3(SCd

n) is the sum of the number of vertices and
facets ofSCd

n. Thus, the number of vertices ofEd−3(SCd
n) is strictly increasing with

n, and instances to differentn must be combinatorially different. This finally proves
the theorem. �

e1 e2

e3

f1f2

f3

Figure 2.22: The construction fails in dimension three: Observe the three edgese1, e2 ande3 in
this stack of two cross polytopes. They have to be filled with atriple of simplices. If we continue
by stacking the top facet with another cross polytope, then we have to fill the edgesf1, f2, and f3.
The triple of simplices glued tof3 shares an edge with the triples of simplices glued toe1 ande2.
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f j(SCd
n) =






2dn− 2(n− 1)+ d(3d− 5)(n− 1) for j = d − 1,

2d−1dn− d(n− 1)

+1
2d2(3d− 5)(n− 1) for j = d − 2,

2 j+1
(

d
j+1

)

n−
(

d
j+1

)

(n− 1)

+d
{

3
(
d
j

)

−
(
d−1

j

)}

(n− 1) for 0≤ j ≤ d − 2.

fk(Ed−3(SCd
n)) =






fd−3(SCd
n) for k = d− 1,

(
d−1

2

)

fd−2(SCd
n) for k = d− 2,

(
d−1

3

)

fd−2(SCd
n) +

(
d
3

)

fd−1(SCd
n) for k = d− 3,

(
d−1
d−k

)

fd−2(SCd
n)

+
(

d
d−k

)

fd−1(SCd
n) + fk(SCd

n) for 1 ≤ k ≤ d − 4,

fd−1(SCd
n) + f0(SCd

n) for k = 0.

Table 2.1: The flag vectors forn ≥ 1 and — in the case ofEd−3(SCd
n) — dimensiond ≥ 4.

We can compute thef -vector of the polytopesSCd
n andEd−3(SCd

n), which is a
rather tedious task. They are shown in Table2.1. For d = 4 this formula indeed
specialises to thef -vectors (54n − 30, 252n − 156, 252n − 156, 54n − 30) of the
4-dimensional examples that were already constructed and computed in [33].

The coordinates obtained in this proof have non-rational coordinates, and there
seems not to be an easy way to remedy this. So the problem of constructing an
infinite family of rational 2-simple and (d − 2)-simplicial d-polytopes ford ≥ 5
remains open.

The family constructed in the previous proof has some similarity with the one
of Proposition2.5.12obtained by vertex truncation. Both contain a stack of cross
polytopes, but in the one of Proposition2.5.12it was not necessary to cover the
ridges of the intersection of two cross polytopes with simplices, as we did not need
an edge tangent realisation. Thus, we had much more freedom for the choice of
coordinates of the stack of cross polytopes.
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3.1 I

This chapter is mainly devoted to a two parameter familyEmn of (2, 2)-polytopes
obtained from theE-construction. The family is a special case of a quite general
method to obtain polytopal realisations for theE-construction applied to a product
of two polytopes, if we have already a polytopal realisationof theE-construction
of the two factors.

We state the general method in Theorem3.3.1. The proof is constructive, that
is, we provide an explicit way to obtain a polytopal realisation from the realisa-
tions of the two factors. If we ask for some additional property in the geometric
realisation of the product and itsE-construction, then the conditions given in the
theorem are both necessary and sufficient.

We illustrate this with examples in all dimensionsd ≥ 4. However, the main
application of the theorem is the construction of an infinitetwo parameter family of
(2, 2)-polytopesEmn, for m, n ≥ 3. TheseEmn are obtained from theE-construction
applied to a product of two polygonsCm andCn with m andn vertices. We prove
in Theorem3.4.1, that such a product satisfies the conditions in Theorem3.3.1and
give explicit geometric realisations.

The polytopesEmn have several interesting properties, which we present in the
second part of this chapter:v They are self-dual, 2-simple and 2-simplicial.v Form, n = 4 we obtain the 24-cell.v There are flexible realisations of these polytopes, although a priori not with

rational coordinates.v They have a large combinatorial and geometric symmetry group.v For smallmandn we find particularly symmetric geometric realisations.v Form, n ≥ 5 the combinatorial symmetry group contains automorphismsthat
cannot be realised geometrically.v For m, n = 3 andm, n = 4 we examine the realisation space of these poly-
topes. Form, n = 3 we provide a method to obtain all realisations allowed
by our construction. Form, n = 4 (the 24-cell) we provide a four parameter
family of realisations.v In the next chapter, we show that theEmn for m, n→ ∞ approach the upper
bound for the fatness ofE-polytopes.

The idea to look at theE-construction of arbitrary products of polytopes arose
from the interest in the realisability and the symmetry of the polytopesEmn in the
special casem = n. In this case, the combinatorial description of these polytopes
and some symmetry properties were described independentlyby Bokowski [23, 24]
and Gévay [39].
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3.2 P  P

The main ingredient for this chapter are polytopes obtainedas products of two
other polytopes. Here we introduce our notation for these, provide the basic facts
that we need for our constructions, and make some important distinctions between
combinatorial and geometric properties.

3.2.1 D [Product of Polytopes]. Let P0 ⊂ Rd0 and P1 ⊂ Rd1 be two
polytopes of dimensionsd0 andd1, respectively. Theproduct P0 × P1 of P0 andP1

is the convex hull of the point set

V(P0 × P1) :=
{

(v,w) ∈ Rd0+d1 : v ∈ V(P0),w ∈ V(P1)
}

.

The product has dimensiond0 + d1. Equivalently, one can describe the product
directly by defining

P0 × P1 :=
{

(v,w) ∈ Rd0+d1 : v ∈ P0, w ∈ P1

}

.

See Figure3.1for an example of the product of a segment with a hexagon. The
facesof a productP0 × P1 have again product structure: Anyk-face of the product
is a product of ak0-face ofP0 with a k1-face ofP1 for some partitionk0 + k1 = k
and 0≤ k0, k1 ≤ k. In particular, vertices ofP0 × P1 are pairs of vertices ofP0 and
P1, and facets are a product of some facet of one factor with the whole other factor.

We can compute theflag vectorof the product from the flag vectors of the
factors: If flag(Pi) = ( fS(Pi))S⊆{0,...,di−1} is the flag vector ofPi, for i = 0, 1, then the
flag vector of the product is flag(P0 × P1) := ( fS(P0 × P1))S⊆{−1,...,d0+d1} with

fS(P0 × P1) := f(s1,s2,...,sk)(P0 × P1)

=
∑

u1+v1=s1

∑

u2+v2=s2

. . .
∑

uk+vk=sk

f(u1,u2,...,uk)(P0) f(v1,v2,...,vk)(P1).

P0 P1 P0 × P1

Figure 3.1: The product of a hexagon and a segment.
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Here we set

f(t1,t2,...,tk) ≡ 0 unless t1 ≤ t2 ≤ . . . ≤ tk and

f(t1,t2,...,ti−1,ti ,ti+1,...,tk) := f(t1,t2,...,ti−1,ti+1,...,tk) if ti = ti+1.

Theface latticeof P0×P1 can be obtained directly from the two face lattices ofP0

andP1. It is simply the reduced product (see Definition1.2.5for this) of the two
face lattices.

3.2.2 R [Geometric versus Combinatorial Product]. We make the fol-
lowing distinction that will become important later.

What we have defined in Definition3.2.1is thegeometric (orthogonal)product
of two polytopes as the convex hull of all pairs of geometrically given vertices.
This definition requires the two input factors to be given geometrically and fixes a
distinguished geometric realisation of the resulting polytope.

We sometimes need a more general definition. By acombinatorial productwe
mean a polytope, that has a face lattice which is isomorphic to the reduced product
of the face lattices of the two polytopes, i.e. a polytope that is onlycombinatorially
equivalentto the one obtained in the above definition.

This definition does not imply the choice of any particular geometric realisa-
tion. However, as the above definition provides a way to construct one, we know
that such a combinatorial product of two polytopes is in factalways realisable.

3.2.3 C. In this chapter we consider only the special caset = d−2 of the
E-construction, ifd is the dimension of the polytope. In particular, for 4-polytopes
we look atE2. To simplify the notation we omit the indext in the rest of the chapter
and writeE(P) instead ofEd−2(P), for ad-polytopeP.

Figure 3.2: The left realisation ofE1(�3) (drawn bold) of the cube�3 (drawn thin) is vertex-
preserving, the right is not (and there is no cube for which itis): observe the top vertex.
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Let P be ad-polytope. By its definition,E(P) just denotes some polytope that
is combinatorially equivalentto the sphere obtained fromP via theE-construction.
In this chapter we sometimes need a stricter (and more geometric) version of the
connection betweenP and itsE-polytope.

3.2.4 D [Vertex Preserving]. Let P be a geometrically givend-polytope.
A polytopal realisation ofE(P) is vertex preservingif it is obtained from the reali-
sation ofP by placing one new vertex beyond any facet ofP and taking the convex
hull of these together with the vertices ofP.

Figure 3.2 shows an example of two realisations ofE(�3). One of them is
vertex preserving, the other is not. In dimensiond ≥ 3 this definition implies that
the vertex set ofP is a subset of the vertex set ofE(P). This is not true in dimension
two, as here the vertices are the ridges of the polytope, and these vanish in theE-
construction. See Figure3.3 for an example. Ford ≥ 3, a vertex preserving
realisation ofE(P) can equivalently be described by the following condition:

(VP)
The vertex set ofE(P) splits into two disjoint sets, one of which is
the vertex setV(P) of P, and there are no edges inE(P) between
any of the vertices in the other.

We denote a (convex) polygon withm verticesv0, . . . , vm−1 by Cm. We usually
assume that the vertices are numbered consecutively and take indices modulom.

With Emn we denote the result of theE-construction applied to the product
Cm × Cn of an m-gon and ann-gon, for m, n ≥ 3. This is a 4-dimensional 2-
simplicial and 2-simplePL sphere. The flag vectors ofCm × Cn andEmn are (cf.
Equation (2.3.1) for a general computation of thef -vector ofE-polytopes)

flag(Cm×Cn) =
(

mn, 2mn,mn+m+ n,m+ n; 4mn
)

,

flag(Emn) =
(

mn+m+n, 6mn, 6mn,mn+m+n; 8mn+2(m+n)
)

, (3.2.1)

where we have only recorded the essential values (f0, . . . , f3; f03). All other entries
of the flag vector follow from the generalised Dehn-Sommerville equations given
in Theorem1.2.17.

Figure 3.3: TheE-construction applied to a 7-gon: The vertices vanish.
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3.3 T E-C  P

We proceed to the construction ofE(P0 × P1) for a product of two polytopes of
arbitrary dimension. We provide in this section a set of sufficient conditions for the
existence of a polytopal realisation, if there are polytopal realisations ofE(P0) and
E(P1). We also show that the conditions are necessary if we want tohave a vertex
preserving realisation.

Let P0 andP1 be two geometrically realised polytopes of dimensionsd0 and
d1, respectively. Table3.1shows two conditions on theirE-construction. For pairs
P0 andP1 of polytopes that satisfy these conditions we define in the next theorem
a point setS that is the vertex set of a vertex preserving polytopal realisation of the
sphereE(P0 × P1).

3.3.1 T. Let P0, P1 be a pair of polytopes, withdim(P0 × P1) ≥ 3, that
satisfies (A) and (B) in Table3.1. Let S be the set containing the following points:
(a) all pairs (p0, p1) for p0 ∈ V(P0), p1 ∈ V(P1),
(b) all pairs (α0(v0), v0) for v0 ∈ S0,
(c) all pairs (v1, α1(v1)) for v1 ∈ S1.

Thenconv(S) is a vertex preserving polytopal realisation of E(P0 × P1).
Moreover, for the existence of vertex preserving realisations of E(P0 × P1) the

two conditions (A) and (B) are both necessary and sufficient.

See Figures3.4 and 3.5 for an example of two triangles satisfying the two
conditions. Both the setsS j, for j = 0 and j = 1, and theE-polytopes of the two
triangles are shown.

P0

E(P0)

v1

α0(v0)

q0

S1

Figure 3.4: Realising the product of two triangles.
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(A) There exist vertex preserving realisations ofE(P0) andE(P1).
(B) For P0, P1, E(P0) andE(P1) there are point setsS1 ⊂ P0 andS0 ⊂ P1

that satisfy
(1) #Si = fdi−1(Pi) for i = 0, 1 (counted with multiplicities, i.e. points

in Si may coincide geometrically),
(2) there are bijectionsαi : Si −→ V

(

E(Pi)
) −V(Pi) for i = 0, 1,

(3) for any pair (v0, v1) ∈ S0 × S1:

|v1, q0|
|v1, α0(v0)|

=
|α1(v1), q1|
|v0, α1(v1)|

,

whereq0 is the intersection of the segment betweenv1 andα0(v0)
with ∂P0, andq1 that of the segment betweenv0 andα1(v1) with ∂P1.
|a, b| denotes the length of the segment between two pointsa andb.

Table 3.1: Sufficient conditions for the existence ofE(P0 × P1).

Before we give a proof of this theorem we derive several properties that the
polytopeE(P0 × P1) will have, if it is vertex preserving for a given geometric
realisation ofP0 × P1. This will explain the origin of (A) and (B).

Let P0 and P1 be two geometrically realised polytopes of dimensiond0 and
d1 with d0, d1 ≥ 1 andd0 + d1 ≥ 3. SupposeE(P0 × P1) exists and is a vertex
preserving realisation ofP0 × P1. We split the vertex set ofE(P0 × P1) into the
vertex setVp of P0 × P1 and a setVe of those vertices not in the product.Ve is a
set consisting of one vertex beyond each facet ofP0 × P1.

P1 E(P1)

v0

α1(v1)

S0

q1

Figure 3.5: Realising the product of two triangles.
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Define standard projectionsπ j : Rd0+d1 → Rdj that projectP0 × P1 ontoP j, for
j = 0, 1. By assumption we haveV(P j) ⊂ π jV(E(P0 × P1)). We determine the
images of the other vertices ofE(P0 × P1) under the mapsπ0 andπ1. The facets of
the productP0 × P1 have the form

(F  I) “Facet ofP0” × P1, or
(F  II) P0 × “Facet ofP1”.

Accordingly, the product also has two different types of ridges:

(R  I) Ridges between two facets of the same type, and
(R  II) ridges between two facets of different type.

We deal with these two types of ridges separately:
(I) Let F and F′ be two adjacent facets of type (F  I), v, v′ the two

vertices ofE(P0 × P1) beyondF andF′ andR the ridge betweenF andF′.
See Figure3.6(a)for an illustration.
The projectionsπ0(F) andπ0(F′) are adjacent facets ofP0 with common
ridgeπ0(R). π0(v) andπ0(v′) are points beyond these facets.v, v′ andR lie
on a common (facet defining) hyperplaneH of E(P0 × P1) in Rd0+d1. So the
pointsπ0(v), π0(v′) and the ridgeπ0(R) all lie on the hyperplaneπ0(H) inRd0. Thus,π0(H) defines a face ofπ0(E(P0 × P1)), which must be a facet of
the projection.

R

F

F′v′

v

π0(v)

π0(v′)

π0(R)

π0(F)

π0(F′)

π0

P0

(a) The case (R  I).

w0

w1

q

G0×G1

G0π0(w0)

π0(w1)

(b) The case (R  II ).

Figure 3.6: The two cases of ridges in the vertex preserving case.
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Hence, the convex hull of the image underπ0 of all vertices ofE(P0 × P1) is
the polytopeE(P0). Similarly, the projection withπ1 results inE(P1).

(II) Let w0 andw1 be two vertices ofE(P0×P1), the first beyond a facetG0×P1,
the second beyond a facetP0 ×G1 of the productP0 × P1, whereG0 andG1

are facets ofP0 andP1. Let R = G0 × G1 be the ridge between these two
facets. See Figure3.6(b).
The segmentsbetweenw0 andw1 intersectsR in a pointq. π0(q) is contained
in G0 andπ1(q) is contained inG1. Soπ0(w1) is contained in the interior of
P0 andπ1(w0) in the interior ofP1. Projections preserve ratios, so

r :=
|w1, q|
|w0,w1|

=
|π0(w1), π0(q)|
|π0(w1), π0(w0)|

=
|π1(w1), π1(q)|
|π1(w0), π1(w1)|

.

To match this with (B) of Table3.1we setv1 := π0(w1) ∈ S1, v0 := π1(w0) ∈
S0, π0(w0) = α1(v1), π1(w1) = α0(v0), q0 := π0(q), andq1 := π1(q).

Thus, the projections of a vertex preserving realisation ofE(P0 × P1) onto the two
orthogonal subspaces containingP0 andP1 give realisations ofE(P0) andE(P1)
that satisfy the conditions stated in (A) and (B) of Table3.1.

Proof of Theorem3.3.1. The considerations of the previous paragraphs prove the
necessity of the two conditions for vertex preserving realisations. It remains to
prove sufficiency in the general case.

Suppose we have – according to the conditions (A) and (B) – constructedE(P0)
andE(P1) together with the setsS0 andS1 and have formed the setS defined in the
theorem. We have to show that all facets of the convex hull ofS defined thereby
are bipyramids over ridges ofP0 × P1 and that there is precisely one vertex ofS
beyond each facet ofP0 × P1. There are two different cases to consider:

(I) Let R×P1 be a ridge ofP0×P1, whereR is a ridge ofP0. See Figure3.7for
a drawing. LetF andF′ be the two facets ofP0 adjacent toR andp, p′ the
vertices ofE(P0) aboveF andF′ respectively. Letv be the facet normal of
the facetFE of E(P0) formed byR, p andp′, and letl := 〈v, p〉.

R

F

F′

p

p′
v

Figure 3.7: The first case in the proof of Theorem3.3.1: Ridge× Polytope.
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By construction, the points (p, α−1
0 (p)), (p′, α−1

0 (p′)) and (r, q) for r ∈ V(R)
andq ∈ V(P1) lie in the hyperplaneH defined by〈(v, 0), ·〉 = l, where0 is
the d1-dimensional zero vector. All points ofV(E(P0)) − (V(R) ∪ {p, p′})
are on the same side of the hyperplane defined by the facetFE. So all points
in the set

V(

E(P0 × P1)
) −

(

V(R× P1) ∪
{(

p, α−1
0 (p)

)

,
(

p′, α−1
0 (p′)

)})

are on the same side of the hyperplaneH and

conv
(

V(R× P1),
{(

p, α−1
0 (p)

)

,
(

p′, α−1
0 (p′)

)})

is a facet ofE(P0 × P1). The same argument applies to ridges of typeP0 ×R
for any ridgeR of P1.

(II) Now consider a ridge of typeF0 × F1 for a facetF0 of P0 and a facetF1 of
P1. See Figure3.8 for an illustration. Letp0 be the vertex ofE(P0) beyond
F0 and p1 the vertex ofE(P1) beyondF1. Let q0 be the intersection point
of the segment fromp0 to α−1

1 (p1) and the facetF0, andq1 the intersection
point of the segment betweenp1 andα−1

0 (p0) and the facetF1 (i.e. in the
notation of (B), p0 = α0(v0) andp1 = α1(v1) for somev0 ∈ S0 andv1 ∈ S1).
By construction we have

|p0, q0| : |q0, α
−1
1 (p1)| = |α−1

0 (p0), q1| : |q1, p1|

F0

H

F1

q1

q0

p1

p0

α−1
0 (p0)

α−1
1 (p1)

P0

P1

E(P0)

E(P1)

Figure 3.8: The second case in the proof of Theorem3.3.1: Facet× Facet.
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and the point (p0, α
−1
0 (p0)) is contained in the line through (α−1

1 (p1), p1)
and (q0, q1). So the points inV(F0 × F1) together with (p0, α

−1
0 (p0)) and

(α−1
1 (p1), p1) lie on a common hyperplaneH.

The productP0 × P1 lies entirely on one side ofH by construction. Suppose
there is a pointx of S on the other side ofH. As H is a valid hyperplane
for the ridgeF0 × F1, any point beyond it is also beyond either the facet
hyperplane ofF0 × P1 or P0 × F1. Assume the first. For anyz ∈ S we have
by definition either
(a) π0(z) ∈ V(E(P0)) −V(P0), or
(b) π0(z) ∈ S1, or
(c) π0(z) ∈ V(P0).

x ∈ S is beyondH, therefore onlyπ0(x) ∈ V(E(P0)) − V(P0) is possible.
π0(x) is beyondF0, so π0(x) is the unique vertex ofE(P0) beyondF0, so
π0(x) = p0 andx ∈ H.

This proves that the two conditions (A) and (B) are sufficient for the existence of a
vertex preserving polytopal realisation ofE(P0 × P1). �

3.3.2 R. This theorem is a quite powerful tool for obtaining polytopal re-
alisations of theE-construction of polytopes. In Section3.5.4we present some
general applications for it. However, in most cases it already suffices to consider
a restricted version of Theorem3.3.1. For this, replace the two conditions (A) and
(B) of Table3.1with:
(A′) There exist vertex preserving realisations ofE(P0) andE(P1) and
(B′) there are pointss0 in P1 ands1 in P0, and a ratior between 0 and 1, such that:

r =
|s1, q0|
|s1,w0|

=
|w1, q1|
|w1, s0|

for any pair

(w0,w1) ∈
(

V(

E(P0)
) − V(P0)

)

×
(

V(

E(P1)
) − V(P1)

)

,

whereq0 is the intersection point of the segment betweens1 andw0 with ∂P0

andq1 the intersection point of the segment betweens0 andw1 with ∂P1.

In other words, the setsS0 andS1 contain only a single point with sufficient
multiplicity, and all ratios occurring in condition (B) coincide. Theorem3.3.1now
reads as follows.

3.3.3 C. Let P0, P1 be a pair of polytopes withdim(P0 × P1) ≥ 3 that
satisfy (A′) and (B′). Let S be the set of

(a) all pairs (p0, p1) for p0 ∈ V(P0) and p1 ∈ V(P1),
(b) all pairs (w0, s0) for w0 ∈ V(E(P0)) − V(P0),
(c) all pairs (s1,w1) for w1 ∈ V(E(P1)) − V(P1).

Thenconv(S) is a vertex preserving polytopal realisation of E(P0 × P1). �
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In this version, the only connection between theE-constructions of the two
factors is the valuer of the ratio. Thus, if we havev a polytopePv together with a vertex preserving realisation ofE(P) andv a single points in its interior such that all segments froms to the vertices of

E(P) not in P intersectP with ratio r,
then we can combine this with any other such instance for ratio 1− r instead ofr
and obtain a polytopal realisation of theE-construction of the product.

3.4 E R

We apply Theorem3.3.1and Corollary3.3.3of the previous section and produce
products of polytopes together with a realisation of theirE-polytopes.

The main focus is on the realisation of theE-polytopeEmn of a product of an
m-gon and ann-gon. We produce polytopal realisations for allm, n ≥ 3. We also
briefly discuss examples in dimensionsd ≥ 5 in Section3.4.2.

3.4.1 P  P

We present an explicit method to obtain a “flexible” geometric polytopal realisation
of Emn := E(Cm ×Cn) for all m, n ≥ 3. Degrees of freedom in this construction are
discussed in Section3.5.4for m, n = 3 andm, n = 4.

3.4.1 T. The CW spheres Emn are polytopal for all m, n ≥ 3.

In the five cases whenmandn satisfy 1
m+

1
n ≥

1
2 polytopality also follows from

a construction of Santos. We present this in Theorem3.5.3.
For the proof of Theorem3.4.1it suffices to use the restricted version of Corol-

lary 3.3.3. Hence, we will only construct one of the two factors of the product,
together with itsE-construction. We make the following definition for this.

E(∆)

∆s

Figure 3.9: An example of a realisation ofD
(

3, 1
3

)

.
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Explicit Realisations

3.4.2 D. By D(k, r) we denote a realisation of ak-gonCk thatv contains the origins andv has a vertex-preservingE-polytopeE(Ck), such that segments froms to ver-
tices ofE(Ck) intersectCk with ratio r.

Figure3.9 shows an example of a triangle and itsE-construction that satisfy
the conditions forr = 1

3.
The construction ofD(n, r) has two steps. In a first step we start with the point

s (the origin), one vertex of the polygon, and one edge normal of its E-polytope,
and iteratively add one edge of theE-polytope and one of the polygon. The second
step connects the first and last vertex of the two sequences ofedges to close the
polygons.

Let l(v, b) for v , 0 denote the line inR2 defined by{x | 〈v, x〉 − b = 0}. Here
are the two steps.
S I. Given are three unit length vectorsw0, v0 andv1 such that

∠(v0, v1) < π and ∠(v0,w0) + ∠(w0, v1) = ∠(v0, v1)

(i.e. w0 is “between”v0 andv1). Let q0 be a given point in the plane. See
Figure3.10. We do the following:
1. Setg0 := l(v0, 〈v0, q0〉) and f0 := l(w0, 〈w0, q0〉).
2. Set f ′0 := l(w0,

1
r 〈w0, q0〉).

f ′0 is parallel to f0 at distance1
r 〈w0, q0〉 from the origin. Hence, the seg-

ment froms to any point onf ′0 is intersect byf0 with ratio r.
3. Let p0 be the intersection point ofg0 and f ′0 and setg1 := l(v1, 〈v1, p0〉).
4. Letq1 be the intersection point off0 andg1.

q0 p0

q1

g0

g1f0

f ′0

s

v0

v1
w0 w1

w2

Figure 3.10: A possible configuration for Step I.
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The segment between the origin andp0 is now intersected by the linef0 with
a ratio ofr.

S II. Given are unit length vectorsv0, v1, andv2 such that

∠(v2, v0) > π and ∠(v2, v1) + ∠(v1, v0) = ∠(v2, v0).

Let q0, q2 be points such that

〈v0, q0〉 , 〈v2, q2〉 > 0 and 〈v0, q2〉 , 〈v2, q0〉 < 0.

See Figure3.11. Then we apply the following five steps:
1. Letg0 := l(v0, 〈v0, q0〉) andg2 := l(v2, 〈v2, q2〉).
2. Define a variablea and the linega := l(v1, a).
3. Denote the intersection points ofga with g0 andg2 by p0 andp2 respec-

tively, and letm0 andm2 be the lines running through the origin andp0

andp2.
4. For j = 0, 2 let i j be the point onmj dividing the segment between the

origin andp j with ratio r for j = 0, 2. Let f j be the line throughq j andi j.
5. Let q1 := f0 ∩ f2. By Lemma3.4.3below, there is always a value ofa

such thatq1 is on the linega.

3.4.3 L. In the second construction step above, the variable a can be chosen
in such a way that q1 is on the line ga.

Proof. Let b j :=
〈

v1, q j

〉

for j = 0, 2 and assumeb2 ≥ b0. Then fora := 1
r b2 the

line f2 is parallel toga. Thus the pointq1 is on the same side ofga as the origin.
For largea, however, the pointq1 and the origin are on different sides ofga. Hence,
by continuity, there must be a value ofa such thatq1 is onga. �

q0

p0

q2

p2q1

g0 g2

f0 f2

m0
m2

i0 i2

ga

sv0

v1

v2

Figure 3.11:A possible configuration for Step II.
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T   D(n, r). We denote vertices ofCn by qi, vertices ofE(Cn) by
p j, normal vectors on the edges ofCn by wi and normal vectors on the edges
of E(Cn) by vj. To constructD(n, r) from the two steps above we can use the
following choice of points and normal vectors.
1. Let s be the origin,q0 := (−1, 0) ∈ R2 and choose two sets of unit length

vectorsV := {v0, v1, . . . , vn} andW := {w0,w1, . . . ,wn−2} such that
(a) ∠(v0, vn) < π,
(b) both sets containn vectors, and
(c) seen as points on the unit sphere they alternate.
Number both sets consecutively. An illustration of such a configuration
is shown in Figure3.13.

2. Starting with Step I andq0, v0, v1, andw0 as input defines pointsq1 and
p0. Continue withq1, v1, v2, andw1 to produceq2 and p1. Repeat this
until reaching the tuplevn−1, vn, wn−1, andqn−1.

3. Step II applied toq0, qn−1, v0, vn andwn yieldsD(n, r).

Proof of Theorem3.4.1. Fix m, n ≥ 3 and choose a ratior between 0 and 1. Con-
structD(m, r) andD(n, 1− r) according to the above algorithm. This yields realisa-
tions of theE-construction of anm-gon and ann-gon that satisfy the prerequisites
of Corollary3.3.3. This gives the desired realisation ofEmn. �

3.4.4 R. There is one more caveat in the construction ofD(n, r), as we have
to ensure thats is really an inner point ofCn afterwards.

For each edgeei of Cn with normal vectorvi let zi be the point on the line
defined byei with minimal distance tos (which we chose to be the origin).

v0
vn−1w0

wn−1 wn

vn

v1

s

Figure 3.13: A feasible choice of vectors:W
solid, V dashed. The thin vectors are con-
structed during Step II.

Viewed from s we chooseq0 to the
right of zi. During the iterative addition of
edges to the polygons in Step I we have to
ensure that the pointsqi ∈ ei for i ≥ 1 lie
to the left ofzi (viewed froms).

However, if we choose the normal
vectorsvi in such a way that consecutive
vectors enclose an angle less thanπ, then
this property can be enforced by an appro-
priate choice of the normalswi. See [66]
for a detailed proof.

Figure3.12shows a Schlegel diagram
and the coordinates of this construction
applied to a triangleC3 and and a square
C4. The ratio in this example isr = 1

2.
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3.4.2 H-D E

Satisfying the two conditions (A) and (B) in Table3.1, that are necessary for the
application of Theorem3.3.1, is more difficult, if the two factorsP0 andP1 have
“many” facets. Thus, in higher dimensions, and for “more complex” polytopes, it
is usually hard to find appropriate setsS0 resp.S1, unless one can exploit some
kind of symmetry.

There are, however, two obvious families of polytopes that we can choose as
factors of a product polytope, thed-cube�d and thed-simplex∆d. Both can be
realised together with theirE-construction satisfying even the more restrictive con-
ditions of Corollary3.3.3.v The cube can be realised as follows: For�d we take the standard±1-cube.

The new vertices for theE-polytope are±2 ·ei, whereei are the standard unit
basis vectors. If we setr = 1

2, then the origin is an inner pointssatisfying all
requirements.

[

1 1 2 0
]

[

1 1 −2 0
]

[

1 1 0 3
]

[

1 −1 2 0
]

[

1 −1 −2 0
]

[

1 −1 0 3
]

[

−1 1 2 0
]

[

−1 1 −2 0
]

[

−1 1 0 3
]

[

−1 −1 2 0
]

[

−1 −1 −2 0
]

[

−1 −1 0 3
]

[

0 0 7/13 1197/338
]

[

0 0 −532/195 217/845
]

[

0 0 244/91 −279/169
]

[

2 0 0 279/169
]

[

−2 0 0 279/169
]

[

0 −2 0 279/169
]

[

0 2 0 279/169
]

Figure 3.12:TheE-construction on the productC3 ×C4. The ratio is in both factors is12.
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Explicit Realisationsv The construction for thed-simplex∆d is slightly more difficult. We give an
inductive construction that produces realisations for anyratio r ≥ 1

2, that is,
at least half of the segment is inside∆ (and r is the ratio appearing in the
conditions in Table3.1). We can clearly construct such a realisation for a
triangle, i.e. for a simplex of dimensiond = 2.
Ford > 2 we take a regular realisation∆ of the simplex and a scaled version
∆′ := 1

r · ∆ with the same barycentre. We choose one facetF of ∆ and
the corresponding scaled facetF′ in ∆′. Place the first new vertexv in the
barycentre ofF′. The vertices of any ridgeR of F together with the point
v uniquely define a hyperplane.F hasd ridges, so we obtaind different
hyperplanesH1, . . . ,Hd by this.
H1, . . . ,Hd intersect all facet hyperplanes of∆′, except that toF′, in codi-
mension-2-planes that lie in a common hyperplaneH. H is parallel toF.
Project the barycentre of∆ orthogonally ontoH. H cuts∆ and∆′ in two
simplices∆̃ and∆̃′ of dimensiond − 1. (Recall thatr ≥ 1

2, soH intersects∆
between the barycentre andF.) ∆̃′ is (viewed in the hyperplaneH) a scaled
version of∆̃ with a scaling factor1r ′ ≤

1
r . By induction, we have a solution

for the corresponding problem for∆̃ andr ′ ≥ r ≥ 1
2 in H.

These points, together with the one vertexv chosen before, give a realisation
of E(∆) that satisfies the conditions of Corollary3.3.3.

With these constructions we can combine any simplex or cube with any other sim-
plex, cube orn-gon and obtain a realisation of theE-construction of this product.

As an example, in Figure3.14is a Schlegel diagram of theE-construction of
a product of a 3-simplex with a segment. The product structure of the original
polytope is clearly visible in the result.

Figure 3.14:A Schlegel diagram of theE-construction of a product of a 3-simplex with a segment.
The product structure is clearly visible.

– 107 –



P  P

3.5 P   F Emn

We continue our discussion of the familyEmn of (2, 2)-polytopes. In particular, we
count degrees of freedom for the realisation ofE33 and prove that not all combina-
torial symmetries ofEmn are geometrically realisable.

3.5.1 S-D

The polytopesCm × Cn are simple. Hence, we know from Corollary2.3.13(or
Corollary2.4.6) that the polytopeEmn is 2-simple and 2-simplicial. In particular,
the f -vector ofEmn is symmetric (cf. Equation (3.2.1)):

f (Emn) = (mn+m+ n, 6mn, 6mn,mn+m+ n).

The polytopesEmn have in fact a much stronger property: They are self-dual.
This is not true for arbitrary 2-simple, 2-simplicial polytopes, which can be seen
e.g. from the hypersimplexE(∆) obtained from the 4-simplex∆. This polytope has
a facet-transitive automorphism group acting on its 10 bipyramidal facets, while
the dual has 5 tetrahedral and 5 octahedral facets. The following result is due to
Ziegler [91]. For m = n, the (combinatorial version of this) result was obtained
previously also by Gévay [39].

3.5.1 T [Self-Duality]. Each of the polytopes Emn (n,m ≥ 3) is self-dual,
with an anti-automorphism of order2.

v00 v01v02 v10 v11v12v20 v21v22 v′0 v′1v′2 v′′0 v′′1v′′2

G00 G01 G02 G10 G11 G12 G20 G21 G22 G′0 G′1 G′2 G′′0 G′′1 G′′2

Figure 3.15:The self duality forE33: Shown are the vertex-facet-incidences ofE33, the self duality
exchanges the top and bottom row.
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Proof. Number the vertices of ank-gonCk consecutively byv0, . . . , vk−1. We take
indices modulok in the following. The vertices of the productCm × Cn arevi, j :=
(vi , vj) for 0 ≤ i ≤ m− 1 and 0≤ j ≤ n − 1. We have two types of facets in the
product:

F′i = conv({vi j , vi+1, j | j = 0, . . . , n− 1})
F′′j = conv({vi j , vi, j+1 | i = 0, . . . ,m− 1})

TheE-construction adds one vertex beyond each facet of the product. We denote
the new vertex beyondF′i by v′i and the one beyondF′′j by v′′j . The facets ofEmn

are now of the form

Gi j = conv(vi j , vi+1, j , vi, j+1, vi+1, j+1, v
′
i , v
′′
j ), or

G′i = conv({vi j | j = 0, . . . , n− 1}, v′i−1, v
′
i ), or

G′′j = conv({vi j | i = 0, . . . ,m− 1}, v′′j−1, v
′′
j ).

From this we can read off the facets a vertex is contained in:

vi j ∈ Gi j ,Gi−1, j ,Gi, j−1,Gi−1, j−1,G
′
i−1,G

′′
j−1 for i = 0, . . . ,m− 1,

j = 0, . . . , n− 1

v′i ∈ G′i ,G
′
i+1,Gi j for j = 0, . . . , n− 1

v′′j ∈ G′′j ,G
′′
j+1,Gi j for i = 0, . . . ,m− 1

Hence, the following correspondences give a self-duality of order 2 on the face
lattice ofEmn:

Gi j ←→ v−i,− j G′i ←→ v′−i G′′j ←→ v′′− j . �

Figure3.15shows an example of the self-duality onE33.

3.5.2 R. There are examples of 3-polytopes that are self-dual, but that do
not have a self-duality of order 2, see Ashley et. al. [5] and Jendro’l [49] for this.

3.5.2 Emn C  R P

There are only a few pairs (m, n) in which there are “symmetric” realisations of
the polytopesEmn: We show that, up to interchangingm andn, there are only five
choices of pairs of regular polygons that can be taken as input for the construction
defined in Corollary3.3.3.

We will see in the next section that these five cases are also the only cases in
which the product of two cyclic groups induced from rotationof the vertices in
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the two factors can be a subgroup of the geometric symmetry group. The next
theorem was initiated by earlier work of Santos in [74, Rem. 13] and [75], where
this problem occurred in a quite different context.

3.5.3 T [Symmetric Realisations]. There are polytopal realisations of
Emn for which projection onto the first and last two coordinates yields
(1) regular polygons for Cm, Cn and their E-constructions, such that
(2) all intersection ratios occurring in (B) of Table3.1coincide in each factor,
if and only if m and n satisfy the inequality

1
m
+

1
n
≥ 1

2
.

See Figure3.16for two examples of input factors of the construction that sat-
isfy these conditions.

Proof. The condition on the ratio implies that the setsS0 andS1 appearing in the
construction of Theorem3.3.1both contain only a single point, which is counted
with multiplicity n andm, respectively. These points must be the barycentres in
the regular polygonsCm andCn. By applying a translation if necessary, we may
assume that these coincide with the origin.

We can now generate all configurations of a regular polygonCm together with
E(Cm) in the following way: Start with a regular polygonE(Cm) centred at the
origin and choose a vertex forCm on each of the edges. AsCm is regular, the
vertices ofCm divide each edge with equal ratio. The segments considered in
(B)(3) of Table3.1 are the segmentsl between the origin and a vertex ofE(Cm).
We are interested in the possible values of the ratio with which they are intersected
by the edges ofCm.

Choosing the vertices ofCm close to those ofE(Cm) we see that we can have
an arbitrarily high portion ofl insideCm. On the other hand, the portion insideCm

s

l

P E(P)

s l

P

E(P)

Figure 3.16: Two projections that satisfy the restrictions of Theorem3.5.3.
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is minimised when we place the vertices ofCm in the centre of the edges. In this
case, the fraction ofl outsideCm is sin2(πn), see Figure3.17.

By (B)(3) of Table3.1, the fraction of a segment lying outside for one polygon
and itsE-construction has to match the fraction of a segment lying inside for the
other polygon. This gives the following inequalities:

1− sin2
(
π

m

)

≤ sin2
(
π

n

)

and 1− sin2
(
π

n

)

≤ sin2
(
π

m

)

,

which are equivalent to the condition given in the theorem. �

We can of course determine all possible values for the inequality in Theo-
rem3.5.3explicitly.

3.5.4 C. There are realisations of Emn from regular polytopes only for
the following pairs(m, n) (up to interchanging m and n):

(3, 3) , (3, 4) , (3, 5) , (3, 6) , (4, 4) �

3.5.5 R. We made assumption (2) in Theorem3.5.3mainly because this
is the case we need in the next section. A less restrictive version of “symmetry”
would only require the points inS0 andS1 to also form a regular polygon (if we
take the vertices in the order induced by theE-construction of the other factor).
For smallm= n this has solutions where all points inS0 andS1 are different. See
Table3.2 for an example of such anE44. Note however, that this severely reduces
the number of geometric symmetries compared to the case of the theorem.

π
n

(n−2)π
n

π
n

1

Cn

E(Cn)

x

y

z

x = sin(πn)

y = cos(πn)

z=
sin2( πn )
cos(πn )

z
z+y = sin2(πn)

Figure 3.17: The length computation in the proof of Theorem3.5.3.
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3.5.3 C  G S

There are two different notions ofsymmetryfor a polytopeP. We can look atcom-
binatorial symmetriesandgeometric symmetries. The former are automorphisms
of the face lattice ofP, the latter are affine transformations that preserve a given
geometric realisation ofP set-wise. See Section1.3.2.3for a precise definition and
some more background on symmetry groups.

Usually, these groups differ for a given geometric realisation of a polytope.
However, there are not many polytopes known for which these groups differ for all
possible geometric realisations. Bokowski, Ewald, and Kleinschmidt [25] have
constructed a 4-dimensional polytope with ten vertices having a combinatorial
symmetry that does not correspond to an affine transformation in any geometric
realisation of the polytope. The given coordinates are erroneous, see [26] and [2]
for a corrected version of the coordinates and a simpler proof. On the other hand,
it is known that 3-polytopes, andd-polytopes with at mostd+ 3 vertices ford ≥ 3,
always have a realisation in which geometric and combinatorial symmetry group
coincide. The primer was proven by Mani [59], the latter by Perles, see [44, p.120].

We show that our familyEmn of 4-polytopes contains an infinite subfamily with
non-realisable combinatorial symmetries. To this end, we explicitly construct such
a combinatorial symmetry.

Previously, it was already observed by Gévay that no polytopal realisation of
the spheresEnm for m = n can realise the full combinatorial symmetry group,
except in the casem= n = 4. This is also a consequence of Corollary3.5.8below.

[

1 1 1 1
] [

−1 −1 1 1
]

[

1 1 1 −1
] [

−1 −1 1 −1
]

[

1 1 −1 1
] [

−1 −1 −1 1
]

[

1 1 −1 −1
] [

−1 −1 −1 −1
]

[

1 −1 1 1
] [

3/5 9/5 −3/5 −3/5
]

[

1 −1 1 −1
] [

9/5 −3/5 −3/5 3/5
]

[

1 −1 −1 1
] [

−3/5 −9/5 3/5 3/5
]

[

1 −1 −1 −1
] [

−9/5 3/5 3/5 −3/5
]

[

−1 1 1 1
] [

−3/5 3/5 3/5 9/5
]

[

−1 1 1 −1
] [

−3/5 −3/5 −9/5 3/5
]

[

−1 1 −1 1
] [

3/5 −3/5 −3/5 −9/5
]

[

−1 1 −1 −1
] [

3/5 3/5 9/5 −3/5
]

Table 3.2: The vertices of anE44 from regular squares, but not satisfying (2) of Theorem3.5.3.
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3.5.6 T [Non-Realisable Symmetry]. For relatively prime m, n ≥ 5, all
Emn have a combinatorial symmetry that cannot be realised as a geometric sym-
metry in any geometric realisation of Emn.

Note, that in this theorem we do not require that the realisation of Emn is ob-
tained by the construction in Theorem3.4.1. It can be any geometric realisation
which is combinatorially equivalent toEmn. In the following, we denote such a
more general realisation byPmn to emphasise this distinction.

Proof of Theorem3.5.6. We define a combinatorial symmetryT of Pmn. Let Cm

andCn denote polygons with verticesv0, . . . , vm−1 andw0, . . . ,wn−1 respectively,
numbered in cyclic order. We take indices modulom andn, respectively. LetS
be the combinatorial symmetry of a polygon that maps thej-th to the (j + 1)-th
vertex. See Figure3.18 for an illustration.S induces a combinatorial symmetry
Sm on Cm × Cn by mapping a vertex (vi ,wj) to (vi+1,wj) for any 0≤ j ≤ m− 1.
Similarly, S seen in the polygonCn induces a symmetrySn of Cm×Cn shifting the
vertices ofCn.

Both symmetries uniquely extend to combinatorial symmetriesS̃m and S̃n of
E(Cm×Cn). LetT be the combinatorial symmetry ofPmn obtained by first applying
S̃m and thenS̃n. See Table3.3 for an example of this symmetry onP34 on the
combinatorial level, and Figure3.19for a Schlegel diagram ofC4 ×C6 with these
symmetries indicated by arrows.

The geometric realisation ofPmn need not have the product structure induced
by the construction of Theorem3.3.1. However, by looking at vertex degrees, and
for m, n ≥ 5, we can split the vertex set ofEmn into a setVp of vertices that “come
from” the product and a setVe of vertices that are “added” by theE-construction
(as combinatorially,Pmn can still be viewed as an instance of theE-construction):
A vertex of the productCm×Cn always has degree 8 inEmn, asCm ×Cn is simple,
so any vertex has four neighbours and is in four facets. The added vertices have
degree 2m or 2n, which are both greater than 8 form, n ≥ 5.

The proof is roughly as follows. Suppose there is a geometricrealisationTg of
T for somePmn. In the first step we prove that anyPmn with the geometric sym-

S

v0 = vm
v1

v2

vm−1

Figure 3.18: The symmetryS of a polygon.
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metryTg has the form of the construction in Theorem3.3.1. Then, the existence of
this symmetry implies that both factors are of the form defined in Theorem3.5.3.
Corollary3.5.4finally tells us that form, n ≥ 5 there are no such realisations.

As Tg set-wise fixes the vertices ofPmn, it also fixes their centroid. After a
suitable translation we can assume thatTg is a linear transformation. Asm andn
are relatively prime, there is akm ∈ N such thatTm := Tkm

g restricted to the setVp

acts as̃Sm. Similarly there is akn such thatTn := Tkn
g reduces to a realisation ofS̃n.

Both Tm andTn are again linear transformations.
By construction,Pmn has two different combinatorial types of facets:

(I) Bipyramids over anm-gon and
(II) bipyramids over ann-gon.

For any facet we call the vertices of the polygon (i.e. those vertices of the facet
belonging toVp) the base vertices.

Let F be a facet ofPmn of the first type. The symmetryTm shifts the base
vertices by one and fixes the two apices. Thus,Tm also fixes the centroidcF of
the base vertices ofF. Restricted to the hyperplaneHF defined byF, the mapTm

is a linear transformationTF
m in HF (if we place the origin ofHF in cF). Now Tm

fixes the two apices ofF and thus fixes the whole line through the apices. SoTF
m

splits into a map fixing the axis and a linear transformation of a two dimensional
transversal subspaceU. The axis necessarily containscF , andU contains the base
vertices ofF. So the base vertices ofF lie in a common two dimensional affine
subspace ofR4. Similarly, the base vertices of any other bipyramidal facet with
a base equivalent toCm lie in a common 2-plane. These 2-planes are set-wise
preserved byTm. Hence, they are parallel.

S4

S6 C4 ×C6

Figure 3.19:The product ofS4 andS6 onC4 ×C6.
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An example for the symmetries involved in the proof of Theorem 3.5.6
Notation:v v0, v1, v2: vertices of C3v w0,w1,w2,w3 vertices of C4v e( j): edge from vertex number j to j +1 (mod 3 or 4) in both polygons.

Number the vertices pk of P34 in the following way:

0 ≤ k ≤ 11: vertices (vk div 4,wk mod 4)
12≤ k ≤ 14: vertices added above e(k − 12)×C4

15≤ k ≤ 19: vertices added above C3 × e(k− 15)

Then the combinatorial symmetries are given as (permutation notation, ver-
tex numbers of pk):

S̃3 := (0, 4, 8) (1, 5, 9) (2, 6, 10) (3, 7, 11) (12, 13, 14) (15) (16) (17) (18)

S̃4 := (0, 1, 2, 3) (4, 5, 6, 7) (8, 9, 10, 11) (12) (13) (14) (15, 16, 17, 18)

T := (0, 5, 10, 3, 4, 9, 2, 7, 8, 1,6, 11) (12, 13, 14) (15, 16, 17, 18)

Table 3.3: The combinatorial symmetries̃S3, S̃4, andT acting onP34.

The same argument proves that all bases of facets of the second type do lie in
parallel 2-planes. These 2-planes must be transversal to the 2-planes containing
them-gons: Otherwise the vertices inVp all lie in a three dimensional subspace.
As Pmn is 4-dimensional, at least one of the vertices ofVe has to lie outside this
3-space. But there are no edges between vertices inVe.

Applying an appropriate linear transformation toPmn, we can assume that the 2-
spaces containing them-gons are parallel to thex1-x2-plane and the ones containing
theCn are parallel to thex3-x4-plane. T rotates the copies ofCm in Pmn, so they
must all be equivalent. Similarly, all the copies of the polygon Cn are affinely
equivalent. SoPmn is an instance of Theorem3.3.1.

Consider again the facetF with base equivalent toCm and the restricted map
TF

m. Further restrictingTF
m to the subspace containing the base vertices defines a

linear mapTb onR2 shifting the vertices of a polygon by one. SoTb generates a fi-
nite subgroup ofGl(2,R) and therefore must be conjugate to an element ofO(2,R)
(cf. [77] or [61] for a simple argument proving this). The same argument applies
to facets with baseCn. As the copies ofCm andCn lie in transversal subspaces ofR4, we can apply the conjugation forCm andCn simultaneously. Therefore both
polygons are regular up to an affine transformation.
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Finally look at then vertices added above facets ofPmn of typeCm × e for an
edgeeof Cn. Projected onto the 2-space ofCm they lie insideCm (they form the set
S1 in the construction of Theorem3.3.1). They are fixed by the symmetrỹSm. As
this map has only one fixed point the points inS1 must coincide. The same applies
to the added vertices above facets of typee× Cn. (Note that, even thoughT is a
symmetry of theE44 in Table3.2, the mapS̃4 is not, and cannot be obtained as a
power ofT. The setS0 does not consist of a single point in this polytope.)

Now we are in the situation described in Section3.5.2. But, according to Corol-
lary 3.5.4, this can only be the case if at least one ofm andn is less than 5. This
completes the proof of Theorem3.5.6. �

3.5.7 R. This is not the strongest possible form of this theorem. It applies
also to many products in which one of the polygons has four or less vertices, or
m andn are not relatively prime. However, in this case, we need to bea bit more
careful in the proof, as it is not always possible to uniquelysplit the vertices into
“product vertices” and “E-construction-vertices.” Furthermore, one has to argue
that one symmetrically realisable factor does not suffice to give a realisation of
the whole polytope with a geometric realisation of the constructed combinatorial
symmetry.

With a similar argument as the one used in the proof of the theorem, one also
proves that Corollary3.5.4describes all possible cases in whichPmn can have the
productZm×Zn of two cyclic groups induced by the rotation of the vertices in the
two polygons as a subgroup of its geometric symmetry group. In this case, we do
not needm andn to be relatively prime, as, in addition to their product, thetwo
symmetries̃Sm andS̃n itself are contained inZm × Zn acting onPmn.

3.5.8 C. The combinatorial symmetry group of Emn contains a subgroup
G isomorphic toZm× Zn induced by rotation in the two polygon factors.

The geometric symmetry group of a polytope Pmn combinatorially equivalent
to Emn can contain a subgroup inducing G on the face lattice only for

(m, n) ∈ {(3, 3), (3, 4), (3, 5), (3, 6), (4, 4)}

(up to interchanging m and n). �

3.5.9 R. Gévay [39] pointed out that along the lines of Theorem3.5.6one
can also prove that the only “perfect” polytopes among the realisations of theEmn

are the regular 24-cell andE33, constructed as in Corollary3.3.3from regular tri-
angles with intersection ratior = 1/2.

A rough definition of perfectness is as follows: A geometric realisationP of
a polytope isperfectif all other geometric realisations having, up to conjugation
with an isometry, the same subset of the affine transformations as symmetry group,
are already similar (in the geometric sense) toP. See [36] for a precise definition.
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3.5.4 R S  E33  E44

We determine the degrees of freedom that we have in the choiceof coordinates for
E33. To achieve this, we are interested in the dimension of the realisation space
R(E33) and the projective realisation spaceRproj(E33) of this polytope. See Sec-
tion 1.3.2.4for a precise definition and some background.

Further, we present a simple 4-parameter family ofE44s in the following sec-
tion. This proves that the projective realisation space ofE44, which is the 24-cell, is
at least four dimensional. It is possible to exhibit more degrees of freedom, but this
is rather technical. As this would still not yieldall possible degrees of freedom, we
are content with the simpler version.

3.5.4.1 The Realisation Space of E33

The vertex sets of all realisations ofE33 that one can obtain from Theorem3.3.1
contain the vertex set of an orthogonal productC3 × C3 of two triangles. This
reduces the number of degrees of freedom that we can obtain byanalysing the con-
struction in Theorem3.4.1, compared to arbitrary geometric realisations. The next
theorem determines the dimension of the space of all realisations of E33 that are
projectively equivalent to a realisation containing the orthogonal productC3 × C3.

3.5.10 T. dim(Rproj(E33)) ≥ 9.

Before we prove this theorem we introduce a special way to construct realisa-
tions of two triangles and theirE-polytopes satisfying the conditions (A) and (B)
of Table3.1. This will make it easy to count the degrees of freedom afterwards.

3.5.11 T. Given two (arbitrary) triangles∆ and∆′, there is an open subset
R inR9 such that, if we take the nine entries of a vector in R as the nine ratios
appearing in (B)(3) of Table3.1 (in some previously fixed order), then there is a
realisation of E33 having these intersection ratios.

Proof. This is basically proven by describing a realisation as a solution of a set of
linear equations. We have to introduce some notation to write down these equa-
tions. It is convenient to note the ratios in a slightly different way as before. We
transform any ratior into r

1+r . With this, a pair of inverse ratios isr and 1
r . Denote

the nine ratios involved in the construction byrxy for x ∈ {a, b, c} andy ∈ {a′, b′, c′}.
See Figure3.20and Figure3.21for illustrations of the following definitions.

Fix two triangles∆ and∆′ and leta, b, c be the sides of∆ and a′, b′, c′ the
sides of∆′. By translating the triangles if necessary, we can assume that they both
contain the origin.
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Let ga, gb andgc define lines outside∆ parallel toa, b, andc at distanceδa, δb,
andδc, respectively. These will afterwards contain the verticesof E(∆), which is a
triangle containing the vertices of∆ in its edges. Similarly, define linesga′ , gb′ and
gc′ at distancesδ′a, δ

′
b, resp.δ′c for ∆′.

Let laa′ , lab′ , and lac′ define lines parallel toa on the other side ofa asga, at
distancesraa′δa, rab′δa, andrac′δa from a. Similarly, define the lineslba′ , lbb′, lbc′ ,
lca′ , lcb′ , andlcc′ parallel tob andc. Thus, any segment starting onga and ending on
laa′ is divided bya with a ratio ofraa′ , and similar for the other eight segments.

For the triangle∆′ we define linesl′aa′, l′ab′ , andl′ac′ at distances 1/raa′ , 1/rba′ and
1/rca′ , respectively, parallel toa′ and on the other side asga′ . Similarly, we define
lines parallel tob′ andc′. Finally, we define (outward pointing) normal vectorsna,
nb, nc, na′ , nb′ , nc′ and levelsλa, λb, λc, λa′, λb′, λc′ such that pointsx ∈ a satisfy
〈na, x〉 − λa = 0, and similarly for the other edges.

Consider now e.g. the ratiorab′ . Choose a vertexva of E(∆) on ga, a pointwa

on the linel′ab′ and in the interior of∆′, a vertexv′b′ of E(∆′) lying on gb′ and a
point w′b′ in the interior of∆ on the linelab′. See Figure3.22for a enlarged cutout
of the relevant parts of Figure3.20and Figure3.21. The pointswa andw′b′ will
become the corresponding points tova andv′b′ under the mapsα0 andα1 of (B)(2)
in Table3.1. The segmentsab′ betweenva andw′b′ is intersected by∆with a ratio of
rab′ , and the segmentsb′a betweenv′b′ andwa is intersected by∆′ with ratio 1/rab′.

a
b

c

ga

gb

gc

laa′

lab′

lac′
lca′

lcc′
lcb′

lba′

lbb′
lbc′ E(∆)

Figure 3.20:Construction of the triangles: The first factor.
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So the condition set by the ratiorab′ will be satisfied by this choice ofwa andw′b′ .
To satisfy all conditions on the ratios that involvewa, we have to choosewa

such that it lies as well on the linesl′aa′, l′ab′ andl′ac′ and in the interior of∆′. Similar
conditions hold for the two other points inside∆ and for the three points inside∆′.

Therefore, finding a feasible solution amounts to finding a solution to the fol-
lowing set of 18 linear equations:

λa =
〈

na,w
′
a′
〉

+ raa′δa λa′ = 〈na′ ,wa〉 + 1/raa′δa′

λb =
〈

nb,w
′
a′
〉

+ rba′δb λa′ = 〈na′ ,wb〉 + 1/rba′δa′

λc =
〈

nc,w
′
a′
〉

+ rca′δc λa′ = 〈na′ ,wc〉 + 1/rca′δa′

λa =
〈

na,w
′
b′
〉

+ rab′δa λb′ = 〈nb′ ,wa〉 + 1/raa′δb′

λb =
〈

nb,w
′
b′
〉

+ rbb′δb λb′ = 〈nb′ ,wb〉 + 1/rba′δb′

λc =
〈

nc,w
′
b′
〉

+ rcb′δc λb′ = 〈nb′ ,wc〉 + 1/rca′δb′

λa =
〈

na,w
′
c′
〉

+ rac′δa λc′ = 〈nc′ ,wa〉 + 1/raa′δc′

λb =
〈

nb,w
′
c′
〉

+ rbc′δb λc′ = 〈nc′ ,wb〉 + 1/rba′δc′

λc =
〈

nc,w
′
c′
〉

+ rcc′δc λc′ = 〈nc′ ,wc〉 + 1/rca′δc′

Here the coordinates of the pointswa, wb, wc, w′a′ , w′b′ andw′c′ and the distancesδa,
δb, δc, δa′ , δb′ , andδc′ are the free variables, and the ratios are the parameters. The

a′
b′

c′

ga′gb′

gc′ l′aa′

l′ab′

l′bc′

l′ba′

l′bb′

l′cc′

l′ca′

l′cb′

l′ac′

E(∆′)

Figure 3.21: Construction of the triangles: The second factor.
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[

0 21 0 21
] [

9 − 6 60 − 19
]

[

42 −21 0 21
] [

−3 −12 −12 29
]

[

−42 −21 0 21
] [

−6 −3 −48 −31
]

[

0 21 42 −21
] [

24 33 −10 −9
]

[

42 −21 42 −21
] [

−72 −15 2 −1
]

[

−42 −21 42 −21
] [

48 −39 8 −11
]

[

0 21 −42 −21
]

[

42 −21 −42 −21
]

[

−42 −21 −42 −21
]

Table 3.4: The coordinates of a feasible non-degenerate solution. SeeFigures3.4 and3.5 for a
drawing of the two factors.

first and the second set of equations are connected via the ratios.
As the equations depend smoothly on the nine parameters it suffices to show

that there exists at least one feasible solution of this system. Such a solution is
shown in the Figures3.20and3.21and in Table3.4(for some fixed product of two
triangles, but this can be projectively transformed to any other).

Finally, to obtainE(∆), we have to choose vertices on the linesga, gb, andgc

such that the edges contain the vertices of∆. Unless the distancesδa, δb, andδc are
too large compared to the size of∆ there are always two solutions to this problem.

gb′ga

b′

l′ab′

a
lab′

va

wa

v′b′

w′b′
∆ ∆′

Figure 3.22:The condition for one corresponding pair of vertices.
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Similarly, we can constructE(∆′). �

Now the proof of Theorem3.5.10is straightforward:

Proof of Theorem3.5.10. All triangles inR2 are projectively equivalent. There-
fore, up to projective equivalence, there is only one geometric realisation of an
orthogonal product of two triangles. So we can fix our preferred orthogonal prod-
uct of two triangles and count the degrees of freedom for adding the remaining
vertices without having to worry about projective equivalence anymore. But ac-
cording to the previous Theorem3.5.11we have, for any choice of two triangles,
nine degrees of freedom for the choice of the remaining vertices. �

3.5.12 R. There might still be geometric realisations of a polytope combi-
natorially equivalent toE33 that are not projectively equivalent to a polytope con-
taining an orthogonal product of two triangles. Thus, a priori, Theorem3.5.10
describes only a subset of the whole realisation spaceRproj(E33).

3.5.4.2 The 24-Cell

Our method for the realisation of theE-construction of products of polygons also
provides new (non-regular) geometric realisations of the 24-cell.

For m, n > 3 we cannot determine the degrees of freedom in the above way
anymore. Taking themnratios as input we obtain 2mnequations for only 3(m+ n)
variables. This is not merely a problem of the method; there are explicit additional

(a) Schlegel diagram of the regular 24-
cell.
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(b) Schlegel diagram of a polytope in the family of Ta-
ble3.5: a1, b1 =

1
2 .

Figure 3.23: 24-cells I.
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restrictions on a realisation. However, also for the 24-cell it is not difficult to
construct some projectively non-equivalent geometric realisations.

Table3.5 shows a simple example of a 4-parameter family of 24-cells, where
all four parameters range in the open interval from−1 to 1. This family spans a
4-dimensional subset of the projective realisation space,which can be seen in the
following way.

[

−1 −1 −1 −1
]

[

1 1 −1 −1
]

[

1 −1 1 −1
]

[

−1 1 1 −1
]

[

1 −1 −1 1
]

[

−1 1 −1 1
]

[

−1 −1 1 1
]

[

1 1 1 1
]

[

1 −1 −1 −1
]

[

−1 1 −1 −1
]

[

−1 −1 1 −1
]

[

1 1 1 −1
]

[

−1 −1 −1 1
]

[

1 1 −1 1
]

[

1 −1 1 1
]

[

−1 1 1 1
]

[

a1 b1 a2 −2− b2

]

[

a1 b1 2− a2 b2

]

[

a1 b1 a2 2− b2

]

[

a1 b1 −2− a2 b2

]

[

a1 2− b1 a2 b2

]

[

−2− a1 b1 a2 b2

]

[

a1 −2− b1 a2 b2

]

[

2− a1 b1 a2 b2

]

Table 3.5: Vertices of a 4-parameter family of 24-
cells. Fora1, a2, b1, b2 = 0 this is the well known
regular realisation.

[

−1 5/4 −1 1
]

[

−1 5/4 −1 −1
]

[

−1 5/4 1 −1
]

[

−1 5/4 5/3 1
]

[

−1 −1 −1 1
]

[

−1 −1 −1 −1
]

[

−1 −1 1 −1
]

[

−1 −1 5/3 1
]

[

1 −1 −1 1
]

[

1 −1 −1 −1
]

[

1 −1 1 −1
]

[

1 −1 5/3 1
]

[

1 23/12 −1 1
]

[

1 23/12 −1 −1
]

[

1 23/12 1 −1
]

[

1 23/12 5/3 1
]

[

−1/2 −1/2 −3/2 1/2
]

[

−1/2 −1/2 −5/6 −3/2
]

[

−1/2 −1/2 17/6 −1/2
]

[

−1/2 −1/2 1/2 5/2
]

[

−3/2 −5/6 −1/2 −1/2
]

[

1/2 −3/2 −1/2 −1/2
]

[

5/2 1/2 −1/2 −1/2
]

[

−1/2 10/3 −1/2 −1/2
]

Table 3.6: A 24-cell without any pro-
jective automorphisms.dd dd dd dd d
ddd dd d d d ddd ddd
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(a) Schlegel diagram of a polytope in the fam-
ily of Table3.5: a1, a2 =

1
2.

(b) Schlegel diagram of the 24-cell in Table3.6.

Figure 3.24: 24-cells II.

The vertex set of the regular 24-cell contains the vertex sets of three different
regular cubes: If you set all parameters to zero, then (in theorder given in Table3.5)
the first sixteen, the last sixteen and the first and last eightvertices each form a
regular cube. Their 2-faces (which are squares) are not anymore present as 2-faces
in the 24-cell, but their vertices still lie on a codimension-2-subspace (see e.g. the
vertices 15, 16, 17, 18 in Table3.5). Subspaces are preserved by any projective
transformation.

If we let the parameters diverge from zero then we destroy some of these “in-
ternal” squares. This necessarily results in projectivelydifferent 24-cells. Hence,
we have proven the following theorem.

3.5.13 T [24-cells]. dim(Rproj(E44)) ≥ 4. �

The “broken” squares can also be seen in the Schlegel diagrams in Figures3.23
and3.24: Observe the three squares contained in the octahedral faceonto which
the polytope is projected.

3.5.14 R. Not all possible realisations of the 24-cell are contained in this
4-parameter family. The 24-cell in Table3.6 is also a result of the construction in
Theorem3.3.1and has no projective automorphisms.
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4.1 I

Until recently, 2-simple and 2-simplicial 4-polytopes (i.e. (2, 2)-polytopes) seemed
hard to construct. With our new constructions we have now achieved quite some
flexibility, and a wealth of examples. In particular, the vertex truncation method of
Section2.5.1— and its counterpart for simple polytopes in Section2.5.2— make
it easy to construct explicit instances, and easily test properties of (2, 2)-polytopes.

This chapter combines the results obtained in the previous two chapters and
relates them to the “outside polytope world” containing allthe polytopes that are
not 2-simple and 2-simplicial. We present applications, discuss several other ap-
proaches to the construction of (2, 2)-polytopes and collect lots of examples.

The first part of this chapter is a list of results about the flagvectors of (2, 2)-
polytopes and their influence on the flag vector classification problem. In partic-
ular, we show that a (2, 2)-polytope is not determined by its flag vector. There
are (usually really many) combinatorially different (2, 2)-polytopes with the same
flag vector. We give a lower bound on the number of (2, 2)-polytopes and show
relations between the flag vector of (2, 2)-polytopes and general polytopes.

The second part summarises other known methods (both older and more recent)
for obtaining (2, 2)-polytopes. We work out which of the examples can be seen as
instances of theE-construction and which cannot.

There are some old known (r, s)-polytopes. In particular, there is the well
known class of hypersimplices. Furthermore, several regular and semi-regular
polytopes arer-simple ands-simplicial for r, s ≥ 2. We present Wythoff’s con-
struction, which uses special Coxeter groups for the description of a regular poly-
tope, and we discuss some regular polytopes obtained by Gévay.

Until recently, only finitely many (2, 2)-polytopes were known. The first infi-
nite family of (2, 2)-polytopes is that of Eppstein, Kuperberg, and Ziegler, which is
now a special case of Theorem2.5.15.

A recent approach via “reverse shellings” by Werner has produced a new self-
dual (2, 2)-polytope on 9 vertices, which is not included in our construction. We
show that no non-trivial (i.e. different from the simplex) (2, 2)-polytope with eight
or less vertices can exist.

The third and last part of this chapter contains tables with alist of polytopes ob-
tained from theE-construction with up to 50 vertices (complete up to 19 vertices),
the previously known (2, 2)-polytopes, the known examples of (r, s)-polytopes for
r, s ≥ 2 in higher dimensions, some infinite families of (2, 2)-polytopes, a couple
of particularly interesting examples of (2, 2)-polytopes with larger number of ver-
tices, and some known polytopes that can be obtained from theE-construction, but
are not 2-simple and 2-simplicial.

For many of the examples, explicit rational coordinates andcombinatorial data
is available in thepolymake format.
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4.2 P  (2, 2)-P

We give several results about flag vectors and combinatorialtypes of (2, 2)-polyto-
pes. Thef -vector of a (2, 2)-polytope is necessarily symmetric, that is

f0 = f3 and f1 = f2.

f0 and f1 also determine the flag vector, as we have only one additionalindependent
entry in dimension four, by the Dehn–Sommerville Equationsof Theorem1.2.17.
It is given by f02 = 3 f0, that is, f03 = 2 f0 + f1.

The dual of a 2-simplicial 4-polytope is 2-simple, and vice versa. Hence, the
dual of a (2, 2)-polytope is again a (2, 2)-polytope. This gives the following result.

4.2.1 P. Any vertex of a(2, 2)-polytope P has even degree in the vertex–
edge graph of P.

Proof. The dual of a (2, 2)-polytope is 2-simplicial. Hence, its facets are simplicial.
But any simplicial 3-polytope has an even number of 2-faces. �

In general, (2, 2)-polytopes are not self-dual. The hypersimplex is the smallest
example: it has five simplex facets, and five octahedral facets, while the ten facets
of the dual are bipyramids over a triangle. Hence, in general, there are at least two
combinatorial types of (2, 2)-polytopes for a given number of vertices. For larger
number of vertices, there are more than this. Our constructions allow us to produce
exponentially many different (even rational) (2, 2)-polytopes. We demonstrate this
with one of the families obtained in Section2.5.

4.2.2 P [Exponentially Many (2, 2)-Polytopes]. The number of combi-
natorially distinct(2, 2)-polytopes D(P4

n) constructed in Corollary2.5.11with flag
vector

flag(D(P4
n)) = (10+ 4n, 30+ 18n, 30+ 18n, 10+ 4n; 50+ 26n)

grows exponentially with n.

Proof. There are exponentially many stacked 4-polytopes withn+5 vertices. This
follows from the fact that there are exponentially many (unlabelled) trees of maxi-
mal degree 5 onn+ 1 vertices.

Hence we are done, if we show that the combinatorial type of any stacked 4-
polytopeP4

n can be reconstructed from its vertex truncationD(P4
n). The facets of

D(P4
n) are on the one hand truncated simplicesF′, which are octahedra, and on

the other hand the vertex figuresFv of P4
n, which are stacked. Furthermore, two

of the octahedraF′ andG′ are adjacent if and only if the corresponding facetsF
andG of P4

n are adjacent. Hence, we obtain the dual graph ofP4
n from D(P4

n). This
determines the combinatorial type ofP4

n by the Reconstruction Theorem of Blind
and Mani, see Theorem1.3.31. �
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More generally, there are exponentially many (in the numberof vertices) (2, 2)-
polytopes. The choice of the family from Corollary2.5.11for the proof of this
proposition was arbitrary. Similar arguments show the samegrowth rate also for
other families of (2, 2)-polytopes. Included in this proposition is also the following.

4.2.3 C [Non-Isomorphic (2, 2)-Polytopes]. There are exponentially
many non-isomorphic(2, 2)-polytopes with the same flag vector. �

The first known pair of examples that are not dual to each otherare theE-
construction applied to a product of two triangles and to a twice truncated simplex.
Both (2, 2)-polytopes have 19 vertices (cf. Section4.4).

f -vectors of (2, 2)-polytopes have at most two independent parameters by the
above computations. The next propositions show that we do indeed need both.

4.2.4 P. For any f0 ≥ 26 there is a(2, 2)-polytope with f0 vertices.

Proof. Truncating a vertex of a simple 4-polytope adds (3, 6, 4, 1) to the f -vector.
By Proposition2.5.13, if we have theE-construction of a simple polytopeP, then
we can extend this to one for the truncation tr(P; v) of P at any vertexv. This adds
(4, 18, 18, 4) to the f -vector of theE-construction.

(1) The truncation of a prism Pr(∆3) over the simplex∆3 at one vertex, (2) the
productC3 ×C6, (3) the truncation of�4 at one vertex, and (4) the productC4 ×C5

are four different simple polytopes. TheirE-polytopes have 26, 27, 28, and 29
vertices, respectively. �

There are lots of (2, 2)-spheres with less vertices, but for some of them it is still
unknown whether they are polytopal.

4.2.5 P. There are(2, 2)-polytopes that have the same numbers of ver-
tices (and facets), but different numbers of edges (and ridges).

Proof. TheE-construction of a product of a square and an hexagon has a polytopal
realisation, by Theorem3.4.1. Its f -vector is (34, 144, 144, 34) (cf. the computa-
tion in (3.2.1)). On the other hand, vertex truncation of a stack of six simplices as
in Proposition2.5.7yieldsD(P4

6) with f -vector (34, 138, 138, 34). �

Similarly, there are (2, 2)-polytopes with the same number of edges, but a dif-
ferent number of vertices. For example,E2(C4×C5) andE2(tr(∆3; 5 vertices)) have
both 120 edges, but the first has 29 and the second 30 vertices.

One can tell from the flag vector whether a polytope is 2-simplicial, since this
is equivalent to the conditionf02 = 3 f2. Similarly, 2-simplicity can be read off.
This is so, because there cannot be any 2-faces with less thanthree vertices, so
the aggregated value of the flag vector already determines each single case. Our
next proposition shows that there is no similar criterion toderive 2-simplicity or
2-simpliciality already from thef -vector.
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4.2.6 P. A (2, 2)- and a non-(2, 2)-polytope can have the same f -vector.

Proof. Using a hyperbolic gluing construction for a stack ofn 600-cells, Eppstein,
Kuperberg and Ziegler produced a family of simplicial edge-tangent 4-polytopes
Qn with f -vectors (106n+ 14, 666n+ 54, 666n+ 54, 106n+ 14); see Section4.3.4.
Applying theE-construction via Theorem2.5.14, one obtains a family of (2, 2)-
polytopesE1(Qn) with f -vector f (E1(Qn)) = (54 + 666n, 240+ 3360n, 240+
3360n, 54+ 666n).

Setn = 13. Then we have a (2, 2)-polytope withf -vector

f (E1(Q13)) = (8712, 43920, 43920, 8712).

This polytope has lots of facets that are bipyramids over pentagons, and lots of
“regular” vertices that are contained in exactly 12 such bipyramids, with a dodeca-
hedral vertex figure.

We truncate 80 such “regular vertices” and stack pyramids over the result-
ing dodecahedral facets. One such truncation operation adds (19, 30, 12, 1), and
one stacking operation adds (1, 20, 30, 11) to the f -vector. So in total, we add
(1600, 4000, 3360, 960) by this.

Furthermore, we stack 80 of the bipyramidal facets that werenot involved in
the previous operation. One such stacking operation adds (1, 7, 15, 9), so in total we
add another (80, 560, 1200, 720). Hence, the polytopeP we obtain has thef -vector

f (P) = (10392, 48480, 48480, 10392).

It is not a (2, 2)-polytope anymore.
On the other hand, the (2, 2)-polytopeD(C4

577) of Proposition2.5.12has exactly
the samef -vector. �

In connection with theirE-construction, Eppstein, Kuperberg, and Ziegler [33]
proposed a new quantity that might be interesting with respect to the classification
problem.

4.2.7 D [Fatness]. Let P be a 4-polytope withf -vector (f0, f1, f2, f3)
different from the simplex. ThefatnessF(P) of P is defined as the quotient

F(P) =
f1 + f2 − 20
f0 + f3 − 10

.

A similar quantity was considered earlier by Avis, Bremner,and Seidel [6].
Eppstein, Kuperberg, and Ziegler showed that this quotientis unbounded for 3-
dimensional CW spheres. For polytopes, they provided an infinite series with fat-
ness around five and gave an example of a polytope with fatnessapproximately
5.048. See Section4.3.4for this. There is also a good review by Ziegler [90].
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Looking at the known inequalities for flag vectors in equations (1.4.3)–(1.4.8),
we see that (2, 2)-polytopes satisfy two of these with equality, namely thethird and
the forth. Fatness “measures” where on this line the polytopes lie exactly. Namely,
the higher the fatness of a polytope is, the closer it lies to the rayl2 in (1.4.9).

The fatness of polytopes produced from theE-construction applied to simple
4-polytopes is bounded by six. This is immediate from thef -vector computation
in (2.3.1) of Section2.3.

The family Emn of E-polytopes obtained from products of polygons in Theo-
rem3.4.1has essential flag vector

flag(Emn) = (mn+m+ n, 6mn, 6mn,mn+m+ n; 8mn+ 2m+ 2n),

so their fatness is

F(Emn) =
12mn− 20

2mn+ 2m+ 2n− 10
−→ 6 for m, n→∞.

Thus, form, n ≥ 10, our polytopes are “fatter” than the example of Eppstein,Ku-
perberg, and Ziegler. As products of polygons are simple, our family of polytopes
is also “best possible” within this setting.

However, recently Ziegler [92] constructed a family of much fatter polytopes
by a method completely unrelated to theE-construction. They are neither 2-simple
nor 2-simplicial. The fatness is bounded by 9.

Until recently it seemed, that (2, 2)-polytopes are among the fattest polytopes, if
the number of vertices is fixed. In the next proposition we produce two 4-polytopes
with the same number of vertices, one of which is not a (2, 2)-polytope, where the
(2, 2)-example is less fat.

4.2.8 P. There is a(2, 2)-polytope with the same number of vertices and
facets as a non-(2, 2)-polytope, but fewer edges and ridges.

Proof. The “bipyramidal 720-cell” is defined asE2(120-cell)= D(600-cell)∆. It
has f -vector (720, 3600, 3600, 720), see Section4.3.3.

We perform some operations on this polytope that destroy 2-simplicity and 2-
simpliciality: We truncate two vertices with dodecahedralvertex figure, and stack
pyramids on the resulting dodecahedral facets, and we also stack pyramids onto
two bipyramidal facets. We obtain a new polytopeE′ with the f -vector (762, 3714,
3714, 762).

On the other hand, vertex truncation applied to a stack of 42 cross polytopes
yields the (2, 2)-polytopeD(C4

42) with f -vector (762, 3540, 3540, 762). �

It would be nice to know more about fatness of 4-polytopes andimplications
for the flag vector classification. In particular, a proof of the (un-)boundedness
would be helpful.
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4.3 F C  S P

Practically all examples of 2-simple and (d − 2)-simpliciald-polytopes ford ≥ 4
(or, (2, d−2)-polytopes for short) that appear in the literature may beseen as special
instances of theE-construction. They can be realised by one of the constructions
presented in the previous two chapters.

In particular, the examples of Eppstein, Kuperberg, and Ziegler arise in our
construction as the special case whereP is a simplicial 4-polytope with an edge-
tangent realisation (for parametert = 1 in the construction), or equivalently a
simple 4-polytope with a ridge-tangent realisation (for parametert = 2 in the con-
struction).

Prior to thisE-construction, only finitely many (2, d−2)-polytopes were known
in each fixed dimensiond ≥ 4. All but one arise from regular and semi-regular
polytopes, where thet-face tangency conditions can be enforced simply by scaling
— but will typically yield irrational coordinates for the vertices, and the realisation
has no apparent degrees of freedom. These examples include in particular the
simplex, the 24-cell, and the hypersimplices. Braden gave the only example of a
non-uniform (2, 2)-polytope. It can now be obtained as the vertex truncationof a
stacked simplex, see Corollary2.5.11for more on this polytope.

We discuss all previously known examples of, and constructions leading to
(2, d − 2)-polytopes in the next sections. Some polytopes turn up several times in
this collection, as they can be obtained in several different ways.

There is a recent approach to finding small (2, 2)-polytopes by Werner, which
led to a new (2, 2)-polytope with 9 vertices and facets and 26 edges and ridges.
We discuss this in Section4.3.5and prove that it is the smallest non-trivial (2, 2)-
polytope. Only the simplex has fewer vertices.

In the end we have included some basic ideas towards a generalised version of
theE-construction for ad-polytopeP and parametert = d−2. In this approach, we
do not necessarily stack above all facets ofP anymore, and we allow that bipyra-
mids over the ridges break into two pyramids. So far, we produced one further
(2, 2)-polytope with this method, which has 16 vertices and 56 edges. However,
otherwise this construction still lacks a systematic treatment.

A couple of other polytopes, which are neither 2-simple nor (d− 2)-simplicial,
but have some other interesting properties previously described in the literature
occur now also as instances of theE-construction. We list some of them in the
context of the construction they occur.

In the last section of this chapter, Section4.4, we subsume all these polytopes
into several tables.
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4.3.1 G̈’ E

We start with (r, s)-polytopes that can be found in Grünbaum’s book [44, p. 65,66].
There are three interesting families of polytopes mentioned, two of which can be
obtained via theE-construction. The polytopes in the third family are 3-simple
and (d−3)-simplicial, which is not possible for a polytope from theE-construction
(except, of course, in dimension five by duality). However, we can apply theE-
construction to it and obtain one of the other families.
Here are the three families:

Kd
k :=

{

x ∈ Rd+1 : 0 ≤ xi ≤ 1 ,
∑d+1

i=1
xi = k

}

for 1 ≤ k ≤ d, d ≥ 2

“hypersimplices”

Md :=
{

x ∈ Rd : |xi | ≤ 1 ,
∑d

i=1
|xi | ≤ d − 2

}

Nd :=
{

x ∈ Rd :
∑d

i=1
εi xi ≤ d− 2 , εi = ±1 , #{εi = 1} is odd

}

“dual half-cubes.”

The polytopesKd
k are calledhypersimplices. Geometrically, they are obtained as

the intersection of the standard (d+ 1)-dimensional 0/1-cubeCd+1 with the hyper-
plane

Hk :=
{

x ∈ Rd+1 :
∑d+1

i=1
xi = k

}

. (4.3.1)

for 1 ≤ k ≤ d. From this description it is immediate thatKd
k is combinatorially

equivalent toKd
d−k+1 for any 1≤ k ≤ d. Hence, there are only⌊d2⌋ combinatorial

types of hypersimplices in each dimensiond ≥ 3.
The polytopesMd are obtained from the cube with vertices{−1,+1}d by trun-

cating all vertices with a hyperplane whose normal vector isthe point vector of that
vertex in such a way, that from any 2-face only a single (inner) point remains.

The duals of the polytopesNd constitute the family ofhalf cubes. Recall, that
we defined thed-cube�d with vertices{−1,+1}d. Geometrically,Nd is obtained as
the dual of the convex hull of all “odd” vertices of�d, that is, all vertices that have
an odd number of 1’s in their vector. (Equivalently, one could also take the “even”
vertices.)

See Figure4.1for two examples of hypersimplices. The three families of poly-
topes have thef -vectors shown in Table4.1. We collect their properties in the
following proposition.
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f j(K
d
k ) =






(
d+1

k

)

for j = 0
(
d+1
j+1

) ∑k
i=1

(
d− j

d− j−k+i

)

otherwise

f j(M
d) =






(
d
2

)

2d−2 for j = 0
(
d
2

)

(d− 2)2d−1 for j = 1
(
d
3

)

(d− 1)2d−1 for j = 2

2d−1(d − j + 1)
(

d
d− j−1

)

+ 2d− j
(

d
d− j

)

for 3 ≤ j ≤ d − 1

f j(N
d) =






(
d

j+1

)

2 j+1 +
(
d
j

)

2d−1 for 0 ≤ j ≤ d − 4

2d−1
(
d
3

)

for j = d − 3

2d−2
(
d
2

)

for j = d − 2

2d−1 for j = d − 1

Table 4.1: The f -vectors ofKd
k , Md, andNd.

4.3.1 P [The Grünbaum Polytopes].
(1) The polytopes Kdk are2-simplicial and(d − 2)-simple d-polytopes for d≥ 3.

Kd
1 is a simplex for all d.

(2) The polytopes Md for d ≥ 3 are2-simplicial and(d− 2)-simple d-polytopes.
M3 is the octahedron.

(3) The polytopes Nd for d ≥ 3 are 3-simple and(d − 3)-simplicial. N3 is a
simplex and N4 is a cube.

Proof. Kd
1 andKd

d haved + 1 vertices. Hence, they are simplices. The facets of
Kd

k arise as intersection of the hyperplaneHk in (4.3.1) with a facet ofCd+1 (the
0/1-cube), so they are combinatorially equivalent to eitherKd−1

k−1 or Kd−1
k . Iterating

this we conclude thatKd
k is at least 2-simplicial. An edge ofKd

k is obtained from
the intersection ofHk with a 2-face ofCd+1. Cd+1 is simple, so theKd

k are at least
(d−2)-simple. Hence, the polytopesKd

k for 2 ≤ k ≤ d−1 are precisely 2-simplicial
and (d − 2)-simple.

There are two different types of facets inMd, those that come from the hy-
perplanes truncating the vertices of�d and those coming from a facet of�d. The
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vertices ofMd are the centroids of the 2-faces of�d. They are connected by an
edge if the corresponding 2-faces share an edge.

Let e be such an edge ofMd between verticesv1 andv2. Let t1 and t2 be the
two 2-faces of�d corresponding tov1 andv2 ande their common edge in�d. e is
contained in all facets ofMd that originate

(1) from facets of�d that havet1 andt2 as 2-faces and
(2) from truncating the endpoints ofe.
�d is simple, sod − 3 of its facets containt1 and t2. e has two endpoints, which
define two facets containinge. Soe is contained ind − 1 facets, andMd is at least
(d − 2)-simple.

Any ridge in Md is adjacent to at least one facet coming from a facet of�d.
These are of typeMd−1. M3 is simplicial, so by inductionMd is at least 2-simplicial.
Md is not a simplex, so it is precisely 2-simplicial and (d − 2)-simple.

The polytopesNd are 3-simple and (d − 3)-simplicial. The latter follows from
the fact that the facets ofNd are combinatorially equivalent to the dual ofKd−1

2 ,
which is (d − 3)-simplicial. The 3-simplicity follows from the fact thatthe facets
of (Nd)∆ are either simplices or dual toNd−1. �

Now let us see how these polytopes fit into theE-construction. Here is the
complete classification:

4.3.2 T. The following combinatorial equivalences hold:

(Kd
k )∆ � Ek−1(∆d) that is, Kd

k � Dk−1(∆d) for 1 ≤ k ≤ d

(Md)∆ � Ed−2(N
d) that is, Md

� Dd−2(N
d)

� D1
(

(Nd)∆
)

.

Figure 4.1: The two polytopesK2
1 andK2

2, which are both triangles.
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Here we have used the generalisationDk of the vertex truncation operatorD1,
which we have introduced in Remark2.5.3. The polytopeNd itself is not a result
of the E-construction. The dual ofN5 is a 2-simple and 3-simplicial 5-polytope,
but it has simplex facets. Ford ≥ 6 bothNd and its dual are at least 3-simple.

Proof of Theorem4.3.2. We start with the hypersimplicesKd
k and show that their

duals areEk−1(∆d). ∆d clearly has a geometric realisation in which all (k− 1)-faces
are tangent to the unit sphere, for any 1≤ k ≤ d. So we can applyEk to it, by
Theorem2.5.14. To check that this has the right combinatorics it suffices to check
the vertex-facet-incidences, by Proposition1.2.24.

Let∆d be in the standard representation of Examples1.3.19. Ek−1(∆d) has
(
d+1

k

)

facets. Two facets have a common vertex if and only if the corresponding (k − 1)-
faces in∆dv have a common vertex orv lie in the same facet.
If we encode a (k− 1)-face of∆d by a 0/1-vector withk ones and (d− k+ 1) zeros,
then two facets ofEk−1(∆d) share a vertex if either the two vectors component wise
combined with the binaryand is not the zero vector or their binaryor is not the
vector containing only ones. If we interpret these vectors as vertices of the 0/1-
cubeCd+1, then this is precisely the vertex-facet-incidence description of Kd

k .

The polytopeNd in the given geometric realisation has its (d− 2)-faces tangent
to a sphere. Thus, we can apply theEd−2-construction to it, by Theorem2.5.14.
We check the vertex-facet-incidences.

Any ridge ofNd, that is, any facet ofEd−2(Nd), can be encoded by a vector with
entries in{0,±1}, precisely two of which are zero. In the given realisation, these
vectors are the vertices ofMd.

Let v be such a vector, representing a facet ofEd−2(Nd) and a vertex ofMd. The
vertices of a facet inEd−2(Nd) are the vertices of the corresponding ridge inNd and
the two vertices beyond the facets adjacent to this ridge. These two facets can be
represented by the two±1-vectors that one obtains by replacing the two zeros inv
in such a way, that the vector contains an odd number of+1’s.

The vertices ofNd have two types. In the ridgev they are given byv all ±1 vectors that replace the two zeros in such a way that the number of
+1’s becomes even, andv those vectors that have∓(d − 2) in one entry wherev has a 0 or±1 (observe
the sign), and zeros otherwise.

But these are just the facet normals of those facets ofMd that contain the vertexv.
SoEd−2(Nd) has the opposite face lattice ofMd. �
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4.3.2 T G–E P

Among the regular and uniform polytopes are several that are2-simple and (d−2)-
simplicial. We discussed some already. Here we describe another large class of
uniform polytopes which are interesting in connection withour construction.

McMullen observed that the Gosset–Elte polytopesrst are (r+2)-simplicial and
(r + t − 1)-simple (r + s+ t + 1)-polytopes. See the review of Kalai [40, p. 344] for
this. This family of polytopes is described in detail in the textbook of Coxeter [30,
Ch. 11.7-8]. They arise as a special case of the Wythoff construction, which we
describe briefly in the next paragraph. This construction produces polytopes with
Coxeter groupsas their symmetry group.

4.3.2.1 Wythoff ’s Construction

Here is the definition of aWythoff polytope. Let S be the unit (d − 1)-sphere.
We considerd hyperplanesH1,H2, . . . ,Hd that contain the origin. Letαi j be the
dihedral angle betweenHi andH j for all 1 ≤ i, j ≤ d.

The hyperplanes enclose a spherical simplexT onS. Place a pointx in one of
the vertices ofT and consider repeated reflections of this point at thed hyperplanes.
For special choices of the anglesαi j we obtain a finite point set onS (in particular
the angles must be rational multiples ofπ). The convex hull is a finite bounded
polytope. This is theWythoff polytopeassociated to the hyperplanesH1, . . . ,Hd.

If we have a choice of rational anglesαi j generating a finite point set then we
can reduce the angles to the formπp for p ∈ N, p ≥ 2, as for anyjπ

p with j andp
coprime, there is an integral multiple of this angle that differs fromπp by an integral
multiple ofπ. Define integersr i j for 1 ≤ i, j,≤ d by αi j =

π
r i j

. The tuple of integers
[r i j ] i j is theWythoff symbolof the Wythoff polytope. Observe, that the hyperplane
arrangementH1, . . . ,Hd is uniquely defined by the Wythoff symbol, up to affine
transformations inRd.

The hyperplane arrangement fixes the symmetry group of the polytope. It is
theCoxeter groupgenerated by reflexions in the hyperplanes. Reversely, there are
several Wythoff polytopes associated to a finite Coxeter group.

We have a quite convenient graphical representation of the hyperplane arrange-
ment defining a Wythoff polytope. The hyperplanes define a spherical simplexT
onS, so each hyperplaneHi has a unique opposite vertexvi of T not contained in
Hi, for 1 ≤ i ≤ d. To represent the arrangement, we draw a graph with one node
for each such hyperplane-vertex-pair, and we connect two nodes in the graph if the
two corresponding hyperplanes enclose an angle less thanπ

2. We mark this edge by
the integerr i j corresponding to the two hyperplanes ifr i j ≥ 4. We distinguish the
chosen vertex ofT in this graph by drawing a ring around it. This graph contains
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all necessary information to reconstruct the spherical tiling. See Figure4.2 for an
example. It shows the Wythoff graph, the Wythoff graph of its facets, the spherical
tiling with the spherical simplex highlighted, and the resulting Wythoff polytope
inscribed (which is a cube).

The types of facets of a Wythoff polytope can easily be derived from its graph:
They are Wythoff polytopes for the graphs that we obtain by removing an unringed
node with its adjacent edge, if the graph remains connected.That is, we obtain
the graphs of the facets by deleting a node from one of the freeends (if the graph
has any). In particular, the facets of a Wythoff polytope are Wythoff polytopes
themselves. Iterating this procedure gives us the facets ofthe facets, i.e. the ridges
of the Wythoff polytope, etc. Hence, all combinatorial types of faces of a Wythoff
polytope follow from the graph.

A more careful analysis of this procedure lets one also derive the symmetry
group of the polytope and itsf -vector. If the ringed node is the final node on a
free end, then removing the ringed node and shifting the ringto an adjacent vertex
produces the graph of the vertex figure.

Note, that the reverse direction is not true in general: Not all diagrams satis-
fying the above conditions do indeed define a Wythoff polytope. In particular, the
arrangement need not be finite, but may lead to a tiling of Euclidean space instead
of a bounded polytope.

We see more examples of the Wythoff construction in the next section. Gé-
vay [35] considers a construction ofKepler hypersolids, see Section4.3.3. The
duals of these polytopes are a special case of the Wythoff construction.

4

4

Figure 4.2: The Wythoff polytope with symbol [3, 4] is the cube. Its graph is shown in the upper
left figure. Below is the graph of its facets.
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4.3.2.2 Gosset-Elte Polytopes

TheGosset-Elte-Polytopes rst for r, s, t ≥ 1 are a special type of Wythoff polytopes,
defined by the following Wythoff graph.

Consider the group of reflections corresponding to the diagram in Figure4.3,
where we haver nodes on the right end,s nodes on the left end andt nodes on the
lower end. The Coxeter group is finite if and only ifr, s andt satisfy 1/(r + 1) +
1/(s+ 1)+ 1/(t + 1) > 1. (see [30, Chapter 11.8] for this).

Note that the graph is symmetric int ands. The inequality together with the
symmetry leaves us with only three infinite series for the parametersr, s andt and
a finite number of other choices.

The three infinite series are the following. We relabel the polytopes rst by
replacing one of the parameters by the dimensiond = r + s+ t + 1 of the polytope.v 0d−k,k−1, for 1 ≤ k ≤ d. Their diagram is shown in Figures4.4(a)and4.4(b).

They are equivalent to the hypersimplicesKd
k from Section4.3.1: 01,1 is the

octahedron and 02,0 = 00,2 is the simplex. We obtain the facets of 0d−k,k−1

by removing unringed end nodes. They have consequently the two different
types 0d−k−1,k−1 (if k < d) and 0d−k,k−2 (if k > 1). Continuing this untild = 3
shows that this polytope has the same combinatorial structure asKd

k .v 1d−3,1. See Figure4.4(c)for the Wythoff diagram. This is equivalent toNd,
which can again be deduced from the facet structure.v (d − 3)1,1 is the cross polytopes✚d. See Figure4.4(d)for the diagram. The
equivalence follows by induction over the dimensiond: 011 is the octahedron.
All facets of (d − 3)1,1 are simplices and the vertex figures are all of the type
(d − 4)1,1, that is, they are cross polytopes.

The remaining finite number of other choices forr, sandt arev in dimension 6: 122, 221 (Schläfli polytope),v in dimension 7: 132, , 231, 321 (Hesse polytope),v in dimension 8: 142, 241, and 421 (Gosset polytope).
Among those, only 221, 321, and 421 are 2-simple and (d − 2)-simplicial.

Of all these polytopes, only the infinite series 0d−k,k−1 for 1 ≤ k ≤ d is contained
in our construction (if we exclude the trivial casest = d−1 andt = 0, which map a

︸                    ︷︷                    ︸

r
︸                      ︷︷                      ︸

s






t

Figure 4.3: The general graph for Gosset–Elte polytopes.

– 138 –



Further Constructions and Special Polytopes

polytope to itself and its dual, respectively). The other three 2-simple and (d − 2)-
simplicial polytopes have simplices among their facets, which is impossible for a
polytope resulting from theE-construction.

13,1 is a 3-simple and 3-simplicial 6-polytope with 44 vertices,and 241 is a
4-simple and 4-simplicial 8 polytope with 2160 vertices. Sofor k = 2, 3 and 4
we know 2k-polytopes that arek-simple andk-simplicial. There are no non-trivial
polytopes known with this property fork ≥ 5.

4.3.3 Ǵ’ P

Gévay [35, 36] constructs a number of interesting polytopes from a construction
that uses a similar idea as we use for ours. However, he considers it with a com-
pletely different intention, as he is interested in symmetry and regularity properties
of the constructed polytopes. He starts out from spherical tilings generated by
Coxeter groups, and considers polytopes obtained by joining some of the spherical
simplices generated by this group.

In [35], Gévay considers a construction similar to the Wythoff construction of
the previous section. For a Coxeter groupC, one looks at the spherical simplex and
the spherical tiling of the sphere defined by it, and obtains a(semi-regular) polytope
by the following method: Take a pointP in this simplex and all its reflections.
Define a polytope as the intersection of all half spaces defined by the tangent planes
to these points. By regularity, this gives a polytope for which the given Coxeter

︸                                                   ︷︷                                                   ︸

d nodes

(a) The Wythoff graph of thed-simplex 00,d−1.

︸                    ︷︷                    ︸

d−k
︸                       ︷︷                       ︸

k−1
(b) The figure for 0d−k,k−1.

︸                    ︷︷                    ︸

d−3

(c) The figure for 1d−3,1.

︸                    ︷︷                    ︸

d−3

(d) The figure for (d− 3)1,1.

Figure 4.4: The infinite Gosset–Elte series.
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group is transitive on the facets. This construction methodis “dual” to the Wythoff
construction.

Further polytopes with the same symmetry group can be constructed by con-
sidering the “factor tessellation”: Take a pointx in the relative interior of some face
of the spherical simplex. LetC0 be its stabiliser. Define an equivalence relation on
the spherical tiles by saying that two tiles are equivalent if they lie in the same orbit
with respect toC0. Define a new tessellation by taking the union of the equivalence
classes as new tiles. Clearly, in this regular setting, a hyperplane description of the
corresponding polytope is given by the tangent planes tox and its translates.

If we choose the pointx in the relative interior of ak-face of the spherical sim-
plex, then we identify all tiles in the factor tessellation that contain thisk-face. So
this construction can be viewed as a special case of ourEk-construction for CW
spheres in Definition2.4.3, for spherical tilings generated by reflections. Poly-
topality of the spheres is in this case guaranteed by the symmetry contained in the
construction.

Gévay considers the transitivity properties of this construction for facets ofk-
faces, where 0≤ k ≤ d − 1. In general, the groupC will not be facet transitive on
thesek-faces anymore.

They are, however, transitive for the special class ofKepler polytopes. These
are “factor tessellations” of tilings obtained from a Coxeter groupC of a regular
polytopeP. In this case, there is a simple way to realise the tessellation geometri-
cally: TakeP and scale it, such that itsk-faces are tangent to the unit sphere. The
corresponding Kepler polytope is the convex hull ofP and its polar. Compare this
process to Theorem2.5.14.

In accordance with Coxeter’s original notation, we denote the symmetry groups
of regular polytopes byv An for the the simplex,v Bn for the cube and cross polytope,v F4 for the 24-cell andv H4 for the 120-cell.
The resulting Kepler polytopes are denoted byX(d, k + 1), whereX = A, B, F or
G according to the symmetry group ofP, d is the dimension ofP and k is the
dimension of the face containing the pointx from above.

The (r, s)-polytopes forr, s ≥ 2 among those are listed in Table4.4 for d = 4
and Table4.6otherwise, the others in Table4.8. We do not repeat them here.

One specifically interesting instance is the “dipyramidal 720-cell” G(4, 2) =
f1H4, which reappears as an instance of theE-construction of Eppstein, Kuperberg,
and Ziegler. In our notation it isE2(120-cell), which can be geometrically realised
with the methods of Theorem2.5.14.

These polytopes and the above described construction are further explored by
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Gévay in [36], where he looks atperfectpolytopes, which are geometrically re-
alised polytopes with the property that all symmetry equivalent polytopes are al-
ready similar. The Kepler polytopes defined above are perfect. See Remark3.5.9
for two more.

For some more information on perfect polytopes see also [38] and [37], con-
taining a new class of perfect 4-polytopes constructed by truncating certain ver-
tices of bipyramidal Kepler polytopes, and some constructions of perfect non-
Wythoffian polytopes by truncations.

4.3.4 T E  E, K,  Z

The examples of 2-simple and 2-simplicial 4-polytopes of Eppstein, Kuperberg,
and Ziegler in [33] can all be obtained via our method of realising theE-construc-
tion described in Section2.5.14.

They constructed a large number of such polytopes, so we cannot present all of
them in this summary. Moreover, for most examples they needed rather intricate
arguments, which are now, with the help of our new methods, unnecessary. So
we restrict to some particularly interesting examples, andto examples with a small
number of vertices, which we include in our tables in the nextsection.

Basically, in their paper they prove Theorem2.5.14for dimensiond = 4 and
parametert = 1. Hence, to apply their theorem for the construction of (2, 2)-
polytopes, they need simplicial 4-polytopes that have their edges tangent to the
unit sphere. For this, they switch to hyperbolic geometry and examine possible
edge linksin polytopes obtained by gluing regular simplicial 4-polytopes along
facets, in the same way as we did for the proof of Theorem2.5.15. They consider
the edge links of the simplex, the cross polytope, and the 600-cell for this. In this
regular and edge tangent version, these links are a regular triangle, a regular square,
and a regular pentagon. So the dihedral angles areπ

3, π2 and 3π
5 . See Lemma2.5.18

for the computation of the first two angles. The third can be obtained similarly.
Edge tangent simplicial 4-polytopes can now be obtained by gluing simplices,

cross polytopes, and 600-cells along tetrahedra in such a way thatv either the resulting dihedral angle at an edge where two or more of these
building blocks meet remains strictly between 0 andπ, orv the edge vanishes completely in the interior.

They give lists of possible edge links satisfying these conditions. If using only
simplices, then there are only three such links, which are shown in Figure4.5.
From these links, one can construct only three different polytopes [33, Prop. 8]:v The simplex∆4. This leads to the hypersimplexE1(∆4) � E2(∆4) � K4

2 in
theE-construction.v The stacked simplex, which leads to a special gluing of two hypersimplices
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in the E-construction. This polytopeB14 was already described previously
by Braden [27]. In our context, the simplest way to obtain a realisation isvia
vertex truncation, asD(P4

1), see Section2.5.1. A possible set of coordinates
and a Schlegel diagram are shown in Figure2.15.v The sum of a triangle and a hexagon. In our context, it is easiest described
via its dual, which is the product of a triangle and a hexagon.A realisation
of this polytope EKZ1 � E(C3 ×C6) was obtained in Section3.4.1.

Further, Eppstein, Kuperberg, and Ziegler classify all possible edge links, if
one allows gluings of simplices and cross polytope. They findeleven different
links [33, Sect. 3.2]. Three of them contain only one square. These areshown in
Figure4.6.

They classify all possible edge tangent simplicial polytopes using only these
three links in their Proposition 10 and obtain 21 edge tangent simplicial polytopes,
which are glued from one cross polytopes andk simplices fork ≥ 0. Due to
their angle sum restrictions, they can only glue simplices onto facets of the cross
polytope that do not share a ridge. With our methods, we are not bound to this
anymore, so already from these simple building blocks we obtain many more dif-
ferent (2, 2)-polytopes. See Table4.2 for a comparison. The first type in the list,
i.e. the cross polytope without any glued simplices, leads to the 24-cell in theE-
construction. In our setting, all the different types can most easily be constructed
via Proposition2.5.13, with a realisation ofE2(�4) as input.

Note also, that the construction of Eppstein, Kuperberg, and Ziegler is limited
to gluing simplices onto a facet of the cross polytope. We canproduce further,
combinatorially different, (2, 2)-polytopes by gluing simplices onto facets of sim-
plices glued in some earlier step (i.e. in the dual language,truncating vertices that
are the result of some previous truncation operation). Thisleads to already 4877
different types in the sixth step, compared to the 50 when only gluing simplices
onto facets of the cross polytope, and 2 in the original construction.

Here are the small instances with up to 32 vertices among these polytopes.

E(∆4), B14, EKZ1 B14 EKZ1

Figure 4.5: The three edge links involving only simplices. Below are thepolytopes they appear in.
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∑

f0 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

EKZ 1 1 3 3 6 3 2 1 1 0 0 0 0 0 0 0 0 21

A 1 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1 1 402

B 1 1 5 16 102 628 4877 . . . many

Table 4.2: The number of combinatorially different possibilities of gluingk ≥ 0 simplices onto a
facet of✚4, such that theE-construction can be applied to the result.
The first row lists the possibilities allowed in the construction of Eppstein, Kuperberg, and Ziegler,
the second row (types A) the possibilities for our construction if we only glue simplices onto facets
of ✚4, and the third row (types B) shows the number of different types if we successively glue
simplices without this restriction.

(1) the 24-cell fork = 0,
(2) theE-construction EKZ2 of a stacked cross polytope,
(3) and theE-construction EKZ( j)

3 of a cross polytope with two stacked facets.
There are three variantsj = 1, 2, 3 of this polytope obtained by Eppstein,
Kuperberg, and Ziegler. By our construction we obtain one more — combi-
natorially different — variant�2

4.

In Theorem 11 and Section 3.3 of their paper, Eppstein, Kuperberg, and Ziegler
construct two infinite families of (2, 2)-polytopes, which were the first of their kind.

The first series of (2, 2)-polytopes contains polytopes with flag vector

(54n− 30, 252n− 156, 252n− 156, 54n− 30; 360n− 216),

for n ≥ 1. They are a special case of our family in Theorem2.5.15for d = 4. It
uses the edge link shown in Figure2.21at the gluing ridges.

E(✚4), EKZ2, EKZ( j)
3 EKZ2,EKZ( j)

3 EKZ( j)
3

Figure 4.6: The three possible edge links involving one square, and the polytopes they appear in.
The polytopes have also links involving only the triangle ofFigure4.5.
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The second family stems from a gluing of 600-cells. For this,they modify the
600-cells by truncating vertices, as otherwise the angles at the gluing edges are2π5
— which is too large. The series ofE-polytopes obtained from this has flag vector

(666n+ 54, 3360n+ 240, 3360n+ 240, 666n+ 54; 4692n+ 348),

for n ≥ 0. There are no polytopes similar to the 600-cell in higher dimensions.
Hence, this family cannot be lifted to dimensionsd > 4 to produce a family of
(2, d− 2)-polytopes.

They further elaborate this gluing construction with 600-cells. By using proper-
ties of the symmetry group and semi-regular polytopes they identify subsets of the
vertices that can be truncated and the resulting facet gluedwith a copy of another
truncated 600-cell. This results in a (2, 2)-polytope EKZfat with 459360 vertices
and 2319120 edges. At that time, EKZfat was the fattest (in the sense of Defini-
tion 4.2.7) known polytope, with a fatness of roughly 5.048. This has sparked a
small race for fatter 4-polytopes, which produced several results of this thesis as a
“side effect”. With E10,10 it contains a fatter polytope, but there are already other,
even fatter, polytopes found by Ziegler [92].

4.3.5 W’ E

Recently, Werner [88] found a new small and highly symmetric self-dual (2, 2)-
polytopeW9 with 9 vertices and 26 edges. See Figure4.7for the coordinates and a
Schlegel diagram.W9 is a self-dual, 2-simple and 2-simplicial 4-polytope.

Its facets are one octahedron, six stacked simplices (bipyramids over a triangle),
and two simplices. The octahedron is incident to all other facets, and the two
simplices are on two opposite faces of the octahedron. All stacked simplices meet
in a vertex of degree eight (the octahedron in the dual polytope).

4.3.3 R [W9 is on l1]. The polytopeW9 lies on the rayl1 := flag(∆4) +
λ(1, 4, 4, 1; 6) of the list of seven rays (1.4.9) in the boundary of the flag vector
cone of 4-polytopes. See also Figure1.18. There are only two further polytopes
known lying on this ray, thesimplex, and thehypersimplex. There is, however,
some hope to find more. See the next section for this.

None of the polytopes obtained from theE-construction can lie on this ray,
except the hypersimplex. This follows from the following simple observation. Any
polytope onl1 must be 2-simple and 2-simplicial. So, if it is a result of theE-
construction, then it is (at least combinatorially) obtained viaE1 from a simplicial
4-polytope. A simplicial 4-polytopeP has anf -vector of the form (a, a+ b, 2b, b).
Hence,E1(P) has thef -vector (a+ b, 6a, 6a, a+ b). Lying on l1 implies

6a− 10
a+ b− 5

= 4 and therefore a+ 5 = 2b.
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The only simplicial 4-polytope satisfying this, is the simplex. E1 applied to it yields
the hypersimplex.

Werner found this polytope via a “reverse” shelling approach. This approach
attempts to find new candidates for face lattices of (2, 2)-polytopes by trying to
build up such a lattice along the inverse of a shelling. The search is done with a
computer using a client for thepolymake package. It enumerates (2, 2)-lattices
obtainable with a previously fixed set of simplicial facet types, i.e. a fixed list of
simplicial 3-polytopes.

The discovery of this polytope lead us to the following nice (non-)existence
theorem. See [67] for a more thorough treatment.

4.3.4 T. The only2-simple and2-simplicial 4-polytope with eight or less
vertices is the simplex.

In other words, nine is the minimal number of vertices a non-trivial 2-simple
and 2-simplicial 4-polytope must have, and this number is attained by the polytope
W9. Compare this also to the next theorem.

Proof of Theorem4.3.4. Assume there is a 2-simple and 2-simplicial 4-polytopeP
with less than nine vertices different from the simplex. The only 4-polytope with
five vertices is the simplex, so it must have 6, 7 or 8 vertices.

P cannot be simplicial by Proposition1.2.27, so it has at least one facet with
five or more vertices. LetF be such a facet ofP. By 2-simplicity,F is simplicial
with f -vector (a, 3a− 6, 2a− 4), for a ≥ 5.

[

−2 −2 −2 2
]

[

−6 0 0 0
]

[

0 −6 0 0
]

[

0 0 −6 0
]

[

0 0 0 3
]

[

0 0 6 0
]

[

0 6 0 0
]

[

6 0 0 0
]

[

2 2 2 2
]

Figure 4.7: The second smallest (2, 2)-polytope, and the first non-trivial such. Only the simplex
has less vertices.
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Hence, the dual polytopeP∆ has a vertex of degree 2a − 4 ≥ 6, soP∆ has at
least 2a−3 ≥ 7 vertices, andP has at least 2a−3 ≥ 7 facets. A (2, 2)-polytope has
as many vertices as it has facets, soP has at least 2a− 3 vertices. By assumption,
this is less or equal to eight, so any facet ofP has at most 5 vertices. There are only
two simplicial 3-polytopes with five or less vertices, whichare the simplex and the
stacked simplex. We denote these two possible facet types by∆1 and∆2.

F is not the simplex, soF is of type∆2. F has three verticesv1, v2 andv3 of
degree four, and two verticesw1 andw2 of degree three. See Figure4.8(a)for an
illustration. The dual facet tov1 has a vertex of degree four and thus is of type∆2,
by 2-simplicity. Similarly forv2 andv3.

So around each ofv1, v2, andv3 there are five facets — one of which isF — and
two incident edges which are not edges ofF. Sov1, v2, andv3 are each incident to
two further vertices not contained inF. See Figure4.8(b)for an illustration of the
vertex link ofv1 (up to symmetry). By 2-simplicity, two adjacent vertices ofdegree
four can share one of the two additional vertices in their neighbourhood, but not
both. So we have at least 5+ 3 = 8 vertices inP.

In the star ofv1 are two facets of type∆2 glued on the trianglesT1 and T2

in such a way, thatv1 is a vertex of degree 4 in them. If we consider the triangle
spanned byv1, v2, andv3 as the “equator” ofF, then eitherT1 is above andT2 below
the equator, or vice versa. The same is true forv1 andv2, so the three facets ofP

F

v1

v2

w2

v3

w1

(a) The facetF of P.

F

v1

v2

w2 v3

w1

u1u2

T1

T2

(b) The link of a vertexv of degree 4 in a∆2

with other verticesv1, . . . , v4.

Figure 4.8: Facets of small (2, 2)-polytopes I.
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adjacent to the three triangles ofF above the equator must contain three vertices of
degree 4. The same holds for the three facets adjacent toF below the equator.

A facet of type∆2 has two vertices of degree 4 in each of its 2-faces (see
Figure4.9), so there are at least two such facetsFa andF′a above, and two such
facetsFb andF′b below the equator.

Now Fa andF′a each have two of its vertices of degree 4 adjacent toF, but only
three of them can be incident to the equator, so eitherFa or F′a must havew1 as a
vertex of degree 4. Similarly,w2 is a vertex of degree 4 in eitherFb or F′b.

So in P∆ the vertexw1 of F corresponds to a facet of type∆2. Hence it is
incident to five facets inP. Up to now, we have identified only four of them: These
areF and the three facets adjacent to a triangle ofF containingw1. So there is one
more facetF′ of P intersectingF only in w1. The same holds forw2.

Counting facets, we have six facets intersectingF in a triangle,F itself, and
two facets intersectingF in w1 andw2. But P has only eight facets. �

Any simplicial 3-polytopeS with seven vertices has ten triangular faces. So, if
S is a facet of a 4-polytopeP, thenP∆ has a vertex of degree ten. (2, 2)-polytopes
have as many facets as they have vertices. Hence, a (2, 2)-polytopeP with only
nine vertices cannot have a facet with seven or more vertices. Thus, a facetF of
P can only have four (the simplex), five (the stacked simplex),or six vertices (the
twice stacked simplex or the cross polytope).

T

a1 a2

a3

b1

b2

Figure 4.9: Facets of small (2, 2)-polytopes II: A facet of type∆2 glued on a triangleTwith vertices
a1, a2 anda3. The verticesb1 andb2 are added.
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4.3.5 P. W9 is the only(2, 2)-polytope with nine vertices having an
octahedral facet and no other facet with six vertices.

Proof. Let O be the octahedral facet ofP. P has eight further facets, andO has
eight 2-faces, so all other facets ofP are incident toO. All vertices of O have
degree four, so the vertex links all look like the one shown inFigure4.8(b), where
v1, v2, v3, w1 andw2 are vertices ofO.

Hence, around any vertexv of O we have to have two facets in whichv is a
vertex of degree four (i.e. stacked simplices, as there is noother octahedron by
assumption) at diagonally opposed triangles.

Each triangle in a stacked simplex is adjacent to two vertices of degree 4. Fur-
ther, O has six vertices, so there are precisely six stacked simplices adjacent to
O, and the remaining two facets are simplices. Up symmetry, there is only one
possibility to distribute these six stacked simplices ontothe eight triangles of the
octahedron, see Figure4.10. This is the choice realised inW9. �

In [67] we prove thatW9 is in fact the only (2, 2)-polytope with nine vertices.
The proof uses similar arguments as the ones used in the abovetwo proofs, but is
much more involved.

4.3.6 T. The polytope W9 is the only(2, 2)-polytope with nine vertices.�

In addition to Theorem4.3.4 and Proposition4.3.5 one has to show for the
proof, that a (2, 2)-polytope with nine vertices has precisely one facet withsix
vertices, and that this facet cannot be the twice stacked simplex.

∆2

∆2

∆2

∆2

∆2

∆2

∆1

∆1

Figure 4.10:The distribution of 6 stacked simplices∆2 and 2 simplices∆1 onto the octahedral facet
(unique up to symmetry). The incidences of vertices of degree 4 in∆2 are indicated with arrows.
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4.3.6 S I T  G E-C

There are some promising steps towards a generalisation of the E-construction.
These were inspired by the polytopeW9 from the previous section.

The idea for the generalised version is the following. We restrict here to the
caset = d − 2 for ad-polytopeP. TheE-Construction produces a polytope whose
facets are bipyramids over the ridges ofP. We can take a slightly different (local)
view on this. Assume that the polytopeP has a facetF that is a simplex. Choose
a subsetR1, . . . ,Rs of the ridges ofP adjacent toF and place a new vertexv above
F in such a way, thatv lies in the facet hyperplanes of the facets adjacent toF in
R1, . . . ,Rs, and below all others. If we choosev such that it is not contained in an
affine subspace defined by ak-dimensional face ofP for somek ≤ d − 2 (so the
chosen ridges, or some subset of them, should better not intersect in a vertex of
degreed of P), then we have achieved the following:v All facets adjacent toF via one of the ridgesR1, . . . ,Rs are turned into facets

that are stacked above that ridge.v For all ridges ofF not in R1, . . . ,Rs we obtain one new facet forP, which is
a simplex.

See Figure4.11for an example. The degree of an (d − 3)-facee of F changes by
r −1, wherer is the number of adjacent ridges not amongR1, . . . ,Rs. The polytope
W9 is obtained by this construction from a pyramid over✚3 by choosing a pairF1

andF2 of opposite simplices (i.e. facets that are pyramids over a facet of✚3 and
intersect only in the apex). For both facets, the list of ridges should contain those,
that are pyramids over an edge of✚3, but not the bottom 2-face contained in✚3.

In principle, we are not restricted to applying this construction to simplicial
facets, and we have applications in whichF is not a simplex. However, the facetF
remains a facet of the new polytope, and if we want to obtain a geometric realisa-

R1
R2

F

P

Figure 4.11: A generalised version of theE-construction: The top facet is the chosen facetF, and
the big vertex has been added in the hyperplanes of the left and right facet.
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tion of the polytope from this construction we have to adjustthe normal vector of
F. Hence, in the case thatF is not a simplex, we have to assure, that the combina-
torial properties of the polytope do not change at vertices of F that are not involved
in the actual construction. This is in particular possible if these vertices are simple
vertices inP.

So far, with the help of this construction we produced one new(2, 2)-polytope
with 16 vertices and 56 edges. It is obtained from✚4 by choosing eight of its
facets, and in each facet three adjacent ridges. If one chooses the facets suitably,
then one has only in the last step to deal with a facet which is not a simplex, but a
stacked simplex from a previous step in the construction. Inthis case, the vertex
of the facet not involved in the construction is simple. A Schlegel diagram of the
dual of this polytope is shown in Figure4.12. We can produce several face lattices
of PL spheres that lie — just like the polytopeW9 of the previous section — on
the rayl1 of the flag vector cone of 4-polytopes (see Section1.4.2for the relevant
definitions).

A precise description of this construction will be given elsewhere, together with
criteria for polytopal realisability of the resulting spheres.

Figure 4.12: A Schlegel diagram of the “broken cube”, which is the dual of the polytope with
16 vertices obtained from the generalisedE-construction applied to✚4. It has 16 vertices and 56
edges.
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4.4 S  K E

Here is a summary on the sizes and types of (2, 2)-polytopes obtained in Chap-
ters2-4, together with some computational data.

We collect small examples of our constructions, all the presented examples
of previously known (r, s)-polytopes, (2, 2)-polytopes, and other polytopes with
special properties now obtainable from theE-construction in five tables:v Table4.4 lists all known examples of (2, 2)-polytopes up to 50 vertices.v Table 4.5 lists some previously known examples (with more than 50 ver-

tices).v Table4.6 lists (r, s)-polytopes in dimensiond > 4 that haver, s≥ 2.v Table4.7 lists some examples of infinite series of (2, 2)-polytopes.v Table4.8lists some examples of polytopes that can be obtained via ourcon-
struction, but that are neitherr-simple nors-simplicial for somer, s≥ 2.

Any 2-simple and 2-simplicial 4-polytope has a flag vector ofthe special form

( f0, f1, f1, f0; f1 + 2 f0).

Hencef0 and f1 suffice, and we list them in the flag vector column of the tables.
Let P be a simple polytope. If we have avertex preserving(in the sense of

Definition3.2.4) geometric realisation ofE2(P), then we can compute a realisation
of E2(P), whereP is obtained fromP by truncating a vertex. This follows from
Proposition2.5.13. Dually, if we knowD(P) for a simplicial polytope, then we can
computeD(P) for any polytopeP obtained fromP by stacking one of its facets.

Truncation preserves simplicity, and stacking preserves simpliciality, so we can
apply these two operations recursively. There are usually several combinatorially
different ways of truncating a vertex or stacking a facet of a polytope. These lead
to combinatorially differentE-polytopes with the same flag vector. We use the
following list of small simple 4-polytopes to generate the first table.

∆4 C3 ×C6 C5 ×C5 C4 ×C8

C3 ×C3 C4 ×C5 C3 ×C9 C3 ×C11

C3 ×C4 C3 ×C7 C4 ×C7 C5 ×C7

C3 ×C5 C4 ×C6 C5 ×C6 C6 ×C6

�4 C3 ×C8 C3 ×C10 C4 ×C9

The dual of a (2, 2)-polytope is also a (2, 2)-polytope. We include only one of the
two variants in the table.

The list in Table4.4is a complete list of (2, 2)-polytopes that result from theE-
construction with up to 19 vertices. This can be seen by looking at small simplicial
4-polytopes. (Dually, and more in the flavour of our construction, one could as
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well look at simple polytopes. However, historically, the classification results for
4-polytopes used simpliciality.) By theg-Theorem of Billera and Lee (see [14]
and [15]), a simplicial 4-polytope with 5+ n vertices has at least 5+ 3n facets.E1

applied to it has thereforef0 ≥ 5 + n + 5 + 3n = 10+ 4n vertices and the same
number of facets. Hence, it suffices to look at simplicial 4-polytopes with up to
seven vertices. These were classified by Grünbaum [44]:

(1) The one simplicial 4-polytope with five vertices is the simplex, and we obtain
the hypersimplex from it.

(2) The two simplicial 4-polytopes with six vertices are thebipyramid over a
triangle, and the sum of two triangles. Dually, these are theprism over a
triangle, and the product of two triangles. The first leads toBraden’s example
B14, the second toE33 := E2(C3 ×C3).

(3) Among the five simplicial 4-polytopes with 7 vertices, weonly have to look
at those with up to twelve facets. These are the twice stackedsimplex,
the join of a triangle and a square, and the dual of a truncatedproduct of
two triangles. The first leads to a (2, 2)-polytope with 18 vertices, which
is E2(tr(∆; 2 vertices)). The last two result in two different (2, 2)-polytopes
with 19 vertices, which areE34 = E2(C3 ×C4) andE2(tr(C3 ×C3; v)).

There are two more simplicial 4-polytopes with seven vertices, leading to (2, 2)-
spheres with 20 and 21 vertices. However, polytopality is unknown for both of
them. These two are the two smallest such examples, and can bedescribed as
follows:v The dual of a wedge over a triangular face of a truncated prismover a triangle

is a simplicial 4-polytope withf -vector (7, 20, 26, 13). TheE1-construction
applied to this produces a CW (2, 2)-sphere with 20 vertices and 78 edges.v The cyclic 4-polytope on seven vertices hasf -vector (7, 21, 28, 14), resulting
in a CW (2, 2)-sphere with 21 vertices and 84 edges.

The 37 simplicial 4-polytopes on 8 vertices were classified by Grünbaum and
Sreedharan [45]. They lead to (2, 2)-spheres that have between 22 and 25 ver-
tices. There are many more simplicial 4-polytopes with 9 vertices, leading to (2, 2)-
spheres with 26 and more vertices. For most of them it is unknown whether they
can be realised as polytopes.

Recently, Werner has found a new (2, 2)-sphere with 14 vertices and 49 edges,
that is not a result of theE-construction. 7 of its facets are stacked simplices, and
7 are octahedra. Polytopality is unknown. More small examples of (2, 2)-spheres
with interesting properties result from the generalisation of theE-construction. See
Section4.3.6for this.

Using Proposition2.5.13for a simple polytope and itsE-construction we can
createreally large numbers of combinatorially different (2, 2)-polytopes with the
same flag vector. We have met this already in Section4.3.4, where we computed
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∆4: k 0 1 2 3 4 5 6 7 8

f0 10 14 18 22 26 30 34 38 42
# 1 3 7 30 131 795 5152

C3 ×C3: k 0 1 2 3 4 5 6

f0 15 19 23 27 31 35 39
# 1 1 3 14 82 570 4401

Table 4.3: The same numbers as in the last row of Table4.2, but for the simplex and the product
C3 × C3 instead of the cross polytope: The numbers of combinatorially different (2, 2)-polytopes
obtained by applying theE2-construction to ak-fold truncation.

the number of possible ways of successively stacking facetsof the cross polytope.
With six stacking operations, we obtain 4877 different (2, 2)-polytopes. Truncat-
ing six vertices of the polytopeC3 × C4 leads to 14301 different polytopes, and
consequently to the same number of different (2, 2)-polytopes with 43 vertices.

We have computed similar numbers for the simplex, and the product of two tri-
angles: These are the two smallest simple polytopes (the second simple polytope
with six vertices is a truncation of the simplex). Table4.3lists the numbers of com-
binatorially different types of (2, 2)-polytopes obtained by truncatingk vertices, for
k ≤ 8 in the case of the simplex, andk ≤ 6 in the caseC3 ×C3. All are realisable.

4.4.1 C D

Files in thepolymake data format for most of the examples listed in Table4.4(all
those where explicit numbers of different types are given) and several othery are at
http://www.math.tu-berlin.de/~paffenho/polytopes/2s2s/. Many of
the files contain geometric coordinates (in particular for all instances up to 22 ver-
tices) in addition to the combinatorial description.

The polymake package is a computer system by Gawrilow and Joswig [34]
that provides powerful routines for the combinatorial and geometric treatment of
polytopes. It can be obtained athttp://www.math.tu-berlin.de/polymake
and is free software for academic use. A client for the polymake package that
implements the application of the combinatorial version ofthe E-construction —
that is, as presented in Definition2.3.1— is available from the author. It produces
the vertex-facet-incidence matrix, it does not check polytopality.
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( f0, f1) E-  

(5, 10) — 1 simplex

(9, 26) — 1 W’s polytopeW9

(10, 30) E2(∆4) 1 hypersimplex

(10, 30) D1(simplex) 1 hypersimplex∆

(14, 48) E2(tr(∆4; v)) � E2(Pr(∆3)) 1 B’s polytopeB14

(15, 54) E2(C3 ×C3) 1

(16, 56) 1 The “broken cube”

(18, 66) E2(tr(∆4; 2 vertices)) 1

(19, 72) E2(C3 ×C4) 1

E2(tr(C3 ×C3; v)) 1

(22, 84) E2(tr(∆4; 3 vertices)) 3

(23, 90) E2(C3 ×C5) 1

E2(tr(C3 ×C4; v)) 1

E2(tr(C3 ×C3; 2 vertices)) 3

(24, 96) E2(�4) 1 24-cell

(26, 102) E2(tr(∆4; 4 vertices)) 7

(27, 108) E2(C3 ×C6) 1 EKZ1

(27, 108) E2(tr(C3 ×C5; v)) 1

E2(tr(C3 ×C4; 2 vertices)) 7

E2(tr(C3 ×C3; 3 vertices)) 14

(28, 114) E2(tr(�4; v)) 1 EKZ2

(29, 120) E2(C4 ×C5) 1

(30, 120) E2(tr(∆4; 5 vertices)) 30

(31, 126) E2(C3 ×C7) 1

E2(tr(C3 ×C6; v)) 1

E2(tr(C3 ×C5; 2 vertices)) 7

E2(tr(C3 ×C4; 3 vertices)) 33

E2(tr(C3 ×C3; 4 vertices)) 82

(32, 132) E2(tr(�4; v1, v2)) 3 EKZ j
3, j = 1, 2, 3

for v, v2 non-adjacent

(32, 132) E2(tr(�4; v1, v2)) 1 �
2
4 for v, v2 adjacent

(33, 138) E2(tr(C4 ×C5; v)) 1

Table 4.4: Known (2, 2)-polytopes up to 50 vertices.
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Summary of Known Examples

( f0, f1) E-  

(34, 138) E2(tr(∆4; 6 vertices)) 131

(34, 144) E2(C4 ×C6) 1

(35, 144) E2(C3 ×C8) 1

E2(tr(C3 ×C7; v)) 1

E2(tr(C3 ×C6; 2 vertices)) 9

E2(tr(C3 ×C5; 3 vertices)) 39

E2(tr(C3 ×C4; 4 vertices)) 239

E2(tr(C3 ×C3; 5 vertices)) 570

(35, 150) E2(C5 ×C5) 1

(36, 150) E2(tr(�4; 3 vertices)) 16

(37, 156) E2(tr(C4 ×C5; 2 vertices)) 10

(38, 156) E2(tr(∆4; 7 vertices)) 795

(38, 162) E2(tr(C4 ×C6; v)) 1

(39, 162) E2(C3 ×C9) 1

E2(tr(C3 ×C8; v)) 1

E2(tr(C3 ×C7; 2 vertices)) 9

E2(tr(C3 ×C6; 3 vertices)) 50

E2(tr(C3 ×C5; 4 vertices)) 305

E2(tr(C3 ×C4; 5 vertices)) 1751

E2(tr(C3 ×C3; 6 vertices)) 4401

(39, 168) E2(C4 ×C7) 1

E2(tr(C5 ×C5; v)) 1

(40, 168) E2(tr(�4; 4 vertices)) 102

(41, 174) E2(tr(C4 ×C5; 3 vertices)) 57

(41, 180) E2(C5 ×C6) 1

(42, 174) E2(tr(∆4; 8 vertices)) 5152

(42, 180) E2(✚4+✚4) 1

(42, 180) E2(tr(C4 ×C6; 2 vertices)) 13

(43, 180) E2(C3 ×C10) 1

E2(tr(C3 ×C9; v)) 1

E2(tr(C3 ×C8; 2 vertices)) 11

E2(tr(C3 ×C7; 3 vertices)) 57

Table 4.4: Known (2, 2)-polytopes up to 50 vertices.
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F V  E

( f0, f1) E-  

E2(tr(C3 ×C6; 4 vertices)) 423

E2(tr(C3 ×C5; 5 vertices)) 2485

E2(tr(C3 ×C4; 6 vertices)) 14301

E2(tr(C3 ×C3; 7 vertices)) many

(43, 186) E2(tr(C4 ×C7; v)) 1

E2(tr(C5 ×C5; 2 vertices)) 6

(44, 186) E2(tr(�4; 5 vertices)) 628

(44, 192) E2(C4 ×C8) 1

(45, 192) E2(tr(C4 ×C5; 4 vertices)) 517

(45, 198) E2(tr(C5 ×C6; v)) 1

(46, 192) E2(tr(∆4; 9 vertices)) many

(46, 198) E2(tr(C4 ×C6; 3 vertices)) 75

(47, 198) E2(C3 ×C11) 1

E2(tr(C3 ×C10; v)) 1

E2(tr(C3 ×C9; 2 vertices)) 11

E2(tr(C3 ×C8; 3 vertices)) 69

E2(tr(C3 ×C7; 4 vertices)) 525

E2(tr(C3 ×C6; 5 vertices)) 3567

E2(tr(C3 ×C5; 6 vertices)) many

E2(tr(C3 ×C4; 7 vertices)) many

E2(tr(C3 ×C3; 8 vertices)) many

(47, 204) E2(tr(C4 ×C7; 2 vertices)) 88

E2(tr(C5 ×C5; 3 vertices)) 38

(47, 210) E2(C5 ×C7) 1

(48, 204) E2(tr(�4; 6 vertices)) 4877

(48, 210) E2(tr(C4 ×C8; v)) 1

(48, 216) E2(C6 ×C6) 1

(49, 210) E2(tr(C4 ×C5; 5 vertices)) 4498

(49, 216) E2(C4 ×C9) 1

E2(tr(C5 ×C6; 2 vertices)) 13

(50, 210) E2(tr(∆4; 10 vertices)) many

(50, 216) E2(tr(C4 ×C6; 4 vertices)) 746

Table 4.4: Known (2, 2)-polytopes up to 50 vertices.
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Table 4.5: Some of the previously known (2, 2)-polytopes discussed in the text, and those not from theE-construction.

   G–E G̈ G́ E-C

simplex (5, 10) 03,0 = 00,3 K4
4 = K4

1 A(4, 1) = A(4, 4)

W9 (9,26)

hypersimplex (10, 30) A(4, 2) = A(4, 3) E2(∆4)

hypersimplex∆ (10, 30) 01,2 = 02,1 K4
2 = K4

3 D1(simplex)

B14 (14, 48) E2(prism over∆3)

24-cell (24, 96) M4 B(4, 2) E2(�4)

EKZ1 (27, 108) E2(C3 ×C6)

EKZ2 (28, 114) E2(Stacked✚4)

EKZ( j)
3 , j = 1, 2, 3 (32, 132) E2(Twice Stacked✚4)

Dipyramidal 720-cell (720, 3600) G(4, 2) E2(120-cell)

EKZ f at (459360, 2319120)

–
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Table 4.6: A list of all previously known examples of (r, s)-polytopes in dimensiond > 4. The column for the type contains the pair (r, s).

    G–E G̈ G́ E-C

simplex (d,d) 0d−1,0 = 00,d−1 Kd
1 = Kd

d A(d,1)=A(d,d) Ed
d−1(∆d)∆

hypersimplices (d-2,2) 0d−k−1,k, 2 ≤ k ≤ d− 1 Kd
k A(d,k+1)=A(d,d-k-1) Ed

k−1(∆d)∆

dual half cubes (d− 3, 3) 1d−3,1 Nd

(d-2,2) Md Ed−2(Nd)∆ = E2(�d)∆

(3, 3) 12,2

(4, 3) 13,2

(5, 3) 14,2

S̈ polytope (27, 216, 720,

1080, 648, 99) (2, 4) 22,1

(3, 4) 23,1

H polytope (56, 756, 4032, 10080,

12096, 6048, 702) (2, 5) 32,1

G polytope (240, 6720, 60480,

241920, 483840,

483840, 207360,19440) (2, 6) 42,1

E8-polytope (2160, . . . , 17520) (4, 4) 24,1

–
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Table 4.7: The infinite series of (2, 2)-polytopes.

     

Stacked polytopes (10+ 4n, 30+ 18n, 30+ 18n, 10+ 4n; 50+ 26n) Corollary2.5.11

Stack of cross polytopes (6+ 18n, 12+ 84n, 12+ 84n6+ 18n; 24+ 120n) Proposition2.5.12

stack of cross polytopes

with glued simplices (54n− 30, 252n− 156, 252n− 156, 54n− 30; ???) Theorem2.5.15

Stack of cut 600-cells (666n+ 54, 3360n+ 240, 3360n+ 204, 666n+ 54) [33, Sec. 3.3]

Products of polygons (nm+m+ n, 6mn, 6mn,mn+m+ n; 8mn+ 2(m+ n)) Theorem3.4.1

–
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Table 4.8: A (not exhaustive) list of previously known polytopes that can be obtained via theE-construction or appear otherwise in this context, but
that are neitherr-simple nors-simplicial for r, s≥ 2.

   G́ E-C

hypercube (16, 32, 24, 8; 64) E3(�4) = E0(✚4)

(24, 96, 88, 32; 160) B(4, 3) E1(�4) = E2(✚4)

cross polytope (8, 24, 32, 16; 64) B(4, 4)

(48, 240, 288, 96; 480) F(4, 2) = F(4, 3) E1(24-cell)= E2(24-cell)

120-cell (600, 1200, 720,120; 2400) G(4, 1)

Dipyramidal 720-cell (720, 3120, 3600, 1200; 6000) G(4, 3) E2(600-cell)= E1(120-cell)

600-cell (120, 720, 1200,600; 2400) G(4, 4)

hypercube B(d, d) Ed−1(�d) = E0(✚d)

cross polytope B(d, 1)

B(d, k+ 1) Ek(�d) = Ed−k−1(✚d)

–
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B S

5.1 I

This chapter is independent of the previous three chapters on theE-construction.
We move to a new combinatorial construction, theBier construction, which is a
construction defined for arbitrary finite bounded posets. The results presented here
are joint work with Anders Björner, Jonas Sjöstrand, and Günter M. Ziegler [21].

The Bier construction has some formal similarity with theE-construction of
Definition 2.3.1: It takes all those intervals of a posetP as the new elements of
a poset Bier(P, I ), that have their minimal elements in a given idealI and their
maximal elements outside this ideal. This poset is ordered by reversed inclusion.
However, the construction serves a completely different aim, and the results we
present in this chapter have a much more combinatorial flavour.

Starting point of our construction are unpublished notes ofThomas Bier [13],
where he describes a simple construction for a large number of simplicial PL
spheres. His construction associates a simplicial (n− 2)-sphereS with 2n vertices
to any simplicial complex∆ ⊂ 2[n] onn vertices, by forming thedeleted joinof the
complex∆ with its combinatorial Alexander dual∆∗ := {σ ⊂ [n] : [n] \ σ < ∆}.

Thomas Bier verified that any addition of a new face to the simplicial com-
plex∆ amounts to a bistellar flip in the sphereS defined above. A short published
account of this proof is given in Jiři Matoušek’s book [60, Sect. 5.6]. Mark de
Longueville [31] recently found a simple alternative proof. We show that this orig-
inal construction is a special case of ours.

For our generalised version of Bier’s construction we obtain several new prop-
erties. This includes in particular the following results.v We extend Bier’s construction and define more generalBier posetsBier(P, I ),

whereP is an arbitrary bounded poset of finite length andI ⊂ P is a proper
order ideal.v The order complex of Bier(P, I ) is PL homeomorphic to the order complex
of P. It may be obtained by a sequence of stellar subdivisions of edges in the
order complex ofP.v If P is an Eulerian or Cohen-Macaulay poset or lattice, then Bier(P, I ) will
have that property as well.v If P is the face lattice of a regular PL-sphereS, then the lattices Bier(P, I )
are again face lattices of regular PL-spheres, the “Bier spheres” ofS.v If we takeP to be the Boolean algebraBn, then this may be interpreted as the
face lattice of the (n− 1)-simplex, and the idealI in Bn may consequently be
interpreted as an abstract simplicial complex∆. This is the special setting of
the original construction described by Bier.v The simplicial PL spheres Bier(Bn,∆) are shellable.v The number of these spheres is so large, that forn ≫ 1 most of the Bier
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Bier Posets and Properties

spheres Bier(Bn,∆) are not realisable as polytopes. Thus, Bier’s construction
provides “many shellable spheres” in the sense of Kalai [52] and Lee [56].v Similarly, for special choices of the simplicial complex∆ in Bn, and even
n, we obtain a large number of nearly neighbourly and centrally symmetric
(n− 2)-spheres on 2n vertices.v Theg-vector of a Bier sphere Bier(Bn,∆) can be expressed explicitly in terms
of the f -vector of∆. Theseg-vectors areK-sequences. Hence, they satisfy
a strong form of theg-conjecture for spheres. Additionally, the generalised
lower bound conjecture is verified for Bier spheres.

The study of posets of intervals in a given poset, ordered by inclusion, goes back to
a problem posed by Lindström in [57]. See Björner’s work [16, 19] for some more
results on interval posets.

5.2 B P  P

All posets that we consider in this chapter are bounded and have finite length.
Recall, that anideal in P is a subsetI ⊆ P such thatx� y for x ∈ P andy ∈ I
implies thatx ∈ I . An ideal isproper if neither I = P nor I = ∅. In the following
we usually denote elements of the idealI ⊂ P by x, xi or x′i and elements in the
complementP \ I by y, yj, or y′j.

Let P be a finite bounded poset andI ⊂ P a proper ideal. Roughly, the Bier
poset Bier(P, I ) is a poset consisting of all intervals [x, y] ⊂ P that start “inside” the
ideal I and end “outside” of it. We can order this set by reversed inclusion. Here is
the precise definition.

5.2.1 D [Bier poset]. Let P be a bounded poset of finite length andI ⊂ P
a proper ideal. Define a new poset Bier(P, I ) as follows:
Its elements arev all intervals [x, y] ⊆ P such thatx ∈ I andy < I ,v together with an additional top element1̂.

The order is given byα� 1̂ for all α ∈ Bier(P, I ) and reversed inclusion of
intervals inP, which means [x′, y′] �[x, y] in Bier(P, I ) if and only if x′ � x≺ y� y′,
for all x, y, x′, y′ ∈ P with x, x′ ∈ I andy, y′ ∈ P\I .

The intervalI = [0̂, 1̂] is the unique minimal element of Bier(P, I ). Hence, the
poset Bier(P, I ) is bounded. The construction of Bier posets has a some formal
similarity to theE-construction as defined in Definition2.3.1, in the sense that it
also forms a new poset out of intervals in a posetP and orders them by reversed
inclusion. However, the following results on Bier posets have a more combinato-
rial and topological flavour, while the central aim of theE-construction was the
geometric realisation of certain interesting polytopes.
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5.2.2 L [Basic Properties of Bier Posets]. Let P be a bounded finite poset
of length n and I⊂ P a proper ideal.

(1) The posets P andBier(P, I ) have the same length.
(2) Bier(P, I ) is graded if and only if P is graded.

In that case, and ifρP is a rank function on P, then a rank function on
Bier(P, I ) is given by

ρ(α) :=






n+ ρP(x) − ρP(y) for α = [x, y], x ∈ I , y ∈ P \ I

n for α = 1̂ .

(3) The intervals ofBier(P, I ) have the following two types:
[

[x, y], 1̂
]

� Bier
(

[x, y], I ∩ [x, y]
)

[

[x′, y′], [x, y]
]

= [x′, x] × [y, y′]op,

where[y, y′]op denotes the interval[y, y′] with the opposite order.
(4) If P is a lattice thenBier(P, I ) is a lattice.

Proof. (1) A maximal chain in the poset Bier(P, I ) is a sequence of intervals in
P such that any two consecutive intervals [x, y] ⊂ [x′, y′] satisfy eitherx = x′

andy′ coversy, ory = y′ andx coversx′. Hence, if we have a chain of length
n in P, then we obtain a chain ofn− 1 intervals in Bier(P, I ) from it. Adding
1̂ gives the claim. See Figure5.1(a)for an illustration.

P

I

(a) Bier posets preserve the length.

P

I

(b) Meet and join of the two light shaded inter-
vals are the two dark shaded intervals, interpreted
as elements of the Bier poset.

Figure 5.1: The proof of Lemma5.2.2, claims (1) and (4).
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(2) and (3) are immediate from the definition of a Bier poset.
(4) Bier(P, I ) is bounded. Hence, it suffices to show that meets exist in Bier(P, I ).

These are given by [x, y] ∧ [x′, y′] = [x ∧ x′, y ∨ y′] and [x, y] ∧ 1̂ = [x, y].
Figure5.1(b)shows an example. �

5.3 B P  S S

For any bounded posetP we denote byP := P\{0̂, 1̂} the proper partof P and
by ∆(P) the order complex ofP, that is, the abstract simplicial complex of all
chains inP. See Definition1.2.18for more background.

In this section we give a geometric interpretation of Bier(P, I ), by specifying
how its order complex may be derived from the order complex ofP via stellar
subdivisions. For this, we need an explicit description of stellar subdivisions for
abstract simplicial complexes.

5.3.1 D [Stellar Subdivision]. Let ∆ be a finite dimensional abstract
simplicial complex andF ∈ ∆ an non-empty face of∆.

Thestellar subdivisionsdF(∆) of ∆ with respect toF is obtained by removing
from ∆ all faces that containF and adding new facesG ∪ {vF} (with a new apex
vertexvF) for all facesG that do not containF, but such thatG∪ F is a face in the
original complex.

For an edgee = {v1, v2} of ∆ this means that in the stellar subdivision of∆
with respect toe each faceG ∈ ∆ that containse is replaced by three new faces,
namely (G\{v1})∪ {ve}, (G\{v2})∪ {ve}, and (G\{v1, v2})∪ {ve}. Observe, that stellar
subdivision does not change the Euler characteristic.

The stellar subdivisions in a sequence of facesF1, . . . , FN of the complex∆
commute, and thus may be performed in any order — or simultaneously — if and
only if no two Fi, F j are contained in a common faceG of the complex, that is, if
Fi ∪ F j is not a face fori , j.

5.3.2 T. Let P be a bounded poset of finite length and I⊂ P a proper ideal.
The order complex ofBier(P, I ) is obtained from the order complex ofP by

stellar subdivision on all edges of the form{x, y}, for x ∈ I, y ∈ P\I, x < y. These
stellar subdivisions must be performed in order of increasing lengthℓ(x, y).

Proof. Let n be the length ofP. In the following, the elements denoted byxi or
x′i will be vertices ofP that are contained inI := I\{0̂}, while elements denoted
by yj or y′j are fromP\I . By (x′i , y

′
i ) we will denote the new vertex created by the

subdivision of the edge{x′i , y′i }.
We have to verify that subdivision of all edges of∆(P) collected in the sets

Ek :=
{

{x, y} : x < y, ℓ(x, y) = k, x ∈ I , y ∈ P\I
}
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for k = 1, . . . , n − 2 (in this order) results in∆(Bier(P, I )). To prove this, we
will explicitly describe the simplicial complexesΓk that we obtain at intermediate
stages, i.e. after subdivision of the edges inE1 ∪ · · · ∪ Ek. The complexesΓk are
not in general order complexes for 0< k < n− 2.
C. After stellar subdivision of the edges of∆(P) in the edge sets E1, . . . ,Ek

(in this order), the resulting complexΓk has the faces
{

x1, x2, . . . , xr , (x
′
1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
t , y
′
t), y1, y2, . . . , ys

}

(5.3.1)

where
(1) x1 < x2 < · · · < xr < y1 < y2 < · · · < ys (r, s≥ 0)

must be a strict chain inP that may be empty, but has to satisfyℓ(xr , y1) ≥
k+ 1 if r ≥ 1 and s≥ 1, while

(2) [x′t , y
′
t ] < · · · < [x′2, y

′
2] < [x′1, y

′
1] (t ≥ 0)

must be a strict chain inBier(P, I ) that may be empty, but has to satisfy
ℓ(x′t , y

′
t) ≤ k if t ≥ 1, and finally

(3) xr ≤ x′t and y′t ≤ y1

must hold if both r and t are positive resp. if both s and t are positive.

The conditions (1)–(3) of the claim together imply that the chains ofΓk are
supported on (weak) chains inP of the form

0̂ < x1 < x2 < · · · < xr ≤ x′t ≤ . . . ≤ x′2 ≤ x′1 < y′1 ≤ y′2 ≤ . . .
≤ y′t ≤ y1 < y2 . . . < ys < 1̂ .

In condition (3) not both inequalities can hold with equality, because of the length
requirements for (1) and (2), which for r, s, t ≥ 1 require that

ℓ(x′t , y
′
t) ≤ k < ℓ(xr , y1),

and thus [x′t , y
′
t ] ⊂ [xr , y1].

We verify immediately that fork = 0 the description ofΓ0 given in the claim
yieldsΓ0 = ∆(P), since fork = 0 the length requirement for (2) does not admit any
subdivision vertices.

Fork = n−2 the simplices ofΓn−2 as given by the claim cannot contain bothxr

and y1, that is, they all satisfy eitherr = 0 or s = 0 or both, since otherwise
we would get a contradiction between the length requirementfor (1) and the fact
that any interval [xr , y1] ⊆ P can have length at mostn − 2. Thus, we obtain
that Γn−2 = ∆(Bier(P, I )), if we identify the subdivision vertices (x′i , y

′
i ) with the

intervals [x′i , y
′
i ] in P, the elementsxi with the intervals [xi , 1̂] and the elements

yj ∈ P\I with the intervals [̂0, yj].
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Finally, we prove the claim by verifying the induction step from k to k + 1. It
follows from the description of the complexΓk that no two edges inEk+1 lie in the
same facet. Thus we can stellarly subdivide the edges inEk+1 in arbitrary order.
Suppose the edge (xr , y1) of the simplex

{

x1, . . . , xr−1, xr , (x
′
1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
t , y
′
t), y1, y2, . . . , ys

}

is contained inEk+1. Then stellar subdivision yields the three new simplices

{x1, . . . , xr−1, (xr , y1), (x
′
1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
t , y
′
t), y1, y2, . . . , ys, },

{x1, . . . , xr−1, xr , (xr , y1), (x
′
1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
t , y
′
t), y2, . . . , ys, }, and

{x1, . . . , xr−1, (xr , y1), (x
′
1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
t , y
′
t), y2, . . . , ys, }.

All three sets then are simplices ofΓk+1, satisfying all the conditions specified in
the claim (with t replaced byt + 1 and r or s or both reduced by 1). Also all
simplices ofΓk+1 arise this way. This completes the induction step. �

The subdivision map of the previous proof can be given explicitely. For this, we
just define the map

π : ‖∆(Bier(P, I ))‖ −→ ‖∆(P)‖

which is given on the vertices of∆(Bier(P, I )) by

[x, y] 7−→






1
2x+ 1

2y 0̂ < x < y < 1̂, x ∈ I , y < I

x 0̂ < x < y = 1̂, x ∈ I , y < I

y 0̂ = x < y < 1̂, x ∈ I , y < I

and is extended linearly on the simplices of∆(Bier(P, I )). We have the following
simple corollaries of Theorem5.3.2.

5.3.3 C. ‖∆(Bier(P, I ))‖ and‖∆(P)‖ are PL homeomorphic. �

In the case whereP is the face poset of a regular PL sphere or manifold, this im-
plies that the barycentric subdivision of Bier(P, I ) may be derived from the barycen-
tric subdivision ofP by stellar subdivisions. In particular, in this case Bier(P, I ) is
again the face poset of a PL-sphere or manifold.

5.3.4 C. If P is the face lattice of a strongly regular PL sphere then so
is Bier(P, I ). �

5.3.5 C. If P is Cohen-Macaulay then so isBier(P, I ).

Proof. Being Cohen-Macaulay is a topological property (see Munkres [64] for
this), so this is immediate from the homeomorphism defined after the proof of
Theorem5.3.2. �

– 167 –



B S

5.4 E B P

From now on we assume thatP is a gradedposet of lengthn. We compute the
f -vector f (Bier(P, I )) := ( f0, f1, . . . , fn), where fi denotes the elements ofrank i in
the poset Bier(P, I ).

5.4.1 R. Observe, that this notation is off by 1 from the convention in the
previous chapters. However, in the rest of this thesis no polytopes will appear
anymore, so that the index shift we have used previously would just make the
following computation more complicated without any benefitat a later place.

The following computation of thef -vector is immediate from the definition of
the Bier poset ofP.

5.4.2 P [ f -Vector]. Let P be a finite graded poset of length n and I⊂ P
a proper ideal. LetρP be the rank function of P. The f -vector ofBier(P, I ) is

fi(Bier(P, I )) =






1 for i = n

#
{

[x, y] : x ∈ I , y < I , n+ ρP(x) − ρP(y) = i
}

otherwise.

In particular, f0(Bier(P, I )) = 1. �

5.4.3 T [Eulerian Bier Posets]. Let P be an Eulerian poset and I⊂ P a
proper ideal. ThenBier(P, I ) is also an Eulerian poset.

Proof. Let ρ be the rank function on the posetP. Bier(P, I ) is a graded poset of
the same length asP by Lemma5.2.2. Hence, it suffices to prove that all intervals
of length≥ 1 in Bier(P, I ) contain equally many odd and even rank elements, by
Theorem1.2.12.

This can be done by induction. For lengthℓ(P) ≤ 1 the claim is true. Proper
intervals of the form [[x, y], 1̂] are, in view of Lemma5.2.2, Eulerian by induc-
tion. Proper intervals of the form [[x′, y′], [x, y]] are Eulerian, since any product of
Eulerian posets is Eulerian, by Theorem1.2.16.

Finally the whole poset Bier(P, I ) contains the same number of odd and even
rank elements by the following computation:

n∑

i=0

(−1)n−i fi
(

Bier(P, I )
)

= 1+
n−1∑

i=0

(−1)n−i fi
(

Bier(P, I )
)

= 1+
∑

y<I

∑

x∈I
x≤y

(−1)ρ(y)−ρ(x)

= 1+
∑

y<I

∑

x≤y

(−1)ρ(y)−ρ(x) −
∑

y<I

∑

x<I
x≤y

(−1)ρ(y)−ρ(x) (5.4.1)
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= 1+ 0−
∑

x<I

∑

x≤y

(−1)ρ(y)−ρ(x) (5.4.2)

= 1+ 0− 1 = 0

where the first double sum in (5.4.1) is 0 as [̂0P, y] is Eulerian andρ(y) ≥ 1, and the
double sum in (5.4.2) is−1, as [x, 1̂P] is Eulerian and trivial only forx = 1̂P. �

Alternatively, the result of the computation in this proof also follows from the
topological interpretation of Bier(P, I ) in the previous section.

5.5 S  B S

Now we specialise to Bier’s original setting, whereP = Bn is the Boolean lattice. In
the following, we denote with [x, y] and (x, n] closed and half-open sets of integers
in [n], respectively.

Any non-empty ideal in the Boolean algebraBn can be interpreted as an ab-
stract simplicial complex with at mostn vertices. We denote such a complex by∆
throughout the rest of this chapter. We can restate the definition of a Bier poset in
this special setting as follows:

Bier(Bn,∆) :=
{

(B,C) : ∅ ⊆ B ⊂ C ⊆ [n], B ∈ ∆,C < ∆
}

∪
{

1̂
}

,

again ordered by reversed inclusion of intervals (and1̂ as the maximal element).
Facets of Bier(Bn,∆) correspond in this notation to pairs (B,C) in which the setB
differs from the setC by only one element. Hence, we can denote the facets of
Bier(Bn,∆) by

(A; x) := (A,A∪ {x}) ∈ Bier(Bn,∆). (5.5.1)

We writeF (∆) for the set of all facets.
The poset Bier(Bn,∆) is the face lattice of a simplicial PL (n − 2)-sphere, by

Corollary5.3.4. With the following theorem we obtain that Bier(Bn,∆) is shellable.
This is a much stronger property, as it is known that shellability implies the PL-
sphericity for pseudo-manifolds (see Björner [18] for this result).

5.5.1 T [Shellable Bier Spheres]. Let ∆ ⊂ Bn be a proper ideal in Bn.
Then the(n− 2)-sphereBier(Bn,∆) is shellable.

Proof. The shellability proof is in two steps. First we show that therule

R : F (∆)→ Bier(Bn,∆)

(A; x) 7→ (A∩ (x, n],A∪ [x, n]).
(5.5.2)
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defines arestriction operatoron the poset. That means, it induces a partition

Bier(Bn,∆) =
⊎

(A;x)∈F (∆)

[R(A; x), (A; x)],

and the precedence relation forced by this restriction operator is acyclic. Thus, any
linear extension of the precedence relation yields a shelling order. Compare this
definition also to Björner [17].

Such a restriction operator indeed defines a partition. Thiscan be seen as fol-
lows: Take any element (B,C) ∈ Bier(Bn,∆). Set

x :=min
{

y ∈ C\B : B∪ (C∩[1, y]) < ∆
}

max
{

y ∈ C\B : B∪ (C \ [y, n]) ∈ ∆}

andA := B∪ (C ∩ [1, x)). Then we have

A∩ (x, n] ⊆ B ⊆ A ⊂ A∪ {x} ⊆ C ⊆ A∪ [x, n]

and thus (B,C) is contained in [R(A; x), (A; x)].
To see that the intervals in the partition do not intersect wehave to show that if

bothR(A; x)�(A′; x′) andR(A′; x′)�(A; x), then (A; x) = (A′; x′). This is a special
case of a more general fact we establish next, so we do not givethe argument here.

For any shelling order “⊳ ” that would induceR as its “unique minimal new
face” restriction operator we are forced to require that ifR(A; x)�(A′; x′) for two
facets (A; x) and (A′; x′), then (A; x)E (A′; x′).

0 1 2 3

01 02 0312 13 23

012 013 023 123

Figure 5.2: The face lattice the 3-simplex. The shaded elements form an abstract simplicial com-
plex∆. The bold edges define the facets of Bier(B4,∆).
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By definition,R(A; x)�(A′; x′) means that

A∩ (x, n] ⊆ A′ ⊂ A′ ∪ {x′} ⊆ A∪ [x, n], (5.5.3)

which may be reformulated as

(A∪ {x})>x ⊆ A′ and (A′ ∪ {x′})<x ⊆ A. (5.5.4)

We nowdefinethe relation (A; x)⊳ (A′; x′) to hold if and only if (5.5.4) holds
together with

(A∪ {x})≤x * A′ and (A′ ∪ {x′})≥x * A. (5.5.5)

Note that our setsA,A′ belong to an ideal which does not containA ∪ {x} and
A′ ∪ {x′}, so (5.5.5) applies if (5.5.4) does.

By thesupportof (A; x) we mean the setA∪ {x}. The elementx of the support
is called itsroot element.

We interpret a relation (A; x)⊳ (A′; x′) as astepfrom (A; x) to (A′; x′). The first
conditions of (5.5.4) and (5.5.5) say that

In each step, the elements that are deleted from the support are
≤ x; moreover, we must either loose some element≤ x from the
support, or we must choosex′ from (A∪ {x})≤x, or both.

(5.5.6)

(012;3)

(01;3)

(02;3)(0;3)

(1;3)(3;0)

(3;1)

(12;3)(23;0)

(23;1)

Figure 5.3: The restriction operator applied to the poset and the ideal shown in Figure5.2. The
intervals of the partition are drawn differently shaded and with thick edges. The facets are marked
in the notation of (5.5.1)
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Similarly, the second conditions of (5.5.4) and (5.5.5) say that

In each step, the elements that are added to the support are> x;
moreover, we must either add some element> x to the support, or
we must keepx in the support, or both.

(5.5.7)

Now we show that the transitive closure of the relation⊳ does not contain any
cycles. So, suppose that there is a cycle,

(A0; x0) ⊳ (A1; x1) ⊳ . . . ⊳ (Ak; xk) = (A0; x0).

First assume that not all root elementsxi in this cycle are equal. Then by cyclic
permutation we may assume thatx0 is the smallest root element that appears in
the cycle, and thatx1 > x0. Thusx1 is clearly not from (A ∪ {x0})≤x0, so by Con-
dition (5.5.6) we loose an element≤ x0 from the support of (A0; x0) in this step.
But in all later steps the elements we add to the support are> xi ≥ x0, so the lost
element will never be retrieved. Hence we cannot have a cycle.

The second possibility is that all root elements in the cycleare equal, that is,
x0 = x1 = · · · = xk = x. Then by Conditions (5.5.6) and (5.5.7), in the whole cycle
we loose only elements< x from the support, and we add only elements> x. The
only way this can happen is that, when we traverse the cycle, no elements are lost
and none are added, soA0 = A1 = · · · = Ak. Consequently, there is no cycle. �

The relation defined on the set of all pairs (A; x) with A ⊂ [n] andx ∈ [n]\A by
(5.5.4) alone does have cycles, such as

({1, 4}, 2) ⊳ ({1, 4}, 3) ⊳ ({4}, 1) ⊳ ({1, 4}, 2).

This is the reason why we also require condition (5.5.5) in the definition of “⊳ ”.

The shelling order implied by the proof of Theorem5.5.1may also be described
in terms of a linear ordering. For that we associate with eachfacet (A; x) a vector
χ(A; x) ∈ Rn, defined as follows:

χ(A; x)a :=






−1 for a ∈ (A∪ {x})≤x,

0 for a < A∪ {x},
+1 for a ∈ (A∪ {x})>x.

With this assignment, we get that (A; x)⊳ (A′; x′), as characterised by the condi-
tions in (5.5.6) and (5.5.7), implies thatχ(A; x) <lex χ(A′; x′). Thus we have that
lexicographic ordering on theχ-vectors induces a shelling order for every Bier
sphere obtained from the Boolean posetBn.
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5.6 g-V  B P

In this section we derive the basic relationship between thef -vector of a Bier
sphere Bier(Bn,∆) and thef -vector of the underlying simplicial complex∆. The
results in this section are completely due to Anders Björnerand Jonas Sjöstrand.

In extension of the notation of Section5.4 let fi(∆) denote the number of sets
of cardinality i in a complex∆. The f -vectorof a proper subcomplex∆ ⊂ Bn is
f (∆) = ( f0, f1, . . . , fn), with f0 = 1 and fn = 0.

Now let Γ be a finite simplicial complex that is pure of dimensiond = n − 2,
that is, such that all maximal faces have cardinalityn − 1. We will apply this to
Γ = Bier(Bn,∆). We definehi(Γ) by

hi(Γ) :=
n−1∑

j=0

(−1)i+ j

(

n− 1− j
n− 1− i

)

f j(Γ) (5.6.1)

for 0 ≤ i ≤ n− 1, andhi(Γ) := 0 outside this range. Then, conversely

fi(Γ) =
n−1∑

j=0

(

n− 1− j
n− 1− i

)

h j(Γ).

Finally, for 0≤ i ≤ ⌊n−1
2 ⌋ let gi(Γ) := hi(Γ) − hi−1(Γ), with g0(Γ) = 1.

Now we consider thef -, h- andg-vectors of the sphereΓ = Bier(Bn,∆). This
is an (n − 2)-dimensional shellable sphere onf1(∆) + n − fn−1(∆) vertices. So in
the usual case off1 = n and fn−1 = 0, that is, when∆ contains all the 1-element
subsets but no (n− 1)-element subset of [n], we get a sphere on 2n vertices.

In terms of the facets (A; x) ∈ F (∆) we have the following simple description
of its h-vector:

hi(Bier(Bn,∆)) = #
{

(A; x) ∈ F (∆) : |A∩ (x, n] | + | [1, x) \ A | = i
}

(5.6.2)

for 0 ≤ i ≤ n− 1. This is a consequence of the fact that we can write theh-vector
of a shellable complex in terms of the restriction operator defined in (5.5.2) as

hi(Bier(Bn,∆)) = #
{

(A; x) ∈ F (∆) : ρ(R(A; x)) = i
}

,

cf. Björner’s work [17, p. 229]. Using the rank functionρ of Bier(Bn,∆) computed
in Lemma5.2.2(2) transforms this into the equation in (5.6.2).

5.6.1 L [Dehn–Sommerville equations]. For 0 ≤ i ≤ n− 1,

hn−1−i
(

Bier(Bn,∆)
)

= hi
(

Bier(Bn,∆)
)

.
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Proof. This is a direct consequence of equation (5.6.2). Namely, neither the defini-
tion of theh-vector nor the construction of the Bier sphere depends on the ordering
of the ground set. Hence, we can reverse the order of the ground set [n] and obtain

hi
(

Bier(Bn,∆)
)

= #
{

(A; x) ∈ F (∆) : |A∩ [1, x) | + | (x, n] \ A | = i
}

. (5.6.3)

Thus, a setA contributes tohi(Bier(Bn,∆)) according to (5.6.2) if and only if the
complement ofA with respect to the (n − 1)-element set [n] \ {x} contributes to
hn−1−i(Bier(Bn,∆)) according to (5.6.3). �

Theg-vector of Bier(Bn,∆) has the following nice form.

5.6.2 T [ g-Vector]. For all i = 0, . . . , ⌊n−1
2 ⌋,

gi
(

Bier(Bn,∆)
)

= fi(∆) − fn−i(∆).

Proof. Let ∆aug be the same complex as∆, but viewed as sitting inside the larger
Boolean latticeBn+1. We claim that

hi
(

Bier(Bn+1,∆
aug)

)

= hi−1
(

Bier(Bn,∆)
)

+ fi(∆) (5.6.4)

for 0 ≤ i ≤ n. This can be seen from equation (5.6.3) as follows. The facets (A; x)
of Bier(Bn+1,∆

aug) that contribute tohi
(

Bier(Bn+1,∆
aug)

)

are of two kinds: either
x , n+ 1 or x = n+ 1. There arehi−1

(

Bier(Bn,∆)
)

of the first kind andfi(∆) of the
second.
Using both equation (5.6.4) and Lemma5.6.1twice we compute

gi
(

Bier(Bn,∆)
)

= hi
(

Bier(Bn,∆)
) − hi−1

(

Bier(Bn,∆)
)

= hn−1−i
(

Bier(Bn,∆)
) − hi−1

(

Bier(Bn,∆)
)

= hn−i
(

Bier(Bn+1,∆
aug)

) − fn−i(∆) − hi−1
(

Bier(Bn,∆)
)

= hi
(

Bier(Bn+1,∆
aug)

) − fn−i(∆) − hi−1
(

Bier(Bn,∆)
)

= fi(∆) − fn−i(∆). �

5.6.3 C. The face numbers fi(Bier(Bn,∆)) of the Bier sphere depend only
on n and the differences fi(∆) − fn−i(∆).

Proof. Theg-vector determines theh-vector (via Lemma5.6.1), which in turn de-
termines thef -vector. �

For example, ifn = 4 and f (∆) = (1, 3, 0, 0, 0) or f (∆) = (1, 4, 3, 1, 0), then we
getg(Bier(B4,∆)) = (1, 3) and f (Bier(B4,∆)) = (1, 7, 15, 10).
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5.6.4 T. Every simplicial complex∆ ⊆ Bn has a subcomplex∆′ such that

fi(∆
′) = fi(∆) − fn−i(∆)

for 0 ≤ i ≤ ⌊n2⌋ and fi(∆′) = 0 for i > ⌊n2⌋.

Proof. For any simplicial complex∆ in Bn, define thed-vector bydi(∆) = fi(∆) −
fn−i(∆) for 0 ≤ i ≤ ⌊n2⌋ anddi(∆) = 0 for greateri. We construct a subcomplex
∆′ ⊆ ∆ with fi(∆′) = di(∆) for all i.

Choose∆′ as a minimal subcomplex of∆ with the samed-vector. We must
show thatfi(∆′) = 0 for all ⌊n2⌋ < i ≤ n. Suppose that there is a setC ∈ ∆′ with
|C| > n

2. Then there is an involutionπ : [n] → [n], i. e. a permutation of the ground
set of order two, such that

π(C) ⊇ [n] \C, (5.6.5)

whereπ(C) is the image ofC. Define a mapϕ : Bn → Bn by ϕ(B) = [n] \ π(B) for
all B ⊆ [n]. Observe thatϕ satisfies the following three assertions for allB ⊆ [n]:

(1) ϕ(ϕ(B)) = B,
(2) B′ ⊆ B ⇒ ϕ(B′) ⊇ ϕ(B),
(3) |B| + |ϕ(B)| = n.

Let K := {B ∈ ∆′ : ϕ(B) ∈ ∆′}. We claim that∆′ \ K is a simplicial complex with
the samed-vector as∆′.

First, we show that∆′ \ K is a complex. LetB′ ⊆ B ∈ ∆′ \ K. ThenB′ ∈ ∆′ so
we must show thatB′ < K. Property (b) givesϕ(B′) ⊇ ϕ(B), so we getB < K ⇒
ϕ(B) < ∆′ ⇒ ϕ(B′) < ∆′ ⇒ B′ < K.

Let Ki = {B ∈ K : |B| = i} for 0 ≤ i ≤ n. We havedi(∆′ \ K) = ( fi(∆′) −
|Ki |)− ( fn−i(∆′)− |Kn−i |) = di(∆′)− (|Ki | − |Kn−i |) for 0 ≤ i ≤ ⌊n2⌋. We must show that
|Ki | = |Kn−i | for all i. Property (a) gives thatB ∈ K ⇔ ϕ(B) ∈ K. Finally, property
(c) gives thatϕ is a bijection betweenKi andKn−i for all i.

K , ∅ sinceϕ(C) = [n] \ π(C) ⊆ C by (5.6.5), whenceϕ(C) ∈ ∆′ andC ∈ K.
Thus we have found a strictly smaller subcomplex of∆′ with the samed-vector.
This is a contradiction against our choice of∆′. �

5.6.5 C. There is a subcomplex∆′ of∆ such that

gi
(

Bier(Bn,∆)
)

= fi(∆
′)

for 0 ≤ i ≤ ⌊n−1
2 ⌋ and fi(∆′) = 0 for i > ⌊n−1

2 ⌋. �

It is a consequence of Corollary5.6.5that theg-vector (g0, g1, . . . , g⌊(n−1)/2⌋) of
Bier(Bn,∆) is a K-sequence, i. e., it satisfies the Kruskal-Katona theorem. This is
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of interest in connection with the so calledg-conjecture for spheres, which sug-
gests thatg-vectors of spheres areM-sequences (satisfy Macaulay’s theorem).K-
sequences are a very special subclass ofM-sequences, thusg-vectors (and hence
f -vectors) of Bier spheres are quite special among those of general triangulated
(n−2)-spheres on 2n vertices. See [89, Ch. 8] for details concerningK-sequences,
M-sequences andg-vectors.
These results also imply the following.

5.6.6 C [K-Sequence]. Every K-sequence(1, n, . . . , fk) with k ≤ ⌊n−1
2 ⌋

can be realised as the g-vector of a Bier sphere with2n vertices. �

We need the notion of abistellar flip for this. This is defined as follows. LetΓ
be a simpliciald-manifold. If A is a (d− i)-dimensional face ofΓ, 0≤ i ≤ d, such
that linkΓ(A) is the boundary∂B of an i-simplexB that is not a face ofΓ, then the
operationΦA onΓ defined by

ΦA(Γ) := (Γ\(A ∗ ∂B)) ∪ (∂A ∗ B)

is called abistellar i-flip. ΦA(Γ) is itself a simpliciald-manifold which is homeo-
morphic toΓ. If 0 ≤ i ≤ ⌊d−1

2 ⌋, then

gi+1
(

ΦA(Γ)
)

= gi+1(Γ) + 1

g j(ΦA(Γ)) = g j(Γ) for all j , i + 1.
(5.6.6)

Furthermore, ifd is even andi = d
2, then g j(ΦA(Γ)) = g j(Γ) for all j. See also

Pachner [65, p. 83].

It follows from Corollary5.6.5thatgk(Bier(Bn,∆)) ≥ 0. The case of equality is
characterised as follows.

5.6.7 C. For 2 ≤ k ≤ ⌊n−1
2 ⌋, the following are equivalent:

(1) gk(Bier(Bn,∆)) = 0,
(2) fk(∆) = 0 or fn−k(∆) =

(
n
i

)

,
(3) Bier(Bn,∆) is obtained from the boundary complex of the(n− 1)-simplex via

a sequence of bistellar i-flips, with i≤ k− 2 at every flip.

Proof. (1) ⇒ (2) : Consider the bipartite graphGn,k whose edges are the pairs
(A, B) such thatA is ak-element subset,B is an (n− k)-element subset of [n], and
A ⊂ B, where the inclusion is strict sincek < n− k. ThenGn,k is a regular bipartite
graph (all vertices have the same degree), so by standard matching theoryGn,k has
a complete matching. The restriction of such a matching to the setsB in ∆ gives
an injective mapping∆n−k → ∆k from faces of cardinalityn − k in ∆ to those of
cardinalityk.
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Equality fn−k(∆) = fk(∆) implies thatGn,k consists of two connected compo-
nents, one of which is induced on∆n−k ∪ ∆k. A nontrivial such splitting cannot
happen sinceGn,k is connected, so either∆n−k and∆k are both empty, or they are
both the full families of cardinality

(
n
k

)

.
(2)⇒ (3) : As shown in [13] and [60, Sect. 5.6], adding ani-dimensional face

to ∆ produces a bistellari-flip in Bier(Bn,∆). Now, ∆ can be obtained from the
empty complex by addingi-dimensional faces. It must hold that alli ≤ k − 2 if
fk(∆) = 0 (meaning that there are no faces of dimensionk−1 in∆). The case when
fn−k(∆) =

(
n
i

)

is the same by symmetry.
(3)⇒ (1) : This follows directly from (5.6.6), since the boundary of the (n−1)-

simplex hasg-vector (1, 0, . . . , 0). �

A convex polytope whose boundary complex is obtained from the boundary
complex of the (n − 1)-simplex via a sequence of bistellari-flips, with i ≤ k −
2 at every flip, is calledk-stacked. The generalised lower bound conjecturefor
polytopes claims thatgk = 0 for a polytope if and only if it isk-stacked. This
is still open for general polytopes. See McMullen [63] for a recent discussion.
Corollary 5.6.7 shows that it is valid for those polytopes that arise via the Bier
sphere construction.

5.7 M S

Here we show that the number of Bier spheres associated to theBoolean poset and
an abstract simplicial complex therein is so large, that most of them cannot have a
convex realisation, by sheer number.

5.7.1 P [Many Non-Polytopal Spheres]. Let Bn be the Boolean poset.
Most of the Bier spheresBier(Bn,∆) associated to an abstract simplicial com-

plex∆ on the ground set[n] have no realisation as a polytope.

Proof. For the proof it suffices to consider Bier spheres Bier(Bn,∆) for abstract
simplicial complexes∆ that containv all setsA ⊂ [n] of size |A| ≤ ⌊n−1

2 ⌋,v a subcollection of the sets of size|A| = ⌊n−1
2 ⌋ + 1 = ⌊n+1

2 ⌋, andv no larger faces.
Equivalently,∆ is a complex of dimension at most⌊n−1

2 ⌋ that contains the complete
(⌊n−1

2 ⌋ − 1)-skeleton of the simplex∆n−1.

There are
(

n
⌊(n+1)/2⌋

)

=
(

n
⌊n/2⌋

)

elements in the⌊n+1
2 ⌋-level of Bn. Hence, there are

at least

2( n
⌊n/2⌋)

(2n)!
∼ 22n/

√
n

(2n
e

)2n
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combinatorially non-isomorphic such Bier spheres (where our rough approxima-
tion ignores polynomial factors).

On the other hand, there are at most 28n3+O(n2) combinatorially non-isomorphic
simplicial polytopes on 2n vertices. This follows from results of Goodman and
Pollack [41] and Alon [1, Theorem 5.1]. �

The work of Kalai [52] and Lee [56] contains other constructions formany
shellable spheres.

These “numerous” spheres are quite special in various ways.Namely, they are
shellable, theirg-vectors areK-sequences, and for evenn we obtain in fact a large
number of “nearly neighbourly” examples, which we discuss in the next section.

We have defined the construction of a Bier poset for arbitraryposets and have
shown that the construction produces face lattices of PL spheres from face lattices
of PL spheres. However, it remains an open problem how we can extend the Bier
construction to obtain numerous simplicial or shellable (n− 2)-spheres with more
than 2n vertices.

5.8 C S  N N S

In this section we show that, if the abstract simplicial complex∆ satisfies some ad-
ditional restrictions, the Bier sphere Bier(Bn,∆) is centrally symmetric ork-nearly
neighbourly, respectively.

Here are the relevant definitions. LetΓ be a triangulated (n− 2)-sphere on 2m
vertices. The sphereΓ is centrally symmetricif it has a symmetry of order two
which fixes no face ofΓ. That means, there is a fixed point free involutionα on its
vertex setV such that

(1) for every faceA of Γ alsoα(A) is a face, and
(2) {x, α(x)} is not a face, for allx ∈ V.

A subsetA ⊆ V is antipode freeif it contains no pair{x, α(x)}, for x ∈ V.
A centrally symmetric sphereΓ with involutionα is k-nearly neighbourlyif all

antipode-free setsA ⊆ V of size|A| ≤ k are faces ofΓ. Equivalently,Γmust contain
the (k − 1)-skeleton of them-dimensional cross-polytope.Γ is nearly neighbourly
if it is ⌊n−1

2 ⌋-nearly neighbourly. Fork ≥ 2 the involutionα is uniquely determined
by the condition{x, α(x)} < Γ.

The concept of nearly neighbourliness for centrally symmetric spheres has been
studied for centrally symmetric (n − 1)-polytopes, whereα is of course the map
x 7→ −x. For instance, work of Grünbaum, McMullen and Shephard, Schneider,
and Burton shows that there are severe restrictions tok-nearly neighbourliness in
the centrally symmetric polytope case, while existence of interesting classes of
nearly neighbourly spheres was proved by Grünbaum, Jockusch, and Lutz. See
[89, p. 279] and [58, Chap. 4] for more background on this.

– 178 –



Centrally Symmetric and Nearly Neighbourly Spheres

The next two propositions provide a way to obtain centrally symmetric and
nearly neighbourly Bier spheres. In the following, only thespecial case of an
(n− 2)-sphere with 2n vertices occurs (i.e.m= n in the above definitions).

5.8.1 P [Centrally Symmetric Spheres]. Let∆ be an abstract simpli-
cial complex on the ground set[n]. If

A ∈ ∆ ⇐⇒ [n]\A < ∆,

thenBier(Bn,∆) is centrally symmetric.

Proof. The involutionα is given by the pairing [{x}, 1̂]←→ [1̂, [n]\{x}]. �

5.8.2 P [k-Nearly Neighbourly Spheres]. Let 1 < k ≤ ⌊n−1
2 ⌋. The Bier

sphereBier(Bn,∆) is a k-nearly neighbourly(n− 2)-sphere with2n vertices if and
only if

(1) A ∈ ∆⇐⇒ [n]\A < ∆, for all A ⊆ [n],
(2) B∈ ∆, for all B ⊆ [n], |B| ≤ k

(and thus C< ∆ for all C ⊆ [n], |C| ≥ n− k).

Proof. The Bier sphere Bier(Bn,∆) has 2n vertices if and only if∆ ⊂ 2[n] is a
simplicial complex that contains all subsets of cardinality 1 and no subsets of car-
dinality n− 1.

The antipode-free vertex sets of cardinalityk in Bier(Bn,∆) then correspond
to intervals [B,C] ⊆ Bn such that|B| + (n − |C|) = k. A set B is the minimal
element of such an interval if and only if|B| ≤ k, whileC is a maximal element for
|C| ≥ n− k. �

Combining the two Propositions5.8.1and5.8.2we obtain a large number of
even-dimensional nearly neighbourly centrally symmetricBier spheres. Indeed, in
the case of evenn we get at least

2
1
2( n
⌊n/2⌋)

(2n)!

non-isomorphic spheres. These are obtained from the simplicial complexes∆
which contain all sets of sizeA < n

2, and exactly one set from each pair of sets
A and [n]\A of size|A| = n

2.
The case of oddn corresponds to an odd-dimensional sphere, or an even-

dimensional polytope. In this case, the “nearly neighbourliness condition” is a
stronger restriction and hence more interesting. However,for oddn only one in-
stance of a nearly neighbourly centrally symmetric Bier (n − 2)-sphere with 2n
vertices is obtained. It occurs for the simplicial complex

∆ = {A ⊂ [n] : |A| ≤ ⌊n
2
⌋}.
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In der vorliegenden Arbeit werden zwei neue Konstruktionsmethoden für partiell
geordnete Mengen eingeführt und untersucht. Einige Teile dieser Arbeit sind ge-
meinsam mit Anders Björner, Jonas Sjöstrand und Günter M. Ziegler entstanden.

Die erste Konstruktion — die sogenannteE-Konstruktion — wurde von Epp-
stein, Kuperberg, und Ziegler für simpliziale 4-Polytope eingeführt. Hier wird sie
auf beliebige gradierte partiell geordnete MengenP erweitert. Sie hängt von einem
Parametert zwischen 0 undℓ−2 ab, wobeiℓ die Länge vonP bezeichnet, und sie
weistP eine neue partiell geordnete MengeEt(P) zu.

Im zweiten Kapitel der Arbeit werden grundlegende Eigenschaften dieser Kon-
struktion bewiesen. Sie bildet Eulersche Verbände wieder auf solche ab und erhält
ihre Länge. Für Eulersche VerbändeL wird gezeigt, dass fürr, s ≥ 2 — unter
bestimmten zusätzlichen Voraussetzungen anL — Et(L) ein r-einfacher unds-
simplizialer Verband ist. Insbesondere istEd−2(L) 2-einfach und (d−2)-simplizial,
wennL simplizial ist.

Aus der verallgemeinertenE-Konstruktion erhält man mehrere unendliche Fa-
milien von 2-einfachen und 2-simplizialen Polytopen (im folgenden (2, 2)-Polyto-
pe genannt). Hierzu wird dieE-Konstruktion auf Seitenverbände von Polytopen
angewendet. Es werden mehrere Polytopklassen angegeben, für die die aus der
Anwendung der Konstruktion resultierenden Verbände wieder Seitenverbände von
Polytopen sind. Insbesondere wird gezeigt, dass sich die Konstruktion auf vierdi-
mensionale Stapelpolytope anwenden läßt und sich daraus eine unendliche Familie
von rationalen(2, 2)-Polytopen ergibt. Außerdem erhält man eine unendliche Fa-
milie von 2-einfachen und (d − 2)-simplizialend-Polytopen injeder Dimension
d ≥ 4. Sie sind die ersten explizit konstruierten Polytopfamilien mit diesen Eigen-
schaften. Bisher waren nur eine unendliche Familie von (2, 2)-Polytopen mitirra-
tionalenKoordinaten sowie eineendlicheAnzahl weiterer 2-einfacher und (d−2)-
simplizialerd-Polytope fürd ≥ 4 bekannt.

Im dritten Kapitel werden hinreichende Kriterien dafür angegeben, dass sich
die Konstruktion auf Produkte von zwei Polytopen anwenden läßt. Für Produkte
von Polygonen erhält man eine unendliche FamilieEmn, m, n ≥ 3, von selbstdualen
(2, 2)-Polytopen.E44 ist das 24-Zell. Für dieEmn kann man sehr flexible geometri-
sche Realisierungen angeben. FürE33 undE44 wird eine explizite untere Schranke
an die Dimension des Realisierungsraumes bestimmt. Wennm, n ≥ 5 und koprim
sind, dann besitzt der Seitenverband vonEmn Automorphismen, die nicht geome-
trisch realisierbar sind.

Das vierte Kapitel enthält Resultate über (2, 2)-Polytope im Zusammenhang
mit der Klassifikation von Fahnenvektoren von 4-Polytopen sowie über (2, 2)-Po-
lytope im Verhältnis zu anderen Polytopen. Außerdem werdenältere Konstruktio-
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nen für (2, 2)-Polytope vorgestellt und ein Überblick über alle bekannten Beispiele
von (2, 2)-Polytopen mit wenigen Ecken und über unendliche Familien solcher Po-
lytope gegeben.

Im fünften Kapitel wird eine zweite neue Konstruktion auf partiell geordneten
Mengen eingeführt. Sie basiert auf einer Konstruktion, dieThomas Bier für Boo-
lesche Verbände beschrieben hat. Hier wird sie auf allgemeine gradierte partiell
geordnete MengenP erweitert. Sie assoziiert zu einer solchen und einem eigent-
lichen IdealI in P eine neue partiell geordnete Menge Bier(P, I ). WennP Seiten-
verband einer PL SphäreS ist, dann ist auch Bier(P, I ) ein solcher, und zwar zu
einer PL Sphäre, die durch stellare Unterteilung von Seitenin S erhalten werden
kann. WennP ein Boolescher Verband ist, dann sind die erhaltenen Sphären schäl-
bar. Die Anzahl kombinatorisch verschiedener Bier-Sphären ist so groß, dass die
meisten von ihnen nicht polytopal sein können. Für spezielle Wahlen des IdealsI
sind die Sphären fast nachbarschaftlich und zentralsymmetrisch.

Berlin, im April 2005
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