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Modeling and estimation of combined route and activity location choice

Gunnar Flotterod*

Abstract— This article describes a behavioral model of com-
bined route and activity location choice. The model can be sim-
ulated by a combination of a time variant best path algorithm
and dynamic programming, yielding a behavioral pattern that
minimizes a traveler’s perceived cost. Furthermore, the model
is extended in a Bayesian manner, providing behavioral prob-
abilities not only based on subjective costs, but also allowing
for the incorporation of anonymous traffic measurements and
the formulation of a traffic state estimation problem, which can
efficiently be solved by an available algorithm.

I. INTRODUCTION

The problem of traffic monitoring and prediction has been
considered by many researchers. Various approaches are
data-driven [1], [2], [3], while others adjust structural models
to real world measurements. The latter group can further
be classified with respect to what quantities are estimated:
Some consider the problem of estimating physical traffic flow
properties such as densities, velocities, or flow parameters
[4], [5], while others (including this work) concentrate on the
underlying demand itself and consider the physics of traffic
flow as a strict constraint [6]. The second point of view goes
structurally deeper, since traffic demand is the cause of road
usage. Still, estimation of traffic demand and network link
related quantities are two aspects of the same problem and
ultimately should not be separated [7].

This article describes a novel methodology of traffic state
estimation based on multi-agent simulations. We link flexible
but little formalized representations of individual mobility
behavior such as agent-based demand generation and mi-
crosimulation [8], [9] with mathematically well understood
methodologies borrowed from control engineering. More
precisely, we consider the problem of estimating agents’
route and activity location choice in a Bayesian setting,
combining for every agent an a priori activity plan for a
given day with anonymous traffic measurements such as
flows or densities into a most likely a posteriori plan.
Since traffic demand results from individual mobility needs,
no validated individualized knowledge should be *“aggre-
gated away” during the formalizing steps of setting up a
mathematical estimation problem: Our approach uses fully
individualized behavioral information in terms of a daily
activity plan for every agent.

Due to space restrictions, not all aspects of the problem
can be analyzed in depth: This article provides detailed
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description of the behavioral model, but only shortly visits
the equally important aspects of micro/macro traffic flow
simulation and numerical optimization. Further reading is
provided in [10], [11].

The remainder of this article is organized as follows.
Firstly, the deterministic modeling and simulation problem
is discussed: In section II-A, combined route and activity
location choice is modeled in terms of an optimization
problem, for which a solution algorithm is given in section
I1-B. Extensions and limitations of this model are discussed
in 11-C and 11-D. Secondly, the model is extended by aspects
of randomness: In sections I1I-A and I11-B a link between
an agent’s individual behavior and general observations of
the traffic system in terms of anonymous measurements is
provided. Section I11-C then combines the behavioral model
with that of anonymous measurements, yielding a formal
description of the combined route and activity location
choice estimation problem, for which a solution algorithm
is suggested in I11-D. Current and future evaluation of the
algorithm within a real-world setting are discussed in section
IV. The methodology is summarized in section V and an
outlook on further work is given.

Il. DETERMINISTIC MODELING AND SIMULATION
A. A model of daily plans

Every agent p has an individual plan for a given day, which
is comprised as follows: The complete day is segmented into
n* + 1 temporal stages. Every such stage 0 < a < n” is
provided with a set £# of one or more locations (network
links) and a discrete start time step k# with 0 = kf < ki’ <
... < k.. Formally, stage a is nothing but a fixed temporal
interval [k%, k%, ) during which . wants to be at one of the
locations in £#. It can be interpreted as an activity such as
“work”, “leisure” or “shopping”, while its location set can
be understood as the activity locations where the individual
expects facilities for execution of the according activity, e.g.
different malls for a shopping activity. An example of such
an activity plan is given in Figure 1. Note that the underlying
network in which the example locations are situated is not
not drawn, but only the logical multi-stage structure.

In this article, we do not consider departure time choice,
although it is an important direction of research [12]. This
decision is due to computational considerations given later
on.

Every plan is anchored at its individual’s unique home
location Ify = Ii' . where it starts and ends: £{j = L], =

home’

{1} ...} Individual ;. values the choice of location I € £/

hom

for activity a by R¥(1); the cost of choosing this location is
Cy(l) = —Rg(0)-



Fig. 1. Example of a plan with location choice
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A four stage plan starting and ending at the agent’s home location
h. Stage 1 of the plan (“work™ activity) can be conducted either
at home (home working at location h) or at the office (work place
location w). For stage 2 (“leisure” activity) there are are three
possible locations, a cinema (c), a pub (p) and, again the home
location. Note that the individual can choose to stay home the entire
day.

A route starting at link ¢ and time step k¢ to link j is
denoted by U(i, j, ko). It will be convenient to represent it
by

u(ivja kO) = {u(k)}kao = {(UTS(k))}kao (1)

where u,.s(k) is 1 if this route implies a turning move from
link 7 to link s in time step k& and zero otherwise. Here and
in the following we only consider feasible routes in the sense
that turning decisions are only made if the previous route led
to a location where this turning move is physically possible.
This property will in the following only be stated verbally
(“U is feasible”), since a formalization would just increase
notational overhead.
For individual 1, the cost of traversing U (i, j, ko) is

Cu[u(iajv kO)] = Z Zurs(k)cfs(k)’ 2

k>ko T8

which is additive in the nonnegative turning movement costs
ct (k) as perceived by p. Link traversal costs can easily be
incorporated by adding them to the turning move cost of
entering the according link. The minimal cost path for 1 be-
tween i and j when starting at & is denoted by ¢4} . (i, 7, ko)
and its cost by C¥,, (i, j, ko) = C*[UL,, (i, 7, ko)].

During execution of their daily plans, individuals are aware
of future effects their current activity location choice might
have: Not the most attractive (least cost) activity location
is chosen, but rather that location, which minimizes the
expected cost for the entire remainder of the day. Since any
individual’s sequence of possible activity locations is known
and finite, dynamic programming can be employed to solve
this decision problem, as it will be shown in the next section.

B. Smulation of daily round trips

In order to describe the combined route and activity
location choice problem as a multi-stage decision process, a
residual cost V**(4) is introduced. It is defined as the minimal

cost to be experienced when starting activity a at location
j € L¥ and continuing in an optimal manner:

VEG) = ~REG) + min {Cly (G i) + Vi (0} @)
a+1

for a < n*, while RE(l), ) and V}.(1), ) can be
arbitrarily set to 0 since they have no influence on the final
result.

For p being located on any link 7 at time step k& and
heading for activity a, the task of optimally completing its
round trip can now be stated as the problem of finding a next
activity location /% € £# with minimal cost C/, (i, I, k) +
VI(1#), being given by

lh = arg min {CL (3R FVEG)) @

This can be achieved by calculation of a single best path from
1 to an imaginary destination d which directly succeeds all
locations j € £# by means of likewise imaginary connecting
links of cost V(). This yields the best next activity location
(which is the last real link on the obtained path) as well as
the best path itself.!

In the same manner, an optimal round trip can be obtained
by one sweep through all activity stages: I}, = I}/ is
fix. Running backwards through stages a = n* — 1,...,0
allows to calculate for every activity location j of current
stage a the optimal next activity location (4) and its residual
cost (3). Having reached a = 0, the optimal round trip
can then be obtained by moving forwards through all stages
and choosing the optimal next location as annotated during
the previous backwards sweep. This procedure is standard
dynamic programming.

The calculation of residual costs for all activity locations
requires n* best path tree calculations, each one connecting
all locations of a given stage to the single extra node behind
all locations of the next stage as it is shown in figure 2.

C. Within-day replanning

This calculation scheme can efficiently be applied for
simulation of within-day replanning: Consider an individual
1, which so far followed a pre-calculated route towards
its next activity location {#. Assume that x now faces a
significant deviation between the observed traffic situation
and its historically learned one (on which its precomputed
route is based). It appears reasonable that p spontaneously
replans its current decision stage, while keeping its evalua-
tion of subsequent activity locations fixed. This is equivalent
to direct application of (4) in order to obtain a new route
(and maybe a new activity location) reflecting the current
situation. The only required computation for such a single-
stage decision is the calculation of one best path through one
of the next temporal stages’ locations towards the imaginary
destination node behind it, as previously explained.

INote that the optimal path does not change if a positive cost is equally
added to all imaginary links. Raising these links’ costs to a nonnegative level
allows us to meet all requirements for application of a dynamic version of
Dijkstra’s best path algorithm [13].



Fig. 2. Calculation of a single decision stage
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This figure shows a best path tree representing the optimal tran-
sition from figure 1’s ““‘work™ activity stage to its “leisure” stage.
The tree’s root is an imaginary destination node d, which directly
follows all possible activity locations h, ¢, and p of the “leisure”
stage. Bold lines on the underlying grid network represent best
paths towards d. The figure allows to identify the optimal (route
and) next activity location choice for every node of the network: If
the agent is currently at the office w, going to the cinema is the most
attractive next step, while a home-worker at ~ would effectively stay
home (note the shortcut from A to d). The pub p is only attractive
if the agent already is in its very proximity.

Since we have shown that activity location choice can be
subsumed in a slightly modified route choice problem, the
following discussion will only treat the according best path
problem without explicitly mentioning location choice.

D. Discussion of model limitations

Economic theory suggests that the marginal value of
conducting an activity decreases over time and ultimately ap-
proaches zero. The model described above assumes duration
independent activity values implying zero marginal costs,
which is realistic only for long activity durations. Currently,
we impose a lower bound on stage lengths when generating
activity plans.

As long as departure times are fixed at stage transitions,
duration dependent activity values can be incorporated by
making the costs of the aforementioned imaginary links
behind activity locations time variant. Realistic modeling
of departure time choice would require additional state
information representing the duration an agent has already
been conducting an activity [12]. Since we already have
to search an entire time variant traffic network in order
to model spontaneous route adjustment, we will avoid this
state space increase and keep departure time fixed until we
have computationally investigated our approach on larger
scenarios.

I1l. INCORPORATION OF UNCERTAINTY AND
BEHAVIORAL ESTIMATION

So far, a model and a simulation algorithm for combined
route and activity location choice have been provided. The
remainder of this article describes how these results can be

adopted to calculate not only an agent’s minimum cost be-
havior, but rather its most likely a posteriori behavior, given
its a priori activity plan and additional traffic measurements.

Ultimately, this is achieved by provision of modified turn-
ing costs to the agent that represent the linearized a posteriori
log-likelihood of not making the according turning moves.
An agent minimizing this cost approximately maximizes the
a posteriori likelihood of its decisions.

A. Macroscopic traffi c dynamics

In the absence of measurements, the most likely a pos-
teriori trip should be the one of minimal cost. If there are
measurements, they have to be related to individual turning
decisions in order to allow for the aforementioned turning
cost modifications. This is accomplished via a differentiable
macroscopic traffic flow model. Since the results given in
this section follow from extensive preparatory work, the
presentation is quite tight. Sources for further reading are
cited.

We use a macroscopic first order traffic flow model that
runs in discrete time and space [11], [14], [15]. The model
is represented in state space form. Macroscopic occupancies
on every link segment constitute the state vector x(k). The
model takes accumulated turning counts u(k) = u* (k)
of individual, microscopically represented vehicles as control
variables and internally turns them into splitting fractions
of macroscopic flows at all intersections. Vice versa, micro-
scopic vehicles are moved through the network according
to velocities provided by the macroscopic model. First or-
der traffic flow dynamics define the macroscopic system’s
evolution through time, formally given by the state equation
x(k+ 1) = f[x(k),u(k), k].

Measurable quantities y (k) such as traffic flows or veloc-
ities are calculated from the macroscopic model’s states via
an output equation y(k) = g[x(k), k]. Since we consider a
first order model, traffic occupancy on a link segment fully
defines the average speed (and thus flow) on this segment.

Altogether, a differentiable relationship between any indi-
vidual p’s route choice and the output of the macroscopic
traffic flow model can be stated by the following set of
equations [10]:

u(k) = Y u'(k)
x(k+1) = f[x(k),u(k),k]
y(k) = glx(k),k]. (%)

B. Modeling of anonymous traffi ¢ measurements

We now assume that the control sequence U = {u*(k)}
generated by any individual p’s route choice incorporates
random effects as specified in the next section. Although
the state and output equation of the macroscopic traffic flow
model remain deterministic, the random control component
also turns the systems state and output vectors into random
variables. This allows to express all causal relations between
model in- and outputs by conditional probabilities.

Some components of the traffic system’s output vector
y(k) can be observed via sensors such as inductive loops,



floating cars, or traffic surveillance cameras [16]. Since these
sensors are prone to various sources of error, it is assumed
that a concrete measurement y(k) follows a conditional
probability density function h(y(k) | y(k)), which is dif-
ferentiable and models the actual measurement y(k) as a
random variation of the macroscopic model’s output y(k).?

In the next section, we will use the notion of a mea-
surement y(k)’s conditional probability P(y(k) | y(k)).
which we understand as the probability that (%) lies within
a certain region Z around y(k) (i.e., y(k),y(k) € Z)
being sufficiently small to allow for the following first order

approximation:
JRCIN T
zZ

Mﬂmww»ém (6)

Now, the probability P(Y | U") of a measurement
sequence Y = {y(k)}r can be related to the chosen route
U" = {u*(k)}y, of any individual z by

HP (7)

together with equations (5) and (6). Note that the resulting
relationship between Y and U* is approximately differen-
tiable and thus can be linearized.

P(y(k) [y(k) =

%

¥ |u)

C. Formulation of the estimation problem

It is assumed that individual 4 is currently moving through
the network towards one of the activity locations of its
current plan stage. Without consideration of measurements,
the individual’s a priori path and location choice can be
simulated as explained in section I1-B.

This choice mechanism is now probabilistically relaxed.
The a priori probability that the individual actually chooses
a path U* is expressed in terms of a multinomial logit model
[17]

e—BCU")

Sy e W)

where the normalizing denominator sums over all paths V
the individual can choose from. Note that this choice set will
never be explicitly generated. We are aware of this simple
model’s drawbacks, still we consider it to be a good starting
point because of its tractable analytical form [17], [18].

In the absence of further information (such as mea-
surements) the minimum cost path would have maximal
probability of being chosen. Thus, a probability maximizing
estimator of the individuals a priori route choice would yield
the same result as the cost minimization procedure given in
section 11-B.

Now it is assumed that some measurements Y are avail-
able. The a posteriori probability P(U" | Y) that an

PU") = ®)

2For notational simplicity it is assumed that (a) ¥ and y are of same
dimensions and (b) function A is time invariant.

individual chose path ¢4* in consideration of Y is expressed
via Bayes’ theorem:

P U PU") @
PY) '
After taking the logarithm of this function, we substitute (7)

and (8):
Z InP(y (k) —

InPU" | Y)
+ ane_Bc(v)
14

independent of U"

PU" | Y) =

pow”)

—InP(Y)

Substituting (2) as well as (6) and dropping all terms
independent of U* = {u*(k)}, the most likely a posteriori
route U* of any individual 1 can be stated as the solution
of the following control problem:

minimize
Jr=3" (—m h(y (k) | y(k)) +ﬂ20§§(/€)%(k))
k ij
sit. y(k) = glx(k), k]
x(k+1) = flx(k),u(k), k]
( ) = ZH u“(k)
u" is feasible

(10)

Thus, the problem of estimating a populations most likely

behavior in terms of route and activity location choice is

equivalent to solving problem (10) simultaneously for every
agent p in this population.

D. Solution of the estimation problem

An algorithm for approximate solution of (10) is outlined
in this section, while further details are provided in [10].
Since J* is linear in good approximation with respect to a
single agent’s turning decisions, it is replaced by

JH*ZZ 13 "'/6)C ( ))UZ(k)

with real-valued coefficients \;; (k) being defined through
linearization of (10). Minimization of .J* by optimal choice
of a feasible path &£ can then approximately be achieved by
a time variant best path algorithm that operates on modified
costs dy; (k) = max{0, \i; (k) + Bej; (k) }.

The lower bound of d;; (k) avoids cycles of negative cost
so that Dijkstra’s best path algorithm can be employed.
Since all ¢; (k) are nonnegative, the error introduced by this
bound depends on 3, which represents the a priori infor-
mation’s reliability. The usage of scaled costs dj;(k)/3 =
max{0, \i;(k)/B + cj;(k)} yields the same U" and is
more amenable practical implementation as well as non-
mathematical interpretation, since it only implies the addition
of a correction term \;;(k)/0.

Minimizing (10) by synchronous modification of many
agents’ trajectories is more difficult. Clearly, the increased
number of degrees of freedom has the potential for a better

(11)



overall solution, still this setup results in certain problems
also encountered in dynamic route guidance: If many drivers
are independently of each other informed of a low travel time
route, they might all switch towards this route, causing a jam
and very high travel times times [19]. Similarly, the individ-
ual linearization (11) of the overall problem does not allow
for a coordination of different agents’ path optimizations.

The proposed algorithm resembles the fixed point solution

approaches to self consistent route guidance in the sense that
it iteratively updates only a subset of all agents. One iteration
of the algorithm is given below:

1) Load all agents of population M onto the network;

2) linearize target functional J* and obtain J#;3

3) choose a subset M’ C M;

4) calculate a new path U" for every u € M’ that
approximately minimizes J* by dynamic best path
algorithm;

5) continue with 1) if desired.

This algorithm becomes identical to a popular traffic assign-
ment heuristic that solves the equilibrium problem in terms of
a fixed point iteration if no measurements are available [20].
Since traffic assignment based on this method has become
common practice, the method can be expected to also work
well for our purposes.

IV. AN ONGOING CASE STUDY
A. Setting of the test case

We have set up an extensive test case for the proposed
algorithm. The geographical zone of investigation is the
city of Berlin. Its traffic network is represented by a graph
of currently 6400 links. The multi-agent simulation system
MATSIM [9] has been used to generate activity plans for
a complete microscopic representation of the Berlin popula-
tion. For real time operations, a 10% sample of this demand
(approx. 170.000 agents) is used.

Real world measurements are currently obtained from two
sources of information: Sparse inner-city velocity informa-
tion is obtained from floating car data being provided by a
taxi fleet of a few hundred vehicles. Inductive loop data is
available on the inner-city highway. This data is transmitted
every few minutes to a standalone desktop PC that takes care
of the entire estimation procedure.

As explained before, incorporation of measurements into
the online traffic simulation only requires modifications of
the travel costs provided to replanning agents. One iteration
of the overall system at real world time ¢ roughly involves
the following steps:

1) Adaptive simulation from ¢ — 30min to ¢: First a
fraction of all agents recalculates a new route based
on modified costs calculated in the previous iteration,
then the demand is loaded onto the network;

2) predictive simulation from ¢ to ¢ 4+ 30min as a con-
tinuation of 1), this step is irrelevant to the estimation
itself;

3Since this functional can be considered to be the same for broad
classes of travelers (e.g. “informed”, “uninformed”), an efficient numerical
treatment is possible.

3) calculation of new cost modifications for the next
iteration based on measurements obtained during the
last 30min.

The computational effort of a single iteration is between 300
and 600 seconds on a Pentium 4 desktop PC with 2GB RAM.
The entire software system has been implemented in the Java
programming language.

B. Very preliminary discussion

Against the background of the current soccer world cham-
pionship in Berlin it becomes clear that the number of effects
presently influencing the traffic situation is much larger than
in normal operations. Although attempts have been made to
incorporate event-specific behavior in the populations activity
plans, a thorough validation of the method is hard with
the large number of uncertainties currently influencing the
results.

Still, some statements can already be made.

e A good a priori demand in terms of realistic activity
plans for the population is important. The combined
route and and activity choice problem for an entire
population is utterly underdetermined if only online
measurements and no a priori plans are used. If the
quality of a priori information is low, little weight is
put on the agents’ a priori cost minimization (expressed
by a small 8 parameter in eq. (8)). This results in the
simultaneous attempt of all replanning agents only to
reproduce the current measurements, which makes the
solution prone to oscillations.

« Despite the aforementioned problems, the method works
in terms of measurement error reduction. It shall again
be noted that this adjustment ability only results from
behavioral adaptations. Since traffic flow dynamics are
treated as strict side constraints, no adjustment of link
related quantities without according underlying behav-
ioral patterns takes place.

o The current situation in Berlin made clear that an
additional incident detection module will be inevitable.
Otherwise, the estimator tries to adjust reasonable be-
havioral patterns to events of totally different causality
such as a crowd celebrating their team in the middle of
a major road.

o The method works in real-time. A population of 170.000
agents is adjusted on a 6400 link network in real time.
The employed rolling horizon procedure updates the
estimation every 300 to 600 seconds, depending on the
network load. During this time interval, one iteration
of a 30min estimation problem is solved and a 30min
prediction is calculated. All of this takes place on a
single desktop PC.

V. SUMMARY AND OUTLOOK

We presented a novel methodology of behavioral state
estimation for traffic systems modeled by multi-agent simu-
lations. Several steps were undertaken to obtain the results
presented in this article: 1. Design of a differentiable, yet
fast macroscopic mobility simulator for networks of arbitrary



topology; 2. movement of individual particles through this
mobility simulator without loss of its differentiability; 3.
representation of the overall system in state space form; 4.
construction of an algorithm that solves a general nonlinear
control problem for this dynamic system in terms of agents’
trajectories through the network; 5. representation of trav-
elers’ route and activity location choice as an optimization
problem; 6. formulation of the behavioral estimation problem
in a Bayesian setting and its formulation as a nonlinear
control problem, which can be solved by the proposed
algorithm.

A large-scale, real-world test case has been set up. Al-
though the current situation in Berlin is far from optimal for
careful testing or fine-tuning, all infrastructure for ongoing
investigations has been implemented and will be employed
to collect more practical experience with the system.

Continuous operations will have another useful side-effect:
Currently, all agents start their day with an offline generated
activity plan. During the day this plan is adjusted to mea-
surements. If the plan was not discarded at the end of the day
(as it is currently the case), but be used as the next day’s a
priori plan, a continuous improvement of the demand could
be achieved.
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