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INTRODUCTION

The results in this thesis deal with two new constructiomspfusets, lattices, and
polytopes, thde-constructiorand theBier construction

My interest in the first of these two constructions, Bieonstruction, originates
from several questions my PhD advisor Guinter M. Ziegler dst®out inequality
bounds for the flag vector cones of 4-polytopes and 3-spivenes | joined the
Discrete Geometry Group at the Technische Universitai®eWhile working on
these questions | read the paper “Fat 4-polytopes and 8&#pheres” by Eppstein,
Kuperberg, and Ziegler and got interested in Ereonstruction they define. They
used it for the construction of an infinite family of 2-sim@ead 2-simplicial 4-
polytopes. Such polytopes satisfy two of the known flag vertequalities with
equality, and — at that time — were the “fattest” known 4-pgopes.

The E-construction defined in this thesis is a generalisatiorhefdne intro-
duced by Eppstein, Kuperberg, and Ziegler to graded posetdadtices of any
length and polytopes in any dimension. By means of this coasbn it is now
easy to produce large numbers of 2-simple ahd 2)-simpliciald-polytopes (and
also many others) with further interesting properties.

The original E-construction requires as input simplicial 4-polytopesihg
their edges tangent to the unit sphere. My first importaqt &teards the definition
of its generalised version was the discovery of explicitrgetsic coordinates for
some of the 2-simple and 2-simplicial 4-polytopes obtaiftech the E-construc-
tion, but without assuming edge tangency. Further workiitp fihese new poly-
topes, with projective transformations, and with some g&toim sequences, | ar-
rived at the first infinite sequenceraitional 2-simple and 2-simplicial 4-polytopes.
They arenottangent to the unit sphere, so thegnnotbe obtained with the original
construction. This setfball other results about thie-construction.

Exploring properties and applications of tBeconstruction were my main oc-
cupation during the past three years. Many other questindgeoblems | have
looked at were motivated by questions that arose in cororegtith this. A dif-
ferent construction that came up in this context — Bier construction— is in-
troduced in Chapteb of this thesis. The Bier posets and spheres defined there
have a close formal similarity to those of tReconstruction, but the presented re-
sults have a more topological flavour. In particular, we obgalarge number of
shellable, centrally symmetric alkehearly neighbourly PL spheres.

Some of the results presented in this thesis are alreadyspeldl elsewhere.
The definition of the generalisdel-construction, its basic properties for Eulerian
lattices, for spheres and for polytopes, together withisdagplications of it, have
appeared in a joint paper with Gunter M. ZieglerDiscrete & Computational
Geometryin November 200448]. This paper is the basis for Chapter Part
of it has moved into Chaptet and was combined with some results from my
recent preprint on products of polytopeso]. Both chapters contain new material.
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In particular, in Chapte® is a simple and useful new method for constructing
polytopal realisations of spheres obtained frieraonstruction. Chaptef contains
lists of known small 2-simple and 2-simplicial 4-polytopesknown constructions
for such polytopes, and a summary on higher dimensional pkeam

The central results of Chapt8rare contained in my preprint “New Polytopes
from Products” §6]. It deals with a large class of polytopes to which the
construction applies and the obtained spheres are polytdpa main application
is a new 2-parameter family of 2-simple and 2-simplicialalypopes with many
other remarkable properties.

Chaptel5 is independent of the previous three chapters and reflexttitents
of a joint paper 21] with Anders Bjorner, Jonas Sjostrand, and Gunter M. Ziegle
on a construction for posets leading to “Bier Spheres an@tBdslt appeared in
the online version oDiscrete& Computational Geometiy September 2004.

A rough layout of the thesis is as follows. Introductory milefrom the three
papers is combined into ChapterChapter—4 are related to each other and deal
with the E-construction, while Chaptérdeals with the Bier construction. A more
detailed account on the three parts is given in the next@estf the introduction.
This thesis is written in British English.

FroM PoseTts To POLYTOPES

The first chapter contains all notations, definitions antsfttat we need from the
areas of combinatorics and discrete geometry in this th&sisn though is short,
it is intended to be self-contained. However, it focuses aions and results used
in the later chapters and does not give a general introdutto these topics.

We start this introduction with two sections devoted to thér different notions
of posetslattices spheresandpolytopes The first two terms are of combinatorial
nature; and lattices are posets with some additional stre.ctWe deal with them in
Sectionl.2. The latter two are of geometric nature; and polytopes arespiiéres
with some additional structure. Both are presented in Sedti3.

Sectionl.4 gives a brief introduction into the known results on flag vestof
three and four dimensional polytopes. There is a completesdication in three
dimensions, while in four dimensions (and also all highenehsions) the picture
is still quite incomplete. The polytopes obtained from &eonstruction lie in
areas of the flag vector cone in which only very few polytopagehbeen known
previously. However, this new information by itself doeg sdfice to add new
structural results to the classification problem.

Finally, in Sectionl.5we give a brief introduction into hyperbolic geometry.
We discuss two standard models of hyperbolic space, ther inghiespace model
and the Klein model. We introduce geodesics, isometries hanospheres in hy-
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INTRODUCTION

perbolic space, and show that the isometry group is traesilihese facts are nec-
essary for one of our constructions of infinite families dfigiple and 2-simplicial
4-polytopes in Chapteit.

Here are some textbooks for a more detailed introductiom tim¢se topics. |
learnt much of what | know about posets and lattices fromlogtooks of Richard
P. Stanley on “Enumerative Combinatoric83[ 84]. My favourite book on topol-
ogy is “Topology and Geometry” by Glen E. Bredodd], and the basics about
polytopes are in Gunter M. Ziegler's book “Lectures on Pabgs” B9]. Poly-
tope constructions are explained in detail in the book omf@a Polytopes”44]
by Branko Griinbaum and in the classic text book of H.S.M. @axen “Regu-
lar Polytopes” B0]. For hyperbolic geometry, one could look at the introdugto
text “Lectures on Hyperbolic Geometry” of Ricardo Benedatid Carlo Petronio
[12]. For discrete geometric questions, and some facts abauvdetors, the two
volumes of the “Handbook on Convex Geometr§3] are always a good source.

E-CoNSTRUCTION

The E-construction for spheres and polytopes was introducedpapeer of Epp-
stein, Kuperberg, and Ziegler. They obtained the first itdiseries of 2-simple and
2-simplicial 4-polytopes using this new method. Earliexiis of a construction
of such a family of polytopes reported by Griinbaum in his bpbk p. 82,170],
where this is attributed to Perles and Shephard, turnecde premature.

In its original version, th&-construction applies to simplicial 4-polytopes hav-
ing all their edges tangent to the unit sphere. It modifiet susimplicial polytope
P by adding the vertices of its polar in a suitable way. Howgthex edge-tangency
condition prevents most of the polytopes obtained by thistraction from being
realised with rational coordinates. Moreover, edge taogéndifficult to achieve
for a simplicial 4-polytope, if it is possible at all. EppsteKuperberg, and Ziegler
use a quite intricate method for the construction of an iteifamily of such 4-
polytopes. Their families of polytopes are now a speciaéads heoren?.5.15

In Chapter2 we define a generalised version of teonstruction. It extends
and modifies the origindt-construction in several directions:

¢ The construction is extended to finite graded Eulerian godigite graded
Eulerian lattices, PL spheres, and polytopes in any dino@nsi

* The special role played by the edges in the original versfaheconstruc-
tion is relaxed by defining a similar construction for any dmsiont of “dis-
tinguished” faces, for a parametdretween 0 and — 1. Hered is either the
dimension of the polytope, or the rank of the poset minus one.

¢ Edge tangency in the case of polytopes is not anymore nagessabtain
geometric realisations.




| kept the nameE-constructionalso for the generalised version. To avoid con-
fusion, the dimension of the special faces of the polytope is sometimes added
as a subscript, so th&(P) denotes the polytope obtained from the construction
applied to faces of dimensidrof a polytopeP.

Defining theE-construction combinatorially on the level of graded Eialer
posets and lattices allows a much more systematic treatofiéstproperties than
by defining it only for polytopes. Consequently, we give twéatent definitions
of the construction, a combinatorial one in SectibA for Eulerian posets and
lattices, and a geometric one for PL spheres and polytop&eation2.4. The
latter coincides with the former on the level of face latsice

Eulerianlattices provide a simple model for the combinatorial properties of
convex polytopes. This is a rather recent topic in combimego Eulerianposets
were formalised by Stanley()] in 1982. Basic ideas for their definition appeared
previously in Klee’s paperdb] from 1964. There are some recent studies of the
flag vectors of Eulerian posets (see e.g. Startt¢y)| However, there is still only
little systematic knowledge and treatment of Eulettticesin the literature.

A priori, the geometric version of the generaliséetonstruction applies to a
PL spheres and associates a new PL sphE(&) to it. However, such PL spheres
serve only an intermediate tool for our considerations. Yéa@ainly interested in
polytopes, which are PL spheres with some additional gewersttucture. So we
introduce in Chapter& and 3 several classes of polytopes with the property that
the PL spheres obtained from tReconstruction are in fact polytopal. For most
of these classes we also provide simple methods to congtxptitit geometric
coordinates. In many cases these coordinates will be &dtion

Here are some of the key properties of the generaksednstruction and the
most important classes of polytopes obtained from it.

¢ By Theorem?2.3.1] the posets, lattices, and polytopes obtained fronEthe
construction are 2-simple akesimplicial, for somek > 2 depending on the
simplicity and simpliciality of the input.

¢ In Theoren?.5.15is the first infinite family of 2-simple andl-2)-simplicial
d-polytopes in any dimensioth > 4.

¢ \We obtain the first infinite family ofational 2-simple and 2-simplicial 4-po-
lytopes in Corollary2.5.11 We construct many other such families.

¢ The 2-simple and 2-simplicial 4-polytopes produced witis ttonstruction
lie on the boundary of the cone formed by the known flag vectequalities
of 4-polytopes.

¢ Some of the polytopes have a high fatness. This quantity miesduced by
Ziegler and is defined to be the quotient of the sum of edgesidgds of a
polytope divided by the sum of its vertices and facets. Bsumdlits range
are of great interest in connection with the classificatibfiag vectors.
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INTRODUCTION

¢ For several of our families of 2-simple and 2-simplicial ytopes we are
able to provide flexible geometric realisations.

¢ The E-construction applies to all products of polygons. We gixplieit
geometric realisations and examine their symmetry gromgsraalisation
spaces.

In the case of polytopes the generaligedonstruction roughly works as fol-
lows: Given is ad-polytopeP and a dimension between 0 andl — 1. Add one
new vertex beyond each facet®in such a way, that vertices above facets sharing
a commorn-face lie in a common hyperplane with thigace. If such a choice of
new vertices exists, then the convex hullRofogether with these new vertices is a
polytopeE;(P) that has precisely one facet for edeface ofP.

In Chapter2 several properties of this construction on the level oidat are
proven. They are inspired by the properties one would exipettte geometric
setting. In particular, the construction preserves thgtlerof a poset, and the
lattice E(L) obtained from a latticé via this construction is finite, graded, and
Eulerian, ifL has these properties.

We transfer the definitions and results into a geometricngpeih Section2.4
and apply them to PL spheres. In the rest of Chaptee present several classes
of polytopes to which th&-construction applies. We construct one infinite family
of 2-simple andq — 2)-simpliciald-polytopes for any dimensiocth> 4, and many
such families in dimensiod = 4, most of them with rational coordinates.

Chapter3 is entirely devoted to a quite general method for the apptinaof
the E-construction tal-polytopes in the case= d — 2, which does the following:
Let P, andP; be two polytopes of dimensionlg andd,, with dy+d; = d. Suppose
there are polytopal realisations &f,_>(Po) and Eg,_>(P1). Theorem3.3.1now
states that, if these realisations satisfy some additiomadlitions, then there is a
polytopal realisation oE4_,(PoxP;), which can be obtained by suitably combining
the coordinates of the two realisations.

The application of this construction is demonstrated byesmmple examples
in all dimensions> 4. However, the main application is the construction of yet a
other infinite 2-parameter familg,, of 4-polytopes. ThesE,,, are obtained from
the E-construction when applied to a product of two polyg@isandC, with m
andn vertices, form, n > 3. For this, we first show that there is a restricted version
of Theorem3.3.1that allows to look at the two factors separately. By Theorem
3.4.], there are realisations &(Cy) for polygonsCy, k > 3, that satisfy these
restricted conditions. The proof is constructive and weawbsimple geometric
realisations for thé&,,,, However, in general, the coordinates will not be rational,
as there is one quadratic equation involved in the consbruct

The E, are self-dual 2-simple and 2-simplicial 4-polytopes,, is the 24-
cell. For largem andn these polytopes approach the upper bound for fatness of
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E-polytopes obtained from simplicial polytopes. They havarge combinatorial
symmetry group and geometric realisations that realiseyroartheir combinato-
rial symmetries. However, by Theore®n5.6 only for m,n = 4 — which is the
24-cell — these two groups coincide for a geometric reabsanamely, the stan-
dard regular realisation of the 24-cell. There are a few rptbely slightly less
symmetricE,, described in Theorerd.5.3

For the two small cases,n = 3 andm,n = 4 we examine in Theorems
3.5.10and 3.5.13the realisation space of these polytopes. For the first ebeamp
we provide an explicit way to construct all examples thaisfathe conditions in
Theorem3.4.1 For the second example we only state a 4-parameter famri-of
alisations, as the explicit construction of all possiblisations is quite technical.

The initial idea to investigate the-construction of products of polytopes arose
from the interest in the realisability and the symmetry & golytopes,,, in the
special casen = n. A combinatorial description of these polytopes and some
symmetry properties were obtained independently by Bokoarsd Gévay.

Chapter4 is the last chapter on thEé-construction. It collects results from
the previous two chapters and compares them to “the outjgope world.”
Namely, it addresses the relation between 2-simple anchphgial polytopes and
polytopes without this property. We present new resultsam\fectors of 2-simple
and 2-simplicial polytopes, look at their fatness, giveéowounds on the number
of 2-simple and 2-simplicial polytopes and show that the flagtor does not fix
the combinatorial type of such polytopes.

Further, Chaptef contains a summary on the known construction methods for
2-simple and 2-simplicial 4-polytopes. We provide a cortglest of these up to
19 vertices, together with many more interesting examlasttave a larger num-
ber of vertices. We also give a list of interesting examptekigher dimensions.
This is, however, not complete and the casd-pblytopes fod > 5 is, despite the
given infinite series of 2-simple and ¢ 2)-simpliciald-polytopes, still quite un-
explored. We have provided a wealth of examples in dimenéiwith this thesis,
but constructing explicit examples in dimensiahs 5 is still much more dficult.

BIER SPHERES

Chaptels deals with a topic dierent from that of the previous chapters and is joint
work with Anders Bjorner, Jonas Sj6strand, and Ginter Mgléie It introduces

a second new construction for finite graded posetsBtBeconstruction This has
some formal similarity to th&-construction of the previous chapters, and some of
the presented theorems and proofs will look familiar. Hosveit has a dterent
origin, and the results and properties that we present dbsutonstruction have a
much more combinatorial and topological flavour.
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INTRODUCTION

In an unpublished paper from 1992, Thomas Bier introducesnals con-
struction for a large number of simplicial PL spheres. Hisstauction associates a
simplicial (n—2)-spheres with up to 2 vertices to any simplicial complex c 2"
on n vertices by forming theleleted joinof the complexA with its combinatorial
Alexander dual. Bier proved that this construction doesé@tproduce PL spheres,
by verifying that any addition of a new face to the simpli@amplexA amounts
to a bistellar flip in the spher.

We generalise Bier’s original construction and defiriexr poseBier(P, I) for
any bounded finite pos€® and any proper order idealc P in this poset. The
poset BierP, I) consists of all intervals ifP that have their minimal element in
I and their maximal element in the complemény |, together with an artificial
maximal element. This set is ordered by reversed inclusion.

Our generalised construction contains the original coiesiyn of Thomas Bier
as a special case. Namelyffis the boolean posé&,, then it can be viewed as the
face poset of then(— 1)-simplex. Any proper idedl c B, may be interpreted as
an abstract simplicial complex. The PL spheres that Bier describes in his work
are spheres that have BiBf( A) as their face lattice.

We prove several new properties of this construction andtitained posets
and spheres. Here are the key results contained in Chapter

¢ \We show that the order complex of Bi€r() is PL homeomorphic to that of
the posef. We prove that this complex may be obtained by a sequence of
stellar subdivisions of edges in the order compleRof

¢ Like the E-construction, the Bier construction preserves seveiggties
of the poset. In particular, i is an Eulerian or Cohen-Macaulay poset or
lattice, then Bier@, ) will have that property as well.

¢ |f L is the face lattice of a regular PL-sphe3ethen the lattices Biek( |)
for proper ideald c L are again face lattices of regular PL-spheresBiee
spheresf S.

¢ In the case of Bier’s original construction we prove thatth# simplicial
spheres obtained from the construction are shellable.

¢ The number of Bier spheres is so large, that most of the splBiegB,, A)
for largen cannot be realisable as polytopes.
Similarly, for special choices of the abstract simpliciahlex A in B,
and evem, we obtain “many” nearly neighbourly and centrally symngetr
(n — 2)-spheres onr2vertices.

¢ Theg-vector of a Bier sphere Bidg(, A) can be expressed explicitly in terms
of the f-vector ofA. We show that thesg-vectors actually ar&-sequences,
and thus they satisfy a strong form of tgeconjecture for spheres. The
generalised lower bound conjecture is verified for Bier spbe
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CHAPTER 1

PosETS, LATTICES, SPHERES, AND POLYTOPES




Posetrs, LATTICES, SPHERES, AND PoLYTOPES

1.1 INTRODUCTION

This thesis examines both combinatorial and geometric gatigs of polytopes
that have some special properties. The constructions itateechapters start out
with combinatorial definitions on posets and lattices. Eha® transfered into a
geometric setting by applying them to face lattices of spdi@nd polytopes and as-
sociating appropriate geometric structure to the resulhik chapter, we introduce
the necessary combinatorial and geometric notions andlgésproperties needed
for the later chapters. Nothing really new is included hbtg,some material lacks
a concise source in the literature.

The chapter is split into four parts. In the first, we introdyposets and lattices,
and in the second PL spheres and polytopes. In the third, @pt some material
about flag vectors of polytopes and the flag vector classificgtroblem. The last
part is about hyperbolic geometry, which we need for onetpply construction in
the end of the second chapter.

1.2 Posers AND L ATTICES

We introduce posets and lattices, which are the two impbdancepts of combi-
natorics that we need in this thesis. We restrict our atvertts the properties and
theorems that we need later. A more detailed treatment, @rdader view on
these topics, can be found in the two books of Start&}gnd [84] on “Enumera-
tive Combinatorics”.

1.2.1 PSETS

Roughly, partially ordered sets are sets together with ditiadal structure intro-
ducing an “order” between some of its elements. The main elawof a partially
ordered set occurring in this thesis is faee latticeof a polytopeP. Its underlying
setis the set of all faces & The order relation is given by inclusion of faces. (see
Sectionl.3.2for an exact statement). Here is the precise definition ofraghig
ordered set.

1.2.1 DxriniTioN [Poset]. A partially ordered sef(or posetfor short) P is a set
(usually denoted with the same letty together with a binary relatiog (which
can be viewed as a subset®k P) that for anyx, y, z € P satisfies:

(1) x=x, (reflexivity)
(2) x<yandy<ximply x =y, (antisymmetry)
(3) x<yandy=<zimply x<z (transitivity)

We often write<p to emphasise the set on which this relation is defined.
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Posets and Lattices

We usex<yto denotex<yandx # y. We also usg > x for x<y andy > x for
x<y. Two elementsx andy of a posetP arecomparablef either x<y ory=<x.
Otherwise they arencomparable An elementy is said tocoveran elemeni if
x<yand there is n@ € P such thayy<z<y.

The Hasse diagranof a posetP is a very convenient way of visualisirigin
R2: For every element of the poset we draw a point in xiix,-plane in such a
way that, for any paik <y € P, the pointy has a largexk,-coordinate than the point
X. We connect a pair of pointsandy by an edge ify coversx. See Figured.1(a)
andl1.1(b)for examples.

An induced subposet Qf a posetP is a subset of the elements Bftogether
with the induced order relation; that is, two elementfQadre comparable iQ if
and only if they are comparable as element®oHowever, the covering relations
may change. Amnterval[x,y] bounded by two elements<y in a posetP is the
induced subposet

[X,y] :={ze P : x<z=xy}

See Figurel.1(c)for an example. Anaximal elemenin a posetP is an element
y € P such thatx<y for all x € P. Similarly, one definesinimal elementsNote,
that a poset can have several maximal and minimal elemesgszigurel.1(a)for
an illustration of this.

A poseto is called achain (or total orderor linear order) if any two elements
in o are comparable. See Figutel(b)for an example of a chain. Theaximal
elemenbf a chaino is the elemeny € o satisfyingx <y for all x € o~. Similarly,
the minimal elements the elemenk € o satisfyingx<yfor ally € o. A chain
in P is a subposetr of P that is a chain with the induced order. A chainRns
maximalif there is no larger chain i containing it.

(a) A poset with two maximal ar{th) The totally orderegt) An interval [x,y] in a poset.
two minimal elements. poset [4]={1,2,3,4}.

Figure 1.1: Examples of posets I.
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1.2.2 &xampLEs. Here are some examples of posets together with their Haase di
grams. These posets will reappear frequently in the suleseghapters.

(1) Let P be the set containing the first natural numbergl,...,n}. Equip
this with the order relation induced by the usualin N. This is a totally
ordered set commonly denoted m].[See Figurel.1(b)for an illustration.

(2) LetB, for n € N be the set of all subsets af][(i.e. the power set off]])
together with the relation given by inclusion (usually re¢el to as‘ordered
by inclusion”). This is theBoolean posebn n elements. Its Hasse diagram
for the casen = 4 is shown in Figuré..2(a)

(3) LetI':={0,1,...,k} be an alphabet witk + 1 letters andu(I') the set of all
words oved”. We say that a word; is smaller thanw, if w; is a substring
of wy,. This defines a poset with infinitely many elements. A smaitipo
of this poset is in Figuré.2(b)

A posetP is said tohave a zerdf there is a unique elemefte P that satisfies
O<yforally € P. Similarly, a poset is said thave a onéf there is an elemeri
that satisfiex< 1 for all x € P (In a chain, these are the minimal and maximal ele-
ments). The poset in Figufie3(a)has a zero, but no one, and that in Figlirg(b)
has a one, but no zero. A posebisundedf it has a0 and al. It is locally finite
if any interval contains only a finite number of elements, amglfinite, if the setP
itself has only a finite number of elements. The Boolean podetamplel.2.42)
is bounded, the one in Example2.43) is not. Note, that a bounded poset need
not be finite, and vice versa.

In a bounded posé we say that an element is atomof the poset if it covers
0, and it is acoatomif it is covered byl. The set of all atoms in a poset is denoted
by A(P) and the set of all coatoms lg(P). A posetP is connectedf its Hasse
diagram is connected as a graph. A bounded pBsiststrongly connectedif
P\{0, 1} is connected.

1220

122 120 220

LR

12

(a) The Boolean poseg,. (b) A small part of the poseb(I'): The poset of all
subsequences of 1220.

Figure 1.2: Examples of posets .

- 14 -



Posets and Lattices

Mostly, the relation in posets that we consider is eitinetusionor reversed
inclusionfor a set of cells in a CW sphere or of faces in a polytope. Thelsgions
are opposite to each other in the following sense.

1.2.3 Derinition [Opposite Poset]. The opposite poset ¥ of a posetP with
relation< is a poset with the same underlying set, but reversed ortig¢rare. That
is, for all x,y € P°P, we havey < xin P°Pif and only if x<y in P. See Figurel..3
for a Hasse diagram of a poset and its opposite poset.

A mapm : P — Q between two posetB and Q is order-preservingif it
respects the order relation. That means, for &any € P, their images undem
should satisfyn(x) < m(y) if x<vy.

1.2.4 CerintTioN [Isomorphic Posets]. Two posetsP and Q are isomorphig if
there exists an bijectiop : P — Q such thatx <y if and only if ¢(X) < ¢(y). That
IS, ¢ and its inverse are order preserving. We call such a mautomorphisnof
the poseP if Q = P. The set of all automorphisms Bf together with composition
of maps, forms a group, treutomorphism grouput(P) of P.

There are several simple constructions that produce neet$b®m old ones.
We will later need the following two methods, which define tifferent products
for a pair of posets.

1.2.5 DerintTioN [Product and Reduced Product]. Let P and Q be two posets
with order relations<p and=<g.
¢ The (direct) productof P andQ is the setP x Q := {(x,y) : xe€ Pye Q}
with order relation X, y) <(X,y') if X<p X andy<qYy'.
¢ Assume that botl? andQ have a zero. Theeduced product with respect to
0 of P andQ is the setP x,eq Q := P\{0} x Q\{0} w 0, with order relation
induced fromP x Q, and0 <(x, y) for all x € P\{0}, y € Q\{0}.

')
A\

(a) A poset withoutl.. (b) and one withou®.

Figure 1.3: Examples of posets IlI.
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In the same way, one defines a reduced product for a pair ofpeita 1. With
the obvious adaptions, all results about reduced prodtittsespect td are also
valid for those with respect tb.

Now we turn to some more powerful structures of posets. R.be a locally
finite poset. Thdength (o) of a chaino in P is one less than the number of
elements it containsé(x, y) for two elementx<y in P denotes the length of the
longest chain in the intervak[y]. Similarly, thelength of Pis

{(P) :=maxX ¢(0) : oisachaininP }.

We call an interval or posejraded (or ranked if all maximal chains have the
same length. Note, that this need not be true in general pobwever, ifP is
graded, then the same is true for any interval/] C P. This allows the following
(recursive) definition.

1.2.6 DeriniTiON [Rank Function]. A bounded graded posétcan be equipped
with arank functiono : P — N by defining

(1) p(x) := 0 for all minimal elements oP, and

(2) p(y) :=p(x) + 1 if ycoversx.
For any 0< k < ¢(P) define thdevel setof rankk in P by

Pci={xeP:p(X) =k}

If 1 is the maximal element &¥ thenp(1) is the length of the poset. Observe
thatf(x,y) = p(y) — p(X) for any twox,y € P.

We indicate a grading of a poset in its Hasse diagram by giglaghents the
same height if and only if they have the same rank. Note, thatduced subposet
of a graded poset need not be graded itself, see e.qg. Figuli®)

Po\do Q

PxQ % P Xreq Q W

Figure 1.4: Products of two posets.
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1.2.7 Cerintrion [Ideal]. Let P be a poset. Andeal | (also called alown setin

P is a subset oP that for anyy € | contains all elements € P covered byy. See
Figurel.5(b)for an example. A subsét C P is called &filter (or up sejin P, if it

is an ideal in the opposite poset.

The combinatorial properties of a poset are the number efétments and — in
the graded case — its rank and the covering relations bettheeslements. For a
graded poset, the next notion captures an aggregated weifdiois information in
a very convenient form by summing over all elements with eajent properties.

1.2.8 CeriniTiON [Flag Vector]. Let P be a finite graded poset of length An
S -chainfor any subset C {-1,...,¢-1}is a chain inP that has lengthS| — 1
and contains an elememt of rank j + 1 for anyj € S. Let fs be the number of all
S-chains inP. Theflag vectorof P is the vector

(in some previously fixed order on the power sef#l,...,¢-1}). We usually
write fg s, s INstead offis s, sy. The f-vectorof P is the subset

f(P) = (f—l’ fo, fl, ey fg_]_)
of the entries of flag®).

If Pis bounded, then one usually drops the first and last entiyari4vector,
as they are both one. This is in particular the casefteectors of polytopes.
In boundedposets of lengtlf we know thatf_,; = f; and f;;,_ = f; for any
—1 < J < ¢ by definition. This is not true for arbitrary posets.

1.2.9 XAMPLES.

d
C
e
b
a
(a) A subposet 0B, in Figurel.2(a) (b) The black elements form an ideal Ba.

Figure 1.5: Examples of posets IV.
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¢ The the flag vector of [4] in Figur&.1(b)has 16 entries, which are all one.

¢ The f-vector of the Boolean poset in Figute?(a)is f(Bs) = (1,4, 6,4,1).
The remaining nontrivial entries of the flag vector dgg= fo, = i, = 12
and f012 = 24.

1.2.10 Remark. The index shift in the definition of the flag vector of a poset
originates in the correspondence of elements of ramkl in the face poset of a
polytope to faces of dimensiopin this polytope. That is, in the case of a face
lattice of a polytopef, counts the number of verticef, the number of edges, etc.
f_; is the empty set, ant} for ad-dimensional polytope is the polytope itself.

Let 7 (P) denote the set of all intervals v TheMdobius functionu : 7(P) — Z
of a posef is defined inductively by the following two conditions.

u([xx]) =1 for all xeP
u([xy]) = - Z u(X, 2) for all X,y € Pwith x<y

X<z<y

We usually writeu(x,y) instead ofu([x,y]). The Mobius function is a special
function in the algebra of all functions defined H(P), which is a rather powerful
tool in the theory of posets; see e.g. Stanley’s bd&sk pp. 113f]. For example,
the Mobius function on the poset shown in Figaré(a)evaluated on the interval
[a, €] is O, while all other values are eitheil or —1. In this thesis, we use the
Mobius function only for the following important definition

1.2.11 GerintTion [Eulerian Poset]. A finite and graded posdR is Eulerian if
u(x,y) = (=1)0Y for all x<yin P.

Eulerian posets are a rather recent topic in combinatdBiasic ideas appeared
in a paper of Klee in 19645F], while a formal definition came only in 1982 by
Stanley BQ]. A survey on known results for Eulerian posets is given bgngiy
in [82]. To test, whether a graded poset is Eulerian or not, we walstly use the
criterion given by the following proposition.

1.2.12 RorosiTion [Odd and Even Elements]. A finite graded poset P is Eulerian
if and only if all intervals[x,y] of length¢ > 1in P contain an equal number of
elements of odd and even rank.

Proof. Let p be the rank function o andx,y € P two arbitrary elements with
£(x,y) > 1. If Pis Eulerian them(x, y) = (-1)'*¥ and we can compute

0= (-1P[-D™+ ) u(x2)]

X<z<y
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= (_1)P(X)[(_1)0(Y)—p(x) + Z (_l)é’(X,z)]
X<z<y
= (—1fY + (-1y® Z (—1y@-+®
X<z<y

= (0 Y (1@ = Y (-ye.

X<z<y X<z<y

The other implication follows by induction ovér:= ¢(x,y). If £ = 0, thenx =y
andu(x, X) = 1 = (-1)’. So, ifthe claimis true forank < £andé(x,y) = £+1 > 1,
then

1P y) T - (19 3 p(x2) = ~(-1y9 ) (-1)¢

X<z<y X<z<y

- _ Z (1Y@ = (=1y9.

X=<z<y

The last equality uses that the intervaly] has the same number of odd and even
rank elements. ]

1.2.13 Remark. By a result of EhrenborgBP], it suffices to look at the intervals of
even length in the proof of Propositidn2.12 He proves, that, if in a posét all
intervals of length up toRare Eulerian, then so are the intervals of lendki+2.
The proof of this is a lot more involved than the argumentegifor the above
proof of Propositiorl..2.12

The special case of Propositidn2.12for £ = 2 tells us that any interval of
length two in an Eulerian poset has precisely two elementhenmiddle level.
This is sometimes called tltBamond propertyf Eulerian posets.

1.2.14 Gerintrion [Euler Equation]. Let P be a finite graded poset of lengthP
is said to satisfy th&uler equationf its f-vector satisfies

f—l_ f0+ f1¢"' + (—1)€fg_]_ =0.

This reduces to the well known Euler formula for 2-spherés is the poset
obtained from a sphere with facets,e edges and vertices, then the above for-
mula specialises te — e+ f = 2. Face posets of polytopes (which we define in
Sectionl.3.2 are Eulerian. This is proven with the help of the followinmple
observation.

1.2.15 ReorosiTion. Let P be a finite graded poset. P is Eulerian if and only if any
interval[x,y] C P satisfies the Euler equation. O
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The property of being Eulerian is preserved by both prodpetations that we
have defined in Definition.2.5

1.2.16 TaeoreM. Let P and Q be Eulerian posets. Then botlk B and Pxeq Q
are Eulerian.

Proof. Clearly, both products are finite ¥ andQ are finite. Lejpp andpg be rank
functions onP andQ. Then

P((%¥)) = pp(X) + po(y)

for (x,y) € P x Qis a rank function on the product and

Pred(%.Y) = pp(X) + po(y) — 1

for (x,y) € P xeq Q andp,.4(0) = 0 is a rank function on the reduced product. It
remains to prove that both products are Eulerian. For thiceumt elements of
odd and even rank in intervals.
¢ Any interval of length at least one iR x Q has the form [, y), (X,Y)] =
[x, X]x[y,y]for x<x andy <y, and at least one of these relations is strict.
W.l.o.g. assume that<y'. For anyX in [x, X], we have equally many ele-
ments of typeX,y), fory € [y, y'], with odd and even rank, &3 is Eulerian.
Summing over alk € [x, X'] gives the result.
¢ For reduced products, the onlyfidirence to the previous argument occurs
for intervals P, (x, y)]. For any fixedx € [0, x]\{0} of evenrank, this interval
contains all elements of typ&,@) for y € [0, y]\{0}. As Q is Eulerian, this
set has one more elementaxd rank than elements of even rank (compared
to the other product, it lacks the pai, 0)). Similarly, if pp(X) is odd, then
it contains one more element widtvenrank. Now P, x]\{0} has one more
element of odd rank, so summing over ®lland using thap(0) = 0, we
conclude that@, (x, y)] is Eulerian. O

The Euler equation is the onhon-trivial linear relation between the entries of
the f-vector of bounded Eulerian posets (the trivial onesfayes 1 = f,_;). How-
ever, for flag vectors, there are many more entries thatdiyne@pend on some
others. All such relations are subsumed in generalised Dehn—-Sommerville
Equations They were found by Bayer and Billera in 1988]].

1.2.17 Taeorem [Generalised Dehn—Sommerville—Equations].Let P be a finite
bounded graded Eulerian poset andS{0,...,d - 1}. If {i,k} c Su {-1,d - 1},
i <k-1,and S contains no m such thatim < k, then

k-1
DD M sy = fs(1 - (1Y,

j=i+1
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All linear relations between entries of the flag vector arateined in thesgener-
alised Dehn—Sommerville—equatioi$ey reduce the dimension of thfrae span
FV(P) of all possible flag vectors fro@f to Fy—1, where F; is the d-th Fibonacci
number. O

For a bounded Eulerian poset of length 4 the Dehn—-Sommereduations
imply that f, and f, already carry all information contained in the flag vector:

¢ f, =2 fy - f, by the Euler equation,

¢® fo1 = 2f; by takingS = {1},i = -1 andk = 1,

¢ f02 = fOl by taklngS = {O}, i =0andk = 3,

® f,=2f bytakingS = {1},i = 1 andk = 3, and

® fo1o = 2y by takingS = {0,1},i = 1 andk = 3.
The remaining entries of the flag vector follow from these byidedness. Sim-
ilarly, for any bounded Eulerian poset of length 5 the nuraldgr f,, f3, and fo3
sufice. We call thisreducedflag vector theessential flag vectoof the poset.
Clearly, this choice is arbitrary. We could as well take f;, f, and fp,. If we
do not explicitly state otherwise, for posétf length 3 we will in the following
always write flagP) as (fo, f2) in this order, and for posets of length 5 we note
(fo, T2, f3; fo3), Or (fo, f1, T2, f3; fo3) If we want to emphasise some symmetry in the
entries.

With the following definitions we associate some simple gewio structure
with posets.

1.2.18 GrrmviTioN [Abstract Simplicial Complex]. An abstract simplicial com-
plexA is a finite collection of sets such that, if a &is contained im, then so is
any subset 08.

With the next construction we find such an abstract simplmianplex A(P)
for any finite poseP in such a way, that the incidence relations are given by the
order relations irP.

1.2.19 CermviTion [Order Complex]. Let P be a finite poset. Define an abstract
simplicial complexA(P) associated t® by the following two conditions.
¢ The vertices ofA(P) are the elements ¢t and
¢ asubsetr c P defines &-face inA(P) if and only if it is a chain of lengthk
in the posef.

Given a poseP, we will mostly look at the order complex of thgoper partP
of P, which is defined to be the podetwithout0 andl (if P has such elements).

1.2.20 ReorosiTioN. Let P be a finite graded poset. The order complex of P has a
geometric realisation in somR".
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Proof. We can realis@(P) as a subcomplex of the convex hull of the= |P] unit
vectors inR", which is a ( — 1)-dimensional simplex. The order complex is a
¢-dimensional subcomplex of it, whefas the length of. O

Usually, one can embeti(P) also in a lower dimensional space. For example,
the order complex of the posEtin Figure1.6(a)(the Boolean poseB; without
the0) is the barycentric subdivision of the full triangle showrigure1.6(b)

1.2.2 LATTICES

Let P be a poset with order relationy andx,y € P. Any elementz € P, such that
x<zandy<z is called anupper boundof x andy. zis aleast upper bounaf

x andy, if it is an upper bound, and any other upper bowndf x andy satisfies
z=<w. Inthis caseis called thgoin of x andy, denoted by = x Vv y. Similarly we
definelower bounds The greatest lower bound is called timeetof x andy and
denoted byx A y. The join of more than two elements can recursively be defined
by \/(X1, ..., %) := X1 V (\V/(Xa, . .., X)). This does not depend on the order of the
X. Similarly, one can define the meg&i(x, ..., X).

1.2.21 GeriniTiON [Lattice]. A lattice L is a poset in which any two elements
X,y € L have a meet and a join.

See Figurel.7 for an example of a poset, that satisfies the lattice property
The second example is a poset that is not a lattice. We cansidg finite lat-
tices. These are necessalilgunded Furthermore, if we want to check whether
a bounded poset is a lattice, by the next propositionftices to check either the
existence of all meets or the existence of all joins. In mases, we also assume
that the lattices we consider deailerian

13 23

12
(a) Aposet... (b) ... andits order complex.

Figure 1.6: A poset and its order complex. The order complex of the prpperofP is the shown
complex without the interior vertex and the full triangles.
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1.2.22 RorosiTioN. Let L be a finite bounded poset in which any twg & L have
a meet. Then, any two elements in L also have a join.

Proof. Assume the contrary. So there exist meets for all pairs ohelgs, but
there is a paik,y € L that has no join. LeF be the set of all upper bounds »f
andy. This is a filter inL. Boundedness df implies thatF is not empty. Asx and
y have no join by assumptiofr, must have at least two minimal elemertsand
Z. Letzbe their meet. Them> X,y as otherwisex or y would be a strictly larger
lower bound forz; andz. Sozis the join ofx andy. O

Similarly, the existence of all joins implies the existerafemeets. We are
mainly interested in lattices that come from some geomebjects. These usually
have several additional properties, which we now introduce

In the same way as for posets, we can defireded lattices Lwith a rank
functionp : L — Z, giving thelength#(L) (or rank(.)) of the latticeL. This allows
us also to computé-vectorsandflag vectorsof lattices.

A bounded latticé- is complementedf for any x € L there is an elemernte L
such thatkAy = 0 andxvy = 1. If the complemenyis unique for allx € L, thenL
is calleduniquely complementedf also all intervals inL are complemented, then
L is relatively complemented

If, in a finite latticeL, all elements excefi are the join of some of its atoms,
thenL is calledatomic Similarly, if all elements of. exceptl are the meet of some
coatoms, thei is coatomic A latticeL is calledmodular, if any two elements that
both coverx A y are covered by Vv y and vice versa.

1.2.23 &ampLE. In the boolean posd, both meets and joins exist for all pairs of
elements< andy of B,: The meet ofx andy is their intersection, and the join af
andy is their union, viewed as subsets af.[It is also Eulerian, as the number of
subsets ofrj] with even cardinality equals the number of subsets of oddicality.

The Boolean poseB, is uniquely complemented: The complement of aSet
isjust [n] \ S. By a similar argument, it is also relatively complemented.

Figure 1.7: The first poset is a lattice, the second is not.
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If n > 3, then, for any two subseg;, S, of [n] that have empty intersection
and partition ], either|S;| < n—1 or|S,| < n— 1. Assume the first and pick
y € S,. ThenS; U {y} # [n]. SoB, for n > 3 is strongly connected. Finallf, is
modular, as any two sets covering their intersectidfedin only one element.

1.2.24 Rorosttion [Atom-Coatom-Incidences]. A finite complemented lattice L
is completely defined by its atom-coatom incidence relation

Proof. Let A be the set of atoms d&f andB(A) its power set. For ani € P(A)
let C(A) be the set of coatoms that are incident to all elementd.diVe define an
equivalence relation ol (A) by Ay ~ Ay if C(Ay) = C(Ay) , for anyAy, A; € B(A).
Let € be the set of equivalence classes.

For A € B(A) let I(A) := \Vaen@ ThenIJ(Ay) = J(Ay) if and only if C(A;) =
C(Ay), soJ is well defined or€. Any x € L is the join of its atoms, so there is a
bijection between the elementslof {0, 1} and€. Inclusion in@ recovers the order
relation inL. O

The following notion of simplicity and simpliciality is theentral properties of
lattices and polytopes for this thesis.

1.2.25 rrintTion [Simplicity and Simpliciality]. Let L be a finite graded lattice
of rank®.
¢ | isr-simpleif all intervals [x, 1] of lengthr + 1 are boolean.
Itis simpleif it is (¢ —2)-simple.

.
¢ | is s-simplicialif all intervals [0, y] of lengths + 1 are boolean.
* |tis simplicialif it is (¢ —2)-simplicial.

Figure 1.8(a)shows a 2-simplicial latticer-simple ands-simplicial lattices
(and polytopes) will turn up quite often in the rest of thedise To avoid the
frequent repetition of this lengthy term in the text, we aaluce a short notation if
r + sis one less than the length of the lattice.

1.2.26 CerintTION [(1, S)-Lattice]. Let L be a graded finite lattice of rank We
callL an {, s)-latticeif r + s= ¢ -1 andL is r-simple ands-simplicial.

With the following sequence of propositions we show thatdach¢ there is
only one lattice of ranl that can have + s > ¢. Hence, being arr(s)-lattice is
some kind of “extremal” property for a lattice.

1.2.27 Reorosrition [Simple and Simplicial]. Any simple and simplicial strongly
connected Eulerian lattice L is isomorphic to a boolean pose

The example in Figuré.8(b)shows that strong connectedness is necessary in
this proposition.
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Proof of Propositiornl.2.27 Set¢ := rank() and letA(J) denote the set of atoms
of an intervald in L. See Figurel.9(a)for an illustration.

Fix a coatontin L. By assumption, the interval:= [0, c] is boolean, so it has
¢ -1 atoms and coatoms. Label the coatomsdpy..,d,_;. Eachd; is covered
by two coatoms, sincé is Eulerian. One of these is Label the other by;.
Uniqueness of meets ib impliescj, # cj, for j1 # j», 1 < ji,jo < £-1. Set
l;:=[0,¢j] for 1 < j < ¢-1. All I; have¢ -1 atoms.

Let1< j < ¢-1. Bothc andc; coverd;, hence the intervallg and| intersect
in £-2 atoms ofL, so there is precisely one atomlirwhich is not inl;. Label
this atom bya;. Similarly, there is an atora;"in |, but not inl. I is boolean, so
aj<difork # j, 1 <k < ¢-1. Hence als@; <¢fork # j, 1 <k < ¢£-1. By
simplicity, the coatomsy, 1 < k < £-1, k # j and the coatone are all coatoms
that are comparable to the at@pn d;, # d, impliesa;, # a;, for 1 < ji, jo <¢-1
andj; # j».. So we obtain a labelling of all atoms bf

Fix1< j,k<¢-1,j # k | is boolean, so there is an elemejt covered
by bothd; andd, and 0, ej] contains¢ -3 atoms. By simplicity,J = [ej, 1]
is boolean and has length 3, so there is one more elethent_ of rank ¢ -2
contained inJ. L is Eulerian, sal ¢ |, butd € I, Ix. Hence, the atoma; andaj
must coincide.j andk were arbitrary, soA( |;) = {a} and the sublatticé’ of L
a,a,...,a,._1andc,cy,...,Co_1 IS boolean.

Suppose.” # L. So there is at least one more coatonin L different from
C,Cy,...,C,_1. The same argument, applied ¢binstead ofc, creates another
boolean sublattice df intersecting- only in 0 and1, like the one shown if.8(b)
By strong connectedness, this cannot happen. O

1.2.28 ReorosiTion [r-Simple and Simplicial]. A simplicial and r-simple strongly

(a) A 2-simplicial lattice. One Boolean inte(b) A finite, Eulerian, simple and simplicial lat-
val is marked. tice L that is not strongly connected.

Figure 1.8: Examples of lattices.
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connected Eulerian lattice L is boolean itr 3.

Proof. Let ¢ := rank(). We use induction over. The proposition is true if
r = {1 by the previous proposition. See Figur&(b)for an illustration.
Assume, that the proposition is true for ang m+ 1 and that_ is m-simple.
Let x € L be an element of rank—m — 2. By assumption, the intervak[1] is
simple and simplicial. So it is boolean by the previous psipon. Hencel is
(m+ 1)-simple. O

1.2.29 ReorosiTioN [r-Simple and s-Simplicial]. A r-simple and s-simplicial
strongly connected Eulerian lattice L is boolean #1s > rank() + 2.

Proof. Let ¢ := rank(). If s = 2 thenr > ¢ andL is boolean. The case= 2 is
similar. So we can assume thas > 3 and proceed again by induction to prove
thatL is simplicial. This siffices by the previous proposition. See Figlre(c)for

an illustration.

The proposition is true if = £-1. So assume the proposition is proven for
anys > m+ 1 > ¢+2 —r and assume thdt is m-simplicial. Letx € L with
rank(X) = m+ 2. By the previous proposition the intervél k] is boolean. Sd. is
(m+ 1)-simplicial. ]

If L is s-simplicial, thenL°? is s-simple and vice versa, as the Boolean poset is
iIsomorphic to its opposite. Lattices with this property éavspecial name.

1.2.30 DxrintTioN [Self-Duality]. A bounded lattice iself-dualif it is isomorphic

to its opposite lattice.

/NN

N

(a) Asimple and simplicial lat{b) An h-simple and simplicia{c) An h-simple and k-
tice. lattice. simplicial lattice.

Figure 1.9: Simplicity and simpliciality of lattices.
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1.3 SHERES AND PoLyTOPES

Now we switch to geometric notions and introduce CW sphenelscanvex poly-
topes. Again, we focus on results used later, so in partidhla treatment of
spheres will be quite brief.

More on spheres can be found in the books of Bredis) for general, and
Rourke and Sandersond] for PL topology. Good introductions to polytope theory
are the books of Griinbaum4] and Ziegler B9].

1.3.1 SHERES

Here we briefly introduce CW complexes and PL manifolds. Véenat too much
interested in them, but we need them as intermediate too&dfoe constructions.

1.3.1.1 CW Complexes and Spheres

A (d — 1)-dimensional spheres a topological manifold that is homeomorphic to
the standard (or unit) spher&®* defined by$%* := {x € R : |IX| = 1}. The
k-dimensionalopen unit ballis defined asD* := {x € R¥ : |IX| < 1}, and the
k-dimensionaklosed unit ballasD¥ := {x € R¥ : ||x|| < 1. Spheres have trivial
fundamental group, except f&¢, which hasr,($?) = Z.

We define a very general form of a cell structure for topolabspaces, and in
particular for spheres.

1.3.1 CermniTion [CW Complex]. A CW complex Xs a Hausddft topological
space together with a filtratiodt ¢ X@ ¢ X® c ... c X® c ... by k-skeleta
that satisfies the following conditions:
(1) X = Upsg X0, XED is empty andX©@ is a discrete set of points, thedlls
(2) EitherX™=X"1 or XM is obtained fromX™Y by attachingn-cellsin the
following way:
Let B be a disjoint union of copie®! of D", whereos ranges over some
indexing set. These copies are tieells of X. Let S be the corresponding
union of the boundaries of these cells drfigl} a family of continuous maps
f3e - "1 — X1 such that anyf,, touches only a finite number of ¢ 1)-
cells inX™ D, Let f be their unionf : S —» XD, ThenX® = XD y; B.

For eacho let f, be the map oD, defined byf,,. The image off, in X is
aclosed cellin X, while the setf, (D" — $") is anopen cell The spaceX is
equipped with theveak topologyin which a subset) C X is open if and only if
its intersection withiX™ is open for alin > —1.

A CW complexS is called aCW (d — 1)-spherg if the underlying topological
space ofS is homeomorphic t&9* for somed > 0.
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1.3.2 DxrintTioN [Star and Link]. Let X be a CW complex and a cell in X.
¢ Thestarstarg) of o is the subcomplex oX formed by all cells that contain
o in their closure.
¢ Thelink of o is the set of all cells in the closure of st@aj(whose closure has
empty intersection witlr.

We use only CW complexes that have some additional progerédd com-
plexes we consider affinite, that is, they have only a finite number of cells. In
particular,X™ is empty for alln > ny and some, € N. For a “nice” complex one
clearly wants that the cells (i.e. disks) are nicely glued X along their bound-
ary without any identifications, and without gluing in “urtessary” cells. This is
not part of the general definition, but is captured in theolwlhg two notions.

1.3.3 DxriniTioN [Regular and Strongly Regular]. A complexX is regular if the
attaching maps;, are embeddings, i.e. there are no identifications on thedoun
aries of the closed cells X.

The complex isstrongly regularif, in addition, any two cells in the complex
intersect in a single cell (which may be empty).

For example, (geometric) simplicial complexes and polgfdefined in the
next section) have these properties. A comptebs pure if all cells, whose in-
terior does not nontrivially intersect the closure of sortteeocell, have the same
dimension. In this case, tlltmensiorof X is the dimension of these cells. Xfis
pure and strongly regular, then we sometimesfaagsinstead of cells, anthcets
for the top dimensional cells.

The boundary complexo of a cell o in a strongly regular compleX is the
complex of all cells inX whose interior has nonempty intersection with the closure
of o. This is again a strongly regular cell complex.

A strongly regular CW compleX naturally defines the posgi(X) of all cells
in X, together with the order relatian <t between cellsr, v € X for which the
closure ofr intersects the interior af. This is theface poseof X.

1.3.4 RorosiTioN [Face Posets are Lattices].The posetf(X) of a finite strongly
regular CW complex X is a lattice.

Proof. The meet of two cells is given by their geometric intersattend the join
by the smallest cell containing both in its closure. Stroagutarity implies that
these cells exist and are unique. |

1.3.5 CerintTioN [Face Lattice]. The lattice£(X) of a finite strongly regular CW
complex is called thé&ce latticeof X.

A finite regular CW compleX is strongly regular if its face poset, augmented
with an artificiall, is a lattice PO, Prob. 4.47, p. 223].
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1.3.6 Cerntrion [Combinatorial Equivalence]. Two strongly regular CW com-
plexes arecombinatorially equivalenif their corresponding face lattices are iso-
morphic as posets.

We introduce several methods to modify the cell structura GW complex.
We need them in the next chapter for our constructionsifnple ands-simplicial
spheres. We restrict to C8pheresn the following considerations.

Let f, : DX — RY be ak-cell andv a point of RY not in f,($%?%). Thecone
overo with apex s

P.f, : $<1x[0,1] — R¢
(X 1) — (L -1t)f,(X) + tv.

The image is a + 1)-disk whose boundary naturally carries a CW structure.

1.3.7 DeriniTioN [Stacking a Cell]. Let S be a strongly regular CW sphere and
a face ofS. Stacking overr in S is defined by

¢ removing all cells in starf) from S and

¢ adding a new 0-cello and all cones over cells in link) with apexo,
glued with the canonical attaching maps.

Applying this construction to all facets of the sphere, aalteells (in a suitable
order), gives the following two important constructions.

1.3.8 CerntTioN [Stellar Subdivision]. Let S be a strongly regular CWH(— 1)-
sphere. The CW complex obtained from stacking@# ()-cells inS is called the
stellar subdivisiorsd(S) of S.

1.3.9 eriniTioN [Barycentric Subdivision]. Let S be a strongly regular CW
(d—1)-sphere. The barycentric subdivisiB&(S) of S is obtained by first stacking
all (d — 1)-cells ofS, then all @ — 2)-cells etc. down to the 1-cells.

The face lattice of the resulting CW sphere does not deperiti@rder in
which we stack cells of the same dimension.

Here is a useful result on the connection between posets\ahspBeres, which
we cite from RO, Prop. 4.7.23].

1.3.10 Tueorem. A bounded, graded poset P with rank functiois the face poset
of a regular CW sphere if the order complex of every intef@ak], x € P, is
homeomorphic to a sphere of dimensigr) — 2. O

A strongly regular CW compleX is asimplicial complexf the induced poset
of any closed cell in the face posé{X) of X is isomorphic to the Boolean poset.
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This implies in particular, that artcell, 1 < k < d—1, isincident to precisellg+1
O-cells. If the simplicial compleX hasn 0-cells, then we can describe any face of
X by a subset ofrf]. In Chapter5 we need the following special construction for
simplicial complexes.

1.3.11 DxriniTion [Deleted Join]. Let S be a simplicial complex. Theeleted join
is a simplicial complex on the vertex sé(S) x {0, 1} and is given by

S\ ={o1Woy : 01,02€S,01N0 =0},
whereo W o5 := 01 X {0} U 0 x {1}.

See Matousek’s bookb, Section 5.5] for a much more detailed treatment
of this. A slight generalisation of a deleted join will be daefd in Chapteb in
connection with our new construction of Bier spheres an@{sos

1.3.1.2 PL Spheres

This section is only a brief sketch of PL topology. Proofstfoe given results can
be found in the books of Hudsod ] and Rourke and Sanderson3]. We start
with the definition of several basic notions of PL topologyong& terms appear
with a different meaning in the rest of the text, so we sometimes add a fPant
to avoid confusion.

A cone G for a compact se€ c RY with apexa € R is the set

Cy={ta+(1-t)x: 0<t<1 xeC},

if forall x;, X, € C, X1 # X, the segments+(1-t)x; andta+(1-t)X, intersect only
in the apexa. A cone neighbourhood(p) of a pointp € RY is a neighbourhood
of p that can be written as a cone with apefor some compact subsétof RH.
A polyhedronis a setP ¢ RY in which all points have a cone neighbourhood. If
p € P, andC, for some compacC c P is its cone neighbourhood, thés), is
called astar star(p) of pin P andC is called dink of pin P.

A mapy : P — Q between two subse® Q of RY is aPL map if all points
p € P have a cone neighbourho@, for some compact basfs, on whichy has
the form

P(Ap + (L= )x) = A¢(p) + (1 - ()
forO<A<landallxeC.

1.3.12 Gerniion [PL Manifold]. A d-dimensionaPL manifoldis a topological
manifoldS such that all point in S have a neighbourhood that is PL homeomor-
phic to an open set iiRY.
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An n-cell o in PL topology is a compact convex polyhedronifl. Boundary
do andinterior ¢ can be defined in the usual way. Forranell o and some point
x € o letl,(x) be the set of all lines ilRY that intersectr in its interior.1,(X) N o
is called afaceo of the cello, writtenoy < o. If this set is empty, then we catl,
a vertex ofo. If a facer < o satisfiesr # o then this face is said to hgoper.

1.3.13 RorosiTioN. Leto be an n-cell.
(1) A cell has only finitely many vertices.
(2) If <0, then the set of vertices ofis a subset of the vertices of Thus, a
cell has only finitely many faces.
(3) o isthe disjoint union of its open faces, and its boundaryésdisjoint union
of its open proper faces.
(4) The intersection of two faces @fis again a face ofr. ]

Proofs can be found in7[3, Chapter 2]. Acell complex Xin PL topology is
now defined in the same way as the CW complex above: It is a finitection of
cells such that, whenever a cell is contained in the comghex so are all its faces.
Theunderlying polyhedroiX| € RY is the polyhedron defined by the union of all
cells in the compleX. A subcomplexf X is the complex formed by a subset of
the cells inX together with all their faces. Theskeletorof X is the subcomplex
of all cells in X with dimension at most.

The boundary of a cell clearly is a PL sphef&ar andlink of a cell in a PL
complexX are defined in the same way as for general CW complexes. Plesphe
have the following nice property.

1.3.14 Tueorem. The link of a facer in a PL cell complex X is a PL sphere. 0

This is in contrast to general CW spheres as we defined thewealvbere we
can only guarantee that the link is a homology sphere. 3&elheorem 4.7.21]
for a more detailed treatment, and/[ Chapter 1] for the proof.

An equivalent characterisation of this property is thedweihg. In the face
poset of the cell decompositioy augmented by a maximal elemehtnot only
the order complexes of the lower intervals §] with x < 1 are spheres, but the
same is true foall intervals [, y], with the only possible exception dJ1], whose
order complex is homeomorphic to the base sp&te

1.3.1.3 Shellability

In Chaptels we use a very powerful concept for regular CW spheres andqqudg.

For these objects, one can define a special way to build thefroaoptheir cells,

adding one cell in each step, in such a way that (1) in eachn&eiate step we
have a ball and (2) in each step the piece of the ball to whicghae the next cell
is again of this type, but in one dimension lower. Here is @igeedefinition:
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1.3.15 DkrintTion [Shelling]. Let S be a pure strongly regulardimensional CW
complex.C is shellableif we can find ashellingof C in the following way: There
is a linear order,, C,, .. ., ¢ on its facets such that eithdr= 0, or the following
two conditions are satisfied:
(1) The boundary compledc; of the cellc, is shellable itself.
(2) For any other celtj, 2 < j < k the intersection o€; with J;.i.j_1 G is a
non-empty pured — 1)-complex that is the beginning of a shellingaaf..

It is in general not known, whether a CW sphere, or a PL splagesshellable.
One needs some additional properties to obtain such aniogd#rthe facets. One
such property is polytopality, and we meet shellabilityhrstcontext again in the
following section. In Chapte® we present the class of Bier spheres derived from
the Boolean posds, and prove that they are shellable.

1.3.2 PryTOPES

This section is aboydolytopesand their properties, which are the central geometric
object of this thesis. In terms of the previous sections, lgtppe is roughly a
strongly regular CW sphere in which all cells are realiseflétyembeddings. The
study of polytopes is both a quite old and a quite recent topmsathematics.

It is old, as polytopes appear already in the mathematicak wbseveral an-
cient Greek mathematicians and philosophers. They fouddtkssified the reg-
ular and semi-regular convex polytopes in three dimensidesthe five Platonic
solids, and the Archimedean semi-regular polytopes. Aflohathematical fort
went since that time into the study of regularity propertépolytopes.

It is recent, as with the emergence of modern computers ttigy ®f discrete
geometric objects (objects, that can be described by a Beitef input data) be-
comes more and more important. They now play a great réle ariaty of math-
ematical areas, from combinatorial optimisation to vigsalon. This way, there
are now lots of “real world” applications for results abootyopes.

1.3.2.1 Basic Definitions

The following definition of a polytope has two variants, whiare equivalent by
the next theorem. We use both variants of the definition fecdeing a polytope,
and switch between them without always mentioning it.

1.3.16 GerintTiON [POlytope]. A (geometric convex bounded) polytopesidefined
by one of the following two characterisations.
(1) A polytopeis the convex hull conx() of a finite setV = {v,...,v,} of r
points inR". We writeP = P(vy, ..., V;) for a polytope defined by, ..., Vv;.
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(2) A polytopeis the intersection of a finite set of half spacesRHf, if that
intersection is bounded. If the half spaces are definednldyperplanes
(&, x) = bj for 1 < i < m, with inwards pointing normal vectoes, then we
denote the polytope by = P((az, by), .. ., (@m, bm)).

The first definition of a polytope is sometimes calledikeex descriptionthe
second thényperplane descriptionf a polytope. The following theorem tells us,
that these definitions are equivalent from a mathematicak pd view. There are,
however, huge diierences from an algorithmical standpoint: For generaltpplys,
algorithms translating one description into the other requbnential time (in the
input and output).

1.3.17 Taeorem. The two definitionsl) and ) of a polytope in Definitior..3.16
are equivalent; that is, the convex hull of a finite set of pooan be described as
a finite intersection of half spaces and vice versa. O

A detailed proof of this can be found in Chapter 1 of Ziegl&d®k [89]. Itis
rather lengthy, so we only give the key ideas of it.

Let P be ad-polytope withs vertices and/ the matrix that has the vertices of
P as columnsPis given by{x e RY : x=1tV, fort € RS, t > 0, Zjiltj =1}
Let H be the sef(x,t) e RYx RS : x=Vt, t > 0}. H is defined as an intersection
of half-spaces.Fourier-Motzkin-Eliminationallows us to projecH down while
maintaining a hyperplane description for it. The otherctign is done by areverse
argument.

Note, that in Definitiorl.3.16(1) we do not require that the convex hull defines
a set of nonzero measure ki". Similarly, in the hyperplane description, we do
allow half spaces that intersect only in their boundary. \&&ne the dimension of
a polytope in the following way.

1.3.18 krintTION [Dimension]. Thedimensiorof a polytopeP is the dimension
d of the smallestfine subspace dk" that containg.

1.3.19 amrLEs. Here are some simple examples of polytopes. See Figufe

for illustrations.

(1) Thestandard d-simpleAy is the convex hull of thel+1 standard basis vectors
€, ...,&1 in R¥L. This is ad-dimensional polytope embeddedtf*?, as
all pointsx = (X, ..., Xg4:1) in the convex hull satisfy the equati(ﬂjf:ll X =1.

(2) The standard unit-cubeny is the convex hull of the points ip-1, +1}°.

(3) The standard-cross polytopély is the convex hull of the standard basis vec-
tors and their negatives iR¢.

(4) Letty : R — RY be the curvex — (x, %, ..., x9). Thecyclic polytope € is
defined to be the convex hull afdistinct points on this curve. Its combinatorial
properties do not depend on the actual choice of the pointseourve.
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Any polytopeP comes with a natural cell decomposition induced by the in-
tersection with one or several of its defining hyperplanesghlwe assume thét
is given in the hyperplane description). These cells ardabesof the polytope.
The set of all facef P is denoted by FaceB). Faces of dimension 0 and 1 are
verticesandedgesfaces of codimension 1 and 2 dezetsandridges Theset of
all verticesof a polytopeP is denoted byV(P), the set of facetdy ¥ (P). The
polytope has exactly one cell of dimensidnthe polytope itself. All other faces
are calledproper. The cell complex defined by all proper faces of the polytape i
a strongly regular CW sphere, which is called bmndary complexP of P. By
construction, it can be realised in such a way, that all ils @ee in fact polytopes
glued along faces. Generally, any cell complex, that hak auspecial geometric
realisation, is callegholytopal Thevertex figure PPv of a vertexv in a polytopeP
is the polytope we obtain as the intersectiorPakith a hyperplane that intersects
all edges incident t@ in their interior.

The set of all faces, together with the order relation giveimnielusion, forms
a poset. We usually add an artificiapty face covered by all vertices of the
polytope. This is the minimal element of the poset. The maxietementl is
the polytope itself. With this addition, the poset is bouhded has a natural rank
function

p . FacesP) — N
o+— dim(e) + 1

induced by the dimension of the faces. We set 8a(—1. The meet of two faces
of the polytope is the face given by their geometric intetisec This is a unique
face by definition (possibly the empty faBg Hence, this poset is a lattice.

(a) The 3-cube. (b) The 3-cross polytope.  (c) The 3-simplex.

Figure 1.10: Examples of polytopes.
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1.3.20 Cermvimion [Face lattice]. Let P be a polytope. The lattic€(P) given by
FacesP) U 0 with the order induced by inclusion is tfece latticeof P.

Polytopes are strongly regular CW spheres, so we can apglgdfinition of
f- and flag vectors to polytopes.

1.3.21 &xamrLes. Here aref-vectors for some polytopes in Examples.19
¢ The simplexAq hasd + 1 vertices. Any subsef of them forms a face of
dimensior{F| - 1. Sofj(Aq) = ({1}), for0< j < d - 1. See Figure..11(a)
¢ The cubeny has 2 vertices. For 0< k < d — 1, a subset of them is in a
commonk-face if they coincide ird — k — 1 of their entries. Sdy(Oq) =

2d—"(d‘_’k) for 0 < k < d-1. The Hasse diagram fdr= 3 is in Figurel.11(b)

¢ The cross polytopély has 2l vertices. A subset of them formskeace if it
has cardinalityk + 1 and does not contain both a vector and its opposite. So

fi(Da) = 244, )-

1.3.22 Taeorem. Polytopes satisfy the Euler equation of Definitin&.14 that is,
the f-vector of a d-polytope satisfies

fi—fo+ foF-- -+ (-1)%fy=0. O

See B9, Corollary 8.17] for a proof. This theorem is a consequenitca o
deep Theorem of Bruggesser and Maz8][ which tells us that all polytopes are
shellable. A proof of this is in§9, Section 8.2]

A d-polytopeP is centredif the origin of RY is an inner point. Clearly, any full-
dimensional polytope can be transformed into a centred oneitheut changing
its shape and combinatorial properties — by a translation.

1.3.23 Derintrion [Dual Polytope]. A polytopeP” is calleddualto a polytopeP
if its face lattice£L(P*) is opposite to the face lattic&(P) of P.

(a) The face lattice of the 3-simplex. (b) The face lattice of the 3-cube.

Figure 1.11: Face lattices.
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For example, the simplex is dual to itself, and the cube id tughe cross
polytope. The regular versions of these polytopes satigfyih a stronger sense,
which we define now.

1.3.24 xrintTioN [Polar Polytope]. Let P be a centred polytope. Thp®lar poly-
topeis

P°:={xeR":(Xx,vW<1V veP}, (1.3.1)
which is a bounded polytope in the hyperplane description.

Clearly, the condition orP to be centred is not a severe restriction, as any
polytope can be transformed into a centred one. The nexopitpn tells us that
the polar polytope oP is dual toP. So any polytope has a dual.

1.3.25 RorosiTion. The polar polytope Pof a centred polytope P is dual to PO

The proof of this proposition is tedious, but noffaiult. One shows, that it
sufices to consider the inequalitiég,v) < 1 in Equation {.3.1) only for the
vertices of the polytop®, instead of all points. This reduces the description to a
finite number of inequalities. Further, these inequalitiesstitute the hyperplane
description ofP°. Once knowing this, it is simple to compare the vertex—facet
incidences of the two polytopddandP°. A detailed proof of this, and the next
proposition, can be found in Ziegler's bookd Section 2.3]. For example, in the
realisation given irl.3.19 the cube is polar to the cross polytope.

If we apply the polar construction twice to a centred polgdhen we get back
to the original polytope.

1.3.26 ReorostTion. Polarity for a centred polytope P is reflexive, i.€° P. O

Clearly, P € P*°. Some linear algebra computations, using the fact that the
vertices sftfice in the definition of the polar polytope in Equatian3.1), show
that there cannot be a powtcontained inP°*°, but not inP.

Let P be ad-polytope in the hyperplane description. We say that a poiatR®
is beyonda facetF of P if it lies outside the half space d&¢ defined byF, but
inside all others. It idbeneatha facet if it is contained in the half space defined by
F. More generally, a point iseyond a k-face- of P, if it is outside all half spaces
whose boundary contaires and inside all others.

Here is the central property of polytopes for this thesis.Ha& a combinatorial
version of this already in Definitioh.2.25 We use this for the statement of the
geometric version.

1.3.27 DerniTion [Simple and Simplicial]. A d-polytopeP is s-simplicialif its
face lattice iss-simplicial, and it issimplicial if the face lattice is simplicial.

Similarly, ad-polytope isr-simpleif its face lattice is-simple, and it issimple
if the face lattice is simple.
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1.3.28 Rimark. We can characterise these conditions in a purely geomegiyc w
¢ The Boolean latticdB, is the face lattice of the simplexs. So all s-faces
in an s-simplicial d-polytope are simplices. In particular, in a simplicthl
polytope, all facets are simplices.

* r-simpled-polytopes can either be described by the fact that theiridua
simplicial (asP* has the opposite face lattice) or, without involving theldua
by the condition, that around angl ¢ r — 1)-face there are + 1 facets. In
particular, in a simplel-polytope each vertex is id facets.

1.3.29 kFintTION [(r,S)-Polytopes]. A d-polytopeP is an ¢, s)-polytopef r+s=d
and it isr-simple ands-simplicial.

For example, simplex and cross polytope are simplicial|ewie cube is sim-
ple. Propositions.2.27 1.2.29apply — with the same proof — also in the ge-
ometric setting. Hence, in any dimensidn> 2, thed-simplexA4 is the only
r-simple ands-simplicial polytope for + s > d. We present the known examples
of polytopes with 2< r,s< d — 2 andr + s = d in Chapter4. We construct many
more examples of 2-simple and € 2)-simplicial polytopes in the Chapte?sand
3.

Most polytopes that appear in this thesis, are 4-dimenkisodahey cannot be
visualised directly. We circumvent this problem in twéfdrent ways to provide il-
lustrations anyway. Many of our constructions work (atigastially) also in three
dimensions, so we make three dimensional drawings and poirthe diferences.
The other way is to draw &chlegel diagranof the polytope.

1.3.30 kriniTiON [Schlegel Diagram]. A Schlegel diagranof a 4-polytope is
the three dimensional image of a central projection of tHgtppe onto one of its
facets with centre in a point beyond that facet. See Figurfor examples.

N\

Figure 1.12: Schlegel diagrams afs and,.
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Clearly, the face lattice of a polytope determines its coratorial type com-
pletely. By Propositiori.2.24 this is far too much information, the vertex—facet
incidence relations already ffice to determine the type. In general, these inci-
dence relations are also necessary to fix the type, but wipgteing, if we restrict
the class of polytopes we look at? One interesting subclapslgtopes are the
simplicial polytopes, or dually, the simple polytopes. HEogse, much less infor-
mation is necessary, by a theorem of Blind and M&a2j.[ A simpler proof was
given by Kalai p3].

1.3.31 Tueorem [Reconstruction Theorem]. The graph of a simple polytope
determines its combinatorial type. ]

Hence, a simplicial polytope is determined by its dual grafitere are several
other classes of polytopes that are reconstructible frar tiraph or dual graph.
See e.g. Joswigh[].

1.3.2.2 Simple Polytope Constructions

For our constructions of 2-simple and 2-simplicial 4-pojy¢s we need some sim-
ple methods to produce new polytopes from others, by addthgrenew vertices
or new hyperplanes to the polytope in a controlled way.

1.3.32 xFintTION [Stacking]. Let P be a polytope an& one of its faces. Choose
a pointw beyondF. We define a new polytope\P by

F\P :=conv(P U {w}).
This operation is calledtacking the polytope P above the facet F

See Figurel.13for an example of this construction. It is noffittult to see that
the combinatorial properties &\P do not depend on the precise choicenofWe

Figure 1.13: A simple 3-polytope, and the same polytope with its top edgeked.
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mainly use this construction in the case whEris a facet ofP. The newf-vector
of F\P in this case is

F(F\P) = (fo(P) + 1, fu(P) + fo(F), ..., fa-1(P) + fa_2(F)),

where f(P) = (fo(P),..., fo_1(P)) and f(F) = (fo(F),..., fa_o(F)) are thef-
vectors of P and F. Iterating the construction for a sequence of facets defines
the important class cftacked polytopes

1.3.33 krintTiON [Stacked Polytopes]. A polytope is calledstacked if it can be
obtained from the simpleXy by successively stacking above facets.

Figurel.14shows two examples of stacked polytopes. The stacking mmst
tion produces many combinatorially not equivalent polg®pvith the same num-
ber of vertices, as already after two stacking operatidresautomorphism group
on the face lattice is not anymore transitive on the facetacking above facets
in different orbits produces fiierent polytopes with the same flag vector. We use
a more precise count of these types for a proof of “many” WitstR-simple and
2-simplicial 4-polytopes in Chaptér

There is also a polytope construction which is “dual” to kiag above facets.

1.3.34 kriniTioN [Vertex Truncation]. Let P be ad-polytope ford > 2, defined
by m hyperplanega;, x) = b, 1 < i < m. Letv be a vertex ofP. Choose a
hyperplaneH := {x : (a,X) = b} that intersects all edges incidentyvan their

interior. Orienta such thatv is not in the positive half space defined Hy Define

thevertex truncatiortr(P; v) of P at the vertex by

tr(P;v) := P((ag, ba). .. ., (@m, bm), (&, b)).

See Figurel.15for an example of a truncated cube. More generally, one may
also define the truncation &ffaces fork > 2, but we do not need this. If a vertex
v of the d-polytopeP has degree, then truncatingr removes one vertex d?

Figure 1.14: A once and a thrice stacked simplex.
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and introduceg new vertices. Ift = d, then the new facet in the truncation is a
simplex. Thef-vector of trPP; v) does not depend on the choice of the truncation
hyperplane. Itis

f(tr(P; V) = (fo(P) + fo(V) — 1, f2(P) + f1(V), ..., fa-2(P) + fa-2(V), fa-1(P) + 1)

if £(P)=(fo(P),..., fe_1(P)) andf (V) = (fo(V),..., f4_2(V)) are thef-vectors of
P and the vertex figur¥ := P/v of the vertexvin P.

We repeat here the definition of the barycentric subdivigiom the previous
section to emphasise that it applies to polytopes in a péatily nice way . Namely,
one can obtain polytopes from it, and not merely CW spheres.

1.3.35 DkrmniTion [Barycentric Subdivision].  The barycentric subdivisiorof a
polytopeP is the simplicial polytopal comple®S(P) obtained by first stacking all
facets ofP, then all ridges oP, etc. until we arrive at the edges.

The order, in which we stack the faces, does not matter, @sdsnve stack all
faces of one dimension before we proceed to faces of lowegmsion.

1.3.2.3 Symmetry Groups

When we say that two polytopes agquivalent then we usually mean that their
face lattices are isomorphic, i.e. they have the seomebinatorialproperties. This
does usually not imply that — if we have a geometric realisatf both — we can
also find argffine transformationomapping one polytope onto the other and induc-
ing a given automorphism in the face lattice. Thifetient behaviour of geometric
realisation and combinatorial type is reflected in the it two groups.

Figure 1.15: A cube with one truncated vertex.
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1.3.36 rniTioN [Symmetry Groups]. Let P be a polytope with a given geomet-
ric realisation.
¢ Any affine transformatiof of the ambient space, that preserfeset-wise,
is called ageometric symmetry transformationhe set of all such transfor-
mations, together with composition of maps, forms a grohp geometric
symmetry groug\ff(P) of the polytopeP.
¢ A combinatorial symmetrgf P is an automorphism of the face latti¢€P).
The group of all combinatorial symmetries is tbembinatorial symmetry
groupAut(P) of the polytopeP.

The combinatorial symmetry group is independent of thasatabn, while the
geometric symmetry group clearly depends on the actuatehaficoordinates for
the vertices.

A geometric symmetry mapsfaces tok-faces and preserves incidences be-
tween faces. Therefore, any geometric symmetry inducemdiocatorial symme-
try and we obtain an injective map

s . Aff(P) — Aut(P).

Generally speaking, this map is almost never surjective also not clear, in which
cases we can find — for some chosen combinatorial symmetry -eoangtric
realisation such that this combinatorial symmetry is inithage ofs.

However, up to now, there are not many examples of polytopesded in the
literature, where these two groupdtdr for all possible geometric realisations of
a polytope. Bokowski, Ewald, and Kleinschmi@ (a corrected version of the
coordinates was given by Bokowski and Guedes de Oliveisggnd Altshuler P])
have provided a 4-dimensional example on ten vertices.

Dimension 4 is smallest possible for such examples, as masvk that for 3-
polytopes, and ang-polytopes with few vertices fad > 3, there are realisations
in which geometric and combinatorial symmetry group arenisiphic. See the
paper of Mani 9 for the first and the book of Grinbaum4, p.120] for the
second result. Griinbaum attributes it to Perles.

Asking for special properties of fP) and Aut@) leads to the large field of
regular and semi-regular polytopes. The strongest prppieat one could look for
areflag transitiveor regular polytopes. These are polytopes in which the automor-
phism group contains, for any pair of flags in the face lafreautomorphism that
maps one flag onto the other. They are completely classifiail dimensions. See
e.g. the book of CoxeteB[)] for a complete treatment of these.

In dimension three there are five regular polytopes. Thesélarthe simplex,
(2) the cube, (3) the cross polytope, (4) the icosahedroolfggpe with 20 trian-
gular facets, and each vertex is incident to five of them),(&hthe dodecahedron
(the dual of the icosahedron).
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More interesting, at least for our purposes, are the reguibtopes in higher
dimensions. There are three families of such polytopeshtheat one member in
each dimension > 2, and three additional regular polytopes in dimension.four
The families are (1) the simplekqy, (2) the cubexy, and (3) its dual, the cross
polytopelly. The additional regular polytopes are the following.

¢ The 24-cell, which is a self-dual 4-polytope with 24 vers@nd facets, and
96 edges and ridges. All facets are regulat and we have six of them
around any vertex. See Figutel6for the Schlegel diagram.

¢ The 120-cell, which is a simple 4-polytope with 600 verticE200 edges,

720 ridges, and 120 facets. The facets are regular dodeealaed there are
four of them around any vertex.

¢ The 600-cell, which is the dual of the 120-cell.

Regular polyhedra will prove quite convenient as input for constructions, and
in particular for example drawings. They also make the lihkwr new, and quite
general, constructions for 2-simple and 2-simplicial 4yfmpes to similar older
constructions for regular polytopes.

A weaker property for a polytopB is vertex transitivityor facet transitivity
meaning that we can map any vertex or face® @into any other vertex or facet by
a map in Af(P).

Figure 1.16: A Schlegel diagram of the 24-cell. This polytope will reappé& many variants
throughout the thesis.
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1.3.2.4 Realisations and Realisation Spaces

For geometric realisations of a polytope we have one mor@itapt notion that
we want to mention in this introduction. It captures the téxly that we have in
the choice of coordinates.

1.3.37 DriniTiON [Realisation Spaces]. Therealisation spacef a d-polytopeP
with n vertices is the spacR(P) of all sets ofn points inR¢Y, whose convex hull is
combinatorially equivalent t&. The setR(P) is a subset oR%",

The projective realisation spac®,;(P) of a polytope is the space of all pos-
sible geometric realisations of a polytope, up to projectquivalence. It is the
guotient space oR(P), where two realisations are defined to be equivalent itlgther
is a projective transformation mapping one realisatiom ¢iné other.

Computing the dimension of either of these spaces is usdidigult. Compare
Richter-Gebert and Zieglei7f] and the book of Richter-Gebert]] for a more
detailed treatment of realisation spaces.

Here is a simple example. The dimension of the realisatianespf the simplex
Aq is d? + d, but the dimension of its projective realisation space &s0any set of
d + 1 points inRY can be mapped onto any other such set byfaineamap.

Not all CW spheres can be realised geometrically as polgtope fact, al-
though any strongly regular 2-sphere can be realised as/topel(this is the The-
orem of Steinitz, see the next section), this fails alreaabjlyin dimension 4. Here
e.g. Pfeifle and Ziegle6P] proved that there are®” simplicial 3-spheres with
nvertices. On the other hand, from a result of Goodman an@€&loft 1] we know,
that there are at mosP® '°9 " combinatorial types of simplicial 4-polytopes an
vertices. In higher dimensions, this gap between combiiztypes of CW @—1)-
spheres and simplicial-polytopes is a result of Kalabp]. We introduce the next
notion to distinguish spheres that have a geometric re@isas a polytope from
those that have not.

1.3.38 CerintTioN [Polytopal Spheres]. A strongly regular CW spher@ is called
polytopalif there is a polytopd® that has a face lattice isomorphic to that&f
Any such polytope is polytopal realisatiorof the sphere.

If a CW sphere is realisable as a polytope, then we can fuatklefor a partic-
ularly nice realisation. The following property is of inést for the computational
treatment and the visualisation of polytopes and theirlggapth a computer.

1.3.39 kriniTION [Rational Realisation]. A geometric realisation of a polytope
is said to beaational, if all vertices have rational coordinates.
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Clearly, all simplicial polytopes do have such a realisat@and dually also all
simple polytopes. For all other polytopes, or for realisasi with some additional
properties, it is usually not clear whether such a reabsaéxists. Already in
dimension two, most of theegular polygons lack a rational realisation. Even the
d-simplexAq does not have eegular andrational realisation inR¢ for all d > 2
(observe that the standard realisatiorAgfgiven in Examplesl.3.19is regular,
but in R%1). Perles gave an example of a 8-polytope on 12-verticeshdmno
rational realisation44, p. 95], and Richter-Geberf {] later constructed examples
of 4-polytopes without rational realisation.

1.4 F.AG VECTORS AND FLAG VECTOR | NEQUALITIES

We give an overview over the known (linear and nonlinearjjuadities, i.e. rela-
tions between the numbers of vertices, edges, 2-faceshatdold for the entries
of the f- and flag vectors of polytopes in dimensions up to four.

The cases of two and three dimensional polytopes are coahpletlved. In
contrast, not much is known in dimension four (and in higheraehsions). How-
ever, there are some promising approaches that will hdgesbhled some more
light on the case of 4-polytopes.

The two dimensional case is simple: A convex polygon has ag/wertices as
it has edges, and there is one combinatorial type of polygoariy numben > 3
of vertices, and none farn = 0,1,2. The flag vector adds one more enfgy to
the f-vector, and this is just twice the number of vertices. Theedrdimensional
case was solved by Ernst Steinitz already in 1906. We préisembmplete classi-
fication in the next section. In dimension 2 and 3 linear irsidjes already sfiice
for the description of the flag vectors. In dimension 4 we dlave to consider
nonlinear relations between vertices, edges, ridges,aredd.

Much more is known if one looks only at simplicial (or, dualsfmple) poly-
topes. Here thé-vectors are completely classified by thd heoren{this involves
the g-vector, which is a vector obtained from tlievector via a linear transforma-
tion) of Billera and Lee 14, 15] and Stanley T9]. Recently, a combinatorial proof
of the necessity part of trigtheorem was given by McMuller6p]. The statement
of the theorem, and its consequences, is given in the boolegtet [39, p. 270].

It requires a lot of new terminology and is based offiesfent arguments compared
to the considerations for generialvectors. We do not need it for this thesis, so we
leave it with these references to the literature.

In the following computations of flag vectors, we omit thoseries fs of the
flag vector for whichS contains either1 ord. For polytopes, these entries coin-
cide with fs whereS’ := S\{-1, d}. Hence, they do not contribute any additional
information to the flag vector.
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1.4.1 Taree DIMENSIONS

The three dimensional case of thevector-classification was solved by Ernst Stei-
nitz in 1906 B5]. The graphl'(P) of a three dimensional polytope is planar,
as we can apply a central projection of the graph onto onesdhaitets from a
point lying beyond this facet (which is@&chlegel diagranof the polytope).I'(P)

is 3-connected (i.e. we can remove any pair of vertices aadtaph will still be
connected), by a Theorem of Balinskd9 Theorem 3.14]. Steinitz proved that
these two conditions alreadyfige for a complete characterisatido].

1.4.1 Taeorem. Every planar3-connected graph on g 4 vertices is the graph of
a three dimensional polytope. |

This is a deep theorem. We do not attempt to prove it, but tefE89, Chap-
ter 4] instead. Three-connectedness in particular imghiaisany vertex is adjacent
to at least three edges. Thuf X 2f;. Using the Euler equation we obtain

3f0 < 2fo + 2f2 -4,
and therefore fy < 2f, — 4. (1.4.1)

By duality also

f, < 2fo — 4. (1.4.2)

See Figurel.17for an illustration of the cone defined by the above two inéqua
ities. These inequalities fice: Any integral vector having three positive entries
fo, f1 and f;, satisfying these two conditions together with the Euleradigun is in
fact the f-vector of a 3-polytope. This is a consequence of the folhgnsimple
considerations.

Combining (.4.1) and (.4.2 gives fy < 2f, — 4 < 4f, — 12. This implies
fo > 4. Similarly, we obtainf, > 4. Thus, the smallest possibfevector is
(4,6,4), which is thef -vector of the simplex. We use the two operations “stacking”
and “vertex truncation” introduced in the Sectibr8.2to produce a polytope for
any f-vector in the cone of1(4.7) and (L.4.9. Stacking above a simplicial facet
adds (13,2) to the f-vector and truncating a simple vertex adds3(2). Both
operations produce at least one triangle face and one siefiex. Thus, we can
apply both constructions to any polytope we have obtaineahtgrbitrary sequence
of those operations and we can construct a polytope withendiy, f,) in the flag
vector cone from the following three 3-polytopes:

¢ the simplex withf-vector (4 6, 4),

¢ the pyramid over a square wittivector (58, 5),

¢ and the pyramid over a pentagon witkvector (6 10, 6).
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For most pairs {p, f,), there are many polytopes realising tliisvector. For ex-
ample, the pyramid over amgon hasf-vector fi + 1, 2n,n + 1), but only the two
smallest such, fon = 4 and 5, appear in the above construction.

The flag vectorof a 3-polytope is already determined by itsvector: Any
edge has two vertices, g, = 2f; and any edge is in two facets, $g = 2f; and
for2 = 4f,. For any vertex-facet-pair there are two edges incidenoth bf them,
SO f02 = 2f1

1.4.2 Four DIMENSIONS

The situation is not nearly as nice for dimensiahs 4 as it is for dimensions 2
and 3. The sef V(4) of admissible flag vectors for 4-polytopes is not anymore
defined by linear inequalities. We present a short outlindgefknown properties
of this set. See the surveys of Bay#8}, [Ziegler and Hoppnerj6] and Ziegler PQ]
for a detailed and — unfortunately — still quite accuratecact of the known
facts for the classification problem.

We know six linear inequalities that restrict the flag veatbra 4-polytope.
Only one of these is really non-trivial, the others are twae observations to-
gether with their duals, and one self-dual inequality. Th&t finequality comes

A

N

Figure 1.17: The (fo, f2)-projection of thef-vector-cone for 3-polytoped; is determined by the
Euler equation.
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from the observation that a 4-polytope must have at leastvivieices and — by
looking at the dual polytope — also five facets. Secondly, Zifigce of the poly-

tope must have at least three vertices, thaffs,> 3f,. Dualising this we get
fi3 > 3f;. Each facet is a 3-polytope, so, by using the inequalitigb®fast sec-
tion, we know that thrice the number of 3-faces in the polgtapless than twice
its number of 2-faces. Summing over all facets we dgt 3 2fs,. The only non-

trivial inequality on the entries of the flag vector of a 4ygope so far was found
by Stanley 1] for rational polytopes, and by Kalab]] in the general case.

1.4.2 Taeorem [Lower Bound Theorem]. The flag vector of 4-polytope satisfies
OSf03—3fo—3f3+10 O

The generalised Dehn—-Sommerville equations in Theatehi7tell us that
only four of the entries of the flag vector of a 4-polytope an@eipendent. We have
chosenfy, f,, f3 and fo3 for this. Transforming the six linear equations that we
have derived into this set of independent entries we obtain

0< f,—5 (1.4.3)
0< f3-5 (1.4.4)
0 < foz— fo— 213 (2-simplicial) (1.4.5)
0 < foz+ fz3— f, =31 (2-simple) (1.4.6)
0 < 4f, —4f3— fo3 (centre-boolean) (2.4.7)
0 < fp3—3fy—3f3+10 (lower bound theorem) (1.4.8)

In the same way as for the 2-faces, one could also considenithenal number
of vertices or edges a facet must have and obtain boundgsfand f;3. However,
using Kalai's inequality, stronger bounds can be derivethfthe six given ones.

The cone defined by the linear equations4(3 — (1.4.9 is shown in Fig-
urel.18 It has the seven rays, all starting from the flag vector

flag(As) = (5,10, 10, 5; 20)
of the 4-simplex:

I, :=flag(As) + 1(1,4,4,1;6), I, :=flag(A4) + 1(0,1,1,0; 1),

I3 :=flag(As) + 1(0,1,2,1;4), l4 :=flag(As) + 1(1,2,1,0;4), (1.4.9)
ls :=flag(As) + 1(1,4,6,3;12)  lg:=flag(As) + 1(3,6,4,1;12)

I; :=flag(As) + 1(0,1,1,0;4),

for A > 0. Dualising a polytope amounts to reflecting its correspamgoint in
the hyperplane orthogonal to the bottom face and runnirautyirl, andl-.
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All stacked polytopes lie on the rdy. Cyclic 4-polytopesC] have the flag

IV R

Thus, they approximate the ray and their duals the ral,. In addition to the
simplex, also the hypersimplex (the intersection of thebecwith the plang; x; =

2) lies on the rayl;. Until very recently, no other polytopes were known that
lie on this ray. Wernerd8] has found a nice small 2-simple and 2-simplicial 4-
polytope withf-vector (9 26, 26, 9) also lying onl;. Further interesting facts about
this polytope are presented in Sectib3.5 In particular, we prove, that this is
the smallest non-trivial 2-simple and 2-simplicial 4-polge. No other polytopes
except the simplex are known that lie Bror |;, or even just come close to one of
these rays.

The set¥V(4) cannot be closed, as there is only one polytope with five ve
tices, but the rays hasfy, = 5. However, it is approximated by cyclic polytopes, so
it cannot be cut fi by a stronger inequality.

In the Chapter& — 4 we provide lots of examples that lie in the intersection of
the inequalities1.4.9 and (L.4.9. In Figurel.18they lie on the edge betweén
andl,. This is an area in the flag vector cone in which only few pghgt® have
been known previously.

Iy

Figure 1.18: A section through the flag vector cone for 4-polytopes. Theeds symmetric with
respect to the hyperplane running throuigh, andl;.
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In addition to the linear there are also some simple noralit®unds on the
flag vector:

f20 > fo+ fo —5f3 + fos, (1.4.10)
2 > —4fy + o + fos, (1.4.112)
g) > fo— fy — 5f3 + 2fps, (1.4.12)
f23 > —6fy— fy + 2f3 + 2fos. (1.4.13)

The first inequality is obtained by comparing the maximal bemof edges be-
tweenfy vertices and the sum of the real number of edges and the nuwohedges
missing in the 2-faces. The second is the dual of the first. thind inequality is
obtained by comparing again the number of all possible edgiteghe sum of the
real number of edges and the number of edges missing in teesfathe forth is
the dual of the third. Se&] for a detailed proof of these nonlinear inequalities.

With respect to the linear cone of possible flag vectors ob¥ippes, the four
non-linear inequalities are concave. That is, they cut cetgs of the cone. For
example, the two cyclic polytopes, (B0, 10, 5; 20) and (936, 54, 27; 108) both sat-
isfy (1.4.10 with equality, but the linear combination,@3, 32, 16; 64) violates it.
There are also “forbidden pairs” of entries in thevector. For example, Barnette
[7] showed that {;, f,) # (18,16). There are more such pairs, see Barnette and
Reay B] and the book of Grinbaun#{l]. Bayer and Lee11] give a survey on
these results.

By a complete enumeration of all polytopes with at most sexatices we
know that all flag vectors witHy < 7 satisfying the above linear and nonlinear
inequalities correspond to a polytope, with one exceptibhere are 29 four di-
mensional polytopes with seven vertices, and there is ngiqqué with f-vector
(7,17,9,39). A similar approach fofy = 8 gives a list of all flag vectors of poly-
topes with eight vertices. There are 1294 of them, and 42pudytopal spheres.
These were enumerated by Altshuler and Steinberg,3eaf [4].

1.5 HypeerBoLIC GEOMETRY

Now we shortly leave the realm of discrete geometry and toirg more diferen-
tial geometric topic. One of the constructions for 2-simghel @ — 2) simplicial
d-polytopes in Chapte? requires some tools from hyperbolic geometry. We intro-
duce the necessary facts in this section. This is not conepsate, and we do not
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attempt to prove the cited facts; the proofs, together witdrtarbackground, can
be found in the good text books of Benedetti and Petrohid, lversen §g], or
Ratcliffe [70].

Thehyperbolic spacé@l® of dimensiond is a connected and simply connected
d-dimensional topological space equipped with a Riemanmatric of constant
sectional curvaturel. Unlike the case of the other two model spaces — those with
constant sectional curvature O antl, the Euclidean space and the unit sphere —
there does not exist a model spacelfsrwhich is an embedding into the standard
Euclidean spac&®™ for somem > d with the induced metric. However, there
exist several approaches to model such a space in Eucligaae with a dierent
metric. The most common are tReincaré modeltheupper half space modednd
theKlein model We discuss the last two models. Our construction can latest m
easily be described in the Klein model, but the upper haléspaodel is usually
more intuitive, and the classification of isometries is machpler when one can
switch between dierent models.

1.5.1 Tue Uprper HALF Space MODEL

The upper half space model of hyperbolic space uses the funghi of the stan-
dard Euclidean space together with a conformally changedaeras a model for
hyperbolic space. More precisely, consifisr := {x e R? : x4 > 0} together with
the metric tensor
{ % fori=j
gj:=4q 4@

0 otherwise

for 1 <i, j < d. LetUY denote the upper half space equipped with this metric.

In this model of hyperbolic space it is easy to check the seaticurvature by
direct computation. Let = (x4, ..., Xq) be a point inU¢ with tangent spac&, U¢.
The Christdfel symbols are are given iy, = & fori = d andj = k, j,k # d,
I = —5 fori = jandk = d, andI} = 0 otherwise.

The Riemannian tensor has the enti®g = -Rji = —% fori # j and
Raij = O otherwise. So, for linearly independent vectpranddv in the tangent
space ofx, the sectional curvaturé is computed to be

(1 AY) Rt fv!v’ g Ziei KV
KuAvy) = — = ——— = -1
(9igj — Gij Q) vyt _%& Sisj M VIV

This transfers to the Klein model in the next section via gpliei isometry.

— 50 -



Hyperbolic Geometry

1.5.2 Tue KLEIN MoDEL
TheKlein modelof hyperbolic space uses the open unit disk
DT = {xe R : [[Xlguq < 1)
in RY as its underlying space, together with the following metric
1- T %

) X )P
Oij Xi X

(A-1IXIIZ, )2

fori = j

otherwise,

for 1 <i, j < d. We denote the open unit disk equipped with this metri@ty An
isometry between the Klein model and the upper half spacesmediven by the
map

3:DY — R

1 X[+ 1= IXBues
X — 2[1+ Ji- ||x||EUC,] — — €.
X+ |1+ 1= Xy

Here,gq denotes thel-th unit vector inR" with the Euclidean metric.

Eucl

1.5.3 bKOMETRIES AND HYPERPLANES

For our construction we need the fact that the hyperbolimetoy group acts tran-
sitively on HY. This allows us to position any pair of facets of two hypeitol
polytopes in such a way that they coincide. Hence, we cantylese two poly-
topes along these facets geometrically.

b ©

Figure 1.19: The upper half space model and the Klein model of hyperb@iace. The given
isometry between the two spaces mapento 0. In each space two geodesics are indicated.
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1.5.1 DermviTION [ISOMetry Group]. The group of isometries of the hyperbolic
spaceH? is denoted by Isoni().

1.5.2 ampLEs [Hyperbolic Isometries]. Here are some examples of isometries.
(1) Any orthogonal map € O(d) of R¢ restricts to an hyperbolic isometry of
the Klein model. Via the isometr§, such a map transforms into an isom-
etry of U¢ fixing the tangent spac&, U? at the pointey and realising the
orthogonal mag in Te,UC.
(2) Foranyl > 0,b e R%*x{0} and an orthogonal may ¢ O(d) that preserves
theey-axis, define the map

X +— 1AX+ b.
Restricted tdUd this is an isometry.

These two types of isometries alreadyfsie for the proof that Isonfi{®) acts
transitively onH¢.

1.5.3 Taeorem [Isom(IHY) is transitive]. For any two points xy € HY and any
orthogonal map A T,H? — T,H¢ there is an hyperbolic isometry i that maps x
onto y and induces A on the tangent spaces.

Proof. By Examplel.5.42) there are isometries mappir@ndy ontoey in UY. So
we can assume = y = g4. Switching to the Klein model and looking at Example
1.5.41), we see thaf viewed as a map oKY is the required isometry. O

Furthermore, the isometries given in the above two exangesready gen-
erate Isom{d®). Namely, suppose thgte Isom(9). Pick anyx € HY and set
y = j(X) andA = j.x : TyH? — T,HY. By the proof of Theoren.5.3we know
that there is an isometiymappingx to y and inducingA on the tangent spaces.
But then,i and j must coincide.

1.5.4 DerinimioN [Geodesic]. A geodesidan HY is a continuous map - HY

from an intervall into hyperbolic space such that, for any poi), t € I, there is
ane > 0 such that for anyy, t; € (t — ¢,t + ¢) the length of the curve([ty, t;]) is

equal to the distance oft;) andy(t,). Note thatl = R is allowed.

It can be proven that a geodesic iffdientiable in its domain of definition, and
in spaces of curvature 0, any geodesic can uniquely be extended to one defined
on the whole real lin&k [12, p. 25].

Given a pointx € HY and a unit vectov € T,HY, there is a unique geodesig
such thaty(0) = x andy(0) = v. Similarly, given two pointx,y € HY there is a
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unique geodesig,, connecting these two points. This allows us to define, for any
x € HY, theexponential map

exp, : T,H? — H¢
V= yym (VD).

This map is a dfeomorphism betweem,HY andHY. We equipT,H" with the
usual Euclidean metric.

1.5.5 DermNiTioN [Hyperplane]. A hyperplanen hyperbolic spac&l® is an iso-
metric embedding ofi®! into HY. These are the totally geodesic subspaces
of codimension 1 inHY. (A subspaces of a manifold istotally geodesidf all
geodesics, that contain a point®fand are tangent 8 in this point, stay irSS.)

Via the exponential map, any hyperplaneli¥ can be described by giving
a pointx € HY and the set of unit vectors contained in a hyperplan®,iH°.
In Euclidean space any two hyperplanes can be mapped ontooglaer by an
orthogonal map. Hence, using Theordn®.3 we may conclude the following
important fact.

1.5.6 Tueorem [Transitivity on Hyperplanes]. Any two hyperbolic hyperplanes
can be mapped onto each other by an hyperbolic isometry. |

The angle between two geodesics segmeniandy, intersecting iny,(0) =
v2(0) = x is the angle betweem, (0) andy,(0) in T,HY. In the upper half space
model, this angle coincides with the Euclidean angle thatave“measure” in the
model. In the Klein model it does not. This is one reason wh¥ileg at hyperbolic
phenomena in the Klein model is sometimes counterintuitive

The preservation of angles i and their distortion ink¢ is is immediate
from the fact that the metric tensorif at any point is just a scalar multiple of the
Euclidean one, while ifik¢ it has df-diagonal entries ik is not the origin (where
also in the Klein model Euclidean and hyperbolic anglesadi).

1.5.4 HHROSPHERES

We have already noted that any geodesican be extended onfd. From now
on we assume that this is the case for all geodesics. We adsutimer that they
are parametrised by unit speed (which meansdbgt,), v(t2)) = |t, — ty] for all
t1,t, € R, whered is the distance function dH¢ defined by the hyperbolic metric).
LetT'y be the set of all (oriented) geodesicgif, defined by unit speed. We define
a relation~ on Ty by sayingy; ~ vy, if d(yi(t), y2(t)) stays bounded far — oo.
This is invariant under time shifts— t + a on one of the geodesics. The relation
is clearly reflexive; Transitivity follows from the trianglinequality. So~ is an
equivalence relation.
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1.5.7 DeriniTion [Sphere at Infinity].  The sphere at infinitys® is the set of
equivalence classes Bf.

In our model spaces, we can identify the sphere at infinity
¢ with the boundary of the disB? in the Klein model or
¢ the hyperplan@®R%?! = {x € RY : xy = 0} together with an artificial
elemento, which represents the class of all geodesics that are pei@the
d-th coordinate axis, in the upper half space model.
Lety be a unit speed ray : [0, ) — HY and

b : H' — R
X +—> d(x, y(r)) —r.

For fixedx this function is decreasing inand|b;(x)| is bounded byl(x, y(0)). For
anyx,y € HY and anyr € R, the distance betwedn(x) andb(y) is bounded by
the distance ok andy. Both facts follow from the triangle inequality.
These considerations allow us to define the “limit function”
b

, = lim by

r—oo
It satisfies|b,(X) — b,(y)l < d(xy) for all x,y € HY |b,(x)| < d(x,(0)) and
b,(y(r)) = —r for all r € R*. This function is called th8usemann functioof
the rayy.

1.5.8 Dxrinrrion [Horospheres]. A horosphere Hin HY centred at a poink €
$¢-1 is the level set of a Busemann function of a ray in the classis defining
the pointx.

A horosphere is independent from the actual choice of theesemtative in the
class ofx. Horospheres are particularly nice objects in hyperbgiace. Here is
the one important fact that we will exploit in our constrocti

1.5.9 Tueorem [Horospheres are Flat]. The induced metric on horospheres is
flat.

Proof. We check this in the upper half space model. A horosphigrieased ak €
HY is the level set of a Busemann functiby corresponding to a ray diverging
to x. As the isometry group acts transitively &, we can w.l.0.g assume thats
the point not inR%* ¢ HY. Any horosphere ta is then a Euclidean plane parallel
to R%1. Thus it is defined by, = ¢ for a constant. The induced metric oRly is
dsd = (A + ...+ dxf ): Itis flat. O
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THE E-CoNSTRUCTION FOR LATTICES, SPHERES, AND PoLYTOPES

2.1 INTRODUCTION

We describe and analyse a new construction that appliesittedposets, lattices,
PL spheres, and polytopes. It produces new posets, latitespheres, and —
with some restrictions — polytopes. Here are some of the keperties of this
construction:

¢ For suitable input the result issimple ands-simplicial.

* We obtain the first infinite family of 2-simple and ¢ 2)-simpliciald-poly-

topes in any dimensioth > 4.

¢ We obtain the first infinite family ofational 2-simple and 2-simplicial 4-

polytopes.

¢ The 4-polytopes from this construction lie on the bounddrihe cone de-

fined by the known flag vector inequalities of 4-polytopes.

¢ Some of the polytopes have high “fatness” (see Definitigh?).

¢ For any number of vertice§ > 26 it produces “many” combinatorially

different 2-simple and 2-simplicial 4-polytopes.

¢ Also most of the already known 2-simple and 2-simplicialalypopes are

instances of this construction.

A special case of the construction was considered earli€égdpstein, Kuper-
berg, and Ziegler33], who coined the nam&-constructionfor it. We use this
name also for our generalised version. We sometimes add sctrgoid, which
gives a distinguished dimension between 0 dndl, if d is the dimension of the
polytope, ord + 1 the rank of the lattice. The original version is only defified
the special casé = 4 andt = 1.

Our generalised construction comes in twéetient flavours, and we conse-
quently give two diferent definitions of it. We start with a combinatorial defuoit
in Definition 2.3.1, which applies to posets and lattices. We translate thesant
geometric version in Definitio2.4.2 The two versions coincide on the level of
face lattices of spheres and polytopes.

The present chapter introduces the construction, proseesral ways to ob-
tain geometric realisations of polytopes, and introdu@sdiexamples. The main
result is — apart from the definition and discussion of thesgaihconstruction —
the introduction of three infinite families of polytopes.3ection2.5.1we present
two families of rational 2-simple and 2-simplicial 4-pabytes. The one defined in
Proposition2.5.12was somehow the “birth” of all this: It was the first family of
2-simple and 2-simplicial 4-polytopes not contained in dhniginal construction.
Meanwhile, other families are more interesting. We intrmelseveral simple ways
for the construction of 2-simple and 2-simplicial 4-polyé&s, which can produce
many other infinite families. In Sectidh5.3we present a family of 2-simple and
(d — 2)-simpliciald-polytopes in any dimensioth> 4.
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Chapter3 is then entirely devoted to another large class of polytdp&ghich
this construction applies. We work out several propertiethese polytopes. In
particular, we will look at their combinatorial and geometsymmetry groups,
and at their realisation spaces.

Chapter4 contains some properties of 2-simple and 2-simplicial ##ppes
that can be proven with our methods, and it contains listsnofln examples of
2-simple and 2-simplicial 4-polytopes. We also presentesatimer methods to
obtainr-simple ands-simplicial polytopes.

2.2 SOME REMARKS ON (2, 2)-PoLyTOPES

The E-constructionwas first considered by Eppstein. In a joint work with Kuper-
berg and Zieglerd3] he used it to produce an infinite family of,(2)-polytopes (i.e.
2-simple and 2-simplicial 4-polytopes). Prior to this paaly a finite number of
(2, 2)-polytopes where known. Most of them occurred in the cdraéregular and
semi-regular polytopes.

There is a claim in Griinbaum’s boo4, Ex. 9.9.7(iii), p. 169] that Perles and
Shephard had earlier obtained infinitely manyd2 2)-polytopes. However, there
is no known proof of this result. Eppstein, Kuperberg, anegigr with their work
substantiated this claim in dimension 4 by constructindfitiseinfinite family Qp,

n > 1, of (2 2)-polytopes.

We finally completely prove this claim: In Theoreirb.15we provide an infi-
nite family of (2 d — 2)-polytopes in all dimensiornsg > 4. This family also sheds
some more light on a problem stated by Kalai4,[19.5.19], where he asks for
values ofr ands, with r,s > 2, such that there is ansimple ands-simplicial
d-polytope.

Further, also in Griinbaum’s book4, Ex. 5.2.13(ii), p. 82], one finds a claim
that Shephard had proven a conjecture of Walkup, statirtg 2n2)-polytopes are
dense among 4-polytopes. However, this was premature. Uésiqn is still open
[44, p. 69b], and despite our new methods — which produce a weéal(B, 2)-
polytopes — we still do not seem to be close to an ansvigengein this setting
means the following: Given two familig® andQ of polytopes® is dense irQ, if
for anye > 0, and any polytop® € Q, there is a polytop® € ¥ with Hausdoff
distance smaller thasifrom Q.)

Roughly, the construction of Eppstein, Kuperberg, and [Bregiorks as fol-
lows. It uses ardge-tangensimplicial 4-polytope as input, and takes the convex
hull of this with its polar polytope. It is not élicult to see that this results in a
(2, 2)-polytope. The hard part in their work is the construcbsuficiently many
simplicial edge-tangent polytopes. This is quite easy reg¢hand rather éicult
in all higher dimensions.
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As an application of the results of their construction, Epis Kuperberg, and
Ziegler [33] introduce thefatnessparametel~(P) for a 4-polytope, which is the
quotient of the sum of edges and ridges divided by the sumrnbces and facets.
This concept was further developed by Ziegkd|[ and recently in92]. Eppstein,
Kuperberg and Ziegler gave examples with fatness sliglibya five. In Chaptes
we present a family of polytopes obtained from our genezdlE-construction
whose fatness approaches six. Either finding an upper baunkdi$ parameter, or
proving that it is unbounded, would produce important infation for the classifi-
cation problem of flag vectors introduced in SectioA.2 It is unbounded for CW
spheres, and Pfeifle and Ziegl&9 have exploited the underlying method for the
construction of a large number of non-polytopal spheres.

The families of (22)-polytopes that we obtain from tleconstruction in this
chapter are the first infinite families of,2)-polytopes that haveational coordi-
nates for their geometric realisations. This answers atmunesf Eppstein, Kuper-
berg, and Ziegler in33], as their construction only produced examples with (in
the given realisation) non-rational coordinates, due éceitige-tangency condition
in their construction. In contrast to this original versiavhich is quite rigid, ours
allows great flexibility in the choice of coordinates.

2.3 THeE E-CONSTRUCTION ON POSETS AND L ATTICES

We begin with a combinatorial description of our generaisersion of thek-
construction. Itis defined on any graded poset and asse@iatew graded poset to
it. We show that many properties of the poset are preservédddy-construction.
In fact, the result may even satisfy stronger properties tha input.

The construction depends on a parametspecifying a level sePy,; in the
graded poseP. Roughly, if P is a graded poset of length+ 1 andt a parameter
between 0 and — 1, then the construction defines a new EgP) containing all
elements of rank+1 and all intervalsx, zZ] € P that contain at least one element of
rankt + 1 in their interior (i.e. diferent fromx andz). This new set can be ordered
by reversed inclusion. Here is the precise definition.

2.3.1 DerinitioN [The Combinatorial E-Construction]. Let P be a graded poset
of lengthd + 1 with order relatior<p andt an integer between 0 and- 1. Define
a new posekE;(P) with order relation< in the following way:
(1) The elements d&;(P) are
(&) The empty sen,
(b) the elementg € P with rankfy) =t + 1, and
(c) allintervals K, Z] € P with rank(x) <t + 1 < rank@).
(2) We order this set by reversed inclusion of setB.ii500 becomes the maxi-
mal element irg;(P) andP itself the minimal.
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See Figure2.1 for an illustration. Note, that we cannot choose the bottem o
top level as the “distinguished” one, as in this case nowalerould “cross” the
level. In later sections we consider this construction ligdiar a fixed parameter
t. In this case, and if no confusion is possible, we annitthe notation and write
E(P) for the poset obtained froifa via the E-construction.

2.3.2 Remarks. We have two remarks about the choices made in the definition.

¢ |t would not make much dierence if we order the set by inclusion instead of
reversed inclusion. All posets, lattices, spheres, angtpoés constructed
via this method would just turn into their opposites (or duaespectively).
We have chosen this order mainly for historical reasonss Waly, it is closer
to the original definition of Eppstein, Kuperberg, and Zexgl

¢ The choice oft + 1 as the distinguished level (insteadtpin the poset is
motivated by the important application of this constructto spheres and
polytopes, which we discuss later in this chapter. Thenetments of rank
t+ 1 in the face lattice of a sphere or polytope correspond 18 oefaces of
dimensiort in that sphere or polytope.

2.3.3 amrLEs. Here are some simple examples of reonstruction.
¢ The E;-construction applied to a poset of length- 1 is the same aBy_1 ¢
applied to its opposite, i.e.

E«(P) = Eq-1«(P%).

So we can derive the same posets flBrand from its dual. This equality is
rather immediate from the definition.

We use this important fact quite often when constructingyfoples, and
without always mentioning it. In particular, it will proveew convenient
for the enumerations of (2)-polytopes in Sectiod.3.

L d+1 Et(L) 0 d+1
d
t+1 d+1+
p(X)—p(2)
[atom 1] [0,coatom] 1
0

Figure 2.1: Combinatorial construction df(L).
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¢ Let P be agraded and bounded poset of lerdythl. Then
Eq-1(P) = P.

Indeed, the new elements of radlare the same as the old ones. The maxi-
mal element ot an interval crossing lewsk 1. An interval [x;, 1p] contains
an interval K, 1] if and only if x; <p X,. Dually, we also have

Eo(P) = P*.

We will only consider bounded graded posets, so these twescaie not
really interesting for the construction, and we sometimetuele them from

our considerations.
¢ Figure2.2 contains two simple, but non-trivial examples of tBeonstruc-

tion, shown via their Hasse diagrams.

A chainin the posetE(P) is an ascending sequence of intervalsPin See
Figure2.3for an illustration. The posdf(P) comes with a naturabnk function
induced from inclusion of intervals in the poget

2.3.4 DxriniTioN AND ProposiTion [The Rank Function on E(P)]. Let P be a
graded poset of length @ 1 and0 <t < d — 1. The poset EP) naturally ad-
mits a rank function induced from the rank functiqn, of the original poset P:

d+1 if @ =0,

o) = d if @ is an element of rank# 1in P,

if @ = [x,2] is an interval in P
(d+1)=(p(@) ~ pp()) crossing the level £ 1.

From the properties of the rank functigi of P it is immediate that this defines a

rank functionp on E(P). O
P c2 Eo(P) 0 ‘ ’
c [b.d]
b b
& & ) ’ b [ad] [b.d
& % [a.c [a2,c2] a [a.]

[a,co] [az.ci]

(a) A simple poseP andEg applied to it. Note, thaP (b) Another poseP andE; applied to
is not bounded. it.

Figure 2.2: Some examples of the-construction.
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2.3.5 RrorosiTion [Length Preservation]. Let P be graded poset of length+dL.
Then P and EP) have the same length forafy< t <d - 1.

Proof. Let pp be the rank function of the posBt By Proposition2.3.4we know
that E¢(P) is graded. A maximal chain ig;(P), translated into its corresponding
intervals inP, has the form

[%o, Z0] <[X1,z1] <. .. <[Xk, Z] = [X X] <0

where X, is a minimal elementz, a maximal element, forany & i < k-1
eitherx, = x,, andz coversz,,, or x is covered byx,, andz = z,;, and
op(z) = pp(X) = t+ 1. As X,z must also satisfpp(X) < t+ 1 < pp(z) for any
1<i<k-1,thereare+ ((d+1)-(t+2))=d-1increasing steps. The last two
elements, i.e.), x] and @, were not included in this count, so in total, the above
chain containgl + 2 elements, so it has length+ 1. ]

Thus, E(P) is again agradedposet oflength d+ 1. Its coatomsare the one-
element setgy}, y € Py, its atomsare the intervalsy, 1] for 1 <t < d — 1, and
[0,7] for 0 < t < d—2, wherex ranges over the atoms, andver the coatoms d?.

It is not hard to compute thé-vectorof the new poset from the flag vector of
the old, as we just have to count intervals of a certain leogtitaining elements
of rankt + 1.

4-level

[X0,20] < [X1,z1] <[X2, 2] <[X3,Z3] <[X4,24] <[X5,25] <[Xe,Xe] < O

Figure 2.3: A maximal chain inEz(P), whereP has rank 7.
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Let P be a poset of lengti + 1 and 0<t <d-1. Then

> fj(P) for —1<k<d-1,
f(E¢(P)) = < f(P) fork=d -1, (2.3.1)
1 fork =d,

where the sum in the above formula ranges over all pajrhat satisfy
-l<i<t<j<d and j—i=d-k

In the same fashion, one can compute all other entries of &igeviéctor. How-
ever, we need this only in a few cases, where the flag vectas®recomputed
differently.

If Pis alattice, then there is a much shorter description of the p&sggt) for
any parameter t between 0 add 1. Namely, in this case, we can just define

E(L) = {[AA, \/A]: Ac Lt+1},

again ordered by reversed inclusion. Here we interptgd,[\/ 0] to be @, which
defines the elemeiitin E(L). See Figure.4for an example of th&-construction
applied to a lattice. The next proposition tells us that ttepprty of being a lattice
is preserved by thE-construction.

2.3.6 RrorosiTioN [Lattice Property Preservation]. For any bounded and graded
lattice L, and any parametdér < t < d — 1, the poset L) is a lattice.

Proof. We have to show that any two elements have a join and a meep, Lt
the rank function inL anda, 8 € E¢(L) be two arbitrary elements. We show that
they have a meet. We distinguish two cases for this.

L Eai(L)

Figure 2.4: A lattice together with the E-Construction applied to theldie level.
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¢ If @ = L, thena is the minimal element oE,(L). Clearly, in this case
aAB=a Similarly if 8 = L.
¢ In all other cases we can assume= [X;,z;] andB = [x», 2] for some
elementsq, X, 71,2, € L with p| (X1), o (X2) < t+1andp, (z1), 0. (2) > t+1.
We allowx; = z; or X, = 7 in this.
Leta:= x; AX; andb := z; V7. Then clearly, (a) <t+1 andp (b) > t+1.
Consider/ := [a,b]. Then/=<a and{ =<, so/ is a lower bound ofr
andp. Let ¢ be another lower bound. Then= [&, b’] for some elements
a,b e L, and [x,z],[%,2] C [&,b]. Soa& is a lower bound fox,; and
X. Butais their meet, s@ <, a. Similarly, b’ is an upper bound of, and
Z,. Asbis their join, we havé <, b’. This implies p,b] C [&,b]in L, and
consequently </ in Ey(L). So/ is the meet ofr andp.
Joins can either be computed in a similar way, or one can st that in
bounded posets the existence of meets already implies tberse of joins, by
Propositionl.2.22 O

2.3.7 Remark. The converse of Proposition3.6is not true in general.E(P)
for some parametdrcan be a lattice although is not. In Figure2.5is a simple
example of this phenomenon. It shows a poset in which twoeesdo not have a
meet, sd is not a lattice. Howevek, (P) is the face lattice of the polytope shown
in Figure?2.6.

2.3.8 RorosiTion. Let P be a graded bounded poset of length d and t a
parameter betwee@and d— 1. If P is Eulerian, then EP) is also Eulerian.

Proof. This is true fort = 0 and fort = d — 1, which includes all possible values
fortif d < 2. We use induction on the length Bf

Figure 2.5: The poseP from Remark?2.3.7. Note, that the meet of the two outer elements of level
three does not exist. They have two maximal lower bounds.
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First we show that all proper intervals E§(P) are Eulerian. For any element
[x,7] € E«(P), where &, 2) # (0, 1), the upper intervd[x, 7], 1] of E,(P) is isomor-
phic toEy ([X, Z]) for t’ =t — p(X). See Figure.7(a) Hence, all proper upper inter-
vals in E;(P) are produced by thE-construction from Eulerian posets of smaller
length and level’, so they are Eulerian by induction.

Similarly, if [, Z] is an element of rank at modt-1 in E;(P), that is, an interval
of P with x < y < zfor somey € P4, then the lower intervdl0, [x, Z]] of E,(P)
is isomorphic to §, X] x [z 1]°P. This is Eulerian by Theorerh.2.16 sinceP is
Eulerian.

If {y} is a coatom ofg(P), for y € P4, then the lower interval 0, {y}] is
isomorphic to Py) x (P.y)°? v 1. Thus, it is the opposite of a reduced product of
two Eulerian posets, which is Eulerian by Theor&r.16

Finally, we have to see th&(P) itself has the same number of odd and even
rank elements. For this we use therector ofE;(P), which we have already com-
puted in ¢.3.1). Every interval §, 7] in P is Eulerian. Hence, for & j < d—1 and
all ze Pj,1 we have

i
2, CU(0.2) =0,

which, by summing over alt € Pj,4, yieldszij:_l(—l)‘ fij = 0. If ] > t we can split
the sum at = t to obtain

i

t-1
Z:(—l)i fij = —Z:(—l)i fij. (x)

i=—1 i=t

Figure 2.6: A polytope havinge; (P) for the poseP in Figure2.5as face lattice.
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This is one of the generalised Dehn—Sommerville equateees,Theorem..2.17
A similar argument for upper intervals shows that

d
Z:(—l)j fij = (-1)%q. (*%)
j=i
fori < d. With these two equations, we can compute
d
DU A(E(P) =
k=-1

= 1-f+ ti Zd:(—l)i—i fi 1-fi+ Zd](—l)i ti(—l)i fi

i=—1 j=t+1 j=t+1 i=—1

d j d j
P YN = 1= YD
i=t j=t i=t

j=t+1

d t d
= 1- 3 (1) Y (- 2131y -1y
i=t j=i i=t

= 0.

Hence, the posdE(P) contains as many elements of odd rank as it contains ele-
ments of even rank. This proves the claim. ]

2.3.9 Remark. Alternatively, one may argue from Theoréint.1in the next sec-
tion: Since the order complexes Bfand of E;(P) are homeomorphic, they must
have the same Euler characteristic, which is the Mobiustionof P and E(P),
respectively. This is precisely what we need far4 = [0, 1].

1 1

levelt +1  [21]

in[x 2

(x2

t+1

t+1

t+1

0 0

(a) Proper intervals. (b) Products of intervals.  (c) Reduced products of inter-
vals.

Figure 2.7: The intervals inEy(P).
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The next theorem will be interesting for the comparison ef geometric and
combinatorial symmetry groups of products of polygons dwirtE-construction
in ChapterS.

2.3.10 ReorosiTiON [Symmetry Preservation]. Let P be a graded poset of length
d + 1. Then there is an canonical injective map

i Aut(P) — Aut(Ey(P))
forany0<t<d-1. |

Let a be a automorphism d?. Theni(a) is the automorphism d&(P) sending
an interval k, 7] to [a(X), a(2)]. We will see in Sectior®.5 that E, applied to the
face latticeP of a 4-cube is isomorphic to the face lattice of the 24-call tise
automorphism group d&;(P) can be strictly larger than that & Hence, will in
general not be surjective.

Now we come to the most important property of tBeconstruction for the
remaining sections of this chapter and the following twoptbes. Recall the defi-
nition of simpliciality and simplicity from Definitiori.2.25 We repeat a shorthand
notation from Definitionl.2.26that we use frequently.

DerniTION [(1,9)-Lattices]. Let L be an Eulerian lattice. We say thais a , 9)-
lattice if it has rankf = r + s+ 1 and isr-simple ands-simplicial.

We later apply the same notation also to strongly regulagisgshand polytopes.
So, a ¢, s)-polytope is arr-simple ands-simplicial polytope of dimension+ s.

2.3.11 Tueorem [Simplicity and Simpliciality]. Let L be a bounded Eulerian

lattice of length d+ 1 and t a parameter betwednand d— 2.

(1a) ForO < k <d -2, E(L) is k-simplicial if L is r-simple and s-simplicial for
r > min(k,d —t — 2) and s> min(k,t — 1).

(1b) E(L) is never(d — 1)-simplicial.

(2a) E(L) is 2-simple if and only if every intervak, z] with rank(x) = t — 1 and
rank@) =t + 3is boolean.

(2b) E(L) is never3-simple.

Note, that we have excluded the casesO andt = d — 1 in the theorem. By
Examples2.3.3we haveEy(P) = P°? andE4_1(P) = P for bounded posets. With
some adjustments for the casel < 0 ort+3 > d+ 1, the claims in (&) and (&)
are still true fort = 0 andt = d — 1, but (Ib) and () are clearly wrong. However,
neither of these two cases is really interesting, so we echttiem.

Proof of Theoren2.3.11 We prove all four diferent claims in the theorem sepa-
rately. Letp, be the rank function oh, andp that of E;(L).
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(1a) The elements of rank at mdst 1 < d — 1 in E¢(L) are the intervals of the
forma = [x,Z € Lwith p (X) <t, p (2 >t + 2 satisfying

p() +([d+1)=p (2 =pla) <k+1

An elementx € L appears as the lower end of such an interxat][if and
only if

0<p (X) <minfk + 1,1}.
The same is true for all elemergs L of corank
0<d+1-p, (@ <minfk+1,d-t-1}.

The atoms oE;(L) belowa = [X, Z] are given by both the atoms bfbelowx,
whose number is at legst(x), and the coatoms @f abovez, whose number
is at least + 1 — p, (2). So the interval has at least

o(X)+d+1-p, (2 =k+1

atoms, with equality if and only if the interval®,[x] and [z 1] of L are both
boolean.

Thusall lower intervals §, @] of rank k + 1 in E;(L) are boolean if and only
if all intervals D, X] and [z 1] are boolean fop,(X) < min{k + 1,t} resp.
d+1-p (@ <minfk+1,d-t-1}.

(1b) An analysis as for (1a) shows that for any elenjghof rankd in E;(L), i.e.
fory € Ly, there are at leadt+ 1 atomsay,. .., a, in L satisfyinga; <y
forl1 <i < mand at leastl — t coatomscy, ..., Cy in L satisfyingy < ¢; for
1 <i<m. Hence, there are at least

m+m>(t+1)+(d-t)=d+1

atoms belowy} in E¢(L). Too many for aq — 1)-simplex.

(2a) E((L) is 2-simple, if all intervals,1] ¢ E(L) with 8 = [x,Z c L and
p(B) = d — 2 are boolean. Equivalently, these intervals must haverdaty
coatoms.

This is the case if and only if every intenv@k [x, Z] c L of length three, for

o (X) < t+ 1< p (2), contains precisely three elements of rark1. This

is equivalent to the condition that every interval 3] of length four with
pL(X) =t—-21andp (2 =t+ 3is boolean. In terms of the usual flag vector
notation, this can numerically be expressed as

fiottr2(L) = 6fiopa(L).
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(2b) Similarly to the previous considerations, (L) to be 3-simple we would
need that every intervak[Z] in L of length 4 withp, (X) <t+ 1 < p (2 and
oL(2 = p.(X) + 4 contains exactly 4 elements of raink 1.

However, this is impossible for the case wheréx) = t—1 andp (2) = t+3,
where the intervalX, Z] has at least 6 elements in its “middle level” (that is,
of rankt + 1) by the Eulerian condition. See Figute3 for an illustration of
this fact. ]

2.3.12 Remark. The condition in (2) is in particular satisfied it is (t + 2)-
simplicial or d — t — 1)-simple. We will only use this weaker form in the next
sections, although one can construct examples of polythpésre neithert 2)-
simplicial nor @ — t — 1)-simple, but theiE-construction still is 2-simple.

Theorem2.3.11gives us the following important corollary. Its geometrgrv
sion, which we state in the next section, will play a centdé iin the construction
of our families of polytopes.

2.3.13 GWroLLARY [(2,d — 2)-Lattices]. Let L be a bounded Eulerian lattice of
length d+ 1 > 4.

(1) If Lis simplicial then B_3(L) is a(2,d — 2)-lattice.

(2) If Lis simple, then EL) is a(2,d — 2)-lattice. ]

We have now collected all necessary information on the coatbrial proper-
ties of theE-construction.

Figure 2.8: The E-construction can never produce 3-simple lattices.
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2.4 THE E-CONSTRUCTION ON SPHERES

There are two dferent ways in which we want to look at spheres: We present
a morecombinatorialand a moregeometricversion. We begin this section with
a discussion of therder complexof a bounded Eulerian lattice and and ks
construction. We prove that these two order complexes aredrteomorphic by
constructing an explicit PL homeomorphism between the pazss.

In the second part of this section we define — independent fhencombina-
torial construction — a geometri€-construction for PL spheres. We prove that
this geometric construction coincides with the combinat@efinition 2.3.1if we
look at the face lattices of the PL sphere andgtsonstruction.

The presentation of the PL version of tReconstruction will not be concise.
It should provide some intuition for the geometric propestof this construction,
rather than giving a formal definition.

2.4.1 rper COMPLEXES OF SPHERES

Here we look at the order complex associated to a gése€his is the abstract sim-
plicial complex whose vertices are the element®0&nd whose faces are subsets
of the vertices that form a chain in See Definitionl.2.19for a precise version.
An abstract simplicial complex can be realised geometyi¢galsomeR", accord-
ing to Propositiorl.2.2Q0 We work with PL topology in this section. See Section
1.3.1for the relevant definitions and the necessary facts.

The following result is analogous to simpler results of Veal87] and con-
structs an explicit PL homeomorphism between the order ¢axngf a posetP
and the order complex of it&-constructionE;(P), for some admissible parame-
tert. Basically, this shows that the latter is a subdivision & tbrmer. Recall,
thatP denotes the proper part of a poseti.e. the poset without its maximal and
minimal elements, aniX| the underlying topological space of a cell complex.

2.4.1 Taeorem [The PL Homeomorphism]. Let P be a finite graded poset of
length d+ 1 and t a parameter betweehand d— 1. Then P and EP) are PL
homeomorphic:

Pl = [E,(P)I.

Proof. We verify thatA(E(P)) is a subdivision ofA(P), and give explicit formulas
for the subdivision map and its inverse. (Compare this tokérgB7, Sects. 4,5].)

If one assumes that there is such a homeomorphism, theraitlis ¢lear how
it should look like. So we just state the map here and proviesh®as the required
properties.
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We define the following map:
7 IAE(P) — AP,

given on the vertices by

iy} />y for y e Py,

[X, 2] +— :—2Lx+%z for6<x<y<z<i, y € Py,
[X,1] — X forO<x<y<l, y € Py,
[0, — z for 0O<y<z<1  yePu

and linearly extended on the simplices. This map is wellrgefiand continuous.
Its inverse, a subdivision map, may be described as folléwg:point of A (P) is
an dfine combination of elements on a chairFinso it may be written as

XXy < -0 < A < ApaYur < Awzir < o0 < AgZg.

with 4; > 0 andY; A4 = 1. We setxy := 0 andzy.; := 1, with codficientsg := 1
andAg. = 1.

f(1)
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
g(d)
A e — Ag
f(2
@ Ag-1
A2 I 777777777777777777777777777777777777777777777777
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘
Aj ®
/l.
PY J
,,,,,,,,,,,,,,,,,,,,,,,,,, ‘
[ I e B e T A
/lt—l t+1
>
0 1 i t+1 j d+1

Figure 2.9: Sketch for the proof of Theoreth4.1 The height of the shaded rectangle indicates the
size of the cofficienta; ;.
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Now the above point is mapped hby* to

7N X) = A Yt} + Z 2a;j [%,z] + Z @i [, z],

1<i<t, t+1<j<d i=0,t+1<j<dor
1<i<t, j=d+1

where the cofficientse; j are given by

{ min{f(),()} - maxfi+1).0(j-1) ifthisis >0,
%= 0 otherwise

with f(t+1) = g(t+ 1) = 0, and

fi):= A+ A1 +...+ 4 forO<i<t+1,and
9(j) :== Ao+ ...+ A1 + 4 fort+1<j<d+1
We refer to Figure.9for an illustration of the construction of the;. O

From this theorem we can conclude the following importamissguence.

2.4.2 Tueorem. If P is the face poset of a regular PL sphere or PL manifoldnthe
so is E(P).

Proof. By Proposition2.3.8and its proof, using the PL property, we get the cell
complex. By Theorem2.4.], this cell complex is homeomorphic fi|. ]

2.4.2 Tue E-ConsTRUCTION ON PL SPHERES

We translate the combinatoriBtconstruction of Definitior2.3.1into the geomet-
ric setting. Nothing new is happening here, as formally t@scription is imme-
diate from the combinatorial one and the homeomorphismnginghe previous
paragraph. However, it might provide some intuition for wiree construction is
doing geometrically, and for the problems we face when apglit to polytopes.

2.4.3 DeriniTioN [The E-Construction for Spheres]. Let S be a PL sphere of
dimensiord — 1 andt a parameter between 0 add 1. We define a new PL sphere
by the following three steps:
(1) Take a barycentric subdivisigBS(S) of S. This cell complex has a vertex
for each cell ofS and a ¢l — 1)-cell for each maximal chain of faces &f
(2) Merge all @ — 1)-cells (i.e. all facets) 0BS(S) that share a vertex coming
from at-cell of S into a single newd — 1)-cell.
(3) Merge allk-dimensional cells, that become “unnecessary” by thisatper
in the sense that they intersect inka— 1)-cell that is adjacent to no other
k-cell, forO<k<d-2.
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Clearly, this construction applies to any PL sph8rand produces a new PL
sphere. See Figur2.10for an example oE; applied to a 2-sphere. The geo-
metric version of thee-construction corresponds to the combinatorial version of
Definition 2.3.1in the following way.

2.4.4 RorosiTion. Let S be a PL sphere of dimensior-dL and t a parameter
betweerD and d- 1. Let £(S) be the face lattice of S.

Then E(L(S)) (i.e. the combinatorial version of the E-construction apg@lto
the face lattice of S) is the face lattice of &).

Proof. Both L(Ei(S)) andE{(£L(S)) have f(S) coatoms. By the third step in Def-
inition 2.4.3 all vertices of 8S(S) vanish if they do not stem from a 0-cell or a
(d — 1)-cell of S. So both lattices also have the same numigé®) + fy4_1(S) of
atoms. Hence, it fices to check the vertex—facet incidences.

The cells of the barycentric subdivisi®#5(S) can be identified with chains in
the face latticel(S) of the sphere. Chains containing only one cell correspond t
the vertices, and maximal chains to the facets. If two faicesS(S) have a cell of
dimensiont of the original spher& in common then the corresponding maximal
chains in the lattice intersect in an element of rarkl. For anyy € £(S) of rank
t + 1 letC, denote the set of all maximal chains £i{S) that contairy. Let o be
thet-cell of S represented by.

As we merge all facets i8S(S) that contain the same cell of dimensipisuch
a setCy canonically correspond to a facet Bf(S). On the other hand, we may
identify C, with a coatom of;(L(S)) by mappingC, onto{y}.

The atoms oE(£L(S)) incident to{y} are precisely the atoms and coatoms of
L(S) contained inC,. On the other hand, the 0-cells of the faceEi(S) defined
by C, are the 0-cells o8S(S) coming from @ —1)-cells that contaiory. Hence the
vertex—facet incidences of the two latticé€E,(S)) andE;(L(S)) coincide. ]

Figure 2.10: An example for thée-construction on spheres.
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With this correspondence to the combinatorial setting wereatate the proper-
ties about simplicity and simpliciality of lattices obtahfrom theE-construction
in a geometric language.

2.4.5 Taeorem. Let S be a PL sphere of dimensiord andl<t<d-2.

(1a) ForO <k < d -2, E(S) is k-simplicial if S is r-simple and s-simplicial for
r > min(k,d -t -2)and s> min(k,t — 1).

(1b) E(S) is never(d — 1)-simplicial.

(2a) E(S) is 2-simple if and only if anyt + 2)-cell is 3-simple.

(2b) E(S) is never3-simple.

Proof. This is a direct consequence of Theor2m.2and Theoren2.3.11 O

The most important application of this are the following tpyossibilities to
create a 2-simple and ¢ 2)-simplicial d — 1)-sphere. For the rest of this chapter
and the whole next chapter we will work mainly with these tvases. The proof
is immediate from the corresponding statement for lattice€orollary 2.3.13
Recall, that ar; s)-sphere is am-simple ands-simplicial PL ¢ + s— 1)-sphere.

2.4.6 GoroLLARY [(2,d — 2)-Spheres]. Let d > 3 and S any strongly regular
(d — 1)-dimensional PL sphere S.

(1) If S is simplicial, then E3(S) is a(2,d — 2)-sphere.

(2) Similarly, if S is simple, thenJS) is a(2,d — 2)-sphere. O

2.5 Tae E-ConstrUCTION ON PoLYTOPES

The boundary of a polytope naturally carries the structfiesirongly regular PL
sphere. Hence, we can apply tBeconstruction of PL spheres — as defined in
Section2.4.2— to anyd-polytopeP and obtain a new strongly regular PL sphere
Ei(P) foranyO<t<d-1.

However, it is not clear whether this sphere is polytopadt 1B, whether the
E-construction applied to a polytogeproduces only a PL sphere or — at least in
some cases — a polytope. The problem hereby clearly arigbe second step of
Definition 2.4.3 where we have to merge certain cells of the sphere into desing
new cell. To obtain a polytope in this step we have to enswakttie hyperplanes
defined by the facets we want to merge (i.e. facets of the batyic subdivision of
P containing the samtecell) can be deformed in such a way that they geometrically
coincide, without changing the combinatorial propertiethe sphere.

In the three parts of this section we present techniquegytheatantee, for cer-
tain interesting classes of polytopes, that tleironstruction has a polytopal real-
isation. We construct several infinite families of 2-polytopes. Lots of further
examples are given in Chaptér
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The first of our constructions, thHe-constructionor vertex truncationyields
polytopes (PL spheres) that are dual to the polytopes (Persgh obtained from
the E-construction. It basically operates by truncating vediof the polytope in a
suitable way. This — surprisingly simple — constructiongiwoes the first infinite
series ofrational (2, 2)-polytopes.

Next, we introduce a construction that is, on the level oéftattices and for
certain classes of polytopes, dual to treonstruction, and produces realisations
of Eq_»(P). However, the two constructionsfiér in their geometric applicabil-
ity. In many cases it is dlicult to construct a polytopal realisation of the sphere
obtained from the construction with one of these two anderagimple with the
other. This second construction will be our main tool for tealisations of (22)-
polytopes in Chaptet.

The third construction is a direct extension of the origiBatonstruction of
Eppstein, Kuperberg, and Ziegler. It uses polytopes thet kizeirt-faces tangent
to the unit sphere as input. It appliesdgpolytopes in any dimensioth > 4. With
its help, we are able to produce the first infinite family ofd2 2)-polytopes for
alld > 4.

2.5.1 A GONSTRUCTION VIA VERTEX TRUNCATION

For this construction we need a special version of the vértexcation of a vertex
of a polytopeP as previously described in Definitidn3.34 The polytope®,(P),
which can be produced with this construction, are — if they geometrically
realisable — dual t&,(P).

Variants of this construction already turned up previouslyhe literature, in
connection with the construction of regular and semi-ragpblytopes from other
such polytopes. Gosset]] used it for the construction of the regular 24-cell from
a regular cube. A slightly more general version of Gossgifg@ach appears in
Coxeter’s book on regular polytoped] pp. 145-164]. Vertex cutting techniques
also appear in other parts of this book. Yet another vargint Gévay’s construc-
tion of Kepler polytopes3s)].

2.5.1 DxrinTION [Truncatable Polytope]. A d-polytopeP is calledtruncatable
if all its vertices can be truncated simultaneously and chsuway, that only one
single (relatively interior) point of each edge®femains.

The resultingruncated polytopés denoted byD,(P).

See Figure.11for an example. The connection with tReconstruction of the
previous sections is given by the following theorem.

2.5.2 Rrorosirion [D is dual to E]. Let P be a truncatable d-polytope andd3.
Then D(P)* is a polytopal realisation of EP).
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Proof. The polytopeD,(P) has two types of facets:

(1) The facetd=’ obtained by vertex truncation from the fac&t®f P, and

(2) the “new” facetd~, obtained from truncating a verterof P.
We have used the conditi@h> 3 in the first item, as fod = 2 these facets would
shrink to a point.

The intersection of any two new facdts andF,, is empty ifv andw are not
adjacent inP. Otherwise, the intersectiof, N F,, consists of one single point,
which is the new vertex, given by the edge = (v, w). A vertexu, lies on a new
facetF of the second type if and only &is adjacent td= in P.

To check thaD;(P) has the right combinatorics it fices to check the vertex-
facet incidences, by Theorein2.24

(1) A vertexue lies onF’ if and only if eis an edge of-, and

(2) ue lies onF, if and only if eis adjacent tav.
This, however, is a description of the reversed atom—coateidences oE;(P),
where we have a facet for every edgeRyfand two such facets share a vertex if
and only if

(1) the corresponding edges share a vertex or

(2) they are adjacent to a common facePin O

2.5.3 Remark. More general — and in the same fashion as the definitidd,6f
one could define, for & between 2 andl — 1, the operatoDy assigning to a
polytopeP the new polytopeDy(P) whose vertices are truncated in such a way
that of anyk-face only one relatively interior point remains. Againy &rbitrary
polytopes, this need not result in a polytope with the exggecbmbinatorics. If it

Figure 2.11: The truncation ofiz givesD4(03) (which is the cuboctahedron).
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does, we call the polytope k-truncatable and denote the new polytopelayP).
Dy produces a polytope which is dual to the one obtaine#by

We do not put this operator into a separate definition, as Weuse this once
to make a connection to some previously known examples iptehé& Otherwise,
we do not know of any useful new applications or constructitmm this operator.
Dy clearly applies to regular polytopes, and in this specitirgg it appears in
Coxeter’s book 30].

The operatoDy has the same symmetry Bg. So if P is k truncatable and its
dualP* is (d - k — 1)-truncatable the®(P) = Dy_i_1(P%).

Also, the operatoby acts on the facets of a polytope in the same way as on the
polytope itself: The facet dD,(P) coming from a faceF of P is Dy(F). However,
D(P) has also facets coming from the vertices, which are notisttyipe.

In the following, we will usually omit the index in the opeoatand writeD(P)
instead oD, (P).

2.5.4 xampLEs. Here are some simple examples of truncatable polytopes.

(1) The simplexAq for d > 3 is truncatable. Its truncation is the well known
hypersimplex g{, which we examine in more detail in Sectidi3.1. See
Figure2.12for a three dimensional illustration.

(2) The truncation of the four dimensional regular crosg/foge 1, yields the
regular 24-cell. A Schlegel diagram of this is shown in Feglurla

(3) More generally, all simple polytopes are truncatablaey A points in gen-
eral position define a unique hyperplanelRd. Thus, the convex hull of
any choice of one interior point on each of the edges of thgtppé is a
realisation of the truncated polytope.

Figure 2.12: The three dimensional hypersimplex.
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In the rest of this section we present classes of truncatadj¢opes with dif-
ferent properties. We make the following definition to siifypihe statements.

2.5.5 DeriniTiON [Edge Realisation]. Let P be ad-polytope. A geometric re-
alisation of P, in which all edges are tangent to a (suitably centred anttdca
(d — 1)-sphere, is called agdge realisatiorof the polytope.

A polytope that has such such a realisation is cadiége realisable

The next proposition shows that such polytopes are always#table. A sim-
ilar, but more general, concept will turn up again in Secéidn 3

2.5.6 ReorosiTionN [Edge Realisable Polytopes are Truncatable]. Let P be an
edge realisable d-polytope in dimensiorr®. Then it is truncatable.

Proof. Let S be the unit sphere touching all edgeskof Choose a vertex of P
and lete, ..., & be the incident edges &f. See Figure.13for an illustration of
the proof.

The cone with apex touchingS intersectsS in a (d — 2)-sphereS’. The
hyperplane defined b$’ contains all points in which the edges..., e touch
S. Thus, the convex hull of all points in which the edgesPdbuch the spher&
defines the vertex truncation Bf |

We know from the Koebe—Andreev—Thurston Circle Packingofem (see
[89, Theorem 4.12]) that any 3-polytope has an edge realisaki@mce, by The-
orem2.5.6any 3-polytope is truncatable. However, this is not anyntaue in
higher dimensions. Most-polytopes ford > 4 do not have an edge tangent geo-
metric realisation, and, in general, it is unclear how to Badh a realisation, if it
exists. See also Secti@dn3.4

Figure 2.13: Edge tangent polytopes are truncatable.
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So here is a more powerful class of truncatable polytopeshnwdoes not need
edge tangency for the realisation. Recall the definition sthaked polytope from
Definition 1.3.33

2.5.7 TueoreM [Stacked Polytopes are Truncatable]. Let P be a stacked poly-
tope. Then P is truncatable.

Proof. By definition, any stacked polytope is obtained from the daxp\y by
successively placing a new vertex beyond a facet and takengdnvex hull.

In the following, letP, denote a combinatorially defingetimes stacked poly-
tope. SoPj is the simplex. We build up a geometric realisation in therseof
the proof. The actual choice of the facets that are stack#usrprocess, and the
order in which we do this, is not important, §§ for n > 3 may denote many
combinatorially dfferent polytopes.

We prove the theorem by induction overThed-simplexPy is truncatable by
the previous proposition. So assume tRgis truncatable and let,, ..., Hgin1
be the sequence of hyperplanes we have used for the trumedtibe vertices of
P, to obtainD(Py,).

Figure 2.14: Truncation of a stacked polytope.
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Choose a facdt of P,. F is a d — 1)-simplex, with verticesy, s, ..., Vvy. See
Figure2.14for an illustration. Precisely thoskamong theH;, 1< j<d+n+1
intersectF, that truncate the verticeg, 1 < k < d of F. Denote this subsequence
of hyperplanes by, G,. .., Gg.

Choose a new vertep beyond the faceF and beneath all hyperplané&s,

1 < j<d. LetP,,; be the convex hull oP, andp. The vertexp is adjacent to
d edges connecting it tay, Vo, ..., V4. These edges interse@t, ..., Gq in d inner
pointswy, . .., Wqy.

By construction, thel pointsw, ..., Wy on the edges ardfnely independent.
Hence, there is a uniquéfime hyperplané, ;. that contains them. This hyper-
plane separateg from all other vertices oP,,;, so it is a valid hyperplane for
truncating the verte). Hence, the seltly, ..., Hq.nio Of d + N + 2 hyperplanes
defines a vertex truncation &%, leading toD(Py;1). O

2.5.8 Remark. Itis not necessary to start with a simplex in this procedwe.can
start with any simplicial polytop® and a vertex truncatioD(P). In the same way
as in the proof of the theorem, we can stack a f&cef this polytope and obtain
a vertex truncation oF \P. It even stifices that only the facd® that we stack is
simplicial. We use this in the dual construction presentetthé next section.

We have a lot of freedom for the choice of the new vegi@t P,,, in the proof
of the last theorem. In particular, we can choose it in suchytat is has rational
coordinates. Hence, we can draw the following conclusion.

2.5.9 GoroLLArY [Rational Truncated Polytopes]. There are infinitely many
combinatorially distinct rational truncated polytopesany dimension @ 3.

Proof. The intersection point of a hyperplanelRf with a line is the solution of
a linear system of equations. Hence, it has rational coates) if the hyperplane
is the level set of a rational normal vector at a rational lleed the line contains
at least to two rational points. A hyperplane defineddoational points can be
represented by a rational normal vector and level.

Clearly, the simplex has a rational realisation and a ratidruncation. The
subset ofR? enclosed byF andGs, ..., Gy used in the previous proof is open, so
we can choose the new vertpxvith rational coordinates. Thus, tkenew vertices
of the truncation also have rational coordinates. |

For the rest of the section we specialise to four dimensipolgtopes, as these
are the most interesting ones for this construction. By &sdjon2.5.2 the poly-
topeD(P) is dual toE;(P). Hence, in the case of 4-polytopes, Corollary.6has
the following immediate consequence.

2.5.10 WroLLARY [(2, 2)-Polytopes]. Let P be a simplicial truncatablé-polyto-
pe. Then P) is 2-simple and2-simplicial. O
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Combining this Corollary with the previous one, Coroll&.9 we conclude
the following nice fact.

2.5.11 G@rorrary [ D of Stacked 4-Polytopes].There are infinitely mangational
2-simple and2-simplicial 4-polytopes @P?). The (essential) flag vector of these
polytopes is given by

flag(D(P%)) = (10+ 4n, 30+ 18,30+ 18n, 10+ 4n; 50+ 26n). O

There are, for any fixeth > 3, many diferent combinatorial types of such
polytopes with the same flag vector. In fact, we prove in Pstm 4.2.2 that the
number of such polytopes grows exponentiallyirin Table4.3is an enumeration
of the diferent combinatorial types of such polytopesriot 8.

Only the first two instances of this family of polytopes werepously known.

¢ n = 0 produces the hypersimplex. Five of its facets are simplared five
facets are cross polytopes. The primer arise from the ttedogertices, and
the latter are the truncated facets of the simplex. See &afor a three
dimensional version.

¢* n=1results in a polytope first described by Brad2| jvia a gluing of two
cross polytopes. The coordinates of a rational geometaicsegion and the
corresponding Schlegel diagram are shown in Figuié&
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Figure 2.15: Coordinates and Schlegel diagram of a realisation of Br’aqmlytopeD(P‘ll).
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Corollary2.5.11is a true generalisation of Propositidrb.6and the originak-
construction of Eppstein, Kuperberg, and Ziegl&3]{ They show that a polytope
of type P4, i.e. an times stacked-polytope, has an edge realisation if and only if
n <1 [33, Prop. 8]. See also Sectidn3.4

A similar infinite sequence of rational 2-simple and 2-siitipl 4-polytopes
can be obtained from a stackof 1 cross polytopes. Using suitable coordinates,
we obtain another family of (2)-polytopes withrational coordinates, and the
symmetries of a regular 3-simplex.

2.5.12 ReorosiTioN [Glued Cross Polytopes]. There is an infinite sequence of
rational 2simplicial and2-simple4-polytopes C?) for n > 1 with essential flag
vectors

flag(D(C?)) = (6 + 180,12+ 84n, 12+ 84n, 6 + 18n; 24+ 12(n).

Proof. An illustration of the construction is given in Figurésl6and2.17. Start
with aregular cross polytop€, and place it in such a way that one pair of opposite
facetsFo and F; (which are simplices) have normal vectorfl, 1,1,1]. C; is
clearly truncatable, by symmetry.

LetHy,..., Hs be the hyperplanes that truncate the vertice;ah C;. Then
F, together with theH;, 1 < i < 4 encloses a subs&; of R* with nonempty
interior. Letl be the line defined by the vector, [l 1, 1] and running through the
origin. | intersectsS; by construction.

l:O FO

1

Fa A

Figure 2.16: Construction ofD(C3): The left figure show<?; the right figure isC3. The axis
[1,1,1]is pointing upwards in this drawing.
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Pick a pointp on | in the interior ofS;. Let F; be a copy off, translated
alongl and containingp. As S; has nonempty interior, there isla> 0 such that
F, := AFj is completely contained i6;. The convex hullC}, of Fo andF; is a
cross polytope.

We can extend the truncation of the verticesoby Hy, .. ., H, to a truncation
of all vertices ofC), by choosing four new hyperplan&s, ..., G, truncating the
vertices ofF,. Clearly, this is possible in our symmetric setting. The wvoss
polytopesC, andC;, coincide inF4, so their common convex hull is a staCk of
two cross polytopes glued aloig. The truncation o€, together withG,, ..., G,
defines a valid truncation @3>.

We continue iteratively by considering the subsetRSf defined byF, and
G, ...,G4and placing a suitably scaled and translated dopgf F, inside this set,
taking the convex hull witlC, and choosing the new truncation hyperplanesa

Explicit coordinates for these polytop&(C?) are most easily obtained by
using a projective transformation for translating and isgathe F; in the proof.
Clearly, it is possible to choosational coordinates for the added vertices in this
construction, so we have another infinite familyrafional (2, 2)-polytopes.

The same construction works in all dimensi@hg 3 (we did the illustration
in d = 3!). However, we restricted the statement of the propasiiiad = 4, as the
obtained polytopes are ,(2)-polytopes only in this case.

There are clearly many more classes of polytopes to whicbthenstruction
applies. We will meet some other such in Chapgter

Figure 2.17: Construction ofD(Cg): The left figure is obtained when three vertices have been
truncated; the right figure displa‘y‘z(Cé*).
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2.5.2 A SmprLE REFORMULATION OF VERTEX TRUNCATION

We present a translation of the concept of vertex truncatedimed in the previous
section from simplicial polytopes to simple polytopes. Weady proved that for
a stacked polytopR, if we have a realisation dd(P) then we can stack any fadet
of P to obtainF\P and construct a realisation Bi(F\P). Here we show the dual:
If we have a realisation dt4_»(P) for a simple polytopd>, then we can truncate a
vertexv of P and construct a realisation Bf_,(tr(P; v)).

This will prove quite useful for the task of producing reatisns of theE-
construction for some polytopes out of other already redlisolytopes. We use
this for the generation of our table of,@-polytopes in Chaptet.

Let P be a polytope and a vertex ofP. The polytope tip; v) is obtained from
P by intersecting? with a half space that contains all verticesPoin its interior,
except the vertex. See also Definitiod.3.34

Here is a way to obtain a polytopal realisation of Eeeonstruction of trP; v)
in the caseé = d — 2.

2.5.13 ReorosiTioN [Truncation Preserves Realisability]. Let P be a polytope
and v a simple vertex of P. Assume that we have a realisati& _g(P) with the
following property.

(V) The vertex set of (P) splits into the vertex seV(P) of P and a setV,
that contains, for each facet F of P, a unique vertex beyoryde F.

Then the PL sphere & (tr(P; v)) is polytopal. An explicit realisation of it can be
computed from the realisation of&(P).

Proof. The proof is quite similar to the one of Theorénd.7. Suppose thaP is a
polytope having a simple vertexthat satisfies the condition of the theorem.

The facets ofEy_,(P) are bipyramids over the ridges & so we can find a
half spaceH that touchesy »(P) only in v. We can perturtH slightly, so that
H contains the vertex in its interior, but all other vertices still lie outside. &h
boundary ofH is a valid truncation hyperplane fgrnn P.

As v is a simple vertex, the facé, created by the truncation is a simplex. Let
Fi1,...,Fq4 be the adjacent facets &f; in P andvy, ..., vy the vertices oEy_,(P)
beyond these. Léd; be the hyperplane defined fayand thed—1 vertices contained
in Fi, for 1 < i < d (v and the vertices oF; are clearly &inely independent).
H: ..., Hq are dfinely independent, so they intersect in a single paint

Adding Hq, ..., Hq to the hyperplane description &;_,(P) defines a hyper-
plane description oy ,(tr(P; v)). It creates the vertew beyond the facet,. ©
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2.5.3 A GnstrUCTION ViA HyPERBOLIC GEOMETRY

Here is another method to obtain polytopal realisationfie&-construction. We
extend the originaE-construction of Eppstein, Kuperberg, and Zieglég|[for
edge tangent simplicial 4-polytopes to all dimensiohs 3. The goal of this
section are the two Theorerfiss.14and2.5.15

The first theorem shows that we obtain polytopal realisatainheE-construc-
tion for a fixed parametdrfrom polytopes that have thekfaces tangent to the unit
sphere. For us, the interesting application of this thedeetinat to a simpliciat-
polytopeP that has itsd—3)-faces tangent to the unit sphere. We obtain a polytopal
realisation ofEy_3(P). Corollary2.4.6tells us that this is a (21 — 2)-polytope, i.e.

a 2-simple andd - 2)-simpliciald-polytope.

Hence, to obtain an infinite family of (8 — 2)-polytopes, we need an infinite
family of simplicial d-polytopes that have theid (- 3)-faces tangent to the unit
sphere. The second theorem constructs such a family. $liyrtitethe proof of the
original four dimensional version we use arguments fromehlgplic geometry for
this. The necessary background is contained in Sedtion

There are more polytopes that Theor@rh.14applies to then just the family
given by Theoren2.5.15 For the special case of simplicial 4-polytopes, Eppstein,
Kuperberg, and Ziegler have collected several other ics®n/\e give an overview
of these in Sectiod.3.4 Observe however, that edge tangent polytopes are easy
to obtain in dimension three, but it is hard to come by withhspolytopes in all
higher dimensions.

2.5.14 TueoreM [t-Tangent Realisations]. Let P be a d-polytope and t a parame-
ter betweer® and d-1. Assume that P is realised such that its t-faces are tangent t
the unit spher&?tin RY. If P° denotes the polar polytope of P in this realisation,
then Q:= conv(P U P°) is a realisation of E{P).

Recall the diference between polar and dual polytope in our notation. Thaé d
polytope is just a polytope with the opposite face lattichjleithe polar polytope
is a special geometric realisation of the dual polytopeiobkthvia the construction
defined in equationl(3.1).

The main application of this theorem is the following famdf 4-polytopes,
which is obtained from a certain way to stack cross polytaesglue triples of
simplices to all non-convex ridges of this stack.

2.5.15 Taeorem [Infinitely Many ( d -2, 2)-Polytopes]. For every d> 3there are
infinitely many combinatorially distin@&simple andd-2)-simplicial d-polytopes.

The theorem is trivial in dimension three as there are iipimany simple
3-polytopes. Hence, we restrictdio> 4 for the proof.
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Proof of Theoren2.5.14 If t = 0, then the vertices of the polytogelie on the
unit sphere. Hence, the vertices lie in the facets of therpmftopeP® and they
vanish inQ. SoQ = P°. Similarly, if t = d — 1, then all facets are tangent to the
sphere, and these contain the vertices of the pola® Boequivalent tdP.

By Examples2.3.3we know thatEq(P) = P* andEg4_1(P) = P, so the theorem
is true fort = 0 andt = d — 1. Hence, we can assume<lt < d — 2 for the rest of
the proof.

Let F be at-face ofP, touching the unit sphere in a poipt Let T,$%* be the
tangent space 8! in p. T,$%! containsF. If vi, ...,V are the vertices of,
then the polar facé of F is the set of all pointg with <vj, x> =1foralll<j<k
All points of F are positive linear combinations of thewith coeficients summing
up to one. So in particulgp, xy = 1 and(vj -p, x> = 0 for all x € F°. Thus,F°
is contained inT,$%"* and orthogonal t&. As dim(F) + dim(F°) = d - 1, their
convex hullB(F) spansT ,$%1. So the set of all facets @ contains all orthogonal
sums convt U F°) of t-faces ofP. The vertices oB(F) are the vertices of and
the vertices of°. The latter correspond to the facetsRotontainingF.

We have to check that all facets Qfare of this type. For this we show that any
facet of Q sharing a ridge with a fac&(F) for somet-faceF of P is again of this
type for some othet-faceF’ of P.

Figure 2.18: A t-face and its polar.
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Any ridge R of Q contained inB(F) is a facet ofB(F), so it is the convex hull
of a facetG of F and a faceH of F°. Gis a ¢ — 1)-face, andH° is a { + 1)-face
of P. G is covered byr andH® coversF in the face lattice oP. As this lattice is
Eulerian, there is exactly one othieface F’ of P covered byH® and coverindG.
B(F’) is the desired other facet §f that contains the ridge.

Thus,Q has a faceB(F) for anyt-faceF of P, no other facets, and the same
vertex-facet-incidences &s(P). O

We want to use this theorem for the proof of Theor2gm.15 To do this, we
have to construct an infinite family of simplicidtpolytopes whosed— 3)-faces
are tangent to the unit sphere. We make the following defimito simplify the
notation.

2.5.16 DerniTiON [T9-polytope]. A T9-polytope is ad-polytope that has all its
(d — 3)-faces tangent to the unit sph&&?.

We view the interioD? of the unit @ — 1)-sphere$©@-Y as hyperbolic space
equipped with the hyperbolic metric in the Klein mode€! See Sectiori.5.2for
the definitions and properties. The sph&fe’ becomes the sphere at infini .

In the Klein model model, hyperbolidine hyperplanes are the intersectiorsf
with Euclidean &ine hyperplanes.

The facets and ridges ofT&-polytopeP properly intersecK?, the @d—3)-faces
touch the sphere at infinity, and all lower dimensional fdmesompletely outside.
The intersectioP™? := PN K¢ is therefore a convex unbounded hyperbolic poly-
hedron inK¢.

Here is an important caveat: A hyperideal hyperbolic objeetren a convex
polytope — can be unfavourably positioned in such a way thatunbounded as
an Euclidean object (cf. 7, p. 508]). However, we have the following lemma,
which we cite from B3, Lemma 6] in a version generalised to our situation (see
also Springborn78)):

2.5.17 Lemma. For any convex Y-polytope P whose points of tangency do not lie
in a hyperplane, there is a hyperbolic isometry h whose sibento R® maps P
into a bounded position. O

For some special %-polytopes we will now compute the hyperbolic dihedral
angle between adjacent facets. They form the basic buildmaks for our infinite
family of T9-polytopes.

As facets and ridges of B-polytope do at least partially lie insid€?, the di-
hedral angle is well defined as a hyperbolic angle betweesidau the hyperbolic
polytopeP™P. By convexity, it must be strictly between 0 and

Clearly, the regulad-simplex, and the regulal-cross polytope, can be scaled
to be T9-polytopes. We denote their intersection witf by A" and O®. The
following lemma computes their dihedral angles.
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2.5.18 Lemma [Dihedral Angles]. The hyperbolic dihedral angles between two
adjacent facets in\;’® and 0;"" are £ and Z, respectively.

Proof. We compute the hyperbolic dihedral angle between two fagetsndF,
sharing a ridg® by intersectindR with a 2-planeH’ = H? orthogonal to that ridge
in HY. The angle is independent of the intersection paitfiat we choose oR.
Hence, we can in particular choog@s a point of tangency of @ ¢ 3)-faceE of
R. LetH = H3 be the orthogonal complemento ThenH > H'.

The intersection of the facets &f adjacent toE with HY are hyperplanes in
HY. Thus, the link ofE in P is the intersection of a siiciently small horospherg
based at the point with the 3-planeH. See Figure.19for an illustration.

The metric on horospheres induced by the hyperbolic metflat, by Theorem
1.5.9 Thus, the intersection will be &uclideanpolygon whose edges correspond
to the facets adjacent &, and the vertices to the ridges adjacerEtd he dihedral
angle of the ridgeR is the usual Euclidean angle at the vertex in that polygon
corresponding t&.

For a regular hyperbolic simplex this polygon is clearly guitateral triangle,
and for a cross polytope it is a square. This gives the redaingles. |

Now we have all necessary tools for the construction of ofinite family of
T9-polytopes in all dimensiond > 4.

Figure 2.19: A horosphere in the Klein model, and the Euclidean squaréttets cut out of it.
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Proof of Theoren2.5.15 The theorem is proven if we can provide an infinite se-
ries of T-polytopes by Theorerd.5.14

For the construction of this we basically glue copie@@fp at opposite faces.
To do this, we have to position these copies such that thegliaicets coincide
and the dihedral angles at the gluing ridges remain betwesm.

By Theoreml1.5.6we can map any hyperbolic hyperplane onto any other hy-
perbolic hyperplane ifK?. Thus, we can glue any facet of a simplex or cross
polytope onto any facet of another simplex or cross polytof® obtain convex
polytopes we only have to care about the angles.

Gluing two cross polytopes creates — according to Lerfirhal 8— a dihedral
angle ofr at all gluing ridges. So constructing a stagkof n cross polytopes by
iteratively gluing a cross polytope onto opposite faceessdwot produce a polytope
with the expected combinatorics.

However, we can remedy this problem in the following way. &akcopy of a
simplex and glue two other simplices onto two adjacent taéedndF’ sharing a
ridgeR. See Figure2.20for a drawing of this compound. In this glued complex
we have three dlierent dihedral angles. At all ridges containedrior F’, except
at the ridgeR, the dihedral angle i%l. At the ridgeR it is 7, and at all other ridges
itis 3.

We glue a copy of this complex to all pairs of facets of our lstat cross
polytopes that share a ridge with dihedral angia such a way, thaR is glued to
that ridge. The link of thed — 3)-faces looks like the figure shown in Figute21
afterwards. Call the resulting compl&x.

Now the straight dihedral angles @f have disappeared in the interior of the

F R Fl

Figure 2.20: Three hyperideal tetrahedra have a bipyramidal facet (ihéstcet).
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link of
link of a cross polytope

a simplex

Figure 2.21: The link, with added simplices.

new complex. We have to check that we have not created neesigh a dihe-
dral angle ofr or more. None of the ridges of the triple of simplices where tw
simplices meet is glued t6¢. Also, in CY, facets adjacent to a pair of opposite
facets are ridge disjoint d > 4 (This is not true for three dimensional cross poly-
topes, as you can see from Figir€2. Thus, any ridge o€¢, to which such a
triple of simplices is glued, has a dihedral angle€of Z = 2 afterwards. S&C]

is aTY-polytope.

The number of vertices d&4_3(SC) is the sum of the number of vertices and
facets ofSC!. Thus, the number of vertices Bf,_3(SCY) is strictly increasing with
n, and instances to fierentn must be combinatorially éfierent. This finally proves
the theorem. O

f
——\\"

' v,

/X

Figure 2.22: The construction fails in dimension three: Observe theetledgese;, e, ande;s in
this stack of two cross polytopes. They have to be filled withide of simplices. If we continue
by stacking the top facet with another cross polytope, therhave to fill the edge§, f,, and fs.
The triple of simplices glued té; shares an edge with the triples of simplices gluee, tande,.
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29n-2(n-1)+d@Bd-5)(n-1) forj=d-1,
291dn—d(n-1)

f(Sq) =1 +3PBd-5)n-1) forj=d-2,
2= (fa)tn - 1)
+d{3(") - (“)in- 1) forO<j<d-2
fq_3(SCY) fork=d-1,
(%1) faa(SCE) fork=d-2,

(%) faa(SC) + (3)fas(SCY) fork=d-3,
(9)f4.2(SG)

+(¢" ) fa-(SG) + fi(SCl)  fori<k<d-4,
fo-1(SG) + fo(SG) fork = 0.

f(Eg-3(SG)) =

Table 2.1: The flag vectors fon > 1 and — in the case cEd_g(SCﬁ) — dimensiond > 4.

We can compute thé-vector of the polytopeSC! andEy_3(SC), which is a
rather tedious task. They are shown in Tablé Ford = 4 this formula indeed
specialises to thd-vectors (54 — 30,252n — 156 252n — 156 54n — 30) of the
4-dimensional examples that were already constructed amgwted in B3].

The coordinates obtained in this proof have non-rationatdinates, and there
seems not to be an easy way to remedy this. So the problem efraoting an
infinite family of rational 2-simple and d — 2)-simplicial d-polytopes ford > 5
remains open.

The family constructed in the previous proof has some sitylavith the one
of Proposition2.5.12obtained by vertex truncation. Both contain a stack of cross
polytopes, but in the one of Propositi@b.12it was not necessary to cover the
ridges of the intersection of two cross polytopes with siogd, as we did not need
an edge tangent realisation. Thus, we had much more freedothd choice of
coordinates of the stack of cross polytopes.
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Probucts oF PoLyTOPES

3.1 INTRODUCTION

This chapter is mainly devoted to a two parameter fariily, of (2, 2)-polytopes
obtained from thdée-construction. The family is a special case of a quite gdnera
method to obtain polytopal realisations for theconstruction applied to a product
of two polytopes, if we have already a polytopal realisatibthe E-construction

of the two factors.

We state the general method in Theorgrd.1 The proof is constructive, that
is, we provide an explicit way to obtain a polytopal realisatfrom the realisa-
tions of the two factors. If we ask for some additional praoyp@n the geometric
realisation of the product and i&-construction, then the conditions given in the
theorem are both necessary anéisient.

We illustrate this with examples in all dimensiods> 4. However, the main
application of the theorem is the construction of an infinite parameter family of
(2, 2)-polytopes,,, for m, n > 3. TheseE,, are obtained from thE-construction
applied to a product of two polygorts, andC,, with m andn vertices. We prove
in Theorem3.4.], that such a product satisfies the conditions in Thed@eiriand
give explicit geometric realisations.

The polytopes,,, have several interesting properties, which we presenten th
second part of this chapter:

¢ They are self-dual, 2-simple and 2-simplicial.

* Form,n = 4 we obtain the 24-cell.

¢ There are flexible realisations of these polytopes, althaugriori not with

rational coordinates.

They have a large combinatorial and geometric symmetrypgrou

¢ For smallmandn we find particularly symmetric geometric realisations.

¢ Form,n > 5the combinatorial symmetry group contains automorphtiiaits
cannot be realised geometrically.

¢ Form,n = 3 andm,n = 4 we examine the realisation space of these poly-
topes. Fom,n = 3 we provide a method to obtain all realisations allowed
by our construction. Fam, n = 4 (the 24-cell) we provide a four parameter
family of realisations.

* In the next chapter, we show that tBg, for m,n — oo approach the upper
bound for the fatness @&-polytopes.

The idea to look at th&-construction of arbitrary products of polytopes arose
from the interest in the realisability and the symmetry & polytopes,, in the
special casen = n. In this case, the combinatorial description of these pqgs
and some symmetry properties were described independsriflgkowski 23, 24]
and Gévay 39].

*
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3.2 PropucTts oF PoLYTOPES

The main ingredient for this chapter are polytopes obtam&groducts of two
other polytopes. Here we introduce our notation for thesayige the basic facts
that we need for our constructions, and make some imporistimctions between
combinatorial and geometric properties.

3.2.1 DernimioN [Product of Polytopes]. Let Py ¢ R% andP; ¢ R% be two
polytopes of dimensiond, andd,, respectively. Th@roduct R x P, of Py andP;
is the convex hull of the point set

V(P x Py) = {(v, w) € R+ - v e Y(Py),w e V(P,) }

The product has dimensialy + d;. Equivalently, one can describe the product
directly by defining

Py X Py ::{(v,w)ele‘“OIl cve Py, we Pl}.

See Figure3.1for an example of the product of a segment with a hexagon. The
facesof a productPy x P; have again product structure: Akyface of the product
is a product of &y-face of Py with a k;-face ofP; for some partitiorky + k; = k
and 0< ko, k; < k. In particular, vertices oPy x P; are pairs of vertices d?y and
P,, and facets are a product of some facet of one factor with ti@enother factor.
We can compute th#éag vectorof the product from the flag vectors of the

.....

.....

fs(Po X P1) = fis.s..50(Po X P1)

Z Z Z f(Ulauz,---,Uk)(PO)f(vl,vz ..... vk)(Pl).

U1+V1=S1 Up+Vo=Sp Uk +Vk=Sk

®
Po P Po x Py

Figure 3.1: The product of a hexagon and a segment.
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Here we set

ftnt..g =0 unless t; <t <...<t¢ and
ftnto sttt -= ftutn oty IF G =t

Theface latticeof Py x P; can be obtained directly from the two face lattice$gf
andP;. It is simply the reduced product (see Definitibr2.5for this) of the two
face lattices.

3.2.2 Remark [Geometric versus Combinatorial Product]. We make the fol-
lowing distinction that will become important later.

What we have defined in Definitiah2.1lis thegeometric (orthogonaproduct
of two polytopes as the convex hull of all pairs of geomethjcgiven vertices.
This definition requires the two input factors to be givenmgetrically and fixes a
distinguished geometric realisation of the resulting pabe.

We sometimes need a more general definition. Bpmabinatorial productve
mean a polytope, that has a face lattice which is isomorphicd reduced product
of the face lattices of the two polytopes, i.e. a polytope isanly combinatorially
equivalentto the one obtained in the above definition.

This definition does not imply the choice of any particulaogetric realisa-
tion. However, as the above definition provides a way to cansbne, we know
that such a combinatorial product of two polytopes is in &atays realisable.

3.2.3 GonventioNn. In this chapter we consider only the special dasel—2 of the
E-construction, ifd is the dimension of the polytope. In particular, for 4-polyts
we look atE,. To simplify the notation we omit the indexn the rest of the chapter
and writeE(P) instead ofEy_»(P), for ad-polytopeP.

Figure 3.2: The left realisation ofE;(0s) (drawn bold) of the cube&s (drawn thin) is vertex-
preserving, the right is not (and there is no cube for whid$)itobserve the top vertex.
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Let P be ad-polytope. By its definitionE(P) just denotes some polytope that
is combinatorially equivalerio the sphere obtained froRwvia theE-construction.
In this chapter we sometimes need a stricter (and more gecinetrsion of the
connection betweeR and itsE-polytope.

3.2.4 CerintioN [Vertex Preserving]. Let P be a geometrically gived-polytope.
A polytopal realisation oE(P) is vertex preserving it is obtained from the reali-
sation ofP by placing one new vertex beyond any facePand taking the convex
hull of these together with the verticesief

Figure 3.2 shows an example of two realisations B6f0;). One of them is
vertex preserving, the other is not. In dimenstbr 3 this definition implies that
the vertex set oP is a subset of the vertex setlB{P). This is not true in dimension
two, as here the vertices are the ridges of the polytope,lasktvanish in the&-
construction. See Figurg.3 for an example. Fod > 3, a vertex preserving
realisation ofE(P) can equivalently be described by the following condition:

The vertex set oE(P) splits into two disjoint sets, one of which is
(VP)  the vertex setV(P) of P, and there are no edgeskHitP) between
any of the vertices in the other.

We denote a (convex) polygon with verticesvy, . .., V-1 by C. We usually
assume that the vertices are numbered consecutively amdhidikes modulan.

With E.,, we denote the result of thE-construction applied to the product
Cn x C, of anmgon and am-gon, form,n > 3. This is a 4-dimensional 2-
simplicial and 2-simpld°L sphere. The flag vectors &, x C, andE,, are (cf.
Equation 2.3.]) for a general computation of thfevector of E-polytopes)

flagCnxC,)) = (mn2mn mn+ m+ n,m+ n; 4mn),
flag(Emn) = (MnN+m+n, 6mn 6mn mn+m-+n; 8mn+2(m-+n)), (3.2.1)

where we have only recorded the essential valfigs.(., f3; foz). All other entries
of the flag vector follow from the generalised Dehn-Sommikné@quations given
in Theoreml.2.17

Figure 3.3: The E-construction applied to a 7-gon: The vertices vanish.
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3.3 Tue E-ConstrUCTION OF PrODUCTS

We proceed to the construction B{Py x P;) for a product of two polytopes of
arbitrary dimension. We provide in this section a set dfisient conditions for the
existence of a polytopal realisation, if there are polytopalisations oE(Py) and
E(P1). We also show that the conditions are necessary if we wamye a vertex
preserving realisation.

Let Po andP; be two geometrically realised polytopes of dimensidagand
d;, respectively. Tabl&.1shows two conditions on thelt-construction. For pairs
Po and P, of polytopes that satisfy these conditions we define in the theorem
a point sefS that is the vertex set of a vertex preserving polytopal saion of the
sphereE(Py x Py).

3.3.1 Tarorem. Let Ry, P; be a pair of polytopes, witdim(Py x P;) > 3, that
satisfies 4) and B) in Table3.1. Let S be the set containing the following points:

(@) all pairs (po, p1) for po € V(Po), p1 € V(Py),

(b) all pairs (ao(Vo),Vo) forvg € So,

(c) allpairs (vi,as(vy)) forv, € S;.
Thenconv(S) is a vertex preserving polytopal realisation offg x P,).

Moreover, for the existence of vertex preserving real@aiof Py x P;) the

two conditions £) and (B) are both necessary andaient.

See Figures3.4 and 3.5 for an example of two triangles satisfying the two
conditions. Both the sef§;, for j = 0 andj = 1, and theE-polytopes of the two
triangles are shown.

Figure 3.4: Realising the product of two triangles.
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(A) There exist vertex preserving realisationggP,) andE(P,).
(B) For Py, P1, E(Po) andE(P,) there are point setS; c Py andSy ¢ P,
that satisfy
(1) #Si = fg_1(P;) fori = 0,1 (counted with multiplicities, i.e. points
in S; may coincide geometrically),
(2) there are bijections; : S; — V(E(P;)) — V(P;) fori =0, 1,
(3) for any pair Yo, V1) € Sp X Ss:

Vi, Qol  laa(Vi), Qul
V1, @o(Vo)l Vo, @1 (Va)l’

whereqp is the intersection of the segment betweagrand ao(vo)
with 9Py, andq; that of the segment betweggpanda;(v;) with 9P;.
|a, b| denotes the length of the segment between two paiatgdb.

Table 3.1: Sufficient conditions for the existence B{Py x P1).

Before we give a proof of this theorem we derive several prtgrethat the
polytope E(Py x P;) will have, if it is vertex preserving for a given geometric
realisation ofPy x P;. This will explain the origin of A) and ).

Let Py and P, be two geometrically realised polytopes of dimensigrand
d; with do,d; > 1 anddy + d; > 3. Supposé(Py x P;) exists and is a vertex
preserving realisation d?; x P;. We split the vertex set dE(Py x P;) into the
vertex setV,, of Py x P, and a sefV of those vertices not in the producl is a
set consisting of one vertex beyond each facd&qk P;.

a1(v1)

Figure 3.5: Realising the product of two triangles.
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Define standard projections : R%*% — RY% that projectP, x P; ontoP;, for
j = 0,1. By assumption we hav&(P;) c m; V(E(Po x P1)). We determine the
images of the other vertices B{P, x P;) under the maps, andx;. The facets of
the productP, x P; have the form

(Facer Type 1) “Facet of Py” x Py, or
(Facer tyee II) Pg x “Facet ofP,”.

Accordingly, the product also has twodfidirent types of ridges:

(Rmce TYPE 1) Ridges between two facets of the same type, and
(Rmgke 1YPE Il) ridges between two facets offtkerent type.

We deal with these two types of ridges separately:

() Let F andF’ be two adjacent facets of typeader Tyee 1), v, V' the two
vertices ofE(Py x P;) beyondF andF’ andR the ridge betweek andF’.
See Figure3.6(a)for an illustration.
The projectionsty(F) andrg(F’) are adjacent facets &, with common
ridge mo(R). 7o(V) andmo(V') are points beyond these facets.v andR lie
on a common (facet defining) hyperpladeof E(Py x P;) in R%*%, So the
points o(v), mo(V') and the ridgery(R) all lie on the hyperplanay(H) in
R%. Thus,ro(H) defines a face ofo(E(Py x P1)), which must be a facet of
the projection.

GoXGl Wy

Wo

mo(V')

7io(V) mo(F)

(a) The case (RGE TvpE |). (b) The case (B®cEe TvpE II).

Figure 3.6: The two cases of ridges in the vertex preserving case.
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Hence, the convex hull of the image undgrof all vertices ofE(Py x P,) is
the polytopeE(Py). Similarly, the projection withr, results inE(P,).

(I) Let wp andw;, be two vertices oE(Py x P,), the first beyond a fac€i, x Py,
the second beyond a fadeg x G; of the product, x P;, whereG, andG;
are facets oPy andP;. LetR = Gy x G; be the ridge between these two
facets. See Figure.6(b)

The segmeng betweew, andw; intersect®Rin a pointg. 7o(q) is contained
in Go andry(q) is contained inG;. Somg(ws) is contained in the interior of
Po andr;(Wo) in the interior ofP;. Projections preserve ratios, so

_wi, gl fmo(wa), mo(Q)1  Ira(wiy), ra(0)l
T Wo, Wil Imo(Wa), mo(Wo)l  [ma(Wo), (W)l
To match this with B) of Table3.1we setv; := mo(Wy) € Sy, Vo := m1(Wo) €
So, mo(Wo) = @1(v1), m1(W1) = @o(Vo), Qo = 7o(0), andg := m1(Q).
Thus, the projections of a vertex preserving realisatioB (&% x P;) onto the two
orthogonal subspaces containiRg and P, give realisations oE(Py) and E(P,)
that satisfy the conditions stated i)(and @) of Table3.1.

Proof of Theoren8.3.1 The considerations of the previous paragraphs prove the
necessity of the two conditions for vertex preserving szdions. It remains to
prove stficiency in the general case.

Suppose we have — according to the conditigx)sand B) — constructedt(Py)
andE(P;) together with the setS; andS; and have formed the s8tdefined in the
theorem. We have to show that all facets of the convex hu8 defined thereby
are bipyramids over ridges &% x P; and that there is precisely one vertex®f
beyond each facet ¢¥, x P;. There are two dierent cases to consider:

() Let Rx P; be aridge oPy x P1, whereRis a ridge ofPy. See Figure.7for
a drawing. Letr andF’ be the two facets o, adjacent t(R andp, p’ the
vertices ofE(Py) aboveF andF’ respectively. Let be the facet normal of
the facetFg of E(Pp) formed byR, pandp’, and letl := (v, p).

Figure 3.7: The first case in the proof of Theore#B8.1 Ridgex Polytope.
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By construction, the pointg(a;,*(p)), (p', ax*(p’)) and ¢, g) for r € V(R)

andq € V(P,) lie in the hyperplanéd defined by(v,0),-) = I, where0Q is

the d;-dimensional zero vector. All points oF(E(Py)) — (V(R) U {p, p'})

are on the same side of the hyperplane defined by the Fecedo all points
in the set

V(E(Po x Py)) — (V(Rx P1) U{(p. a5 (D). (1. a5 (p))})
are on the same side of the hyperpl&hand

conv(V(Rx P1). {(p. @' (). (F'. a5 *(P))})

is a facet ofE(Po x P;). The same argument applies to ridges of tippe R
for any ridgeR of P;.

(I Now consider a ridge of typ&, x F, for a facetF, of Py and a facef; of
P,. See Figure3.8for an illustration. Letp, be the vertex oE(Py) beyond
Fo and p; the vertex ofE(P,) beyondF;. Let gy be the intersection point
of the segment fronp, to a;*(p1) and the facef,, anda; the intersection
point of the segment betweqn anda;*(po) and the facef; (i.e. in the
notation of B), po = ao(Vo) andp; = a;(v;y) for somevy € Sg andv; € Sy).
By construction we have

Po» Gol 160, @12 (Pl = lag (o) Qal - 1G4, Pl

E(Po)
Po
\H
art(p)(P----° :
1
1
1
Qo®----- it ’ |.
i : : :
0 oy i--- N |
: D NG
1 1 | 1
: : : P :
: ® O
(o1

~

aal(po) \d
E(P1)

Figure 3.8: The second case in the proof of Theorg.1 Facetx Facet.

F1
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and the point o, a;*(po)) is contained in the line throughe{*(ps), p1)
and @o, g1). So the points infV(Fo x F1) together with o, o;'(po)) and
(a7*(p1). p1) lie on a common hyperplarte.
The producP, x P, lies entirely on one side dfl by construction. Suppose
there is a poink of S on the other side off. As H is a valid hyperplane
for the ridgeFy x F1, any point beyond it is also beyond either the facet
hyperplane ofFg x P, or Py x F1. Assume the first. For arg/e S we have
by definition either
(@) 70(2) € V(E(Po)) — V(Po), or
(b) 7mo(2) € Sy, Or
(¢) mo(2) € V(Po).
x € S is beyondH, therefore onlyrg(Xx) € V(E(Py)) — V(Po) is possible.
mo(X) is beyondFg, somg(X) is the unique vertex oE(Py) beyondFq, so
mo(X) = po andx € H.
This proves that the two condition8 ) and @) are stficient for the existence of a
vertex preserving polytopal realisation®(Py x P;). O

3.3.2 Remark. This theorem is a quite powerful tool for obtaining polytbpa
alisations of theE-construction of polytopes. In Sectiéh5.4we present some
general applications for it. However, in most cases it alyesifices to consider
a restricted version of Theore®3.1 For this, replace the two conditiong)and
(B) of Table3.1with:

(A’) There exist vertex preserving realisation€¢P,) andE(P,) and

(B’) there are pointsy in P; ands; in Py, and a ratia between 0 and 1, such that:

_ [S1, Qo _ IW1, Q1
[S1, Wol (Wi, Sol

for any pair

(o wa) € (V(E(Po)) — V(Po)) x (VEPD) — V(P)).

whereq is the intersection point of the segment betwsgandw, with 9P,
andq, the intersection point of the segment betwsgandw; with dP;.

In other words, the setSy andS; contain only a single point with skicient
multiplicity, and all ratios occurring in conditior} coincide. Theoren3.3.1now
reads as follows.

3.3.3 GoroLLARY. Let Py, P; be a pair of polytopes witdim(Py x P;) > 3 that
satisfy &) and @'). Let S be the set of
(@) allpairs (po, p1) for pge V(Po) and p € V(Py),
(b) all pairs (wo, o) forwy e V(E(Py) — V(Po),
(c) allpairs (s;,w;) forwy € V(E(Py)) — V(Py).
Thenconv(S) is a vertex preserving polytopal realisation off& x P,). O
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In this version, the only connection between E&eonstructions of the two

factors is the value of the ratio. Thus, if we have

¢ apolytopeP

¢ together with a vertex preserving realisatior&gP) and

¢ asingle poinssin its interior such that all segments frasio the vertices of

E(P) not in P intersectP with ratior,

then we can combine this with any other such instance foo fati r instead ofr
and obtain a polytopal realisation of tBeconstruction of the product.

3.4 ExpLiciT REALISATIONS

We apply Theoren3.3.1and Corollary3.3.30of the previous section and produce
products of polytopes together with a realisation of tiiepolytopes.

The main focus is on the realisation of tRepolytopeE,, of a product of an
m-gon and am-gon. We produce polytopal realisations formlln > 3. We also
briefly discuss examples in dimensiahg 5 in Section3.4.2

3.4.1 RopucTs oF PoLyGons

We present an explicit method to obtain a “flexible” geonugtolytopal realisation
of Enn = E(Cy,, X C,) for all m,n > 3. Degrees of freedom in this construction are
discussed in SectioB.5.4form,n = 3 andm, n = 4.

3.4.1 Tueorem. The CW spheres g are polytopal for all mn > 3.

In the five cases whemandn satisfynl1 + % > % polytopality also follows from
a construction of Santos. We present this in TheoBei3

For the proof of Theorerfi.4.1it suffices to use the restricted version of Corol-
lary 3.3.3 Hence, we will only construct one of the two factors of thedarct,
together with its€E-construction. We make the following definition for this.

E(A)

Figure 3.9: An example of a realisation @ (3, 3).
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3.4.2 Derinttion. By D(K, r) we denote a realisation ofkagonCy that
¢ contains the origirs and

¢ has a vertex-preservirtg-polytopeE(Cy), such that segments frogto ver-
tices of E(Cy) interseciCy with ratior.

Figure 3.9 shows an example of a triangle and lsconstruction that satisfy
the conditions for = .

The construction oD(n, r) has two steps. In a first step we start with the point
s (the origin), one vertex of the polygon, and one edge norrhéasd=-polytope,
and iteratively add one edge of tRepolytope and one of the polygon. The second
step connects the first and last vertex of the two sequencedgas to close the
polygons.

Let (v, b) for v # 0 denote the line ilR? defined by{x | (v, x) — b = 0}. Here
are the two steps.
Sree . Given are three unit length vectosg, vo andv; such that

/(Vo, V1) < 7 and £(Vo, Wo) + £(Wo, V1) = Z£(Vo, V1)

(i.e. wp is “between”vy andv;). Let go be a given point in the plane. See
Figure3.10 We do the following:

1. Setgo := I(Vo, (Vo, Qo)) and fo := [(Wo, (Wo, Go)).

2. Setfé = |(Wo, % (W, q0>)

fs is parallel tofy at distance} (Wp, (o) from the origin. Hence, the seg-
ment fromsto any point onfj is intersect byfo with ratior.

Let po be the intersection point @ and f; and se; := (v, (v1, Po)).
Letq; be the intersection point df andg;.

B w

Wo
/ i :V1 L.t ‘
Wo v e fo
~~~~~~ :‘a\,""
\;.;"" Yo
Jo™- .*"Po

Figure 3.10: A possible configuration for Step I.
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The segment between the origin gmgds now intersected by the linky with
a ratio ofr.
Srepe Il.  Given are unit length vectoss, v;, andv, such that

L(V2,V0) > and  Z£(Va, V1) + £(V1, Vo) = £(V2, Vo).
Let qo, gz be points such that

<V0’ q0> ) <V25 q2> > 0 and <V0’ q2> ) <V25 q0> < O

See Figure.11 Then we apply the following five steps:

1. Letgo := I(Vo, (Vo, do)) andgy := I(v2, (V2, 42)).

2. Define a variabla and the lingg, := (v, a).

3. Denote the intersection points @f with go andg, by po and p, respec-
tively, and letmy, andm, be the lines running through the origin apgl
and p.

4. Forj = 0,2 leti; be the point orm; dividing the segment between the
origin andp; with ratior for j = 0,2. Let f; be the line througly; andij.

5. Letqg; := fon f,. By Lemma3.4.3below, there is always a value af
such thaty; is on the linegs.

3.4.3 Lemma. In the second construction step above, the variable a carmbsen
in such a way that gis on the line g.

Proof. Letb; := (vl, qj> for j = 0,2 and assumb, > by. Then fora := %bz the
line f, is parallel tog,. Thus the poing; is on the same side @f, as the origin.
For largea, however, the poing; and the origin are on tferent sides ofj,. Hence,

by continuity, there must be a value@tuch tha, is ong,. O
Po Oa _L : P2

g
R R
g
A ’
N Q
N g
g
N R
.
N

4 .
\\‘0'. | “‘,'
K lo g, . (07)
. \\ v

Figure 3.11: A possible configuration for Step II.
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THE consTrUCTION OF D(N, ). We denote vertices @, by q;, vertices ofE(C,,) by
p;, normal vectors on the edges@f by w; and normal vectors on the edges
of E(C,) by v;. To construcD(n, r) from the two steps above we can use the
following choice of points and normal vectors.
1. Letsbe the origing := (-1, 0) € R? and choose two sets of unit length
vectorsV := {Vo, Vi, ..., Vo andW = {wp, W, ..., W,_»} such that
@) £(vo,Vn) < 7,
(b) both sets contain vectors, and
(c) seen as points on the unit sphere they alternate.
Number both sets consecutively. An illustration of such afiguration
is shown in Figure3.13
2. Starting with Step | ando, Vo, V1, andwg as input defines pointg, and
Po. Continue withq,, vy, Vo, andw; to produceg, and p;. Repeat this
until reaching the tuple,_1, Vi, Wn_1, andgn_;.
3. Step Il applied t@, 0n_1, Vo, Vn andw;, yieldsD(n, r).

Proof of TheorenB.4.1. Fix m,n > 3 and choose a ratiobetween 0 and 1. Con-
structD(m, r) andD(n, 1-r) according to the above algorithm. This yields realisa-
tions of theE-construction of amm-gon and am-gon that satisfy the prerequisites
of Corollary3.3.2 This gives the desired realisation6f,,. |

3.4.4 Remark. There is one more caveat in the constructio(f, r), as we have
to ensure thasis really an inner point o€, afterwards.

For each edge of C, with normal vectory, let z be the point on the line
defined bye with minimal distance tes (which we chose to be the origin).

Viewed from s we choosegy to the
right of z. During the iterative addition of
edges to the polygons in Step | we have to
ensure that the pointg € ¢ fori > 1 lie
to the left ofz (viewed froms).

However, if we choose the normal
vectorsy, in such a way that consecutive
vectors enclose an angle less thathen
this property can be enforced by an appro-
priate choice of the normals;. See (6]
for a detailed proof.

Figure3.12shows a Schlegel diagram
and the coordinates of this C0nStrucnoll—:‘gure 3.13: A feasible choice of vectorsiV

applied to a triangl€; and and a squaresgjid, v dashed. The thin vectors are con-
Cq. The ratio in this example is= 1. structed during Step I1.
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3.4.2 HGHER-DIMENSIONAL EXAMPLES

Satisfying the two conditionsA() and B) in Table 3.1, that are necessary for the
application of Theoren3.3.1, is more dificult, if the two factorsPy andP; have
“many” facets. Thus, in higher dimensions, and for “more ptex” polytopes, it
is usually hard to find appropriate s&g resp.S;, unless one can exploit some
kind of symmetry.

There are, however, two obvious families of polytopes thatoan choose as
factors of a product polytope, tllecubeoy and thed-simplexAy. Both can be
realised together with thelf-construction satisfying even the more restrictive con-
ditions of Corollary3.3.3

¢ The cube can be realised as follows: EQrwe take the standardl-cube.
The new vertices for thE-polytope aret2- g, whereg are the standard unit
basis vectors. If we set= 1, then the origin is an inner poistsatisfying all
requirements.

[1 1 2 0|
[1 1 -2 0|
[1 1 0 3
[1 -1 2 q
[1 -1 -2 0|
[1 0 3
[-1 1 2 q
[-1 1 -2 0|
[-1 1 0 3
[-1 -1 2 q
[-1 -1 -2 o
[-1 1 0 3
[0 o 7/13 1197338
[ 0 0 -532195 217845
[0 0 24491 -279169
[2 o 0 279169
[-2 o 0 279169
[0 -2 0 279169
[0 2 0 279169

Figure 3.12: The E-construction on the produ€ x Cy4. The ratio is in both factors i;.
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¢ The construction for thd-simplexAq is slightly more dificult. We give an

inductive construction that produces realisations for @ty r > % that is,
at least half of the segment is inside(andr is the ratio appearing in the
conditions in Table3.1). We can clearly construct such a realisation for a
triangle, i.e. for a simplex of dimensiah= 2.
Ford > 2 we take a regular realisatianof the simplex and a scaled version
AN = % - A with the same barycentre. We choose one fé&cetf A and
the corresponding scaled fadetin A’. Place the first new vertexin the
barycentre of~’. The vertices of any ridgR of F together with the point
v uniquely define a hyperplane: hasd ridges, so we obtaiud different
hyperplanedi,, ..., Hq by this.
Hi, ..., Hq intersect all facet hyperplanes af, except that td=’, in codi-
mension-2-planes that lie in a common hyperpleingd is parallel toF.
Project the barycentre &f orthogonally ontoH. H cutsA andA’ in two
simplicesA andA’ of dimensiond — 1. (Recall that > %, SOH intersects\
between the barycentre akd) A’ is (viewed in the hyperpland) a scaled
version ofA with a scaling factor% < % By induction, we have a solution
for the corresponding problem farandr’ > r > % in H.
These points, together with the one venrhosen before, give a realisation
of E(A) that satisfies the conditions of Corollady3.3

With these constructions we can combine any simplex or cutteamy other sim-

plex, cube on-gon and obtain a realisation of tleconstruction of this product.

As an example, in Figurd.14is a Schlegel diagram of th&-construction of
a product of a 3-simplex with a segment. The product strectirthe original
polytope is clearly visible in the result.

Figure 3.14: A Schlegel diagram of thE-construction of a product of a 3-simplex with a segment.
The product structure is clearly visible.
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3.5 PROPERTIES OF THE FAMILY E

We continue our discussion of the famHy,, of (2, 2)-polytopes. In particular, we
count degrees of freedom for the realisatiorEgf and prove that not all combina-
torial symmetries ok, are geometrically realisable.

3.5.1 Svrr-DuaLity

The polytope<C,, x C, are simple. Hence, we know from Corolla?y3.13(or
Corollary 2.4.9 that the polytopd, is 2-simple and 2-simplicial. In particular,
the f-vector ofE,,, is symmetric (cf. Equatiorn3(2.1)):

f(Emn) = (MN+ M+ n,6mn 6mn mn+ m+ n).

The polytope<,,, have in fact a much stronger property: They are self-dual.
This is not true for arbitrary 2-simple, 2-simplicial pabytes, which can be seen
e.g. from the hypersimple(A) obtained from the 4-simpleX. This polytope has
a facet-transitive automorphism group acting on its 10 f@pydal facets, while
the dual has 5 tetrahedral and 5 octahedral facets. Theviolijpresult is due to

Ziegler [91]. For m = n, the (combinatorial version of this) result was obtained
previously also by Gévaysf].

3.5.1 Taeorem [Self-Duality]. Each of the polytopes & (n,m > 3) is self-dual,
with an anti-automorphism of ordeX.

Goo Goi1 Goz Gio Gu1 G2 G G G Gy G G, Gy G GJ

Q 0
AR NS 77
i§\j'\\\ NS T
RN NS N S A
3 2 \ //,,,’e,gglgﬂ
R K] XK
s % SN S NN
> 7 R X RN
Ef 0% RN
O C ®

Voo Vo2 Vor Voo Vo2 V21 Vg Vi2 Via b V5 Vv;

Figure 3.15: The self duality forEss: Shown are the vertex-facet-incidence&egf, the self duality
exchanges the top and bottom row.
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Proof. Number the vertices of akrgon Cy consecutively by, . . ., vi_1. We take
indices moduld in the following. The vertices of the produCt, x C,, arev;j :=
(vi,v)) forO<i <m-1and0< j <n-1. We have two types of facets in the
product:

F/ = conv(Vij,Vi,1; | j=0,...,n-1})
F]’ = conv({Vij,Vi,j+1 [i=0,....m-1})

The E-construction adds one vertex beyond each facet of the ptotlve denote
the new vertex beyonH/ by v/ and the one beyonEI]’ by vy The facets ok,
are now of the form

Gij = conV{ij, Visjs Vi jo1, Viesje1, Vi, V{),  OF
G =conv(vij | j=0,...,n=1},v_;,V)), or
G =conv(v; |i=0,...,m=1},v{ V).

From this we can readfthe facets a vertex is contained in:

Vij € Gij,Gi_l,j,Gi,j_l,Gi_l,j_l,Gi’_l,G]’_l fori=0,....m-1,

j=0,....,n=-1
Vi € G, Gl,,, Gjj forj=0,...,n-1
v/ € GY, G, 1, Gjj fori=0,....m-1

j+1° 1)

Hence, the following correspondences give a self-dualitgrder 2 on the face
lattice of Eqpne

Gij «— Voi_j G «— V| G/ «— V. m|
Figure3.15shows an example of the self-duality Bas.

3.5.2 Remark. There are examples of 3-polytopes that are self-dual, lautdb
not have a self-duality of order 2, see Ashley et. 8lland Jendrb[49] for this.

3.5.2 E;n CoNsTRUCTED FROM REGULAR PoLYGONS

There are only a few pairsm( n) in which there are “symmetric” realisations of
the polytope<E,,, We show that, up to interchangimgandn, there are only five
choices of pairs of regular polygons that can be taken ag fopthe construction
defined in Corollans.3.3

We will see in the next section that these five cases are adsorily cases in
which the product of two cyclic groups induced from rotatiminthe vertices in
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the two factors can be a subgroup of the geometric symmetypgr The next
theorem was initiated by earlier work of Santos 1,[Rem. 13] and 5], where
this problem occurred in a quiteftirent context.

3.5.3 TuroreEM [Symmetric Realisations]. There are polytopal realisations of
Emn for which projection onto the first and last two coordinatésgs

(1) regular polygons for @, C, and their E-constructions, such that

(2) all intersection ratios occurring ing) of Table3.1 coincide in each factor,

if and only if m and n satisfy the inequality

1 1 1

m n~ 2
See Figure3.16for two examples of input factors of the construction that sa
isfy these conditions.

Proof. The condition on the ratio implies that the s8tsandS; appearing in the
construction of Theorerfi.3.1both contain only a single point, which is counted
with multiplicity n andm, respectively. These points must be the barycentres in
the regular polygon€,, andC,.. By applying a translation if necessary, we may
assume that these coincide with the origin.

We can now generate all configurations of a regular polyggmogether with
E(Cy) in the following way: Start with a regular polygda(C,,) centred at the
origin and choose a vertex f@,, on each of the edges. AS, is regular, the
vertices ofC,, divide each edge with equal ratio. The segments considered i
(B)(3) of Table3.1 are the segmentsbetween the origin and a vertex B{C,,).

We are interested in the possible values of the ratio witfctvthey are intersected
by the edges of,.

Choosing the vertices @, close to those 0E(C,,) we see that we can have
an arbitrarily high portion of insideC,,. On the other hand, the portion insiGg

Figure 3.16: Two projections that satisfy the restrictions of Theor@m 3
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is minimised when we place the vertices@y, in the centre of the edges. In this
case, the fraction dfoutsideC,, is sinz(ﬁ), see Figure3.17.

By (B)(3) of Table3.1, the fraction of a segment lying outside for one polygon
and itsE-construction has to match the fraction of a segment lyirsgdim for the
other polygon. This gives the following inequalities:

- sir? )ssinz(%) and 1—sin2(%)§sin2( )

T T
m m
which are equivalent to the condition given in the theorem. O

We can of course determine all possible values for the irldgua Theo-
rem3.5.3explicitly.

3.5.4 GoroLLAry. There are realisations of & from regular polytopes only for
the following pairgm, n) (up to interchanging m and n):

(3,3), (3.4), (3.5), (3.6), (4.4 ]

3.5.5 Remark. We made assumptior2) in Theorem3.5.3 mainly because this
is the case we need in the next section. A less restrictiv@oreiof “symmetry”
would only require the points I8, andS; to also form a regular polygon (if we
take the vertices in the order induced by eonstruction of the other factor).
For smallm = n this has solutions where all points$3 andS; are dtterent. See
Table3.2for an example of such af,4. Note however, that this severely reduces
the number of geometric symmetries compared to the case tfidorem.

E(Cn)
c X =sin(%)
n
y = cos(’)
Sin(Z)
1 Z= cos)
A
n
(n-2)r ﬁ/ = Slnz(%)

s

n

Figure 3.17: The length computation in the proof of Theoré&m.3
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3.5.3 (OMBINATORIAL VERSUS GEOMETRIC SYMMETRIES

There are two dierent notions ofymmetryor a polytopeP. We can look atom-
binatorial symmetriesndgeometric symmetriesThe former are automorphisms
of the face lattice oP, the latter are f&ine transformations that preserve a given
geometric realisation d? set-wise. See Sectidn3.2.3for a precise definition and
some more background on symmetry groups.

Usually, these groups fiier for a given geometric realisation of a polytope.
However, there are not many polytopes known for which theseys difer for all
possible geometric realisations. Bokowski, Ewald, andin€ehmidt p5] have
constructed a 4-dimensional polytope with ten verticesifigpa combinatorial
symmetry that does not correspond to dina transformation in any geometric
realisation of the polytope. The given coordinates arengwas, see6] and [2]
for a corrected version of the coordinates and a simplerfp@o the other hand,
it is known that 3-polytopes, arattpolytopes with at mosd + 3 vertices ford > 3,
always have a realisation in which geometric and combirgtsymmetry group
coincide. The primer was proven by Mab#], the latter by Perles, seé4, p.120].

We show that our famil¥,,, of 4-polytopes contains an infinite subfamily with
non-realisable combinatorial symmetries. To this end, xyi@tly construct such
a combinatorial symmetry.

Previously, it was already observed by Gévay that no pobjtogalisation of
the spheref,, for m = n can realise the full combinatorial symmetry group,
except in the casm = n = 4. This is also a consequence of Coroll&ry.8below.

[ 1 1 1 [ -1 -1 1 1]
[ 1 1 1 -] [ -1 -1 1 -1]
[ 1 1 -1 1] [ 1 -1 -1 1
[ 1 1 -1 - [ -1 -1 -1 -1]
[1 -1 1 1) [ 35 95 -3/5 -39
[1 -1 1 -1 [ 95 -35 -35 3/5]
[1 -1 -1 1| [ -85 -9/5 3/5 3/
[1 -1 -1 - [ -9s5 3/5 35 -3/5
[-1 1 1 1 [ -85 3/5 3/5 9/5
[-1 1 1 -1 [ -85 -35 -9/5 3/
[-1 1 -1 1 [ 85 -35 -35 -9/5
[-1 1 -1 - [ 35 3/5 95 -3/5|

Table 3.2: The vertices of ait44 from regular squares, but not satisfyirf) 6f Theorem3.5.3
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3.5.6 Taeorem [Non-Realisable Symmetry]. For relatively prime mn > 5, all
Emnn have a combinatorial symmetry that cannot be realised ascanggric sym-
metry in any geometric realisation off

Note, that in this theorem we do not require that the reatisatf E,, is ob-
tained by the construction in Theoredrd.1 It can be any geometric realisation
which is combinatorially equivalent t&,,,. In the following, we denote such a
more general realisation B, to emphasise this distinction.

Proof of Theoren8.5.6 We define a combinatorial symmetiy of P,,. LetC,,
andC, denote polygons with vertices, ..., Vyn 1 andw, ..., W,_1 respectively,
numbered in cyclic order. We take indices modol@ndn, respectively. LeS
be the combinatorial symmetry of a polygon that mapsjtie to the ( + 1)-th
vertex. See Figur&.18for an illustration. S induces a combinatorial symmetry
Smon Cy, x C, by mapping a vertexv(, w;) to (vi,1,w;) forany 0< j < m-1.
Similarly, S seen in the polygo@, induces a symmetrg, of C, x C, shifting the
vertices ofC,.

Both symmetries uniquely extend to combinatorial symres®i, andS,, of
E(CnxCy). LetT be the combinatorial symmetry Bf., obtained by first applying
S and thenS,. See Table3.3 for an example of this symmetry dPs, on the
combinatorial level, and Figurg19for a Schlegel diagram &, x Cg with these
symmetries indicated by arrows.

The geometric realisation &,,, need not have the product structure induced
by the construction of Theoref3.1 However, by looking at vertex degrees, and
for m,n > 5, we can split the vertex set &f,, into a setV, of vertices that “come
from” the product and a se&Y,, of vertices that are “added” by tHe-construction
(as combinatoriallyP,, can still be viewed as an instance of tBeconstruction):
A vertex of the product,, x C, always has degree 8 Ey,, asC,, x C, is simple,
so any vertex has four neighbours and is in four facets. Thieddertices have
degree thor 2n, which are both greater than 8 for n > 5.

The proof is roughly as follows. Suppose there is a geomedetisationT of
T for someP,,,. In the first step we prove that am,, with the geometric sym-

Figure 3.18: The symmetny5 of a polygon.
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metry Ty has the form of the construction in Theor@3.1 Then, the existence of
this symmetry implies that both factors are of the form defimeTheorem3.5.3
Corollary 3.5.4finally tells us that fom, n > 5 there are no such realisations.

As T, set-wise fixes the vertices &, it also fixes their centroid. After a
suitable translation we can assume thats a linear transformation. As1andn
are relatively prime, there iskg, € N such thafl,, := Tgm restricted to the sev/,
acts asS,,. Similarly there is &, such thafl, := Tg” reduces to a realisation &,
Both T,, andT, are again linear transformations.

By constructionPp,, has two diferent combinatorial types of facets:

(I) Bipyramids over amm-gon and

(I) bipyramids over am-gon.
For any facet we call the vertices of the polygon (i.e. thoskices of the facet
belonging taV) the base vertices.

Let F be a facet ofP,, of the first type. The symmetry,, shifts the base
vertices by one and fixes the two apices. ThIg,also fixes the centroid: of
the base vertices df. Restricted to the hyperplahé: defined byF, the mapT,
is a linear transformatiofi’ in He (if we place the origin oHg in cg). Now T,
fixes the two apices df and thus fixes the whole line through the apices.T§o
splits into a map fixing the axis and a linear transformatiba two dimensional
transversal subspate The axis necessarily contains, andU contains the base
vertices ofF. So the base vertices &f lie in a common two dimensionaltine
subspace oR*. Similarly, the base vertices of any other bipyramidal fagith

a base equivalent t@,, lie in a common 2-plane. These 2-planes are set-wise

preserved byl ,. Hence, they are parallel.

Figure 3.19: The product oS, andSg onCy4 x C.
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An example for the symmetries involved in the proof of Theorem 3.5.6
Notation:

* vy, Vi, Vo vertices of Cs
* Wy, Wy, Wo, W3 vertices of Cy
* ¢&(j): edge from vertex number j to j + 1 (mod 3 or 4) in both polygons.

Number the vertices px of P34 in the following way:

0 <k <11 vertices (Vkdiv 4> Wk mod 4)
12 < k < 14: vertices added above ek — 12)x C,
15<k <19 vertices added above C; x e(k — 15)

Then the combinatorial symmetries are given as (permutation notation, ver-
tex numbers of py):

§;:=(0,4,8) (L5,9) (2.6,10) (3 7,11) (12 13, 14) (15) (16) (17) (18)
8,:=(0,1,2,3) (4,5,6,7) (89,10, 11) (12) (13) (14) (1516,17, 18)
T :=(0,5,10,3,4,9,2,7,8,1,6,11) (12 13, 14) (15 16,17, 18)

Table 3.3: The combinatorial symmetrié& §,, andT acting onPs3g.

The same argument proves that all bases of facets of thedegom do lie in
parallel 2-planes. These 2-planes must be transversakt@-filanes containing
them-gons: Otherwise the vertices i, all lie in a three dimensional subspace.
As P, is 4-dimensional, at least one of the verticeslaf has to lie outside this
3-space. But there are no edges between verticgds.in

Applying an appropriate linear transformatioriRg,, we can assume that the 2-
spaces containing the-gons are parallel to the -x,-plane and the ones containing
the C,, are parallel to thes-x4-plane. T rotates the copies &, in Py, SO they
must all be equivalent. Similarly, all the copies of the mugp C, are dfinely
equivalent. Sd,, is an instance of Theoref3.1

Consider again the fac& with base equivalent t€,, and the restricted map
TF. Further restrictingl [, to the subspace containing the base vertices defines a
linear mapT, on R? shifting the vertices of a polygon by one. $ggenerates a fi-
nite subgroup o6I(2, R) and therefore must be conjugate to an eleme@(@fR)
(cf. [77] or [61] for a simple argument proving this). The same argumentieppl
to facets with bas€,,. As the copies oC,, andC, lie in transversal subspaces of
R*, we can apply the conjugation f@;,, andC, simultaneously. Therefore both
polygons are regular up to affiae transformation.
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Finally look at then vertices added above facetsky, of type C,,, x e for an
edgee of C,,. Projected onto the 2-space@f, they lie insideC,, (they form the set
S, in the construction of Theoref3.1). They are fixed by the symmet&,. As
this map has only one fixed point the pointsSnmust coincide. The same applies
to the added vertices above facets of tgpe C,,. (Note that, even though is a
symmetry of theEy, in Table3.2, the map§4 is not, and cannot be obtained as a
power of T. The setSy does not consist of a single point in this polytope.)

Now we are in the situation described in Sectioh.2 But, according to Corol-
lary 3.5.4 this can only be the case if at least onaéndn is less than 5. This
completes the proof of Theore®5.6 |

3.5.7 Remark. This is not the strongest possible form of this theorem. ieg
also to many products in which one of the polygons has fouess Vertices, or

m andn are not relatively prime. However, in this case, we need ta b& more
careful in the proof, as it is not always possible to uniqusgiit the vertices into
“product vertices” and E-construction-vertices.” Furthermore, one has to argue
that one symmetrically realisable factor does noffisze to give a realisation of
the whole polytope with a geometric realisation of the carded combinatorial
symmetry.

With a similar argument as the one used in the proof of therdmpone also
proves that Corollang.5.4describes all possible cases in whigh, can have the
productZq, X Z, of two cyclic groups induced by the rotation of the verticeshe
two polygons as a subgroup of its geometric symmetry groaphis case, we do
not needm andn to be relatively prime, as, in addition to their product, the
symmetriesS,, andS, itself are contained i, x Z, acting onPun.

3.5.8 GrorLLary. The combinatorial symmetry group of,fcontains a subgroup
G isomorphic tdZ, x Z, induced by rotation in the two polygon factors.

The geometric symmetry group of a polytopg Bombinatorially equivalent
to En, can contain a subgroup inducing G on the face lattice only for

(m.n) €{(3,3).(3.4).(3.5).(3.6). (4. 4)}
(up to interchanging m and n). |

3.5.9 Remark. Gévay B9 pointed out that along the lines of Theorén®b.6one
can also prove that the only “perfect” polytopes among tladisations of theE,,
are the regular 24-cell argss, constructed as in Corolla.3.3from regular tri-
angles with intersection ratio= 1/2.

A rough definition of perfectness is as follows: A geometaalisationP of
a polytope isperfectif all other geometric realisations having, up to conjugati
with an isometry, the same subset of tiigrne transformations as symmetry group,
are already similar (in the geometric senselPiGee B6] for a precise definition.
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3.5.4 R:ALISATION SPACES OF E33 AND Egg

We determine the degrees of freedom that we have in the chbamordinates for

Ess. To achieve this, we are interested in the dimension of thésadion space

R(Es3) and the projective realisation spaRg;(Ess) of this polytope. See Sec-
tion 1.3.2.4for a precise definition and some background.

Further, we present a simple 4-parameter familf{egyfs in the following sec-
tion. This proves that the projective realisation spadégfwhich is the 24-cell, is
at least four dimensional. It is possible to exhibit morerdeg of freedom, but this
is rather technical. As this would still not yieddl possible degrees of freedom, we
are content with the simpler version.

3.5.4.1 The Realisation Space okE

The vertex sets of all realisations Bg; that one can obtain from TheoreBn3.1
contain the vertex set of an orthogonal prodGgtx C; of two triangles. This
reduces the number of degrees of freedom that we can obtainddysing the con-
struction in Theoren3.4.1, compared to arbitrary geometric realisations. The next
theorem determines the dimension of the space of all réalsaof Es; that are
projectively equivalent to a realisation containing thenogonal producC; x Cs.

3.5.10 THeOREM. diM(Rproj(Ess)) > 9.

Before we prove this theorem we introduce a special way tatcoct realisa-
tions of two triangles and theE-polytopes satisfying the conditiond) and B)
of Table3.1 This will make it easy to count the degrees of freedom afieds.

3.5.11 Tarorem. Given two (arbitrary) triangleg\ andA’, there is an open subset
R in R® such that, if we take the nine entries of a vector in R as the ratios
appearing in B)(3) of Table3.1 (in some previously fixed order), then there is a
realisation of &3 having these intersection ratios.

Proof. This is basically proven by describing a realisation as atgni of a set of
linear equations. We have to introduce some notation teevaddwn these equa-
tions. It is convenient to note the ratios in a slightlyteient way as before. We
transform any ratio into -~. With this, a pair of inverse ratios 'rsand%. Denote
the nine ratios involved in the construction gy for x € {a, b, ¢} andy € {a&', b’, ¢'}.
See Figure3.20and Figure3.21for illustrations of the following definitions.

Fix two trianglesA and A’ and leta, b, c be the sides oA anda’, v, ¢’ the
sides ofA’. By translating the triangles if necessary, we can assuatdhby both
contain the origin.
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Let ga, g andg. define lines outsida parallel toa, b, andc at distances,, oy,
andé., respectively. These will afterwards contain the vertioeE(A), which is a
triangle containing the vertices &fin its edges. Similarly, define lineg,, gy and
ge at distancesy, oy, resp.d; for A”.

Let |2, lay, andl,e define lines parallel ta on the other side o asg,, at
distances 50, apda, andraed, from a. Similarly, define the line&,y, lyy, lbe,
lea, le, @ndlee parallel tob andc. Thus, any segment starting gnand ending on
l.z is divided bya with a ratio ofr,, and similar for the other eight segments.
For the triangle\” we define lines,, I7,,, andl’, at distances 4, 1/r,y and
1/r.a, respectively, parallel ta’ and on the other side &g . Similarly, we define
lines parallel tdy andc’. Finally, we define (outward pointing) normal vectoks
Ny, Ne, Ny, Ny, Ne and levelsi,, Ay, Ac, Az, Ay, ¢ such that pointx € a satisfy
(Ny, X) — A = 0, and similarly for the other edges.

Consider now e.g. the ratigy. Choose a vertex, of E(A) on g,, a pointw,
on the linel,, and in the interior ofA”, a vertexv;, of E(A’) lying ongy and a
pointw;, in the interior ofA on the linel,y. See Figure3.22for a enlarged cutout
of the relevant parts of Figuré.20and Figure3.21. The pointsw, andw;, will
become the corresponding pointsitoandv;, under the maps, anda; of (B)(2)
in Table3.1 The segment,y between, andw,, is intersected by with a ratio of
raw, and the segmers,, betweenv,, andw, is intersected by\” with ratio 1/ray.

X
b a
laa
|abf\\ |
| ca
o DO\ Lo
/ \ cc
o TN
,,‘//' |bb, (o] gC
lbe
lba E(4)

Figure 3.20: Construction of the triangles: The first factor.
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So the condition set by the ratigy will be satisfied by this choice afi, andw, .
To satisfy all conditions on the ratios that involwg, we have to chooses,
such that it lies as well on the lingg,, |7, andl’, and in the interior of\". Similar
conditions hold for the two other points insideand for the three points insid€.
Therefore, finding a feasible solution amounts to findinglatgm to the fol-
lowing set of 18 linear equations:

Aa = <na, V\/a/> + laaOa Ag = (Nar, Wa) + 1/Taq0x
Ap = (N, W, ) + Mz Op Aa = Ny, W) + 1/Tpg 0y
Ae = (Ne, Wy ) + Mo O Ag = (N, W) + 1/Tcq0a
Aa = <na, V\/b'> + laOa Ay = (N, Wa) + 1/Taq 0y
Ap = (Mo, Wy ) + Moty O Ay = Ny, Wp) + 1/Ipg Oy
Ac = (N, W, ) + Ty b Ay = Ny, W) + 1/Icq 0y
Aa = (Na, W) + Fac0a Ae = (Ne', Wa) + 1/Tag6c
Ap = (Np, W) + IpeOp Ao = (Ng, Wy) + 1/Mpg e
Ac = <nc, V\/C,> + e Oc Ae = (Ne, We) + 1/T g6

Here the coordinates of the poimg, wy, we, W, W, andw,, and the distances,
o, 0¢, 0o, Oy, aNdS are the free variables, and the ratios are the parametees. Th

e 4 AN e N

E(A) ¢

Figure 3.21: Construction of the triangles: The second factor.
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0 21 -42 —21]
2 —21 -42 —21]
—42 -21 -42 —21]

| 0 21 o0 2 | 9 -6 60 -19
| 4221 o0 2] | -8 -12 -12 29
|-42 21 0 2] | -6 -3 -48 -31]
| 0 21 42-21 | 24 33-10 -9
| 42 -21 42 -21] [-72 -15 2 -]
|-42 —21 42 -21] | 48 -39 8 -11
[
[
[

Table 3.4: The coordinates of a feasible non-degenerate solution.Fgres3.4 and 3.5 for a
drawing of the two factors.

first and the second set of equations are connected via the.rat

As the equations depend smoothly on the nine parameterfiitesito show
that there exists at least one feasible solution of thisesystSuch a solution is
shown in the Figure8.20and3.21and in Table3.4 (for some fixed product of two
triangles, but this can be projectively transformed to atmgn.

Finally, to obtainE(A), we have to choose vertices on the limgsg,, andg.
such that the edges contain the verticea ot)nless the distancés, 5,, andd. are
too large compared to the size dthere are always two solutions to this problem.

Figure 3.22: The condition for one corresponding pair of vertices.
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Similarly, we can construdg(A’). O
Now the proof of Theorem3.5.10is straightforward:

Proof of Theoren3.5.10 All triangles inR? are projectively equivalent. There-
fore, up to projective equivalence, there is only one geadmetalisation of an
orthogonal product of two triangles. So we can fix our prefémrthogonal prod-
uct of two triangles and count the degrees of freedom forraglthe remaining
vertices without having to worry about projective equivelde anymore. But ac-
cording to the previous Theore&5.11we have, for any choice of two triangles,
nine degrees of freedom for the choice of the remainingcesti |

3.5.12 Remark. There might still be geometric realisations of a polytopmbe
natorially equivalent tdes; that are not projectively equivalent to a polytope con-
taining an orthogonal product of two triangles. Thus, amribheorem3.5.10
describes only a subset of the whole realisation sEaefEss).

3.5.4.2 The 24-Cell

Our method for the realisation of tHeconstruction of products of polygons also
provides new (non-regular) geometric realisations of #heell.

Form,n > 3 we cannot determine the degrees of freedom in the above way
anymore. Taking thennratios as input we obtaim2nequations for only 3G+ n)
variables. This is not merely a problem of the method; thezeeaplicit additional

(a) Schlegel diagram of the regular 24+(b) Schlegel diagram of a polytope in the family of Ta-
cell. ble 3.5 az, by = 3.

Figure 3.23:24-cells I.
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restrictions on a realisation. However, also for the 24-itak not difficult to
construct some projectively non-equivalent geometritisatons.

Table3.5 shows a simple example of a 4-parameter family of 24-cellsre
all four parameters range in the open interval frefhto 1. This family spans a
4-dimensional subset of the projective realisation spatéch can be seen in the
following way.

T S B | [ -1 54 -1 1
| 1 R | | -1 54 -1 -
[ 1 -1 1 -1 [ -1 54 1 -
| 1 1 -1 | -1 54 53 1
[ 1 -1 -1 1] [ R R |
| -1 1 - 1] [ -1 -1 -1 -
| -1 -1 1 1] | -1 -1 1
| 1 1 1 | -1 -1 53 1
| 1 -1 -1 - [ 1 -1 -1
| -1 1 -1 - [ 1 -1 -1
| -1 1 - S T
[ 1 1 1 -1 [ 1 -1 53 1
[ -1 -1 -1 1] | 12312 -1 1
| 1 1 1] | 12312 -1
[ | 1 1] | 12312 1 -
[ 1 1 1 1) | 12312 53 1
| a by 2 —2- by |-12 ~12 -32 172
| a b 2-a by | |-1/2 -1/2 -5/6 -3/2]
| a by 2 2-by |-1/2 -1/2 17/6 -1/2
| a by —2-a by | -2 ~12 12 52
| an 2-by ay by [-3/2 -5/6 ~1/2 -1/2]
| -2-a by ay by | | 12 -3/2 -1/2 -1/2]
| a —2-by ay by | [ 5/2 12 -1/2 -1/2
| 2-a by ay b, |-1/2 103 -1/2 -1/2

Table 3.5: Vertices of a 4-parameter famlly of 24- Table 3.6: A 24-cell without any pro-
cells. Foray, a, by, b, = 0 this is the well known  jective automorphisms:
regular realisation.
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(a) Schlegel diagram of a polytope in the faim Schlegel diagram of the 24-cell in Tal8es.
ily of Table 3.5 ay, a, = 3.

Figure 3.24:24-cells II.

The vertex set of the regular 24-cell contains the vertex gskthree diferent
regular cubes: If you set all parameters to zero, then (iottier given in Tabl&.5
the first sixteen, the last sixteen and the first and last eigtiices each form a
regular cube. Their 2-faces (which are squares) are not argypresent as 2-faces
in the 24-cell, but their vertices still lie on a codimensi@subspace (see e.g. the
vertices 1516,17,18 in Table3.5. Subspaces are preserved by any projective
transformation.

If we let the parameters diverge from zero then we destroyesointhese “in-
ternal” squares. This necessarily results in projectidefferent 24-cells. Hence,
we have proven the following theorem.

3.5.13 TaeOREM [24-Cells]. dim(Rpoj(Eas) > 4. m|

The “broken” squares can also be seen in the Schlegel disgralfigures3.23
and3.24 Observe the three squares contained in the octahedrabfdaoenhich
the polytope is projected.

3.5.14 Remark. Not all possible realisations of the 24-cell are contairmethis
4-parameter family. The 24-cell in TabBe6is also a result of the construction in
Theorem3.3.1and has no projective automorphisms.
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FLAG VECTORS AND ENUMERATIONS

4.1 INTRODUCTION

Until recently, 2-simple and 2-simplicial 4-polytope®(i(2 2)-polytopes) seemed
hard to construct. With our new constructions we have novieaeld quite some
flexibility, and a wealth of examples. In particular, thetegrtruncation method of
Section2.5.1— and its counterpart for simple polytopes in Secttoh.2— make
it easy to construct explicit instances, and easily tegpgnties of (22)-polytopes.

This chapter combines the results obtained in the previwoschapters and
relates them to the “outside polytope world” containingtaé polytopes that are
not 2-simple and 2-simplicial. We present applicationscdss several other ap-
proaches to the construction of &@-polytopes and collect lots of examples.

The first part of this chapter is a list of results about the flagtors of (22)-
polytopes and their influence on the flag vector classifiogpimblem. In partic-
ular, we show that a (2)-polytope is not determined by its flag vector. There
are (usually really many) combinatoriallyftérent (22)-polytopes with the same
flag vector. We give a lower bound on the number af2{2polytopes and show
relations between the flag vector of 2-polytopes and general polytopes.

The second part summarises other known methods (both aidenare recent)
for obtaining (22)-polytopes. We work out which of the examples can be seen as
instances of th&-construction and which cannot.

There are some old knowm, §)-polytopes. In particular, there is the well
known class of hypersimplices. Furthermore, several eggahd semi-regular
polytopes are-simple ands-simplicial forr,s > 2. We present Wyth®'s con-
struction, which uses special Coxeter groups for the dason of a regular poly-
tope, and we discuss some regular polytopes obtained byGéva

Until recently, only finitely many (22)-polytopes were known. The first infi-
nite family of (2 2)-polytopes is that of Eppstein, Kuperberg, and Ziegléicivis
now a special case of Theoreirb.15

A recent approach via “reverse shellings” by Werner hasyced a new self-
dual (2 2)-polytope on 9 vertices, which is not included in our comstion. We
show that no non-trivial (i.e. efierent from the simplex) (2)-polytope with eight
or less vertices can exist.

The third and last part of this chapter contains tables wiist af polytopes ob-
tained from theE-construction with up to 50 vertices (complete up to 19 ves),
the previously known (2)-polytopes, the known examples of §)-polytopes for
r,s > 2 in higher dimensions, some infinite families of 22-polytopes, a couple
of particularly interesting examples of,@-polytopes with larger number of ver-
tices, and some known polytopes that can be obtained fro-ttenstruction, but
are not 2-simple and 2-simplicial.

For many of the examples, explicit rational coordinates@nmibinatorial data
is available in thepolymake format.
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4.2  PROPERTIES OF (2, 2)-PoLYTOPES

We give several results about flag vectors and combinatypak of (2 2)-polyto-
pes. Thef-vector of a (22)-polytope is necessarily symmetric, that is

f() = f3 and fl = fz.

fo andf; also determine the flag vector, as we have only one additiodapendent
entry in dimension four, by the Dehn—Sommerville Equatioh$heorem1.2.17
Itis given by foz = 3f0, that iS,fog = 2fo + f1.

The dual of a 2-simplicial 4-polytope is 2-simple, and viegsa. Hence, the
dual of a (22)-polytope is again a (2)-polytope. This gives the following result.

4.2.1 RorosiTioN. Any vertex of 2, 2)-polytope P has even degree in the vertex—
edge graph of P.

Proof. The dual of a (22)-polytope is 2-simplicial. Hence, its facets are simplic
But any simplicial 3-polytope has an even number of 2-faces. O

In general, (22)-polytopes are not self-dual. The hypersimplex is thellasia
example: it has five simplex facets, and five octahedral $aedtile the ten facets
of the dual are bipyramids over a triangle. Hence, in gentrafe are at least two
combinatorial types of (2)-polytopes for a given number of vertices. For larger
number of vertices, there are more than this. Our constmgtllow us to produce
exponentially many dierent (even rational) (2)-polytopes. We demonstrate this
with one of the families obtained in Secti@rb.

4.2.2 ReorosiTion [Exponentially Many (2, 2)-Polytopes]. The number of combi-
natorially distinct(2, 2)-polytopes MP?) constructed in Corollary?.5.11with flag
vector

flag(D(P?)) = (10+ 4n, 30+ 18n, 30+ 18n, 10+ 4n; 50+ 26n)

grows exponentially with n.

Proof. There are exponentially many stacked 4-polytopes witth vertices. This
follows from the fact that there are exponentially many &loelled) trees of maxi-
mal degree 5 on + 1 vertices.

Hence we are done, if we show that the combinatorial type pfstacked 4-
polytopeP? can be reconstructed from its vertex truncatidfP?). The facets of
D(P?}) are on the one hand truncated simplié€s which are octahedra, and on
the other hand the vertex figur&s of P?, which are stacked. Furthermore, two
of the octahedr&’ andG’ are adjacent if and only if the corresponding fadets
andG of Pt are adjacent. Hence, we obtain the dual grapRidfom D(P?). This
determines the combinatorial type Bf by the Reconstruction Theorem of Blind
and Mani, see Theoremn3.31 ]
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More generally, there are exponentially many (in the nunolbeertices) (22)-
polytopes. The choice of the family from Corollagy5.11for the proof of this
proposition was arbitrary. Similar arguments show the sgroaith rate also for
other families of (22)-polytopes. Included in this proposition is also thedaling.

4.2.3 GororLary [Non-Isomorphic (2, 2)-Polytopes]. There are exponentially
many non-isomorphig2, 2)-polytopes with the same flag vector. O

The first known pair of examples that are not dual to each ahertheE-
construction applied to a product of two triangles and toiagwruncated simplex.
Both (2 2)-polytopes have 19 vertices (cf. SectibH).

f-vectors of (22)-polytopes have at most two independent parameters by the
above computations. The next propositions show that we dieeid need both.

4.2.4 RrorosiTion. For any §) > 26there is a(2, 2)-polytope with § vertices.

Proof. Truncating a vertex of a simple 4-polytope adds5(3, 1) to the f-vector.
By Proposition2.5.13 if we have theE-construction of a simple polytog then
we can extend this to one for the truncatiofPtng) of P at any vertew. This adds
(4, 18,18 4) to thef-vector of theE-construction.

(1) The truncation of a prism PX§) over the simplex\; at one vertex, (2) the
productCs x Cg, (3) the truncation ofi4 at one vertex, and (4) the produes x Cs
are four diferent simple polytopes. Thek-polytopes have 26, 27, 28, and 29
vertices, respectively. |

There are lots of (2)-spheres with less vertices, but for some of them it if stil
unknown whether they are polytopal.

4.2.5 RorosiTion.  There are(2, 2)-polytopes that have the same numbers of ver-
tices (and facets), but gerent numbers of edges (and ridges).

Proof. TheE-construction of a product of a square and an hexagon hay#pal
realisation, by Theoreri.4.1 Its f-vector is (34144 144 34) (cf. the computa-
tion in (3.2.1)). On the other hand, vertex truncation of a stack of six $irep as
in Propositior2.5.7yields D(P3) with f-vector (34138 138 34). O

Similarly, there are (2)-polytopes with the same number of edges, but a dif-
ferent number of vertices. For examplig(C4 x Cs) andE,(tr(As; 5 vertices)) have
both 120 edges, but the first has 29 and the second 30 vertices.

One can tell from the flag vector whether a polytope is 2-siong| since this
is equivalent to the conditioffy, = 3f,. Similarly, 2-simplicity can be readfid
This is so, because there cannot be any 2-faces with lesghhes vertices, so
the aggregated value of the flag vector already determirds ®agle case. Our
next proposition shows that there is no similar criteriordésive 2-simplicity or
2-simpliciality already from thd -vector.
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4.2.6 RrorosiTioN. A (2, 2)- and a nong2, 2)-polytope can have the same f-vector.

Proof. Using a hyperbolic gluing construction for a stacknd@d00-cells, Eppstein,
Kuperberg and Ziegler produced a family of simplicial edgegent 4-polytopes
Qn with f-vectors (106 + 14, 666n + 54, 6661 + 54, 106n + 14); see Section.3.4
Applying the E-construction via Theorerfd.5.14 one obtains a family of (2)-
polytopesE;(Q,) with f-vector f(E1(Q,)) = (54 + 666n,240 + 336M, 240 +
336, 54 + 666n).

Setn = 13. Then we have a (2)-polytope withf-vector

f(E1(Qua)) = (8712 43920439208712)

This polytope has lots of facets that are bipyramids ovetggems, and lots of
“regular” vertices that are contained in exactly 12 suclytamids, with a dodeca-
hedral vertex figure.

We truncate 80 such “regular vertices” and stack pyramids ¢he result-
ing dodecahedral facets. One such truncation operatios @®30,12, 1), and
one stacking operation adds, 2D, 30,11) to the f-vector. So in total, we add
(160Q 400Q 336Q 960) by this.

Furthermore, we stack 80 of the bipyramidal facets that wetanvolved in
the previous operation. One such stacking operation ad@dsl(, 9), so in total we
add another (8®60 120Q 720). Hence, the polytog@we obtain has thé-vector

f(P) = (1039248480 48480 10392)

It is not a (2 2)-polytope anymore.
On the other hand, the (2)-polytopeD(CZ,,) of Propositior2.5.12has exactly
the samef -vector. ]

In connection with theiE-construction, Eppstein, Kuperberg, and Ziegks [
proposed a new quantity that might be interesting with retsjgethe classification
problem.

4.2.7 DeriniTioN [Fatness]. Let P be a 4-polytope withf-vector (fo, f1, f2, f3)
different from the simplex. Thiatnesd=(P) of P is defined as the quotient

f1+f2—20

A similar quantity was considered earlier by Avis, Bremreand Seidel §].
Eppstein, Kuperberg, and Ziegler showed that this quoiennbounded for 3-
dimensional CW spheres. For polytopes, they provided aniiefseries with fat-
ness around five and gave an example of a polytope with faaga®ximately
5.048. See Sectiof.3.4for this. There is also a good review by Ziegléf].
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Looking at the known inequalities for flag vectors in equasi@L.4.3—(1.4.9,
we see that (2)-polytopes satisfy two of these with equality, namelytthed and
the forth. Fatness “measures” where on this line the pobddie exactly. Namely,
the higher the fatness of a polytope is, the closer it liebéorayl, in (1.4.9.

The fatness of polytopes produced from teonstruction applied to simple
4-polytopes is bounded by six. This is immediate from theector computation
in (2.3.7) of Section2.3.

The family E,, of E-polytopes obtained from products of polygons in Theo-
rem3.4.1has essential flag vector

flagEmn) = (Mn+ m+ n,6mn 6mn mn+ m+ n; 8mn+ 2m+ 2n),

so their fatness is

12mn- 20
F(E = 6 form,n .
Em) = s omean=10 MmN = o

Thus, form,n > 10, our polytopes are “fatter” than the example of Eppst€in,
perberg, and Ziegler. As products of polygons are simplefamily of polytopes
is also “best possible” within this setting.

However, recently Ziegler9] constructed a family of much fatter polytopes
by a method completely unrelated to tBeonstruction. They are neither 2-simple
nor 2-simplicial. The fatness is bounded by 9.

Until recently it seemed, that (2)-polytopes are among the fattest polytopes, if
the number of vertices is fixed. In the next proposition wedpiee two 4-polytopes
with the same number of vertices, one of which is not,2)zolytope, where the
(2, 2)-example is less fat.

4.2.8 RorosiTioN. There is &2, 2)-polytope with the same number of vertices and
facets as a norf2, 2)-polytope, but fewer edges and ridges.

Proof. The “bipyramidal 720-cell” is defined &&,(120-cell) = D(600-celly. It
hasf-vector (720360Q 360Q 720), see Section.3.3

We perform some operations on this polytope that destraynpigity and 2-
simpliciality: We truncate two vertices with dodecahedrattex figure, and stack
pyramids on the resulting dodecahedral facets, and we tdsk pyramids onto
two bipyramidal facets. We obtain a new polytdgewith the f-vector (7623714

3714 762).
On the other hand, vertex truncation applied to a stack ofrd@scpolytopes
yields the (22)-polytopeD(C3,) with f-vector (762354Q 354Q 762). O

It would be nice to know more about fatness of 4-polytopesiangications
for the flag vector classification. In particular, a proof bét(un-)boundedness
would be helpful.
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4.3 FurTHER CONSTRUCTIONS AND SPECIAL POLYTOPES

Practically all examples of 2-simple and € 2)-simplicial d-polytopes ford > 4
(or, (2 d—2)-polytopes for short) that appear in the literature magden as special
instances of th&-construction. They can be realised by one of the constrsti
presented in the previous two chapters.

In particular, the examples of Eppstein, Kuperberg, andjl&rearise in our
construction as the special case wheris a simplicial 4-polytope with an edge-
tangent realisation (for parameter= 1 in the construction), or equivalently a
simple 4-polytope with a ridge-tangent realisation (forgmaetert = 2 in the con-
struction).

Prior to thisE-construction, only finitely many (21— 2)-polytopes were known
in each fixed dimensiod > 4. All but one arise from regular and semi-regular
polytopes, where thieface tangency conditions can be enforced simply by scaling
— but will typically yield irrational coordinates for the kt&ces, and the realisation
has no apparent degrees of freedom. These examples inclyshticular the
simplex, the 24-cell, and the hypersimplices. Braden gheeohly example of a
non-uniform (22)-polytope. It can now be obtained as the vertex truncaticen
stacked simplex, see Corolla?y5.11for more on this polytope.

We discuss all previously known examples of, and conswustieading to
(2,d — 2)-polytopes in the next sections. Some polytopes turn ueraktimes in
this collection, as they can be obtained in severdédent ways.

There is a recent approach to finding small2R2polytopes by Werner, which
led to a new (22)-polytope with 9 vertices and facets and 26 edges andgidge
We discuss this in Sectioh3.5and prove that it is the smallest non-trivial £3-
polytope. Only the simplex has fewer vertices.

In the end we have included some basic ideas towards a geedrakrsion of
the E-construction for al-polytopeP and parametdr= d—2. In this approach, we
do not necessarily stack above all facetdainymore, and we allow that bipyra-
mids over the ridges break into two pyramids. So far, we pceduwne further
(2, 2)-polytope with this method, which has 16 vertices and 5§eed However,
otherwise this construction still lacks a systematic tresatt.

A couple of other polytopes, which are neither 2-simple wior @)-simplicial,
but have some other interesting properties previouslyrdest in the literature
occur now also as instances of tkReconstruction. We list some of them in the
context of the construction they occur.

In the last section of this chapter, Sectibd, we subsume all these polytopes
into several tables.
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4.3.1 GuUnBAUM'S ExamMpPLES

We start with €, s)-polytopes that can be found in Grinbaum’s bodk p. 65,66].
There are three interesting families of polytopes mentiptwo of which can be
obtained via thee-construction. The polytopes in the third family are 3-sienp
and @ - 3)-simplicial, which is not possible for a polytope from tBeconstruction
(except, of course, in dimension five by duality). Howevee, ean apply thde-
construction to it and obtain one of the other families.

Here are the three families:

d
Kf(’::{xele+1 : Osxisl,z:llxi:k} fori<k<d, d>2

“hypersimplices”
d._ d . : d : —
M ._{erR xl<1, Y Ixl<d 2}

N¢ ::{xeRd X E d gX <d-2, g =+1, #g = 1}isodd}
i=1
“dual half-cubes”

The pontopest(’ are calledhypersimplices Geometrically, they are obtained as
the intersection of the standamd £ 1)-dimensional P1-cubeC®* with the hyper-
plane

H '—{xe]Rd”' ot -—k} (4.3.1)
K= D)X=k 3.

for 1 < k < d. From this description it is immediate thif is combinatorially
equivalent toK§ , ., for any 1< k < d. Hence, there are only | combinatorial
types of hypersimplices in each dimensoha 3.

The polytopesM? are obtained from the cube with verticesl, +1}¢ by trun-
cating all vertices with a hyperplane whose normal vecttregpoint vector of that
vertex in such a way, that from any 2-face only a single (ihpemt remains.

The duals of the polytopds® constitute the family ohalf cubes Recall, that
we defined thel-cubeny with vertices(—1, +1}9. GeometricallyN¢ is obtained as
the dual of the convex hull of all “odd” vertices af;, that is, all vertices that have
an odd number of 1's in their vector. (Equivalently, one coalkso take the “even”
vertices.)

See Figurel.1for two examples of hypersimplices. The three families df/po
topes have thd-vectors shown in Tablé.1. We collect their properties in the
following proposition.
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fj(ch(j) _ (dll forj=0
((Jj:]]-) Z!(=l (d—(?:ljﬁi) otherwise
(5) 2+ forj=0
f.(MY) = (g) (d-2)2* forj=1
| (g) (d- 12" for j=2
294d - j+ 1) () + 27 () for3<j<d-1
(j62) 2+ () 2 for0O<j<d-4
(N9 = 274 (3) forj=d-3
202 () forj=d-2
2 forj=d-1

Table 4.1: The f-vectors ofK?, M9, andN.

4.3.1 ReorosiTion [The Grinbaum Polytopes].
(1) The polytopes @(are 2-simplicial and(d — 2)-simple d-polytopes for & 3.
K¢ is a simplex for all d.
(2) The polytopes Kifor d > 3 are 2-simplicial and(d — 2)-simple d-polytopes.
M3 is the octahedron.
(3) The polytopes Nfor d > 3 are 3-simple and(d — 3)-simplicial. N° is a
simplex and Nis a cube.

Proof. K¢ and Kg haved + 1 vertices. Hence, they are simplices. The facets of
Kf(’ arise as intersection of the hyperpladgin (4.3.1) with a facet ofC%! (the
0/1-cube), so they are combinatorially equivalent to eitigr or K2 . Iterating
this we conclude that¢ is at least 2-simplicial. An edge & is obtained from
the intersection oH, with a 2-face ofC%1. C%*! is simple, so th&¢ are at least
(d—2)-simple. Hence, the pontop&f for 2 < k < d-1 are precisely 2-simplicial
and @ — 2)-simple.

There are two dferent types of facets iM9, those that come from the hy-
perplanes truncating the verticesmf and those coming from a facet af. The
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vertices ofM¢? are the centroids of the 2-facesmf. They are connected by an
edge if the corresponding 2-faces share an edge.

Let e be such an edge d¥l® between vertices; andv,. Lett; andt, be the
two 2-faces ofay corresponding t@; andv, ande their common edge iog. eis
contained in all facets df1¢ that originate

(1) from facets ofa4 that have; andt, as 2-faces and

(2) from truncating the endpoints ef
Og is simple, sad — 3 of its facets contaity, andt,. € has two endpoints, which
define two facets containingy Soeis contained ird — 1 facets, and¢ is at least
(d — 2)-simple.

Any ridge in MY is adjacent to at least one facet coming from a faceatiof
These are of typM 1. M2 is simplicial, so by inductiom is at least 2-simplicial.
M¢ is not a simplex, so it is precisely 2-simplicial ardi{ 2)-simple.

The polytopesdN? are 3-simple andd(— 3)-simplicial. The latter follows from
the fact that the facets &f® are combinatorially equivalent to the dual Iéf‘l,

which is d — 3)-simplicial. The 3-simplicity follows from the fact th#te facets
of (N9 are either simplices or dual t¢%2. |

Now let us see how these polytopes fit into tBeonstruction. Here is the
complete classification:

4.3.2 Taeorem. The following combinatorial equivalences hold:

(Kl((j)A = Ek—l(Ad) that is, }g = Dk—l(Ad) forl<k<d
(M9 = E4 (N thatis, M = Dy,(N%
= Dl((Nd)A)-

Figure 4.1: The two polytopesk(f and K§, which are both triangles.
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Here we have used the generalisatinnof the vertex truncation operatar,,
which we have introduced in Rema?k5.3 The polytopeN! itself is not a result
of the E-construction. The dual dfl° is a 2-simple and 3-simplicial 5-polytope,
but it has simplex facets. For> 6 bothN® and its dual are at least 3-simple.

Proof of Theorend.3.2 We start with the hypersimplicé§ and show that their
duals areEy_1(Aq). Aq Clearly has a geometric realisation in which &lH1)-faces
are tangent to the unit sphere, for anylk < d. So we can appl§ to it, by
Theorem2.5.14 To check that this has the right combinatorics ffi®es to check
the vertex-facet-incidences, by Propositio.24

Let A4 be in the standard representation of Exampl&s19 Ey_1(Ag) has(dzl)
facets. Two facets have a common vertex if and only if theespondingK — 1)-
faces inA4

¢ have a common vertex or

¢ lie in the same facet.
If we encode aK — 1)-face ofAq4 by a §/1-vector withk ones andd — k + 1) zeros,
then two facets oE,_;(Aq) share a vertex if either the two vectors component wise
combined with the binarand is not the zero vector or their binaor is not the
vector containing only ones. If we interpret these vectarsextices of the (L-
cubeC®*, then this is precisely the vertex-facet-incidence desiom of K¢.

The polytopeNy in the given geometric realisation has itk{2)-faces tangent
to a sphere. Thus, we can apply tBg ,-construction to it, by Theorerd.5.14
We check the vertex-facet-incidences.

Any ridge of Ny, that is, any facet oEy_»(Ng), can be encoded by a vector with
entries in{0, =1}, precisely two of which are zero. In the given realisatidiese
vectors are the vertices M.

Letv be such a vector, representing a faceE@f,(Ng) and a vertex oMy. The
vertices of a facet ift4_»(Ngy) are the vertices of the corresponding ridg&lgnand
the two vertices beyond the facets adjacent to this ridgeséhwo facets can be
represented by the twel-vectors that one obtains by replacing the two zeros in
in such a way, that the vector contains an odd numbe+l1¢.

The vertices oy have two types. In the ridgethey are given by

¢ all +1 vectors that replace the two zeros in such a way that the euofb
+1’s becomes even, and
¢ those vectors that hawgd — 2) in one entry where has a 0 or-1 (observe
the sign), and zeros otherwise.
But these are just the facet normals of those facedd pthat contain the vertex
SoE4_»(Ng) has the opposite face lattice Bf;. ]
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4.3.2 Tue Gosser—Evure PoLyTopPES

Among the regular and uniform polytopes are several tha2 @ienple andq—2)-
simplicial. We discussed some already. Here we describthantarge class of
uniform polytopes which are interesting in connection vath construction.

McMullen observed that the Gosset—Elte polytopeare § +2)-simplicial and
(r +t—1)-simple ¢ + s+ t+ 1)-polytopes. See the review of Kaldi{, p. 344] for
this. This family of polytopes is described in detail in tleetbook of Coxeterdo,
Ch. 11.7-8]. They arise as a special case of the W¥itmnstruction, which we
describe briefly in the next paragraph. This constructiaupces polytopes with
Coxeter groupsis their symmetry group.

4.3.2.1 Wythg's Construction

Here is the definition of aVythgf polytope Let & be the unit § — 1)-sphere.
We consided hyperplanedds, Ho, ..., Hy that contain the origin. Let;; be the
dihedral angle betwedr; andH; forall 1 <i, j <d.

The hyperplanes enclose a spherical simfleon $. Place a poink in one of
the vertices o and consider repeated reflections of this point atithgperplanes.
For special choices of the angles we obtain a finite point set of (in particular
the angles must be rational multiples9f The convex hull is a finite bounded
polytope. This is th&Vythgf polytopeassociated to the hyperplands, . . ., Hg.

If we have a choice of rational angleg generating a finite point set then we
can reduce the angles to the fogﬁor peN,p=>2,asfor any’—g with j andp
coprime, there is an integral multiple of this angle thd#leds from’;—) by an integral
multiple of 7. Define integers;; for 1 <, j, < d by aj; = ﬁ The tuple of integers
[ri;];; is theWythgf symbolof the Wythdt polytope. Observe, that the hyperplane
arrangementy, ..., Hy is uniquely defined by the Wytlfiosymbol, up to &ine
transformations iR Y.

The hyperplane arrangement fixes the symmetry group of thegpe. It is
the Coxeter grougenerated by reflexions in the hyperplanes. Reversely drer
several Wythé polytopes associated to a finite Coxeter group.

We have a quite convenient graphical representation ofytperplane arrange-
ment defining a Wythd polytope. The hyperplanes define a spherical simplex
on %, so each hyperpland; has a unique opposite vertexof T not contained in
H;, for 1 <i < d. To represent the arrangement, we draw a graph with one node
for each such hyperplane-vertex-pair, and we connect twlesim the graph if the
two corresponding hyperplanes enclose an angle less;thale mark this edge by
the integerr;; corresponding to the two hyperplanes;jf> 4. We distinguish the
chosen vertex of in this graph by drawing a ring around it. This graph contains
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all necessary information to reconstruct the sphericaltil See Figurel.2 for an
example. It shows the Wytlfiograph, the Wythff graph of its facets, the spherical
tiling with the spherical simplex highlighted, and the riéisig Wythoft polytope
inscribed (which is a cube).

The types of facets of a Wytligpolytope can easily be derived from its graph:
They are Wythé polytopes for the graphs that we obtain by removing an uedng
node with its adjacent edge, if the graph remains connectéat is, we obtain
the graphs of the facets by deleting a node from one of theeinéls (if the graph
has any). In particular, the facets of a Wythpolytope are Wythfi polytopes
themselves. Iterating this procedure gives us the facdtsedhcets, i.e. the ridges
of the Wythdt polytope, etc. Hence, all combinatorial types of faces ofyahaft
polytope follow from the graph.

A more careful analysis of this procedure lets one also ddahe symmetry
group of the polytope and ité-vector. If the ringed node is the final node on a
free end, then removing the ringed node and shifting thetoraq adjacent vertex
produces the graph of the vertex figure.

Note, that the reverse direction is not true in general: Nladiagrams satis-
fying the above conditions do indeed define a Wxitlpmlytope. In particular, the
arrangement need not be finite, but may lead to a tiling ofiHeah space instead
of a bounded polytope.

We see more examples of the Wythoonstruction in the next section. Gé-

vay [35] considers a construction ddepler hypersolidssee Sectior.3.3 The
duals of these polytopes are a special case of the \Btbastruction.

Figure 4.2: The Wythdf polytope with symbol [34] is the cube. Its graph is shown in the upper
left figure. Below is the graph of its facets.
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4.3.2.2 Gosset-Elte Polytopes

TheGosset-Elte-Polytopesg;forr, s,t > 1 are a special type of Wytlfigpolytopes,
defined by the following Wythid graph.

Consider the group of reflections corresponding to the diagn Figure4.3,
where we have nodes on the right end,nodes on the left end arichodes on the
lower end. The Coxeter group is finite if and onlyjis andt satisfy J/(r + 1) +
1/(s+1)+1/(t+1)> 1 (see BO, Chapter 11.8] for this).

Note that the graph is symmetric irands. The inequality together with the
symmetry leaves us with only three infinite series for thepeeters, sandt and
a finite number of other choices.

The three infinite series are the following. We relabel thé/opesrg by
replacing one of the parameters by the dimenslienr + s+t + 1 of the polytope.

® 04_kk1, for 1 < k < d. Their diagram is shown in Figurés4(a)and4.4(b)
They are equivalent to the hypersimplid€$from Sectior4.3.1 0y, is the
octahedron and@ = 0o, is the simplex. We obtain the facets of 1
by removing unringed end nodes. They have consequentlyvhnéitferent
types Q@ x-1x-1 (if k < d) and Q_xx_2 (if k > 1). Continuing this untitl = 3
shows that this polytope has the same combinatorial streiesK¢.
* 1, 31. See Figurel.4(c)for the Wythdt diagram. This is equivalent tidg,
which can again be deduced from the facet structure.
¢ (d - 3).1 is the cross polytopesy. See Figurel.4(d)for the diagram. The
equivalence follows by induction over the dimensibi); is the octahedron.
All facets of @ — 3),; are simplices and the vertex figures are all of the type
(d — 4).4, that is, they are cross polytopes.
The remaining finite number of other choices fps andt are
¢ indimension 6: 1,, 2,; (Schlafli polytopg
¢ indimension 7: 1, , 24, 3,1 (Hesse polytope
¢ indimension 8: 15, 241, and 4, (Gosset polytope
Among those, only 2, 3,1, and 4, are 2-simple andd— 2)-simplicial.

Of all these polytopes, only the infinite serigsQ_; for 1 < k < dis contained

in our construction (if we exclude the trivial cages d— 1 andt = 0, which map a

Figure 4.3: The general graph for Gosset—Elte polytopes.
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polytope to itself and its dual, respectively). The otheeéh2-simple andd— 2)-
simplicial polytopes have simplices among their facetsiciviis impossible for a
polytope resulting from th&-construction.

13, is a 3-simple and 3-simplicial 6-polytope with 44 verticasd 2; is a
4-simple and 4-simplicial 8 polytope with 2160 vertices. 8ok = 2,3 and 4
we know X-polytopes that ar&-simple andk-simplicial. There are no non-trivial
polytopes known with this property fér> 5.

4.3.3 @Gvay's PoLytopPEs

Gévay B5, 36] constructs a number of interesting polytopes from a cocstin
that uses a similar idea as we use for ours. However, he amssidwith a com-
pletely diferent intention, as he is interested in symmetry and redyfaoperties
of the constructed polytopes. He starts out from spheritab$ generated by
Coxeter groups, and considers polytopes obtained by gswme of the spherical
simplices generated by this group.

In [35], Gévay considers a construction similar to the WyElomnstruction of
the previous section. For a Coxeter gratimne looks at the spherical simplex and
the spherical tiling of the sphere defined by it, and obtaijsemi-regular) polytope
by the following method: Take a poiR in this simplex and all its reflections.
Define a polytope as the intersection of all half spaces dé&bgehe tangent planes
to these points. By regularity, this gives a polytope for eathihe given Coxeter

9o 0000

d nodes

(a) The Wythdt graph of thed-simplex G,g-1.

*——90 cc —(0—0 ccc o—0

k-1 d-k
(b) The figure for @_x-1.

(c) The figure for }_31. (d) The figure for @ — 3)1.1.

Figure 4.4: The infinite Gosset—Elte series.
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group is transitive on the facets. This construction meieddual” to the Wythdt
construction.

Further polytopes with the same symmetry group can be aststt by con-
sidering the “factor tessellation”: Take a poxkin the relative interior of some face
of the spherical simplex. L&, be its stabiliser. Define an equivalence relation on
the spherical tiles by saying that two tiles are equivalithiay lie in the same orbit
with respect t&Cy. Define a new tessellation by taking the union of the equivade
classes as new tiles. Clearly, in this regular setting, @&tptipne description of the
corresponding polytope is given by the tangent planesand its translates.

If we choose the point in the relative interior of &-face of the spherical sim-
plex, then we identify all tiles in the factor tessellatitvat contain thik-face. So
this construction can be viewed as a special case oEgonstruction for CW
spheres in Definitior2.4.3 for spherical tilings generated by reflections. Poly-
topality of the spheres is in this case guaranteed by the gtmroontained in the
construction.

Gévay considers the transitivity properties of this cangton for facets ok-
faces, where & k < d - 1. In general, the grou@ will not be facet transitive on
thesek-faces anymore.

They are, however, transitive for the special clas&@pler polytopes These
are “factor tessellations” of tilings obtained from a CetegroupC of a regular
polytopeP. In this case, there is a simple way to realise the tessmilggometri-
cally: TakeP and scale it, such that itsfaces are tangent to the unit sphere. The
corresponding Kepler polytope is the convex hulRoénd its polar. Compare this
process to Theore5.14

In accordance with Coxeter’s original notation, we denbé&stymmetry groups
of regular polytopes by

¢ A, for the the simplex,

¢ B, for the cube and cross polytope,

* [, for the 24-cell and

¢ H, for the 120-cell.
The resulting Kepler polytopes are denotedX{d, k + 1), whereX = A, B, F or
G according to the symmetry group & d is the dimension oP andk is the
dimension of the face containing the poxitrom above.

The {, s)-polytopes forr, s > 2 among those are listed in Tabletford = 4
and Tabled.6 otherwise, the others in Tabfe8 We do not repeat them here.

One specifically interesting instance is the “dipyramidaD-cell” G(4,2) =
fiH4, which reappears as an instance offfaeonstruction of Eppstein, Kuperberg,
and Ziegler. In our notation it i§,(120-cell), which can be geometrically realised
with the methods of Theoreth5.14

These polytopes and the above described construction dhefexplored by
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Gévay in B6], where he looks aperfectpolytopes, which are geometrically re-
alised polytopes with the property that all symmetry eqleinapolytopes are al-
ready similar. The Kepler polytopes defined above are perfeee Remarls.5.9
for two more.

For some more information on perfect polytopes see @spdnd [37], con-
taining a new class of perfect 4-polytopes constructed lyctiting certain ver-
tices of bipyramidal Kepler polytopes, and some constonstiof perfect non-
Wythoffian polytopes by truncations.

4.3.4 Tue ExampLES oF EPPSTEIN, KUPERBERG, AND ZIEGLER

The examples of 2-simple and 2-simplicial 4-polytopes op&pin, Kuperberg,
and Ziegler in B3] can all be obtained via our method of realising Ereonstruc-
tion described in Sectioh.5.14

They constructed a large number of such polytopes, so weotanesent all of
them in this summary. Moreover, for most examples they néedther intricate
arguments, which are now, with the help of our new methodegoessary. So
we restrict to some particularly interesting examples, tarekamples with a small
number of vertices, which we include in our tables in the rsextion.

Basically, in their paper they prove Theorénd.14for dimensiond = 4 and
parameteit = 1. Hence, to apply their theorem for the construction gf2§2
polytopes, they need simplicial 4-polytopes that havertbdges tangent to the
unit sphere. For this, they switch to hyperbolic geometrgt aramine possible
edge linksin polytopes obtained by gluing regular simplicial 4-polyes along
facets, in the same way as we did for the proof of Theo?enl5 They consider
the edge links of the simplex, the cross polytope, and thecg&llGor this. In this
regular and edge tangent version, these links are a regalagle, a regular square,
and a regular pentagon. So the dihedral angle%ageand:*—g. See Lemm&.5.18
for the computation of the first two angles. The third can bioled similarly.

Edge tangent simplicial 4-polytopes can now be obtainedbing simplices,
cross polytopes, and 600-cells along tetrahedra in suclydhaa

¢ either the resulting dihedral angle at an edge where two aernbthese
building blocks meet remains strictly between 0 anadr
¢ the edge vanishes completely in the interior.
They give lists of possible edge links satisfying these d@oors. If using only
simplices, then there are only three such links, which amvshin Figure4.5.
From these links, one can construct only thre@edent polytopesd3, Prop. 8]:
¢ The simplexA,. This leads to the hypersimplé(As) = Ex(A4) = K3 in
the E-construction.
¢ The stacked simplex, which leads to a special gluing of twoehgimplices
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in the E-construction. This polytop8,4, was already described previously
by Braden 7). In our context, the simplest way to obtain a realisatiovias
vertex truncation, aB(P7), see Sectio2.5.1 A possible set of coordinates
and a Schlegel diagram are shown in Figarea

¢* The sum of a triangle and a hexagon. In our context, it is sadiescribed

via its dual, which is the product of a triangle and a hexagdmnealisation
of this polytope EKZ = E(C3 x Cg) was obtained in SectioB.4.1

Further, Eppstein, Kuperberg, and Ziegler classify allsgde edge links, if
one allows gluings of simplices and cross polytope. They &leven diferent
links [33, Sect. 3.2]. Three of them contain only one square. Thesshanen in
Figure4.6.

They classify all possible edge tangent simplicial polg®pising only these
three links in their Proposition 10 and obtain 21 edge tahgemplicial polytopes,
which are glued from one cross polytopes dndimplices fork > 0. Due to
their angle sum restrictions, they can only glue simplica® dacets of the cross
polytope that do not share a ridge. With our methods, we atdownd to this
anymore, so already from these simple building blocks waialbhany more dif-
ferent (2 2)-polytopes. See Table 2 for a comparison. The first type in the list,
I.e. the cross polytope without any glued simplices, leadhié 24-cell in thee-
construction. In our setting, all theftBrent types can most easily be constructed
via Propositior2.5.13 with a realisation oE;,(04) as input.

Note also, that the construction of Eppstein, Kuperberd,Zggler is limited
to gluing simplices onto a facet of the cross polytope. We marduce further,
combinatorially diterent, (22)-polytopes by gluing simplices onto facets of sim-
plices glued in some earlier step (i.e. in the dual languagacating vertices that
are the result of some previous truncation operation). THads to already 4877
different types in the sixth step, compared to the 50 when onipglsimplices
onto facets of the cross polytope, and 2 in the original cossbn.

Here are the small instances with up to 32 vertices among ihelgtopes.

E(A4), B1a, EKZ; Bus EKZ,

Figure 4.5: The three edge links involving only simplices. Below are ploé/topes they appear in.
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}

fo 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

EKZ 1 1 3 3 6 3 2 1 1 0 0 0 OO0 O 0 21
A 1 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1 1 402
B 1 1 5 16 102 628 4877 ... many

Table 4.2: The number of combinatorially fiferent possibilities of gluing > 0 simplices onto a
facet of(1,4, such that thé=-construction can be applied to the result.

The first row lists the possibilities allowed in the constioie of Eppstein, Kuperberg, and Ziegler,
the second row (types A) the possibilities for our constarcif we only glue simplices onto facets
of (4, and the third row (types B) shows the number dfetient types if we successively glue
simplices without this restriction.

(1) the 24-cell fork = 0,

(2) theE-construction EKZ of a stacked cross polytope,

(3) and theE-construction EKZ) of a cross polytope with two stacked facets.
There are three varianis= 1, 2, 3 of this polytope obtained by Eppstein,
Kuperberg, and Ziegler. By our construction we obtain oneare combi-
natorially diferent — varianti3.

In Theorem 11 and Section 3.3 of their paper, Eppstein, Kagrgr and Ziegler
construct two infinite families of (2)-polytopes, which were the first of their kind.
The first series of (2)-polytopes contains polytopes with flag vector

(54n - 30,252 — 156 252n — 156 54n — 30; 36(h — 216)

forn > 1. They are a special case of our family in Theoram.15for d = 4. It
uses the edge link shown in Figuze21at the gluing ridges.

E(0a), EKZ,, EKZ) EKZ,, EKZ) EKZY)

Figure 4.6: The three possible edge links involving one square, and ahgqpes they appear in.
The polytopes have also links involving only the triangld-ajure4.5.
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The second family stems from a gluing of 600-cells. For ttiey modify the
600-cells by truncating vertices, as otherwise the andlédseagluing edges ar@
— which is too large. The series Bfpolytopes obtained from this has flag vector

(6660 + 54,3360 + 240 3360n + 240, 6661 + 54; 4692 + 348)

for n > 0. There are no polytopes similar to the 600-cell in highenetsions.
Hence, this family cannot be lifted to dimensiaths> 4 to produce a family of
(2,d — 2)-polytopes.

They further elaborate this gluing construction with 6@dis: By using proper-
ties of the symmetry group and semi-regular polytopes ttegtify subsets of the
vertices that can be truncated and the resulting facet giiigda copy of another
truncated 600-cell. This results in a, @-polytope EKZ,; with 459360 vertices
and 2319120 edges. At that time, Ei4vas the fattest (in the sense of Defini-
tion 4.2.7 known polytope, with a fatness of roughly088. This has sparked a
small race for fatter 4-polytopes, which produced seversiits of this thesis as a
“side dfect”. With Ejq10 it contains a fatter polytope, but there are already other,
even fatter, polytopes found by Ziegl&Z].

4.3.5 WERNER'S ExampLE

Recently, Wernerg8] found a new small and highly symmetric self-dua) Z2
polytopeW, with 9 vertices and 26 edges. See Figdréfor the coordinates and a
Schlegel diagram\\j is a self-dual, 2-simple and 2-simplicial 4-polytope.

Its facets are one octahedron, six stacked simplices @npigls over a triangle),
and two simplices. The octahedron is incident to all otheefs, and the two
simplices are on two opposite faces of the octahedron. atlkstd simplices meet
in a vertex of degree eight (the octahedron in the dual ppB)to

4.3.3 Remark [Wg is on |;]. The polytopeW, lies on the rayl; = flag(As) +
A(1,4,4,1;6) of the list of seven raysL(4.9 in the boundary of the flag vector
cone of 4-polytopes. See also Figurd 8 There are only two further polytopes
known lying on this ray, thesimplex and thehypersimplex There is, however,
some hope to find more. See the next section for this.

None of the polytopes obtained from tleconstruction can lie on this ray,
except the hypersimplex. This follows from the followinggle observation. Any
polytope onl; must be 2-simple and 2-simplicial. So, if it is a result of te
construction, then it is (at least combinatorially) ob&drviaE; from a simplicial
4-polytope. A simplicial 4-polytop® has anf-vector of the form &, a + b, 2b, b).
Hence,E;(P) has thef-vector @+ b, 6a, 6a, a+ b). Lying onl, implies

6a - 10

———— =4 andtherefore a+5=2h.
a+b-5
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The only simplicial 4-polytope satisfying this, is the silep E; applied to it yields
the hypersimplex.

Werner found this polytope via a “reverse” shelling apptoachis approach
attempts to find new candidates for face lattices oRJzolytopes by trying to
build up such a lattice along the inverse of a shelling. Treedeis done with a
computer using a client for theolymake package. It enumerates, @-lattices
obtainable with a previously fixed set of simplicial facepay, i.e. a fixed list of
simplicial 3-polytopes.

The discovery of this polytope lead us to the following nicer{-)existence
theorem. Seed/] for a more thorough treatment.

4.3.4 Taeorem. The only2-simple and2-simplicial 4-polytope with eight or less
vertices is the simplex.

In other words, nine is the minimal number of vertices a monat 2-simple
and 2-simplicial 4-polytope must have, and this numbenarsed by the polytope
Ws,. Compare this also to the next theorem.

Proof of Theorend.3.4 Assume there is a 2-simple and 2-simplicial 4-polytépe
with less than nine verticesftierent from the simplex. The only 4-polytope with
five vertices is the simplex, so it must have 6, 7 or 8 vertices.

P cannot be simplicial by Propositiah2.27 so it has at least one facet with
five or more vertices. Let be such a facet d?. By 2-simplicity, F is simplicial
with f-vector @, 3a— 6,2a—4), fora > 5.

[-2 -2 -2 2]
[-6 0 0 0
| o -6 0 0
| o 0 -6 0]
[o o o g
[o o 6 0
[o 6 0 0
|6 0 0 0
[2 2 2 2

Figure 4.7: The second smallest (2)-polytope, and the first non-trivial such. Only the simple
has less vertices.
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Hence, the dual polytope* has a vertex of degreea2- 4 > 6, soP” has at
least 22— 3 > 7 vertices, andP has at least2— 3 > 7 facets. A (22)-polytope has
as many vertices as it has facetsPsbas at least2— 3 vertices. By assumption,
thisis less or equal to eight, so any facePdias at most 5 vertices. There are only
two simplicial 3-polytopes with five or less vertices, whete the simplex and the
stacked simplex. We denote these two possible facet typas agpdA,.

F is not the simplex, s& is of typeA,. F has three verticeg,, v, andv; of
degree four, and two verticas andw, of degree three. See Figufe8(a)for an
illustration. The dual facet t@, has a vertex of degree four and thus is of type
by 2-simplicity. Similarly forv, andvs.

So around each of;, v, andvs there are five facets — one of whichks— and
two incident edges which are not edged-ofSovs, v,, andvs are each incident to
two further vertices not contained k. See Figurel.8(b)for an illustration of the
vertex link ofv; (up to symmetry). By 2-simplicity, two adjacent verticeslefyree
four can share one of the two additional vertices in theighlkourhood, but not
both. So we have at least53 = 8 vertices inP.

In the star ofv; are two facets of typ@, glued on the triangle3; and T,
in such a way, that; is a vertex of degree 4 in them. If we consider the triangle
spanned by, v,, andv; as the “equator” oF, then eitheil; is above and’, below
the equator, or vice versa. The same is truevicandv,, so the three facets ¢t

Wy

F
Vo W1
T2
V3 F
Uo Ug
Vi
Ta
Wo W2 V3
(a) The facetr of P. (b) The link of a vertexv of degree 4 in a\;

with other verticesy, .. ., V.

Figure 4.8: Facets of small (2)-polytopes I.
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adjacent to the three trianglesfabove the equator must contain three vertices of
degree 4. The same holds for the three facets adjacénb&dow the equator.

A facet of typeA, has two vertices of degree 4 in each of its 2-faces (see
Figure4.9), so there are at least two such facEtsand F, above, and two such
facetsF, andF| below the equator.

Now F, andF/ each have two of its vertices of degree 4 adjaceft, tiout only
three of them can be incident to the equator, so eithesr F, must havew; as a
vertex of degree 4. Similarlyy, is a vertex of degree 4 in eith&t, or F|.

So in P2 the vertexw; of F corresponds to a facet of typg®. Hence it is
incident to five facets if?. Up to now, we have identified only four of them: These
areF and the three facets adjacent to a triangl€ @bntainingw,. So there is one
more facet’ of P intersecting= only in w;. The same holds fox.

Counting facets, we have six facets intersectnm a triangle,F itself, and
two facets intersecting in w; andw,. But P has only eight facets. O

Any simplicial 3-polytopeS with seven vertices has ten triangular faces. So, if
S is a facet of a 4-polytopP, thenP* has a vertex of degree ten., @-polytopes
have as many facets as they have vertices. Hence,23-@lytopeP with only
nine vertices cannot have a facet with seven or more vertithss, a facef of
P can only have four (the simplex), five (the stacked simplex}ix vertices (the
twice stacked simplex or the cross polytope).

a )

Figure 4.9: Facets of small (2)-polytopes II: A facet of typd, glued on a triangl@ with vertices
a3, a andag. The verticed; andb, are added.
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4.3.5 ReorosiTion. W is the only(2, 2)-polytope with nine vertices having an
octahedral facet and no other facet with six vertices.

Proof. Let O be the octahedral facet & P has eight further facets, ar@ has
eight 2-faces, so all other facets Bfare incident toO. All vertices of O have
degree four, so the vertex links all look like the one showRigure4.8(b) where
V1, Vo, V3, W1 andws, are vertices o0.

Hence, around any vertaxof O we have to have two facets in whiehis a
vertex of degree four (i.e. stacked simplices, as there isther octahedron by
assumption) at diagonally opposed triangles.

Each triangle in a stacked simplex is adjacent to two vestafedegree 4. Fur-
ther, O has six vertices, so there are precisely six stacked siegbajacent to
O, and the remaining two facets are simplices. Up symmeteyetiis only one
possibility to distribute these six stacked simplices aht eight triangles of the
octahedron, see FigufelQ This is the choice realised \W. |

In [67] we prove thatg is in fact the only (22)-polytope with nine vertices.
The proof uses similar arguments as the ones used in the aboywoofs, but is
much more involved.

4.3.6 TueoreMm. The polytope WW/is the only(2, 2)-polytope with nine vertices.o

In addition to Theoremt.3.4and Propositiort.3.50ne has to show for the
proof, that a (22)-polytope with nine vertices has precisely one facet \gith
vertices, and that this facet cannot be the twice stackeplekn

Aq

v ——\

Figure 4.10: The distribution of 6 stacked simplicas and 2 simpliceg; onto the octahedral facet
(unique up to symmetry). The incidences of vertices of dedria A, are indicated with arrows.
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Further Constructions and Special Polytopes

4.3.6 SME IDEAS TOWARDS A GENERALISED E-CONSTRUCTION

There are some promising steps towards a generalisatidmedE-tonstruction.
These were inspired by the polytoyé from the previous section.

The idea for the generalised version is the following. Waerigtshere to the
caset = d — 2 for ad-polytopeP. TheE-Construction produces a polytope whose
facets are bipyramids over the ridgesRofWe can take a slightly ffierent (local)
view on this. Assume that the polytopehas a faceF that is a simplex. Choose
asubseRy, ..., R; of the ridges of° adjacent td- and place a new vertexabove
F in such a way, that lies in the facet hyperplanes of the facets adjacefft o
Ri, ..., Rs, and below all others. If we choosesuch that it is not contained in an
affine subspace defined bykadimensional face oP for somek < d — 2 (so the
chosen ridges, or some subset of them, should better nos@atein a vertex of
degred of P), then we have achieved the following:

¢ All facets adjacent t& via one of the ridgeR;, . . ., Rs are turned into facets
that are stacked above that ridge.
¢ For all ridges ofF notinRy,..., Rs we obtain one new facet fd&, which is
a simplex.
See Figuret.11for an example. The degree of ath« 3)-facee of F changes by
r —1, wherer is the number of adjacent ridges not améfig. . ., Rs. The polytope
W is obtained by this construction from a pyramid ougrby choosing a paiF,
andF; of opposite simplices (i.e. facets that are pyramids overcatfof(]; and
intersect only in the apex). For both facets, the list of eslghould contain those,
that are pyramids over an edgeldf, but not the bottom 2-face containedlh.
In principle, we are not restricted to applying this constian to simplicial
facets, and we have applications in whi€lis not a simplex. However, the fadet
remains a facet of the new polytope, and if we want to obtaiaantgtric realisa-

Ry

Figure 4.11: A generalised version of the-construction: The top facet is the chosen faeeand
the big vertex has been added in the hyperplanes of the lgftigint facet.
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tion of the polytope from this construction we have to adfhstnormal vector of

F. Hence, in the case thktis not a simplex, we have to assure, that the combina-
torial properties of the polytope do not change at verti¢ds that are not involved

in the actual construction. This is in particular possiblaése vertices are simple
vertices inP.

So far, with the help of this construction we produced one (&®)-polytope
with 16 vertices and 56 edges. It is obtained frép by choosing eight of its
facets, and in each facet three adjacent ridges. If one esdbs facets suitably,
then one has only in the last step to deal with a facet whiclotisrsimplex, but a
stacked simplex from a previous step in the constructiorthihcase, the vertex
of the facet not involved in the construction is simple. A [8glel diagram of the
dual of this polytope is shown in Figurel2 We can produce several face lattices
of PL spheres that lie — just like the polytop® of the previous section — on
the rayl; of the flag vector cone of 4-polytopes (see Seciigh2for the relevant
definitions).

A precise description of this construction will be giverssidere, together with
criteria for polytopal realisability of the resulting sphs.

Figure 4.12: A Schlegel diagram of the “broken cube”, which is the dualta polytope with
16 vertices obtained from the generaligégonstruction applied t@l4. It has 16 vertices and 56
edges.
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Summary of Known Examples

4.4 SIMMARY OF KNOWN ExXAMPLES

Here is a summary on the sizes and types oR)olytopes obtained in Chap-
ters2-4, together with some computational data.

We collect small examples of our constructions, all the @nésd examples
of previously known «, s)-polytopes, (22)-polytopes, and other polytopes with
special properties now obtainable from tBeonstruction in five tables:

¢ Table4.4lists all known examples of (2)-polytopes up to 50 vertices.

¢ Table 4.5 lists some previously known examples (with more than 50 ver-

tices).

¢ Table4.6lists (r, s)-polytopes in dimensiod > 4 that have, s > 2.

¢ Table4.7lists some examples of infinite series of 22-polytopes.

¢ Table4.8lists some examples of polytopes that can be obtained viaanr

struction, but that are neithersimple nors-simplicial for some, s > 2.
Any 2-simple and 2-simplicial 4-polytope has a flag vectothaf special form

(fo, fa, f1, fo; f1 + 210).

Hencef, and f; sufice, and we list them in the flag vector column of the tables.

Let P be a simple polytope. If we havewertex preservingin the sense of
Definition 3.2.4 geometric realisation d&,(P), then we can compute a realisation
of E»(P), whereP is obtained fromP by truncating a vertex. This follows from
Propositior?2.5.13 Dually, if we knowD(P) for a simplicial polytope, then we can
computeD(P) for any polytopeP obtained fromP by stacking one of its facets.

Truncation preserves simplicity, and stacking preserveplgiality, so we can
apply these two operations recursively. There are usuallgral combinatorially
different ways of truncating a vertex or stacking a facet of atpply. These lead
to combinatorially diferentE-polytopes with the same flag vector. We use the
following list of small simple 4-polytopes to generate thstftable.

AV C3 X C6 C5 X C5 C4 X Cg
C3 X C3 Cy x C5 C3 X Cg C3 X C11
C3><C4 C3><C7 C4><C7 C5><C7
C3XC5 C4XC6 C5XC6 CGXCG

Oy C3 X Cg Cg X ClO C4 X Cg

The dual of a (22)-polytope is also a (2)-polytope. We include only one of the
two variants in the table.

The listin Tablet.4is a complete list of (2)-polytopes that result from tHe-
construction with up to 19 vertices. This can be seen by lupkt small simplicial
4-polytopes. (Dually, and more in the flavour of our consinrg one could as
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well look at simple polytopes. However, historically, tHassification results for
4-polytopes used simpliciality.) By thg Theorem of Billera and Lee (seé/]
and [L5]), a simplicial 4-polytope with 5 n vertices has at least-53n facets.E;
applied to it has thereforé > 5+ n+ 5+ 3n = 10+ 4n vertices and the same
number of facets. Hence, it Sices to look at simplicial 4-polytopes with up to
seven vertices. These were classified by Griunbadf [

(1) The one simplicial 4-polytope with five vertices is thepiex, and we obtain
the hypersimplex from it.

(2) The two simplicial 4-polytopes with six vertices are thipyramid over a
triangle, and the sum of two triangles. Dually, these arepiti@n over a
triangle, and the product of two triangles. The first leadBrxen’s example
B4, the second t&3; ;= E»(Cs x C3).

(3) Among the five simplicial 4-polytopes with 7 vertices, ar@ly have to look
at those with up to twelve facets. These are the twice staskaglex,
the join of a triangle and a square, and the dual of a trungateduct of
two triangles. The first leads to a,@-polytope with 18 vertices, which
is Ex(tr(A; 2 vertices)). The last two result in twoftBrent (22)-polytopes
with 19 vertices, which ar&z, = E;(C3 x Cy4) andE,(tr(Cs x Cs; v)).

There are two more simplicial 4-polytopes with seven vegjdeading to (2)-
spheres with 20 and 21 vertices. However, polytopality iknarmvn for both of
them. These two are the two smallest such examples, and cdedoeibed as
follows:

¢ The dual of awedge over a triangular face of a truncated prigna triangle
is a simplicial 4-polytope withf -vector (7 20, 26, 13). TheE;-construction
applied to this produces a CW,@)-sphere with 20 vertices and 78 edges.

¢ The cyclic 4-polytope on seven vertices Hagector (7 21, 28, 14), resulting
ina CW (2 2)-sphere with 21 vertices and 84 edges.

The 37 simplicial 4-polytopes on 8 vertices were classifigd@tnbaum and
Sreedharan4p]. They lead to (22)-spheres that have between 22 and 25 ver-
tices. There are many more simplicial 4-polytopes with %iges, leading to (2)-
spheres with 26 and more vertices. For most of them it is uwknohether they
can be realised as polytopes.

Recently, Werner has found a new 22-sphere with 14 vertices and 49 edges,
that is not a result of th&-construction. 7 of its facets are stacked simplices, and
7 are octahedra. Polytopality is unknown. More small exaspif (2 2)-spheres
with interesting properties result from the generalisatibtheE-construction. See
Sectiord.3.6for this.

Using Propositior2.5.13for a simple polytope and it&-construction we can
createreally large numbers of combinatoriallyfeerent (22)-polytopes with the
same flag vector. We have met this already in Secti@¥ where we computed
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Ay k0 1 2 3 4 5 6 7 8

fo 10 14 18 22 26 30 34 38 42
# 1 3 7 30 131 795 5152

CaxCs g 0 1 2 3 4 5 6
fo 15 19 23 27 31 35 39
# 1 1 3 14 82 570 4401

Table 4.3: The same numbers as in the last row of Tah@ but for the simplex and the product
C3 x C3 instead of the cross polytope: The numbers of combinatpafferent (22)-polytopes
obtained by applying thE&,-construction to &-fold truncation.

the number of possible ways of successively stacking faufdtse cross polytope.
With six stacking operations, we obtain 487 ftelient (22)-polytopes. Truncat-
ing six vertices of the polytop€; x C, leads to 14301 dierent polytopes, and
consequently to the same number dfelient (22)-polytopes with 43 vertices.

We have computed similar numbers for the simplex, and theymtoof two tri-
angles: These are the two smallest simple polytopes (trendesimple polytope
with six vertices is a truncation of the simplex). Tall&8lists the numbers of com-
binatorially diferent types of (2)-polytopes obtained by truncatikgyertices, for
k < 8 in the case of the simplex, aikdk 6 in the cas€; x Cs. All are realisable.

4.4.1 GMPUTATIONAL DATA

Files in thepolymake data format for most of the examples listed in Tadblé(all
those where explicit numbers offtérent types are given) and several othery are at
http://www.math.tu-berlin.de/~paffenho/polytopes/2s2s/. Many of
the files contain geometric coordinates (in particular foingtances up to 22 ver-
tices) in addition to the combinatorial description.

The polymake package is a computer system by Gawrilow and Jos@4g) |
that provides powerful routines for the combinatorial aegmetric treatment of
polytopes. It can be obtained lattp://www.math. tu-berlin.de/polymake
and is free software for academic use. A client for the pokenpackage that
implements the application of the combinatorial versioth&E-construction —
that is, as presented in Definiti@n3.1— is available from the author. It produces
the vertex-facet-incidence matrix, it does not check mpgtity.
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FLAG VECTORS AND ENUMERATIONS

(fo, f1) E-CONSTRUCTION TYPES NAME
(5,10) — 1 simplex
(9,26) — 1 WERNER'S polytopeWy
(10, 30) Ea(A4) 1 hypersimplex
(10, 30) D, (simplex) 1 hypersimplek
(14, 48) Ex(tr(A4; V) = Ex(Pr(As)) 1 BrADEN'S polytopeBi4
(15,54) E2(Cs x C3) 1
(16,56) 1 The “broken cube”
(18,66) Ex(tr(A4; 2 vertices)) 1
(19,72) E2(C3 x Cy) 1
E,(tr(Cs x Cgs; V) 1
(22,84) Ex(tr(A4; 3 vertices)) 3
(23,90) E2(Cs x Cs)
Ex(tr(Cs x Cy; V)
Ex(tr(Cs x Cgs; 2 vertices)) 3
(24,96) Ex(O4) 1 24-cell
(26,102) Ex(tr(A4; 4 vertices)) 7
(27,108) E2(C3 % Cg) 1 EKZ;
(27,108) Ex(tr(C3 x Cs; V)) 1
Ex(tr(Cs x Cy; 2 vertices)) 7
Ex(tr(Cs x Cgs; 3 vertices)) 14
(28,114) Ex(tr(Og; v)) EKZ,
(29,120) E2(C4 x Cs)
(30,120) Ex(tr(A4; 5 vertices)) 30
(31,126) E2(C3 x Cy) 1
E,(tr(Cs x Ce; V) 1
Ex(tr(C3 x Cs; 2 vertices)) 7
Ex(tr(C3 x C4; 3 vertices)) 33
Ex(tr(C3 x Cgs; 4 vertices)) 82
(32 132) Ex(tr(Qa; va, V2)) 3 EKZé, i=123
for v, vo non-adjacent
(32,132) Eo(tr(dgs; vi, Vo)) 1 of for v, v, adjacent
(33,138) E2(tr(C4 % Cs; V) 1

Table 4.4: Known (2 2)-polytopes up to 50 vertices.
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(fo, f1) E-CONSTRUCTION TYPES NAME
(34,138) Ex(tr(A4; 6 vertices)) 131
(34,144) E2(C4 x Cp) 1
(35,144) E2(C3 x Cg)

Ex(tr(C3 x C7;V))
Ex(tr(C3 x Cg; 2 vertices)) 9
Ex(tr(Cs x Cs; 3 vertices)) 39
Ex(tr(Cs x Cy; 4 vertices)) 239
Ex(tr(C3 x Cgs; 5 vertices)) 570
(35,150) E2(Cs x Cs) 1
(36, 150) Ex(tr(Oy; 3 vertices)) 16
(37,156) Ex(tr(C4 x Cs; 2 vertices)) 10
(38, 156) Ex(tr(A4; 7 vertices)) 795
(38,162) E,(tr(C4 x Cg; V)) 1
(39,162) E2(Cs x Cy) 1
E,(tr(Cs x Cg; V) 1
Ex(tr(Cs x Cy; 2 vertices)) 9
Ex(tr(C3 x Cg; 3 vertices)) 50
E,(tr(Cs x Cs; 4 vertices)) 305
Ex(tr(Cs x Cy; 5 vertices)) 1751
Ex(tr(C3 x Cg; 6 vertices)) 4401
(39,168) E2(C4 x C7) 1
Ex(tr(Cs x Cs; V) 1
(40,168) Ex(tr(Oy; 4 vertices)) 102
(41, 174) Ex(tr(C4 x Cs; 3 vertices)) 57
(41,180) E2(Cs x Cp) 1
(42,174) Ex(tr(A4; 8 vertices)) 5152
(42,180) Ex(04+04) 1
(42,180) Ex(tr(C4 x Cg; 2 vertices)) 13
(43,180) E2(Cs x Cy0)
Ea(tr(Cs x Co; V))
Ex(tr(C3 x Cg; 2 vertices)) 11
Ex(tr(Cs x Cy; 3 vertices)) 57

Table 4.4: Known (2 2)-polytopes up to 50 vertices.
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(fo, f1) E-CONSTRUCTION TYPES NAME
Ex(tr(Cs x Cg; 4 vertices)) 423
Ex(tr(C3 x Cs; 5 vertices)) 2485
Ex(tr(Cs x Cy4; 6 vertices)) 14301
Ex(tr(Cs x Cgs; 7 vertices)) many
(43,186) Ex(tr(C4 X C7;V)) 1
Ex(tr(Cs x Cs; 2 vertices)) 6
(44,186) Ex(tr(og; 5 vertices)) 628
(44,192) E2(C4 x Cg) 1
(45,192) Ex(tr(C4 x Cs; 4 vertices)) 517
(45,198) E(tr(Cs x Cs; V)) 1
(46,192) Ea(tr(A4; 9 vertices)) many
(46,198) E2(tr(C4 x Cg; 3 vertices)) 75
(47,198) E2(Cs x Cq1) 1
EL(tr(Cs x Cy0; V) 1
Ex(tr(C3 x Cg; 2 vertices)) 11
Ex(tr(C3 x Cg; 3 vertices)) 69
Ex(tr(C3 x Cy; 4 vertices)) 525
Ex(tr(C3 x Cg; 5 vertices)) 3567
Ex(tr(C3 x Cs; 6 vertices)) many
Ex(tr(C3 x C4; 7 vertices)) many
Ex(tr(C3 x Cgs; 8 vertices)) many
(47,204) Ex(tr(C4 x Cy; 2 vertices)) 88
Ex(tr(Cs x Cs; 3 vertices)) 38
(47,210) E2(Cs x C7) 1
(48,204) Ex(tr(og4; 6 vertices)) 4877
(48,210) E,(tr(C4 x Cg; V)) 1
(48,216) E2(Ce x Cp) 1
(49,210) Ex(tr(C4 x Cs; 5 vertices)) 4498
(49,216) E2(C4 x Cy) 1
Ex(tr(Cs x Cg; 2 vertices)) 13
(50,210) Ex(tr(A4; 10 vertices)) many
(50,216) Ex(tr(C4 x Ce; 4 vertices)) 746

Table 4.4: Known (2 2)-polytopes up to 50 vertices.
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Table 4.5: Some of the previously known (2)-polytopes discussed in the text, and those not frontEteenstruction.

NAME FLAG VECTOR GosseT—ELTE GRUNBAUM GEvay E-ConsTrUCTION
simplex (510) 030 = 003 Ky = K{ A(4,1) = A4,4)

Wo (9,26)

hypersimplex (1030) A(4,2) = A4, 3) Ez(Ayg)
hypersimplei (10,30) Oz = 021 K3 = K3 D (simplex)

Bi4 (14,48) Ex(prism overAs)
24-cell (24 96) My B(4,2) Eo(04)

EKZ; (27,108) E2(C3 x Cg)
EKZ, (28,114) E,(Stackedly)
EkZD,j=1,2,3 (32 132) E,(Twice Stackedl,)
Dipyramidal 720-cell (72(B600) G(4,2) E»(120-cell)

EKZtat

(4593602319120)
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Table 4.6: A list of all previously known examples of (s)-polytopes in dimensiod > 4. The column for the type contains the paird.

NAME FLAG VECTOR TYPE GOSSET-ELTE GronBauM  GEVAY E-CoNSTRUCTION
simplex (d,d) Qy10=004d-1 K¢=KJ  A(d,1)=A(d,d) ES ,(Ag)?
hypersimplices (d-2,2) Pr2<k<d-1 K¢ A(d k+1)=A(d,d-k-1) EJ ,(Ag)*
dual half cubes d-33) 1431 Nd
(d-2,2) m¢ Eq-2(Ng)* = E2(0q)*
(3.3) L.
(4.3) I
(5,3) L
ScHLAFLI polytope (27216 720,
108Q 648 99) (24) 21
(B4) Z;
Hasse polytope (56756,40321008Q
120966048 702) (25) 31
Gosser polytope (2406720 6048Q
241920483840
48384020736019440) (26) 41
Eg-polytope (2160...,17520) (44) 21
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Table 4.7: The infinite series of (2)-polytopes.

FAMILY OF POLYTOPES

FLAG VECTOR

REFERENCE

Stacked polytopes
Stack of cross polytopes
stack of cross polytopes
with glued simplices
Stack of cut 600-cells

Products of polygons

(204n,30+ 18n,30+ 18n,10+ 4n; 50 + 26n)

(618n,12+ 84n,12+ 84n6 + 18n; 24+ 12(n)

(54— 30,2520 — 156, 252n — 156, 54n — 30; ??7?)
(666+ 54,3360 + 240, 3360 + 204 6661 + 54)

nfm+ m+ n, 6mn 6mn mMn+ M+ n; 8mn+ 2(mM+ n))

Corollary2.5.11

Proposition2.5.12

Theorer.5.15
[33, Sec. 3.3]

Theorem3.4.1
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Table 4.8: A (not exhaustive) list of previously known polytopes thahde obtained via thE-construction or appear otherwise in this context, but

that are neither-simple nors-simplicial forr, s > 2.

NAME

FLAG VECTOR

GrvAy

E-CoNSTRUCTION

hypercube

cross polytope

(1632, 24, 8; 64)
(24,96, 88, 32; 160)

(24,32, 16; 64)
(48,240, 288 96; 480)

E3(04) = Eo(H4)
B(4,3)
B(4,4)
F(4,2)=F(4,3)

E1(04) = E2(04)

E1(24-cell) = Ex(24-cell)

120-cell (600120Q 720,120; 2400) G(4,1)

Dipyramidal 720-cell (720312Q 360Q 1200; 6000) G(4,3) E»(600-cell)= E;(120-cell)
600-cell (120720,120Q 600; 2400) G(4,4)

hypercube B(d, d) Eg-1(0a) = Eo(Ua)

cross polytope B(d, 1)

B(d, k + 1)

Ex(04) = Eg-k-1(0q)
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BIER SPHERES

(yoINT WORK WITH ANDERS BIORNER, JONAS SJOSTRAND, AND GUNTER M. ZIEGLER)



BIER SPHERES

5.1 INTRODUCTION

This chapter is independent of the previous three chaptetheE-construction.
We move to a new combinatorial construction, 8ier construction which is a
construction defined for arbitrary finite bounded poset® fHsults presented here
are joint work with Anders Bjorner, Jonas Sjostrand, andt&iiM. Ziegler R1].

The Bier construction has some formal similarity with tBeconstruction of
Definition 2.3.1 It takes all those intervals of a podetas the new elements of
a poset Bier, 1), that have their minimal elements in a given idéand their
maximal elements outside this ideal. This poset is ordeyetbersed inclusion.
However, the construction serves a completeffedent aim, and the results we
present in this chapter have a much more combinatorial ftavou

Starting point of our construction are unpublished note§taimas Bier 13],
where he describes a simple construction for a large numbsimplicial PL
spheres. His construction associates a simplioial 2)-sphereS with 2n vertices
to any simplicial complex c 2" onn vertices, by forming theeleted joirof the
complexA with its combinatorial Alexander dud* := {o-c [n] : [n] \ o & A}.

Thomas Bier verified that any addition of a new face to the &oigh com-
plex A amounts to a bistellar flip in the spheBedefined above. A short published
account of this proof is given in iliMatousek’s book §0, Sect. 5.6]. Mark de
Longueville B1] recently found a simple alternative proof. We show thad tinig-
inal construction is a special case of ours.

For our generalised version of Bier’s construction we obsaveral new prop-
erties. This includes in particular the following results.

¢ We extend Bier’s construction and define more geried poset8Bier(P, 1),
whereP is an arbitrary bounded poset of finite length dnd P is a proper
order ideal.

¢ The order complex of BieK 1) is PL homeomorphic to the order complex
of P. It may be obtained by a sequence of stellar subdivisiondgégin the
order complex oP.

¢ |f Pis an Eulerian or Cohen-Macaulay poset or lattice, then(Bi&y will
have that property as well.

¢ |f Pis the face lattice of a regular PL-sphe$ethen the lattices BieR |)
are again face lattices of regular PL-spheres, the “Bieesgdi of S.

¢ |f we takeP to be the Boolean algeb, then this may be interpreted as the
face lattice of ther{— 1)-simplex, and the idedlin B, may consequently be
interpreted as an abstract simplicial complexThis is the special setting of
the original construction described by Bier.

¢ The simplicial PL spheres Bidsf, A) are shellable.

¢ The number of these spheres is so large, thanfes 1 most of the Bier
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spheres BieB,,, A) are not realisable as polytopes. Thus, Bier’s constractio
provides “many shellable spheres” in the sense of Kélgignd Lee (6.
¢ Similarly, for special choices of the simplicial compléxin B,, and even
n, we obtain a large number of nearly neighbourly and cegtsalmmetric
(n— 2)-spheres onrvertices.
¢ Theg-vector of a Bier sphere Bidg(, A) can be expressed explicitly in terms
of the f-vector ofA. Theseg-vectors ar&K-sequences. Hence, they satisfy
a strong form of the-conjecture for spheres. Additionally, the generalised
lower bound conjecture is verified for Bier spheres.
The study of posets of intervals in a given poset, orderestlysion, goes back to
a problem posed by Lindstrom i T]. See Bjorner’'s work16, 19| for some more
results on interval posets.

5.2 BiER POSETS AND PROPERTIES

All posets that we consider in this chapter are bounded and fiaite length.
Recall, that andealin P is a subset c P such thatx<y for x € P andy € |
implies thatx € I. An ideal isproperif neitherl = P norl = (. In the following
we usually denote elements of the idéat P by x, x; or X' and elements in the
complemen® \ | byy,y;, ory;.

Let P be a finite bounded poset ahd- P a proper ideal. Roughly, the Bier
poset BierP, 1) is a poset consisting of all intervals y] c P that start “inside” the
ideall and end “outside” of it. We can order this set by reversedisioh. Here is
the precise definition.

5.2.1 DerintrioN [Bier poset]. Let P be a bounded poset of finite length and P
a proper ideal. Define a new poset BRil() as follows:
Its elements are

¢ allintervals [x,y] € P such thatx e | andy ¢ |,

¢ together with an additional top elemeht

The order is given byr <1 for all @ € Bier(P,1) and reversed inclusion of
intervals inP, which meansX, y’] <[x y] in Bier(P, 1) ifand only if X < x<y=<Y,
forall x,y, X,y € Pwith x, X € | andy,y € P\I.

The intervall = [0, 1] is the unique minimal element of Big(). Hence, the
poset BierP, 1) is bounded The construction of Bier posets has a some formal
similarity to theE-construction as defined in Definitich3.], in the sense that it
also forms a new poset out of intervals in a pdBeind orders them by reversed
inclusion. However, the following results on Bier posetséia more combinato-
rial and topological flavour, while the central aim of tReconstruction was the
geometric realisation of certain interesting polytopes.
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5.2.2 Lemma [Basic Properties of Bier Posets]. Let P be a bounded finite poset
of length n and Ic P a proper ideal.
(1) The posets P arier(P, I) have the same length.
(2) Bier(P,1) is graded if and only if P is graded.
In that case, and ipp is a rank function on P, then a rank function on
Bier(P, 1) is given by

N+ pp(X) —pply) fora=[xy], xel,yeP\I
pla) = -
n fora =1.

(3) The intervals oBier(P, I) have the following two types:

[[xy].1] = Bier([x,y].| N[xY])
[X.Y]LIxVI] = [X, 4 x[y.y]™,

wherely, y']°P denotes the intervdl, y’] with the opposite order.
(4) If Pis a lattice therBier(P, 1) is a lattice.

11

Proof. (1) A maximal chain in the poset Bid?(l) is a sequence of intervals in
P such that any two consecutive intervatsy]] c [X, y'] satisfy eitherx = X’
andy’ coversy, ory = Yy andx coversx'. Hence, if we have a chain of length
nin P, then we obtain a chain of- 1 intervals in BierP, 1) from it. Adding
1 gives the claim. See FiguBel(a)for an illustration.

(a) Bier posets preserve the length. (b) Meet and join of the two light shaded inter-
vals are the two dark shaded intervals, interpreted
as elements of the Bier poset.

Figure 5.1: The proof of Lemm&.2.2 claims (1) and @).
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(2) and @) are immediate from the definition of a Bier poset.

(4) Bier(P,1)is bounded. Hence, it flices to show that meets exist in Bier().
These are given byx[y] A [X,Y] = [XA X,y Vvyland xy] Al =[x}Y]
Figure5.1(b)shows an example. ]

5.3 BIER POSETS VIA STELLAR SUBDIVISIONS

For any bounded posé& we denote byP := P\{0, 1} the proper partof P and
by A(P) the order complex oP, that is, the abstract simplicial complex of all
chains inP. See Definitior.2.18for more background.

In this section we give a geometric interpretation of Brelf, by specifying
how its order complex may be derived from the order complef ofia stellar
subdivisions. For this, we need an explicit descriptionteflar subdivisions for
abstract simplicial complexes.

5.3.1 DxriniTiON [Stellar Subdivision]. Let A be a finite dimensional abstract
simplicial complex andF € A an non-empty face of.

Thestellar subdivisiorsd-(A) of A with respect td- is obtained by removing
from A all faces that contaifr and adding new faceS U {vg} (with a new apex
vertexvg) for all facesG that do not contaitr, but such thaG U F is a face in the
original complex.

For an edgee = {vi,V,} of A this means that in the stellar subdivision &f
with respect tee each faces € A that contain® is replaced by three new faces,
namely G\{vi}) U {Ve}, (G\{V2}) U {Ve}, and G\{v1, V»}) U {Ve}. Observe, that stellar
subdivision does not change the Euler characteristic.

The stellar subdivisions in a sequence of fakgs .., Fy of the complexA
commute, and thus may be performed in any order — or simuwizsig — if and
only if no two F;, F; are contained in a common faGeof the complex, that is, if
Fi U F; is not a face for # |.

5.3.2 Taeorem. Let P be a bounded poset of finite length and IP a proper ideal.

The order complex oBier(P, 1) is obtained from the order complex Bf by
stellar subdivision on all edges of the fofmy}, for x e I, y € P\I, x < y. These
stellar subdivisions must be performed in order of incragdength((x, y).

Proof. Let n be the length of. In the following, the elements denoted kyor
x' will be vertices ofP that are contained ih := 1\{0}, while elements denoted
by yj ory; are fromP\I. By (x,y;) we will denote the new vertex created by the
subdivision of the edgex’, y/}.

We have to verify that subdivision of all edgesA(P) collected in the sets

Ex = {{x,y} D X<y, {(xy) =k XGl—, y€|3\|_}
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fork = 1,...,n — 2 (in this order) results im\(Bier(P,1)). To prove this, we
will explicitly describe the simplicial complexd% that we obtain at intermediate
stages, i.e. after subdivision of the edge&inu - - - U Ex. The complexe§y are
notin general order complexes forOk < n— 2.

Cram. After stellar subdivision of the edges &P) in the edge sets E. .., E,
(in this order), the resulting compléx has the faces

X0 %o - X (X Y2): 06, Y5), - (X Y0 Y Y - V) (5.3.1)

where

Q) X< X< <% <Y <Yo<--<Ysg (r,s>0)
must be a strict chain if® that may be empty, but has to satigfy;, y1) >
k+1ifr >1and s> 1, while

(2) Xy <o <Gyl <Xyl (t=0)
must be a strict chain iBier(P, 1) that may be empty, but has to satisfy
(X, y;) < kift > 1, and finally

3) X<x and ¥<vy
must hold if both r and t are positive resp. if both s and t arsipee.

The conditions 1)—(3) of the claim together imply that the chains Iof are
supported on (weak) chains ihof the form

D<X<X< <X <X<...<XKIX<Y <Y, <...
<Y <SY1<VYo...<Ys<1.

In condition @) not both inequalities can hold with equality, because eflémgth
requirements forX) and @), which forr, s,t > 1 require that

K(X{’ Yt) < k< f(Xr, yl),

and thus ki, ;] € [X:, Y1].

We verify immediately that fok = 0 the description of'y given in the claim
yieldsIy = A(P), since fork = 0 the length requirement fo2) does not admit any
subdivision vertices.

Fork = n— 2 the simplices of',_, as given by the claim cannot contain both
andy;, that is, they all satisfy eithar = 0 or s = 0 or both, since otherwise
we would get a contradiction between the length requirerfeentl) and the fact
that any interval %,y.] € P can have length at most— 2. Thus, we obtain
thatI',_, = A(Bier(RP, 1)), if we identify the subdivision vertices<( y/) with the
intervals [,y in P, the elements; with the intervals §, 1] and the elements
y; € P\I with the intervals 0, y;].
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Finally, we prove the claim by verifying the induction steprh k to k + 1. It
follows from the description of the compl&k that no two edges iEy,, lie in the
same facet. Thus we can stellarly subdivide the edgés.inin arbitrary order.
Suppose the edge;(y;) of the simplex

{Xl’ LB Xl'—l’ Xl" (Xgl_’ ),;]_)’ (X,Z’ )/2)’ cee (X’E’ )/t)’ yl’ y27 ceey yS}
is contained irEg,;. Then stellar subdivision yields the three new simplices

XX, (6 Ya), (4, Y1) 06, Y0), - O Y0 Y Y, -5 s s
(X Xz X (%, Y1) (X3 Y)s (%0, o), - (G W) Yase-uYs ), and
XX (%Y, (Y1), 06 Yo)s - (G V), YooY b

All three sets then are simplices Bf, , satisfying all the conditions specified in

the claim (witht replaced byt + 1 andr or s or both reduced by 1). Also all
simplices off',; arise this way. This completes the induction step. O

The subdivision map of the previous proof can be given eitplic For this, we
just define the map

7 [IA(Bier(P 1))l — AP
which is given on the vertices df(Bier(P, 1)) by

Ix+ly O<x<y<lxelyel
[x,y] — {x O<x<y=1xely¢l
y f):x<y<i,xe|,y¢|

and is extended linearly on the simplicesAdBier(P, 1)). We have the following
simple corollaries of Theorem.3.2

5.3.3 GoroLLARY. ||A(Bier(P, 1))|| and||A(P)|| are PL homeomorphic. O

In the case wherB is the face poset of a regular PL sphere or manifold, this im-
plies that the barycentric subdivision of BiEr() may be derived from the barycen-
tric subdivision ofP by stellar subdivisions. In particular, in this case Biet{ is
again the face poset of a PL-sphere or manifold.

5.3.4 GoroLLary. If P is the face lattice of a strongly regular PL sphere then so
is Bier(P, 1). |
5.3.5 Gororrary. If P is Cohen-Macaulay then soi&er(P, ).

Proof. Being Cohen-Macaulay is a topological property (see MusnKé&] for

this), so this is immediate from the homeomorphism defineer ahe proof of
Theoren5.3.2 O
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5.4 BuLERIAN BIER POSETS

From now on we assume thBtis agradedposet of lengtm. We compute the
f-vector f(Bier(P, 1)) := (fo, f1,..., f,), wheref; denotes the elements @nk iin
the poset Bief@, I).

5.4.1 Remark. Observe, that this notation igfdy 1 from the convention in the
previous chapters. However, in the rest of this thesis ngtppes will appear
anymore, so that the index shift we have used previously dvpudt make the
following computation more complicated without any benafia later place.

The following computation of thé-vector is immediate from the definition of
the Bier poset oP.

5.4.2 RrorosiTioN [ f-Vector]. Let P be afinite graded poset of length n and P
a proper ideal. Lepp be the rank function of P. The f-vector®er(P, 1) is

fori =n

) 1
fi(Bier(R 1)) = {#{ [xyl:xely¢ln+ps(x)—ppy) =i} otherwise

In particular, fo(Bier(P,1)) = 1. |

5.4.3 Taeorem [Eulerian Bier Posets]. Let P be an Eulerian poset andd P a
proper ideal. Themier(P, 1) is also an Eulerian poset.

Proof. Let p be the rank function on the poset Bier(P, 1) is a graded poset of
the same length B by Lemmab.2.2 Hence, it stfices to prove that all intervals
of length> 1 in Bier(P, ) contain equally many odd and even rank elements, by
Theoreml.2.12

This can be done by induction. For lengif®) < 1 the claim is true. Proper
intervals of the form [k y], 1] are, in view of Lemm&b.2.2, Eulerian by induc-
tion. Proper intervals of the formX[, y'], [, y]] are Eulerian, since any product of
Eulerian posets is Eulerian, by Theorém.16

Finally the whole poset BieR |) contains the same number of odd and even
rank elements by the following computation:

Z( 1™ f.(Bier(P, 1)) = 1+Z( 1™ f.(Bier(P, 1))

-1+ Z Z( 1)/1()') —p(x)

y¢| Xel
X<y
=1+ Z Z( 1)/1()') —p(x) Z Z(_l)ﬂ(Y)—p(X) (5.4.1)
yEl X<y yel  xgl

X<y
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=1+0- Z Z(—l)”(y)"’(x) (5.4.2)
x¢l X<y
=1+0-1=0

where the first double sum i54.]) is 0 as Dr, V] is Eulerian angb(y) > 1, and the
double sum in%.4.9 is —1, as K, 1p] is Eulerian and trivial only fox = 1p. O

Alternatively, the result of the computation in this protd@follows from the
topological interpretation of BieR I) in the previous section.

5.5 SIELLABILITY OF BIER SPHERES

Now we specialise to Bier’s original setting, whéte- B, is the Boolean lattice. In
the following, we denote withy, y] and (x, n] closed and half-open sets of integers
in [n], respectively.

Any non-empty ideal in the Boolean algeliBg can be interpreted as an ab-
stract simplicial complex with at mostvertices. We denote such a complexby
throughout the rest of this chapter. We can restate the tefirof a Bier poset in
this special setting as follows:

Bier(Bn.A) = {(B.C) : 0cBcCc[n.BeACgAfu{ll,

again ordered by reversed inclusion of intervals (arab the maximal element).
Facets of BierB,, A) correspond in this notation to pairB,(C) in which the seB
differs from the se€C by only one element. Hence, we can denote the facets of
Bier(B,, A) by

(A %) = (A, AU {X}) € Bier(By, A). (5.5.1)

We write 7 (A) for the set of all facets.

The poset Bie,, A) is the face lattice of a simplicial Pln(- 2)-sphere, by
Corollary5.3.4 With the following theorem we obtain that Bi&{, A) is shellable.
This is a much stronger property, as it is known that shditgbmplies the PL-
sphericity for pseudo-manifolds (see Bjorn&g| for this result).

5.5.1 Turorem [Shellable Bier Spheres]. Let A c B, be a proper ideal in B
Then thgn — 2)-sphereBier(B,, A) is shellable.

Proof. The shellability proof is in two steps. First we show that thie

R: ¥ (A) — Bier(B,, A)

(A;X) = (AN (x,n], AU [x,n]). (5.5.2)

- 169 -



BIER SPHERES

defines aestriction operatoron the poset. That means, it induces a partition

BierB,A) = [+ [RAX.(AX],
(AXeF ()

and the precedence relation forced by this restrictionaipers acyclic. Thus, any
linear extension of the precedence relation yields a stgetirder. Compare this
definition also to Bjornerl7].

Such a restriction operator indeed defines a partition. G&msbe seen as fol-
lows: Take any elemenB(C) € Bier(B,, A). Set

x:=min{ye C\B : BU(CN[1,y]) ¢ A}
maxy e C\B : BU(C\ [y,n]) € A}

andA := BU (C N [1, x)). Then we have
An(x,NC BCACAU{x}cCCAU[xN]|

and thus B, C) is contained inR(A; X), (A; X)].

To see that the intervals in the partition do not intersechaxee to show that if
bothR(A; X) <(A’; X') andR(A’; X') <(A; x), then @; X) = (A’; X). This is a special
case of a more general fact we establish next, so we do nottghvergument here.

For any shelling order<” that would induceR as its “unique minimal new
face” restriction operator we are forced to require tha&(i4; x) <(A’; X') for two
facets A; X) and @’; X), then @; X) < (A’; X).

Figure 5.2: The face lattice the 3-simplex. The shaded elements fornbsinact simplicial com-
plexA. The bold edges define the facets of Bi(A).
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By definition,R(A; X) <(A’"; X') means that
ANn(x,nN] € A c AU{X} CAU[xN], (5.5.3)
which may be reformulated as
(AU{X})sx € A and A U{Xx C A (5.5.4)

We nowdefinethe relation A; X) < (A’; X') to hold if and only if £.5.4) holds
together with

AU{XDx € A and A U{XDsx € A (5.5.5)

Note that our set#\, A’ belong to an ideal which does not conta {x} and
A U {X}, so 6.5.9 applies if 6.5.4 does.

By thesupportof (A; X) we mean the sek U {x}. The elemenk of the support
is called itsroot element

We interpret a relationX; X) < (A’; X') as astepfrom (A; X) to (A’; X). The first
conditions of 6.5.4 and 6.5.5 say that

In each step, the elements that are deleted from the sup@ort a
< X; moreover, we must either loose some elementfrom the  (5.5.6)
support, or we must choosefrom (AU {x})y, or both.

(23;0) (0;3) (02;3)

(231) (30 ==, 1:3) (01;3)

(12;3)

Figure 5.3: The restriction operator applied to the poset and the ideals in Figure5.2. The
intervals of the partition are drawnftBrently shaded and with thick edges. The facets are marked
in the notation of $.5.1)

- 171 —



BIER SPHERES

Similarly, the second conditions 05.6.4) and 6.5.9 say that

In each step, the elements that are added to the suppost are
moreover, we must either add some elemenmntto the support, or  (5.5.7)
we must keepx in the support, or both.

Now we show that the transitive closure of the relatioidloes not contain any
cycles. So, suppose that there is a cycle,

(Ao; %0) < (Ars %) < ... < (A %) = (Ag; X0).

First assume that not all root elememisn this cycle are equal. Then by cyclic
permutation we may assume thatis the smallest root element that appears in
the cycle, and that; > Xo. Thusx, is clearly not from A U {Xo})<x,, SO by Con-
dition (5.5.9 we loose an elemenrt X, from the support ofAq; Xo) in this step.
But in all later steps the elements we add to the supportaxe> X, So the lost
element will never be retrieved. Hence we cannot have a cycle

The second possibility is that all root elements in the cyekeequal, that is,
Xo = X; = --- = X« = X. Then by ConditionsH.5.9 and £.5.7), in the whole cycle
we loose only elements x from the support, and we add only elementg. The
only way this can happen is that, when we traverse the cyoleJements are lost
and none are added, 89 = A; = - - - = Ac. Consequently, there is no cycle. O

The relation defined on the set of all paifs &) with A c [n] andx € [n]\A by
(5.5.4) alone does have cycles, such as

({1.41.2) < ({1.4).3) < (141.1) < ({1.4}.2).

This is the reason why we also require conditibrb(9 in the definition of ‘<™.

The shelling order implied by the proof of Theor&ns.1may also be described
in terms of a linear ordering. For that we associate with dacét A; x) a vector
x(A; X) € R", defined as follows:

-1 forae (AU {X})<x,
x(AjX)a =< 0 forag¢ AU({x},
+1 forae (AU {X})sx.

With this assignment, we get thad;(x) < (A’; X'), as characterised by the condi-
tions in 6.5.9 and 6.5.7), implies thaty(A; X) <iex X(A’; X'). Thus we have that
lexicographic ordering on the-vectors induces a shelling order for every Bier
sphere obtained from the Boolean poBgt
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5.6 g-VECTORS OF BIEr PosETs

In this section we derive the basic relationship betweenftivector of a Bier
sphere Bier,, A) and thef-vector of the underlying simplicial complex. The
results in this section are completely due to Anders Bjoamer Jonas Sjdstrand.

In extension of the notation of Secti@ let fi(A) denote the number of sets
of cardinalityi in a complexA. The f-vectorof a proper subcomplex c B, is
f(A) = (fo, f1, ..., fp), with fo = 1 andf, = 0.

Now letT" be a finite simplicial complex that is pure of dimensibi n — 2,
that is, such that all maximal faces have cardinatity 1. We will apply this to
I' = Bier(B,, A). We defineh;(I') by

. S ivj(N— 1- J
() = ,-Z:(_l) J(n_l_i)f,-(r) (5.6.1)

for0<i<n-1, andn(I) := 0 outside this range. Then, conversely
Sn-1-j
fil) = ,Z:;‘ (n 1 i)hj(r)-

Finally, forO<i < Ln;zlj let gi(T') := hi(T") — hi_y(T), with go(I') = 1.

Now we consider thd-, h- andg-vectors of the spherg = Bier(B,,, A). This
is an fi — 2)-dimensional shellable sphere &{A) + n — f,_1(A) vertices. So in
the usual case of; = nandf,,_.; = 0, that is, whem contains all the 1-element
subsets but nan(— 1)-element subset ofi[, we get a sphere om2vertices.

In terms of the facetsX; x) € ¥ (A) we have the following simple description
of its h-vector:

h(Bier(Bn, A) = #{(AX) € F(A) - AN (x| +[[L,Y)\Al=i} (5.6.2)

for0 <i < n-1. Thisis a consequence of the fact that we can writénttector
of a shellable complex in terms of the restriction operatdirgdd in £.5.2 as

hi(Bier(Bn. 4)) = #{ (A:X) € 7(A) : p(R(AIX) =1},

cf. Bjorner's work [L7, p. 229]. Using the rank functignof Bier(B,, A) computed
in Lemmab.2.42) transforms this into the equation i6.6.2).

5.6.1 Lemma [Dehn—Sommerville equations]. ForO<i < n-1,

hn_1_i(Bier(Bn, A)) = hi(Bier(By, A)).
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Proof. This is a direct consequence of equatibré(2. Namely, neither the defini-
tion of theh-vector nor the construction of the Bier sphere depends@noiitiering
of the ground set. Hence, we can reverse the order of the drsrtrj] and obtain

hi(Bier(Bn. A)) = #{(A;X) € F(A) : [AN[LX)[+[(xn]\Al=i}. (5.6.3)

Thus, a seA contributes tdh(Bier(Bn, A)) according to %.6.2 if and only if the
complement ofA with respect to thern(— 1)-element setr]] \ {x} contributes to
hn-1-i(Bier(Bn, A)) according t0 .6.3. ]

Theg-vector of Bier@,, A) has the following nice form.
5.6.2 Tueorem [g-Vector]. Foralli =0,...,[ %],
gi(Bier(B,,A)) = fi(A) — fui(A).

Proof. Let A2“9 be the same complex &s but viewed as sitting inside the larger
Boolean latticeB,,.1. We claim that

h(Bier(Bn.1, AM9) = hi_1(Bier(Bn, A)) + fi(A) (5.6.4)

for 0 <i < n. This can be seen from equatidng.3 as follows. The facetsX x)
of Bier(B,.1, A?9) that contribute td(Bier(B,.1, A29)) are of two kinds: either
X#n+1lorx=n+1. There ardy_;(Bier(B,, A)) of the first kind andf;(A) of the
second.

Using both equationy(6.4 and Lemméb.6.1twice we compute

gi(Bier(Bn, A)) = hi(Bier(Bn, A)) - hi—l(Bier(Bn, A))
= hiy1.i(Bier(Bn, A)) — hi_1(Bier(Bn, A))
= hyi(Bier(Bn.1, A™)) — fi(A) — hi_1(Bier(By, A))
= hi(Bier(Bn.1, A*)) — f1i(A) — hi_1(Bier(By, A))
= £(A) - fai(A). .

5.6.3 GoroLLARY. The face numbers(Bier(By, A)) of the Bier sphere depend only
on n and the dferences{A) — f._i(A).

Proof. Theg-vector determines thievector (via Lemmd.6.1), which in turn de-
termines thef-vector. |

For example, ih = 4 andf(A) = (1,3,0,0,0) or f(A) = (1,4, 3,1, 0), then we
getg(Bier(B4, A)) = (1, 3) andf(Bier(B4, A)) = (1,7, 15,10).
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5.6.4 Taeorem. Every simplicial compler C B, has a subcomplex’ such that
fi(A") = fi(A) — fnui(A)
forO<i<|3]and f(A”) = Ofori > |3].

Proof. For any simplicial compleX in B, define thed-vector byd;(A) = fi(A) —
foui(A) for 0 <'i < 5] anddi(A) = O for greateri. We construct a subcomplex
A’ C A with fi(A) = di(A) for all i.

ChooseA’ as a minimal subcomplex of with the samed-vector. We must
show thatfi(A") = O for all |5] < i < n. Suppose that there is a sete A’ with
IC| > 3. Then there is an involutiom : [n] — [n], i. e. a permutation of the ground
set of order two, such that

n(C) 2 [n] \ C, (5.6.5)

wheren(C) is the image ofC. Define a ma : B, — B, by ¢(B) = [n] \ =(B) for
all B C [n]. Observe thap satisfies the following three assertions forBlE [n]:
(1) ¢(e(B)) = B,
(2) B CB = ¢(B)2¢(B),
(3) B +l¢(B) = n.
LetK :={Be A’ : ¢(B) € A’}. We claim thatA” \ K is a simplicial complex with
the sameal-vector as\’.

First, we show that\” \ K is a complex. LeB’ C Be A’ \ K. ThenB’ € A’ so
we must show thaB’ ¢ K. Property (b) gives(B') 2 ¢(B), so we geB ¢ K =
(B¢ N = ¢(B)¢ AN = B ¢K.

LetKi ={Be K : |B|=i}for0<i < n We haved(A"\ K) = (fi(A") -
Kil) = (fa-i (A") = [Knzil) = di(A”) = (IKi| = |Kni) for 0 <'i < [ 3]. We must show that
IKi| = K| for all i. Property (a) gives thd € K & ¢(B) € K. Finally, property
(c) gives thatp is a bijection betweeK; andK,,_; for all i.

K # 0 sincep(C) = [n] \ n(C) c C by (5.6.95, whencep(C) € A" andC € K.
Thus we have found a strictly smaller subcomplex\6fwith the samed-vector.
This is a contradiction against our choice/df O

5.6.5 oroLLARY. There is a subcompleX of A such that
gi(Bier(B,, A)) = fi(A")
for0<i <%t and f(A") = Ofori > [22]. O

It is a consequence of CorollaBy6.5that theg-vector Qo, 91, . . ., 9yn-1)/2)) Of
Bier(B,, A) is aK-sequencegl. e., it satisfies the Kruskal-Katona theorem. This is
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of interest in connection with the so callgeconjecture for spheres, which sug-
gests thag-vectors of spheres aiM-sequences (satisfy Macaulay’s theorei).
sequences are a very special subclasilefequences, thugvectors (and hence
f-vectors) of Bier spheres are quite special among those ridrgetriangulated
(n—2)-spheres onr2vertices. Seed9, Ch. 8] for details concerninkj-sequences,
M-sequences angivectors.

These results also imply the following.

5.6.6 GoroLLARY [K-Sequence]. Every K-sequencél, n, ..., f) with k < [%2]
can be realised as the g-vector of a Bier sphere \&itlvertices. |

We need the notion of histellar flip for this. This is defined as follows. L&t
be a simpliciad-manifold. If Ais a d —i)-dimensional face of’, 0 <i < d, such
that link-(A) is the boundaryyB of ani-simplexB that is not a face of, then the
operationd, onT" defined by

D) := (T\(A  9B)) U (9A + B)

is called abistellar i-flip. ®A(T) is itself a simpliciald-manifold which is homeo-
morphic tol. If 0 <i < | %], then

9i+1(Pa(l)) = gina(l) +1

gj(@a() = g;() forall =i+l (5.6.6)

Furthermore, ifd is even andi
Pachner§5, p. 83].

It follows from Corollary5.6.5thatg(Bier(B,, A)) > 0. The case of equality is
characterised as follows.

g, then g;(@a()) = g;(I) forall j. See also

5.6.7 GoroLLARY. FOr2 <k < L%lj, the following are equivalent:
(1) a(Bier(By, A)) =0,
(2) fi(A) =0o0r foi(A) = ()
(3) Bier(B,, A) is obtained from the boundary complex of the- 1)-simplex via
a sequence of bistellar i-flips, withg k — 2 at every flip.

Proof. (1) = (2) : Consider the bipartite grapls,x whose edges are the pairs
(A, B) such thatA is ak-element subseB is an f — k)-element subset of], and

A c B, where the inclusion is strict sinée< n — k. ThenG, is a regular bipartite
graph (all vertices have the same degree), so by standaothimgitheoryG, x has

a complete matching. The restriction of such a matching écst#tsB in A gives
an injective mapping\,_x — Ay from faces of cardinalityy — k in A to those of
cardinalityk.
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Equality f,_«(A) = fk(A) implies thatG, x consists of two connected compo-
nents, one of which is induced ax,_x U A¢. A nontrivial such splitting cannot
happen sinc&, k is connected, so eithey,,_, and Ay are both empty, or they are
both the full families of cardinalitﬂ).

(2) = (3) : As shown in [L3] and [60, Sect. 5.6], adding andimensional face
to A produces a bistellarflip in Bier(B,, A). Now, A can be obtained from the
empty complex by addingdimensional faces. It must hold that alk k — 2 if
f«(A) = 0 (meaning that there are no faces of dimen&ied in A). The case when
foi(4) = ({) is the same by symmetry.

(3) = (1) : This follows directly from $.6.6, since the boundary of tha{ 1)-
simplex hagy-vector (10,...,0). O

A convex polytope whose boundary complex is obtained froentibundary
complex of the i — 1)-simplex via a sequence of bistelliaflips, withi < k —
2 at every flip, is callek-stacked The generalised lower bound conjectufer
polytopes claims thaf, = O for a polytope if and only if it isk-stacked. This
is still open for general polytopes. See McMullegS] for a recent discussion.
Corollary 5.6.7 shows that it is valid for those polytopes that arise via tler B
sphere construction.

5.7 MANY SPHERES

Here we show that the number of Bier spheres associated Rotbhlean poset and
an abstract simplicial complex therein is so large, thattrabthem cannot have a
convex realisation, by sheer number.

5.7.1 Rrorosrition [Many Non-Polytopal Spheres]. Let B, be the Boolean poset.
Most of the Bier sphereBier(B,, A) associated to an abstract simplicial com-
plexA on the ground sdin] have no realisation as a polytope.

Proof. For the proof it stfices to consider Bier spheres BiBs(A) for abstract
simplicial complexe4 that contain

¢ all setsA c [n] of size|Al < 2],

¢ a subcollection of the sets of sijz = Ln;zlj +1= L”%lj, and

¢ no larger faces.
Equivalently A is a complex of dimension at md_é%lj that contains the complete
(L%2] - 1)-skeleton of the simplex,.;.

There are(um’i)/zj) = (Ln’/‘ZJ) elements in th¢ ! |-level of B,. Hence, there are
at least

2in2) 22"/ v

(2n)! - (Z_en)zn
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combinatorially non-isomorphic such Bier spheres (whererough approxima-
tion ignores polynomial factors).

On the other hand, there are at mo%t*®"™) combinatorially non-isomorphic
simplicial polytopes on 2 vertices. This follows from results of Goodman and
Pollack 1] and Alon [1, Theorem 5.1]. O

The work of Kalai p2] and Lee p6] contains other constructions fonany
shellable spheres.

These “numerous” spheres are quite special in various Wgely, they are
shellable, theig-vectors arK-sequences, and for evarwe obtain in fact a large
number of “nearly neighbourly” examples, which we discustie next section.

We have defined the construction of a Bier poset for arbitpagets and have
shown that the construction produces face lattices of Pergafrom face lattices
of PL spheres. However, it remains an open problem how we xi@me the Bier
construction to obtain numerous simplicial or shellalle- 2)-spheres with more
than 2 vertices.

5.8 CeNTRALLY SYMMETRIC AND NEARLY NEIGHBOURLY SPHERES

In this section we show that, if the abstract simplicial céerp satisfies some ad-
ditional restrictions, the Bier sphere BiBy( A) is centrally symmetric ok-nearly
neighbourly, respectively.

Here are the relevant definitions. Llebe a triangulated(— 2)-sphere on &
vertices. The spherE is centrally symmetriaf it has a symmetry of order two
which fixes no face of. That means, there is a fixed point free involutioan its
vertex setV such that

(1) for every faceA of I" alsoa(A) is a face, and
(2) {x, a(X)} is not a face, for alk € V.
A subsetA C V is antipode fredf it contains no paifx, a(x)}, for x e V.

A centrally symmetric spheriéwith involutiona is k-nearly neighbourlyf all
antipode-free set& C V of size|A| < kare faces of . Equivalently]" must contain
the k — 1)-skeleton of then-dimensional cross-polytopé.is nearly neighbourly
if it is | 5% ]-nearly neighbourly. Fok > 2 the involutione is uniquely determined
by the conditionx, a(x)} ¢ T..

The concept of nearly neighbourliness for centrally syntimspheres has been
studied for centrally symmetria(— 1)-polytopes, where is of course the map
X — —X. For instance, work of Grinbaum, McMullen and Shephardn8icter,
and Burton shows that there are severe restrictiorksrearly neighbourliness in
the centrally symmetric polytope case, while existencentéresting classes of
nearly neighbourly spheres was proved by Grinbaum, Jobkasa Lutz. See
[89, p. 279] and $8, Chap. 4] for more background on this.
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The next two propositions provide a way to obtain centrajlgnmsetric and
nearly neighbourly Bier spheres. In the following, only thgecial case of an
(n— 2)-sphere with A vertices occurs (i.em = nin the above definitions).

5.8.1 ReorosiTion [Centrally Symmetric Spheres]. Let A be an abstract simpli-
cial complex on the ground spt]. If

AcA < [n\A¢A,
thenBier(By, A) is centrally symmetric.
Proof. The involutione is given by the pairing{f}, 1] «— [1, [n]\{x}]. O

5.8.2 Rrorostrion [ k-Nearly Neighbourly Spheres]. Let1l < k < L%lj. The Bier
sphereBier(By, A) is a k-nearly neighbourlyn — 2)-sphere with2n vertices if and
only if
(1) Ae A= [n]\Ag¢g A, forall AcC[n],
(2) Be A, forallBc[n], Bl <k
(and thus C¢ A for all C C [n], |C| = n— k).

Proof. The Bier sphere BieR,, A) has 2 vertices if and only ifA ¢ 2" is a
simplicial complex that contains all subsets of cardigaliand no subsets of car-
dinality n - 1.

The antipode-free vertex sets of cardinaktyn Bier(B,, A) then correspond
to intervals B,C] < B, such thatiB| + (n — |C|) = k. A setB is the minimal
element of such an interval if and onlyiB| < k, while C is a maximal element for
IC| > n—k. O

Combining the two Propositiors.8.1and5.8.2we obtain a large number of
even-dimensional nearly neighbourly centrally symmeigr spheres. Indeed, in
the case of even we get at least

2%(Ln72J)

(2n)!
non-isomorphic spheres. These are obtained from the si@ptomplexesA
which contain all sets of siz& < 3, and exactly one set from each pair of sets
Aand p]\A of size|A| = 3.

The case of oddh corresponds to an odd-dimensional sphere, or an even-

dimensional polytope. In this case, the “nearly neighbinads condition” is a
stronger restriction and hence more interesting. Howdgedd n only one in-

stance of a nearly neighbourly centrally symmetric Bier(2)-sphere with &
vertices is obtained. It occurs for the simplicial complex

A:{Ac[n]:|A|§|_gJ}.
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ZUSAMMENFASSUNG

In der vorliegenden Arbeit werden zwei neue Konstruktioe$mden fur partiell
geordnete Mengen eingefuhrt und untersucht. Einige Tédgsed Arbeit sind ge-
meinsam mit Anders Bjorner, Jonas Sjostrand und Gunter Bgl&r entstanden.

Die erste Konstruktion — die sogenanifieKonstruktion — wurde von Epp-
stein, Kuperberg, und Ziegler fur simpliziale 4-Polytopegefihrt. Hier wird sie
auf beliebige gradierte partiell geordnete Mengeasrweitert. Sie hangt von einem
Parametet zwischen 0 und -2 ab, wobe¥ die Lange vorP bezeichnet, und sie
weistP eine neue partiell geordnete MenggP) zu.

Im zweiten Kapitel der Arbeit werden grundlegende Eigeafteim dieser Kon-
struktion bewiesen. Sie bildet Eulersche Verbéande wiedesa@che ab und erhalt
ihre Lange. Fur Eulersche Verbantdewird gezeigt, dass fur,s > 2 — unter
bestimmten zusatzlichen Voraussetzunger_an- E(L) ein r-einfacher unds-
simplizialer Verband ist. Insbesonderelst »(L) 2-einfach undd — 2)-simplizial,
wennL simplizial ist.

Aus der verallgemeinerte-Konstruktion erhalt man mehrere unendliche Fa-
milien von 2-einfachen und 2-simplizialen Polytopen (ingEnden (22)-Polyto-
pe genannt). Hierzu wird di&-Konstruktion auf Seitenverbande von Polytopen
angewendet. Es werden mehrere Polytopklassen angegéipatie fdie aus der
Anwendung der Konstruktion resultierenden Verbande wi&agtenverbande von
Polytopen sind. Insbesondere wird gezeigt, dass sich dnstkaktion auf vierdi-
mensionale Stapelpolytope anwenden lal3t und sich danaesieendliche Familie
von rationalen(2, 2)-Polytopen ergibt. AuRerdem erhélt man eine unendliche F
milie von 2-einfachen undd(— 2)-simplizialend-Polytopen injeder Dimension
d > 4. Sie sind die ersten explizit konstruierten Polytopfaniimit diesen Eigen-
schaften. Bisher waren nur eine unendliche Familie vo&)Polytopen miirra-
tionalenKoordinaten sowie einendlicheAnzahl weiterer 2-einfacher und ¢ 2)-
simplizialerd-Polytope furd > 4 bekannt.

Im dritten Kapitel werden hinreichende Kriterien daftir aggben, dass sich
die Konstruktion auf Produkte von zwei Polytopen anwenddt.|Fir Produkte
von Polygonen erhalt man eine unendliche Fantlig, m, n > 3, von selbstdualen
(2, 2)-PolytopenE,, ist das 24-Zell. Fur di€,, kann man sehr flexible geometri-
sche Realisierungen angeben. Egs und E44 wird eine explizite untere Schranke
an die Dimension des Realisierungsraumes bestimmt. \WWenre> 5 und koprim
sind, dann besitzt der Seitenverband &y, Automorphismen, die nicht geome-
trisch realisierbar sind.

Das vierte Kapitel enthalt Resultate Gber ZRPolytope im Zusammenhang
mit der Klassifikation von Fahnenvektoren von 4-Polytopewis tber (22)-Po-
lytope im Verhaltnis zu anderen Polytopen. Aul3erdem weédeme Konstruktio-
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nen fir (2 2)-Polytope vorgestellt und ein Uberblick tiber alle bekanrBeispiele
von (2 2)-Polytopen mit wenigen Ecken und Uber unendliche Famdacher Po-
lytope gegeben.

Im finften Kapitel wird eine zweite neue Konstruktion auftpel geordneten
Mengen eingefihrt. Sie basiert auf einer Konstruktion,Themas Bier fir Boo-
lesche Verbande beschrieben hat. Hier wird sie auf allgeengiadierte partiell
geordnete MengeR erweitert. Sie assoziiert zu einer solchen und einem eigent
lichen Ideall in P eine neue partiell geordnete Menge BRet). WennP Seiten-
verband einer PL Spha® ist, dann ist auch BieR |) ein solcher, und zwar zu
einer PL Sphére, die durch stellare Unterteilung von Serieh erhalten werden
kann. WenrP ein Boolescher Verband ist, dann sind die erhaltenen Splséieil-
bar. Die Anzahl kombinatorisch verschiedener Bier-Sphaseso grol3, dass die
meisten von ihnen nicht polytopal sein kénnen. Fur spezhhhlen des Ideals
sind die Sphéren fast nachbarschaftlich und zentralsynsuoket

Berlin, im April 2005
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