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Abstract 

The world population is projected to reach 9.7 billion in 2050, which means that the Food and Feed 

industry is supposed to keep improving its productivity in order to provide all these people with enough 

food at the same pace. The current trend of regulatory authorities toward application of new process 

analytical technology tools to improve process understanding as well as reliability and ensure product 

quality during the production, has awakened the need of investing in novel analytics, especially in 

(bio)pharmaceutical industries, but is being extended to other fields. Moreover, the increasing 

acceptance of industrial companies that relevant concentration gradients affecting process 

performance as well as product quality appear in production vessels, is turning the scale down 

representation of conditions of the large scale in the lab indispensable. Furthermore, the actual 

digitalization transformation experienced in everyone´s life is becoming more and more relevant in 

industrial manufacturing, with the current tendency to develop a so-called digital twin, which 

simulates the (bio)process running in the plant in silico, thus minimizing out-of-specification batches 

and allowing near future personnel as well as materials/consumables planning.  

 

In this work, (i) electrooptical measurements of cell polarizability as well as size, (ii) single- and multi-

compartment scale down strategies and (iii) mechanistic modeling of macroscopic variables as well as 

population heterogeneity were applied to Streptococcus thermophilus fermentations for the first time. 

Firstly, the at-line determination of bacterial polarizability (i.e. orientation under the application of an 

electrical field) allowed the elucidation of different growth phases and resulted to be an early indicator 

of nutrient imbalance as well as growth cessation. Moreover, the analysis of the mean cell size without 

sample preparation with the same device also allowed the monitoring of qualitative morphological 

changes during growth. These were verified with parallel flow cytometric analyses, which revealed 

calibration issues in the equipment preparation, which should be addressed in future experiments. 

Secondly, pH shifts in the range from 5.5 until pH 8.0 (i.e. pH = +2.0;-0.5) were induced in single-

compartment reactor cultivations leading to a 48.5 % biomass productivity loss in the worst case 

scenario, while repeated pH pulses in a similar region were performed through ammonia addition in 

the plug-flow reactor of multi-compartment reactor experiments which yielded a 20 % less cell 

concentration at the end. Importantly, relevant morphologic changes under the different cultivation 

conditions were detected: increased chain length under alkali conditions and more homogenous cocci 

chain length distribution with shorter chains at low pH values. Nevertheless, computational fluid 

dynamic studies of a 700 L pilot scale fermenter revealed that those scale down conditions were 

exaggerated in terms of pH-gradients induced: only pH pulses up to 6.3 were monitored throughout a 

S. thermophilus fermentation under optimal growth conditions, while the pH never dropped below 5.8 

far away from the base addition zone. However, extended mixing times and limited power input in the 

industrial scale may lead to higher pH, so that their effect on process performance and product 

quality was further assessed. Thirdly, a population balance model based on a mechanistic description 

of typical growth metabolites (namely biomass, lactose, lactic acid and galactose concentrations) was 

developed, being able to predict the evolution of certain populations (namely 1-coccus, 2-, 3-, 4- and 

5 or more cocci chains) during S. thermophilus cultivation under optimal growth conditions and 

variable pH-gradients. 
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The application of the first device (EloTrace, EloSystems GmbH, Berlin, Germany) in lactic acid bacteria 

large scale production would change the current quality by testing mindset to a quality by 

design/control approach, where the polarizability could be defined as a new critical quality attribute 

to be maintained inside a certain window by changing critical process parameters during the 

fermentation. The different scale down concepts applied in this study improved current process 

understanding of the industrial partner and should encourage the consideration of such lab scale 

simulators in early process development of new products or in optimization of existing bioprocesses. 

Finally, the hydrodynamic as well as population balance models developed in this work, if coupled to 

in situ microscopy technologies to determine cell size distribution in real-time, would enable the 

implementation of a model-based soft sensor strategy, where population heterogeneity could be 

minimized by changing critical process parameters, like the tip speed or base addition point. 
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Zusammenfassung  

Die prognostizierte Weltbevölkerung im Jahr 2050 beträgt 9,7 Milliarden, was bedeutet, dass die 

Lebens- und Futtermittelindustrien ihre Produktivität weiter erhöhen müssen, um der gesamten 

Bevölkerung genügend Lebensmittel zur Verfügung stellen zu können. Regulierungsbehörden 

tendieren immer mehr zur Anwendung neuer Werkzeuge der Prozessanalysetechnologie, um das 

Prozessverständnis sowie die Zuverlässigkeit zu verbessern und die Produktqualität während der 

Produktion sicherzustellen. Dies geht einher mit der Notwendigkeit in neuartige Analytik zu 

investieren, insbesondere in der (bio-) pharmazeutischen Industrie, aber auch in anderen Gebieten. 

Außerdem, die zunehmende Anerkennung von Industrieunternehmen, dass relevante 

Konzentrationsgradienten, die die Prozessleistung sowie die Produktqualität beeinflussen, in 

Produktionsbehältern auftreten, macht eine Verkleinerung der Darstellung von Bedingungen im 

großen Maßstab im Labor unverzichtbar. Darüber hinaus gewinnt die Digitalisierung in der 

industriellen Fertigung immer mehr an Relevanz. Insbesondere die Entwicklung sogenannter digital 

twins ermöglicht, den (Bio-) Prozess zu simulieren und die Anlage in silico ablaufen zu lassen. Dies 

minimiert die Anzahl der Chargen, die außerhalb der Spezifikation liegen, und ermöglicht eine zeitnahe 

Personal- und Materialplanung.  

 

In dieser Arbeit wurden (i) elektrooptische Messungen der Zellpolarisierbarkeit sowie der Größe, (ii) 

Einzel- und Multikompartiment- scale down Strategien und (iii) mechanistische Modellierung 

makroskopischer Variablen sowie der Populationsheterogenität während Streptococcus thermophilus 

Fermentationen zum ersten Mal angewandt. Erstens ermöglichte die Bestimmung der bakteriellen 

Polarisierbarkeit (d. h. Zellorientierung unter Einfluss eines elektrischen Feldes) die Aufklärung 

verschiedener Wachstumsphasen und war damit ein früher Indikator für ein Nährstoffungleichgewicht 

sowie eine Wachstumsverzögerung. Darüber hinaus ermöglichte die Analyse der durchschnittlichen 

Zellgröße ohne Probenvorbereitung mit demselben Gerät auch die Überwachung qualitativer 

morphologischer Veränderungen während des Wachstums. Diese wurden mit parallel durchgeführten 

durchflusszytometrischen Analysen verifiziert, welche Kalibrierungsprobleme bei der 

Gerätvorbereitung offenbarten, die in zukünftigen Experimenten behoben werden sollten. Zweitens 

wurden pH-Verschiebungen im Bereich von 5.5 bis 8.0 (d. h. pH = +2.0; -0.5) in Einzelkompartiment-

Reaktorkultivierungen induziert, was im schlechtesten Fall zu einem Biomasse-Produktivitätsverlust 

von 48.5 % führte. Wiederholte pH-Pulse in einem ähnlichen pH-Bereich durch Ammoniakzugabe in 

den Pfropfenströmungsreaktor während Mehrerekompartiment-Reaktorexperimenten ergaben am 

Ende eine 20 % geringere Zellkonzentration. Bemerkenswerterweise wurden relevante 

morphologische Veränderungen unter den verschiedenen Kultivierungsbedingungen festgestellt: 

längere Kettenlänge unter alkalischen Bedingungen und homogenere Verteilung der 

Kokkenkettenlänge mit kürzeren Ketten bei niedrigen pH-Werten. Dennoch ergaben fluiddynamische 

Betrachtungen eines 700 L-Fermenters im Pilotmaßstab, dass die Laborbedingungen in Bezug auf die 

induzierten pH-Gradienten übertrieben waren: während einer S. thermophilus Fermentation unter 

optimalen Wachstumsbedingungen wurden nur pH-Pulse bis zu 6.3 festgestellt während der pH-Wert 

weit entfernt von der Basenzugabezone nie unter 5.8 fiel. Verlängerte Mischzeiten und eine begrenzte 

Leistungsaufnahme im industriellen Maßstab können jedoch zu einem höheren pH führen, sodass 

der Einfluss auf die Prozessleistung und die Produktqualität weiter untersucht wurde. Drittens wurde 

ein Populationsmodell entwickelt, das auf einer mechanistischen Beschreibung typischer 

Wachstumsmetaboliten (Biomasse-, Laktose-, Milchsäure- und Galaktosekonzentration) basierte und 
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die Entwicklung bestimmter Populationen (1-Coccus, 2-, 3-, 4 und 5 oder mehr Kokkenketten) während 

S. thermophilus Kultivierungen sowohl unter optimalen Wachstumsbedingungen als auch unter 

variablen pH-Gradienten vorhersagen konnte.  

Die Anwendung des ersten Geräts (EloTrace, EloSystems GmbH, Berlin, Deutschland) in der industrielle 

Produktion von Milchsäurebakterien würde die aktuelle quality by testing Denkweise auf einen quality 

by design/control Ansatz ändern. Hierbei könnte die Polarisierbarkeit als neues kritisches 

Qualitätsattribut definiert werden, das innerhalb eines bestimmten Rahmens gehalten werden soll, 

indem kritische Prozessparameter während der Fermentation angepasst werden. Die in dieser Studie 

angewandten unterschiedlichen scale down-Konzepte verbesserten das aktuelle Prozessverständnis 

des Industriepartners und sollten die Berücksichtigung solcher Laborsimulatoren bei der frühen 

Prozessentwicklung neuer Produkte oder bei der Optimierung bestehender Bioprozesse fördern. 

Schließlich könnten die in dieser Arbeit entwickelten hydrodynamischen- und Populationsmodelle, in 

Verbindung mit in situ Mikroskopietechnologien zur Bestimmung der Zellgrößenverteilung in Echtzeit, 

die Implementierung einer modellbasierten Soft-Sensor-Strategie ermöglichen. Schlussendlich könnte 

damit eine minimale Populationsheterogenität durch die Änderung kritischer Prozessparameter (z.B.  

der Rührgeschwindigkeit oder des Basenzugabepunkts) sichergestellt werden. 
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1. Introduction 

Conversion of carbohydrates to lactic acid is one of the most employed fermentation processes in food 

industry today. Applications of lactic acid fermentation are found in the dairy industry, production of 

wine and cider, production of fermented vegetable products and in the meat industry (Nagpal et al., 

2012). Biopharmaceuticals, enzymes, biological cell materials or food supplements, among others, are 

all derived from the cultivation of bacteria, fungi or animal cells in bioreactors. These bioprocesses are 

usually developed at laboratory scale. Later, the established processes are stepwise transferred to 

larger volumes until the final industrial production scale is reached. This procedure is known as scale 

up, which is influenced by several factors. Kinetics and thermodynamics are virtually unaffected by the 

reaction volume. However, the mass transfer within a process is highly dependent on the scale. The 

geometries of the stirred-tank reactor (STR) and the impeller influence the mixing time and as such the 

oxygen uptake, substrate supply of a culture and the reagents addition for e.g. pH-control just as the 

agitation speed and gassing rate do (Garcia-Ochoa & Gomez, 2009; Rosseburg et al., 2018).  

Engineering parameters such as the vessel (e.g. height-to-diameter ratio) and impeller geometry, tip 

speed, mixing time, oxygen transfer rate, volumetric mass transfer coefficient (kLa), or power number 

can be used as scale up criteria (Takors, 2012). The general strategy is to keep a specific process 

parameter constant throughout the scale up process. In this way, negative effects caused by changing 

environmental cultivation conditions during scale up are minimized. Geometric similarity is probably 

the most widely applied method, which basically aims at maintaining the aspect ratio (i.e. the liquid 

height-to-diameter ratio) constant across scales (Palomares & Ramírez, 2009). Another option is to 

maintain the mixing times between larger and smaller bioreactors to ensure a proper and uniform 

supply of nutrients, gasses, and heat to the culture (Tissot et al., 2010). Nevertheless, one of the most 

widely accepted scale up strategies consist of maintaining a constant impeller power consumption per 

liquid volume (P/V). This is carried out by adapting the impeller size and shape to the different working 

volumes (Flickinger & Nienow, 2010; Hewitt & Nienow, 2007). (Xu et al., 2017) recently applied a 

combination of these strategies in scaling up the production of five monoclonal antibodies (MAbs) 

from 3 to 2,000 L fermenters, concluding that the best scale up criterion was a combination of a 

minimum constant air flow rate per reactor volume (vvm) with a similar specific power input (P/V). 

Already two decades ago, gradient formation mainly because of limited power input and increased 

mixing times in industrial scale fermenters was described  (Bylund et al., 1998). Limitations inherent to 

traditional scale up methods and practical constraints during large scale bioreactor design and 

operation lead to a deficient mixing and a concominant appearance of spatial gradients in fundamental 

culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among 

others. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating 

conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell 

metabolism, yields, and quality of the products of interest (Lara, Galindo, et al., 2006). In this thesis, 

pH-gradient formation during Streptococcus thermophilus fermentations was quantified and modelled 

by means of computational fluid dynamics (CFD) for the first time.  

As described above, conventional scale up is mainly based on the principle of similarity and 

dimensional analysis. Biological properties are usually not considered. The main aim in this work, was 

to make a step forward by identifying a characteristic property of cells to be included in scale up and 

down. Usually, volumetric macroscopic variables are considered, e.g. biomass concentration, but the 
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heterogeneity among the individual cells is not taken into account. Nevertheless, it has been shown 

that the population heterogeneity can be notably affected by scale up effects (Delvigne et al., 2014). 

Therefore, the consideration of the single-cell level has the potential to reduce scale up effects, while 

population heterogeneity is considered. In fact, the morphologic analysis of the biomass allowed the 

identification of a new critical quality attribute (CQA), cell size, which resulted to be sensible to the 

induced oscillating conditions. Moreover, cell macromorphology is a feature of microorganisms that is 

often related to physiologic properties. Hence, the consideration of individual macromorphologies of 

cells may be related to their contribution to the overall process goals. If coupled to automatic cell size 

distribution quantification, a rapid evaluation of the effect of various process conditions on population 

heterogeneity may be possible. 

Scale down experiments can give insight into bioprocess phenomena that are otherwise seen only in 

industrial scale. Multi-compartment bioreactors or oscillating cultivation conditions induced in one 

reactor are suitable tools to mimic the heterogeneities of industrial scale bioreactors in the lab 

(Neubauer & Junne, 2010). By this, the prediction of potential quality losses during scale up becomes 

possible at the process development stage. When pulses of a certain nature are introduced in a single 

vessel, the whole cell population is opposed to the same stress at the same time. In the case of multi-

compartment bioreactors, each of the compartments has a specific cultivation environment with its 

own parameter settings, representing one of the zones of an industrial scale bioreactor, and 

microorganisms are intermittently exposed to the different simulated conditions. Here, the concept of 

residence time appears, which represents the time during which the cells are in contact with the 

gradient(s) induced. By connecting two or more vessels (the so called STR-STR system), the residence 

time in each compartment is defined by the liquid volume in each reactor and the pump rate of the 

fermentation broth from one zone to the other. In order to avoid the vigorous mixing in STRs, the main 

fermenter can be connected to a plug-flow loop (PFR), with typically a liquid volume of 10 % of the 

total fermentation broth volume, equipped with static mixers.  In this scale down system (generally 

named STR-PFR), the residence time is defined only by the pump rate, with the additional advantage 

of sampling and monitoring critical process parameters (CPPs; e.g. pH, pO2) at different points along 

the height of the PFR (Enfors et al., 2001b). In this work, both scale down approaches were used for 

the first time in lactic acid bacteria (LAB) processes. 

In recent years, parameters including cell-to-cell variation as well as the detection of many parameters 

at the same time are becoming more important in industrial fermenters in pharmaceutical 

bioprocesses (Glassey et al., 2011; Rathore et al., 2010). A similar development has not yet been 

started in many areas of food bioprocesses: in the actual up-stream processing (USP) of starter 

cultures, the most important CQA is the biomass concentration before harvesting, but usually no 

measurement of cell activity is performed throughout the fermentation.  

In order to increase the understanding of scale up effects and, in general, the influence of population 

heterogeneity on process performance in real-time, single-cell based monitoring methods, coupled to 

novel process analytical technology (PAT) for the assessment of cell viability, were adjusted and 

applied for LAB for the first time. Firstly, multi-parameter flow cytometry was used to study cell 

viability and distinguish dead from living cells by staining depolarized cells with propidium iodide (PI). 

Secondly, electrooptical measurements of cell polarizability (i.e. orientation of microorganisms to an 

applied electrical field of a certain frequency) were performed, thus enabling the at-line monitoring of 

cell activity. 
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Cell-to-cell variations in terms of morphological heterogeneity were quantified under different growth 

conditions. Finally, the consideration of single cells by developing a population balance model (PBM) 

based on cocci chain lengths was used to better understand, predict and optimize the bioprocess. In 

this context, the cell size distribution was chosen as new CQA and as potential scale up&down criterion 

to mimic the industrial scale conditions in the lab. 
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2. Scientific Background 

2.1. Industrial LAB Production for Probiotics 

LAB fermentation is the simplest and safest way of preserving food. As traditional strains in food 

fermentation, especially in dairy, fermented meat and vegetable products (Kleerebezemab et al., 

2000), LAB can produce lactic acid to extend the shelf life of food and provide beneficial effects to 

human beings by improving the body’s natural defense system and regulating the gastrointestinal 

tract’s (GIT) micro-ecological balance (Wang, He, et al., 2018). These microorganisms are consumed 

world-wide in the industrial manufacture of fermented food products, but their most important 

application in this respect is undoubtedly in the dairy industry, where these bacteria are used to 

convert milk or milk-derived products to an enormous variety of fermented dairy products. 

LAB are a group of Gram-positive bacteria belonging to genera Aerococcus, Alloiococcus, Atopobium, 

Bifidobacterium, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, 

Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. They are nonsporulating 

rods or cocci which produce lactic acid as the main fermentation product under suitable substrate 

availability and cultivation conditions. Additionally, they are oxidase and benzidine negative, lack 

cytochromes and do not reduce nitrates to nitrite (Carr et al., 2002). Most of the LAB are anaerobic, 

but some of them can shift to oxygen-dependent metabolism in aerobic conditions (Murphy & Condon, 

1984; Sedewitz et al., 1984). LAB have complex nutrient requirements, including specific minerals, B 

vitamins, several amino acids, and purine and pyrimidine bases. What is more, this bacteria ferment 

sugars via homo-, hetero-, or mixed acid fermentation. Homofermentative LAB produce lactic acid as 

main product from sugar oxidation, while hetero- or mixed acid fermentations produce also ethanol 

and/or acetic acid, formic acid and carbon dioxide. Although it is a common practice to divide LAB into 

homo- and heterofermentative strains, the division is not that straightforward as the actual 

metabolism is dependent on both, the nature of the C-source (e.g. hexose vs. pentose sugars) and the 

fermentation conditions (e.g. growth rate and availability of the C-source). Importantly, LAB used for 

probiotics production are commonly classified as homofermentative (Lactococcus, Enterococcus, 

Streptococcus and some Lactobacilli) since their hexose metabolism under non-limiting conditions 

follows entirely the Embden-Meyerhof pathway to pyruvate, which is then used to regenerate the 

reducing power (NADH) in the lactate dehydrogenase (LDH) catalyzed reaction to lactic acid. 

Nevertheless, at slow growth rates and low glycolytic fluxes, mixed acid fermentation may take place 

and acetic acid, formic acid and ethanol may be formed in addition to lactic acid (Zaunmüller et al., 

2006). In milk, these bacteria encounter lactose as the major C-source, but they have the capacity to 

use a number of other mono- and disaccharide substrates. The major product of these fermentations 

is lactic acid, which plays a crucial role in protection of the final fermented product against spoilage. 

Besides this acidification that acts as a natural preservative effect, the LAB main carbon metabolism is 

essential for development of desired product properties like flavor, shelf-life and texture. 

In this work, the strain Lactobacillus plantarum ATCC 2014 and a Streptococcus thermophilus strain 

provided by Chr. Hansen A/S (Hoersholm, Denmark) were used. The first one was employed as LAB in 

initial, proof-of-concept experiments, while the S. thermophilus strain was used for all scale down 

studies and for the development of the process and population balance model. Lactobacilli are unusual 

in that they can respire oxygen, without possessing a respiratory chain or cytochromes. Instead, the 
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consumed oxygen ultimately ends up as hydrogen peroxide (Brooijmans et al., 2009). In fact, L. 

plantarum are aerotolerant bacteria, while S. thermophilus are facultative anaerobes. This means that 

the latter can grow with or without oxygen, because it can metabolize energy aerobically or 

anaerobically. 

2.2. PAT in Industrial LAB Fermentation 

The industrial production of these LAB is performed in a batch mode with complex media in the scale 

of tens of cubicmeters. The pH value is allowed to drop, due to acidification (initial production of lactic 

acid from the bacteria) until pH 6, from which it is controlled with addition of concentrated base (i.e. 

24 % v/v NH3). The end of fermentation (i.e. the harvesting point) is decided by means of growth 

reduction, more precisely the decrease of the acidification rate (monitored on-line by the base addition 

rate to compensate the lactic acid production). The bioreactor is then cooled down to 4 ºC and the 

fermentation broth is further processed (DSP), depending on the product to be prepared: 

 Frozen-direct vat set (F-DVS): simple centrifugation step to concentrate the biomass and 
directly sell as starter culture solution. 

 Pre-freeze dried DVS: more concentrated biomass than obtained in the previous method, even 
with a cryoprotectant and ready to be freeze dried. 

 Freeze dried DVS: freeze dried suspension after the concentration step, to sell as stabilized 
powder biomass, with a longer shelf-life than the two previous products. 

 

This work focused on the optimization of the fermentation part (i.e. USP). Nowadays, the application 

of PAT to industrial LAB production is quite limited: although the biomass is sold as starter culture for 

different food and feed industries, the only way of controlling cell viability currently available in 

production is the acid production rate of the culture. This is definitely an important parameter in yogurt 

and probiotic fermented milk manufacturing, since the acidification generally correlates with the 

growth rate of LAB (Turner & Thomas, 1975). Nevertheless, measuring the pH decrease over time in 

LAB production has some disadvantatges: a limited physiological information that can be extracted 

from the culture broth and a dependency on the buffering capacity of the media (Zare et al., 2011, 

2012). In this context, the analysis of multiple metabolites (e.g. with Raman technology and applying 

MVDA tools for correlation) and of cell viability (by means of polarizability and morphological changes, 

for example), specially in the single-cell level (accounting for population heterogeneity), would 

significantly improve  process monitoring. 

The fact that this process is ran without aeration (nitrogen is introduced in the head space, basically to 

maintain an anaerobic backpressure) eliminates operational challenges in such an industrial scale, but 

still real-time process understanding could be improved. For example, O2 and CO2 in the offgas are 

currently not analyzed, which could enable a fast and easy contamination detection or allow the 

monitoring of the CO2 production rate with an already commercially available on-line measuring tool. 

Usually, at the end of a fermentation, some CQAs from the biomass are measured off-line, which 

include (i) % solids, (ii) dry matter and (iii) acidification activity, apart from typical metabolites 

quantified with HPLC. These analyses require well established methods as well as equipments: 10 mL 

biomass tubes with a benchtop centrifuge, a Smart Turbo (CEM Corporation, NC, USA) device and a pH 

sensor that monitors the pH development over time in pre-boiled milk inoculated with the fresh LAB, 

respectively. 
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It is obvious that there is gap for improvement regarding PAT in the industrial fermentation of LAB, 

specially toward Quality by Design (QbD) strategy and product quality analysis. Nowadays, the biomass 

is tested after harvesting if it meets product specifications and only the amount of LAB and the 

unconsumed C-source are determined during the fermentation.  

Classic microbiology states that a cell is viable when it has been shown to reproduce itself, e.g. on agar 

plates. However, such a definition does not consider the different physiological states of a cell in 

between active growth and death. Therefore, stressed, injured or otherwise “viable but non-

culturable” cells can remain undetected. Moreover, traditional techniques tend to underestimate the 

viability of the culture, just quantifying the dividing cells (CFU/mL), but not all the living cells. Flow 

cytometry (FCM) has a number of advantages over the more traditional techniques (Diaz et al., 2010) 

and was initially used for studying animal cell culture where it became a powerful technique for the 

rapid characterization of cell populations using scattered light (Mohamed Al-Rubeai, 1995). Cells pass 

individually through a laser beam and scattered light is detected in two planes. On the one hand, 

forward angle light scatter (FALS or FSC) is measured in the plane of the beam and provides relative 

information on the cell size. On the other hand, the right angle light scatter (RALS or SSC) is measured 

at 90° to the beam and can provide an information on cell granularity. Emitted light from fluorescent 

stains, which have specific intracellular or extracellular binding sites, are also measured at a 90° angle. 

This information, coupled with the rapid throughput of thousands of cells per second, provides real-

time, statistically reliable information on cell physiology, including viability, which allows FCM to be 

used in order to make informed decisions on process control (Hewitt & Nebe-von-Caron, 2004). All 

microbial cells are bound by the cytoplasmic membrane, allowing the cell to communicate selectively 

with its immediate environment. Passive and active transport systems across the membrane exist and 

generate an electrochemical gradient. The presence of both, an intact polarized cytoplasmic 

membrane and active transport systems across it, are essential for a fully functional healthy cell. 

Fluorescent dyes used in flow cytometry differ in their ability to cross fully functional cell membranes. 

Therefore, dyes that are normally impermeable to cell membranes and that have specific intracellular 

or periplasmic binding sites can be used to measure cell membrane integrity. Using multi-parameter 

flow cytometry, it becomes possible to classify the physiological state of individual bacterial cells 

beyond culturability, based on the presence or absence of an intact polarized cytoplasmic membrane. 

The most established dye to stain dead cells is propidium iodide (PI), which binds to DNA, but cannot 

cross an intact cytoplasmic membrane (Looser et al., 2005). Fluorescent dyes can also interact with 

particles, which are not cells and, consequently, provide false positive results. Therefore, it is important 

to be able to discriminate between the target cells and debris or other particles, e.g. from media. DAPI 

(Otto, 1990) or SYTO13 (Taimur Khan et al., 2010) can be used for this purpose, since both stain DNA. 

Flow cytometry is typically regarded as a tool to determine population heterogeneity, but this is based 

on the amount of dyes used to stain the different cell stages of interest. Therefore, a huge effort needs 

to be invested to fully develop an optimized protocol for the microorganism under study. Every staining 

procedure depends, at least, on (i) the staining temperature, (ii) the staining time and (iii) the cells:dye 

ratio. Additionally, some dyes are light-sensitive, for instance. This means, that for each dye to be 

employed (i.e. cell stage to be investigated) a directed Design of Experiments (DoE) should be 

conducted (Marba-Ardebol et al., 2016). (Ou et al., 2017) recently demonstrated the absolute E. coli 

cell enumeration using flow cytometry, which would be interesting to apply, but the technology may 

be too expensive for the information provided. In case of LAB, as an example, (Bensch et al., 2014) 

applied flow cytometry to assess viability of Lactobacillus plantarum starter cultures by membrane 

integrity analysis using SYBR®Green I and PI staining. The enumeration method allowed for rapid, 
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precise and sensitive determination of the viable cell count (VCC) and was used to investigate effects 

of fluidized bed drying and storage on LAB viability. In a recent study, (Robertson et al., 2019) simplified 

the process of staining live and dead E. coli cells, by using the commercially available dyes SYTO9 and 

PI: the authors minimised the steps involved and determined the optimal analytical parameters for 

fluorescence measurements. (Ou et al., 2019) used the same kit protocol, but measured the 

fuorescence spectra with a fibre-based spectroscopic device (the optrode system). Together with 

principal component regression for spectral processing, this methodology may be of interest for the 

rapid, on-site measurement and analysis of LAB. Nevertheless, each additional dye included increases 

the sample preparation time and further delays the measurement from the sampling time. Another 

relevant drawback of this technology is its price, when compared to other possible analyses.   

Although FCM analysis is applied in some industrial bioprocesses, its implementation in the production 

of bulk products is challenging due to the limitations described above. As previously mentioned, there 

is no on-line determination of cell activity during the actual process and this would be a crucial step 

for moving toward QbD. There are a few technologies commercially available that can provide similar 

information than FCM without the need of sample staining. The electrooptical analysis of the 

anisotropy of polarizability (AP) relies on the cell orientation under the effect of an electrical field, 

measured by the change of extinction from two orthogonal light sources: it decreases in the direction 

of orientation, while it increases in the orthogonal direction. The time, which is needed for re-

orientation depends directly on the cells’ polarizability (A. Angersbach, V. Bunin, 2006; Bunin, 2002) 

and has been related to the metabolic activity of a variety of microorganisms (Bunin et al., 2004; Junne 

et al., 2008, 2010; Lemoine et al., 2015). This principle, combined with a continuous and automated 

sampling and sample preparation device, represents a fully automated methodology that could be 

used to monitor the viability of LAB during their fermentation. Importantly, this option would be 

preferred to the already available tools for cell physiology determination (namely multi-parameter 

flow cytometry, quantitative real-time PCR or viable cell counting), since these are slower and require 

manual off-line sample pre-treatment. Nevertheless, currently, the device provides the mean 

contribution of all individual cells in the sample, so that it would only give a single-cell analysis if 

coupled to microscopy and automated image detection to track the orientation of every singe cell.  

Additionally, microscopic analysis for the investigation of macromorphological changes over culture 

time might be a suitable alternative for determining cell-to-cell variations. Changes in cell size are 

linked to physiological responses to the surrounding environment (e.g. cell shrinkage under osmotic 

pressure) and can thus provide insights in the actual metabolic state of microorganisms and their 

viability (Gonzalez & Barrett, 2010; Syed et al., 2016). This has been a special focus in filamentous fungi 

in recent years (Ehgartner et al., 2017; Posch et al., 2013; Veiter et al., 2018), but it has been 

demonstrated for yeast (Marbà-Ardébol, Bockisch, et al., 2018) and bacteria (Alvarez et al., 2004; 

Mañas & Mackey, 2004; Shi et al., 2017; Wang, Chen, et al., 2019), as well. Just recently, in situ 

microscopy (ISM) techniques providing cell-to-cell variations in real-time have been developed and will 

be further discussed in 2.3.3. 

  



 
Klaus Pellicer Alborch   Cocci chain length distribution as control parameter in scaling lactic acid fermentations 

Scientific Background - Liquid Phase Inhomogeneity in Large Scale Processes                 17            

 

2.3. Liquid Phase Inhomogeneity in Large Scale Processes 

The vast majority of economical bioprocesses use cell factories cultivated in submerged fermentation 

systems, although some cell-free synthesis platforms have been reported recently (Ogonah et al., 

2017). It is important to understand how differences in the internal bioreactor environment influence 

cells’ growth, especially when there is a change of scale. The first step of a typical bioprocess 

development strategy consists of screening large strain libraries to select the best candidates in terms 

of growth (and recombinant protein production, if applicable). This is usually carried out in shaken 

cultures in (i) parallel microwell plates where normally only endpoint measurements are possible 

because of sample limitation (Lattermann & Büchs, 2015), or (ii) recently in parallel minibioreactors 

(Back et al., 2016), or (iii) even in Erlenmeyer flasks (0.1 - 1 L). Following screening, the process is 

developed further in laboratory scale bioreactors, usually with operating volumes between 1 and 20 L 

where control strategies and process characterisation are applied. The next step is to scale up the 

bioprocess to pilot plant bioreactors (from hundreds of liters up to some cubicmeters). If regulatory 

clearance is obtained for commercial use of the product, the process is then scaled-up to large scale 

bioreactors (10 to larger than 300 m3) for mass production. The critical point at this level is to ensure 

the same process performance than the one seen in smaller scales and to make sure that this industrial 

production is economically feasible considering ROI and market analysis. 

The inevitable limitation in the power input in large scale bioreactors ends up with increased mixing 

times and thus the appearance of liquid heterogeneities in the culture broth (Lara, Galindo, et al., 

2006). This means that, independently from the bioprocess, to ensure the same (or acceptably similar) 

process conditions in such scales when compared to development vessels is a real challenge. 

2.3.1. Consideration of Large Scale Mixing Effects in Process Development 

Production  volumes are in scales between 20 and 200 m3 (Wittmann & Liao, 2016), but they can be as 

huge as 500 m3 like some beer fermenters (Nienow et al., 2011) or lysine production vessels (Eggeling 

& Bott, 2015), or even bigger (Gradov et al., 2018). If the characteristic time of relevant biochemical 

reactions taking place inside bacteria (i.e. translation, cell division, etc.) is similar to the mixing time in 

such bioreactors, there is a potential influence caused by gradients on the growth and metabolic 

activity of the culture (Lara, Galindo, et al., 2006; Sweere et al., 1987). Generally, transport phenomena 

are difficult to scale up in a bioprocess, since they perform in a non-linear manner. Moreover, mixing 

times in the lab scale are lower than 5 seconds, but increase with scale (Dreher et al., 2014; Schirmer 

et al., 2017) and, at least, by one order of magnitude in industrial scale bioreactors (Delvigne et al., 

2006; Hewitt & Nebe-Von-Caron, 2001; Vrábel et al., 2000). For instance, mixing times in the range of 

several minutes were detected in bioreactors at a scale of 120 and 150 m3 (Junker, 2004; Namdev et 

al., 1992). Therefore, the inefficient mixing in such bioreactors typically leads to the appearance of 

spatial concentration zones of important process parameters, such as substrate, dissolved gases (O2, 

CO2), pH and temperature. As a result, biomass and product yields are often lower at larger scales than 

at the lab scale (Bylund et al., 1998; de Jonge et al., 2011; Enfors et al., 2001b; George et al., 1998; Xu 

et al., 1999; Zhou et al., 2018; Zou et al., 2012). 
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Gradients occur at all scales, but specially in industrial vessels, because certain components (e.g. 

substrate, oxygen, base or acid, among others) are introduced at one (or sometimes several) positions 

of the fermenter during almost all bioprocesses. Additionally, it takes several seconds up to minutes 

to distribute them homogeneously throughout the bioreactor (Delvigne et al., 2006). In fact, the 

specific power input in such production scales is often the bottleneck to keep mixing times sufficiently 

low so that gradient formation of concentrations of additives is in most cases inevitable (Lemoine et 

al., 2017). This leads to a heterogeneous distribution of CPPs, such as substrate, oxygen, carbon dioxide 

concentration, pH, and temperature (Figure 1). Additionally, pressure gradients also exist in 

production bioreactors owing to their height (Neubauer & Junne, 2016), and cells are exposed to 

changing flow conditions throughout the cultivation (Nienow, 2006, 2014). Particularly, 

microorganisms are continuously subjected to changing environmental conditions, thus inducing cell 

stress or so-called stress responses, characteristic for each organism. It is therefore necessary to study 

the strain-specific response in what is known as scale down experiments, where large scale conditions 

are mimicked in lab scale experiments, so that a hopefully comparable microbial response can be 

investigated in a smaller volume, thus opening the possibility of performing high throughput screening 

(HTS) experiments (Neubauer & Junne, 2010; Wang et al., 2014).  

 
Figure 1. Possible concentration gradients (among others) encountered in industrial scale bioreactors. Adapted 
from Dr. Arne Matzen, Laboratory Head QC Monoclonal Antibody, Sanofi-Aventis Deutschland GmbH. 

Unfortunately, data of gradients measured in large scale bioreactors are found in literature only rarely, 

probably because of lack of suitable tools. A possible explanation for this may be that manufacturing 

processes are typically rigid due to legislation requirements and cost restrictions. Another reason 

might involve the fact that bioreactors in the production scale have hardly changed over time, so the 

feasibility of applying new technologies may be difficult. As an example toward investigating 

heterogeneities in relevant manufacturing scales, multi-position and multi-parameter sensors installed 

on movable lances within the bioreactor have been used to measure spatial gradients in industrial 

scale brewery as well as biogas processes (Bockisch et al., 2014; Kielhorn et al., 2015). The scenario 

looks completely different in processes under good manufacturing practices (GMP), where techniques 

such as CFD modeling and regime analysis based on mixing time calculations are used to determine 

the existence of gradients in large scale bioreactors (Nørregaard et al., 2019). Finally, just recently, 

movable, free floating balls with embedded sensors have been developed to enhance the 
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measurement of variable process parameters in different known zones of large scale bioreactors and 

are currently being tested by various industrial companies (Lauterbach et al., 2017; Petersen, 2018).  

Additionally, recent publications are emphasizing the importance to perform a consistent analysis of 

cells’ physiological state under production scale environmental conditions for developing a proper 

scale up (or scale down) methodology (Neubauer & Junne, 2016; Olughu, Deepika, et al., 2019; Xia et 

al., 2016). Nevertheless, gradient formation and other scale-related stresses are often not considered 

appropriately during scale up, and thus the sensitivity of the physiological state of the microorganisms 

to these oscillating conditions remains unknown. In order to predict spatial gradients, CFD simulations 

are usually applied, where the liquid volume is divided into many (up to a few million) small elements 

(forming the so called mesh) for the simulation, and the fluid dynamic equations (based on the 

conservation of mass, momentum and energy) are solved for each element. These can, for instance, 

simulate the fluid dynamics as well as the mixing time (time needed to accomplish a certain 

homogeneity in the reactor, typically 90 or 95%, after performing a pulse of a pre-defined tracer 

element) when different impeller designs are tested for a bioreactor (Yang et al., 2012; Zou et al., 2012) 

or when the kLa is predicted for consistent bioprocess development of aerated bioreactors (Bach et 

al., 2017). CFD supports an estimation of the liquid flow: mass transfer (e.g. mixing of fed streams or 

gas-liquid transfer), shear rates and transport of microorganisms through the liquid phase of a 

bioreactor (Delvigne, Takors, et al., 2017; Schmalzriedt et al., 2003) can be simulated. Importantly, year 

after year, CFD studies of bigger reactors and more industrially relevant bioprocesses have been 

performed (Gradov et al., 2018; Wright et al., 2018; Zhu et al., 2018). To investigate the effects of 

theses simulated spatial gradients on cell physiology, CFD simulations can be combined with kinetic 

models, which typicall describe cell metabolism mathematically (Chassagnole et al., 2002; 

Papapostolou et al., 2019; Robitaille et al., 2015; Tang et al., 2017). This means that the set of biological 

kinetic equations are solved under the consideration of fluid flow (itself derived from mass balances) 

within the CFD simulations. The entire simulation describes concentration gradients (e.g. substrate, 

pO2, pCO2, etc.), gradients of physical parameters (e.g. pH, mass transfer coefficients, gas hold-up, etc.) 

as well as temporal and spatial performance of the microorganisms (e.g. substrate uptake, product 

formation, by-product accumulation, growth, etc.). There are two main approaches to model 

microorganisms in the CFD simulation, which are applied depending on the purpose of the simulation: 

 The Euler-Euler approach (Azargoshasb et al., 2016; Bannari et al., 2012; Elqotbi et al., 2013; 

Morchain et al., 2014): the microorganisms are treated as a continuum (i.e. all cells are treated 

in the same way). It is computationally less demanding, but it loses the individual history of 

the cells (Lapin et al., 2004). 

 The Euler-Lagrange approach (Haringa et al., 2016; Haringa, Deshmukh, et al., 2017; Haringa, 

Noorman, et al., 2017; Haringa, Tang, et al., 2018; Kuschel et al., 2017; Lapin et al., 2004, 2006; 

Morchain et al., 2012): the fluid is treated as a continuum, while microorganisms are 

considered as individual particles (i.e. individual cells travelling through the bioreactor are 

tracked). It needs a longer computational time, but accounts for population heterogeneity (see 

2.3.3) 

The purpose of these studies is usually to predict the oscillating culture conditions in the industrial 

scale and design controlled scale down experiments at the lab scale that mimic large scale conditions 

as closely as possible (Haringa, Mudde, et al., 2018). Nevertheless, the major drawback of CFD 

simulations is their high computational demand (hours or even days) and therefore, some authors 

decide to simplify them to so-called compartment models, which can still simulate the most relevant 
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spatial distribution of gradients in the bioreactor with a faster computational speed, thus enabling its 

application as a real-time PAT tool (Spann et al., 2019; Tajsoleiman, Spann, et al., 2019). 

Microbial responses to all kind of environmental stresses have been reviewed elsewhere (Guan et al., 

2017; Spadiut et al., 2013) and are commonly influenced by certain reactor geometry limitations 

(Garcia-Ochoa & Gomez, 2009; Nienow, 2006). The effects of substrate, oxygen, and other gradients 

have been studied in detail for many microorganisms and the most relevant specific literature is 

summarized in Table 1. Generally, these studies aim to answer (i) how microorganisms respond to 

shifts in different heterogeneous conditions (or combinations of them), (ii) how fast the organisms 

react to changes at the -omics level (genomic, transcriptomic, proteomic, and metabolomic) and (iii) 

what are the long-term effects of oscillating conditions. Interestingly, ensuring the correct O2 

concentration to microorganisms seems challenging: in cultures, in which  the air is enriched with pure 

oxygen due to high cell densities, too high oxygen concentrations can lead to leakage of reactive 

oxygen species from metabolic routes, which may affect both DNA synthesis and the activity of 

relevant intracellular enzymes, thus resulting in poor growth (Baez & Shiloach, 2014). Even dynamic S. 

cerevisiae responses to increasing ethanol stresses have been investigated to monitor yeast viability 

and to optimize bioprocess performance (Sanchez-Gonzalez et al., 2009). Another study described  the 

investigation of physiological effects of nutrient-enriched media (i.e. addition of complex components 

as well as variable aminoacids cocktails to minimal media) throughout C. glutamicum cultures (Graf et 

al., 2018).  

This work, as described previously, focuses on the effect of pH-gradients on S. thermophilus cultures 

and therefore only a detailed overview on the state of the art regarding the heterogeneities of this 

nature in different bioprocesses is given. On the one hand, the production process of these LAB 

consists of a simple batch culture, thus making substrate gradients irrelevant. On the other hand, the 

fermentation is run under microaerobic conditions, so that no oxygen is sparged into the bioreactor. 

Simply a positive pressure inside the fermenter is maintained by introducing N2 in the head space, 

leading to an irrelevance of oxygen gradients as well. 
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Table 1. Publications which describe the impact of certain gradients throughout the cultivation of various 
microorganisms. 

Gradient Microogranism Literature 

Substrate 

E. coli 

(Anane, García, et al., 2019; Anane, Sawatzki, et al., 2019; 
Brand et al., 2018; Brognaux et al., 2014; Bylund et al., 1998; 
Delvigne et al., 2005, 2006, 2009, 2010, 2011; Enfors et al., 
2001b; Hewitt & Nienow, 2007; Hewitt et al., 2000, 2006; Li 
et al., 2015; Lin & Neubauer, 2000; Lin et al., 2001; Löffler et 

al., 2016, 2017; Neubauer et al., 1995; Nieß, Löffler, et al., 
2017; Philip et al., 2017; Schweder et al., 1999; Simen et al., 
2017; Soini et al., 2011; Sunya et al., 2013; Taymaz-Nikerel 

et al., 2011; Ukkonen et al., 2013; Xu et al., 1999) 

S. cerevisiae 

(Aboka et al., 2012; George et al., 1993, 1998; Hakkaart et 
al., 2019; Larsson et al., 1996; Marbà-Ardébol, Bockisch, et 
al., 2018; Mashego et al., 2006; McClure et al., 2016; Visser 

et al., 2004; Wu et al., 2006) 

C. glutamicum 
(Käß et al., 2013, 2014; Lemoine et al., 2015, 2016; 

Lindemann et al., 2019; Olughu, Nienow, et al., 2019) 

B. subtilis (Junne et al., 2011; Lyubenova et al., 2013) 

P. chrysogenum 

(de Jonge et al., 2011, 2014; Nasution, van Gulik, Kleijn, et 
al., 2006; Nasution, van Gulik, Proell, et al., 2006; Wang, 

Chu, et al., 2019; Wang, Wang, et al., 2019; Wang, Zhao, et 
al., 2018, 2019) 

A. niger (Li et al., 2018; Torres et al., 1996; Wang, Liu, et al., 2019) 

O2 

L. lactis (Azizan et al., 2017) 

E. coli 

(Anane, García, et al., 2019; Baert et al., 2016; Bylund et al., 
1998; Hewitt et al., 2000, 2006; Lara, Leal, et al., 2006; Li et 
al., 2015; Philip et al., 2017; Sandoval-Basurto et al., 2005; 

Soini et al., 2008; Ukkonen et al., 2013; Xu et al., 1999) 

S. cerevisiae (Aon et al., 2018; Marbà-Ardébol, Bockisch, et al., 2018) 

C. glutamicum 

(Conrady et al., 2019; Kaboré et al., 2015, 2017, 2019; Käß et 
al., 2013, 2014; Lange et al., 2018; Lemoine et al., 2015, 

2016; Limberg, Schulte, et al., 2017; Olughu, Nienow, et al., 
2019) 

B. subtilis (Junne et al., 2011; Lyubenova et al., 2013) 

S. aureofacies (Manfredini et al., 1983) 

Y. lipolityca (Kar et al., 2008, 2012) 

P. putida (Lieder et al., 2016) 

CHO cells (Gao et al., 2016) 

CO2 

E. coli (Baez et al., 2009, 2011) 

S. cerevisiae 
(Eigenstetter & Takors, 2017; Hakkaart et al., 2019; Richard 

et al., 2014) 

C. glutamicum (Blombach et al., 2013; Buchholz et al., 2014) 

CHO cells (Brunner et al., 2018; Xu et al., 2018) 

Temperature 

Rhodococcus sp. (Wang, Chen, et al., 2019) 

L. lactis (Azizan et al., 2017) 

E. coli (LeThanh et al., 2005; Yamamori & Yura, 1980) 

S. aureofacies (Manfredini et al., 1983) 

CHO cells (Tsao et al., 1992) 

Mechanical 
(shear stress) 

A. niger (Fujita et al., 1994; Grimm et al., 2005) 

Mammalian (Chalmers, 2015; Sieck et al., 2014) 

 



 
 Cocci chain length distribution as control parameter in scaling lactic acid fermentations     Klaus Pellicer Alborch 
    

Scientific Background - Liquid Phase Inhomogeneity in Large Scale Processes             22 

 

Compared to these classical stimuli, the consequences of changing the pH value are rarely studied so 

far and almost none of such studies were performed with LAB. pH-gradients appear in bioreactors due 

to the pH control of the fermentation broth by the addition of either a base or an acid, depending on 

(i) the pH setpoint, (ii) the microorganism metabolism and (iii) the growth phase. Additionally, pH 

control is based on one (maximum two) point measurements. On the one hand, in aerated cultivations 

the pH controlling agent is often introduced together with the incoming aeration gas, thus ensuring a 

fast distribution of the acid or base. On the other hand, in non-aerated fermentations the acid or base 

is usually added to the bioreactor in a liquid form, either at the top or at another position (e.g. close 

to the impeller blades to maximize liquid mixing with the cultivation broth). This leads to the 

appearance of a zone with suboptimal pH conditions in close vicinity of the dosage point. 

Microorganisms circulating throughout this zone are prone to cell damage or, at least, to manifest cell 

stress responses to changing pH. As far as LAB are concerned, stress responses to a wide range of 

parameters have been reviewed elsewhere (Guchte & Serror, 2002; Hosseini Nezhad et al., 2015; 

Hussain et al., 2013; Papadimitriou et al., 2016), but pH-stress responses are of particular interest for 

this work. (Rhee & Pack, 1980) tried to explain the shift of Lactobacillus bulgaricus fermentation 

pattern from homofermentative to heterofermentative with the change in environmental pH from 

acidic to alkaline, by means of high lactate dehydrogenase (LDH) synthesis under acidic culture 

conditions, together with the alkaline preference of enzymes related to the phosphoroclastic split. Jin 

et al.  improved the acid resistance of Bifidobacteria to subsequent acid stress by pre-stressing them 

(Jin et al., 2015). Shoug et al. showed that basic (pH 6.5) as well as acidic (pH 4.5) fermentation pH 

values significantly reduced freeze-drying survival rates of Lactobacillus coryniformis Si3 (Schoug et al., 

2008). In a similar study, an acidic pH (pH 4.7) during fermentation significantly reduced Lactobacillus 

reuteri I5007 survival following freeze-drying, whilst growth at a neutral pH (pH 6.7) significantly 

increased it (Liu et al., 2014). In a recent publication, acid acclimation has been proven to be useful for 

enhancing the viability of lyophilized Oenococcus oeni: after lyophilization, improvement of cell 

integrity and more extracellular polymeric substances (EPS) were observed in acid acclimated cells, 

thus linking them to deal with the induced pH-stresses. In fact, different abundant proteins were 

noticeably enriched in the carbohydrate metabolism process, especially in the amino sugar and 

nucleotide sugar metabolism (mainly UDP-sugar metabolism). The most significant result was the over-

expression of proteins participating in cell wall biosynthesis (formation of dTDP-L-rhamnose), EPS 

production, ATP binding and the bacterial secretion system (Yang et al., 2019). (Narayana et al., 2020) 

showed that decreased pH (from the optimal 5.5 to 4.5) caused a shift in Lactobacillus acidophilus size 

distribution from a heterogeneous mix of elongated and short cells to a homogenous population of 

short cells, by means of flow cytometric as well as microscopic studies. Some authors determined the 

impact of acidic pH on growth rate (more than a 50 % reduction) of Lactobacillus casei fermentations, 

concluding to have identified clear disturbances of the cell surface at pH 4 (i.e. appearance of granular 

material at the cell envelope-environment interface), when compared to cultures at optimum pH 6.5 

(Hossein Nezhad et al., 2010). Two years later, the same research group performed a deeper study on 

this topic, stating that these LAB are able to develop an adaptive strategy corresponding to slower 

growth at low pH (Nezhad et al., 2012). Importantly, extracellular pH has a direct effect on cell 

physiology as it affects intracellular pH (pHi), which is crucial for enzymatic activity during biochemical 

reactions and is controlled by proton pumps (Hansen et al., 2016). Ramos et al. developed an in vitro 

model of the gastrointestinal tract and investigated the influence of passing different juices on pH 

homeostasis of Lactobacillus spp. (Ramos et al., 2014). Hansen et al. studied the effect of variable 

extracellular pH values on growth, viability, cell size, acidification activity in milk and pHi of Lactococcus 

lactis during batch fermentations (Hansen et al., 2016). (Azizan et al., 2017) suggested intracellular acid 
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tolerance response (ATR) of these LAB in response to pH stress based on higher flux ratios through 

oxalacetate from pyruvate cultivating them at different temperatures and agitation rates. The 

gathered literature indicates that even short-term exposure of cells to elevated pH values during large 

scale processes can affect cell physiology and overall process performance. However, no publication 

with Streptoccocus spp. has been mentioned so far. This is because there is simply no recent literature 

available for stress responses of these LAB to changing pH. (Siegumfeldt et al., 2000) showed that when 

the extracellular pH is decreased (from pH 7 to pH 5), the pHi of four S. thermophilus strains (among 

other LAB) also decreased until pH 5.5 after 5-10 min of the pH shift, thus emphasizing the adaptability 

of LAB to a low external pH. (Adamberg et al., 2003) investigated the effect of low media pH on a wide 

variety of LAB (including one Streptococcus strain). With decreasing pH, both the growth yield as well 

as the specific lactate production rate decreased in all cases. S. thermophilus St20 showed the highest 

maximum specific growth rate of 2.2 h-1, but was the most acid sensitive strain. This means, that 

although this strain may divide rapidly, its capacity to lower pHi when the extracellular pH becomes 

acidic is low, although this adaptation mechanism is partly achieved at the expense of ATP using H+-

ATPase pump. The direct consequence of this is, that those bacteria become more sensitive to 

potential pH-gradients, specially far away from the base addition zone (where the pH is in principle 

lower), thus lowering the overall biomass yield. 

Adaptation to acid stress is essential for survival of S. thermophilus, since these LAB produce acidic end 

products (i.e. lactic acid) during fermentation, which accumulate extracellularly, thus creating an 

unfavourable environment for many other bacteria (Guchte & Serror, 2002; Papadimitriou et al., 2016) 

to prevent their proliferation. At low pH, these acidic end products are predominant in their non-

dissociated form (Hansen et al., 2016), which can diffuse trough the membrane and dissociate into H+ 

and its charged derivate to which the membrane is impermeable (Presser et al., 1997). Hence, the pHi 

is lowered, which may affect biochemical reactions by damaging intracellular enzymes and DNA. Stress 

responses to a low pH in the environment could include: 

 The F0F1-ATPase either produces ATP using protons or expulses protons out of the cell at the 

expense of energy consumption. At low pH the proton expulsion activity increases in order to 

maintain the homeostatic pHi (Nannen & Hutkins, 1991). This reaction requires ATP as an 

energy source, because the expulsion of protons to the cytoplasm takes place against an 

increasing proton gradient in the media (Papadimitriou et al., 2016). 

 Another adaptation mechanism to acid stress is the production of basic compounds, which can 

help to alkalize the environment as well as the cytoplasm. The nickel metalloenzyme urease in 

S. thermophilus hydrolyses urea to carbon dioxide and ammonia, which can take up a proton 

and maintain the intracellular pH (Guchte & Serror, 2002).  

 The arginine deaminase pathway is present in different Streptococcus spp. (Griswold et al., 

2004; Liu et al., 2008), although the physiological role and especially the mode of regulations 

can be different (Griswold et al., 2004). The system consists of arginine deaminase, ornithine 

carbamalytransferase and carbamate kinase, which catalyse the conversion of arginine to 

ornithine, ammonia, carbon dioxide and the formation of ATP (Cunin et al., 1986). The resulting 

NH3 can help to alkalize the intracellular environment, while the generated ATP can be 

additionally used to expulse protons through the F0F1-ATPase mechanism described before 

(Guchte & Serror, 2002). The importance of this pathway in LAB for the adaptation to acidic 

conditions is highlighted in the most recent publication mentioned before (Yang et al., 2019). 
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 Moreover, the arginine/ornithine antiporter can exchange these molecules without energetic 

costs (Papadimitriou et al., 2016). Nevertheless, the factors involved in this respsonse are 

rather a combination of starvation, arginine availability and low pH than low pH by itself (Cunin 

et al., 1986; Guchte & Serror, 2002). (Marquis et al., 1987) highlighted that Streptococcus 

having the arginine deaminase system are adapted to the effects of an acidic environment, 

emphasising that arginine can be catabolized below the pH threshold for glycolysis. Hence, 

energy trough the generated ATP is still available, although glycolysis may be affected. 

Secondly, LAB seem to have considerably few mechanisms to support alkali tolerance. The portion of 

the dissociated form of lactic acid, which does not cross the cytoplasmic membrane by simple diffusion, 

is increased at a high pH-value (Revilla-Guarinos et al., 2014). Under these conditions, less lactic acid 

may dissolve into the medium, because the chemical equilibrium is displaced toward stabilizing lactate, 

the dissociated form. Hence, a higher intracellular concentration of lactate might have a negative 

effect on the cells’ viability and growth activity. If lactate accumulates intracellularly due to a high 

portion of dissociated lactate in the media (at alkali pH), several mechanisms are activated (Nyanga-

Koumou et al., 2012). They facilitate survival and growth of LAB under such conditions, and include (i) 

the ATP-driven K+ extrusion and the K+/H+ antiport system, (ii) the sodium-proton antiport system, (iii) 

the proton-translocating adenosine triphosphatase (ATPase), (iv) the formation of transmembrane 

proton gradients (ΔpH) in a reversed direction, and (v) the adaptation of protein synthesis. As an 

example, cation transport ATPases, such as Na+ (K+)/H+ antiporters described for Lactobacilli by 

(Sawatari & Yokota, 2007), can contribute to pH homeostasis under basic conditions by exchanging a 

cation by one H+ and converting the transmembrane potential into a pH gradient (Guchte & Serror, 

2002), thus stabilizing the intracellular pH.  

LAB are able to maintain a homeostatic cytoplasmic or pHi, typically at a neutral or near neutral value 

(Hutkins & Nannen, 1993), when the external pH varies. This requires additional resources of carbon, 

amino acids and energy. The aforementioned mechanisms might, however, also have a growth 

reducing effect. As their name describes, LAB are obviously more used to deal with acidic conditions 

rather than with basic ones, thus emphasizing the relevance of investigating the responses of these 

microorgranisms to a high alkali environment, possibly encountered next to the base addition zone 

during their production process. In fact, literature where basic pH shifts are induced during LAB 

fermentations can be hardly found. One of the relevant responses to physicochemical stress still to be 

mentioned is a change in the fatty acid composition of the membrane. For instance, the adaptation of 

Streptococcus mutans includes an accumulation of longer mono-unsaturated fatty acids in the 

membrane (Fozo & Quivey Jr., 2004; Quivey Jr. et al., 2000). As a consequence, the permeability for 

protons was reduced like it has been observed for acid adapted cells by (Ma & Marquis, 1997). 

Furthermore, extreme environmental stress conditions like acidic or alkali pH can trigger additional 

responses, besides their influence on the cell’s constitution. Indirectly the substrate availability can be 

reduced by decreasing the activity of transporters for sugar uptake (Guchte & Serror, 2002). Therefore, 

starvation and energy depletion can occur independent from extracellular concentrations of nutrients 

(Poolman et al., 1987). At the beginning of carbohydrate starvation, LAB tend to accumulate glycolytic 

intermediates (Papadimitriou et al., 2016) in order to maintain an active metabolic state (Guchte & 

Serror, 2002). Proteomic studies have highlighted that under acid, thermal or osmotic stress many LAB 

increase their level of glycolytic enzymes (Heunis et al., 2014), although the specific rate of glucose 

consumption can be diminished at low pH values (Mercade et al., 2000). Importantly to remember at 

this point is, that the pH-value is generally not allowed to drop below 5.2 prior to the onset of base 

addition so that growth reducing conditions are avoided (Hetényi et al., 2011). Hence, the growth 
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phase of LAB is typically limited by the amount of lactic acid produced by themselves, as long as pH is 

controlled, and any inhibiting effect is directly caused by a high lactic acid concentration. If lactic acid 

is accumulated in the medium, less lactic acid can diffuse from the inside to the outside of the cell due 

to a lower gradient. As a consequence, the pHi decreases while lactic acid dissociates inside the cell 

(Hansen et al., 2016). In the literature, it is commonly accepted, that both, the dissociated and non-

dissociated forms of lactic acid can inhibit growth of LAB (Åkerberg et al., 1998; Hetényi et al., 2011). 

While (Amrane & Prigent, 1999; Even et al., 2002) stated that the non-dissociated form of lactic acid 

was the main inhibitory compound for growth of Lactobacillus helveticus and of Lactococcus lactis, 

respectively, a loss of cell viability and membrane integrity by high lactate concentrations was 

examined in Lactobacillus bulgaricus cultures (Rault et al., 2009). The authors concluded that the 

higher the lactate concentration, the higher the cellular mortality (which was more than one order of 

magnitude higher in cultures conducted at a higher pH value). They observed that the dissociated form 

accumulated more under fermentations controlled at pH 6, than at pH 5, which is in accordance with 

the chemical equilibrium between the species involved. What is more, (Gonçalves et al., 1997) already 

concluded that the non-dissociated form of lactic acid is not solely responsible for growth inhibition 

and stated that the total acid concentration is the main cause. 

In the case of other microbes, Onyeaka, et al. were the first resarchers including oscillating exposure 

of E. coli to high pH zones (apart from substrate as well as O2 gradients), which led to a negative effect 

on the viability and cell growth throughout fed-batch cultivations (Onyeaka et al., 2003). Cortés et al. 

reported decreases in the plasmid DNA and biomass yields, as well as an increased accumulation of 

organic acids, apart from a clear influence at the transcriptomic level as the residence time of E. coli in 

an alkali compartment was increased (Cortés et al., 2016). Simen et al. investigated the effect of 

ammonia pulses on the same bacteria and observed a higher maintenance (15 % increase, compared 

to optimal pH conditions) and the activation of over 400 genes in response to the induced pH-gradients 

(Simen et al., 2017). Moreover, only one pH unit in acidic as well as alkaline direction reduced the 

biomass and product formation and induced phenotypic changes in C. glutamicum scale down 

experiments (Limberg, Joachim, et al., 2017). (Olughu, Nienow, et al., 2019) just recently concluded an 

expenditure of energy toward maintenance of intracellular homoeostasis of these microorganisms at 

the detriment of cadaverine productivity, after inducing pH of +0.3 and -1.0 respect the optimal value 

under scale down conditions. Additionally, an old study of Amanullah et al. indicates that although B. 

subtilis biomass concentration remained unaffected by pH variations, product formation was 

influenced by residence times of one minute or longer in a high-pH compartment, attributed to the 

sensitivity of certain enzymes to varying pH and increasing dissociated acetate concentrations 

(Amanullah et al., 2001). Also, the decrease of the optimal pH of 5.0 to pH 3.0 predominantly increased 

maintenance-energy requirements and death rates in aerobic, glucose-limited S. cerevisiae cultures, 

veryfied by transcriptional analyses (Hakkaart et al., 2019). The influence of the pH level on the 

physico-chemical properties of the cultivation medium (i.e. foam formation) and on cell physiology 

during Y. lipolytica cultivations has even been investigated (Bouchedja et al., 2018), resulting in an 

optimum pH of 6 for maximum cell growth and intracellular lipid accumulation. Nevertheless, pH 

fluctuating conditions have mostly been investigated during mammalian cell culture. For instance, 

some years ago, a cell viability decrease was observed with increasing pH perturbation time: a 90-

minute exposure to basic pH environment induced a 100 % cell viability loss (Osman et al., 2002). 

Additionally, pH shifts of almost one pH unit have been measured before close to the alkali addition 

point in an 8m3 bioreactor during mammalian cell cultures (Langheinrich & Nienow, 1999). Growth of 

CHO cells exposed to pH 9, especially during the exponential growth phase, was strongly 
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affected resulting in a 37 and 25 % decreased maximum viable cell density and final product 

titer, respectively (Brunner et al., 2017). Interestingly, three mAb-producing CHO cell lines were 

sensitive to pH excursions, since base addition led to increase in osmolality, pCO2, and lactate 

production, with a concominant antibody galactosylation increase with increasing cultivation pH, 

correlating to the decrease in cell-specific productivity (Jiang et al., 2018). Recently, Lee et al. were 

able to analyze the Golgi pH of such cells by using a pH-sensitive fluorescent protein (Lee et al., 2019).  

Finally, other gradients may appear during the S. thermophilus production process, like CO2 and 

temperature inhomogeneities. On the one hand, LAB are fast growing microorganisms and thus 

produce CO2 at high local concentrations. What is more, not only microorganisms can change the 

composition of the media and hence gas solubility, but the hydrostatic pressure in large bioreactors 

caused by their height becomes also critical when it comes to gas solubility. Thus, elevated regions of 

pCO2 may be present in the lower parts of industrial scale bioreactors. The effects of elevated CO2 

concentrations on microbes and its mechanisms have been reviewed elsewhere (Yu & Chen, 2019). As  

an example from Table 1, (Baez et al., 2011) investigated the influence of increasing pCO2 

concentration on growth as well as recombinant protein production during scale down experiments of 

E. coli cultivations. The authors observed a decrease of the specific growth rate of 11 % and an increase 

of the acetate concentration of 23 % at the highest circulation time compared to reference cultures, 

but they also noticed a short time of metabolism recovery from high-low CO2 interminent pulses. 

Moreover, high concentrations of pCO2 may cause acidification and concomitant acid stress responses 

from microorganisms, which is the usual observation described in the literature. For example, (Román 

et al., 2018) demonstrated the existence of an interaction between pCO2 and pH in cell density as well 

as recombinant protein production using mammalian cells. On the other hand, heat exchange surface 

may sometimes become the limiting factor in high-cell density processes (Hewitt & Nienow, 2007) and 

specially during LAB production, where the optimal growth temperature is considerably higher than 

that of the majority of bioprocesses (40 ºC or even higher). When scaling-up, heat release scales with 

the reactor volume, whereas the relation between surface area to volume is dramatically reduced, and 

thus the cooling capacity. So far, (Caspeta et al., 2009) investigated the production of a recombinant 

protein with E. coli using a thermo-inducible expression system and gave a positive consequence of 

this scale up phenomenon.  The authors obtained a correlation between by-products accumulation 

and heating rate: the highest yield and productivity were achieved with the lowest heating rate, such 

those likely to encounter in conventional large scale fermenters. 

2.3.2. Scale Down for Reliable Simulation of Industrial Scale Conditions 

In order to consider the effect of large scale oscillating conditions discussed above on cell physiology 

during bioprocess development and/or optimization, scale down simulators are usually applied. These 

are smaller bioreactors (than the one being studied) that have been configured to reproduce the 

environmental conditions of the bigger bioreactor, thus enabling the study of the cell stress responses 

to the induced oscillations. The main reason for this is clear: large industrial scale bioreactors can 

seldomly be used for experimental investigation due to costs, cGMP, regulatory, handling and time 

limitations. The smaller scale abstraction of the industrial scale bioreactor provides the flexibility of 

laboratory cultivations with smaller inventory (media and energy costs) in dedicated research facilities. 

This topic has been reviewed several times in recent years (Delvigne & Noorman, 2017; Delvigne, 

Takors, et al., 2017; Neubauer & Junne, 2010, 2016; Olughu, Deepika, et al., 2019; Takors, 2012; Wehrs 

et al., 2019) and its strategies are already being applied in academic as well as industrial research 
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projects. Some recent examples in industrially relevant fields include the use of scale down devices 

combined with fast sampling and quenching protocols for scale up of penicillin production (Wang et 

al., 2014), taking into account this concept for optimization of the fermentation of filamentous fungi 

(Hardy et al., 2017) and the consideration of such studies for the successful implementation of gas 

fermentation technologies (CO and CO2/H2 mixtures) in the industrial scale to reduce CO2 emissions 

(Takors et al., 2018). Importantly, the study of the influence of gradient formation encountered in large 

scale bioreactors in the lab, can be performed empirically, through mathematical models or a 

combination thereof. Already more than ten years ago, the use of stochastic models to investigate the 

effect of scale up on bioreactors’ hydrodynamics was proposed. As an example, (Villiger et al., 2018) 

characterized bioreactors with working volumes ranging from 15 mL up to 15 m3 using a combination 

of computational and experimental methods for transferring mammalian cell culture processes from 

the lab to the industrial scale. With the rapid improvement of computational devices, the integration 

of mathematically modelled microbial kinetics and fluid dynamics toward model-driven scale up of 

industrial bioprocesses has been a common trend in recent years (Delvigne et al., 2006; Siebler et al., 

2019; Wang et al., 2015; Xia et al., 2016; Zieringer & Takors, 2018). In almost all these publications 

scale down experiments that resemble large scale conditions were designed based on CFD simulations 

discussed in 2.3.1. Nowadays, even bioreactors in the scale of milliliters are suggested for performing 

scale down studies of industrial fermenters (Sandner et al., 2019; Tajsoleiman, Mears, et al., 2019). 

The main advantage of this approach is the HTS of experiments that can be carried out in such a small 

scale, but the main limitation is the proper transfer of fluid dynamics and gradient formation from a 

cubicmeter scale to such a small scale, typically using single-use bioreactors. Finally, even microliter 

scale bioreactors can be used to simulate conditions in a bigger scale and further increase the 

throughput of experiments (Ukkonen et al., 2013). 

Scale down bioreactors can be broadly categorized into single-compartment and multi-compartment 

reactors. The first scale down systems developed were mainly as single-compartment bioreactors, 

either shaped in the form of a tubular closed-loop toroid (Gschwend et al., 1983) or single STRs with 

pulse-based inputs or internal horizontal discs for increased mixing times (Schilling et al., 1999). Later, 

the multi-compartment scale down systems were developed, comprising either two connected STRs 

or a STR connected to a so called plug flow reactor (PFR) (Limberg et al., 2016). 

 Cyclic oscillations can be induced by applying pulse feed of some growth-related parameters 

(i.e. aeration, substrate) into the bioreactor to investigate metabolic shifts of all cells to a 

certain perturbation. During operation of single-compartment scale down bioreactor with 

pulse feeding, the stress inducing agent (usually in the form of a highly concentrated substrate 

feed or a base or acid) is intermittently injected into the bioreactor, at specified intervals 

(Neubauer et al., 1995) or randomly (Sunya et al., 2013). One important question to be 

answered when using this approach is how relevant the response after single pulses is for large 

scale operation, where the cells are exposed to continuous changes during the full process 

duration. It has been shown before (de Jonge et al., 2014; Tang et al., 2017; Wang, Zhao, et al., 

2018) that under such conditions, the average metabolic state can be very different from 

steady-state chemostat conditions. 

 Stochastic extracellular fluctuations can be achieved by the compartmentalization of the 

reactor, where not only spatial, but also temporal gradients are created, thus resembling large 

scale bioreactors. In multi-compartment scale down bioreactors, one of the compartments is 

usually an assumed perfectly mixed STR, whereas the other STR or PFR is used to induce the 

required gradient(s). The culture is circulated between the perfectly mixed zone and the stress 
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inducing zone, at a rate equivalent to a specified residence time (established with the pump 

rate).  The stress inducing agent is injected into the heterogenous part (PFR or second STR), 

from where it is eventually mixed with the bulk of the culture in the other section(s). Recent 

improvements in the construction of the plug-flow reactor section include the use of static 

mixers, which prevent back mixing of the liquid fed and helps to achieve a higher degree of 

plug flow behaviour upon aeration than previous hollow tube versions (Junne et al., 2011). 

Additionally, (Lemoine et al., 2015, 2016; Marba-Ardebol et al., 2016; Marbà-Ardébol, 

Bockisch, et al., 2018) used a scale down bioreactor consisting of one STR connected to two 

PFRs to simultaneously study the influence of excess substrate and oxygen limitation on the 

metabolic behaviour of different microorganisms, which are the only three-compartment scale 

down reactor studies involving two plug-flow reactors and a STR reported in the literature so 

far. 

 

Both operation mechanisms simulate zones that are similar to feeding and starvation zones in large 

scale bioreactors. The resulting periodic exposure of the culture to varying stresses induces stress 

responses that are also observed in industrial scale bioreactors (Enfors et al., 2001b). Scale down 

techniques have been applied for the successful study of the impact of large scale gradients for most 

industrially relevant organisms (Neubauer & Junne, 2016) and are summarized in Table 2. The vast 

majority of scale down techniques found in literature aim at mimicking substrate and/or oxygen 

gradients, since typical industrial bioprocesses are performed in fed-batch mode and use aerobic 

microorganisms. Nevertheless, in this work, the process under study is carried out in batch mode and 

uses aerotolerant bacteria, but without sparging air during the production. 
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Table 2. List of scale down systems used with various microorganisms. SCSDR: single-compartment scale down 
reactor; TwoCSDR: two-compartment scale down reactor; ThreeCSDR: three-compartment scale down reactor. 

Scale down setup Microorganism Literature 

SCSDR  

with intermitent feeding 

E. coli 
(Anane, García, et al., 2019; Anane, Sawatzki, 

et al., 2019; Baert et al., 2016; Delvigne et 
al., 2009, 2010; Neubauer et al., 1995) 

S. cerevisiae 
(Aboka et al., 2006, 2012; Mashego et al., 

2006; Sweere et al., 1988; Visser et al., 2002, 
2004; Wu et al., 2006) 

P. chrysogenum 
(de Jonge et al., 2011, 2014; Nasution, van 
Gulik, Proell, et al., 2006; Wang, Chu, et al., 

2019; Wang, Zhao, et al., 2018) 

A. niger (Wang, Liu, et al., 2019) 

G. oxydans (Oosterhuis et al., 1985) 

Plant cells (Cheung et al., 2018) 

TwoCSDR 

STR-STR configuration 

E. coli 
(Baert et al., 2016; Baez et al., 2011; Lara, 
Leal, et al., 2006; Sandoval-Basurto et al., 

2005) 

S. cerevisiae (Heins et al., 2015; Sweere et al., 1988) 

C. glutamicum (Kaboré et al., 2019) 

G. oxydans (Oosterhuis et al., 1985) 

Mammalian (Brunner et al., 2017; Osman et al., 2002) 

TwoCSDR 

STR-PFR configuration 

E. coli 

(Brognaux et al., 2014; Delvigne et al., 2005, 
2009, 2010, 2011; Hewitt & Nebe-Von-

Caron, 2001; Hewitt et al., 2000, 2006; Li et 
al., 2015; Löffler et al., 2016; Marba-Ardebol 

et al., 2016; Neubauer et al., 1995; Nieß, 
Löffler, et al., 2017; Schweder et al., 1999; 

Simen et al., 2017; Xu et al., 1999) 

S. cerevisiae 
(George et al., 1993, 1998; Marbà-Ardébol, 

Bockisch, et al., 2018) 

Y. lipolytica (Kar et al., 2008, 2012) 

C. glutamicum 
(Käß et al., 2013, 2014; Lemoine et al., 2015; 
Limberg et al., 2016; Olughu, Nienow, et al., 

2019) 

B. subtilis (Junne et al., 2011; Lyubenova et al., 2013) 

Mammalian (Nienow et al., 2013) 

ThreeCSDR 

STR-CR-CR configuration 
C. glutamicum (Buchholz et al., 2014) 

ThreeCSDR 

PFR-STR-PFR configuration 

E. coli (Marba-Ardebol et al., 2016) 

S. cerevisiae (Marbà-Ardébol, Bockisch, et al., 2018) 

C. glutamicum (Lemoine et al., 2015, 2016) 
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Research aims at simulating gradients of substrate (normally glucose) and/or oxygen concentrations. 

Compared to these classical stimuli, the consequences of changing the pH value throughout 

cultivations are not commonly studied. No literuature about applying scale down strategies during LAB 

fermentation for studying the impact of pH-gradients on cell physiology can be found. Generally, the 

range of values to be chosen for the amplitude, duration, frequency and number of pH perturbations 

prior to lab experiments should be estimated from published measurements with the microorganism 

under study. Nevertheless, this work was performed without any previous knowledge on pH 

oscillations simulated in scale down S. thermophilus bioreactors. (Hewitt et al., 2006; Onyeaka et al., 

2003) were the first researchers including the influence of pH disturbances during E. coli two-

compartment scale down experiments (STR-PFR setup). It was demonstrated that oscillating 

conditions in a 20 m3 industrial fed-batch fermentation, induced a lower biomass yield than that found 

in the equivalent well-mixed, 5L laboratory scale case. However, by using a combination of the well-

mixed 5L STR with a suitable PFR to mimic the changing microenvironment at the large scale, very 

similar results to those in the 20 m3 reactor may be obtained. In fact, the similarity was greatest when 

the PFR was operated with a mean residence time of 50 seconds with a low level of pO2 and a high 

glucose concentration with either a pH of 7 throughout the two reactors or with pH controlled at 7 in 

the STR by addition of base into the PFR (where the pH was higher than 7). Additionally, (Cortés et al., 

2016) applied a STR-STR approach with the same purpose and detected the activation of a series of 

mechanisms to cope with alkaline pH: decrease of plasmid DNA and biomass yields, as well as decrease 

of plasmid DNA final titer, but accumulation of organic acids, accompanied by a transcriptional 

response, coding for ion transporters, amino acids catabolism enzymes and transcriptional regulators. 

These results were confirmed in a similar study using a STR-PFR setup, where about 400 genes were 

repeatedly switched on/off when E. coli circulated between both compartments. More importantly, 

cellular ATP demands for coping with fluctuating ammonia supply were found to increase maintenance 

by 15 % (Simen et al., 2017). (Olughu, Nienow, et al., 2019) just recently published STR vs. STR-PFR 

scale down studies performing C. glutamicum cultivations, concluding an expenditure of energy 

toward maintenance of intracellular homoeostasis with a decreased productivity of cadaverine, after 

inducing a pH of +0.3 and -1.0 along the height of the PFR with a residence time of 5 min. Amanullah 

studied the effect of pH on B. subtilis by comparing the STR-STR and STR-PFR scale down models. In 

the first setup, the author maintained the large vessel at pH 6.5 with acid additions and the small 

bioreactor at pH 7.2 by feeding alkali, thus representing the homogenous bulk zone and the base 

addition point in an industrial reactor, respectively. The pump rate as well as vessel sizes were carefully 

chosen to obtain circulation times through the high pH compartment, similar to that found at large 

scale, resulting in a decreased biomass and product formation. Importantly, it was commented that 

almost a continuous addition of both, alkali and base, to the corresponding vessels was required in 

order to maintain both reactors at different pH values, which caused the formation of salt, with a 

subsequent increase of the osmolality and a concominant slight decrease in culture growth. For the 

second approach, the author used a glass mixing bulb positioned upstream of the PFR to mix 5M NaOH 

with the culture before it entered the PFR, thus producing a high pH zone. These were the first studies 

suggesting that the PFR represented the alkali addition point and the STR the well mixed bulk liquid of 

an industrial fermenter. Later on, these results were published, which indicate that although biomass 

concentration remained unaffected by pH variations, product formation was influenced by residence 

times in the PFR of one minute or longer (Amanullah et al., 2001). Moreover, (Kar et al., 2008) 

investigated the effect of extracellular pH on microbial growth, extracellular lipase production as well 

as gene expression by Yarrowia lipolityca on the basis of a STR-PFR scale down approach. The authors 

concluded that pH-gradients impacted biomass growth and the specific rate of lipase production, but 
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not the gene expression. Nevertheless, a morphological modification of the cells was observed when 

maintaining them during 2-5 minutes under pH-gradients, which is in accordance with previously 

reported dimorphism manifestation of these yeast cells exposed to pH fluctuations (Ruiz-Herrera & 

Sentandreu, 2002; Szabo & Štofaníková, 2002). (Brunner et al., 2017; Nienow et al., 2013; Osman et 

al., 2002) used two-compartment systems (STR-STR, STR-PFR and STR-STR configurations, respectively) 

to simulate pH inhomogeneities of 10-20 m3 bioreactors during mammalian cell cultures. The specific 

growth rate, specially during the exponential growth phase, was strongly affected when inducing 

temporary pH zones of pH 9, thus resulting in a decreased viable cell density (VCD) and final product 

titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during 

large scale processes can affect cell physiology and overall process performance.  

As described by (Noorman, 2011) any type of scale down simulator based on ideal lab reactors has a 

total of five degrees of freedom: number of compartments, vessel volumes, flow patterns, circulation 

rates and feed rates. The key question is typically: do we really know (i) the fluid dynamics, (ii) the 

mixing times, (iii) the gradient formation, (iv) the resulting compartmentalization and (v) the residence 

times on those zones at the industrial scale that should be mimicked? Although it has been 

demonstrated that scale down systems are reliable for studying large scale conditions (examples 

presented in Table 2), their application is not yet a standard step in bioprocess optimization and 

development in the biopharmaceutical industry. As stated some years ago, one of the difficulties in 

the design and operation of scale down bioreactors is the lack of data on the heterogeneities in large 

scale bioreactors (Formenti et al., 2014). A huge variability of the conditions in the large scale along 

with confidential issues have let to this scenario. This is further attributed to the lack of spatially 

distributed sensors, as well as the rigidity of industrial scale cultivations/bioreactors in terms of reactor 

modifications and retrofitting that would enable the measurement of gradient profiles. Thus, some 

researchers decide to apply the reversed approach to overcome this limitation: keep changing the 

conditions (and CPPs) during scale down experiments in the lab until similar performance (i.e. CQAs, 

KPIs) to measurements in the industrial scale are obtained, so that a suitable scale down model is 

achieved. Still, in industrial practice, investments of time, capital and resources often prohibit 

systematic effort toward scale down studies prior to scale up or for its optimization, although, in the 

end, savings obtained in this way are trivial compared to the expenses that result from real process 

disturbances and batch failures with loss of business opportunity. 

2.3.3. Monitoring of Population Heterogeneity for Scale Up&Down 

In most bioprocesses, the assessment of the physiological response of microbial cells to the changes 

in environmental conditions associated with large scale operation is limited to the indirect 

measurement of external variables outside of the cell; or directly by analysis of internal variables such 

as the concentration of key cellular metabolites (e.g. ATP, NAD(P)H or ppGpp) within the cell and via 

the quantification of mRNA levels of all genes in a microbial genome at a specific moment in time using 

microarray technology. However, these studies, using the techniques described, typically take the 

“bulk approach”, that is it is assumed that all cells in a population behave in the same way. Therefore, 

any results thereof represent only a population average contribution to the measured variable or 

parameter. Already some years ago (Hewitt & Nebe-Von-Caron, 2004; Hewitt et al., 2006), it was 

suggested that this assumption is inappropriate and that both environmental and cell physiological 

heterogeneity exist. This means that, in order to fully understand a cell’s metabolic response to the 

process environment at large scale, physiological heterogeneity should be taken into account and, 
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where heterogeneity is shown to exist, sub-populations of cells should be separated, sorted and 

collected for further microarray analysis. In this way, it should be possible to identify genes which are 

being differentially expressed in each sub-population, allowing a deeper level of understanding of the 

physiological responses of cells to the differing fluctuating microenvironments found at the different 

scales of bioprocess operation. Also, in recent years, literature emphasizing the importance of 

considering individual cells rather than a whole cell population during optimization and scale up of a 

wide variety of bioprocesses has been published (Delvigne & Noorman, 2017; Delvigne et al., 2014, 

2018; Delvigne, Baert, et al., 2017; Delvigne, Takors, et al., 2017; Heins & Weuster-Botz, 2018; Müller 

et al., 2010; Zacchetti et al., 2018). In nature, microbes face rapidly changing and highly competitive 

environments, where phenotypic heterogeneity has evolved as an innate survival strategy to gain an 

overall fitness advantage over cohabiting competitors. However, in defined artificial environments 

such as monocultures in small to large scale bioreactors, cell-to-cell variations are presumed to cause 

reduced production yields as well as process instability. Although emerging strategies and tools to 

reduce phenotypic heterogeneity in biotechnological expression setups have been proposed (Binder 

et al., 2017), this is not the focus of this work, since wild type (non-GMO) strains were used. 

Interestingly, population heterogeneity can have a positive impact on the process (Grote et al., 2015). 

The most important question is how and with which tools can cell-to-cell variations be determined and 

monitored. These have been intensively reviewed for different bioprocesses and microorganisms in 

recent years (Croop et al., 2019; González-Cabaleiro et al., 2017; Huys & Raes, 2018; Lemoine et al., 

2017; Schmitz et al., 2019; Theron et al., 2018), but can basically be separated into flow cytometric or 

microscopic analysis, with or without the use of microfluidic systems: 

 Already at the beginning of the 21st century, the advantages of multi-parameter flow 

cytometry over the more conventional microbiological techniques such as dilution plating 

(CFU/mL) were shown (Davey & Kell, 1996; Davey & Winson, 2003; Shapiro & Nebe-von-Caron, 

2004). Using various mixtures of fluorescent dyes, it is possible to resolve an individual 

microbial cell’s physiological state beyond culturability, based on the presence or absence of 

an intact polarized cytoplasmic membrane and the transport mechanisms across it, enabling 

assessment of population heterogeneity (Díaz et al., 2010). Moreover, by offering high-

throughput, quantitative and multi-parameter analysis at the single-cell level, this technique 

has gained an increased popularity in microbiological research, food safety monitoring, water 

quality control and clinical diagnosis (Ambriz-Aviña et al., 2014; Wu et al., 2016). When the 

cells pass through the detection volume via hydrodynamic focusing by a sheathed flow, rapid, 

multi-parameter and quantitative measurement can be achieved through simultaneous light-

scattering and multicolor fluorescence detection of single cells at a speed up to 50,000 s-1 

(Cram, 2003). With this technology, structural as well as functional diversity of bacterial 

populations can be characterized in a rapid and statistically representative manner. The new 

development of high sensitivity flow cytometry overcomes the main limitation of conventional 

flow cytometers by adopting strategies for single molecule fluorescence detection in a 

sheathed flow. To date, using label-free side scattering detection, a single bacterial cell can be 

well discriminated from the instrumentation background. 

 Since modern image analysis allows fast, accurate and reliable quantitative analysis, it is widely 

used at present in many areas of research and development (Jung, 2019). Generally, images 

captured by imaging hardware, which is not limited to digital cameras, are processed in 

multiple steps by applying various image processing algorithms to extract quantitative 
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features. On-line image analysis has been used in the bioprocessing community to count cell 

numbers, to quantify cell morphology and to measure cell concentrations in the lab only in 

recent years (Bluma et al., 2010; Marquard et al., 2016, 2017). What is more, late advances in 

photo-optics already enable to monitor particle size distribution, aspect ratio and particle 

concentration with advanced image analysis in real time in multiphase systems (Emmerich et 

al., 2019). Nevertheless, several challenges appear when measuring directly in the culture 

broth: liquid (media), solid (cells) and air bubbles in aerated systems have to be distinguished 

from each other. Besides, particular cell features, which are of interest, have a size smaller 

than 1 m, which makes monitoring complicated. Furthermore, the usually applied complex 

media possess many insoluble particles, which demands a sophisticated image analysis and 

absorbs much light. Finally, the high cell densities obtained today create many overlapping 

particles, which cannot be easily identified. Despite all these challenges, monitoring of life cells 

has a great potential and is therefore already conducted for many applications, although not 

often in-line due to a lack of suitable devices. 

 Single-cell analysis in microfluidic cultivation devices bears a great potential for the 

development and optimization of industrial bioprocesses since large scale dynamics might be 

emulated in such systems (Grünberger et al., 2014; Haringa, Mudde, et al., 2018). Low volumes 

together with high parallelization allows to increase the throughput, thus running a larger 

number of cultivation experiments simultaneously even under quick alteration of 

environmental conditions than with lab bioreactors. For example, the impact of changes in 

media composition on cell growth during classical batch cultivation can be easily resolved 

(Demling et al., 2018). Until now, microfluidic devices and bulk measurement techniques have 

been more frequently used to determine microbial growth via biomass, biovolume or OD. 

Meanwhile, growth rates acquired in the microfluidic single-cell cultivation can be based on 

doubling times measured with time-lapse microscopy. By using this technology together with 

fluorescence-based biosensors, specific growth rates of micro-colonies, morphological 

changes of single cells and cell population heterogeneities can be precisely determined 

(Mustafi et al., 2014). The additional information gained on a single-cell level allows to 

determine not only max very precisely but also gives information on cell-to-cell heterogeneity. 

In-situ microscopy (ISM) has been developed in recent years to bring this concept of measuring 

population heterogeneity to the industrial scale (Belini et al., 2013; Beutel & Henkel, 2011). (Marbà-

Ardébol et al., 2019) just summarized the ISM methodology followed to study the morphologic 

dynamics of fungi, microalgae and yeast cells, which enabled the determination of growth activity as 

well as intracellular product accumulation. The sensor has no movable parts and can be directly 

connected to any standard STR, either through a standard port (in-line measurement) or in a 

sterilizable by-pass (on-line approach).    

The use of fluorescent probes to assess physiological functions of bacteria at the single-cell level was 

developed some years ago (Joux & Lebaron, 2000), but it is a smart way to make physiological 

heterogeneity visible, when combined with flow cytometry or microscopy. For instance, propidium 

iodide (PI) is a fluorescent marker broadly used for the assessment of cell viability on the basis of 

membrane permeability, since, in principle, it can only be taken up by microbial cells exhibiting 

compromised membranes (Davey & Hexley, 2011; Shi et al., 2007). In a similar direction, the genetic 

modification of introducing a fluorescent transcriptional reporter into the DNA of the strain under 

study is a novel biotechnological approach for studing population heterogeneity, but does not allow 
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to study the original strain, since the GMO may show some different properties when compared to 

microorganisms without fluorescent biomarker (Díaz et al., 2010). As examples, (Delvigne et al., 2009, 

2010, 2011) used flow cytometric analysis to study changes on the expression of different 

transcriptional reporter genes, based on the green fluorescent protein (GFP), on a single-cell basis 

during cultivations performed under well mixed and heterogenous conditions. Results show a 

significant drop of the GFP content in E. coli, as stress response under scale down conditions (excess, 

limitation and starvation of glucose and exhaustion of oxygen). This reduction was associated with a 

segregation in the population heterogeneity. The same authors applied S. cerevisiae reporter strains 

for investigating the cell robustness against freeze-thaw stress and growth on ethanol in a continuous 

STR-STR scale down cultivation, where sugar concentration and dissolved oxygen oscillations were 

encountered. Flow cytometry measurements evaluating freeze-thaw stress revealed that the 

membranes of cells growing with higher dilution rate appeared to be more robust toward freeze–thaw 

stress, in comparison to cells growing at lower dilution rate. In terms of ethanol consumption, cells 

cultivated in SingleCR showed no growth on ethanol, whereas 64 % higher fluorescence was detected 

in TwoCR cultivations, where the population heterogeneity increased as well (Heins et al., 2015). 

Additional relevant literature already published regarding investigation of population heterogeneity in 

the single-cell level using the tools described above in different bioprocesses can be found in Table 3. 

Table 3. List of the most relevant and recent research articles applying the tools previously described for 
monitoring population heterogenetiy throughout cultivations using different microorganisms. 

Tool/strategy Microorganism Literature 

Flow cytometry 

L. acidophilus (Narayana et al., 2020) 

E. coli 
(Brognaux et al., 2013; Heins, Johanson, et al., 2019; 

Heins, Lundin, et al., 2019; Hewitt & Nebe-Von-
Caron, 2001; Hewitt et al., 2006) 

S. cerevisiae 
(Heins, Johanson, et al., 2019; Hewitt & Nebe-Von-

Caron, 2001) 

C. glutamicum (Neumeyer et al., 2013) 

P. pastoris (Raschmanová et al., 2019) 

CHO cells (Möller et al., 2019) 

Microscopy 

L. acidophilus (Narayana et al., 2020) 

E. coli (Panckow et al., 2017) 

S. cerevisiae 
(Ginovart et al., 2018; Marbà-Ardébol, Bockisch, et 
al., 2018; Marbà-Ardébol, Emmerich, et al., 2018; 

Suhr & Herkommer, 2015) 

H. anomala (Camisard et al., 2002) 

B. amyloliquefaciens (Ziegler et al., 2015) 

C. cohnii (Marbà-Ardébol et al., 2017) 

C. reinhardtii + C. vulgaris (Havlik et al., 2013) 

Mammalian (Guez et al., 2004; Suhr & Herkommer, 2015) 

Reporter strains  
+ flow cytometry 

E. coli 
(Baert et al., 2015; Heins, Johanson, et al., 2019; 

Heins, Lundin, et al., 2019) 

S. cerevisiae 
(Carlquist et al., 2012; Delvigne et al., 2015; Heins et 

al., 2015) 

Microfluidics 
+ microscopy 

E. coli 
(Binder et al., 2016; Fragoso-Jiménez et al., 2019; 

Hashimoto et al., 2016) 

C. glutamicum (Grünberger et al., 2015; Lindemann et al., 2019) 

S. lividans (Koepff et al., 2018) 

S. mycelium (Sachs et al., 2019) 
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Additionally, innovative strategies for analyzing population heterogeneity during cultivation of 

industrially relevant microorganisms have been proposed in recent years. (Wang & Dunlop, 2019) just 

recently reviewed the origins of cell-to-cell variation in metabolic engineering and strategies to control 

variability in such scenarios. While (Li, Tang, et al., 2019) suggest a novel mass spectrometry (MS) 

strategy to eliminate matrix effects and thus obtain information of mammalian cells on a single cell in 

their native state, (Vasdekis et al., 2019) used MS together with high-throughput quantitative-phase 

imaging for quantifying the tradeoffs between triacylglycerol production and growth in the oleaginous 

microorganism Y. lipolytica. (Sassi et al., 2019) propose the use of a so called segregostat to control 

phenotypic diversification dynamics of E. coli as well as P. putida cells. This cultivation mode, in 

contrast to a traditional chemostat, allows the control of phenotypic diversification of microbial 

populations over time. Results show that, upon nutrient limitation, cell population tends to diversify 

into several subpopulations exhibiting distinct phenotypic features (non-permeabilized vs. 

permeabilized cells). On-line flow cytometry analysis leads to the determination of the ratio between 

cells in these two states, which in turn triggers the addition of glucose pulses to maintain a predefined 

diversification ratio. Literature work found toward quantification of population heterogeneity in LAB 

cultivations, proposes the use of single cell Raman spectroscopy, coupled to chemometrics, for real-

time analysis and prediction of cells in different growth phases during batch culture of Lactobacillus 

casei. Spectral shifts were identified in different states of cell growth that reflect biochemical changes 

specific to each cell growth phase (Ren et al., 2017). The authors conclude that Raman spectroscopy 

allows label-free, continuous monitoring of cell growth, which may facilitate more accurate estimates 

of growth states of LAB populations during fermented batch culture in industry. 

Due to the continuous development, in the last decades, of analytical techniques providing complex 

information at the single cell level, the study of cell heterogeneity has been the focus of several 

research projects within analytical biotechnology (Table 3). Nonetheless, the complex interplay 

between environmental changes and cellular responses to them is still not fully understood, and the 

integration of this new knowledge into the strategies for design, operation and control of bioprocesses 

is far from being an established reality. Indeed, the impact of cell heterogeneity on productivity of 

large scale cultivations is acknowledged but seldom accounted for. In order to include population 

heterogeneity mechanisms in the development of novel bioprocess control strategies, authors have 

developed a reliable mathematical description of such phenomena (Lencastre Fernandes et al., 2011). 

Multiple modeling frameworks have been proposed to describe and simulate the dynamics of 

heterogeneous populations. Measurement data are used to adjust computational models, which 

results in parameter and state estimation problems. Then, methods to solve these estimation 

problems need to take the specific properties of data and models into account (Waldherr, 2018): 

 In a stochastic approach, cell heterogeneity can be described by looking at a probability 

distribution over the cellular variables (Wilkinson, 2009). (Delvigne et al., 2005, 2006, 2011) 

published a stochastic model enabling the simulation of the mixing and the circulation of E. 

coli in a TwoCSDR system (STR-PFR). The superimposition of mixing and circulation processes 

determines the (glucose) concentration profile experienced by a microorganism in the 

bioreactor during fed-batch cultures. Such methodology as part of an Euler-Lagrange approach 

has also been applied to P. chrysogenum cultures in recent years (Haringa et al., 2016). 

 In the concept of population balance modeling (PBM), so-called population balance equations 

(PBEs) are defined, thus formulating a density function over the heterogeneous cellular 

variables. Changes of this density function over time describe population dynamics 
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(Ramkrishna, 2000). Mathematically, PBEs are partial differential (or integro-differential) 

equations, with time and heterogeneous cellular variables as independent variables. These 

models contain distinct elements for several processes which, together, shape the population 

heterogeneity and are thus useful, for instance, to distinguish the effects of different parts of 

the system including intracellular dynamics, cell division and death rates or cell partition at 

division, on the overall population state and dynamics. Different applications of these models 

to biological systems were reviewed some years ago (Ramkrishna & Singh, 2014). 

 Another option to model cell population behaviour are individual-based or cell ensemble 

models (Henson, 2003). These models simulate a large number of individual cells which are 

representative for the full population. Population characteristics can then be inferred from 

gathering the individual cells’ properties. While individual cells are sometimes modelled 

stochastically in ensemble models, the statistical properties of the overall population do still 

deterministically depend on the single-cell dynamics. (Nieß, Löffler, et al., 2017) recently 

published a transcriptomic model to predict the influence of varying substrate levels on the 

transcriptional and translational response of E. coli. In summary, the resulting model is not 

only able to anticipate the experimentally observed short-term and long-term transcriptional 

response, it further allows envision of altered protein levels. The model shows that locally 

induced stress responses propagate throughout the bioreactor, resulting in temporal and 

spatial population heterogeneity. 

Although all these modeling tools try to predict the occurrence of population heterogeneity in large 

industrial scale bioreactors, the PBM approach solving the PBEs is the most frequently reported 

strategy in literature. As discussed earlier in this work, microorganisms can either be regarded as a 

continuum or treated individually and tracked inside the bioreactor. (Morchain et al., 2014), for 

example, simulated lab scale (70 L) and industrial scale (70 m3) aerated fermenters combining an Euler-

Euler approach for the two-phase flow: a PBM for biological adaptation of E. coli to concentration 

gradients and a kinetic model for biological reactions. Similar studies for E. coli, T. reesei and A. niger 

have been published elsewhere (Azargoshasb et al., 2016; Bannari et al., 2012; Elqotbi et al., 2013), 

respectively. On parallel, the Euler-Lagrange approach has also played a relevant role in investigating 

population heterogeneity during E. coli (Lapin et al., 2006; Pigou & Morchain, 2015), S. cerevisiae 

(Haringa, Deshmukh, et al., 2017; Lapin et al., 2004), P. chrysogenum (Tang et al., 2017) and C. tropicalis 

(Morchain et al., 2012) cultivations, for instance. As stated by (Henson et al., 2002) more than fifteen 

years ago, an inherent limitation of the PBE approach, however, is that the incorporation of a detailed 

intracellular reaction network leads to a computationally intractable model already for ideally mixed 

systems because a high dimensional distribution function must be computed. Nevertheless, with the 

fast evolution of computers in the last decades, research including a broader spectrum of cellular 

responses has been published: key metabolic enzymes (Haringa, Tang, et al., 2018), transcription and 

translation dynamics (Löffler et al., 2016; Simen et al., 2017), protein formation (Nieß, Failmezger, et 

al., 2017) and cell cycles (Kuschel et al., 2017), among others. A typical PBE contains terms for spatial 

transport, loss/growth and breakage/coalescence source terms. The method of moments, its derivates 

and further challenging matematical solutions are currently being proposed (Li, Li, et al., 2019; Müller 

et al., 2019; Pigou et al., 2017, 2018; Wang, Yu, et al., 2019) to solve analytically and numerically these 

complex terms. So far, no reported studies accounting for population heterogeneity (its measurement 

or model-based prediction) have been published in industrially relevant LAB processes. 



 
Klaus Pellicer Alborch   Cocci chain length distribution as control parameter in scaling lactic acid fermentations 

Research Questions and Aim of the Project                 37            

 

3. Research Questions and Aim of the Project 

One focus of this project is to study the feasibility and meaning of polarizability measurements to 

determine the viability of LAB at-line in comparison to other methods, like flow cytometry and lactic 

acid (pH coupled to base addition rate) measurements. The second aim of this work is to apply, for the 

first time, pH-oscillations in multi-compartment scale down bioreactors in LAB cultivations and try to 

assess their impact on population heterogeneity by monitoring the micromorphology, in case of S. 

thermophilus, the cocci chain length formation in a stirred tank reactor shear force environment. 

Finally, the third aim, is to apply a PBM-based approach to predict population heterogeneity inside a 

bioreactor as a function of pH-gradient formation and relate the macromoprpholgy to viability features 

of the culture. 

 

RQ1. Is the automated polarizability measurement feasible to be applied across scales as indicative 

of cell activity?   

Metabolic activity is a key CQA, specially in the production of biomass to be applied as starter culture. 

This bacterial attribute is currently quantified as acidification activity (i.e. time needed to decrease 

about 0.1 units the pH value of milk), but is taking place after harvesting the bioreactor. This means 

that this procedure is rather following the Quality by Testing (QbT) than the QbD approach. Product 

quality should be quantified and monitored during the whole process to be able to ensure product 

specifications until delivery. In different research publications, it has been concluded that the 

electrooptical measurement of cell polarizability is a suitable indicator of population activity and, 

together with the automated sampling and sample preparation unit EloTrace (EloSystems GmbH, 

Berlin, Germany), could constitute a future at-line quality check during LAB fermentations. The key 

question is whether this methodology can be applied across scales, providing meaningful information 

of the metabolic activity and viability, including the status after downstream processing and 

confection. 

RQ2. Is it possible to automatically and with 100 % reliability perform microscopic image analysis to 

get morphologic heterogeneity of bacteria in real-time?   

Microscopy is one of the most established methods to observe cellular macromorphology, but usually 

takes a considerable amount of time and effort. Advances in on-line microscopy application for 

bioprocesses together with automated image recognition can resolve such problems. Therefore, the 

question shall be solved whether the consideration of macromorphology in combination with 

microscopy can lead to a fast capture of the physiological cell status, including population 

heterogeneity. 
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RQ3. How does the division cycle of streptococci work and how can it be mathematically described? 

Is there a real relationship between population heterogeneity and pH-gradients? Can this 

knowledge improve the industrial production of LAB starter cultures?  

As stated in the literature, the division of streptococci is a poorly understood process and still more 

research is needed on that direction. However, with the actual state of the art and the experience 

acquired in this work, a simplified mathematical description of the cell separation/elongation was 

proposed. To which extend is this in silico model describing the actual division cycle?  

 

RQ4. Can industrial pH-gradients better be simulated in single- or multi-compartment scale down 

models?   

Assuming that pH-gradients are the most relevant inhomogeneities in the industrial production of 

starter cultures, which is their influence on process performance (i.e. biomass quantity and quality)? 

Can those heterogeneities be simulated in lab scale down experiments? More importantly, among all 

scale down simulators described in literature, which is the one that better mimics the conditions in the 

industrial scale? Obviously, this is difficult to answer without the exact knowledge of the 

fluidodynamics and gradient formation in the production fermenter/s. Also, are pH-gradients the main 

or only heterogeneity faced by LAB in the large scale? With our actual knowledge it may be, but the 

potential influence on product quantity as well as quality of further inhomogeneities (e.g. pCO2, 

temperature, shear forces, etc.) should be discussed.  

 

RQ5. The consideration of individual cells (i.e. population heterogeneity) can really improve the 

actual process understanding of LAB fermentations?   

Nowadays, in the vast majority of bioprocesses, the end of USP is determined by analysis of 

macroscopic variables (e.g. concentration of C-source, biomass concentration, VCC, OD, pO2, pH, etc.). 

The production of LAB starter cultures is not an exception, since the end of fermentation point is 

determined based on the base addition rate. Importantly, the product in this bioprocess is the biomass 

generated, which can be macroscopically easily quantified by well established methods (i.e. OD, DCW, 

WCW, % solids, among others). Nevertheless, the product quality in this case is measured by 

acidification activity tests, which provide a volumetric value of the metabolic activity. This means that, 

actually, there is no single-cell level analysis of the biomass, while its adequate function in the final 

customer depends on the performance of each individual bacterium. Since this project focused on 

population heterogeneity determination in this industrial bioprocess, an answer needs to be given on 

whether it is advantageous to consider the characteristics of individual cells or not, compared to the 

macroscopic analysis of CQAs. Therefore, how can the industrial production of LAB benefit from 

studying this population heterogeneity? 
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4. Results 

Firstly, as discussed in the introduction and described in literature in the last decade (Faassen & 

Hitzmann, 2015; Glassey et al., 2011; Luttmann et al., 2012), there is an increasing interest by 

regulatory authorities (mainly, FDA as well as EMA) for applying PAT to move from the QbT to the QbD 

approach in (bio-) pharmaceutical industries. The main objective consists of monitoring and controlling 

the CPPs in order to ensure the CQAs of the product of interest during the entire production process. 

In this context, the concept of the so called measurement, monitoring, modeling and control (M3C) 

methodology (Bracewell et al., 2010; Carrondo et al., 2012) appeared with a “Pharmaceutical Current 

Good Manufacturing Practices (cGMPs) for the 21st century—a Risk Based Approach” initiative 

announced by the FDA some time ago to improve and modernize pharmaceutical manufacturing 

(Rathore et al., 2010). This is why, a relevant focus was put on applying novel process analytical tools 

throughout the LAB fermentations performed in this work, aiming at suggesting new devices for the 

food industry to improve the measurement of existing CQAs or even propose the analysis of, until now, 

unknown properties of the biomass. This part of the results contains three publications, one already 

published, one submitted and one prepared for submission. 

Secondly, it was extensively emphasized that knowing and simulating in the lab the fluid dynamics of 

the large scale fermenter is key for a future successful process optimization and scale up. Therefore, 

two published research articles aimed at characterizing the industrial environmental conditions 

encountered by LAB in the production scale by using CFD and applying scale down.   

Thirdly, mechanistic modeling was applied to describe the process performance by means of cell 

division indicators. This was then used to couple growth to population balances in order to predict the 

process performance under the appearance of pH-gradient formation in another publication. 

4.1. At-line Physiology and Morphology Analysis in LAB Cultivations using 

Electrooptic Methods 

In the industrial production of biomass (where no commercial product is synthesized by the cells) to 

be manufactured as its whole (e.g. starter cultures, plant growth promoters, etc.), the key CQA is 

obviously the concentration of microorganisms at the “end” of the batch (or time of harvest). This 

point is typically selected based on the usual exponential growth profile of the vast majority of cells, 

but a rule that applies to all microorganisms is unfortunately not available. The decision on when to 

harvest the biomass is generally a trade-off between the maximum cell concentration possible (under 

optimal growth conditions: temperature, pH, initial C-source concentration, reactor volume, aeration 

flow, stirring speed, among others), minimum cell damage and maximum overall throughput to release 

as much final product as possible (CIP, SIP, cultivation, harvest, DSP, formulation and packaging). 

The limitation of this established philosophy is that in most cases at no point during the decision of 

when to harvest the biomass, emphasis is put on cells’ activity. In this scenario, the performance of 

the product (i.e. living microorganisms) depends on its activity in the final application and thus, the 

manufacturing company ends up selling a lot of biomass (product), but which is performing with a 
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considerably high variation when the customers use it, thus leading to reclamations and confrontations 

between seller and buyer. What is more, biomass activity, if determined, is typically measured after 

having harvested the bioreactor and this strategy corresponds to QbT, which has been discussed 

previously that is the wrong decision if one aims at complying with evolving regulatory specifications 

going toward QbD and/or Quality by Control (QbC) by using novel PAT. 

In this work, a new device able to assess the metabolic activity of bacteria is suggested to improve the 

current QbT approach during the production of LAB cultures to be sold as starter cultures for the 

yogurt, cheese and probiotics industries. As previously explained in more detail, the measurement 

principle relies on the orientation of cells under the application of an electrical field of a certain 

frequency as a function of their ionic load (i.e. difference between ions inside and outside the 

membrane). Moreover, the equipment is sold with an automated sampling as well as sample 

preparation system (filtration of complex media, rinsing with distilled water and OD adjustment) and 

thus, can be directly connected to the fermenter. With this, the determination of microorganisms’ 

activity inside the bioreactor becomes feasible in an at-line setup, obtaining a result in less than 15 

minutes. Additionally, since this property has barely been measured during the fermentation of LAB, 

it could be proposed as novel CQA and be also used to contribute to the decision on when no stop one 

batch. 

In this section, this measuring device is applied to L. plantarum (Paper I) and S. thermophilus (Paper II) 

fermentations in different setups in order to generate the proof-of-concept results that may hopefully 

approximate industrial companies to move from the actual QbT to the QbD strategy, when it comes to 

determination of cells’ metabolic activity. Finally, results are compared with flow cytometry analyses 

throughout some of the experiments, which is the established method to differentiate between living 

and dead cells. 

4.1.1. Polarizability Analysis throughout Lactobacillus plantarum Cultivations (Paper I) 

The measurement of cells’ metabolic activity is scarcely included in bioprocess development and is 

typically determined off-line and after the biomass has been harvested. In this first paper, the 

application of electrooptical measurements of cell polarizability in LAB was published for the first time. 

The aim was to investigate the time course of polarizability of L. plantarum ATCC 2014 in batch and 

fed-batch fermentations in complex, industrially relevant media, assessing the response of this 

parameter to certain disturbances of the CPPs. 

Firstly, the following experiments were carried out (Figure 2): 

 The initial amount of C-source (glucose) was doubled in comparison to the control experiment. 

 Fermentations without pH control were performed to investigate the influence of acidic 

conditions on the anisotropy of polarizability (AP). 

 A nitrogen-sparged cultivation was compared to an aerated one. 

 The impact of a lower cultivation temperature, and thus a lower metabolic activity, on the AP 

was investigated. 
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Figure 2. Time course of the mean AP (scaling factor 5∙10-31), its first derivative, cell size, the amount of cells and 
the specific growth rate throughout six L. plantarum batch cultivations: at standard conditions (●), with 
additionally 1 % of glucose in the medium (○), without pH control (□), with aeration (   ) and at a reduced 
temperature of 25 ºC (   ). Taken directly from Paper I. 

The results obtained indicated that: 

 Although more glucose was available before inoculation, the development of the AP level 

during the first two hours of cultivation was almost the same than under standard initial C-

source concentration. What is more, the local as well as global maximum of the AP is also 

reproduced under a higher initial glucose concentration. Nevertheless, the evolution of this 
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parameter after the peak at 5,000 F∙m² was more retarded when more glucose was available, 

probably because of an earlier substrate limitation under standard conditions.  

 When the pH-value was not controlled throughout the cultivation, a sudden drop of the AP 

was observed after 3 hours, after reaching the maximum level commented before, compared 

to the standard polarizability profile. The external pH was 4.5 at that time and from then on, 

the AP level decreased in parallel with the pH, thus indicating unfavourable cultivation 

conditions at extremely acidic conditions, being in accordance with the literature. 

 Aerobic conditions retarded growth only slightly but had no negative impact on the cells’ 

physiological state, since the time course of the AP and mean cell length was rather the same 

as in the control cultivation. 

 At a lower fermentation temperature, the rate of chemical reactions is naturally lower, which 

yields an expected lower specific growth rate as well as final cell number when compared with 

the cultivation at the optimal temperature. Interestingly, cells were larger when cultivated at 

a lower temperature, which may be attributable at an intracellular accumulation of 

intermediates during a slower cell metabolism under these growth conditions. Nevertheless, 

this temperature shift did not alter notably the physiological conditions of cells. 

The at-line monitoring of the AP enabled the identification of suitable cultivation conditions in all cases: 

an optimal range of the AP and cell length can be assumed, in which the cell reaches an optimal 

physiologic and morphologic state: an AP level of above 4,500 F∙m² and a cell length of about 2.5 µm. 

Moreover, the experiment without pH control allowed the elucidation of the development of the AP 

level as a function of pH (Figure 3), thus determining the sensitivity and adaptation capacity of L. 

plantarum activity to changing external pH. Additionally, the AP measurement was identified as an 

early indicator for growth retardation, since it decreased earlier than the growth rate in all cultivation 

conditions (Figure 2). 

 
Figure 3. Development of the mean AP level (scaling factor 5∙10-31) over a L. plantarum cultivation without pH 
control. Taken directly from Paper I. 

In Figure 4 a sudden glucose pulse addition in the stationary phase was performed to investigate the 

response time of the AP to a changed nutrient supply and to prove the dependency between cells’ 

metabolic activity and their polarizability: the glucose pulse led to an immediate response of growth 

with a concomitant increase of the AP level. Again, the polarizability decreased half an hour before the 

growth rate did so (9h after the pulse). 
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Figure 4. Time course of the mean anisotropy of polarizability (   ), its first derivative (□), cell concentration (▲) 
and specific growth rate (∆) after a sudden substrate pulse after cells suffered 17 h of starvation. Error bars 
represent the technical reproducibility of EloTrace with two biological replicates. Taken directly from Paper I. 

Subsequently, the course of the AP was monitoried during a prolonged nutrient-limited L. plantarum 

cultivation (Figure 5) to study the development of cell polarizability with different nutrient supply. 

During a first fed-batch phase with a constant feed, where substrate availability per cell is declining, 

the mean cell size remained almost constant, whereas the AP and the specific growth rate decreased 

in parallel. Nevertheless, once the feed rate was doubled, a clear response of the AP level was 

observed, thus confirming that the AP depends on the nutrient availability under nutrient-limited 

conditions, although the dependencies were not as clear as in the batch experiments: here the AP 

showed a rather decoupled development compared to the growth rate. Importantly, a depletion of 

three amino acids was detected during the feed phases (firstly serine, then aspartate and finally 

glycine), accompanied by changes on the slope of the AP level at the corresponding time points. 
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Figure 5. Course of on-line and off-line cultivation parameters, as well as main metabolites and amino acids 
throughout a L. plantarum fed-batch cultivation under standard conditions. Off-line monitoring of DCW (○), 
aspartate (×), serine (   ), glycine (+), glucose (□), lactate (◊) and malate (  ) concentrations over time. At-line 
optical density (  ●  ), cell size (   ○   ), mean polarizability (      ○     ) and growth rate (       ) measurements. During 
the fed-batch phase, the feed start (         ), doubling of feed rate (        ) and feed stop  (        ) are highlighted with 
vertical lines. Error bars denote standard deviation of two biological replicates. Taken directly from Paper I. 

Finally, the behaviour of the AP of L. plantarum after revitalization (i.e. resuspension in fresh media) 

of freeze-dried cell pellets taken at different phases of a batch cultivation was investigated (Figure 6): 

a) During the growth phase. 

b) At strong retardation/growth cessation. 

c) In the early stationary phase two hours after growth cessation. 

d) In the late stationary phase 13 hours later. 
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Figure 6. L. plantarum batch fermentation under optimal conditions. OD (black line) and specific growth rate 
(grey line) development over time with sampling points depicted with vertical dotted lines. Samples were directly 
frozen and subsequently freeze-dried. Taken directly from Paper I. 

As seen in Figure 7, the growth after resuspension in fresh media varied depending on at which growth 

phase had the biomass been freeze-dried. Interestingly, the highest acidification activity (i.e. decrease 

of the pH over time) as well as growth rate was observed in samples taken at strong 

retardation/growth cessation and at the late stationary phase. These were indeed the samples that 

showed the highest and fastest increase of AP after revitalization. Apparently, the polarizability at a 

higher frequency (2,100 kHz), is more suitable to distinguish between the different states of 

revitalization, e.g. the reconstitution of ion transport and functional cell structures. 

With this publication it was shown that the consideration of cells’ polarizability during LAB cultures 

may be of special interest for the food industry, since it can provide new insights in cell’s metabolism, 

unknown until now. The use of a commercial device with automated sampling and sample preparation 

allows its measurement in minutes, thus being a potential new PAT to move toward QbD. 
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Figure 7. OD600nm, pH and AP level at a frequency of 400 kHz and 1,200 kHz of formerly freeze-dried and 
resuspended L. plantarum culture broth in 50 % MRS media collected after 4 h (○), 6 h (□), 8 h (  ) and 21 h of 
batch cultivation (◊). Error bars: Mean ± SD (n = 2). Taken directly from Paper I. 
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4.1.2. Polarizability Determination in Streptococcus thermophilus Fermentations 

(Paper II) 

After the successful application of the cell polarizability measurement tool to L. plantarum as proof-

of-concept study in LAB, the same approach was used throughout the cultivation of the bacteria of the 

industrial partner in the project (i.e. Streptococcus thermophilus). Importantly, in the large scale 

production of these LAB, the pH of the media is neither adjusted after preparation nor after 

sterilization. Instead, the bioreactor is inoculated at the media pH and it is allowed to decrease 

(through media acidification because of the fermentation product lactic acid) until pH 6, where it is 

controlled with ammonia addition. Generally, from a physioloigical point of view, cells have two 

options, they either use ATP to improve their individual energy household to adapt to the surrounding 

environment or they divide themselves and grow. This trade-off is supposed to be always present in 

the cultures, so that external oscillations of the extracellular media are obiviously going to affect cells’ 

polarizability (see results obtained in Paper I in 4.1.1). Additionally, the equipment is also capable of 

determining a further cell viability indicator: the membrane status. A lower value is a good indicator 

for cells with intact membrane and good defined semi-permeable properties (i.e. intact and active ion 

exchange), while a higher value of this parameter correlates with an affected cell membrane: E. coli 

treated with ethanol and a bacteriocid showed a membrane status higher than 0.5 (data not shown). 

For the initial cultivations with the industrial strain, some batch experiments at 40 ºC and controlling 

the pH as just described with NH3 5 % v/v (Carl Roth, Karlsruhe, Germany) were performed in 300 mL 

EloFerm bioreactors (EloSystems GmbH, Berlin, Germany). Throughout one of these cultivations, 

EloTrace (EloSystems GmbH, Berlin, Germany) was also connected to the fermenter. The results are 

summarized in Figure 8 and some similarities with the development of electrooptical measurements 

during previous L. plantarum fermentations were identified:  

 During lag and early exponential phases, an increase of mean polarizability over time of the 

small number of cells available in the culture, with almost no biomass growth, was observed. 

 Both, the AP level at 400 kHz as well as the cell size reached maximum values at the maximum 

specific growth rate. Nevertheless, these were notably different (around 3,000 F·m2 and 5.5 

m, respectively) despite of both strains presenting similar maximum growth rates during 

batch cultivations (around 0.8 h-1). On the one hand, here completely different LAB are 

compared and the media employed for their fermentation were also not the same (see 

corresponding publications), thus obtaining a completely distinct polarizability profile over 

time. On the other hand, S. thermophilus form chains of variable cocci length (as explained in 

the Scientific Background) and can therefore be notably larger than bacilli. 

 The polarizability decreased about one hour before the growth rate did, thus being a potential 

indicator of growth reduction due to depletion of key nutrients, before decrease of  with a 

subsequent entrance into the stationary phase. 

 The AP level at 400 kHz remained almost constant once entering the stationary phase. 
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Figure 8. Development over time of CPPs and CQAs during a S. thermophilus batch cultivation. On-line (lines), at-
line (symbols with lines) and off-line (symbols) acquired data. Error bars: Mean ± SD (n = 2). 

 

This preliminary comparison between LAB grown at different days was extended by performing 

fermentations of L. plantarum and S. thermophilus under optimal growth conditions in parallel 300 mL 

bioreactors, sampling at different intervals for (i) at-line determination of growth related parameters, 

(ii) electrooptical measurement of cell polarizability and size as well as (iii) microscopic analysis of 

morphological changes over cultivation time (Figure 9). Growth of both LAB was similar under the 

correspondent optimal pH conditions: biomass concentration (DCW and OD) increased exponentially 

over time, while the mean cell polarizability steadily declined with a concomitant increase of the 

membrane status, because of the specific use of energy for cell division in the absence of oscillating 

conditions, but also due to an increasing amount of daughter cells typically possesing a lower ionic 

activity. Nevertheless, both LAB were considerably different in terms of morphological characteristics: 

L. plantarum are rod-shaped bacteria with typically 1-2 rods per cell throughout the whole 

fermentation, whilst S. thermophilus are cocci chains of varying length depending on the growth stage 

(Figure 9). In fact, chain length tended to increase turning the cocci chain length distribution more 

heterogeneous, specially when the S. thermophilus culture entered the stationary phase. Theses 

differences on morphology were in accordance with electrooptical measurement of mean cell size with 

EloTrace (EloSystems GmbH, Berlin, Germany). It is worth mentioning, that a magnetic flea was used 

to maintain a relative homogeneous mixing of the base fed throughout the experiments presented 

here, so comparison of the cell size distribution results with following cultivations using STRs might be 

meaningless, because of the notably higher shear stress induced with a rotating impeller. 
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Figure 9. Cultivations of L. plantarum (pH control at 5.8, solid lines) and S. thermophilus (dotted lines) under 
optimal conditions in 300 mL EloFerm bioreactors. Development of growth-related indicators (A), electrooptical 
measurements (B) and microscopic analysis of morphological changes (C and D) over fermentation time. The cell 
size distribution (C; rods for L. plantarum or D; cocci for S. thermophilus) is described in vertical bars of different 
colors: populations of 1, 2, 3, 4 and 5 or more units per cell in black, red, green, yellow and blue, respectively. 

 

For the publication arisen from this section, it was decided to characterize the strain in terms of 

maximum specific growth rate. An accelerostat (A-stat) cultivation was performed in duplicates, where 

the batch phase is followed by stabilization of the culture at a fixed specific growth rate to obtain an 

initial steady state. Subsequently, the dilution rate (D), which equals to the specific growth rate (), is 

increased with a constant speed at a certain slope until the culture cannot keep up with the rising D, 

resulting in the so called wash-out (cells can no longer consume the amount of C-source introduced 

and this starts to accumulate extracellularly, in parallel with a decrease of the cells as well as 

byproduct/s, which are “washed-out” from the bioreactor). Under such cultivation conditions, the 

culture is in a quasi-steady state, which is a physiological state of a microorganism where every point 

represents the corresponding steady state value. Great advantages of A-stat experiments are (i) the 

possibility to monitor bacterial growth in real time to study cell physiology in a large variety of specific 

growth rates (each time point where sample is taken is like a snapshot at that specific D, i.e. ), (ii) 

while reducing the duration of the experiment at the same time. 

As explained, the cultivations began with a batch phase, followed by a chemostat at a dilution rate of 

first 0.3 h-1 and then 0.1 h-1 for ca. 50 h each. Subsequently, the accelerostat was started with an 

acceleration rate of the feed of 0.005 h-2. Later on, the acceleration rate was increased stepwise to 

0.008 h-2 (Figure 10). 
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Figure 10. Dilution rate throughout duplicates of a S. thermophilus continuous cultivation. The cultivation started 
with a batch phase (data not shown), followed by two chemostat and an accelerostat. Taken directly from Paper 
II. 

The EloTrace (EloSystems GmbH, Berlin, Germany) device was connected to one of the two fermenters 

throughout the whole experiment, performing an equipment maintenance (i.e. system washing and 

filter renovation) once every day. Temperature and pH in the bioreactors were always controlled at 

40ºC and 6, respectively, taking sample for off-line analysis, at least, four times a day. Further details 

regarding the experimental setup may be found in the prepared manuscript with joint authorship 

together with Dr. Robert Spann (Denmark Techical University). The batch cultivations were initated 

with 20 g·L-1 of lactose, which is equivalent to a molecule of glucose plus one of galactose. As already 

explained, the first is used by the bacteria to generate biomass through glycolysis and lactic acid 

fermentation, while the latter is excreated into the media. Importantly, as seen in Figure 11: 

a) At the beginning of the A-stat experiment (i.e. steady increase of D/ over time), lactose was 

measured in residual concentrations, while lactic acid concentration, OD600 and DCW remained 

almost unchanged as the continuous cultivations evolved over time (i.e. over D or ). These 

observations confirmed the quasi-steady state metabolism of the bacteria inside both 

bioreactors. 

b) Just before D = 0.6 h-1, the feed bottle of one of the experiments fell overnight, thus influencing 

the whole cell metabolism: surprinsingly, the galactose (which is in principle not metabolized 

by this S. thermophilus strain) was depleted and lactic acid, OD600 and DCW values had 

increased  just in the next measuring point after the accident (data not shown). This indicated 

that the LAB had been adapting to a limiting lactose concentration and galactose excess in the 

media throughout the whole experiment (i.e. batch, two chemostats and A-stat), so that once 

the preferred C-source (lactose) ceased to be introduced, cells consumed the next C-source 

available (i.e. galactose). For that reason, from then on, off-line data related to this replicate 

was no longer plotted in the graphs. Also, luckily the EloTrace device was connected to the 

other fermenter. 

c) Around D = 0.6 - 0.7 h-1, the lactose started to accumulate extracellularly, but lactic acid, OD600 

and DCW still remained statistically constant (see manuscript) over time or D. 

d) It was at D = 1.3 h-1 where the lactose concentration increased and the fermentation product, 

OD600 as well as DCW decreased in parallel notably, thus indicating a clear wash-out. 
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e) The mean cell size (if the washing steps are ignored) as well as the AP level at 400 kHz 

measured at-line electrooptically were steadily increasing, reaching their maxima during the 

detected region of D between 0.9 and 1.3 h-1 (Figure 12). The morphology changes were 

verified under the microscope, detecting the longest cocci chains around D = 0.8 h-1. It is worth 

mentioning, that a certain correlation between the polarizability and the yield 

biomass/substrate (YX/S) during the continuous cultivation of S. thermophilus was found (data 

not shown): the higher the AP level at 400 kHz, the higher the YX/S. 

 
Figure 11. CPPs monitored throughout two (flled and unfilled symbols) A-stat cultivations of S. thermophilus. Off-
line analyses of OD600nm, DCW and metabolites performed with HPLC are represented by symbols, while in-line 
measurement of pH as well as at-line determination of base addition, cell size and polarizability at 400 kHz are 
plotted with lines. Taken directly from Paper II. 
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Figure 12. At-line electrooptical measurement of cell polarizability and size during a S. thermophilus A-stat 
fermentation. AP development over D at different frequencies (left) and comparison with on-line measurement 
of OD (black line right) with EloFerm (EloSystems GmbH, Berlin, Germany). AP level at 400 kHz (blue line right) 
and cell size (green line right). Taken directly from Paper II. 

With this second publication using the EloTrace device, it was demonstrated that the electrooptical 

measurement of cell polarizability in LAB cultures may be of special interest for future improvement 

of the current QbT strategy used in the industrial scale. The consideration of a new CQA (namely 

bacterial ionic activity under the application of a certain electrical field or even the mean chain length) 

is suggested, which could be measured at-line, thus allowing the move toward a QbD or QbC approach 

(e.g. ensuring these new CQAs by changing the CPPs, like stirring speed or base addition rate, during 

the production process in the industry). 

Importantly, a clear influence of pH on this parameter was identified when a S. thermophilus cultivation 

under an optimal pH was compared to a fermentation without pH control (Figure 13). The extreme 

acidification because of steady lactic acid production lead to a 66 % biomass productivity loss, while 

more energy was available to increase the energy household (i.e. polarizability), leading to a higher AP 

level than under optimal pH conditions. Furthermore, cell morphology was almost not varied with an 

optimal pH, but a tendency toward higher cell sizes was observed with a continuous media 

acidification, both observations verified by microscopic analysis. In fact, at the beginning of the 

suboptimal pH conditions, rather shorter chains were detected, but the distribution evolved toward 

increasing chain length probably as an effort to decrease the specific surface area in contact with the 

unfavorable ambient. 
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Figure 13. Development of growth-related parameters (A), electrooptical measurements (B) and microscopic 
analysis of morphological changes (C and D) throughout S. thermophilus fermentations under optimal pH 
contiditions (solid lines and C) and without pH control (dotted lines and D). The cell size distribution is described 
in vertical bars of different colors: populations of 1, 2, 3, 4 and 5 or more cocci per chain in black, red, green, 
yellow and blue, respectively. 

The cell polarizability of S. thermophilus also confirmed the detection of a limitation in glass 

bioreactors. Fermentations were run in 300 mL EloFerm glass vessels (EloSystems GmbH, Berlin, 

Germany) and in a 10 L stainless-steel STR (Techfors S, Infors HT, Bottmingen, Switzerland) and the 

former lead to a lower biomass productivity and a hardly seen polarizability drop until 1000 x5·10-31 

F·m2 (Figure 14), thus indicating a clear growth imbalance despite of the fact of having used the same 

media and incoculum. Furthermore, the decreased mean cell size in the 10 L stainless-steel vessel was 

probably due to an increased shear rate from the rotating impeller, compared to the magnetic flea.

  

 
 
Figure 14. Development of growth-related parameters (top) and electrooptical measurements (bottom) during 
S. thermophilus fermentations in 300 mL glass (left) and 10 L stainless-steel (right) bioreactors. 

Cultivation time [h]

0 2 4 6 8 10

D
C

W
 [
g
·L

-1
]

0.0

0.5

1.0

1.5

2.0

2.5

o
n

lin
e
 O

D
 [
-]

0

2

4

6

8

10

 [
h
-1

]

0.0

0.5

1.0

1.5

2.0

p
H

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

DCW

online OD (EloFerm)

Growht rate

pH

Cultivation time [h]

0 2 4 6 8 10 12

D
C

W
 [
g
·L

-1
]

0.0

0.5

1.0

1.5

2.0

2.5

o
n
lin

e
 O

D
 [
-]

0

5

10

15

20

25

30

 [
h

-1
]

0.0

0.5

1.0

1.5

2.0

p
H

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

DCW

online OD (Biomass)

Growth rate

pH

Cultivation time [h]

0 2 4 6 8 10

o
n

lin
e

 O
D

 [
-]

0

1

2

3

4

5

6

F
D

A
P

 [
5

·1
0

-3
1

 F
·m

2
]

500

1000

1500

2000

2500

3000

3500

S
iz

e
 [

m
]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

o
ff
lin

e
 O

D
 [
-]

0

2

4

6

8

online OD (EloTrace)

AP at 400 kHz

Cell size

offline OD

Cultivation time [h]

0 2 4 6 8 10 12

o
ff
lin

e
 O

D
 [
-]

0

2

4

6

8

o
n

lin
e

 O
D

 [
-]

0

1

2

3

4

5

6

S
iz

e
 [

m
]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

F
D

A
P

 [
5

·1
0

-3
1

 F
·m

2
]

500

1000

1500

2000

2500

3000

3500

offline OD

online OD (EloTrace)

Cell size

AP at 400 kHz



 
Cocci chain length distribution as control parameter in scaling lactic acid fermentations Klaus Pellicer Alborch 

54     Results - At-line Physiology and Morphology Analysis in LAB Cultivations using Electrooptic Methods 

 

These observations were verified with HPLC analyses of key metabolites, identifying a notorious 

glucose accumulation in the media when the glass bioreactors were used, which was never observed 

when cultivating in stainless-steel fermenters (Figure 15). Additionally, a media pulse was performed 

after the typical cultivation time of 10 hours and the culture was left overnight until next day, when 

sampling was restarted (Figure 16). Results showed a clear limitation in the media when using glass 

fermenters, because the accumulated glucose of the previous day had been almost depleted overnight 

(i.e. after 15 hours of the pulse). A final media addition made the cells consume the glucose left in 

about 6 additional hours.

  
Figure 15. Evolution of key metabolites over duplicate (filled and empty symbols) S. thermophilus fermentations 
in 300 mL glass (left) and 10 L stainless-steel (right) vessels.  

 

  

 
Figure 16. Development of key metabolites (top) and growth-related parameters (bottom) during a S. 
thermophilus fermentation in a 300 mL glass bioreactor before (left) and after (right) a pulse of media. 
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4.1.3. Comparison of Automated Sampling and Sample Preparation with Flow 

Cytometry 

Always when a new PAT or analysis is suggested, it needs to be compared with the “established 

method” performing the “same” analysis (i.e. giving the same information or providing the same 

result/response, maybe in a different manner or in another time scale). In the case of the electrooptical 

determination of cell polarizability and size with EloTrace (EloSystems GmbH, Berlin, Germany), 

somehow changes on bacterial viability as well as morphology are obtained. In that sense, the well-

established method of analysis of both CQAs at the same time is multi-parameter flow cytometry: 

a) As unstained cells pass individually through a laser beam and scattered light is detected in two 

planes; FSC provides relative information on the cell size, while SSC is measured at 90° to the 

beam and can provide information on cell granularity. 

b) Staining the sample with specific dyes for viable and/or non-viable/permeabilized cells, 

coupled to the high-throughput flow of particles, a percentage of death cells ressembling 

something like the VCC can be obtained. 

Firstly, some general advantages and disadvantatges of both measuring principles are listed in Table 

4. Importantly, when developing the flow cytometry analysis protocol, at least, three factors have to 

be taken into account: the cells:dye ratio, the staining temperature and the staining time. What is 

more, interactions between those factors should also be considered when developing a staining 

protocol. Additionally, the majority of dyes are light-sensitive and some are dangerous for human 

health, apart from every microorganism and even strain needing a specific protocol. This means that, 

although dye manufacturers typically include an SOP for staining any biological sample, the reality is 

that an individual and meticulous DoE should be performed for each microorganism. 

Table 4. Summary of advantages and disadvantages of the electrooptical measurement of cell activity as well as 
size compared to multi-parameter flow cytometry. 

 Electrooptical method (EloTrace) Multi-parameter flow cytometry 

Advantages 

+ At-line measurement 
+ Automated sampling 

+ Automated sample preparation 
+ Easy to handle 
+ Quantitative 

+ Population heterogeneity 
+ “Automated” washing 

Disadvantatges 
- Mean contribution of whole population 

- Manual washing (once a day) 
- Destructive 

- Off-line measurement 
- Manual sampling 

- Manual sample preparation 
- Laborious 

- “Qualitative“ 
- Destructive 

In this work, DAPI and SYBR Green were used to stain S. thermophilus cells during flow cytometric 

analysis at TU Berlin and at Chr. Hansen A/S, respectively. PI was used to stain permeabilized bacteria 

throughout the whole study and in all institutions. The staining protocols used are summarized in the 

Flow cytometry analysis, where also the correct staining of the dyes was verified (e.g. positive control 

of PI performed by staining a sample of the bacteria treated at 80 ºC for 10 minutes). Moreover, 

negative controls (i.e. unstained cells) were also done in each flow cytometry experiment. Additionally, 

BOX was also tried, which has been used for monitoring changes in the plasma membrane potential of 
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other microorganisms, but the protocol was staining almost all cells (Figure 17), so it was no longer 

used for further studies. 

 
Figure 17. Flow cytometry analysis of an unstained sample of S. thermophilus (red), a BOX-stained sample 

(blue) and a sample incubated at 80 ºC for ten minutes (positive control - orange). 

 

In this section, a pilot scale (700 L) cultivation of S. thermophilus will be compared to lab scale (2 L) 

fermentations, all performed at Chr. Hansen A/S. During all experiments both PAT (electrooptical 

measurement of cell polarizability as well as size with EloTrace and multi-parameter flow cytometry) 

were applied to monitor cell activity/viability, apart from the usual in-line and off-line analyses. The 

results obtained throughout the pilot scale fermentation (Figure 18) show a similar development over 

time of the CQAs (biomass, pH as well as base addition rate) when compared to previous results in the 

lab scale. More detailed information about the culture conditions can be found in Paper III, but the 

most relevant milestone is the at-line measurement of cells’ polarizability and size with EloTrace 

(EloSystems GmbH, Berlin, Germany) in such a fermenter. Firstly, the OD determined at-line with the 

device over time correlates with the rest of biomass growth indicators. Moreover, the relative 

frequency-dependent anisotropy of polarizability (FDAP) and the so-called membrane status provided 

information on cellular ionic activity: the relative FDAP relates to the polarizability at 400 kHz, if not 

otherwise stated, and the membrane status indicates the integrity of the cell membrane based on the 

measured relative polarizability at 900 kHz and 2.1 MHz. Importantly, different growth phases were 

identified: 

a) An initial lag-phase where cells show an active metabolism (increase of the relative FDAP and 

decrease of membrane status) taking substrates up and increasing their size. 

b) An acceleration phase where cells reach a maximum mean polarizability and size as well as a 

minimum membrane status, while the biomass concentration has not really started to increase 

linearly over time, clearly showing the trade-off between cell division and maintenance. 

c) An exponential growth phase where DCW and OD increase linearly over time, while the 

relative FDAP and cell size steadily decline and the membrane status increases. 

d) A deceleration phase where the sudden increase of the mean bacterial size without further 

biomass growth after 5 hours of cultivation clearly correlates with a final increase of the at-
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line measured OD, while the DCW remains constant. The relative FDAP decreases to a stable 

value, whilst the membrane status experiences a last increase. 

e) A final stationary phase, where all CQAs (DCW, OD, relative FDAP, cell size and membrane 

status) remain unchanged. 

 
Figure 18. Pilot scale (700 L) cultivation of S. thermophilus at the industrial partner. Development over time of 
relevant CPPs (pH and base addition rate) and CQAs (off-line DCW and at-line OD, relative FDAP, cell size as well 
as membrane status). The relative FDAP refers to the polarizability at 400 kHz. Error bars: Mean ± SD (n = 2). 

As already mentioned, SYBR Green and PI were used during this fermentation to analyze all the 

bacteria and the permeabilized ones, respectively. Nevertheless, the investigation of the evolution of 

the unstained samples over time with flow cytometry can already provide relevant information (Figure 

19). Interestingly, after 2.5 hours cells showed the biggest size as well as granularity (in accordance 

with the electrooptical results in Figure 18) and from then on, their morphology remained moreorless 

unchanged. The overall trend correlates with the morphological changes observed with the at-line 

electrooptical measurement (Figure 18), but apparently the resolution of the flow cytometric analysis 

is not enough to monitor the small changes (1-2 m observed during growth in Figure 18) experienced 

by S. thermophilus during exponential growth under optimal conditions in a 700 L bioreactor. With 

these results, EloTrace seems to be more sensitive to small size changes, thus allowing the at-line 

monitoring of cell morphology of these bacteria over time, faster, simplier and without sampling nor 

sample preparation. 
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Figure 19. Flow cytometry analysis of unstained samples of S. thermophilus growth over time in a 700 L fermenter 
under optimal conditions. Samples after 2.5 (red), 3.5 (blue), 4.5 (orange), 6 (light green) and 6.5 (darw green) 
hours of cultivation. 

This cultivation in the pilot scale was compared with three fermentations performed in 2 L bioreactors 

also under optimal conditions (Figure 20 and Figure 21). For more detailed information about the 

cultivation conditions in lab scale fermenters see (Spann, Roca, et al., 2018). Both, off-line biomass and 

off-line cell concentration (determined with flow cytometry) throughout all experiments show no 

differences on growth profile between scales. Furthermore, the development of the relative FDAP 

between cultivations is also comparable, although different cryovials were used as inocula (initial 

values of polarizability are not available, because EloTrace needs a minimum of OD 0.1 to be able to 

perform the electrooptical measurement). The growth rate evolution over time is also similar between 

scales and, more importantly, here again, cells’ polarizability seems to be an early indicator of growth 

reduction, since it decreased about one hour before than the growth rate did in 2 and 700 L 

fermenters. Finally, flow cytometric analyses of samples throughout the different cultivations provide 

relevant but limited information: apart from obtaining the cell concentration (cells·L-1), the percentage 

of permeabilized bacteria was calculated as the proportion of PI-stained cells respect all SYBR Green-

stained particles (i.e. cells). A different and relatively high proportion of cells (> 5 %) were 

permeabilized after 2 hours of cultivation if both scales are compared, but this is probably a result of 

the different inocula used and that both cultures were still in the lag-phase, thus adapting to the 

extracellular environment (as commented above). Importantly, the further development of the dead 

cells over time is statistically equal across scales and the percentage of permeabilized bacteria remains 

always below 2-3 % toward the end of all cultivations, possibly because they were performed under 

optimal growth conditions. 
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Figure 20. Development over time of S. thermophilus cultivations in 2 L (circles) and 700 L (triangles) fermenters. 
Biomass (left), polarizability at 400 kHz (right blue) and growth rate (right red) evolution throughout the 
experiments. Confidence interval for DCW during three independent replicates of 2 L cultivations: Mean ± 5 %. 
The CV% of the DCW determination for all experiments was always below a 10 %, performed in duplicates, and 
error bars were not included for a better interpretation of the results. 

 
Figure 21. Flow cytometry analysis of S. thermophilus fermentations in 2 L (triangles and grey crosses) and 700 L 
(squares and black crosses) bioreactors. Biomass concentration (left) and percentage of dead cells (right) over 

cultivation time. Error bars for cell concentration: Mean ± t-Student distribution ( = 0.05, n = 2). Error bars for 
PI staining: Mean ± SD (n = 2). 

 

Figure 22 confirmed that the S. thermophilus population evolves toward diplococcal morphologies 

during growth in STR under optimal conditions across scales. What is more, a second division cycle 

could be expected under high growth rates, thus leading to 4-cocci chains, which resulted to be the 

second most relevant population in 2 L as well as 700 L S. thermophilus fermentations (Figure 22). 

Importantly, throughout these experiments flow cytometric analysis (more specifically, the mean 

between replicates of the FSC-median) correlated (R2 > 0.91) with the correspondent median of the 

cocci chain length distributions. Generally, the median and quartile range were used in this study 

because these statistics are less sensitive to outliers than the mean and mode of a distribution (Kwak 

& Kim, 2017). 
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Figure 22. Cocci chain length distribution during S. thermophilus cultivations under optimal growth conditions in 
2 L lab (A) as well as 700 L pilot (B) bioreactors. 1-coccus, 2-, 3-, 4- and 5 or more cocci chains in black, red, green, 
yellow and blue bars, respectively. 

Interestingly, the development over cultivation time of the cell size determined with electrooptical 

measurements (i.e. with the EloTrace device) was in accordance with the median FSC that resulted 

from flow cytometrical analyses in lab as well as pilot scale fermentations (Figure 23). It is worth 

mentioning, that the most similar tendency between the two parameters was detected during growth, 

while a certain deviation was observed when the cultures were entering the stationary phase in both 

scales. Changes in the bacterial cell size at the late growth and/or early stationary phase have been 

reported since many years ago (Akerlund 1995) and have been a limitation when determining biomass 

concentration at those cultivation times with in-line probes, since the final change in cell size, but 

without cellular division, triggers an increase of the OD before entering the apparent stationary phase 

(Ude 2014). Therefore, this fermentation point where bacteria are decreasing their growth rate needs 

special attention and individual (microorganism as well as media dependent) calibration is necessary. 

  
Figure 23. Electrooptical monitoring of the mean cell size (green) and flow cytometric analysis of bacterial 
morphology (red) throughout S. thermophilus cultivations under optimal growth conditions in 2 L lab (A) as well 
as 700 L pilot (B) bioreactors. 

Nevertheless, the correlation between the two morphological indicators compared in this section was 

not following a linear regression, thus suggesting a possible calibration error. Based on supplier’s 

information, the EloTrace device (EloSystems GmbH, Berlin, Germany) was originally calibrated with 

freeze-dried L. plantarum bacteria (≈ 2 m), which means that the quantitative cell size provided by 

the equipment is an equivalent to a rod-shaped form, which indeed is notably different from the cocci 

chains of S. thermophilus. Therefore, the device output (i.e. relaxation time after application of the 

electrical field) should be newly correlated to the morphological characteristics of the bacteria used in 
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this study. Additionally, because of the ability of S. thermophilus chains to elongate and become 

relatively flexible (e.g. Figure 24), their orientation under the influence of an electrical field is surely 

different from that of rod-shape bacteria and may also influence the calculated polarizability. 

 
Figure 24. Microscopic analysis of S. thermophilus morphology during a 700 L pilot scale fermentation under 
optimal conditions. Chains with a relative flexibility are marked with red. 

In summary, the dynamics of cells’ metabolic activity were monitored with a higher resolution using 

at-line electrooptical methods than with off-line multi-parameter flow cytometry. Indeed, both 

technologies are not directly comparable and they rather provide complimentary information about 

cell status. It is worth mentioning that both tools presented in the last sections (namely electrooptical 

measurement of cell polarizability and size, and multi-parameter flow cytometry) were used 

throughout the vast majority of fermentations carried out in this work and will be appearing also in 

the next sections, whenever they are relevant to be mentioned. 
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4.2. Scale down of S. thermophilus Cultivations Based on pH-Gradients 

4.2.1. Computational Fluid Dynamics (CFD) Predicted pH-Gradients (Paper III) 

As discussed in the Scientific Background, the first step to achieve a representative scale down model 

in the lab from a bigger fermenter consists of characterizing the fluid dynamics of the largest 

bioreactor. For this purpose and as a business case study, the pilot scale fermentation explained in 

4.1.3 was used to characterize the pH fluctuations encountered by S. thermophilus throughout a 

cultivation in a 700 L fermenter, due to 24 % (w/v) ammonia addition at a position 5.2 % of the liquid 

height once the pH was controlled through a pH sensor located at 15.6 % of the liquid height. A lance 

with four pH sensors (located at 5.2, 31.3, 65.1 and 83.3 % of the liquid height) was introduced into 

the bioreactor prior to inoculation, so that the pH development over time was monitored at five 

positions of the liquid (Figure 25). In 4.1.3, it was already concluded that the growth profile in this pilot 

scale bioreactor was almost identical as in 2 L scale vessels and therefore it was not surprising that the 

pH-gradients encountered by bacteria at such a pilot scale fermenter were not that high and were 

apparently not affecting cell metabolism. A minimum pH value of 5.9 was detected in the upper part 

of the bioreactor (i.e. far away from the base addition point), but some pH shifts above 6.5 were 

measured next to the ammonia addition zone. 

 
Figure 25. Development of the pH value at four liquid heights during a S. thermophilus cultivation in a 700 L pilot 
scale fermenter. pH sensors located at 5.2 % (magenta), 31.3 % (red), 65.1 % (blue) and 83.3 % (black) of the 
liquid height. The fifth pH sensor, used for pH control and therefore always around 6.00, was not included for a 
better representation of the pH-gradients along the fermenter. Taken directly from Paper III. 

At this point, the objective was to validate a mechanistic model developed and calibrated with 2 L scale 

fermentations by the Denmark Technical University (DTU) partners in the project. The model (Spann, 

Roca, et al., 2018) was predicting the macroscopic variables biomass, lactose, lactate and galactose 

concentrations based on prediction of the pH as a function of the lactic acid and ammonia 

concentrations. As seen in Figure 26, the model successfully predicted all macroscopic variables in the 

pilot scale experiment (galactose used to close the C-balance and also less relevant for the process). 
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Figure 26. Develoment over time of DCW (circles), lactose (squares) and lactic acid (triangles) during a S. 
thermophilus fermentation in a 700 L scale bioreactor. Error bars: Mean ± SD (n = 2). Model predictions of the 
different variables are simply represented by the black lines. Taken directly from Paper III. 

A CFD model of the bioreactor describing the fluid dynamics was developed on parallel by the DTU 

partners, thus being able to predict accurately the mixing times based on tracer pulse experiments 

performed from the top of the vessel (more information in Paper III). Additionally, the CFD model was 

coupled to the biokinetic model describing the macroscopic variables commented before and the pilot 

scale fermentation over time was predicted again (now considering fluid dynamics, included in the 

newly developed CFD model). As seen in the supplementary material of the publication, the fact of 

including the fluid dynamics in the model prediction was not notably influencing the overall prediction 

of the macroscopic variables, basically because the fluid oscillations encountered during 2 L as well as 

700 L scale cultivations under optimal conditions are not affecting cell growth of S. thermophilus. 

Nevertheless, the pH oscillations measured during the experiment were successfully predicted by the 

CFD model developed (Figure 27). What is more, dynamic simulations of biokinetic models integrated 

in the fluidic profile simulated by a CFD model can pave the way for an enhanced understanding of 

microbial behavior in larger scale bioreactors. 

 
Figure 27. CFD-model prediction (right) and actual measurements (left) of the pH value at four reactor heights 
during a S. thermophilus cultivation in a 700 L pilot scale fermenter. pH sensors located at 5.2 % (magenta), 31.3 
% (red), 65.1 % (blue) and 83.3 % (black) of the liquid height. Taken directly from Paper III. 
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4.2.2. Single- and Multi-CSD Approaches to mimic pH-Gradients (Paper IV) 

The industrial production of S. thermophilus biomass is performed in a similar bioreactor than the one 

described in the two previous sections, but in the scale of several tens of cubicmeters. During the batch 

process, the base to compensate the lactic acid production by bacteria is introduced from the bottom 

of the fermenter once the pH has reached a value of 6. Taking into account the limitation on the power 

input in such a scale, the presence of only one pH measurement point in the whole reactor and the 

position of the base addition, cells are likely to face oscillating environmental conditions once the pH 

control starts. Moreover, insufficient mixing probably leads to extended mixing times and gradient 

formation, thus favoring the appearance of compartments with different pH values in the bioreactor, 

so that the residence times in those zones also become relevant. Therefore, it was of special interest 

to study the impact of liquid heterogeneities (basically pH) on the microbial cells under laboratory 

conditions in scale down approaches that mimicked the industrial (large scale) conditions as closely as 

possible. The challenge here was that those heterogeneities in the production fermenter were 

unknown and no CFD model had been developed for the industrial scale bioreactor. Thus, this part of 

the work aimed at investigating and understanding the influence of certain pH-gradients on S. 

thermophilus growth as well as morphological changes (i.e. cocci chain length distribution). 

Among the scale down reactor designs commented in the Scientific Background, firstly the influence 

of certain pH perturbations on the whole cell population were investigated, thus single-compartment 

scale down experiments were performed and compared to cultivations under optimal pH conditions. 

In initial experiments carried out at Chr. Hansen A/S in 2 L bioreactors, basic as well as acidic gradients 

were induced both, individually and combined after 1.5 hours of pH control at 6 (Figure 28 and Figure 

29). To perform a basic pulse, for example, the pH was increased with ammonia addition using a syringe 

through a septum until the desired pH value was accomplished and the pH was subsequently 

decreased with phosphoric acid until pH 6. 

 
Figure 28. CPPs during a sigle-compartment scale down experiment of S. thermophilus in a 2 L bioreactor with 
combined acidic as well as basic pH shifts. 
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Figure 29. Evolution of pH over time during two sigle-compartment scale down experiments of S. thermophilus 
in a 2 L bioreactor inducing independent acidic (left) and basic (right) pH shifts. 

 

The growth development over time of these three initial scale down experiments was then compared 

with optimal pH conditions in the same fermenter (Figure 30 and Table 5). It is worth mentioning that 

the lag-phases of these experiments were not normalized, which means that the small retardation on 

starting the exponential growth phase (i.e. pH control initiation) was fundamentally due to variations 

in the inocula and the freshly prepared cultivation media. While basic pH conditions had a severe 

impact on cell growth, acidic pH shifts did not influence cell growth that drastically. Consequently, the 

combination of both pH excursions also resulted in a reduced biomass formation and heavily affected 

growth. Variation of the pH only toward acidic values resulted in a moderate 8 % less amount of C-

soruce consumed during growth, whilst independent basic pH pulses and a combination of both acidic 

and basic pH oscillations, yielded a 42 % reduction of the total lactose consumed after 7 hours of 

growth. Similar effects were observed in terms of final biomass production: reduction of 5 %, 39 % and 

42 % of the final DCW was achieved during cultivations with only acidic pH pulses, with combined basic 

and acidic pH shifts and with basic pH excursions, respectively, when compared with a fermentation 

under optimal conditions (i.e. pH controlled at 6 the whole cultivation time). Only small differences 

were observed in terms of overall yields of the different experiments performed: the YX/S remained 

unaffected, but the YP/S was slightly reduced when inducing basic pH shifts, thus also moderately 

decreasing the YP/X under such conditions compared to optimal and only acidic environments. Since S. 

thermophilus are LAB, it is not surprising that they can better adapt to acidic pH environments than to 

high pH ambients. 
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Figure 30. Biomass development over time of S. thermophilus cultivations in 2 L bioreactors under optimal 
conditions (black circles), under combined acidic and basic pH pulses (black triangles), under acidic pH shifts (blue 
squares) and under basic pH oscillations (red triangles). Confidence interval for DCW during three independent 
replicates of 2 L cultivations: Mean ± 5 %. The CV% of the DCW determination for all experiments was always 
below a 10 %, performed in duplicates, and error bars were not included for a better interpretation of the results. 

Table 5. Total lactose consumed, final biomass concentration and growth yields of S. thermophilus cultivations 
in 2 L bioreactors under optimal conditions, under combined acidic and basic pH pulses, under acidic pH shifts 
and under basic pH oscillations. 

Experiment 
pH shifts 

Lactose consumed 
g·L-1 

Final DCW 
g·L-1 

YX/S 
g·g-1 

YP/S 
g·g-1 

YP/X 
g·g-1 

None 64.6 5.7 ± 0.10 0.089 0.49 5.56 

Acidic 59.5 5.4 ± 0.21 0.091 0.50 5.52 

Basic and acidic 37.1 3.5 ± 0.07 0.094 0.48 5.17 

Basic 37.0 3.3 ± 0.14 0.089 0.41 4.64 
 

Then, a completely different single-compartment scale down (SCSD) approach was tested in TU Berlin, 

where basic pulses were induced with the automatic addition of 24 % (w/v) ammonia changing the pH 

set-point to the desired value and pH was allowed to decrease due to the own production of lactic acid 

from S. thermophilus (here no phosphoric acid was added to compensate for the ammonia previously 

introduced). This is a more realistic scenario compared to the industrial scale production of LAB, where 

no acid, but base is added during the process (acidification solely due to cell metabolism of LAB). The 

experiments presented in the next lines were fundamentally used for Paper V. 

Variable pH, calculated as (pHmax – pHmin) during the pulse experiment, were induced after the pH 

control had started in S. thermophilus fermentations performed in 1L STR bioreactors (Figure 31). 

Importantly, the growth rate development until the pH control started was similar in all experiments, 

always achieving a maximum specific growth rate of around 1.2 h-1. Thereafter,  was specially affected 

once the pH was equal or above 2: the growth rate was low at pH < 5.5 and at pH > 7.5, but it slightly 

increased everytime a base pulse came when the pH was below 6. Since the optimum growth pH is 6 

for this strain, anytime the whole culture has a pH environment next to this value, cell growth can be 

observed. Also, the base introduced after a pulse favors the dissociation of lactic acid, thus increasing 

growth, since only the non-dissociated form can diffuse across the cell membrane and stop growth, as 

commented in the Scientific Background. Moreover, the cell size distribution with microscopic images 
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was analyzed developing a CellProfiler pipeline (see CellProfiler pipeline for quantification of 

microscopic pictures) to agilize the image processing and reduce human error by counting the cocci 

number per chain. S. thermophilus population evolved to a more homogenous distribution under 

optimal growth conditions: a higher proportion of shorter cocci chains was analyzed, remaining two 

cocci-chains the most relevant, toward the end of the cultivation. Initially longer chains (3 and 4 cocci 

chains) evolved to single and two cocci chains, possibly because of a higher activity of the 

endopeptidase enzyme responsible for cell separation in S. thermophilus (Layec et al., 2009). 

Additionally, already a pH = 1.8 was undoubtedly affecting the cell size distribution (moving toward 

longer cocci chains, becoming the longest chains the most important population). A more pronounced 

influence in the same direction was observed with pH = 2.5, where the pH reached 8. Interestingly, 

when a rather acidic environment was induced during the fermentation (i.e. pH = 2.0 with pHmin = 5 

and pHmax = 7), the chain length did not elongate as much as under rather basic conditions. On the one 

hand, the cell size increase at high pH may be a consequence of bacteria trying to decrease the specific 

surface area in contact with the high ammonia concentration. On the other hand, a chain length 

decrease at low pH could come from cell shrinkage because of secreation of non-dissociated lactic acid 

(harmful for the cells) or because the Cse protein (i.e. endopeptidase cleaving the septum in a cocci 

chain) is apparently more active under acidic conditions (Layec et al., 2009). 

 
Figure 31. Development of the pH (blue line), the growth rate (red line) and the cocci chain length distribution 
(bars of different colors) over time in S. thermophilus fermentations under optimal conditions (upper left) and 

inducing a pH of 1.8 (upper right), 2.0 (lower left) and 2.5 (lower right). One coccus (black), two cocci (red), 
three cocci (green), four cocci (yellow), five cocci (blue) and six or more cocci (magenta) chains. Inside the boxes 
the minimum as well as maximum pH values achieved during the experiments and the total pH pulses are 
summarized. Adapted from Paper V. 
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The biomass development throughout the course of these cultivations (Figure 32) showed that the 

higher the pH, the higher the biomass producitivity loss. The worst-case scenario with the lower final 

DCW compared to the optimal conditions, resulting in a 48.5 % biomass loss, was obtained with a pH 

of 2.5. Additionally, pH = 1.5 influenced the maximum specific growth rate, but did not the slope of 

the growth rate decrease over time. From there on, the higher the pH, the more sudden the growth 

rate decrease over time. Stress responses from LAB to maintain the homeostatic pH intracellularly 

under oscillating conditions have been extensively reviewed in the Scientific Background and, 

probably, a combination of two or more responses caused the observed growth decrease (Figure 32) 

and cell size distribution heterogenetiy (Figure 31). Moreover, the higher the pH shift, the more lactose 

remained unconsumed in the medium at the end of the fermentation (see Paper V). Galactose and 

lactate accumulated almost on parallel, with more lactate production as well as a higher galactose 

excreation with a lower pH gradient. Importantly, glucose accumulated under strong pH (> 1.5), when 

compared to the glucose concentration over time throughout fermentations under optimal conditions, 

thus indicating an influence of oscillating pH on the glycolysis.  

 
Figure 32. Biomass (left) and specific growth rate (right) development over time during S. thermophilus 

fermentations under optimal conditions (red) and inducing a pH of 1.5 (green), 1.8 (magenta), 2.0 (blue) and 
2.5 (cyan). Error bars: Mean ± SD (n = 2). Adapted from Paper V. 

Until now, it has been seen, that not only the size of the pH pulses, but also their frequency (amount 

of pH pulses) and their application method during the relatively short cultivation time have similar 

influences on S. thermophilus growth, but because of completely different reasons, in a single-

compartment bioreactor (i.e. 100 % of the population subjected to the stress induced). While 

independent repeated basic pulses (pH up to 7 and then compensated with phosphoric acid addition 

to pH 6 in eight occasions) reduced the biomass yield by ≈ 40 % (Figure 28, Figure 29 and Figure 30), a 

prolonged slow acidification of the media after a comparable basic pH pulse (pH of the culture up to 7 

and then allowed to decrease to 5 alone in two occasions) can also lead to a similar reduced STY (Figure 

31 and Figure 32), when compared to the biomass production under optimal conditions. Nevertheless, 

the cellular stress responses of S. thermophilus to those variable pH oscillations are definitely 

incomparable: on the one hand, these bacteria stop growing under short repeated basich pH values 

(pH = +1 x8 pulses), but can survive with almost no influence on growth to pH = -0.5 x8 pulses 

without the accumulation of the fermentation end product (Figure 28, Figure 29 and Figure 30). On 

the other hand, steadily decline of the media pH because of lactic acid accumulation has a detrimental 

effect on cell growth, but sudden ammonia addition seems to reactivate cell metabolism for a short 

time (Figure 31 and Figure 32).  
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As commented at the beginning of this section, large scale bioreactors are prone to 

compartmentalization and appearance of zones with variable oscillating conditions. To 

compartmentalize the fermentation broth is also a well-known strategy in the lab to try to mimick 

conditions of the industrial scale and this was also tried at Chr. Hansen A/S. Firstly, the acidification of 

the culture broth by S. thermophilus was investigated by connecting two stirred tank bioreactors (one 

with and the other one without pH control) and pumping the cells through both compartments with a 

peristaltic pump. This system (Figure 33) was then compared with a fermentation in a single bioreactor 

under optimal conditions. 2 L vessels were available in the lab and a residence time of two minutes 

was setup, considering that this is a rather pessimistic yield of mixing of a bioreactor. Importantly, the 

base was added in the same compartment where the pH was controlled at 6.  

 
Figure 33. STR-STR two-compartment scale down approach to investigate the acidification of S. thermophilus 
when cells are far away from the base addition zone. 

Under these scale down conditions, the growth was only slightly retarded (Figure 34 and Table 6) and 

differences when compared to optimal growth conditions were hardly seen. Considering the 

adaptation capacity of S. thermophilus to acidic pH environments observed previously, it can be 

concluded that the moderated probable pH excursions toward lower pH values than the optimum, like 

5.8-5.9 (observed in this experiment and in the pilot scale fermentation previously exposed), should 

not have an effect on cell growth, biomass formation and space-to-time yield (STY). 

 
Figure 34. Biomass development over time (left) of S. thermophilus cultivations under optimal conditions (open 
circles) and under STR-STR two-compartment scale down conditions (filled circles). Evolution of the OD (right 
black) and pH (right red) over cultivation time in the STR with (solid line) and without (dotted line) pH control 
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during the STR-STR two-compartment scale down experiment. Confidence interval for DCW during three 
independent replicates of 2 L cultivations: Mean ± 5 %. The CV% of the DCW determination for all experiments 
was always below a 10 %, performed in duplicates, and error bars were not included for a better interpretation 
of the results. 

Table 6. Total lactose consumed, final biomass concentration and growth yields of S. thermophilus cultivations 
in 2 L bioreactors under optimal and STR-STR scale down conditions. 

Experiment 
Conditions 

Lactose consumed 
g·L-1 

Final DCW 
g·L-1 

YX/S 
g·g-1 

YP/S 
g·g-1 

YP/X 
g·g-1 

Optimal 64.6 5.7 ± 0.10 0.089 0.49 5.56 

STR-STR scale down 59.9 5.9 ± 0.15 0.098 0.50 5.12 
 

For a more realistic scale down system that mimicked the industrial scale process, a third compartment 

was introduced, where the base addition for the whole fermentation broth was connected (Figure 35). 

The zone where the pH was controlled and therefore assumed to be 6 was reduced to 1 L, while the 

compartment where the pH is rather lower than 6 because of high lactic acid production from the 

bacteria was considered to be the bulk zone with 2 L and a residence time again of two minutes. 

Additionally, only 200 mL bioreactors were available in the lab and the base addition vessel cannot be 

completely filled at the beginning, because base will continuously be added when the pH control starts. 

Without the exact knowledge of the mixing times, compartmentalization and residence times in the 

industrial fermenter, four setups were suggested here: the pump rate between the 1 L and the 180 mL 

vessels was setup to ensure a residence time of S. thermophilus in the base addition compartment of 

25, 38, 64 or 108 seconds (limited by the pump rate: 429, 282, 169 and 100 mL·min-1, respectively).  

                                    
Figure 35. STR-STR-STR three-compartment scale down approach (left) to investigate the assumed fluid dynamics 
during S. thermophilus cultivation in the industrial scale (right). Four experiments were carried out with this 
system, where the pump rate between the 1 L and the 180 mL vessels was setup in such a way that the residence 
time of the bacteria in the base addition compartment was 25, 38, 64 or 108 seconds. 

 

The pH profiles throughout the four cultivation conditions investigated are summarized in Figure 36. 

The pH in the 1 L vessel was noted manually because there was a problem retrieving the in-line data 

from the Biostat® B (Sartorius AG, Waldbronn, Germany) bioreactors and therefore pH values in that 

bioreactor are plotted with points. In each of the other bioreactors, a CPS471D pH sensor 

(Endress+Hauser AG, Reinach BL, Switzerland) was introduced only to monitor the pH during the 

experiments and this is why in-line data was available. It is worth mentioning, that after about 5.5 

hours of cultivation in the third experiment (i.e. with 64 seconds of residence time in the base addition 

vessel), the 200 mL fermenter was almost overflowed and the pump rate to the 1 L vessel had to be 
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increased for half an hour. This is the explanation for the sudden decrease of the pH in the base 

addition vessel, but after 6 hours, the pH profile is in accordance with the profile before the problem 

occurred. It is also important to bear also in mind that the pH-axis for the last scale down experiment 

is different from the rest, due to the high pH induced with the longer residence time in the base 

addition vessel. 

 

 
Figure 36. pH profiles during STR-STR-STR three-compartment scale down experiments with a residence time of 
S. thermophilus in the base addition compartment of 180 mL of 25 (upper left), 38 (upper right), 64 (lower left) 
and 108 (lower right) seconds. Development of the pH over time inside the 1 L bioreactor with pH control at 6 
(black dots), the 2 L fermenter without pH control (red line) and the 180 mL base addition vessel (blue line). 

 

The results obtained with the four STR-STR-STR three-compartment scale down expteriments were 

compared to the previously presented fermentation in the pilot scale (700 L) bioreactor, which is the 

largest bioreactor in the industrial partner from which the pH-gradients were known (Figure 37, Figure 

38 and Table 7). At this point, EloTrace (EloSystems GmbH, Berlin, Germany) as well as multi-parameter 

flow cytometry were used to monitor cells’ metabolic activity, size and permeabilization. The growth 

profile was clearly affected with a specific growth rate as well as biomass productivity reduction under 

STR-STR-STR three-compartment scale down (3CSD) conditions compared to the cultivation in the pilot 

scale, but no clear tendency as a function of the residence time in the base addition compartment was 

identified. One important observation made during scale down experiments was the heavy foam 

formation, probably due to the level controlled pumping between bioreactors (the outlet tube in each 

vessel was placed at the specific height to maintain a pre-defined volume, but the inlet tube in each 

compartment was entering the liquid, thus sparging it when air was being pumped, i.e. the liquid level 
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coming from the other vessel was not high enough). This phenomenon could have influenced the 

response of S. thermophilus to the supposed induced stress (pH oscillations, rather than foaming) and 

therefore affected growth performance, thus making the interpretation of the results challenging. 

Nevertheless, the electrooptical measurement of cell polarizability provided additional information: as 

commented before, cells invested less energy in cell division and biomass production to rather improve 

their internal biochemical reactions to adapt to the stressful conditions under 3CSD conditions and 

therefore showed a lower maximum relative FDAP than in the 700 L fermentation, but a higher 

polarizability during the growth phase and toward the stationary phase. With the proportion of PI-

stained bacteria a similar conclusion can be drawn: at the beginning of all 3CSD experiments (once pH 

control started), i.e. between 3 and 4 hours of cultivation time, the percentage of permeabilized cells 

was higher than 10 %, while it was already lower than 5 % in the 700 L fermentation. What is more, 

thereafter, all cultures adapted to the oscillating conditions and the proportion of dead cells steadily 

declined during all scale down experiments, reaching the same level as in the pilot scale cultivation 

toward the end of the fermentations (< 2 %). Although, again, there is no clear tendency with the 

increasing residence time in the ammonia addition vessel, the YX/S was clearly lowered in 3CSD 

experiments respect the 700 L scale under optimal conditions, while the YP/S remained basically 

unchanged across experiments, which ended up with slightly higher YP/X under 3CSD conditions than 

under ideal growth environment in the pilot scale. In summary, the lactose being consumed under 

3CSD conditions was less directed to biomass formation, but still produced similar lactic acid amounts, 

thus indicating a higher use of the energy produced (2 ATP·glucose-1 with glycolysis plus fermentation) 

for cell maintenance (i.e. increased mean polarizability, but decreased DCW production). Therefore, S. 

thermophilus successfully adapted to the induced stress by decreasing biomass production and 

increasing intracellular metabolism, but it could not be ensured that the main stress-inducing agent 

was the high pH value in the base addition compartment, and it may have been the foam formation 

due to pumping at relatively high speeds (to ensure moderate residence times in the vessels). 

 
Figure 37. Development over time of S. thermophilus cultivations in 700 L pilot scale fermenter (filled circles) and 
STR-STR-STR three-compartment scale down experiments with 25 (empty circles), 38 (upper triangles), 64 (lower 
triangles) and 108 (squares) seconds of residence time in the 180 mL base addition vessel. Biomass (left) and 
polarizability at 400 kHz (right) evolution throughout the experiments. The CV% of the DCW determination for 
all experiments was always below a 10 %, performed in duplicates, and error bars were not included for a better 
interpretation of the results. 
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Figure 38. Flow cytometry analysis of S. thermophilus fermentations in a 700 L pilot scale bioreactor (circles) and 
in STR-STR-STR three-compartment scale down experiments with 25 (triangles), 38 (diamonds) and 64 (squares) 
seconds of residence time in the 180 mL base addition vessel. Biomass concentration (left) and percentage of 

dead cells (right) over cultivation time. Error bars for cell concentration: Mean ± t-Student distribution ( = 0.05, 
n = 2). Error bars for PI staining: Mean ± SD (n = 2). 

Table 7. Total lactose consumed, final biomass concentration and growth yields of S. thermophilus cultivations 
in 700 L pilot scale fermenter and under STR-STR-STR three-compartment scale down reactor (3CSDR) conditions 
with variable residence times in the 180 mL base addition vessel. 

Experiment 
Lactose consumed 

g·L-1 
Final DCW 

g·L-1 
YX/S 
g·g-1 

YP/S 
g·g-1 

YP/X 
g·g-1 

700 L 66.3 6.1 ± 0.12 0.092 0.52 5.64 

3CSDR 25 s 60.2 4.4 ± 0.21 0.072 0.49 6.81 

3CSDR 38 s 63.1 4.7 ± 0.25 0.074 0.51 6.88 

3CSDR 64 s 60.2 5.2 ± 0.05 0.086 0.52 6.10 

3CSDR 108 s 53.9 4.6 ± 0.06 0.086 0.50 5.86 
 

The electrooptical measurements in these 2 L scale experiments (Figure 39) were further analyzed: 

 Under optimal growth conditions: a higher biomass productivity was confirmed, a maximum 

polarizability during acceleration phase with minimal membrane status was detected and a 

lower polarizability toward the end of cultivation (because of high biomass production) was 

observed. In morphological terms, smaller cell size variability throughout the cultivation was 

measured. 

 Between the STR-STR-STR scale down conditions, a relatively similar behavior was detected: a 

clear, but moreorless equal biomass productivity loss, a lower maximum polarizability and 

higher minimum membrane status (worse cell vitality than under optimal conditions), a higher 

polarizability toward the end (more energy spend on maintenance for dealing with pH-

gradients). Slightly longer chains, but definitely more cell size variation during growth were 

additionally detected, probably aiming at diminishing the specific surface area in contact with 

oscillating conditions (i.e. pH-gradients and/or shear stress due to tubing/foaming). 

 No clear tendency as a function of pH, mainly because of foam formation. 
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Figure 39. Electrooptical measurement of OD, AP level at 400 kHz, cell size as well as membrane status 
throughout 2 L S. thermophilus fermentations under optimal pH conditions (A) and under STR-STR-STR three-
compartment scale down experiments with 25 (B), 38 (C) and 64 (D) seconds of residence time in the 180 mL 
base addition vessel. 

 

Again, the development over time of the median FSC obtained from flow cytometry analysis of 

unstained samples followed the same trend as the electrooptical measurement of the mean cell size 

with EloTrace (Figure 40), but the absolute values were notably shifted. As commented before, the 

problem may lie in the calibration of the morphological parameter of the at-line device. 

 
Figure 40. Electrooptical monitoring of the mean cell size (green) and flow cytometric analysis of bacterial 
morphology (red) throughout a Three-CSDR experiment with 38 s residence time in the base addition vessel. 

 

In order to avoid the foaming problems encountered connecting STRs to run multi-compartment scale 

down experiments, two- and three-compartment scale down reactors (Two- and Three-CSDR, 

respectively) connecting one STR to one or two plug flow reators (PFR), respectively, were also used in 

this study (Figure 41). In fact, these scale down experiments conform the basics for Paper IV, but were 

also used for parameter estimation in Paper V. In this fourth publication, a single-compartment reactor 

(Single-CR) cultivation in a STR was compared with fermentations run in the two different scale down 

reactor designs: the Two-CSDR consisted of a STR combined with one PFR (PFR 1, at the bottom of 

which the ammonia for pH control was introduced), while the Three-CSDR consisted of the STR and 



 
Klaus Pellicer Alborch   Cocci chain length distribution as control parameter in scaling lactic acid fermentations 

Results - Scale down of S. thermophilus Cultivations Based on pH-Gradients                 75            

 

PFR 1 together with an additional PFR module (PFR 2, into which phosphoric acid was regularly added). 

As seen in Figure 41, pH probes along the height of each PFR module were installed to monitor the 

induced pH-gradients throughout the experiments. Importantly, the pH probe to control the pH during 

the fermentations in this setup was in the main fermenter (STR), but the base was fed at the bottom 

of PFR1. 

 
Figure 41. Multi-compartment scale down setups used during experiments in TU Berlin. Two-compartment scale 
down reactor (Two-CSDR – left) and Three-compartment scale down reactor (Three-CSDR – right). The PFR had 
a 10 % volume from the culture broth in the STR (total volume of 10 L) and the residence time in each PFR was 
of around 2 minutes (Junne et al., 2011; Lemoine et al., 2015). Importantly, the pH control sensor was situated 
in the main fermenter (STR) and the base addition was no longer performed in the STR, but at the bottom of the 
first PFR. Bacteria were continuously circulating trough the different compartments once the pH control (and 
subsequent ammonia addition) started. 

 

The pH development over time in the different compartments of Two- and Three-CSDR experiments 

in duplicates is plotted in Figure 42. Importantly, 20 and 70 g·L-1 initial lactose concentration was used 

in the former and latter experiments, respectively. This was mainly to achieve a higher frequency of 

ammonia addition (higher carbon source yields higher lactic acid concentrations and therefore faster 

acidification of the media if pH is not controlled, with a concomitant increased base addition rate). 

Therefore, respective duplicates of the Single-CR experiments were carried out to compare the pH 

oscillating conditions with an optimal environment using both initial lactose concentrations. 

Additionally, the residence time of cells in the PFRs was set to two minutes, which is considerably 

longer than the mixing time of 45 seconds (for 95 % of homogeneity) obtained in Paper III, with pH-

gradients during the fermentation ranging from 5.9 in the upper zone to 6.3 in the lower part of the 

700 L pilot scale bioreactor, next to the base addition point. Nevertheless, the production fermenter 

of Chr. Hansen A/S is about a hundred times larger, which means that the power input applied is 

considerably lower because of economical as well as technical limitations. Without the exact 

knowledge of conditions in the industrial scale bioreactor (e.g. mixing and residence times, CFD 

studies, etc.), the slowest pumping rate (i.e. longest residence time = 120 seconds) was selected in the 

lab to really see an impact of pH oscillating conditions on cell morphology as well as physiology, but 

this could perfectly be in the order of magnitude of the actual residence time in the production scale. 

Maximum pH-values of 8.2 were created in PFR 1 during Two-CSDR fermentations, while acidic pulses 

where induced manually in PFR 2 of the Three-CR cultivations two hours after pH control had started, 

leading to minimum pH values of about 4.2. Here, it is worth mentioning, that a technical problem 

occurred just at the moment of connection of the PFR 1 (i.e. start of pH control at 6) during Two-CSDR 
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experiments and this is why a pH decrease until pH 5.2 in the main fermenter was measured. At the 

end, this resulted in the connection of PFR 1 almost one hour later, which definitely affected cell 

culture. Learning from the experience, in future experiments, the pH value in the STR was controlled 

manually with injecting 24 % (w/v) NH3 through a septum while the problems with sterilization of the 

PFR were being solved, thus minimizing the effect of technical problems on the fermentation and 

interpretation of results. 

 
Figure 42. Development of the pH over time in different compartments during multi-compartment scale down 
experiments in TU Berlin. Monitoring of the pH value in the STR (black) as well as in the PFR modules during Two-
CSDR fermentations (A) and Three-CSDR cultivations (B), measured with two probes located at the top and 
bottom of the PFR modules (blue and red, respectively). The pH in the PFR 1 (A - light blue and light red) during 
Two-CSDR experiments ranged from 5.6 to 8.2. pH-gradients throughout Three-CSDR cultures, considering also 
the pH shifts on top and bottom of PFR 2 (dark blue and dark red, respectively), were between 4.7 and 9.4. Taken 
directly from Paper IV. 

The pH-gradients, as induced in the Two-CSDR cultivations, did not alter the final biomass 

concentration, so that the same biomass yield was obtained as under gradient-free conditions, but 

after more time, thus with a lower STY (Figure 43 A, B and Table 8). Additionally, cell division and 

metabolic activity was considerably retarded under scale down conditions since lower specific growth 

(), lactose uptake (qS) and lactate production (qP) rates were obtained during growth. What is more, 

while all substrate was consumed under both conditions, a lower yield of lactate was determined in 

Two-CR cultivations (Figure 44 A, B). It is clear, that the fact of retarding the connection of PFR 1 (and 

therefore of not controlling the pH at 6), already had influenced growth of S. thermophilus, but it 

should have recovered the optimal growth rate once the pH control actually started (and base addition 

through the bottom of PFR 1 was initiated). The stress responses to local high pH values described in 

the Scientific Background probably explain the growth reducing effect: under alkaline conditions LAB 

divert more energy to cell maintenance to cope with the pH-gradients induced (e.g. the ATP-driven 

potassium extrusion and the potassium-proton antiport system), thus remaining less energy for cell 

division while bacteria are adapting to the “new” environment, but if enough nutrients are available, 

the culture can reach comparable biomass production later on when compared to optimal growth 

conditions. In contrast to the Two-CSDR fermentations, a considerable reduction of biomass formation 

was observed in the Three-CSDR experiments (Figure 43 C, D and Table 8). These experiments were 

performed with a higher concentration of lactose so that lactic acid inhibition occurred at about 30 g·L-

1, which led to unconsumed lactose. Moreover, qS as well as qP remained high and reached maximum 

values when pH control started under optimal growth conditions, but both steadily declined while pH 

shifts in PFR 1 were induced (i.e. between 2 and 4 hours of experiment), thus detecting an influence 
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of the pH-gradients induced, which was also translated in a growth rate reduction after 1 hour of pH 

control (i.e. 3 hours of cultivation). Right after the phosphoric acid feed was connected to PFR 2, the 

substrate consumption and product formation were drastically affected compared to Single-CR 

cultivations. Furthermore, 10.5 % less lactose was consumed and 29 % less lactic acid was produced 

during Three-CSDR compared to Single-CR fermentations (Figure 44 C, D). Interestingly, glucose tend 

to accumulate extracellularly once the acid pulses were applied, thus indicating a clear disturbance of 

the glycolytic pathway for glucose consumption with a concomitant growth cessation.  

The YX/S remained unchanged in all cultivation conditions, while the YP/S slightly decreased (and as a 

cosequence YP/X also did) under multi-compartment scale down conditions. Nevertheless, the solely 

fermentation product is generally considered to be lactic acid, but if the accumulated glucose 

concentration as well as the error of the HPLC method to quantify the metabolites are considered, 

similar yields are calculated. Finally, no remarkable differences in the amino acids’ consumption and 

synthesis between Single-CR and scale down experiments were identified (see Paper IV). 

 

 
Figure 43. Biomass development throughout Single-CR (filled circles), Two-CSDR (empty circles, A) and Three-
CSDR (empty circles, C) experiments. Error bars: Mean ± SD (n = 2). In-line optical density (OD, solid line in A and 

C), growth rate (, dashed line in A and C), specific lactose consumption rate (qS, dashed-dotted line in B and D) 
and specific lactic acid production rate (qP, dashed-dotted-dotted line in B and D) during Single-CR (black), Two-
CSDR (grey, A and B) and Three-CSDR (grey, C and D) fermentations. The vertical dashed line indicates the start 
of pH control and connection of PFR 1 in scale down experiments (Two-CSDR in A and B, and Three-CSDR in C 
and D), while the vertical dotted line designates the start of manual acidic pulses at the bottom of PFR 2 (Three-
CSDR in C and D). Taken directly from Paper IV. 
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Table 8. Mean value, standard deviation (SD) of biological duplicates (n = 2) and coefficient of variation (CV%) of 
the final biomass, the biomass yield (YX/S), lactate yield (YP/S) and biomass specific lactate yield (YP/X) in Single-CR 
(STR), Two- and Three-CSDR experiments with 20 or 70 g·L-1 initial lactose concentration. Mean (SD / CV%). Taken 
directly from Paper IV. 

 STR Two-CSDR Three-CSDR 

Final biomass 
(20 g·L-1 lactose) 

1.94 (0.03 / 1.57) 2.05 (0.04 / 1.69) - 

YX/S 
(20 g·L-1 lactose) 

0.095 (0.000 / 0.479) 0.095 (0.002 / 1.66) - 

YP/S 
(20 g·L-1 lactose) 

0.616 (0.059 / 9.60) 0.485 (0.015 / 3.08) - 

YP/X 
(20 g·L-1 lactose) 

6.50 (0.66 / 10.08) 5.13 (0.24 / 4.74) - 

Final biomass 
(70 g·L-1 lactose) 

5.43 (0.01 / 0.20) - 4.41 (0.20 / 4.61) 

YX/S 
(70 g·L-1 lactose) 

0.075 (0.001 / 1.11) - 0.076 (0.001 / 1.25) 

YP/S 
(70 g·L-1 lactose) 

0.383 (0.014 / 3.56) - 0.317 (0.006 / 1.75) 

YP/X 
(70 g·L-1 lactose) 

5.14 (0.13 / 2.46) - 4.18 (0.02 / 0.50) 

 

 
Figure 44. Lactose (upward triangles), lactic acid (squares), glucose (diamonds) and galactose (downward 
triangles) concentration course throughout duplicates of Single-CR (filled symbols in A and B with 20 g·L-1, and in 
C and D with 70 g·L-1 initial lactose concentration), Two-CSDR (A and B with empty symbols) and Three-CSDR (C 
and D with empty symbols) experiments. Taken directly from Paper IV. 
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Again, the diplococcal morphology was found to be the dominant cocci chain length in S. thermophilus 

cultivations, which were conducted under optimal conditions (Figure 45). At the very late step of cell 

division, the septum formed is cleaved and converted into the new pole of each daughter cell by the 

action of cell wall hydrolases (Chapot-Chartier & Kulakauskas, 2014; Layec et al., 2009). Nevertheless, 

at high growth rates, a second round of cell division may start before closure of the septum, therefore 

longer chains might be detected. Indeed, base pulses, which were induced in Two-CSDR fermentations, 

shifted the population distribution toward longer chains. What is more, five or more cocci chains were 

the dominant chain lengths under pH oscillating conditions, while such chain lengths were hardly 

detected under gradient-free growth. Under the pH stress induced in the Three-CSDR system, the cocci 

chain length distribution was also broader, including a large portion of single cocci beside longer chains 

of an uneven number of cocci. Already 1.5 hours after starting the pH control (that is after connecting 

the PFRs and inducing base pH shifts), a 22 % lower number of diplococcal cells and more than twice 

the amount of single cells were identified under Three-CR conditions compared to Single-CR results. 

 
Figure 45. Cocci chain length distribution during Single-CR (dark red bars), Two-CSDR (orange bars) and Three-
CSDR (yellow bars) fermentations. Adapted from Paper IV. 
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Electrooptical measurements throughout the scale down experiments presented here were also 

performed (  Figure 46) and interesting behaviors were observed: 

 Comparing optimal pH conditions with 20 and 70 g·L-1 initial lactose concentration: less lactic 

acid was produced with a lower starting C-source concentration, so polarizability could keep 

increasing, while a higher concentration of lactose led to an increased lactic acid production, 

thus decreasing mean polarizability over time. Additionally, toward the end of cultivation a 

lower drop of the AP level was detected with less initial lactose concentration. 

 Under Multi-CSD conditions: generally, a lower polarizability and an increased mean cell size 

was observed compared to optimal conditions. When dealing with initial pH-oscillations, AP 

stayed stable or slightly decreased over time. After the acidic pulses started, activity stopped, 

while under alkali environments polarizability increased. Moreover, the mean size at basic pH 

pulses rather increased, but additional acidic pulses flattened morphology changes over time. 

 Overall polarizability development throughout a fermentation is highly dependent on 

inoculum’s activity. Since cryo-tubes were directly thawn from a -80 ºC freezer, heat shock 

prior to inoculation may be determining. Unfortunately, the small amount of cells at the 

beginning of LAB cultivations (0.03-0.1 % v/v) makes the EloTrace measurement not feasible, 

because it needs a minimum OD of 0.4 in the bioreactor. The industrial partner is thawing the 

pre-culture in a water bath near the fermentation temperature, but at TU Berlin the inoculum 

was thawn at room temperature. In fact, experiments under optimal growth conditions as well 

as inducing pH-gradients in Three-CSDR were performed in triplicates, but the media for the 

last replicate of both conditions was prepared with a different yeast extract, which influenced 

all the comparisons (DCW, polarizability, etc.) with previous cultivations (data not shown). 

  
Figure 46. Development of the AP level (top) and the mean cell size (bottom) determined with electrooptical 

methods during S. thermophilus cultivations under optimal growth conditions (red) as well as pH oscillating 

environments induced in Multi-CSDR (green and lila). Two-CSDR (left) and Three-CSDR (right) experiments were 

conducted with 20 and 70 g·L-1 initial lactose concentration, respectively. Vertical lines correspond to the 

beginning of pH control (i.e. connection of the PFR with base pulses in scale down fermentations) in the different 

experiments, while dotted vertical lines denote initiation of additional H3PO4 pulses in Three-CSDR experiments. 
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Multi-parameter flow cytometric analysis during a Two-CSDR experiment was additionally compared 

to results during optimal growth conditions (Figure 47 and Figure 48). On the one hand, when no pH-

gradients were induced throughout a S. thermophilus cultivation, the initial relative cell size increased 

notably during the exponential growth phase, but decreased again toward the end of the 

fermentation. On the other hand, during the Two-CSDR experiments, the initial chains also elongated 

during cell division, but bacteria remained rather long under basic pH conditions induced in this setup. 

Additionally, in accordance with cultivations performed at the industrial partner (Figure 21), the 

amount of permeabilized cells increased during the lag phase, but disminished once the growth 

evolved, remaining below a 3 % toward the end of the fermentation. In contrast, the percentage of 

dead cells stayed above 4 % under the pH-gradients induced during Two-CSDR conditions once the pH 

control started. 

 
Figure 47. Flow cytometry analysis of unstained samples of S. thermophilus throughout a cultivation under 
optimal conditions (left) and under Two-CSDR (right) in 10 L STR bioreactors. Samples at the lag (red), exponential 
(blue) and stationary (orange) phases. 

 

 
Figure 48. Percentage of dead cells (i.e. stained with PI, respect all DAPI-stained particles) during S. thermophilus 
fermentations under optimal conditions (left) and in a Two-CSDR experiment (right). Error bars: Mean ± SD (n = 
2). 
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Since flow cytometry analysis was also performed in these experiments, it was interesting to see again 

a certain correlation between the median in FSC and the at-line cell size measured with EloTrace during 

10 L STR and STR-PFR fermentations (  Figure 49). Importantly, a sample of the cryo-tube used to 

inoculate both bioreactors in different days showed a comparable cell size distribution, so that similar 

initial culture conditions could be ensured. 

 

  
Figure 49. Electrooptical monitoring of the mean cell size (green) and flow cytometric analysis of bacterial 

morphology (red) throughout a 10 L S. thermophilus cultivation under optimal conditions (left) and during a Two-

CSDR (STR-PFR setup) experiment (right). Note the different scales, specially for the mean cell size. 

 

After all the scale down experiments performed in this work, the following key performance indicators 

(KPIs) were identified: 

a) Under optimal growth conditions using 70 g·L-1 of initial lactose concentration, the stationary 
phase was entered after 6-7 h reaching a final DCW of ≈ 6 g·L-1 in 1 L, 2 L, 10 L as well as 700 L 
scale bioreactors (Figure 20, Figure 32 and Figure 43 C as well as Table 5 - Table 8). 

Furthermore, a maximum growth rate (max) of around 1.2 h-1 was reproducibly obtained in all 
experiments under such optimal conditions.  

b) This initial carbon source was not completely consumed, even under optimal conditions, 

because of by-product accumulation, i.e. high lactic acid concentration in the media (Figure 44 

C as well as Table 5 and Table 7). With an initial lactose concentration of 20 g·L-1, such product 

inhibition was not observed and the C-source was depleted at the end of the cultivation (Figure 

44 A). What is more, certain harsh pH-gradients (pH > 1.5) induced the accumulation of 

glucose in the media and therefore had a clear influence on the glycolytic pathway (Figure 44 

D and Paper V), probably on the first step of phosphorylation of the glucose moiety (Jin et al., 

2015). 

c) In summary, high pH pulses resulted in rather longer chains, while at a lower pH a trend toward 

smaller chains was detected (Figure 31 and Figure 45) if the cell size distribution is compared 

to optimal conditions. More precisely, the amount of one coccus chains as well as cells of five 

or more cocci seemed to be good indicators of the influence of pH shifts, when compared to 

optimal conditions. 

d) The microscopic analysis observations were confirmed by means of electrooptical 

measurments of the mean cell size with the EloTrace device (Figure 13,   Figure 46 and   Figure 

49). 
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4.3. Model-based Process Monitoring and Control of S. thermophilus 

Fermentations 

The basic idea behind the current trend on developing a digital twin in bioprocessing is the opportunity 

of predicting cell growth in silico, thus allowing the prediction of the harvesting point and, 

consequently, optimizing the planification of the DSP. Additionally, model-based bioprocess 

monitoring and/or control should improve the reproducibility of biomass production, leading to 

minimization of out-of-spec batches and improvement of process consistency. In this context, the EU 

project in which this work was involved aimed at developing a model network for different 

microorganisms, so that one could select the best modeling approach to its interest. 

The project partners form DTU (Spann, Roca, et al., 2018) developed a model that consists of the 

prediction of the main CQA (i.e. biomass concentration) as well as the main metabolites (i.e. lactose, 

lactic acid and galactose) during the S. thermophilus fermentation under optimal growth conditions. 

The publication in this section takes this mathematical description of the macroscopic variables and 

tries to predict the population heterogeneity described in 4.3.2, in order to simulate the influence of 

certain pH-gradients, not only on total biomass production, but also on the single-cell level. 

4.3.1. A Probabilistic Soft Sensor to monitor LAB Fermentations 

The project partners from DTU developed a probabilistic model-based soft-sensor for predicting S. 

thermophilus cultivations (Spann, Roca, et al., 2018). The main goal consisted of using the available in-

line and on-line measurements (such as the pH and the base addition rate) to predict the unknown 

(typically off-line determined) state variables and monitor the fermentation process in real time. For 

this purpose, a mechanistic model was first developed and validated, and then used as soft-sensor for 

monitoring cultivations at the lab scale. The dynamic model consisted of a biokinetic and a chemical 

model. The former described substrate consumption, biomass growth and lactic acid secretion while 

the latter comprised a mixed weak acid/base system to predict the pH. Additionally, Monte Carlo 

simulations of the dynamic model were performed within the monitoring system to account for 

uncertainties in the lactose (i.e. substrate) concentration, ammonia addition rate and model 

parameters. The output of the monitoring system was consequently a probability distribution of the 

state variables.  

The model was based on the global stoichiometric process equation described in Eq. 1 and 2. 

Importantly, the biomass growth rate was modelled as a function depending on the lag-time (flag), 

lactose inhibition and limitation (fS), lactate inhibition (fP), and the pH (fpH) (Eq. 3). The model was 

implemented and solved in MATLAB® (The MathWorks®, Natick, MA) using the ode15s solver (for more 

details on the model development see (Spann, Roca, et al., 2018)). 

Lactose + Ammonia + Phosphoric acid → Biomass + Lactic acid + Galactose                          (Eq. 1) 

 

qS·CH2O + qNH3·NH3 + qFos·H3PO4 → qX·CH1.95O0.63N0.22P0.02 + qP·CH2O + qGal·CH2O                    (Eq. 2) 
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· 𝑋    (Eq. 3) 

An amended Luedeking and Piret equation that considers only the growth dependent lactic acid 

synthesis was used (Eq. 4): 

𝑑𝑃

𝑑𝑡
= 𝛼 ·

𝑑𝑋

𝑑𝑡
                                                               (Eq. 4) 

Then, the lactose consumption was the sum of the biomass growth and the lactic acid synthesis rate 

considering the secretion of galactose (Eq. 5): 

𝑑𝑆

𝑑𝑡
= −(1 + 𝑌𝐺𝑎𝑙) · (

𝑑𝑋

𝑑𝑡
+
𝑑𝑃

𝑑𝑡
)                                           (Eq. 5) 

The purpose of the mixed weak acid/base model was to predict the pH during the fermentation. The 

dissociation reactions of ammonia, phosphoric acid, lactic acid, carbonic acid, water, and an 

unspecified compound Z were considered. Importantly, Z accounted for the unknown compounds in 

the fermentation broth due to the use of complex media in the production of LAB, such as amino acids. 

The parameter estimation was performed to fit the experimental lactose, biomass, and lactic acid 

concentration measurements leaving the galactose to close the carbon balance. 

For calibration, validation and monitoring several cultivations were performed in 2 L STR bioreactors 

with stirring at 300 rpm, a temperature of 40 °C, an initial lactose concentration of 20, 70 or 100 g·L-1 

and the pH controlled at 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5. Relevant for this work was the successful 

prediction of the growth performance at different pH control values (e.g. Figure 50). The root-mean-

square of standardized effects (RMSSE) for biomass was around 0.4 g·L-1 for the  vast majority of the 

fermentations, corresponding to a discrepancy of less than 10 %, giving evidence of an acceptable fit 

in the different calibration sets (pH 5.5, 6.0 and 6.5), apart from a cultivation at pH = 7.0, which had an 

error of biomass production of 30 %.  
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Figure 50. Model prediction (lines) and off-line measured variables (circles) during a S. thermophilus 2 L lab scale 
batch fermentation at pH = 6.0 with 70 g·L-1 initial lactose concentration. Error bars: Mean ± SD. Taken directly 
from (Spann, Roca, et al., 2018) with permission. 

The evaluation of the pH function (fpH) showed a clear maximum at pH = 6.4: growth was already 

reduced by 25 % when pH was controlled at 5.5 and 7.0 (Figure 51 A). Furthermore, the growth 

inhibition by lactate was pH dependent: 20 g·L-1 lactate inhibited growth by 50 % in the pH range from 

5.5 to 6.5, whereas at pH = 7 already 10 g·L-1 lactate inhibited growth by 50 % (Figure 51 B). 

 
Figure 51. Growth affecting functions of pH and lactate inhibition. pH function vs. pH (A) and lactate inhibition 
function vs. lactic acid concentration (B). Taken directly from (Spann, Roca, et al., 2018) with permission. 
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The model was then validated against two independent fermentation data sets, which were performed 

at pH = 6.0 and with an initial lactose concentration of 20 g·L-1 (Figure 52). The model successfully 

predicted the measured lactose, biomass (RMSSE of 0.2 g·L-1), lactic acid and galactose concentrations. 

In the beginning of the fermentation, the pH dropped from 6.3 to 6.0 before the controller started to 

add ammonia. This drop was predicted to be faster than actually measured, which could be attributed 

to a slightly different buffer capacity of the media in reality compared to the mixed weak acid/base 

model. Nevertheless, the pH prediction was very accurate with a discrepancy of less than ± 0.1 pH 

units, once the pH overshoot was over. This was deemed sufficiently accurate for monitoring purposes, 

since pH measurement errors were expected to be in the same range. Finally, the validity of the mixed 

weak acid/base model was demonstrated by a correct prediction of the added ammonia, as the pH is 

controlled by base addition 

 
Figure 52. Model prediction (lines) and off-line measured variables (circles) during a S. thermophilus 2 L lab scale 
batch fermentation at pH = 6.0 with 20 g·L-1 initial lactose concentration. Error bars: Mean ± SD. Taken directly 
from (Spann, Roca, et al., 2018) with permission. 

The probabilistic model-based soft sensor was applied to the data sets of three historical fermentations 

and successfully monitored the macroscopic state variables (see (Spann, Roca, et al., 2018)). The 

RMSSE for biomass was 0.8 g·L-1 when the fermentation started and improved to 0.5 g·L-1 at the end 

of the cultivation (both with a standard deviation of 0.1 g·L-1), mainly due to updating the tlag parameter 

after pH control had started, which improved prediction accuracy. 

The monitoring system successfully predicted the most relevant macroscopic CQAs and forecasted the 

future course of the fermentation. This monitoring system, applied at industrial production sites, 

would provide plant operators with a PAT tool to monitor the biological variables in the fermentation 

process, such as biomass concentration, instead of relying on on-line base addition rate. 
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It is worth mentioning, that this mechanistic model was also used in Paper II and III. On the one hand, 

the model successfully predicted the A-stat fermentation presented in 4.1.2 (Figure 53). As 

commented before, this model was calibrated (i.e. parameters were estimated) using batch 

fermentations controlled at different pH values with 65 g·L-1 initial lactose concentration and, 

eventhough, the model accurately simulated the dynamics during the continuous cultivation with 20 

g·L-1 lactose initially and in the feed. On the other hand, the same mechanistic model developed by the 

DTU project partners also successfully predicted the development over time of macroscopic variables 

(namely biomass, lactose, lactic acid and galactose concentrations) during a fermentation in a 700 L 

bioreactor (Figure 26). This model, when coupled to CFD studies, additionally accurately simulated the 

pH-gradients encountered by S. thermophilus along the height of the pilot scale fermenter (Figure 27). 

In summary, the biokinetic model was always applied to predict the evolution of macroscopic variables 

(mainly the biomass, which is the product in the industry of starter cultures), even in further 

independent studies of the DTU colleagues (Spann et al., 2017; Spann, Lantz, et al., 2018; Spann et al., 

2019). Based on the knowledge acquired investigating the morphological changes undergone by the S. 

thermophilus strain from Chr. Hansen A/S under optimal conditions as well as under certain pH-

gradients (Figure 31 and Figure 36), the next question was if it was possible to model specific key cell 

populations, rather than the overall biomass development over time. 

 

 
Figure 53. Experimental (circles) and modelled (lines) CPPs (pH, D) as well as CQAs (biomass, lactose, lactic acid 
and galactose concentrations) over time (left) and over dilution rate (D) during the A-stat experiment. Error bars: 
Mean ± SD (n = 2). Taken directly from Paper II. 

 

4.3.2. Population Heterogeneity Analysis and PBM for Scale down (Paper V) 

As a reminder, S. thermophilus under optimal growth conditions, i.e. without pH-gradients, showed 

the diplococcal morphology to be the dominant cocci chain length in stirred tank bioreactors (Figure 

22, Figure 31 and Figure 45). Nevertheless, once the pH environment turned acidic, the population 

tendencially shifted toward shorter chains (i.e. more homogenous distribution). What is more, under 

high pH values, bacteria elongated leading to chains with a larger number of cocci under the 

microscope. The possible explanations to these morphological observations have been discussed 

previously in this work and in the publications, but they emphasize the fact that the “biomass” is 

conformed by a mean contribution of distinct individual cells (i.e. the population is heterogenous). 
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Until this point of the work, the biomass concentration had been modelled as a whole (also because it 

is typically analyzed in this way, without accounting for cell heterogeneity), but it was also tried to 

predict the different populations detected microscopically under the different growth conditions 

presented here. 

For this purpose, the model presented in 4.3.1 was adapted to predict population heterogeneity under 

certain pH-gradients: 

 Since some morphological changes were induced under considerable acidic environments (pH 

< 5), an additional term accounting for the minimum pH value to ensure S. thermophilus 

growth was added to the equation describing cell growth over time (Eq. 6). Until now, only pH-

shifts toward basic values had been performed and therefore this term was ignored (Eq. 3). 

This pHmin was determined experimentally carrying out a fermentation without pH control (see 

Figure 13), resulting in a value of 4.8. 

𝑓𝑝𝐻𝑚𝑖𝑛 = (1 −
10𝑝𝐻𝑚𝑖𝑛

10𝑝𝐻
)                                                      (Eq. 6) 

 The mixed weak acid/base model to predict the pH development during the fermentation (see 

(Spann, Roca, et al., 2018) for details) was ignored in this part of the work, since the pH inside 

the fermenters was always monitored in-line, so that it was used as an input variable to the 

population balance model, that aimed at predicting historical cultivations under sub-optimal 

growth conditions (i.e. not supposed to be used as soft-sensor, in this case). 

 Based on the population heterogeneity detected in this work (e.g. Figure 31 and Figure 45), S. 

thermophilus morphologies were differentiated between “natural” and “abnormal” cocci 

chain lengths: while 2- and 4-cocci chains were suggested as “natural” morphologies, 1-, 3-, 5-

cocci and longer chains were proposed as “abnormal” cell sizes, because they predominated 

only when the culture broth was subjected to different pH oscillating environments. 

Additionally, as explained in the Scientific Background, chains are continuously being 

elongated and separated during growth of these LAB and, therefore, also a discretization 

between “natural” as well as “abnormal” events (i.e. elongation and separation) was taken 

into account. What is more, inside the abnormal elongation events, two categories were 

differentiated: light abnormal elongation was considered for events where a 2 or more cocci 

chain elongated simultaneously from both opposed poles (as described in the Scientific 

Background) and  heavy abnormal elongation stands for events where only one of the 

extremes of the cell elongated. With these hypotheses, a scheme summarizing the rates of 

conversion between the different morphologies of all populations considered was proposed 

(Figure 54). 
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Figure 54. Scheme of the S. thermophilus populations and their conversion rates considered in the population 
balance model, based on microscopic observations throughout fermentations under optimal as well as oscillating 
pH conditions. Taken directly from Paper V. 

 The event rates were then defined as follows (Eq. 7-11): 

𝑟𝑁𝐸,1𝑐 = 𝑘𝑁𝐸 · 𝜇 · 𝐶1𝑐                                                 (Eq. 7) 

𝑟𝐿𝐴𝐸,𝑖 = 𝑘𝐿𝐴𝐸 · 𝜇 · 𝐶𝑖           𝑖 𝜖 2𝑐 𝑎𝑛𝑑 3𝑐                             (Eq. 8) 

𝑟𝐻𝐴𝐸,𝑗 = 𝑘𝐻𝐴𝐸 · 𝜇 · 𝐶𝑗           𝑗 𝜖 2𝑐, 3𝑐 𝑎𝑛𝑑 4𝑐                             (Eq. 9) 

𝑟𝑆,𝑘 = 𝑘𝑆 · 𝜇 · 𝐶𝑘          𝑘 𝜖 2𝑐, 3𝑐 𝑎𝑛𝑑 4𝑐                             (Eq. 10) 

𝑟𝑆,5+𝑐 = 𝑘𝑆,5+𝑐 · 𝜇 · 𝐶5+𝑐                                         (Eq. 11) 

 The evolution over time of the populations considered depended on (i) the conversion of other 

cells to this chain length, (ii) its own evolution to the other morphologies and (iii) its own 

growth during the process. With this, the ordinary differential equations (ODEs) were defined 

for the system (Eq. 12-16), where the growth rate was calculated based on Eq. 17 (i.e. Eq. 6 

incorporated into Eq. 3). 

𝑑𝐶1𝑐
𝑑𝑡

= 𝑟𝑆,2𝑐 +
1

3
· 𝑟𝑆,3𝑐 +

1

4
· 𝑟𝑆,4𝑐 +

1

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑁𝐸,1𝑐 + 𝜇 · 𝐶1𝑐          (Eq. 12) 

𝑑𝐶2𝑐
𝑑𝑡

=
2

3
· 𝑟𝑆,3𝑐 + 𝑟𝑆,4𝑐 +

2

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑆,2𝑐 + 𝑟𝑁𝐸,1𝑐 − 𝑟𝐿𝐴𝐸,2𝑐 − 𝑟𝐻𝐴𝐸,2𝑐 + 𝜇 · 𝐶2𝑐     (Eq. 13) 

𝑑𝐶3𝑐
𝑑𝑡

=
3

4
· 𝑟𝑆,4𝑐 +

3

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑆,3𝑐 + 𝑟𝐻𝐴𝐸,2𝑐 − 𝑟𝐿𝐴𝐸,3𝑐 − 𝑟𝐻𝐴𝐸,3𝑐 + 𝜇 · 𝐶3𝑐     (Eq. 14) 

𝑑𝐶4𝑐
𝑑𝑡

=
4

5
· 𝑟𝑆,5+𝑐 − 2𝑟𝑆,4𝑐 + 𝑟𝐿𝐴𝐸,2𝑐 + 𝑟𝐻𝐴𝐸,3𝑐 − 𝑟𝐻𝐴𝐸,4𝑐 + 𝜇 · 𝐶4𝑐        (Eq. 15) 
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𝑑𝐶5+𝑐
𝑑𝑡

= −2𝑟𝑆,5+𝑐 + 𝑟𝐿𝐴𝐸,3𝑐 + 𝑟𝐻𝐴𝐸,4𝑐 + 𝜇 · 𝐶5+𝑐                   (Eq. 16) 

𝑑𝑋

𝑑𝑡
= 𝜇 = 𝜇𝑚𝑎𝑥 · 𝑓𝑙𝑎𝑔 · 𝑓𝑆 · 𝑓𝑃 · 𝑓𝑝𝐻 · 𝑓𝑝𝐻𝑚𝑖𝑛 · 𝑋 = 

= 𝜇𝑚𝑎𝑥 · (1 − 𝑒
−

𝑡

𝑡𝑙𝑎𝑔) · (
𝑆

𝑆+𝐾𝑆+
𝑆2

𝐾𝐼

) · (
1

1+𝑒𝐾𝑃·(𝑃−𝐾𝑃1)
) ·

(

 
 
𝑒

−(
(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻)

2

𝜎𝑝𝐻
2 )

)

 
 
· (1 −

10𝑝𝐻𝑚𝑖𝑛

10𝑝𝐻
) · 𝑋(Eq. 17) 

 The conversion rates constants (namely kNE, kLAE, kHAE, kS and kS,5+c) were considered to be 

dependent on the pH oscillations encountered during growth and were the parameters to be 

estimated. The rest of parameters in Eq. 17 were taken from (Spann, Roca, et al., 2018).  

 Since each initial data set (i.e. fermentation) possessed a different lag phase, the experimental 

data was normalized prior to be used as input for the model. 

The parameter estimation was performed to fit the experimental cell size distribution (i.e. 1-, 2-, 3-, 4- 

and 5 or more cocci throughout the experiment or data set), with the initial conditions described in 

the publication (Paper V). The cocci chain length distribution during S. thermophilus cultivations under 

optimal growth conditions (i.e. without pH-gradients) was successfully predicted with the population 

balance model developed (Figure 55 as an example). Moreover, substrate consumption, biomass 

production and the rest of off-line determined metabolites of the central carbon metabolism were also 

still accurately simulated (Figure 56). Additionally, the same parameter setup enabled the acceptable 

prediction of all variables when pH-gradients were induced, during both, single- and multi-

compartment scale down experiments (Paper IV). 

 
Figure 55. Experimental (empty circles) and predicted (lines) population heterogeneity (namely 1-, 2-, 3-, 4- and 
5- or more cocci chains) throughout a S. thermophilus cultivation under optimal growth conditions in a 10 L STR 
with 70 g·L-1 initial C-source concentration. 
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Figure 56. Experimental (empty circles) and predicted (lines) macroscopic variables (namely lactose, biomass, 
lactic acid and galactose concentrations as well as pH) throughout a S. thermophilus cultivation under optimal 
growth conditions in a 10 L STR with 70 g·L-1 initial C-source concentration. 

The kinetic constants for the PBM under different pH-oscillations were obtained after modeling the 

four cultivation conditions (i.e. 1 L as well as 10 L STR under optimal growth conditions, 1 L Single-CSD 

and 10 L Multi-CSD with pH-gradients) at least in duplicates (Table 9), observing that:  

 Both separation constants (i.e. kS and kS, 5c+) were 2x higher and kLAE was 4x lower in 10 L STR 

fermentations than in 1 L STR experiments under optimal conditions, although a similar tip 

speed was used in both scales. Differences were rather attributed to a combination of factors 

of the rest of parameters. 

 The rate of natural elongation (kNE) reached its maximum value under optimal growth 

conditions (in both, 1 L as well as 10 L STR) mainly because 1-cocci chains were hardly detected 

under the microscope when no pH-gradients were induced. In the same direction, kHAE took its 

minimum value under such gradient-free environments.  

 Both, kS and kS, 5c+, were lower and kHAE was noticeably higher under scale down conditions (in 

both, Single-CSD as well as Multi-CSD experiments) than under optimal STR conditions, 

basically because of the pH-gradients induced. 

 kLAE was almost not affected under Three-CSD experiments, but considerably influenced when 

base pulses were induced in Single-CSD reactors. Moreover, kHAE was slightly higher in 1 L 

Single-CSD fermentations than during Multi-CSD cultivations. Both observations emphasize 

the fact that the whole population (i.e. 100 % of cells) were subjected to the gradients induced 

in Single-CSD experiments, while “only” a 20 % of the bacteria, and therefore less impacted on 

the cell division cycle, were in contact with pH-gradients during Three-CSD fermentations. 

  



 
Cocci chain length distribution as control parameter in scaling lactic acid fermentations Klaus Pellicer Alborch 

92     Results - Model-based Process Monitoring and Control of S. thermophilus Fermentations 

 

Table 9. Final biomass (i.e. DCW) and maximum pH gradient induced under optimal (1 L and 10 L STR) and scale 
down (Three-CSDR and Single-CSDR) fermentation conditions. Estimated kinetic parameters (kNE, kLAE, kHAE, kS and 
kS,5+c) from the PBM after prediction of duplicates or triplicates of the different cultivation conditions. Taken 
directly from Paper V. 

Experiment (replicates) 
Experimental Population balance model 

DCWend pHmax kNE kLAE kS kHAE kS,5c+ 

STR,10L,70g/L lac (n = 2) 5.4 +0;-0 1000.0 8.4 23.3 0.0 43.1 

3CSDR,10L,70g/L lac (n = 2) 4.3 +2.0;-1.3 1000.0 5.6 9.2 288.2 31.9 

STR,1L,70g/L lac (n = 2) 6.3 +0;-0 514.3 1.9 48.3 0.0 84.8 

1CSDR,1L,70g/L lac (n = 3) 5.7 +1.3;-0.5 736.6 36.8 49.4 372.4 16.4 

 

The rest of experimental data available from fermentations with Single-CSDR with larger pH-gradients 

(see Figure 31) was not used so far, since the central carbon metabolism was affected to such an 

extend, that the model with the highly disturbed measured pH as input, was no longer describing the 

growth kinetics. Importantly, the kinetic constants estimated within this PBM are completely arbitrary 

and it was impossible to compare the absolute values with any published literature. Nevertheless, the 

fitting of the experimental data available was satisfactory and the suggested parameters could allow 

the prediction of S. thermophilus growth under certain pH-gradients, if they would be measured 

throughout the fermentation with e.g. ISM techniques. 
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5. Discussion 

5.1. Novel Process Analytical Tools applied to LAB Fermentations 

The interest during the past decade in PAT and QbD from the regulatory authorities for (bio-) 

pharmaceuticals was clearly stated in the FDA and EMA guidance and recommendation documents, as 

well as in the quality guidelines from the International Conference on Harmonisation (ICH). In this 

context, on-line, in-line as well as at-line monitoring tools are considered to meet the specifications 

for product quality as well as process consistency (e.g. batch-to-batch reproducibility) during the entire 

production chain in the biotechnological, food and pharmaceutical industries and conform a relevant 

field in current research (Bockisch et al., 2019; Guerra et al., 2019). In this work (i) at-line electrooptical 

measurements of cell polarizability and size, (ii) off-line microscopic analysis followed by (iii) model-

based population heterogeneity prediction were applied to LAB grown in complex, industrially 

relevant, media to assess cell viability characteristics for the first time. 

5.1.1. Feasibility of Automated Polarizability Measurements in Industrial Scale (RQ1) 

The application of electrooptical polarizability measurements to L. plantarum (Figure 2 - Figure 5 and 

Figure 7) as well as S. thermophilus (Figure 8 - Figure 14, Figure 20, Figure 37 and   Figure 46) allowed 

a better insight into cells’ integrity and viability during their cultivation across scales. Furthermore, the 

AP level seems to be an early indicator of limited nutrient availability and of the end of fermentation 

point. Similar observations had been previously published for E. coli (Bunin et al., 2004; Junne et al., 

2010), C. acetobutylicum (Junne et al., 2008) and C. glutamicum (Lemoine et al., 2015). Nevertheless, 

for such a PAT tool to be applied in the industrial production of starter cultures, reliability across scales 

needs to be proven. The at-line electrooptical measurements in 2 L and 700 L fermenters was well 

reproducible (Figure 20). Moreover, the industrial partner allowed the application of electrooptical 

measurements in an industrial scale (several m3) S. thermophilus fermentation with “similar” 

cultivation conditions than those performed in the lab and pilot scales. The results thereof are 

confidential and have not been disclosed in this work, but the experiment provided relevant data. 

Despite the fact that the media in production was slightly different than in the cultivations carried out 

in this thesis and thus (i) the lag-phase was considerably extended and (ii) the sample preparation had 

to be manually performed, the AP level at 400 kHz decreased regularly before the growth rate. The 

application of electrooptical monitoring steps allows to monitor and control a process easily based on 

the vitality of the culture without the measurement of secondary parameters: with further evidence 

that the AP level is a measure of the cellular physiology and, as such, one of the guiding parameters of 

cellular activity, cooling and harvesting preparation of the bioreactor could be scheduled according to 

this state. The current decision on the termination of fermentation is taken based on the base addition 

rate (i.e. a macroscopic chemical parameter linked to LAB growth), which actually represents the result 

of a performance loss. Similarly, on-line off-gas analysis of the CO2 production rate also measures the 

consequence of an affected cell membrane, with lower ion transport and a concomitant physiological 

and transcriptional cell response (Abbott et al., 2008). Nevertheless, electrooptical measurements 

would provide a direct measurement on cells’ metabolic activity at-line, also providing parameters 

causing a performance loss, like a low cell polarizability, but earlier, since it informs directly about cell 
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viability. In fact, this has been corroborated at own results. The cell polarizability could be even used 

as quality check in further processing steps (e.g. bioreactor cooling, biomass centrifugation and freeze-

drying, etc.), so that biomass activity would be measured (and ideally maintained) in the whole 

production (Gomes et al., 2015). In fact, the last sample prior to bioreactor harvesting in the production 

scale was still analyzed by means of electrooptical measurements and resulted to show a 15 % 

polarizability reduction at 400 kHz compared to the previous sample (taken half an hour before). 

Growth rates are typically low at low temperature, which in turn increase the availability of essential 

metabolites (ATP included) for bacteriocin production, for instance (Abbasiliasi et al., 2017). 

Bacteriocins and bacteriocin-producing cultures have the potential to increase the shelf-life of foods 

and contribute toward decreasing the incidence of food-borne diseases. According to the authors, with 

a low growth rate there is a better utilization of energy resulting in enhanced bacteriocin production. 

The authors deduced from the reports reviewed that the most critical physiochemical factors which 

play a crucial role and exert a significant effect on bacteriocin production by bacteriocinogenic strains 

are pH and temperature: 

 Since the synthesis of bacteriocin is enhanced at a relatively low growth rates, its production 

by some LAB is enhanced at non-optimal growth conditions. In fact, reduction in pH as well as 

temperature usually decrease enzymatic reactions, which in turn, reduce the growth rate of 

the bacterium. The positive effect is therefore on bacteriocin synthesis as a result of net 

increase of essential metabolites including ATP. 

 An increased growth rate did not necessarily enhanced bacteriocin production. At high pH, 

bacteriocin production is lower because energy requirements for maintenance purposes are 

higher when pH increases. 

 Maintenance operations, such as turnover of macromolecules (DNA, RNA) and maintenance 

of the potential along the membrane of cells are growth dependent and faster growth rates 

mean more energy is required for maintenance. In this context, evidence of this can be found 

throughout this work (e.g. Figure 20): the highest mean cell polarizability was detected at the 

highest growth rates under optimal growth conditions. Once the growth rate was affected 

(either by depletion of essential nutrients or by induced oscillating pH conditions), the AP level 

decreased in parallel with .   

Furthermore, a typical freeze-drying process of LAB needs optimization of pressure, heating plate 

temperatures and frozen pellet bed thickness in order to obtain an appropriate water activity, cell 

count and shelf-life stability (Fenster et al., 2019; Fonseca et al., 2014; Passot et al., 2015). (Bensch et 

al., 2014) concluded that low temperature fluidized bed drying of L. plantarum caused membrane 

damages and high cell death: the VCC decreased a 50 % and the percentage of PI-stained cells was 

multiplied by five after drying. Additionally, (Shu et al., 2017) increased significantly the survival rate 

of S. thermophilus freeze-dried powder by the addition of a combination of sucrose, soluble starch and 

ascorbic acid as cryoprotectants (control = 4 %; optimized = 70 %). In Paper I, it was proven that the 

AP level at 400 kHz is a meaningful parameter to identify suitable harvesting stages prior to freeze-

drying for the further use of L. plantarum biomass as a probiotic compound. Therefore, electrooptical 

measurements of LAB polarizability could be used as KPI during experiments for the optimization of 

freeze-drying conditions. 

Interestingly, EloSystems GmbH (Berlin, Germany) has recently developed and patented a new 

equipment (named Check), which is capable of measuring OD, cell concentration and size without 

any sample preparation. Therefore, these attributes can be determined in a by-pass directly connected 
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to the fermenter through a glass measuring chamber (0.6 mm in diameter). This would then be an on-

line approach for the analysis of bacterial morphology, which could potentially provide relevant 

information, without the need of off-line microscopic analysis.  

5.1.2. Improvement on Microscopic Image Analysis (RQ2) 

In this work, it has been demonstrated that microscopic analysis of LAB morphology can provide 

relevant information about the actual physiologic response to certain oscillations, mainly pH-gradients 

(Figure 31 and Figure 45). Additionally, those observations were successfully predicted by means of 

population balance modeling with kinetic parameters describing cell division events (Figure 55). The 

current limitation of applying an in-line or on-line control strategy relies on the at-line analysis of 

bacterial cell size. Just in recent years, advances in microscopic technology have enabled the 

quantification of polyunsaturated fatty acid accumulation by microalgae (Marbà-Ardébol et al., 2017) 

and the real‑time monitoring of the budding index in yeast cultivations (Marbà-Ardébol, Emmerich, et 

al., 2018). It is worth mentioning that, the ISM approach described by (Marbà-Ardébol et al., 2019) was 

applied in a sterilizable by-pass (on-line) during both, L. plantarum as well as S. thermophilus 

fermentations (Figure 9). Cultivations with and without pH control (Figure 13) were performed, while 

the aim was to compare the cell size distribution obtained on-line by ISM with conventional 

microscopy. The first results were promising as they proved the feasibility of the measurement of the 

cocci chain length distribution during S. thermophilus fermentations, although more data needs to be 

gathered to prove statistical validity. In-line acquired microscopic pictures are processed with artificial 

neural networks (ANNs). If coupled to the PBM developed, a QbC strategy in the industrial production 

of LAB may be possible: real-time measurement of population heterogeneity in the fermenter with 

PBM update after each analysis point, which would predict process performance in the next hours. 

This would lead to a soft-sensor for LAB cultivations (Spann, Roca, et al., 2018) or (Spann et al., 2019), 

but describing cocci chain length distribution, and thus considering population heterogeneity. The 

model output could then be connected to the stirring speed or the base addition rate (feedback loop 

control) to ensure a maximum population homogeneity throughout the cultivation, thus maximizing 

biomass yield, while maintaining product quality (Delvigne, Baert, et al., 2017; Pörtner et al., 2016; 

Randek & Mandenius, 2018; Simutis & Lübbert, 2015). As an example, (Lyubenova et al., 2013) 

designed a soft-sensor considering oscillating conditions during B. subtilis STR-PFR Two-CSDR 

experiments (to simulate industrial scale nutrient-limited fed-batch conditions) focusing on the 

substrate uptake rate and corresponding yield coefficients. Additionally, (Schaepe et al., 2014) 

developed a data-based modeling approach to find the specific growth rate profile of E. coli cultivations 

after induction that maximized the total amount of GFP. Moreover, software sensors were also applied 

for monitoring biomass concentration as well as kinetics during continuous yeast fermentation with 

immobilized cells (Kostov et al., 2015). (Craven et al., 2014) used an in situ Kaiser RXN2 Raman 

spectroscopy instrument to monitor the glucose concentration at 6 min intervals and update a non-

linear model predictive controller, thus maintaining a fixed set-point of glucose concentration in a 

closed loop during a CHO mammalian cell fed-batch process. Special emphasis into model-based 

bioprocess control in mammalian cell culture has been put recently (Farzan & Ierapetritou, 2017, 2018; 

Narayanan et al., 2019; Paul et al., 2019; Sommeregger et al., 2017), probably because of the high-

added value products typically manufactured thereof. Specially interesting literature has been found 

for fungi: a DO% control strategy for optimizing growth as well as enhancing the production of a 

phenolic compound (Wei et al., 2017) and (Wang, Chu, et al., 2019) published a dynamic model 
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describing P. chrysogenum growth and penicillin production based on quantitative metabolomics to 

simulate the fermentation process and design the fed-batch fermentation media, by cultivating the 

fungi in a fed-batch fermentation with fully U-13C-labelled substrates. Furthermore, some authors have 

used feedback control strategies based on the off-gas analysis (mainly RQ = % CO2/% O2) to reach high 

cell density fermentations of S. cerevisiae (O’Connor et al., 1992; Shang et al., 2006) or improve 

production of polydroxyalkanoates by R. eutropha (Pederson & Srienc, 2004). Nevertheless, the off-

gas analysis, mainly CO2 production rate in LAB, would be a measurement of the consequence of 

generally affected cell membranes, but morphological analysis would provide information on the 

single-cell level. To date, no scientific work taking population heterogeneity as control parameter and 

applied to LAB has been found. 

Interestingly, BioSense Solutions Aps (Farum, Denmark) developed the oCelloScope instrument, a 

compacted morphology investigation device, just a few years ago. This technology has successfully 

been applied to crystallization processes monitoring as well as to microbial and cancer research, 

conducted on micro titer plates. Recently, the equipment was successfully applied in yeast for analysis 

of the budding index (Pontius, 2019) and lately, to investigate the effect of decreasing the cultivation 

pH during L. acidophilus growth by means of cell size distribution (Narayana et al., 2020). These 

bacteria are also LAB and in the order of magnitude of the S. thermophilus cocci chains, so that the 

oCelloScope could potentially also be used to study morphological changes throughout LAB cultures in 

the future.      

5.1.3. Application of PBM in Industrial LAB Production (RQ3) 

Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing 

environments by evolving phenotypic heterogeneity, thus ensuring that a subpopulation is well 

prepared for future environmental changes. In fact, the selection environment changes and favours 

different phenotypes at different growth times (De Jong et al., 2011). Furthermore, most microbial 

communities consist of a genetically diverse assembly of different organisms and the level of genetic 

diversity plays an important part in community properties and functions. However, biological diversity 

also arises at a lower level of biological organization, between genetically identical cells that reside in 

the same microenvironment. Cell surrounding environments are characterized by microscale chemical 

and physical gradients, both temporal and spatial, and microorganisms continuously adjust their 

phenotypes in response to these gradients (Ackermann, 2015). Depending on the environment and 

selective pressures, particular strategies ranging from purely deterministic mechanisms to those that 

exploit the randomness intrinsic to many cellular and molecular processes (Van Boxtel et al., 2017) 

have been developed. In this context, the cell size for a particular bacterial species typically falls within 

a narrow distribution at a steady growth condition, but the size of a single bacterium can even vary 

substantially across growth conditions. (Cesar & Huang, 2017) reviewed how rod-shaped bacteria 

adjust their size with changes in growth rate, by means of nutrient, mechanical and genetic factors, 

and concluded that the cell size is clearly a readout of physiological parameters such as growth rate. 

This is why, morphological changes as stress responses to potential industrial gradients (mainly pH in 

the production of starter cultures) affecting the growth rate were investigated in this work. Different 

microorganisms modify their size as an influence of extracellular pH-gradients (see Scientific 

Background), but LAB are specially adapted to those changes, specially toward acidic environments 

(Papadimitriou et al., 2016). (Wang, He, et al., 2018) just recently performed a deep metabolomics and 

morphologic analysis after L. pantarum were opposed to acid and alkali stress. For instance, based on 
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microscopic analysis, the morphology of the bacteria became thickset and the thickness of their cell 

walls decreased under high pH values. Their findings also demonstrate that energy metabolism was 

affected under different pH environments. Additionally, the authors observed an influence on the 

amino-acids metabolism, especially on those amino acids that are related to pH-homeostasis 

mechanisms (i.e. lysine, aspartic acid, arginine, proline and glutamic acid). Nevertheless, no studies 

about morphological changes of S. thermophilus under oscillating pH values are available and their 

influence on the cell division cycle is still not completely elucidated (see Scientific Background). In 

summary, alkali environments resulted in increased chain lengths, while at an acidic pH a trend toward 

shorter chains was detected (Figure 31 and Figure 45) when the cocci chain length distribution was 

compared to optimal conditions. These observations served to develop the PBM presented in 4.3.2, 

but a deeper investigation toward understanding the elongation/separation events during growth 

under certain pH-gradients should be performed. For instance, in the ODEs of the model (Eq. 12-16), 

the growth rate was included in the event rates (conversion of the morphologies) as well as in the own 

growth of a particular population (i.e. ·Ci for i = 1c, 2c, 3c, 4c and 5+c). The idea behind was to separate 

the exact moment of elongation into another population or of separaton into two populations from 

the actual growth or cell division of each population. Without the individual growth terms (i.e. ·Ci), 

only the initial populations would play a role in the conversion scheme (Figure 54), but actually each 

population also grows over time and contributes to the overall biomass production. Therefore, X = C1c 

+ C2c + C3c + C4c + C5+c, ·X = ·( C1c + C2c + C3c + C4c + C5+c) and rX = r1c + r2c + r3c + r4c + r5+c. In this study, 

the growth within each coccus was assumed to be the same, although this is an assumption for model 

simplification. No literature reports any observation of the growth in single cocci of S. thermophilus. In 

this context, an isolation and growth observation in single cocci would need to be performed, for 

example, using microfluidic devices coupled to improved microscopic analysis. The morphological 

changes of a single chain should be monitored over time under pre-defined pH conditions, in order to 

investigate the elongation/separation events undergone in different pH environments. Platforms 

similar to (Fomina et al., 2016) should be employed, so as to ensure spatiotemporal pH control in such 

constrained volumes. 

 

(Fernandes et al., 2013) compared experimental with mathematical dynamics of S. cerevisiae size and 

cycle position distributions, in response to the substrate consumption observed during batch 

cultivations. The good agreement between the proposed multi-scale model (a PBM coupled to an 

unstructured model) and experimental data, indicated that a mechanistic model is a suitable tool for 

describing the microbial population dynamics in a bioreactor. Thus, a mechanistic (Spann, Roca, et al., 

2018) coupled to a population balance model was suggested in this work in order to understand the 

development of heterogeneous populations during S. thermophilus fermentation under different pH-

gradients (Paper V). The evolution of the considered populations was successfully predicted at variable 

pH-oscillating conditions (see Paper V). In case of an overestimation of the population of 5+ cocci chain 

lengths by the simulation, most likely separation not only at one site, but multiple sites within the chain 

happens at the same time. Since the mismatch in the prediction occurs under mild stress conditions, 

it is assumed that separation mechanisms, as response to unfavourbale growth conditions, follow 

different patterns than under stronger environmental perturbations. Further separation events could 

be considered in the model, but this would lead to an impact on the sensitivity of individual 

parameters, and probably to a large equation set that is not required under most of the cultivation 

conditions, and subsequently to overdetermination. The main purpose of the PBM developed in this 

work was to simulate population heterogeneity under ideal growth conditions as well as under pH-
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gradients, as they occur during S. thermophilus production in the large scale (rather emulated in Multi-

CSDR experiments, as discussed below). Since the mass accumulation, that is the volumetric growth 

rate, was regarded as separate event within a coccus as pre-requisite for elongation events to form 

longer cocci chains, it was included as a term in the right side of the population balance equation. This 

is in contrast to proposed models of granulation and aggregation in PBMs as they are applied e.g. in 

wastewater treatment (Nopens et al., 2015). Other PBMs are applied to describe the volumetric 

growth rate by growth rates of individual cells. Then the right term of the PBM describes cell growth 

(“birth term”) and divison (“death term”). Following this terminology, the volumetric cell growth 

represents, together with the elongation events, the birth term in case of cocci chain formation, and 

cocci separation the death term. The left side of the equation represents the cocci chain length 

distribution as a result of the individual concentration of cocci chains. The inversion of the sign of the 

growth rate means that the elongation rate in the birth term is the residual amount of events that are 

not originated due to the growth of the culture. That means they are time decoupled and thus 

represent elongation as prolonged separation event or terminated separation. The aim of this 

decoupling of PBM dynamics describing terms from growth events is to describe solely what is 

recognized as growth disturbance due to environmental growth conditions and the resulting stress 

response of the organism. Nevertheless, the different events are rated differently as an elongation, 

although regarded as a disturbance in general, is classified in natural and non-natural elongation to 

distinguish between small process disturbance with no or only small impact on the overall process 

performance, and heavy disturbances. This further classification can support any event recognition, 

with which, if the cocci chain length distribution will be available, the elongation and separation 

patterns can be chosen and the remaining growth rate can be estimated. The choice of the state of 

elongation and separation will support any identification of suitable and unsuitable growth conditions. 

If a full distribution of the cocci chain lengths is available, the identifiability of the corresponding 

growth rate shall be high. The application of such a methodology has to include a sensitivity analysis 

at a larger data set that goes beyond the present study. 

What is more, all model predictions were based on arbitrary model parameters (event rate constants 

kNE, kLAE, kHAE, kS and kS,5+c), which have never been described before in literature and cannot be 

experimentally confirmed without performing single-cell morphology investigations varying media pH. 

Firstly, a statistical analysis (i.e. standard deviation, 95 % confidence interval, coefficient of variation) 

of these parameters should be performed to see the variability of the model prediction. Furthermore, 

sensibility as well as uncertainty analysis should also be considered before using model-based 

predictions to improve the industrial process: if all the parameters of the original publication describing 

 would also be considered in the parameter estimation, the model would end up with a large 

parameter set. In this context, (Anane, López C, et al., 2019) recently published an algorithm to 

determine the presence of non-identifiable parameters in models with high output uncertainty, by 

exploring the numerical properties of the sensitivity matrix. Additionally, the framework proposes a 

regularization technique, in conjunction with Monte Carlo Analysis. This methodology, applied to a 

macro-kinetic growth model describing E. coli fed-batch cultivations (Anane et al., 2017), resulted in a 

reduction in the uncertainty of model outputs from a maximum CV% of 748 % to 5 % after 

regularization as well as a 15-fold improvement in the accuracy of model predictions for two 

independent validation datasets. 

Already some years ago, constraint-based modeling of genome-scale metabolic networks gained 

significant interest, also for LAB (Pastink et al., 2008) and even specifically for S. thermophilus (Pastink 
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et al., 2009). These models only act at the metabolic level so far, and hence, they miss much biology 

and the corresponding relevant constraints that are needed to explain many adaptive phenomena 

relevant for LAB, like population heterogeneity. The main limitation relies on the fact that 

stoichiometric models predict yields (not always related to cell activity), while, in most experimental 

setups and in nature, growth rate is more important for fitness and correlates with metabolic activity 

(Bachmann et al., 2017). The same authors introduced the new concept of protein pool trade-off or 

resource allocation perspective, i.e. the idea that cellular resources are limited and, hence, provide 

constraints on the functioning of cells. At the end, trade-offs exist in a microorganism between the 

synthesis of proteins for different metabolic pathways: proteins invested in growth cannot be invested 

into stress resistance or alternative nutrient uptake systems, for instance. This perspective has been 

very powerful in explaining many aspects of metabolic regulation, at least in model organisms such as 

E. coli (Schmidt et al., 2016) and S. cerevisiae (Keren et al., 2016), and may therefore also be true for 

LAB (Teusink et al., 2011) and included in the model-based prediction of their growth. Considering the 

utilization of different resources in case of longer chains (savings by intercellular exchange of protons, 

ions and other molecules to save energy) might lead to an even better understanding of the reason for 

cellular dynamics, including the formation of chains and the evolution of population heterogeneity and 

optimal cell states depending on the environmental growth conditions. 

5.2. Scale down Model for pH-Gradients Appearing in Large scale LAB 

Processes 

In large scale production of LAB, cells are presumably subjected to pH-gradients. These possibly result 

in inhomogeneous growth conditions within the fermenter and can affect cell yield. In this work, 

different scale down approaches at the laboratory were applied to analyze the effects of these 

heterogeneities on S. thermophilus growth and morphology: 

a) One STR with intermittent acid and base pulses experienced by the whole cell population 

(Figure 28 and Figure 29). 

b) Single STR with pH shifts, experienced by the whole population (Figure 31). 

c) Two- or even three- comparted STRs with 50 % or about 6 % of the volume, respectively, in 

the base addition vessel (Figure 34 and Figure 36, respectively). 

d) One STR connected to one or two PFRs with a working volume of 10 or 20 % of the whole 

population, which is either confronted with base or with acid pulses in the respective PFR 

modules (Figure 42). 

With them, it was possible to simulate a wide range of pH-gradients/stress conditions that LAB may 

encounter in the production scale (several m3). But which scale down design is the best option? The 

one that better simulates the hydrodynamics and cell responses in the industrial fermenter? This is 

one of the most typical questions in every scale down approach, the answer depends on on the 

knowledge of conditions in the large scale, which are usually neither measured nor known. 

Unfortunately, most of the information from large scale cultivation was also not available from the 

industrial partner in this study. Nevertheless, it was possible to compare some parameters across 

scales, like the cocci chain length distribution and the growth rate. Scale down conditions were then 

changed until the large scale performance was obtained.  
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5.2.1. Single- or Multi-compartment models? (RQ4) 

With the experience acquired throughout the application of the scale down strategies described 

above, each of the lab simulator can be applied to simulate industrial scale pH-gradients, depending 

on the aim of the investigation. For example, long pH shifts can be induced in a one-compartment 

bioreactor, so that the whole cell population is subjected to the stress at the same time, thus 

monitoring cell response throughout a relatively long response time. This can be compared with short 

pulses to a culture, in which only a portion of cells is subject to unfavourable growth conditions. If the 

response behaviour differs, segregation of the whole culture in scale down is sensitive. This was 

observed for the re-assimilation of by-products, which were accumulated under unfavourable growth 

conditions in C. glutamicum cultivations: if these were consumed by other cells in the compartment 

with favourable growth conditions, the accumulation had nearly no effect (Käß et al., 2014). In case of 

LAB, however, a changed secretion of any by-products due to pH-gradient formation is hardly 

observable. It is assumed that differences of the responses of LAB between Single- and Multi-

compartment scale down experiments are small, as also seen at the experimental results of this study. 

The impact on sequences and magnitudes of pH-gradients seem to be larger. If intercellular proton 

transport from cells with an adjusted pHi to cells that just passed a zone of high pH will happen, then 

a distinctly different response pattern would be seen in Multi-compartment reactors. The adjustment 

of the cytoplasmic pH of many LAB species to the pH of their environment has long been observed 

(Kashket, 1987). One of the detrimental survival strategies of LAB is the adjustment of the pHi to the 

environment rather than keeping a stable pHi by increasing the gradient (Papadimitriou et al., 2016). 

Hence, after a base pulse toward all cells at the same time, the adjustment of the pHi would require a 

larger amount of protons penetrating into the cells. Although a higher concentration of free protons 

will be available at a lower pH, it can be changed if the adsorption of protons by cells are large. This 

effect would be smaller if a portion of cells which remained longer at favourable growth conditions, 

would produce higher amounts of lactic acid and act as proton donor. (A similar condition in opposite 

direction would appear from an acid pulse toward a favourable growth condition.) This effect can be 

visible especially if cells circulate rapidly between a basic and an acidic environment, where 

“recreated” cells recently grown under favourable conditions would act as an additional proton source 

or sink. This might be also one reason for different outcomes if Single- or Multi-compartment systems 

are compared in this study, although the pH perturbations, in particular the frequencies, were not 

exactly the same among the different scale down designs, which as such originate in different results. 

Beside the questions of compartments, the frequencies that are applied, have a big impact on the 

outcome. Just recently, (Wang, Chu, et al., 2019) revealed gross differences between single and 

repeated glucose pulses induced during P. chrysogenum fed-batch fermentations, which suggests that 

single pulse studies have limited value for understanding of metabolic responses in large scale 

bioreactors. Instead, intermittent feeding should be favored. In this work, a notably different effect on 

biomass productivity was observed when relatively long pH shifts (see Figure 31) or intermittent pH 

pulses (see Figure 28) were induced during S. thermophilus fermentation: intermittent high pH values 

(DpH = +1.0) resulted in a 40 % biomass productivity loss (Figure 30), while an ammonia pulse to 

increase the optimal pH until 8.0 was needed to accomplish a similar decreased performance (Figure 

32). On the contrary, if the objective consists of simulating a specific zone of the large scale bioreactor 

prone to encompass concentration gradients, Multi-compartment scale down models are more 

suitable. When connecting several STRs, this is achieved by maintaining the liquid volumes constant 

between vessels, which is a challenging task if gravimetrical control is not available and the liquid 
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height is controlled by pumping through the connecting tubes (foam formation). If a STR is connected 

to one or more PFRs, this limitation is overcome and,  generally, a 10 % (in each PFR) of the population 

is under inhomogenous conditions. A further advantage of this setup is that sampling ports along the 

height of the PFR allow the time resolution of the cellular response to the pulses induced. In scale 

down cultivations described in this work, the volume of the PFR was always a 10 % of the STR, sampling 

was only performed from the well-mixed STR and a residence time in the PFR was set to 2 min with 

the slowest pump rate.  

Finally, the magnitude of pH-gradients has the greatest sensitivity on the results. Experimental 

conditions in this study induced pH-oscillations ranging from +2.0 and +2.5/-1.0 during Two- and Three-

CSDR fermentations (Figure 42). In a recent publication, (Olughu, Nienow, et al., 2019) induced pH-

gradients in a STR-PFR Two-CSDR strategy: residence times of 1, 2 and 5 min in the PFR were setup, 

but maintaining a constant frequency of cell entrance rate and thus subjecting a 10.5 %, 21 % and 52.5 

% of the C. glutamicum population to the induced gradients, respectively. With this strategy, the 

authors induced pH-gradients in the range from 6.2 to 7.6 along the PFR (pH control = 7.0). The 

intermittent pH pulses in this publication cannot be compared with the ones induced in this thesis, 

because LAB are the microorganisms that lower the most the media pH, thus ending up with relatively 

higher basic excursions. Scale down results showed a decreased cadaverine (product) production of 

26 %, 49 % and 59 % with increasing residence times, respectively, compared to the control cultivation. 

Furthermore, 3.1-fold more CO2 than in the control was produced with t = 5 min, but no biomass 

productivity losses were observed. Nevertheless, the population of viable-but-non-culturable cells 

increased with the magnitude of fermentation gradients. The authors finally concluded that, the higher 

the pH the more energy was used by cells to maintain a constant pHi, reducing the amount of ATP 

for other cellular functions (e.g. cell division). They also stated that pH homoeostasis is controlled by 

the dynamic influx and efflux of ions across the cytoplasmic membrane, thus fluctuating cells’ 

membrane potential as a response to the external pH oscillations. As previously stated, most LAB 

maintain a gradient to the environment rather than a stable pHi, which has several, yet not clarified 

impacts on the response patterns to environmental pH-gradients.  During L. rhamnosus scale down 

cultivations (STR-PFR) with pH shifts up to 0.88 units, four stress related genes were identified: groEL, 

hrcA and atpA (Wallenius et al., 2011). Among them, the latter translates to a subunit of a proton 

transporter, responsible for pHi homeostasis. The expression of this gene was induced the most when 

there was the highest pH upshift (i.e. under basic conditions). This is considered to compensate for the 

reduced proton motive force at high external pH (Maurer et al., 2005). In further scale down studies 

published by the same authors and using the same LAB, the expression of another four stress related 

genes (fat, hrcA, groEL and pstS, in this case) for heat shock, phosphate uptake and control of cellular 

fatty acid composition correlated with a certain amplitude and frequency of the oscillations, i.e. pHmax 

= 1.0 (+0.5;-0.5) (Wallenius et al., 2012). 

(Enfors et al., 2001a) reported a response time for E. coli <14 s (first port of the PFR), detected by 

measurement of mRNA levels of genes expressed in a stress-dependent environment. This stress 

response of cells repeatedly exposed to pulses of high glucose concentration and an increasing degree 

of oxygen limitation relaxed in the STR, because bacteria were a mean residence time of 10 min in the 

glucose limited and oxygen sufficient zone (half life of mRNA of a few minutes). In this work, a 

residence time of 120 s in the PFR during S. thermophilus fermentation in a Two-CSDR with ammonia 

fed at the bottom of the PFR (pHmax = 7.5; pH = +1.5), while controlling the pH in the STR, resulted in 

a lower STY and a retardation of cell division as well as metabolic activity (Figure 43 and Figure 44 A, B 
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and Table 9). Based on quantification of the pH-gradients encountered by these LAB in a 700 L pilot 

scale bioreactor (Paper III; pHmax = 6.3; pH = +0.3), the pH oscillating conditions induced during Multi-

CSDR experiments might be exaggerated. Nevertheless, without the exact knowledge of 

hydrodynamics and detailed process as well as vessel descriptions in the industrial scale (tens of m3), 

a conclusion cannot be drawn. This is why, a scale down approach, relatively easy to implement and 

generally applicable to any bioprocess, is suggested in this work: firstly, process performance should 

be determined in the production scale with all PAT tools available to measure the most relevant CPPs, 

CQAs and KPIs. Then, different scale down approaches (Single-, Multi-CSDR, etc.) would be screened 

in the lab, by means of the same PAT tools, and only the setup providing the most similar process 

performance to the one measured in the large scale would be selected. This methodology considerably 

differs from (Haringa et al., 2016), since the authors suggest to develop a CFD model for each 

bioreactor and a metabolic model for each microorganism to end up with rather inflexible Euler-

Lagrange method, difficult to be implemented across scales and bioprocesses. (Anane, Sawatzki, et al., 

2019) also propose a different downscaling approach, in which, firstly, a mechanistic model is 

developed and the parameter estimation is performed against cultivations under optimal conditions. 

Then, a new parameter estimation is carried out to fit the experimental data to certain induced and 

assumed oscillating conditions, thus ending a up also with a rather specific scale down model for the 

bioprocess studied. In this work, rather the methodology of an iterative scale up and scale down 

approach, where knowledge is gained from the large scale and mimicked in the small scale, is proposed 

(Neubauer & Junne, 2016). A lack of resolution and measurement methods could be surely partly 

replaced by model approaches for a better description of the conditions in the large scale (like the PBM 

proposed in Paper V of this work), but should be accompanied by proven data similarity involving the 

single-cell physiology and morphology across scales (Delvigne et al., 2018). 

It is worth mentioning, that scale down experiments in 1, 2 and 10 L bioreactors were performed at a 

tip speed of 200, 300 and 400 rpm, respectively, while the cultivation in the pilot scale 700 L fermenter 

was performed at 132 rpm (Paper III). The effect of mechanical shear stress on the chain length 

distribution in S. thermophilus cultures or other LAB have not been studied so far, but might be 

relevant, specially when the cocci chain elongation/separation are investigated and define cell size 

distribution, taken as pH-stress indicator as well as scale up&down criterion in this work. It is assumed, 

however, that the similar order of magnitude does not have a huge effect as a comparison between 

stirred and shaken systems would eventually have. Already more than two decades ago, (Hewitt et al., 

1998) concluded that there were no detectable changes in off-gas analysis or optical density during 

continuous E. coli fermentations run at 400 and 1,200 rpm stirring speed. Moreover, cell size remained 

unchanged and cells presented intact membranes under all studied mechanical stress conditions, 

except after 7 h at the maximum tip speed, when the outer polysaccharide layer on the cell was 

stripped away. In case of S. thermophilus, similar or even higher shear forces have to be applied to 

achieve a remarkable impact on the chain length (Jaros et al., 2018). The authors observed that just an 

energy input of 2.50 kJ·mL-1 lead to a substantial increase in the portion of smaller cocci chain lengths, 

which is some orders of magnitudes higher than what is usually achieved at rpms between 400 and 

800 in a STR (Devi & Kumar, 2017).   

One of the major limitations of scale down experiments is the inability to sample cells at the right 

physiological state in a multi-compartment or pulse-based system (Van Gulik et al., 2013). Accurate 

sampling within the gradient field of scale down bioreactors is essential to capture the responses of 

cells to the specific stresses being investigated. The introduction of static mixers and spatial sampling 
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points along the length of the PFR module in multi-compartment scale down bioreactors is a good 

example for improving sampling possibilities in this setup (Junne et al., 2011). Another improvement 

to connect scale down studies and systems biology research to understand the intracellular regulation 

patterns at stressfull cultivation conditions are automated rapid sampling devices, which enable to 

capture the immediate response of the cells to fast perturbations as e.g. the BioScope (van Gulik, 

2010), a microtube that can be operated similarly to a plug flow module of a scale down bioreactor. It 

was applied to mimic some stress induction zones, such as oxygen depletion with residence times of 

up to 70 seconds, during which the culture was exposed to oxygen limiting conditions (De Mey et al., 

2010). This device and other rapid sampling techniques for general bioreactors (Schädel & Franco-Lara, 

2009) allowed the elucidation of in vivo kinetic responses of cells to large scale heterogeneities (Lara 

et al., 2009; Visser et al., 2002). The application for pH gradients would be possible as well. 

The rapid sampling also enables the analysis of intracellular metabolite pools by metabolomics 

techniques, which can be used to detect cellular responses that are not observable in the extracellular 

space. In this context, (Carnicer et al., 2012) used quantitative metabolomics to study the effect of pO2 

gradients on free amino acid pools in P. pastoris expressing a recombinant protein. Their results show 

that oxygen limitation leads to a rapid build-up of intracellular free amino acid pools, which results in 

low recombinant protein production rates. Moreover, advanced proteomics and gene expression 

analysis has enabled complete proteome-wide evaluation of the effects of concentration gradients 

induced in E. coli scale down experiments, as reported elsewhere (Brognaux et al., 2014; Lara et al., 

2009; Lara, Leal, et al., 2006; Simen et al., 2017). The application of such omics techniques 

(metabolomics, transcriptomics, proteomics), could also enable the detection of up- and down-

regulation of certain genes under stressful cultivation conditions in LAB scale down bioreactors, with 

the associated elucidation of molecular level response to oscillations. The rapid flow-through sampling 

device with embedded cold quenching developed by (Lameiras et al., 2015) for A. niger chemostat 

cultures is an example that would be suitable for incorporation into multi-compartment scale down 

bioreactors. Stringent response (SR), in many organisms mediated by Guanosine-tetra or -penta 

phosphate (p)ppGpp and sigma factors, is a highly conserved bacterial stress response originally 

defined as a response to amino acid starvation, but nowadays recognized a response for a wide range 

of environmental stress conditions (Potrykus & Cashel, 2008). In fact, the SR induces large scale 

transcriptional alterations that ultimately lead to a physiological shift to a non-growth state of some 

LAB (Papadimitriou et al., 2016) and could be of potential interest as targets for further investigations 

at pH-stress responses. 

5.2.2. Advantages of Considering Individual Cells (RQ5) 

Genetically identical bacteria are known to exhibit single-cell heterogeneity under controlled 

laboratory conditions (Rainey & Kerr, 2010). These heterogeneous traits include macromorphologies, 

such as cell size, as well as biochemical properties, such as protein and mRNA content (Heyse et al., 

2019). Cells can be partitioned into clusters of cells with similar traits, called phenotypes. The variation 

in phenotypes within sympatric isogenic populations is referred to as the phenotypic heterogeneity 

(Ackermann, 2015). In principle, a heterogeneous gene expression appears to be disadvantageous, as 

it may reduce the mean fitness of the population under the prevailing environmental conditions 

(Fraser & Kærn, 2009). Therefore, maintaining a homogenous cell population and avoiding phenotypic 

heterogeneity during cell growth should lead to final biomass (product) consistency, accompanied by 

enhanced bioprocess reproducibility (Delvigne et al., 2014), thus enabling the potential 
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implementation of (model-based) control strategies in the industrial production of LAB starter 

cultures. Nevertheless, how organisms adjust their cell cycle dynamics to compensate for changes in 

environmental conditions is an important unanswered question in bacterial physiology. A cell using 

binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth 

to initiation of replication, a DNA replication phase and a period of cell division. (Lieder et al., 2016) 

presented a detailed analysis of durations of P. putida cell cycle phases, investigating their dynamics 

under environmental stress conditions with flow cytometry. Furthermore, since the Raman spectrum 

of a single cell is a combination of the spectra of all compounds cells consist of (e.g., proteins, nucleic 

acids, fatty acids, etc.), the signal intensity at every wavenumber is the result of all compounds that 

produce a signal at this wavenumber. (Teng et al., 2016) proposed a single-cell-level biochemical 

fingerprinting approach named “ramanome” to rapidly and quantitatively detect and characterize 

stress responses of E. coli cellular population. In general, different methods for monitoring the 

intensity of population heterogeneity have been described elsewhere (Delvigne et al., 2015) and shall 

be considered in early stage scale up&down of LAB cultivations. Scale down should therefore not be 

seen isolated from developments in sensor and monitoring technologies. 

If the premise of this work is correct, base addition during LAB fermentation could compromise culture 

performance due to the potential impact of pH-gradients in large scale bioreactors. Multi-position base 

addition could be a solution, even guided with additional multi-position pH measurements along the 

height of industrial scale fermenters, but implementation is still demanding and no reports of practical 

implementation are available.. (Hoshan et al., 2019) recently assessed the feasibility of utilizing control 

of sparge gas composition as part of the pH control loop in CHO fed-batch cultures. The effectiveness 

of the proposed pH control strategy was successfully transferred from 250 mL to 200 L scale. 

Nevertheless, the high acidification activities of LAB compared to mammalian cells would probably 

hinder the application of this approach to large scale starter culture production. 

If other gradients than pH shall be considered during LAB batch cultivations, the dissolved CO2 

concentration can be regarded as critical. Most LAB, as experienced in the preparation of experiments 

of this thesis, require distinct dissolved CO2 concentrations to avoid lag phases or reduced growth. This 

is hardly achievable from a certain scale on. CO2 is known from being involved in early stages of cell 

division and, therefore, oscillating CO2 concentrations in industrial scale LAB production may lead to 

lower process performances, compared to lab experiments. This might be especially crucial for non-

sparged cultivations like typical LAB fermentations as hardly no control of such a parameter is then 

feasible. 
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6. Conclusions 

In this work, at-line electrooptical measurements of cell polarizability and size with automated 

sampling and sample preparation were successfully applied to LAB L. plantarum and S. thermophilus 

in Paper I and II, respectively. In fact, the AP level is suggested as an early indicator of nutrient 

limitation and growth imbalance after results presented in this study, thus potentially becoming a new 

CQA in the industrial production of starter cultures. Furthermore, the polarizability is proposed as 

novel scale up and down criterion to transfer process performance across scales and therefore being 

an alternative or supplement to established on-line measurements (e.g. pH + offgas). Nevertheless, 

this device will only become a standard PAT tool in the industry if further studies are performed in 

order to elucidate the impact of relatively flexible cocci chains to the orientation of S. thermophilus to 

an applied electrical field. With this, the reliability of the electrooptical measurements and acceptance 

in the industrial production of LAB would be improved. 

The hydrodynamics as well as pH-gradients encountered by S. thermophilus in a 700 L pilot scale 

fermenter were characterized, resulting in a minor influence on biomass productivity and mild pH 

oscillations (pH = 5.9 – 6.3 throughout the height of the vessel). This CFD study (Paper III) poses the 

bases for using this strategy to characterize fluid dynamics in larger industrially relevant bioreactors. A 

possibility to avoid such pH-gradients, apart from increasing stirring speed with a concomitant increase 

on the power input, would be to include multi-position ammonia addition with multi-position pH 

monitoring along the industrial fermenter, which would also need additional investment. 

Additionally, Single- (Paper V) as well as Multi-CSDR (Paper IV) were used to simulate pH-gradients 

during S. thermophilus fermentations in the lab. The latter approach, in which a 10-20 % of the cell 

population is subjected to the induced gradients, was applied for the first time in LAB and was also the 

most suitable scale down methodology to induce pH-gradients. Nevertheless, the pH oscillations 

applied possibly exceeded the actual uneven distribution of the pH in the production vessel, but this 

could only be confirmed by properly characterizing the large scale bioreactor with appropriate PAT 

tools. Such approaches would allow an iterative scale up and scale down approach, where knowledge 

is gained from the large scale and mimicked in the small scale, using the suitable PAT toolbox. Shifts of 

the pH value performed in Single-CSDR affected biomass productivity and cell morphology to an 

unrealistic extend because the whole population was exposed to even pH = 2.5. 

Microscopic analysis of morphological changes of LAB enabled the consideration of population 

heterogeneity throughout the vast majority of experiments performed in this work. Interestingly, a 

tendency toward extenden cocci chains was observed under alkali conditions, while shorter chain were 

normally detected at low pH. A mechanistic model describing bacterial growth dynamics, together with 

population balance modeling based on the knowledge acquired in this work, enabled the prediction of 

the cocci chain length distribution under the different pH conditions applied in this study (optimal 

growth conditions and Single- as well as Multi-CSD experiments). This model, if coupled to ISM 

techniques, would allow the implementation of model-based bioprocess control strategies in the 

industrial production of starter cultures, moving from a QbT to a QbD/QbC mentality. More generally, 

it consists of a step toward a paradigm change in the study and description of cell cultivations, where 

average cell behaviors observed experimentally now would be interpreted as a potential joint result 

of various co-existing single-cell behaviors, rather than a unique response common to all bacteria in 

the fermentation. 
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7. Outlook  

The application of new PAT tools in the industrial LAB production looks quite challenging, since the 

mentality of “we have been doing this during more than 25 years and we made profit, so why should 

we suddenly change now?” is spread over the vast majority of industrial bioprocesses. The real 

challenge for a researcher working for a company is to find the benefit for the industrial plant, typically 

relying on off-line analyses that had been carried out over years, of applying novel and not already 

established methods. The potential of electrooptical measurements of cell polarizability is that it could 

be used as CQA across scales and maybe one day used as soft-sensor or feedback-control to ensure 

process consistency and product quality. Nevertheless, a generational change is needed for the long-

term implementation of such a PAT tool, with some, still open, important questions (e.g. reliability of 

determination of flexible bacteria). 

For a successfully integrated scale up in a company, the utmost importance is the proper technology-

transfer from the laboratory to industrial scale. The task includes the elucidation of crucial information 

to be transferred from Research and Development to pilot-production and for development of the 

existing process to the production in industrial scale. Sensors, like the ones developed by Freesense 

ApS in Denmark, to characterize gradients (pH, temperature and lately pO2) in industrial fermenters 

are already commercially available. The service includes the development of a CFD/compartment 

model so that the company can guess the mixing time, compartmentalization, residence time in 

compartments, etc., but the price is still really expensive nowadays. In terms of scale down 

methodologies simulating the conditions in the large scale, a tendency toward using miniaturized HTS 

systems (e.g. Eppendorf DASGIP®, ambr15, ambr250, 2mag) using kLa/OTR/OUR/RQ as scale down 

parameters in aerobic microorganisms from the vast majority of industries is clear. For anaerobic 

cultures, those parallel mini-bioreactor systems are typically also used in bioprocess development to 

screen for the optimal growth conditions. In history, this has been performed attaining at 

macroscopically measured variables (biomass, metabolites, etc.), but actually cell populations are 

rarely homogenous communities. The notion of phenotypic heterogeneity has changed how we look 

at microbial populations. Microbial cells are individuals that differ from each other in terms of their 

behaviour and their properties, and this individuality is based on a number of molecular mechanisms 

that generate phenotypic differences between cells even in the absence of genetic and environmental 

variation. In this context, morphological changes provide direct information about cells’ physiological 

state and, if measured in-line, population distribution may serve as control parameter of future 

bioprocesses. ISM technologies have been developed for algae (>10 m) and yeast (5-10 m) in recent 

years, but their application in bacteria is still limited by image resolution of such small cells (0.5-5 m). 

A tangible interest of bioprocessing industries toward development of digital twins to accelerate 

bioprocess characterization as well as validation has also been observed in recent years. The widely 

proposed Euler-Lagrange methods (CFD + metabolic models) are characterized by a high 

computational demand, by being rather inflexible and, therefore, not widely applicable to variable 

bioprocesses. Relatively easy mechanistic models, coupled to compartment models (with notably less 

computational demand than CFD ones), have recently been successfully used as tools for risk-based 

on-line monitoring of LAB cultivations. Such approaches, if coupled to prediction of certain population 

dynamics, would provide a soft-sensor accounting for population heterogeneity, thus improving 

process understanding as well as design.  
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8. Theses 

1. Cell polarizability may become a new CQA in the industrial production of LAB, serving as early 

indicator of nutrient limitation and growth imbalance. 

 

2. The at-line electrooptical determination of the AP and mean cell size with automated sampling 

and sample preparation provides similar and complimentary information on cell viability than 

flow cytometry, but faster and with less effort, thus minimizing human error. 

 

3. Special attention should be put in the electrooptical measurement of flexible chains. 

 

4. The pH-gradients encountered during cultivation of S. thermophilus in a 700 L pilot scale 

fermenter were not influencing growth performance, but 10-100 times larger bioreactors in 

the industry should be characterized prior to assuming absence of pH oscillating conditions. 

 

5. Oscillating pH conditions induced in different scale down setups lead to reduced growth rate 

and yielded biomass productivity loss. 

 

6. Multi-compartment scale down simulators (preferably STR-PFR approaches) are describing 

more realistically industrially relevant pH-gradients, where a certain cell population is 

subjected to pulse-based alkali addition. 

 

7. The cocci chain length distribution is a feasible scale down parameter to consider population 

heterogeneity in scale up&down of S. thermophilus fermentation.  

 

8. Under optimal growth conditions, diplococcic chains are predominant, while at basic pH 

values, the cocci chain length distribution increases and at lower pH, the cell size decreases. 

 

9. Mechanistic modeling of macroscopic variables as well as population heterogeneity, if coupled 

to hydrodynamics simulation and ISM techniques, can be relevant to develop a digital twin in 

LAB starter culture production. 

 

10. Mechanistic models of biological systems may be highly unreliable in their predictions and 

should therefore be subjected to appropriate reliability tests.      
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The rapid assessment of cell viability is crucial for process optimization, e.g., during

media selection, determination of optimal environmental growth conditions and for quality

control. In the present study, the cells’ electric anisotropy of polarizability (AP) as well

as the mean cell length in Lactobacillus plantarum batch and fed-batch fermentations

were monitored with electrooptical measurements coupled to fully automated sample

preparation. It was examined, whether this measurement can be related to the cells’

metabolic activity, and thus represents a suitable process analytical technology. It is

demonstrated that the AP is an early indicator to distinguish between suitable and

unsuitable growth conditions in case of a poor energy regeneration or cell membrane

defects in L. plantarum batch and fed-batch cultivations. It was shown that the applied

method allowed the monitoring of physiological and morphological changes of cells in

various growth phases in response to a low pH-value, substrate concentration changes,

temperature alterations, exposure to air and nutrient limitation. An optimal range for

growth in batch mode was achieved, if the AP remained above 25·10−28 F·m2 and the

mean cell length at ∼2.5µm. It was further investigated, in which way the AP develops

after freeze-drying of samples, which were taken in different cultivation phases. It was

found that the AP increased most rapidly in resuspended samples from the retardation

and late stationary phases, while samples from the early stationary phase recovered

slowly. Electrooptical measurements provide valuable information about the physiologic

and morphologic state of L. plantarum cells, e.g., when applied as starter cultures or as

probiotic compounds.

Keywords: probiotics, polarizability, Lactobacillus plantarum, viability analysis, freeze–drying, cell length

quantification, lactic acid bacteria, process analytical technology

INTRODUCTION

Lactic acid bacteria are applied for food preservation, but more importantly for yogurt and
probiotics production. Lactobacillus plantarum plays a key role as cholesterol-lowering milk
additive, which likely increases the immune responses, exert antimutagenic and anticarcinogenic
activities and protect against gastrointestinal diseases, as summarized in numerous scientific review
articles, e.g., (Nagpal et al., 2012; Kolaček et al., 2017). Several tools were introduced to monitor
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physiologic key parameters in L. plantarum cultivations like
multi-parameter flow cytometry (Arnold et al., 2002; Schenk
et al., 2008; Bensch et al., 2014; Tropcheva et al., 2015),
quantitative real-time PCR, e.g., (Clementschitsch et al., 2005;
Davis, 2014; Sohier et al., 2014; Pega et al., 2016; Emerson
et al., 2017), and viable cell counting for viability analysis
(Savini et al., 2010; Perdana et al., 2012; Glušac et al., 2015).
Although all these systems provide information on the metabolic
state and physiology of the cell, they require manual off-line
sample pre-treatment. The necessity of sample pre-treatment
might be the reason for the lack of correlation between results
of flow cytometry and colony forming units of Lactobacillus
sp. (Léonard et al., 2016). The electrooptical analysis of the
anisotropy of polarizability (AP), in contrast, represents a fully
automated method that has been developed to monitor the
viability of rod-shaped microorganisms, since they orientate
under the effect of an electrical field. This orientation is measured
by the change of extinction from two orthogonal light sources.
The extinction decreases in the direction of orientation and
increases in the orthogonal direction in comparison to a chaotic
orientation. The time, which is needed for re-orientation depends
directly on the cells’ polarizability (Bunin, 2002). This principle
is combined with a continuous and automated sampling and
sample preparation (i.e., cell suspension filtration, adjustment of
cell concentration and of conductivity) coupled to a flow cell
(Angersbach et al., 2006a,b; Junne et al., 2008). The method
provides a spectrum of the AP, since various frequencies (kHz to
MHz) can be applied in one measurement.

The cell polarizability, if determined electrooptically, is mainly
evoked by the Maxwell-Wagner polarization. It relies on the
accumulation of electric charge at the interface between two
media of different electrophysical properties (Zhivkov and
Gyurova, 2008; Gyurova and Zhivkov, 2009). The interface
of the cytoplasm and the cell wall is the main origin of
this cell polarizability in case of bacteria. The intracellular
ion balance is changing during the course of a cultivation
due to substrate consumption and product formation, eventual
inhibitor accumulation and an unsuitable pH-value, among
others. This has an impact on theMaxwell-Wagner polarizability.

The authors have described the electrooptical monitoring of
(i) the switch from the acidogenic to the solventogenic phase
in Clostridium acetobutylicum cells (Junne et al., 2008), and
(ii) the development of the polarizability in Escherichia coli
batch cultivations (Junne et al., 2010). The slope of polarizability
vs. the frequency made it possible to differentiate between
phases of dominating acid or dominating solvent production
in C. acetobutylicum cultures. Metabolite fluxes as determined
from off-line concentration measurements correlated well with
the course of the polarizability. A strong relation between
the development of the polarizability and the specific acetate
synthesis rate in E. coli experiments was observed.

The aim of the present study is the investigation of the
time course of polarizability of L. plantarum ATCC 2014 in
batch and fed-batch fermentations in complex, industrially
relevant medium and at certain disturbances like a low pH-
value, substrate pulse and temperature alterations. The ability to
identify and predict certain cultivation stages based on the AP
is investigated, with a special emphasis put on lactate synthesis

and carbon source consumption. The main question is whether
fermentation phases with active cells with high metabolic
turnover rates can be distinguished from weak cells with low
energy generation capabilities by means of the electrooptical
analysis. Additionally, the development of the AP during the
regeneration (cultivation) of freeze-dried cells as starter cultures
is investigated. TheAP showed distinct differences, samples taken
from the retardation and late stationary phase had a higher AP
soon after they were resuspended, and finally had a higher growth
rate. The AP is thus a meaningful parameter to identify suitable
harvesting stages prior to freeze-drying for the further use as a
probiotic compound.

MATERIALS AND METHODS

Bacterial Strain and Media
The strain L. plantarum ATCC 2014 was used throughout this
study. In all batch and fed-batch cultivation experiments, a 50%
standard MRS medium (Carl Roth, Karlsruhe, Germany) was
used, containing (per liter): 10 g glucose, 5 g peptone, 4 g beef
extract, 2 g yeast extract, 0.5 g Tween 80, 1 g K2HPO4, 2.5 g
sodium acetate, 1 g ammonium citrate, 0.1 g MgSO4, 0.025 g
MnSO4. Media in pre-cultures were twice as concentrated.
Two milliliter of antifoam 204 (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) were added to reduce foam formation in
the stirred bioreactor experiments.

Cultivation Conditions
Five hundered microliter of L. plantarum cell suspension from
a cryostock were used to inoculate 50mL of pre-culture and
grown at 34◦C overnight without agitation. Eight milliliter of
this pre-culture were used to inoculate 200mL cultivations in
an EloFerm bioreactor (EloSystems, Berlin, Germany) when it
reached a pH-value between 3.6 and 3.8 and an optical density
(OD600) between 4.2 and 5.2. Fifty milliliter of pre-culture were
used for inoculation in case of 2 L cultivations in a KLF 2000
bioreactor (Bioengineering, Wald, Switzerland).

The pH-value was controlled at 5.8 by the addition of 1M
and 7.5M NaOH solution in the batch and fed-batch bioreactor
cultivations, respectively. The temperature was maintained at
34◦C. The culture was gently stirred at 150 rpm during the initial
batch phase. The liquid was sparged with nitrogen at a rate of 0.03
vvm and stirred with 200 rpm in the subsequent fed-batch phase.
Continuous feeding of a solution, which contained 50% (v/v) of
MRS medium and 50% (v/v) of a 440 g L−1 dextrose solution
was started after the glucose of the batch phase was consumed.
The feed reservoir was weighted to ensure appropriate feeding.
A feed rate of 0.24 L h−1 was applied during the first fed-batch
phase, while it was doubled during the second fed-batch phase.
The oxygen (if there was any) and carbon dioxide content were
quantified with the exhaust gas analyzer All-in-One (BlueSens,
Herten, Germany).

Concentration Analysis
Optical density at 620 nm was monitored with a photometer
EloCheck (EloSystems, Berlin, Germany) in a flow cell connected
to a reactor bypass with an optical depth of 2.2mm for every
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15 s. The biomass concentration was additionally determined off-
line with appropriately diluted samples at 600 nm in an Ultraspec
2100 pro UV/Visible spectrophotometer (Biochrom, Cambridge,
UK).

The amount of cells per mL, cn, was calculated following eq.
1 under consideration of the cell length as determined with the
electrooptical measurement and as calibrated with captures of L.
plantarum cultures under the microscope:

cn = (3.1·OD600/l
1.33
c )·109

lc represents the mean cell length.
Metabolite analysis (i.e., glucose and lactate) and amino acid

quantification was conducted with HPLC analysis as described
previously (Lemoine et al., 2015).

The dried cell weight (DCW) was determined as follows: 1mL
of L. plantarum samples were centrifuged at 15,000 rpm and
4◦C for 10min, washed with 1mL of 0.9% (w/w) NaCl and
centrifuged again. The supernatant was discarded, whilst the
pellet was dried in an oven at 70◦C for 24 h. The amount of the
residual biomass was determined gravimetrically.

In case of freeze-drying experiments, samples were taken after
4, 6, 8, and 21 h of a 200mL bioreactor cultivation. Twenty
milliliter of sample broth was centrifuged at 8,000 rpm and 4◦C
for 15min. The supernatant was discarded and the wet sample
was transferred to round bottom flasks. These were stored at
−20◦C for 1 day and then lyophilized with a LyoQuest lyophilizer
(Telstar R© Life Science solutions, Terrassa, Spain) until dryness
at 0.9 mbar and −50◦C. The different samples were suspended
individually in 50% MRS and allowed to grow at 34◦C in shake
flasks with gentle mixing.

Determination of Cell Polarizability and
Cell Length
A fully automated, commercialized sampling and analysis unit
EloTrace (EloSystems, Berlin, Germany) was used to monitor
the AP and cell length in a sampling interval of 15min. Cells
were separated from the culture broth by filtration through a
cellulose filter of a pore size of 0.45µm (Sartorius, Göttingen,
Germany). The cell concentrate was diluted with distilled water
of a conductivity of 5 µS·cm−1 to a final optical density of
OD600 = 0.1 ± 5% prior to the electrooptical measurement.
The AP was acquired in a measurement chamber at four
different frequencies: 210, 400, 900, and 2,100 kHz. Detailed
principles of the method were described elsewhere (Bunin, 2002).
All AP values contain a scaling factor of 5·10−31 F·m2 for
easier readability and comparison with other literature sources.
The system was calibrated by microscopic analysis in order to
correlate orientation and relaxation characteristics to the cell
length.

Data Fitting and Visualization
Data of OD600 measurements, which were obtained every 15min
or of DCW, which was measured every hour in triplicates, was
fitted with the smoothing spline function in the curve fitting
toolbox of MATLAB R2013b (The MathWorks, Natick, MA).
The growth rate was then calculated for each time interval with

the slope of the curve with logarithmic (ln) linearization of the
OD600 or biomass time course. All data plots were created with
SigmaPlot version 11.0 (Systat Software, San José, CA).

Statistical Analysis
Data were expressed as mean standard deviation (SD) between
duplicates for the description of reproducibility. Biological
replicates were performed as fermentations under identical
conditions.

RESULTS AND DISCUSSION

Statistical Analysis of the Electrooptical
Measurement
The aim of this study is the investigation of the suitability
of electrooptical polarizability measurements to determine
uncomfortable growth conditions and potential losses of cell
viability and metabolic activity. Therefore, the technical
reproducibility of the measurement and the biological
reproducibility of the physiology of the culture were determined.
The biological reproducibility of the polarizability, measured
in samples of two fermentations, which were performed under

FIGURE 1 | Mean growth rate (A) as well as AP level at 400 kHz (B)

development during fermentations under optimum (standard) conditions.

Dotted lines represent the limits of the standard deviations between two

biological replicates.
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FIGURE 2 | Time course of the mean anisotropy of polarizability (AP), its first derivate, cell length, the amount of cells and the specific growth rate throughout six L.

plantarum batch cultivations: at standard conditions (•), with additionally 1% of glucose in the medium (◦), without pH control (�), with aeration (▽) and at a reduced

temperature of 25◦C (△). Error bars depicting the technical error of the polarizability measurement have not been represented, thus enabling the comparison between

cultivation conditions.
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optimal growth conditions, is summarized in Figure 1. The
mean specific growth rate and the AP at 400 kHz are shown
together with the upper and lower limits of the standard
deviation (SD). The values expressed a large deviance during
the first hour due to a wider spread of the AP of pre-cultures at
the harvest time, but the growth rate and AP profiles developed
very similar afterwards. The duplicate measurements of the AP
of the same samples yielded a deviance of 5% or lower at all
samples. This encouraged further investigation whether different
cultivation conditions will lead to a distinct change of the AP,
and whether this change can be correlated with growth and lactic
acid formation.

Effects of Altered Cultivation Conditions on
the AP and Cell Length
Firstly, in order to elucidate the impact of carbon availability,
the initial amount of glucose was doubled in comparison to the
control experiment, while it is assumed that the supply of ions
and other essential nutrients remain unlimited (as observed from
the growth rate). Secondly, fermentations w/o pH control were
performed to investigate the influence of acidic conditions on the
AP. Moreover, since the presence of oxygen may have an impact
on the proton motive force in Lactobacilli, and thus the cells’
polarizability, the nitrogen-sparged cultivation was compared to
an aerated cultivation, in which a sparging rate of 1 vvm of air was
applied. Finally, the impact of a lower cultivation temperature
of 25◦C, and thus a lower metabolic activity, on the AP was
investigated (Figure 2).

If the initial glucose concentration was higher, the same AP
profile was obtained at the beginning of the cultivation. The
maximum growth rate was achieved when the AP reached about
5,000 F·m2. The AP decreased earlier if lower amounts of glucose
were available. In both cases, the drop of the AP below the
threshold value occurred within the same order and time as the
growth rate declined during the course of the cultivation. As the
specific lactate production was rather similar, the change of the
AP cannot be attributed to lactate accumulation. Most likely,
the earlier onset of substrate limitation at a lower initial glucose
concentration was the reason for the changed AP profiles. The
growth rate does not develop in parallel to the cell number in the
beginning of the cultivations, as growth measured with optical
density and gravimetrical biomass determination relies on the
increase of the cell length.

If the pH-value was not controlled, a sudden drop of the
AP was observed after 3 h. The external pH reached a value of
4.5 at that time (Figure S2). Such a low pH value is regarded
as unfavorable, as growth reduction occurs in such an acidic
environment (Giraud et al., 1991; van de Guchte et al., 2002).
Indeed, a growth reduction was observed about 30min later.
While the pH-value in the medium decreased further to a value
of 3.6, the AP declined continuously (Figure S2). A low internal
pH value has an impact on the cell viability (Valli et al., 2006) as
it reduces the internal proton motive force. It is known that such
an effect changes the transmembrane potential, mainly due to a
change of the internal Maxwell-Wagner polarizability (Gyurova
and Zhivkov, 2009). Transmission electron microscopy analysis

revealed evidence of structural distortions of the cell surface
of L. casei at pH-values of 4.0 (Hossein Nezhad et al., 2010).
Such changes would surely affect the AP as the bi-electric layer
of cells is weakened by the structural changes of the cell wall.
Additionally, the non-dissociated form of lactic acid (pKa = 3.86)
is present at higher concentrations under acidic conditions. A
passive transport by diffusion into the cell increases the lactic
acid stress in bacteria (Hansen et al., 2016). In this case, cells use
their energy mainly to shield them against this stress in order to
maintain homeostasis rather than growth.

In contrast to a low pH-value, air sparging retarded
growth only slightly and had no negative impact on the cells’
physiological state. The time course of the AP and mean cell
length was rather the same as in the control cultivation. It
was observed earlier that the presence of heme and NADH
as electron donor supports a fully active respiratory chain and
the evolvement of a sufficient transmembrane potential in L.
lactis and in other lactic acid bacteria (Brooijmans et al., 2007;
Lechardeur et al., 2011). In case cells grow on heme, oxygen
consumption is conducted with membrane vesicles. In that case,
proton release is conducted by the respiratory chain rather than
by H+-ATPases (Blank et al., 2001; Pedersen et al., 2012). Due
to the complex components in the industrial medium as it was
used in this study, heme and NADH shall be present in excess at
least at the onset of the batch cultivation, thus aerobic respiration

FIGURE 3 | Time course of the mean anisotropy of polarizability (�), its first

derivative (�), cell concentration (N) and specific growth rate (△) after a sudden

substrate pulse after cells suffered 17 h of starvation. Error bars represent the

technical reproducibility of EloTrace with two biological replicates.
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was eventually activated. It was found that aerobic respiration at
sufficient nutrient availability is even beneficial for the energetic
household regeneration of L. plantarum (Guidone et al., 2013)
despite to some common views. The AP, however, was obviously
not altered although the proton motive force might have been
affected.

Finally, at a lower fermentation temperature, the rate of
chemical reactions is naturally lower, which yields a reduced
specific growth rate and lower final cell number, as also
observed for other lactic acid bacteria (Cheigh et al., 2002). The
highest mean cell length among all experiments, however, is

observed during a lower cultivation temperature. If the lower
temperature reduces turnover rates in late reaction steps of
the metabolism more profoundly than the substrate uptake,
an intracellular accumulation of intermediates will occur. This
leads usually to larger cell lengths due to a higher osmotic
pressure inside the cell (Junne et al., 2010; Pilizota and
Shaevitz, 2014). The temperature shift however did not alter
the physiological conditions of cells notably. In this case, the
consideration of both, the AP and cell length, can provide suitable
information about conditions, in which a high growth rate can be
achieved.

FIGURE 4 | Course of on-line and off-line cultivation parameters, as well as main metabolites and amino acids throughout a L. plantarum fed-batch cultivation under

standard conditions. Off-line monitoring of DCW (◦), aspartate (×), serine (▽), glycine (+), glucose (�), lactate (♦) and malate (△) concentrations over time. At-line

optical density (–•–), cell length (–◦–), mean polarizability (-− · ◦ − ·-) and growth rate (–––––) measurements. During the fed-batch phase, the feed start (————),

doubling of feed rate (........) and feed stop (-------) are highlighted with vertical lines. Error bars denote standard deviation of two biological replicates.
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FIGURE 5 | OD600, pH and AP level at a frequency of 400 kHz and 1,200 kHz

of formerly freeze-dried and resuspended L. plantarum culture broth in 50%

MRS media collected after 4 h (◦), 6 h (�), 8 h (△) and 21 h of batch cultivation

(♦). Error bars: Mean ± SD (n = 2).

The at-linemonitoring of the AP enabled the identification of
suitable cultivation conditions for all cases: an optimal range of
the AP and cell length can be assumed, in which the cell reaches
an optimal physiologic and morphologic state, that is an AP of
above 4,500 (that is 22.5·10−28 F·m2 if the scaling factor 5·10−31

is considered) at 400 kHz and a cell length of about 2.5µm.
Growth was always high during periods, in which the AP and
cell length stayed above these thresholds. Both, the AP level at
400 kHz and the cell length showed a certain correlation with
the specific growth rate (Figure S1). Since the AP changed earlier
than growth rates, the correlation between it and growth values is
not very strong. Nevertheless, the AP measurement is suitable to
act as an early indicator for growth state changes. The AP and cell
length allow the identification of different growth phases among
all batch experiments: (i) an acceleration phase, during which
the AP and the cell length increase rapidly as cells exhibit an
increased metabolic activity; (ii) a log phase, during which the AP
and cell length reach maximum values in parallel to the growth
rate; (iii) a deceleration phase, in which the AP decreases as the
cell lenght does while the growth rate steadily declines, and (iv)
a stationary phase, during which bacterial growth is retarded and
the AP and cell length remain almost constant.

The individual cells’ AP depends on the transmembrane
potential, and thus the ionic transport from the outside to the
inside of the cell, which is related to the metabolic activity; this
phenomenon has been described in literature (Geise et al., 2014).
In order to prove the dependency between the metabolic activity
and the AP, and to investigate the response time of the AP to
a changed nutrient supply, a sudden glucose pulse addition in
the stationary phase was performed (Figure 3). The glucose pulse
led to an immediate response of growth. In this case, the AP is
supposed to increase immediately as well. Indeed this is the case.

The response time of the AP to a situation, in which the
activity of cells declines again while the added substrate is
depleting, was investigated as well. In this case, the AP declined
at the same time when nutrient limitation was reached after
the pulse. The decline of the AP started ∼30min earlier than
the decline of the growth rate. This observation after nutrient
depletion seems to be conserved among all batch experiments of
this study.

Response of AP to Variable Feed Rates
In non-aerated cultivations, the decrease of byproduct formation,
mainly carboxylic acids, can be a reason to conduct a
nutrient-limited fed-batch cultivation. Since cells have a reduced
substrate uptake due to the limited availability of a main
nutrient component, mainly the carbohydrate source, a reduced
accumulation of intermediates inside the cell occur, thus
restricting byproduct formation to the necessity to regenerate the
energy household.

The course of the AP was observed during a prolonged
nutrient-limited growth phase (Figure 4). During a first fed-
batch phase, the mean cell length remained almost constant,
whereas the AP decreased. Due to the constant feed, substrate
availability per cell is declining during this time, while the
specific growth rate is reduced in parallel. Nevertheless, once
the feed rate was doubled, a clear increase of the AP level was
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observed. These results confirm that the AP depends on the
nutrient availability under nutrient-limited conditions, however,
the dependencies were not as clear as in the batch phase. The
second feed phase showed a rather decoupled development of the
AP and the growth rate: in contrast to previous observations, the
AP still increased when growth declined. Cells seemed to recover
from the previous nutrient limitation through accumulation of
intracellular components and restoration of cellular structures
independently of growth. AP analyses under alternating nutrient-
limited fed-batch conditions rather provide information whether
feeding conditions are suitable to maintain or restore cellular
structures rather than a direct correlation to metabolic activity.
The AP remained rather stable after the feeding had stopped. It
seems that the AP is hardly affected after nutrient depletion once
cells adapted to nutrient limitation for a certain time before. This
is an important observation if cells shall be kept for a longer time
w/o nutrient supply: the time that is needed for adaptation might
be observable with the AP measurement.

In order to explain some of the behavior of the AP
during nutrient limiting growth conditions, the availability of
other sources beside carbohydrates and carboxylic acids were
investigated. A depletion of three amino acids was detected
during the feed phases: firstly, serine and afterwards aspartate,
and finally glycine. A sudden drop of the AP level seemed to occur
at the same time when aspartate became strongly limited after
9–10 h of cultivation. Bacterial cells have a different preference,
which amino acid they consume in dependence of the growth
phase (Wolfe, 2005). It is assumed that the depletion of preferred
amino acids in the medium will likely influence the AP, as cells
either have to consume other amino acids or at least to synthesize
the corresponding amino acids by themselves. This usually also
changes intracellular fluxes and the energetic household. The AP
might serve as an early indicator for amino acid depletion in
the complex medium, however, this hypothesis requires further
investigation.

Streptococcus thermophilus is used as proteolytic lactic
acid bacteria in order to provide proteases to secondary
microorganisms (Wu et al., 2015). For this purpose, lactic acid
bacteria are usually dried, e.g., freeze-dried, and revitalized
prior to use. The development of the AP after a longer phase
of starvation was described in the previous section. Now,
the behavior of the AP of L. plantarum after revitalization
(resuspension) of a freeze-dried cell pellet was observed. Samples
were taken at different phases of a batch cultivation (Figure S3):
(i) during the growth phase, (ii) at strong retardation/growth
cessation, (iii) in the early stationary phase 2 h after growth
cessation, and (iv) in the late stationary phase 13 h later. Growth
behavior varied, while the most profound growth was seen at
samples taken at strong retardation/growth cessation and from
the late stationary phase. These were also samples with the
highest and fastest increase of AP after revitalization (Figure 5).
If measurements at 400 kHz were compared with measurements
at 2,100 kHz, a faster and more profound increase was seen
at the latter frequency. It seems that a high frequency, in
this case, is more suitable to distinguish between the different
states of revitalization, e.g., the reconstitution of ion transport
and functional cell structures. It was found that freeze-resistant

cells had a high content of CH3 groups from lipid chains,
cell proteins in an α-helix secondary structure and charged
polymers, such as teichoic and lipoteichoic acids in L. bulgaricus
(Passot et al., 2015). Certain options of drying cause membrane
damages, which leads to high cell death (Bensch et al., 2014).
Interestingly, the lactic acid production did not correlate well
with the OD600, typical activity measurements based on lactic
acid synthesis would have led to other results than growth and AP
measurements, as the pH in samples taken at growth cessation
decreased faster (that is a higher lactic acid synthesis) during
revitalization than in samples taken from the late stationary
phase.

CONCLUSION

The at-line monitoring of the AP coupled to automated sample
preparation enabled the identification of unfavorable cultivation
conditions in L. plantarum batch and fed-batch fermentations.
Different growth phases were identified throughout all
experiments by means of electrooptical measurements. In
contrast to many other studies with aerobic and anaerobic
bacteria, L. plantarum’s AP responded significantly to substrate
pulses and insufficient substrate supply, and other unfavorable
cultivation conditions. During fed-batch, the adaptation
to nutrient-limitation is monitored with electrooptical
measurements, thus providing a suitable parameter for
optimization, as during revitalization after drying. The results
support the hypothesis that an intact bielectric layer on the
cells’ surface yields a higher AP. Active cells with high metabolic
turnover rates and energy generation were well distinguishable
from weak cells with low regeneration capabilities, although the
frequency matters for the distinguishability. In summary, the
electrooptical monitoring represents a promising analytical tool,
if conducted automatically as performed in this study, e.g., for the
achievement of suitable production and conservation methods
of L. plantarum and eventually other lactic acid bacteria.
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Abstract 25 

Strain characterization is one of the first steps in bioprocess development, especially in 26 

those industries where the product is the biomass itself. Lactic acid bacteria (LAB) are a 27 

clear example thereof, since they are sold as starter cultures for the yogurt, cheese as well 28 

as probiotics production. In this work, a Streptococcus thermophilus strain from an 29 

industrially relevant company in the food market was characterized in terms of maximum 30 

specific growth rate (max). Among all cultivation strategies available for such a purpose, 31 

the accelerostat (A-stat) mode was selected, so as to steadily change the dilution rate 32 

(which equals to the growth rate, , in this setup) within a single experiment, but avoiding 33 

the long stabilization phases typically encountered throughout automated stepwise 34 

change of  in a chemostat culture. Furthermore, the anisotropy of polarizability (AP) at 35 

different frequencies as well as the cocci chain length were monitored at-line by means 36 

of electrooptical measurements with an industrially available device with automated 37 

sampling and sample preparation. These parameters, coupled to established off-line 38 

analyses of the cultivation broth (i.e. OD, DCW, C-source, etc.), enabled the identification 39 

of a max of 1.3-1.4 h-1 and a wash-out point at 1.9 h-1 for the strain investigated. 40 

Additionally, the critical quality attributes (CQAs) during this fermentation mode were 41 

successfully simulated with a mechanistic biokinetic model trained exclusively with batch 42 

experiments. The at-line polarizability determination would allow the transition from a 43 

quality by testing (QbT) to a quality by design (QbD) approach, where the AP would 44 

serve as biomass activity and cell viability indicator, not measured so far during the 45 

process, but which could then be maintained in between certain boundaries by feedback 46 

control strategies. Finally, the in-silico prediction of CQAs during LAB continuous 47 

fermentations would also enable product quality by control (QbC) and improve 48 

downstream processing (DSP) planning and personnel scheduling.  49 
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Introduction 50 

An accurate definition and understanding of the physiological state of cells is a key 51 

milestone in bioprocess development and scale up (or down), especially when using 52 

recombinant protein-producing microorganisms (Peebo and Neubauer 2018). 53 

Additionally, this is also essential for a complete description and successful reproduction 54 

of their phenotypes in silico (Abt, Barz et al. 2018). The physiological state of 55 

microorganisms fundamentally depends on a wide range of environmental parameters 56 

(e.g. pH, temperature, nutrient as well as O2 availability, etc.) and a combination thereof, 57 

thus leading to an infinite combination of their values. In this regard, only the steady-state 58 

analysis enables the unequivocal definition of the physiological state of cells by providing 59 

a one-to-one correspondence between defined environmental conditions and biochemical 60 

processes derived thereof (Adamberg, Valgepea et al. 2015). This can be achieved by 61 

application of continuous cultivation methods (e.g. chemostats), which allows the study 62 

of cells at strictly defined physiological steady states with unchanging concentrations of 63 

intra- and extracellular molecules. Over decades, chemostats have been widely used for 64 

various applications and have been reviewed previously elsewhere (Bull 2010). 65 

Nevertheless, in the high-throughput era, analyzing steady-state metabolism at various 66 

environmental conditions within one experiment is preferred. This can be fulfilled by 67 

automated stepwise control of environmental parameters in a chemostat culture, but these 68 

experiments are very time-consuming due to the need to stabilize the culture after each 69 

step change, making them also prone to the emergence of unwanted mutations (Gresham 70 

and Hong 2014). Both issues can be circumvented by using pseudo steady-state 71 

cultivation methods, which enable the continuous change of one or several environmental 72 

parameters within a single experiment without the need of long stabilization phases after 73 

each change: cells are formally in a quasi-steady state, since the cell culture is moving 74 
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continuously from one steady state to another one (Adamberg, Valgepea et al. 2015). The 75 

most used method among pseudo steady-states is the accelerostat (A-stat), mainly because 76 

it enables the study of the effects and dynamics of one of the most important physiological 77 

parameters on cell metabolism, the specific growth rate (). The experiment typically 78 

starts with a batch phase, followed by stabilization of the culture at a fixed specific growth 79 

rate (i.e. chemostat) to obtain an initial steady state. Subsequently, the dilution rate (D), 80 

which equals to the specific growth rate (), is increased with a constant speed at a certain 81 

slope (D(t) = D(t0) + a·t). Under such cultivation conditions, every time point represents 82 

a physiological state of the microorganisms at the corresponding steady state. The A-stat 83 

produces higher resolution data (possibility to monitor bacterial growth in real time to 84 

study cell physiology in a large variety of specific growth rates, i.e. each sampling point 85 

equals to a snapshot at that specific D, ) and is much more time- and resource-efficient 86 

(reduction of experiment’s duration) compared with common chemostat approaches. The 87 

cultivation strategy presented here has been applied to several microorganisms (Erm, 88 

Adamberg et al. 2014, Adamberg, Valgepea et al. 2015, Gabardo, Pereira et al. 2015, 89 

Glauche, Glazyrina et al. 2017), including lactic acid bacteria (LAB), but never to 90 

characterize a Streptococcus thermophilus strain (Adamberg, Lahtvee et al. 2009, 91 

Lahtvee, Valgepea et al. 2009, Lahtvee, Adamberg et al. 2011, Adamberg, Seiman et al. 92 

2012). 93 

Throughout such continuous experiments, the efficient quantification of bioprocess 94 

parameters is of high importance for strain characterization and process development. 95 

Apart from the usual off-line analyses (OD600, concentration of biomass and relevant 96 

metabolites, etc.), real-time measurements (pH, temperature, base addition, etc.) are also 97 

relevant, since they enable the investigator to make a change in the process sooner, if 98 

necessary (Wechselberger, Seifert et al. 2010). Cell concentration is definitely the most 99 



5 
 

relevant parameter during LAB production to be sold as starter cultures, but cellular 100 

activity is also relevant. In this context, electrooptical measurements coupled to 101 

automated sampling and sample preparation (Angersbach, Bunin et al. 2006) allow the 102 

at-line determination of cells’ polarizability and size, thus providing information about 103 

the actual metabolic state as well as morphology of different microorganisms (Junne, 104 

Klein et al. 2008, Junne, Nicolas Cruz-Bournazou et al. 2010). The authors already 105 

applied this technology to batch as well as fed-batch LAB cultures (Pellicer-Alborch, 106 

Angersbach et al. 2018), but the application of this approach during continuous LAB 107 

cultivations has not yet been investigated. 108 

In recent years, the in silico prediction of cell biomass and key metabolites using 109 

mechanistic models has been well investigated in bioprocesses subjected to 110 

environmental oscillatory conditions (Anane, Neubauer et al. 2017, Kroll, Hofer et al. 111 

2017, Mears, Stocks et al. 2017, Anane, García et al. 2019, Anane, Sawatzki et al. 2019, 112 

Shirahata, Diab et al. 2019). Such modeling techniques have even been applied to the 113 

specific S. thermophilus strain used in this work (Spann, Glibstrup et al. 2018, Spann, 114 

Gernaey et al. 2019). Here we tried to predict the biomass, critical process parameters 115 

(CPPs; e.g. pH) as well as critical quality attributes (CQAs; e.g. lactose, lactic acid and 116 

galactose concentrations) during S. thermophilus A-stat continuous cultivations based on 117 

a parameter estimation performed with batch experiments (Spann, Roca et al. 2018) for 118 

the first time.  119 

  120 
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Materials and methods 121 

Bacterial strain and media 122 

The strain of S. thermophilus was provided by Chr. Hansen A/S (Hoersholm, Denmark) 123 

and used throughout the whole study. In all cultivation experiments, a self-established De 124 

Ma, Rogosa and Sharpe (MRS) medium was used, containing (per litre): 20 g lactose, 10 125 

g peptone, 12 g yeast extract, 2 g K2HPO4, 5 g sodium acetate anhydrous, 2 g di-126 

ammonium hydrogencitrate, 0.2 g MgSO4·7H2O and 0.05 g MnSO4·H2O. All media 127 

components were purchased by the company (Chr. Hansen A/S, Hoersholm, Denmark). 128 

Cultivation conditions 129 

For all experiments, 300 mL EloFerm glass bioreactors (EloSystems GmbH, Berlin, 130 

Germany) equipped with a magnetic stirring flea and a pH probe (EasyFerm Bio VP 225, 131 

Hamilton Robotics, Reno, NV) were used. Firstly, the empty assembled bioreactors were 132 

sterilized in an autoclave at 121 ºC for 20 minutes. After temperature decrease, the 133 

sterilized media was introduced into the bioreactor (C-source separated from the rest of 134 

media components). Importantly, the pH of the media was adjusted at pH 6 with H2SO4 135 

20 % v/v (Carl Roth, Karlsruhe, Germany) prior to sterilization. The bioreactors were 136 

then inoculated (0.1 % v/v) directly with the cry stock (Chr. Hansen A/S, Hoersholm, 137 

Denmark). The fermentation temperature was kept at 40 °C, while gassing the headspace 138 

with nitrogen, and the pH was controlled at pH 6 with addition of NH3 5 % (v/v) (Carl 139 

Roth, Karlsruhe, Germany) throughout the fermentations. 140 

Analysis 141 

Optical density at 620 nm was monitored with a photometer EloCheck (EloSystems 142 

GmbH, Berlin, Germany) in a flow cell connected to a reactor bypass with an optical 143 

depth of 2.2 mm for every 15 sec. The amount of cells per mL, cn, was determined 144 



7 
 

following Eq. 1 under consideration of the cell size as determined with the electrooptical 145 

measurement and as calibrated with manual cell counts: 146 

cn  = (3.1 ∙ OD600 / lc
1.33) ∙ 109    (1) 147 

where lc represents the mean cell length. 148 

Cell growth was additionally monitored off-line with appropriately diluted samples at a 149 

wavelength of 600 nm (OD600) with an Ultraspec 2100 pro UV/Visible spectrophotometer 150 

(Amersham Biosciences, Amersham, UK). For dry cell weight (DCW) determination, 2 151 

mL of cell suspension were pipetted into a previously dried and weighted 2 mL Eppendorf 152 

tube. Samples were then centrifuged at 4 ºC and 15,000 rpm for 10 minutes. The 153 

supernatant was discarded, whilst the cell pellet was washed with 1 mL of NaCl 0.9 % 154 

(w/w) solution. After a second step of centrifugation, the Eppendorf tube containing the 155 

washed cells was dried at 75 ºC for 24 hours and weighted again. The DCW was then 156 

calculated as the difference between the tube with sample and its tare. Samples for 157 

extracellular metabolite and free amino acid concentration were filtered through a 158 

membrane filter with a pore size of 0.8 m (Carl Roth, Karlsruhe, Germany) directly at 159 

the sampling port of the bioreactor. The filtrate was transferred to a 1.5 mL Eppendorf 160 

tube and immediately stored at -80 ºC. 161 

Determination of cell polarizability and cell length 162 

A fully automated sampling and analysis unit EloTrace (EloSystems GmbH, Berlin, 163 

Germany) was used to monitor the AP and cell length in one of the two bioreactors with 164 

a sampling interval of 15 min. Cells were separated from the culture broth by filtration 165 

through a cellulose filter of a pore size of 0.45 m (Sartorius, Göttingen, Germany). The 166 

cell concentrate was diluted with distilled water of a conductivity of 5 S ∙ cm-1 to a final 167 

optical density of OD600 = 0.1 +/- 5 % prior to the electrooptical measurement. The AP 168 



8 
 

was acquired in a measurement chamber at four different frequencies: 210, 400, 900 and 169 

2,100 kHz. Detailed principles of the method were described elsewhere (Bunin 2002). All 170 

AP values contain a scaling factor of 5 ∙ 10-31 F ∙ m² for easier readability and comparison 171 

with other literature sources. The system was calibrated by microscopic analysis in order 172 

to correlate orientation and relaxation characteristics to the cell length. 173 

Quantification of metabolites 174 

Extracellular organic acids and sugars were quantified with an Agilent 1200 HPLC 175 

system (Agilent Technologies, Santa Clara, USA) equipped with a refractive index 176 

detector (RID) and a HyperRezTM XP Carbohydrate H+ column (300x7.7 mm, 8 m) 177 

(Fisher Scientific, Schwerte, Germany) using 5 mM H2SO4 at a flow rate of 0.5 mL·min-178 

1 and a temperature of 65 ºC. Prior to analysis the samples were thawed on ice and diluted 179 

¼ with H2O to a final volume of 200 µL. Subsequently, the HPLC vials (VWR, Radnor, 180 

USA) were prepared with a 200 µL micro-insert (VWR, Radnor, USA) and the diluted 181 

samples were transferred into the vials. Amino acid quantification was conducted with 182 

HPLC analysis as described previously (Lemoine, Martínez-Iturralde et al. 2015). 183 

Microscopic image analysis 184 

1 mL sample was taken directly from the bioreactor into a 1.5 mL Eppendorf tube and 10 185 

L were pipetted on a microscopic slide (VWR chemicals, Radnor, USA). The slide was 186 

then covered with a cover glass of thickness No. 1.5 (VWR chemicals, Radnor, USA) and 187 

placed under the microscope (CN-hFT, Hertel & Reuss, Kassel, Germany) with 100x oil 188 

immersion objective. The images were taken with a digital camera (Canon Power Shot 189 

G1X, Canon, Tokio, Japan) with 4-times magnification. 190 

Data fitting and visualization 191 

In order to calculate rates, off-line data was fitted to a Smoothing Spline with the fitting 192 

toolbox of MATLAB R2013b (The MathWorks, Natick, MA). Concentrations were then 193 
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obtained every desired interval of time. All data plots were created with SigmaPlot 194 

version 11.0 (Systat Software, San José, CA). 195 

Statistical analysis 196 

Data were expressed as mean standard deviation (SD) for the description of 197 

reproducibility. Biological replicates were performed as fermentations under identical 198 

conditions. The coefficient of variation (CV%) was then calculated using Eq. 2: 199 

𝐶𝑉% =
𝑆𝐷

𝑀𝑒𝑎𝑛
· 100                                                            (2) 200 

Biokinetic model and pH simulation 201 

An unstructured kinetic model for S. thermophilus developed by (Spann, Roca et al. 2018) 202 

was used, which described the lactose consumption, biomass growth and lactic acid 203 

synthesis. Effects of the lag-time, substrate limitation and inhibition, pH and lactate 204 

inhibition were considered in the growth function. Additionally, a simplified version of 205 

the Luedeking-Piret equation was applied to describe the lactic acid synthesis. More 206 

details on the model development can be found in the original publication, but the most 207 

relevant equations are: 208 

(1 + 𝑌𝑔𝑎𝑙) ∙ 𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑞𝑋
→ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑌𝑔𝑎𝑙 ∙ 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 (3) 

(1 + 𝑌𝑔𝑎𝑙) ∙ 𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑞𝑃
→ 𝑙𝑎𝑐𝑡𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝑌𝑔𝑎𝑙 ∙ 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 (4) 

𝑞𝑋 = µ𝑚𝑎𝑥 ∙ (1 − 𝑒
−𝑡 𝑡𝑙𝑎𝑔⁄ ) ∙

𝐶𝑆

𝐶𝑆 +𝐾𝑠 +
𝐶𝑆
2

𝐾𝐼

∙ 𝑒
−(
(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻)

2

𝜎2
)

∙
1

1 + 𝑒
𝐾𝑃,𝐿𝑎(𝐶𝑃−

𝐾𝐿𝑎

1+𝑒
𝐾𝑃,𝑝𝐻1∙(𝑝𝐻−𝐾𝑃,𝑝𝐻2)

)

∙ 𝐶𝑋 

(5) 

𝑞𝑃 = 𝛼 ∙ 𝑞𝑋 (6) 

where qX and qP are the volumetric growth and lactic acid production rates, respectively. 209 

Lactose (CS), biomass (CX), and lactic acid (CP) were listed as additional variables, and 210 
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their rate equations were defined as expressions in the CFX expression language. Initial 211 

concentrations were 𝐶𝑆,𝑡=0 =  20 𝑔 𝐿−1, 𝐶𝑋,𝑡=0 =  0.025 𝑔 𝐿−1, and 𝐶𝑃,𝑡=0 =  0 𝑔 𝐿−1. 212 

The kinetic parameters as listed in Table 1 were derived from a parameter estimation, 213 

which was based on 2 L lab-scale fermentations with the aforementioned medium at 214 

300 rpm (two 6-blade Rushton turbines with a diameter = 53 mm) and 40 °C at different 215 

pH values (in the range of 5.5 – 7.0) and initial lactose concentrations (20 and 70 g L-1) 216 

(Spann, Roca et al. 2018). It is worth mentioning when evaluating the model that the 217 

supplemented yeast extract contains ca. 6 g L-1 carbon, which is not included in the model. 218 

However, this is only partially taken up by the cells and the dynamic model accounts for 219 

it by under predicting the galactose concentration. Importantly, the pH value was kept at 220 

pH 6 during the whole simulation, since it was also maintained at this value throughout 221 

the fermentations. The model was implemented and solved in MATLAB® (The 222 

MathWorks®, Natick, MA) using the ode15s solver. 223 

 224 

Table 1. 225 

Symbol Description Value 

K
I
 Substrate inhibition parameter 164 g L

-1
 

K
S
 Substrate limitation parameter 0.79 g L

-1
 

K
La

 Lactate inhibition parameter 19.8 g L
-1

 

K
P,La

 2nd lactate inhibition parameter 0.24 L g
-1

 

K
P,pH1

 LA inhibition pH parameter 20 

K
P,pH2

 2nd LA inhibition pH parameter 7 

pH
opt

 Optimal pH in the pH function 6.39 

t
lag

 Lag-time coefficient 1 h 

Y
gal

 Galactose yield 0.69 g g
-1

 

α Growth related production coefficient of lactic acid 5.19 g g
-1

 

µ
max

 Maximum specific growth rate  2.06 h
-1

 

σ Spread parameter in the pH function 1.42 

  226 
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Results and discussion 227 

LAB are used as starter cultures in the yogurt production from milk, thus being used to 228 

grow on lactose (equivalent to a molecule of glucose and one of galactose). Once this C-229 

source is incorporated into the cell through the lactose permease (LacS), it is cleaved by 230 

a β-galactosidase and split into glucose and galactose intracellularly (Sørensen, Curic-231 

Bawden et al. 2016). The former is used by the S. thermophilus strain to generate biomass 232 

through glycolysis and lactic acid fermentation, while the latter is, in principle, not 233 

consumed and therefore excreted into the media. 234 

Generally, bacteria can either spend the energy acquired from sugar for cell division and 235 

increase of biomass or for maintenance and enhancement of cells’ metabolic activity 236 

(Olughu, Nienow et al. 2019), in principle related to their polarizability under the action 237 

of an electrical field of a certain frequency. Therefore, there is typically a trade-off 238 

between growth and intracellular biochemical reactions for adaptation mechanisms, 239 

which depends basically on (i) growth phase, (ii) changing media components’ 240 

concentrations (specially, the C-source and byproducts) and (iii) extracellular 241 

environmental factors (e.g. pH, osmotic stress, temperature, etc.). 242 

 243 

The A-stat fermentation with S. thermophilus 244 

The idea behind an A-stat strategy was the characterization of the strain in terms of 245 

maximum specific growth rate: the culture reaches a point, when it cannot keep up with 246 

the rising D, resulting in the so called wash-out, where cells can no longer consume the 247 

amount of C-source introduced and this starts to accumulate extracellularly, in parallel 248 

with a decrease of the cells’ as well as byproduct/s’ concentrations inside the fermenter, 249 

which are “washed-out” from the bioreactor. Accelerostat experiments with a S. 250 

thermophilus strain from Chr. Hansen A/S (Hoersholm, Denmark) were performed in 251 
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duplicates. The cultivations began with a batch phase, followed by chemostats at a 252 

dilution rate of initially 0.3 h-1 and then 0.1 h-1 for ca. 50 h each. Subsequently, the 253 

accelerostat was started with an acceleration rate of the feed of 0.005 h-2. Later on, the 254 

acceleration rate was increased stepwise to 0.008 h-2 (Figure 1). 255 

 256 

Figure 1. Dilution rate throughout duplicates of a S. thermophilus continuous cultivation. 257 

The cultivation started with a batch phase (data not shown), followed by two chemostat 258 

and an accelerostat phases.  259 

 260 

The batch phases were started with 20 g·L-1 lactose, which was steadily being consumed, 261 

while biomass and OD600 were increasing, in parallel with the lactic acid and galactose 262 

concentrations measured in supernatant samples (data not shown). The first chemostats 263 

(D = 0.3 h-1) were initiated once the on-line OD600 stabilized (DCW = 1.0 ± 0.02 g·L-1) 264 

and the lactose concentration in both bioreactors was 12.2 ± 1.12 g·L-1 (lactic acid and 265 

galactose = 4.4 ± 0.36 g·L-1 4.7 ± 0.32 g·L-1, respectively) after about 7.5 hours of 266 

inoculation. This initial dilution rate was maintained for 10 reactor volumes to ensure a 267 
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steady-state in both fermenters: DCW = 1.8 ± 0.12 g·L-1, lactose = 0.3 ± 0.23 g·L-1, lactic 268 

acid = 7.8 ± 0.92 g·L-1 and galactose = 6.6 ± 0.49 g·L-1. At this point, the second 269 

chemostats (D = 0.1 h-1) were started and maintained for 5 reactor volumes accomplishing 270 

a second steady-state in the two bioreactors: DCW = 1.6 ± 0.02 g·L-1, lactose = 0.2 ± 0.10 271 

g·L-1, lactic acid = 9.4 ± 0.05 g·L-1 and galactose = 5.5 ± 0.62 g·L-1. The alteration in 272 

amino acid specific consumption rates with decreasing available C-source might be a 273 

consequence of a metabolic redistribution, with a higher proportion of amino acids being 274 

used as biosynthetic precursors. Almost no changes over time were detected for the vast 275 

majority of amino acids during chemostat experiments using complex media, but serine 276 

was depleted and alanine started to accumulate extracellularly shortly before the second 277 

chemostat cultures were started (data not shown). This was a clear indication of an 278 

influence of the C:N ratio on cell metabolism once the C-source started to be completely 279 

consumed. On the one hand, serine can generally be used either for biosynthesis or for 280 

conversion to pyruvate, so that under C-source limitation, increased conversion of serine 281 

to pyruvate to maintain the high ATP demand may be encountered. Additionally, serine 282 

is converted to glycine when the carbon atom of serine is transferred to 283 

tetrahydrofolate, whose derivatives serve as donors of one-carbon units in a variety of 284 

biosynthesis pathways (Meiser, Tumanov et al. 2016). Thus, the difference seen in the 285 

secretion of serine may have a background in the need for one-carbon units (Fernandez-286 

de-Cossio-Diaz, Leon et al. 2017). What is more, as reported for mammalian cell culture, 287 

serine depletion in the medium can have negative impacts including increased asparagine 288 

consumption, alanine production, lactate production, and ammonium generation 289 

(Ritacco, Wu et al. 2018). On the other hand, high glycolytic flux (assumed when the 290 

continuous cultures were started) results in large accumulation of pyruvate that might not 291 

be processed, thus leading to production of large amounts of alanine, apart from lactate 292 
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(Torres, Berrios et al. 2019). Also, it is worth mentioning, that before the chemostat 293 

cultures were running, already a considerable amount of NH3 had been introduced in the 294 

fermenters to compensate for the high lactic acid production rate of S. thermophilus. In 295 

fact, under high broth ammonium concentrations, a shift towards alanine transamination 296 

reaction has been reported elsewhere (Pan, Streefland et al. 2017): it consists in the 297 

conversion of pyruvate and ammonia to alanine, consuming one reducing agent. Because 298 

transamination reactions are readily reversible, alanine can be easily formed and thus has 299 

close links to metabolic pathways. This observation also highlights the influence of 300 

carbon source on amino acid metabolism and the flexibility of LAB to handle intracellular 301 

ammonia. Regrettably, no data on ammonia concentration in the bioreactors was available 302 

during the experiments, so these hypotheses cannot be confirmed. Moreover, deeper 303 

investigations on the metabolic fluxes around pyruvate during LAB cultures should be 304 

essential for future work. 305 

From then on, the dilution rate was steadily increased over time in both vessels. At the 306 

beginning of the A-stat experiment (i.e. steady increase of D/ over time), lactose was 307 

measured in residual concentrations (Figure 2), while lactic acid concentration, OD600 and 308 

DCW remained almost unchanged as the continuous cultivations evolved over time (as 309 

well as over D or ). These observations, together with the fact that all analyzed 310 

aminoacids, succinate as well as acetate were comparably neither consumed nor produced 311 

throughout the fermentations, confirmed the quasi-steady state metabolism of the bacteria 312 

inside both bioreactors.  313 
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 314 

Figure 2. CPPs monitored throughout two (filled and unfilled symbols) A-stat cultivations 315 

of S. thermophilus both, over time (left) as well as over the dilution rate (right). Off-line 316 

analyses of OD600, DCW and metabolites performed with HPLC are represented by 317 

symbols, while in-line measurement of pH as well as at-line determination of base 318 

addition, cell size and polarizability at 400 kHz are plotted with lines. 319 

 320 

Just before D = 0.6 h-1 (i.e. about 100 h of experiment), feeding was interrupted due to a 321 

mechanical error, thus influencing the whole cell metabolism: surprisingly, the galactose 322 

(which is in principle not metabolized by this S. thermophilus strain, as commented 323 

before) was depleted and lactic acid, OD600 and DCW values had increased just in the 324 

next measuring point after the incident (data not shown). This is irrelevant for the actual 325 

work, but indicated that the LAB had been adapting to limiting lactose concentration and 326 

galactose excess in the media throughout the whole experiment (i.e. batch, two 327 

chemostats and A-stat), so that once the preferred C-source lactose ceased to be 328 

introduced, cells consumed the next C-source available (i.e. galactose). Sequencing of the 329 

bacteria at that point and comparison with the inoculated biomass would have elucidated 330 

and confirmed the genomic mutations undergone during the long continuous cultivation 331 
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towards using galactose also as substrate, but was not done in this work. For that reason, 332 

from then on, off-line data related to this replicate was no longer plotted in the graphs. 333 

Around D = 0.6 - 0.7 h-1, the lactose started to accumulate extracellularly, but lactic acid, 334 

OD600 and DCW still remained statistically constant over time as well as D. It was first at 335 

D = 1.3 h-1 where the lactose concentration notably increased and the fermentation 336 

product, OD600 as well as DCW decreased in parallel notably, thus indicating a clear 337 

wash-out. This maximum specific growth rate was in accordance with analysis of the 338 

Lineweaver–Burk plot (Figure S1), resulting in a max of 1.3 h-1 and a KS of 0.9 g·L-1.  339 

 340 

Figure S1. Lineweaver–Burk plot during the S. thermophilus A-stat fermentation. 341 

 342 

The electrooptical measurement during continuous cultivations 343 

Electrooptical measurements of cells’ polarizability and size were measured at-line with 344 

the EloTrace device (EloSystems GmbH, Berlin, Germany) once enough bacteria were 345 

detected in the bioreactor (i.e. ≈ OD 0.5). This was just two hours before the continuous 346 

cultures were initiated, where a high cell division rate was analyzed and therefore S. 347 

thermophilus polarizability was steadily decreasing. An AP level at 400 kHz of around 348 
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3,000 (x5·10-31) F·m2 and a mean cell size of 3.0 m were measured just at the end of the 349 

batch phase. These are similar values than those obtained after exponential growth of L. 350 

plantarum cultures under optimal growth conditions in the same fermenters (Pellicer-351 

Alborch, Angersbach et al. 2018): polarizability and length of 4,500 F·m2 and 2.0 m, 352 

respectively. Differences in the AP level were expected since different microorganisms 353 

grown in variable media (even C-sources) will present distinct polarizability under the 354 

effect of an electrical field (Angersbach, Ignatov et al. 2006). More than the exact value, 355 

the relevant observation is the profile of the AP level over cultivation time after 356 

inoculation (Junne, Klein et al. 2008, Junne, Nicolas Cruz-Bournazou et al. 2010). 357 

Moreover, since S. thermophilus build cocci chains of variable length and L. plantarum 358 

are rod-shaped bacteria, it was not surprising that the former presented a higher mean cell 359 

size.  360 

During the first seven hours of connection of the feed (D = 0.3 h-1) the culture exhibited 361 

a steadily increasing polarizability as well as size, with almost no growth, thus adapting 362 

to the new environmental conditions and showing an active metabolism taking nutrients 363 

up for future biomass production (data not shown). Once cell division was started again 364 

(consumption of the remaining lactose in the media), the mean AP at 400 kHz dropped 365 

even below values before starting the chemostat phase. Importantly, the change of 366 

dilution rate (to D = 0.1 h-1) was also performed when stable culture polarizability as well 367 

as morphology were detected by means of at-line electrooptical measurements. 368 

Interestingly, S. thermophilus also presented an adaptation phase with the new feeding 369 

rate showing again an increased mean AP level and cell size, of similar magnitudes (≈ 370 

2,000 x5·10-31 F·m2 and ≈ 2 m, respectively) respect the previous steady-state reached. 371 

From D = 0.1 h-1 the dilution rate was firstly increased linearly over time (i.e. start of the 372 

accelerostat) when, once again, a stable AP level and cell size were observed. Just after 373 
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increasing slightly the feeding rate (slope = 0.005 h-2), an increase in cells’ polarizability 374 

as well as size was already detected (Figure 3), thus showing an active metabolism after 375 

more than 100 hours of experiment. During the A-stat experiment, the mean cell size (if 376 

the washing steps are ignored) as well as the AP level at 400 kHz measured at-line 377 

electrooptically were steadily increasing, reaching their maxima during the detected 378 

region of D between 0.9 and 1.3 h-1 (Figure 3). What is more, morphology changes were 379 

verified under the microscope, detecting the longest cocci chains around D = 0.8 h-1.  380 

 381 

Figure 3. At-line electrooptical measurement of cell polarizability and size during a S. 382 

thermophilus A-stat fermentation. AP development over D at different frequencies (left) 383 

and comparison with on-line measurement of OD (black line right) with EloFerm 384 

(EloSystems GmbH, Berlin, Germany). AP level at 400 kHz (blue line right) and cell size 385 

(green line right). 386 

The electrooptical polarizability shows a good agreement with the development of the 387 

metabolic activity as depicted in Figure S2.388 
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 389  390 

Figure S2. Lactose consumption rate and lactic acid production rate over D. 391 

 392 

The cell division in S. thermophilus occurs in successive parallel planes perpendicular to 393 

their axis (Zapun, Vernet et al. 2008) leading to diplococcal daughter cells connected 394 

through their septa (Layec, Gérard et al. 2009). At the very late step of cell division, the 395 

septum formed is cleaved and converted into the new pole of each daughter cell by the 396 

action of cell wall hydrolases (Chapot-Chartier and Kulakauskas 2014). Nevertheless, at 397 

high growth rates, a second round of cell division may start before closure of the septum, 398 

therefore longer chains might be detectable. In fact, these bacteria growing at their max 399 

showed the longest chain length, which steadily decreased afterwards because of cell 400 

division cessation and the action of peptidoglycan hydrolases (PGH) in cleaving septa. 401 

This is the first time that electrooptical measurements are applied to S. thermophilus 402 

bacteria, which form chains of variable cocci length, as described before. This 403 

morphologic characteristic may provide the cells a certain flexibility and adaptability 404 

(Fischetti 2016) under the action of an electrical field. Since the EloTrace device has been 405 

applied to rigid and normally rod-shaped bacteria until now (Junne, Klein et al. 2008, 406 

Junne, Nicolas Cruz-Bournazou et al. 2010, Pellicer-Alborch, Angersbach et al. 2018), 407 

the complete understanding of the electrooptical measurement of flexible cocci chains 408 

may be really challenging. Therefore, the morphologic changes throughout the 409 
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experiment were always confirmed with microscopic analyses and further investigation 410 

of this parameter should be carried out for such microorganisms. 411 

It is worth mentioning, that a certain correlation between the polarizability and the yield 412 

biomass/substrate (YX/S) during the continuous cultivation of S. thermophilus was found: 413 

the higher the AP level at 400 kHz, the higher the YX/S (Figure S3). In general, the higher 414 

the metabolic activity (in this case, taking substrate up for biomass production) the greater 415 

the cell polarizability.  416 

 417 

Figure S3. Linear correlation between the AP level at 400 kHz and the yield 418 

biomass/substrate (YX/S) throughout the A-stat experiment. 419 

 420 

Finally, it should be noted that a daily equipment maintenance (i.e. system washing and 421 

filter renovation) was necessary for the correct operation of the EloTrace device and a 422 

subsequent reliable measurement of cell polarizability (Figure S2). The main objective of 423 

the equipment before the electrooptical measurement takes place is to ensure an OD of ≈ 424 

0.1, thus ensuring the analysis of more or less the same number of cells (assuming no 425 

noticeable variations on their mean size during growth, which is not completely true in 426 
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this experiment set up), independently from the biomass concentration (i.e. OD) in the 427 

fermenter. This is partly achieved by reducing the conductivity of the sample suspension 428 

with several washing steps using deionized water, but the filter inevitably gets partially 429 

clogged and rests of salts (especially when using complex media to cultivate) remain in 430 

the filter, thus increasing the conductivity of the next washed sample (Figure S2). This is 431 

the main reason why at least a daily maintenance of the device is crucial, particularly for 432 

such a long experiment (more than two weeks). Taking this into account, plotting the 433 

electrooptical measurements throughout the whole A-stat cultivation ignoring the several 434 

washing steps has been challenging, but dividing the AP level at a certain frequency by 435 

the OD in the measuring chamber (ODEloCell) has helped (Figure S4). Apart from 436 

detecting some issues with the device at lower dilution rates, it was confirmed, that the 437 

maximum S. thermophilus polarizability was accomplished around D = 0.8-1.0 h-1. 438 

 439 

Figure S4. Conductivity (CondOutVessel, pink) and OD (ODOutVessel, green) before 440 

entering the polarizability measuring chamber of the EloTrace device throughout the A-441 

stat fermentation. AP level at 400 kHz divided by the OD in the measuring chamber 442 

(ODEloCell) over D (blue). 443 
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 444 

These results confirm the evidence that the AP measurement could be used as an early 445 

indicator for growth retardation (Pellicer-Alborch, Angersbach et al. 2018), since it 446 

decreased earlier than the other key indicators (i.e. DCW, OD, lactic acid, galactose, etc). 447 

What is more, the automated sampling and sample preparation of the measuring device 448 

would enable its use as an at-line tool, thus allowing to change process parameters to 449 

avoid unfavourable cultivation conditions. 450 

 451 

The mechanistic modeling of A-stat cultivations 452 

The mechanistic model described here has already been used recently to successfully 453 

monitor batch S. thermophilus fermentations (Spann, Roca et al. 2018), to predict pH-454 

gradients in a 700 L pilot scale fermenter, when coupled to computational fluid dynamic 455 

(CFD) studies (Spann, Glibstrup et al. 2018), and to develop a soft sensor for on-line risk-456 

based monitoring of the same process, if coupled to a compartment model (Spann, 457 

Gernaey et al. 2019). Moreover, it was even applied to estimate the optimal dilution rate 458 

as well as substrate concentration in the feed in order to maximize biomass concentration, 459 

while minimizing the waste of substrate during a continuous fermentation in a 50 m3 460 

bioreactor (Spann, Lantz et al. 2018). The novelty in this work was that the model was 461 

trained with batch fermentations, but accurately predicted the A-stat evolution over time 462 

and dilution rate (Figure 4). What is more, the modelled rates of biomass production (rX 463 

in g X·(L·h)-1) as well as substrate consumption (rS in g S·(L·h)-1) were also in agreement 464 

with the experimentally calculated values with off-line analyses (Figure S5). Based on 465 

experimental and modelling results, the maximum specific growth rate for this S. 466 

thermophilus strain was concluded to be 1.3-1.4 h-1 with a wash out point at D = 1.9 h-1. 467 
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 468 

Figure 4. Experimental (dots) and modelled (lines) CPPs (pH, D) as well as CQAs 469 

(biomass, lactose, lactic acid and galactose concentrations) over time (left) and over 470 

dilution rate (D) during the A-stat experiment. Error bars: Mean ± SD (n = 2). 471 

 472 

 473 

Figure S5. Experimental (red) and modelled (blue) rates of biomass production (rX) and 474 

substrate consumption (rS) over the dilution rate of the A-stat experiment. 475 

 476 

(Gonzalez, Tebbani et al. 2016) recently predicted continuous fermentations, but of 477 

Lactobacillus coryniformis and performed their parameter estimation already with 478 

continuous experiments. Additionally, these authors defined the growth rate as a function 479 

of only the limiting substrate and the inhibitory product, while here the effect of the lag 480 
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time, the pH and the inhibition of substrate were also considered. What is more, after 481 

training the model presented in this work with batch fermentations performed even with 482 

a different initial lactose concentration (65 g·L-1 for parameter estimation vs. 20 g·L-1 in 483 

the A-stat experiment), the critical process parameters (CPPs, e.g. pH, D) and critical 484 

quality attributes (CQAs, e.g. biomass, lactose, lactic acid and galactose concentrations) 485 

were still successfully predicted. Furthermore, sensitivity and identifiability analysis were 486 

conducted to find an identifiable parameter subset for regression (Sin and Gernaey 2016). 487 

Once this was completed, the confidence intervals of the estimated parameters were 488 

derived from a linear approximation method using the Jacobian matrix of the parameter 489 

estimation (Sin, Meyer et al. 2010). Finally, (Gonzalez, Tebbani et al. 2016) do not 490 

mention anything about closing the carbon balance, but they also used a complex media 491 

for the cultivation. In this work, a Z compound was included in the mixed weak acid/base 492 

model to account for amino acids and further unknown C-sources in the fermentation 493 

broth. 494 

  495 
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Conclusion 496 

In this work, the maximum specific growth rate (max) of S. thermophilus was successfully 497 

characterized through continuous A-stat fermentations, obtaining a max = 1.3-1.4 h-1, 498 

which is in accordance with previous studies performed by the same authors. 499 

Additionally, an automated sampling and sample preparation device for electrooptical 500 

measurements of cell polarizability and size was applied for the first time in LAB 501 

continuous cultivations, by performing daily equipment cleaning. What is more, the at-502 

line AP level at a certain frequency correlated with key bacterial growth indicators and 503 

the automated mean cell size was in accordance with microscopic analysis of the cocci 504 

chains. These at-line determined culture parameters supported the results obtained with 505 

typical off-line measurements (namely, OD, DCW, HPLC-analyses, etc.). Finally, a 506 

mechanistic model calibrated with batch experiments successfully and reliably predicted 507 

key performance indicators (like biomass, lactose, lactic acid and galactose 508 

concentrations over time), suggesting the possibility to implement a model-based control 509 

strategy in continuous LAB production and validating the original in-silico simulation. 510 

It was demonstrated that the electrooptical measurement of cell polarizability in LAB 511 

cultures may be of special interest for future improvement of the current QbT strategy 512 

established in the industrial scale manufacturing of starter cultures. The consideration of 513 

a new CQA (namely bacterial ionic activity under the application of a certain electrical 514 

field or even the mean chain length) is suggested, which could be measured at-line, thus 515 

allowing the move towards a QbD or QbC approach. This could be accomplished by e.g. 516 

ensuring these new CQAs by changing the CPPs (like stirring speed or base addition rate) 517 

during the production process in the industry, thus improving process reproducibility and 518 

product consistency.  519 



26 
 

Acknowledgments 520 

This project has received funding from the European Union’s Horizon 2020 research and 521 

innovation program under the Marie Skłodowska-Curie actions grant agreement No. 522 

643056 (project Biorapid). The authors gratefully acknowledge this financial support and 523 

the contribution of Dr. Christophe Roca, Dr. Anders Clausen as well as Dr. David Kold 524 

from Chr. Hansen A/S by providing their knowledge and expertise, media and the strain 525 

for all experiments. The authors finally thank Peter Unger, Adriana Mora Barrabés, Julia 526 

Scharre, Manon Weiske and Lena Jack for their help during scale-down experiments. 527 

 528 

Conflict of interest 529 

All authors declare no competing interests. 530 

 531 

References 532 

Abt, V., T. Barz, N. Cruz, C. Herwig, P. Kroll, J. Möller, R. Pörtner and R. Schenkendorf 533 
(2018). "Model-based tools for optimal experiments in bioprocess engineering." Current 534 
opinion in chemical engineering 22: 244-252. 535 
Adamberg, K., P.-J. Lahtvee, K. Valgepea, K. Abner and R. Vilu (2009). "Quasi steady 536 
state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures." 537 
Antonie van Leeuwenhoek 95(3): 219-226. 538 
Adamberg, K., A. Seiman and R. Vilu (2012). "Increased biomass yield of Lactococcus 539 
lactis by reduced overconsumption of amino acids and increased catalytic activities of 540 
enzymes." PloS one 7(10): e48223. 541 
Adamberg, K., K. Valgepea and R. Vilu (2015). "Advanced continuous cultivation 542 
methods for systems microbiology." Microbiology 161(9): 1707-1719. 543 

Anane, E., Á. C. García, B. Haby, S. Hans, N. Krausch, M. Krewinkel, P. Hauptmann, 544 

P. Neubauer and M. N. Cruz‐Bournazou (2019). "Model‐based framework for parallel 545 

scale down fed‐batch cultivations in mini‐bioreactors for accelerated phenotyping." 546 

Biotechnology and bioengineering. 547 
Anane, E., P. Neubauer and M. N. C. Bournazou (2017). "Modelling overflow metabolism 548 
in Escherichia coli by acetate cycling." Biochemical Engineering Journal 125: 23-30. 549 

Anane, E., A. Sawatzki, P. Neubauer and M. N. Cruz‐Bournazou (2019). "Modelling 550 

concentration gradients in fed‐batch cultivations of E. coli–towards the flexible design 551 

of scale‐down experiments." Journal of Chemical Technology & Biotechnology 94(2): 552 

516-526. 553 
Angersbach, A., V. D. Bunin and O. V. Ignatov (2006). Electro-optical analysis of 554 
bacterial cells. Molecular and colloidal electrooptics. S. Stoilov. New York, M. Dekker 555 
Publ.: 86-112. 556 



27 
 

Angersbach, A., O. Ignatov and V. Bunin (2006). Electro-Optical Analysis of Bacterial 557 
Cells. Molecular and Colloidal Electro-optics, CRC Press. 558 
Bull, A. T. (2010). "The renaissance of continuous culture in the post-genomics age." 559 
Journal of industrial microbiology & biotechnology 37(10): 993-1021. 560 
Bunin, V. D. (2002). Electrooptical analysis of a suspension of cells and its structures. 561 
Encyclopedia of surface and colloid science. New York, M. Dekker Publ.: 2032-2043. 562 
Chapot-Chartier, M.-P. and S. Kulakauskas (2014). Cell wall structure and function in 563 
lactic acid bacteria. Microbial cell factories, BioMed Central. 564 
Erm, S., K. Adamberg and R. Vilu (2014). "Multiplying steady-state culture in multi-565 
reactor system." Bioprocess and biosystems engineering 37(11): 2361-2370. 566 
Fernandez-de-Cossio-Diaz, J., K. Leon and R. Mulet (2017). "Characterizing steady 567 
states of genome-scale metabolic networks in continuous cell cultures." PLoS 568 
computational biology 13(11): e1005835. 569 
Fischetti, V. A. (2016). M protein and other surface proteins on streptococci. 570 
Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet], University 571 
of Oklahoma Health Sciences Center. 572 
Gabardo, S., G. F. Pereira, R. Rech and M. A. Z. Ayub (2015). "The modeling of ethanol 573 
production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat 574 
bioreactors." Journal of industrial microbiology & biotechnology 42(9): 1243-1253. 575 
Glauche, F., J. Glazyrina, M. N. Cruz Bournazou, G. Kiesewetter, F. Cuda, D. Goelling, 576 

A. Raab, C. Lang and P. Neubauer (2017). "Detection of growth rate‐dependent 577 

product formation in miniaturized parallel fed‐batch cultivations." Engineering in Life 578 

Sciences 17(11): 1215-1220. 579 
Gonzalez, K., S. Tebbani, F. Lopes, A. Thorigné, S. Givry, D. Dumur and D. Pareau 580 
(2016). "Modeling the continuous lactic acid production process from wheat flour." 581 
Applied microbiology and biotechnology 100(1): 147-159. 582 
Gresham, D. and J. Hong (2014). "The functional basis of adaptive evolution in 583 
chemostats." FEMS microbiology reviews 39(1): 2-16. 584 
Junne, S., E. Klein, A. Angersbach and P. Goetz (2008). "Electrooptical measurements 585 
for monitoring metabolite fluxes in acetone–butanol–ethanol fermentations." 586 
Biotechnology and Bioengineering 99(4): 862-869. 587 
Junne, S., M. Nicolas Cruz-Bournazou, A. Angersbach and P. Götz (2010). 588 
"Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli 589 
batch cultivations." Journal of Industrial Microbiology & Biotechnology 37(9): 935-942. 590 
Kroll, P., A. Hofer, I. V. Stelzer and C. Herwig (2017). "Workflow to set up substantial 591 
target-oriented mechanistic process models in bioprocess engineering." Process 592 
Biochemistry 62: 24-36. 593 
Lahtvee, P.-J., K. Adamberg, L. Arike, R. Nahku, K. Aller and R. Vilu (2011). "Multi-omics 594 
approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis 595 
at various specific growth rates." Microbial cell factories 10(1): 12. 596 
Lahtvee, P.-J., K. Valgepea, R. Nahku, K. Abner, K. Adamberg and R. Vilu (2009). 597 
"Steady state growth space study of Lactococcus lactis in D-stat cultures." Antonie Van 598 
Leeuwenhoek 96(4): 487. 599 

Layec, S., J. Gérard, V. Legué, M. P. Chapot‐Chartier, P. Courtin, F. Borges, B. Decaris 600 

and N. Leblond‐Bourget (2009). "The CHAP domain of Cse functions as an 601 

endopeptidase that acts at mature septa to promote Streptococcus thermophilus cell 602 
separation." Molecular microbiology 71(5): 1205-1217. 603 
Lemoine, A., N. Martínez-Iturralde, R. Spann, P. Neubauer and S. Junne (2015). 604 
"Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions 605 
in a two- and a novel three-compartment scale-down bioreactor." Biotechnol Bioeng 606 
112(6): 1220-1231. 607 
Mears, L., S. M. Stocks, M. O. Albaek, G. Sin and K. V. Gernaey (2017). "Mechanistic 608 
fermentation models for process design, monitoring, and control." Trends in 609 
biotechnology 35(10): 914-924. 610 



28 
 

Meiser, J., S. Tumanov, O. Maddocks, C. F. Labuschagne, D. Athineos, N. Van Den 611 
Broek, G. M. Mackay, E. Gottlieb, K. Blyth and K. Vousden (2016). "Serine one-carbon 612 
catabolism with formate overflow." Science advances 2(10): e1601273. 613 

Olughu, W., A. Nienow, C. Hewitt and C. Rielly (2019). "Scale‐down studies for the 614 

scale‐up of a recombinant Corynebacterium glutamicum fed‐batch fermentation: loss 615 

of homogeneity leads to lower levels of cadaverine production." Journal of Chemical 616 
Technology & Biotechnology. 617 
Pan, X., M. Streefland, C. Dalm, R. H. Wijffels and D. E. Martens (2017). "Selection of 618 
chemically defined media for CHO cell fed-batch culture processes." Cytotechnology 619 
69(1): 39-56. 620 
Peebo, K. and P. Neubauer (2018). "Application of continuous culture methods to 621 
recombinant protein production in microorganisms." Microorganisms 6(3): 56. 622 
Pellicer-Alborch, K., A. Angersbach, P. Neubauer and S. Junne (2018). "Electrooptical 623 
Determination of Polarizability for On-Line Viability and Vitality Quantification of 624 
Lactobacillus plantarum Cultures." Frontiers in bioengineering and biotechnology 6: 188. 625 
Ritacco, F. V., Y. Wu and A. Khetan (2018). "Cell culture media for recombinant protein 626 
expression in Chinese hamster ovary (CHO) cells: History, key components, and 627 
optimization strategies." Biotechnology progress 34(6): 1407-1426. 628 
Shirahata, H., S. Diab, H. Sugiyama and D. I. Gerogiorgis (2019). "Dynamic modelling, 629 
simulation and economic evaluation of two CHO cell-based production modes towards 630 
developing biopharmaceutical manufacturing processes." Chemical Engineering 631 
Research and Design 150: 218-233. 632 
Sin, G. and K. Gernaey (2016). "Data handling and parameter estimation." Experimental 633 
Methods in Wastewater Treatment: 201-234. 634 
Sin, G., A. S. Meyer and K. V. Gernaey (2010). "Assessing reliability of cellulose 635 
hydrolysis models to support biofuel process design—Identifiability and uncertainty 636 
analysis." Computers & Chemical Engineering 34(9): 1385-1392. 637 
Sørensen, K. I., M. Curic-Bawden, M. P. Junge, T. Janzen and E. Johansen (2016). 638 
"Enhancing the sweetness of yoghurt through metabolic remodeling of carbohydrate 639 
metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. 640 
bulgaricus." Appl. Environ. Microbiol. 82(12): 3683-3692. 641 
Spann, R., K. V. Gernaey and G. Sin (2019). "A compartment model for risk-based 642 
monitoring of lactic acid bacteria cultivations." Biochemical Engineering Journal 151: 643 
107293. 644 

Spann, R., J. Glibstrup, K. Pellicer‐Alborch, S. Junne, P. Neubauer, C. Roca, D. Kold, 645 

A. E. Lantz, G. Sin and K. V. Gernaey (2018). "CFD predicted pH gradients in lactic acid 646 
bacteria cultivations." Biotechnology and bioengineering. 647 
Spann, R., A. E. Lantz, C. Roca, K. V. Gernaey and G. Sin (2018). Model-based process 648 
development for a continuous lactic acid bacteria fermentation. Computer Aided 649 
Chemical Engineering, Elsevier. 43: 1601-1606. 650 
Spann, R., C. Roca, D. Kold, A. E. Lantz, K. V. Gernaey and G. Sin (2018). "A 651 
probabilistic model-based soft sensor to monitor lactic acid bacteria fermentations." 652 
Biochemical Engineering Journal 135: 49-60. 653 
Torres, M., J. Berrios, Y. Rigual, Y. Latorre, M. Vergara, A. J. Dickson and C. Altamirano 654 
(2019). "Metabolic flux analysis during galactose and lactate co-consumption reveals 655 
enhanced energy metabolism in continuous CHO cell cultures." Chemical Engineering 656 
Science 205: 201-211. 657 
Wechselberger, P., A. Seifert and C. Herwig (2010). "PAT method to gather bioprocess 658 
parameters in real-time using simple input variables and first principle relationships." 659 
Chemical Engineering Science 65(21): 5734-5746. 660 
Zapun, A., T. Vernet and M. G. Pinho (2008). "The different shapes of cocci." FEMS 661 
microbiology reviews 32(2): 345-360. 662 

 663 



 
Klaus Pellicer Alborch   Cocci chain length distribution as control parameter in scaling lactic acid fermentations 
 

Publications 187            

 

III 

 

 

 

 

 

 

 

 

 

 

 

 

 

3rd Paper 

 

 

 

 

 

 

 

 

 

 

 



 
Cocci chain length distribution as control parameter in scaling lactic acid fermentations     Klaus Pellicer Alborch 

188         Publications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Received: 27 August 2018 | Accepted: 26 October 2018

DOI: 10.1002/bit.26868

AR T I C L E

CFDpredictedpHgradients in lactic acidbacteria cultivations

Robert Spann1 | Jens Glibstrup1 | Klaus Pellicer‐Alborch2 | Stefan Junne2 |
Peter Neubauer2 | Christophe Roca3 | David Kold3 | Anna Eliasson Lantz1 |
Gürkan Sin1 | Krist V. Gernaey1 | Ulrich Krühne1

1Department of Chemical and Biochemical

Engineering, Technical University of Denmark,

Kgs., Lyngby, Denmark

2Department of Biotechnology, Chair of

Bioprocess Engineering, Technische

Universität Berlin, Berlin, Germany

3Chr. Hansen, Hoersholm, Denmark

Correspondence

Ulrich Krühne, Technical University of

Denmark, Søltofts Plads Building 229, 2800

Kgs. Lyngby, Denmark.

Email: ulkr@kt.dtu.dk

Funding information

H2020, Grant/Award Number: 643056;

European Union's Horizon 2020 Research and

Innovation Program

Abstract

The formation of pH gradients in a 700 L batch fermentation of Streptococcus

thermophilus was studied using multi‐position pH measurements and computational

fluid dynamics (CFD) modeling. To this end, a dynamic, kinetic model of S.

thermophilus and a pH correlation were integrated into a validated one‐phase CFD

model, and a dynamic CFD simulation was performed. First, the fluid dynamics of the

CFD model were validated with NaOH tracer pulse mixing experiments. Mixing

experiments and simulations were performed whereas multiple pH sensors, which

were placed vertically at different locations in the bioreactor, captured the response.

A mixing time of about 46 s to reach 95% homogeneity was measured and predicted

at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus

fermentation captured the experimentally observed pH gradients between a pH of

5.9 and 6.3, which occurred during the exponential growth phase. A pH higher than 7

was predicted in the vicinity of the base solution inlet. Biomass growth, lactic acid

production, and substrate consumption matched the experimental observations.

Moreover, the biokinetic results obtained from the CFD simulation were similar to a

single‐compartment simulation, for which a homogeneous distribution of the pH was

assumed. This indicates no influence of pH gradients on growth in the studied

bioreactor. This study verified that the pH gradients during a fermentation in the

pilot‐scale bioreactor could be accurately predicted using a coupled simulation of a

biokinetic and a CFD model. To support the understanding and optimization of

industrial‐scale processes, future biokinetic CFD studies need to assess multiple

types of environmental gradients, like pH, substrate, and dissolved oxygen, especially

at industrial scale.

K E YWORD S

computational fluid dynamics (CFD), dynamic simulation, heterogeneities, lactic acid bacteria

(LAB) fermentation, pH gradients, transient CFD simulation

1 | INTRODUCTION

Heterogeneities of culture parameters like substrate concentrations,

pH, and dissolved oxygen concentrations are regarded as mainly

responsible for productivity loss in large‐scale bioreactor cultivations.

Transport limitations occur at large scale due to insufficient

mixing, and cells are consequently exposed to fluctuating conditions.

Non‐limiting substrate concentrations in the range of 0.3–2 g L−1 are

reported in feeding zones during fed‐batch processes, whereas there

are substrate‐limited conditions further away from the feeding
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position (Bylund, Collet, Enfors, & Larsson, 1998; Larsson et al., 1996).

pH values might also be outside of physiological ranges next to acid or

base addition points (Langheinrich & Nienow, 1999; Lara, Galindo,

Ramírez, & Palomares, 2006). Mixing times of large‐scale bioreactors

for microbial cultures exceed 100 s to reach 95% homogeneity, and

the circulation time of the cells, which is proportional to the mixing

time, is consequently in the magnitude of 10 s and longer depending

on the stirring conditions (Delvigne, Destain, & Thonart, 2006; Nagata,

1975). Cells might adapt to continuously changing environments

whereas they move through the bioreactor. Biomass and product yield

reduction are reported for several different strains and processes

when a process is scaled up to large scale (Bylund et al., 1998; Enfors

et al., 2001; George, Larsson, Olsson, & Enfors, 1998; Xu, Jahic,

Blomsten, & Enfors, 1999). This is most likely related to heterogene-

ities, because microorganisms are exposed to fluctuating environ-

mental conditions at large scale, which might affect the metabolic

activity. pH gradients have shown an influence on the transcriptional

response and enzyme activity in bacteria, and may therefore lead to

decreased biomass growth and product formation as shown in scale‐
down studies (Amanullah, McFarlane, Emery, & Nienow, 2001; Cortés,

Flores, Bolívar, Lara, & Ramírez, 2016; Onyeaka, Nienow, &

Hewitt, 2003).

Computational fluid dynamic (CFD) modeling is capable of

representing the fluid dynamic conditions in bioreactors. It was

already applied for process optimization by improving the impeller

configuration for an increased oxygen transfer rate (Yang et al., 2012;

Zou, Xia, Chu, Zhuang, & Zhang, 2012). Moreover, biokinetic models

are coupled with fluid dynamics to analyze environmental gradients

during fermentations (Schmalzriedt, Jenne, Mauch, & Reuss, 2003;

Wang et al., 2015). Either compartment models can be built and

coupled with a biokinetic model or a biokinetic model is directly

integrated into a CFD model. Compartment models, which are based

on the knowledge about the fluid dynamics in the bioreactor obtained

from CFD models, reduce the number of spatial elements and

decrease the computational demand (Vrábel et al., 2001). If biokinetic

models are directly integrated into CFD, both the Euler–Euler

approach (Bannari, Bannari, Vermette, & Proulx, 2012; Elqotbi, Vlaev,

Montastruc, & Nikov, 2013) and the Euler–Lagrange approach

combined with a population balance model (Haringa et al., 2016;

Lapin, Müller, & Reuss, 2004; Lapin, Schmid, & Reuss, 2006; Morchain,

Gabelle, & Cockx, 2013) are commonly applied. The fluid is treated as

a continuum in both approaches, but the biological phase is treated as

a continuum in the Euler–Euler approach and as a discrete phase in the

Euler–Lagrange approach. The latter allows tracking single cells there.

So far, studies have mainly been focused on substrate and oxygen

gradients in aerobic nutrient‐limited fed‐batch processes. Further-

more, their relevance is questionable because many of the aforemen-

tioned works use CFD models that were not experimentally validated

for example, by comparing the model response to mixing experiment

data. There is, therefore, a considerable lack of scientific literature

focusing specifically on dynamic CFD simulations of biokinetic models

integrated into validated CFD models with the intention to simulate

the formation of pH gradients in pilot and large‐scale bioreactors.

The objective of this study was to predict the pH gradients, which

occur in a 700L bioreactor during a Streptococcus thermophilus

fermentation, by coupling CFD and kinetic modeling in a CFD

simulation. This tool, which combines fluid dynamics and microbial

kinetics, will be used to study pH heterogeneities at pilot scale. To

this end, first, a one‐phase CFD model of a 700 L bioreactor for a

S. thermophilus fermentation was set up. Tracer pulse experiments

with a NaOH solution and multi‐position pH monitoring validated the

fluid dynamic model predictions of the bioreactor. Then a kinetic

model describing the biomass growth, lactic acid synthesis, and

lactose consumption of S. thermophilus was integrated into the

validated CFD model to simulate a pH‐controlled batch cultivation.

An algebraic equation was applied to calculate the pH value based on

the lactic acid and ammonia concentrations.

2 | MATERIALS AND METHODS

2.1 | Bioreactor geometry and settings

A stirred tank bioreactor (Chemap AG, Switzerland) equipped with

three 6‐blade Rushton turbines was used (Figure 1) and filled to a

liquid height of HL = 1.92 m, corresponding to a volume of 700 L, for

both the mixing time experiment and the fermentation. The stirrer

speed was 242 rpm (P/V = 0.79 kWm−3) for the mixing time

determination and 132 rpm (P/V = 0.13 kWm−3) for the fermenta-

tion. The stirrer speed was measured with a testo 477 LED

stroboscope (Testo SE & Co. KGaA, Germany). The Reynolds number

(Re) was defined as:

ρ
μ

=
⋅ ⋅

Re
N Di

2
H 0

H 0

2

2

(1)

where N represents the stirrer speed, Di the impeller diameter, ρ the

fluid density, and µ the dynamic viscosity of the fluid.

The power input (P) was calculated:

ρ= ⋅ ⋅ ⋅P N N DP
3

i
5 (2)

where NP is the power number. NP was assumed to be 5.5 (Doran,

1995; Ruston, Costich, & Everett, 1950) for each Rushton turbine as

Re > 105 (see the results section). The power input could unfortu-

nately not be measured in the studied bioreactor.

2.2 | Mesh generation and simulation settings

The bioreactor geometry was designed in SolidWorks (Dassault

Systèmes, France). The sparger ring, the gas inlet pipe, and a

supporting structure, which holds the shaft, were omitted. The

bioreactor consisted of a stationary tank domain and three rotating

impeller domains. Only half of the bioreactor volume was modeled

applying a rotational periodicity plane. Meshes with six‐sided
hexahedral elements were defined for both domains in ANSYS ICEM

CFD 17.1 (ANSYS, Inc., US‐PA). The stationary domain consisted of

2 | SPANN ET AL.



approximately 2,000 mesh elements per liter. Each rotating domain,

with a height of HI = 0.075m and diameter DI = 0.32 m, was defined

with about 95,000 elements per liter. The complete mesh consisted

of 1.6 million nodes. The interface between the rotating and

stationary domains was defined as Frozen‐Rotor interfaces. CFD

simulations were performed in ANSYS CFX 17.1 with the k‐ε
turbulence model (the Supporting Information Material). The top

boundary was assumed a flat surface with a free‐slip wall. The liquid

density was assumed to be ρ = −997 kgm 3 and the dynamic viscosity

μ = ∙ − − −8.9 10 kgm s4 1 1 in both the tracer pulse and fermentation

simulation.

2.3 | Tracer pulse simulations

An additional variable was specified for the tracer pulse experiments

in all domains with a diffusion coefficient = ⋅ − −D 5.17 10 m stracer
9 2 1

corresponding to the characteristics of the tracer compound OH−

(Cents, Brilman, & Versteeg, 2005). Six monitoring points were

located at different positions, which corresponded to the sensor

positions (Figure 1). Vertical positions of the sensors were, with

respect to the bottom of the bioreactor: 0.10m, 0.35m, 0.60m,

0.95m, 1.25m, and 1.60m. The horizontal distance to the bioreactor

wall was 0.10 m. A transient (time‐dependent velocity field) simula-

tion was performed with a physical time scale of a step time of 0.1 s

and a root mean square (RMS) residual target of −10 4. The RMS is a

measure to validate the convergence. The tracer pulse was simulated

by starting the simulation with 1mol of the tracer variable in a

cylindrical volume with a height of 0.20m and a width of 0.10m,

which was at the center at the top of the liquid phase.

2.4 | Tracer pulse experiments

The bioreactor was filled with tap water. A NaOH solution (27%,

Novadan ApS, Denmark) was used as tracer substance for the pulse

experiments. When dosing a pulse, 80ml of NaOH was poured into

the liquid at the center of the bioreactor within 1 s, from 0.30m

above the liquid level. Experiments were carried out at 35 °C within a

pH range of 5.0–6.0 to ensure that the mixing time is measured

without the interference of the slow reverse reaction of the

carbonate dissociation (Einsele, 1976). The pH was reduced with

H3PO4 (75%, Novadan ApS). The pulses were performed in three

replicates. Six pH sensors (CPS471D, Endress+Hauser AG, Switzer-

land) mounted on a lance measured the pH at different positions

every second. The positions were equivalent with the monitoring

points in the tracer pulse simulation with the exception of the top

placed sensor, which failed to record the data (Figure 1).

2.5 | Mixing time calculation

Mixing times were calculated after normalizing the pH measure-

ments according to Paul, Atiemo‐Obeng, and Kresta (2003):

′ ( ) =
( ) − ( = )

( = ∞) − ( = ),
. ,

, ,
t

t t

t t
pH

pH pH 0

pH pH 0i exp
i exp i exp

i exp i exp
(3)

where ′,pHi exp is the normalized pH output of the i‐th sensor in the

experiment, ,pHi exp is the experimental pH value measurement, and

( = ∞), tpHi exp are the average pH measurements measured between

4.5 and 5min after the pulse. The normalized response of all sensors

was plotted with the logarithmic squared deviation with respect to

the normalized upper bound 1 to determine the mixing time:

( )∑= ⎡

⎣
⎢ ⋅ ′ ( ) − ⎤

⎦
⎥

=

D
n

tlog log
1

pH 1
i

n

i
2

1
, exp

2
(4)

where n is the number of sensors. = −Dlog 2.62 when 95%

homogeneity was achieved, = −Dlog 22 and = −Dlog 1.652 at 90%

and 85% homogeneity, respectively. The simulated tracer pulse

concentrations were normalized by Eq. (3), in which the pH values

were replaced by the tracer concentrations.

F IGURE 1 The geometry of the stirred tank bioreactor with

dimensions in cm. The bioreactor is equipped with three 6‐blade
Rushton turbines and four baffles. Six monitoring points were
positioned in the bioreactor. The reactor was filled up to 1.92m

liquid height both in the pulse experiment to determine the mixing
time and in the fermentation
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2.6 | Streptococcus thermophilus fermentation and
analysis

The batch fermentation of the homolactic S. thermophilus strain

(provided by Chr. Hansen A/S, Hørsholm, Denmark) was carried out

in the aforementioned 700 L stirred tank bioreactor at a stirring

speed of 132 rpm, 40°C, and with N2 headspace gassing. The pH

was controlled by adding 24% (w/v) ammonia solution (NH4OH)

through a pipe, which was located 0.1 m above the bottom in the

center of the vessel, to maintain pH = 6.0. The pH‐value was

measured by means of a sensor, which was located 0.3 m above the

bottom of the bioreactor close to the reactor wall. The initial pH

was 6.8. The medium contained 70 g L−1 lactose, 10 g L−1 casein

hydrolysate, 12 g L−1 yeast extract, 11.5 mM K2HPO4, 36.6 mM

sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4, and

0.3 mM MnSO4. The pH was monitored every second at 4 of the 6

previously mentioned positions at heights of 0.10 m, 0.60 m, 1.25 m,

and 1.60 m. Dry cell weight was determined from centrifuged,

washed (with 0.9% NaCl), and dried (at 70°C for 24 hr) cell broth.

Sugars and organic acids were quantified from filtered (0.2 µm)

samples in an HPLC system (Dionex UltiMate 3000, Thermo Fisher

Scientific, Waltham, MA) and a refractive index detector (ERC

RefractoMax 520), with an Aminex® HPX‐87H column (Bio‐Rad
Laboratories, Hercules, CA) using 5 mM H2SO4 at a flow rate of

0.6 ml min−1 at 50°C according to suppliers instructions.

2.7 | Biokinetic and ph simulation in the CFD model

An unstructured kinetic model of S. thermophilus, which described

the lactose consumption, biomass growth, and lactic acid synthesis,

was integrated into the CFD model (Eqs. (5-8)). Effects of the lag‐
time, substrate limitation, and inhibition (Haldane, 1930), pH

(Willem schepers, Thibault, & Lacroix, 2002), and lactate inhibition

(Aghababaie, Khanahmadi, & Beheshti, 2015) were considered in

the growth function. A simplified version of the Luedeking–Piret

equation (Luedeking & Piret, 1959) was applied to describe the

lactic acid synthesis.

( )+ ⋅ → + ⋅Y Y1 lactose biomass galactose
q

gal gal
X

(5)

( )+ ⋅ → + ⋅Y Y1 lactose lactic acid galactose
q

gal gal
P

(6)
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(7)

α= ∙q qP X (8)

where qX and qP are the volumetric growth and lactic acid production

rates, respectively. Lactose (CS), biomass (CX), and lactic acid (CP) were

listed as additional variables, and their rate equations were defined as

expressions in the CFX expression language. Initial concentrations were

==
−C gL70tS, 0

1, ==
−C gL0.025tX, 0

1, and ==
−C gL0tP, 0

1. The kinetic

parameters as listed in Table 1 were derived from a parameter

estimation, which was based on 2 L lab‐scale fermentations with the

aforementioned medium at 300 rpm (two 6‐blade Rushton turbines

with a diameter = 53mm) and 40°C at different pH values (in the range

of 5.5–7.0) and initial lactose concentrations (20 and 70 g L−1) (Spann

et al., 2018). It must be considered in the evaluation of the model that

the supplemented yeast extract contains ca. 6 g L−1 carbon, which is not

included in the model. However, this is only partially taken up by the

cells and the dynamic model accounts for it by under‐predicting the

galactose concentration. The biomass, lactic acid, and lactose concen-

trations, which are crucial in this study, are predicted accurately (Spann

et al., 2018).

An algebraic linear correlation for the pH calculation based on

the lactic acid and ammonia concentrations was obtained based on

experiments performed at 2 L scale (the Supporting Information

Material):

( )= − ⋅ − ⋅ +C CpH 0. 44 5.29 7.00P NH3 (9)

The dynamic simulation with a time step of 1 s and an RMS

residual target of ⋅ −1 10 5 was carried out using a steady state

result as initialization state. Continuity, momentum, and energy

equations were derived from a steady state solution, and thus

assumed constant. They were therefore not solved in the dynamic

simulation to reduce the computational time. The impeller speed

was set to 200 rpm for the steady state velocity profile in the

fermentation simulation in contrast to 132 rpm in the experi-

mental fermentation. This modification was necessary to represent

the mixing behavior in the fermentation simulation (with a steady

state velocity profile) as the predicted mixing times differed when

applying a steady state or transient velocity profile (see the

Results and the Discussion sections for further details). The pH

TABLE 1 Kinetic parameters of the integrated S. thermophilus
model

Symbol Description Value

KI Substrate inhibition parameter 164 g L−1

KS Substrate limitation parameter 0.79 g L−1

KLa Lactate inhibition parameter 21.1 g L−1

KP,La 2. lactate inhibition parameter 0.2 L g−1

KP,pH1 LA inhibition pH parameter 20

KP,pH2 2. LA inhibition pH parameter 7

pHopt Optimal pH in the pH function 6.22

tlag Lag‐time coefficient 0.38 hr

Ygal Galactose yield 0.63 g g−1

α Growth related production coefficient of

lactic acid

5.59 g g−1

µmax Maximum specific growth rate 2.16 hr−1

σ Spread parameter in the pH function 1.09
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was controlled by adding ammonia at the same position as in the

experiment. Control was conducted with a P‐controller, which was

using the step function:

= ( − ) ⋅ ( − ) ⋅  ,
−NH step 6 pH 6 pH 11900 gh3 add

1 (10)

where the pH is calculated at the monitoring point 35 cm above the

bottom of the bioreactor. The kinetic model was also implemented in

MATLAB (The MathWorks, Natick, MA) and solved with the ode 15 s

solver. There, the fermentation broth was modeled as a single

compartment with a homogeneous distribution of the pH and all

state variables, that is no gradients were considered.

3 | RESULTS

A one‐phase CFD model of a 700 L bioreactor for S. thermophilus

fermentation was set up and tracer pulse experiments with NaOH

and multi‐position pH monitoring validated the fluid dynamic model

predictions. A kinetic model of S. thermophilus was integrated into

the validated CFD model to predict pH gradients during the

fermentation.

3.1 | The velocity profile of the bioreactor

A steady‐state solution of the CFD model was initially obtained,

which predicted the macroscopic flow profile of the bioreactor.

It clearly revealed six recirculation loops, which were generated

by the Rushton turbines (Figure 2). A turbulent flow regime

was assumed because the Reynolds number was 2.2 ⋅ 105 at

242 rpm. The fluid velocity was highest behind the turbine blades,

which turned with 2.8 m s−1 tip speed at 242 rpm. Low velocities

were observed close to the bioreactor wall and especially

around the baffles. The steady state solution converged with

respect to the RMS values of the velocity components, while the

velocities were unstable at the monitoring points. Further

analysis revealed that the velocity profile of the bioreactor had

a transient (time‐dependent) nature (Supporting Information

Movie 1). The four recirculation loops between the impellers

were changing in size and moving up‐ and downwards. The tracer

pulse simulation was therefore performed with a transient

velocity field.

3.2 | Tracer pulse simulation and experiments

Fast radial and slower axial mixing were predicted in the tracer pulse

simulations (Figure 3 and Supporting Information Movie 2). It took

several seconds until the tracer passed to a subsequent recirculation loop

after the simulated injection from the top. The monitoring points in the

CFD model and pH sensors in the experiment were positioned in each

anticipated recirculation loop to be able to follow the dynamic

distribution of the tracer.

3.3 | The dynamic response at all sensor locations

The dynamic responses of the monitoring points during tracer

pulse simulations were captured with the intention to understand

the fluid flow dynamics when for example, an acid or a base

F IGURE 2 Steady state solution of the
700 L stirred tank bioreactor for a stirrer
speed of 300 rpm. Left: velocity

streamlines with velocity in stationary
frame. Right: contour plot with the
circumferential velocity in stationary frame

[Color figure can be viewed at
wileyonlinelibrary.com]
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solution is added to regulate the pH value in a cultivation. The

two monitoring locations 1 and 2 at the upper part of the liquid

phase showed an overshooting response before they reached

a stable value, whereas the other monitoring points 3–6, which

were located farther away from the injection point, responded

with sigmoid curves (Figure 4). To validate the tracer pulse

simulations, these results were compared with the experimental

measurements. Both the shapes and order of magnitude of the

F IGURE 3 Concentration fields of the

tracer during the transient simulation of
the pulse in the 700 L stirred tank
bioreactor at 242 rpm. The tracer was
injected at 0 s at the top of the liquid phase

and snapshots are taken at different time
points [Color figure can be viewed at
wileyonlinelibrary.com]
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dynamic trends obtained from the predictions agreed with the

measurements obtained at the different positions. Nevertheless,

oscillations of the pH signal and the initial high overshoot of

Sensor 2 predicted by the simulation were not captured by the

measurements.

3.4 | Determination of the mixing time

To assess the progress of reaching homogeneity, the logarithmic

squared deviation of all sensors was evaluated. All experimental

curves followed the predicted trend until 95% homogeneity was

achieved (Figure 5). The variance of the replicates increased for

homogeneities higher than 95%. The predicted and measured

mixing times at the levels of 85%, 90%, and 95% homogeneity

matched very well (Table 2). 95% homogeneity was reached after

about 46 s.

The dynamic response at all locations and the mixing

time prediction gave considerable evidence that the fluid flow

in the bioreactor was well described by the applied CFD

model.

3.5 | Simulated and measured ph gradients in the S.
thermophilus fermentation

As a next step, the CFD and biokinetic models were combined in a

dynamic simulation to predict the pH gradients during the

fermentation. Therefore, an unstructured nonsegregated kinetic

model of S. thermophilus and a pH correlation were integrated into

the validated CFD model. A dynamic simulation was performed with

the purpose of predicting the pH gradients during the batch

fermentation. A steady‐state velocity profile was applied, which

decreased the computational demand in contrast to solving the

fluidic profile for the entire fermentation time. The mixing time at the

fermentation conditions of 132 rpm was 85 s according to a tracer

pulse simulation with a transient velocity profile. The impeller speed

had to be set to 200 rpm in the fermentation simulation to represent

the same mixing time with a steady state velocity profile (Supporting

Information Figure S1). Expected biomass growth, substrate con-

sumption, and lactic acid production profiles of a Monod type kinetic

model were observed and in accordance with the measurements

(Figure 6). A final biomass concentration of 6 g L−1 was reached after

5 hr when 34 g L−1 lactic acid seemed to inhibit growth completely.

The observed biomass yield was similar to 2 L lab‐scale experiments,

F IGURE 4 Normalized pH response of the five pH sensors (Position
2–6, as shown in Figure 1) in the pulse experiment and six monitoring
points in the transient simulation performed at 242 rpm. Experimental

values (symbols) and simulated values (solid lines). The pH showed an
overshoot close to the injection point at the top of the bioreactor before
it leveled out. The pH increased gradually at the lower positioned sensors
and monitoring points [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 5 Logarithmic squared deviation of the pH values in the

tracer pulse experiments and simulation considering all monitor
points. Three tracer pulse experiments (dotted lines) and the CFD
simulation (solid line) at 242 rpm are shown. 95% homogeneity was

reached at log D2 = −2.6. CFD: computational fluid dynamic

TABLE 2 Experimental and CFD predicted mixing times for
different levels of homogeneity at 242 rpm (P/V = 0.79 kWm−3)

Level of homo‐geneity

Mixing time for the tracer pulses (s)

Experiments CFD simulation

85% 26 30

30

30

90% 32 36
36
35

95% 42 46

50

51

Note. CFD: computational fluid dynamic.
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where instantaneous mixing was assumed (Supporting Information

Figure S2). As the applied time step was crucial to solve the

differential equations in the CFD model, a time step of 1 s was

chosen. An increased time step led to larger deviations of the kinetic

profiles (data not shown). The obtained kinetic results from the CFD

simulation were very similar to the single‐compartment simulation

performed in MATLAB, in which a homogeneous distribution of the

pH and all state variables was assumed (Supporting Information

Figure S3). The pH predictions were in close agreement with the

measurements in all locations (Figure 7). In the beginning of the

fermentation, the pH dropped from 6.8 to the controlling pH value 6,

when the pH controller started in both the simulation and

experiment. A minimum pH of 5.9 was attained in the top zone of

the bioreactor during the exponential growth phase. In the bottom

zone, where ammonium hydroxide was added, pH values of up to 6.3

were measured and simulated at the sensor positions. Close to the

base injection, pH values larger than 7 were predicted (Figure 8). As

the applied pH correlation is only valid up to a pH of 7, a more

accurate pH prediction was not possible in this case.

4 | DISCUSSION

To simulate the pH gradients of a S. thermophilus fermentation in a

700 L bioreactor, a one‐phase CFD model was first validated and

then coupled with a biokinetic model and a pH correlation. Multi‐
position pH monitoring in tracer pulse experiments validated the

fluid dynamic model predictions of the one‐phase CFD model. The

CFD model predicted the mixing time of around 46 s to reach 95%

homogeneity at an impeller speed of 242 rpm and forecasted the

dynamic response of all sensors in the tracer pulse experiments.

The dynamic simulation of the non‐aerated S. thermophilus batch

fermentation predicted both the biokinetic profiles and the

pH gradients matching the experimental observations. Rather

large pH gradients between pH values of 5.9 and higher than 7

were predicted in the bioreactor whereas the fermentation was

controlled at pH 6.

The simulated flow profiles showed six recirculation loops

generated by the three Rushton turbines consistent with literature

data (Vrábel, Van der lans, Luyben, Boon, & Nienow, 2000). pH

sensors and monitoring points were placed so that conditions in all

F IGURE 6 Dry cell weight, lactose, and lactic acid concentrations

as measured and predicted in the S. thermophilus batch fermentation.
The fermentation was carried out in the 700 L bioreactor at 132 rpm,
40°C, and the pH controlled at pH = 6. Dry cell weight (circles) with
standard deviation, lactose (squares), lactic acid (triangles), and the

CFD simulation result (solid line)

F IGURE 7 pH values measured and predicted every second at different positions during the S. thermophilus fermentation. Fermentation (a)

and CFD simulation (b). In the beginning of the fermentation, the pH dropped from 6.8 to the controlling pH value 6, when the pH controller
started. The pH was controlled at pH = 6 using the measurement of sensor 5 by adding NH4OH at the bottom of the bioreactor. pH sensors and
monitoring points were placed at position 1, 2, 4, and 6 in the bioreactor as shown in Figure 1. The pH dropped down to pH = 5.9 in the top

zone of the bioreactor, whereas a maximum of around pH = 6.3 was measured and predicted at position 6 in the bottom zone of the bioreactor.
CFD: computational fluid dynamic [Color figure can be viewed at wileyonlinelibrary.com]
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six recirculation loops were monitored in tracer pulse experiments

and simulated accordingly. The dynamic pH response of the pH

sensors was well represented by the simulated data. It is important to

stress that the CFD model relied among other criteria on physical

and chemical properties, empirical equations, and the mesh structure.

Importantly, no parameter estimation/model calibration of the CFD

model was performed to fit experimental data. However, the

predicted oscillating behavior of the pH and the initial overshoot of

Sensor 2 was not measured. This can likely be attributed to the

response time of the applied ISFET pH sensors, which is in a range of

4–8 s to reach ± 0.02 of the final pH value in the relevant pH range.

This response time was determined in own measurements and is in

accordance with vendor specifications. Furthermore, there was a

discrepancy between the predicted and measured homogeneity

when 95% homogeneity was reached 60 s after the pulse, which

could be caused by the fluctuating sensor output (±0.01), whereas

the model asymptotically approaches 100% homogeneity.

It was shown that the recirculation loops were dynamically

changing, and hence a transient velocity profile was required. Dynamic

velocity changes that might have caused the dynamic behavior of the

recirculation loops have been already observed for Rushton turbines

(Hartmann, Derksen, & Van den akker, 2004; Nikiforaki, Montante,

Lee, & Yianneskis, 2003). However, the velocities have not yet been

experimentally validated for the studied system.

Both observed and simulated mixing times were consistent with

results from Delvigne et al. (2006). They reported similar mixing times

between 20 and 53 s to reach 85% homogeneity in stirred tank

bioreactors with working volumes of 350, 1,200, and 1,800 L with a

comparable power input to the present study. However, as no power

input measurements were available for our 700 L bioreactor, the

theoretical power input could not be validated in this study. With

regard to the definition of mixing time in CFD simulations, Larsson

(2015) concluded that there is no consistent definition so far. Instead,

there exist several possibilities to determine the mixing time from

observing the CFD system at one or several points, up to detecting the

concentration on flat surface planes covering a larger area of the CFD

system. In contrast to previous studies, which only used one position to

calculate the mixing time, six points, which were distributed over the

whole liquid phase, were used in this study to improve reproducibility

and accuracy of the results. Overall, it should be noted that both the

experimental setup as well as the way of treating and interpreting the

data still lead to uncertainties. For example, the location of the top

sensors and their monitoring points affects the accuracy of the

measurements and predictions of the overshoot after the tracer pulse.

A sensitivity analysis of the sensor locations in the simulation could

support the assessment of the accuracy of the model. Up to now, this

study has proven that the CFD model achieved a good prediction of

the fluid dynamics in the bioreactor.

4.1 | Discussion of the results from the combined
CFD and biokinetic model

Since heterogeneities at large scale affect the productivity of many

chemical and biochemical processes, a tool to couple fluid dynamics

and reaction kinetics is highly demanded. Dynamic simulations of

biokinetic models integrated in the fluidic profile simulated by a CFD

model can pave the way for an enhanced understanding of microbial

behavior in large‐scale bioreactors. Consequently, it is a basic

requirement that the CFD simulation provides accurate results.

To achieve an affordable computational time for the biokinetic

CFD simulation, a steady state velocity profile was required. The

necessary manipulation of the stirrer speed (to 200 rpm) in the steady‐
state simulation was necessary because of the general transient fluid

dynamics in the bioreactor as discussed above. It could also be

considered to apply other turbulent models in the future. However, a

tuning of the CFD model to fit the experimental data should be

generally avoided, and the computational development might allow in

F IGURE 8 Simulated pH gradients during the S. thermophilus
fermentation in the 700 L bioreactor after 4 hr 40min of cultivation

time. The pH was higher than 7 close to the alkali inlet at the bottom
of the bioreactor and around 5.9 in the top zone of the bioreactor. As
the applied pH correlation is only valid up to a pH of 7, a more
accurate pH prediction was not possible [Color figure can be viewed

at wileyonlinelibrary.com]
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future using the transient velocity profile for the biokinetic CFD

simulation within an acceptable time frame.

Due to the higher computational demand, while solving the

differential equations in all nodes of the CFD model mesh (about 1.6

million nodes in this study), discretization errors are likely when

selected time steps are inappropriate. The same issue occurs if RMS

targets are too high. Applying a time step of 1 s resulted in a similar

biological growth as observed in the experiment, while larger time

steps led to larger deviations between measurements and predic-

tions. This is most likely due to the accumulation of numerical errors.

However, a smaller time step might have reduced numerical errors

further, but will also increase the computational burden. The

similarity between the single‐compartment simulation – where

completely mixed conditions were assumed – and the CFD simulation

results might be caused by three reasons: (a) either the pH gradients

had a very small effect on the culture performance in the present

study, or (b) the biokinetic model was not sensitive to pH changes, or

(c) the small differences arose from the aforementioned numerical

errors in the CFD simulation due to the coarse time step.

pH gradients between 5.9 and 6.3 were predicted and observed

between the top and the bottom zone of the bioreactor, respectively. A

pH higher than 7 was predicted for the vicinity of the base solution inlet.

Even though the pH measurements and predictions matched, the

uncertainties in the applied pH correlation need to be considered. The

fast production of lactic acid led to a small decrease of the pH at the top

of the bioreactor, whereas the addition of ammonium hydroxide caused

a pulse‐wise increase of the pH at the bottom of the bioreactor.

Langheinrich and Nienow (1999) reported pH gradients of 0.8 units due

to alkali addition in an 8 m3 reactor for mammalian cell cultures. pH

gradients have a noticeable effect on productivity. Aghababaie et al.

(2015) reported that the growth of S. thermophilus was reduced by 20%

when cultivated 0.3 pH units away from the optimal pH conditions.

However, cells are not constantly exposed to unfavorable environ-

mental conditions while moving through a large‐scale bioreactor. Cortés

et al. (2016) and Amanullah et al. (2001) showed in two‐compartment

scale‐down studies of E. coli and B. subtilis, in which they mimicked

oscillating pH conditions up to a delta pH of 0.9, that growth was not

statistically significantly affected. However, the organic acid metabolism

changed, and E. coli responded on the transcriptional level to the

alkaline stress. The extracellular pH affects the intracellular pH of lactic

acid bacteria (Cachon, Antérieux, & Diviès, 1998; Hansen et al., 2016)

and by this the enzymatic activity. Lactobacillus sp. maintains their

intracellular pH with the energy consuming Na+ (K+)/H+ antiporters

(Sawatari & Yokota, 2007). The additional energy requirements could

lead to altered culture performance in large‐scale fermentations. The

remaining open question is how fast the cells are affected by pH

changes and how fast they adapt to them. In the immediate vicinity of

the inlet for base addition, the cells are exposed to unfavorable pH

values that might lead to viability loss (Hansen et al., 2016). Cells that

are moving through the bioreactor and have suffered in an unfavorable

environment before will not function in an optimal manner immediately,

when they enter a more favorable zone, as they need to adapt to the

new conditions again (Löffler et al., 2016; Nieß, Löffler, Simen, & Takors,

2017). Further studies like Vanrolleghem, Sin, and Gernaey (2004), who

studied and modeled the dynamic response to substrate pulses in

wastewater treatment plants, are required to understand the adapta-

tion processes of microorganisms under oscillating conditions better.

This knowledge about metabolic phenomena, for example, the dynamic

response of growth to changing substrate availability, could then

expand the biokinetic models coupled with CFD models (Delvigne &

Noorman, 2017).

Coupling biokinetic and fluid dynamic modeling will open the way

for the understanding and optimization of large‐scale processes. To

predict gradients at large scale is of utmost interest because

measurements during fermentations at large scale are either very

difficult or even impossible to perform due to the size of the

bioreactors, the costs of a single fermentation run, and the GMP

regulations at production sites. Scale‐down systems (Oosterhuis,

1984) could be designed based on the CFD predictions, and mimic

the gradients in lab‐scale experiments (Lara et al., 2006; Neubauer &

Junne, 2016). They allow to study the response mechanisms upon

external oscillating conditions and can be integrated into the scale‐up
process (Neubauer et al., 2013). This will reduce the risk of failure

when scaling up processes.

5 | CONCLUSION

The present study was designed to predict pH gradients in a 700 L lactic

acid bacteria fermentation by applying a dynamic CFD simulation. It gave

evidence that pH heterogeneities existed in the studied 700 L bioreactor.

More important, it proved that pH gradients could be quantitatively

predicted with the CFD simulation. pH gradients between 5.9 at the top

and above 7 close to the alkali inlet at the bottom of the bioreactor were

predicted. The high pH in the alkali inlet zone could cause cell damage

and an undesired production loss in large‐scale bioreactors. Therefore,

the results could support the fine‐tuning of the stirring rate when

reaching the maximum growth rate to distribute the base faster. In

summary, these findings suggest that coupling a biokinetic model and a

fluid dynamic model is a very useful tool to predict gradients in

bioreactors. However, to predict the effect on microorganisms growing

under oscillating conditions was beyond the scope of this study. The

validation of the applied CFD model with multi‐position pH monitoring

during mixing experiments is a promising outcome of this study, which

should be performed in further CFD studies of bioprocesses as well.

Future work should include multiple environmental gradients in the

dynamic CFD simulations. Besides pH, also a substrate, oxygen, carbon

dioxide, and temperature gradients are of high interest for batch, fed‐
batch, and continuous cultivations since most of them are regarded to

contribute to productivity loss at large scale.
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Abstract 17 

Stress response of lactic acid bacteria (LAB) to oscillating pH-values, which appear 18 

through base addition in large scale pH-controlled batch fermentations, are scarcely 19 

investigated so far. In the present study, multi-compartment reactor experiments were 20 

applied for Streptococcus thermophilus fermentations to investigate the response to pH 21 

gradients in a scale-down approach.  22 

Results show a reduced growth, substrate uptake and lactic acid product synthesis at pH 23 

gradients. It was observed that the distribution of the cocci chain length was altered during 24 

the course of batch fermentations in dependence on the magnitude of pH gradients in 25 

scale-down cultivations. A relation was found between the reduction of growth under 26 

stress conditions and the cocci chain length distribution: a high degree of cocci chain 27 

length heterogeneity is an indicator of unfavourable cultivation conditions. Such relations 28 

are probably due to a changed activity of peptidoglycan hydrolases that are involved in 29 

cell separation of several LAB. The cocci chain length distribution thus represents a 30 

sensitive parameter for the process performance, it is a suitable scale-down criterion at 31 

similar shear force regimes. Automated image analysis of the cocci chain length was then 32 

successfully applied to predict growth reduction at pH gradient-induced stress. The 33 

developed workflow can be used for process optimization and early detection of 34 

disturbances under consideration of population heterogeneity in LAB cultures.  35 
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Introduction 36 

Lactic acid bacteria (LAB) are mainly used as starter cultures for the production of yogurt, 37 

cheese, probiotic applications, and food preservation, respectively. One of the LAB, 38 

which are frequently applied, is the gram-positive, round shaped, homofermentative and 39 

facultative anaerobic bacterium Streptococcus thermophilus [1]. It is non-pathogenic, 40 

generally recognised as safe (GRAS) and widely used in the food fermenting industry, 41 

e.g. in yogurt and cheese production [2]. It is the second most frequently used bacterium 42 

in the dairy industry [3]. If used in starter cultures in dairy products, S. thermophilus does 43 

not only metabolize lactose into lactic acid, but also ensures desired quality characteristics 44 

like viscosity, taste, acidity, water holding capacity [4] and increases the availability of 45 

bioactive compounds [3]. The ability to colonize the human gastrointestinal tract has 46 

attracted a broad interest in the past decades for the use as a probiotic compound [5]. 47 

Probiotic effects include, among others, an improved digestion of lactose [6], the 48 

stimulation of the intestinal immune system [7] and the prevention of diarrhoea [2, 8]. 49 

S. thermophilus cultures are produced in a m³-scale in batch processes, under 50 

microaerobic or anaerobic conditions (i.e. if the reactor’s head space is sparged with 51 

nitrogen to maintain a positive pressure to minimize contamination risks). The specific 52 

power input in such production scales is often insufficient to keep mixing times 53 

sufficiently low so that concentration gradients of additives occur [9]. Due to the usual 54 

operation of LAB cultivations in batch mode, the pH-value is among the most important 55 

parameters that imply a spatial distribution once base addition started for control [10]. It 56 

is known from other organisms that an oscillating pH-value as it appears in large scale, is 57 

sensitive for growth and the production profile in various organisms, leading to responses 58 

on a multi –omics level [11, 12]. Undesired stress responses were observed for LAB [13, 59 
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14], which might alter biomass productivity, cell-to-cell variation, and product quality 60 

under production conditions (e.g. final bacterial activity and viability at cell harvest).  61 

In order to study the stress response of S. thermophilus cultures in an oscillating 62 

environment, Two- and Three-compartment reactor (Two- and Three-CR) scale-down 63 

cultivations were conducted, in which cells were opposed to pH gradients. Reactors were 64 

equipped with a 10 L stirred tank reactor (STR) and one or two plug-flow reactors (PFR). 65 

Such and other multi-compartment reactors have been applied frequently to study the 66 

impact of large scale effects on the cellular level. They allow to resolve the microbial 67 

response of the portion of cells, which is actually opposed to unfavorable growth 68 

conditions [15, 16]. In the applied concept, cells are in unfavourable growth conditions 69 

in the PFR module(s), while the major portion is grown under ideal conditions in the STR 70 

module at the same time. 71 

In this study, the concentration of biomass and main metabolites and the cocci chain 72 

length distribution was investigated in S. thermophilus cultures to describe i) the impact 73 

of pH gradients of various magnitudes on the process performance in a multi-74 

compartment scale-down bioreactor, ii) the consistency of stress responses across several 75 

scale-down experiments and iii) the suitability to detect a stress-related response on the 76 

macromorphologic level with automated imaging.  77 
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Materials and methods 78 

Bacterial strain and media 79 

A wildtype S. thermophilus strain as used in industrial scale production was provided by 80 

Chr. Hansen A/S (Hoersholm, Denmark) [17] and applied throughout all experiments. 81 

The De Ma, Rogosa and Sharpe (MRS) medium was used for all cultivations, containing 82 

(per litre): 73.7 or 21.1 g lactose monohydrate, 10 g casein hydrolysate (Chr. Hansen A/S, 83 

Hoersholm, Denmark), 12 g yeast extract, 2 g K2HPO4, 3 g sodium acetate anhydrous, 84 

2.4 g tri-sodium citrate dihydrate, 0.2 g MgSO4·7H2O and 0.05 g MnSO4·H2O (all 85 

chemicals were purchased from Carl Roth, Karlsruhe, Germany, if not stated otherwise). 86 

2 mL of antifoam 204 (Sigma-Aldrich Chemie, Steinheim, Germany) were added to 87 

reduce foam formation in the stirred bioreactor experiments. 88 

Cultivation conditions 89 

For all experiments, a 15 L stirred tank bioreactor (Techfors-S, Infors AG, Bottmingen, 90 

Switzerland) with 10 L of  working volume, equipped with three Rushton turbine stirrers, 91 

baffles, a cell density sensor (Dencytee, Hamilton Inc., Reno, CA), a pH probe (Polilyte 92 

Plus ARC 120, Hamilton) and an exhaust gas analyzer All-in-One (BlueSens, Herten, 93 

Germany) was used. Medium components were dissolved in 7.5 L of distilled water 94 

except of lactose and added to the bioreactor for sterilization. Once the bioreactor 95 

temperature reached 40 ºC, the separately autoclaved lactose solution (2.5 L) was added 96 

to the reactor. The liquid was sparged with N2 until the O2 concentration in the off-gas 97 

was below 0.1 % (v/v). Subsequently, CO2 was sparged until a CO2 concentration 98 

between 1 and 3 % (v/v) was measured in the off-gas. 0.01 % (v/v) of the concentrated 99 

inoculum (12 mL of direct inoculation material, provided by Chr. Hansen A/S and stored 100 

at -80 ºC) was used to inoculate all bioreactor cultivations. 1 mL of thawed cell suspension 101 

was diluted in 5 mL MRS medium without carbon sources to easily transfer the entire 102 
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inoculation volume into the reactor. The agitation speed was kept at 400 rpm and the 103 

temperature at 40 °C throughout all fermentations. The pH-value was controlled at pH 104 

6.0 with 25 % NH3 (v/v) (VWR International, Radnor, PA). 105 

One or two PFR modules were connected to the STR via hose pumps. The pump rate was 106 

chosen so that the residence time was 120 s in each PFR. The total working volume of a 107 

PFR was 1.2 L or 1.8 L, if transfer parts are considered. Up to four pH probes (Polilyte 108 

Plus ARC 120, Hamilton) were installed at different heights of each PFR module in order 109 

to monitor pH gradients. The parts and features of the plug flow module were described 110 

in more detail elsewhere [18]. The base feed was directly connected via an inlet tube to 111 

the bottom of the PFR. In case of Three-CR cultivations (two PFRs), the same set up was 112 

used as in Two-CR cultivations with a second PFR module, which represented an 113 

acidified environment. 2h after the base was fed initially into one PFR module, the acid 114 

feed of 51% (v/v) H3PO4 was started pulse-wise at the other PFR to increase the pH stress. 115 

A continuous addition of acid would have let to an overall increase of base addition and 116 

finally relevant dilution of the culture. pH gradients as mimicked here were based on 117 

experimental observation in pilot and industrial scale, but represent an extension under 118 

the assumption of a “worst-case” scenario. 119 

Analysis 120 

Cell growth was monitored off line with appropriately diluted samples at a wavelength of 121 

600 nm (OD600) with an Ultraspec 2100 pro UV/Visible spectrophotometer (Amersham 122 

Biosciences, Amersham, UK). For dry cell weight (DCW) determination, 2 mL of cell 123 

suspension were pipetted into a previously dried and weighted 2 mL Eppendorf tube. 124 

Samples were centrifuged at 4 ºC and 10,000 rpm for 10 min. The supernatant was 125 

discarded, whilst the cell pellet was washed with 1 mL of 0.9 % (w/w) NaCl solution. 126 

After a second step of centrifugation, the Eppendorf tube containing the washed cells was 127 
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dried at 75 ºC for 24 hours and weighted again. The DCW was then calculated as the 128 

difference between the tube with and w/o sample. Samples for extracellular metabolite 129 

and free amino acid concentration were filtered through a membrane filter with a pore 130 

size of 0.8 m (Carl Roth, Karlsruhe, Germany) directly at the sampling port of the 131 

bioreactor. The filtrate was transferred to a 1.5 mL Eppendorf tube and immediately 132 

stored at -80 ºC. 133 

For the analysis of total main carbon metabolites and nucleotides, 4 mL of cell suspension 134 

were rapidly harvested into a frozen syringe containing 1 mL of pre-cooled perchloric 135 

acid with 0.5 gL-1 butanol as internal standard. The further treatment was described 136 

elsewhere [19]. Briefly, the syringe containing the quenched cell suspension was shaken 137 

on ice on a horizontal shaker for 15 min. Afterwards, the sample was transferred to a 50 138 

mL falcon tube and 845 L 5M K2CO3 were added for acid neutralization. The cell 139 

fragments were finally separated with a membrane filter with a pore size of 0.8 m (Carl 140 

Roth, Karlsruhe, Germany) and the filtrate was stored directly at -80 ºC. All steps were 141 

performed on ice, all plastic parts were pre-cooled prior to their use. 142 

  143 
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Quantification of metabolites 144 

Quantification of free amino acids was conducted with an Agilent 1260 Infinity High 145 

Performance Liquid Chromatography (HPLC) system (Agilent Technologies, 146 

Waldbronn, Germany), equipped with an Agilent 1200 system fluorescence detector 147 

(excitation and emission wavelengths of 340 and 450nm, respectively), a C18 Gemini® 148 

column (5 , 100 Å, 150x4.6 mm) and a Security GuardTM precolumn (both columns 149 

supplied by Phenomenex®, Aschaffenburg, Germany). For derivatization, ortho-150 

phthaldialdehyde was applied as described previously [20]. Separation was achieved 151 

using a 40 mM NaH2PO4 (pH = 7.8) polar phase and a 45:45:10 MeOH:CH3CN:H2O 152 

solution as nonpolar phase at a flow rate of 1 mL·min-1 and a temperature of 40 ºC.  153 

Carboxylic acids and sugars were quantified with an Agilent 1200 HPLC system 154 

equipped with a refractive index detector (RID) and a HyperRezTM XP Carbohydrate H+ 155 

column (300x7.7 mm, 8 m) (Fisher Scientific, Schwerte, Germany) operated with 5 mM 156 

H2SO4 at a flow rate of 0.5 mL·min-1 and a temperature of 65 ºC. 157 

Microscopy image analysis 158 

1 µL of culture broth were pipetted on a microscopic slide with a cover glass and captured 159 

with a light microscope (CN-hFT, Hertel & Reuss, Kassel, Germany) with a 160 

magnification of 1,000. The captures were taken with a digital camera (Canon Power Shot 161 

G1X, Canon, Tokio, Japan) with a four fold magnification. Images were stored as 8-bit 162 

image TIFF files without compression with 256 possible shades of grey (28 combinations 163 

in binary code). The median grey value of each image set was calculated using ImageJ 164 

(version 2.0.0) for background quantification. Afterwards, the background pixels were 165 

subtracted from each image (segmentation) [21]. The software Cell Profiler (version 166 

2.1.0) was applied to identify cocci chains of S. thermophilus, to segment them into 167 

individual cocci and to measure the maximal axis length and area.  168 
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Data fitting and visualization 169 

In order to calculate uptake and release rates, concentration data were fitted with a 170 

smoothing spline function of the curve fitting toolbox from MATLAB R2013b (The 171 

MathWorks, Natick, MA). All data plots were made with SigmaPlot version 11.0 (Systat 172 

Software, San José, CA). 173 

Statistical analysis 174 

Data were expressed as mean standard deviation (SD) for the description of 175 

reproducibility. Biological replicates were performed as fermentations under identical 176 

conditions. The coefficient of variation (CV%) was then calculated using Equation 1: 177 

𝐶𝑉% =
𝑆𝐷

𝑀𝑒𝑎𝑛
· 100                                                            (1) 178 

  179 
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Results and discussion 180 

This study aimed to investigate the stress response of S. thermophilus to oscillating pH-181 

values in scale-down batch cultivation experiments. The addition of concentrated pH 182 

control agents, e.g. NH4OH, has a strong impact on the local pH-value and the process 183 

performance in many microbial cultivations. If ammonia was used as pH control additive, 184 

a negative effect on E. coli cell growth and viability was observed when the mean 185 

circulation time increased to over 100 s in an environment with pH-gradients of 0.3 or 186 

higher [22]. Therefore, in this study, a single-CR LAB cultivation in a STR was compared 187 

with cultivations in two different scale-down reactor designs (Figure 1). The Two-CR 188 

consisted of an STR that was connected to a plug-flow reactor (PFR 1), into which base 189 

was added in the front part. The Three-CR consisted of the STR, PFR 1 and an additional 190 

PFR module, into which acid was regularly added to mimic zones in the reactor, which 191 

are far away from the spot of base addition, and in which a low pH-value occurs due to 192 

the excretion of lactic acid from bacteria (PFR 2).  193 

The pH-value was monitored at the bottom and top of each PFR module. The pH-value 194 

remained uncontrolled until it reached a value of 6.0 during the first hours of cultivation. 195 

Then pH control was switched on, which led to pulse-wise increased pH-values in PFR 1 196 

(Figure 2). Maximum pH-values of 8.2 were achieved. Acidic pulses where induced 197 

manually in PFR 2 of the Three-CR experiments 2 hours after pH control had started. 198 

This led to minimum pH-values of about 4.2. As initial lactose concentrations, 20 g·L-1 199 

were applied in first experiments, while 70 g·L-1 initial lactose concentrations were 200 

applied during Three-CR fermentations. This increased the time of pH control, and thus 201 

the amount of pH pulses (Figure 2). At the same time, the effect of a higher overall lactic 202 

acid production was examined. The residence time of cells were set to 120 s in each PFR 203 

module. This time was selected based on assumptions of the power input, but without the 204 
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exact knowledge of conditions in the industrial scale bioreactor (e.g. mixing and 205 

circulation times). The authors recently published a study, which described mixing in the 206 

same process in a pilot scale fermenter of 700 L [17]. A mixing time of 45 seconds (the 207 

time to achieve 95 % of homogeneity) was determined, while a pH gradient of 0.4 was 208 

measured (from 5.9 in the upper zone to 6.3 in the lower part of the bioreactor at base 209 

addition). Nevertheless, the volume of the production scale, in which the process is 210 

conducted, is hundred times larger. The specific power input, which is applied there, leads 211 

to increased mixing times and most likely also higher pH-gradients. Under the assumption 212 

of geometrical similarity between the pilot and industrial scale (height to diameter ratio), 213 

the length of the flow pattern is 4.6 times greater. In order to maintain the mixing time, 214 

the fluid velocity in industrial scale would have to be 4.6 times higher [23], which would 215 

require a 20-fold increase in the specific power input (P/V) as it is proportional to the 216 

square of the fluid velocity v2. Under the assumption of the available power at industrial 217 

scale, an increase in mixing time by a factor of two or more is assumed, which led to the 218 

chosen scale-down set up with residences times of 120 s in each PFR module. 219 

 220 

Growth and main carbon metabolism 221 

The pH gradients, as induced in the Two-CR cultivations, did not alter the final biomass 222 

concentration (Figure 3A), the same biomass yield was obtained as under gradient-free 223 

conditions (Table 1). Nevertheless, as observed at the specific growth (), lactose uptake 224 

(qS) and lactate production (qP) rates (Figure 3A), cell division and metabolic activity was 225 

considerably retarded under scale-down conditions, a lower maximum growth rate was 226 

achieved (µ = 0.95 vs. 1.5 h-1; qS = 6.8 vs. 10 g lactose·(g DCW·h)-1; and qP = 3 vs. 5 g 227 

lactate·(g DCW·h)-1). While all substrate was consumed, a lower yield of lactate was 228 

determined in Two-CR cultivations (Figure 4B). One reason for a lower extracellular 229 
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lactic acid concentration might be a changed chemical equilibrium between the 230 

dissociated and non-dissociated form inside the cells. The portion of the dissociated form 231 

of lactic acid, which does not cross the cytoplasmic membrane by simple diffusion, is 232 

increased at a high pH-value [24]. Under these conditions, less lactic acid might have 233 

been excreted. A higher intracellular concentration of lactate has usually a negative effect 234 

on the cells’ viability and metabolic activity. If cells cope with a high pH-value and 235 

intracellular lactate accumulation is fostered, several mechanisms are activated, which 236 

facilitate survival and growth of LAB under alkaline conditions [25]. They include an 237 

increase of the activity of (i) the ATP-driven potassium extrusion and the potassium-238 

proton antiport system, (ii) the sodium-proton antiport system, (iii) the proton-239 

translocating adenosine triphosphatase (ATPase), support (iv) of the formation of 240 

transmembrane proton gradients (ΔpH), and (v) the adaptation of protein synthesis, 241 

respectively. Thus, LAB are able to maintain a homeostatic cytoplasmic or intracellular 242 

pH (pHi) during short and small changes of the environmental pH-value, typically at a 243 

neutral or near neutral value, when the external pH varies. This requires additional 244 

resources of carbon, amino acids and energy. Then these mechanisms demand for 245 

resources, which are not available for the synthesis of byproducts like lactic acid. 246 

In contrast to the Two-CR fermentations, a considerable reduction of biomass formation 247 

was measured in the Three-CR experiments (Figure 3B, Table 1). Different growth rates 248 

prior to the onset of base addition originate from different start points of pH-value 249 

oscillations, which does not matter if response patterns are in the focus of research as it 250 

is the case here.  251 

The experiments were performed with a higher concentration of lactose so that lactic acid 252 

inhibition occurred at about 30 g·L-1 [26], which led to unconsumed lactose. The pH-253 

value in the main fermenter was not allowed to drop below 5.2 prior to the onset of base 254 
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addition so that growth inhibiting conditions were avoided [27]. Hence, any inhibiting 255 

effect was directly caused by a high lactic acid concentration. If lactic acid is accumulated 256 

in the medium, less lactic acid can pass from the inside to the outside of a cell due to a 257 

low gradient. As consequence, the pHi decreases while lactic acid dissociates inside the 258 

cell [28]. It is commonly accepted in literature, that both, the dissociated and non-259 

dissociated forms of lactic acid can inhibit growth of LAB [27, 29]. While [30, 31] stated 260 

that the non-dissociated form of lactic acid was the main inhibitory compound for growth 261 

of Lactobacillus helveticus and of Lactococcus lactis, respectively, a loss of cell viability 262 

and membrane integrity by high lactate concentrations was examined in Lactobacillus 263 

bulgaricus cultures [32]. The authors concluded that the higher the lactate concentration, 264 

the higher the cellular mortality (which was more than one order of magnitude higher in 265 

cultures conducted at a higher pH-value). They observed that the dissociated form 266 

accumulated more profoundly in fermentations, which were controlled at pH 6, than at 267 

pH 5, which is in accordance to the chemical equilibrium. It was concluded that the non-268 

dissociated form of lactic acid is not solely responsible for growth inhibition and stated 269 

that the total acid concentration has to be considered [33]. In fact, if 100 g·L-1 of initial 270 

lactose concentration was applied at S. thermophilus fermentations under optimal 271 

conditions, no increase of biomass concentration was achieved in comparison to 70 g·L-272 

1 of initial lactose concentrations, which underlines the complete inhibition of lactic acid 273 

in these cases: 10.5 % less lactose was consumed and 29 % less lactic acid was produced 274 

during Three-CR (Figure 4C). Right after the phosphoric acid feed was connected to the 275 

second PFR, the substrate consumption and product formation were drastically affected 276 

compared to Single-CR cultivations. Interestingly, glucose tend to accumulate 277 

extracellularly once the acid pulses were applied (Figure 4D). The substrate consumption 278 
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rate (qS) was about 21.9 g lactose·h-1 in Single-CR experiments and only 11.6 g lactose·h-279 

1 in Three-CR cultivations (spec. values are depicted in Figure 3B).  280 

Enzymes, which are involved in the carbohydrate metabolism of LAB possess a rather 281 

neutral pH optimum [32], and may thus have a decreased activity under pH stress [34]. If 282 

one of the first steps in glycolysis, like the phosphorylation of glucose to glucose-6-283 

phosphate by hexokinases, is not conducted efficiently, glucose penetrates back into the 284 

medium [35]. This is one reason why starvation response was observed under acid stress 285 

as a result of a reduced activity of the sugar uptake [36]. A lower specific glucose uptake 286 

rate was reported for LAB at a low pH-value [37]. In this case, less energy is available 287 

for a cell. Additionally, the aforementioned adaptation mechanisms to pH stress consume 288 

energy: up-regulation of a gene, which codes for proton pumps was observed under 289 

oscillating pH-values and temperatures [38]. Such proton pumps like the F0-F1-ATPase 290 

expulse protons out of the cell at the expense of ATP to maintain the pHi [36, 39]. The 291 

LacS permease activity, which mediates the exchange of extracellular lactose with 292 

intracellular galactose, may also be affected under pH stress [40]. Other studies 293 

demonstrated that even small deviations from the optimal pH-value have an effect on 294 

biomass productivity during S. thermophilus batch fermentations [41]. The authors 295 

concluded that S. thermophilus is sensitive to variation of the pH-value, optimal growth 296 

is achieved between 6.5 and 7.5. Interestingly, the authors investigated the influence of 297 

fermentation temperatures and pH-values on the co-cultivation of S. thermophilus and L. 298 

bulgaricus [42]. A pH-value, which was 0.8 units below the optimum during 299 

fermentations at 38 ºC led to a biomass production loss by 35 % in case of S. 300 

thermophilus.  301 

Strong effects on growth and side metabolite production were seen in S. thermophilus 302 

scale-down cultivations with oscillating pH-values. A reduction of metabolic activity can 303 
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be recognized by the amount of base, which was added to compensate for lactic acid 304 

release. The time course of the extracellular and total concentration of metabolites showed 305 

a similar trend at all experiments (Figure S1). Hence, any determination of intracellular 306 

concentrations is hardly possible, most probably due to the considerable high extracellular 307 

concentrations, which makes the quantification of the volumetric portion of intracellular 308 

concentrations in suspension samples hardly feasible. In case of the time courses of amino 309 

acid concentrations, no remarkable differences between Single-CR and scale-down 310 

experiments were measured (Figure S2). 311 

Population heterogeneity 312 

In order to investigate, whether and when the homogeneity among the population is 313 

affected by pH gradients, the cocci chain length distribution was monitored with light 314 

microscopy and automated cell recognition tools [43] in Two- and Three-CR 315 

experiments.  316 

The diplococcal morphology was found to be the dominant cocci chain length in S. 317 

thermophilus cultivations, whenever they were conducted under optimal conditions 318 

(Figure 5). As described by [44], the cell division in LAB occurs in successive parallel 319 

planes perpendicular to their axis. This leads to diplococcal daughter cells, which are 320 

connected through their septa [45, 46]. Then, at the very late step of cell division, the 321 

septum is cleaved and converted into the new pole of each daughter cell by the action of 322 

cell wall hydrolases, mostly peptidoglycan hydrolases (PGHs). A second round of cell 323 

division may start before closure of the septum at high growth rates. Therefore, two or 324 

even four cocci chains might be detectable. If cell division is disturbed, an increase of the 325 

portion of unevenly distributed cocci chains of a length of one, three or five cocci shall 326 

be observable. Indeed, base pulses, which were induced in Two-CR fermentations, shifted 327 

the population distribution towards longer chains (Figure 5A). Finally, 5 or more cocci 328 
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chains were the dominant chain lengths, which were detectable under pH oscillating 329 

conditions, while such chain lengths were hardly detected under gradient-free growth. 330 

The cocci chain length distribution was broader under the pH stress induced in the Three-331 

CR system (Figure 5B). A large portion of single cocci were observed beside longer 332 

chains of an uneven number of cocci. Already 1.5 hours after starting the pH control (that 333 

is after connecting the PFRs and inducing base pH shifts), a 22 % lower number of 334 

diplococcal cells and more than twice the amount of single cells were identified under 335 

Three-CR conditions in comparison to Single-CR cultivations.  336 

A reasonable explanation for the increasing chain length under pH-gradients in a basic 337 

environment might be a decreased activity of the chain dispersing chromosome 338 

segregation protein CSE, the main PGH proposed for S. thermophilus. One study reported 339 

that a histidine-dependent amidohydrolase/peptidase (CHAP) domain, which mediates 340 

coccus division, is only active in a pH range between 4.0 and 4.5 in vitro [45]. Therefore, 341 

longer chains may be expected under alkaline conditions as daughter cells are not 342 

separated with the same intensity than at acidic conditions, however, the impact of 343 

gradients on the expression has not been observed. Moreover, the LysM binding domain 344 

of the CSE protein, which binds to peptidoglycans and plays a role in localization and 345 

substrate recognition, might be affected by the extracellular pH-value as well. The LysM 346 

domains in homologous PGHs in Lactococcus lactis differ in their isoelectric points [47]. 347 

The LysM domain of the CSE protein might be incapable of binding at high pH-values. 348 

Cation transport ATPases such as Na+ (K+)/H+ antiporters, as they were described in 349 

Lactobacilli [48], can contribute to pH homeostasis, especially to alkaline tolerance. This 350 

might be another reason for a reduced growth and for an increased maintenance at high 351 

pH values. 352 
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The adaptation to acid stress is essential for the survival of LAB. While lactic acid 353 

accumulation creates an unfavorable environment for many other bacteria [36, 49], the 354 

adaptation to an acidic environment creates a growth advantage of LAB against potential 355 

competing microbes. Another adaptation mechanism to acid stress is the production of 356 

basic compounds, which can support alkalinization of the environment and cytoplasm, at 357 

the expense of energy utilization. Ammonia-generating mechanisms described for 358 

Streptococcus sp. include (i) the hydrolysis of urea by urease and (ii) the catabolism of 359 

arginine via the arginine deiminase system (ADS) [50]. The latter mechanism has been 360 

studied thoroughly [51, 52]. Nevertheless, they have not been investigated in LAB so far. 361 

Finally, osmotic stress may also be considered, since more than 200 g of 25 % (v/v) 362 

NH4OH were added if 70 g·L-1 of initial lactose concentration was applied. After 363 

induction of acid pulses with 51 % v/v H3PO4, an increase of the osmolality in the medium 364 

is expected, which might also lead to intracellular water loss and cell shrinkage [53]. 365 

Bacterial membranes possess high water permeabilities, so that cellular hydration is 366 

altered within seconds after an osmotic shift [54].  367 
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Conclusions and Outlook 368 

Oscillating pH conditions were successfully simulated in Two- and Three-CR scale-down 369 

experiments. In summary, S. thermophilus responded with a reduced growth rate, a 370 

biomass productivity loss and increased population heterogeneity under the 371 

inhomogeneous cultivation conditions in scale-down experiments. These effects may be 372 

due to a combination of the physical, chemical as well as biological stress responses from 373 

LAB. Changes on cell morphology due to varying environmental conditions prove the 374 

potential of microscopy-based image analysis as process analytical technology (PAT). In 375 

situ image detection with automatic recognition methods for detection of morphological 376 

changes [9, 55], enable to gain real-time population heterogeneity data and develop 377 

process monitoring as well as control strategies. Additionally, the fast recognition of 378 

heterogeneities in time and space enables fast adaptations of the process towards 379 

favorable conditions to ensure a desired performance [56, 57].  380 

It has been demonstrated, that the cocci chain length distribution could be used as scaling 381 

parameter of LAB production subjected to certain pH gradients during this study. A scale 382 

up or down would be successful, if a similar cocci chain length distribution would be 383 

obtained. Studies concerning the acidification activity (i.e. rate of decrease of pH in milk 384 

after a certain time) of biomass with different population heterogeneity (i.e. shorter or 385 

longer cocci chains), would give a better insight into the effect on product quality [28, 386 

58]. Additionally, a better understanding of the industrial scale process and performance 387 

(e.g. computational fluid dynamics (CFD) studies as well as mixing and residence time 388 

calculations) is needed, in order to realistically mimic the conditions in lab scale 389 

simulators [17].   390 
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Tables 577 

Table 1. Mean value, in brackets: standard deviation (SD) of biological duplicates (n = 2) 578 

and coefficient of variation (CV%), of the final biomass concentration in g L-1, the 579 

biomass yield (YX/S), lactate yield (YP/S) and biomass-specific lactate yield (YP/X) in 580 

Single-CR (STR), Two- and Three-CR experiments with 20 or 70 g·L-1 of initial lactose 581 

concentration. 582 

Lactose 

conc. 
 STR Two-CR Three-CR 

2
0
 g

·L
-1

 

Final biomass 

conc. [g L-1] 
1.94 (0.03 / 1.57) 2.05 (0.04 / 1.69)  

YX/S 0.095 (0.000 / 0.479) 0.095 (0.002 / 1.66)  

YP/S 0.616 (0.059 / 9.60) 0.485 (0.015 / 3.08)  

YP/X 6.50 (0.66 / 10.08) 5.13 (0.24 / 4.74)  

7
0
 g

·L
-1

 

Final biomass 

conc. [g L-1] 
5.43 (0.01 / 0.20)  4.41 (0.20 / 4.61) 

YX/S 0.075 (0.001 / 1.11)  0.076 (0.001 / 1.25) 

YP/S 0.383 (0.014 / 3.56)  0.317 (0.006 / 1.75) 

YP/X 5.14 (0.13 / 2.46)  4.18 (0.02 / 0.50) 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 
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Figure legend 592 

Figure 1. Single-compartment reactor (Single-CR, A) and scale-down simulators used 593 

during this work. Two-compartment reactor (Two-CR, B) and Three-compartment 594 

reactor (Three-CR, C) set up. 595 

Figure 2. Development of the pH-value in different compartments of the scale-down 596 

experiments. The pH-value in the STR (black) describes the experimental set up, in which 597 

pH control was started once the pH-value dropped below 6.0. pH-values as induced in the 598 

PFR during Two-CR fermentations (A), measured with two probes located at the top and 599 

bottom of the PFR module (blue and red, respectively), ranged from 5.6 to 8.2. In Three-600 

CR cultivations (B), pH values ranged between 4.7 and 9.4, pH pulses on top and bottom 601 

of PFR 1 (blue and red), and on top and bottom of PFR 2 (dark blue and dark red). 602 

Figure 3. DCW development throughout Single-CR (filled circles), Two-CR (empty 603 

circles, A) and Three-CR (empty circles, C) experiments. Error bars: Mean ± SD (n=2). 604 

Online optical density (OD, solid line in A and C), growth rate (,dashed line in A and 605 

C), specific lactose consumption rate (qS, dotted line in B and D) and specific lactic acid 606 

production rate (qP, dashed-dotted-dotted line in B and D) during Single-CR (black), 607 

Two-CR (grey, A and B) and Three-CR (grey, C and D) fermentations. The vertical 608 

dashed line indicates the start of pH control and connection of PFR 1 in scale-down 609 

experiments (Two-CR in A and B, and Three-CR in C and D), while the vertical dotted 610 

line designates the start of manual acidic pulses at the bottom of PFR 2 (Three-CR in C 611 

and D). 612 

Figure 4. Lactose (triangles upward), lactic acid (squares), glucose (diamonds) and 613 

galactose (triangles downward) concentration course throughout Single-CR (filled 614 

symbols in A and B with 20 g·L-1, and in C and D with 70 g·L-1 initial lactose 615 
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concentration), Two-CR (A and B with empty symbols) and Three-CR (C and D with 616 

empty symbols) experiments. 617 

Figure 5. Cocci chain length distribution during Single-CR (black bars), Two-CR (grey 618 

and crossed bars) and Three-CR (grey and vertical-lined bars) fermentations. 619 

 620 

Figure S1. Total (filled symbols) and intracellular (empty symbols) lactose (triangles 621 

upward), lactic acid (squares), glucose (diamonds) and galactose (triangles downward) 622 

concentration throughout Single-CR (A and B) and Three-CR (C and D) experiments. 623 

  624 
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Figure 1 625 

 626 

Figure 1. Single-compartment reactor (Single-CR, A) and scale-down simulators used 627 

during this work. Two-compartment reactor (Two-CR, B) and Three-compartment 628 

reactor (Three-CR, C) set up. 629 

  630 
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Figure 2 631 

 632 
 633 

Figure 2. Development of the pH-value in different compartments of the scale-down 634 

experiments. The pH-value in the STR (black) describes the experimental set up, in which 635 

pH control was started once the pH-value dropped below 6.0. pH-values as induced in the 636 

PFR during Two-CR fermentations (A), measured with two probes located at the top and 637 

bottom of the PFR module (blue and red, respectively), ranged from 5.6 to 8.2. In Three-638 

CR cultivations (B), pH values ranged between 4.7 and 9.4, pH pulses on top and bottom 639 

of PFR 1 (blue and red), and on top and bottom of PFR 2 (dark blue and dark red). 640 

  641 
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Figure 3 642 

 643 
644 

Figure 3. DCW development throughout Single-CR (filled circles), Two-CR (empty 645 

circles, A) and Three-CR (empty circles, C) experiments. Error bars: Mean ± SD (n=2). 646 

Online optical density 647 

C), specific lactose consumption rate (qS, dashed-dotted line in B and D) and specific 648 

lactic acid production rate (qP, dashed-dotted-dotted line in B and D) during Single-CR 649 

(black), Two-CR (grey, A and B) and Three-CR (grey, C and D) fermentations. The 650 

vertical dashed line indicates the start of pH control and connection of PFR 1 in scale-651 

down experiments (Two-CR in A and B, and Three-CR in C and D), while the vertical 652 

dotted line designates the start of manual acidic pulses at the bottom of PFR 2 (Three-CR 653 

in C and D).   654 
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Figure 4 655 

 656  657 

Figure 4. Lactose (triangles upward), lactic acid (squares), glucose (diamonds) and 658 

galactose (triangles downward) concentration course throughout Single-CR (filled 659 

symbols in A and B with 20 g·L-1, and in C and D with 70 g·L-1 initial lactose 660 

concentration), Two-CR (A and B with empty symbols) and Three-CR (C and D with 661 

empty symbols) experiments. 662 

 663 

 664 

Figure 5665 
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 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

Figure 5. Cocci chain length distribution during Single-CR (black bars), Two-CR (grey 676 

and crossed bars) and Three-CR (grey and vertical-lined bars) fermentations. 677 

 678 
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Figure S1679 

 680 

Figure S1. Total (filled symbols) and intracellular (empty symbols) lactose (triangles 681 

upward), lactic acid (squares), glucose (diamonds) and galactose (triangles downward) 682 

concentration throughout Single-CR (A and B) and Three-CR (C and D) experiments. 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 
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 694 

Figure S2: Development of amino acids (concentrations in mM) throughout Single-CR 695 

(filled, crossed and right filled symbols) and Two-CR (empty, dotted and bottom filled 696 

symbols) fermentations. Aspartate (upper triangles), Glutamate (downer triangles), 697 

Serine (stars), Alanine (circles), Glycine (squares), Valine (diamonds), Threonine 698 

(hexagons), Leucine (marked upper triangles), Arginine (marked lower triangles), 699 

Asparagine (marked circles), Isoleucine (marked squares), Histidine (marked diamonds), 700 

Lysin (marked hexagons), Tyrosin (semi-filled circles), Methionine (semi-filled squares) 701 

and Tryptophan (semi-filled diamonds). 702 
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Abstract 25 

In the industrial production of starter cultures, lactic acid bacteria (LAB) are cultivated in 26 

batch bioreactors with pH control to ensure the highest yield possible, unaffordable with 27 

the natural acidification rates of theses microorganisms. Taking into account the extended 28 

mixing times and limitations in the power input, the appearance of pH gradients along the 29 

height of the fermenter is almost inevitable. Furthermore, the recent tendency towards 30 

development of dynamic growth models for bioprocesses has also attracted the interest 31 

of companies in the Food & Feed industry. Unlike chemical systems, there is no well-32 

established thermodynamic law to define the equilibrium between liquid and biotic phases 33 

in biological processes. The authors recently applied multi-compartment scale-down 34 

approaches (STR-PFR and PFR-STR-PFR) to simulate the mentioned oscillating 35 

conditions in the lab, concluding the existence of a relationship between the reduction of 36 

growth activity and the cocci chain length distribution. In this work, these results were 37 

confirmed with single-compartment (STR) pulse feeding experiments and both scale-38 

down strategies were compared, by means of biomass productivity as well as population 39 

heterogeneity. The nature and intensity of bioreactions are sensitive to operating 40 

conditions because the complex network of an intracellular reaction responds to external 41 

stimuli. From a modeling point of view, the most relevant difficulty is the fact that both 42 

the liquid and biotic phase mutually influence each other. This is why, apart from already 43 

predictable macroscopic variables in Streptococcus thermophilus fermentation, certain 44 

population classes were modeled, based on microscopic analysis of bacterial morphology 45 

under different experimental setups, inducing variable pH gradients. The cocci chain 46 

length distribution under optimal as well as scale-down conditions were successfully 47 

simulated, but parameter identifiability and model uncertainty should be performed in the 48 

future to improve output reliability.  49 
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Introduction 50 

Nowadays, the in silico prediction of cell biomass is well investigated in bioprocesses 51 

subjected to environmental oscillatory conditions (Anane, Neubauer et al. 2017, Spann, 52 

Roca et al. 2018). Nevertheless, by viewing microbial populations as a homogenous 53 

culture of identical cells, cell-to-cell variations and their effects on microbial population 54 

dynamics are not considered. It has been proved that environmental and stochastic factors 55 

lead to phenotypic heterogeneities in bioprocesses, but the impact on process performance 56 

remains poorly understood (Delvigne and Goffin 2014). Moreover, the underlying 57 

mechanisms are in very few cases integrated in the development of new bioprocess 58 

control strategies (Müller, Harms et al. 2010), thus motivating the development of 59 

experimental and mathematical models that account for cell heterogeneities (Lemoine, 60 

Delvigne et al. 2017). In general, as described by (Heins and Weuster-Botz 2018), 61 

population heterogeneity can be divided in two major classes: intrinsic and extrinsic. The 62 

first one originates from the stochastic nature of gene expression including biochemical 63 

reactions leading to anabolism and catabolism of macromolecules and their activation and 64 

repression. Opposite to the extrinsic heterogeneity, the intrinsic one is not affected by 65 

changing environmental conditions in a bioreactor, like gradients in substrate, pH, 66 

temperature and oxygen. The second one is linked to the metabolic state of the cell and 67 

variations in the amounts of intracellular compounds, e.g. copy number of regulatory 68 

proteins and transcription factors, lead to stochastic growth rate fluctuations (Delvigne, 69 

Zune et al. 2014). 70 

The authors recently published the response of Streptococcus thermophilus fermentations 71 

to certain pH gradients induced in scale-down bioreactors (Paper IV). Two-compartment 72 

(Two-CR) and Three-compartment reactors (Three-CR), composed of a stirred tank 73 

reactor (STR) connected to one or two plug flow rectors (PFR), respectively, were used 74 
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to induce different pH oscillations. During these experiments, a certain part of the 75 

population (typically a 10 % in each PFR) was subjected to changing environmental 76 

conditions, while keeping the rest (90 or 80 % in Two- and Three-CR experiments, 77 

respectively) under optimal, well-mixed conditions. In this study, the authors compare 78 

these results with experiments in single-compartment bioreactors (Single-CR), by means 79 

of cell size or cocci chain length distribution. In this setup, a 100 % of the population 80 

suffered the pH gradients induced during fermentations under pH control at different pH 81 

values. When developing modeling approaches for bioprocess scale up, treating the biotic 82 

phase as a population of variable physiological states is of central importance (Morchain 83 

2017) and this is why cell-to-cell morphologic variations, apart from common 84 

macroscopic variables (e.g. C-source or byproduct concentrations), under the different 85 

scale-down conditions were considered.   In fact, all data sets were used to develop a 86 

population model (PM) for the S. thermophilus process, which aims at predicting the 87 

population heterogeneity based on the pH value and pH gradients measured in the 88 

bioreactor. 89 

The evolution of population subsets in response to induced stresses during scale-down 90 

investigations has been taken into account in recent years (Gernaey and Gani 2010, 91 

Delvigne, Takors et al. 2017). On the one hand, in multi-compartment scale-down 92 

experiments, only a fraction of the culture is exposed to the stress inducing agent at any 93 

given time. This fraction is determined by the ratio of the STR to PFR volumes (Wang, 94 

Zhao et al. 2018), representing the PFR typically a 10 % of the total bioreactor volume, 95 

as mentioned before. On the other hand, in single-compartment pulse-based systems, the 96 

response of the culture to the induced oscillating conditions is synchronized, without the 97 

existence of population subsets. Nevertheless, within the response time of the pulses, the 98 

evolution of the population in response to the stresses represents a special type of 99 
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population heterogeneity that can be followed with advanced process analytical 100 

technology (PAT), such as high-resolution online microscopy (Marbà-Ardébol, 101 

Emmerich et al. 2018) or automated flow cytometry (Delvigne and Goffin 2014). The 102 

two recent reviews by (González-Cabaleiro, Mitchell et al. 2017) and (Delvigne, Baert et 103 

al. 2017) give important bases of the mathematical formulations to describe microbial 104 

populations and the tools available to measure/analyze the existence of sub-groups. 105 

(Zamamiri, Zhang et al. 2002) highlighted that a drawback of PM is, besides solving the 106 

resulting partial differential integral equations, the determination of population 107 

parameters. In order to improve the fundamental understanding on microbial population 108 

dynamics, methods, which provide information about the physiological state of the single 109 

cell, are required. In this work, cell morphology was selected as physiological 110 

characteristic of “healthy” and “stressed” bacteria.      111 
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Materials and methods 112 

Bacterial strain and media 113 

The strain of S. thermophilus was provided by Chr. Hansen A/S (Hoersholm, Denmark) 114 

and used throughout the whole study. In all Single-CR cultivation experiments, a self-115 

established De Ma, Rogosa and Sharpe (MRS) medium was used, containing (per litre): 116 

73.7 g lactose monohydrate (Carl Roth, Karlsruhe, Germany), 10 g casein hydrolysate 117 

(Chr. Hansen A/S, Hoersholm, Denmark), 12 g yeast extract (Chr. Hansen A/S, 118 

Hoersholm, Denmark), 2 g K2HPO4 (Carl Roth, Karlsruhe, Germany), 3 g sodium acetate 119 

anhydrous (Carl Roth, Karlsruhe, Germany), 2.4 g tri-sodium citrate dihydrate (Carl Roth, 120 

Karlsruhe, Germany), 0.2 g MgSO4·7H2O (Carl Roth, Karlsruhe, Germany) and 0.05 g 121 

MnSO4·H2O (Carl Roth, Karlsruhe, Germany). 122 

Cultivation conditions 123 

For all experiments, a 1 L stirred tank glass bioreactor (Multifors, Infors HT, Bottmingen, 124 

Switzerland) equipped with two Rushton turbine impellers, baffles, a pH probe 125 

(EasyFerm, Hamilton, Darmstadt, Germany) and an exhaust gas analyzer All-in-One 126 

(BlueSens, Gas Sensor GmbH, Herten, Germany) was used. Firstly, the bioreactor was 127 

assembled, then the medium components without lactose and dissolved in 0.7 L distilled 128 

water were added. The amount of lactose was dissolved in 0.3 L of distilled water and 129 

transferred to a 0.5 L bottle. The filled reactor was connected to an empty glass bottle as 130 

well as to the lactose bottle via hose pumps. The whole system was sterilized in an 131 

autoclave at 121 ºC for 20 minutes. After sterilization and temperature decrease, the 132 

whole lactose solution was pumped into the reactor and the empty flask was filled with 133 

NH3 25 % (v/v) (VWR Chemicals, Radnor, USA). The liquid was then sparged with N2 134 

until the O2 concentration detected in the outgas analyzer was below 0.1 %. Subsequently, 135 

a pulse of CO2 was given until a CO2 concentration of 1-3 % was detected in the outgas 136 
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analysis. 0.01 % v/v of the concentrated inoculum (12 mL direct inoculation material 137 

(DIM), stored at -80 ºC and provided by Chr. Hansen A/S, Hoersholm, Denmark) was 138 

used to inoculate all bioreactors. The tube was thawed on ice and 100 L of cells were 139 

suspended in 1 mL MRS medium without carbon source to ease the transfer of the entire 140 

inoculation volume. After inoculation under sterile conditions through a septum, the 141 

agitation speed was kept at 200 rpm and the temperature at 40 °C throughout all 142 

fermentations. The pH control was set at pH 6, after the pH dropped below that value for 143 

the first time, using 25 % NH3 (v/v) (VWR chemicals, Radnor, USA). At the same 144 

moment, a feeding profile was started (see Supplementary material). Basic pH shifts were 145 

induced by pulse-based feeding of this base, whilst the pH diminished via natural 146 

acidification of the bacteria. The feeding profile was implemented into the bioprocess 147 

platform eve® (Infors HT, Bottmingen, Switzerland) as an individual feeding profile. The 148 

profile included the setpoints for the desired ΔpH, which are summarized in Table 1. In 149 

order to achieve a faster increase of the pH during a pulse, an output setpoint was 150 

included, which was 0.2 pH units higher than the actual maximum pH value desired. 151 

 152 

Table 1. Summary of pulse-feeding scale-down experiments with different pH gradients 153 

(pH). NH3 25 % v/v was introduced by the controller until the upper pH setpoint was 154 

reached. The culture broth was then allowed to decrease the pH due to lactic acid 155 

production until the lower pH setpoint was accomplished. For more information see 156 

Figure 4 and Supplementary material. 157 

 158 

 159 

 160 
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 161 

 162 

 163 

 164 

 165 

Analysis 166 

Cell growth was monitored off line with appropriately diluted samples at a wavelength of 167 

600 nm (OD600) with an Ultraspec 2100 pro UV/Visible spectrophotometer (Amersham 168 

Biosciences, Amersham, UK). For dry cell weight (DCW) determination, 2 mL of cell 169 

suspension were pipetted into a previously dried and weighted 2 mL Eppendorf tube. 170 

Samples were centrifuged at 4 ºC and 15,000 rpm for 10 minutes. The supernatant was 171 

discarded, whilst the cell pellet was washed with 1 mL of 0.9 % (w/w) NaCl solution. 172 

After a second step of centrifugation, the Eppendorf tube containing the washed cells was 173 

dried at 75 ºC for 24 hours and weighted again. The DCW was then calculated as the 174 

difference between the tube with sample and its tare. Samples for extracellular metabolite 175 

and free amino acid concentration were filtered through a membrane filter with a pore 176 

size of 0.8 m (Carl Roth, Karlsruhe, Germany) directly at the sampling port of the 177 

bioreactor. The filtrate was transferred to a 1.5 mL Eppendorf tube and immediately 178 

stored at -80 ºC. 179 

Quantification of metabolites 180 

Extracellular organic acids and sugars were quantified with an Agilent 1200 HPLC 181 

system (Agilent Technologies, Santa Clara, USA) equipped with a refractive index 182 

detector (RID) and a HyperRezTM XP Carbohydrate H+ column (300x7.7 mm, 8 m) 183 

(Fisher Scientific, Schwerte, Germany) using 5 mM H2SO4 at a flow rate of 0.5 mL·min-184 

1 and a temperature of 65 ºC. Prior to analysis the samples were thawed on ice and diluted 185 

pH pHmax pHmin Pulses 

0 (optimal conditions) 6.0 6.0 0 

1.5 7.0 5.5 5 

1.8 7.3 5.5 4 

2.0 7.0 5.0 2 

2.5 8.0 5.5 2 
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¼ with H2O to a final volume of 200 µL. Subsequently, the HPLC vials (VWR, Radnor, 186 

USA) were prepared with a 200 µL micro-insert (VWR, Radnor, USA) and the diluted 187 

samples were transferred into the vials. 188 

Microscopic-based image analysis 189 

1 mL sample was taken directly from the bioreactor into a 1.5 mL Eppendorf tube and 10 190 

L were pipetted on a microscopic slide (VWR chemicals, Radnor, USA). The slide was 191 

then covered with a cover glass of thickness No. 1.5 (VWR chemicals, Radnor, USA) and 192 

placed under the microscope (CN-hFT, Hertel & Reuss, Kassel, Germany) with 100x oil 193 

immersion objective. The images were taken with a digital camera (Canon Power Shot 194 

G1X, Canon, Tokyo, Japan) with 4-times magnification. Images were stored as TIFF 195 

without compression as 8-bit images with 256 possible shades of grey (28 combinations 196 

in binary code). The median grey value of each image set was calculated using ImageJ 197 

(ImageJ version 2.0.0), which was used to quantify the background. Afterwards, the 198 

background pixels were subtracted from each image (step also called segmentation) 199 

within a set (Wu, Merchant et al. 2010). The Cell Profiler software (Cell Profiler version 200 

2.1.0) was implemented to identify the cocci chains of S. thermophilus, to segment them 201 

into individual cocci and to measure the maximal axis length and area. Finally, the chain 202 

length distribution throughout the cultivation time was calculated. More information 203 

regarding the image processing with ImageJ can be found in (Sage, Prodanov et al. 2012) 204 

and further information concerning the cell identification with Cell Profiler can be found 205 

in (Carpenter, Jones et al. 2006). 206 

Data fitting and visualization 207 

In order to calculate rates, data were fitted to a Smoothing Spline with the fitting toolbox 208 

of MATLAB R2013b (The MathWorks, Natick, MA). Concentrations were then obtained 209 
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every desired interval of time. All data plots were created with SigmaPlot version 11.0 210 

(Systat Software, San José, CA). 211 

Statistical analysis 212 

Data were expressed as mean standard deviation (SD) for the description of 213 

reproducibility. Biological replicates were performed as fermentations under identical 214 

conditions. The coefficient of variation (CV%) was then calculated using Equation 1: 215 

𝐶𝑉% =
𝑆𝐷

𝑀𝑒𝑎𝑛
· 100                                                            (1) 216 

Population model 217 

The dynamic biokinetic model of (Spann, Roca et al. 2018) was used as the basis for the 218 

PM. This model originally described the evolution of state variables such as biomass,  219 

lactose, and lactic acid throughout the S. thermophilus fermentation. Importantly, the 220 

biomass growth rate was modelled as a function depending on the lag-time (flag), lactose 221 

inhibition and limitation (fS), lactate inhibition (fP), and the pH (fpH) (Eq. 1). It is worth 222 

mentioning, that the lactose consumption is the sum of the biomass growth and the lactic 223 

acid synthesis rate, considering the complete secretion of galactose, since the studied 224 

strain metabolizes only glucose and secretes galactose under the present cultivation 225 

conditions. The model was implemented and solved in MATLAB® (The MathWorks®, 226 

Natick, MA) using the solver ode15s and discarding the mixed weak acid/base model of 227 

the original publication, since the pH value at each available timepoint is used as input 228 

variable for the model.  229 

𝑑𝑋

𝑑𝑡
= 𝜇 = 𝜇𝑚𝑎𝑥 · 𝑓𝑙𝑎𝑔 · 𝑓𝑆 · 𝑓𝑃 · 𝑓𝑝𝐻 · 𝑓𝑝𝐻𝑚𝑖𝑛 · 𝑋 = 230 
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= 𝜇𝑚𝑎𝑥 · (1 − 𝑒
−

𝑡

𝑡𝑙𝑎𝑔) · (
𝑆

𝑆+𝐾𝑆+
𝑆2

𝐾𝐼

) · (
1

1+𝑒𝐾𝑃·(𝑃−𝐾𝑃1)
) ·

(

 𝑒
−(

(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻)
2

𝜎𝑝𝐻
2 )

)

 · (1 −231 

10𝑝𝐻𝑚𝑖𝑛

10𝑝𝐻
) · 𝑋 (1) 232 

In this study, the population heterogeneity is assessed by means of different morphologies 233 

of the lactic acid bacteria (LAB) under certain pH gradients. As explained in more detail 234 

afterwards, rates of conversion (elongation or separation) between bacteria of different 235 

morphologies (namely “natural” and “abnormal” cells) are suggested. Furthermore, three 236 

model assumptions are contemplated: (i) every coccus has the same size (i.e. volume, 237 

shape, circularity, etc.), as observed under the microscope, (ii) there is either one 238 

elongation or separation event at a time and (iii) the elongation as well as separation rates 239 

are affected by the pH gradients (pH) faced. The event rates are defined by Eq. 2-6. 240 

𝑟𝑁𝐸,1𝑐 = 𝑘𝑁𝐸 · 𝜇 · 𝐶1𝑐                                                (2) 241 

𝑟𝐿𝐴𝐸,𝑖 = 𝑘𝐿𝐴𝐸 · 𝜇 · 𝐶𝑖          𝑖 𝜖 2𝑐 𝑎𝑛𝑑 3𝑐                             (3) 242 

𝑟𝐻𝐴𝐸,𝑗 = 𝑘𝐻𝐴𝐸 · 𝜇 · 𝐶𝑗           𝑗 𝜖 2𝑐, 3𝑐 𝑎𝑛𝑑 4𝑐                             (4) 243 

𝑟𝑆,𝑘 = 𝑘𝑆 · 𝜇 · 𝐶𝑘          𝑘 𝜖 2𝑐, 3𝑐 𝑎𝑛𝑑 4𝑐                             (5) 244 

𝑟𝑆,5+𝑐 = 𝑘𝑆,5+𝑐 · 𝜇 · 𝐶5+𝑐                                         (6) 245 

where “NE” accounts for “natural elongation”, “LAE” accounts for “light abnormal 246 

elongation” (i.e. event where a chain elongates simultaneously from both opposed poles), 247 

“HAE” accounts for “heavy abnormal elongation” (i.e. event where only one of the 248 

extremes of the cell elongates) and “S” accounts for “separation”. Moreover, 1c, 2c, 3c, 249 

4c and 5+c stand for 1-, 2-, 3-, 4- and 5 or more cocci chains, respectively. What is more, 250 

1c and 2c chains were considered “natural” cell sizes, while 3c, 4c and 5+c chains were 251 

assessed as “abnormal” morphologies, based on observations under the microscope when 252 

S. thermophilus were subjected to variable pH-gradients.  253 



12 
 

The variation of a population with a certain morphology over time depends on (i) the 254 

conversion of other cells to this chain length, (ii) its own evolution to the other 255 

morphologies and (iii) its own growth during the process. With this, the ordinary 256 

differential equations (ODEs) are defined for the system (Eq. 7-11), where the growth 257 

rate is calculated based on Eq. 1 from (Spann, Roca et al. 2018). Importantly, here solely 258 

the conversion rates constants (kNE, kLAE, kHAE, kS and kS,5+c) are considered as parameters 259 

to be estimated, while the rest of parameters are taken from the original publication. Since 260 

each initial data set (i.e. fermentation) possesses a different lag phase, the experimental 261 

data was normalized prior to be used as input for the model. Additionally, the pH value 262 

is the only input variable, as commented before, since it is measured during the process 263 

or experiment. This means, that the model simulates the state variables at each pH value 264 

available from the online sensor (every 1 or 5 minutes in single- or multi-compartment 265 

scale-down experiments, respectively). 266 

𝑑𝐶1𝑐

𝑑𝑡
= 𝑟𝑆,2𝑐 +

1

3
· 𝑟𝑆,3𝑐 +

1

4
· 𝑟𝑆,4𝑐 +

1

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑁𝐸,1𝑐 + 𝜇 · 𝐶1𝑐          (7) 267 

𝑑𝐶2𝑐

𝑑𝑡
=
2

3
· 𝑟𝑆,3𝑐 + 𝑟𝑆,4𝑐 +

2

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑆,2𝑐 + 𝑟𝑁𝐸,1𝑐 − 𝑟𝐿𝐴𝐸,2𝑐 − 𝑟𝐻𝐴𝐸,2𝑐 + 𝜇 · 𝐶2𝑐  (8) 268 

𝑑𝐶3𝑐

𝑑𝑡
=
3

4
· 𝑟𝑆,4𝑐 +

3

5
· 𝑟𝑆,5+𝑐 − 𝑟𝑆,3𝑐 + 𝑟𝐻𝐴𝐸,2𝑐 − 𝑟𝐿𝐴𝐸,3𝑐 − 𝑟𝐻𝐴𝐸,3𝑐 + 𝜇 · 𝐶3𝑐      (9) 269 

𝑑𝐶4𝑐

𝑑𝑡
=
4

5
· 𝑟𝑆,5+𝑐 − 2𝑟𝑆,4𝑐 + 𝑟𝐿𝐴𝐸,2𝑐 + 𝑟𝐻𝐴𝐸,3𝑐 − 𝑟𝐻𝐴𝐸,4𝑐 + 𝜇 · 𝐶4𝑐       (10) 270 

𝑑𝐶5+𝑐

𝑑𝑡
= −2𝑟𝑆,5+𝑐 + 𝑟𝐿𝐴𝐸,3𝑐 + 𝑟𝐻𝐴𝐸,4𝑐 + 𝜇 · 𝐶5+𝑐                   (11) 271 

Summarizing, the population model has five parameters to be estimated (kNE, kLAE, kHAE, 272 

kS and kS,5+c) and needs the pH value as input variable. 273 

Parameter estimation 274 

The parameter estimation was performed to fit the experimental cell size distribution (i.e. 275 

1-, 2-, 3-, 4- and 5 or more cocci throughout the experiment or data set) using the 276 

methodology from (Sin and Gernaey 2016), as described in (Spann, Roca et al. 2017). 277 
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The parameter estimation was conducted in MATLAB R2013b (The MathWorks, Natick, 278 

MA) with the nonlinear least-squares solver (lsqnonlin). In the objective function, the 279 

weighted error of the model predictions was calculated for the five populations (namely 280 

1c, 2c, 3c, 4c and 5+c) at all measured time points i (Eq. 12). The residuals vector then 281 

contained the weighted error vectors of the five states j. 282 

𝐸𝑟𝑟𝑜𝑟𝑖 = |
𝑦�̂�−𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖

𝑤𝑗
|                                                  (12) 283 

where wj is the maximum value of each specific component. Furthermore, the uncertainty 284 

of the estimated parameters was quantified with the relative error (RE) between the 285 

standard deviation of the parameter estimate with respect to the estimated mean value 286 

(Eq. 13). 287 

𝑅𝐸𝑖 =
𝜎𝜃�̂�
𝜃�̂�

                                                            (13) 288 

Initial conditions 289 

If not otherwise stated, the initial conditions were taken from (Spann, Roca et al. 2018). 290 

Importantly, all the parameters of the mixed weak acid/base model were discarded, 291 

because the pH was measured in-line and used as an input variable for the model. The 292 

initial lactose concentration was calculated as the mean value between the HPLC results 293 

of the first two data points of each experiment. Since all cultivations were normalized by 294 

their lag-phase a tlag of 0.38 h for all model predictions was taken. The minimum pH value 295 

needed to ensure cell growth (pHmin) was 4.8, which was experimentally calculated after 296 

carrying out a fermentation without pH control (Figure S1). Finally, the initial parameter 297 

values for completing Eq. 1 were taken from the original publication, while the initial 298 

parameter estimates for the PM were calculated as one third of the sum of their 299 

correspondent lower and upper value (see Table S1). 300 
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 301 

Figure S1. Evolution of the biomass (empty dots), online OD (black line) and pH (grey 302 

line) throughout a S. thermophilus fermentation without pH control. Error bars: Mean ± 303 

SD (n = 2). 304 

 305 

Table S1. Initial parameter estimates for the population model, based on expert 306 

knowledge. 307 

 308 

 309 

 310 

 311 

Assessment of the model fit 312 

The goodness of fit for the model prediction in the model validation procedure was 313 

assessed with the root mean sum of squared errors (RMSSE) and calculated with Eq. 14. 314 

𝑅𝑀𝑆𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 − 𝑦�̂�)

2𝑛
𝑖                                           (14) 315 

  316 

Kinetic parameter Initial value Lower bound Upper bound 

kNE 333.3 0.00001 1000 

kLAE 66.7 0.00001 200 

kHAE 133.3 0.00001 400 

kS 333.3 0.00001 1000 

kS,5+c 133.3 0.00001 400 
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Results and discussion 317 

Pulse-feeding scale-down simulators 318 

In this study, biological duplicates of Single-CR cultivations with variable pH gradients 319 

(namely pH 1.5, 1.8, 2.0 and 2.5) were compared with fermentations under optimal 320 

conditions (i.e pH = 0). The pH development throughout these experiments is 321 

summarized in Figure 1. The culture broth was allowed to reach pH 6 due to high lactic 322 

acid production and the base feeding profile (see Supplementary material) was then 323 

started. Basic pulses were induced with NH3 25 % v/v addition, while acid stress was 324 

accomplished by letting the bacteria decrease the pH through own lactic acid production. 325 

In contrast with (Paper IV), in this work the basic excursions were performed through a 326 

programmed feeding profile to reach the desired alkaline pH value. Once this was 327 

accomplished, the media pH was allowed to decrease until the desired acidic pH value 328 

through natural lactic acid production from the LAB, when a new ammonia pulse started 329 

(Figure 1). Therefore, as seen in the pH development during the different experiments, S. 330 

thermophilus was exposed to less than 6 pH perturbations when the smallest pH was 331 

induced (Table 1), while in the real industrial pH control scenario, alkali additions are 332 

notably more frequent (Spann, Glibstrup et al. 2018) and, in fact, (Paper IV) aimed at 333 

resembling. These are two completely different scenarios, which induced different stress 334 

responses as well as yield losses in other microorganisms (Cortés, Flores et al. 2016, 335 

Brunner, Braun et al. 2017), but were never studied in LAB. In the current industrial 336 

process, only base is introduced to compensate the metabolic lactic acid synthesis of S. 337 

thermophilus and thus, no manual acid pulses were induced during Single-CR scale-down 338 

experiments. On the contrary, throughout the scale-down fermentations carried out by 339 

(Paper IV), acid pulses with phosphoric acid were induced when using the Three-CR 340 

approach. Importantly, when compensating base pulses with the addition of an acid, 341 
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cellular responses to increased osmolarity may arise (Osman, Birch et al. 2002) and this 342 

was another reason why acid pulses were avoided in this study. 343 

 344 

Figure 1. Evolution of the pH value during Single-CR experiments with pH gradients 345 

(pH) of 0 (solid line), 1.5 (long dashed line), 1.8 (short dashed line), 2.0 (dotted line) 346 

and 2.5 (dashed-dotted-dotted line). 347 

 348 

Growth, main carbon metabolism and cocci chain length distribution 349 

The influence of different pH shifts on S. thermophilus 1 L batch fermentations in Single-350 

CR scale-down bioreactors with pulse-based feeding of ammonia was assessed by means 351 

of biomass growth (Figure 2), main carbon metabolites (Figure 3) and cocci chain length 352 

distribution (Figure 4). The results are then compared with multi-compartment scale-353 

down studies performed previously (Paper IV).  354 

Under standard conditions, the stationary phase was entered after 6-7 h reaching a final 355 

DCW of 6.4 g·L-1. This is in accordance with fermentations carried out with the same 356 

inoculum and initial lactose concentration in the 10 L scale (Paper IV). Moreover, the 357 

higher the pH, the higher the biomass productivity loss, i.e. the lower the final DCW 358 
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(Figure 2A), resulting in a 48.5 % biomass loss in the worst-case scenario with a pH of 359 

2.5. Importantly, in Single-CR systems, these pH gradients are experienced by the whole 360 

cell population (100 %), while a certain percentage of the biomass is really subjected to 361 

oscillating environmental conditions in the large scale, scenario better simulated in multi-362 

compartment systems, where 10 or 20 % of the bacteria are under an induced stressed 363 

during Two- or Three-CR setups, respectively (Paper IV). This is why it was expected 364 

that the pH shifts induced in this work promote higher biomass productivity losses than 365 

multi-compartment experiments. Furthermore, the maximum growth rate (max = 1.2 h-1) 366 

under optimal conditions (Figure 2B) was also in accordance with the same experiments 367 

in the 10 L scale, published before. Interestingly, the first pH gradients induced (i.e. pH 368 

= 1.5), were affecting the maximum growth rate value but not the slope of decrease of the 369 

growth rate over time. From pH = 1.8 on, the higher the pH gradient, the more 370 

pronounced the decline of the growth rate. It is worth mentioning, that small growth 371 

increases were detected in experiments with pH = 2.0 as well as 2.5, which correspond 372 

to the timepoints where base pulses occurred or the pH value was next to the optimal 373 

point. These observations support the hypothesis made by (Paper IV), that S. 374 

thermophilus growth is more sensible to an acidic environment than to higher pH values. 375 

This is mainly due to stress responses from the LAB to an increasing amount of 376 

extracellular non-dissociated lactic acid at low pH, which try to maintain the intracellular 377 

pH (pHi) at the expense of ATP (Ramos, Thorsen et al. 2014, Papadimitriou, Alegría et 378 

al. 2016). 379 
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 380 

Figure 2. Development of the biomass (A) and the growth rate (B) throughout pulse-381 

feeding scale-down experiments in biological duplicates with a pH of 0 (open circles 382 

and solid lines), 1.5 (open triangles up and long dashed lines), 1.8 (open squares and short 383 

dashed lines), 2.0 (open diamonds and dotted lines) and 2.5 (open triangles down and 384 

dashed-dotted-dotted lines). Error bars: Mean ± SD (n = 3). 385 

 386 

Regarding the development of metabolites over time (Figure 3), the fermentation under 387 

standard conditions showed a constantly decreasing lactose concentration, but without a 388 

depletion of the carbon source (Figure 3A). This is also in accordance with previous 389 

experiments (Paper IV), where the main nutrient is not completely consumed even under 390 

optimal conditions because of by-product accumulation (i.e. high lactic acid 391 

concentration in the media). Moreover, the higher the pH shift, the more lactose remained 392 

unconsumed in the medium at the end of the fermentation. Galactose and lactate 393 

accumulated almost on parallel, with more lactate production as well as a higher galactose 394 
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excretion with a lower pH gradient (Figure 3B and 3D, respectively). Importantly, 395 

glucose accumulated under strong pH, when compared to the glucose concentration over 396 

time throughout fermentations under optimal conditions (Figure 3C). Under standard 397 

conditions (i.e. pH = 0) and for pH = 1.5, the glucose concentration was incorporated 398 

again after 4-5 h of cultivation, whereas for a higher pH, it rather increased. That 399 

resulted in an accumulation of glucose in the medium up to 1.8 g·L-1 for pH = 1.8 and 400 

even 5.2 g·L-1 for pH = 2.5, which indicates an influence of oscillating pH on the 401 

glycolysis. This observation was already commented in the previous publication (Paper 402 

IV) and here the effect of pH gradients on the glycolytic pathway was confirm, probably 403 

on the first step of phosphorylation of the glucose moiety (Jin, Qin et al. 2015). 404 

 405 

Figure 3. Metabolites’ development during Single-CR experiments under different pH 406 

gradients: 0 (circles), 1.5 (triangles up), 1.8 (squares), 2.0 (diamonds) and 2.5 (triangles 407 

down). Lactose (A, black filled symbols), lactate (B, empty symbols), glucose (C, grey 408 
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filled and black edged symbols) and galactose (D, grey filled and edged symbols) 409 

concentrations over time. 410 

 411 

Under standard conditions with a controlled pH, the cocci chain length distribution was 412 

more homogenous compared to oscillating conditions (Figure 4). As seen in Figure 4F, 413 

diplococcic chains represented the major part from the population towards the end of the 414 

fermentations, whilst long chains (i.e. of 5 or more cocci, 5+c) disappeared almost 415 

completely after 6 h of experiment. Initially longer chains (3 and 4 cocci chains, 3c and 416 

4c, respectively) evolved to single- (1c) and two- (2c) cocci chains, possibly because of 417 

a higher activity of the endopeptidase enzyme responsible for cell separation in S. 418 

thermophilus (Layec, Gérard et al. 2009). Under oscillating pH conditions, a broader 419 

distribution of the cocci chain length with longer chains becoming more relevant was 420 

observed (Figure 4A-E). As an example, after the first base pulse in the cultivations with 421 

pH = 1.5 (Figure S2-A), the population consisted of mainly longer chains with 48 % of 422 

the biomass with five or more cocci (5+c) and a reduction in diplococcic chains (2c) 423 

compared to conditions with the pH controlled at 6 (Figure 4F). The second pulse led to 424 

a distribution with two (2c), three (3c) and four cocci (4c), where they represented about 425 

80 % of the population. The next sample was taken before the fourth base pulse, when 426 

the broth pH was 5.6. At that timepoint, an increase of single cocci (1c) up to 21 % was 427 

observed. While single cocci (1c) and diplococcic chains (2c) decreased half an hour later, 428 

especially chains of four (4c) and larger cocci (5+c) increased up to 20 % and 40 %, 429 

respectively, at a pH of 6. Further samples were all taken at pH 6 or higher, showing the 430 

predominance of longer chains of four and longer cocci chains. In summary, high pH 431 

pulses resulted in rather longer chains, while at a lower pH a trend towards smaller chains 432 

was detected (Figure S2). This is in accordance with previous results with multi-433 
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compartment scale-down experiments (Paper IV). More precisely, the amount of single 434 

cocci (1c) as well as chains of five or more cocci (5+c) seemed to be good indicators of 435 

the influence of pH shifts, when compared to optimal conditions. 436 

 437 

Figure 4. Cell size distribution evolution during Single-CR experiments under different 438 

pH gradients (A-E): 0 (circles), 1.5 (triangles up), 1.8 (squares), 2.0 (diamonds) and 2.5 439 

(triangles down). The amount of cocci per chain (in g·L-1) were calculated from the cocci 440 

chain length distribution (F, example for pH = 0) and the biomass at the same timepoint. 441 

Relative amount of one coccus (black bars), two (red bars), three (green bars), four 442 

(yellow bars) and five or more (blue bars) cocci chains over time. For information 443 

regarding the experiments with induced pH gradients, see Figure S2. 444 
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 445 

Figure S2. Development of the pH (solid black line) and the cocci chain length 446 

distribution (vertical colored bars) throughout Single-CR scale-down fermentations with 447 

pH = 1.5 (A), 1.8 (B), 2.0 (C) and 2.5 (D). Relative amount of one coccus (black bars), 448 

two (red bars), three (green bars), four (yellow bars) and five or more (blue bars) cocci 449 

chains. 450 

 451 

Population modeling 452 

(Spann, Roca et al. 2018) originally used the mixed weak acid/base model to predict the 453 

pH development during a fermentation, but it is one of the few critical process parameters 454 

(CPP) available during the industrial scale process and therefore it was suggested to use  455 

it as input variable. In contrast to (Spann, Roca et al. 2018), the PM developed here 456 

needed to be able to model the state variables in strong acidic conditions. This is why an 457 

additional term in the calculation of the growth rate (Eq. 1) was included, which depends 458 
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on the minimum pH value needed for the cells to grow (fpHmin). This additional parameter 459 

was experimentally calculated by performing a fermentation without pH control and 460 

identifying the pH value at which growth ceased (Figure S1). The term included in the 461 

original calculation of  represents a logarithmic decay towards acidic environments (Eq. 462 

15).  463 

𝑓𝑝𝐻𝑚𝑖𝑛 = 1 −
10𝑝𝐻𝑚𝑖𝑛

10𝑝𝐻
                                               (15) 464 

Moreover, a new parameter estimation from the original parameter set was not necessary, 465 

since the same strain, with the same media components were used and because only 466 

cultivations where the macroscopic variables were accurately fitted (RMSSE < 0.6 g·L-1 467 

for biomass) were used for the parameter estimation in the PM. 468 

Based on previous results (Paper IV) and experiments performed in this work, the cell 469 

morphology of S. thermophilus was differentiated between “natural” and “abnormal” 470 

cocci chain lengths. Here, on the one hand, two- as well as four-cocci chains were 471 

suggested as “natural” morphologies, which are the most relevant cell sizes detected 472 

under optimal growth conditions. On the other hand, one-, three-, five-cocci and longer 473 

chains were proposed as “abnormal” cell sizes, which predominate when the culture broth 474 

is subjected to variable pH oscillating environments. What is more, based on the cell 475 

division process of these LAB, chains are continuously being elongated and separated 476 

during growth and therefore also a discretization between “natural” as well as “abnormal” 477 

events (i.e. elongation and separation) needs to be taken into account. With all these 478 

hypotheses, a scheme summarizing the rates of conversion between the different 479 

morphologies of the whole population considered was proposed (Figure 5). 480 
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 481 

Figure 5. Scheme of the S. thermophilus populations considered in the PM based on 482 

authors’ observations during fermentations under optimal as well as oscillating pH 483 

conditions. One, two- and four-cocci chains are considered “natural” morphologies (in 484 

green), while three- and five-cocci or more chains are regarded as “abnormal” cell sizes 485 

(in blue). Additionally, separation (S, dashed black lines) was considered to be equal 486 

among populations, except for the longest cocci chains (S,5c). The elongation term was 487 

separated into “natural” (NE), “light abnormal” (LAE) and “heavy abnormal” events 488 

(HAE) depicted with green, orange and red arrows, respectively. 489 

 490 

The PM parameters (namely, kNE, kLAE, kHAE, kS and kS,5+c) were estimated in order to fit 491 

the experimental cell size distribution (i.e. 1-, 2-, 3-, 4- and 5 or more cocci) throughout 492 

cultivations under optimal pH conditions in 1 L (this study) and 10 L (Paper IV) as well 493 

as under single- (this work) or multi-compartment (Paper IV) scale-down experiments 494 

with pH oscillating environments.  On the one hand, the initial conditions for the carbon 495 

metabolism were taken from the original publication (Spann, Roca et al. 2018), with a tlag 496 

of 0.38 h and using the measured pH as input variable. On the other hand, the initial values 497 

for the PM parameters were taken as one third of the difference between their maximum 498 
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and minimum values (Table S1), because these rate constants are arbitrary and no 499 

literature was available to compare or discuss their absolute values.   500 

The cocci chain length distribution during the vast majority of data sets selected were 501 

successfully predicted with the population model developed (see Figure 6 as an example 502 

of a Single-CR scale-down simulation). Moreover, lactose consumption as well as 503 

biomass and lactic acid production, together with galactose accumulation (i.e. off-line 504 

determined metabolites of the central carbon metabolism) were also accurately simulated 505 

(Figure 7). Interestingly, despite the fact that the measured oscillating pH during scale-506 

down experiments was used as input variable for the model predictions, a relatively good 507 

model fit was still obtained. In this context, it is worth mentioning that there was limited 508 

microscopic data available from Two-CR scale-down experiments (Paper IV) and 509 

therefore were not included in the simulations. Furthermore, the central carbon 510 

metabolism of Single-CR fermentations with base pulses with pH > 1.8 was affected to 511 

such an extent (i.e. RMSSE > 0.6 g·L-1 for biomass), that the original parameter set for 512 

the description of the macroscopic variables should be changed. This is why, these data 513 

sets were also discarded in this study. An important observation is, that all population 514 

developments over time were supposed to follow an exponential growth, which also 515 

limits the modelling capabilities and sets relevant constraints. Since the experimental 516 

population concentrations were calculated from the corresponding biomass divided into 517 

the different proportions of cocci chain morphologies considered (i.e. 1c, 2c, 3c, 4c and 518 

5c+), this correlation type was assumed. One way in which degradation of certain 519 

populations could be taken mathematically into account, would be incorporating a decay 520 

term in the ODEs (i.e. the population rates). To decide whether this additional “death” 521 

term should also be exponential or not shall be deeply investigated in the future. 522 
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 523 

Figure 6. Experimental (empty circles) and predicted (lines) of population heterogeneity 524 

(namely 1-, 2-, 3-, 4- and 5- or more cocci chains) throughout a S. thermophilus 525 

cultivation where a pH = 1.8 (+1.3;-0.5) was induced in a 1 L STR with 70 g·L-1 initial 526 

C-source concentration, with ammonia pulses. 527 

 528 

Figure 7. Experimental (empty circles) and predicted (lines) values of macroscopic 529 

variables (namely lactose, biomass, lactic acid and galactose concentrations as well as 530 

pH) throughout cultivation where a pH = 1.8 (+1.3;-0.5) was induced in a 1 L STR with 531 

70 g·L-1 initial C-source concentration, with ammonia pulses. 532 

 533 
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Importantly, the same kinetic constants for the PM enabled the acceptable prediction of 534 

all variables under optimal growth conditions as well as when pH-gradients were induced, 535 

during both, single- and multi-compartment scale-down experiments, at least in 536 

duplicates (Table 2). Firstly, both separation constants (i.e. kS and kS, 5c+) in 1 L STR 537 

fermentations were double as high as in 10 L STR experiments. Moreover, the kLAE was 538 

four times lower in the smaller fermenters. These two observations were initially 539 

attributed to the belief that an increased local shear stress was probably encountered by 540 

bacteria in the smallest bioreactor, because the 1 L vessel was agitated at half of the tip 541 

speed of the ten times larger fermenter (200 and 400 rpm, respectively). Nevertheless, 542 

taking into account the stirrer diameter and based on calculations of the Reynolds number 543 

as well as the power input per unit volume (P/V) in both vessels (Table S2), the 544 

hydrodynamic stress () in the 1 L bioreactor was apparently only a 26 % of that of the 545 

10 L one (Sieck, Budach et al. 2014). Maybe the 2x factor between the natural elongation 546 

term in both scales would rather explain the differences observed in subsequent event 547 

rates, leading to a combination of factors. The response of varying hydrodynamic stress 548 

has been typically studied in mammalian cell culture (Chalmers 2015), where the 549 

microorganisms are generally more shear sensitive than bacteria. (Sieck, Budach et al. 550 

2014) found a characteristic local minimum in CHO cell viability after stress induction, 551 

followed by viability recovery. Moreover, transcriptome analysis revealed adaptation 552 

mechanisms identifying a certain fingerprint, but cellular metabolism, productivity and 553 

product quality were not significantly affected by shear stress. Additionally, sparging 554 

stress is also normally included in such studies, where in LAB would be irrelevant 555 

because only nitrogen is sparged in the head space to maintain a sterile positive pressure 556 

inside the bioreactor. Importantly, kHAE took its minimum value without pH gradients (in 557 

both, 1 L as well as 10 L STR), becoming a potential indicator of unfavourable growth 558 
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environments. The rate of natural elongation (kNE) was generally high, mainly because 1c 559 

chains were hardly detected under the microscope in all cultivation conditions: the natural 560 

cell division of S. thermophilus occurs in successive parallel planes perpendicular to their 561 

axis leading to diplococcal daughter cells (Zapun, Vernet et al. 2008). Both, kS and kS, 5c+, 562 

were lower and kHAE was noticeably higher in both, Single-CR as well as Multi-CR scale-563 

down experiments than under optimal STR conditions. As explained before, separation is 564 

considered as an indicator for optimal growth (Chapot-Chartier and Kulakauskas 2014), 565 

which is definitely hindered under pH-oscillating conditions (see Figure 2). What is more, 566 

the heavy abnormal elongation term relates to unfavourable bacterial division, where only 567 

one of the extremes of the cell elongates, which in fact was detected under scale-down 568 

conditions (Figure 4). Finally, kLAE was almost not affected under Three-CR scale-down 569 

experiments, but considerably influenced when base pulses were induced in Single-CR 570 

fermentations. Furthermore, kHAE was slightly higher in 1 L Single-CR than 10 L Multi-571 

CR oscillating cultivations. Both observations emphasize the different percentage of cell 572 

population subjected to the induced gradients:  in Single-CR experiments the whole 573 

biomass (i.e. 100 % of cells) suffered from changing pH conditions, while a maximum of 574 

20 % of the bacteria were in contact with pH-gradients in Three-CR fermentations 575 

(Neubauer and Junne 2010, Lemoine, Delvigne et al. 2017), and therefore less impacted 576 

on the cell division cycle. 577 

 578 

Table 2. Final biomass (i.e. DCW) and maximum pH gradient induced under optimal (1 579 

L and 10 L STR) as well as scale-down (Three-CR and Single-CR) cultivation conditions. 580 

Estimated kinetic parameters (kNE, kLAE, kHAE, kS and kS,5+c) from the PM after prediction 581 

of duplicates or triplicates of the different fermentation conditions. 582 
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Experiment (replicates) 
Experimental Population model 

DCWend DpHmax kNE kLAE kS kHAE kS,5c+ 

STR,10L (n = 2) 5.4 +0;-0 1000.0 8.4 23.3 0.0 43.1 

3CSDR,10L (n = 2) 4.3 +2.0;-1.3 1000.0 5.6 9.2 288.2 31.9 

STR,1L (n = 2) 6.3 +0;-0 514.3 1.9 48.3 0.0 84.8 

1CSDR,1L (n = 3) 5.7 +1.3;-0.5 736.6 36.8 49.4 372.4 16.4 

 583 

Table S2. Reynold number (Re), power input to unit volume (P/V), mixing time (tm) and 584 

hydrodynamic stress () for STR of 1 and 10 L with impeller diameters of 3.7 and 6.6 cm, 585 

respectively, and stirred at 200 and 400 rpm, respectively. 586 

Bioreactor Re [-] P/V [kg/(m·s3)] tm [s] [kg/(m·s2)]

STR,10L 4·104 186 8 0.35 

STR,1L 7·103 12 9 0.09 

 587 

 588 

The arbitrary model parameters (i.e. event rate constants kNE, kLAE, kHAE, kS and kS,5+c) 589 

for the PM allowed to successfully predict population heterogeneity as well as main 590 

metabolites during S. thermophilus fermentations with and without variable pH-591 

oscillating conditions. Nevertheless, one current limitation is that those parameters have 592 

never been described before in literature and cannot be experimentally confirmed without 593 

performing additional single-cell morphology investigations varying media pH to fully 594 

elucidate the cell cycle of these LAB. In this work, the validation of the mechanistic 595 

model was claimed by presenting the outputs of the model showing a good agreement 596 

with experimental data, within a certain experimental range (i.e. pH oscillations). 597 

Therefore, the reliability of the parameter estimates was not considered, thus, 598 

theoretically, although only having defined five rates, an infinite combination thereof 599 

could show the same fit (i.e. a non-identifiable parameter set was used). In future studies, 600 

(i) the structural and practical identifiability of the PM parameters will be tested, as well 601 
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as (ii) the uncertainty of parameter estimates after fitting and (iii) the propagation of this 602 

uncertainty on model outputs (Raue, Kreutz et al. 2009). In this context, an algorithm to 603 

determine the presence of non-identifiable parameters in models with high output 604 

uncertainty was recently published (Anane, Barz et al. 2019). The authors propose to 605 

explore the numerical properties of the sensitivity matrix and a regularization technique, 606 

in conjunction with Monte Carlo Analysis. This methodology, applied to a macro-kinetic 607 

growth model describing E. coli fed-batch cultivations (Anane, Neubauer et al. 2017), 608 

resulted in a reduction in the uncertainty of model outputs from a maximum CV% of 609 

748 % to 5 % after regularization as well as a 15-fold improvement in the accuracy of 610 

model predictions for two independent validation datasets. Such an approach could 611 

clearly improve the reliability of the current prediction of S. thermophilus population 612 

heterogeneity under certain pH gradients presented in this work.  613 
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Conclusion 614 

Pulse-feeding of ammonia in Single-CR S. thermophilus fermentations induced alkaline 615 

gradients until pH 8.0 (i.e. pH = +2.0), while the pH was allowed to decrease until pH 616 

5.0 (i.e. pH = -1.0) through acidification due to metabolic lactic acid production from 617 

the LAB. These pH oscillations were rather shifts, compared to the pulses induced in 618 

Multi-CR experiments of the previous publication. The smallest pH shift performed in 619 

this work (pH = 1.5: +1.0;-0.5) yielded already more than a 10 % biomass productivity 620 

loss, while no statistical difference on final DCW was obtained under Two-CR scale-621 

down cultivations, compared to gradient free fermentations. This emphasizes the fact that 622 

the whole cell population was subjected to the oscillations in the Single-CR system, thus 623 

being more influenced by them than bacteria in the Multi-CR setup. Furthermore, a 624 

tendency towards chain length elongation under basic environments and towards shorter 625 

chains at lower pH values than the optimum was detected in this work, which could not 626 

be elucidated in past Three-CR experiments with acid and basic pH pulses. Finally, an 627 

already published mechanistic model describing S. thermophilus growth (i.e. biomass and 628 

lactic acid production, in parallel with lactose consumption and galactose accumulation) 629 

was extended to simulate key populations identified in cultivations with and without pH 630 

oscillating conditions (Single- as well as Multi-CR). The population model successfully 631 

predicted population heterogeneity, by means of morphological differences, under 632 

different pH gradients, but model reliability should be improved through analyzing 633 

parameter identifiability as well as uncertainty. This in-silico growth and cell division 634 

representation, if coupled to advanced in-situ microscopy as well as image recognition 635 

techniques, would allow the implementation of a soft-sensor or model-based process 636 

control strategies in the industrial production of starter cultures for the Food & Feed 637 

industry to ensure product quality and improve process understanding.   638 
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Supplementary material 754 

In order to induce the desired pulse-based feeding profile, an individual feeding profile 755 

was implemented into the bioprocess platform software eve® (Infors HT, Bottmingen, 756 

Switzerland). 757 

 if(double.IsNaN(process["pHPhase"])) 758 

{ 759 

 process["pHPhase"] = 0; 760 

} 761 

var pHPhase = process["pHPhase"]; 762 

if (pHPhase < 1) 763 

{ 764 

 output.Setpoint = output.Value; 765 

 if (output.Value <= 6) 766 

 { 767 

   process["pHPhase"] = 1; 768 

 } 769 

}  770 

else if (pHPhase < 2) 771 

{ 772 

 output.Setpoint = //Enter value; 773 

 if(output.Value >=//Enter value) 774 

 { 775 

   process["pHPhase"] = 2; 776 

 } 777 

} 778 

else if (pHPhase < 3) 779 

{ 780 

 output.Setpoint = output.Value; 781 

 if(output.Value <=//Enter value) 782 

 { 783 

   process["pHPhase"] = 3; 784 

 }  785 

} 786 
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else if (pHPhase < 4) 787 

{ 788 

 output.Setpoint =//Enter value; 789 

 if(output.Value >=//Enter value) 790 

 { 791 

   process["pHPhase"] = 2; 792 

 } 793 

} 794 

 795 
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Appendix 

i. Flow cytometry analysis 

a. Staining protocol TU Berlin 

Preparation of Phosphate Buffered Saline (PBS): 

a) For 1L of solution weigh the following components: 

- 8.00 g NaCl (M = 58.44 g·L-1),  

- 0.20 g KCl (M = 74.56 g·L-1),  

- 1.44 g Na2HPO4 *2H2O (M = 177.99 g·L-1),  

- 0.24 g KH2PO4 (M = 136.09 g·L-1).  

b) Add 800 ml H2Odest.  

c) Adjust to pH 7.2 using HCl or NaOH 

d) Fill volume up to 1 L with H2Odest. 

e) Filter the solution with a pore size of 0.2 m (discard the first fraction of about 10 ml in order 

to avoid impurities caused by the filter material). 

 

Before analysis in the flow cytometer: 

a) Activate the “Acquisition Mode” and wait until the laser is heated up (488 nm: ≈37 ºC; 405 nm 

& 635 nm: ≈ 25 ºC). Check it by clicking “View”, “Hardware Monitor” and “Lasers and 

detectors”. 

b) Calibrate with calibration solution automatically by bar code recognition: the calibration 

solution contains beads of 2 and 3 m in order to enable the adjustment of the voltage 

settings. Particles of 3 m are stained with multiple fluorescent dyes to comprise the emission 

spectra of commonly used fluorochromes. Beads are excited between 400 nm and 650 nm to 

yield emission in all fluorescent channels. 

c) The following laser and filter set is available at MACSQuant® (Figure 57): 

V1: DAPI (DNA: 451 nm), V2: DAPI (RNA: 500 nm), B1: Box, Rh123; B3: PI 
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Figure 57. Available lasers and filters at MACSQuant® Analyser. 

Settings at MACSQuant® for Measurement:  

Channel Scaling voltage Trigger Experiment settings 

SSC Log 3  2.0 Cell concentration ≈ 106 cells·mL-1 

FSC Log 3  8.0 Stop after 100.000 events 

B1 h Log   Medium flow rate 

B2 h Log   Mixing 

B3 h Log   60 l uptake volume 

B4 h Log   180 l total volume (for mixing) 

 

Concentrations of staining solutions: 

 

Samples / Analysis frequency: 

 

 

 

 

 

 

 

  

 BOX PI DAPI 

Stock solution 
(storage at -20 ºC) 

0.5 mg·mL-1 DMSO 1.6 mg·mL-1 H2O 10 mg·mL-1 H20 

Working solution 
(storage at 4 ºC) 

6.5 g·mL-1 PBS 12.8 g·mL-1 PBS 270 g·mL-1 PBS 

Final concentration 
in samples 

0.5 g·mL-1 PBS 1 g·mL-1 PBS 20 g·mL-1 PBS 

 BOX PI DAPI 

Time Points 7 7 7 

Replicates 3 3 3 

Total stained samples each dye 21 21 21 

Positive controls 
3-5 times per cultivation day (double estimation) 

6 6 6 

Total (samples + positive) 27 each dye 
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Staining solutions = working solutions (stored in the dark at 4°C, maximal for a week): 

 

a) Calculation of volumes: 

 Vol./sample [L] Total Vol. needed [L] Vol. Prepared [L] 

Box 15 405 1000 

PI 15 405 1000 

DAPI 15 405 1000 

 

b) Pipetting scheme for preparation of working dilutions: 

Final 

concentration in 

sample 

Dilution grade 
Volume from dye stock 

solution 

Volume 

PBS 

Total vol. 

prepared 

Box: 0.5 g·ml-1 1:75  end: 1:1000 13 µL from 0.5 mg·ml-1 987 L 1 ml 

PI: 1 g·ml-1 1:120   end: 1:1600 8 µL from 1.6 mg·ml-1 992 L 1 ml 

DAPI: 20 g·ml-1 1:37.5   end: 1:500 27 µL from 10.0 mg·ml-1 973 L 1 ml 

 

Sample Preparation:  

a) Harvesting of cells: 

- Harvest 1 ml of sample as fast as possible from bioreactor. 

- After sampling, store the sample immediately on ice and continue immediately with 

the following steps. 

- Frequency of sampling: once right before batch, then every hour during the batch 

cultivation (although two and possibly three samples will be taken during the lag phase, 

they will be used in order to check whether the settings of the last experiment are still 

adequate). 

 

b) Washing of cells (should take maximal 2 minutes): 

- Filter the 1 ml samples with vacuum filtration using a filter pore size of 0.2 m (make 

sure the vacuum pump is properly soaking the liquid). 

- Wash the cells with 5 ml filtered PBS (rinsing the filter 5 times with 1 ml PBS). 

- Dissolve the cells stuck on the filter in 5 ml filtered PBS in a 15 ml falcon tube by gentle 

shaking for 30 seconds. 

- Dilute in PBS until obtaining a cell concentration of around 1·106 cells·mL-1 (OD ≈ 0.06).  
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Staining conditions:  

a) 185 l of the diluted sample are mixed with 15 l of each working solution in Eppendorf tubes 

and incubated in dark (see Table 10). 

b) For negative controls (i.e. unstained cells): 200 l of the diluted sample are transferred into 

each tube 

Table 10. Staining conditions for Streptococcus sp. cells. 

 Culture volume 

[L] 

Dye working 

solution volume  

[L] 

Temperature 

[ºC] 

Staining time 

[min] 

Box 185 15 RT 4 

PI 185 15 4 2 

DAPI 185 15 37 30 

 

Positive controls: 

a) Frequency of sampling: after the start of the batch phase, in the log phase and shortly before 

the end of the fermentation.  

b) They are treated as normal samples until the step of dissolving the cells in PBS after washing 

and diluting to 1·106 cells·ml-1. 

c) Each dye is applied in double estimation, this means 6 positive controls at each time point for 

3 dyes. 

d) After washing the two Eppendorf tubes are put in the thermo block at 80 ºC for one hour. 

 

Negative controls: 

a) Frequency of sampling: after the start of the batch phase, in the log phase and shortly before 

the end of the fermentation.  

b) They are also treated as normal samples until the step of dissolving the cells in PBS after 

washing and diluting to 1·106 cells·ml-1. 

c) The negative controls correspond to non-stained cells, so the diluted sample on ice is directly 

analyzed. 
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 Cleaning of the MACSQuant® after use (with 2% Sodium-Hypochlorite solution) 

 

Extra cleaning between samples might be necessary from time to 

time in order to ensure the cleaning of all components from 

microorganisms and debris. 

  

1) Fill an Eppendorf tube with 2 % filtered sodium-

hypochlorite solution 

2) Introduce the experiment settings as indicated in Figure 

A1: 

- Rack: single tube rack 

- Flow rate: high 

- No mixing of the sample 

- Uptake volume: maximal (450µL) 

- Sample volume: maximal volume of the filled Eppendorf 

tube (1.5mL) 

3) Put the tube in the rack for single tubes and start like a 

normal measurement 

4) Repeat the steps 1-3 until most dots are disappeared /  

Nearly no particles are passing the lasers! 

Check this in the different channel displays!       

 
 

These steps do not replace the final cleaning procedure with the Chill-5-Rack at the end of the 
measurements / at the end of the day. 
 

 

 

For more information about the use of the MACSQuant and the software MACSQuantify use the 

printed manuals next to the flow cytometer or have a look in the digital versions: 

1) Instrument: 
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ve
d=0CDoQFjACahUKEwjvzYzZn9PIAhWiv3IKHfJJB98&url=https%3A%2F%2Fwww.miltenyibiote
c.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0008000%2FIM0008005.ashx%
3Fforce%3D1&usg=AFQjCNHeUOCz5GvpescfFwJ2nR-
EZfSwBA&sig2=xReJMmRf6Iu5mbEjMBSO0w  

 
2) Software: 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CEE
QFjADahUKEwjvzYzZn9PIAhWiv3IKHfJJB98&url=http%3A%2F%2Fwww.miltenyibiotec.com%2F~%2F
media%2FImages%2FProducts%2FImport%2F0010100%2FIM0010172.ashx%3Fforce%3D1&usg=AFQj
CNElI3-1omQlBOsrle8xecl6m-znxQ&sig2=vacvxsX-UUwjAvPu2fzKyQ  
 

Figure A1. Settings for cleaning. 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CDoQFjACahUKEwjvzYzZn9PIAhWiv3IKHfJJB98&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0008000%2FIM0008005.ashx%3Fforce%3D1&usg=AFQjCNHeUOCz5GvpescfFwJ2nR-EZfSwBA&sig2=xReJMmRf6Iu5mbEjMBSO0w
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b. Staining protocol Chr. Hansen A/S 

For flow cytometric analysis at the industrial partner, a BD AccuriTM C6 Plus device (BD Biosciences-SG, 

Allschwil, Switzerland) was used:  

a) For staining S. thermophilus cells, SYBR Green (Sigma-Aldrich, Søborg, Denmark) was used: 

 The solution of the manufacturer was firstly diluted 250x in a 1.5 mL Eppendorf tube. 

 5 L of this working solution were mixed with 195 L of sample in every experiment 

to end up with a 10,000x dilution of the original concentration. 

b) For staining permeabilized bacteria, PI (Sigma-Aldrich, Søborg, Denmark) was used: 

 Stock solution: 10 mg of dye were dissolved in 1 mL PBS buffer (10 mg/mL PI) 

 Intermediate solution: 50 L were dissolved in another 1 mL PBS buffer (0.5 mg/mL 

PI) 

 Final concentration in every sample: 0.0128 mg/mL PI 

For more information about the use of the BD AccuriTM C6 Software use the digital brochure: 

https://www.bdbiosciences.com/documents/BD_Accuri_C6_Software_User_Guide.pdf  

c. Verification dyes used in TU Berlin 

For flow cytometric analysis in TU Berlin, DAPI and PI were used to stain all cells and the permeabilized 

bacteria, respectively. Figure 58 shows that a gate differentiating the stained from the unstained 

samples could be drawn in both cases. Importantly, the positive control for PI (i.e. killing the bacteria 

at 80 ºC for ten minutes) successfully resulted in the shift of the whole population (all cells dead, 

permeabilized) to the PI gate defined. 

 
Figure 58. Flow cytometry analysis of unstained S. thermophilus samples (blue), a DAPI-stained sample (left red), 
a PI-stained sample (right red) and a sample incubated at 80 ºC for ten minutes (positive control for PI - right 
orange). The gate to identify the cells corresponds to the area defined with the black line in the DAPI channel, 
while the dead/permeabilized bacteria were quantified with the upper right quadrant of the PI channel. 

https://www.bdbiosciences.com/documents/BD_Accuri_C6_Software_User_Guide.pdf
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Furthermore, the reproducibility of both staining procedures was also investigated (Figure 59. 

Triplicates (red, blue and orange) of S. thermophilus samples stained with DAPI (left) and PI (right).), 

resulting in an acceptable deviation between three stained samples for both dyes. 

 
Figure 59. Triplicates (red, blue and orange) of S. thermophilus samples stained with DAPI (left) and PI (right).    

d. Verification dyes used in Chr. Hansen A/S 

For flow cytometric analysis in Chr. Hansen A/S, SYBR® Green and PI were used to stain all cells and 

the permeabilized bacteria, respectively. Figure 60 shows that a gate differentiating the stained from 

the unstained samples could be drawn in both cases. Importantly, the positive control for PI (i.e. killing 

the bacteria at 80 ºC for ten minutes) successfully resulted in the shift of the whole population (all cells 

dead, permeabilized) to the PI gate defined. 

 
Figure 60. Flow cytometry analysis of unstained S. thermophilus samples (red), a SYBR Green-stained sample (left 
blue), a PI-stained sample (right blue) and a sample incubated at 80 ºC for ten minutes (positive control for PI - 
orange). The gate to identify the cells corresponds to the area defined with the black line in the SYBR Green 
channel, while the dead/permeabilized bacteria were quantified with the upper right quadrant of the PI channel.   
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ii. CellProfiler pipeline for quantification of microscopic pictures 

In order to ease the quantification of microscopic pictures taken throughout the different 

fermentations carried out in this work, a free and open source software was used, which also allowed 

to avoid the human error included in the manual cell size and cocci amount per chain counting. A 

pipeline was developed in the CellProfiler software (http://www.cellprofiler.org), consisting of the 

following modules: 

a) Microscopic images (100x magnification using immersion oil) were first pre-processed 

applying the “Invert” operation in the “ImageMath” module to invert intensities and obtain a 

foreground lighter than the background. During the entire work, different microscopes at 

different locations (e. g. TU Berlin, Chr. Hansen A/S, DTU) were used. Therefore, for each 

individual experiment analyzed, the function “Multiply the first image by” was slightly 

modified until a clear differentiation between the cocci chains and the background was 

obtained. 

b) Chains were then automatically identified using the “IdentifyPrimaryObjects” module setting 

the “Manual threshold” globally to 0.001. Object clumping and object separation were 

distinguished by “Intensity”, with a “Size of smoothing filter” of 10. Depending on the 

microscope, the magnification and/or the zooming used when the pictures were taken, the 

minimum and maximum “Typical diameter of objects, in pixel units” were modified.  

c) Similarly, cocci were identified automatically using the same module, but this time setting the 

threshold globally through the “Otsu (two classes)” method. Object clumping and object 

separation were distinguished by “Shape”, in this case. Again, the minimum and maximum 

“Typical diameter of objects, in pixel units” were modified, typically cocci being a 10 % of the 

size of the chains. 

d) Then, the “RelateObjects” module was used to associate “Child objects” (i.e. cocci) with 

“Parent objects” (i.e. chains).  

e) To visualise the identification of chains and cocci, the “OverlayOutlines” module was used, 

outlining the chains in yellow and the cocci in red and overlaiding them on pre-processed 

images. 

f) The “SaveImages” module was used to save the identification results.  

g) The number of cocci per chain was finally calculated for each chain with the 

“MeasureObjectSizeShape” module and exported to an Excel spreadsheet with the 

“ExportToSpreadsheet” module. 

 

 

 

  

http://www.cellprofiler.org/
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