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Abstract

It has been suggested that visual images are memorized across brief periods of time

by vividly imagining them as if they were still there. In line with this, the contents of

both working memory and visual imagery are known to be encoded already in early

visual cortex. If these signals in early visual areas were indeed to reflect a combined

imagery and memory code, one would predict them to be weaker for individuals with

reduced visual imagery vividness. Here, we systematically investigated this question

in two groups of participants. Strong and weak imagers were asked to remember

images across brief delay periods. We were able to reliably reconstruct the memo-

rized stimuli from early visual cortex during the delay. Importantly, in contrast to the

prediction, the quality of reconstruction was equally accurate for both strong and

weak imagers. The decodable information also closely reflected behavioral precision

in both groups, suggesting it could contribute to behavioral performance, even in the

extreme case of completely aphantasic individuals. Our data thus suggest that work-

ing memory signals in early visual cortex can be present even in the (near) absence of

phenomenal imagery.

K E YWORD S
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1 | INTRODUCTION

In recent years, visual imagery, the ability to generate pictorial mental

representations in the absence of external visual stimulation

(Kosslyn & Thompson, 2003; Pearson & Kosslyn, 2015), has received

increasing attention as a potential mechanism for supporting visual

working memory (Albers et al., 2013; Tong, 2013).

Both visual imagery and visual working memory have been linked

to the encoding of information in early visual cortex (Dijkstra

et al., 2019; Klein et al., 2004; Kosslyn & Thompson, 2003; Lee &
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Baker, 2016; Serences, 2016). The sensory recruitment hypothesis of

visual working memory (D'Esposito & Postle, 2015; Sreenivasan

et al., 2014) posits that visual information is maintained using selec-

tive activation patterns in early visual cortex. This matches with a

common view of visual imagery, where early visual areas encode

detailed, perception-like mental images via top-down connections

from high-level regions (Dijkstra, Bosch, et al., 2017; Dijkstra,

Zeidman, et al., 2017; Mechelli, 2004). Encoding of contents has been

reported to be similar between perception and visual working memory

(Ester et al., 2009; Harrison & Tong, 2009; Lee et al., 2013; Serences,

Ester, et al., 2009; Serences, Saproo, et al., 2009). This similarity has

also been shown to hold between perception and imagery across mul-

tiple features, including orientations (Albers et al., 2013), objects

(Cichy et al., 2012; Lee et al., 2012; Ragni et al., 2020; Reddy

et al., 2010), letters (Senden et al., 2019), and natural scenes

(Naselaris et al., 2015). Furthermore, both visual working memory

(Teng & Kravitz, 2019) and visual imagery (Pearson et al., 2008) can

interfere with and bias perception of subsequent stimuli.

The similarities in cortical organization of imagery and visual

working memory raise the question whether these two processes

might be related or even share the same neural substrate. Indeed, it

was directly shown for normal-viewing participants that visual work-

ing memory and imagery representations of orientations exhibit very

similar neuronal activity patterns in early visual cortex (Albers

et al., 2013), suggesting that visual working memory and visual imag-

ery share a similar neural substrate (Tong, 2013). In this view, partici-

pants might briefly memorize visual stimuli in working memory tasks

by vividly imagining them across the delay period.

However, the ability to generate imagery as well as its vividness

differs substantially across individuals (Kosslyn et al., 2001). Some

people even report the complete absence of phenomenal imagery

(“aphantasia”; Zeman et al., 2010, 2015). Nonetheless, these differ-

ences do not appear to manifest themselves systematically in behav-

ioral measures of memory. Rather, most studies indicate that

behavioral performance in visual working memory tasks is comparable

across imagery vividness levels, including the extreme case of aphan-

tasic individuals (Jacobs et al., 2018; Zeman et al., 2015). However,

differences have been reported. For example, working memory per-

formance for strong imagers is disrupted by irrelevant visual input,

while weak imagers show no such distraction effect (Keogh &

Pearson, 2014), indicating the use of distinct memorization strategies.

This is supported by comparing reports of strong and weak imagers.

Strong imagers report to rely mostly on visual strategies when solving

visual working memory tasks. In contrast, weak imagers tend to report

using different cognitive strategies, such as verbal or categorical asso-

ciations (Bainbridge et al., 2021; Keogh et al., 2021; Logie

et al., 2011). Thus, visual imagery might be only one of several cogni-

tive tools that can be used to solve visual working memory tasks. If

this is true, then weak imagers could use different representational

systems for maintaining stimulus features other than sensory recruit-

ment in early visual cortex.

In line with this, the cognitive-strategies framework of working

memory (Pearson & Keogh, 2019) postulates that the cognitive

strategy used to solve a working memory task determines the format

in which a stimulus is represented in the brain, and consequently influ-

ences how much information about the stimulus is present within a

given cortical region. In the case of visual imagery, this could mean

that individuals with high imagery vividness spontaneously recruit

their early visual cortex to maintain detailed stimulus representations,

while individuals with low imagery vividness employ alternative, non-

visual strategies to solve the same cognitive task. Taken together, this

predicts that strong imagers should retain more information about a

stimulus feature in their visual cortex activity than weak imagers.

Here, we directly test this hypothesis by assessing the influence

of imagery vividness on the strength of visual working memory repre-

sentations in visual cortex, using functional magnetic resonance imag-

ing (fMRI). We recruited two groups of study participants, one with

very high and one with very low imagery vividness scores as assessed

by an established questionnaire (Vividness of Visual Imagery Ques-

tionnaire [VVIQ], Figure 1b, see Section 2; Marks, 1973). In the main

experiment, participants performed a working memory task that

involved memorizing a bright orientation stimulus across a brief delay

(Figure 1a). We used a brain-based decoder (periodic support vector

regression; see Section 2) to reconstruct these orientations from brain

activity patterns in early visual cortex obtained during the memory

delay period. If strong imagers indeed rely more on imagery signals in

early visual cortex to maintain the stimulus across the delay, this could

lead to two predictions: First, sensory information should be repre-

sented more accurately in the early visual brain signals of strong as

opposed to weak imagers; second, sensory information in early visual

areas should also be more predictive of an individual's behavioral per-

formance, especially in strong imagers.

2 | METHODS

2.1 | Data and code availability

Original code, summary statistics describing the reported data and

processed datasets that can be used to recreate the figures in this

manuscript have been deposited and are publicly available at https://

github.com/simonweber91/WM_VI_EVC. Any additional data and

information required to reanalyze the data reported in this paper are

available from the lead contact upon reasonable request.

2.2 | Preregistration

The main analysis workflow of this study (including custom preproces-

sing steps, parameter choices, regions of interest (ROIs), and newly

implemented statistical models) was preregistered at https://osf.io/

34y9z. The preregistration was submitted after data acquisition, but

before data processing and analysis. All preregistered analysis proce-

dures were developed and/or optimized on a separate fMRI dataset

from a related study (Barbieri et al., 2023). Please note that we did

not change any of the preregistered workflows. However, we did
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perform additional analyses and performed more extended statistical

testing (e.g., Bayesian and permutation-based tests) whenever it

proved necessary to the quality of the study. All of these additional

analyses are indicated as E.A. (extended analysis) in this text.

2.3 | Recruitment

Two groups of study participants were preselected for the study using

an online version of the established VVIQ (Marks, 1973). The VVIQ

consists of 16 items asking respondents to evoke visual images, rating

their vividness on a 5-point scale. The resulting vividness scores range

from 16 (no imagery) to 80 (extremely vivid imagery). The question-

naire was implemented and hosted on the online survey platform

SoSci Survey (www.soscisurvey.de) and local respondents were

recruited via in-house mailing lists for experimental studies, study par-

ticipant databases, and Facebook. Respondents gave informed con-

sent before being directed to the questionnaire and again before

providing an email address for recruitment at the end of the

questionnaire.

We received a total of 263 online responses, 210 of which ful-

filled the physiological, medical, and demographic criteria for partici-

pation in the MRI study. Respondents whose VVIQ scores fell either

into the upper or lower quartiles of the response distribution were

assigned to the strong and weak imagery groups, respectively, and

contacted for participation in the fMRI experiment (Figure 1b). From

these groups, we recruited a total of 42 fMRI participants. All partici-

pants were healthy, right-handed individuals between 18 and 40 years

old with no history of neurological or psychiatric disorders. One par-

ticipant dropped out of the study before completing all scanning ses-

sions. The data of a second participant had to be discarded due to

technical issues with the MRI scanner. Therefore, we collected com-

plete datasets of 40 participants (female: 23, age: 28.05

± 6.064 years), 20 each per experimental group (average VVIQ score;

weak: 40.75 ± 11.571; strong: 70.7 ± 3.262).

Participants gave written informed consent prior to the fMRI

experiment. They received monetary compensation of 10€/h for the

fMRI sessions and a bonus of 10€ for completion of both scanning

sessions. Following April 19, 2021, participants were required to pre-

sent a negative SARS-CoV-19 rapid test result (not older than 24 h)

before entering the MRI facility. To compensate for the additional

effort, we paid an additional 20€ for each SARS-CoV-19 rapid test.

The study was approved by the ethics committee of the Humboldt-

Universität zu Berlin and conducted according to the principles of the

Declaration of Helsinki.

2.4 | Stimuli

The experiment was implemented using MATLAB R2018b (The Math-

Works, Inc.) and Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007).

All stimuli were presented on black background, to avoid residual

luminance interfering with potential visual imagery during the delay

period (Keogh & Pearson, 2014). For stimulation, we used circular

high-contrast sine-wave Gabor patches with phase 0, contrast 0.8,

and a spatial frequency of 0.02 cycles per pixel. Stimuli were pre-

sented inside a circular aperture with an inner diameter of 0.71 dva

and an outer diameter of 8.47 dva. A white fixation dot of 0.18

dva was placed at the center of the inner aperture (Figure 1a).

The set of target orientations comprised 40 discrete, equally

spaced orientations separated by 180�/40 = 4.5�. To avoid the exact

cardinal directions (0�, 45� , 90�, and 135�), the orientations were

slightly shifted by 1.125�, resulting in a set of orientations between

1.125� and 176.625�. Another set of 40 gratings, which served as dis-

tractors, was created by shifting the target orientations by

4.5�/2 = 2.25�, yielding orientation stimuli between 3.375� and

178.875�. This ensured that (i) target and distractor orientations were

never exactly the same and (ii) both sets of orientations avoided the

exact cardinal directions. Since we presented 40 trials in each run (see

below), each target and distractor orientation was shown once during

each run, in randomized order. Accordingly, target and distractor ori-

entations were counterbalanced across runs. The starting orientation

of the probe grating was randomly selected from a uniform distribu-

tion between 0� and 180� on each trial.

To avoid afterimages, we used a custom dynamic noise mask

(Figure 1a). For each presentation of the mask, we initialized a 42-by-

42 array of an equal number of black and white squares. Each time

the screen was refreshed (refresh rate: 60 Hz), the array was scram-

bled along the rows and columns and smoothed by convolving it with

a 2 � 2 box blur kernel. This created a highly dynamic noise mask that

reliably suppressed afterimages of the high-contrast gratings. Masks

were presented inside the same circular aperture as the stimuli.

2.5 | fMRI task

The visual stimuli were presented on an MRI-compatible monitor

(dimensions: 52 � 39 cm2, resolution: 1024 � 768 px), positioned at

the far end of the scanner bore, and viewed via an eye-tracking com-

patible mirror mounted on top of the head-coil. The distance between

the eyes and the center of the monitor was 158 cm.

Each trial of the experiment started with the presentation of a

central fixation dot which remained visible throughout the entire trial

(Figure 1a). Participants were instructed to fixate the dot at all times.

After 0.4 s, participants were sequentially presented with two gratings

(see above), one serving as the target and the other as the distractor.

Each grating was shown for 0.4 s, followed by 0.4 s of a dynamic,

high-contrast noise mask to avoid afterimages. After the second mask,

a numerical retro-cue (0.4 s) was presented at the location of the fixa-

tion dot, indicating to the participants to remember the orientation of

either the first (1) or second (2) grating during the subsequent delay

period. The delay period lasted for 10 s, during which only the fixation

dot remained visible on the screen. After the delay, a probe grating

with random starting orientation appeared for 3.2 s. Participants were

asked to adjust the orientation of the probe grating in a way that it

corresponded to the remembered (target) orientation, using two
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buttons with the index and middle fingers of their right hand. After

adjustment, participants had to confirm their response by pressing a

button with the index finger of their left hand. If the response was

completed within the time-window of 3.2 s, the fixation dot turned

green for the remainder of the response period as visual feedback. If

participants failed to provide a response in time, a small “X” was pre-

sented at the location of the fixation dot for 0.4 s. Trials were sepa-

rated by a variable inter-trial interval (ITI) of 3.6 ± 1.6 s. Participants

completed 40 trials per run and a total of 8 runs, equally split across

2 fMRI sessions on separate days, resulting in 320 trials per

participant.

2.6 | MRI data acquisition

MRI data were collected with a 3-T Siemens Prisma MRI scanner

(Siemens, Erlangen, Germany) using a 64-channel head coil. At the

beginning of each session, we recorded a high-resolution

T1-weighted MPRAGE structural image (208 sagittal slices,

TR = 2400 ms, TE = 2.22 ms, TI = 1000 ms, flip angle = 8�, voxel

size = 0.8 mm2 isotropic, and FOV = 256 mm). On each of the

2 days, this was followed by four experimental runs, for each of

which we recorded a series of 965 T2-weighted functional images

using a multiband accelerated EPI sequence with a multiband factor

of 8 (TR = 800 ms, TE = 37 ms, flip angle = 52� , voxel

size = 2 mm2 isotropic, 72 slices, and 1.9 mm inter-slice gap), result-

ing in a duration of 12:52 min per run. The first four TR of each

sequence were discarded.

2.7 | Eye-tracking

We used an EyeLink 1000 Plus (SR-Research) eye-tracker to record

the gaze position and pupil size of the dominant eye of each partici-

pant during the experimental runs. The tracker was positioned at the

far end of the scanner bore (eye-lens-distance: 85 cm) on a

long-distance mount and was calibrated once at the beginning of each

session. Due to technical difficulties, we were only able to record eye-

tracking data of 26 participants (13 per experimental group).

2.8 | Post-experiment questionnaires

After the second session, participants completed three question-

naires: (i) the VVIQ (as a post-experimental reference); (ii) the

Object-Spatial Imagery Questionnaire (OSIQ; Blajenkova

et al., 2006) a 30-item questionnaire probing the strength of visual

and spatial imagery; and (iii) a simple and purely heuristic strategy

questionnaire, asking (on a 5-point scale) for the degree to which

they had used specific mnemonic strategies to remember the target

orientations and complete the task, including visual, verbal, spatial,

reference to cardinal directions, reference to a clock face, some kind

of individual code, or other.

2.9 | Behavioral data analysis

Behavioral responses were modeled by fitting a von Mises mixture

model (vMMM) to the distribution of behavioral response errors (see

Töpfer et al., 2022; original code available at https://github.com/

JoramSoch/RDK_vMMM). The model is inspired by previous work on

modeling detections from working memory with similarly continuous

features (Zhang & Luck, 2008). In our case, we assume that on every

trial, participants either detect the target (responses to target orienta-

tions, assumed to follow a von Mises distribution with mean 0� plus

bias μ and precision κ), make a swap error (responses to distractor ori-

entations, following the same assumptions as detections) or guess

(assumed to follow a continuous uniform distribution between �90�

and +90�). Each of these three potential trial-wise outcomes (detec-

tions, swaps, and guesses) has an associated probability distribution

indicating how probable each potential response angle is, given the

orientation of the stimulus (i.e., target and distractor). The overall

response distribution is considered a linear combination of these three

individual event probability distributions with associated probabilities

as mixture coefficients r1, r2, and r3.

According to this approach, the probability of observing a specific

response evaluates to

Pðθr jθt,θd, r*,μ, κ*Þ¼Pð’detection’Þ �Pðθr j’detection’ÞþPð’swap’Þ
�Pðθr j’swap’ÞþPð’guess’Þ �Pðθr j’guess’Þ

¼ r1
exp κ1 cos θt�θrð Þcirc

π

90
�μ

� �h i
2πI0 κ1ð Þ

þ r2
exp κ2 cos θd�θrð Þcirc

π

90
�μ

� �h i
2πI0 κ2ð Þ þ r3

1
2π

,

where θr is the reported orientation in degrees; θt and θd are the tar-

get and distractor orientations in degrees, respectively; r
*

is a vector

containing r1, r2, and r3, the event probabilities for the three model

components (detections, swap errors, and guesses); κ* is a vector con-

taining κ1 and κ2, the precisions for detections and swap errors,

respectively; μ is the response bias; and I0 κið Þ is the modified Bessel

function of order 0. As κ1 reflects the width of the response distribu-

tion for target detections, we report this parameter as our key mea-

sure for behavioral precision.

2.10 | fMRI preprocessing

Processing and analysis of fMRI data was performed in MATLAB

2021b, using SPM12, The Decoding Toolbox (Hebart et al., 2015) and

custom scripts (see below). MR images were converted into NIfTI for-

mat for further processing. Before the analysis, BOLD images were

spatially realigned and resliced. The T1 image of each session was cor-

egistered to the first image of the respective BOLD series. We then

calculated normalization parameters to the Montreal Neurological

Institute (MNI) standard space. These were used to project
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probabilistic maps of our ROIs into the native space of each individual

participant to guide voxel selection during the reconstruction analysis

(see below). Following realignment, the time series of each voxel's raw

data were temporally detrended, to remove slow signal drifts that

accumulate across a given run. This was implemented using cubic

spline interpolation (modifying an existing algorithm; Tanabe

et al., 2002). The time series of voxel data for a given run was sepa-

rated into 40/2 = 20 segments of equal size. The data from each seg-

ment was averaged to create query points (nodes), which were then

used for cubic spline interpolation, creating a smooth function model-

ing the slow signal drifts in the voxel data across the run. The number

of nodes was specifically set to half the number of trials per run, to

avoid the modeling (and thereby, removal) of within-trial effects. The

drift-estimate was then subtracted from the voxel data. This proce-

dure was repeated for every voxel and every run. After detrending,

we applied temporal smoothing to the data by running a moving aver-

age of width 3 TR across the data of each run.

To increase the signal-to-noise ratio (SNR) for samples from trials

with neighboring stimulus orientations, we developed a method that

we refer to as “feature-space smoothing.” Feature-space smoothing

accounts for the assumption that, in a feature-continuous stimulus

space, samples that lie closely together in feature space

(e.g., neighboring orientations) should produce a similar neural

response and therefore a similar voxel signal. By reducing the contri-

bution of noise to the measurements of neighboring samples, it should

be possible to increase the amount of information represented in the

voxel signal across the feature space. We addressed this issue by

using a Gaussian smoothing kernel to compute a weighted average of

the voxel signal corresponding to a given orientation and its neighbors

(Figure S3). This means that samples close to a given orientation in

feature space contribute more to the resulting average than those fur-

ther away. The number (or distance) of samples included in the aver-

age is determined by the width (full width at half maximum, FWHM)

of the smoothing kernel. Please note that we confirmed through simu-

lations (see below) that feature-space smoothing can substantially

increase the SNR and thereby reconstruction accuracies without pro-

ducing spurious above-chance accuracies in the case of null data

(Figure S3). In this study, we used nested cross-validation across sub-

jects to determine the optimal kernel width for each participant (see

below). Please note that all these approaches for temporal detrending

and feature-space smoothing were developed and optimized on a sep-

arate data set (from a related study; Barbieri et al., 2023) and both

were preregistered and checked for artifacts or spurious effects.

2.11 | Early visual cortex ROI

As our goal was to determine the strength of working memory repre-

sentations in visual sensory stores depending on visual imagery vivid-

ness, we restricted our analysis to visually driven voxels in early visual

cortex (V1, V2, and V3). These regions have been shown repeatedly

to similarly encode working memory representations of orientation

(and other visual) stimuli (Christophel et al., 2012; Christophel &

Haynes, 2014; Harrison & Tong, 2009; Serences, Ester, et al., 2009;

Serences, Saproo, et al., 2009). In the first step, we combined the

probabilistic anatomical maps of V1, V2, and V3 (Wang et al., 2015) to

create a combined map in standard space, collapsing across the left

and right hemispheres. We then transformed this map into the native

space of each participant, by applying the inverse normalization

parameters estimated during preprocessing. The individual maps were

then thresholded at 0.1, to exclude voxels that had a less than 10%

probability of being part of a given area, and binarized. This resulted

in an average ROI size of 5938.6 ± 858.45 voxels. In the second step,

we identified visually driven voxels within that ROI. For this, we esti-

mated a GLM with regressors for all trial events (target, distractor,

cue, delay, and probe, plus 6 head motion realignment parameters as

regressors of no interest). Regressors were convolved with a canonical

hemodynamic response function. We then calculated a contrast for

the target regressor (vs. an implicit baseline), in order to determine

voxels with significant activation in response to the target, irrespec-

tive of orientation. The resulting statistical parametric maps were then

used in combination with the individual anatomical ROIs for voxel

selection in the multivariate reconstruction analysis. For this, we

selected the voxels rank-ordered by their respective t-score (from the

unspecific target contrast) within the anatomical ROI for each individ-

ual. The cutoff yielding the exact number of voxels used for recon-

struction was determined via nested cross-validation across subjects

(see below). Note that we additionally ran the entire analysis for the

V1, V2, and V3 ROIs separately (E.A.). Due to the lower number of

voxels within each ROI, we entered all respective ROI voxels into the

reconstruction analysis, omitting the activation-based voxel selection

and nested cross-validation in this additional analysis.

2.12 | Delay-period activation

In an additional exploratory analysis requested by a reviewer, we com-

pared whole-brain activity levels during the delay-period between the

experimental groups. For this, we first performed slice time correction,

normalization, and smoothing (using an 8-mm Gaussian kernel) on the

already realigned functional data. To detect changes in brain activity,

we used the same GLM design matrix described above. Next, we cal-

culated a first-level contrast for the delay regressor (vs. an implicit

baseline) for each subject, which was then compared between groups

(in both directions) in a second-level analysis using two-sample

t-tests. Results were thresholded at p = .05, FWE-corrected.

2.13 | Orientation reconstruction from fMRI data

The aim of our reconstruction analysis was to predict the angle of the

orientation stimulus from the multivariate signal of the preprocessed

raw data in the early visual cortex ROI. Note that the space of orienta-

tions is circular between 0� and 180�. To account for this, we imple-

mented periodic support vector regression (pSVR), a periodic

extension of the SVR (Drucker et al., 1996). First, we projected the
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angular labels into a periodic space by calculating two sinusoids in

the range [0�, 180�). Both functions had an amplitude of 1 and a

period of 180�, so that one period spanned the entire label space.

One function was shifted by 45�, so that the combination of both

periodic functions coded for the linear label scale (Figure S4). This is

the 180�-equivalent to the way sine and cosine functions between 0�

and 360� code for the angles on a unit circle.

Next, we individually predicted each set of labels from the multi-

variate voxel pattern using the LIBSVM (Chang & Lin, 2011) imple-

mentation of SVR with a non-linear radial basis function (RBF) kernel,

via a leave-one-run-out cross-validation. Before prediction, the voxel

signals in the training data were rescaled to the range [0, 1]. The scal-

ing parameters were then applied to the test data (“across-scaling”;
Hebart et al., 2015).

After the prediction of both sets of periodic labels bxi, byið Þ we com-

puted the reconstructed angular orientation bθi using the four-

quadrant inverse tangent:

bθi ¼ atan2 bxi, byið Þ:

The analysis was repeated for the 30 TRs (24 s) following delay-

onset, for each TR individually. This allowed for a time-resolved esti-

mation of how orientations were represented in the visual cortex

across the entire trial.

2.14 | Reconstruction performance evaluation

To evaluate the accuracy of the orientation reconstruction, we com-

puted the feature-continuous accuracy (FCA). FCA is a rescaling of

the absolute angular deviation (between predicted and true label) into

the range 0%–100% and can be calculated, for the case of stimuli that

are 180�-periodic, as (Pilly & Seitz, 2009)

FCA θi, bθi� �
¼
90� θi� bθi� �

circ

��� ���
90

�100,

where θi is the true orientation in the ith trial and bθi is the associated

reconstructed orientation. This trial-wise measure of reconstruction

performance can be easily interpreted as a feature-continuous analog

to the accuracy measure of more conventional classification

approaches: a value of 100% means that there is no deviation

between true and reconstructed orientations, that is, perfect recon-

struction; 50% means deviation of 45�, which for circular orientation

data is equivalent to guessing and can be considered as the chance-

level; and 0% means that reconstructed and true orientations are

exactly orthogonal. FCA can be averaged to quantify reconstruction

accuracy across trials.

For behavioral responses, the orientation labels may not be uni-

formly distributed across the orientation space, but clustered around,

for example, cardinal axes. In a reconstruction setting, this would be

analogous to a classification case with unequal (or unbalanced) numbers

of classes, where the predictive model can exploit the uneven

distribution of classes to simply predict the more frequent class more

often. To account for this potential source of bias, we calculated a bal-

anced FCA (BFCA). BFCA is an extension of the concept of balanced

accuracy (Brodersen et al., 2010) for continuous variables. It is calculated

by computing the integral of the trial-wise FCA from 0� to 180� (i.e., the

orientation-space), using trapezoidal numerical integration across the

sorted true and reconstructed orientations: (Barbieri et al., 2023)

BFCA¼ 1
180

ð180
0

FCA θ,bθ� �
dθ:

The process of integration assigns lower weights to the FCA

values in the well-populated parts of the label-distribution and higher

weights to the less populated parts. Thus, BFCA is a non-trial-wise

measure of reconstruction performance, which accounts for the

potential bias in FCA caused by non-uniformly distributed labels. We

report BFCA as our key measure for reconstruction accuracy. Note

that this approach has been previously tested to exclude the possibil-

ity of artifactual results.

2.15 | Parameter optimization

As mentioned above, we used an across-subjects nested cross-

validation to determine the optimal values of two parameters for each

participant individually: (i) the width of the Gaussian kernel used for

feature-space smoothing, and (ii) the number of voxels entered into the

analysis. For (i), we chose FWHM values between 0� (i.e., no smoothing)

and 90� , in steps of 10�. Thus, we had a set of 10 possible kernel widths

for smoothing. For (ii), we chose voxel counts between 250 and 2500,

in steps of 250. This resulted in a set of 10 possible voxel counts. To

select the specific voxels entered into the analysis, we first masked the

individual target-versus-baseline t-maps with the warped anatomical

ROIs (see above) and then selected the n voxels with the highest t-

scores within those ROIs, with n representing a number from the set of

possible voxel counts. Together, the set of possible FWHM values and

voxel counts resulted in a “search grid” of 100 parameter combinations.

We then ran the leave-one-run-out cross-validation reconstruction anal-

ysis described above for every parameter combination and for each sub-

ject individually, resulting in 100 separate reconstruction results per

participant, one for every parameter combination.

After reconstruction, we determined the optimal parameters for

each subject individually by selecting the combination of values that

produced the highest average reconstruction accuracy based on all

other participants, that is, not considering the results of the partici-

pant that these parameter values were then assigned to. Specifically,

we repeated the following for each subject: First, we calculated the

mean BFCA across all remaining subjects for every parameter combi-

nation, resulting in one value per combination and time point. Second,

we averaged across the preregistered delay-period TRs (TRs 6–15 fol-

lowing delay onset), as we were specifically interested in potential

group differences during this time window. This yielded one BFCA
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value per parameter combination, specifically for the entire delay

period. The parameter combination that yielded the highest BFCA

was then assigned to the left-out subject. Across subjects, this

resulted in an average FWHM value of 74.5 ± 9.04 and an average

voxel count of 1750 ± 211.83.

2.16 | Statistical testing

As we were specifically interested in potential group differences dur-

ing the delay-period, statistical testing for differences between the

strong and weak imagery groups was based on the time points in the

trial which most likely only reflect delay period activity. Since the

canonical hemodynamic response has a buildup of �5 s, we consid-

ered the TRs 6–15 in the 30 TR timeframe that we analyzed, corre-

sponding to a time window of 4 s after delay onset to 2 s after probe

onset (please note that this time window is 0.4 s shorter than

described in the preregistration, as the preregistered time window

would have resulted in 10.5 instead of 10 TRs). This preregistered

time window should avoid the leaking of stimulus- or probe-

representations into the delay-period analysis.

We used two-tailed two-sample t-tests to test for potential dif-

ferences in the reconstruction scores between the experimental

groups. Further, we calculated Pearson's r to assess the correlation

between outcome variables (E.A.).

2.16.1 | Cluster-based permutation approach (E.A)

We were interested at which time points during the trial we could

detect significant above-chance reconstruction accuracy. To account

for the multiple-comparisons (Groppe et al., 2011) and autocorrelation

(Purdon & Weisskoff, 1998) issues that arise from such time-resolved

analyses, we adopted a nonparametric cluster-based permutation

approach (Bullmore et al., 1999; Groppe et al., 2011; Maris &

Oostenveld, 2007). This procedure was performed after the parame-

ter optimization described above, to restrict the time-consuming per-

mutation analysis to one set of parameters per subject. We repeated

this approach separately for each reconstructed label type: target, dis-

tractor, probe, and reported orientation.

2.16.2 | Bayesian tests (E.A)

As our results indicated no significant differences between our two

groups, we used Bayesian hypothesis tests to assess the evidence for

this absence. Bayesian hypothesis tests are used to describe the prob-

ability of observing the measured data under the null and alternative

hypothesis, respectively (Keysers et al., 2020). This likelihood is quan-

tified using the Bayes factor (BF), a continuous measure of evidence

for either hypothesis. Specifically, we used two Bayesian hypothesis

tests to assess the evidence for absence of effects: First, in the case

of non-significant group-comparisons, we performed follow-up

Bayesian independent t-tests, using a Cauchy distribution with scale

parameter r = .707 as the prior distribution (Morey & Rouder, 2011).

Second, in the case of non-significant correlations, we performed

Bayesian correlation with a stretched beta prior of width κ = 1. All

Bayesian hypothesis tests were performed in the open-source soft-

ware JASP (Love et al., 2019).

2.17 | Orientation reconstruction from eye-
tracking data

Participants were instructed to maintain fixation at all times during

the experiment. It is at least theoretically conceivable that participants

might have used an eye-movement-based strategy to remember tar-

get orientations. Eye-movements have also been shown to modulate

visual responses in the brain (Merriam et al., 2013). To account for

these potentially confounding factors, we investigated whether the

gaze position across the trial held information about the target orien-

tation. For this, we subjected the recorded x and y ordinates of 26 par-

ticipants (for which complete sets of eye-tracking data were available)

to the same reconstruction analysis as the fMRI data.

Preprocessing of eye-tracking data was performed in MATLAB using

functions from the Fieldtrip toolbox (Oostenveld et al., 2011), code

adapted from prior work (Urai et al., 2017) and in-house code. Blinks

were linearly interpolated and bandpass filtered between 5 Hz (high-

pass) and 100 Hz (low-pass). For each trial, we extracted 15 s worth of

data following the onset of the first grating. The data from each run was

detrended using the same cubic spline interpolation as described above

(see Preprocessing of fMRI data). We then downsampled the data by a

factor of 10, resulting in 1500 time points per trial.

After preprocessing, we entered the data into the same pSVR

reconstruction analysis as the fMRI data, using the x and y ordinates

of the gaze position as input instead of voxel signal, and evaluated the

reconstruction by calculating the BFCA. As with the fMRI data, we

tested for clusters of above-chance time points using the cluster-

based t-mass permutation approach described above.

2.18 | Feature-space smoothing simulation

To demonstrate how feature-space smoothing can increase SNR and

accuracy in a continuous reconstruction setting, we simulated fMRI

data with varying amounts of SNR and used different levels of

feature-space smoothing before reconstruction. Following the spe-

cifics of our experiment, we simulated data comprising 8 runs with

40 trials each, for 250 voxels. The measured response of voxel i in trial

j was generated as

yij ¼ rij � sþεij,

where rij is the actual response of voxel i in response to the orienta-

tion shown in trial j, s is a scaling factor controlling the ratio of signal

and noise, and εij is sampled from a standard normal distribution.
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To simulate the voxel responses, we assumed a population of ide-

alized voxels, where each voxel would exhibit a distinct periodic tun-

ing profile in response to angular orientation. The tuning profile zi for

each voxel i was sampled from a multivariate normal distribution

zi �N 0,Kið Þ,

where Ki specifies the voxels' periodic covariance kernel. This kernel

Ki is given by

Ki xm,xn,σið Þ¼ exp �2
sin 1

2 xm�xnð Þ� �
σi

� �2
" #

where x is a p�1 vector specifying a grid of possible orientations,

such that xm,xn � 0,2π½ Þ, p is controlling the number of unique, equally

spaced values from the feature space; and σi is the voxel's unique tuning

function smoothness parameter. For this simulation, the smoothness

of each voxel was sampled from a gamma distribution: σi �Γ 2,2ð Þ.
Thus, voxel- and trial-wise responses could be sampled as

rij ¼ zi θj
� �

,

where xj is the orientation presented during the jth trial and orienta-

tion labels were drawn from a uniform distribution: θj �U 0,2πð Þ.
For the SNR-controlling factor s, we chose 10 values between 0.1

and 1, equally spaced by 0.1, as well as 0 (i.e., pure noise). Before

reconstruction, we used feature-space smoothing on the data, for

FWHM values between 0� (i.e., no smoothing) and 360�, equally

spaced by 10�. This resulted in 11 SNR levels and 37 smoothing

levels. After pSVR reconstruction, we calculated BFCA as our measure

of accuracy. The simulation was repeated 1000 times for each param-

eter combination. The results of this simulation are summarized in

Figure S3.

3 | RESULTS

3.1 | Questionnaire data

Study participants were selected via an online version of the estab-

lished VVIQ (210 respondents, Figure 1b; Marks, 1973), a 16-item

questionnaire that measures individual imagery vividness on a scale

from 16 (no imagery) to 80 (extremely vivid imagery). We recruited

20 participants each from the lower and upper quartile of the VVIQ

score distribution, resulting in two experimental groups (average

VVIQ score; weak: 40.75 ± 11.571; strong: 70.7 ± 3.262). After the

second fMRI session, each participant repeated the VVIQ and also

completed the OSIQ (Blajenkova et al., 2006). VVIQ scores had a high

test–retest reliability (r = .867, p < .001), and thus also the difference

between weak and strong imagers, as defined by the recruitment

scores, was stable across the study period (Figure 1c; t(38) = �5.086,

p < .001, two-tailed). In line with previous studies, the OSIQ scores

(Figure 1d) had a significant difference between weak and strong

imagers for the visual items (t(38) = �3.338, p = .002, two-tailed), but

no such difference for the spatial items (t(38) = 0.895, p = .377, two-

tailed). Crucially, this pattern of OSIQ results replicates earlier findings

obtained with this scale for weak and strong imagers (Bainbridge

et al., 2021; Keogh & Pearson, 2018), which serves as a validation of

the VVIQ scores as a recruitment measure.

3.2 | Behavioral results

Figure 2a shows how accurately participants performed the task. The

figure plots the deviation between participants' judgments and

the true orientations for each trial (gray bars), revealing that the

responses were highly accurate. To assess this quantitatively, we

fitted a computational model to the response distribution of each par-

ticipant that yields estimates for behavioral precision and bias (von

Mises mixture model; Figure 2a, black line; see Section 2 for details).

Across all participants, responses were precise (precision κ1 = 5.673

± 2.377), with a small but significant bias to respond anti-clockwise of

the target (μ = �0.889� ± 1.635�; Figure 2a, inset).

Importantly, there were no significant differences between strong

and weak imagers for behavioral precision (Figure 2b; t(38) = �0.965,

p = .341, two-tailed) or any other of the estimated behavioral param-

eters (Figure S1). This indicates that the high individual differences in

visual imagery were not associated with performance differences

in the visual working memory task. We used a Bayesian analysis to

assess the evidence for absence of a difference in behavioral precision

between the weak and strong imagery groups. The Bayes factor

indicated that the data were 2.2 times more likely under the null

hypothesis (BF01 = 2.239) which provides weak evidence for the

absence of an effect of imagery vividness on behavioral precision

(Jeffreys, 1998).

3.3 | Orientation reconstruction from fMRI data

We used a brain-based decoder to reconstruct orientation representa-

tions encoded in the patterns of signals in early visual cortex (V1–V3,

see Section 2). Across all subjects, we were able to reconstruct the

true physical target orientation above chance-level for an extended

period following delay onset (Figure 3a, green line): At 5 s after delay

onset, the accuracy rose to 12% above chance, where it plateaued

until 3 s after probe onset. Following probe onset, the accuracy

increased steeply before falling back towards baseline. This later peak

in reconstruction performance is likely to reflect the perceptual infor-

mation of the adjustable probe grating after it had been rotated by

the participants to report the target orientation. Reconstruction of the

reported orientation yielded a very similar pattern of results

(Figure 3a, red line). This close resemblance was expected, given the

close match between target and reported orientations (see Figure 2a).

We also conducted several checks to test for other predictions of

our analysis. First, we reconstructed the orientation of the distractor,

8 of 17 WEBER ET AL.



that is, the task-irrelevant orientation stimulus that was not cued and

could thus be forgotten after the retro-cue. As expected, information

about this distractor orientation (Figure 3a, purple line) was only pre-

sent briefly at the beginning of the trial after which the accuracy

returned to chance-level for the remainder of the trial. In line with

previous work on the representation of task-irrelevant stimuli (Albers

et al., 2013; Ester et al., 2013; Harrison & Tong, 2009), this transient

early information presumably reflects the perceptual signal following

the presentation of the distractor early in the trial, delayed by the

hemodynamic lag. Second, we reconstructed the initial random

starting orientation of the adjustable probe grating (Figure 3a, yellow

line). As expected, this resulted in an informative time window late in

the trial, after probe onset, likely reflecting the perceptual signal of

the adjustable probe before it was rotated for the behavioral

response. Taken together, this pattern of results indicates the pres-

ence of sustained, content-selective representations of the memo-

rized stimuli during the delay-period, while task-irrelevant stimulus

information was quickly dropped from memory. In an additional analy-

sis, we confirmed that the decodable information was not related to

systematic eye-movements (Figure S2).

(a)

(b) (c) (d)

F IGURE 1 Experimental task and questionnaire data. (a) Sequence of events in one trial of the experiment. In each trial, participants were
successively presented with two orientation stimuli, each followed by a dynamic noise mask. Orientations were drawn from a set of 40 discrete,
equally spaced orientations between 0� and 180�. The stimuli were followed by a numeric retro-cue (“1” or “2”), indicating which one of them
was to be used for the subsequent delayed-estimation task (target), and which could be dropped from memory (distractor). The orientation of the
cued target grating had to be maintained for a 10-s delay. After the delay, a probe grating appeared, which had to be adjusted using two buttons
and then confirmed via an additional button press. Subsequently, visual feedback was provided to indicate whether a response was given in time
(by turning the fixation point green, lower panel) or missed (by displaying a small “X” at the end of the response period if no response was given
in time, upper panel). Cue and feedback are enlarged in this illustration for better visibility. (b) Distribution of the scores in an online visual
imagery questionnaire (VVIQ, see Section 2) that was used for recruitment. Subjects from the upper (blue) versus lower (orange) quartiles of the
distribution were recruited for the strong and weak imagery vividness groups, respectively. The small arrow on the x-axis points to the aphantasia
cutoff. (c) Questionnaire scores of the post-scan (repeated) VVIQ for weak and strong imagers, as defined by the recruitment scores. The post-
scan scores of the weak imagery group were significantly lower than those for the strong imagery group, indicating that the groups were
consistent across the study and repeated testing (t(38) = �5.086, p < .001, two-tailed; error bars: 95% confidence intervals). (d) Results for the
visual and spatial items from the OSIQ. Scores for the visual items were significantly lower for weak imagers (t(38) = �3.338, p = .002, two-
tailed). Scores for the spatial items did not differ between groups (t(38) = 0.895, p = .377, two-tailed; error bars: 95% confidence intervals), as
expected from previous work (Bainbridge et al., 2021; Keogh & Pearson, 2018). OSIQ, Object Spatial Imagery Questionnaire.
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3.4 | Group differences in delay-period
representations

Next, we proceeded to address the key question whether there was

any indication that strong and weak imagers differed in their memory-

related information in early visual cortex. Despite robust group-wise

reconstruction performance, reconstruction accuracy did not differ

between strong and weak imagers (Figure 3b; t(38) = 0.821, p = .417,

two-tailed). This was confirmed by a post hoc Bayesian t-test, which

provided moderate evidence in favor of the null hypothesis over our

original prediction that the early visual cortex signal of strong imagers

should contain more information about the stimulus (BF01 = 5.275).

We also did not observe any group differences in the overall brain

activity levels during the delay-period (E.A.).

To further corroborate the effect, we assessed the possibility that

the effect of imagery vividness is more gradual in nature and thus

might not be captured by the categorical group difference. To address

this, we calculated the correlation between delay-period accuracies

and graded imagery vividness scores. Again, the result was not signifi-

cant (Figure 3c; r = �.256, p = .11), with strong evidence for the

absence of a positive correlation (BF01 = 12.442). There was also no

relationship between working memory signals and any of the post-

scan imagery assessments (see Table S1). Note that delay-period

accuracy was significantly greater than chance-level even for the five

participants with a visual imagery score of below 32 (marked with a

grey bar on the x-axis of Figure 3c; one-sample t test: t(4) = 8.758,

p < .001, one-tailed; E.A.), which is generally considered the threshold

for aphantasia (Zeman et al., 2015). Taken together, these results sug-

gest that imagery vividness, at least in the form of subjective ques-

tionnaire scores, does not affect the strength of delay-period

representations of target orientations in early visual cortex.

Finally, we tested a further prediction that would be expected if

strong imagers relied more on sensory information encoded in early

visual cortex than weak imagers. In that case, there should be a tighter

predictive link between behavioral performance and the encoding of

information in early visual areas, especially for strong imagers. For

this, we assessed whether there was more performance-predictive

information in early visual areas of strong imagers. In this additional

analysis (E.A.), we observed a strong correlation between delay-period

accuracy and behavioral precision (Figure 4a; r = .728, p < .001),

which was the same across groups (Figure 4b; strong: r = .81,

p < .001; weak: r = .657, p = .002). Interestingly, half of the variance

in delay-period accuracy could be explained by behavioral precision

(R2, all: .53; strong: .656; weak: .432). This strong effect suggests that

the signals in early visual cortex could potentially play a direct role in

maintaining the sensory stimulus across the memory delay

(as suggested by the sensory recruitment hypothesis), and that this

does not depend on whether a person is a strong or a weak imager.

4 | DISCUSSION

In this study, we investigated to which extent an individual's visual

imagery vividness affects the strength of working memory

(a) (b)

F IGURE 2 Behavioral results. (a) Histogram of deviations between the reported and the true orientation of the target stimuli (gray bars) and a
model fit of behavioral responses across all subjects (black line). For this, the responses were modeled using a von Mises mixture model for
detections (responses to target orientations, assumed to follow a von Mises distribution with mean 0� plus bias μ and behavioral precision κ1),
swap errors (false responses to distractor orientations, following the same assumptions as detections) and guesses (assumed to follow a
continuous uniform distribution between �90� and +90�). The model estimated individual probabilities for each of these three event classes
(resulting in mixture coefficients, r1, r2, and r3, respectively). The estimated parameters indicate that participants accurately performed the task:
they correctly responded to the target direction in around 95% of trials (r1 = 0.947 ± 0.063). Across participants, responses were precise
(κ1 = 5.673 ± 2.377), with a small but significant bias to respond anti-clockwise of the target (inset; μ = �0.889 ± 1.635�; t(39) = �3.437,
p = .0014, two-tailed; error bar: 95% confidence interval). See Figure S1 for details on the other estimated parameters. (b) Behavioral precision
(κ1) for strong and weak imagers separately. Behavioral precision did not significantly differ between groups (error bars: 95% confidence
intervals).
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representations in their visual cortex. Two experimental groups,

strong and weak imagers, performed a visual working memory task,

which involved memorizing images of oriented lines over a delay. In

both groups, we found that early visual cortex contained robust infor-

mation about the remembered orientations across the entire delay

period. Importantly, the level of this information did not differ

between strong and weak imagery groups. There was also no appar-

ent dependency of visual cortex representations on any other subjec-

tive measure of encoding strategy (see Table S1), suggesting that

remembered orientations were encoded equally strongly in the visual

areas irrespective of an individual's imagery vividness. Crucially, even

the five participants with a VVIQ score of below 32, which is generally

considered the threshold for complete absence of phenomenal imag-

ery (“aphantasia”; Zeman et al., 2015) showed comparable visual neu-

ral information to the strong imagers (see Figure 2c). Our results

therefore show that working memory signals can be present in early

visual cortex even in the (near) absence of phenomenal imagery.

While working memory signals in early visual cortex were not

modulated by imagery vividness, we did observe a strong correlation

between encoded information and individual behavioral precision.

Moreover, the overall strength of this effect was also indistinguishable

between imagery groups. This suggests that the sensory information

represented in early visual cortex was equally predictive of behavior

for strong and weak imagers but did not necessarily involve imagery.

Importantly, these findings are compatible with the sensory recruit-

ment account of visual working memory (see below), as they clearly

indicate that a stronger representation of information in sensory areas

leads to increased performance. However, they also suggest that

these signals are not necessarily accompanied by imagery, as they

appear to occur in the same way and with the same behavioral rele-

vance in weak imagers and aphantasic individuals. We thus find no

evidence for differences between strong and weak imagers, neither in

the encoding of sensory information nor in the degree to which this

information is predictive of behavior. These results go against our key

prediction from the cognitive-strategies framework of working mem-

ory (Pearson & Keogh, 2019), according to which strong imagers

should retain higher levels of stimulus information in their early visual

cortices during working memory, compared to weak imagers. Our

(a) (b)

(c)

F IGURE 3 Orientation reconstruction from early visual cortex. (a) Reconstruction performance for orientations based on brain signals from
early visual areas V1–V3. The y-axis plots the accuracy (BFCA, see Section 2), across time for target (green), reported (red), distractor (purple), and
probe (yellow) orientations. The horizontal lines above the graph indicate time periods where this reconstruction was significantly above chance
(permutation-based cluster-mass statistic, see Section 2). The target orientation (green) could be reconstructed above chance-level throughout
the delay and report periods (cluster-p < .001). Reconstruction of the reported orientation (red) followed a highly similar pattern (cluster-p < .001).
The distractor orientation (purple) could only be reconstructed early in the trial (cluster-p < .001), before falling back to baseline. Reconstruction
of the adjustable probe orientation (yellow) was only possible late in the trial (cluster-p < .001), after it had been presented (shaded areas: 95%
confidence intervals). The gray box marks the preregistered delay-period time window used for subsequent analyses. (b) Target reconstruction
performance for strong and weak imagers separately, pooled across the preregistered delay-period (gray bar in (a)). Delay-period decoding
accuracy did not differ between weak and strong imagers (t(38) = 0.821, p = .417, two-tailed; error bars: 95% confidence intervals). (c) Detailed
correlation between delay-period accuracy (BFCA) and visual imagery score. There was no significant correlation between the strength of delay-
period representations and imagery vividness even when using the fully graded imagery scores (shaded area: 95% confidence interval). Neural
information during the delay-period was significantly above chance-level even for aphantasic individuals with a visual imagery score below
32 (gray bar at x-axis; t(4) = 8.758, p < .001, one-tailed, E.A.). The arrow on the x-axis points to the aphantasia cutoff. The pattern of results
depicted in (b) and (c) was identical for V1, V2, and V3 ROIs separately (E.A.). BFCA, balanced feature-continuous accuracy.
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results therefore call into question the assumption that experienced

imagery vividness is the central driver of early visual cortex recruit-

ment during working memory in all participants. Please note that

these null effects were based on preregistered analyses and are sup-

ported by additional Bayesian analyses.

To our knowledge, this is the first study to specifically investigate

the decodability of working memory representations in the context of

individual differences in imagery ability. While some studies have con-

sidered the relationship between visual imagery and stimulus decod-

ing (Albers et al., 2013; Dijkstra et al., 2018;Dijkstra, Bosch,

et al., 2017; Dijkstra, Zeidman, et al., 2017), they have relied on ran-

dom samples of participants, potentially not covering the entire spec-

trum of imagery ability and not addressing the effects of individual

differences. One study found that the overlap between imagery and

perception signals in early visual cortex is modulated by trial-by-trial

imagery measures (Dijkstra, Bosch, et al., 2017; Dijkstra, Zeidman,

et al., 2017). In a later study, the same authors could successfully

cross-decode between the neural signatures of weak and strong

imagers, indicating that the decodable signal between both groups

was similar (Dijkstra et al., 2018). While the second study in particular

seems to support our results, caution is advised when comparing

results obtained via trial-by-trial measures of imagery with trait mea-

sures such as VVIQ scores. Another study has reported a positive rela-

tionship between imagery ability and decoding accuracy (Albers

et al., 2013); however, note that the authors of that study equated

imagery ability with task performance, making this result more analo-

gous to our reported relationship between target reconstruction and

behavioral precision. Therefore, our present finding that working

memory signals do not seem to depend on imagery vividness is not in

direct contradiction to these previous decoding studies.

Importantly, our study was specifically designed to assess the

neural encoding of working memory contents, not the neural

representations of imagery. If working memory signals in early visual

areas were to necessarily reflect imagery, one would predict these

working memory signals both to be modulated by imagery ability and

to be completely absent for individuals without phenomenal imagery

(aphantasics). Our results show that both are not the case. Please note

that we are deliberately not claiming that there is no relationship

between visual imagery and visual working memory at all, that is, that

they are never based on the same neural signals. Based on previous

findings linking EVC signals to visual imagery (Albers et al., 2013; Dijk-

stra, Bosch, et al., 2017; Dijkstra, Zeidman, et al., 2017; Keogh

et al., 2020; Pearson, 2019), it is very likely that working memory sig-

nals in EVC can reflect visual imagery, particularly for strong imagers.

However, our finding that the same level of decodable information is

observed in the near-absence of imagery suggests that these early

visual signals are not exclusively driven by visual imagery. What our

data show is that neural representations of working memory contents

are still observable and have a comparable information level even for

individuals with weak or absent imagery ability. Thus, there are cases

(or individuals) in which working memory signals in early visual cortex

are likely dissociated from visual imagery. Note that the current study

did not focus on any particular encoding strategy and therefore does

not allow any direct claims about the neural encoding of imagery con-

tents. Instead, participants were able to select the least cognitively

demanding strategy, presumably leading to similar levels of cognitive

control processes across groups, as reflected in the lack of differences

in overall activity levels during the delay-period. While it would be

interesting to investigate how the strength of imagery representations

varies with the vividness of subjectively experienced imagery, this is a

question for future research and was not the aim of this study.

Our finding of a close link between sensory information in the

delay period and behavioral working memory performance is in line

with several previous studies (Bettencourt & Xu, 2016; Ester

(a) (b)

F IGURE 4 Behavioral precision versus decodable neural information from early visual cortex. Correlation between the behavioral precision
(kappa, κ1) in the task and the accuracy of brain-based reconstruction. The strength of delay-period representations was highly predictable of
behavioral precision, both (a) across all participants and (b) within strong and weak imagery vividness groups. Shaded areas indicate 95%
confidence intervals.
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et al., 2013; Hallenbeck et al., 2021; Harrison & Tong, 2009;

Iamshchinina et al., 2021). Based on our highly sensitive method for

reconstructing continuous stimulus features from voxel patterns, the

neural information explained more than half of the between-subject

variance in behavioral performance (see Section 2 for more details),

which further corroborates the link between information encoded in

early visual cortex and memorization of visual information across brief

delays. Additionally, we found that sensory information was retained

only for the cued and thus task-relevant stimulus but was not present

for the uncued image. These results are in line with sensory recruit-

ment accounts of working memory (D'Esposito & Postle, 2015), or

more generally with a multi-level representation of sensory informa-

tion across delays (Christophel et al., 2017), according to which corti-

cal areas that are used for the encoding of task-relevant sensory

information are also recruited for the brief memorization of that infor-

mation. This task-dependent retention of information in early visual

cortex could point towards some form of active maintenance through-

out the delay after offset of the stimulus. This could be achieved by

neural mechanisms such as recurrent processing within early visual

cortex (Lamme & Roelfsema, 2000) or by feedback from higher

regions (Gazzaley & Nobre, 2012) and could include short-term synap-

tic plasticity (Mongillo et al., 2008; Rose et al., 2016). Please note that

sensory recruitment does not make any assumptions about the strat-

egy with which sensory information is encoded, that is, whether it is

accompanied by imagery or not.

It is worth pointing out that there has been some debate about the

importance of early visual cortex for the generation and maintenance

of visual imagery in general. For instance, results from activation-based

studies have suggested that imagery effects in early visual cortex might

be linked to sensory memory retrieval (Kaas et al., 2010). Further, it has

been shown that vivid phenomenal imagery can be preserved in corti-

cally blind patients after strokes to occipital areas (Bartolomeo

et al., 1998; Chatterjee & Southwood, 1995; de Gelder et al., 2015),

indicating that early visual cortex is not essential for visual imagery.

Similarly, lesions in temporal regions have been reported to selectively

affect visual imagery but leave visual perception largely preserved

(Moro et al., 2008; Thorudottir et al., 2020), which has been taken as

evidence that visual imagery depends on a temporal network (Spagna

et al., 2021). Taken together, this would suggest a functional dissocia-

tion of early visual cortex and visual imagery (Bartolomeo et al., 2020),

with imagery relying on higher-level representations beyond early

visual cortex (Bartolomeo, 2008). As a consequence, orientation-

specific signals could be maintained in early visual cortex, but weak

imagers might not be able to access them to produce phenomenal

imagery. On this basis, one could speculate that the weak imagers in

our case might have had a deficit in a (potentially temporal) imagery

network, whereas working memory performance is based on sensory

information that is largely intact. Early visual information would thus be

available to solve the working memory task but would not necessarily

lead to the experience of imagery. Importantly, however, this is at odds

with a large body of behavioral, neuroimaging and brain-stimulation

work which suggests a close link between signals in early visual areas

and imagery (Albers et al., 2013; Dijkstra, Bosch, et al., 2017; Dijkstra,

Zeidman, et al., 2017; Keogh et al., 2020; Pearson, 2019), a discrepancy

which will have to be resolved by future research. Another explanation

for our results might be that our participants simply did not use visual

strategies at all, or just to a small extent. This would be in direct opposi-

tion of the cognitive-strategies framework, which assumes a close cor-

respondence between individual imagery ability and the cognitive

strategy used to solve a working memory task (Pearson &

Keogh, 2019). Strong imagers usually report to use visual strategies

(Bainbridge et al., 2021; Keogh et al., 2021; Logie et al., 2011), and the

spontaneous use of visual versus non-visual strategies by strong and

weak imagers has also been confirmed behaviorally, by showing that

only strong imagers were affected by distracting visual input during a

working memory delay (Keogh & Pearson, 2014). It is therefore unlikely

that the strong imagery group in this study relied predominantly on

non-visual strategies to solve the task.

One reason for some of the discrepancies in the imagery literature

may lie in the different ways in which imagery vividness is quantified

across studies (Pearson, 2020). To date, various approaches have been

suggested, including self-report questionnaires, trial-by-trial vividness

measures (Dijkstra et al., 2018; Dijkstra, Bosch, et al., 2017; Dijkstra,

Zeidman, et al., 2017) and several measures that are related to certain

spontaneous perceptual (Pearson et al., 2008) or physiological (Kay

et al., 2022) reactions or anatomical features (Bergmann et al., 2016). It

is not yet clear, however, which of these measures provides the best

approximation for general individual imagery ability. Some of the more

objective measures in particular have been used very rarely and still

await calibration with respect to more conventional measures of visual

imagery. In contrast, the VVIQ provides a well-established, reliable

assessment for individual differences in imagery vividness (Dijkstra

et al., 2018; Pearson et al., 2011). VVIQ scores have been shown to

successfully capture the relationship between imagery vividness and

neural signals (Amedi et al., 2005; Cui et al., 2007; Lee et al., 2012), and

people are generally able to provide good metacognitive judgments

about their own imagery abilities (Pearson et al., 2011; Rademaker &

Pearson, 2012). Further, the VVIQ is closely related to a perceptual

priming-based measure of imagery ability (Pearson et al., 2008, 2011).

For this study, we preselected participants based on particularly low or

high VVIQ scores, with the aim to investigate the potential effects of

individual imagery ability across the whole population spectrum, not

just for aphantasic individuals. The VVIQ scores reported here, and

their averages for each experimental group, are comparable to those

reported in previous studies using similar recruitment schemes (Fulford

et al., 2018; Logie et al., 2011; Slinn et al., 2023), and cover a wider

range than those reported in studies that did not rely on pre-selection

(Lee et al., 2012; Pearson et al., 2011; Ragni et al., 2020). The scores

displayed a high test–retest reliability across the study period, and were

additionally validated by the independent OSIQ scale, with which we

could replicate earlier findings showing a difference for visual items

between weak and strong imagers (here defined by the VVIQ scores),

but no such difference for spatial items (Bainbridge et al., 2021;

Keogh & Pearson, 2018). Note that this implies a distinction between

visual and spatial abilities, which is in line with recent working memory

studies (e.g., Bae & Luck, 2018; see Christophel et al., 2017 for a
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review). The VVIQ scores should therefore provide a reasonably good

estimate of general imagery ability in the two groups recruited for this

study.

It is worth mentioning that our reconstruction results might be

explained by other factors than orientation-specific visual representa-

tions. For example, some participants might have used covert shifts of

spatial attention to maintain the orientation of the target gratings.

Indeed, it has been shown previously that the locus of covert spatial

attention can successfully be reconstructed from early visual areas

(Sprague et al., 2014; Sprague & Serences, 2013). Thus, one might

speculate that early visual cortex provides the neural substrate for

multiple cognitive strategies, even if they are not encoded in the same

format. The precise format in which stimulus representations are

stored in early visual cortex, depending on individual imagery abilities,

is therefore an important question for future research. However,

please also note a conceptual point: in decoding studies, it is generally

not possible to fully guarantee that information pertains to the fea-

tures intended by the researcher instead of other latent confounding

variables such as spatial attention or motor preparation that co-vary

with these features, as we have pointed out previously (Christophel

et al., 2017). For example, the distribution of spatial attention can be

very different across seemingly homogenous stimulus sets (Liu, 2016;

Yun et al., 2013). Thus, when decoding between two object images,

one might be decoding the spatial distribution of attention rather than

the object identity. This could also be the case for the orientation

stimuli used here. However, the role of early visual cortex in encoding

of orientations as here has long been established both at a cellular

level (Hubel & Wiesel, 1968) as well as the population level (Haynes &

Rees, 2005; Kamitani & Tong, 2005; Ts'o et al., 1990). Orientation

stimuli as here have been used in many cornerstone studies of work-

ing memory (Albers et al., 2013; Bae & Luck, 2019; Harrison &

Tong, 2009) and imagery (Keogh & Pearson, 2011, 2014; Pearson

et al., 2008). Nonetheless, future studies will be needed to test

whether all these findings of orientation encoding in early visual cor-

tex during working memory generalize to other stimulus sets.

Given that this study is among the first to investigate the strength

of neural representations in response to individual imagery ability, it is

necessary to address several limitations of the current design and point

out directions for future research. First, our recruitment was based on a

questionnaire (the VVIQ) which probes imagery of high-level visual fea-

tures, namely rich and detailed scenes, while the stimuli we used during

the experiment were low-level gratings. While much of the visual imag-

ery research is based on low-level features such as orientations (Albers

et al., 2013; Bergmann et al., 2016; Dijkstra et al., 2021; Kay

et al., 2022; Keogh et al., 2021; Keogh & Pearson, 2011, 2017, 2018;

Pearson et al., 2008, 2011) or simple letters (Dijkstra, Bosch,

et al., 2017; Dijkstra, Zeidman, et al., 2017; Senden et al., 2019), and low

and high-level imagery abilities appear to be linked (Pearson

et al., 2011), it is important to further investigate how the neural encod-

ing of low- and high-level imagery representations might differ, and how

this might be affected by imagery vividness. This could be achieved with

a similar setup as here but focusing on visually richer stimuli and their

representations in higher-level visual areas such as the LOC, FFA, or

PPA. Along these lines, it would be interesting to investigate how well

other means of recruiting, such as the low-level perceptual priming mea-

sure of imagery, would replicate the results reported here. Second, we

did not include a separate imagery condition, that is, we did not provide

specific instructions on how to encode the target orientation in working

memory. While this was an explicit design choice for the current study,

it is essential (particularly in light of our findings) to investigate how dif-

ferent encoding strategies might affect the specific format of working-

memory representations, and how they might overlap in certain brain

regions. This could be accomplished by specific instructions, or by train-

ing a reconstruction model on separate (e.g., visual or spatial) localizer

blocks, to investigate the representational format during working mem-

ory in more detail. We further want to highlight the importance of

developing a systematic and comprehensive strategy questionnaire, to

allow for a more detailed examination of different mnemonic strategies

and the degree to which they are used by study participants.

In conclusion, we show that the active maintenance of stimulus-

related information in early visual areas was also present in partici-

pants who reported a near-absence of visual imagery. The encoding

of sensory information and its link to performance was strong and

indistinguishable across different levels of imagery. This provides fur-

ther evidence for the view that the recruitment of early visual cortex

for working memory can be dissociated from visual imagery, at least

for participants with weak or absent imagery. Thus, informative work-

ing memory representations in visual cortex are maintained irrespec-

tive of whether a person is able to engage in vivid imagery or not.
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