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This work presents a systematic approach to incorporate microstructural changes in the
constitutive modeling of the macroscopic material behavior. In particular we consider
materials that are in its virgin state isotropic and develop a microstructure as a conse-
quence of mechanical or thermal loading. To provide purely heuristic theories with a
more refined background a mesoscopic theory will be introduced. Mesoscopic theories
fall somewhere in between microscopic and macroscopic theories in the sense that no
microscopic interactions between atoms and molecules are considered. Rather meso-
scopic field equations contain additional variables which have to do with microstructural
changes of the material.

The focus of this work is on modeling the material in a way that enables a numerical
computation of engineering or biological structures. Special emphasis is put on dynam-
ically loaded structures undergoing large deformations. The theoretical framework is
based on (local and instantaneous) energy-minimizing principles. In consequence, the
presented algorithms for numerical simulations are strictly variational. Exemplarily the
fragmentation of ductile metal structures, the assessment of damage in microelectronic
components and the shock wave induced damage in a human kidney are analyzed.

Diese Arbeit präsentiert einen systematischen Ansatz um mikromechanische Änderungen
in der makroskopischen Modellierung des Materialverhaltens zu berücksichtigen. Dazu
betrachten wir Materialien die zunächst isotrop sind, im Verlaufe der Belastung aber
eine gewisse Mikrostruktur entwickeln. Wesentliche Effekte dieser mikrostrukturellen
Entwicklung werden mit Hilfe einer mesoskopischen Theorie im makroskopischen Mate-
rialgesetz berücksichtigt.

Insbesondere geht es bei dieser Modellierung darum die Materialgesetze so zu formulieren,
dass sie eine numerische Berechnung komplexer Strukturen ermöglichen. Solche Struk-
turen erfahren dabei große Verformungen und schnelle Belastungen. Sämtliche For-
mulierungen basieren daher auf (lokaler und zeitinkrementeller) Energieminimierung,
und die vorgestellten Algorithmen sind folglich variationell. Beispielhaft werden die
Zersprengung eines duktilen Metallrings, die Schädigung eines mikroelektronischen Ver-
bindungsbauteils und die Schockwellenbehandlung einer menschlichen Niere simuliert
und analysiert.
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Introduction

Should an engineer be bothered by the microstructure of the material in his designed
structures? There are characteristic strength, limit loads and safety factors to guaran-
tee that, theoretically, nothing catastrophic is ever going to happen. Never? Indeed,
in practice things might be a little different. Once the loading of a solid exceeds the
elastic range — whether by simple overloading, by fatigue, or by a sudden impact —
the material deteriorates with a certain microstructure. Typical examples are dam-
age by micro-cracks, cavities and shear bands but also local movements in the metal’s
crystal lattice, phase separations and grain coarsening. This work presents a system-
atic approach to incorporate microstructural changes in the constitutive modeling of
the macroscopic material behavior. The theoretical framework is based on (local and
instantaneous) energy-minimizing principles. In consequence, the algorithms for numer-
ical simulations are strictly variational.

Figure I.1.: Modelling of dynamic void growth as a typical failure mechanism in metal
spallation [29].

Following these general ideas we consider materials that are in its virgin state isotropic
and develop a microstructure as a consequence of mechanical or thermal loading. We do
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Figure I.2.: Microstructural changes in an Ag-Cu alloy before and after aging [42], and
finite element analysis of a solder ball.

not study the detailed microscopic background. Instead we focus on phenomenological
theories enabling a numerical computation of the specific response of an engineering or a
biological structure to a certain loading regime. Special emphasis is put on dynamically
loaded structures undergoing large deformations.

The figures in this introduction illustrate the general approach. A (simplified) model of
the particular microstructure is employed to describe its essential features and to deduce
the consequences to the overall material behavior, induced, e.g., by void growth in a duc-
tile metal (Figure I.1), by phase separation in metal alloys (Figure I.2) or by cavitation
of bubbles in a biological tissue (Figure I.3). To provide the purely heuristic macro-
scopic theory with a more refined background a mesoscopic theory will be introduced.
Mesoscopic theories fall somewhere in between microscopic and macroscopic theories in
the sense that no microscopic interactions between atoms and molecules are considered.
Rather mesoscopic field equations contain additional variables which have to do with
microstructural changes of the material.

This book is divided into three parts, the first part contains the theoretical foundation
together with special aspects of numerical solution procedures. The second part describes
three different applications of the presented theories illustrating the possibilities (and
limits) of numerical simulations of such complex problems. The third part consists of
an appendix which summarizes some formal and mathematical details.

Part I, Theory and Numerics, starts with two chapters which introduce the funda-
mental relations of finite kinematics and the classical balance equations of continuum
mechanics. In Chapter 3 the general prerequisites for constitutive equations are sum-
marized and some examples for elastic constitutive relations are given.

2
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Figure I.3.: Bubble caviation in a soft tissue, material model motivated by experimen-
tal observations [11].

With a view to formulate finite element approximations we restate in Chapter 4 the
introduced relations in a variational form and explain methods of space and time dis-
cretization which preserve a variational structure. Chapter 5.2 provides a short outline
on the numerical solution techniques. The variational structure of Newmark’s algorithms
for time-discretization is pointed out and some basics of finite element discretization are
given.

Chapter 6 presents the fundamentals of irreversible, i.e., plastic material behavior. The
classical plasticity is extended here to the finite range, resulting in the so-called J2-theory
of finite plasticity.

The main theoretical contributions of the author are formulated in Chapter 7. Here
the established theory of elasto-plasticity of finite deformations is extended to materials
with a certain porosity. For our analysis we assume the material to be a conglomerate
of (initially very small) spherical pores each surrounded by matrix material. This model
of a porous composite enables us to link the mechanism of pore expansion and global
softening in a solid to parameters which describe the micromechanical mechanisms of
the material. In Chapter 7 we first explain the underlying model and provide the basic
equations of the mesoscopic framework. The constitutive models of void growth in an
elastic as well as in a visco-plastic material are derived in detail and numerical results on
void growth and void distribution function are also provided there. Then, starting from
this mesoscopic concept, we introduce a variational formulation of constitutive updates
for porous visco-elastic plastic materials. The material model combines finite elasticity
and plasticity with irreversible volumetric expansion as induced, e.g., by growth of voids
and defects in metals or by cavitation of bubbles in soft tissue. Dynamic effects such

3
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as micro-inertia and rate sensitivity are included. For numerical computation we derive
the time-discretized constitutive updates of a general porous visco-elastic plastic material
with special emphasis on a strictly variational setting.

Chapter 8 deals with different concepts of damage in

Fig.I.4.: Silicon die fragmented in
a 4-point bending test and

computed stress state.

continuum mechanics. Roughly spoken — damage
means an irreversible change of the microstructure
of the material resulting in a reduced load carrying
capacity. Beyond the already discussed forms of (lo-
cal) plastic zones and irreversible pore growth, ex-
amples of such microstructural evolutions considered
here are fracture and fragmentation, shear bands, fa-
tigue, and phase separation in metallic alloys and
other mixtures. Moreover, a damage localisation
technique is provided to enable finite-element com-
putations of fragmented structures, Figure I.4-6.

The first chapter of the Part II, Applications,
Chapter 9, employs the variational formulation of
the constitutive updates of Chapter 7 and the dam-
age localization technique of Chapter 8 for porous visco-elastic plastic metals. The
underlying computational model combines von Mises plasticity and void growth in a
fully variational manner. Numerical examples, e.g., the Taylor impact test, illustrate
the range of behavior predicted by the model. The performance of the variational up-
date is demonstrated by its application to the forced expansion and fragmentation of
U-6%Nb rings.

The fatigue performance of components in microelectronic circuit boards is analyzed in
Chapter 10. Thermal fatigue of solder joints and plated-through vias are a subject of
great concern, in particularly when the circuit unit is exposed to high operating tem-
peratures (associated, e.g., with automotive applications). The performance of different
types of solder balls and copper vias in different positions of a printed circuit board is
analyzed. To this end a multi-scale finite element analysis under the loading conditions
of thermal cycling is employed. The material model for the electrolytically deposited
copper considers large elastic and plastic deformations and, additionally, the growth of
pores within the material. The main concern in the solder alloys is the determination
of the basic material parameters as well as phase separation and grain coarsening of the
brazing material. It is common practice to extrapolate the plastic straining computed
within few steps of thermal cycling by means of Coffin-Manson like equations. We crit-
ically examine this strategy for the copper via and show that an extrapolation of the

4
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Figure I.5.: Numerical simulation of the fragmentation of a metal ring, meshing technique,
finite element result and necking experimentally observed in [249].

computed porosity up to critical values allows similar conclusions.

Figure I.6.: Shear plug formation in steel by a cylindrical indenter, experiments [45] and
numerical results [228].

The final Chapter 11 deals with a soft biological material, namely kidney tissue. In
a common medical procedure to destroy kidney stones hypersonic waves are generated
outside the body and focused at the kidney stone. The shock waves are supposed to
fragment the stone but they also lead to injuries of the surrounding kidney tissue. To
understand, predict and estimate the underlying damaging mechanisms we develop a
mechanical model for the response of soft tissue to the exposure of shock waves. The
material model accounts for shear induced damage and irreversible volumetric expansion
as induced, e.g., by cavitating bubbles. Finite element simulations allow to localize the

5
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damage in the human kidney in good agreement to clinical and experimental studies.

Finally, the Appendix explains the notation, some rules of tensor algebra and the
exponential and logarithmic mapping technique.

6
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Theory and Numeric
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1. Kinematics of Deformation

In this chapter we briefly summarize the fundamental relations of the kinematics of large
deformations, restricting ourselves to the applications we have in mind. For concise
treatments we refer to the literature on continuum mechanics, e.g., the monographs of
Altenbach [5], Becker and Bürger [23], Betten [35], Chadwick [80], Gurtin [138], Malvern
[204], Truesdell and Noll [339] as well as the recent works of Bertram [32], Haupt [148]
and Holzapfel [152].

Our description focuses initially on (elastic) bod-

S1

S2

Figure 1.1.: Solid body B.

ies, Figure 1.1. For continuum-mechanical descrip-
tion a body is a set whose elements are in one-to-
one correspondence with points of a region B ⊂ IR3

and we partition its boundary S = ∂B into two
parts, S = S1 ∪ S2, where displacements are pre-
scribed or mechanical traction is applied, respec-
tively, S1 ∩ S2 = 0. Moreover, the body is of a size
which allows to neglect its microscopic composition.
Elasticity means that the processes under consider-
ation are reversible. Consequently, elastic materials
show no internal processes, no time dependence, no
hysteresis and no dissipation. Note that elasticity as
it is defined here does not mean linearity1. Elastic
materials can be nonlinear because of large deformations as well as of nonlinear material
laws, and, on the other hand linear materials can be inelastic, e.g. viscoelastic. Inelastic
materials are subject of subsequent chapters.

1.1. Deformation and motion

We consider a body whose particles occupy a region B ⊂ IR3 in a certain reference
configuration. We label the material particles P ∈ B by their position vectors X(P ).
Without loss of generality these position vectors may be defined by their components

1Note that the definition of elasticity may differ in literature.

8



1.1 Deformation and motion

10
1

B
ϕ
(
B
)

Quo vadis?

G. L. Lagrange (1736-1813)

Figure 1.2.: Lagrangian point of view: x = ϕ
(
X
)

{X1, X2, X3} relative to some coordinate system with orthonormal basis E1,E2,E3

centered at some convenient origin O, X = XiEi. We will refer to this reference system
as the material reference frame and to components relative to this frame as material or
Lagrangian coordinates. The reference configuration is commonly (but not necessarily)
identified with the initial, undeformed configuration of the body, see Figure 1.2.

The body B subsequently deforms and moves over a period of time t ∈ IR+. A de-
formation of a body B is an injective mapping ϕ : B → IR3. The condition that the
deformation mapping ϕ defines an injective function excludes deformation involving
tearing and interpenetration of matter of the body.

The region ϕ(B) is the current or deformed configuration of the body. The material
point P ∈ ϕ(B) is labelled now by a position vector x(P ). The components {x1, x2, x3}
of the position vector are relative to a coordinate system with orthonormal basis e1, e2, e3

centered at o, x = xiei. We will refer to this configuration as the spatial reference frame.
The components relative to this frame are spatial or Eulerian coordinates, see Figure 1.3.

In the following we presume the origins O, o and the basis vectors of material and spacial
frame to coincide, i.e., the basis Ei is identical to ei. We refer to tensorial quantities in
the reference configuration by using capitals letters, whereas the current configuration
is denoted by lowercase letters. To reduce conflicts in notation we employ a subscript
0 for some quantities when they refer to the initial (reference) configuration and omit
the subscript in the current configuration. Moreover, we identify the material particles

9



1.1 Deformation and motion

10
1

B
ϕ
(
B
)

Ex quo venis?

L. Euler (1707-1783)

Figure 1.3.: Eulerian point of view X = ϕ−1
(
x
)

P ∈ B by their position vectors X(P ) and x(P ), respectively.

In coordinates, the deformation mapping takes the form

xi = ϕi
(
X
)
, X ∈ B. (1.1)

Since, by assumption, ϕ is injective, the inverse deformation mapping ϕ−1 : ϕ(B) →
B is well defined.

Unlike to small strain approaches the total deformation of a body cannot be understood
as an additive superposition of displacement vector fields. To illustrate this, let ϕ1 :
B → IR3 and ϕ2 : B → IR3 be two successive deformations of the body B, see Figure 1.4.
The total or combined deformation of the body is

ϕ
(
X, t

)
= ϕ2

(
ϕ1

(
X, t

)
, t
)
≡ ϕ2 ◦ ϕ1

(
X, t

)
. (1.2)

where ◦ denotes the composition. Evidently, the total deformation follows by a composi-
tion of mappings. The composition of deformation mappings has a multiplicative group
structure [206].

A motion of a body during a time interval [t1, t2] is a function ϕ : B× [t1, t2] → IR3 such
that the mappings ϕ

(
·, t
)
, t ∈ [t1, t2], are injective. In other words, a motion defines

a one parametric sequence of deformation mappings indexed by time, x = ϕt(X) =
ϕ(X, t). This describes for every material point P ∈ B a path or trajectory in IR3.

10



1.1 Deformation and motion

ϕ = ϕ2 ◦ ϕ1

ϕ1
ϕ2

B ϕ1(B) ϕ2

(
ϕ1(B)

)

Figure 1.4.: Composition of deformations.

To describe the motion of a particle we may distinguish between a direct (or spatial)
motion and a inverse (or material) motion problem. The direct motion problem is
based on the idea of following material particles from a fixed position X along their
trajectories through the ambient space. Because attention is paid to the particles (we
observe what happens to the particles when they move), this point of view is denoted
as the material or Lagrangian setting. In contrast to this, within the inverse motion
problem, physical particles are followed through the ambient material at a fixed spatial
position x. The observer takes the spatial or Eulerian point of view.

The displacement field U of a particle relates its position in the undeformed configu-
ration to its position in the deformed configuration at time t. In the Lagrangian setting
we write

U(X, t) = x(X, t) − X , (1.3)

whereas the Eulerian form of equation(1.3) reads

u(x, t) = x − X(x, t). (1.4)

Both settings are related by the inverse deformation mapping,

U(X, t) = U
(
ϕ−1(x, t)

)
= u(x, t). (1.5)

The instantaneous velocity of a material point is the material or Lagrangian velocity

field

V (X, t) =
∂ϕi

∂t

(
X, t

)
. (1.6)

On the other hand, in the Eulerian setting the velocity follows by a composition of
material velocity and the inverse deformation mapping. Thus, the velocity at a spacial
position is described by the spacial or Eulerian velocity field

v(x, t) = V
(
ϕ(X, t), t

)
=
∂ϕ

∂t

(
ϕ−1(x, t), t

)
=
(
V ◦ ϕ−1

)
(x, t). (1.7)

11



1.2 Kinematics of local deformations

Analogously, the instantaneous acceleration of the material point X at time t is
represented by the material or Lagrangian acceleration field

A(X, t) =
∂V

∂t

(
X, t

)
. (1.8)

The spacial or Eulerian acceleration field represents the acceleration of the material
point occupying the spatial position x at time t.

a(x, t) = A
(
ϕ(X, t), t

)
=
∂V

∂t

(
ϕ−1(x, t), t

)
=
(
A ◦ ϕ−1

)
(x, t) (1.9)

The material time-derivative (1.9) of a smooth spatial vector field v(x, t) may be eval-
uated to give

a(x, t) =
∂v(x, t)

∂t
+ gradv(x, t) · v(x, t). (1.10)

Evidently, a material time derivative a(x, t) = v̇(x, t) is distinct from a ’normal’ time-
derivative because of its structure. The first term in equation(1.10) describes the local
acceleration (i.e., the local rate of change in the velocity field), the second term describes
a convective acceleration field. It plays an important role in fluid mechanics, because by
equation (1.10) the spatial acceleration can be determined without knowing the motion
explicitly.

In solid mechanics the constitutive behavior of materials is commonly given in terms of
material coordinates. This motivates us to restrict our attention in the following to the
direct motion problem formulated in the Lagrangian setting. However, we keep in mind
that the kinematic equations in the direct and in the inverse motion problem correspond
to each other.

1.2. Kinematics of local deformations

Let dV0 ⊂ B be the volume of an infinitesimal material neighborhood of point X ∈ B and
let dV be the volume of the corresponding infinitesimal spatial neighborhood. Consider
now a material point at position X ∈ B and let X + dX be a neighboring material
point within dV0. The corresponding spatial point be x + dx, see Figure 1.5. With
deformation (1.1) we know for the components of x + dx,

xi + dxi = ϕi
(
X + dX, t

)
, (1.11)

12



1.2 Kinematics of local deformations

��

��

X

X + dX
dV0

x
x + dx

dV

ϕ

Figure 1.5.: Local deformation of a material neighborhood.

which may be expanded in a Taylor series2 at position X to give

ϕi
(
X + dX, t

)
= ϕi

(
X, t

)
+

∂ϕi
∂XJ

(
X, t

)
dXJ + o(dX). (1.12)

The expression o(dX) denotes terms of higher order that tend to zero faster than dX.
Neglecting these terms we obtain from (1.12) the linearized differential relation

xi + dxi ' xi +
∂ϕi
∂XJ

(
X, t

)
dXJ ⇒ dxi =

∂ϕi
∂XJ

(
X, t

)
dXJ (1.13)

and we define the deformation gradient F with components

FiJ
(
X, t

)
=

∂ϕi
∂XJ

(
X, t

)
⇒ dxi = FiJ

(
X, t

)
dXJ (1.14)

The deformation gradient F is fundamental in non-linear continuum mechanics. It is
a primary measure of deformation. The quantity provides a full determination of the
deformation mapping at time t on an infinitesimal material neighborhood dX of X.

The deformation gradient is a linear operator by definition. Therefore, F (X, t) may
regarded to be a member of the linear group of all linear, second-order tensor transfor-
mations IR3×3, i.e., GL(3, IR), cf. Appendix 1 and 4.

Consider now an infinitesimal material neighborhood X + dX of volume dV0, which
is given by the parallelepipedic product dV0 = (dX(1) × dX(2)) · dX(3). Let dV be the
volume of the corresponding spatial neighborhood at time t and write

dV =
(
dx(1) × dx(2)

)
· dx(3) =

(
F1i dX

(1)
i × F2i dX

(2)
i

)
· F3i dX

(3)
i (1.15)

= det F
(
dX(1) × dX(2)

)
· dX(3) = det F dV0.

2This derivation implicitly presumes differentiability of the fields. Other derivations are as well possible
but less intuitively.
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1.2 Kinematics of local deformations

Consequently, the following relation holds

dV

dV0
= J(X, t), (1.16)

where

J
(
X, t

)
= det

(
F (X, t)

)
(1.17)

is the Jacobian of the deformation. Evidently, the Jacobian J provides a measure
of the local volumetric deformation. From the inverse mapping theorem follows that the
deformation mapping is locally one-to-one at X and time t if and only if

J(X, t) > 0. (1.18)

Therefore, we may interpret this condition as a local invertibility condition. (Note that
conditions for global invertibility are considerably harder to define.)

The following transformation relates elements of

dS

N

Figure 1.6.: Oriented area.

oriented area in the undeformed and deformed
configurations. Let dS ⊂ ∂B denote an infinites-
imal (surface) area containing X with the corre-
sponding outward unit normal N , see Figure 1.6.
Let ds be the deformed area on ϕ(S, t) and n its
corresponding outward unit normal. Then, for the
components of the outward unit normal holds

nids = J(X, t)F−1
Ji (X, t)NJdS. (1.19)

This relation is known as Nanson’s formula and
may easily be verified by equation (1.16) and dV = dx · n ds = JdV0 = JdX · N e dS.
Shortly we may write

n ds = JF−T N e dS. (1.20)

To illustrate the composition of deformations let ϕ1 : B → IR3 and ϕ2 : B → IR3 be
two successive deformations of B, cf. Figure 1.4. Let F 1(X, t) and F 2(X, t) be the
corresponding deformation gradients at material point X and time t. Then, the total
or combined local deformation gradient follows by multiplication of the incremental
deformation gradients

F
(
X, t

)
= F 2

(
ϕ1

(
X, t

)
, t
)
F 1

(
X, t

)
. (1.21)

Composition rule (1.21) together with the invertibility condition (1.18) confers the set
of (all admissible) deformation gradients a multiplicative group structure. It may be
identified with a subgroup of the general linear group of orientation-preserving transfor-
mations, i.e., GL+(3, IR) = {F ∈ GL(3, IR) | det(F ) > 0}.
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1.3 Decomposition of deformations

1.3. Decomposition of deformations

The deformation gradient F contains the full information about the (linearized) defor-
mation ϕ(X, t) at a local material point. However, it is a “two-point tensor”, i.e., it
works between current and reference configuration. Strain measures are required to re-
fer to either the reference or the current configuration and, moreover, to be not affected
by rigid body rotations. In this section we will extract the information of interest out of
the deformation gradient and, then, introduce some common strain tensors.

The natural way of splitting the deformation gradient into different parts is, because of
its multiplicative group structure, a multiplicative decomposition. Let F by a given
state of deformation, and let one part of the full deformation be associated with reason
A (e.g., volume preserving deformation or irreversible stretching) and another part be
related to reason B (e.g., pressure induced dilatation or purely elastic stretching). Then,
the decomposition of the deformation gradient reads3

F = F B FA. (1.22)

This type of decomposition goes back to Lee [187].

In that sense we separate the straining from the rigid rotation at a material point and
employ the polar decomposition. Any deformation gradient F factors as the product

F = R U , (1.23)

with

U = U> (1.24)

R−1 = R>. (1.25)

The positive definite tensor U is the (right) stretch tensor, the orthogonal tensor R

describes a rotation. Tensor R may be regarded as a member of the group of rotations
SO(3), where SO(3) is the Lie-group {R ∈ IR3×3,RTR = I, det R = 1}. The polar
decomposition is always unique. (The proof is easily done by contradiction, see, e.g.
[32].)

The eigenvalues of the stretch tensor U , denoted as λα, α = 1, 2, 3, fulfill the relation

U ~N eα = λα ~N eα with | ~N eα| = 1. (1.26)

3For brevity we omit in this section the arguments of F .
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1.3 Decomposition of deformations

F = R U

F = V R

Figure 1.7.: Illustration of the polar decomposition.

The (real and positive) eigenvalues λα represent the principal stretches of the deforma-

tion, whereas the orthonormal eigenvectors ~N eα are the principal referential axis, i.e.,
the principal directions in the reference configuration.

There exists also a unique left polar decomposition of the form

F = V R, (1.27)

where again R ∈ SO(3) and with the stretch tensor

V = V > (1.28)

orthogonal to U . (Please excuse the ambiguous notation, here and in Section 1.4 the
letter V denotes the left stretch tensor, in the remaining of the text it is the vector of
material velocity.)

The eigenvalues and eigenvectors of the left stretch tensor V , are

V ~nα = λα~nα with |~nα| = 1. (1.29)
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1.4 Strain measures

The eigenvalues λα represent here the principal stretches in the current configuration
and the orthonormal eigenvectors ~nα are the corresponding principal directions. In
other words, the eigenvectors of V are those of U rotated by R, ~nα = R ~N eα.

To illustrate the nature of rotation R we write the spectral decomposition of (1.24) and
(1.28) as follows.

U =
3∑

α=1

λα ~N eα ⊗ ~N eα (1.30)

V =
3∑

α=1

λα~nα ⊗ ~nα (1.31)

Then, the rotation tensor R may be decomposed as

R =
3∑

α=1

~nα ⊗ ~N eα. (1.32)

Another useful decomposition of the deformation gradient F separates the deformation
along a tangential plane from the deformation normal to that plane, cf. Section 8.3,

F = F ‖ F⊥, (1.33)

where F ‖ denotes the in-plane part of the deformation gradient (or membrane de-
formation) and F⊥ the out-of-plane part of the deformation gradient (or transversal
deformation). The in-plane part satisfies the identity

F ‖ N e = N e, (1.34)

where N e is the unit normal to the tangential plane in the reference configuration.
With a vector a ∈ IR3 and by Hadamard’s compatibility condition (see, e.g. [327]), the
out-of-plane part of the deformation gradient has the form

F⊥ = I + a ⊗ N e. (1.35)

1.4. Strain measures

The crucial demand on a strain measure is that it represents strain but vanishes for
rigid body rotations. This in turn requires symmetry of the strain tensors. Thus, the
right Cauchy-Green tensor is defined by

C = F> F (1.36)

= U> U = U 2,
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1.4 Strain measures

The six independent components of tensor C, CJL = FJiFiL, refer to the reference
configuration and can uniquely be determined by the nine components of F (but not
vice versa). The Green-Lagrange strain tensor

E =
1

2

(
F> F − I

)
(1.37)

has additionally the property to be zero in all components in case of no deformation.
Frequently used is the logarithmic strain

ε =
1

2
lnC (1.38)

which is also known as Hencky strain tensor4

H = ln U . (1.39)

Analogously the left Cauchy-Green tensor or Finger tensor is defined by

b = F F> (1.40)

= V > V = V 2 = R C

and the Euler-Almansi strain tensor is

e =
1

2

(
I − b−1

)
=

1

2

(
I − F−> F−1

)
, (1.41)

which both refer to the current configuration.

In linear theory small deformations are presumed. Consequently, reference and current
configuration coincide. Strains are small enough so that a linearized strain measure
accurately approximates the more rigorous nonlinear measures. This condition is fulfilled
in virtually all solid materials under sufficiently small loads. By linearization of (1.37)
or (1.41) we get the infinitesimal strain tensor as

ε =
1

2

(
gradu + grad u>). (1.42)

4To distinguish the logarithmic strain and the infinitesimal strain we denote the first by H but we will
go back later to use definition (1.38).
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1.4 Strain measures

Remark

The following general formula may illustrate the different strain measures for the simple
case of uniaxial deformation. Let λ denote the ratio of current to initial length of the
specimen and let the only nonzero entry in the strain tensors be ε. Now we write
(following Seth [300], see also [32, 306])

ε =
1

α

(
1 − λ−α

)
. (1.43)

Then, assuming various values of constant α we obtain:

α = −2 ε = 1
2

(
λ2 − 1

)
ε ∈ [−1

2
,∞] Green-Lagrange strain

α = −1 ε = λ− 1 ε ∈ [−1,∞] infinitesimal strain
α = 0 ε = ln(λ) ε ∈ [−∞,∞] logarithmic strain
α = 2 ε = 1

2

(
1 − λ2

)
ε ∈ [−∞, 1

2
] Euler-Almansi strain

The first three measures are plotted in Fig-

E ε

H

Figure 1.8.: Strain measures.

ure 1.8 and we observe a very different be-
havior at large strains. A strain measuring
function f : IR 7→ IR is called additively
symmetric with respect to lengthening and
shortening if the following condition holds

f
(1

λ

)
= −f

(
λ
)
. (1.44)

Among the four strain measures only the
(uniaxial) logarithmic strain satisfies this
requirement. Note that the stretch λ itself
is multiplicatively symmetric with respect
to lengthening and shortening but not ad-
ditively. Moreover there exist other valid
strain measures with no symmetry at all
[340]. Consequently, it is up to the reader
to decide as to whether satisfying (1.44)
makes the logarithmic strain (1.38) a“bet-
ter” measure.
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1.5 Strain rates

1.5. Strain rates

To finally determine a rate of deformation measure we note the velocity gradient

l =
∂v

∂x
. (1.45)

The velocity appears here as a function of time for a given particle at X . The velocity
gradient (1.45) may be evaluated in terms of the deformation gradient as

l = Ḟ · F−1. (1.46)

The rate-of-deformation tensor is now defined as the symmetric part of tensor l

d =
1

2

(
l + l>

)
, (1.47)

whereas the antisymmetric part of l is known as spin tensor.

w =
1

2

(
l − l>

)
, (1.48)

The rate-of-deformation tensor measures the rate of change of the square of the length
of material line segments dx. However, in general, the integral of the rate-of-deformation
does not vanish in a reversible cycle of deformation. Consequently, the rate-of-deformation
tensor is path-dependent. Although it is commonly used the rate-of-deformation (1.47)
is not necessarily a physical meaningful measure of deformation.

1.6. Examples

Kinematic equations for some simple deformations are summarized here for later refer-
ence. At first we consider homogeneous deformations, i.e., deformations with constant
affine boundary conditions. In a homogeneous state of deformation the gradient F is
independent of the position of the material point X or x, respectively, and, in conse-
quence, we can derive one deformation gradient, F ∈ GL+(3, IR), which is valid for all
points of the body B.

To write down the components of F explicitly, we presume volume preserving deforma-
tions with det F = 1. As above we employ cartesian coordinate systems.
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1.6 Examples

L l

R rX1 x1

ϕ

Figure 1.9.: Uniaxial tension of a rod made of an incompressible material.

Uniaxial tension.

A rod with circular (or quadratic) cross section is pulled from initial length L to current
length l, see Figure 1.9. The components of the deformation gradient F = ∂x/∂X in
this uniaxial case read

F =





l/L 0 0
0 r/R 0
0 0 r/R



 , (1.49)

with initial and current radius R and r, respectively.

We define now the axial stretch ratio λ = l/L and assume the material of the rod to
be incompressible. From the preserved volume of the deformation follows

πR2L = πr2l, (1.50)

and for the transverse stretch ratio we can write

l

L
=
(R

r

)2

= λ. (1.51)

The deformation gradient F now follows as

F =





λ 0 0

0 1/
√
λ 0

0 0 1/
√

(λ)



 . (1.52)

Note that for a compressible material with a Poisson ratio ν and for small-strain kinemat-
ics (1.42) the deformation gradient can be evaluated from linear theory and expression
(1.49) as

F =





1 + ε 0 0
0 1 − νε 0
0 0 1 − νε



 . (1.53)
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1.6 Examples

A

a

R

r

ϕ

Figure 1.10.: Void expansion in an incompressible body.

Here we employ ε in its common uniaxial definition ε = l−L
L

. Note that in the incom-
pressible limit follows 1 − νε = 1 − 1

2
ε = 1

2

(
3 − λ

)
which is the linearization of the

function 1/
√
λ.

Expansion of a void in an infinite body.

A spherical void with initial radius A is expanding to the current radius a. Material
spheres surrounding the void with radii R and r, respectively, deform with the body.
From the volume constraint follows

4π

3
(R3 −A3) =

4π

3
(r3 − a3), (1.54)

and, consequently, the deformation mapping r = ϕ(R) reads

r =
(
a3 −A3 +R3

)1/3
. (1.55)

Clearly, this deformation is not homogeneous. However, for any point located on the
void surface we can compute the deformation gradient as

F =





a/A 0 0
0 a/A 0
0 0 a/A



 . (1.56)
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2. Balance Equations

In this chapter we provide in short form the classical balance principles. For detailed
studies and consequences of these relations in continuum mechanics we refer to the
fundamental works of Coleman, Truessdell and Noll [93, 339, 340], and to comprehensive
textbooks as, e.g., [32, 80, 152, 231].

In classical solid mechanics the wanted fields determined by the balance equations are
defined on time t ∈ IR+ and position x ∈ IR3 of a set of particles P occupying a region
B ⊂ IR3. The hypothesis of a continuum states that a volume element dV is associated
with each event in space-time (x, t); this allows to define macroscopic fields with a
certain continuity. Primarily we focus on bodies or systems of sub-bodies, respectively,
which are modeled as closed systems. In a closed system the mass of the bodies remains
constant under all deformation. This excludes processes of mass growth and loss for
which the system is commonly modeled as open, assuming a constant volume instead,
see Section 2.7.

The solids under consideration in this work deform and move over a period of time under
the action of a system of externally applied forces and prescribed displacements. The
forces may consist of body forces which are the result of interaction at a distance, as well
as of traction acting on the surface of the body. By B̄ : B → IR3 we denote the material
body force field per unit mass and by b̄ : ϕ(B) → IR3 the spatial body force field
per unit mass. A relation between the two fields may be established considering an
infinitesimal neighborhood of mass dm and letting df be the resultant body force acting
on the neighborhood. With the deformation mapping x = ϕ(X, t) we may write

df = B̄(X, t) dm = b̄(x, t) dm. (2.1)

Thus we get b̄ ◦ ϕ = B̄. Let us mention that here and in the remaining of this text we
silently presume the principle of local action to be valid. This principle states that
the internal energy density of a material point X ∈ B depends only on the local state
of an infinitesimal material neighborhood containing the point.

Analogously, we denote by T̄ : S → IR3 the material surface traction field per
unit reference area, and by t̄ : ϕ(S) → IR3 the spatial surface traction field per
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Figure 2.1.: Piola transformation.

unit deformed area. Denote by dS and ds the infinitesimal areas containing X and x,
respectively, and let N and n be the corresponding outward unit normals, Figure 2.1.
Then, the total force acting on an element of area is

df = T̄ (X, t) dS = t̄(x, t) ds. (2.2)

We employ Cauchy’s tetrahedron theorem from which it follows that the traction
depends linearly on the corresponding unit normal, i.e.,

t̄(x, t) = σ(x, t)n(x, t) (2.3)

where σ : ϕ(B) → IR3×3 is the Cauchy stress tensor comprising the ”true” stress at
the deformed material point. Correspondingly, we may formulate these relations for the
reference configuration,

T̄ (X, t) = P (X, t)N(X , t), (2.4)

where P : B → IR3×3 is the first Piola-Kirchhoff stress tensor. Inserting (2.3) and
(2.4) in (2.2) and applying Nanson’s formula (1.20) yields the following relation between
the stress tensors,

σ = J−1PF>. (2.5)

Relation (2.5) is known as Piola transformation. Written in components it reads

σij = J−1(X, t)PiJ(X, t)FJj(X, t) ⇔ PiJ = J(X, t) σij(X, t)F−1
jJ (X, t),
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2.1 Conservation of mass

where the indices emphasize that σ is defined on the current configuration whereas P

is a two-point tensor, i.e., it works between current and reference configuration.

Additionally, we introduce a symmetric tensor measuring the stress with respect to the
reference configuration, namely, the second Piola-Kirchhoff stress tensor, S : B →
IR3×3. The following relations hold

σ = J−1FSF> (2.6)

P = FS, (2.7)

and, vice versa,

S = J F−1σF−> (2.8)

= F−1P . (2.9)

2.1. Conservation of mass

Let %0(X, t) be the mass density per unit undeformed volume and %(x, t) the corre-
sponding mass density per unit of deformed volume. Now we consider an infinitesimal
neighborhood of X ∈ B at time t of volume dV0 and let dV be the volume of the corre-
sponding spatial neighborhood. Since both material volumes are in correspondence by
the deformation mapping, the total mass contained in them must be identical, i.e.

dm = %0(X, t)dV0 = %(x, t)dV. (2.10)

Combining this relation with (1.16) gives the simple algebraic equation1

%0 = J%, (2.11)

which is the Lagrangian local form of mass balance. Within the Eulerian frame we obtain
a partial differential equation known as continuity equation, see Table 2.1.

2.2. Conservation of linear momentum

The total linear momentum L of the body expressed in material form is

L =

∫

B
%0V dV, (2.12)

1For brevity we omit in the following the arguments but we silently understand all relevant quantities
to depend on position and time.
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2.3 Conservation of angular momentum

where V denotes the material velocity. Likewise the resultant of the forces acting on
the body F̄ may be written in the form

F̄ =

∫

B
%0B̄ dV +

∫

S
PNdS, (2.13)

with the first Piola-Kirchhoff tensor P and the outward unit normal N as above. Then,
the principle of linear momentum (or Newtons second law) simply states

dL

dt
= F̄ . (2.14)

Inserting the corresponding integral expressions equation (2.14) reads
∫

B
%0AdV =

∫

B
%0B̄dV +

∫

S
PNdS, (2.15)

where A is the material acceleration defined by (1.8). Here and further on we assume
the material mass density %0 to be constant in time. An application of the divergence
theorem gives2

∫

B

(
%0(A − B̄) − Div P

)
dV = 0. (2.16)

The balance equation applies to the body as well as to all ’sub-bodies’ of B, i.e., an
identical identity must hold for every open subset Ω ⊂ B. This in turn requires the
integrand in (2.15) to equal zero.

%0A = %0B̄ + Div P a.e. in B, (2.17)

Equation (2.17) states the Lagrangian local form of linear momentum balance. In qua-
sistatic deformations, i.e, deformations with negligible influence of acceleration, the left
hand side of equation (2.17) vanishes and the remaining terms state the local equilibrium

condition.

2.3. Conservation of angular momentum

The total angular momentum G of the body reads in material form

G =

∫

B
x × (%0V ) dV. (2.18)

2By Div(·) and Grad(·) we denote the divergence and the gradient with respect to the material frame,
respectively, see Appendix 2.
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2.4 The deformation power identity

Likewise, the resultant moment M acting on the body may be expressed in the form

M =

∫

B
x × (%0B̄) dV +

∫

S
x × (PN) dS. (2.19)

Under these conditions conservation of angular momentum means

dG

dt
= M . (2.20)

Equation (2.19) applied to a deformed (non-polar) material element simply requires the
Cauchy stress tensor to be symmetric,

σ = σ> in ϕ(B), (2.21)

which is the spatial local form of conservation of angular momentum. Pulled back into
the reference configuration by virtue of (2.5) it follows the Lagrangian local form of

angular momentum,

PF> = FP> in B. (2.22)

2.4. The deformation power identity

The kinetic energy of the body written in Lagrangian form is

K =
1

2

∫

B
%0|V |2 dV. (2.23)

The external power PE is the power of all externally applied force fields, i.e., the sum
of resulting body forces and traction.

PE =

∫

B
%0 B̄ · V dV +

∫

S
PN · V dS. (2.24)

The deformation power PD is by definition the amount of the external power supply
which is not converted into kinetic energy of the body,

PD = PE − K̇. (2.25)

Inserting (2.23) and (2.24) in (2.25) gives

PD =

∫

B
%0 B̄ · V dV +

∫

S
PN · V dS −

∫

B
%0A · V dV. (2.26)
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2.5 Conservation of mechanical energy

By application of the divergence theorem we get

PD =

∫

B

(
%0(B̄ − A) + Div P ) dV +

∫

B
P · GradV dV, (2.27)

and simple algebra gives Grad(V ) = Ḟ . If the motion satisfies the linear momentum
balance the first integral in (2.27) vanishes. Then, the deformation power follows as,

PD =

∫

B
P · Ḟ dV. (2.28)

Equation (2.28) shows, that the Piola-Kirchhoff stress tensor P and the deformation gra-
dient F are work-conjugate variables, i.e., their scalar product defines a rate of internal
mechanical work. With the definitions of Section 1.4 other work-conjugate expressions
are given by

P · Ḟ = S · Ė = J σ · d = τ · d. (2.29)

The Tensor τ is the frequently used Kirchhoff-stress tensor, τ : B → IR3×3 with
τ = Jσ.

2.5. Conservation of mechanical energy

Let U : B 7→ IR denote the internal energy density per unit undeformed volume and

E =

∫

B
UdV =

∫

ϕ(B)

J−1UdV (2.30)

the total internal energy of the body. For elastic bodies (or reversible deformations) the
conservation of energy demands

PE = Ė + K̇, (2.31)

i.e., the external power will be converted, without gains or losses, into internal or kinetic
energy. By the definition of deformation power (2.25) and the deformation-power identity
(2.28) this reduces to the tautology Ė = PD:

∫

B
%0 B̄ · V dV +

∫

S
T̄ · V dS =

∫

B
P · Ḟ dS +

∫

B
%0A · V dV. (2.32)

Writing the conservation of mechanical energy in Lagrangian local form results in

U̇ = P · Ḟ . (2.33)

Equation (2.33) does not furnish a new field equation.

Table 2.1 summarizes the local balance equations in material and spacial form.
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2.6 Thermal energy

mass:

%0 = J% d%
dt

= % dvi

dxi

linear momentum:
%0Ai = %0B̄i + PiJ,J %ai = %b̄i + σiJ,J

angular momentum:
σij = σij PiJFjJ = PjJFiJ

mechanical energy:

U̇ = PiJ ḞiJ U̇ = JσiJdiJ
thermal energy:

U̇ = PiJḞiJ − ∂QL

∂XL
+R J−1U̇ = σiJdiJ − ∂qL

∂xL
+ r

Table 2.1.: Local balance equation in Lagrangian and Eulerian form.3

2.6. Thermal energy

In this section we deviate from the restriction to reversible (and thus adiabatic) processes
and consider both mechanical and thermal energy. For later reference we state here the
fundamental laws of thermodynamics.

First law of thermodynamics

Let Q : B 7→ IR be the thermal power or the rate of thermal work. With the vector of
heat flux per unit time and per unit reference and current surface Q and q, respectively,
and with the heat source R and r per unit reference and current volume, the thermal
work is determined to be

Q =

∫

B
RdV −

∫

S
Q · N dS =

∫

ϕ(B)

r dV −
∫

ϕ(S)

q · n dS. (2.34)

In a thermomechanical system the conservation of energy demands

PE +Q = Ė + K̇ . (2.35)

The thermal power will, additionally to the external (mechanical) power, completely
be invested to raise the internal or kinetic energy of the body. Thus, the first law of

3Written in components, here and subsequently, a comma denotes partial differentiation.
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2.6 Thermal energy

thermodynamics in material form reads
∫

B

(
%0 B̄ · V +R

)
dV +

∫

S

(
T̄ V − Q̄ · N

)
dS =

∫

B
U̇ dV +

∫

B
%0A · V dV. (2.36)

Following arguments as above we find the Lagrangian local form of thermal energy

balance to have the form

U̇ = P · Ḟ − Div Q +R. (2.37)

Second law of thermodynamics

Let S : B → IR denote the entropy per unit reference volume. Let Σ : B → IR+ be
the total production of entropy within the body, i.e., the difference between the rate
of change of entropy and the rate of entropy input into the body. The second law of
thermodynamics states that in a thermodynamic process the total entropy production
can never be negative,

Σ ≥ 0. (2.38)

A reversible thermodynamic process is not accompanied by any entropy production, i.e.,
Σ = 0, whereas a process is called irreversible if Σ > 0.

We present the second law of thermodynamics in form of the Clausius-Duhem in-
equality. This approach links (under the presumption of uniformly distributed temper-
ature, cf. [106]) the thermal quantities heat flux Q and heat source R via the absolute
temperature T to the entropy flux Q/T and entropy source R/T , respectively. Conse-
quently, the material form the Clausius-Duhem inequality reads

Σ =

∫

B
Ṡ dV +

∫

S

Q

T
· N dS −

∫

B

R

T
dV ≥ 0. (2.39)

In an adiabatic closed system, i.e., in a system without heat source and without heat
flux, R = 0, Q = 0, equation (2.39) simplifies to

Ṡ ≥ 0. (2.40)

Roughly speaking, the entropy measures the probability of a state, i.e., in equilibrium
the state with the highest entropy is the most likely one. The fact that the entropy can
only rise defines a direction for irreversible processes.

Let A : B → IR denote the Helmholtz free energy density

A = U − ST. (2.41)
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2.7 General balance equations in a Schottky system

The Helmholtz free energy density defines the internal energy density which may be
converted into mechanical work at a constant temperature and is sometimes named as
“work content”. With this definition we can formulate equation (2.37) as

Ȧ = P · Ḟ − Div Q +R− ṠT − SṪ , (2.42)

and we derive a local form of (2.39)

Ȧ + SṪ − P · Ḟ +
Q

T
· GradT ≤ 0. (2.43)

The inequality (2.43) is often referred to as Clausius-Planck inequality, the terms on
the left hand side describe the internal dissipation Dint. At constant temperature (2.43)
reduces to

Dint = P · Ḟ − Ȧ ≥ 0. (2.44)

For completeness we define here also the Gibbs free energy density, G : B → IR

G = U − ST + pV, (2.45)

which is a thermodynamic potential and, correspondingly, a state function of a thermo-
dynamic system. (For simplicity in notation we denote here with pV the volume work
per unit volume.)

In the variational approaches favored in this work we will repeatedly exploit the idea,
that a system seeks to archive a minimum of its free energy function.

2.7. General balance equations in a Schottky system

A domain Ω(t) exchanging heat, power and material with its environment is commonly
defined to be a Schottky system [234, 230], see Figure 2.2 left. A Schottky system
is, therefore, an extension of the above defined body with constant mass B. Let now
Ψ(x, t) be an extensive quantity in a Schottky system Ω(t). A change of quantity Ψ can
be invoked by a production or source within the volume, here both denoted by Πψ, by
a supply Σψ and by a flux of quantity Ψ over the boundaries of the volume. The latter
is written as the vector of outward flux per unit time and unit surface Jψ in direction
of the normal n of surface S ≡ ∂Ω. Then the generic form of a global balance
equation reads in spacial form

dΨ

dt
=

d

dt

∫

Ω(t)

ρψ(x, t)d V

= −
∫

∂Ω(t)

Jψ(x, t) · n d S +

∫

Ω(t)

(Πψ(x, t) + Σψ(x, t))d V , (2.46)
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2.7 General balance equations in a Schottky system

where ρψ is the quantity Ψ(x, t) per unit volume.

ΩΩ

∂Ω

∂Ω

material

heat

power

ndS ≡ dS

environment

w

w

w:
velocity of the
control volume

control
volume

v: particl
e velocity

Figure 2.2.: Definition of a Schottky system Ω with boundary ∂Ω, velocity w and particle
velocity v.

If the domain Ω(t) of a Schottky system coincides with a body (i.e., the system is a closed
system), there is no particle transfer over the boundary ∂Ω. The total mass contained
in it remains constant and equation (2.10) holds, in other words

d

dt

∫

Ω(t)

ρ(x, t)dV = 0. (2.47)

Equation (2.47) represents a special case of equation (2.46) with ψ ≡ 1, Jψ = Πψ =
Σψ ≡ 0. On the other hand, a Schottky system may be modeled as open presuming
a constant volume moving with velocity w (right in Figure 2.2). The velocity w is
superposed to the material velocity v(x, t) of the particles P. Then holds Jψ ≡ J1 = J

and we notify

d

dt

∫

Ω(t)

ρ(x, t)dV = −
∫

∂Ω(t)

J(x, t)dS 6= 0 , (2.48)

where the flux of mass is given by

J = ρ(v − w). (2.49)

Note that in a control volume the total outward flux Jψ of quantity ψ is the sum of
a convective (mass related) part ρ(v − w)ψ and a conductive part J

ψ
cond. Clearly, if

domain Ω is a body the convective part of the flux vanishes, i.e., v = w.
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2.8 Jump conditions

With the same arguments as before and by applying the divergence theorem and Reynolds’
transport theorem (see Appendix, equation A 2.67) we obtain the local form of the
generic balance equation in regular points, (cf. [231])

∂ρψ

∂t
+ ∇ ·

(
w ρψ + Jψ

)
= Πψ + Σψ . (2.50)

The specific balances of mass, momentum, total and internal energy follow by inserting
the known expressions (here stated in spatial form):

• mass:
ψ ≡ 1 , J1 ≡ ρ(v − w) , Π1 ≡ 0 , Σ1 ≡ 0. (2.51)

• momentum:

ψ ≡ v , Jv ≡ ρ(v − w)v − σT , Πv ≡ 0 , Σv ≡ ρb̄. (2.52)

• total energy:

ψ ≡ e , J e ≡ ρ(v − w)e− σT · v + q , Πe ≡ 0 , Σe ≡ ρb̄ · v + r. (2.53)

• internal energy:

ψ ≡ u , Ju ≡ ρ(v − w)u+ q , Πu ≡ ∇v : σ , Σu ≡ ρr. (2.54)

Note that the internal energy balance is not a conservation law, because of the nonzero
production Πu.

2.8. Jump conditions

In the foregoing we presented the global balance equations for the extensive quantities
mass, momentum and energy, and we assumed continuity to derive the local, differen-
tial form. In some problems the considered fields are not smooth but only piecewise
continuous. Let Λ be a surface discontinuity within a body B invoking (finite) jumps
in some fields quantities. Assume this singular surface travels through the body with
velocity vΛ 6= v. Then, the body is divided into two sub-bodies B+(t) and B−(t) such
that B+ ∪ B− = B and B+ ∩ B− = Λ. Indicate the values of a field quantity Ψ on the
positive side of Λ by + and on the negative side by -. On Λ we define the jump in Θ as
the difference of the limits Θ+ and Θ− and we write

[[Ψ]] = Ψ− − Ψ+. (2.55)
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2.8 Jump conditions

To compute the time rate of a field quantity Ψ Reynolds’ transport theorem (2.67)
now needs to be applied to the domains of both sub-bodies, Ω(B+, t) and Ω(B−, t),
and, moreover, to the surface Λ where the quantity Ψ jumps. The latter results in an
additional term in equation (A 2.67), which is of the form

∫

Λ

[[Ψ ·
(
vΛ − v

)
]] · n dS. (2.56)

Consequently, the generic form of the balance equations for a body with a discontinuous
surface, i.e., the general global jump balance equation, reads in spacial form

d

dt

∫

Ω+(t)∪Ω−(t)

ρψ(x, t) dΩ = −
∫

(∂Ω+∪∂Ω−)\Λ

Jψ(x, t) · n dS +

∫

Ω+(t)∪Ω−(t)

(Πψ + Σψ) dΩ

+

∫

Λ

[[ρψ(x, t) ·
(
vΛ − v

)
]] · n dS, (2.57)

with the physical field quantities, flux and source terms of equations (2.52–2.54).

The local form of equation (2.57) yields to local forms for both sub-bodies B+ and B−,
respectively, and to an Eulerian local jump balance equation on surface Λ,

[[ρψ ·
(
vΛ − v

)
− Jψ]] · n = 0. (2.58)

Note that we neglect here all sources and sinks on the singular surfaces, otherwise there
would be a source term on the right-hand side of equation (2.58) reflecting a possible
area-distributed production onto the singular surface. The analogous Lagrangian local

jump balance equation on surface Λ reads

[[ρψ V Λ
N ]] − [[Jψ · N ]] = 0, (2.59)

where V Λ
N is the normal component of the material velocity of the travelling front Λ, i.e.,

V Λ = V · N |Λ.
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3. Constitutive Equations

The kinematic equations introduced in Chapter 1 are essential to describe motion and
deformation of a body, whereas the local balance equations of Chapter 2 are the differ-
ential equations that determine the time evolution of the wanted fields. Altogether they
are not yet a closed set of equations, since they do not distinguish one material from
another. In addition, constitutive laws1 are required which should in appropriate form
specify the material behavior as a function of strain and stress state. Here we make no
attempt to review the huge body of constitutive theories available in continuum mechan-
ics but restrict ourself to some essential equations; for more details see [32, 152, 229, 247]
and others. In this chapter we will summarize the general prerequisites for constitutive
equations and we will introduce some elastic material models.

3.1. Elasticity

Let us consider an infinitesimal material neighborhood undergoing a deformation along
a path Γ. The deformation is defined by a defomation gradient F : [t1, t2] → GL+(3, IR).
Then, the work of deformation associated with this path is

W =

∫ t2

t1

P (t) · F (t) dt. (3.1)

A material is said to be an elastic material if the work of deformation is path inde-
pendent. Consequently holds

∫

Γ′

PiJdFiJ =

∫

Γ′′

PiJdFiJ

for all paths of deformation Γ′,Γ′′ ∈ GL+(3, IR) defined by functions F ′,F ′′ : [t1, t2] →
GL+(3, IR) such that F ′(t1) = F ′′(t1) and F ′(t2) = F ′′(t2). For all closed paths of
deformation the work of deformation is zero.

1which are not given by law but are assumptions basing on observation and generalization
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3.1 Elasticity

3.1.1. Variational form

The definition of elasticity implies that for any deformation path Γ starting at a fixed
reference configuration and terminating at F the strain energy density W is of the
form

W (F ) =

∫

Γ

P dF . (3.2)

Clearly, the elastic strain energy density is a function of the deformation only. In addition
we know the gradient, i.e., the work conjugate stress tensor

PiJ(F ) =
δW

δF
≡ ∂W

∂FiJ
(F ). (3.3)

The strain energy density acts as a potential for the stress tensor. Relation (3.3) is,
therefore, the general variational form of elastic constitutive laws. Elastic materials
with variational constitutive relations like (3.3) are also called hyperelastic materials.

In contrast to that, models with an ad hoc formulation of the elastic constitutive law
are called hypoelastic materials. The hypoelastic constitutive relation is formulated in
rate form, i.e., the stress rate is defined. In original hypoelastic theory [339], the stress
rate is a function of the rate of deformation tensor (1.47) and additional contributions,
e.g., the stress itself f(dkl, σij , . . . ). However, such constitutive relations (which are not
elastic in the sense of the above definition) are not employed in modern constitutive
theories. Instead, the name hypoelastic mostly refers to a rate formulation of the elastic
law, e.g.,

σ̂(F ) =
<4>

C (F ) d(F ), (3.4)

where σ̂ denotes a physical meaningful (objective) time derivative of the Cauchy stress

tensor. The components of the stiffness tensor
<4>

C (F ) are expressions of the elastic
constants which in turn depend on the actual definition of the stress rate (and thus
on the deformation). Because of the properties of the rate of deformation tensor (cf.,
Section 1.5) hypoelastic constitutive laws do not strictly reflect the path independence
of elasticity. Moreover, the derivation of objective rates of stress tensors and the corre-
sponding stiffness tensors is not trivial, see, e.g. [32].

From the theoretical point of view there is no reason to work with hypoelastic constitutive
relations. However, the majority of commercial finite element programs still applies
constitutive relations like (3.4). For this reason this approach is mentioned here. In the
remaining of this text we speak about elasticity meaning the constitutive equations in
its variational form (3.2–3.3).
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3.1 Elasticity

3.1.2. Internal energy, stresses and elasticity tensor

The strain-energy function W (F ) of an elastic material may be given by the Helmholtz
free energy density introduced in Chapter 2. To be more precise, inserting (3.3) into the
mechanical energy balance equation (2.33) gives the identity

U = W (F ) = A(F ) (3.5)

which states that the internal energy density of an elastic body coincides (up to an
inconsequential additive constant) with the strain energy density.

From the definition of elasticity it follows that a material is elastic if and only if for
all closed paths of deformation the rate of free energy vanishes, i.e., if the deformation
of the material does not entail dissipation or hysteresis. This yields the definition of
elasticity in terms of continuum thermodynamics where a material is said to be elastic if
it produces no entropy. The second law of thermodynamics degenerates to an equation.
Following a strategy known as Coleman-Noll procedure we expand the Clausius-Planck
inequality (2.44) to write

P · Ḟ − Ȧ =
(
P − ∂Ȧ

∂F

)
· Ḟ = 0. (3.6)

Only if the term in brackets vanishes equation (3.6) holds for every rate of deformation.
In consequence this relates the stresses to the energy function as in the constitutive
relation (3.3).

In order to obtain numerical solutions of nonlinear finite-deformation problems the lin-
earized stress state is of central importance. Therefore we proceed expressing relation
(3.3) in an incremental from. This can be accomplished in a number of mathematically
equivalent ways. For instance taking differentials of (3.3) gives

dPiJ = CiJkL(F ) dFkL, (3.7)

where CiJkL(F ) are the Lagrangian elastic moduli. The elastic moduli are the compo-

nents of the fourth-order elasticity tensor
<4>

C

<4>

C = CiJkLei ⊗ eJ ⊗ ek ⊗ eL with CiJkL(F ) =
∂2W

∂FiJ∂FkL
(F ). (3.8)

The elasticity tensor is always symmetric in its first and second and in its third and
fourth index. This symmetry is known as minor symmetry,

CiJkL = CJikL = CiJLk = CJiLk. (3.9)
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3.2 General requirements on the strain-energy function

If derived from a scalar-valued energy function as presumed here by (3.8), the tensor
<4>

C also possesses major symmetry, i.e., it is symmetric in the sense

CiJkL = CkLJi ⇔
<4>

C =
<4>

C
>
. (3.10)

A standard exercise shows that a fourth-order tensor with major and minor symmetry
has only 21 independent components.

3.2. General requirements on the strain-energy function

Throughout this text we focus for simplicity on homogeneous (or homogenized) ma-
terials. A material is said to be homogeneous when the distribution of the internal
structure is such that every material point has the same mechanical behavior. On the
other hand, in a heterogeneous material the strain-energy function will additionally
depend on the position of the material point in the reference configuration X. (A com-
mon approach to simplify that situation is to homogenize the material by “averaging”
over the internal structure, see Chapter 7.1.)

Hence, the strain-energy density is a postulated scalar-valued function of one tensorial
variable, namely the deformation gradient F . For convenience we require this function
to vanish in the reference configuration where F = I, i.e., the reference configuration
is stress free. From physical observations we conclude that the strain energy increases
monotonically with the deformation,

W (I) = 0 and W (F ) ≥ 0. (3.11)

The strain energy function attains a global minimum for F = I at the stress free state.

Moreover, let us require that an infinite amount of energy is necessary to expand a body
infinitely and to compress a body to zero volume, respectively.

W (F ) → ∞ as det F → ∞ (3.12)

W (F ) → ∞ as det F → 0. (3.13)

The strain-energy density W (F ) and the resulting constitutive equation must, of course,
fulfill some requirements which arise from mathematical theory as well as from the
physical nature of the material under consideration.
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3.2 General requirements on the strain-energy function

3.2.1. Polyconvexity

From a mathematical prospective the fundamental issue is to guarantee the existence
of a (unique) solution for a given constitutive model. Local existence and uniqueness
theorems in nonlinear elastostatics and elastodynamics are based on ellipticity. The
ellipticity condition states that an energy function W (F ) leads to an elliptic system if
and only if the well known Legendre-Hadamard condition holds,

∂2W

∂F ∂F

(
F
)
≥ 0 (3.14)

for all F (X) ∈ GL+(3, IR), X ∈ IR3. If the inequality holds we say that W is strongly
elliptic or uniform rank-1 convex.

Originally, global existence theory for elastic problems was based on convexity of the
free energy function. A scalar function is said to be convex if, for all x1,x2 ∈ IR3, holds

φ(λx1 + (1 − λ)x2) ≤ λφ(x1) + (1 + λ)φ(x2) λ ∈ (0, 1). (3.15)

However, from a physical point of view this condition may be too strong. As pointed
out by Ball [12] convexity precludes some special but eminent physical phenomena as,
e.g., buckling or wrinkling of structures. This leads to the important concept of qua-
siconvexity, introduced by Morrey in [226]. On a fixed domain Ω a function W is
quasiconvex if

∫

Ω

(
W (F + grad u)dx ≥

∫

Ω

W (F )dx ∀ F ∈ GL+(3, IR), u ∈ C∞
0 . (3.16)

Morrey showed that (under suitable growth conditions) quasiconvexity is a necessary and
sufficient condition for a functional to be weakly lower semi-continuous, i.e., W (F ) ≥
α. Thus, quasiconvexity is closely related to the existence of minimizers of an energy
function.

Unfortunately, condition (3.16) is a global one and, therefore, complicated to handle. A
concept of greater practical importance is that of polyconvexity. Following Ball [12],
see also [206], we define an energy function W (F ) to be polyconvex if and only if there
exits a function φ which has arguments F , cof(F ) and det(F ) and is convex, such that

W (F ) = φ
(
F , cof(F ), det(F )

)
. (3.17)

The polyconvexity condition has an additive nature, i.e., if the functions φi are all convex
in their respective arguments then the function W (F ) = φ1(F )+φ2(cof(F ))+φ3(det F )
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3.2 General requirements on the strain-energy function

is polyconvex. This property turns out to be very useful to establish constitutive models
because it permits to construct energy functions out of simpler ones.

Finally, as shown in [206], the following implication chain relates all introduced concepts

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-1-convexity (ellipticity) .

For homogenous and isotropic elastic materials we commonly require the strain energy
function to be a convex potential. However, non-convex energy functions are encountered
in many applications such as phase transitions in shape memory alloys [36, 279], in phase
field theory (see Section 8.4) and, in particular, in dissipative materials under finite
deformations. Non-convex potentials govern the microstructural development of a priori
heterogeneous materials (such as textured materials or single crystals, [61, 163, 200]) as
well as deformation phase decompositions in initially homogeneous materials.

Material instability phenomena can be interpreted as deformation microstructures, they
are also associated with non-convex potentials. Such microstructures may be resolved by
relaxation techniques based on a convexification of the (incremental) potential, whereby
the relaxed problem then allows for a well-posed numerical analysis. For a concise
mathematical background of the subject see [100, 232], mathematical treatments in the
continuum mechanical context can be found in [19, 59, 75] and applications to special
problems of metal plasticity and biological tissues are reported, e.g., in [60, 62, 173] and
[15, 14, 297], respectively.

3.2.2. Objectivity and material frame indifference

It is obvious to claim that the deformation and consequently the strain energy density
of a material point must not depend on the position of the observer who records the
motion. In other words, two observers located at different positions in space should see
at one instance an identical response of the material point. This requirement is called
observer invariance or objectivity. If a physical quantity depends on the position
of the observer than a change of observer, or, in mathematical terms, an action of a
Euclidean group, induces a transformation of motion ϕ into ϕ̂. The second observer
records the motion as being shifted by a vector c(t) and rotated by a finite rotation
Q ∈ SO(3), i.e.,

x = ϕ(X, t) (3.18)

⇒ Q(t) ϕ(X , t) + c(t) = ϕ̂(X, t) = Q(t) x + c(t),

where we assume the initial configuration to be observer independent.
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3.2 General requirements on the strain-energy function

Closely related to observer invariance is the expectation that the energy of a deformed
elastic body remains unchanged when a rigid-body motion is superposed on an existing
deformation. This requirement leads to the principle of material-frame indiffer-
ence. Material-frame indifference is a somewhat questionable requirement because in
some — rare — cases it might be physical meaningful that material properties change
with, e.g., superposed fast rotations. The validity of this principle, its physical interpre-
tation and the fundamental differences of the principles of objectivity and of material-
frame indifference are subject of extensive discussions in theoretical literature, see, e.g.,
[33, 34, 235]. We consider here only common, acceleration-independent solid materials.
In this case both, the agreement among observers about the perceived material response,
i.e., objectivity, and the invariance of material response to superposed rigid body mo-
tions, i.e., material-frame indifference, coincide de facto. For more theoretical details we
refer to the cited literature.

With (3.18) we can now derive the action of an Euclidean group on other kinematic
quantities, primarily on the deformation gradient F (X, t),

F̂ =
∂ϕ̂

∂X
=
∂ϕ̂

∂x

∂x

∂X
= QF . (3.19)

With the polar decomposition (1.23) and (1.27) follows immediately

Û = U (3.20)

R̂ = QR (3.21)

V̂ = QV Q>. (3.22)

By presuming the strain-energy density being solely a function of the deformation gra-
dient, invariance upon translation is ensured. This leads to the following definition: An
elastic material is said to be objective (and material frame indifferent) if its strain-
energy density is invariant upon rotations. It holds for Q ∈ SO(3)

W (QF ) = W (F ) (3.23)

for all F ∈ GL+(3, IR). A strain-energy density function is objective if and only if it
can be expressed as a function of the right Cauchy-Green tensor C = F TF = U 2,
equation (1.36). It is clear from (3.19) and (3.20) that a function of the form W (U 2) =
W (C) is objective. To prove the necessity condition, assume, conversely, that W (F )
is objective. Let F = RU be the polar decomposition of F and Q ≡ R−1. Then, by
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3.2 General requirements on the strain-energy function

definition (3.23) is2

W (F ) = W (R−1F ) (3.24)

= W (U) = W (C).

Transformation rules for the stresses and the elastic moduli follow. Let W (F ) be ob-
jective and imagine perturbing it by an infinitesimal deformation dF . Then definition
(3.23) demands

W
(
Q(F + dF )

)
= W

(
F + dF

)
. (3.25)

Expand this expression to employ the definition of the stresses (3.3).

W
(
QF

)
+
∂W

∂FiJ

(
QF

)
QijdFjJ = W

(
F
)

+
∂W

∂FiJ

(
F
)
dFiJ

By virtue of (3.23) and with (3.3) this identity reduces to

PiJ(QF )QijdFjJ = PjJ(F )dFiJ . (3.26)

Because dF is arbitrary we conclude that

QijPiJ
(
QF

)
= PjJ(F ), (3.27)

or, taking Q to the right-hand side of this equation

P (QF ) = QP (F ) ∀ Q ∈ SO(3) . (3.28)

To establish the transformation rule for the elastic moduli we start with equation (3.28)
and imagine perturbing it by an infinitesimal deformation dF . By objectivity of the
stress tensor holds

PiJ
(
Q(F + dF )

)
= QijPjJ

(
F + dF

)
. (3.29)

Expanding this expression gives

PiJ
(
QF

)
+

∂2W

∂FiJ∂FkL

(
QF

)
Qkl dFlL = QijPjJ

(
F
)

+Qij
∂2W

∂FjJ∂FkL

(
F
)
dFkL.

By the presumed objectivity of stress tensor and by the definition of the tangent moduli
(3.8) this identity reduces to

CiJkL(QF )Qkl dFlL = QijCjJkL(F ) dFkL. (3.30)

Again, dF is arbitrary, and we conclude for the tangential moduli

CiJkL(QF ) = QijQkl CjJlL(F ). (3.31)

2By minor abuse of notation we write subsequently W (F ) and P (F ) etc., meaning the correspond-
ing function of argument F>F = C. Furthermore, we write the functions without additionally
indicating the different forms, depending on the specific arguments.
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3.2 General requirements on the strain-energy function

3.2.3. Material symmetry

Further constraints to the form of the strain-energy density function arise from material
symmetry. If the material response in some preferred directions is identical, the strain-
energy function is expected to reflect that property. A finite rotation Q ∈ SO(3) is
said to be a material symmetry transformation of a solid elastic material if for all
F ∈ GL+(3, IR) holds

W (FQ) = W (F ). (3.32)

In general, not all finite rotations Q ∈ SO(3) are symmetry transformations. Nonetheless
the set of all symmetry transformations of a material defines a subgroup S ⊂ SO(3). To
prove this consider a rotation Q1 ∈ S. Then, by (3.32),

W
(
FQ−1

1

)
= W

(
(FQ−1

1 )Q1

)
= W (F ), (3.33)

and, hence, Q−1
1 ∈ S. Now let Q1,Q2 ∈ S. By the same argument is

W
(
F (Q1Q2)

)
= W

(
(FQ1)Q2

)
= W

(
FQ1

)
= W (F ), (3.34)

and, Q1Q2 ∈ S. Consequently, S defines a group.

To deduce the transformation rules for the stresses and the elastic modulus we apply
the same procedure as above. Let Q ∈ S be an arbitrary finite rotation, F ∈ GL+(3, IR)
be a local deformation, and imagine perturbing it by an arbitrary infinitesimal deforma-
tion dF . Then symmetry demands that

W
(
(F + dF )Q

)
= W

(
F + dF

)
. (3.35)

Expand this expression to employ relation (3.3)

W
(
FQ

)
+
∂W

∂FiJ

(
FQ

)
dFjIQIJ = W

(
F
)

+
∂W

∂FiJ

(
F
)
dFiJ .

By symmetry of the material we get

PiJ(FQ)dFjJQIJ = PiJ
(
F
)
dFiJ , (3.36)

and, because dF is arbitrary,

PiI
(
FQ

)
QJI = PiJ(F ). (3.37)

Equivalently we may write

P (FQ) = P (F )Q. (3.38)
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3.3 Isotropy

Further, from the material symmetry of the stress tensor follows that

PiJ
(
(F + dF )Q

)
= PjI

(
F + dF

)
QIJ . (3.39)

Expanding this expression, applying (3.38) and the definition of the elastic moduli (3.8)
gives

PiJ
(
FQ

)
+

∂2W

∂FiJ∂FkL

(
FQ

)
dFkKQKL = PiI

(
F
)
QIJ +

∂2W

∂FiI∂FkL

(
F
)
dFkLQIJ

CiJkL(FQ)dFkKQKL = CiIkL(F )dFkLQIJ , (3.40)

and, we conclude

CiJkL
(
FQ

)
QLK = CiIkL(F )QIJ (3.41)

⇔ CiJkL(FQ) = CiIkK(F )QIJQKL. (3.42)

For the strain-energy function of materials with symmetry exists representation the-
orems. These theorems (which state that a scalar function of any number of tensor
invariants under a symmetry group can be expressed as a function of a finite number of
scalar invariants, none of which is expressible as a function of the remaining ones) are
fundamental for the definition of the strain-energy function.

3.3. Isotropy

A special but very important class of materials are isotropic materials. From the physical
point of view isotropic materials are materials without any preferred direction. In terms
of material symmetry an elastic material is said to be isotropic if its symmetry group is
S ≡ SO(3). It is said to be anisotropic otherwise.

For isotropic materials the strain-energy function can be represented as a function of the
invariants of the right Cauchy-Green tensor

W
(
C
)

= W
(
IC1 , I

C
2 , I

C
3

)
(3.43)

with (see also Appendix III)

IC1 = tr(C)

IC2 =
1

2

(
tr(C2) − tr(C)2

)
(3.44)

IC3 = det(C).
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3.4 Elastic material models

Note that this representation follows from the strain-energy function being invariant
under rotations and, thus, equation (3.43) may equivalently be written in terms of the
invariants of the left Cauchy-Green tensor W (b) = W (Ib1, I

b
2, I

b
3) or its related strain

measures.

With similar arguments the strain-energy function of an isotropic material can be ex-
pressed as a symmetric function of the eigenvalues of the right Cauchy-Green tensor.

W
(
C
)

= W
(
λ2

1, λ
2
2, λ

2
3

)
(3.45)

Here we made use of the fact that the eigenvalues of tensor C, λ2
α, α = 1, 2, 3, are the

squares of the eigenvalues of tensor U , λα. Moreover, in isotropic materials the principal
directions of stress tensor and work conjugate deformation tensor coincide.

In order to express the constitutive relation in terms of strain invariants we exploit the
fact, that the stress-strain relation is given by an isotropic tensor function,

QW
(
C
)
Q> = W

(
QCQT

)
, (3.46)

which can easily be derived from equations (3.22), (3.28) and (3.38) and is not restricted
to isotropic materials. An isotropic tensor function W (C) can explicitly be represented
as

∂W (C)

∂C
= α1I + α2C + α3C

2, (3.47)

where the αi, are scalar coefficients (so-called response coefficients), which may be eval-
uated for each material law in terms of tensor C, αi = αi(I

b
1, I

b
2, I

b
3). Equation (3.47) is

known as Richter representation or first representation theorem for isotropic tensor
functions. By some algebra (see, e.g., [138, 204]) it can alternatively be formulated as

∂W (C)

∂C
= α̂0I + α̂1C + α̂2C

−1, (3.48)

which is known as the alternative Richter representation or second representation
theorem for isotropic tensor functions. The fundamental message of these theorems is
that the stress response on the straining of an isotropic material is uniquely determined
by only three parameters.

3.4. Elastic material models

The stress-strain relation of an elastic material follows by equation (3.3) from a strain-
energy potential, which, of course, should map the physical properties for every specific
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3.4 Elastic material models

material under consideration. Consequently there exists a huge number of strain-energy
functions and corresponding constitutive theories. The aim of this section is to summa-
rize some well established and frequently employed models for reference.

3.4.1. Linear elastic materials

In linear elasticity the constitutive relation is given by Hooke’s law. The linearized or
incremental strain tensor ε (1.42) and the corresponding stresses σ are related via the
linear equation

σ =
<4>

C ε. (3.49)

The elasticity tensor
<4>

C is a function of Young’s modulus, E, and Poisson number, ν,
or of the Lamè constants, µ and λ, respectively. For isotropic material these moduli are
related by:

λ =
Eν

(1 + ν)(1 − 2ν)
µ =

E

2(1 + ν)
. (3.50)

The material parameters are presumed to depend on temperature but not on the de-
formation. Then the corresponding (isothermal) strain-energy density may be written
as

W
(
ε
)

=
λ

2

(
trε
)2

+ µtrε2, (3.51)

where tr(·) denotes the trace of a tensor. The stress-strain relation (3.49) assumes with
(3.3) the well known form

σ = λ trε I + 2µε. (3.52)

With bulk modulus κ,

κ =
E

3(1 − 2ν)
= λ+

2

3
µ, (3.53)

equation (3.51) can alternatively be formulated as

W
(
ε
)

=
1

2
κ
(
trε
)2

+ µ‖ε‖2 . (3.54)

Here ‖·‖ defines the deviatoric norm of a strain tensor by
√

2
3
dev(·) · dev(·), see Ap-

pendix.

For later reference we also formulate a temperature dependent version of the elastic
strain-energy density

W e
(
ε, T

)
=
κ

2

(
trε − 3α(T − T0)

)2
+ %0cvT

(
1 − ln

T

T0

)
+ µ‖ε‖2, (3.55)
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3.4 Elastic material models

where α is the thermal expansion coefficient, T0 is a reference absolute temperature, %0

is the mass density per unit undeformed volume, and cv is the specific heat per unit
mass at constant volume (which is assumed to not depend on strain). The first term in
(3.54) and (3.55) represents the volumetric part of the elastic energy density and implies
the equation of state of the material. The corresponding pressure follows as

p(ε, T ) = κ
(
trε − 3α(T − T0)

)
. (3.56)

As a matter of course, the linear elastic constitutive theory has major limitations. It
can only be used to model small deformations, because it is based on the linearized
deformation measure (1.42) and, even if the strains are small, it can only model a linear
stress-strain behavior. For many practical purposes these restrictions are of no concern.
Most engineering materials show elastic behavior for modest strains and the stresses are
observed to be proportional to the strains in this range. In this text, however, we focus
on large deformations. The easiest way to extend the linear elastic material behavior
to finite kinematics is by simply replacing the infinitesimal strain ε in (3.51) by the
Green-Lagrange strain tensor E. The result is known as the Saint-Vernant Kirchhoff
material

W
(
E
)

=
λ

2

(
tr(E)

)2
+ µtrE2 (3.57)

where λ and µ are again the Lamè constants (3.50). With

S =
∂W

∂E
= 2

∂W

∂C
(3.58)

follows the stress-strain relation for the second Piola-Kirchhoff stress tensor S,

S = λ I trE + 2µE. (3.59)

Unfortunately, the energy function (3.57) fails to be polyconvex as we shall see in the
next paragraph. In particular, (3.57) does not give a reasonable limit in compression
because as det F → 0, i.e., E → −1

2
I, the stresses vanishes. Consequently, from the

theoretical point of view, this constitutive relation should be avoided. (Nonetheless the
Saint-Vernant Kirchhoff model is very common, especially for metals where the range of
elastic strains is relatively small.)

3.4.2. Rubbery and biological materials

More sophisticated elastic models are required for organic materials. Some of them
exhibit a nonlinear stress-strain behavior even at modest strains. More importantly,
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3.4 Elastic material models

there is a wide range of polymers and also biological tissues which are elastic up to
huge strains. These materials show complex (and very different) nonlinear stress-strain
behavior. Specific strain energy-functions are designed to account for these phenomena.

The typical example for a material undergoing large strains is natural rubber. Many
polymers also show (above a critical temperature) a rubbery behavior – the response is
elastic without much rate or history dependence. Polymers with a heavily cross-linked
molecular structure (elastomers) are the most likely to behave like ideal rubber, but also
soft biological tissue shows rubbery behavior. Besides being elastic, the following feature
is typical of rubbery materials: the material strongly resists volume changes. The bulk
modulus (3.53) is comparable to that of metals. On the other hand, rubbery material is
very compliant in shear, the shear modulus µ is of orders of magnitudes smaller than the
shear resistance of most metals. This observation motivates the modelling of rubbery
materials as being incompressible, i.e., the volume remains constant during deformation,
det F = 1.

To assure incompressibility of an elastic material the strain-energy function is postu-
lated to be of the form

W isochor = W (C) − p (det F − 1) (3.60)

where p plays the role of a Lagrangian multiplier. By equation (3.3) follows for the first
Piola-Kirchhoff stress tensor

P = pF−> +
∂W

∂F
(3.61)

and for the second Piola-Kirchhoff stresses and the Cauchy stresses

S = −pF−1F−> + F−1∂W

∂F
= −pC−1 + 2

∂W

∂C
(3.62)

σ = −p I +
∂W

∂F
F> = −p I + F

(∂W

∂F

)>
. (3.63)

These relations illustrate that the pressure p can not be determined from the materials
response but only from additional equilibrium equations and boundary conditions.

To account later for both, volume preserving as well as volumetric deformations, we
decompose the deformation gradient according to relation (1.22) into an isochoric (or
unimodular) part F isochor and a volume related part F vol = 3

√

det(F ) I,

F = F isochorF vol = J
1

3 F isochor. (3.64)
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Figure 3.1.: Stress-strain relations in uniaxial tension.

Let us now summarize the classical strain-energy functions for incompressible materials
W (F isochor) but omit the superscript isochor for simplicity. As before, ICi denotes the
i-th principle invariant of the (isochoric part of) tensor C, equation (3.44).

The simplest model is the Neo-Hookean solid,

W
(
C
)

=
µ

2

(
IC1 − 3

)
. (3.65)

First used by Treloar [338], the parameter µ was originally determined from an elemen-
tary statistical mechanics treatment predicting that µ = N

2
kT , where N is the number of

polymer chains per unit volume, k is the Boltzmann constant and T is the temperature.
Today this model is widely used with shear modulus µ determined by experiments. The
stress-strain relation follows from (3.61- 3.63).

In Figure 3.1 the stress-strain relations in uniaxial tension are displayed. The dash-
dotted line shows the Neo-Hookean model (3.65) whereas the dashed line results from
the Saint-Vernant Kirchhoff model (3.59). In the undeformed configuration the tangent
on both curves is the straight line of the Hookean law (3.52). The limited validity
of the Saint-Vernant Kirchhoff model (3.59) is clearly visible. If ∆l/L < −0.4226 an
instability occurs, thence for rising compression a reduced stress is observed. Clearly,
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3.4 Elastic material models

the model makes sense only for small compressive strains. (The critical strain value does
not depend on the material data.). On the other hand, the Neo-Hookean model captures
the (principal) physics for the full range of straining. From experiments we know that
for rubbery materials under moderate straining up to 30 - 70 % the Neo-Hookean model
usually fits the material behavior with sufficient accuracy.

To model rubber at high strains the one-parametric Neo-Hookean model (3.65) is in most
models replaced by a more sophisticated development of Ogden [291, 292]. Instead of
using strain invariants this model expresses the strain energy density in terms of principal
stretches λα, α = 1, 2, 3,

W =
N∑

p=1

µp
αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3), (3.66)

where N , µp and αp are material constants. In general, the shear modulus results from

2µ =

N∑

p=1

µpαp. (3.67)

The three principal values of the Cauchy stresses can be computed from (3.66) as

σα = p+ λα
∂W

∂λα
α = 1, 2, 3 (no summation), (3.68)

and the principal first and second Piola-Kirchhoff stresses follow by

Pα = λ−1
α σα and Sα = λ−2

α σα. (3.69)

With N = 3 and values summarized in Table 3.1 the Ogden material reaches an almost
perfect agreement to the experimental data of Treloar. Therefore and because it is
computational simple, equation (3.66) is the reference material law for natural rubber.

Neo-Hookean α1 = 2.0 µ = 4.225 · 105N/m2

Ogden α1 = 1.3 µ1 = 6.3 · 105 N/m2

α2 = 5.0 µ2 = 0.012 · 105 N/m2

α3 = −2.0 µ3 = −0.1 · 105 N/m2

Mooney-Rivlin α1 = 2.0 µ1 = 3.6969 · 105 N/m2

α2 = −2.0 µ2 = −0.5281 · 105 N/m2

Arruda-Boyce λlock = 3 µ0 = 3.380 · 105 N/m2

Blatz-Ko ν = 0.45 µ = 4.225 · 105N/m2

St.Vernant-Kirchhoff ν = 0.45 µ = 4.225 · 105N/m2

Table 3.1.: Material parameters.
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3.4 Elastic material models

For special values of material constants the Ogden model (3.66) will reduce to either
the Neo-Hookean solid (N = 1, α = 2) or the Mooney-Rivlin material. The Mooney-
Rivlin material can be derived from (3.66) with N = 2 and α1 = 2, α2 = −2, or, in
other form

W (C) =
µ1

2

(
IC1 − 3

)
− µ2

2

(
IC2 − 3

)
, (3.70)

together with equation (3.67). The Mooney-Rivlin material was originally also developed
for rubber but is today often applied to model (incompressible) biological tissue, e.g., in
[219, 220, 239].

In polymers or industrial rubbers the shear modulus µ usually depends on the defor-
mation. Earlier as natural rubber these materials exhibit a rising resistance against
straining. A physically inspired model for carbon filled rubber is the Arruda-Boyce
model. It is also sometimes called the 8-chain model because it was derived by ideal-
izing a polymer as 8 elastic chains inside a box [7]. This constitutive law has a strain
energy density given by

W (C) = µ0

N∑

p=1

cp

λ2p−2
lock

(
(IC1 )p − 3p

)
. (3.71)

Here, µ0 is the (initial) shear modulus, cp are constants following from statistical theory,
λlock and N are material constants of the underlying chain model, namely the limiting
chain extensibility and the number of rigid links, (see [152] for illuminating explanations).
Evaluating the first three terms of expression (3.71) gives

W (C) = µ0

(1

2

(
IC1 − 3

)
+

1

20λ2
lock

(
(IC1 )2 − 9

)
+

11

1050λ4
lock

(
(IC1 )3 − 27

))

. (3.72)

In the example below the limiting chain extensibility is set to λlock = 3 and the initial
shear modulus is 80% of the Neo-Hookean shear modulus. The special feature of this
model is a high strain resistance at strains > 300% (controlled by the choice of parame-
ters). In other words, the model has the ability to reflect the dependence of the resulting
shear modulus on the deformation.

Porous (or foamed) elastomers cannot be regarded as incompressible anymore. Blatz and
Ko [37] proposed, based on theoretical arguments and experimental data for polyurethane
rubbers, a strain-energy density of the form

W (C) =
µ

2

(
IC1 − 3

)
− µ

2β

(
(IC3 )−β − 1

)
, (3.73)

where β is computed from shear modulus µ and Poisson number ν as β = ν
1−2ν

. In

the incompressible limit is IC3 = 1 and equation (3.73) reduces to the Neo-Hookean
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3.4 Elastic material models

solid. Here the model is introduced because it is — either as Blatz-Ko model or as Neo-
Hookean extended to the compressible range — applied for (porous) biological tissue,
see e.g. [118, 111].
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Arruda−Boyce

Figure 3.2.: Constitutive relations for rubbery materials in uniaxial tension.

Exemplarily, let us now consider an incompressible material under uniaxial ten-
sion (cf. Chapter 1.6). In particular, let the stretch ratio λ = l/l0 be given. Then we
find after differentiation according to (3.68) the principal stresses

σα = p+
N∑

p=1

µpλ
αp
p (3.74)

with values from Table 3.1 for Neo-Hookean, Mooney-Rivlin and Ogden material. Pres-
sure p is determined from incompressibility and boundary condition σ2 = σ3 = 0. With
(3.69) the constitutive equation reduces to a single equation of the form

P =
N∑

p=1

(
µpλ

αp−1
p − µpλ

− 1

2
αp−1

p

)
. (3.75)

For the Arruda-Boyce model (3.71) we get by differentiation

P = µ0

(
1 +

1

5λ2
lock

(λ2 +
2

λ
) +

11

175λ4
lock

(λ2 +
2

λ
)2
)(
λ1 − λ−2

1

)
. (3.76)
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The Blatz and Ko model coincides in the incompressible case with the Neo-Hookean
solid. Figure 3.2 shows the corresponding stress-strain curves for rubbery materials with
material data from Table 3.1.

Above we have introduced the classical strain-energy functions for incompressible ma-
terials. These isochoric functions may be extended to the compressible range, J =
det F 6= 1, by replacing the kinematic constraint in (3.60) with a volumetric strain-
energy function.

W (F ) = W (F isochor) +W (F vol) (3.77)

The additive decomposition of the strain-energy density (3.77) is postulated for conve-
nience; other formulations are possible but not necessarily better. The easiest way to
construct a volumetric addition of the strain energy density W vol ≡W (F vol) = W (J) is
by assuming a linear constitutive relation, and, consequently,

W vol(J) =
κ

2

(
J2 − 1

)
=
κ

2

(
(IC3 ) − 1

)
, (3.78)

with a bulk modulus κ according to (3.53). Unfortunately such a simple extension (which
is often applied, e.g., in commercial finite-element codes [161]) fails to be polyconvex. In
the limit J → 0 the constitutive relation derived from (3.78) gives non-physical results
(compare with the comments to the Saint-Vernant-Kirchhoff material, Figure 3.1).
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Figure 3.3.: Volumetric constitutive models in pressure and hydrostatic tension.
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A standard method to avoid this drawback is to introduce an (additional) logarithmic

term of the Jacobian of the deformation, e.g., κ/2
(
ln J

)2
. The term vanishes for small

strains, J ≈ 1, but guarantees a realistic limit of W vol → ∞ for J → 0.

Here we adopt for the volumetric strain-energy function a well known analytical expres-
sion of Simo and Miehe [304],

W vol(J) =
κ

4

(
J2 − 1 − 2 ln J

)
, (3.79)

which was applied for biological tissue, e.g., by Pandolfi et al. [264]. Equation (3.79)
together with (3.65) prescribe a standard form of the Neo-Hookean material extended
to the compressible range. A detailed derivation of stress tensors and elastic tangent
moduli can be found in [152].

In Figure 3.3 the material parameter of Table 3.1 are applied to compare volumetric
constitutive relations. For a hydrostatic pressure and tension test the principal first
Piola-Kirchhoff stress divided by the bulk modulus κ is plotted versus the volumetric
straining. For small compressions and expansions the curves are close to the linear elastic
tangent but in the large strain range the different models diverge significantly.
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4. Variational Formulations

In the previous chapters we established a set of kinematic, balance and constitutive
equations to describe the motion and deformation of solids. With a view to formulate
finite element approximations we restate in this chapter the preceding equations in a
variational form.

4.1. Quasistatic deformations

At first we restrict our attention to time-independent deformation mappings and enun-
ciate the boundary-value problem (BVP) of elasticity. To this end we consider the
elastic body B of Figure 1.1 with boundary S = S1 ∪ S2, S1 ∩ S2 = 0 in a reference
configuration. Let the body deform in quasistatic manner under the action of a body-
force field B̄ : B → IR3, prescribed deformations ϕ̄ : S1 → IR3, and applied traction
T̄ : S2 → IR3. The equilibrium condition follows from the balance of linear momentum
(2.17). With (1.14) and (2.4) the governing equations can be restated as a function of
deformation, ϕ, here written in indicial form:

[
PiJ(Dϕ(X))

]
,J −%0B̄i = 0 in B (4.1)

ϕi = ϕ̄i(X) on S1 (4.2)

PiJ(Dϕ(X))NJ = T̄i on S2 . (4.3)

Equations (4.1–4.3) define a system of partial differential equations and essential (geo-
metric) and natural (traction) boundary conditions to be solved for ϕ(X).

Equivalently (and omitting the arguments), we can write the governing equations in the
more familiar spatial notation:

σij,j − % bi = 0 in ϕ(B) (4.4)

ϕi = ϕ̄i on ϕ(S1) (4.5)

σij nj = t̄i on ϕ(S2). (4.6)
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4.1 Quasistatic deformations

In both versions the elasticity BVP is usually intractable by analytical means. As a
first step towards numerical approximation methods we will transform (4.1-4.3) into a
variational setting.

To this end we assume that the admissible configurations of an elastic body belong to
a topological vector space U , termed as displacement space. (The precise functional
nature of this displacement space depends on the constitutive properties of the material
and the data of the boundary value problem and will remain unspecified for now.)
The deformations which satisfy the geometrical boundary conditions ϕ̄ define an affine
subspace US of U , US = {ϕ ∈ U such that ϕ− ϕ̄ ∈ U0}. The translation space U0 of US
is the space of admissible displacements. Thus, by definition, all admissible displacement
fields satisfy homogeneous displacement boundary conditions.

We begin by multiplying the equilibrium condition (4.1) with a virtual displacement,
i.e., a test function η ∈ U0. Integrating the result over the domain1 of body B we obtain
the weighted-residual form of (4.1),

∫

B

([
PiJ(Dϕ(X))

]
,J −%0B̄i

)

ηi dV = 0 ∀η ∈ U0. (4.7)

Integration by parts gives
∫

B

(

PiJ(Dϕ(X)) ηi,J − %0B̄iηi

)

dV −
∫

S
PiJNJ ηi dS = 0 ∀η ∈ U0, (4.8)

which, in view of the traction boundary conditions and the identity η|S1
= 0, reduces to

∫

B
PiJ(Dϕ)ηi,J dV −

∫

B
%0B̄iηi dV −

∫

S2

T̄iηi dS = 0 ∀η ∈ U0, (4.9)

(def)
= G

(
ϕ,η

)

which is the weak form of the balance of linear momentum or the principle of virtual
work.

We now assume that the equations (4.1–4.3) are related to a functional Π : US → IR.
Let

G
(
ϕ,η

)
= D,ϕΠ[ϕ](η) ∀ϕ ∈ US , ∀η ∈ U0 (4.10)

be the first variation of Π(ϕ). That is the case if and only if the integrability condition

D,ϕG
(
ϕ,η

)
(ξ) = D,ϕG

(
ϕ, ξ

)
(η) (4.11)

1For simplicity of notation we identify the domain of body B with its volume V (B).
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4.1 Quasistatic deformations

is satisfied ∀η, ξ ∈ U0, [215, 285]. Applied to expression (4.9) this condition results in
∫

B

∂PiJ
∂Fkl

(
Dϕ

)
ηi,J ξk,L dV =

∫

B

∂PiJ
∂Fkl

(
Dϕ

)
ξi,J ηk,L dV ∀ϕ ∈ US , (4.12)

which in turn requires

∂PiJ
∂Fkl

(
F
)

=
∂PkL
∂FiJ

(
F
)

∀F ∈ GL+(3, IR) . (4.13)

This is simply the condition for the existence of a strain-energy density W (F ) which
works as a potential for the stress strain relations (3.3). Consequently, the wanted
functional Π(ϕ) is evaluated to be (up to an inconsequential additive constant), cf.,
[285],

Π
[
ϕ
]

=

∫ 1

0

G
(
ϕ0 + t(ϕ − ϕ0), ϕ − ϕ0

)
dt . (4.14)

For a function G as defined in (4.9) this formula gives

Π
[
ϕ
]

=

∫ 1

0

{∫

B
PiJ
(
Dϕ0 + t(Dϕ −Dϕ0)

)
(ϕ− ϕ0)i,J dV

−
∫

B
%0B̄i(ϕ− ϕ0)i dV −

∫

S2

T̄i(ϕ− ϕ0)i dS
}

dt (4.15)

Exchanging the order of integration and using (4.13) results in the well known expression

Π
[
ϕ
]

=

∫

B

[
W
(
Dϕ

)
− %0B̄iϕi

]
dV −

∫

S2

T̄iϕi dS . (4.16)

The functional Π in form (4.16) is known as the potential energy of the elastic body.

The fundamental result of the preceding treatise is, that the equilibrium equations (4.1-
4.2) are the Euler-Lagrange equations corresponding to the variational problem

inf
ϕ∈US

Π
[
ϕ
]

(4.17)

which is the principle of minimum potential energy.

It should be noted that the insistence on energy minimization stems from the pre-
sumption that the stable equilibrium configurations of an elastic body (which are the
configurations of interest) are energy minimizers. The minimum principle (4.17) will in
Chapter 5.2 be taken as a basis for constructing approximate solutions to the elasticity
boundary-value problem.
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4.2 Euler-Lagrange equations and internal kinematic constraints

4.2. Euler-Lagrange equations and internal kinematic

constraints

In many cases the problem of energy minimization (4.17) is subjected to additional
constraints following from the physical nature of the problem. An internal kinematic
constraint is a scalar identity of the form

g(F ) = 0. (4.18)

In order to accommodate internal kinematic constraints we need to enrich the constitu-
tive equations by additional terms. This has been done in Chapter 3.4 for the constraint
of material incompressibility, equations (3.60-3.63). To formulate a general minimum
principle at the constitutive level, we define the local potential-energy density (3.3) to
be a function of the form

f
(
F
)

= W
(
F
)
− P · F . (4.19)

As explained above we presume that the equilibrium configurations of elastic bodies,
i.e. the configurations of interest, are energy minimizers. The corresponding variational
problem than simply reads: Find

min
F∈GL+(3,IR)

f
(
F
)
. (4.20)

The corresponding Euler-Lagrange equations are already given by (3.3). Written in
components they read

∂f

∂FiJ
= 0 ⇒ ∂W

∂FiJ
− PiJ = 0. (4.21)

This variational structure facilitates the treatment of internal constraints by the Lagrange-
multiplier method.

Internal kinematic constraints of the form (4.18) pointwise restrict the possible values
that may be attained by the deformation gradient. Suppose now that the material is
subjected to constraints gα

(
F
)
, α = 1, ..., N , simultaneously. In order to account for

the constraints we introduce the Lagrangian function

L
(
F ,Λ

)
= f

(
F
)

+
N∑

α=1

Λαgα
(
F
)
, (4.22)

where Λα are the Lagrange multipliers. Then we replace problem (4.20) by the saddle
point problem (min-max problem)

min
F∈GL+(3,IR)

max
Λ∈IRN

L
(
F ,Λ

)
. (4.23)
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4.3 Multi-field functionals

The Euler-Lagrange equations follow as

∂L
∂FiJ

= 0 ⇒ ∂W

∂FiJ
− PiJ +

N∑

α=1

Λα
∂gα
∂FiJ

(
F
)

= 0 (4.24)

∂L
∂Λα

= 0 ⇒ gα
(
F
)

= 0, α = 1, ..., N . (4.25)

The corresponding stress tensor is, therefore,

PiJ =
∂W

∂FiJ
+

N∑

α=1

Λα
∂gα
∂FiJ

(
F
)
. (4.26)

We see from these relations, that, in the presence of constraints, the stresses comprises an
unconstrained term and additional terms arising from the constraints (reaction stress).

A typical example for an internal constraint is the incompressibility of a material, hence

g
(
F
)

= J − 1 = 0. (4.27)

For an incompressible material the Lagrangian function (4.22) reads

L
(
F ,Λ

)
= W

(
F
)
− PiJFiJ + Λ

(
J − 1

)
, (4.28)

and equation (4.26) evaluates to

PiJ =
∂W

∂FiJ
+ ΛJF−1

iJ . (4.29)

Equivalently, with (2.5) and pushed forward, we can write the spatial form

σij =
1

J

∂W

∂FiJ
FjJ + Λδij . (4.30)

Equation (4.30) nicely illustrates that the incompressibility constraint has the effect of
introducing an additional term in the trace of the stress tensor, i.e., the Lagrangian
variable Λ represents a hydrostatic pressure, cf. Chapter 3.4.

4.3. Multi-field functionals

More general (quasistatic) variational principles then minimizing the potential energy
functional (4.16) are multi-field functionals, as, e.g., the Hu-Washizu principle, [355].
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4.3 Multi-field functionals

In such formulations motion, stress tensor and deformation are treated as independent
variables. Formulated with (1.1), (1.14) and (2.4) the Hu-Washizu potential of an elastic
solid reads

Π
(
ϕ,F ,P

)
=

∫

B

[
W (F ) + P · (Gradϕ − F ) − ϕ · %0B̄

]
dx−

∫

∂B2

T̄ · ϕ dx (4.31)

=

∫

B

[
W (F ) + PiJ(ϕi,J − FiJ) − %0Biϕi

]
dx−

∫

∂B1

PiJNJ(ϕi − ϕ̄i) dx

−
∫

∂B2

T̄iϕi dx .

The elastic minimum problem (4.17) is now replaced by the search for a stationary
solution. Stationarity of Π

(
ϕ,F ,P

)
demands

DΠ
(
ϕ,F ,P

)
· η =

∫

B

[
PiJ δϕi,J − %0Bi δϕi

]
dx−

∫

∂B1

PiJNJ δϕi dx−
∫

∂B2

T̄i δϕi dx = 0 (4.32)

for all η ∈ U0, and

DΠ
(
ϕ,F ,P

)
· δP =

∫

B

[
W (F ) + PiJ(ϕi,J − FiJ) − %0Biϕi

]
dx−

∫

∂B1

PiJNJ(ϕi − ϕ̄i) dx = 0, (4.33)

DΠ
(
ϕ,F ,P

)
· δF =

∫

B

[
W,FiJ

(F ) + PiJ
]
δFiJ dx = 0.

(4.34)
This is the weak restatement of the field equations and boundary conditions (4.4–4.6).

The special appeal of multi-field principles in the context of finite element approximation
is that it allows the independent interpolation of functions with different ansatz spaces,
i.e., for mixed finite element formulations. A classical two-field form is the Hellinger-
Reissner principle, where the displacements u and the infinitesimal stresses σ (or
the corresponding finite deformation functions) are related independently. A typical
three-field functional is the stated Hu-Washizu principle. Other forms involve, e.g.,
displacements, pressure and the Jacobian of deformation to treat incompressible con-
stitutive laws numerically. The use of the Hu-Washizu principle to formulate mixed
finite elements was pioneered by Simo [303]. We will apply it later for finite element
formulation.
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4.4 Dynamical problems

4.4. Dynamical problems

By nature dynamical problems cannot have a “stable equilibrium” configuration. Con-
sequently no general energy minimum principle can be established to solve the corre-
sponding initial value problems. However, variational principles can be generalized to
continuum dynamics by establishing functionals in position and time.

Assume the Lagrangian density to be of the form

1

2
ρ0ViVi −W (F ) (4.35)

where V is the material velocity, ρ0(X) is the mass density in the undeformed configura-
tion and W (F ) is the strain energy density. Equivalently, the Lagrangian scalar-valued
functional2 can be stated in global form to read

L(ϕ, ϕ̇) =

∫

B

1

2
%0|ϕ̇|2 dV − Π(ϕ) (4.36)

where the first term represents the kinetic energy of the moving elastic body and Π(ϕ)
is the potential energy (4.16).

The motions of the solid can be characterized by recourse to the principle of stationary
action. The action of a motion within a closed time interval t ∈ [t1, t2] is defined as

I[ϕ] =

∫ t2

t1

{∫

B
(L + ρ0B̄ · ϕ)dV +

∫

∂B2

T̄ · ϕdS
}

dt. (4.37)

The deformation may be required to take on prescribed values over the undeformed
displacement boundary ∂B1,

ϕi = ϕ̄i(X, t), (4.38)

and it is presumed to be known at times t1 and t2. A variational approach known as
Hamilton’s principle requires the motion of the elastic body to optimize the action
integral. Stationarity of I[ϕ] demands the first variation of (4.37) to vanish, i.e.,

δI[ϕ] = 0, (4.39)

where

δI[ϕ] ≡
[
d

dε
I[ϕ + εη]

]

ε=0

(4.40)

2Please do not confuse with the Lagrangian function of Section 4.2.

61



4.4 Dynamical problems

for all admissible virtual displacements η ∈ U0. A straightforward calculation gives

δI[ϕ] =

∫

B
[ρ0Viηi,t − PiJηi,J + ρ0B̄iηi]dV +

∫

∂B2

T̄iηidS = 0 (4.41)

where, again, PiJ = ∂W/∂FiJ is the first Piola-Kirchhoff stress tensor. From this state-
ment it follows that motions of the solid must satisfy the Euler-Lagrange equations

ρ0Vi,t − PiJ,J = ρ0Bi, in B , (4.42)

PiJNJ = T̄i, on ∂B2 , (4.43)

which are the balance of momentum equations and the natural (traction) boundary
conditions.

However, if instead of the deformation mapping ϕ (4.38), the initial and final velocity
fields are required to take on prescribed values at times t1 and t2,

Vi(x, t1) = V
(1)
i (X), Vi(x, t2) = V

(2)
i (X), (4.44)

then the virtual displacements η(X, t1) and η(X, t2) are unconstrained and the action
integral has to be modified to read

I[ϕ] =

∫ t2

t1

{∫

B
(L + ρ0B · ϕ) dV +

∫

∂B2

T̄ · ϕ dS

}

dt

+

∫

B
ρ0[V

(1)
i (X)ϕi(X, t1) − V

(2)
i (X)ϕi(X, t2)] dV . (4.45)

Stationarity of the action (4.45) now returns (4.44) as natural boundary conditions.

Hamilton’s principle of stationary action can alternatively be formulated to result in the
well known Lagrange equations of structural mechanics [114],

d

dt

∂L
∂q̇

− ∂L
∂q

= 0, (4.46)

where we write the mechanical system on Euclidean space using vector notation q, q̇ ∈
IRn.
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5. Numerical Solution Techniques

Clearly, the variational principles stated in the preceding can be solved analytically only
in very rare cases. Numerical solution techniques, however, allow for the solution of
rather complex problems. As the finite element method is used to map a continuous
mechanical system into a discrete system, time integration schemes are necessary to
translate a continuous dynamical process into a step-by-step phenomenon. Starting
with the latter we will summarize in this Chapter the employed methods of space and
time discretization and explain how they preserve a variational structure.

5.1. Temporal discretization

In the following we consider a Lagrangian of the usual kinetic minus potential energy
form (4.35). Using vector-matrix notation we write

L(q, q̇) =
1

2
q̇>Mq̇ − Π(q) , (5.1)

where q, q̇ ∈ IRn denote general coordinates and their time derivative, M is a constant
symmetric and positive definite mass matrix, and Π(q) is a given potential energy. Op-
timizing this energetic expression gives the the corresponding Euler-Lagrange equations
which are known to be

Mq̈ = −D,q Π(q). (5.2)

The most widely used time-stepping algorithms in nonlinear structural dynamics are
the algorithm of the Newmark family [244]; general references are [31, 159, 376]. The
Newmark algorithms are usually written in the following way:
For given (qk, q̇k) approximate (qk+1, q̇k+1) by

qk+1 = qk + ∆tq̇k +
∆t2

2

(

(1 − 2β)ak + 2βak+1

)

(5.3)

q̇k+1 = qk + ∆t
(
(1 − γ)ak + γak+1

)
, (5.4)
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5.1 Temporal discretization

where β and γ are real numbers between zero and one, and we abbreviate

ak = M−1
(
−D,q Π(qk)

)
. (5.5)

The values of β and γ are directly linked to accuracy and stability of Newmark’s
algorithm. We recall that the integration scheme is second order accurate if and only if
γ = 1/2, otherwise it is only consistent (first order accurate). Thus, one usually chooses
γ = 1/2. (Numerical dissipation may be added in choosing γ > 1/2.)

The choice of β = 1/4, γ = 1/2 leads to a constant average acceleration. This corre-
sponds to a trapezoidal rule and is an unconditionally stable implicit scheme (in linear
analyzes).

Moreover, if β = 0 then equation (5.3) becomes an explicit

Figure 5.1.: Newmark’s pa-
rameter.

equation for qk+1 in terms of (qk, q̇k), so that the case
β = 0, γ = 1/2, is known as explicit Newmark or,
equivalently, central difference scheme.

Irritating at first glance but meanwhile established knowl-
edge is the fact that all of the implicit members of the
Newmark family are not designed to conserve energy and
also fail to conserve momentum [64]; only the central dif-
ference scheme, β = 0, γ = 1/2, preserves momentum, see
[64, 63] or as well [131, 180].

Detailed analyzes of the Newmark algorithm, its stability
and energy preserving properties (for linear systems and
β = 1/4) were first provided by Hughes [157, 160]. We
will proceed here by illuminating the variational structure of Newmarks algorithms fol-
lowing the ideas in [174, 175, 192]. The goal is to show that the Newmark scheme for
conservative mechanical systems is variational, and to discuss some of the implications
of this fact.

5.1.1. Variational structure of the time integration

The variational nature of the Newmark’s scheme and its performance is of particular
interest because of its widespread use in finite element codes. Cases in which one has
a minimum problem to solve can be used to derive error estimates and mesh optimiza-
tion techniques. Variational schemes are known to preserve conserved quantities such
as linear and angular momentum associated with symmetries provided the discrete La-
grangian has these symmetries. For a given a displacement space Q, a discrete
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5.1 Temporal discretization

Lagrangian is a map Ld : Q × Q 7→ R. In practice, a discrete Lagrangian is obtained
by approximating the action function associated with a given continuous Lagrangian.
The time step information will be contained in Ld and we regard Ld as a function of two
nearby points (qk, qk+1) ∈ Q×Q.

Consider a continuous Lagrangian L of the standard form (4.35) or (5.1), respectively.
Then an associated discrete Lagrangian can be defined by

Lαd (qk, qk+1) = ∆t L
(

(1 − α)qk + αqk+1,
qk+1 − qk

∆t

)

, (5.6)

where ∆t ∈ R+ is the time step and α ∈ [0, 1] is an interpolation parameter. Using the
form of (5.1), this becomes

Lαd (qk, qk+1) =
∆t

2

(qk+1 − qk
∆t

)>
M
(qk+1 − qk

∆t

)
− ∆t Π

(
(1 − α)qk + αqk+1

)
. (5.7)

Another choice of a discrete Lagrangian is a symmetric version of expression (5.6) defined
by

Lα,symd (qk, qk+1) =
∆t

2
L
(

(1 − α)qk + αqk+1,
qk+1 − qk

∆t

)

+
∆t

2
L
(

αqk + (1 − α)qk+1,
qk+1 − qk

∆t

)

, (5.8)

where, once again, ∆t ∈ R+ and α ∈ [0, 1].

We note that the discrete analog of the action integral (4.37) is the action sum. The
action sum is defined by

Id =

N−1∑

k=0

Ld(qk, qk+1) (5.9)

where qk ∈ Q and for a positive integer N . An discrete variational principle now
states that the evolution equations extremize the action sum with given fixed end points,
q0 and qN . Extremizing Id over q1, ···, qN−1 leads to the discrete Euler-Lagrange
equations

D,1Ld(qk+1, qk+2) +D,2Ld(qk, qk+1) = 0 for all k = 0, ···, N − 1, (5.10)

where D,1Ld and D,2Ld denote the derivative of Ld with respect to its first and second
slot, respectively. For the symmetric discrete Lagrangian (5.8) the corresponding discrete
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5.1 Temporal discretization

Euler-Lagrange equations have a symmetric form,

1

∆t2
(qk+2 − 2qk+1 + qk) =

1

2
(1 − α)ak+1+α +

1

2
αak+2−α +

1

2
αak+α +

1

2
(1 − α)ak+1−α, (5.11)

where we use for abbreviation

ak+α := M−1
[
−D,qΠ((1 − α)qk + αqk+1)

]
. (5.12)

These equations define a second-order accurate, implicit algorithm for any parameter
α. Both algorithms, derived from Lαd and Lα,symd , respectively, preserve the associated
discrete symplectic form and the discrete momentum map. (By proper choice of α these
two algorithms even recover schemes known elsewhere under different names, cf. [175]).

Now we exemplarily show that Newmark is variational with the well known case
when β = 0 and γ = 1/2, i.e., the explicit Newmark. The explicit Newmark algorithm is
the same as the variational algorithm, (5.11), derived from Lα,symd with α = 0 or α = 1.
To prove this, we write the algorithm (5.11) in the form

qk+1 = qk + ∆tq̇k +
∆t2

2

(
(1 − α)ak+α + αak+1−α

)
(5.13)

q̇k+1 = q̇k + ∆t
(1

2
ak+α +

1

2
ak+1−α

)
. (5.14)

Now, substituting the specified parameters into the equations (5.3) and (5.4), and into
(5.13) we see that in both cases we obtain

qk+1 = qk + ∆tq̇k +
∆t2

2
ak (5.15)

q̇k+1 = q̇k + ∆tak+1/2 (5.16)

and thus we have equivalence.

Kane et al. analysed in [175] a more general class of Newmark algorithms and considered
their action upon a general nonlinear system. By the variational nature of the Newmark
algorithm it can be shown that for γ = 1/2 and β = 1/4 the Newmark trajectory
will be shadowed by a variational trajectory, and vice versa. That means, there is some
parameter α so that each point xk of the Newmark trajectory is equal to the interpolation
(1−α)qk+αqk+1 of two points qk, qk+1 of the variational trajectory. In other words, one
can regard the ‘shadowing’ of trajectories as an implicitly defined nonlinear coordinate
change and we have that the Newmark scheme and variational algorithms are simply
the coordinate transformed versions of each other.
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5.1 Temporal discretization

Moreover, it was established in [175] that any Newmark algorithm with γ = 1/2 is
directly variational. The technique to do so is by proving that the Newmark method
with γ = 1/2 and any β gives the discrete Euler-Lagrange equations for some (specially
defined) discrete Lagrangian.

These results may be interpreted in different ways. First, one can consider the Newmark
and variational schemes to be essentially the same, but only the variational method has
the right form to exactly conserve the momenta. A second interpretation is to realize that
the Newmark schemes will exactly preserve momenta and a symplectic form, except they
will not be quite the obvious ones. It is possible to derive expressions for these momenta
and the non-canonical symplectic form conserved by Newmark (but the expressions can
be rather unhandy). More useful than actually finding these exactly conserved structures
is to use them to conclude the following: For sufficiently small time steps ∆t, a regular
value of the momentum, and presuming that the solution computed by the Newmark
algorithm (5.3–5.4) with γ = 1/2 are bounded for all time, then the solution will have
bounded momentum error, uniformly for all time, and the error will tend to zero as ∆t
tends to zero.

Note that above remarks in no way guarantee stability of the Newmark method for large
time steps. The focus was here on a geometric analysis for nonlinear systems to get
results on structure preservation. All the results apply only for some (system dependent)
bound on the timestep. Consistent with this, it is also known that the Newmark method
can perform badly on some nonlinear systems with moderately large time steps, and
it is certainly not unconditionally stable, [157, 160]. This is a reflection of the short
time numerical stability behavior of the Newmark scheme, rather than the geometric
structure. In practice, of course, one must consider both the numerical accuracy and
stability of an integration scheme, as well as its structure preserving qualities.

5.1.2. Minimization structure of the Newmark algorithm

Next we consider a different way of writing the Newmark algorithm as an optimiza-
tion method following a strategy of [192]. This is particularly useful in order to derive
algorithms for dissipative or forced systems, so we include dissipative forces in the for-
mulation here. Let us consider a set of equations of motion of the form:

Mq̈ + f int(q, q̇) = f ext(t) (5.17)

with q(t) ∈ IRn, and where we regard f ext(t) as a given external force. As for the internal
force, we postulate the existence of a conservative potential Π(q) and a dissipative
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potential R(q, q̇) such that

f int(q, q̇) =
∂Π(q, q̇)

∂q
+
∂R(q, q̇)

∂q̇
. (5.18)

Dissipative potentials of this sort are sufficiently general to cover the typical applica-
tions of continuum mechanics. Clearly, if with R = 0 the energy conserving system is
recovered. We now discretize the equations of motion using the Newmark scheme in the
following way:

qk+1 = qk + ∆tq̇k +
∆t2

2

(

(1 − 2β)ak + 2βak+1

)

(5.19)

Mak+1 + f int
k+1 = f ext

k+1 (5.20)

q̇k+1 = qk + ∆t
(
(1 − γ)ak + γak+1

)
. (5.21)

By defining an explicitly formulated predictor function

q
pre
k+1 = qk + ∆tq̇k +

∆t2

2

(

(1 − 2β)ak

)

(5.22)

the first equation in (5.19–5.21) can be written as

qk+1 = q
pre
k+1 + β∆t2ak+1. (5.23)

To close this set of equations we need a relation between f int
k+1 and qk+1. To this end,

we introduce the effective incremental potential

Πk(qk+1) = Π(qk+1) + ∆t R
(
(qk+λ),

qk+1 − qk
∆t

)
, (5.24)

where
qk+λ = (1 − λ)qk + λqk+1, λ ∈ [0, 1]. (5.25)

The internal forces are given by

f int
k+1 =

∂Πk(qk+1)

∂qk+1

(5.26)

which is consistent with (5.18) as ∆t→ 0 for any choice of λ.

The above algorithm can be recast by combining (5.19) and (5.20) to get

M
qk+1 − q

pre
k+1

∆t2
+ βf int

k+1 = βf ext
k+1. (5.27)
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Note that this is the Euler-Lagrange equation of the following functional

f(qk+1) =
1

2∆t2
(
qk+1 − q

pre
k+1

)>
M
(
qk+1 − q

pre
k+1

)
+ βΠk(qk+1) − βf ext · qk+1. (5.28)

Under appropriate convexity conditions on the potentials Π and R, the updated config-
uration follows as the solution of the minimum principle:

min
qk+1

f(qk+1). (5.29)

Once qk+1 is determined, the internal forces can be computed from (5.26) and subse-
quently the velocities are updated using (5.21).

Note that the minimization (5.29) operates on the non-explicit part of Newmark’s algo-
rithm. Thus, it can be regarded as a two step procedure: first one computes the predictor
point by an explicit formula and then, secondly, one corrects this with the minimization
principle1. In the case of conservative systems (systems without external forces or dissi-
pative potentials) this scheme is literally the Newmark scheme for conservative systems,
which, as we have shown above, is equivalent to a variational scheme. Consequently, the
introduced scheme has both, it is variational and it obeys a minimum principle.

5.2. Spatial discretization

5.2.1. Triangulation of a body

To analyze the motion, deformation and constitution of general solids we are impelled to
employ (piecewise) polynomial interpolation techniques, in particular, the finite element
method. Such techniques employ conveniently generated, finite dimensional interpola-
tion spaces basing on a triangulation (meshing) of the domain of analysis. In that sense
a body is a triangulable set T ⊂ IRd, i.e., the body can be represented by a collection
of (non-degenerate) elements T . We presume that the solid occupies a Lipschitz domain
Ω ⊂ IRd (d = 1, 2, 3) with boundary ∂Ω. Lipschitz domains are locally on one side of
their boundary and their boundary is represented by a Lipschitz-continuous function. A
mapping ϕ : IRd → IRd is Lipschitz continuous with constant C > 0 if

|ϕ(x1) − ϕ(x2)| ≤ C ‖x1 − x2‖ (5.30)

1This use of the term predictor is special to this formulation. The term is used slightly differently in
later sections.
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for all x1, x2 ∈ IRd. Let now V = {xa, a = 0, . . . , d} be a collection of d+ 1 points in IRd.
An element spanned by V is the set

T = {x =
d+1∑

a=1

λaxa, 0 ≤ λa ≤ 1,
d+1∑

a=1

λa = 1}, (5.31)

In other words, element T ⊂ T is the set of convex combinations of the vertex set
V. Elements in that sense are, e.g., a line segment (d = 1), a triangle (d = 2) and a
tetrahedron (d = 3).

The triangulable sets defined by the strict definition (5.31) are polyhedra. Intuitively,
we would like solids to be ’curved polyhedra’ with a well-behaved boundary consisting
of interconnected faces, edges and vertices. This may be achieved by (isoparametric)
mapping techniques, some remarks on this can be found in the next paragraph. Also,
quadrilateral or cubic elements are not included in the strict definition (5.31). However,
most statements made below can be extended to other element shapes. For brevity we
will restrict here on triangles and tetrahedrons which are sufficient to talk about the
concepts of finite element analysis.

Given a point x in a d-dimensional element T ⊂ T , the numbers λa in (5.31) are the
barycentric coordinates of x. They follow from a system of d+ 1 equations

d+1∑

a=1

λaxa = x and
d+1∑

a=1

λa = 1, (5.32)

or, expressed in matrix form
Mλ = x, (5.33)

where we write λ = {λ1, . . . , λd+1}, x = {1, x1, . . . , xd} and M with M(d+1)b = 1,
Mib = xib, i = 1, . . . , d and b = 1, . . . , (d+ 1). The element volume is given by

|T | =
1

d!
| det

(
M
)
|. (5.34)

An element is said to be non-degenerate if det(M) 6= 0, i.e., if it has a nonzero volume.
Otherwise, the element is said to be degenerate.

5.2.2. Finite element polynomials

Generally spoken we are interested in approximating functions over their domains of
definition by simpler or more convenient functions. Implicit in the notion of approxima-
tion is that the approximation function should be close to the original function in some
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appropriate sense. In finite element analysis we are particularly interested in interpo-
lating polynomials, i.e., in polynomials which coincide exactly with the function being
approximated at selected points.

We begin by considering the case of linear interpolation. Let p ∈ P1(T ) be a linear
polynomial over T . Then p is uniquely determined by its value at the vertices of T .
With n = d+ 1 we can write

p(x) =

n∑

a=1

p(xa)Na(x), (5.35)

where N e(x) ≡ {Na(x), a = 1, . . . , n} is the collection of nodal shape functions. It
follows from (5.32) that the barycentric coordinates coincide with the set of linear shape
functions. The nodal shape function have the essential property of being one at their
corresponding node and zero at all other nodes,

Na(xb) =
{

1 if a = b
0 otherwise.

(5.36)

The concept can be transferred to higher order interpolation. The dimension of the
set Pp(IRd) of polynomials of degree less or equal to p in d independent variables is
n =

(
d+p
p

)
. Representation (5.35) holds with the corresponding collection of nodal shape

functions.

Example 5.1. Triangular Elements. A triangle is an element T ∈ IR2 with area

A =
1

2
det(M). (5.37)

The barycentric coordinates of a point x are defined by λi = Ai/A, where A =
∑3

i=1Ai.
With vertices at positions (x1k, x2k), k = 1, 2, 3, this may be written as,

λ1(x1, x2) = det





1 1 1
x1 x12 x13

x2 x22 x23



 / det





1 1 1
x11 x12 x13

x21 x22 x23



 . (5.38)

The equations for λ2(x1, x2) and λ3(x1, x2) follow likewise. The shape functions of a
three-node linear triangle are

Nk = λk k = 1, 2, 3. (5.39)
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The shape functions for the six-node quadratic triangle (p = 2) follow as

N1 = λ1 −
1

2
N6 −

1

2
N4

N2 = λ2 −
1

2
N4 −

1

2
N5

N3 = λ3 −
1

2
N5 −

1

2
N6

N4 = 4λ1λ2 (5.40)

N5 = 4λ2λ3

N6 = 4λ3λ1

where the mid-side node numbers 4, 5, 6 are on the element sides opposite to node 1, 2, 3,
respectively.

Example 5.2. Tetrahedral Elements. A tetrahedron is an element T ∈ IR3 with volume

V =
1

6
det(M). (5.41)

For a tetrahedron with vertexes at positions xik, i = 1, 2, 3, k = 1, 2, 3, 4, equation (5.33)
reads 





1 1 1 1
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34













λ1

λ2

λ3

λ4







=







1
x1

x2

x3







(5.42)

The barycenter of a unit tetrahedron is the point with x = (1
4
, 1

4
, 1

4
). The shape

functions of a four-node linear tetrahedron coincide with the barycentric coordinates
(which may be evaluated from (5.33)).

Nk = λk k = 1, 2, 3, 4 (5.43)
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The shape functions for the ten-node quadratic tetrahedron (p = 2) are given with

N1 = λ1 −
1

2
N5 −

1

2
N7 −

1

2
N9 (5.44)

N2 = λ2 −
1

2
N5 −

1

2
N6 −

1

2
N10

N3 = λ3 −
1

2
N6 −

1

2
N7 −

1

2
N8

N4 = λ4 −
1

2
N8 −

1

2
N9 −

1

2
N10

N5 = 4λ1λ2 (5.45)

N6 = 4λ2λ3

N7 = 4λ3λ1

N8 = 4λ3λ4

N9 = 4λ1λ4

N10 = 4λ2λ4 ,

where the numbering convention is the same as in Figure 5.2.

Isoparametric elements extend the simple element shapes presented in the foregoing
in the sense that they allow for curved boundaries. Consider a standard domain T̂ in
the form of a d-dimensional element of unit dimension, (5.31), and let N̂ e = {N̂a, a =
1, . . . , n} be the standard polynomial shape functions of order p over T̂ . Within the
isoparametric concept we use the nodal shape functions to set up a mapping η : T̂ → IRd

and identify T = η(T̂ ) with the actual domain of the element. The general form of an
isoparametric mapping is, therefore,

x = ηi(x̂) =
n∑

a=1

xiaN̂a(x̂) i = 1 · · ·d (5.46)

where {xa, a = 1, . . . , n} are the positions of the nodes of T in a global coordinate
system. For elements in the sense (5.31) the mapping (5.46) defines an invertible affine
mapping η : T̂ → T . For more general elements the mapping (5.46) is usually nonlinear.
However, we still require η to be one-to-one.

The introduction of an isoparametric mapping has the important consequence of reduc-
ing the computation of integrals over the element domains to integrals over standard
domains, thus facilitating the use of quadrature rules. The Gauss-point coordinates for
numerical integration within triangle and tetrahedral domains can be found in [98] and
[165], respectively. The isoparametric concept is quite general and applies to all types of
elements which fulfill condition (5.36). We will not go further into detail here but refer
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to the standard literature [20, 47, 143, 298, 390]. Other methods of geometrical mapping
are described, e.g., in [130, 361, 317].

5.2.3. Finite elements based on the Hu-Washizu principle

Next we introduce a 10-node tetrahedral element where the relation between displace-
ments and deformations is enforced weakly by recourse to the Hu–Washizu principle, cf.
Section 4.3. The element arrays are formulated in accordance with the ‘assumed-strain’
prescription, see, e.g., [158, 377]. Camacho and Ortiz described in [70] a triangular
element constructed by assembling linear subtriangles and coupling them to a contin-
uous linear strain field. The assemblage of the tetrahedral element is analogous, the
formulation was numerically analyzed in [332].

This so-called composite element consists of 12

Figure 5.2.: Tetrahedral element.

four-node (linear) sub-elements, Figure 5.2, each of
which is equipped with linear displacement interpo-
lation. To ensure that the element possesses all the
expected symmetries (in its regular tetrahedral con-
figuration) an auxiliary 11th node is introduced in
the barycenter. Note that the element edges need
not to be straight. Consequently, the displacements
are interpolated in a piecewise linear manner. Inde-
pendently of the displacement interpolation, an ‘as-
sumed’ linear representation of the deformation and
stress fields with shape functions (5.43) is adopted.
Evidently the assumed deformations are not the gra-
dients of the interpolated deformation mapping nor
follow the assumed stresses from an application of
the constitutive relations. Instead, these relations

are enforced weakly in the sense of equations (4.31–4.34)2. The resulting tetrahedral
element may be obtained from the standard displacement element in Section 5.2.2 by
formally replacing the gradients of the material shape function (5.44), Nk,J , by the array

4∑

b=1

4∑

c=1

λc

[∫

T

λbλcdV
]−1[

∫

T

λbNk,JdV
]

(5.47)

where once again λi denotes the barycentric coordinates. This substitution can be made
at the shape-function routine level, and the remaining structure of the element routine is

2For the technical details we refer to [332], we summarize here only the resulting shape functions.
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identical to that of the displacement finite element. This implementation is in the spirit
of Hughes’ B̄ method for linear elasticity [158], in which the discrete strain operator, or
B–matrix, is replaced by an assumed matrix B̄ in the strain energy density.

The advantages of such an element type arise primarily in explicit time integration and
contact-impact problems, where the lumped mass of its mid-side nodes is well matched
to its corner node masses. This feature effectively overcomes the difficulties inherent
to quadratic tetrahedral elements, for which the row-sum method of lumping (cf., e.g.,
[390]) results in zero or negative corner masses. Furthermore, the volumetric locking
which characterizes linear elements is eliminated. Thus, the composite element appears
to combine the best attributes of linear and quadratic tetrahedral elements (including
the ease of mesh generation) without their drawbacks. The convergence rates of this
element formulation is comparable to those of linear elements.

5.2.4. Local and global interpolation error bounds

In the preceding section we addressed the problem of interpolating a function u over a
(spatial) triangulation using polynomials. In general, unless the function u happens to
be a polynomial of degree less or equal to p, the interpolation uh ∈ Pp(T ) is not exact.
A measure of the size of the error function

e = u − uh (5.48)

may be taken as an indicator of the quality of the interpolation. We expect this quality to
improve when the element size decreases and when the polynomial order of interpolation
increases.

The aim is now to obtain a local error estimate for the function (5.48), i.e., a measure
of interpolation error over the element T ∈ T . The strategy to apply is to reduce the
problem to a standard domain T̂ , e.g., a unit triangle, and then use the relations between
norms on affine-equivalent domains. If uh ∈ Pd

p (T ) interpolates a function u : T → IRd

over T , then ûh is the unique polynomial of degree less or equal to p which interpolates
û over T̂ .3

We begin by defining some geometrical features. Let a domain Ω ∈ IRd be bounded. The
size h of Ω is the radius of its minimal circumsphere, i.e., h = 1

2
inf(diam(S)), where the

infimum is taken over all balls S containing Ω. The in-radius ρ of Ω is the radius of its

3In Appendix 2.3 we introduce some linear spaces and norms naturally to use here. Throughout this
section all definitions are given for scalar functions. The analogous definition for vector valued
functions are obtained by applying the definition to each one of the components.
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maximal inscribed sphere, i.e., ρ = 1
2
sup(diam(S)), where the supremum is taken over

all balls S contained in Ω. The aspect ratio ς is the ratio of its size to its in-radius,
i.e., ς = h/ρ.

Let now Ω and Ω̂ be two affine-equivalent open subsets of IRd. Let η = Bx̂ + b be
the affine mapping which maps Ω to Ω̂. In addition, let u ∈ Wm,p(Ω), m ≥ 0; then
û ∈Wm,p(Ω̂). We recall that a norm of a matrix B ∈ IRd×d is given by

‖B‖ = sup
x∈IRd/0

|Bx|
|x| . (5.49)

Then, there are constants C > 0 and Ĉ > 0 such that

|û|m,p ≤ C ‖B‖m| detB|−1/2|u|m,p , (5.50)

and
|û|m,p ≤ Ĉ ‖B−1‖m| detB|−1/2|û|m,p . (5.51)

Proof. We begin with an identity that follows from the definition of the seminorm |·|m,p,

|u|pm,p =

∫

Ω̂

∑

|α|=m
|Dαû|pdx̂, (5.52)

where we write the partial derivatives of a function as (see Appendix 2.3)

Dαu =
∂|α|u

∂xα1

1 . . . ∂xαd
d

. (5.53)

By the equivalence between finite dimensional norms we have the inequalities

c|Dmû(x̂)|2 ≤
(∑

|α|=m
|Dαû(x̂)|p

)1/p

≤ C|Dmû(x̂)|2 , (5.54)

where | · |2 is the Euclidian norm applied to m-order tensors over IRd and C > 0, c > 0
are constants. These inequalities give

|û|pm,p ≤ C

∫

Ω̂

|Dmû|p2dx̂. (5.55)

Changing the domain of integration to Ω in turn yields

|û|pm,p ≤ C

∫

Ω

|BmDmu|p2 det(B)dx, (5.56)
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which by the properties of matrix norms reduces to

|û|pm,p ≤ C‖B‖m·p det(B)

∫

Ω

|Dmu|p2dx , (5.57)

and by the equivalence between finite dimensional norms to

|û|pm,p ≤ C‖B‖m·p det(B)

∫

Ω

( ∑

|α|=m
|Dαu|p

)
dx. (5.58)

The sought inequality finally follows by raising both sides to 1/p. The reverse inequality
(5.60) follows likewise.

The norm ‖B‖ in (5.50) and (5.51) is to cumbersome to work with in practice. Therefore,
it needs to be replaced by more easily computed geometric features. Again, let η =
Bx̂ + b be the affine mapping which maps Ω to Ω̂. Then, the following bounds hold

‖B‖ ≤ h

ρ̂
(5.59)

and

‖B−1‖ ≤ ĥ

ρ
. (5.60)

Proof. We have

‖B‖ = sup
x̂

|Bx̂|
|x̂| = sup

|x̂|=1

|Bx̂| =
1

ρ̂
= sup

|x̂|=ρ̂
|Bx̂|. (5.61)

Choose now two vectors ŷ, ẑ ∈ Ω̂ in such a way that |ŷ − ẑ| = ρ̂. Let y = η(ŷ) and
z = η(ẑ). Then y, z ∈ Ω and y − z = B(ŷ − ẑ), |y − z| ≤ h, and

‖B‖ =
1

ρ̂
|B(ŷ − ẑ)| =

1

ρ̂
|y − z| ≤ h

ρ̂
. (5.62)

Bound (5.60) is proven likewise.

Now, let u ∈ W k+1,p(T ), k ≥ 1, 1 ≤ p ≤ ∞ and let uh ∈ Pp(T ) be the polynomial of
degree less or equal to k which interpolates u on the element T . Let 0 ≤ m ≤ k. Then,
there is a constant C > 0 such that

|u− uh|m,p ≤ C
hk+1

ρm
|u|k+1,p. (5.63)
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Proof. Introduce the constant

1

Ĉ
= inf

|ê|k+1,p

|ê|m,p
, (5.64)

where the infimum is taken over all the error functions ê ∈ W k+1,p(T̂ ) which vanish
identically on T̂ . Provided that m ≤ k, the inequality Ĉ < ∞ follows from general
results pertaining to eigenvalue problems for self-adjoint operators over compact domains
[87, 73]. Now let ê = û − ûh be the actual local error function. From the definition of
Ĉ, it follows that

|ê|m,p ≤ Ĉ|ê|k+1,p . (5.65)

Using (5.50), (5.51), (5.59) and (5.60) the equation (5.65) becomes

|e|m,p ≤ Ĉ
ĥm

ρ̂k+1

hk+1

ρm
|e|k+1,p. (5.66)

Define C = Ĉĥm/ρ̂k+1 and note, since uh ∈ Pp(T ),

|e|k+1,p = |u− uh|k+1,p = |u|k+1,p . (5.67)

Inserting (5.67) into (5.66) finally gives (5.63).

In terms of the aspect ratio, the bound (5.63) may be recast as

|u− uh|m,p ≤ Cςmhk+1−m|u|k+1,p , (5.68)

Please note the structure of the right-hand side in (5.68). The norm |u|k+1,p measures the
variation of the function u over T , h measures the size of the element and ς its distortion.
Consequently it follows that the accuracy of the interpolation is expected to increase
with the order k of the interpolation and to decrease with element distortion, and that
the polynomial interpolation may be expected to be more accurate for functions which
vary slowly over T , as expected.

The local (element-wise) error bounds derived in the foregoing may be stringed together
in order to obtain global error bounds. To do so we denote by T a element in the
triangulation T , by hT its size, by ρT its in-radius and by ςT its aspect ratio. We refer
to the global element size of the triangulation

h = max
T∈T

hT (5.69)

and to the global aspect ratio
ς = max

T∈T
ςT . (5.70)
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The global interpolant of order k, k ≥ 1, relative to the triangulation T is the function
uh whose restriction uhT ≡ uh(T ) to an element T ∈ T is the polynomial of degree less
or equal to k which interpolate u over T . Let u ∈ Wm,p(Ω). Then there are constants
C > 0 such that

|u− uh|pm,p ≤
∑

T∈T

(
CςmT h

k+1−m
T |uT |k+1,p

)p
, (5.71)

|u− uh|m,p ≤
∑

T∈T
CςmT h

k+1−m
T |uT |k+1,p , (5.72)

and,
|u− uh|m,p ≤ Cςmhk+1−m|u|k+1,p . (5.73)

Proof. From the definition of the Sobolev seminorms we have

|u− uh|pm,p ≤
∑

|α|=m

∫

Ω

|Dα
(
u− uh

)
|p dx =

∑

|α|=m

∑

T∈T

∫

T

|Dα
(
uT − uhT

)
|p dx. (5.74)

Now apply the local error bound (5.63) to each of the terms in the sum, which results
in (5.71). Raising both sides of this inequality to the power 1/p and using the Hölder’s
inequality gives (5.72). Replacing hT by h, and ςT by ς, in (5.71) gives

|u− uh|pm,p ≤
(
Cςmhk+1−m)p

∑

T∈T
|uT |pk+1,p =

(
Cςmhk+1−m|u|k+1,p

)p
. (5.75)

Finally, (5.73) is obtained by raising both sides of this inequality to 1/p.

The global bound (5.73) provides conditions under which the finite element method
converges. Presume that the method is Cm−1-conforming, so that the global interpolants
uh belong toWm,p(Ω). Now, let Th, be a sequence of triangulations of Ω parameterized by
a global mesh size h→ 0. Suppose that the triangulations are constructed by a process
of regular refinement, so that the aspect ratios ςh are uniformly bounded. (There is a
ς < ∞ such that ςh < ς for all h). Then, given u ∈ W k+1,p(Ω) the inequality (5.73)
ensures that uh → u as h→ 0. The convergence is of order O(hk+1−m) in the Wm,p(Ω)-
norm. Thus, the exponent k + 1−m defines the global rate of convergence. Clearly,
in order to have convergent interpolants we must have k + 1 −m > 0, or k ≥ m. This
condition sets a lower bound on the order of interpolation.

The potential energy of an elastic body given by functional Π in (4.16) and the classical
displacement finite element method may be regarded as the result of effecting a con-
strained minimization of the potential energy Π among all finite element deformation
mappings. The global accuracy of such approximation is determined a priori by the
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rate of convergence. Statements about the local accuracy, i.e., magnitude and distri-
bution of the error of an analysis, can be derived by a posteriori error estimation, see
[47, 48, 74, 87, 353] and others for the fundamental approaches. The author contributed
to the subject, e.g., in [76, 77, 78, 358, 357].

While methods of error estimation and finite element mesh adaption for linear problems
are well understood, their extensibility to the finite deformation range and to non-linear
material laws is very limited. However, error controlled mesh adaption in non-linear
analysis can be achieved by reducing the general dynamic problem to (a sequence of)
equivalent static problems by recourse to time discretization. Then, the solution of
the incremental boundary value problem obeys a minimum principle — provided that
the constitutive updates are formulated variationally. Such minimum principles can be
taken as a basis for error estimation by measuring the error of projection to finite element
spaces.
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6. Finite Plasticity

In this chapter we extend the solids to irreversible, i.e., plastic materials. Irreversibil-
ity may be invoked by many effects like time- and temperature-dependent plastic de-
formations, microstructural changes, creep, cavitation, damage etc.. Moreover, large
elastic-plastic deformations of a solid require a finite theory of plasticity. To restrict
the extend of this treatise to a readable amount we present here only the fundamentals
of the classical von Mises plasticity extended to the finite range. For this theory, com-
monly named J2-theory of plasticity, the basic equations and the variational constitutive
update algorithm for a finite element analysis is outlined.

6.1. General framework

Following the decomposition rule (1.22) of Section 1 we now presume a multiplicative
decomposition of the deformation gradient F into an elastic part F e and a plastic part
F p, [187].

F = F eF p. (6.1)

The underlying assumption is that the elastic deformations are related to stresses whereas
the plastic deformations are local, they induce no long range stress. This implies that the
elastic and thermal responses of the solid are structure insensitive, i.e., invariant under
the internal processes. The assumption corresponds to elastic and thermal expansion
moduli independent of the plastic straining and holds for a wide class of engineering
materials.

We now proceed with the governing equations of the deformation theory of plas-
ticity. This theory fits naturally in the frame of constitutive equations outlined in
Chapter 3 and requires an associated theory of plasticity, i.e., the flow rule and the
direction of plastic flow are derived from the same inelastic potential. To this end the
existence of a free energy function A(F , T,Q) is postulated, where T denotes the
absolute temperature and Q is a set of internal variables characterizing, e.g., hardening
or damaging processes.
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6.2 J2-flow theory of plasticity

Assume that the elastic as well as the thermal responses of the solid are independent of
the internal processes and the plastic deformations are local. Then the free energy may
be decomposed additively

A(F , T,Q) = W e(F e, T ) +W p(F p,Q, T ), (6.2)

where W e denotes the elastic strain energy density and W p is the stored energy of plastic
work. Owing to material-frame indifference, the elastic strain energy density can only
depend on F e through the elastic part of the right-Cauchy Green deformation tensor C,
see Section 3.2.2 equation (1.36),

Ce = F eTF e = F p−1TC F p−1. (6.3)

This leads to a free energy (6.2) of the form

A(F ,F p, T, q) = W e(Ce, T ) +W p(T,Q,F p). (6.4)

To specify the evolution of the internal variables Q suitable kinetic equations are re-
quired. Assuming that the rate of the internal processes described by Q̇ is determined
solely by the local thermodynamic state the general form of the kinetic equations is
simply

Q̇ = f(F p, Ḟ
p
,Q). (6.5)

In addition the rate of plastic deformation Ḟ
p

is subjected to the kinematic restrictions
imposed by the flow rule.

6.2. J2-flow theory of plasticity

The plastic behavior of the material is assumed to obey von Mises theory of plasticity,
(cf. [58, 199, 141, 303, 306]), extended to the finite deformation range. In particular,
the plastic deformation is volume preserving, i.e., det F p = 1. Thus, the rate of plastic
deformation is deviatoric and the flow rule reads in general form

Ḟ
dev,p

F p−1 = Q̇N(K), (6.6)

where tensor N(K) defines the direction of plastic flow in dependence of additional kine-
matic parameter. These parameters result in von Mises theory from kinematic hardening
because, in general, the plastic deformations are described by the difference between the
total stress and the so-called backstress. In this text we restrict our attention to isotropic
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6.2 J2-flow theory of plasticity

hardening. Then, the hardening can be described by a single scalar internal variable and
the flow rule is of the form

Ḟ
dev,p

F p−1 = ε̇pM (6.7)

where εp is the effective plastic strain. Within the context of J2-flow theory of
plasticity M may be any symmetric tensor satisfying the kinematic constraints

trM = 0 and M · M =
3

2
. (6.8)

6.2.1. Elastic energy and stored plastic energy

Let us assume power-law hardening, i.e., the yield stress obeys the hardening law

σy = σy0

(

1 +
εp

εpy0

)1/n

, (6.9)

where n ∈ [1,∞) is the hardening exponent, σy0 = σy0(T ) is the (temperature dependent)
initial yield stress and εpy0 is a reference plastic strain. With n = 1 we prescribe linear
isotropic hardening, whereas n → ∞ enforces perfect plasticity, cf. Figure 6.1. The
frequently used bilinear hardening law is described with (6.9) by simply replacing σy0/ε

p
y0

with a plastic tangent modulus Epl. By the underlying von Mises theory the plastic
work results from purely deviatoric responses, W p ≡ W p,dev. Thence, the corresponding
stored energy function per unit volume is

W p(εp, T ) =
nσy0(T )εp0
n+ 1

(

1 +

(
εp

εpy0

))(n+1)/n

. (6.10)

To include elastic deformations we follow the strategy outlined in Section 3. Assume
that the volumetric and deviatoric elastic responses in (6.2) decouple, i.e.,

W e(Ce, T ) = W e,vol(Je, T ) +W e,dev(Ce,dev, T ), (6.11)

where
Je = det(F e) (6.12)

is the Jacobian of the elastic deformation and

Ce,dev = Je−2/3Ce (6.13)
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Figure 6.1.: Power law hardening for different hardening exponents n and thermal soft-
ening for T0 = 273 K, Tm = 500 K, l = 1 and different temperatures T .

is the deviatoric elastic right Cauchy-Green deformation tensor. Then any constitutive
relation of Section 3 may be employed. In calculations involving metals we specifically
take W e to be of the form

W e(F e, T ) =
κ

2
[ ln Je − 3α(T − T0) ]2 +

µ

4
‖ ln Ce,dev ‖2 +%0cvT

(

1 − ln
T

T0

)

(6.14)

where κ = λ+ 2µ/3 is a reference bulk modulus, µ and λ are reference Lamé constants,
α is the thermal expansion coefficient, T0 is a reference absolute temperature, %0 is the
mass density per unit undeformed volume, and cv is the specific heat per unit mass at
constant volume.

To relate the elastic strain and the effective von Mises stress σ from (6.2) we state the
thermodynamic force conjugate to εp

Y = − ∂A

∂εp
= σe − σy, (6.15)

where

σe = −∂W
e

∂εp
= 2

∂W e

∂Ce · M (6.16)

is the effective Mises stress and

σy =
∂W p

∂εp
(T, εp) (6.17)

is the yield stress of the material.

84



6.2 J2-flow theory of plasticity
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Figure 6.2.: Strain rate sensitivity for different relative strain rates ε̇p/ε̇py0 and m = 10 .

6.2.2. Thermal softening

Additionally, to account for the temperature sensitivity a thermal-softening law needs
to be prescribed. For example, the yield stress may depend on the temperature as

σy0(T ) = σT=T0

(

1 − T − T0

Tm − T0

)l

, (6.18)

where σT=T0
is the yield stress at reference absolute temperature T0, Tm is the melting

temperature, and l is the thermal softening exponent, see Figure 6.1.

6.2.3. Rate sensitivity

In materials undergoing high speed deformations strain rate effects may play a significant
role. With a view to ensuring a variational structure the rate sensitivity of the material
is described here by a kinetic potential ψ(Y ) and a kinetic equation of the form

ε̇p =
∂ψ

∂Y
(Y ) , (6.19)

where Y denotes the conjugate thermodynamic driving force. Equation (6.19) can be
expressed in inverse form as

Y =
∂ψ∗

∂ε̇p
(ε̇p) , (6.20)
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6.3 Constitutive update algorithm

where the dual kinetic potential ψ∗(ε̇p) follows from ψ(Y ) by a Legendre transformation.

ψ∗(ε̇p) = Y · ε̇p − ψ(Y ) (6.21)

We assume a simple power-law rate-sensitivity. The corresponding dual kinetic potential
is

ψ̃∗ =
mσy ε̇

p
y0

m+ 1

(
ε̇p

ε̇py0

)(m+1)/m

, (6.22)

where m is the rate-sensitivity exponent and ε̇p0 is a reference plastic strain rate. In
Figure 6.2 some corresponding stress-strain relations are plotted for a hardening material
with n = 10.

6.3. Constitutive update algorithm

For numerical solution we think of a process of incremental deformation where the so-
lution is to be determined at times t0, . . . , tn, tn+1, . . . . Let the state of the material be
known at time tn and let the deformation F n+1 and the temperature Tn+1 at time tn+1 be
given. The problem is now to determine the state of the material at time tn+1 = tn +∆t
from this information. To this end we start discretizing the flow rule (6.7) in time. Us-
ing the exponential mapping technique introduced by Weber and Anand [356], see also
[252, 216], the result reads

F
p
n+1 = exp

(
∆εpM

)
F p
n, (6.23)

where ∆εp is the plastic strain increment and exp(·) is the exponential mapping of square
matrices, for computable algorithms see Appendix 2.3. Note that the discrete update
(6.23) is consistent with its continuous counterpart (6.7)

[ d

dε
exp
(
ε(∆εpM)

)]

ε=0+ = ∆εpM . (6.24)

Next we follow a strategy outlined in [257] and formulate an incremental energy
function. Without loss of generality this function may be of the form

fn(F n+1, Tn+1; ε
p
n+1,M) = W e(F e

n+1, Tn+1)

+W p(εpn+1, Tn+1) + ∆tψ∗(∆εp/∆t). (6.25)

We now define an effective work-of-deformation density Wn(F n+1, Tn+1) by min-
imization of fn with respect to the effective plastic strain εpn+1 and the direction of
plastic flow M , i.e.,

Wn(F n+1, Tn+1) = min
εp

n+1,M
fn(F n+1, Tn+1; ε

p
n+1,M) , (6.26)
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6.3 Constitutive update algorithm

subjected to the constraints (6.8) and the plastic irreversibility constraint

∆εp = εpn+1 − εpn ≥ 0. (6.27)

This effective work of deformation density Wn(F n+1) acts as a potential for the first
Piola-Kirchhoff stress tensor P n+1 at time tn+1 (see Section 7.6.2 for a proof).

P n+1 =
∂Wn

∂F n+1
(F n+1, Tn+1) (6.28)

The consistent tangent moduli follow by linearization of (6.28) in the form

DP n+1 =
∂2Wn

∂F n+1∂F n+1

(F n+1, Tn+1). (6.29)

6.3.1. Implementation based on logarithmic elastic strains

The logarithmic elastic strain is defined by equation (1.38), where a superscript e
refers now to the elastic part of ε and C, respectively.

εe =
1

2
ln(Ce). (6.30)

Moreover, the deviatoric part of the logarithmic elastic strain is abbreviated here by

ee ≡ εe,dev = εe − 1

3
I trεe. (6.31)

With (6.13) and by the properties of the logarithmic mapping we have the identity

ee =
1

2
ln(Ce,dev). (6.32)

When the elastic strain-energy density of the material at time tn+1 is expressed in terms
of logarithmic elastic strains and with an application of the discretized flow rule (6.23)
the incremental energy function (6.25) can be written as

fn = W e
(
ln
(
exp(−∆εpM)Ce,trial exp(−∆εpM)

)
, Tn+1

)

+W p(Tn+1, ε
p
n+1) + ∆tψ∗(∆εp/∆t). (6.33)

Here we made use of a trial elastic right Cauchy-Green deformation tensor, which
works like a predictor in the increment with frozen plastic deformation field F p

n,

C
e,trial
n+1 = F p−T

n Cn+1F
p−1
n . (6.34)
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6.3 Constitutive update algorithm

Presuming that the direction of the elastic tensor (6.34) corresponds with the direction
of plastic flow M , then

MC
e,trial
n+1 = C

e,trial
n+1 M , (6.35)

and the following identity holds

1

2
ln
(
exp(−∆εpM )Ce,trial

n+1 exp(−∆εpM )
)

=
1

2
ln(Ce,trial

n+1 ) − ∆εpM . (6.36)

Now, writing (6.36) with a elastic trial strain of the form (1.38)

εtrial
n+1 =

1

2
ln(Ce,trial

n+1 ), (6.37)

we can express the incremental deformation energy (6.33) as

fn = W e(εtrial
n+1 − ∆εpM , Tn+1) +W p(Tn+1, ε

p
n+1) + ∆t ψ∗(∆εp/∆t) (6.38)

Note that the incremental deformation energy function (6.38) is of the same form which
arises from linearized kinematics. Consequently the constitutive updates are in complete
analogy to small-strain updates, [252, 216].

6.3.2. Optimization with respect to εp and M

The optimization of the incremental energy function (6.38) with respect to εpn+1 and
M subjected to the constraints (6.8) leads to the Euler-Lagrange equations:

∂fn
∂εpn+1

= 0 ⇒ −σv,n+1 + σy(ε
p
n+1) + ψ∗′(

∆εp

∆t
) = 0 (6.39)

∂fn
∂M

= 0 ⇒ −σn+1 + λ1I + λ2M = 0 (6.40)

where ψ∗′ ≡ ∂ψ∗/∂εpn+1 and

σn+1 =
∂W e

∂εe,trialn+1

(6.41)

and λ1 and λ2 are Lagrange multipliers to be determined from constraints (6.8)1 and
(6.8)2, respectively. This way the value of M is computed as

M =
3sn+1

2|sn+1|
, (6.42)
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6.3 Constitutive update algorithm

where we refer to the definition of the norm of a stress tensor in Appendix (1.28) and
abbreviate the stress deviator by

sn+1 ≡ σdev
n+1 = σn+1 −

1

3
tr(σn+1)I. (6.43)

Equation (6.42) determines M implicitly in general. However, for the elastic strain-
energy density (6.14), the stress deviator evaluates to

sn+1 = 2µeen+1 = strial
n+1 − 2µ∆εpM (6.44)

where we apply a trial stress deviator

strial
n+1 = 2µe

e,trial
n+1 . (6.45)

Inserting (6.42) into (6.44) gives

sn+1 = strial
n+1 − 3µ∆εp

sn+1

|sn+1|
, (6.46)

which shows that sn+1 and strial
n+1 are parallel. In particular, we verify that the com-

mutativity condition (6.35) is indeed satisfied. Since the norm of M is fixed it follows
that

M =
3strial

n+1

2|strial
n+1|

, (6.47)

which now gives M explicitly in terms of the known data of the problem. Inserting
(6.47) into (6.40) gives the equation

9

2
µ∆εp + ψ∗′(∆εp/∆t) = σtrial

n+1 − σy(ε
p
n+1) , (6.48)

which may be solved for the unknown εpn+1 simply by iteration under the constaint
imposed by (6.27).

6.3.3. Stresses and consistent tangent

Once εpn+1 is determined, the updated stresses follow in the form

σn+1 = pn+1I + sn+1 , (6.49)

with sn+1 given by (6.44) and the pressure pn+1 computed from the equation of state in
terms of the volumetric elastic strain ln(Jen+1) = tr(εen+1) as

pn+1 =
∂W e,vol

∂tr(εen+1)
(Jen+1, Tn+1). (6.50)
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6.3 Constitutive update algorithm

Owing to the variational character of the update, the stress-strain relations satisfy
the potential relations

σn+1 =
∂Wn

∂εen+1

, (6.51)

where the incremental work-or-deformation density Wn is the optimal value of the in-
cremental energy function (6.38), cf. equation (6.26). The finite-kinematic relations
follow now simply from an application of the chain rule, with the result:

P n+1 =
∂Wn

∂F n+1

=
∂Wn

∂εen+1

· ∂ε
e
n+1

∂Cn+1

· ∂Cn+1

∂F n+1

. (6.52)

Differentiating this expression once more gives the consistent tangents in terms of the
finite-kinematic relations DP n+1, equation (6.29). By a lengthy but straightforward
calculation we get the linearization of (6.51) in the form

Dσn+1 =
∂2Wn

∂εen+1∂ε
e
n+1

= aI + bM ⊗ M (6.53)

with coefficients a and b evaluated as follows:

a =
1

A
A =

1

2µ
+

3

2

∆εp

σv,n+1
(6.54)

b = − B

A2 + 3
2
AB

B =
1

σ′
y(ε

p
n+1) + ψ∗′′/∆t

− ∆εp

σv,n+1
(6.55)

The finite-kinematic relation follows by (6.52). In components equation (6.52) reads

P iJ = [σABD ln(Ce,trial
n+1 )ABCD(F p−1

n )JC(F p−1
n )KD]FiK , (6.56)

where we have dropped the label n+1 for ease of reading. Differentiating this expression
gives the consistent tangent in the form

DPiJkL = δikσABD ln(Ce,trial
n+1 )ABCD(F p−1

n )JC(F p−1
n )LD+

[DσABCDD ln(Ce,trial
n+1 )ABEF (F p−1

n )JE(F p−1
n )KFD ln(Ce,trial

n+1 )CDGH(F p−1
n )LG(F p−1

n )MH

+ 2σABD
2 ln(Ce,trial

n+1 )ABEFGH(F p−1
n )JE(F p−1

n )KF (F p−1
n )LG(F p−1

n )MH ]FiKFkM . (6.57)

The tangent moduli are symmetric owing to the potential character of the incremental
stress-strain relation, equation (6.51).

The computation of the exponential and logarithmic mappings and their derivatives,
which is required for the evaluation of (6.23), (6.31), (6.56), (6.57), etc., may be accom-
plished by a variety of means such as, e. g., by a Taylor series expansion or through
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6.3 Constitutive update algorithm

a spectral decomposition of the argument, for a discission see [256]. Algorithms for
the computation of the exponential and logarithmic mapping and their first and second
linearizations are summarized in the Appendix 2.3.
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7. Porous Plasticity

In this chapter we develop a continuum theory to model solid materials with a certain
porosity. The model, which allows for reversible and irreversible time-dependent defor-
mations, enables us to link the mechanism of pore expansion and global softening of
the material to parameters which describe the micromechanical mechanisms in general
elastic and elasto-plastic solids.

The chapter is structured as follows: At first we describe the underlying model of a
porous composite and in Section 7.1 we provide the basic equations of the underlying
mesoscopic theory. The actual constitutive model of void growth in an elastic and a
visco-plastic material is outlined in Section 7.3. Numerical results on void growth and
void distribution are also provided there. Section 7.5 extends the void growth model
to a variational constitutive model for porous elasto-plastic materials undergoing finite
deformations. In analogy to the classical plasticity of Chapter 6 constitutive updates for
time integration in numerical procedures are provided in the concluding Section 7.6.

7.1. Continua with a certain porosity

The majority of technical and natural materials contains a certain amount of arbitrarily
distributed pores and cavities (voids). Here we have in mind in the first instance metals
and its alloys. However, cavities are also observed in polymers, in ceramics and in
certain bio-materials, like soft tissue of brain and inner organs. Typically the cavities
are small compared to the size of the structure, and their distribution is defined by a
characteristic function f = f(x), x ∈ IR3, representing the void volume at the position
x in the material. The spatial average over the current volume of the body V defines
the void volume fraction or porosity fV

fV =
1

V

∫

V

f(x) dx. (7.1)

In the materials under consideration here the initial porosity is small. For engineering
metals it is initially in the range of 10−2 − 10−4 [343, 328], caused, e.g., by defects in
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7.1 Continua with a certain porosity

the crystal lattice or by (empty) inclusions along grain boundaries. By straining of the
surrounding material the voids may grow but typically metals fail at a porosity of about
0.1 − 0.3 [270, 95].

Similar porosity values are observed for the soft tissue of inner organs. Here a natural
small porosity is observed, whereby many pores in a biological system are liquid filled
(which, in turn, justifies the modelling of bio-tissue with the classical theory of porous
media, see [109]). In opposite to metals bio-materials show a low resistance to hydrostatic
tension: pores and cavities grow under straining until cell walls and capillaries rupture.
But even at the state of traumatic injuries the volume fraction of pores is still moderate.

7.1.1. Spherical shell model of a porous composite

a(t)

b(t)

r(t)

surface S(i)

void

matrix

Figure 7.1.: Spherical shell model of a single void

In this text we analyze within the framework of a mesoscopic theory the growth of voids
(i.e., cavities and pores) in a deforming body. For our analysis we imagine that each
void i of a material is at every instance surrounded by a surface S(i) lying completely in
the material (matrix), i.e., we exclude here the process of coalescence. The surface S(i)

encloses a volume V (i) in such a way that for every void i holds

V (i)

V
= fV

(i). (7.2)

Presuming a moderate porosity (up to 1/3) such a subdivision of the material could
be carried out and we assume that this has been done in such a way that the surfaces
S(i) approach spheres as nearly as possible. Therefore, in the following any element
containing a void will be called a spherical shell, see Figure 7.1.
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7.1 Continua with a certain porosity

The porous materials are now modeled as assemblages of isotropic spherical shells with
a certain given initial void volume fraction and an initial size distribution. Note that the
void volume of one spherical shell initially equals the void volume fraction of the whole
composite whereas the size distribution of spherical shells may vary arbitrarily. During
the process of deformation of the body the spherical shells may grow (in different ways)
but retain their shapes whereas the matrix material follows classical material laws.

Figure 7.2.: Spherical shell model of porosity

Such materials may be “constructed” by filling a body with spherical shells which may
be diminished to infinitesimal size, see Figure 7.2. As the remaining volume between the
spheres can be made infinitesimally small by the filling process, the deformation energy
density of the composite body will in the limit approach the sum of deformation energies
densities stored in all spherical shells.

7.1.2. Kinematics of void growth

Let us consider a spherical shell with initial inner radius a0 and outer radius b0 and let
it expand for some reason. The void will grow to a current radius a ≡ a(t) and the
outer shell expands to a current outer radius b ≡ b(t). Consider now a material sphere
surrounding the void and deforming with the body. The initial and current radii of
that material sphere are denoted by r0 ∈ [a0, b0] and r ≡ r(t) ∈ [a, b], respectively, see
Figure 7.3. Presuming a volume preserving deformation, i.e.,

4π

3
(r3

0 − a3
0) =

4π

3
(r3 − a3), (7.3)
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the deformation mapping r = ϕ(r0) is uniquely determined by

r =
(
r3
0 − a3

0 + a3
)1/3

. (7.4)

As a consequence, the current outer radius of a shell of incompressible material sur-
rounding a void is given by

b =
(
b30 − a3

0 + a3
)1/3

. (7.5)

Writing the volume constraint (7.3) equivalently as,

d

dt

4π

3
(r3 − a3) = 0 , (7.6)

defines the velocity field over the current configuration. In particular, the radial compo-
nent of the spatial velocity is

vr =
dr

dt
=
a2

r2
ȧ, (7.7)

where the rate of change of void radius a, ȧ = da
dt

, is the velocity of void expansion.
The corresponding full velocity field is

v =
vr
r

x =
a2ȧ

r3
x, (7.8)

x being the spatial position vector relative to the center of the void.

ϕ

a0

b0

r0

a

b

r

Figure 7.3.: Spherical shell model of void growth
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For any point located on the material sphere surrounding the void we write the defor-
mation gradient as

F =
r

r0
I. (7.9)

and the corresponding spatial velocity gradient (1.45) is

l =
a2ȧ

r3

(
I − 3er ⊗ er

)
(7.10)

where er is the unit radial vector. It follows from (7.10) that l is symmetric and coincides
with the rate of deformation tensor (1.47); the spin tensor (1.48) vanishes.

7.1.3. Effective elastic moduli

The proposed model of porosity is basically an inhomogeneous material, precisely, a
composite with (empty) inclusions. A common way to homogenize, i.e., to approximate
the effective properties of a general composite, is Hill’s [151] self consistent method.
In this method the equations of elasticity are solved for an inclusion embedded into a
medium of unknown effective moduli. The effective bulk modulus κ∗ and the effective
shear modulus µ∗ are then derived, cf. [79, 222, 223, 335]. However, more consistent to
our approach is the so-called composite sphere model which was analytically treated by
Hashin [145, 146] and others [82, 83, 84, 336].

In [145, 146] a linear elastic analysis on one spherical shell was carried out to determine
effective moduli. If the external boundary b of the spherical shell is subjected to purely
radial displacement ur(r = b) = ε̄ b, the radial stress on the boundary is

σr(r = b) = 3κ∗ ε̄ (7.11)

where the effective bulk modulus κ∗ is a function of the ratio a/b (and, if general second
material inclusions are considered as in [145], also of core and shell elastic moduli). On
the other hand, if a homogenous isotropic body with bulk modulus κ∗ is subjected to
isotropic strain ε̄ δij , the displacement and the traction on any internal surface with
radius r are purely radial. The stresses σr(r = b) are precisely those given in the
foregoing equation (7.11), cf. [146].

In general such an approach yields only upper and lower bounds for the effective moduli.
Only for the effective bulk modulus both bounds coincide, i.e., to an external observer the
composite sphere behaves just like a homogeneous sphere of radius b with bulk modulus
κ∗.

96



7.2 A mesoscopic theory of void growth

It follows that such a radially symmetric spherical shell can be replaced by the composite
sphere without perturbing the homogeneous isotropic state of stress and strain in the
body. Therefore, such a replacement can be performed again and again with composite
spheres of different size as long as the spheres all have the same κ∗ (which is the case
if in all composite spheres the ratios a/b and the constitutive properties are the same).
If the body is filled with composite spheres which diminish to infinitesimal size, then
(as the remaining volume goes to zero) the effective bulk modulus of this composite
material converges to κ∗. For a composite as an assemblage of spherical voids enclosed
in isotropic concentric spherical matrices the effective bulk modulus κ∗ is [188, 146]

κ∗ = κ
(

1 − fV
3κ+ 4µ

3κ+ 4µ/fV

)

. (7.12)

Effective moduli for small concentrations of voids may be found by linearizing general
bounds for bulk and shear modulus. The effective bulk modulus (7.12) is easily linearized
by neglecting the fV -term in the denominator of (7.12). This approach is identical to
the so-called dilute model, i.e., a spherical inclusion embedded in an infinite solid matrix
with elastic constants κ and µ or E and ν, respectively,

κ∗ = κ
(

1 − fV
3(1 − ν)

2(1 − 2ν)

)

. (7.13)

For the shear modulus the bounds derived in [145] may analogously be simplified and
are then found to be the same as in the dilute case

µ∗ = µ
(

1 − fV
15(1 − ν)

7 − 5ν

)

. (7.14)

7.2. A mesoscopic theory of void growth

A general mesoscopic concept was introduced by Muschik and his co-workers [236, 237,
238, 267, 350] to model microstructural effects within a continuum mechanical frame-
work. The basic idea of this theory is to extend the classical space-time domain {x, t}
of continuums mechanics by a set of mesoscopic variables m = {m(1), . . . , m(k)} of ar-
bitrary tensorial order. These additional parameters, the mesoscopic variables, extend
the configuration domain to a so-called mesoscopic space {x, t,m}, on which the fields
appearing in the classical balances equations are defined. Furthermore, an additional
function describes the distribution of the mesoscopic variables at time and position. This
mesoscopic distribution function has no analog in the macroscopic description, in this
way a statistical element enters the theory. In this section we provide the basic equations
of the mesoscopic framework.
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7.2.1. The mesoscopic concept

The balances for mass, momentum and energy are material independent and defined
on the space-time domain (x, t) ∈ IR3 × IR. For their solution constitutive relations
are required (i.e., for σ or q), which result in field equations for a specific material.
Conventionally, the domain of the constitutive equations is called the state space, in
which the elements are also defined on space-time. If more fields are introduced (e.g.,
internal variables), additional balances or evolution equations are stated which need to
be satisfied by these fields.

The mesoscopic concept is different and in some sense easier. Instead of space-time
an extended configuration space is introduced. This configuration space is called a
mesoscopic space on which now the usual fields, such as mass density %, material velocity
v, internal energy density e etc., have to be redefined. Consecutively the balances of
mass, momentum and energy need now to be formulated on the mesoscopic space.

Following the approach of Muschik et al. [236] we introduce a manifold M called meso-
scopic manifold, which is spanned by the set of mesoscopic variables m. Then the
mesoscopic space is defined by

(m,x, t) ∈ M× IR3 × IR (7.15)

In the materials of interest the particles of a volume element do not have the same value
of a mesoscopic variable (e.g., in our porous model we have spherical shells with different
void radii). Thus a statistical element needs to be introduced which accounts for the
different values of the mesoscopic variables m at each time t and position x — this is
the so-called mesoscopic distribution function f̃(m,x, t). Because this function has
no analog in the macroscopic description, a mesoscopic theory handles more information
than a purely macroscopic one.

The physical meaning of the mesoscopic distribution function f̃(m,x, t) follows from
the definition of a continuum: in the volume element associated with (x, t) the value
of the mesoscopic variables m has the fraction f̃ of all particles in the volume element.
Consequently, let Ñ V (m,x, t) be the number of particles at (x, t) with a certain value
of m whereas NV (x, t) is the total number of particles within the volume element x at
time t. Then we define

f̃(m,x, t) :=
Ñ V (m,x, t)

NV (x, t)
. (7.16)

The mesoscopic distribution function is always normalized

1 =

∫

M
f̃(m,x, t) dm =

1

NV (x, t)

∫

M
Ñ V (m,x, t) dm . (7.17)
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In case of the porous material model under consideration here the mesoscopic variables
are only the (scalar) void radii1 a(t) for the different spherical shells in a representative
volume element at position x. For this reason let us consider a spherical shell ensemble
characterized by a mesoscopic void number density Ñ V (a, t), representing the number of
shells with the void radius a in the volume element at time t. We shall suppose that all
voids have a nucleation size a0, so that the function Ñ V (·, t) is defined over the interval
[a0,∞). Then, the total number of voids per unit undeformed volume is

NV (t) =

∫ ∞

a0

Ñ V (a, t)da. (7.18)

With the mesoscopic distribution function (7.16) the fields of mass density, momentum,
total energy etc. can be defined on the mesoscopic space. For distinguishing these fields
from the macroscopic ones and to omit the arguments m,x, t in the remaining of the
text, we add a tilde to symbol, i.e,

%̃ ≡ %̃(m,x, t) ṽ ≡ ṽ(m,x, t) ẽ ≡ ẽ(m,x, t) and so on. (7.19)

In particular, the mesoscopic mass density is defined by using the mesoscopic distribution
function (7.16) as

%̃ = f̃ %(x, t) =
Ñ V (m,x, t)

NV (x, t)
%(x, t). (7.20)

The mesoscopic mass density %̃ describes the mass density of all particles in a volume
element for which the value of the mesoscopic variable is m. In our case this is the mass
density per volume of all spherical shells containing a void with radius a. Moreover, the
macroscopic mass density %(x, t) can be recovered from equation (7.20) by integration
over the mesoscopic space (what basically corresponds to a sum over all spherical shells)

%(x, t) =

∫

M
%̃(m,x, t) dm. (7.21)

Other fields defined on the mesoscopic space are the mesoscopic material velocity ṽ of
the particles belonging to the mesoscopic variable m at time t in a volume element
around x, the mesoscopic stress tensor σ̃, the mesoscopic heat flux density q̃ etc.. The
balance equations belonging to these mesoscopic fields are discussed in the next section.

1The exclusive use of the scalar mesoscopic variable a presumes, that the different radii a and b of
the spherical shells are not independent. This assumption will be justified in Section 7.3. A more
general case can be formulated introducing the independent mesoscopic variables m = {a(t), b(t)}.

99



7.2 A mesoscopic theory of void growth

7.2.2. Mesoscopic balance equations

From a mathematical point of view, the mesoscopic balance equations differ from the
macroscopic ones only in their domain which is enlarged by the mesoscopic variables,
i.e., the domain of integration is now Ω × M . Therefore derivatives with respect to
these variables appear in the balances. Considering the outward flux of quantity Ψ per

unit volume we have now J̃
ψ

= J̃
ψ,Ω ∪ J̃

ψ,M
, the fluxes through the surface in position

space and on the manifold M, respectively. Analogously the gradient splits

∇ · J̃ψ
(m,x, t)

∇x · J̃
ψ,Ω

(m,x, t)
↗
↘

∇m · J̃ψ,M
(m,x, t).

(7.22)

Similar to equation (2.46) we can now state a generic global equation for the balanced
field Ψ, (see [238] for more details of the derivation).

d

dt

∫

Ω

∫

M
%̃(m,x, t)ψ̃(m,x, t) dm dV =

−
∫

Ω

∫

M

(

∇x · J̃
ψ,Ω

(m,x, t) + ∇m · J̃ψ,M
(m,x, t)

)

dm dV+

+

∫

Ω

∫

M

(

Π̃ψ(m,x, t) + Σ̃ψ(m,x, t)
)

dm dV (7.23)

The total change of quantity ρ̃ψ̃ is the sum of the production, the supply and the total
flux over the boundary and it is attributed to both, the spatial and the mesoscopic
part of the space of definition. The physical interpretation of the balanced quantity
is determined by the meaning of the set of mesoscopic variables m. Consequently, a
physical explanation of a global mesoscopic balance equation can be given only if the
set of mesoscopic variables is specified.

From the global mesoscopic balance equation (7.23) the local form can be derived,

∂

∂t
ρ̃(m,x, t)ψ̃(m,x, t) + ∇x ·

[

ṽ ρ̃(m,x, t)ψ̃(m,x, t) − J̃
ψ,Ω

cond(m,x, t)
]

+

+ ∇m ·
[

ũ ρ̃(m,x, t)ψ̃(m,x, t) − J̃
ψ,M
cond (m,x, t)

]

= (Π̃ψ̃ + Σ̃ψ̃)(m,x, t) (7.24)

where J̃
ψ,Ω

cond and J̃
ψ,M
cond are the conductive parts of the fluxes. The analogue to the

material velocity is the velocity of mesoscopic change ũ ≡ ũ(m,x, t) which is defined
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as follows. Let t and (t + ∆t) be two instances of one particle at x with ∆t → 0 then
follows the mapping

(m,x, t) 7−→ (m + ũ∆t , x + ṽ∆t , t+ ∆t), (7.25)

where ṽ is the mesoscopic material velocity (with respect to x). In more detail the
special mesoscopic balance equations are:

• mesoscopic mass balance

∂%̃

∂t
+ ∇x · (%̃ṽ) + ∇m · (%̃ũ) = 0 (7.26)

• balance of mesoscopic linear momentum l̃

l̃ := %̃ṽ , (7.27)

∂l̃

∂t
+ ∇x ·

(

ṽl̃ − σ̃T
)

+ ∇m ·
(

ũl̃ − ςT
)

= %̃ã (7.28)

Here is ς an analog to the stress tensor, the non-convective momentum flux with respect
to the mesoscopic variables m.

• balance of mesoscopic angular momentum g̃

g̃ := x × %̃ṽ , (7.29)

∂g̃

∂t
+ ∇x ·

[

ṽs̃ − %̃ (x × σ̃)T − ζ̃
T
]

+

+ ∇m ·
[

us̃ − %̃ (x × ς)T − η̃T
]

= %̃(x × ã) + %g (7.30)

The symbols ζ̃, η̃ and g stand for couple stress tensor, the couple stress tensor on the
manifold M and for the sum of all external specific angular momentums.

• balance of total energy ẽ

ẽ :=
1

2
ṽ2 + ũ , (7.31)

∂%̃ẽ

∂t
+ ∇x ·

(
ṽ%̃ẽ− σ̃T · ṽ + q̃

)
+ ∇m ·

(
ũ%̃ẽ− ςT · ṽ + $̃

)
=

= %̃ã · ṽ + %̃r̃ (7.32)

Here ũ is the mesoscopic specific internal energy and r̃ is a possible mesoscopic absorption
(supply). Furthermore the mesoscopic heat flux density is q̃ and $̃ is the mesoscopic
heat flux density on M.
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• balance of internal energy ũ

∂%̃ũ

∂t
+ ∇x · (ṽ%̃ũ+ q̃) + ∇m · (ũ%̃ũ+ $̃) =

= %̃r̃ + σ̃T · ∇xṽ + ςT · ∇mṽ (7.33)

Note that the mesoscopic balance of entropy is of no special interest. In general the
mesoscopic entropy production is not definite and, therefore, the second law of thermo-
dynamics has to be formulated as usual by the macroscopic balance of entropy.

The mesoscopic concept does not introduce any new balance for the additional fields
because these are included in the mesoscopic space. However, the new mesoscopic dis-
tribution function f̃(m,x, t) and the velocity of mesoscopic change ũ, require additional
equations. The mesoscopic distribution function has a generic balance of its own, see
below. A general equation for the velocity of mesoscopic change ũ cannot be stated, the
specific form of this balance depends on the microstructure of the material. Examples
are given in [238, 266] for liquid crystals and in [268, 351] for Griffith cracks in linear
elastic material. In our case of a porous composite the velocity of mesoscopic change is
simply the velocity of change of void radius a defined in equation (7.7) as void expansion
velocity ȧ.

By definition (7.16) the mesoscopic distribution function satisfies a balance equation of
it own. Starting with the mesoscopic mass balance (7.26) and using the relation (7.20)
a straightforward calculation gives [38]

∂

∂t

[

f̃ %(x, t)
]

+ ∇x ·
[

%(x, t) f̃ ṽ
]

+ ∇m ·
[

%(x, t) f̃ ũ
]

= 0. (7.34)

Equation (7.34) is a function of the macroscopic mass density %(x, t). Inserting (7.20)
shows that (7.34) is highly non-linear. Taking into account the macroscopic mass balance
results in the

• balance of the mesoscopic distribution function

∂f̃

∂t
+ ∇x · (f̃ ṽ) + ∇m · (f̃ ũ) = − f̃

%

[
∂%

∂t
+ ṽ · ∇x%

]

. (7.35)

where % ≡ %(x, t). With the help of a mesoscopic differential operator D[·] := ∂
∂t

[·] + ṽ ·
∇x[·] and with the relation Dρ

ρ
= D(ln ρ) the balance equation (7.35) can be written as

∂f̃

∂t
+ ∇x ·

[

f̃ ṽ
]

+ ∇m ·
[

f̃ ũ
]

+ f̃ D[ln %(x, t)] = 0 . (7.36)
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Note that the macroscopic mass density %(x, t) influences the mesoscopic distribution
function f̃ . This macroscopic influence on mesoscopic quantities is sometimes denoted
as a “mean field” theory [238].

The macroscopic balances can be recovered from the mesoscopic ones by replacing the
mesoscopic space by space-time (x, t). This is clear from equation (7.21) in the special
case of the mass density and can be extended to the general case. To this end we need
to relate all macroscopic quantities by their mesoscopic background,

v(x, t) :=

∫

M
f̃ ṽ dm , e(x, t) :=

∫

M
f̃ ẽ dm , etc. (7.37)

Without a formal axiomatic setting we illustrate the procedure by Figure 7.4.

mesoscopic macroscopic

balance equations balance equations

∫

M . . . dm

Figure 7.4.: Relation between mesoscopic and macroscopic balances

7.2.3. Balance of the mesoscopic distribution function for a porous

composite

When modelling a material as an ensemble of spherical shells (Figure 7.2) the crucial
variables for the mesoscopic description are the mesoscopic void number density Ñ V or
its normalized counterpart f̃ = Ñ V /NV , see equation (7.16). Following the strategy of
the foregoing paragraph the balance equation for Ñ V is found to be

∂Ñ V

∂t
+ ∇x · (Ñ V ṽ) +

∂

∂a

(
Ñ V ȧ

)
= Π̃Ñ V . (7.38)

Equation (7.38) states that the temporal change of the number of voids with radius a
per volume is attributed to the (in and out) flux of voids of radius a. The right hand

side Π̃Ñ V ≡ Π̃Ñ V (a, t) represents a source term and will be specified shortly. In case of

a constant void number we get a conservation equation, i.e., Π̃Ñ V = 0. Furthermore,
the mesoscopic translational velocity ṽ(a, t) does not depend on the radius a, i.e., it
is the same for all shells and voids. It can be identified with the macroscopic velocity
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of the continuum element, ṽ(a,x, t) = v(x, t), because in the solid materials under
consideration here the voids cannot move independently with respect to the surrounding
material.

In order to specify the balance equation for the mesoscopic void distribution f̃ we mul-
tiply equation (7.38) with 1

NV
. With (7.16) and a straightforward calculation one can

find

∂f̃

∂t
+ ∇x · (f̃v) +

∂

∂a

(
f̃ ȧ
)

= Π̃Ñ V +
f̃

NV

(
∂NV

∂t
+ v · ∇xNV

)

. (7.39)

The right hand side of equation (7.39) represents the production of voids in two different
ways:

1. The mesoscopic void number production Π̃Ñ V accounts for sources or sinks of voids
with a specific radius a, namely the change of Ñ V (a, t) caused by production.

2. The expression in brackets stands for the temporal change of the macroscopic void
number in a volume element observable by a co-moving observer

(
∂NV

∂t
+ v · ∇xNV

)

=
dNV

dt
≡ ṄV . (7.40)

Note that the influence of the macroscopic void number density NV on distribution
function f̃ represents the mean field effect.

Let us define the macroscopic void number production by

ΠNV := ṄV with ΠNV =

∫ ∞

a0

Π̃Ñ V da . (7.41)

Consequently, equation (7.39) has two parts of production: the mesoscopic and the
macroscopic void number production. In summary the following compact form of the
mesoscopic distribution function is obtained

∂f̃

∂t
+ ∇x · (f̃v) +

∂

∂a

(
f̃ ȧ
)

=
f̃

NV

ΠNV + Π̃Ñ V . (7.42)

Obviously equation (7.42) and (7.35) have the same structure, except for the mesoscopic

production term Π̃Ñ V , which is zero in equation (7.35) because of mass conservation.
(In the special case of no void production both equations are identical.) However, ΠNV

and Π̃Ñ V are not independent. This is evident from equation (7.41)2, where ΠNV can be

interpreted as the sum over all void productions Π̃Ñ V with specific radius a.
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By comparison of equation (7.42) and (7.35) we find

ρ̇

ρ
=
ṄV

NV
+

Π̃Ñ V

f̃
=

ΠNV

NV
+

Π̃Ñ V

f̃
. (7.43)

If an initial mesoscopic void number density Ñ V (a, t = 0) is known the quantities NV (t =
0) and f̃(a, t = 0) can be calculated. Together with an ansatz for the mesoscopic void

number production Π̃Ñ V (a, t) the values for ΠNV and NV (t) = NV (t = 0) + t ΠNV can
be determined. Additionally, if a constitutive law for void expansion velocity ȧ exists a
(numerical) solution of equation (7.42) is possible.

7.3. Dynamic growth of voids under remote hydrostatic

pressure and tension

In the preceding section we have established the theoretical frame for a mesoscopic theory
of void growth in a continuum. By means of balance equation (7.42) the evolution of
voids in a general material is predictable. For application to the specific materials we
envision here, the constitutive equations for the void velocities within the void ensemble,
ȧ(x, t), remain to be specified.

In this section we establish in a fully variational approach a set of constitutive relations
for void growth. To this end, energy contributions of an expanding (or shrinking) void
ensemble will be derived as functions of the void radii a, b, its distribution and time
derivatives as well as of the temperature, the initial geometry and the material parameter.
In particular we shall see that for an incompressible matrix material the state space Z,
i.e., the domain of the constitutive equations, reduces to

Z = {T, a, ε, ε̇} ⇒ ȧ = ȧ(Z), (7.44)

where T is the absolute temperature and ε is an effective strain within the spherical
shell (to be specified later) and ε̇ describes its temporal development. Following the
ideas of classical continuum thermodynamics [339] we expect the energetic terms to
compete among themselves and the optimal internal process is that which minimizes the
overall energy function. The insistence on energy minimization in statics (presuming the
existence of a stable equilibrium configuration, cf., equation (4.17)) will be generalized
to the dynamic process of void growth by recourse to Hamilton’s variational principle of
stationary action (4.39).
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7.3.1. Constitutive model

With a view to ensuring a variational structure, we postulate the existence of a defor-
mation energy density function

A = A(ȧ) (7.45)

where all dependencies other than of ȧ are understood in the sense of the state space (7.44).
Additionally we require the time-dependent material equations to derive from a total
dual kinetic potential Ψ∗(ȧ) following the strategy of [257, 282]. The external power P
put into a composite of volume V is a function of the remotely applied pressure history
p(t):

P (ȧ) =
d

dt
[p(t)V (a, t)] . (7.46)

Now an action integral I(ȧ) can be formulated as the sum of all contributions of the
rate of energy Ȧ, of potential Ψ∗ and of external power P . Hamilton’s principle simply
requires stationarity of the action integral

δI(ȧ) = 0, (7.47)

or, equivalently,
δ

δȧ

[

Ȧ+ Ψ∗ − P
]

= 0 . (7.48)

Let us now specify the constitutive equations for, first, an elastic, and second, a visco-
plastic material. Exploiting the spherical symmetry of the model we can derive from the
kinematics outlined in Section 7.1.2 the principle stresses and strains within one shell.
Correspondingly, the velocity over the current configuration (7.7) defines the strain rate
as

ε̇(r, t) =
∂ṙ

∂r
=

2a2(t)

r3(t)
ȧ(t). (7.49)

Note that with the deformation mapping (7.4) equation (7.49) as well as all subsequent
equations depending on the current radius r can be expressed in terms of the current
void radius a and the initial geometry.

Elastic energy

The elastic response of the material may be described by a general Ogden material, cf.
Section 3.4, which will here be simplified to a Neo-Hookean Material with an energy
density of the form

µ∗(a)

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (7.50)
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where λ1,2,3 are the principle elastic stretches in tangential and radial directions, respec-
tively, and µ∗(a) is the effective shear modulus (7.14). For a single spherical shell it
evaluates to

µ∗(a) = µ0

(

1 − a3(15κ0 + 20µ0)

b3(9κ0 + 4µ0)

)

(7.51)

with κ0 and µ0 denoting the bulk and shear modulus of the virgin material with initial
void volume fraction fV 0, respectively. By the geometry of the spherical shell and by
incompressibility of the matrix material we find

λ ≡ λ1 = λ2 =
r

r0
und λ3 =

1

λ2
=
r2
0

r2
. (7.52)

The total elastic energy of one spherical shell follows by integration over the volume as

W̃ e(a, T ) =

∫ b

a

µ∗(a)

2

(

2
( r

r0

)2
+
(r0
r

)4 − 3
)

4πr2 d r (7.53)

= 2µ∗(a)
(

a3
0 − b30 −

a0

a
(2a3 − a3

0) +
b0
b

(2b3 − b30)
)

. (7.54)

Consider now an ensemble of spherical shells characterized by the mesoscopic distribu-
tion function (7.16) of Section 7.2.1. The total elastic energy stored by the void ensemble
is the first moment of the elastic energy stored by all individual spherical shells. Conse-
quently, the elastic work of deformation for the void ensemble is

W e =

∫ ∞

0

f̃ W̃ e(a, T ) da, (7.55)

where we dropped on the left hand side the arguments for convenience.

Note that in (7.51) and (7.54) radius b can be expressed as a function of a by volume
constraint (7.6). To ensure constraint (7.6) we presume volumetric incompressibility
of the material surrounding the void. This assumption is, of course, made to ease the
derivation of a constitutive model but it is also justified by the particular materials
under consideration. Materials with a significant elastic range are, e.g., bio-materials
and rubbery polymers, both are (almost) incompressible. On the other hand, metals
deform elasto-plastically where the plastic deformation is volume preserving and the
compressible elastic range is small, its influence on void growth may easily be neglected.

Stored plastic work

To analyze the void growth in a time-dependent plastic material we follow a strategy
adopted from [254] and neglect the elastic expansion of the void ensemble. All void
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growth is attributed to plasticity. (Note that elasticity of the voided material may easily
be added, see [365].) Thus the absolute value of strain rate (7.49) defines the rate of the
effective von Mises strain, ε̇p ≡ |ε̇(r, t)|. Presuming a monotonic void growth, equation
(7.49) can be integrated to give

εp = | − 2

3
ln
(
1 +

a3 − a3
0

r3 − (a3 − a3
0)

)
| =

2

3
ln
(
1 +

a3 − a3
0

r3
0

)
. (7.56)

Let us consider classical von Mises plasticity with power law hardening, i.e., the yield
stress obeys a hardening law of the form (6.9). Furthermore, we assume thermal-
softening of the power-law form (6.18). The stored plastic energy density follows from
the rate of plastic straining by

∫ t

0

σy ε̇p d t̄ =

∫ εp

0

σydε̄p. (7.57)

By volume integration the stored plastic energy of one spherical shell can be computed,

W̃ p(a, b, T ) =

∫ b

a

nσy0(T )εpy0
n+ 1

((

1 +
εp

εpy0

)n+1

n − 1
)

4πr2dr. (7.58)

Evaluating (7.58) with (7.56) gives

W̃ p(a, b, T ) =
nσy0ε

p
y0

n + 1

4πa3

3
g(a, b;n), (7.59)

where, with substitution x := r3/a3,

g(a, b;n) =

∫ b3/a3

0

(

1 +
2

3εpy0
ln

x

x− 1 + a3
0/a

3

)n+1

n
dx. (7.60)

Note that because of the plastic incompressibility of the matrix material the dependence
of W̃ p on shell radius b can be eliminated by relation (7.5). We obtain

W̃ p(a, T ) =
nσy0ε

p
y0

n+ 1

4πa0
3

3
g(a;n), (7.61)

g(a;n) =

∫ b3
0
/a3

0

0

(

1 +
2

3εpy0
ln
(
1 +

1

x

( a3

a0
3
− 1
)))

n+1

n

dx. (7.62)

It is worth mentioning that an analytical integration of (7.60/7.62) is possible only in
the special case n→ ∞.
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7.3 Dynamic growth of voids

Assume now that the void radius history a(t) grows monotonically from a0 to a1, then
decreases monotonically from a1 to a2, and so on. Then the integration of (7.49) with
respect to the time gives

εp(r0, t) =
2

3
ln
(a1

3 + r3
0 − a3

0

r3
0

)

+
2

3
ln
(a1

3 + r3
0 − a3

0

a2
3 + r3

0 − a3
0

)

+
2

3
ln
(a3

3 + r3
0 − a3

0

a2
3 + r3

0 − a3
0

)

+ · · ·

Grouping terms corresponding to increasing and decreasing intervals yields

εp(r0, t) =
2

3
ln
(q(t)3 + r3

0 − a3
0

r3
0

)

+
2

3
ln
(a3(t) + r3

0 − a3
0

q3(t) + r3
0 − a3

0

)

, (7.63)

or, summarized,

εp(r0, t) =
2

3
ln
(

(
a3(t) + r3

0 − a3
0

)2

r3
0(t)

(
q3(t) + r3

0 − a3
0

)

)

. (7.64)

Here
q(t) = max

0≤τ≤t
a(τ) (7.65)

defines the maximum attained void size. Evidently, it holds

q̇(t) =
{ ȧ(t) if a(t) = q(t) and ȧ(t) > 0

0 otherwise .
(7.66)

In particular, q(t) is a monotonically increasing function for every history of a(t). The
stored plastic work in the spherical shell surrounding the void is then

W̃ p(a, q, T ) =

∫ b0

a0

nσy0(T )εpy0
n+ 1

[(

1 +
1

εpy0

2

3
ln

(q3 + r3
0 − a3

0)

r3
0(a

3 + r3
0 − a3

0)

)n+1

n − 1
]

4πr2
0dr.

(7.67)

The stored energy functions (7.58-7.67) are attributed to the growth of one void of radius
a(t). For an ensemble of spherical shells characterized by the mesoscopic distribution
function (7.16) the plastic work is given by

W p =

∫ ∞

0

f̃ W̃ p(a, T ) da. (7.68)
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Kinetic energy

In an analogous manner the kinetic energy of an expanding void ensemble can be de-
termined. With velocity (7.7) and energy (2.23) the kinetic energy of an expanding (or
collapsing) spherical shell is computed to be

K̃(a, ȧ) =

b∫

a

1

2
%0 v

2
r 4πr2dr

= 2π% a4
(1

a
− 1

b

)

ȧ2, (7.69)

where %0 is the initial mass density of the matrix material. In the dilute limit, the total
kinetic energy attributed to the growth of the void ensemble is the “weighted sum” of
the kinetic energies due to the expansion of each individual void,

K =

∫ ∞

0

f̃ K̃(ȧ, a) da, (7.70)

where ȧ ≡ ȧ(a) is understood to be the expansion velocity of the void with current radius
a.

Surface energy

The surface energy of one void with radius a(t) is

S̃(a) = 4πa2γ (7.71)

where γ is the surface energy per unit undeformed area [N/m]. The surface energy of
the void ensemble is

S =

∫ ∞

0

f̃ S̃(a) da. (7.72)
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Rate sensitivity

Assuming a linear rate sensitivity (cf. Section 6.2.3) we define a dual kinetic potential
for one spherical shell as

Ψ̃∗(ȧ, a) =

∫ b

a

σ0(T )

2ε̇py0

(2a2|ȧ|
r3

)2

4πr2dr (7.73)

=
σ0(T )

ε̇py0

∫ b0

a0

( a2|ȧ|
a3 + r3

0 − a3
0

)2

8πr2
0dr0

=
2σ0(T )

ε̇py0

4πa3

3
| ȧ
a
|2
(

1 − a3

a3 + b30 − a3
0

)

where ε̇py0 is the reference strain rate.

Vacancy diffusion

Consider a small void, possibly just a few atomic spacing in diameter, surrounded by
a supersaturated vacancy concentration cb generated, e.g., by unbalanced diffusion or
by plastic deformation [252]. To render the problem analytically tractable, we idealize
the defect to be spherical with characteristic radius a, the diffusion constants to be
isotropic, and we assume that a steady state vacancy concentration profile is maintained
all times, i.e., ∂cvac/∂t � ∂Jvac/∂x, where Jvac is the vacancy flux. This eliminates the
time dependence of the solution and confers spherical symmetry to the problem. With
b being the (large) radius of the basin of attraction around the void, cf., Figure 7.5, and
b/a → ∞, the diffusion equation for volume concentration c reduces to the following
boundary value problem in spherical coordinates:

∂

∂r

(

r2 ∂c

∂r

)

= 0 , (7.74)

subject to the boundary conditions

c(r = b) = cb , (7.75)

c(r = a) = ca = c0e
d/a. (7.76)

Here the equilibrium vacancy concentration near a free surface is given by

c0 = e−Ev/kT (7.77)

and the concentration ca at the void surface follows as above with d = 2γVV

kT
. In these

expressions γ is the surface tension, VV the atomic volume, k the Bolzmann constant
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and Ev is the free-energy gain/loss resulting from adding a vacancy into the system. The
solution of (7.74)-(7.76) is elementary, namely

c(r) = cb − (cb − ca)
a

r
. (7.78)

For void growth to take place there must be a net flux of vacancies into the void, which
requires cb > ca. This in turn requires

cb > c0 exp
(2γVV
a0kT

)

. (7.79)

For very small values of a0 or cb this inequality is not satisfied and voids fail to grow.
However, the value of radius a0 which equals relation (7.79) at a given value of cb marks
the inception of void growth, i.e., a critical nucleation size.

ca
cb

Figure 7.5.: Model of vacancy diffusion.

Furthermore, the flux J is defined to be the change of volume per unit area and time,
viz.

J(r) = − 1

4πa2

d

dt

(
4

3
πa3

)

= −ȧ(r) . (7.80)

Applying additionally Fick’s law J(r) = −D ∂c
∂r

to equation (7.80) yields for voids of
radius a by means of equation (7.78):

ȧ(a) =
D

a

(
cb − c0e

d/a
)
, (7.81)
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where D is the vacancy diffusion coefficient. As the void grows, ca decreases according to
equation (7.76) which amplifies the concentration gradient towards the void and, thus,
accelerates the void growth. The rate of void growth may be computed by means of
equation (7.81).

Following the strategy of Wagner [354] but allowing for an additional source term s(t)
the background vacancy concentration cb can be subjected to a “void volume balance”
of the form:

ċ(t) = s(t) −
∞∫

0

f̃ ȧ(a) 4πa2 da

= s(t) −
∞∫

0

f̃ D
(
cb − c0e

d/a
)
4πa da , (7.82)

where, again, f̃ is the void size distribution function. The source term s(t) in equa-
tion (7.82) represents a vacancy production rate which may be caused, e.g., by plastic
deformation.

In addition we ask for an energetic formulation of the above vacancy diffusion problem.
In particular, we look for a diffusion rate potential Φ(ȧ, a), for which the variational
form:

δΦ(ȧ, a)

δȧ
= 0 (7.83)

holds. For that reason we multiply equation (7.81) with a characteristic factor Ev/D.
A subsequent integration w.r.t. ȧ finally results in

Φ =
Evȧ

2

2D
− Evȧ

a

(
cb − c0e

d/a
)
. (7.84)

External work

Finally, the external power put into one spherical shell by an applied (positive or nega-
tive) pressure p(t) is

P̃ (ȧ, a) =
d

dt

(

p(t)
4π

3
b3
)

= p(t) 4πa2ȧ. (7.85)

If, as outlined in [254], the pressure p derives from a potential through a relation of the
type

p =
∂

∂a
ˆ̃W ex
(
V (a)

)
(7.86)
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where V (a) is the void volume change, then equation (7.85) can be integrated to give
the external work applied on a spherical shell

W̃ ex(a) = ˆ̃W ex
(4π

3
(a3 − a3

0)
)
. (7.87)

The total external work of the remote pressure applied to the composite follows with
similar arguments as above,

W ex =

∫ ∞

0

f̃ W̃ ex(a) da. (7.88)

Governing differential equation

With the aim to establish Hamilton’s principle (7.48) we summarize the energetic terms
and derive the free energy rate

Ȧ =

∫ ∞

0

f̃
(∂W̃ e

∂a
+
∂W̃ p

∂a
+
∂S̃

∂a
− ∂K̃

∂a
+
d

dt

∂K̃

∂ȧ
︸ ︷︷ ︸

inertia

)

ȧ da. (7.89)

where we have accounted for the work of d’Alembert inertia forces in accelerated pro-
cesses. The external power applied to a spherical shell composite evaluates simply to

P =

∫ ∞

0

f̃
∂W̃ ex

∂a
ȧ da, (7.90)

whereas the total dual kinetic potential including the diffusion potential is

Ψ∗ =

∫ ∞

0

f̃
(

ψ∗(ȧ, a) +
Evȧ

2

2D
− Evȧ

a

(
cb − c0e

d/a
))

da. (7.91)

The equation of motion of the voids of size a now follows from the variational form (7.48)
as

− ∂W ex

∂a
+
∂W e

∂a
+
∂W p

∂a
+
∂S

∂a
+
∂ψ∗

∂ȧ

− ∂K

∂a
+
d

dt

∂K

∂ȧ
+
Evȧ

D
− Ev

a

(
cb − c0e

d/a
)

= 0. (7.92)

Equation (7.92) can now be solved (numerically) to provide a constitutive law for ȧ
required to determine the mesoscopic distribution function (7.16). Once ȧ is known to
be the resulting velocity of the voids of size a, then equation (7.38) governs the evolution
of the mesoscopic distribution function (7.16).
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Figure 7.6.: Void growth in an elastic medium induced by a pressure impulse.

7.3.2. Analysis of an ensemble of voids of equal size in an elastic

material

In an attempt to illustrate the capability of the constitutive model derived in the preced-
ing section we start here with the special case of a void ensemble with an average radius
of size ā, i.e., the mesoscopic distribution function f̃ has the form of a Dirac impulse at
a0 and retains this shape for the expanding voids of radius ā ≥ a0.

At first we study void expansion in an elastic material, as, e.g., the growth of pores in a
soft tissue. Then, equation (7.92) simplifies to

∂W e

∂a
− ∂K

∂a
+
d

dt

∂K

∂ȧ
=
∂W ex

∂a
(7.93)

We subject an elastic specimen to a sudden pressure impulse with magnitude of 1000 GPa
within 10−6µs. The pores in the elastic material with material data of µ = 1000 MPa
and % = 1000 kg/m3 are assumed to be initially of size a0 = 1µm. Since the matrix
material in the porous composite is presumed to be incompressible all change of volume
is a consequence of pore expansion or shrinkage. Therefore, the pressure impulse forces
the pores to close, i.e., ā → 0. After the impulse has passed, the voids expand again.
However, by elasticity and inertia the attained maximal void radius āmax is much bigger
than the initial radius a0, the voids oscillate. This process is similar to the effect of

115



7.3 Dynamic growth of voids

cavitation observed in fluids which are subjected to (high intensity) pressure waves [123,
155, 313].

Because in our simplified ansatz (7.93) there is no dissipation, the process of opening and
closure of pores goes on periodically. It is interesting to note, that the ratio of āmax/a0

gets bigger the smaller the initial void is whereas the duration of one cycle raises with
the initial void radius, see Figure 7.6.

7.3.3. Analysis of an ensemble of voids of equal size in a

visco-plastic material

In the following we study void growth under different loading regimes for a typical
metal with material data of Table 7.3.1. Additional temperature and rate effects are not
considered. Moreover, for ease of reading we write a ≡ ā.

E ν % σy0 εpy0 n γ
[GPa] [kg m−3] [MPa] [N/m]

69 0.33 2700 80 0.0012 10 5

Table 7.3.1. Material parameter representative of aluminum.

Quasistatic void growth

In case of a slow loading regime we do not have inertia effects and the material can
considered to be time-independent. Then, equation (7.92) reduces to the first three
terms. Assuming a constant remotely applied tension p̄ equation (7.92) evaluates to

4πp̄a2 =
nσy0ε

p
y0

n + 1

4πa0
3

3
g′(a;n) + 8πγa, (7.94)

where g′(a;n) denotes the derivative of integral (7.62) w.r.t. radius a. Solving the plastic
energy term of (7.94) for the special case of ideal plasticity, i.e., n → ∞, and dividing
the expression by 4πa2 results in

p̄ =
2σy0

3

(
ln(a3 − a3

0 + b30) − ln(a3)
)

+
2γ

a
. (7.95)

Expression (7.95) defines an algebraic relation between applied pressure and void radius
a. Note that we neglect in our constitutive model a certain elastic range of void expansion
and, therefore, equation (7.95) is actually an inequality determining a critical applied
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tension necessary to induce any void to growth plastically. This corresponds to the
concept of critical cavitation pressure as discussed, e.g., in [116, 254, 365]. Only if the
applied tension exceeds a cavitation pressure py void expansion happens.

p̄ ≥ py =
2σy0

3
ln
(

1 +
b30 − a3

0

a3

)

+
2γ

a
(7.96)

The cavitation pressure depends on the material parameter and on the initial and cur-
rent void volume fraction. For ideal plastic material relation (7.96) defines a high initial
cavitation pressure which decreases immediately after the voids start to grow, see Fig-
ure 7.7. In general, for a hardening material the slope is smaller, the cavitation pressure
reduces slowly with rising void size.
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Figure 7.7.: Quasistatic regime a) ideal plastic cavitation pressure depending on void
volume fraction fV , b) solution and approximation of equation (7.60) divided
by (1.5εpy0)

−1−1/n

.

For a hardening material (n ∈ IN) an analytical expression for py cannot be obtained
because the derivative of integral (7.60/7.62) w.r.t. a cannot be solved analytically. If
a repeated numerical solution for every value of a appears to be too cumbersome, we
suggest a simple approximation of (7.62) in the form

g(a;n) ≈ hn
( 2

3εpy0

)n+1

n
(a3

a3
0

− 1
)
, (7.97)

where hn is a constant depending on hardening exponent n. This constant needs to be
fitted to the values of integral (7.60), once numerically evaluated over a range of realistic
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(initial and final) void volume fractions, see Figure 7.7. We proceed here with

hn = 2.21 for n = 10. (7.98)

Note that approximation (7.97) may also provide a way to fit the critical cavitation
pressure to values known from experiments, if available.

Assuming from now on a hypercritical tension p̄ let us discuss void growth due to the
equations (7.94–7.96). The yield stress of a material, usually in the range of some MPa,
weights the first term in these equations much stronger than the surface energy per unit
surface, for material data see Table 7.3.1. This effect is compensated by the 1/a term for
very small void sizes, e.g., a void of vacancy size up to maximal 100-times of it (approx.
0.5 nm – 50 nm). Only in this regime the surface energy contributes significantly to
void growth. For bigger voids the second term in equations (7.95, 7.96) is negligible.

Summarizing these considerations we define the quasistatic initial cavitation pressure for
void expansion in an ideal plastic material by

py0 =
2σy0

3
ln
( 1

fV 0

)

(7.99)

and in a hardening material by

py0 =
(n + 1)σy0

n

4π

3
a3

0 ε
p
y0 g

′(a;n) ≈ (n+ 1)σy0
n

εpy0hn, (7.100)

respectively.

Dynamic void growth

In a next step we extend the above relations to dynamic loading regimes with a pressure
of the form (7.86). If inertia affects the process of void growth but the material law is
rate independent a solution of (7.92) is equivalent to a simple conservation of energy
approach

W ex = W p + S +K. (7.101)

Inserting (7.59), (7.69), (7.71), (7.87) and (7.100) equation (7.101) becomes

4πp̄(a3 − a3
0) =

4π

3
py0(a

3 − a3
0) + 4πγa2 + 2π%0 a

4
(1

a
− 1

b

)

ȧ2. (7.102)
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Evaluating this ODE gives

ȧ =

√
2

3%0

(
p̄− py0 − pγ

) 1

2

( 1 − a3
0

a3

1 − a
(a3+b3

0
−a3

0
)1/3

) 1

2

, (7.103)

where pγ = 3γa2/(a3 −a3
0) is the term resulting from surface energy contributions which

has significance only at the beginning of the void grows process when a ≈ a0. By pre-
sumption the pressure difference ∆p ≡ p̄ − py0 − pγ > 0 and thus the second term of
(7.103) is positive. Moreover, it is clear from equation (7.103) as well as from the un-
derlying physics that the velocity of void expansion reduces for high density materials,
whereas a small %0 allows the voids to grow faster. Equation (7.103) is displayed in Fig-
ure 7.8 for %0 = 2/3, ∆p = 1 and some realistic initial void sizes. Note that even through
the applied tension p̄ is constant the void expansion velocity increases unbounded with
rising void size.
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Figure 7.8.: Velocity of void expansion as a function of radius a for different initial data.

Some particular cases deserve special attention:

I: b0 → ∞. This case equals a void of radius a0 in an infinite matrix. Equation (7.103)
becomes

ȧ =

√
2

3%0

(
p̄− py0

) 1

2
(
1 − a3

0

a3

) 1

2 , (7.104)
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with the third term ∈ [0, 1). In this case (and only in this case!) the void expansion
velocity is bounded.

II: b0 → ∞, a0 → 0. For a very small void in an infinite matrix the void expansion
velocity is constant, without surface energy contributions it has the value

ȧ =

√
2

3%0

(
p̄− py0

) 1

2 . (7.105)

III: a0 → 0. Here we have a very small void in a spherical shell model. Evaluation of
equation (7.103) gives

ȧ =

√
2

3%0

(
p̄− py0

) 1

2

(

1 − (1 +
b30
a3

)−
1

3

)− 1

2

, (7.106)

where we have no solution for a < b0 and a void velocity ȧ → ∞ for a > b0. The
latter corresponds to the effect of unbounded rising void velocity ȧ→ ∞ visible in
Figure 7.8.

Full Model

Finally, the motion of the voids in a general visco-plastic material shall be analyzed.
Evaluating equation (7.92) for the void acceleration ä gives

ä = −
[∂W p

∂a
+ 8πγa+

∂ψ∗

∂ȧ
+
∂2K

∂ȧ∂a
− ∂K

∂a

− ∂W ex

∂a

]/

4π%0a
4
(
a−1 − (a3 − b30 + a3

0)
−1/3

)
, (7.107)

which will be solved for a material with data of Table 7.3.1 by recourse to a Runge-Kutta
scheme with a time step ensuring convergence, [311, 392]. The cavitation pressure py is
computed numerically (no approximation).

Applying rapidly a constant remote tension of 1 GPa we compute the results displayed in
Figure 7.9. A population of voids with initial radius of a0 = 25µm expands and, despite
of the hardening material, we observe a raise of void radius, of void velocity and of void
acceleration up to the theoretical limit of fV = 1. Note that this “self-accelerating” void
expansion is equivalent to a macroscopic softening of the composite shell material.

In general, the dynamic void expansion is faster the smaller the initial voids are. The
surface energy retards void growth in the first stages, superposed by a significant effect
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Figure 7.9.: Void growth of a mean sized void under constant remote tension.

of inertia. The initial void volume fraction (here fV 0 = 10−4) is of small influence, but
generally the void growth accelerates with higher values of fV 0.

In a next computation we apply to the material a sinusoidal pressure impulse with an
amplitude of 10 GPa within a time interval of tload = 10−3µs. A void ensemble with
a0 = 0.1µm expands to a = 1.57µm at t = tload. The corresponding void volume fraction
is fV = 0.28. A smaller initial void size increases the void expansion, in particular holds

ȧ(t) ∝
√
p

a0

for t ∈ [0, tload]. (7.108)

The void expansion is here clearly dominated by inertia effects. This is nicely illustrated
by Figure 7.10 where we see that the voids continue to grow after the load impulse has
passed, i.e., for p̄ = 0, t > tload. For a0 = 0.1µm the final void volume goes to fv → 1.
Starting with a bigger void of a0 = 1µm the void velocity and size increase is smaller,
a(t = tload) = 1.76µm, and the void growth converges to a final void size of a = 4.03µm.
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Figure 7.10.: Inertia dominated void growth due to a tension impulse for two different
radii, short term and long term response.

This regime of inertia dominated void growth is particulary important for impact and
spallation problems, see, e.g. [128, 213, 312, 367].

Note that, if the duration of the load impulse decreases to tload/α a pressure amplitude
of αpmax is required to compute approximately the same final void size.

This strategy does not work the other way round.
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Figure 7.11.: Static void growth.

If the period of loading increases the inertial effects
start to vanish. To illustrate that, we apply a re-
duced sinusoidal impulse of pmax = 1GPa within a
period of 1µs. As long as the applied pressure is be-
low the cavitation pressure py — which is now dom-
inated by plasticity — voids do not expand, a = a0.
If the applied pressure exceeds py the voids grow
unbounded, a → ∞, see Figure 7.11 for a rough
illustration. This corresponds to the situation ana-
lyzed in Section 7.3.3. Because this regime is dom-
inated by plasticity we choose to raise the initial
yield stress in Figure 7.11, an effect which may be
induced, e.g., by a rate-sensitivity of the material.
The point where the applied pressure exceeds the

cavitation pressure, and, thus, where the voids grow unbounded, shifts from t = 0.23µs
for σy = 80MPa to t = 0.42µs for σy = 115MPa. If, additionally, the material shows rate
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7.3 Dynamic growth of voids

effects which further increase σy no plastic void growth would happen. The influence of
the surface energy contributions in this regime is also visible in Figure 7.11.

In this section we analyzed void expansion within a simple visco-plastic material. Note
that additional energy or power contributions attributed to void growth can be derived
in a manner completely analogous to the one outlined here.

7.3.4. Analysis of void distribution

After studying the growth of equally sized voids we proceed considering the interaction
in an ensemble of voids. Point of departure is the balance of the mesoscopic distribution
function written in compact form (7.42). For our (numerical) analysis we consider a
body such that the mesoscopic void velocity is v = 0. Moreover, in our first approach
we neglect the production of voids, i.e., the right hand side of (7.42) equals zero. Thus,
equations (7.42) simplifies to a balance equation of the form

∂f̃

∂t
+

∂

∂a

(
f̃ ȧ
)

= 0. (7.109)

With (7.16) the void volume fraction in a porous composite is given by

fV =
4π

3

∫ ∞

0

f̃ a3 da. (7.110)

We assume that the initial number of voids in a material is given by a Gaussian distri-
bution around a mean initial radius ā0

C0 exp
(

− 1

2ε20

(a0

ā0
− 1
)2
)

(7.111)

where C0 is a normalization factor, ε0 denotes the deviation (the “width”of distribution)
and index 0 refers to the initial configuration. By integration of the mesoscopic void
number Ñ V (a, t) over the range of definition (0,∞) the initial number of particles NV 0 is
obtained, see equation (7.18). Introducing an integration variable x = (a− ā0)/(

√
2ε0ā0)

we get

∞∫

0

Ñ V (a, t = 0) da =
√

2ε0ā0C0

∞∫

−1/
√

2ε0

e−x
2

dx ≈
√

2πε0ā0C0 = NV 0 (7.112)
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7.3 Dynamic growth of voids

to determine C0 where the approximation refers to small values of ε0. Consequently,
with

C0 =
NV 0√
2πε0ā0

(7.113)

and condition (7.17) the initial distribution function reads

f̃(a, t = 0) =
C0

NV 0
exp
(

− 1

2ε20

(a0

ā0
− 1
)2
)

. (7.114)
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Figure 7.12.: Initial, intermediate and final distribution in a void ensemble of 5 sizes.

The problem of interest is now to investigate how does this distribution change in time.
Exemplarily we analyze ensembles of voids with maximal initial void radii of a0 = 10µm
subjected to the sinusoidal loading impulse of Figure 7.10, pmax = 10 GPa.
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7.3 Dynamic growth of voids

We start by discretizing the mesoscopic distribution function for the void radius a

f̃(a, t) = lim
∆a→0

f̃ (i)(a, a+ ∆a, t)

∆a
, (7.115)

where f̃ (i)(a, a+∆a, t) is the distribution of voids with radii a ∈ [a, a+∆a]. Consequently,
the number of voids per unit volume is

NV =

∫ ∞

0

NV f̃(a, t)da ≈ NV

n∑

i=1

f̃ (i)a(i). (7.116)

At time t the number of voids growing into [a, a+ ∆a] equals the product of the distri-
bution function f̃ and the evolution of the radius ȧ, see equation (7.109).
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Figure 7.13.: Dynamic change of void distribution computed with an ensemble of 30
different voids.

At first we study an ensemble of 5 types of voids with initial void volume fraction fV 0 =
10−4 ad a

(1)
0 = 1µm, a

(2)
0 = 3µm, a

(3)
0 = 5µm, a

(4)
0 = 7µm, a

(5)
0 = 9µm. The parameters

of the distribution function (7.114) are ā0 = 5µm, ε0 = 1/3, C0 = NV 0/(0.942
√

(π)ā0 ε0),
see Figure 7.12. All voids grow when subjected to the loading impulse. From the analysis
of Section 7.3.3 we know that voids with small initial size are less inert and grow faster
than their bigger companions. Consequently, the change of distribution function f̃ is
not symmetric. The set of small voids reduces whereas the numbers of bigger void sizes
grow. This observation is in agreement with other theories of multi-phase materials (as,
e.g., Ostwald ripening [277], the LSW-theory for liquid droplets in a gas [354] and grain
coarsening theories of Cahn and Hillard [66]) where the bigger inclusions grow on cost
of the smaller ones, an effect which is often called the “survival of the fattest”.
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Figure 7.14.: Initial and final distribution for an ensemble of 10 voids after two different
pressure impulses.

As a consequence of the inertial effects the void distribution keeps changing after the
actual loading time is over. Therefore, in Figure 7.12 the initial distribution, the distri-
bution at the end of the impulse t = tload and the final distribution are displayed.2 For
a quasi continuous distribution (computed with 30 different void sizes) the initial and
final distribution is plotted in Figure 7.13.

Finally, two different loading impulses are applied to a void ensemble. Assuming an
initial standard distribution of 10 void sizes with a maximum initial void size of 10µm
the initial and final distribution functions are displayed in Figure 7.14. Clearly, the
mean radius increases with higher applied load and, again, the deviation from the mean
radius gets smaller. Note that initially very small voids tend to grow rapidly to a → b,
see Section 7.3.3. By equation (7.109) the set of such spherical shells basically vanishes,

f̃(a(1), t > tload) ≈ 10−5 for a
(1)
0 = 0.05µm, and, therefore is not visible in Figure 7.14 b.

The resulting void distribution groups around the mean radius ā(t). This is in clear
contrast to the quasistatic case where the distribution function broadens, Figure 7.15.

It is obvious from all these figures that the effect of inertia yields a smaller variety of void
sizes: The “width” of distribution function f̃ gets smaller. This effect may explain some
of the difference between static and dynamic fracture of ductile metals. Whereas in static
experiments we usually observe a cup-cone like fracture with large plastic straining and
small and big (coalesced) voids, the fracture surface is more or less plain but dimpled in
dynamic experiments. Voids of similar sizes grew here and set up sheets of voids resulting
in fragmentation surfaces (e.g., spallation planes, see Figure 7.16, and Figure 9.2, 9.3),

2Note that the width of the bars in Figure 7.12 and 7.14 has no meaning.
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Figure 7.15.: Change of void distribution computed with an ensemble of 30 different
voids in a quasistatic loading regime.

for experimental studies see among many others [29, 128, 280, 325].

7.4. Thermodynamic frame for a general porous plastic

material

In this section we present a variational constitutive model for porous plastic materials
under static and dynamic loading conditions. The constitutive framework used here is

Figure 7.16.: Voids in a dynamically loaded copper disk (used in a gas-gun experiment
of [29]).
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7.4 Thermodynamic frame for a general porous plastic material

based on a multiplicative decomposition of the deformation gradient into an elastic part
and an inelastic part, and on a conventional internal-variable formulation of continuum
thermodynamics, cf. [198, 257]. Using a simplified porosity model we link the mechanism
of plastic expansion and global softening of the material to parameters that describe the
micromechanical mechanisms of void growth. Note that more elaborate models may
easily be integrated in the presented general framework.

We start by providing a simple framework for integrating a conventional model of devia-
toric plasticity, such as J2-flow theory of Chapter 6, to an equation of state representing
the effective macroscopic behavior of an ensemble of voids with mean radius ā.

Consider a representative sample of material of undeformed volume V0 and deformed vol-
ume V = JV0. The local volume fraction of voids (7.1) in the undeformed configuration
is

fV 0 = NV
4πā3

0

3
, (7.117)

where NV is the void density. We simplify the void ensemble to a number of NV spherical
voids with mean radius ā per unit undeformed volume of the body, i.e., the mesoscopic
distribution function degenerates to a dirac-impulse and will be dropped in the subse-
quent equations.

In addition, the volume of undeformed matrix material is (1 − fV 0)V0. By ā we denote
the mean void radius in the intermediate, or plastically deformed, configuration. By
assuming a spherical shell model with a plastically-incompressible matrix, and neglecting
the elastic volume change of the voids, we have

Jp = 1 − fV 0 +NV
4πā3

3
, (7.118)

fV =
fV 0 + Jp − 1

Jp
. (7.119)

This relation places the mean void radius ā and the Jacobian of the deformation Jp in
one-to-one correspondence. In all subsequent expressions we conventionally take Jp to
be the primary independent variable and regard ā, and its functions, as functions of Jp

through equation (7.118).

7.4.1. Variational constitutive relations

The thermo-mechanical response of the solids considered in this work is characterized
by a free-energy density per unit undeformed volume of the form

A = A(F ,F p, εp, θp, T ), (7.120)
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7.4 Thermodynamic frame for a general porous plastic material

where F is the deformation gradient, F p is the plastic part of the deformation gradient,
εp ≥ 0 is an effective deviatoric plastic strain, θp ≥ 0 is an effective volumetric plastic
strain, T is the absolute temperature, and

F e = FF p−1 (7.121)

is the elastic part of the deformation gradient, cf. equation (6.1).

The plastic deformation rate is assumed to obey the flow rule

Ḟ
p
F p−1 = ε̇pM + θ̇pN , (7.122)

where ε̇p and θ̇p are subject to irreversibility constraints

ε̇p ≥ 0, (7.123)

θ̇p ≥ 0, (7.124)

and the tensors M and N determine the direction of the deviatoric and volumetric
plastic deformation rates, respectively. The deviatoric plasticity tensor M is assumed
to satisfy

trM = 0, M · M =
3

2
, (7.125)

and the volumetric plasticity tensor N is

N = ±1

3
I, (7.126)

with the plus sign in N corresponding to void expansion, and the minus sign to void
collapse. The tensors M and N are otherwise unknown and are to be determined as part
of the solution. The constraints (7.125–7.126) may be regarded as defining the assumed
kinematics of plastic deformation. As we shall see, the direction of plastic deformation,
as determined by M and N , follows from the variational structure of the constitutive
update in a manner which generalizes the principle of maximum dissipation [140, 257].

Imagine now for a moment a purely volumetric deformation of the body, i.e., the defor-
mation gradient is of the spherical form F = J1/3I. Then the flow rule (7.122) reduces
to

d

dt
ln Jp I = ϑ̇p N

which is evaluated to

d

dt
ln(Jp)1/3 = trN ϑ̇p = ±ϑ̇p, (7.127)
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7.4 Thermodynamic frame for a general porous plastic material

where the plus sign corresponds to void expansion and the minus sign to void collapse.
From (7.127) we find

ϑ̇p =

∣
∣
∣
∣

d

dt
ln Jp

∣
∣
∣
∣

(7.128)

and

ϑp(t) = ϑp(0) +

∫ t

0

ϑ̇p(ξ) dξ, (7.129)

i.e., the variable ϑp is a measure of the accumulated volumetric plastic deformation.
Evidently, ϑp and ln Jp coincide for monotonic expansion up to a constant. In this case
we state

ϑp = ln Jp (7.130)

and the logarithmic plastic volumetric expansion ϑp can be expressed as a simple function
of radius ā(t)

ϑp ≡ ϑp(ā(t)) = ln
(
1 +

4π

3
N(ā3(t) − a3

0)
)
. (7.131)

The distinction between the two variables Jp and ϑp becomes important for arbitrary
loading combining alternating phases of void expansion and collapse. The simple one-
to-one relations (7.130)-(7.131) do not hold in that case.

The first Piola-Kirchhoff stress tensor P follows from Coleman’s relations as

P =
∂A

∂F
, (7.132)

while the thermodynamic force Y conjugate to the internal variable εp is

Y = − ∂A

∂F p ·
∂F p

∂εp
− ∂A

∂εp
= σe − σy, (7.133)

where

σe = Σ · M , σy =
∂A

∂εp
, (7.134)

are the effective deviatoric stress and the deviatoric flow stress, respectively. In (7.134)
we made use of a tensor Σ which is defined as

Σ = − ∂A

∂F pF
pT . (7.135)

Likewise, the thermodynamic force Z conjugate to the internal variable θp takes the form

Z = − ∂A

∂F p ·
∂F p

∂θp
− ∂A

∂θp
= p− py, (7.136)
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where

p = Σ · N , py =
∂A

∂θp
, (7.137)

are the effective pressure and the flow pressure, respectively.

Appropriate rate equations for the internal variables εp and θp must be specified to
formulate a complete set of constitutive relations. With a view to ensuring a variational
structure, we postulate the existence of a dual kinetic potential ψ∗(ε̇p, θ̇p,F p, T ) such
that

Y =
∂ψ∗

∂ε̇p
, (7.138)

Z =
∂ψ∗

∂θ̇p
. (7.139)

7.4.2. Variational formulation of the dynamic problem

Consider a body occupying a region B ⊂ R
3 and undergoing a deformation described by

a mapping ϕ : B× [t1, t2] → R
3. Suppose that the boundary ∂B is the disjoint union of

a displacement boundary ∂1B and a traction boundary ∂2B. Let ρ0 : B × [t1, t2] → R

denote the referential mass density per unit undeformed volume, B : B×[t1, t2] → R
3 the

applied body-force field, ϕ̄ : ∂1B× [t1, t2] → R
3 the prescribed boundary displacements,

T̄ : ∂2B×[t1, t2] → R
3 the applied tractions. For definiteness, we assume that the kinetic

energy of the body is of the form

K =

∫

B

1

2
ρ0 |ϕ̇|2dV +

∫

B

L(Ḟ
p
,F p) dV, (7.140)

where the first term represents the macroscopic inertia and the second term the microin-
ertia related to plastic deformation. The first variation of K is

δ

∫ t2

t1

Kdt = −
∫ t2

t1

∫

B

ρ0ϕ̈ · δϕ dV dt (7.141)

+

∫ t2

t1

∫

B

(
∂L

∂F p −
d

dt

∂L

∂Ḟ
p

)

· δF pdV dt,

for all admissible variations δϕ and δF p. The term in parenthesis may be regarded
as an additional stress acting on F p, arising from microinertia. In addition, for every
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t ∈ [t1, t2] we introduce the power functional

Φ[ϕ̇, ε̇p, θ̇p,M ,N ] =

∫

B

[

Ȧ + ψ∗ −
(
∂L

∂F p −
d

dt

∂L

∂Ḟ
p

)

· Ḟ p
]

dV (7.142)

−
∫

B

ρ0(B − ϕ̈) · ϕ̇ dV −
∫

∂2B

T̄ · ϕ̇ dS.

where F p, εp, θp, M and N are now regarded as fields over B, and Ḟ
p

is determined
by ε̇p, θ̇p, M and N through the flow rule (7.122). Using the identities (7.132), (7.133)
and (7.136) and the flow rule (7.122), (7.142) may be rewritten as

Φ[ϕ̇, ε̇p, θ̇p,M ,N ] =

∫

B

( P · Gradϕ̇ − Y ε̇p − Z θ̇p + ψ∗ ) dV (7.143)

−
∫

B

ρ0(B − ϕ̈) · ϕ̇ dV −
∫

∂2B

T̄ · ϕ̇ dS,

where F = Gradϕ has been introduced (cf. Chapter 1), and with

Σ = − ∂A

∂F pF
pT +

(
∂L

∂F p −
d

dt

∂L

∂Ḟ
p

)

F pT (7.144)

in place of (7.135). For every t ∈ [t1, t2], the rates ϕ̇, ε̇p, θ̇p, and the directions of plastic
flow M and N , follow jointly from the minimization problem

Φeff[ϕ̇] = inf
ε̇p,θ̇p,M,N

Φ[ϕ̇, ε̇p, θ̇p,M ,N ], (7.145)

subject to the constraints (7.123), (7.125), (7.126).

Problem (7.145) additionally defines the reduced power functional Φeff[ϕ̇]. The material
velocity field ϕ̇ finally follows from the minimization problem

inf
ϕ̇

Φeff[ϕ̇], ϕ̇ = ˙̄ϕ on ∂2B. (7.146)

Since the extended functional Φ[ϕ̇, ε̇p, θ̇p,M ,N ] does not depend on spatial derivatives
of the fields, the minimization (7.145) may be effected locally, with the result

Φeff[ϕ̇] =

∫

B

[φ(Gradϕ̇) − ρ0(B − ϕ̈) · ϕ̇ ] dV −
∫

∂2B

T̄ · ϕ̇ dS, (7.147)

where

φ(Ḟ ) = inf
ε̇p,θ̇p,M,N

f(Ḟ , ε̇p, θ̇p,M ,N), (7.148)
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subject to the constraints (7.123), (7.125), (7.126), and

f(Ḟ , ε̇p, θ̇p,M ,N) = P · Ḟ − Y ε̇p − Z θ̇p + ψ∗, (7.149)

is a power density per unit undeformed volume. Evidently, by the construction of the
power functional the kinetic relations (7.139) are Euler-Lagrange equations of the mini-
mum problem (7.148). The additional Euler-Lagrange equations with respect to M and
N are

Σ − λ1I − λ2M = 0, (7.150)

tr(Σ) − λ3tr(N) = 0, (7.151)

where λ1, λ2 and λ3 are Lagrange multipliers arising from the constraints (7.125), (7.126).
Using these constraints, equations. (7.151) and (7.151) can be solved for M and N , with
the result

M =
3dev(Σ)

2σe
, (7.152)

N =
1

3
sgn
(
tr(Σ)

)
I, (7.153)

where

σe = ‖σ‖ ≡
√

(3/2)dev(Σ) · dev(Σ) (7.154)

is the von Mises effective stress. Using (7.153) and (7.153) in (7.122) we obtain

Ḟ
p
F p−1 = ε̇p

3dev(Σ)

2σ
+

1

3
θ̇psgn

(
tr(Σ)

)
I, (7.155)

which is an extension of the Prandtl-Reuss flow rule into the compressible
range.

The power density function φ(Ḟ ) has the fundamental property [257]

P =
∂φ

∂Ḟ
(Ḟ ), (7.156)

and, consequently, the Euler-Lagrange equations corresponding to the minimization
problem (7.146) are the equations of motion

DivP + ρ0B = ρ0ϕ̈ in B,

P · N̄ = T̄ on ∂2B,
(7.157)

where in the latter expression N̄ is the unit normal to ∂B.
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7.5 A model of volumetric plasticity

7.5. A model of volumetric plasticity

Here we specify the preceding general framework for the case of a porous plastic material.
In particular, energy contributions arising from elasticity, plasticity, temperature and
time-dependent effects are treated in a rigorous variational setting.

7.5.1. Elastic strain-energy density

To this end assume that the free-energy density (7.120) has the additive structure

A(F ,F p, εp, θp, T ) = W e(F e, T ) +W p(εp, θp, T ), (7.158)

where W e(F e, T ) and W p(εp, θp, T ) are the elastic and stored energy densities per unit
undeformed volume, respectively. Then σc and pc reduce to

σy(ε
p, θp, T ) =

∂W p

∂εp
(εp, θp, T ), (7.159)

py(ε
p, θp, T ) =

∂W p

∂θp
(εp, θp, T ). (7.160)

Due to material-frame indifference, W e can only depend on F e through the correspond-
ing elastic right-Cauchy Green deformation tensor

Ce = F eTF e = F p−TC F p−1. (7.161)

Furthermore, the elastic strain-energy density may alternatively be expressed in terms
of the logarithmic elastic strain (6.30) whereupon W e takes the form

W e = W e(εe, T ). (7.162)

We denote by σ the stress conjugate to εe, namely,

σ =
∂W e

∂εe
(εe, T ). (7.163)

In order to obtain a simple form of W e(Ce, T ) we consider a representative neighbor-
hood in the plastically-deformed or ‘intermediate’ configuration of the material. We
attribute the volumetric part of F p to void growth, with Jp related to the current void
size through (7.118), and assume that the plastic deformation of the matrix leaves the
elastic properties of the matrix unchanged. This assumption is appropriate for metals,
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7.5 A model of volumetric plasticity

whose elastic properties are ostensibly insensitive to isochoric plastic deformation. The
plastically deformed configuration can thus be regarded as a two-phase composite con-
sisting of an elastic matrix and a distribution of voids. A simple form of the resulting
elastic energy is given by (6.14) and repeated here in terms of the logarithmic strains

W e(εe, T ) = W e,vol(θe, T ) +W e,dev(εe, T ), (7.164)

W e,vol(θe, T ) =
κ

2

[
θe − α(T − T0)

]2
+ ρ0cvT

(

1 − ln
T

T0

)

, (7.165)

W e,dev(εe, T ) = µ ‖ dev(εe) ‖2, (7.166)

where θe = ln Je, κ is the bulk modulus, µ is the shear modulus, α is the thermal
expansion coefficient, T0 is a reference absolute temperature, and cv is the specific heat
per unit mass at constant volume.

7.5.2. Stored energy

A simple stored energy function can be formulated by assuming an additive decompo-
sition into deviatoric and volumetric components. The deviatoric part of the stored
energy function can be modeled simply by a conventional power-law of hardening, equa-
tion (6.9). The volumetric part of the stored energy function is attributed directly to
void growth. In the dilute limit, the total energy stored by the void ensemble is the sum
of the energy stored by each individual void. The stored energy for a spherical void in a
power-law hardening material, which equals the plastic work of deformation attendant
to the expansion of the void, has been determined in Section 7.3. These considerations
applied to a spherical shell model with average radius ā lead to the stored energy function

W p(εp, θp, T ) = W p,vol(θp, T ) +W p,dev(εp, T ), (7.167)

W p,vol(θp, T ) =
nσ0(T )εp0
n+ 1

NV
4πā3

3
g(θp, n), (7.168)

W p,dev(εp, T ) =
nσ0(T )εp0
n+ 1

(

1 +
εp

εp0

)n+1

n

, (7.169)

where

g(θp, n) =

∫ 1

fV

1

(

1 +
2

3εp0
ln

x

x− 1 + fV 0

fV 0+exp θp−1

)n+1

n

dx. (7.170)

In these expressions, n is the hardening exponent, σ0(T ) is the yield stress, and εp0 is a
reference deviatoric plastic strain. The yield stress is assumed to depend on temperature
by relation (6.18), see Figure 6.1. For a discussion of the expressions for the stored energy
function see Section 7.3.
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7.5 A model of volumetric plasticity

7.5.3. Rate sensitivity

We consider two types of rate effects: rate sensitivity in the plastic deformation and
microinertia due to expanding voids. The deviatoric rate sensitivity may be modeled
simply by means of a conventional power-law of hardening. In the dilute limit, the
volumetric component of ψ∗ is the sum of all contributions from the individual voids.
Based on these considerations, the analysis of Section 7.3, and the same approach as in
the previous section, we have

ψ∗(ε̇p, θ̇p, Jp, T ) = ψ∗,vol(θ̇p, Jp, T ) + ψ∗,dev(ε̇p, T ), (7.171)

ψ∗,vol(θ̇p, Jp, T ) =
m2σ0(T )ε̇p0
m+ 1

NV
4πā3

3
(1 − fV

1

m )

∣
∣
∣
∣

2 ˙̄a

ε̇p0ā

∣
∣
∣
∣

m+1

m

, (7.172)

ψ∗,dev(ε̇p, T ) =
mσ0(T )ε̇p0
m+ 1

(
ε̇p

ε̇p0

)m+1

m

. (7.173)

In these expressions, m is the rate sensitivity exponent, ε̇p0 is a reference plastic strain
rate, and ā is regarded as a function of Jp through (7.118). In addition, by virtue of
(7.118), the dependence of ψ∗ on | ˙̄a/ā| induces a dependence on |(d/dt) lnJp|, or, in view
of (7.128), on θ̇p.

7.5.4. Microinertia

The microinertia attendant to dynamic void growth can be regarded as dissipated energy.
In the dilute limit, the total kinetic energy attendant to the growth of the void ensemble
is the sum of the kinetic energies due to the expansion of each individual void. For
spherical voids in an incompressible material this microkinetic energy can be computed
readily in terms of the void radius (e.g.,[254]), with the result

L(ā, ˙̄a) =
3

2
%v(ā) ˙̄a2 (7.174)

where

%v(ā) = NV %0
4πā3

3
. (7.175)

For simplicity we have neglected a factor of (1 − fV
1

3 ). In contrast to the approach of
Section 7.3 we denote now the microkinetic energy with L to distinguish it from the
overall kinetic energy K of the body (7.140).
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7.6 Constitutive updates

Note that (7.174) describes a collection of noninteracting shell-like particles, each with
variable effective mass

m(ā) = 4πρ0ā
3. (7.176)

The kinetic energy L may as well be written as a function of the variables (Jp, ˙̄a) using
relation (7.118).

7.6. Constitutive updates

Next we address the time integration of the constitutive equations. We therefore envision
an incremental solution procedure with time intervals [tn, tn+1]. Assume that the state
of the material, F p

n, ε
p
n, ϑ

p
n, ϑ̇

p
n and ϑ̈pn, is known at time tn, and let the deformation

gradient F n+1 and the temperature Tn+1 at time tn+1 be given. The problem is then to
determine the state of material, F

p
n+1, ε

p
n+1, ϑ

p
n+1, ϑ̇

p
n+1 and ϑ̈pn+1, at time tn+1, as well

as the directions M ,N of the incremental plastic deformation. Also of interest is the
value of the Piola-Kirchhoff stress P n+1 and the tangent moduli DP n+1.

7.6.1. Variational time-discretization of microinertia

A somewhat nonstandard feature of the present model is the consideration of microin-
ertia, which renders the equations of motion for the growth of the voids of second order
in time. In order to formulate updates possessing a variational structure, the time-
discretization of the equations of motion must itself possess an incremental variational
structure. Radovitzky and Ortiz [276] have shown that Newmark’s algorithm, when ap-
plied to systems with quadratic inertia and constant mass, leads to a minimum problem
for the incremental displacements. Unfortunately, the microkinetic energy L, equa-
tion (7.174), is not in the class of kinetic energies contemplated in [276].

However, L can be reduced to the canonical case by a change of variables, and a vari-
ational time-discretization scheme then follows as in [276]. In order to see this, begin
with (7.174) and write the action integral as

I[ā] =

∫ t2

t1

[
3

2
%v
(
ā(t)

)
˙̄a2(t) − A

(
ā(t), t

)
]

dt (7.177)
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7.6 Constitutive updates

where all dependencies of A on variables other than ā are regarded as introducing an
explicit dependence of A on time. Consider now a change of variables of the form3

ā = F (b) (7.178)

whereupon (7.174) becomes

L(b, ḃ) =
3

2
ρv(F (b))F ′2(b)ḃ2. (7.179)

Inserting this change of variables in (7.177) gives

I[b] =

∫ t2

t1

[
3

2
%v
(
F (b(t))

)
F ′2(b(t))ḃ2(t) − A

(
F (b(t)), t

)
]

dt (7.180)

In order to obtain an equivalent system with constant mass, we must choose F (b) such
that

ρv(F (b))F ′2(b) = ρv0 ≡ ρ0N
4πā3

0

3
. (7.181)

This ordinary differential equation is separable and, therefore, it can be solved explicitly,
with the result

L(b, ḃ) =
3

2
ρv0ḃ

2, (7.182)

b =

∫ ā

0

√

%v(r)

%v0
dr =

2

5

ā5/2

ā
3/2
0

(7.183)

which corresponds to a system of noninteracting particles with constant mass, as desired.

The Newmark update for b is now equivalent to the minimization of the function

fn(bn+1) =
3%v0
2

(bn+1 − bpre
n+1)

2

β4t2 + A(bn+1, tn+1) (7.184)

where the Newmark predictor is given by

bpre
n+1 = bn + 4tḃn +

(
1

2
− β

)

4t2b̈n

and the derivates ḃ and b̈ are updated according to the rules

ḃn+1 = ḃn + 4t[(1 − γ)b̈n + γb̈n+1] (7.185a)

b̈n+1 = − 1

3%v0

∂A

∂bn+1
(7.185b)

In the equations above, β ∈ (0, 1/2) and γ ∈ [0, 1] are Newmark’s parameters, cf.
Section 5.1.

3Note that in this section b is an auxiliary variable which has nothing in common with the spherical
shell radius of Section 7.1; F (b) simply denotes any function of b.

138



7.6 Constitutive updates

7.6.2. Variational updates

The strategy for the remaining of the model is similar to the one outlined in Chapter 6.
We start by discretizing the flow rule in time

F
p
n+1 = exp (∆εpM + ∆ϑpN)F p

n . (7.186)

Clearly, the update (7.186) is consistent with the flow rule (7.122) by virtue of the
identity {

d

dt
exp

[

t
(
ε̇pM + ϑ̇pN

)]
}

t=0+

= ε̇pM + ϑ̇pN (7.187)

We update the remaining internal state variables, εpn+1 and ϑpn+1, and simultaneously
determine the incremental direction of plastic flow, M and N , for the time step by
recourse to a variational formulation. To this end, let us introduce an incremental
objective function of the form

fn(F n+1, Tn+1, ε
p
n+1, ϑ

p
n+1,M ,N) = W e(Ce

n+1, Tn+1) +W p(Tn+1, ε
p
n+1, ϑ

p
n+1)

+∆t ψ∗
(4εp

4t ,
4ϑp
4t , Tn+1, J

p
n+1

)
(7.188)

where ∆t = tn+1 − tn, ∆εp,∆ϑp analogously. For convenience we dropped here the
microinertia term of equation (7.184). This may easily be added, regarding bn+1 as a
function of ϑpn+1 through (7.183) and (7.127), (7.128), see also Chapter 9 of the applica-
tion part.

In the sense of a variational formulation we now define an effective work of deformation
density Wn(F n+1, T ) by minimizing fn with respect to the internal variables and the
direction of plastic flow

Wn = min
εp

n+1,ϑp
n+1,M,N

fn (7.189)

subjected to the constraints (7.125) and (7.126), which define the kinematics of plastic
deformation, and the irreversibly constraints

4εp ≥ 0 (7.190a)

4ϑp ≥ 0. (7.190b)

Evidently the effective work of deformation density (7.189) returns the updated values
of the internal variables and the direction of plastic flow over the time step. Moreover,
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7.6 Constitutive updates

Wn(F n+1) acts as a potential for the first Piola-Kirchhoff stress tensor P n+1 at time
tn+1. In order to prove this property, suppose that the deformation gradient F n+1

is perturbed to F n+1 + δF n+1. The corresponding variation of the effective work of
deformation density (7.189) reads

δWn =
∂W e

∂F n+1
δF n+1 +

∂Wn

∂εpn+1

δεpn+1 +
∂Wn

∂ϑpn+1

δϑpn+1 +
∂Wn

∂M
δM +

∂Wn

∂N
δN , (7.191)

but the last three terms in this identity vanish due to stationarity. In addition, we have

P n+1 =
∂W e

∂F n+1
(7.192)

and (7.191) reduces to
δWn = P n+1 δF n+1. (7.193)

Since δF n+1 is arbitrary this implies

P n+1 =
∂Wn

∂F n+1
. (7.194)

Consequently Wn acts as a potential for first Piola-Kirchhoff stresses P n+1 and the
constitutive update possesses an incremental potential structure. The tangent modulus
corresponding to the variational updates follow by linearization of (7.194).

DP n+1 =
∂2Wn

∂F n+1∂F n+1
(7.195)

The relations (7.194) and (7.195) correspond to the ones given in Chapter 6 for finite
plasticity. For details we refer to the equations (6.53)–(6.57).

7.6.3. Implementation based on logarithmic elastic strains

Without loss of generality, the elastic energy density may be recast in the form

W e(F , T ) = W e(εe, T ) (7.196)

where εe is the logarithmic elastic strain (6.30). Furthermore let (6.34) be the trial
or predictor elastic right Cauchy-Green deformation tensor obtained by assuming no
incremental plastic deformation, and suppose that the commutation relation (6.35) holds
between C

e,trial
n+1 and the direction of plastic flow M for the same step. Then, by the

properties of the exponential mapping, we have

εen+1 = ε
e,trial
n+1 −4εpM −4ϑpN (7.197)
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7.6 Constitutive updates

where (6.37) is the trial or predictor value of the logarithmic elastic strain. Using these
identities, (7.188) becomes

fn(F n+1, Tn+1, ε
p
n+1, ϑ

p
n+1,M ,N) = W e(εe,trialn+1 −4εpM −4ϑpN , Tn+1)+

W p(Tn+1, ε
p
n+1, ϑ

p
n+1) + ∆t ψ∗

(
∆εp

∆t
,
∆ϑp

∆t
, Tn+1

)

.
(7.198)

This function now has an additive structure in terms of elastic and plastic deformations
which is entirely analogous to that of small-strain plasticity. In particular, in simple
cases, such as that of an elastic strain-energy density W e quadratic in εe, the minimiza-
tion of fn with respect to εpn+1, ϑ

p
n+1, M and N can be carried out explicitly.

The underlying commutation condition (6.35) ensures that the additive decomposition
(7.197) is exactly consistent with the multiplicative decomposition (7.121). The require-
ment that (6.35) holds places restrictions on the form of the elastic strain-energy density
W e, which are satisfied, e.g., by the isotropic function (7.164). Alternatively, as pointed
out by Miehe [218], equation (7.197) can directly be taken as a point of departure for
the formulation of a finite-deformation plasticity theory, regardless of the form of W e.
However, in this case the resulting theory is not consistent with the multiplicative de-
composition (7.121) in general.

7.6.4. Optimization with respect to εp, ϑp, M , N

The optimization of the incremental energy function (7.198) with respect to the internal
variables and the directions of plastic flow leads to the Euler-Lagrange equations.

Let us first consider the kinematic of plastic flow. The tensor M which determines the
direction of plastic strain rate follows from

∂fn
∂M

= 0 ⇒ −σn+1 + λ1I + λ2M = 0 (7.199)

where λ1, λ2 are Lagrange multipliers to be determined from the constraints (6.8). From
Chapter 6 the solution is known to be

M =
3sn+1

2|sn+1|
≡ sn+1

‖sn+1‖
=

dev εen+1

‖εen+1‖
. (7.200)

The direction of plastic dilatation is

∂fn
∂N

= 0 ⇒ −pn+1 + λ3tr(N) = 0 (7.201)
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which resolves simply to

N =
pn+1

3|pn+1|
I. (7.202)

Once the optimal direction of plastic flow rate is fixed, the optimization of the incre-
mental deformation energy with respect to the incremental plastic strain rate follows

∂fn
∂εpn+1

= 0 ⇒ −∂W
e,dev

∂εpn+1
=
∂
(
W p,dev + ∆t ψ∗,dev

)

∂εpn+1
. (7.203)

The plastic strain depends only on the deviatoric part of the energy and thus the solution
of (7.203) corresponds to the solution of (6.39)

‖strial
n+1‖ − 3µ∆εpn+1 = σy(Tn+1, ε

p
n+1) + ψ∗,dev′(∆εp

∆t

)
(7.204)

and for later reference we abbriviate

F1(ε
p
n+1) := σy + ψ∗,dev′ − ‖sn+1‖. (7.205)

The optimization of the incremental energy of deformation function (7.198) with respect
to the incremental volumetric plastic dilatation reads

∂fn
∂ϑpn+1

= 0 ⇒ −∂W
e,vol

∂ϑpn+1

=
∂
(
W p,vol + ∆t ψ∗,vol)

∂ϑpn+1

. (7.206)

The volumetric part of the stress tensor is the pressure

pn+1 ≡ trσn+1 = κtrεen+1 (7.207)

and, analogous to (6.45), we define a volumetric trial stress

ptrial
n+1 = κtrεtrial

n+1. (7.208)

Then, the pressure (7.207) evaluates to

pn+1 = κ(trεtrial
n+1 − ∆ϑp) = ptrial

n+1 − κ∆ϑp. (7.209)

The right hand side of (7.206)2 represents a yield pressure py thenceforward plastic
expansion occurs. Applying the chain rule we obtain

∂
(
W p,vol + ∆t ψ∗,vol)

∂ϑpn+1

=
∂
(
W p,vol + ∆t ψ∗,vol)

∂ān+1

· ∂ān+1

∂ϑpn+1

=
nσy0(Tn+1)ε

p
y0

n + 1

[

g(ān+1, n) +
1

3

∂g(ān+1, n)

∂ān+1
ān+1

]

+ ψ∗,vol′ , (7.210)
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where we write

g(ān+1, n) =

∫ 1/fV

0

(
ln

x

x− 1 + a3
0/ā

3
n+1

)n+1

n dx (7.211)

For simplicity we formulate (7.210) and (7.211) here with help of the unknown void
radius ān+1, but the equations may as well be expressed by ϑpn+1 only. Now we write

F2(ϑ
p
n+1) := py − pn+1. (7.212)

The equations (7.205) and (7.212) can be solved for the unknown εpn+1 and ϑpn+1 by
recourse to a Newton-Raphson iteration under the plastic irreversibility constraints im-
posed by (7.190). In order to set up this iteration (7.205) and (7.212) must be linearized.

dF1 =
(
3µ+Hεε

)
dεpn+1 (7.213)

dF2 =
(
κ+Hϑϑ

)
dϑpn+1 (7.214)

where we use the hardening moduli Hεε, Hϑϑ

Hεε =
∂2
(
W̃ p,dev + ∆t ψ∗)

∂εpn+1∂εpn+1
=
σy0(Tn+1)

nεpy0

(
1 +

εpn+1

εpy0

)1/n−1
+
ψ∗,dev ′′

∆t
(7.215)

Hϑϑ =
∂2W p,vol

∂ϑpn+1∂ϑpn+1
=
nσy0(Tn+1)ε

p
y0

n+ 1

[
g(ān+1, n) +

1

3

∂g(ān+1, n)

∂ān+1
ān+1

]
(7.216)

+
[4

3

∂g(ān+1, n)

∂ān+1

+
1

3

∂2g(ān+1, n)

∂ā2
n+1

ān+1

] 1

4πNvā
2
n+1

+
ψ∗,vol′′

∆t

7.6.5. Stress and consistent tangent

Once εpn+1 and ϑpn+1 are determined, the updated stresses follow as

σn+1 = pn+1I + sn+1 (7.217)

= κ
(
trεtrial

n+1 − ∆ϑp
)
I + 2µ

(
dev εtrial

n+1 − ∆εpM
)

(7.218)

As noted earlier, owing to the variational character of the update, the stress-strain
relations satisfy the potential relations

σn+1 =
∂Wn

∂εen+1

(7.219)

where the incremental work of deformation density Wn is the optimal value of fn,
cf. (7.188).

143



7.6 Constitutive updates

Finally we address the computation of the tangent modulus, i.e., the linearization of
(7.219).

Dσn+1 =
∂2Wn

∂εen+1∂ε
e
n+1

(7.220)

To this end, we imagine perturbing the logarithmic strain εn+1 by an infinitesimal amount
dε. The problem is to compute the attendant infinitesimal variation in the conjugate
stress dσ. With a straitforward calculation we get

Dσn+1 =
1

C

<4>

I vol +
1

A

<4>

I dev −
B

A2 + 3
2
AB

M ⊗ M (7.221)

where
<4>

I is the unity tensor corresponding to the volumetric and deviatoric part of the
tangent, M is given by (6.42) and

A =
1

2µ
+

3

2

∆εp

‖sn+1‖
, B =

1

Hεε

− ∆εp

‖sn+1‖
C =

1

K
+

1

JpnHϑϑ

. (7.222)

The finite-kinematic relation follows by an application of (7.194) and (7.195). In com-
ponents the results are stated in Chapter 6, equations (6.56) and (6.57).

Evidently, the evaluation of the Piola-Kirchhoff stress P and the tangent moduli DP

requires the first and second linearizations, D ln(·) and D2 ln(·), respectively, of the
logarithmic mapping. Thus, the simplicity of the additive elastic-plastic decomposition
(7.197), and the analogy to small-strain updates that it affords, is not entirely without
penalty. However, the transformations in (6.56) and (6.57) arising from the use of the
logarithmic mapping are material-independent and, therefore, can be implemented once
for all materials.

The variational update presented here is a time-discretized version of the variational
statement of the constitutive relations. We have seen that the minimization of an in-
cremental energy function, which combines the free energy of the solid including elastic,
plastic and inertia terms and the conjugate inelastic potential for the rate equations,
returns the updated values of the internal variables and the direction of plastic flow
over the time step. We also have shown that the obtained minimum of this incremental
energy function acts as a potential for the stress-strain relations. The consistent tangent
moduli are consequently symmetric.
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8. Damage, Fatigue and Failure

At first glance it seems obvious that a material undergoing deformations will be damaged
at a certain point. But as easy as this is to imagine, it is tricky to define damage
or failure of a material neighborhood from the mechanical point of view. Generally
spoken damage represents surface discontinuities in form of decohesion and (micro)cracks
as well as volume discontinuities in form of pores and cavities. Obviously, damage is
characterized by irreversibility and dissipation. The actual criteria to define damage are
as different as the underlying micro-mechanical mechanisms. Damage may be indicated
by accumulated plastic strain in ductile materials (see Chapter 6 and 10), by a critical
volume fraction of pores (see Chapter 7 and 9), by fatigue (see Chapter 10 and 11) by
temperature, by time in viscoplastic materials, by aging and so on.

Continuum mechanical theories of damage go back to Kachanow [171], who first intro-
duced a damage variable d with d ∈ [0, 1]. The limit case d = 0 defines the material to
be free of any damage (this is actually an undefined state, usually it is set to be the state
from which on the history of loading is known). On the opposite, d = 1 corresponds
to a fully damaged material which has completely lost its load carrying capacity. The
description of the temporal evolution of d is subject of damage mechanics and material
theory, see [177, 208, 189] and many other.

8.1. Models of damaged materials

Figure 8.1 illustrates the meaning of the damage variable d in the special case of a
damaged elastic material compared with an elastic-plastic material. We assume the
same (bilinear) loading path for both models. In case of an elastic-plastic material
the unloading path is parallel to the initial elastic loading with the same slope E; the
unloaded structure is not strain-free because of the remaining plastic strain εp. In case
of a damaged elastic material no permanent strains remain after unloading, but the
slope of the unloading/reloading path reduces. By means of the damage parameter d
the degradation of stiffness is captured.
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8.1 Models of damaged materials

Figure 8.1.: Stress-strain relations in uniaxial tension for an elasto-plastic and an elasto-
damaged material.

Not displayed is the case of plastic but damaged material where we observe at a certain
strain (ductility) a reduction of the maximal bearable stress in the material. This effect
is known as strain softening. In a uniaxial tension test this corresponds to the onset of
necking of the specimen, i.e., to a localization of the deformation.

Here we proceed with a short overview about (some) different types of damage. Details
of the underlying models follow in the subsequent sections of this chapter.

8.1.1. Brittle damage

Let us consider first brittle, non-linear elastic materials. Processes of damage in brittle
materials have been subject of extensive research and have been modeled by a variety
of means (see, e.g., [40, 51, 44, 178]). Most established models are empirical and are
based on special solutions from linear elasticity, on internal variable formalisms or related
modelling schemes. At this point we want to emphasize the essential distinction between
the concepts of brittle damage and brittle fracture. Damage is commonly understood
to be a distributed processes which is described by constitutive laws relating stress to
strain. On the other hand fracture is localized to surfaces and is described, e. g., by local
stress intensities or by cohesive laws relating local tractions to opening displacements.

This distinction implies that the processes of fracture in brittle solids requires tension.
The underlying theory is governed by fracture mechanics (see below). Distributed brittle
damage is a compression dominated phenomenon which only occurs when sufficient
confinement is present. Brittle damage may arise in a number of situations of interest,
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8.1 Models of damaged materials

e.g., in geological formations, in confined structural ceramics and in crushed concrete.
The objectives of brittle damage theories are to compute the effective or macroscopic
behavior of the material from its elastic and fracture properties, and (if possible) to
describe the microstructures underlying the macroscopic behavior, see [251, 261] and
others.

8.1.2. Fracture and fragmentation

The onset of macroscopic cracks is indicated by damage. Fracture mechanics, i.e., the
theory of cracking phenomena then is employed to predict the evolution of the cracks up
to a complete failure of the structure. The fundamental concepts of fracture mechanics
have been developed in the context of small deformations, [51, 50, 116, 189]. Well estab-
lished theories are here the traditional K- and J-based crack-growth initiation and prop-
agation criteria, however, their application to situations involving finite deformations or
large-scale yielding encounters enormous difficulties. Even in cases which conform to
the assumptions of small-scale fracture mechanics, considerable uncertainties remain as
regards the proper choice of criteria that account for such phenomena as high loading
rates, crack kinking and branching and other complicating circumstances.

An alternative approach was pioneered by Dugdale

Figure 8.2.: Silicon chip, frag-
mented in a 4-point
bending test.

[108], Barenblatt [18], Rice [281] and others. Here
fracture is regarded to be a phenomenon in which
separation takes place across an extended crack tip
— the cohesive zone — and is resisted by cohesive
tractions. An appealing feature of this approach is
that it does not presuppose a particular type of con-
stitutive response in the material, in the extent of
crack growth, or in the size of the plastic zone. In
addition, the shape and location of the successive
crack fronts is not predetermined. This concept was
revived by Needleman [241, 380, 381] and Ortiz and
Pandolfi [71, 255, 265, 290] for numerical computa-
tions of damaged structures undergoing large defor-

mations. This finite element technique is meanwhile well established for the computation
of brittle fracture and fragmentation, see, e.g., the impressive agreement to experiments
reported in [262, 289, 383, 384]. However, for ductile materials the definition of cohesive
laws is somewhat questionable, [263, 302, 301].
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8.1 Models of damaged materials

Figure 8.3.: Schematics of shear band formation in uniaxial tension and shear bands
initiated by a Vickers indentation experiment [164]

8.1.3. Shear banding

A phenomena that frequently accompanies inelastic deformation is the formation of
localized bands of intense straining. Such localization is known in ductile metals as
shear banding but similar localized bands are also observed in concrete, in rocks, in
ceramics and even in snow.

The formation of shear bands occurs particulary in metals subjected to high strain
rates. The narrow bands of high (adiabatic) straining with typical widths in the order
of 1 − 100µm [169], result from temperature rise and localization of deformation. The
high local shear strains can reach values of up to 100 and ultra-high local shear strain
rates, often in excess of 106s−1, see [286, 333]. Typical are also local temperature rises of
several hundred degrees [132, 205] and high propagation speeds, sometimes of more than
1000m/s [132, 207, 389]. Moreover, cracks and voids grow and coalesce along shear bands
[22, 136, 207, 389]. Shearbands are also observed in over-consolidated soil, concrete or
ceramics, where not only shear but also a certain dilatancy plays a role. Also, the effect
of spallation observed in ductile metals unter shock loading leads to local sheets of voids
with similarity to shear banding, see Figure 7.16.

The modelling and computation of of strain localization has been subject of research for
years. Early approaches to the problem were done, e.g., by stationary wave solutions
[242] and by local bifurcation analysis of a homogeneous solution. At the band the
solution evolves a discontinuous deformation gradient [253] (termed weak discontinuity
in [305]), requiring discontinous deformation modes embedded into special finite elements
[190, 191]. Rate-independent plasticity models do not possess an intrinsic characteristic
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length scale, therefore, less standard approaches have been developed in conjunction with
the weak discontinuity assumption to allow continuation of the solution beyond the point
of bifurcation. An alternative idea for the analysis of strain localization in elasto-plastic
solids involves the assumption of a discontinuous displacement field, (termed strong
discontinuity in [305]). Within the context of finite element analysis, non-standard ansatz
functions are necessary to compute such discontinuous fields, see e.g., [30, 166, 214, 310].
The mathematical challenge imposed by the presence of strongly discontinuous fields
within a body has meanwhile itself become a subject of extensive research, cf. the work
of Babuška [10] and many followers.

However, few numerical simulations are able to capture the physical process of dynamic
shear band propagation. One of the challenges here is to reproduce the shear band
propagation speed observed in experiments [132, 389]. One successful finite element
simulation of dynamic shear band advance and speed is reported by Zhou et al. [388],
but the attempt to resolve shearbands with a fixed mesh can not cope with the possible
severe mesh distortion due to finite plastic deformation in shear bands. Mesh adaption is
applied in [225]. In recent literature mesh-free Galerkin methods are employed [169, 193],
[194] for the simulation of shear band propagation. The experimentally observed failure
mode transition and the thermo-mechanical instability inside the shear band could be
replicated in [194], the predicted shear band propagation speed, however, is different than
the one observed experimentally. In [388] as well as in [193, 194] a fluid-type constitutive
law for the damaged material inside a shear band was applied. (These ad hoc models
assume that the band behaves as a Newtonian or non-Newtonian fluid, correspondingly.)
This approach is somewhat artificial considering the fact that shear bands do have the
constitutive law like the surrounding bulk material. A very recent technique of Yang
et al. [382] describes the discontinuity of the deformation gradient across the shear
band and embed it into a three-dimensional shear band finite element. This strategy is
similar to one introduced by Ortiz and Pandolfi for the location of brittle fracture [255].
Therefore, we will follow this approach here stating the underlying theory in Section 8.3.

8.1.4. Fatigue

Fatigue roughly summarizes the effect of damage progressing over a long period of time.
The microscopic reasons of fatigue may be very different, however, the macroscopic
approach is commonly a simple empirical one. Typically, the fatigue failure of a material
is estimated using a heuristic Coffin-Manson relationship (cf., e.g., [288]). For engineering
metals it is of the form [27]

∆ε

2
=
σf
E

(2Nf)
b + εf(2Nf)

c, (8.1)
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8.1 Models of damaged materials

where (2Nf) is the number of strain reversals (cycles), E is Young’s modulus, σf is
the tensile strength, and εf is the related ductility. The exponents b, c are empirical
constants, commonly ranging from -0.5 to -0.7 for metals.

Generally, fatigue of metals is characterized by elastic and plastic strain components.
Elastic deformations play a role mainly during low-strain/high-cycle testing. Therefore,
the region of elastic deformation is also considered as the dynamic region. In that case,
the first term of equation (8.1) dominates and fatigue performance is mainly a function
of the tensile strength. Conversely, during a high-strain/low-cycle testing the dominant
component is not the stress but the plastic deformation. The second term of (8.1)
dominates and fatigue is a mainly function of ductility.

A microscopic reason for fatigue of metal alloys is presented in the next section.

8.1.5. Phase decomposition

The question of fatigue by aging raises especially for alloys of metals and other multi-
phase materials. In particular, the temporal development of the material’s microstruc-
ture is of importance. To illustrate the effect of aging, Figure 8.4 shows experimental
evidence for phase decomposition in an eutectic Ag-Cu alloy. The two stable phases of
Ag6Cu94 are denoted as α-phase (Ag-rich) and β-phase (Cu-rich). Initially the α- and
β-phase are homogenously distributed in small grains; note that one square in Figure 8.4
has a side length of 50µm. With a heat treatment at 970 K the process of aging is ac-
celerated and we observe a phase decomposition and subsequent phase growth resulting
in a significant grain coarsening.

The increasing trend for miniaturization which, for example, occurs in microelectronics,
makes grain sizes of several microns a significant problem for the strength of the material.
For example, in modern chip-scale packages the solder joints which connect different
layers of the packages may be less than 50µm in diameter. Along grain boundaries
easily form micro-cracks and voids, resulting in a reduced lifetime of the solder joints
and consequently the whole structure. Therefore, the investigation of the changing
microstructure of alloys (as well as the resulting macroscopic properties) are subjects of
increasing interest. We will present the mechanical theory to describe such processes in
the next section.
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Figure 8.4.: Microstructural changes in eutectic Ag-Cu at 970 K (dark/light areas denote
β/α-phases). From left to right: after solidification, 2h, 20h, 40h.

8.2. Localization of damage

Phase decomposition, void growth and brittle damage are microstructural phenomena
which damage the structure and may cause the whole structure to fail. Such structural
failure bases on local phenomena, e.g., macroscopic cracks or void sheets. Therefore, in
this Section the variational framework to account for such localized failure is presented.

To generalize the conventional virtual work expression to a body containing a discon-
tinuous surface, we make use of the relations derived in Chapter 1.3 and 2.8. Consider
a body occupying an initial placement B0 ⊂ R3, Figure 8.5, which undergoes a motion
described by a deformation mapping ϕ : B0 × [0, T ] → R3. The body contains a discon-
tinuous surface S (corresponding to surface Λ in Chapter 2.8). This surface may be a
crack, a shear band or a similar local effect within the body. We will refer to it as dis-
continuous local surface or for short band and proceed establishing the basic kinematics
in the material frame.

A local material reference frame is chosen such that the {X1, X2}-plane is tangent to the
local surface S0 and the direction X3 is normal to it. Motivated by the decomposition of
the deformation gradient 1.22–(1.35) we represent the deformation gradient within the
local surface in the form

F = F ‖F ⊥, (8.2)

where F ‖ is the in-plane part and F ⊥ is the out-of-plane part of the deformation gradient.
The in-plane part of the deformation gradient satisfies the identity (1.34), F ‖N = N ,
where N is the unit normal to the band in the undeformed placement. The transverse
deformation follows as

F ⊥ = I +
[[ϕ]]

h
⊗ N , (8.3)
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Figure 8.5.: Discontinuous local surface in a three-dimensional body.

where h is the thickness of the band. In the following δ ≡ [[ϕ]] denotes the displace-
ment jump across the local discontinuous surface. Consequently, the total deformation
gradient may also be expressed as

F = F ‖ +
δ

h
⊗ N . (8.4)

With a view to establish a variational structure we introduce an incremental work of
deformation per unit area of the band as

φn(F , δ, h) = hWn(F ), (8.5)

where Wn is the incremental work of deformation per unit volume of the band. The
thermodynamic force conjugate to thickness h evaluates to

∂φn
∂h

= Wn −
∂Wn

∂F ⊥
· ∂F

⊥

∂h
= Wn −

∂Wn

∂F ⊥
· δ

h
≡ 0. (8.6)

This expression is simply the normal component of the jump in the Eshelby energy-
momentum tensor across the band. It is set to zero by assuming that the band is in
configurational equilibrium at all times. Actually, this defines a scalar equation in the
unknown thickness h.

The transverse stresses per unit length of a band P ⊥ derive from the first Piola-Kirchhoff
stress tensor P and are related to the tractions, whereas the membrane stresses per unit
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length of a band P ‖ are conjugate to F ‖ and evaluate by

P ‖ =
∂φn
∂F ‖

= h
∂Wn

∂F ‖
= h (P − T ⊗ N) . (8.7)

Here T is the local surface traction conjugate to δ which results from

T =
∂φn
∂δ

=
∂Wn

∂F ⊥
= PN . (8.8)

It is worth noting that the membrane forces (8.11) are of order h and, therefore, may be
neglected in a first approximation for very thin bands.

The deformation power identity of a discontinuous local surface with constant
thickness h can be evaluated as (cf. Equation (2.28))

PD =

∫

S0

hP · Ḟ dS0

=

∫

S0

hP ·
[
Ḟ ‖F ⊥ + F ‖Ḟ ⊥

]
dS0

=

∫

S0

h
[
PF ⊥T · Ḟ ‖ + F ‖>P · Ḟ ⊥

]
dS0 (8.9)

or, equivalently,

PD =

∫

S0

hP · Ḟ dS0

=

∫

S0

[

hP · Ḟ ‖ + P ·
(

δ̇ ⊗ N
)]

dS0. (8.10)

For the stresses per unit length of a band follows

P ‖ = PF ⊥> , (8.11)

P ⊥ = F ‖>P , T = P ⊥N , (8.12)

and, with (8.7) and (8.8),

PD =

∫

S0

(

P ‖ · Ḟ ‖ + T · [[ϕ̇]]
)

dS0. (8.13)

From the balance of linear momentum (2.15) follows the total deformation power of a
body containing a discontinuous local surface

PD =
∑

±

∫

B±
0

P · Ḟ dV0 +

∫

S0

(

P ‖ · Ḟ ‖ + T · [[ϕ̇]]
)

dS0. (8.14)
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This expression generalizes the conventional deformation power identity (2.28) to a body
containing a discontinuous local surface. It is evident from equation (8.14) that the
presence of a discontinuous local surface results in the addition of a new term to the
deformation power identity.

In a cohesive zone model fracture is assumed to happen along an extended crack tip and
is resisted by tractions, Figure (8.6) depicts the type of irreversible relation envisioned
here. In principle, a cohesive law defines a relation between crack opening displacements
δ and tractions on the crack flanks t. By recourse to Coleman and Noll’s method (e.g.
[93, 339]) it is possible to show that a cohesive law takes the general form

t =
∂φ

∂δ
. (8.15)

Therefore, an appropriate choice of internal variable is the maximum attained effective
opening displacement δmax. Loading of the cohesive surface is then characterized by the
conditions δ = δmax and δ̇ ≥ 0. (By definition a cohesive surface undergoes unloading
when it does not undergo loading.) We assume the existence of a loading envelope, i.e.,
a relation between (effective) traction t and (effective) displacement δ under conditions
of loading. A simple and convenient relation is the universal binding law proposed by
Smith and Ferrante [287], Figure 8.6,

t = eσc
δ

δc
exp(− δ

δc
) if δ = δmax and δ̇ ≥ 0 (8.16)

where e = 2.71828 . . . is the e-number, σc is the maximum cohesive normal traction and
δc is a characteristic opening displacement. The corresponding potential is

φ = eσcδc

(

1 −
(
1 +

δ

δc

)
exp(− δ

δc
)
)

. (8.17)

The irreversibility of the process manifests itself upon unloading, with law (8.16) un-
loading to the origin gives

t =
tmax
δmax

δ δ < δmax or δ̇ < 0, (8.18)

and, consequently,

δ̇ =

{

δ̇ if δ = δmax and δ̇ ≥ 0
0 otherwise

(8.19)

defines the kinetic equations for the evolution of the internal variable in the present
model. Figure 8.6 also displays a simplified cohesive law with linear loading envelope.
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Figure 8.6.: Cohesive laws expressed in terms of an effective opening displacement δ and
traction t; left: loading envelope of the Smith-Ferrante type with loading–
unloading rule; right: linearly decreasing loading envelop with loading–
unloading rule

In elastic materials an application of the J–integral concept of Rice [281] establishes a link
between the critical energy release rate Gc for crack propagation and the cohesive law,
see reference [255]. Imagine the cohesive surface S0 to have a local orthonormal reference
coordinate system such that basis vector e1 points in the direction of propagation of the
crack front, e2 is aligned with the crack front direction and e3 coincides with the unit
normal N . Choose a contour Γ for the evaluation of the J–integral which surrounds the
cohesive zone and we evaluate

Gc =

∫

Γ

t · δ,1 d x1 . (8.20)

In terms of the scalar effective opening δ and the corresponding effective traction we can
write

Gc =

∫ R

0

t δ,1 d x1 , (8.21)

where R is the cohesive zone length. A change of variables gives

Gc =

∫ ∞

0

t dδ ≡ φ∞ . (8.22)

For our particular case of Smith-Ferrante potential (8.16) equation (8.22) evaluates to

Gc = e σc δc , (8.23)
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which relates σc and δc to the fracture energy Gc. Now we can define a damage variable

d =
φ(δmax)

Gc

, (8.24)

which, clearly, ranges from 0 to 1. These limits correspond to an intact and a fully
opened cohesive surface, respectively. Furthermore, it follows from (8.19) as well as
from the irreversibility of damage that

ḋ ≥ 0. (8.25)

8.3. Numerical computation of local damage
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Figure 8.7.: Geometry of shear band element. The surface S− and S+ coincide in the
reference placement of the solid.

The particularly appealing aspect of the introduced localization model is that it fits
naturally within the conventional framework of finite element analysis. The deformation
power (8.14) is distinct to the classical formulation only by an additional jump term
for the localized surfaces. Depending on the constitutive relation employed within these
jumps, the effective incremental potential for a material with cracks (following special
cohesive laws, see Section 8.1) or a material with shear bands (with the constitutive
properties of the bulk material) can be derived. Here, we outline the procedure of how
to embed the discontinuous local surface into finite elements, leading to the formulation
of cohesive elements [255] or shear band elements [382].
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S−

S+

S

Figure 8.8.: Assembly of one 12-node triangular shear band element and two 10-node
tetrahedral elements.

The class of elements considered here consists of two surface elements which coincide in
space in the reference placement of the solid, Figure 8.7. Each of the surface elements
has n nodes. The total number of nodes for the localization band element is, therefore,
2n. The particular triangular geometry depicted in Figure 8.7 is compatible with three-
dimensional tetrahedral elements, see Figure 8.8 and Chapter 5.2. The compatibility of
such band elements with other bulk elements is straightforward.

The standard shape functions for each of the constituent surface elements are denoted
by Na (s1, s2) , a = 1, . . . , n, where (s1, s2) are the natural coordinates of each of the
surface elements in some convenient standard setting. We designate one of the surface
elements as S− and the other as S+, however, all geometrical operations such as the
computation of the normal are carried out on the mid-surface S of the element. The
surface coordinates are defined parametrically as

x (s) =

n∑

a=1

x̄aNa (s) , (8.26)

where the mean coordinates are

x̄a =
1

2

(
x+
a + x−

a

)
, (8.27)

and x±
a , a = 1, . . . , n are the coordinates of the nodes in the undeformed setting of the

element. Additionally, the natural coordinates (s1, s2) define a convenient system of
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curvilinear coordinates for the mid-surface of the element. The corresponding tangent
basis vectors are

Aα (s) = x,α (s) =
n∑

a=1

x̄aNa,α (s) , (8.28)

where α = 1, 2. The unit normal to S is

N =
A1 × A2

|A1 × A2|
, (8.29)

which, by definition, points from S− to S+.

The displacement-jump vector in the deformed placement is obtained by

δ (s) =

n∑

a=1

[[xa]]Na (s) , (8.30)

where
[[xa]] = x+

a − x−
a . (8.31)

Evidently, δ remains invariant under superposed rigid translations of the element.

For one localization element, the potential energy is computed from equation (8.5) to be

Πn =

∫

S0

φn dS0 =

∫

S0

hWn(F ) dS0. (8.32)

The nodal forces now follow as

f±
ia =

∂Πn

∂x±ia
=

∫

S0

(
∂φn
∂h

∂h

∂x±ia
+ h

∂Wn

∂x±ia

)

dS0. (8.33)

For the case of a shear band element, we follow the assumption that the shear band
thickness remains constant, as observed in experiments [132]. Introducing equation (8.6)
gives

f±
ia =

∫

S0

h
∂Wn

∂FmL

∂FmL
∂x±ia

dS0 =

∫

S0

hPmL
∂FmL
∂x±ia

dS0. (8.34)

The calculation of the first Piola-Kirchhoff stresses P is straightforward by using, e.g., a
finite plasticity stress update as outlined in Chapter 6 and 7. In case of a cohesive zone
model the nodal forces follow from a cohesive law.

The term ∂FmL/∂x
±
ia can be calculated conveniently by introducing a local coordinate

system on the mid-surface. Given an arbitrary vector b such that b×N 6= 0, this local
coordinate system can be defined by

X̂1 =
b × N

|b × N | , X̂2 =
N × X̂1

|N × X̂1|
, (8.35)
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which gives a transformation matrix Q = [X̂1 X̂2 N ]. Thus,

F ‖ = QF̂ ‖QT ,
∂F ‖

∂x
= (Q

∂F̂ ‖

∂x̂
QT )QT . (8.36)

The deformation gradient as given by equation (8.4) can be written as

FmL = F ‖

mL +
δm
h
NL, (8.37)

It follows that
∂FmL
∂x±ia

=
∂F ‖

mL

∂x±ia
+

1

h
NL

∂δm
∂x±ia

, (8.38)

with
∂

∂x±ia
=
∂x̄lc
∂x±ia

∂

∂x̄lc
=

1

2

∂

∂x̄ia
, (8.39)

and, in the local coordinate system

[

F̂ ‖

mL

]

=





n∑

b=1

x̄mbN̂b,β

0
0
1



 , (8.40)

where N̂b,β (b = 1, . . . , n; β = 1, 2) are the derivatives of the local shape functions with
respect to the material frame. Finally, we obtain

[

∂F̂ ‖

mL

∂x̂±ia

]

=




1

2
δmiN̂a,β

0
0
0



 (8.41)

where δmi is the Kronecker delta. From equation (8.30), we have

∂δm
∂x±ia

= ±δmiNa. (8.42)

Thus, the nodal forces can be obtained analytically by substituting (8.38), (8.40), (8.41)
and (8.42) into (8.34). As usual in finite elements, the integration over the surface may
conveniently be approximated by using a numerical quadrature rule. Moreover, we can
see from (8.38) that for very thin bands, the membrane forces may be neglected, which
leads to

f±
ia = ±

∫

S0

PmLNLδmiNa dS0 = ±
∫

S0

TiNa dS0. (8.43)
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It is worth noting that this expression is used in cohesive elements for force recovery,
whereas in shear bands the tractions are obtained naturally from the first Piola-Kirchhoff
stress.

Summarizing we emphasize that the dual work-conjugate relations between stress and
deformation measure (8.14) hold for general bodies with discontinuous local surfaces.
These can be brittle or ductile cohesive zones as well as shear bands. As in conventional
solids, the first Piola-Kirchhoff stress tensor P does work on the total deformation gra-
dients F over the bulk of the body. In case of a shear band the tractions T are a
natural outcome of the first Piola-Kirchhoff stress tensors, which in turn are completely
determined by the deformation gradient once a (bulk) constitutive relationship is speci-
fied. No other constitutive relationships are needed. If the discontinuous local surface is
modeled as a cohesive zone the tractions T do work on the displacement jumps [[ϕ]] or
opening displacements over the cohesive zone; their relation is prescribed by a cohesive
law.

8.4. Simulations of phase decompositions and grain

coarsening

The specific structure of phase decomposition and ex-solution follows from an interplay
of different physical effects. In a typical aging metal alloy these are:

Fickean diffusion: Classical diffusion is induced by a local difference in concentration
of the constituents. The flux of concentration j [mol s/m2] is generated by the
concentration gradient ∇c weighted with the diffusion coefficient D. The evolution
of concentration follows by Fick’s law

ċ = − div j (8.44)

= divD∇c . (8.45)

In equilibrium Fickean diffusion would result in a reduction of the differences in
concentration and, finally, in a uniformly distributed concentration (downhill dif-
fusion). However, this result is a contradiction to many experimental observations.
More general — non-equilibrium — theories of diffusion introduce a chemical po-
tential µ of the mixture [231]. Then, the diffusion (8.45) is driven by a local
difference in the chemical potential µ ≡ µA − µB, instead.

ċ = divM∇µ (8.46)

Here M is a phenomenological determined diffusion mobility coefficient.
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8.4 Simulations of phase decompositions and grain coarsening

Surface tension: A description of a non-local phase separation, i.e., a specific morphol-
ogy of ex-solution, requires the concept of gradient energies (known as Landau-
Ginzburg functionals). In physical terms this means, that differences in surface
energy generate morphological evolution and define number and size of the islands
of different phases.

Thermo-mechanical straining: Mechanical stresses and strains — caused by temper-
ature difference or by mechanical loading — superpose the natural aging effects of
an alloy and may induce a specific morphology like, e.g., a specific orientation or
lamella-like shapes of the phases.

In the following we want to analyze and model these physical effects in more detail,
starting with some classical relations of the thermodynamics of mixtures. Here we re-
strict ourselves to binary alloys and mixtures. Then, for the mass concentrations cA and
cB holds cB = 1 − cA and we define

c = cB and (1 − c) = cA. (8.47)

Starting from the first and second law of thermodynamics (2.37–2.39) and from the defi-
nition of Gibbs free energy, equation 2.45, we can derive for its temporal development
the inequality

Ġ ≤ SṪ + V ṗ. (8.48)

In other words, the Gibbs free energy G attains a minimum in mechanical and thermo-
dynamical equilibrium with Ṫ = 0 and ṗ = 0. In the following we will consider sequences
of such (quasistatic) solutions.

In a binary alloy with constant pressure and prescribed temperature the total Gibbs
free energy is a function of contributions of both constituents. Figure 8.9 illustrates the
typical form of G(cA, cB, T ) ≡ G(c, T ) during a phase transition from liquid to solid.
At temperatures higher than the melting point of both constituents the free energy is
a simple convex function of concentration within the admissible region 0 ≤ c ≤ 1. For
an ideal mixture (nearly the case in a fluid) the configurational Gibbs free energy
density can be derived by means of the thermal equation of state p = RT/V (R denotes
the gas constant and V the volume) summed for all mols of constituent A and B referred
to the unit initial volume, and, by the additivity of pressure (Dalton’s law). Simple
thermodynamical considerations (cf. [41]) lead for a binary mixture to1

Gideal = cGA(T, p) + (1 − c)GB(T, p) +RT
(
c ln(c) + (1 − c) ln(1 − c)

)
, (8.49)

1In a minor misuse of notation we denote form now on with the letter G the Gibbs free energy per
unit initial volume.
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Figure 8.9.: Gibbs free energy as a function of temperature and concentration for liquid
to solid phase transition.

where GA and GB denote the configurational Gibbs free energy density of the con-
stituents which can be found in tables for most pure substances.

With decreasing temperature the magnitude of G raises, and at beginning solidification
the shape of G starts to change — resulting in a function which has two internal minima
in the solid state. For this non-ideal state of a mixtures accounts an excess energy
density, which is a general function of higher order terms of c and added to equa-
tion (8.49). Data for the excess energy can also be found in tables for many materials.
Moreover, there exists several different functions to account for that non-ideal energy
contribution. Among others, the so-called Margules ansatz is frequently used (cf. [41])

Gex = c(1 − c)
(

c χA(T, p) + (1 − c)χB(T, p)
)

, (8.50)

where χA, χB are empirical parametric functions depending on pressure and tempera-
ture. In another approach, the Redlich-Kister ansatz, the empirical contributions are
developed in series resulting in an ansatz of the form

Gex = c(1 − c)
(

A + B(cA − cB) + C(cA − cB)2 + . . .
)

, (8.51)
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8.4 Simulations of phase decompositions and grain coarsening

with A, B, C, . . . to be determined. The excess energy density is essentially responsible
for the actual shape of the configurational free energy density , in particular, for being
a double well potential in a solid binary mixture.

This non-convex shape of the free energy function reflects the phenomena that there
exists a region of concentration where two phases are stable, a so-called miscibility gap.
The center of this region is the unstable spinodal region, here holds ∂2G/∂y2 < 0, see
also Figure 8.10. The two points where ∂2G/∂c2 = 0, are called the spinodal points (•
in Figure 8.10), they mark the change of curvature of function G. The two minima of
the Gibbs free energy function are external to the spinodal region. The two binodal
points (∗ in Figure 8.10) are defined by a common tangent known as Maxwell-tangent
construction, with condition

∂G

∂c

∣
∣
∣
∣
α

=
∂G

∂c

∣
∣
∣
∣
β

=
G(cβ) −G(cα)

cβ − cα
. (8.52)

The corresponding characteristic concentrations cα and cβ are the equilibrium concentra-
tions of phase α (rich in constituent A) and phase β (rich in constituent B). A mixture
of concentration c with cα ≤ c ≤ cβ will separate into two phases of either of the two
binodal compositions cα and cβ.
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Figure 8.10.: Gibbs free energy functional in a solid binary mixture.

In the process of phase separation the material moves against concentration gradients
(uphill diffusion). The local driving force for such diffusion processes is the chemical
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8.4 Simulations of phase decompositions and grain coarsening

potential, which controls the optimization of the Gibbs free energy density with respect
to the concentration, i.e., µ = ∂G/∂c. Then, the diffusion equation (8.46) gets the form

ċ = divM∇∂G

∂c
.

However, phase separation (and subsequent grain coarsening) are non-local diffusion
processes where the actual phase morphology is determined by the “neighbors” of the
material point under consideration. To account for such neighboring effects additional
surface (or interfacial) energy contributions need to be added to the Gibbs free energy
density (8.49-8.51). Following Cahn and Hilliard [67, 66] we assume an surface energy
contribution of the form,

Gsurf =
1

2
γl2c
(
∇c
)2
, (8.53)

where γl2c is the surface tension multiplied with some material depended critical length
lc. Surface energy contributions in a mixture are related to the gradient of concentra-
tion, ∇c. Consequently the optimization of the Gibbs free energy functional requires
a variational approach2. In the context of gradient functionals the first variation reads
δ(·) = ∂·/∂c− div(∂·/∂(∇c)). Accordingly, the chemical potential follows as

µ =
∂G

∂c
− div

( ∂G

∂(∇c)
)

=
∂G

∂c

conf

− div
(
γl2c ∇c

)
. (8.56)

Inserting (8.56) in the diffusion equation (8.46) results in a fourth order differential
equation in terms of the concentration,

ċ = div [M∇µ]

= div

[

M∇
(∂G

∂c

conf

− div(γl2c ∇c)
)]

(8.57)

= div

[

M
(∂2G

∂c2

conf

∇c−∇
(
div(γl2c ∇c)

))
]

2Presuming necessary continuity and differentiability the optimum of the (one-dimensional) functional

I =

∫ x1

x0

f
(
x, y, y

′

, y
′′

, . . . , y(n)
)
dx (8.54)

with appropriate boundary condition y(x0) = y0, y
′

(x0) = y
′

0, . . . , y(n)(x1) = y
(n)
1 is the solution of

the Euler-Lagrange equation

f,y − d

dx
f,y

′ +
d2

dx2
f,y

′′ − + . . . (−1)n d(n)

dx(n)
f,y(n) . (8.55)

The extension to more dimensions is straightforward, cf. [53].
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8.4 Simulations of phase decompositions and grain coarsening

where the materials mobility coefficients M are written in tensorial form. This is mo-
tivated by the experimental observation of anisotropic phase separation textures; this
effect can be modeled e.g., by anisotropic mobility coefficients.

The classical Cahn–Hilliard equation (8.58) governs the process of initial ex-solution,
where phase separation is controlled by the configurational free energy, as well as later-
stage domain coarsening driven by the reduction of the surface free energy [67, 68, 65, 69].
This coarsening is equivalent to the well known Ostwald ripening where the domain size
grows proportional to the third root of time as derived by Lifshitz, Slyozov and Wagner
[195, 354]. Grain ripening (attributed to an early work of Ostwald [258]) involves solid-
state grain boundary migration driven by locally high surface energies which, in turn,
depend on the difference in concentration gradients.

A particular important influence on the phase separation and grain coarsening process
is the stress and strain state induced by mechanical (or thermal) loading. Therefore,
our starting point to investigate spinodal decomposition and phase growth in binary
mixtures will be an extended diffusion equation, whereby an additional term accounts
for local thermo-mechanical stresses,

ċ = div

[

M
(∂G

∂c

conf

∇c−∇
(
div(γl2c ∇c)

)
− ∂

∂c

(1

2
σ · ε

)]

(8.58)

Here ε denotes the (linear) strain and σ the corresponding stress tensor. The latter may
depend on the concentration via the stiffness tetrad.

Starting from the fundamental investigations of Cahn and Hilliard, [67, 69] several ex-
tensions and additions followed. Dreyer et al. [104, 105, 107] recently developed an
extended diffusion equation strictly basing on the principles of Rational Thermodynam-
ics. In particular, the theory accounts for concentration and strain depended material
coefficients. Written in components the resulting equation of [107] reads

∂c

∂t
=

∂

∂xi

[

Mij
∂

∂xj

(∂G(εkl, c, T )

∂c
− 2Akl

∂2c

∂xk∂xl
− ∂Akl

∂c

∂c

∂xk

∂c

∂xl
(8.59)

−2
∂Akl
∂εmn

∂c

∂xk

∂εmn
∂xl

− ∂2akl
∂εop∂εmn

∂εop
∂xk

∂εmn
∂xl

− ∂akl
∂εmn

∂2εmn
∂xk∂xl

)

.
]

The material coefficients Mij(c, T ), Aij(εkl, c) and aij(εkl, c) are the mobility and the
higher gradient coefficients. These material parameters can be obtained either from
literature or from calculations based on atomic interaction models, see [42, 43].

A one-dimensional numerical solution of Equation (8.59) is illustrated for the strain-
free case in Figure 8.11 (i.e., all terms of ε are dropped and, moreover, the coefficients
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8.4 Simulations of phase decompositions and grain coarsening

Figure 8.11.: FE-Simulation of spinodal decomposition and phase growth in an Sn-Pb
alloy: an initially eutectic solution with randomly distributed deviations in
concentration (left) decomposes to regions of α and β-phases within several
minutes (right, after 8 minutes).

Aij are assumed to be constant). Using the data of [348, 349] for an eutectic SnPb
alloy, a discretization with 100 linear finite elements is carried out for spatial, and a fully
implicit scheme for time discretization. The length of the probe is 10µm, the temperature
of simulation is 423 K (eutectic Sn-Pb has a melting temperature of 453K). Initially, the
eutectic solution has little randomly distributed deviations in concentration. After few
minutes the alloy decomposes into islands of α-phases (Pb-rich) and β-phases (Sn-rich).
Further coarsening, i.e., a reduced number of islands, will be observed within hours.
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Applications
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9. Dynamic Failure and Fragmentation

in Ductile Metal Structures

In Chapter 7 a variational finite-deformation framework for irreversible volumetric ex-
pansion in a plastically deforming material was developed. The specific model presented
here exploits the void growth ideas for the finite element simulation of ductile damage
in metals under dynamic loading conditions. The spacial and temporal discretizations
of the structures follow the concepts of Section 5.2 and 5.1, respectively. The consti-
tutive relations are discretized in time by means of the variational update outlined in
Section 7.6.

The resulting engineering model and constitutive updates provide a fully variational
alternative to Gurson-like models. In particular, the present variational update decouples
finite volumetric and deviatoric deformations, is exactly material-frame indifferent under
finite rotations, and results in symmetric tangent moduli.

The predictive capabilities of the model are demonstrated by the finite simulation of
the Taylor impact test and the forced expansion and fragmentation of U-6%Nb rings.
Comparisons of the localisation of void growth, the velocity histories and number of
ring fragments show that the results of the calculations are in very good agreement with
experimental observations.

9.1. Void growth in metals

The failure of ductile metals is based on the process of nucleation, growth and finally
coalescence of voids. The ratio of the total volume of all voids to the volume of the body
is defined as the void volume fraction fV , see equation (7.1) of Chapter 7. Through
plastic straining of the surrounding material the voids may grow and change shape.
From experiments we know that the voids start to coalesce and finally ductile failure
occurs when the porosity in the material reaches about 0.1− 0.3 [22, 270, 95]. This may
still be observed on the fracture surface of ductile materials which is typically dimpled.
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9.1 Void growth in metals

First micromechanical studies on void growth go back to the 60th [210, 283]. McClintock
[210] analyzed the expansion of a single cylindrical vacancy subjected to remote tensile
and hydrostatic strain fields and pointed out that the fracture ductility decreases rapidly
with rising hydrostatic tension. This observation agrees with several experiments [202,
203, 331]. Rice and Tracey [283] found that the size and the shape of a void in a plastic
material is determined by the superposition of volumetric and (minor) shape-changing
components that amplify the distortion imposed by the remote strain field.

The classical yield condition for porous ductile materials was developed by Gurson [137]
who, like most subsequent authors, exploits the idea that the physical process of damage
in ductile media may be described by the structural behavior of simple representative
volume elements. The characteristic volume element of Gurson is a conglomerate of voids
in a rigid perfectly-plastic matrix. The voids are assumed to be randomly distributed
so that the macroscopic response is isotropic. Averaged solutions on the microlevel have
been used to estimate upper bounds for the macroscopic stress field. For a spherical
unit cell including a spherical void the plastic potential as a function of the porosity fV ,
the mean normal stress (hydrostatic tension and pressure) p and the effective von Mises
stress σ reads

Ψ(fV , p, σe) =
(σe
σy

)2

+ 2q1 fV cosh
( q2p

2σy

)

−
(
1 + (q1 fV )2

)
, (9.1)

where σy is the macroscopic yield strength. The weight coefficients q1, q2 equal one
in the original work [137]. The plastic potential (9.1) defines with Ψ(fV , p, σe) = 0 a
macroscopic yield condition. Moreover, the void volume fraction fV is considered to be
the internal variable characterizing damage and final failure occurs in the limit fV → 1.

It soon became apparent that Gurson criterion in its original form leads not only to an
unrealistic failure limit, it also overestimates the dilatational component of the strain
[6, 341, 342]. Therefore numerous experimentally and numerically based modifications
followed, see [343] for an review on this subject. Essentially the modifications introduced
adjustable weights and functional dependencies for the void volume fraction fV , fitting
them to more realistic values [346, 133, 309], considering void nucleation and coalescence
[52, 85, 308], as well as incorporating a more complex bulk material behavior [25, 184,
122, 334, 347, 142]. Tvergaard and Needleman [346] introduced a bilinear function which
accounts for an accelerated damage of voids due to the effect of coalescence after reaching
an empirical critical void volume fraction. This so called Gurson-Tvergaard-Needleman
model became the conventional criterion for ductile fracture problems. One reason for its
success is that the set of adjustable parameters can be fitted to any particular numerically
or experimentally analyzed material behavior.

However, accurate failure strains for rate and temperature dependent materials with
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9.1 Void growth in metals

randomly distributed voids can not be obtained this way. Because the porosity is char-
acterized by a single parameter f the model can not account for different distributions,
sizes or shapes of voids, that means a population of small voids and one void having
equal volume would be treated equally. In addition there is no intrinsic ability to predict
void coalescence.

An alternative way to model the macroscopic properties of

Figure 9.1.: Surface in brit-
tle fracture.

a porous plastic metal is to understand it as a two phase
composite, i.e. a bulk material with (empty) inclusions
[185]. By homogenization techniques upper and lower
bounds for the effective properties of an equivalent ho-
mogenized medium can be derived, cf. [79]. Herewith the
solutions are not only more rigorous, this technique also al-
lows to consider additional damage parameters, as e.g., in
[119], the void aspect-ratio and the void distribution (ran-
domly distributed voids may weaken the material much
more than a uniformly distributed porosity [202, 26, 250]).
However, dynamical effects on the growth of voids are not
regarded. Newer developments [385, 269, 224] combine
both approaches and replace the empirical parameter in Gurson’s criterion by microme-
chanically motivated relations, as e.g., a plastic limit load model for the intervoid matrix
proposed by Thomason [329, 328].

One relevant result in the understanding of void

Figure 9.2.: Typical surface in static
ductile fracture [1].

growth is the concept of critical cavitation pres-
sure. When the hydrostatic tension is suffi-
ciently high, the voids inside a material grow
unboundedly even through the remote stresses
and strains are kept fixed. The existence of
such an instability was recognized by Ball for
nonlinear elastic solids [13] and later determined
for quasistatic elasto-plastic solids by Huang
et al., [156, 344]. The unstable cavitation can
be thought of as a process in which the elas-
tic energy of the remote field drives the plastic
expansion of voids. Only for undercritical hy-
drostatic tension the voids undergo a bounded
growth, eventually attaining stationary config-

urations. The initial shape of the void has a minor effect on the critical cavitation
pressure [345].
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9.1 Void growth in metals

Whereas the ductile failure mechanism under static conditions are extensively studied,
the dynamical effects on void expansion have been relatively disregarded. In an early
theoretical work Carroll and Holt (1972) [72] analyzed the collapse of a sphere in an
ideal plastic material and concluded that effect of elastic compressibility on the solution
is negligible. In a similar manner Johnson [167] studied plastic void expansion under
shock load. Nemat-Nasser and Hori [153, 243] reason that the global response of the
material is different in compression and tension and significantly affected by the loading
rate. The analysis of Cortes [96, 97] shows important effects of rate sensitivity but does
not account for inertia.

At very high strain rates ( > 106s−1) the typ-

Figure 9.3.: Typical surface in dynamic
ductile fracture [249].

ical void growth turns out to be very different
to the quasistatic case. In general extremely
high stress levels, especially very high hydro-
static tensions, are developed and the inertial
stresses are not longer negligible. Many exper-
imental results are reported investigating the
effect of impact loading on the failure of met-
als, see e. g. [21, 101, 227, 316, 326]. Upon im-
pact compressive stress waves travel through
the body which by reflection and superposi-
tion may induced high tension and the mate-
rial will fail dynamically. This process, known
as spallation, has been studied extensively, cf.
[16, 28, 124, 312, 391]. The spall strength of
the material, which is determined by impact-

spallation experiments, may be understood as critical tensile strength under shock load
conditions [270].

Ortiz and Molinari analyzed in [254] the dynamic expansion of a single spherical void in
an infinite rigid plastic medium under the action of remote hydrostatic tension. They
pointed out that if the void radius increases the initial radius by at least one order of
magnitude the void growth is dominated by micro-inertia effects, whereas the effect of
rate dependence of the material and the plastic dissipative effects play a secondary role.
Under the regime of rapidly applied, supercritical hydrostatic tension the void radius
growth unboundedly as a linear function of time. Tong and Ravichandran [334] and
Thomason [330] draw similar conclusions, they also emphasize the strong stabilizing
effect of microinertia on the void growth process which consequently delays coalescence
of the voids. Molinari and Mercier [224] found that high accelerations sustained by the
material particles in the vicinity of voids result in significant inertia effects particularly
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for materials with low strain-rate sensitivity.

Here we apply a variational formulation for a rapidly loaded porous plastic material.
The compelling aspect of variational formulations is that they provide the theoretical
background for error controlled finite elements methods. Fe-mesh adaption is extensively
studied and well understood for linear problems, see e.g. [353, 48], but it is hardly
developed in the context of strongly nonlinear and dynamic problems. If the constitutive
updates follow from a minimum principle like presented here, this can be taken as a basis
for error estimation and finite element mesh adaption [276]. As outlined in Chapter 7
a relatively simple void growth model describes plastic expansion and global softening
of the material with parameters of the mesomechanical model; avoiding altogether the
need of macroscopic failure criteria.

9.2. Constitutive relations

Here the application of the general framework of Chapter 7 to the case of porous metal
plasticity is illustrated. We specifically focus on conditions such as arise in shocked
metals, involving high pressures, high strain rates and non-negligible microinertia.

Motivated by the evolution of void distribution in rapidly loaded materials (Chap-
ter 7.3.4) we proceed describing the porous metal by an ensemble of voids with a mean
radius ā(t). The initial local volume fraction of voids in the undeformed placement is

fV 0 = NV
4πā3

0

3
, (9.2)

where NV is void density, i.e., the number of spherical voids per unit undeformed volume
of the body, and ā0 is the initial mean void radius in the representative volume. As
introduced in Chapter 7.4 the void radius is in one-to-one correspondence to the plastic
Jacobian

Jp = 1 − fV 0 +NV
4πā3

3
, (9.3)

and the current void volume fraction is

fV =
fV 0 + Jp − 1

Jp
. (9.4)

Let the free-energy density (7.120) have an additive structure (7.158),

A(F ,F p, εp, θp, T ) = W e(F e, T ) +W p(εp, θp, T ),
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9.2 Constitutive relations

where W e(F e, T ) and W p(εp, θp, T ) are the elastic and stored energy densities per unit
undeformed volume, respectively. These energy contributions are defined by equa-
tions (7.167) – (7.164) of Chapter 7. Additionally, power contributions follow from
rate sensitivity and microinertia, equations (7.171) – (7.174).

The plastic deformation rate is assumed to obey the flow rule (7.122) which we repeat
here for convenience

Ḟ
p
F p−1 = ε̇pM + ϑ̇pN ,

where the rate of the effective deviatoric plastic strain ε̇p and the rate of the effective
volumetric plastic strain ϑ̇p are subject to the irreversibility constraints

ε̇p ≥ 0 (9.5a)

ϑ̇p ≥ 0 (9.5b)

and the tensors M and N set the direction of the deviatoric and volumetric plastic
deformation rates, respectively.

In finite element analysis an incremental solution procedure with time intervals [tn, tn+1]
is used for the time integration of the constitutive equations. Assume that the state
of the material, F p

n, ε
p
n, θ

p
n, θ̇

p
n and θ̈pn, is known at time tn, and let the deformation

gradient F n+1 and the temperature Tn+1 at time tn+1 be given. The problem is then to
determine the current state of material, F

p
n+1, ε

p
n+1, θ

p
n+1, θ̇

p
n+1 and θ̈pn+1, as well as the

directions M ,N of the incremental plastic deformation, the value of the Piola-Kirchhoff
stress P n+1 and the tangent moduli DP n+1. The general way of solution is outlined
in Section 7.6. Here we shortly summarize the results and put special emphasis on the
additional contributions arising from microinertia.

The differential equations of motion for the growth of the voids are second order in time
due to microinertia. In order to formulate updates possessing a variational structure, the
time-discretization of the equations of motion must itself possess an incremental varia-
tional structure. Newmark’s algorithm, when applied to systems with quadratic inertia
and constant mass such as (7.174), leads to a minimum problem for the incremental
displacements. Thus, we introduce the Newmark predictor

bpre
n+1 = bn + 4tḃn +

(
1

2
− β

)

4t2b̈n, (9.6)

where β ∈ (0, 1/2). Note that b is here the auxiliary variable defined by solution of
equation (7.182),

b =
2

5

ā5/2

ā
3/2
0

. (9.7)

173



9.2 Constitutive relations

We may now introduce the incremental objective function

fn(F n+1, ε
p
n+1, θ

p
n+1, Tn+1,M ,N) = W e(εen+1, Tn+1) +W p(εpn+1, θ

p
n+1, Tn+1)

+ 4t ψ∗
n+1 + β4t2Bn+1, (9.8)

with 4t = tn+1 − tn, and

ψ∗
n+1 = ψ∗

(4εp
4t ,

4θp
4t , J

p
n+1, Tn+1

)

, (9.9)

Bn+1 =
3ρv0
2

(
bn+1 − bpre

n+1

β4t2
)2

, (9.10)

where 4εp = εpn+1 − εpn, 4θp = θpn+1 − θpn, and bn+1 is to be regarded as a function of
Jpn+1 through (9.7) and (9.3).

Thus the update may be expressed in variational form as

Wn(F n+1, Tn+1) = min
εpn+1

,θp
n+1

,M,N
fn(F n+1, Tn+1, ε

p
n+1, θ

p
n+1,M ,N), (9.11)

subject to the kinematic constraints of plastic deformation and to the plastic irreversibly
constraints

4εp ≥ 0, (9.12)

4θp ≥ 0.

Equation (9.11) also defines the effective incremental strain-energy densityWn(F n+1, Tn+1)
as the minimum of fn. Finally, the Newmark correctors

ḃn+1 = ḃn + 4t[(1 − γ)b̈n + γb̈n+1], (9.13)

b̈n+1 =
bn+1 − bpre

n+1

β4t2 , (9.14)

where γ ∈ [0, 1], complete the update.

The effective work of deformation density (9.11) returns the updated values of the inter-
nal variables and the direction of plastic flow over the time step. Moreover, Wn(F n+1)
acts as a potential for the first Piola-Kirchhoff stress tensor P n+1 at time tn+1 as shown
in Section 7.6.

Minimization of fn with respect to M and N gives after some algebraic manipulation,

M =
3spre

n+1

2σpre
n+1

, (9.15)

N =
1

3
sgn(ppre

n+1)I, (9.16)
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where

s
pre
n+1 = 2µdev(εe,pre

n+1 ),

σpre
n+1 =

√

(3/2)spre
n+1 · spre

n+1,

ppre
n+1 = κ

[
tr(εe,pre

n+1 ) − α(Tn+1 − T0)
]
,

(9.17)

can be computed explicitly from the initial data for the time step. Thus, the effective
Mises stress and the magnitude of the pressure are found to be the thermodynamic forces
driving ε̇p and θ̇p, respectively.

Minimization with respect to εpn+1 and θpn+1 gives

4εp = εpn+1 − εpn = 0,

4θp = θpn+1 − θpn = 0,
(9.18)

if

σpre
n+1 ≤ σy(ε

p
n, θ

p
n, Tn+1),

ppre
n+1 ≤ py(ε

p
n, θ

p
n, Tn+1),

(9.19)

or, otherwise,

σpre
n+1 − 3µ4εp = σy,n+1 +

∂

∂εpn+1

[
4t ψ∗

n+1 + β4t2Bn+1

]
,

ppre
n+1 − κ4θp = py,n+1 +

∂

∂θpn+1

[
4t ψ∗

n+1 + β4t2Bn+1

]
.

(9.20)

Note that these results in part differ from the constitutive updates in Chapter 7.6 by
additional terms due to microinertia.

9.3. Examples of predicted material behavior

An area of application where microinertia is potentially important is the propagation of
shocks in metals. The deformations of interest in this case are of uniaxial strain, and the
corresponding deformation gradients are of the form F = diag{λ, 1, 1}, cf. Chapter 1,
for some uniaxial stretch ratio λ. This type of deformation combines volumetric and de-
viatoric deformations, and thus illustrates many of the features of the model presented in
the foregoing. Unless otherwise indicated, the material parameters used in all examples
are as in Table 9.1.
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9.3 Examples of predicted material behavior

E ν σ0(T0) εp0 n ā0 ρ0

[GPa] [MPa] [µm] [kg m−3]
165 0.15 600 0.01 10 100 17300

N ε̇p0 m T0 Tm l α
[m−3] [K] [K] [K−1]
1010 0.001 10 293 1400 0.75 42 × 10−6

Table 9.1.: Material parameters used in the examples of Section 9.3

For the simple case of uniaxial strain, the elastic deformation is of the form

F e = diag{λe, λeT , , λeT}, (9.21)

where λe and λeT are the longitudinal and transverse stretch ratios, respectively, and the
plastic deformation is of the form

F p = diag{λp, λpT , , λ
p
T}, (9.22)

where λp and λpT are the longitudinal and transverse stretch ratios, respectively.

9.3.1. Yield phenomena

-

6
initial
state

εp > 0, θp > 0

���)

��	
σ

p

Figure 9.4.: Yield locus in the pressure-Mises stress plane.

The elastic domain at initial state F p = I, εp = 0, θp = 0 and a second state F p 6= I ,
εp > 0, θp > 0 are shown in Fig. 9.4 on the (p, σ)-plane. The deviatoric and volumetric
parts of the yield surface intersect discontinuously, resulting in a corner. This is in
contrast to models such as Gurson’s and extensions thereof [137, 346], in which the yield
surface is smooth.
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9.3 Examples of predicted material behavior

During deformation the voids may further expand or collapse under the action of positive
and negative pressures, respectively. Note that the processes of void expansion and
collapse are predicted to be asymmetric, with the magnitude of the critical pressure
for void collapse being smaller than the critical pressure for void expansion. Once the
voids are collapsed the plastic response of the material becomes insensitive to negative
pressure.

9.3.2. Hardening
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Figure 9.5.: Quasistatic monotonic response for three different hardening exponents. a)
Matrix pressure in hydrostatic loading. b) Volumetric component of the
stress tensor in uniaxial strain.

The volumetric response predicted by the model is of primary interest in applications.
In order to exhibit this response, we begin by applying a monotonically increasing,
quasistatic, pure volumetric deformation to the material. Fig. 9.5a shows the dependence
of the matrix pressure trσ on the logarithmic volumetric strain θp for three values of the
hardening exponent n. As may be seen from this plot, the behavior of the material is
ostensibly linear elastic prior to the attainment of the critical pressure. At this point the
material yields and starts deforming plastically involving strain softening, i.e., p→ 0 as
θp → ∞.

The behavior at large volumetric strains in a uniaxial strain state is displayed in Fig. 9.5b
in terms of the volumetric component of the stress tensor trσ. Here the interaction of
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9.3 Examples of predicted material behavior

volumetric strain softening and deviatoric strain hardening leads to an approximately
constant value of the pressure as the strain increases.

9.3.3. Microinertia
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Figure 9.6.: Effect of microinertia on the volumetric stress-strain relation.

At high rates of deformation void growth may significantly be retarded by microinertia
[254, 213, 186, 224]. Microinertia may be expected to be significant when θ̇ becomes
comparable to c/ā, where c is the elastic sound speed. In order to exhibit this be-
havior, we artificially turn off rate sensitivity, and subject the material to a constant
rate of volumetric expansion. The resulting volumetric stress-strain curve is shown in
Fig. 9.6. As may be seen from the figure, the volumetric stress-strain behavior is os-
tensibly indistinguishable from the quasistatic behavior for small rates of deformation.
For rates comparable the threshold c/ā = 3.7 × 107s−1, the stress-strain curve depends
sensitively on the rate of deformation and effects a smooth transition from strain soft-
ening to initially elastic curves as the strain rate increases. As the expansion continues,
the pressure exhibits oscillations with amplitude and wave length proportional to the
volumetric strain rate.
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Figure 9.7.: Volumetric plastic expansion and reference plastic strain corresponding to
uniaxial elongation with varying number of time steps per cycle.

9.3.4. Convergence analysis

In the following we demonstrate the characteristic behavior of the material with a uni-
axial example and analyze the convergence of the variational update within a finite
element computation. Unfortunately it is not possible to access the solution properties
of a general finite-deformation constitutive update by analytical means. Owing to the
fact, that the strain energy density of a finitely deforming solid must be non-convex
(to ensure material frame indifference, cf. [86, 206]), the conventional tools of convex
analysis are not applicable in this case. For that reason we show here the convergence
of the proposed variational method by way of direct numerical testing.

We consider a 100 × 10 × 10mm bar subjected to cyclic tension in axial direction. In
contrast to common uniaxial tension tests, we enforce an uniaxial strain state, i.e. the
bar can not deform transversal to its longest axis. In that way a significant volumetric
expansion is caused. This model corresponds to an uniaxial loading test for highly
constrained clamped wires as performed by Ashby et al. in [8]. It is known from these
experiments that the material fails allready at about 1/3 of the failure strain in uniaxial
tension tests. Therefore we apply here a relatively small maximal extension of 5%.

The uniaxial loading is simulated using a simple 2d-finite element mesh of 10 composite
triangles, Chapter 5. A plane strain state as well as appropriate boundary conditions
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Figure 9.8.: Axial Cauchy stress within two load cycles and error of the stresses at max-
imal elongation vs. the number of time steps.

are prescribed. A sinusoidal tension-relaxation test with rising amplitudes of 2.5 and
5 % is applied within a time period of 10s per cycle. Voids start growing at a critical
tension and collapse due to compression. Once the void volume fraction has reached its
initial value (here: fV 0 = 4e− 6, a0 = 1µm), the pressure is unbounded. The deviatoric
plastic strain is accumulative, i.e., it may grow in tension and compression.

The convergence of the numerical solution with decreasing time step is illustrated in
Figure 9.7. Displayed are the computed plastic volumetric expansion and the equivalent
plastic strain. For visibility we enforce here N > 0. Thus only tension causes plastic
volumetric expansion, whereas plastic strain accumulates in tension as well as in com-
pression. The reference solution is obtained by an extremely fine time discretization of
10000 steps per cycle and is ostensibly indistinguishable from the exact solution. The
strong convergence of the numerical solution and the excellent accuracy obtained with
relatively large time steps is evident from the plots.

Figure 9.8 shows the axial Cauchy stress within two cycles and the error measured at
maximal elongation in both cycles. The computed rate of convergence is linear. It is
noteworthy that the error appears to be very insensitive to variations in the material
parameter.
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9.3 Examples of predicted material behavior

9.3.5. Taylor bar

A common experiment to determine deformation in ductile metals is the Taylor impact
test. In this test a cylinder of metal is impacted against a rigid flat surface. Typically this
experiment results in a flared end of the cylinder at the impact surface, with decreased
bulging towards the free end. Consequently internal ductile damage is expected. Because
of the bulging (which is a volumetric expansion) a nucleation and expansion of voids is
observed in experiments, see Figure 9.9.

Figure 9.9.: Void formation in a Taylor impact specimen loaded with an initial velocity
of v = 300 m/s, cited from [127].

E ν σ0(T0) εp0 n a0 ρ0

[GPa] [MPa] [µm] [kg m−3]
69 0.33 1000 0.01 10 100 2700

N ε̇p0 m T0 Tm l α
[m−3] [K] [K] [K−1]
109 0.01 100 293 700 1 42 × 10−6

Table 9.2.: Material parameters for 1100 aluminum.

Referring to experimental results provided in [127], we analyze a Taylor impact specimen
with diameter d = 12.5 mm made of 1100 aluminum with material data of Table 9.2, see
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9.3 Examples of predicted material behavior
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Figure 9.10.: Volumetric plastic expansion ϑp in the Taylor impact specimen loaded with
an initial velocity of v = 300 m/s at time 3 µs.

also [359, 360]. The impact is presumed to be normal to the initial surface at a relative
velocity v = 300 m/s, contact boundary conditions are applied on the impact interface.
This way no penetration of the rigid target is allowed, but lifting is possible. The impact
causes a compressive shock wave propagating through the cylinder; tensile stresses are
observed to form along the axis as a result of interacting release waves emanating from
the lateral free surfaces of the cylinder. This tension induces plastic void cavitation.

For the numerical analysis an explicit Newmark-time discretization algorithm is em-
ployed, with the stable time step estimated from the Courant condition based on the
elastic modulus. The spacial finite element model consists of composite 10-node tetra-
hedral elements with piecewise linear shape functions (cf. Chapter 5). The meshes are
generated automatically by a commercial mesh generator [307]. Note that the triangu-
lations are somewhat irregular and show no rotational symmetry.

Figure 9.9 shows the midsurface of a Taylor impact specimen from [127]. The photo
illustrates the void formation near the impact interface caused by a relative impact
velocity of v = 300 m/s. Figure 9.10 displays the computed volumetric plastic expansion
in the midsurface of our finite element model. We observe in our computation the largest
plastic volumetric expansion along the axis near the impact interface. This localization
matches very well the experimental results.
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9.4 Fragmentation of an expanding ring
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Figure 9.11.: Plastic volumetric expansion in Taylor impact specimen at time 3µs

In Figure 9.11 the distribution of plastic volumetric expansion is plotted at the outer
surface of the deformed cylinder. The values of the plastic variable ϑp are much smaller
here. But if the impact velocity increases, we observe high plastic volumetric expansion
also at the boundary, indicating a shattering fringe of the impact surface.

9.4. Fragmentation of an expanding ring

An example of the versatility of the porous plasticity model developed here is the simu-
lation of the forced expansion and ductile fracture and fragmentation of U-6%Nb rings.
An outward radial force is applied to the rings by a driver ring, which in turn interacts
with a solenoid. When current is applied to the solenoid, a magnetic force is induced
in the driver ring creating a uniform radial body force. The U-6%Nb rings are thus
forced to expand and eventually fracture dynamically [24]. Such magnetic loading has
distinct advantages such as the fact that the motion of the sample results from continu-
ous body forces instead of shock loading and the ability to control loading rates through
the driving-current pulse.

The U-6%Nb rings have an inner diameter of 34.37mm, an outer diameter of 35.89mm,
and thickness of 0.76mm. An arrestor ledge in the experimental device prevents the
driver ring to expand beyond a diameter of 40.0mm, but the U-6%Nb rings are allowed to
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9.4 Fragmentation of an expanding ring

Figure 9.12.: Finite element mesh for U-6%Nb rings: 2634 nodes, 882 elements.

expand driven by their kinetic energy, until they eventually fracture and fragment. The
initial velocity history applied to the U-6%Nb rings varies according to three different
accelerating voltages of 5.0kV, 6.0kV, and 7.5kV [24]. Figure 9.13 shows the resulting
ring fragmentation at 7.5kV.

The U-6%Nb alloy is modeled by using the porous plasticity model developed here in
conjunction with the strain localization model developed in Section 8.3, which is specially
well-suited for the simulation of nucleation and propagation of ductile fracture. The
coarsest finite element mesh used in our simulations is shown in Figure 9.12. The finite
element model is three dimensional and consists of composite ten-noded tetrahedra. The
initial number of nodes is 2634 and the initial number of tetrahedral elements is 882.
The calculations are fully lagrangian. The nucleation and propagation of fracture is
simulated by adaptively inserting surface-like strain localization elements between bulk
elements when εp ≥ 0.4 at the interface. This value is representative of the critical
plastic strain for metal ring fragmentation at high strain rates observed in experiments
[129]. The material parameters used in the calculation are as shown in Table 9.3.

Figure 9.13.: Fragmentation pattern, numerical vs. experimental result [24].
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9.4 Fragmentation of an expanding ring

The fragmentation of a body due to impulsive loads is a complex phenomenon in which
stress waves, the effect of high strain rates on material properties and the statistics of
fracture nucleation and growth interact strongly. Grady and Benson [129] observed in
experimental tests on (aluminum and copper) rings subjected to electromagnetic loading
that fracture was preceded by the nucleation and growth of numerous necks resulting
in the formation of multiple fragments. The fragment sizes exhibit a characteristic
distribution. Moreover, they observed that the number of necks and fragments is an
increasing function of the expansion speed indicating that inertia and strain rate effects
play a significant role.

E ν σ0(T0) εp0 n a0 ρ0

[GPa] [MPa] [µm] [kg m−3]
165 0.15 600 0.01 10 100 17300

N ε̇p0 m T0 Tm l α
[m−3] [K] [K] [K−1]
1010 0.001 500 293 1400 0.75 42 × 10−6

Table 9.3.: Material parameters for U-6%Nb alloy.
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Figure 9.14.: Velocity history for U-6%Nb rings. Experimental data taken from Becker
[24].

Figure 9.14 shows the calculated and experimental velocity histories reported by Becker
[24], as well as the velocity histories obtained in our simulations. The radial velocity of
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9.4 Fragmentation of an expanding ring

all the nodes on the inner radius is initially prescribed to match the radial velocity of the
driver ring, as measured by experiments [24], up to the peak velocity for each curve in
Figure 9.14. The figure shows that after release there is a noticeable decrease in velocity
which can be attributed to kinetic energy being converted to plastic deformation. The
region in which the curves become irregular and constant on average is where fracture has
occurred. We see from Figure 9.14 that our calculations capture very well the region of
plastic flow and the initiation of fracture and fragmentation as measured by experiments.
The closeness of our calculations to those of Becker [24] is also remarkable, considering
that the mesh used in our calculation is much coarser (882 vs. 15000 elements).

εp εp

εp εp

Figure 9.15.: Dynamic fracture and fragmentation of U-6%Nb rings. Configurations at
0µs, 30µs, 60µs and 90µs.
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9.4 Fragmentation of an expanding ring

A sequence of frames of the fracture and fragmentation of the U-6%Nb rings for the case
of an applied voltage of 7.5kV is shown in Figure 9.15. The elapsed time between frames
is 30µs, and the color bar indicates the value of the plastic strain. For this particular
voltage, the time when fracture starts to occur is approximately 30µs [24]. The figure
clearly shows the expansion of the ring and the process of fracture and fragmentation
that begins around 30µs. The number of major fragments obtained in the simulation is
26, compared to 19 fragments as observed in experiments [24].

It is worth to emphasize that the material is assumed to undergo strain hardening at
all times, and that the temperature rise in the bulk material is modest. Therefore,
the necking instability is essentially geometrical in nature, with competition between
the necks, some of which thrive while other arrest. The arrested necks result from
the arrival of relief waves emitted by the most active necks. These relief waves cause
the driving force for the extension of the weak necks to drop, with the result that
the necks eventually arrest. Since it takes time for waves to travel around the ring,
the failure mode is sensitive to the expansion speed. Note that the many competing
unstable modes renders the solution of the perfect system massively non-unique. As is
common in bifurcation problems, the particular choice of solution depends sensitively on
initial imperfections such as effectively introduced by the mesh. Correspondingly, this
imperfection sensitivity explains the variability in the experimental measurements. In
this challenging setting, the numerical simulations have proven highly predictive, with
no significant mesh dependence. For example, the very fine mesh of 32000 elements (not
shown here) which needs to run on a 32 processor parallel machine leads to very similar
fragmentation patterns [228].

The framework presented in here puts forth a workable set of constitutive functions to
be modeled or identified, namely, the elastic energy density, the stored energy function,
the dual rate-sensitivity potential and the microinertia density. For actual materials,
this identification can be achieved, e.g., by analyzing a periodic distribution of voids in
a single crystal.
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10. Damage Assessment of

Microelectronic Components in

Printed Circuit Boards under

Thermal Cycling

high density substrate copper via

cracks and pores in the
cross section of  via wall

Figure 10.1.: Cross section of a microchip

The stress and strain state of the metal components in microelectronic circuit boards
essentially determines the life expectation of the whole chip unit. Therefore, the thermal
fatigue of the plated-through copper vias and fatigue and aging the solder joints are
subjects of great interest for the chip producing industry. Failure of these connectors due
to thermo-mechanical stresses remains a subject of concern, particularly when exposed
to high operating temperatures as, e.g., associated with automotive applications. To
illustrate the typical components of a printed circuit board an experimental picture
from [3] is shown in Figure 10.1, a schematic view provides Figure 10.2.
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Figure 10.2.: Schematic view of a microchip

In this Chapter we analyze in detail the performance of different types of copper vias
in different positions on a printed circuit board. To this end a two-scale finite element
analysis under the loading conditions of thermal cycling is employed. A new material
model basing on the concepts outlined in Chapter 6 and Chapter 7 is applied for the
electrolytically deposited copper. This material model accounts for large elastic and
plastic deformations and, additionally, for the growth of pores.

To estimate the long term response, i.e., the fatigue performance, it is common practice
to extrapolate the plastic straining computed within few steps of thermal cycling by
means of a Coffin-Manson-Equation. We critical examine this strategy here and point
out, that a certain number of about 20 cycling steps is necessary to obtain meaningful
extrapolations, cf. [366]. Furthermore, an extrapolation of the computed porosity up to
critical values (known from ductile fracture) allows similar conclusions.

The presented strategy can serve as a predictive tool for the stress state of plated through
holes and vias and can reduce the need of repetitive experimental failure tests. Prereq-
uisite for reliable predictions of any finite element analysis are material parameter of
sufficient accuracy. This, in turn, requires experimental measurements on these micro-
scopic small parts. This problem arises for the electrolytically deposited copper (where
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10.1 Thermally stressed plated-through vias in printed circuit boards

we rely on the material data provided by [103]) but is nowadays especially significant for
the alloys of the solder bumps. Environmental awareness motivates the replacement of
traditional plumbiferous solder joints in microelectronic devices by new lead-free alloys.
A strategy of how to obtain information about the unknown material will be sketched
in the final section of this chapter on the example of SnAg solder.

10.1. Thermally stressed plated-through vias in printed

circuit boards

Plated-through holes and vias form conductive paths between the different copper layers
of circuit boards, see Figure 10.3. Failure of these connectors due to thermomechanical
stresses is an established cause of failure of circuit boards. Therefore, life expectation of
plated through vias is of great interest for the microelectronic industry.

Vias are commonly made of (electrolytically deposited) copper whereas the surround-
ing material is typical a non-isotropic resin, e.g., the glass fibre reinforced resin FR4
(flame-retardant 4 material substrate), [233]. To ensure the required life expectation of
circuit units standardized thermal cycle tests are performed. Due to the different ther-
mal expansion coefficients of the copper and the anisotropic board the copper vias are
highly stressed and strained. This leads to an accumulation of permanent irreversible
strains associated with cracks and pores which eventually result in the electro-mechanical
destruction of the connector.

(a) HDI components, cf. [3]

copper via

z

(b) schematics of plated-through via and microvia

Figure 10.3.: Board and SMT components in the cross section of a microchip

In this paper we will present a numerical study of such copper vias subjected to thermal
cycling between −40oC and +150oC (automotive standard, see Figure 10.4). After intro-
ducing a general technique of how to analyze the stress state in small chip components
we focus on a new material model accounting for both, plastic straining and the growth
of pores and voids within the copper via. We estimate the damage for vias with different
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10.2 Finite-element modelling of the circuit board and the plated-through vias

fillings and in different positions in an FR4 board onto which a flip chip component has
been mounted (FCOB = Flip Chip On Board) and we suggest a technique for improved
life time estimation.

10.2. Finite-element modelling of the circuit board and

the plated-through vias

High Density Interconnect (HDI) technology is an advanced packaging technology en-
abling more and more functions to be utilized in a smaller area for, e.g., the next gen-
eration of small portable electronic communication devices. HDI technology is based
on various types of build up methods for the manufacture of multi-layer Printed-Circuit
boards (PC boards). Figure 10.3 illustrates the principle setup of a PC board with
plated-through holes, vias and microvias, where the main physical difference between
the first two is the diameter of the hole. A plated-through-hole is usually made to have
a wire or a lead of a component soldered into it. After plating the inner diameter of the
hole is sized such as to receive a wire with sufficient clearance. A via is a special kind
of plated through holes that is not intended to contain a wire but simply to provide a
conductive path from one copper layer to another. Thus, its hole diameter is usually
much smaller. A microvia is an even smaller connection to attach solder balls to the
copper layer structure on the PC board (right hand side of Figure 10.3b). Microvias can
be studied in a manner completely analogous to the one presented here for vias.

Note that the issue of filling the plated-through vias with solder or epoxy and, if pos-
sible, to increase its life expectation as opposed to leaving it unfilled has been open to

Figure 10.4.: Temperature cycling between −40oC and 150oC
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10.2 Finite-element modelling of the circuit board and the plated-through vias

x

z

y

Figure 10.5.: Finite-element model of a FCOB circuit unit.

considerable debate, see, e.g., [17].

Compared to a PC board and the microelectronic components mounted thereon the
plated-through vias and microvias are much smaller. If modeled directly this would lead
to a finite-element mesh with an unnecessarily high amount of degrees of freedom. For
that reason we make use of a submodelling technique. This is a two-step procedure during
which a global model is created first. In the presented case the global model consists
of the chip (more precisely: the FCOB unit) and of the PC board, for dimensions
see Figure 10.5. Note that delicate substructures, such as the vias, are not included.
Moreover, by symmetry the finite-element mesh is reduced to one quarter of chip and
board. A finite-element analysis is then performed with this model, i.e., temperature
cycles between −40oC and 150oC are imposed (233/423 K), see Figure 10.4, where the
first step describes the cooling down from the melting temperature of SnPb solder of
183oC. From the global structure the locally resulting stresses, strains, and deformations
are calculated.

In a second step finite-element submodels of the structures of interest, namely the plated-
through vias, are created in a way that the geometry of the real objects is reflected in a
sufficiently accurate manner. The deformations at selected positions that result from the
finite-element calculation of the global model are now extrapolated and imposed onto the
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3

1

4

2 5 6

x

y

z

Figure 10.6.: Positions of the vias within the global structure

periphery of the local models. Thus, the mechanical response within the substructures
can be calculated. Clearly, it is desirable that during the Finite-Element Analysis (FEA)
the stresses and strains are as accurately calculated as possible. Therefore, special
attention must be paid to the generation of the submodel meshes so that all regions of
interest, in the present case the copper, are sufficiently far away from the boundary of
the submodel.

The global model essentially consist of a chip mounted upon a PC board. The board is
made of FR4, a special resin with high glass-transition temperature and with orthotropic
material properties Ex = Ey = 14218 MPa and Ez = 7109 MPa at 223K and Ex = Ey =
11225 MPa and Ez = 5613 MPa at 423 K. More detailed data for the material can
be found in [233]. In order to avoid the aforementioned numerical inaccuracy problems
in context with the submodels, i.e., in order not to use submodels that show copper
structures upon their surfaces a quarter of the whole structure was modeled. Symmetry
conditions were imposed along the diagonal surfaces. Moreover, it was made sure that
the front surface of the compound consisting of solder stop mask and PC-board did not
tilt but rather moved in a straight manner in order to mimic the embodiment of the
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10.2 Finite-element modelling of the circuit board and the plated-through vias

via 1 2 3 4 5 6
x 1.5 0.0 0.0 2.91 0.0 0.0
y 2.5 2.35 1.0 4.0 4.0 4.8

Table 10.1.: Positions of the vias

package within the whole assembly.

A submodel for the straight-through via is shown in Figure 10.6. Note that the copper
part is also completely surrounded by underfill, solder stop mask and PC board material.
The submodels were positioned at various points of the board, see Table 10.1. For reasons
of conciseness only one eighth of the whole structure is shown in Figure 10.6 with the
out-of plane direction being the z−axis. However, all submodels, also those along the
horizontal line, i.e., the y−axis, are completely embedded in the global model.

The dimensions of the plated-through vias are as follows: width of the basal plane of
the whole submodel 1.0 mm, wall thickness of the copper cylinder 0.022 mm, inner
diameter 0.256 mm, outer diameter 0.65 mm, height of the submodel 1.5 mm. At the
upper and the lower surface the copper via is covered by a thin layer of solder stop
mask with material parameters from E = 6000 MPa, ν = 0.34 at T = 218 K down to
E = 1000 MPa, ν = 0.42 at T = 423 K and a thermal expansion coefficient of α = 6 1/K.
The copper structure is surrounded by the orthotropic FR4 resin (cf. Figure 10.6).

Figure 10.7.: Stress-strain curves for electrodeposited copper provided by [103].

During the manufacturing of plated-through vias and other electrical connectors in
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10.2 Finite-element modelling of the circuit board and the plated-through vias

high-density-substrates the copper is electrolytically deposited, hence, the mechanical
properties may differ significantly from those of bulk copper. Stress-strain curves for
electrolytically deposited copper are provided in the literature with data depending on
temperature. The presented finite-element simulations make use of the material data
shown in Figure 10.7. These stress-strain diagrams were published by DiTomaso [103],
obtained from data provided by IBM electronics division at Endicott, NY, based upon
in-house testing of electrodeposited copper. The corresponding thermal expansion coeffi-
cient is α = 17.6 1/K. At all the temperatures shown in Figure 10.7 an initial yield stress
can clearly be distinguished at the end of an elastic branch. This is then followed by
hardening up to strains of ε = 0.025. By experience the region of hardening is frequently
extrapolated toward higher strains without experimental verification. Presuming that
the stress-strain curves from Figure 10.7 are realistic even at larger strains we apply
these data to describe hardening of the yield stress by a power law of the form

σy = σy0
(
1 +

εp

εpy0

)1/n
, (10.1)

where n = 25 is the hardening exponent and σy0 , ε
p
y0

, are the (temperature dependent)
initial yield stress and reference plastic strain, respectively.

The material data of [103] describe a very soft material behavior, with an elastic mod-
ulus in the range of 40000 MPa and an initial yield stress of 150 MPa and lower, see
Figure 10.7. Different but only qualitative observations are reported in [149] and [245]
stating that electrodeposited copper has a higher tensile strength than bulk copper. Read
et al. [278] observe in electrodeposited copper films material properties of the same range
as typical bulk copper, i.e., E ≈ 120 GPa and initial yield stresses of ≈ 250 MPa, whereas
Lu et al. [183] measure initial yield stresses from of 250-500 MPa up to 1000 MPa de-
pending on the microstructure of the electrodeposited copper. Atomic-scale numerical
simulations of nano-crystalline copper in [296] even yield, depending on temperature and
grain size, to initial yield stresses of 0.8 − 1.5 GPa. Furthermore, in [260] the influence
of processing conditions on the properties of copper interconnects is investigated, with
the result that, e.g., the porosity of the copper reduces while the hardness increases
with increasing processing pressure. Unfortunately, none of the other sources provide
such detailed information about the temperature dependency of the material data of
electrolytically deposited copper as [103].

In Figure 10.8 the von Mises stress in the deformed board after cooling to a minimum
temperature is shown, with the red and grey colored regions referring to the maxima (of
150 . . . 460 MPa) and blue marking the nearly unstressed regions. The warpage of the
global structure is magnified by a factor of 50. It can clearly be seen that the highest
deformation is along the diagonal surfaces, whereas in the vicinity of via position 4 the
highest stresses occur. Depending on the position within the board the warpage will
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10.3 Material model for the electrolytically deposited copper

Figure 10.8.: Von Mises stress in the deformed PC board model

directly influence the deformations of the submodels. Anticipated from the global model
in the via positions 1, 2, 4 and 5 shearing deformation appears to be dominant whereas
in positions 3 and 6 the via will essentially be stretched.

10.3. Material model for the electrolytically deposited

copper

Cavities or voids in metals may be defects in the crystal lattice, along grain boundaries
or simply vacancies arising during manufacturing, [189, 275]. Typically the size of these
cavities is small compared to the size of the structure. Their amount is measured by
pore volume fraction or porosity (see Chapter 7)

fV =
volume of pores

total volume
. (10.2)

In metals the initial porosity is typically in the range of 10−2 to 10−4. By the technique of
electrolytically depositing copper the initial porosity is expected to be higher (cf. [246]),
but exact data are not available. To account for both damaging mechanisms, shear
induced plastic straining and growing porosity in the copper material, we describe the
material with the constitutive model of Chapter 7 which combines classical von Mises
plasticity with plastic volumetric expansion as induced by the growth of pores. In the
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10.3 Material model for the electrolytically deposited copper

following we shortly summarize the essential ingredients employed here and repeat some
basic equations for readability.

The thermo-mechanical response of the material is characterized by a free-energy density
per unit reference volume A = A(T,F ,F p, εp, ϑp), where T is the absolute temperature,
F denotes the deformation gradient whereas F p and F e denote the plastic and elastic
part of the deformation gradient, respectively, which are related multiplicatively, equa-
tion (6.1). Moreover, the internal variable εp describes the effective plastic straining,
whereas ϑp measures the effective volumetric plastic expansion.

Note that we account in this material model for the full kinematics of large deformations.
By the use of logarithmic and exponential mappings the subsequent equations can in
part be written in the more familiar terms of strain tensor ε with elastic and plastic
components εe and εp, respectively. To this end we remember the definition

ε =
1

2
ln(F>F ) (10.3)

and

εe =
1

2
ln(F e>F e) and εp =

1

2
ln(F p>F p) (10.4)

to obtain with (6.1) the additive decomposition

ε = εe + εp. (10.5)

In general the material response is time-dependent. Here the speed of loading is slow
(in the range of several minutes) and therefore strain rate effects are of minor influence.
On the other hand, creep effects might play a role. The proper criterium to apply in
that case is the so-called homologous temperature, i.e., the current temperature divided
by the melting temperature of the material (in K). Creep shall dominate at homologous
temperatures above 0.5. However, with a melting temperature of about 1300 K copper
has a homologous temperature ≤ 0.3 for the temperature range of interest in this chapter.
Therefore, for the calculation of the irreversible deformation in copper creep will be
neglected and we proceed to establish a time-independent material model.

We assume that the free-energy density has the additive structure

A(F ,F p, εp, ϑp, T ) = W e(F e, T ) +W p(εp, ϑp, T ), (10.6)

where W e(F e, T ) and W p(εp, ϑp, T ) are the elastic and stored plastic (i.e., dissipated)
energy densities per unit undeformed volume, respectively. The elastic strain-energy
density may alternatively be expressed in terms of the logarithmic elastic strains (10.3),

W e ≡W e(εe, T ) = W e,vol(trεe, T ) +W e,dev(dev(ε), T ), (10.7)
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10.3 Material model for the electrolytically deposited copper

where we split the energy density into a volumetric component and a shear deformation
controlled deviatoric component. The corresponding deviatoric part of the strains results
from the decomposition

dev ε = ε − 1

3
I trε with trε = ε11 + ε22 + ε33. (10.8)

Then, with bulk modulus κ, shear modulus µ, mass density %0 and specific heat per unit
mass cv the elastic energy density reads

W e =
κ

2

(
trεe − 3α(T − T0)

)2
+ %0cvT

(
1 − ln

T

T0

)
+

2

3
µ | dev εe|2. (10.9)

Following the classical thermo-mechanical approach of Chapter 6.1 and 7.4 the stresses
can be computed from the derivative of the energy density with respect to the conjugate
deformation variable. In particular, the von Mises (or effective deviatoric) stress σe is
determined by the relation

σe = −∂W
e

∂εp
(εe, T ) (10.10)

whereas the pressure is recovered as

p = −∂W
e

∂ϑp
(εe, T ). (10.11)

The dependence of the elastic energy density W e on the plastic variables εp and ϑp is a
consequence of the (prior solution unknown) decomposition (10.5).

The rate of plastic deformation is assumed to obey the flow rule (7.122)

Ḟ
p
F p−1 = ε̇pM + ϑ̇pN ,

where the tensors M and N set the direction of the deviatoric and volumetric plastic
deformation rates, respectively. The tensor M is assumed to be trace-free and normed,
i.e., trM = 0 and |M |2 = 3

2
whereas the tensor N is allowed to take one of two

values, N = ±1
3
I with the plus sign corresponding to plastic volumetric expansion

(pore growth), and the minus sign to plastic compression (pore collapse). The tensors
M and N are otherwise unknown and are to be determined as part of the solution. The
constraints may be regarded as defining the assumed kinematics of plastic deformation.
The rates of the internal variables ε̇p and ϑ̇p describe plasticity due to deviatoric straining
and volumetric expansion. They are subject to the irreversibility constraints

ε̇p ≥ 0 and ϑ̇p ≥ 0. (10.12)
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10.3 Material model for the electrolytically deposited copper

The stored plastic energy density W p is also additively split into volumetric and de-
viatoric components. The deviatoric part of W p is constructed to prescribe power-law
hardening of the yield stress σy according to equation (10.1). This gives

W p,dev ≡ W p,dev(εp, T ) =
nσy(T )εpy0
n+ 1

(

1 +
εp

εpy0

)n+1

n

. (10.13)

The volumetric component W p,vol = W p,vol(ϑp, T ) will be specified in detailed below.
Then, the deviatoric yield stress reduces to

σy =
∂W p

∂εp
(T, εp, ϑp), (10.14)

and, likewise, the critical cavitation pressure is

py =
∂W p

∂ϑp
(T, εp, ϑp). (10.15)

Summarizing the thermo-mechanical framework we define the thermodynamic force Y
conjugate to the internal variable εp as

Y = − ∂A

∂εp
= σe − σy, (10.16)

where the effective deviatoric stress and the yield stress are given by (10.10) and (10.14),
respectively. With pressure (10.11) and (10.15) the thermodynamic force Z conjugate
to the internal variable ϑp takes the form

Z = − ∂A

∂ϑp
= p− py. (10.17)

Up to here the components of the free-energy density function coincide with established
theories of elasto-plasticity extended to the finite range. The goal of the remaining
paragraph is to relate the continuum measures of volumetric deformation to the materials
porosity. For further analysis we assume a spherical shell model, i.e., the material is
modeled as a conglomerate of (initially very small) spherical pores each surrounded by a
sphere of matrix material, Figure 7.2. In that way the properties of the porous ensemble
can be inferred from the behavior of a single pore.

Consider a representative volume of material of undeformed volume V0 and deformed
volume V related by V = JV0, where

J ≡ det F = det(F eF p) = JeJp (10.18)
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10.3 Material model for the electrolytically deposited copper

is the local Jacobian of the deformation and Je and Jp are the corresponding elastic
and plastic parts. We recall that Jp is the ratio of the volumes of infinitesimal material
neighborhoods in the plastically-deformed setting and the reference setting. In standard
theory of plasticity the solid is not assumed to expand (or compress) plastically, i.e.,
Jp ≡ 1. Alternatively we formulate here with (10.18)

Jp =
V

JeV0
(10.19)

to explicitly allow for plastic volumetric expansion of the material.

Let now Ñ V (a, t) be a given mesoscopic void number density of pores with radius a(t),
[363, 362]. Then, the number of spherical voids per unit undeformed volume of the body
is

NV (t) =

∫ ∞

0

Ñ V (a, t) d a. (10.20)

By

ā ≡ ā(t) =
1

NV (t)

∫ ∞

0

Ñ V (a, t) a(t) d a (10.21)

we define the current mean void radius. The local volume fraction of pores (10.2) in the
deformed configuration is then simply given by

f(t) = NV (t)
V0

V (t)

4πā(t)3

3
. (10.22)

Neglecting the elastic volume change of the voids we can write for the plastic Jacobian
(10.19) of a body with NV voids per volume

Jp = 1 − f0 +NV
4πā3

3
. (10.23)

This relation place the mean void radius ā and Jp in one-to-one correspondence.

From the plastic incompressibility of the matrix material and the kinematics of void
growth outlined in Chapter 7.1 we derive the rate of the effective von Mises strain

ε̇p(r, t) = |∂ṙ
∂r

|=
2ā2(t)

r3(t)
| ˙̄a(t)| (10.24)

with current radius r = (r3
0 − a3

0 + ā3)1/3. Presuming a monotonic void growth time
integration of (10.24) gives the plastic strain

εp =
2

3
ln
(
1 +

ā3 − a3
0

r3
0

)
. (10.25)
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The stored energy for a spherical void in a power-law hardening material equals the
plastic work of deformation attendant to the expansion of the void. In the dilute limit,
the total energy stored by the void ensemble is the sum of the energy stored by each
individual void. These considerations applied to a spherical shell model lead by direct
calculation to the stored energy of volumetric plastic work

W p,vol(ā, T ) = NV

∫ b

a

nσ0(T )εpy0
n + 1

(

1 +
εp

εpy0

)n+1

n
4πr2 d r. (10.26)

As discussed in Chapter 7.4 the variable ϑp is a measure of the accumulated volu-
metric plastic deformation and ϑp coincides with ln Jp for monotonic expansion, equa-
tions (7.130, 7.131). Then, the stored energy of volumetric plastic work can be formu-
lated as

W p,vol(ϑp, T ) =
nσ0(T )εpy0
n+ 1

N
4πā3

3
g(ϑp, n), (10.27)

with function (7.170) of Chapter 7.3 reformulated as

g(ϑp, n) =

∫ 1

f

1

(

1 +
2

3εpy0
ln

x

x− 1 + f0
f0+exp ϑp−1

)n+1

n

d x. (10.28)

Note that these relations hold for arbitrary plastic deformation of the matrix material,
F p and εp, respectively. In an analogous manner additional energy contributions , e.g.,
the kinetic energy of the body attributed to void expansion, can be computed, see
Chapter 7.3 or [365].

For an arbitrary loading combining alternating phases of pore expansion and collapse
the distinction between the two variables Jp and ϑp becomes important. For instance,
imagine now that the pore radius history ā(t) grows monotonically from a0 to a1, then
decreases monotonically from a1 to a2 etc., see equations (7.63–7.66), and we define
q(t) of equation (7.66) to be the maximum attained pore size. In particular, q(t) is
a monotonically increasing function for every history of ā(t). For integration of the
accumulated plastic strain from (10.24) and for the formulation of the stored energy
function (10.27) now function q(t) needs to be employed.

Note that for an arbitrary history of the plastic volumetric expansion the value of ϑp(t)
rises even when the pores shrink. That means by constraint (10.12) the internal variable
ϑp(t) basically measures the ups and downs of pore growth and, therefore, can not
anymore be compared to the monotonic loading. The information about current pore size
is in general solely in Jp(t) via relation (10.23). The corresponding physical constraint
is now

Jp ≥ 1, (10.29)

i.e., the pores are not allowed to be smaller than the initial pore size with Jp = 1.
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10.4 Comparison of numerical results after five temperature steps

(a) plastic strain εp (b) pore growth ϑp

Figure 10.9.: Distribution of accumulated plastic strain and porosity (as indicated by εp

and ϑp) in an unfilled via at position 4 after 5 temperature steps (maxima:
red, minima: blue)

10.4. Comparison of numerical results after five

temperature steps

The presented material model was employed to study the response of the plated-through
vias during thermal cycling. It is common practise to simulate only a few steps of the
temperature cycling test and extrapolate the results until fatigue failure is anticipated.
Following the traditional approach of, e.g., [2, 3, 17, 233, 378], we apply a temperature
history as follows: 456 K—233 K—423 K—233 K—423 K—233 K, where 456 K refers
to the melting temperature of eutectic SnPb which was assumed to be the stress free
state of reference. Note that we apply two forms of loading on the via submodel, the
temperature dependent material behavior and the deformation resulting from the global
model. Moreover, in order to account for the maximal possible growth of pores within
the copper material the irreversibility constraint (7.190) is applied. Physically speaking
this means that we allow the voids to open but not to close irreversibly.

Three (limit) cases are considered.

1. unfilled: The plated-through vias are empty copper vias embedded in the board
as described in Section 10.2.

2. soft filled: The copper vias are filled with solder stop mask with material data as
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10.4 Comparison of numerical results after five temperature steps

(a) plastic strain εp (b) pore growth ϑp

Figure 10.10.: Distribution of accumulated plastic strain and porosity in a soft-filled via
at position 4 after 5 temperature steps (maxima: red, minima: blue)

outlined in Section 10.2.

3. hard filled: The vias are filled with a material harder than copper. We choose
here the material parameter of mild steel.

All via positions are analyzed with these three fillings.

Summarizing the results after the temperature changes have been applied we observe
that in the cases of no filling and soft filling the vias are — to a different extend —
strained mostly in the middle of the copper cylinder. The typical strain distribution is
displayed for an unfilled and a soft-filled via of position 4 in Figure 10.9 and Figure 10.10,
respectively. In the unfilled via the values of both, plastic strain and volumetric plastic
dilatation, i.e., maximal porosity, are smaller than in the filled via. Depending on the
position of the unfilled via the maxima of plastic strain and of plastic dilatation occur in
the outer region (position 1, 2, 4, 5) as well as in the inner regions (position 3, 6) of the
thin copper cylinder, whereas in case of a soft filling the maximum values are all found
on the inner side. In that context the wall thickness of the copper cylinder may be of
considerable influence and needs to be further investigated.

For hard fillings the location of the maximum straining shifts — as one may expect —
away from the copper tube to the attached upper and lower layers, see Figure 10.11.
Note that because our FEA does not consider debonding of the copper material from
the filling the straining that was computed here is not necessarily realistic. The values
may differ in particular in case of a loose fitting of a stiff filler, e.g., a wire. This may
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10.4 Comparison of numerical results after five temperature steps

(a) plastic strain εp (b) pore growth ϑp

Figure 10.11.: Typical distribution of accumulated plastic strain and porosity in a hard-
filled via (maxima: red, minima: blue)

also prevent bending of the copper tube but it allows for pressure and tension, the main
mechanisms that cause pores to grow.

In Table 10.2 the results are given in detail. Because FEA of the vias at position 1 and
4, and, 2 and 5, respectively, leads to very similar results, we list here only the latter.
Moreover, for clarity all values are referred to an average strain and an average dilatation
with value 0.03.

Note that we compare maximum values and that the position of the maxima may differ.
In particular we emphasize that in case of a hard filling the maximum value is on the
upper boundaries of the via, see Figure 10.11. Nonetheless we can summarize as follows:

• The filling of the vias with solder stop mask does not necessarily improve the
mechanical properties of the structure. After five temperature changes the unfilled
vias show lower plastic strain and lower porosity.

• A hard filling supports the via, i.e, it prevents bending. The maximum of straining
is shifted from the center to the boundary of the structure instead.

• The via at position 3 (in the middle of the chip) as well as the via at position 4 (on
the diagonal) are the most strained ones, and, moreover, show different regimes
of loading (stretching, bending). We therefore proceed analyzing only these two
positions.
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10.4 Comparison of numerical results after five temperature steps

via position relative strain maximum relative dilation maximum

3 0.8588 0.2905
4 no 0.9123 0.4183
5 filling 0.8012 0.2859
6 0.8478 0.3095
3 1.1223 0.7630
4 solder stop 1.2328 0.8547
5 mask filled 1.0567 0.7880
6 1.1088 0.7507
3 1.1687 0.6353
4 hard 1.1757 0.6380
5 filling 1.0737 0.6637
6 1.1128 0.6340

Table 10.2.: Maxima of plastic strain and pore growth in the different via positions after
5 temperature steps.

The diagrams in Figure 10.12 allow to gain an overview of the development of maximum
plastic strain and plastic dilatation in time for the soft-filled vias located at positions
3–6. The response in all positions of the via is similar. The initial cooling 456K–233K
causes a formidable plastic strain but no plastic dilatation. The reason for that may be
a pressure dominated stress state; because of the different thermal expansion coefficients
the copper is bent but under pressure. On the opposite, rising temperature causes
tension and voids to grow but — at least in the first steps observed here — no plastic
straining. The process repeats with smaller amplitude.

The vias along the diagonals are the most severely strained, all other vias show approx-
imately the same level of strain. In all cases the finite element with the highest absolute
value in strain also shows the highest increments in strain after 5 steps. The analog
holds for the plastic dilatation, but the locations of maxima do not coincide.

A similar behavior was observed for the (not displayed) unfilled vias, but here the rising
temperature also causes a (comparative small) growth in plastic strain. Cases where in
unfilled vias the element with the highest plastic strain shows saturation already after
first cooling, as reported in [3], were not found here. However, in case of the hard-filled
vias the temporal development shows these saturation after the first step of cooling for
both, plastic strain and pore growth.
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(a) plastic strain
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(b) pore growth

Figure 10.12.: Temporal development of the maxima of plastic strain and pore growth
in the soft-filled via.

10.5. Long term response

In experiments the number of temperature cycles that a circuit board can tolerate is
generally considered to be a measure of the circuit copper’s resistance to fatigue damage.
It depends in a large part on an inverse relationship with strain amplitude ∆ε within one
cycle. The fatigue failure of a metal, as here the electrodeposited copper, is commonly
estimated using a Coffin-Manson relationship of the form (8.1).

Fatigue of copper is characterized by elastic and plastic strain components. During a
high-strain/low-cycle testing as considered here the dominant component is the plastic
deformation. Elastic deformations play a role mainly during low-strain/high-cycle test-
ing, therefore, the region of elastic deformation is also considered as the dynamic region.
In that case the first term of equation (8.1) dominates and fatigue performance is mainly
a function of the tensile strength.

Conversely, in the high-strain/low-cycle regime, the second term of (8.1) dominates and
fatigue is a function of ductility. The account in terms of stress is less useful and the
first term in equation (8.1) does not apply. The strain amplitude within one cycle is
replaced by the plastic strain increment to give

∆εp

2
= εf(2Nf)

c, (10.30)

where (2Nf) is the number of strain reversals (cycles) and εf is the related ductility.
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(a) plastic strain (b) volumetric plastic dilatation

Figure 10.13.: Distribution of accumulated plastic strain and porosity in an unfilled via
at position 3, (maxima: red, minima: blue)

The exponent c is known as the fatigue ductility exponent, commonly ranging from -0.5
to -0.7 for metals.

Different sources report that the ductility of electrodeposited copper is smaller than the
ductility of bulk copper, [17, 245, 278, 149]. Thus, we assume here a maximal ductility
of 20%.

We now apply relation (10.30) to the results of Section 10.4. The plastic strain increment
is found by averaging the plastic strain from step 2 to step 5. The first step is skipped
because the strain induced by the initial cooling gives no information about a typical
strain increment.

The region with maximum straining of the via is marked in Figure 10.13 and 10.14
by a circle. Here we get (averaged over the integration points of the element) for the
unfilled via at position 4 ∆εpave = 0.005737 and for the soft-filled via ∆εpave = 0.002876.
Applying Equation (10.30) gives a live expectation of Nf = 591 and Nf = 1867 for the
unfilled and filled via, respectively. The same procedure applied to the vias at position 3
results in Nf = 1084 for the unfilled and Nf = 525 for the filled via.

The calculated numbers of cycles are low with respect to the required life expectation of
at least 4000 cycles, i.e., Nf = 8000. Moreover, this approach does not account for the
fact that the absolute value of εp is higher in case of a filling in the vias. Also, additional
information about crack or pore growth are not consulted for life time estimation.
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(a) plastic strain (b) volumetric plastic dilatation

Figure 10.14.: Distribution of accumulated plastic strain and porosity in an unfilled via
at position 4, (maxima: red, minima: blue)

To answer the question of how reliable this simple traditional approach is, we study
in the following the mechanical response of the vias over a longer period of time and
analyze the plastic strain as well as the expected pore growth. To this end, 20 steps of
temperature cycling after the initial cooling are computed. Because of the significant
computational effort we analyze here only the maximal loaded vias at position 3 and 4,
the conclusion for the remaining via positions are analogous. In case of the hard-filled
vias we do not observe additional straining after the first cool down. Therefore, and
because hard filling is of somewhat artificial nature, we investigate in the following only
the unfilled and soft-filled vias.

The distribution of plastic variables after 21 temperature steps is shown in Figure 10.13
and Figure 10.14 for vias at position 3 and 4, respectively. During continued tempera-
ture cycling the location of the maximal values of plastic strain and plastic pore growth
changes. The displayed distribution nicely reflects the loading of the via. In position 4
bending dominates and the accumulated plastic strain and, in particular, the plastic vol-
umetric dilatation show a localization on the corresponding sides of the via. In position 3
(direct underneath the chip) the via is mainly stretched along its axis and the distri-
bution of plasticity in circumferential direction is basically homogeneous. The highest
plastic straining is accumulated in the upper half of the copper tube, whereas the pores
and voids grow increasingly towards the lower half. If we consider superposition of both
defects there seems to be a higher probability of failure within the middle parts of the
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Figure 10.15.: Temporal development of plastic straining within 21 temperature steps
for unfilled and soft-filled vias

vias. Clearly, here is some need to substantiate such an effect experimentally.

The strain values at inner and outer side of the via wall become similar. Moreover,
starting after about 8 steps the rising of temperature starts to cause a small increase in
plastic strain also for the soft-filled vias. Pore growth as modeled here can only happen
in a tension dominated state, i.e., during heating.

To account for both plastic straining and increasing porosity the temporal development
of the plastic variables is plotted in the Figures 10.15 — 10.18 for the position marked
in Figure 10.14. The values computed at this locus are close to the absolute maxima of
εp, ϑp for all analyzed vias. In order to additionally avoid numerical artifacts all plotted
values are averaged within the finite elements.

For all studied vias the cooling from manufacturing temperature of 456 K down to
233 K initiates an formidable amount of plastic strain with amplitudes higher in the
filled than in the unfilled vias. Within the next temperature steps the increments of
plastic strain are still large but around step 6 the plastic straining shows saturation.
Then it depends on the position of the via how much the strain increments reduces. To
illustrate this, Figure 10.16 shows the strain increments within the steps. We clearly
see that the increment of plastic strain computed from a FEA of 5 temperature steps
is not representative for the rest of the life cycle. The increment ∆εp is in the first

209



10.5 Long term response

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

steps

in
cr

em
en

t o
f p

la
st

ic
 s

tr
ai

n 
∆ 

εp

via @ 3, filled
via @ 3, unfilled

(a) vias at position 3
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(b) vias at position 4

Figure 10.16.: Increments of plastic strain ∆εp within the temperature steps for unfilled
and soft-filled vias

steps significantly higher than the average of steps 6 to 21. In particular, the influence
of the fillings in the vias is inverse. In case of no filling we get an average strain of
∆εpave = 0.000798 (with filling ∆εpave = 0.000664) in position 4, resulting in Nf = 15818
and Nf = 21490, respectively. The corresponding numbers of the unfilled and filled via
at position 3 are Nf = 4529 and Nf = 4942. Note that the computed live expectations
are by an order of magnitude larger than above.

Figure 10.17 displays the temporal development of the maximal possible void growth,
i.e., the volumetric plastic dilatation ϑp. Nearly constant increments ∆ϑp are observed
after each heating step. Because the volumetric plastic dilatation as a function of time
(or steps) shows an almost linear slope it may reach a critical value after a certain number
of steps. Ductile metals are known to fail by fracture when the porosity reaches a volume
fraction of at most 0.3, [343]. Extrapolating the function in Figure 10.17, this critical
porosity would be reached after 150 . . . 300 temperature steps. This number is a not
necessarily realistic because by equation (7.190) we allow the pores to open in tension
but not to shrink in compression. Consequently, ϑp can be considered an auxiliary value
which at best gives an upper limit for the realistic porosity.

Henceforth, lets follow the constitutive model outlined in Section 10.3 which allows also
for pore closure. To this end, we introduce the variable τ p = ln(Jp) to measure plastic
volume change, i.e., to account for the growth and shrinkage of voids and keep ϑp to
be an internal variable accounting for volumetric plasticity and for work hardening but
now without its physical meaning of pore growth. To ensure that the pores must not
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Figure 10.17.: Temporal development of monotonically assumed void growth within 21
temperature steps for unfilled and soft-filled vias

get smaller that their initial size within the virgin material we constrain τ p ≥ 0.

Figure 10.18 monitors the volumetric growth (and shrinkage) in the vias during 21 tem-
perature steps. In all vias the first heating steps cause a significant growth in porosity.
Then, similar to the plastic straining, a certain saturation is reached after approximately
6 steps. Thenceforward pores in the copper material open and close with every temper-
ature cycle. The resulting porosity shows a slight increase in every cycle.

To estimate the life time of a materials from its porosity an empirical equation like (8.1) is
not known. Therefore we apply the following strategy to calculate the number of cycles
when the resulting porosity reaches a critical value. First we determine the porosity
after the first few cycles, here we choose step 6. For the unfilled via at position 3 we get
τp
ini

= 1.187 · 10−4, for the filled via τ p
ini

= 2.003 · 10−4. Now we compute the average
increase of porosity within every temperature cycle from step 6 to 21 (∆τ p = 1.499 ·10−4

/ ∆τ p = 2.2135·10−4) and extrapolate that increase in a linear manner until the resulting
porosity reaches the critical value.

∆τp = (τp
crit

− τ p
ini

)N−1
f (10.31)

The number of cycles (2Nf) corresponds to the life expectation. Table 10.3 summa-
rizes the results for both, plastic straining and resulting porosity computed with 21
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Figure 10.18.: Temporal development of pore opening and closure within 21 temperature
steps for unfilled and soft-filled vias

via position Nf (ε
p) Nf(τ

p)

3 no filling 4529 1293
3 soft-filling 4942 1864
4 no filling 15818 6172
4 soft-filling 21490 14125

Table 10.3.: Life expectation in the different via positions.

temperature steps. Both criteria yield qualitatively equal results and show the unfilled
via at position 3 being the most likely to fail. The lower numbers for the porosity
criterion is likely to be caused by the linear way of extrapolation (equation (10.31) vs.
equation (10.30)). Fillings support the vias, in particular, in a tension-compression dom-
inated state. An experimental verification of the observed correlations (as well as of the
relatively high fatigue ductility) was not available to us and is left for future research.

The presented analysis of plated through vias shows that both mechanisms, plastic
straining and the growth of pores within the copper via have an essential influence on
the life time expectation of the vias and, consequently, the whole circuit unit. The actual
accumulated damage depends on the position of the via on the PC Board and on the
filling.
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10.6 Experimental parameter identification for solder alloys

The extrapolated number of cycles until failure of the units depends on the number
of temperature cycles considered in the numerical analysis. In particular, a realistic
life time estimate needs to base on a finite element analysis of at least 20 temperature
steps. Considering less steps gives rather accidental results influenced, e.g., by the
initial reference state. Furthermore, after few temperature cycles it is not yet possible
to estimate wether the filling of a copper via supports plastic straining or prevents it.

Presumed that the input to the finite element analysis, in particular the material prop-
erties of the electrolytically deposited copper and the failure criteria, reflect the actual
situation, the introduced FEA-based strategy can serve as a predictive tool for the plated
through holes and vias. This reduces the need of highly repetitive and costly experimen-
tal failure tests, resulting in significant cost savings to the industry.

A strategy to calibrated material parameter using experimental measurements will be
sketched in the remaining of this Chapter.

10.6. Experimental parameter identification for solder

alloys

Solder joints are essential components in microelectronic devices, see Figure 10.1, 10.2.
Fields of solder balls are used to join different electronic components and, concurrently,
to realize electric conductivity. A single solder ball is small, typical only a few hun-
dred micrometers in size. Due to the ubiquitous miniaturization and depending on the
technology applied, solder balls of less than 50 µm in diameter are today’s state of the
art. Traditionally, solder is made of lead alloys but for environmental reasons plumbif-
erous solder needs to be replaced by lead-free materials, e.g., alloys made of tin, silver
and copper. Unfortunately, these new materials tend to form cracks and micro-voids,
resulting in reduced load-carrying capacity and loss of conductivity. The remote goal
of our work is to numerically analyze the life cycle of lead-free solder joints. This, in
turn, requires the knowledge of the basic material parameters such as Young modulus,
initial yield stress, hardening law, critical straining as well as the time dependency of
the parameter.

10.6.1. Uniaxial tension test of solder paste

The classical experiment to determine the mechanical parameter describing elasticity,
plasticity and failure of a material is the uniaxial tension test. We conducted uniax-
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10.6 Experimental parameter identification for solder alloys

Figure 10.19.: Uniaxial tension test of a Sn95.5Ag4.5Cu0.5-solder alloy.

Figure 10.20.: Solder ball and indents on the nano scale.

ial tension tests on different lead-free solder alloys. Though the specimens are small
(with a typical length of 5mm) a uniaxial tension test is a macroscopic test. Thus, the
specimens here are made of solder paste, where we can only hope that the mechani-
cal properties are exactly the same as in the epoxy embedded 500 − 50µm sized solder
balls of a circuit board. Figure 10.19 shows the results of a uniaxial tension tests on
a specimen of Sn95.5Ag4.5Cu0.5-solder paste. Clearly, the material is of high ductility
and, moreover, the elastic range can hardly be distinguished from the beginning plastic
deformation. The problem in case of the very soft solder paste are large deviations in
the measurements (up to 100 %). Therefore, and to account for the size of the actual
solder balls, mechanical properties of lead-free alloys are determined by nanoindentation
experiments, Figure 10.20, see [4, 170, 369].
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10.6 Experimental parameter identification for solder alloys

SnAgCu

Figure 10.21.: Typical load-indentation depth curves, schematic plot and experimental
results for Sn95.5Ag4.5Cu0.5-solder

10.6.2. Nanoindentation experiments

Almost as common as uniaxial tension tests are indentation tests, i.e., experiments where
a hard tip, typically a diamond, is pressed into a material sample. After some time the
load is removed and the residual indentation area in the sample is measured. The
maximum load is divided by the indentation area to determine the hardness of the
material. Nanoindentation in particular exploits the fact that the contact area between
tip and material sample (and thus the volume of material that is tested) can be made
arbitrarily small. The problem of measuring the microscopic small area of contact is
solved by depth sensing indentation. In this method, the load and the displacement
of the indenter are recorded during the indentation process. The recorded data are
analyzed to determine the mechanical properties of the sample. In opposite to classical
indentation experiments like the Vickers- or Brinell-Test, one can obtain much more
information than just the hardness of the material.

A typical quasi-static load-displacement curve of a depth-sensing indentation experiment
is shown in Figure 10.21. As the load is applied, the indenter sinks into the material due
to both elastic and plastic deformation. If the load is held constant, the indenter may
continue to sink due to time-dependent deformation, i.e. creep. During unloading the
material recovers by a process that is primarily elastic. Methods have been developed
to analyze all the three parts, loading, holding and unloading, of the load-displacement
curves. However, the results obtained depend on the model chosen and can be very
sensitive to the details of the analysis, see [144] for a detailed study.

We use a Microsystems-Nanoindenter Machine and apply standard techniques to extract
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Figure 10.22.: Fe simulation of indentation experiments in solder using a Berkovich
indenter and error of the experimentally determined Young modulus
EOliver/Pharr vs. initial yield stress σyo for different plastic tangents Epl.

the material properties from the measured load-indentation depth curves. Without going
into detail, the Young modulus of the sample is determined by the Oliver-Pharr method
[248] out of the unloading slope, see, e.g., [115]. The initial yield stress is extracted
following the approach of Tabor [318]. Note that the underlying assumption of an
elastic-ideal plastic material results in a very rough estimate of the initial yield stress
and, moreover, precludes the specification of plastic hardening.

The typical indenter tip in nanoindentation experiments is a three-side pyramidal shaped
diamond (Berkovich diamant). This indenter is self-similar, i.e., the projected area of
contact A scales with the remaining indentation depth hc,

A = 3
√

3h2
c tan2 θ = c∗h2

c , (10.32)

where the opening angle θ = 65.3o. In experiments the factor c∗ is calibrated to the
actual machine and may deviate from theory. The load and indentation depth of a
typical SnAgCu solder sample recorded during the indentation process result in a load-
displacement curve as displayed in Figure 10.21.

To assess the quality of our experimental results we model and analyze the experimental
setup by finite element computations and compare the real (input) material data with
the results determined from the load-displacement curves. The load-displacement curve
of a typical sample recorded during the computed indentation process are shown in
Figure 10.22. The material data are E = 35000MPa, ν = 0.3, σyo = 50MPa and
Epl = 3000MPa, where the latter is the plastic tangent modulus of a bilinearly modeled
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Figure 10.23.: Load-indentation depth curve computed with same material data as above
using a spherical indenter.

elastic-plastic material law,
σy = Eplε

p. (10.33)

It can be seen from Figure 10.22 (as well as from experimental recordings in Figure 10.21),
that the indent is almost completely plastic; the slope of the unloading branch is steep
and the elastic recovery of the indentation depth (i.e., the difference of maximal and
remaining displacement) is small.

Figure 10.22 also illustrates that for the very soft and ductile solder material the standard
techniques result in a considerably large error. In the diagram on the right hand side
the elastic Young modulus determined from the (computed) load-displacement curve
with the Oliver–Pharr method, EOliver/Pharr, is plotted versus the initial yield stress, σyo,
for different plastic tangents Epl = 100, 1000, 10000MPa. The Young modulus of the
material is E = 100000MPa. Especially for low hardening materials the error of the
experimentally determined Young modulus can be significant, e.g., an error of about
50% is observed for Epl = E/1000 and a low yield stress σyo = 100MPa.

Therefore, and to collect additional information out of the measured load-displacement
curve, we apply an inverse analysis technique. To this end we model and compute the
experimental setup by finite elements, Fig. 10.22, and compare the input material data
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with the results determined from the load-displacement curve. By means of a control-
ling optimization algorithm due to Powell [274] we minimize the error and adapt the
material data of the bilinear elastic-plastic material law to the reference (experimentally
measured) load displacement curve.

Unfortunately, the approach allows to vary only two out of the three material data E,
σyo and Epl. By the self-similar geometry of the Berkovich indenter a variation of the
load results only in a variation of the total and remaining indentation depth, the area
of contact is a dependent variable. This renders the problem not unique, varying E,
σyo, Epl independently results in meaningless load-displacement curves. One way to
solve this unsatisfying situation is to include hardening information obtained from the
macroscopic uniaxial tension tests of Section 10.6.1. Another way seems the choice of
another indenter, in particular a spherical indenter. A spherical indenter is not self
similar, here,

A ∝ hcR, (10.34)

where R is the radius of the sphere. This relation gives us an additional parameter to
control (but may cause experimental difficulties, especially in calibration). The three
parameter E, σyo, Epl may now be determined by the inverse analysis technique. A
load-indentation depth curve computed with a spherical indenter of radius R = 10µm
and same material data as above is displayed in Figure 10.23. We observe a bigger elastic
range, the unloading branch clearly shows differences to the Berkovich indenter curve
in Figure 10.22. For pure elastic contact we can derive a load-displacement relationship
from Hertz-Contact theory [168],

P =
4

3

E

1 − ν2
h3/2

√
R. (10.35)

When the load is plotted versus the indentation depth in a log-log diagram we get a
strait line. A deviation from the strait line indicates the onset of plasticity. The sphere
may be enlarged to see the different (elastic and plastic) regimes during the nano-testing
procedure more clearly. Moreover, additional work needs to be done to analyze the time
dependence (creep) of solder material out of the measured load-indentation depth curves.
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11. Shock Wave Induced Damage in

Kidney Tissue

In shock-wave lithotripsy — a medical procedure to fragment kidney stones — the patient
is subjected to hypersonic waves focused at the kidney stone. Although this procedure
is widely applied, the physics behind this medical treatment, in particular the question
of how the injuries the surrounding kidney tissue arise, is still under investigation. To
contribute to the solution of this problem several numerical simulations of a human
kidney under shock-wave loading are summarized in this chapter.

11.1. Shock-wave lithotripsy

Extracorporeal shock-wave lithotripsy (ESWL) is the

Figure 11.1.: The idea of ESWL

most common treatment for kidney stone disease.
The idea of this non-invasive procedure to comminute
kidney stones is to generate a number of high inten-
sity pressure waves (shock waves) outside the patient
and to focus it on the stone within the kidney. This
form of therapy was developed over twenty years ago,
and has proven to be fast, effective, and relatively
free from the trauma and expense associated with
surgery.

The focal point of the shock wave is fixed, and the
patient is moved so that the stone (imaged by fluo-
roscopy or ultrasound) rests at the focal point. The
urologist controls three parameters: the number of
shock waves administered, the repetition rate, and
the voltage (or energy) of the shock wave generator.
The latter is directly associated to the amplitude of
the pressure wave. As a rule, stones of a size of 10mm are best treated with ESWL, stones
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11.1 Shock-wave lithotripsy

greater than 20mm in most cases need surgery. Typically, from one to three thousand
shock waves are fired onto the stone at a rate of around one per second. The treatment
is monitored by imaging and terminated when it is judged that residual fragments are
small enough to be voided in the urine or grasped and removed using transurethral or
percutaneous probes. The appropriate intensity of shock waves for a particular treatment
is based on size, shape, composition, and location of the stone — and on the experience
of the medical doctors.1. Actually, because stone imaging is limited, the urologists tend
to overtreat patients to avoid them coming back with residual stones [209].

Figure 11.2.: Different types of lithotripters used in ESWL

A very important factor in the treatment is the lithotripter device. Different types of
lithotripters have been approved for clinical use. They are classified by the type of shock
wave source they utilize. Figure 11.2 illustrates some particular configurations; for a
comparison of the different devices and historical details of ESWL see, e.g., [323, 324,
373].

The most common lithotripters are electro-hydraulic devices which generate shock waves
by underwater spark discharge. Widely used is the Dornier HM3 which has been proven
by clinical experience to be most efficacious [196]. Here, the shock waves are focused
by a brass ellipsoidal reflector to a geometric focal point (F2) approximately 13.5 cm

1Images of Figure 11.1 found at http://members.aol.com/geometrie11/koorgeom/lithotr1.htm.
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above the rim of the reflector. Investigators have used ultrasonic hydrophones to map
the pressure field in HM3s at the focal point with the result that the pressure impulse
is a zone roughly cylindrical in shape (precisely: a tapered cylinder), approximately 10-
15 mm in diameter and 80-90 mm long. The peak pressures is typical in the range of
30-50 MPa, up to 100 MPa. Widely used are also electro-magnetic lithotripters which
often have a smaller focal area (≈ 2mm in diameter) and a higher peak pressure. Less
common are acoustic and piezo-electric lithotripters.

The pressure field in a lithotripter

Figure 11.3.: Shock wave propagation.

can be decomposed into sev-
eral components. That is il-
lustrated in Figure 11.3 for the
wave propagation in a typical
electro-hydraulic lithotripter.
The initial shock wave is gen-
erated by the discharge across
a spark gap located at the first
focus (F1) of the ellipsoidal re-
flector. Since the reflector is
not a complete enclosure, part
of the shock wave is reflected
towards the second focal point
(reflected wave) while the rest
expands unhindered (incident
wave). A diffraction or “edge”
wave is created as the shock
wave reaches the edge of the
reflector. For more details see
[320], where we also took the
pictures aside from.
Because of difficulties in ac-
cessing clinical machines, at the
California Institute of Technol-
ogy, Pasadena, USA, a research
lithotripter was designed after
the HM3 [88]. A typical mea-
surement for the pressure at
the focus (F2) of the Caltech
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11.1 Shock-wave lithotripsy

device is shown in Figure 11.42. Although the pressure profile can vary significantly
from lithotripter to lithotripter, the basic shape remains essentially the same. A narrow
positive pressure spike with short rise time and rapid fall (< 1µs) are followed by a
significant negative pressure, the so called “tension tail”.

Figure 11.4.: Experimental pressure measurement at the focal point of a DH3
lithotripter.

The widespread use of lithotripsy has originated numerous research efforts aimed at
understanding the physics of ESWL. Nonetheless, the exact mechanisms of stone com-
minution are still a topic of debate. Figure 11.5 illustrates two mechanisms that have
been substantiated by empirical observation: spallation and erosion by cavitation.

Spallation is a material failure caused by tensile stress produced as the compressive part
of the pressure wave is reflected by the distal stone–tissue interface as a tensile
wave. This reflected wave combines with the tensile tail of the incident wave to
produce a plane of maximum tensile stress that can cleave the stone. In the case
of a cylindrical or cuboid artificial stone that happens at about 2/3 of its length
[379]. The typical duration of a spallation process is in the range of some µs.

Erosion by cavitation is caused by the action of cavitating bubbles near the stone. The

2Data courtesy of Michael R. Bailey, Center for Industrial and Medical Ultrasound, Applied Physics
Lab, University of Washington, Seattle.
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tensile component of a lithotripsy shock wave typically generates cavitation, i.e.,
bubbles (or clouds of bubbles) that oscillate in size and finally collapse violently
after the passage of the wave. During the violent collapse a local (secondary) shock
wave is ejected. This phenomena, named micro-jetting, is likely to be responsible
for the pitted surface of the desintegrated stone. Empirical evidence suggests that
cavitation is an important comminution mechanism [99, 294, 91, 11]. Note that
the cavitation of bubbles until final collapse may take several ms, see [293] for
illustrative pictures.

Figure 11.5.: Mechanisms of stone comminution.(Photographs courtesy of Erin Hatt,
Department of Anatomy and Cell Biology, Indiana University School of
Medicine, IA, USA.)

Although effective in breaking kidney stones, ESWL can also cause significant short-
and long-term damage to the kidneys. The first study of side effects during ESWL was
published in [81]. The extend of kidney injuries depends on many factors, as e.g., the size
of the kidney, the blood pressure, the age of the patient etc. Early studies reported only
minor or temporary effects on the kidney tissue [172, 176, 179] but meanwhile it is estab-
lished knowledge that damage can been observed on both cellular and systemic level, see
[9, 55, 110, 314, 374] and others. A common side effect of a lithotripsy treatment is the
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Figure 11.6.: Typical solution of the Rayleigh-Plesset equations describing the oscillat-
ing bubbles (left) and illustration of asymmetric and symmetric oscillation
resulting in bubble collapse (left).

presence of blood in the urine (hematuria). Typical legions in the kidney are bruising,
renal and perirenal hemorrhage and kidney enlargement. Experimental investigations on
rats and pigs followed [39, 56, 94, 102] with the aim to understand the mechanisms and
reasons for damage caused by shock waves. In Figure 11.7 two pig kidneys after ESWL
treatment are displayed. Two mechanical effects seem to be of essential influence: shear
induced stretching and cavitation induced rupture of capillaries.

Shearing of tissue. The compressive wave of the SWL impulse needs a high peak pres-
sure to induces cracks and, by internal reflection, spallation in the stone. But the
focused wave front also causes shearing along its way in the kidney tissue which
may be responsible for kidney injuries in the pre-focal area of the pressure wave
[315, 92, 313].

Tension by cavitation. The compressive front is followed by a tension tail and, therefore,
bubble cavitation is induced which is thought to assist in stone comminution.
Bubbles nucleate, expand up to several micrometer in size and finally collapse.
During bubble expansion the surrounding vessels and capillaries dilate and may
rupture [387, 386]. This mechanism causes irreversible changes of the kidney tissue
material due to hydrostatic tension.

Furthermore, experimental evidence suggests that tissue damage is solely caused by
subjecting the kidney tissue to shock waves, their amplitude and number is responsible
for the extend of lesions [55, 154]. The presence or absence of a kidney stone does not
affect the side effects [375].
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Figure 11.7.: Typical kidney injuries after an ESWL treatment observed on a juvenile
(left) and an adult (right) pig kidney [39].

11.2. The human kidney

The kidneys are part of the urinary system; a human being has two of these life ensuring
organs. In filtering blood and forming urine the kidneys perform several functions, see
e.g. [337] for details, which can roughly be summarized by:

• regulation of blood volume and composition,

• regulation of blood pressure,

• contributions to metabolism.

The paired kidneys are reddish, kidney-bean shaped organs located just above the waist
in the abdomen. A typical kidneys in an adult is 10-12 cm long, 5-7 cm wide and 3 cm
thick and has a mass of 135-150 g. The concave medical border of each kidney faces
the vertebral column; near the center is a deep vertical fissure through which the ureter,
blood vessels, lymphatic vessels, and nerves leave the kidney, see Figure 11.2. A thin
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11.2 The human kidney

Figure 11.8.: Anatomy of a human kidney and frontal section of a left kidney (Photo-
graph courtesy of Dr. A. Evans, Department of Anatomy, Indiana Univer-
sity School of Medicine, IA, USA.)

renal capsule, i.e., a smooth, transparent membrane composed of dense irregular tissue
surrounds the kidney and holds it firmly in place within the abdomen.

A frontal section through the kidney reveals two distinct regions: a superficial, smooth-
textured reddish area called renal cortex (cortex = rind or bark) and a deep, reddish-
brown region called the renal medulla (medulla = inner portion). The medulla consists
of 6-10 cone shaped renal pyramids. The wider end of each pyramid faces the renal
cortex and its narrow end, called renal papilla, points towards the center of the kidney.
Those portions of the renal tissue that extend between the renal pyramids are sometimes
called renal columns.

The renal pyramids within the medulla constitute the functional portion of the kidney.
On the microscopic level, the functional units located here are about 1 million struc-
tures called nephrons. The nephrons engage in the three basic processes: filtering blood,
returning useful substances to blood so that they are not lost from the body, and remov-
ing substances from the blood that are not needed by the body. As a result, nephrons
maintain the homeostasis of blood and urine is produced.
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11.2 The human kidney

(a) surface data (b) geometry of the finite element mesh

Figure 11.9.: Geometrical model of one half of a human kidney and simplified geometry
of the finite element model.

The urine formed by the nephrons then drains into cuplike structures at the narrow end
of the pyramids called calyces, and from there into a single large cavity, the renal pelvis,
and finally out through the ureter into the urinary bladder.

To study ESWL by finite element analysis we have initiated an effort aimed at the
development of anatomically correct models of the kidney. To begin, we purchased
geometrical data from a company3 which specializes in the visualization of complex
structures, see Figure 11.9 left. With the help of these surface data a finite element mesh
including the gross anatomical details was built. It should be noted that the geometrical
data, as purchased, do not fulfill appropriate requirements for a finite element mesh,
e.g. non-overlapping, non-distorted tetrahedral elements with positive volume. The
three-dimensional finite element model generated here thus required significant manual
manipulation to bring it even to a level suitable for coarse calculations. Finally, the
geometry of the finite element mesh was set up using the CAE software of IDEAS [162],
see Figure 11.9 mid and right and 11.11 for the results. In the continuing research the
present model will be greatly refined. Furthermore, a simplified two-dimensional model
including the main anatomical details was build, it is illustrated in Figure 11.10.

The kidney model is completely embedded in body tissue to avoid mismatching effects
from the models boundaries. Moreover, the kidney is modeled without a stone. Four
regions of functional tissue are distinguished, representing renal cortex, pyramids, sur-
rounding medulla tissue and ureter with renal pelvis. Each of them a different material

3Viewpoint Corporation, New York; www.viewpoint.com
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11.3 Material properties of kidney tissue

Figure 11.10.: Two-dimensional finite element mesh of a kidney.

behavior can be assigned, Figure 11.10 and 11.11. Note that these different region are
defined in the three-dimensional model as well, although they can not be distinguished
on the picture.

11.3. Material properties of kidney tissue

The material properties of biological tissue are subject of increasing interest. Recently,
several works on methods of testing and suitable experimental setup for soft bio-materials
including kidney tissue were reported, cf. [220, 271, 259]. Detailed experimental inves-
tigations on kidney tissue can be found in [111, 219, 212, 239]. The intentions of the
reported experiments are different but all available experiments have in common, that
they focus on the elastic and viscoelastic properties for“the”kidney, i.e., the whole organ
is considered to be made of an isotropic and homogenized material. The first assumption
— isotropy — is justified by the irregular and non-uniformly textured tissue, see [239].
On the other hand, the assumption of one homogenized material is not helpful for our
investigation. As mentioned above we want to distinguish between different regions of
the kidney with different sensitivity to stress and straining.

The first and only available in vivo experiments on high speed straining were performed
on (anaesthetized) rhesus monkeys by Melvin [212] and re-reported in [219]. With the
aim to understand the mechanisms of injury during impact loading, compression tests
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focal point

Figure 11.11.: Three-dimensional finite element mesh of a kidney.

with strain rates of 0.38s−1 . . . 38s−1 were performed. The kidneys material response is
clearly non-linear, the resistance of the material increases with deformation. Data on
shear or tension are not available.

In vitro experiments are reported using pig [239, 111, 112] and rat [259] kidneys. In
particular, the pig kidney is similar in structure and function to a human kidney, thus
making it a useful model for understanding the human kidney.

Farshad et al. [111] conducted different uniaxial as well as triaxial tests on kidneys of
fresh (less than 12 hours dead) pigs. Tensile tests were performed on the renal capsule
(the hull of the kidney); they showed an increase of the rupture stress with an increase
in the loading rate. For compression and shear tests the samples have been taken from
the renal cortex, i.e., the outer part of the kidney, see Figure 11.12. In contrast to
other investigations and models Farshad et al. found the renal tissue to be slightly
compressible. Therefore, the measured data were adapted to describe the whole organ
by means of a Blatz & Ko model, cf. Chapter 3.4, for the circumferential and radial
directions of the kidney.

Moreover, the long term compression test showed an instantaneous straining followed
by a viscous response of the tissue. For characterization of the time depended behavior
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pre-damaged

Figure 11.12.: Nominal shear stress vs. relative vertical displacement measured by [111]
in a small punch test of slowly loaded cortex samples (loading rate 5
mm/min).

a linear visco-elastic model was employed in [111]. The instantaneous elastic modulus
was found to be 4.8 MPa and reduces in the range of several seconds but the detailed
long term response is not of interest for us.

Shear tests were performed in [111] by punching a cylinder into a slice of 8 − 10mm
thickness and 40mm in diameter. The punch tests were conducted on the undisturbed
outer surface of the kidney (with the capsula being removed) and on the pre-damaged
cut section of the cortex. The corresponding rupture stress is 0.035 MPa and 0.025 MPa,
see Figure 11.12, whereby generally an increase of the loading rate leads to increase of
rupture stress. Note that the pre-damaged specimen show somewhat like a “plastic”
region before rupture. Moreover, the reported stress level required for shear rupture is
lower than the average rupture stress for cortex material in compression, where in radial
and circumferential direction 0.25 MPa and 0.18 MPa are reported.

Nasseri et al. report in [239] experiments on fresh kidneys of 3-6 month pigs with a weight
of about 180g. The samples have also been taken from the renal cortex. Dynamic shear
tests with small amplitude oscillatory motion (cycles) and shear rates between 0.01s−1

and 2.5s−1 were performed. The data are adapted to a non-linear differential material
model originally developed for brain tissue and here applied for the kidney (describing a
non-linear Maxwell material combined with Mooney-Rivlin elasticity). We do not apply
this model because the viscous effects are in the range of several seconds but we refer to
the measured data. Of particular interest for us is the observed rupture stress in shear
ranging from 100 Pa up to 1000 Pa, see Figure 11.13. Again, an increase of rupture
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Figure 11.13.: Shear stress vs. strain curves for pig kidney under different shear rates
according to [239].

stress with the increase of shear rate can be observed from the plot4. However, all
values are significantly lower than the values reported in [111]. On the other hand, the
rupture stress of renal tubulus (capillaries with 25− 50µm in diameter) was determined
in [371, 372] to be in the range of 1.8-2 MPa. Moreover, investigations of our own group
observed renal damage in ESWL when the peak negative pressure exceeds 1.5-3.5 MPa
[92].

Note that the interior of the kidney is likely to be softer tissue than the renal cortex but
detailed measurements are lacking. A diagram in [111] shows that sustained uniaxial
compression of 0.015MPa yield to a straining of about 40-45 % in cortex and about 65-70
% in the (unspecified) medulla tissue. Correspondingly, the elastic modulus of medulla
tissue would be ≈ 2/3 of that of the cortex.

However, significant variations in the experimentally measured material data are ob-
served. For example, slowly applied tension on specimen of the renal capsula results
in rupture at 5 . . . 14 MPa, the results for cortex tissue varies from 0.45 . . . 0.14 MPa,
[111]. Moreover, the difference of in vitro and in vivo measurements are pointed out in
[120] and [201]. The latter work compares the speed of sound and the elastic modulus
of several human organs, here especially the high deviation of in vitro measured data is
remarkable.

Concluding from these and further sources (e.g. [209, 117, 272]) we assume the threshold

4Please note that according to [239] the data after onset of rupture have been removed from the plot.
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11.4 Wave propagation

for damaging stresses within the kidney to be in the range of 0.5 . . . 1.5MPa, where the
cortex is less sensitive than the medulla and the (liquid filled) ureter is unlikely to be
damaged at all. Similar, the cortex is stiffer than the medulla. The overall elastic
modulus of the kidney is about 1MPa. Here we account already for the observed rate
dependency, in rapid loading Young’s modulus is up to 10 times higher than in slow
loading [118, 239]. The poisson number will be determined by means of the sound
velocity (see below), which was measured in [201] to be 1540m/s. The density of pig
kidney tissue was found to be slightly above that of water [111, 201], for our calculations
we set ρ0 = 1050kg/m3. Viscosity of the kidney is not expected to play a role here but
we choose 0.005Pa.s; for comparison, water has a viscosity of 0.001Pa.s and blood has
0.007Pa.s [118].

11.4. Wave propagation

Physically, a shock wave is a type of propagating disturbance typically associated with a
high stress intensity. Like a regular wave, a shock wave carries energy and can propagate
through a medium (or, precisely, through a field). A shock wave is very intense and
travels through the medium at a speed higher than a regular wave. However, depending
on the specific medium, the energy of a shock wave may be dissipates relatively quickly
with the distance. Thus, over time the shock wave can change from a nonlinear wave
into a linear wave, degenerating into a conventional sound wave.

Figure 11.14.: Wave reflection and transmission, sinα/c1 = sin β/c2.

The speed of sound is a fundamental material property and denoted here with c. In
linearized theory it is related the compressive stiffness of the material κ (bulk modulus)
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11.4 Wave propagation

and the material density ρ0 by

c =

√
κ

ρ0

. (11.1)

The acoustic impedance describes how a material absorbs and reflects sound and is given
by the ratio of sound pressure p to the absolute value of particle velocity v.

z =
p

|v| = ρ0c. (11.2)

Figure 11.14 illustrates the reflection and transmission of a sound wave at the interface
of two media. The left figure illustrates a wave hitting the interface orthogonally. With
indices e, r, t for entering, reflected and transmitted wave it holds

pe = pr + pt ,

|ve| = |vr| + |vt| ,

and we define the reflection r by

r =
pr
pe

=
z2 − z1
z1 + z2

. (11.3)

Clearly, it holds −1 < r < 1. The cases with r < 0 are called soft reflection (or soft
transmission), whereas r > 0 describes hard reflection which is additionally characterized
by phase inversion. Three limit cases are to distinguish.

• r = 1 : total reflection, no phase inversion

• r = 0 : no reflection

• r = −1 : total reflection, phase inversion

Figure 11.14 on the right illustrates the reflection in an ideal fluid where sinα/c1 =
sin β/c2. In a real medium, and in particular in solids, the inclined interface causes
not only reflection but transversal waves to arise. Consequently we observe a decay of
magnitude and, after several reflections, a scattering of the travelling wave.

During ESWL the reflection at boundaries of the different organs and at tissue inho-
mogeneities as well as the interaction with cavitating bubbles influences the travelling
pressure wave. This is illustrated in Figure 11.15 where two representative wave forms of
lithotripsy shocks measured on the anterior surface of pig kidneys are shown (reported
in [89]). The peak pressure recorded in the living tissue (right picture) is only 2/3 of
the amplitude recorded in the experimental setup with dead kidney material. This ef-
fect may in part be caused by the methods of measurements but the wave tail in the
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11.4 Wave propagation

Figure 11.15.: Experimental measurements of ESWL pressure waves on the anterior kid-
ney surface.

right picture clearly indicates reflection. However, a significant decay of amplitude with
the wave propagation was not observed in [89]. That is in opposite to experiments of
[113, 112], see Figure 11.16. Here the form of an ESWL impulse (measured as an elec-
trical impulse) after penetrating 10 mm of calf kidney samples shows a visible smearing
(left). The amplitude of the shock impulse after penetration of kidney samples of 5 mm,
10 mm, 25 mm and 40 mm thickness decays of about 60% (after 40 mm). It is interesting
to note that numerical results for the interaction of pressure wave and energy release by
cavitation of [321, 322] suggest that the exact details of the lithotripter waveform are
not as important as the maximum bubble size (which, in turn, is related to maximal
tension).

An analytical expression of an ESWL pressure impulse is given by [155]

p(t) =

{

2pmax exp
− t

τ1 cos
(
t
τ2

+ π
3

)

0 < t < 7π
6
τ2

0 otherwise.
(11.4)

Time τ1 characterizes the decay of the impulse whereas time τ2 determines the duration.
Following [11] we choose here τ1 = 1.1 µs, τ2 = 1.96 µs and, in this Section, pmax =
100 MPa.

With the measured data of c = 1540m/s and ρ0 = 1050 kg/m3 (cf. Section 11.3)
and equation (11.1) we can directly determine the bulk modulus of the kidney to be
κ = 2500 MPa. Note that this value is slightly above the compressibility of water
κH2O = 2250 MPa and above that of fat tissue κfat = 1300 MPa (c = 952m/s, ρ0 =

234



11.4 Wave propagation

Figure 11.16.: Shock wave pulse recorded in [113] after penetration of a 10 mm thick calf
kidney sample (grid spacing vertical 20mV, horizonal 0.5µs) and peak
positive pressure measured in [112] after penetration of kidney samples of
different thickness up to 40 mm.

1450 kg/m3, [182, 273]). Considerations of [319] which, with a similar approach, lead to
a significant smaller bulk modulus are not plausible. Moreover, assuming for the kidney
an average elastic modulus of E = 1 MPa our simple estimate leads to a Poisson number
of ν = 0.49994.

To evaluate our finite element analyzes we start studying the propagation of a pressure
impulse in a homogeneous uniaxial model meshed with triangular plain strain elements,
see Figure 11.17 and Figure 11.18a. The elastic sample is free in axial but constraint
in lateral direction. To apply the loading impulse we use the linear relation between
pressure and particle velocity (11.2) to prescribe the pressure field as a nodal velocity
on the marked left boundary, Figure 11.18a,

v =
p

%0 c
=

100 · 106 N
m2

1050
kg
m3 · 1550m

s

= 61.444 · 10−3mm

µs
. (11.5)

For a relatively coarse mesh of about 2500 linear triangles with typical element size
le = 1.5 mm we observe after 10 mm wave travelling already a significant decay in
amplitude and high oscillations following the initial impulse, Figure 11.17a. A finer
mesh with le = 0.5 mm and quadratic shape functions reduces this effect but still shows
high frequency oscillations, Figure 11.17b.

Therefore, we introduced an artificial viscosity in our model. Artificial (bulk) viscosity
is thought to damp oscillations in the highest element frequency, a damping which is
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11.4 Wave propagation

(a) linear elements of size 1.5 mm af-
ter 10 mm propagation

(b) quadratic elements of size
0.5 mm after 10 mm propagation

(c) quadratic elements of size 0.5 mm
with viscosity α = 0.06 after 10 mm
propagation

(d) quadratic elements of size 0.5 mm
with viscosity α = 0.06 after 40 mm
propagation

(e) decay of pressure maxima for
different mesh size with viscosity
α = 0.06 after 10 mm propagation

(f) kidney mesh with typical size of
0.5 mm α = 0.06 after 10 mm prop-
agation

Figure 11.17.: Pressure impulse after propagation into homogeneous elastic tissue.
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11.4 Wave propagation

sometimes referred to as truncation frequency damping. It generates a viscosity pressure
that is linear in the volumetric strain rate ϑ̇,

pdamp = αdρcleϑ̇ (11.6)

where is α a damping coefficient ρ is the current material density, le is an element charac-
teristic length, and c is the current (dilatational) wave speed. For acoustic elements, the
bulk viscosity pressure can also be obtained from the above equation by using relation
(11.2) with the result

pdamp = α
leṗ

c
(11.7)

where ṗ and c are the pressure rate and the speed of sound in the fluid, respectively.
Note that we only apply a linear bulk viscosity but not forms of artificial viscosity which
are designed to smear a shock front across several elements and to prevent elements
from collapsing under extremely high velocity gradients. Figure 11.17c and d show
the pressure after 10 mm and 40 mm propagation for α = 0.06; the high frequency
oscillations but also the pressure amplitudes are damped. Therefore we studied the
proper choice of parameter α carefully, with best results for α = 0.06, cf. [273]. Note that
pressure propagation still requires a fine discretization. In Figure 11.17e the maximum
amplitude after 10 mm travelling is plotted for different mesh sizes. Clearly, a further
mesh refinement improves the results but for a two and three-dimensional kidney model
such refinement is limited by computational capacity.

In Figure 11.17f the propagated pressure impulse is plotted after 10 mm propagation into
the two-dimensional kidney model. We employ the model of Figure 11.10 and distribute
the load as indicated in Figure 11.20 like a Gaussian distribution; this correlates with
measured data of [89]. Note that the mesh in Figure 11.20 is then ultimately refined to
a typical element size of le = 0.5 mm, the small interior (green, braun red) elements are
subdivided into 16 elements, the larger elements into 32.

Figure 11.18 illustrates soft and hard transitions at an orthogonal material interfaces
with different compressibility. To this end we distinguish three regions of material in our
simplified model of Figure 11.18a. We set for the first and second material E1 = E2 = E
and vary the third, all other data remain constant as above. Soft reflection is realized
with r = −1

2
, it follows by (11.1-11.3): E3 = 1

9
E; hard reflection is realized with r = 1

2
:

E3 = 9E. Figure 11.18b and d show the initial (6µs) and reflected (12.5µs) pressure at
the marked point 2. Clearly the amplitude decays with reflection and plot c also shows
phase reflection, further maxima follow from additional reflections. Figure 11.18c and e
illustrate the transitive waves at material point 3.

At last we use the full test model of Figure 11.18a to vary the material parameter for
the different regions of the kidney to better map its different elastic properties. The
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11.4 Wave propagation

(a) Model for simple uniaxial tests with different material regions

(b) pressure at 2 after soft transition (c) pressure at 3 after soft transition

(d) pressure at 2 after hard transition (e) pressure at 3 after hard transition

Figure 11.18.: Reflection and transmission of pressure waves at interface between mate-
rial 2 and 3.
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11.4 Wave propagation

(a) pressure after 5 mm (b) pressure after 5 mm

(c) pressure after 10 mm (d) pressure after 10 mm

(e) pressure after 20 mm (f) pressure after 20 mm

(g) pressure after 40 mm (h) pressure after 40 mm

Figure 11.19.: Pressure waves propagating into the kidney modeled as homogeneous ma-
terial (left) and with different elastic parameters (right).
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11.5 Material model

Figure 11.20.: Loading of the two-dimensional kidney model, focus (F2, “stone”) marked
with •.

volumes of the materials in the test model correspond to the volume fractions of cortex
(1), renal medulla (2) and pyramidal (3) tissue a ESWL impulse will pass. Assuming
sound speed as a lower limit for the pressure waves propagation speed a time of at most
c/lmodel = 35.5µs is needed to pass the model. Knowing that the cortex is stiffer than
the average kidney whereas the pyramids are softer and summarizing different variations
we set: E1 = 1.2 MPa, E2 = 1.0 MPa, E3 = 0.55 MPa to get a realistic wave speed
within the whole kidney, see also [273].

11.5. Material model

At first we decided to study the effect of shock waves on the cellular level. In opposite to
the whole kidneys properties, many information on cells are available. The mechanical
properties of (living) cells have been studied with various techniques including atomic
force microscope [147, 150, 211] or micropipet aspiration [134, 135]. Cells of the body
are not only able to withstand high (cyclic) stresses (with peak magnitudes exceeding
10 MPa [135]) but respond to mechanical stresses as signals to regulate their metabolic
activity and gene expression. We are not able to simulate signal response or transmission
but just looked on the mechanical stress state. To this end, a two-dimensional, simplified
material model of an array of nine cells was build using size and material data found
in the above cited references and the response to a shock wave impulse was studied.
Although the cell is a composite system, made of a membrane surrounding a complex
fluid it is modeled here as a solid with elastic material properties. Because of the very
simplified cell geometry a qualitative assessment of the results is not meaningful. The
main result of these computation is that we clearly observe a high hydrostatic pressure
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11.5 Material model

within the cell and a high shearing of the cell walls, see Figure 11.21.

Figure 11.21.: Pressure (blue) and tension (red) in a cell 5, 10, 15 and 30µs after an
ESWL impulse hit the model from above.

However, tissue is not just a macroscopic generalization of the cells microscopic prop-
erties. Clearly, to model a whole organ a macroscopic constitutive relation needs to be
derived modelling the tissue as a kind of homogenized material. Because an approach
going from the microscopic to the macroscopic level is not yet realistic (see [352] for the
state of the art) such a constitutive relation is empirical. Therefore, we employed for the
kidney a two-parametric general Ogden material, cf. Chapter 3, where the coefficients
α1 = 5, α2 = −5 and µ1 = µ/15, µ2 = −µ/3 are adapted to experiments with brain tis-
sue [221]. The sum

(
α1µ1 +α2µ2

)
/2 is chosen in a way, that it corresponds to the elastic

shear modulus measured for the kidney and varied for the different regions. Furthermore,
the model is extended to the compressible range using the ansatz W vol = κ

(
ln J)2/2 ,

see also Figure 3.3 of Chapter 3.

The elasticity of the material is bounded, above a certain bearable stress some kind of
damage will occur. Typical damage of shock waves is illustrated in Figure 11.22 for
a thin cellophane foil subjected to an ESWL impulse. This experiment, conducted by
Lokhandwalla [197] with the Caltech electro-hydraulic lithotripter illustrates how the
tissue is damaged by shearing (resulting in tearing of the film) as well as by hydrostatic
tension (resulting in holes).

The medical literature shows that in a living kidney scarring occurs with damaged tis-
sue [240]. The way that scarring occurs can proceed to progressive renal damage and
correlates closely with a fall in renal function and the onset of hypertension. The reason
for these effects are the special way a kidney works - which is, of course, more than
a pure mechanical response on straining or shearing. One typical feature, cf. [284], is
the accumulation of extracellular matrix in the glomerulus (the essential parts of the
nephrons) and eventual collapse of capillary walls resulting in a loss of glomerular func-
tion. Scarring in and around the nephrons is characterized by tubular atrophy and an
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Figure 11.22.: Cellophane film after 100 shocks at 1Hz: holes and tears [197].

accumulation of interstitial matrix. As the interstitial space continues to enlarge due to
the increase in matrix material, more glomeruli or tubules and micro-vessels are working
inaccurately causing further tissue injury. This results in the release of more enzymes
which stimulate more scar formation and an additional loss of functional tissue. Thus, a
vicious cycle may be triggered that eventually ends in extensive kidney damage. (Note
that this is a very different process than what happens in normal wound healing where
there is controlled degradation of any extra matrix material.)

Translated in mechanical terms this means that the elasticity of the tissue is not nec-
essarily lost but an impairment of renal function occurs. This effect, together with the
measured stress strain curve of [111] motivated us to model the kidney damage as a kind
of plasticity, i.e., the material undergoes a non-reversible deformation. The stresses are
bounded by an upper limit but the elastic properties are unaltered.

Let the equilibrium response of the material be characterized by a free-energy density
per unit undeformed volume of the form

A = A(F ,F p, εi, ϑi) (11.8)

where F is the deformation gradient, F p is the plastic part and F e = FF p−1 the elastic
part of the deformation. The plastic deformation rate is assumed to obey the flow rule

Ḟ
p
F p−1 = ε̇iM + ϑ̇iN (11.9)

where εi and ϑi are scalar variables accounting for irreversible (plastic) deformation.
Their rates are subjected to the constraints

ε̇i ≥ 0 and ϑ̇i ≥ 0. (11.10)
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The tensors M and N set the direction of the deviatoric (unimodular) and volumet-
ric plastic deformation rates, respectively. Tensor M is assumed to be trace-free and
normalized but otherwise unknown whereas tensor N is fixed,

|M |2 =
3

2
, tr(M) = 0 and N =

1

3
I. (11.11)

In that way tensor N corresponds to volumetric expansion only, in compression the
elastic deformation will not be bounded, see Figure 11.24a.

Figure 11.23.: Model of tissue with bubbles of different sizes (left) and bubble oscillations
(radius vs. time) after ESWL impulse (right).

For the cavitation of bubbles we apply the spherical shell model of Chapter 7.1, see Figure
11.23. The oscillation of (empty) bubbles modeled in a non-linear elastic material and
described in Chapter 7.3.2 are similar to the bubble oscillations described by Rayleigh-
Plesset equations (Figure 11.6), although the underlying model is different. For interest
of us is here the maximum radius of the growing bubbles - which is likely to overstrain
the surrounding vessels and capillaries.

In order to formulate a complete set of constitutive relations, the free-energy density
(11.8) and appropriate rate equations for the internal variables εi and ϑi must be spec-
ified. At first we link the mechanism of bubble expansion causing irreversible damage
to the macroscopic material parameter. To this end we consider a representative unde-
formed material of volume V0 and deformed volume V and determine the local volume
fraction of bubbles in the deformed configuration as

f = NV
V0

V

4πā3

3
, (11.12)
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where ā is current average bubble radius and NV is the referential bubble density, i. e.,
the number of bubbles per unit volume. The volumes V0 and V are related through
V = JV0 where

J ≡ det F = det(F eF p) = det F e det F p ≡ JeJp (11.13)

is the local Jacobian of the deformation and Je and Jp are the corresponding elastic and
plastic components. Using these relations we have

Jp = V (JeV0)
−1 = (1 − f0)/(1 − f). (11.14)

This relation allows f to be computed from Jp and, using (11.12), equation (11.14) may
be recast in terms of the average bubble radius ā, with the result

Jp = 1 − f0 +
V

JeV0

f = 1 −NV
4πā3

0

3
+NV

4πā3

3Je
. (11.15)

It is worth to note that Je ∼= 1 for the (almost) incompressible tissue material, and
(11.15) simplifies to

Jp = 1 +
4π

3
NV (ā3 − ā3

0) and ā =

[
3

4π

1

NV
(Jp − 1) + ā3

0

]1/3

(11.16)

which allows ā to be computed from Jp. Moreover, the variable ϑi is a measure of the
accumulated irreversible volumetric deformation and coincides (up to a constant) with
ln Jp.

Without loss of generality, the elastic strain-energy density can be expressed in terms
of the logarithmic elastic strain εe = 1

2
ln(Ce), i.e., W e = W e(Ce, T ) = W e(εe, T ), cf.

Chapter 3. We denote by σ the stress conjugate to εe, namely,

σ =
∂W e

∂εe
(εe). (11.17)

The first Piola-Kirchhoff stress tensor P follows from Coleman’s relations as P = ∂A/∂F
and can be evaluated to result in

P =
∂W e

∂F
=
∂W e

∂εe
∂εe

∂C

∂C

∂F
. (11.18)

By application of (11.18) follows
p = κ

(
ln Je

)
, (11.19)

i. e., the pressure in the tissue is linear in the elastic logarithmic volumetric strain.
Additional stress contributions may result from viscosity.
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Figure 11.24.: effective stress-strain curve for volumetric expansion, effect of cavitation in
tension (pitting) and pressure (no effect) experimentally studied in [197],
and axial Cauchy stresses computed in two cycles of a uniaxial strain test

A plastic energy function can be formulated by an additive decomposition into volumet-
ric and volume preserving components. The latter is solely a function of the effective
irrevesible deviatoric strain, εi, and is here of the form

W p(εi) =
σ0ε

i
0

n+ 1

((

1 +
εi

εi0

)n+1

− 1

)

, (11.20)

where σ0 is the initial critical stress, and εi0 is a reference parameter. Depending on the
choice of the exponent, function (11.20) may account for hardening of the critical stress,
0 < n ≤ 1, as well as for its softening, −1 ≤ n < 0.

The volumetric part of the dissipated energy function is attributed directly to the bubble
growth. In the dilute limit, the total energy dissipated by expanding bubbles is the first
moment of the energy dissipated by each individual bubble. Following the strategy
outlined in Chapter 7, considering an average bubble radius ā and inserting function
(11.20) lead to

W p(εi, ϑi) = W p(εi) +

σ0ε
i
0

(n+ 1)

NV 4πā3

3

(
2

3εi0

)n+1 ∫ 1/f

1

{

ln
x

x− 1 + [1 + (eϑi − 1)/f0]−1

}n+1

dx.
(11.21)

Aside of conventional newtonian viscosity two more types of rate effects may be con-
sidered: rate sensitivity in the irreverible deformations and micro-inertia due to rapidly
expanding bubbles. To ensure a variational structure in the presence of rate sensitivity a
dual kinetic potential ψ∗(ε̇i, ϑ̇i) needs be postulated such that the thermodynamic forces
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conjugate to ε̇i and ϑ̇i can be derived from ψ∗, cf. Chapter 7. Micro-inertia as a dissipa-
tive energy term renders the equations of motion for the growth of the bubbles of second
order in time. Neglecting the interaction of bubbles, the total micro-inertia attendant
to the growth of the bubble ensemble is the weighted sum of the kinetic energies due
to the expansion of each individual bubble. For spherical bubbles in an incompressible
material this micro-kinetic energy and can be computed readily in terms of the averaged
bubble radius ā, with the result

L(ā, ˙̄a) = 2πNV %0ā
3 ˙̄a2, (11.22)

where %0 is the mass density per unit volume. In order to formulate updates possessing
a variational structure, a change of variables in function (11.22) is required to result in a
system with quadratic inertia and constant mass, see equations (7.174) and (7.177-7.185)
of Chapter7.

For implementation of the material model in our finite-element code we employ a time-
incremental procedure as described in Chapter 6 and Chapter 7. The internal state
variables, εin+1 and ϑin+1, are updated in every time step tn+1 − tn by recourse to an
incremental objective function fn = fn(F n+1, ε

i
n+1, ϑ

i
n+1,M ,N). This function includes

the free energy of the material, as well as the dissipated energy, the micro-kinetic energy
and the dual kinetic potential. These contributions, subject to the constraints (11.11),
compete in energetic terms, and the optimal internal process is that one which minimizes
the function fn. This may be expressed in variational form as

Wn(F n+1) = min
εi
n+1

,ϑi
n+1

,M,N
fn. (11.23)

11.6. Numerical results

The results of three-dimensional finite element analyzes are summarized in Figure 11.25
and Figure 11.26. In all computations the kidney is modeled without a stone. This
approach is backed by experimental studies showing that injuries are caused by ESWL
treatment and hardly influenced by stone fragmentation [90].

For numerical computation we distinguish regions of functional (sensitive) kidney tissue
and non-functional tissue (renal pelvis and ureter). The latter part is modeled as a neo-
hookean material with an elastic shear modulus of 0.5334 MPa. The sensitive structures,
i.e., the cortex, the renal pyramids and the surrounding medulla tissue are modeled with
the presented material model and the elastic data adapted in Section 11.4. Solely for the
cortex we set ν = 0.4999 to match the compressibility of the surrounding body tissue.
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Figure 11.25.: ESWL impulse travelling through the kidney (blue: pressure, red: ten-
sion).

In terms of initial bulk κ and shear modulus µ that means for the cortex κ = 2 GPa,
µ = 0.8 MPa, the medulla tissue κ = 2.78 GPa, µ = 0.6667 MPa and for the pyramids
κ = 1.5 GPa, µ = 0.3667 MPa. Note that in contrast to former results [368, 364] the
kidney is surrounded here by an acoustic material with K = 2 GPa.

The pressure impulse is applied on the anterior kidney surface as a nodal velocity. The
impulse is focused in the meridional section at x = 0, y = 0, z = 10mm. The spatial
distribution of the impulse is centered at the anterior surface with x = 1mm, y = 0,
z = 17mm. In the loading area the velocity is distributed in such a way that v = v(t)
in the center decaying to v = 0.5v(t) at radius r = 5mm and zero at r ≥ 11mm away
from the center point. The model is not supported. It is subjected to one impulse of
form (11.4) with pmax = 50MPa and then released. For time integration we apply an
explicit Newmark scheme with adaptive time step size over a period of 100µs.

The irreversible deformation starts at a certain critical stress σ0. For the sensitive parts
of the kidney we choose here σ0 = 1MPa in the cortex, σ0 = 80Pa in the medulla tissue
and σ0 = 2.5Pa within the renal pyramids. Exponent n of equation 11.21 is set 0.1,
density ρ = 1050kg/m3 and viscosity η = 0.005Pa s.

After all we know the applied critical stress can considered to be a lower bound of the
materials rupture stress. Nonetheless, we choose the data in that way to see a significant
effect of one shock. In practise, there are several hundred shocks applied and the damage
within the kidney accumulates. However, with today’s available computer we are not
yet able to compute the time period of several shocks to simulate the process of ESWL.
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Figure 11.26.: The effective irreversible deformation computed in the kidney (blue: zero,
red: maximum) indicates deviatoric straining (εi, left) and irreversible
volumetric expansion (ϑi, right); the upper pictures show the exterior
view, the lower pictures show the meridional section of the kidney.
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Although a quantitative assessment of the results is difficult to give, we observe a good
agreement of localized damaged with medical and experimental results. Common shock
wave induced lesions are kidney enlargement, bruising and hemorrhage in the pre-focal
area, see [92] and the photograph of ESWL subjected pig kidneys in Figure 11.7. The
location of injuries correlates to the area of peak negative pressure and greatest cav-
itation. This effect is well captured by our kidney model. Moreover, shear induced
damage is observed in our model only within the kidney and not in the renal cortex, see
Figure 11.26.

For completeness we computed the three-dimensional kidney model with a purely elastic
material model. Figure 11.25 shows the stress propagating into the kidney with magni-
tudes of −2 . . . 5 MPa. This corresponds very well to observations of [92] where a peak
negative pressure of 1.5 − 3.5 MPa is considered to be the threshold for damage caused
by ESWL.
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Appendix 1:

Notation

Here we summarize the basic forms of vectors and tensors employed in the text. For more
details we refer to literature on vector and tensor algebra, e.g., [54, 32, 46, 57, 295]. Being
aware that we loose some of the theories beauty and generality we restrict ourselves in
this work to the use of cartesian-coordinate systems with orthonormal base vectors ei.
The range of lowercase latin indices is 1, 2, 3. Moreover we adopt Einstein’s summation
convention according to which any expression in which an index appears repeatedly is
understood to be a sum over the range of this index.

1.1. Scalars

Formally scalars are zeroth-order tensors. Scalars are written here mainly in lower-
case greek letters, α, β, .... Exemtions are made for some physical quantities, e.g., the
temperature is denoted by T .

1.2. Vectors

First-order tensors are vectors. Vectors are denoted here by boldface lowercase letters,
a, b, ... and have both direction and length. The corresponding vector spaces are denoted
by cursive uppercase letters, i.e., a ∈ V , b ∈W . In components a vector is written as

a = aiei = a1e1 + a2e2 + a3e3 ≡ [a1 a2 a3]
T . (1.1)

Vector algebra is well known and may be looked up in many standard mathematical
textbooks (e.g. [57, 299]). We focus here only on the properties of the different products
of vectors.
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1.2 Vectors

The scalar product (or dot product or inner product) of two vectors a and b is denoted
by a · b or equivalently 〈a, b〉 and gives a scalar quantity with magnitude aibi = a1b1 +
a2b2 + a3b3. Properties of the scalar product are (here o is the zero vector):

a · b = b · a (1.2)

a · o = 0 (1.3)

a · a > 0 ⇔ a 6= o (1.4)

a · a = 0 ⇔ a = o (1.5)

a · b = 0 ⇔ a is orthogonal to b. (1.6)

The length of a vector is

|a| =
(
a · a

) 1

2 . (1.7)

A unit vector has length 1, i.e., for the bases vectors of our cartesian coordinates hold

ei · ej = δij , (1.8)

where the Kronecker delta δij equals 1 if i = j and is zeros otherwise. The length of
a vector works as a vector norm. In general, a norm ||a|| is a non-negative real number
with properties

‖a‖ = 0 ⇔ a = o (1.9)

‖a‖ < ∞. (1.10)

The vector product or (cross product) of two vectors a and b is written as a × b and
produces a new vector orthogonal to the plane spanned by a and b with components

(a × b)i = εijkajbk, (1.11)

where eijk is the permutation symbol5. Another way to compute the cross product easily
is given by

a × b = det





e1 e2 e3

a1 a2 a3

b1 b2 b3



 . (1.12)

Note that the magnitude of the resulting vector measures the area spanned by the vectors
a and b, i.e., |a × b| = span(a, b).

5eijk = 1 for ijk = 123, 231, 312 and eijk = −1 for ijk = 132, 213, 321 and εijk = 0 for coincident
indices.

252



1.3 Second-Order Tensors

Properties of cross products are:

a × b = −b × a, (1.13)

a × b = o ⇔ a||b, i.e., a and b are linearly dependent, (1.14)

a · (b × c) = b · (c × a) = c · (a × b), (1.15)

The last line states a parallelepipedic product (or box product) of the three vectors
a, b, c. The expression a · (b × c) represents the volume of a parallelepiped spanned by
the vectors. The volume is zero if and only if the vectors are linearly dependent. The
box product may conveniently be calculated by

(a × b) · c = det





a1 b2 c1
a2 b2 c2
a3 b3 c3



 . (1.16)

The dyadic product (or tensor product) of two tensors is denoted by a ⊗ b. The
resulting dyad is a second order tensor with components

(a ⊗ b)ij = aibj =





a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



 . (1.17)

For the dyadic product the following relations hold:

(a ⊗ b)c = a(b · c) = (b · c)a, (1.18)

(αa + βb) ⊗ c = α(a ⊗ c) + β(b ⊗ c), (1.19)

(a ⊗ b)(c ⊗ d) = (b · c)a ⊗ d = a ⊗ d(b · c). (1.20)

Note that in general,

a ⊗ b 6= b ⊗ a, (1.21)

i.e., the dyadic product is not commutative. Also, a dyad can not necessarily be expressed
as a single tensor product.

a ⊗ b + c ⊗ d 6= x ⊗ y for some x,y. (1.22)

1.3. Second-Order Tensors

Tensors of second order A ∈ (W ⊗ V ) are linear operators that act on a vector a ∈ V
to generate a vector b ∈W . For notation we use boldface latin capitals.

A : V −→W

u 7→ Aa. (1.23)
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1.3 Second-Order Tensors

Equation (A 1.23 is commonly written as (cf. remarks in Section 1.5)

u = Aa. (1.24)

Any second order tensor may be expressed as a dyad, e.g.,

A = Aijei ⊗ ej. (1.25)

The nine components of (the matrix of) tensor A are

(A)ij =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (1.26)

Sum, difference, multiplication with a scalar and further operations of second order
tensors are defined analogously to vector and matrix algebra. For example, the transpose
of tensor A in equation (A 1.25), A>, is given by

A> = Aijej ⊗ ei ≡ (A)ji =





A11 A21 A31

A12 A22 A32

A13 A23 A33



 . (1.27)

The magnitude of Tensor A is defined as the Frobenius norm of its matrix represention,
i.e.,

|A| := ‖(A)ij‖F = (AijAij)
1

2 . (1.28)

The second order unit (or identity) tensor is defined by I, the corresponding zero tensor
is O. Additional properties of second order tensors are summarized in Section 2.1.

The double scalar product (contractive product) is denoted by A : B or equivalently
〈A,B〉 and yields a scalar. In components the scalar product evaluates to

(A : B)ij = AijBij . (1.29)

Note that for the double scalar product holds

A : B = B : A ≡ 〈A,B〉 = 〈B,A〉, (1.30)

and, moreover,

A : (B : C) = (B>A) : C = (AC>) : B (1.31)

A : (a ⊗ b) = a · Ab (1.32)

(a ⊗ b)(c ⊗ d) = (a · b)(c · d). (1.33)
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1.4 Higher-Order Tensors

A special case of the last equation is

(ei ⊗ ej)(ek ⊗ el) = (ei · ej)(ek · el) = δijδkl. (1.34)

The tensor product (or dot product) of two second order tensors is written as by AB

(here as commonly written without a dot). The result is again a second order tensor
with components

(AB)ij = AikBkj. (1.35)

The matrix product is not commutative, i.e., in general

AB 6= BA. (1.36)

Moreover holds

(AB)> = B>A>. (1.37)

The dyadic product of two second order tensor consequently generates a fourth or-
der tensor. The definition and properties of the dyadic product follow analogously to
equation (1.18-1.22). Computed in components we write

(A ⊗ B)ijkl = Cijkl = AijBkl, (1.38)

resulting in 34 = 81 entries for the result Cijkl.

1.4. Higher-Order Tensors

Generally, a third order tensor, <3>D, has 27 components Dijk and a fourth order tensor,
<4>

C , has 81 components Cijkl. This sequence can be continued but tensors of order higher
than four are not subject of this work.

For further use we define here the corresponding unit and zero tensor of order four,
<4>

I

and
<4>

O , respectively. Finally we note that a fourth order tensor may be expressed with
the help of the three Cartesian basis vectors as

<4>

C = Cijklei ⊗ ej ⊗ ek ⊗ el. (1.39)
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1.5 Remark

1.5. Remark

Throughout this work equations are formulated in tensor notation, in matrix notation
and sometimes indicial notation. For readability we use the same notation for matrices
as for tensors but we will not use connective symbols. Moreover, for finite element
implementation tensors are often converted into matrices and vectors by using the Voigt-
matrix notation, cf. e.g. [159, 390]. To illustrate the notations we formulate here an
energy-like scalar expression in the different ways.

x · Ax
︸ ︷︷ ︸

tensor

≡ x>Ax
︸ ︷︷ ︸

V oigt−matrix
≡ xijAijklxkl
︸ ︷︷ ︸

indicial

. (1.40)
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Appendix 2:

Some Rules of Tensor Algebra and

Calculus

In this chapter some fundamental rules of tensor manipulations in the 3D-Euclidian
space are summarized for reference. All statements are given without proof. For more
details consult the textbooks [32, 121, 376] among others.

2.1. Decompositions, invariants and eigenvalues of

tensors

Here we summarize operations on tensors of second order A ∈ IR3 × IR3 applied within
this work. If necessary, the extension to tensors of higher order is straightforward.

Determinate, inverse, orthogonality, symmetry and antisymmetry

The determinate of a tensor is given by the determinate of its matrix representation
in equation (A 1.26), det A = det(A)ij , with properties

det A> = det A (2.1)

det(αA) = α3 det A (2.2)

det(AB) = det A det B. (2.3)

Presuming a non-singular tensor, i.e., det A 6= 0, than exists an unique inverse A−1 of
tensor A satisfying the relation

A−1A = AA−1 = I. (2.4)
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2.1 Decompositions, invariants and eigenvalues of tensors

Some fundamental rules for the inverse of a tensor are

(A−1)−1 = A (2.5)

(αA)−1 =
1

α
A−1 (2.6)

(AB)−1 = B−1A−1 (2.7)

A−2 = A−1A−1 (2.8)

det A−1 =
1

det A
. (2.9)

Moreover we defined an abbreviation,

A−> := (A−1)> = (A>)−1. (2.10)

For the Inverse of a second-order tensor holds the Sherman-Morrison-Formula.

(A + a ⊗ b)−1 = A−1 − A−1 a ⊗ bA−1

I + b A−1a
. (2.11)

A second order tensor R is said to be orthogonal if

RR> = R>R = I. (2.12)

This implies, R−1 = R> and, additionally, (det R)2 = 1.

If det(R) = 1 tensor R prescribes a rotation (R ∈ SO3), if det(R) = −1 then tensor R

prescribes a reflection. Hence, a linear transformation with an orthogonal tensor satisfies
the condition

Ru · Rv = u · R>Rv = u · v (2.13)

for all vectors u and v. This states the well known property of two vectors that their
length as well as the angle between them is preserved during rotation.

Any tensor A can uniquely be decomposed into a symmetric and an antisymmetric
tensor.

A = sym(A) + skew(A) (2.14)

where we define

sym(A) =
1

2

(
A + A>), (2.15)

skew(A) =
1

2

(
A − A>). (2.16)
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2.1 Decompositions, invariants and eigenvalues of tensors

Then for any second order tensor A and B holds

sym(A) : B = sym(A) : B> = sym(A) : sym(B), (2.17)

skew(A) : B = −skew(A) : B> = skew(A) : skew(B), (2.18)

sym(skew(A)) = skew(sym(A)) = 0. (2.19)

Finally lets state that a second order tensor is said to be positive definite if for all
x 6= o

x · Ax > 0. (2.20)

Positive definite tensors are symmetric and have, as a consequence of det A > 0, only
positive entries on the main diagonal. The tensor is positive semi-definite if

x · Ax ≥ 0, (2.21)

and negative (semi)-definite otherwise.

Trace and deviator of a second-order tensor

Every second-order tensor A can be decomposed into a spherical tensor αI and a devi-
atoric tensor dev A.

A = αI + dev A. (2.22)

The spherical tensor is related to the trace of tensor A which is a scalar denoted by trA.
The trace is given by

trA = A11 + A22 + A33 = Aii. (2.23)

Then the decomposition reads

A =
1

3
trA I + dev A. (2.24)

The trace has the properties

trA = trA>, (2.25)

tr(A + B) = trA + trB, (2.26)

tr(αAB) = α tr(AB) = α tr(BA), (2.27)

tr(A>B) = tr(AB>) = tr(B>A) = tr(BA>). (2.28)

The trace of a tensor may equivalently be computed by the double scalar product

trA = A : I = I : A. (2.29)
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2.1 Decompositions, invariants and eigenvalues of tensors

In other words, the deviatoric part of tensor A is defined from equation2.24 by

dev A = A − 1

3
trA I, (2.30)

or, in components,

devAij = Aij −
1

3
Aijδij. (2.31)

Invariants, eigenvalues and spectral decomposition

Let a general Tensor A have n eigenvalues {λα, α = 1, . . . n}. Correspondingly there
are n right eigenvectors {uα, α = 1, . . . n}, and n left eigenvectors {vα, α = 1, . . . n}.
Thus,

Auα = λαuα, α = 1, . . . , n, (2.32)

vαA = ATvα = λαvα, α = 1, . . . , n, (2.33)

The set of homogeneous algebraic equations to determine the eigenvalues λα and the
right eigenvectors uα is the well known characteristic equation

(
A − λαI

)
uα = 0, (2.34)

which may be stated analogously for (2.33). Then the spectral representation of A

reads

A =

n∑

α=1

λαuα ⊗ vα. (2.35)

The components Aij of tensor A relative to a basis of principal directions form a
diagonal matrix where the eigenvalues of A are the diagonal elements

(A)ij =





λ1 0 0
0 λ2 0
0 0 λ3



 . (2.36)

The characteristic polynomial, also known as the Cayley-Hamilton polynomial, for
a second-order tensor, is the equation resulting from the eigenvalue problem (2.34), i.e.,
det
(
A − λαI

)
= 0, giving

λ3
α − IA1 λ2

α − IA2 λα − IA3 = 0. (2.37)
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2.1 Decompositions, invariants and eigenvalues of tensors

The scalar coefficients of the characteristic polynomial are the principal invariants of
tensor A. The explicit expressions for the three principal invariants of a second-order
tensor are

IA1 = trA (2.38)

IA2 =
1

2

(
(trA)2 − tr(A2)

)
= trA−1 det A = tr(cofA) (2.39)

IA3 = det A. (2.40)

Equivalently, we can claim that for every second-order tensor the principal invariants
fulfil the Cayley-Hamilton equation:

A3 − IA1 A2 − IA2 A − IA3 I = 0, (2.41)

or, explicitly,
A3 − trA A2 − tr(cofA)A − detAI = 0. (2.42)

The principle invariants of tensor A expressed with the eigenvalues are given with

IA1 = λ1 + λ2 + λ3 (2.43)

IA2 = λ1λ2 + λ1λ3 + λ2λ3 (2.44)

IA3 = λ1λ2λ3. (2.45)

The principal invariant do — by definition — not depend on the coordinate system. Note
that the definition of an invariant is not unique, e.g., a multiplication of an invariant
with any scalar factor yields another invariant value. Widely used are also the so-called
basic invariants, the invariants of a tensor A defined as the traces of powers of A,

ÎA = trA = I : A (2.46)

ÎIA = tr(A2) = I : A2 (2.47)
ˆIIIA = tr(A3) = I : A3. (2.48)

Because of their practical importance we re-formulate the second invariant (2.39) here
in terms of the tensor components

IA2 = α
(
AiiAjj −AjiAij

)
(2.49)

where we denote by α a factor which is 1
2

in equation (2.39) but may also be determined
by the physical nature of the referring tensor.
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2.1 Decompositions, invariants and eigenvalues of tensors

Finally, we state that for the invariants of the deviatoric part of tensor A the
following relations hold:

JA1 ≡ IdevA1 = 0 (2.50)

JA2 ≡ IdevA2 = −1

2
tr(dev A)2 (2.51)

JA3 ≡ IdevA3 = det(dev A) =
1

3
tr(dev A)3, (2.52)

or, applying equation (2.38–2.40),

JA2 = IA2 − 1

3
(IA1 )2 (2.53)

JA3 = IA3 − 1

3
IA1 I

A
2 +

2

27
(IA1 )3. (2.54)

Derivatives of a second order tensor

The derivatives of the principal invariants of a second order tensor with respect to the
tensor itself are given here for reference:

∂IA1
∂A

= I or
∂IA1
∂Aij

= δij (2.55)

∂IA1
∂A

= I or
∂IA1
∂Aij

= δij (2.56)

∂IA1
∂A

= I or
∂IA1
∂Aij

= δij (2.57)

Some rules of transformation for the deformation gradient

The deformation gradient works between current and reference placement, is a two point
tensor and thus denoted with a small and a capital index as in (1.14). Within a cartesian
coordinate system the deformation gradient F = ∂x/∂X and its inverse relation F−T =
∂X/∂x can also be written as:

F = FiJ =
∂xi
∂XJ

eJ ⊗ ei F T = FJi =
∂xi
∂XJ

ei ⊗ eJ (2.58)

F−1 = F−1
iJ =

∂XJ

∂xi
eJ ⊗ ei F−T = F−1

Ji =
∂XJ

∂xi
ei ⊗ eJ
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2.2 Gauss’s integral theorem and divergence theorem

Some useful differential relations for the deformation gradient are summarized here:

∂F

∂F
=
<4>

I or
∂FiJ
∂FkL

= δikδJL (2.59)

∂F−T

∂F
= −F−TF−T or

∂F−1
Ji

∂FkL
= −F−1

Jk F
−1
Li (2.60)

∂ det(F )

∂F
= det(F )F−T or

∂J
∂FiJ

= JF−1
Ji (2.61)

∂tr(F T · F )

∂F
= 2F or

∂(FmNFmN )

∂FiJ
= 2FiJ (2.62)

Equation (2.59), (2.60) and (2.62) follow by direct calculation following the rules sum-
marized in the appendix III. The proof of (2.61) is lengthy but can be found in [339].

2.2. Gauss’s integral theorem and divergence theorem

Because of its importance in continuums mechanics we state here a general form of
Gauss’s integral theorem and a the special case known as divergence theorem. For
proofs and more details consult the mathematical textbooks as, e.g., [121, 139].

A general version of Gauss’s integral theorem reads

∫

Ω\Λ
grad ◦ A(x)d V =

∫

∂Ω

n ◦ A(x)d S +

∫

Λ

n ◦ [[A(x)]]d S. (2.63)

Equation (2.63) includes the classical theorems of Gauss and Stokes as special cases. In
this version the tensorial fields A(x) defined in the region Ω may be discontinuous at a
surface of discontinuity Λ. The function

[[a]] = a− − a+ (2.64)

is the difference of the values of the field quantity a on both sides of the surface of
discontinuity. The index “ + ” refers to the side with positive outward-pointing unit
normal n and the index “ - ” refers to the opposite side, i.e., the side where the positive
surface normal n points to. The symbol ◦ in equation (2.63) summarizes three different
possible operations, namely: multiplication with a scalar field, scalar product with a
vectorial or tensorial field, or vector (wedge) product with a vector field.
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2.3 Reynolds’ transport theorem

Let now Ω be a bounded open subset of IRn with smooth (or piecewise smooth) boundary
∂Ω. Let a = [a1 . . . an] be a smooth vector (or tensorial) field defined in IRn, or at least
in Ω ∪ ∂Ω. Again n be the unit outward-pointing normal of ∂Ω. Then follows

∫

Ω

div a dV0 =

∫

∂Ω

na dS, (2.65)

where as above dV is the element of volume in IRn and dS is the element of surface area
on ∂Ω. Equation (2.65) is cited in the text as divergence theorem.

2.3. Reynolds’ transport theorem

To conclude this summary we present a fundamental theorem to evaluate a time deriva-
tive in some changing volume. The rate of any scalar or tensorial function Ψ(x, t) in a
time depending volume V (t) is

d

dt

∫

V (t)

Ψ
(
x, t
)
dV =

d

dt

∫

V0

Ψ
(
ϕ(X, t), t

)
J(X, t) dV (2.66)

Evaluating the right hand side of 2.666, transferring it to the current placement and
applying the divergence theorem gives Reynolds’ transport theorem

d

dt

∫

V (t)

Ψ dV =

∫

V (t)

∂Ψ

∂t
dV +

∫

∂V (t)

Ψ · v · n dS, (2.67)

where we dropped the arguments for readability. The first term in (2.67) denotes the
local time rate of the spacial field Ψ(x, t), the second term characterizes the outward
normal flux, i.e., the rate of transport of Ψ ·v across a fixed boundary ∂V of region V (t).
Assuming Ψ(x, t) to be sufficiently smooth, the local form of (2.67) is the material
time derivative,

d

dt
=
∂Ψ

∂t
+ gradΨ · v. (2.68)

6Note that J̇V0 = J̇
J
V (t) and J̇

J
=divv(x, t).
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Appendix 3:

Functional Spaces and Norms

Here we summarize some linear spaces and norms naturally to use in finite element
approximations. The definitions are given for scalar functions. The analogous definition
for vector valued functions are obtained by applying the definition to each one of the
components. For more detailed expressions we refer to the mathematical literature, e.g.,
[48, 87, 126, 125]. Throughout this section let Ω ∈ IRd be a bounded open set.

Let u : IRd → IR and let α be a multi-index7. Then we write the partial derivatives of a
function by

Dαu =
∂|α|u

∂xα1

1 . . . ∂xαd
d

. (3.1)

Definition: Frobenius-norm. Let u ∈ IRα and let α be a multi-index. Then we define
the norm

‖u‖F =
√

u2
α1

+ · · ·+ u2
αd
. (3.2)

If u ∈ IRn is a vector definition (3.2) coincides with the definition of the Euclidian norm.

The Lebesque-space Lp(Ω), p ≥ 1, is the linear space of functions u : Ω → IR which
are Lebesque-measurable, i.e., the ess supΩ u <∞.

Definition: Lp-norm. Let u ∈ Lp(Ω), p ≥ 1. Then we define the norm

‖u‖p =
(∫

Ω

u dx
)1/p

. (3.3)

According to custom we refer to functions L2(Ω) as functions which are square integrable
over Ω. All piecewise continuous functions u belong to L2(Ω).

7A multi-index α of dimension d is an array {α1, . . . , αd} of nonnegative integers, α ∈ INd. The degree
|α| of the multi-index is the sum α1+· · ·+αd. For example: a quadratic polynomial in two dimensions
has |α| = 6 independent coefficients with indices α = {00}, {10}, {01}, {20}, {11}, {02}
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The Sobolev-space Wm,p(Ω) is the linear space of functions u : Ω → IR such that
Dαu ∈ Lp(Ω) in the distributional sense. In other words, these are functions in Lp(Ω)
whose distributional derivatives up to order m are themselves in Lp(Ω).

Definition: Sobolev Seminorm. Let u : Ω → IR be m-times continuously differentiable
in Ω, m ≥ 0. Then we define the seminorm

|u|m,p =
(∑

|α|=m

∫

Ω

|Dαu|p dx
)1/p

. (3.4)

Definition: Sobolev norm. Let u : Ω → IR be m-times continuously differentiable in Ω,
m ≥ 0. Then we define the norm

‖u‖m,p =
( m∑

k=0

∫

Ω

|u|k,p dx
)1/p

. (3.5)

The Sobolev space Wm,p(Ω) is a complete normed space, or Banach space, under the
norm (3.5).

The Hilbert space Hm(Ω), m ≥ 0 is the Sobolev-space Wm,2(Ω). The particular space
H0(Ω) coincides with the Lebesque space L2(Ω).

For instance, all piecewise continuous functions u with piecewise continuous first deriva-
tives belong to H1(Ω).

Definition: Hilbert norm. Let u : Ω → IR be m-times continuously differentiable in Ω,
m ≥ 0. Then we define the norm

‖u‖m =
( m∑

k=0

|u|2k
)1/2

. (3.6)

The Hilbert space Hm(Ω) the space of functions over Ω which can be obtained as limits
of smooth functions under the norm ‖ · ‖m. These limits may be thought of as functions
which are square integrable over Ω and whose distributional derivatives of order up to
m are themselves square integrable. In addition, the Hilbert spaces Hm(Ω) are spaces
with the inner product

(
u, v
)

m
=
∑

|α|=m

∫

Ω

Dαu·Dαv dx . (3.7)
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Appendix 4:

Evaluation of the exponential and

logarithmic mapping and their

derivatives

Here algorithms for the computation of the exponential and logarithmic mapping and
their first and second linearizations according to Radovitzky and Ortiz [276] are given.

Let A ∈ R
n×n, B ∈ R

n×n be square matrices, not necessarily symmetric. The exponen-
tial of A is defined as

exp(A) =

∞∑

k=0

1

k!
Ak (4.1)

provided that the series converges. The logarithm of B is defined as

ln(B) =
∞∑

k=1

(−1)k−1

k!
(B − I)k (4.2)

provided that the series converges.

4.1. Spectral representation

Let A have eigenvalues {λα, α = 1, . . . n}, right eigenvectors {uα, α = 1, . . . n}, and
left eigenvectors {vα, α = 1, . . . n}. Thus,

Auα = λαuα, α = 1, . . . , n, (4.3)

ATvα = λαvα, α = 1, . . . , n, (4.4)
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4.1 Spectral representation

and

A =

n∑

α=1

λαuα ⊗ vα (4.5)

The exponential of A then admits the spectral representation

exp(A) =

n∑

α=1

eλαuα ⊗ vα (4.6)

We wish to linearize the exponential mapping twice. To this end, we begin by recalling
that the solution to the problem

ẋ(t) = Ax(t) + f(t), t ≥ 0 (4.7)

x(0) = x0 (4.8)

in R
n is

x(t) = exp(tA)x0 +

∫ t

0

exp((t− τ)A)f (τ) dτ, t ≥ 0 (4.9)

It therefore follows that exp(A)ij is the ith component of the solution of the initial-value
problem (4.7 - 4.8) at t = 1 with f (t) = 0 and x0 = ej ≡ jth standard basis vector in
R
n.

Imagine now perturbing the matrix A to A + δA in (4.7 - 4.8), resulting in a perturbed
solution x(t) + δx(t). To first order, δx(t) is the solution of the problem

δẋ(t) = Aδx(t) + δAx(t), t ≥ 0 (4.10)

δx(0) = 0 (4.11)

Using (4.9), the solution of this problem is found to be

δx(t) =

∫ t

0

exp((t− τ)A)δA exp(τA) dτ (4.12)

But we also have

x(t) + δx(t) = exp(t(A + δA))x0 ∼ [exp(tA) +Dexp(tA)δA]x0 + hot (4.13)

Comparing (4.12) and (4.13) yields

Dexp(A)δA =

∫ 1

0

exp((1 − τ)A)δA exp(τA) dτ (4.14)
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4.1 Spectral representation

or, in components

Dexp(A)ijkl =

∫ 1

0

exp((1 − τ)A)ik exp(τA)lj dτ (4.15)

In order to evaluate this integral we may make use of representation (4.5) to write (4.15)
in the form

Dexp(A)ijkl =

n∑

α=1

eλα

n∑

β=1

[∫ 1

0

eτ(λβ−λα) dτ

]

uαivαkuβlvβj (4.16)

which evaluates to

Dexp(A)ijkl =

n∑

α=1

n∑

β=1

f(λα, λβ)uαivαkuβlvβj (4.17)

or, in invariant notation

Dexp(A) =
n∑

α=1

n∑

β=1

f(λα, λβ)uα ⊗ vβ ⊗ vα ⊗ uβ (4.18)

In these expressions we have written

f(λα, λβ) =
eλβ − eλα

λβ − λα
if λβ 6= λα (4.19)

f(λα, λα) = eλα otherwise (4.20)

Note that the above expressions are valid even when eigenvalues are repeated.

In order to determine the second derivative of the exponential mapping we may differ-
entiate (4.15) to obtain

D2exp(A)ijklmn =

∫ 1

0

(1 − τ)Dexp((1 − τ)A)ikmn exp(τA)lj dτ

+

∫ 1

0

τ exp((1 − τ)A)ikDexp(τA)ljmn dτ (4.21)

Inserting (4.5) and (4.17) into this expression gives

D2exp(A)ijklmn =
∑n

α=1

∑n
β=1

∑n
γ=1

[∫ 1

0
(1 − τ)f((1 − τ)λα, (1 − τ)λβ)e

τλγ dτ
]

uαivαmuβnvβkuγlvγj

+
∑n

α=1

∑n
β=1

∑n
γ=1

[∫ 1

0
τf(τλα, τλβ)e

(1−τ)λγ dτ
]

uαlvαmuβnvβjuγivγk (4.22)
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4.1 Spectral representation

Defining

g(λα, λβ, λγ) =

∫ 1

0

τf(τλα, τλβ)e
(1−τ)λγ dτ (4.23)

(4.22) simplifies to

D2exp(A)ijklmn =
∑n

α=1

∑n
β=1

∑n
γ=1 g(λα, λβ, λγ)vαmuβn[uαlvβjuγivγk + uαivβkuγlvγj ] (4.24)

which is the sought expression.

The derivatives of the logarithmic mapping can be obtained directly from the previous
expressions by recognizing that ln = exp−1 and using the properties of inverse functions.
This leads to

Dlog(B)ijkl = Dexp(A)−1
ijkl (4.25)

D2log(B)ijklmn =

−Dexp(A)−1
ijpqDexp(A)−1

rsklDexp(A)−1
tumnD

2exp(A)pqrstu (4.26)

where A = exp(B). The first of these expressions evaluates to

Dlog(B)ijkl =
n∑

α=1

n∑

β=1

f(µα, µβ)uαivαkuβlvβj (4.27)

where {µα, α = 1, . . . n} are the eigenvalues of B, {uα, α = 1, . . . n} are its right
eigenvectors, and {vα, α = 1, . . . n} its left eigenvectors. In invariant notation

Dlog(B) =

n∑

α=1

n∑

β=1

f(µα, µβ)uα ⊗ vβ ⊗ vα ⊗ uβ (4.28)

where we write

f(µα, µβ) =
logµβ − logµα
µβ − µα

if µβ 6= µα (4.29)

f(µα, µα) =
1

µα
otherwise (4.30)

Note that the above expressions are valid even when eigenvalues are repeated.

270



4.2 Taylor series expansion

4.2. Taylor series expansion

For small A it may be cheaper to evaluate the exponential mapping and its derivatives
directly from its series expansion (4.1). Likewise, for B close to the identity it may be
cost-effective to use (4.2) directly. To this end, it proves convenient to express (4.1) in
the form

exp(A) =

∞∑

k=0

exp(k)(A) (4.31)

where the terms exp(k)(A) in the expansion follow from the recurrence relation

exp(0)(A) = I (4.32)

exp(k+1)(A) =
1

k + 1
exp(k)(A)A, k = 0, . . . (4.33)

Here I is the identity matrix. It follows from this representation that

Dexp(A) =

∞∑

k=1

Dexp(k)(A) (4.34)

where

Dexp(1)(A) = DA (4.35)

Dexp(k+1)(A) =
1

k+1
[Dexp(k)(A)A + exp(k)(A)DA], k = 1, . . . (4.36)

In components

Dexp(1)(A)ijkl = δikδjl (4.37)

Dexp(k+1)(A)ijkl =
1
k+1

[Dexp(k)(A)ipklApj + exp(k)(A)ikδjl], k = 1, . . . (4.38)

Likewise

D2exp(A) =
∞∑

k=2

D2exp(k)(A) (4.39)

where

D2exp(2)(A) = 1
2
D2A2 (4.40)

D2exp(k+1)(A) =
1
k+1

{D2exp(k)(A)A + 2sym[Dexp(k)(A)DA]}, k = 2, . . . (4.41)
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4.2 Taylor series expansion

In components

D2exp(2)(A)ijklmn = 1
2
(δikδlmδjn + δimδknδjl) (4.42)

D2exp(k+1)(A)ijklmn = 1
k+1

[D2exp(k)(A)ipklmnApj+

Dexp(k)(A)imklδjn +Dexp(k)(A)ikmnδjl], k = 2, . . . (4.43)

The logarithmic mapping can be given a similar treatment. Begin by expressing (4.2) in
the form

log(B) =

∞∑

k=1

log(k)(B) (4.44)

where the terms log(k)(B) in the expansion follow from the recurrence relation

log(1)(B) = B − I (4.45)

log(k+1)(B) = − k

k + 1
log(k)(B)(B − I), k = 1, . . . (4.46)

It follows from this representation that

Dlog(B) =

∞∑

k=1

Dlog(k)(B) (4.47)

where

Dlog(1)(B) = DB (4.48)

Dlog(k+1)(B) =

− k
k+1

[Dlog(k)(B)(B − I) + log(k)(B)DB], k = 1, . . . (4.49)

In components

Dlog(1)(B)ijkl = δikδjl (4.50)

Dlog(k+1)(B)ijkl =

− k
k+1

[Dlog(k)(B)ipkl(Bpj − δpj) + log(k)(B)ikδjl], k = 1, . . . (4.51)

Likewise

D2log(B) =

∞∑

k=2

D2log(k)(B) (4.52)

where

D2log(2)(B) = 1
2
D2B2 (4.53)

D2log(k+1)(B) =

− k
k+1

{D2log(k)(B)(A − I) + 2sym[Dlog(k)(B)DB]}, k = 2, . . . (4.54)
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4.2 Taylor series expansion

In components

D2log(2)(B)ijklmn = 1
2
(δikδlmδjn + δimδknδjl) (4.55)

D2log(k+1)(B)ijklmn = − k
k+1

[D2log(k)(B)ipklmn(Apj − δpj)+

Dlog(k)(B)imklδjn +Dlog(k)(B)ikmnδjl], k = 2, . . . (4.56)
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Studienbücher, Stuttgart, 1995.

[6] H. Anderson. Analysis of a model for void growth and coalescence ahead of a
moving crack tip. Journal of the Mechanics and Physics of Solids, 25:217–233,
1977.

[7] E. M. Arruda and Boyce M. C. A Three-Dimensional Constitutive Model for the
Large Stretch Behavior of Rubber Elastic Materials. Journal Mech. Physics Solids,
41:389–412, 1993.

[8] M.F. Ashby, F.J. Blunt, and M. Bannister. Flow characteristics of highly con-
strained metal wires. Acta Metallurgica, 37(7):1847–1857, 1989.

[9] O. Atahan, T. Alkibay, U. Karaoglan, N. Deniz, and I. Bozkirli. Acute bioeffects
of electromagnetic lithotripsy. Scandinavian Journal Of Urology And Nephrology,
30(4):269–272, 1996.

274



Bibliography
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[42] Th. Böhme and W.H. Müller. On the simulation of the spinodal decomposition
process and phase growth in a leadfree brazing material. Computational Materials
Science, to appear, 2006.
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[126] A. Göpfert and T. Riedrich. Funktionalanalysis. In: Mathematik für Inge-
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