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Abstract
Learning to navigate uncharted terrain is a key cognitive ability that emerges as a 
deeply embodied process, with eye movements and locomotion proving most use-
ful to sample the environment. We studied healthy human participants during active 
spatial learning of room-scale virtual reality (VR) mazes. In the invisible maze task, 
participants wearing a wireless electroencephalography (EEG) headset were free to 
explore their surroundings, only given the objective to build and foster a mental spa-
tial representation of their environment. Spatial uncertainty was resolved by touching 
otherwise invisible walls that were briefly rendered visible inside VR, similar to find-
ing your way in the dark. We showcase the capabilities of mobile brain/body imaging 
using VR, demonstrating several analysis approaches based on general linear models 
(GLMs) to reveal behavior-dependent brain dynamics. Confirming spatial learning 
via drawn sketch maps, we employed motion capture to image spatial exploration 
behavior describing a shift from initial exploration to subsequent exploitation of the 
mental representation. Using independent component analysis, the current work spe-
cifically targeted oscillations in response to wall touches reflecting isolated spatial 
learning events arising in deep posterior EEG sources located in the retrosplenial 
complex. Single-trial regression identified significant modulation of alpha oscilla-
tions by the immediate, egocentric, exploration behavior. When encountering novel 
walls, as well as with increasing walking distance between subsequent touches when 
encountering novel walls, alpha power decreased. We conclude that these oscillations 
play a prominent role during egocentric evidencing of allocentric spatial hypotheses.
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1  |   INTRODUCTION

Learning to predict the reward a given spatial challenge 
will yield, for example, estimating how to get to the grocery 
store to purchase food, is an integral part of daily activities. 
Assessing whether to take on a specific spatial task implies 
cost-benefit analyses where invested costs depend on the ef-
ficiency with which one can solve such spatial challenges. 
In modern times, GPS devices provide the ultimate naviga-
tional aid to solve these daily spatial challenges. However, 
the human spatial navigation system evolved largely without 
technical help and in widely different environmental con-
ditions reinforcing distinct spatial strategies (Ishikawa & 
Montello, 2006; Loomis et al., 1993).

In order to reach the grocery store, the simplest strategy 
would be to “pilot” toward a cue indicating the store's lo-
cation, for example, the smell of the hot-dog stand next to 
the store (Hamburger & Knauff,  2019). If the store is lo-
cated several blocks away, this strategy becomes challenging. 
Following a previously learned sequence of actions derived 
from a preceding cue allows to successfully complete this 
task. In children, Jensen et al. first assumed an ontogenetic 
sequence from egocentric (self-to-object) to allocentric 
(object-to-object) representations (Hazen et al., 1978; Jensen 
et al., 1958; Siegel & White, 1975). In their words, the first 
stage of spatial knowledge entails encoding sensory repre-
sentations of landmarks such as the hot-dog stand. Then, 
route knowledge develops through repetitive rehearsal and 
travel between previously encountered landmarks, a form of 
stimulus-response learning. Now, in the surprising situation 
where a fire truck blocks one street on the way to the store 
such a route strategy is bound to fail. Here, a flexible internal 
representation of the surrounding space provides the basis 
to choose among several paths and circumvent the obstacle. 
Different routes are connected to form a map-like model, 
survey knowledge. In short, survey knowledge, conceived in 
an allocentric reference frame, develops from the egocentric 
sensorium over repeated travels (for a critical discussion see 
Gramann, 2013; Ishikawa & Montello, 2006). Selecting an 
optimal path given changing criteria, for example, offering 
the most shade on a hot summer day, is possible based on a 
mental representation of the environment.

Tolman (1948) observed rats being able to exploit spatial 
knowledge acquired over repeated explorations of the same 
maze. He observed the rats take optimal detours en route 
to a food box with the direct path being blocked. He con-
cluded that the rats' behavior was not explainable in terms of 
stimulus-response learning alone, but rather through the tran-
sition from exploration to exploitation. The rats must have 
learned an accurate spatial model, in other words, a “cogni-
tive map.”

Particularly, over the last decade, understanding cognitive 
processes such as spatial knowledge acquisition as a predictive 

process has gained substantial traction (Clark, 2013). Active 
inference posits perception as the imperative to minimize 
prediction error of the sensory consequences when actively 
sampling the hidden variables governing the behavior of the 
environment (Friston, 2010). In the natural physical reality, 
environmental affordances give rise to diverse behaviors in-
cluding, for example, visual (grocery store sign) and olfac-
tory (smell of the hot-dog stand) sampling but also reaching, 
grasping, and walking. However, traditional human brain 
imaging studies investigating the neural underpinnings of 
spatial navigation have almost exclusively relied on active vi-
sual sampling of navigationally relevant content or simplistic 
button movement control due to mobility restrictions of the 
neuroscientific methods.

With this paper, as well as a companion paper in the same 
issue (Miyakoshi et  al., 2020), we challenge this limitation 
investigating the brain dynamics in actively behaving healthy 
human participants. Previously, we introduced the invisible 
maze task breaking down spatial knowledge acquisition to 
isolated, discrete, percepts, or “atoms of spatial thought.” 
Here, we asked participants to form a spatial model of simple 
mazes, equivalent to survey knowledge or a cognitive map, and 
observed them during the early stages of the shift from explo-
ration, ambiguity resolving, to exploitation, reward-seeking, 
behavior (Berger-Tal et al., 2014; Friston et al., 2016). Similar 
to navigation with a white cane, reaching and touching oth-
erwise invisible walls briefly render the wall at the location 
of the touch visible. We hypothesized that spatial evidence is 
accumulated through repeated touching thereby emphasizing 
the interaction opportunities afforded by the environment in 
order for one to find its way through it (Gehrke et al., 2018). 
We simplify the ongoing predictive processes in our task as 
follows: First, hypotheses are generated about the sensory 
consequences of the next reach with respect to the location, 
orientation, and shape of the hidden walls. The reach to touch 
is acted out and subsequently, the sensory consequences of 
either a visual feedback, success, or the lack thereof, failure, 
are evaluated in light of a mismatch between what was the 
hypothesized action outcome and what was observed, that is, 
prediction error. Ultimately, back propagation of the predic-
tion error across the hypothesis generation hierarchies, from 
simple proprioceptive to complex cognitive map hypothesis 
“generators,” functions as the learning objective updating 
subsequent hypotheses. Therefore, in combination with on-
going brain and body imaging, continuous as well as event-
related analyses of cortical dynamics of navigation and the 
context and environmental affordances under which they 
occur are feasible (Gramann et  al.,  2011, 2014; Jungnickel 
et al., 2019; Makeig et al., 2009).

To foster spatial learning as a transition from egocentric 
to allocentric spatial knowledge, in our invisible maze task, 
participants repeatedly explored the same mazes. Following 
each exploration, we assessed drawn sketch maps to quantify 
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spatial learning. We hypothesized a qualitative improvement 
with each additional exploration. In addition, we hypoth-
esized changes in body dynamics to occur from formation 
to consolidation of spatial representations reflecting the 
function of cognition to optimize the outcome of behavior. 
Therefore, we hypothesized that the number of wall touches 
and time spent in mazes would be reduced and exploration 
velocity be increased as spatial representations become more 
accurate, possibly as a consequence of optimization of the 
energy costs of querying the spatial environment. Further, we 
hypothesized that participants focus on navigationally rele-
vant maze characteristics in the later explorations indicated 
by prolonged time spent and higher numbers of wall touches 
occurring at these locations, further indicating more efficient 
behavior.

1.1  |  Neural networks for spatial navigation

The neural cells, cortical structures as well as networks 
underlying spatial cognition have been well described 
(Burgess, 2014; Epstein et al., 2017; Ito et al., 2015; Moser 
et al., 2008; O’keefe & Nadel, 1979; Whitlock et al., 2008). 
Modeling spatial information integration provided further 
evidence about an interplay of a hierarchical network in-
tegrating multimodal sensations and mapping the sensory 
evidence to representations about the spatial environment 
(Byrne et al., 2007; Madl et al., 2015). The model by Byrne 
et al. (2007) is based on two spatial representations that uti-
lize allocentric and egocentric reference frames. Allocentric 
maps, represented in the medial-temporal lobe, are fixed to 
distinct features in the environment, that is, landmarks and 
environmental boundaries (Epstein et  al.,  2017; Grieves & 
Jeffery, 2017). On the other hand, egocentric maps encode 
objects at a specific distance and in a specific head direction. 
The model specifies several modules representing both rep-
resentation types and computing operations. A transforma-
tion module manifested in the retrosplenial cortex and driven 
by head-direction representations translates egocentric to 
allocentric map representations and vice versa (Mitchell 
et al., 2018; Vann et al., 2009). In their BBB model, Byrne 
et al. (2007) propose the “parietal window” metaphor mod-
eling parietal computations as an egocentric view processing 
on long-term spatial memory to serve the demand for ego-
centric action. Along the dorsal stream, parietal cortex en-
tertains connections to premotor areas and as such is well 
situated for an egocentric call-to-action serving navigational 
demands (Kravitz et al., 2011). Further, a demonstrated func-
tion in 3D depth perception as well as in temporal integra-
tion, that is, context, are functional prerequisites for directing 
egocentric reaching movements to sample the environment 
evidencing allocentric spatial hypotheses (Freud et al., 2016; 
Hohwy, 2016; Huk & Shadlen, 2005). With allocentrically 

coding cells abounding in medial-temporal structures, pa-
rietal cortex presumably concerts and binds the egocentric 
sensorium.

Positioned between deep medial temporal structures and 
parietal cortex, retrosplenial cortex is believed to sit at the 
conversion between allocentric and egocentric reference 
frames. Recently, Clark et al. (2018) argued for a relaxation 
in the understanding of a strict egocentric-allocentric parcel-
lation of parietal and retrosplenial cortices. Reviewing the 
literature, they argue for a functional gradient from global 
allocentric coding in retrosplenial to egocentric and local al-
locentric coding in parietal cortex. In the current work, we 
directed our investigation to oscillations arising in or near the 
retrosplenial complex (Epstein, 2008; Gramann et al., 2018). 
Epstein (2008) coined the term retrosplenial complex due to 
the restricted anatomical differentiation of the retrosplenial 
cortex (BA 29 and 30) and the adjacent posterior cingulate 
(BA 23 and 31). We were interested in frequency band char-
acteristics indicating spatial learning, and further, whether 
egocentric or allocentric processing express in specific 
frequencies.

First, based on previous observations in stationary 
spatial learning experiments (Chiu et  al.,  2012; Gramann 
et al., 2010; Lin et al., 2015; Plank et al., 2010), we investi-
gated whether power changes in continuous theta and alpha 
oscillations exhibited spatial specificity during spatial 
learning. Following previous findings implicating these 
frequency bands in spatial cognitive processes in the retro-
splenial complex, we hypothesized a modulation by spatial 
location within a maze. Theta activity in medial temporal, 
as well as deep parietal regions, has previously also been 
reported to emerge during physical spatial exploration, with 
a potential further modulation by movement speed (Bohbot 
et al., 2017; Liang et al., 2018; Snider et al., 2013; Yang 
et  al.,  2017). Importantly, hippocampal spatial prediction 
error signaling may travel in theta frequency (Stachenfeld 
et al., 2017). With the hippocampus potentially appearing 
as a predictive map, theta may carry top-down prediction 
error signaling through the hierarchy evidencing allocen-
tric (spatial) hypotheses.

Alpha activity across parietal brain areas emerges in a wide 
range of functions (Klimesch, 2012). Specifically, relevant to 
spatial cognition, alpha activity has been measured during 
modulations of top-down, directed, spatial attention (Deng 
et al., 2019) in parietal cortex. As such it has frequently been 
observed during egocentric viewpoint changes, translations 
and rotations, in EEG studies targeting deep posterior sources 
during spatial tasks (Chiu et al., 2012; Gramann et al., 2010; 
Lin et  al.,  2015; Plank et  al.,  2010). Due to the novelty of 
sampling unconstrained, physically moving, and interacting 
navigators in our setup, no hypotheses regarding the direc-
tionality of effects on frequency bands were posited previous 
to data collection.
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We followed up on the analysis of continuous oscil-
latory power modulations framed in spatial learning, by 
leveraging the promise of our paradigm breaking down 
spatial learning to isolated events. Therefore, event-related 
spectral perturbations (ERSPs) locked to the onset of a 
wall touch were analyzed and inspected as a function of 
repeated maze explorations as well as in a single-trial re-
gression scheme to carve out spectral modulators of ego-
centric spatial behavior. While concentrating on previously 
observed theta and alpha modulation in posterior structures 
associated with egocentric and allocentric processing of 
spatial information, we used data-driven analyses to see 
whether additional frequency bands might reflect active 
spatial sampling in this new paradigm. Again, we hypothe-
sized a change in activity as a response to spatial learning 
over repeated maze trials as well as immediate exploration 
behavior modulating activity in response to wall touches in 
the context of spatial learning.

2  |   MATERIALS AND METHODS

2.1  |  Participants, setup, task, and 
procedure

Thirty-two healthy participants (aged 21–45  years, 
mean = 28.8, SD = 6.6, 14 men) took part in the experiment. 
Participants were recruited through an online tool provided 
by the Department of Psychology and Ergonomics at TU 
Berlin and through local listings. All participants gave writ-
ten informed consent to participation and the experimental 
protocol was approved by the local ethics committee (pro-
tocol: GR_08_20170428). Participants were compensated 
with 10 Euros per hour or study credits. All participants had 
normal or corrected to normal vision. Three participants were 
excluded from data analysis due to incomplete data or diffi-
culties in complying with task requirements.

Participants were screened with regard to their spatial 
reference frame proclivity (Goeke et  al.,  2015; Gramann 
et al., 2005). This online available tool determines the pro-
clivity of participants to preferentially use either an ego-
centric or an allocentric reference frame during a virtual 
path integration task. Of the 29 participants, 14 tested for 
an egocentric, 13 for an allocentric, and two for a mixed 
reference frame proclivity. No specific criteria were en-
forced for participant exclusion, other than being under 
the influence of performance-altering substances. To 
control for simulator sickness, potentially impacting task 
performance, the Simulator Sickness Questionnaire (SSQ) 
was administered twice, before and after the experiment 
(Kennedy et al., 1993). The SSQ measures simulator sick-
ness on three factors: nausea, oculomotor, and disorien-
tation. No difference between pre- and post-experiment 

exposure was noted, hence excluding simulator sickness 
as a covariate. Additional information and an in-depth de-
scription of the sample and the correlation structure be-
tween questionnaires and task performance can be found in 
Gehrke et al. (2018).

2.2  |  Setup, motion capture, and 
EEG recording

Participants freely explored a sparse invisible maze environ-
ment interactively by walking and probing for visual feed-
back when touching the virtual wall of a 1 m wide path with 
their right hand. All stimuli were presented using an Oculus 
Rift DK2 virtual reality (VR) headset (Facebook Inc., Menlo 
Park, California, USA; 100◦ nominal field of view horizon-
tally and vertically, 960 × 1,080 pixels per eye, 75 Hz frame 
rate). A rigid body composed of six red active light-emitting 
diodes (LED) was mounted to the headset and optically 
tracked via PhaseSpace Impulse X2 system (PhaseSpace 
Inc., San Leandro, CA, USA). To update the headset posi-
tion, optical motion capture data were sampled at 240 Hz and 
smoothed by averaging across one frame update of the head-
set, approximately 13.3 ms. To correct orientation drifts origi-
nating from unstable inertial data, we continuously calculated 
an offset between the stable orientation of the motion capture 
rigid body and the unstable magnetometer data. Position and 
orientation of the right hand were tracked using a dedicated 
PhaseSpace glove with eight LEDs. Furthermore, four rigid 
bodies consisting of four LEDs each were attached to the 
lower arm, upper arm, and both feet. Visual stimuli were gen-
erated on a MSI (MSI Co. Ltd, Zhonghe, Taiwan) Gaming 
Laptop (MSI GT72-6QD81FD, Intel i7-6700, Nvidia GTX 
970M) using WorldViz (Santa Barbara, California, USA) 
Vizard Software worn in a backpack. Participants were fur-
ther equipped with a microphone and headphones for audio 
communication and masking of auditory orientation cues.

EEG data were recorded from 157 active electrodes with a 
sampling rate of 1,000 Hz and band-pass filtered from 0.016 to 
500 Hz (BrainAmp Move System, Brain Products, Gilching, 
Germany). Using an elastic cap with an equidistant design 
(EASYCAP, Herrsching, Germany), 129 electrodes were 
placed on the scalp, and 28 electrodes were placed around 
the neck using a custom neckband (EASYCAP, Herrsching, 
Germany) in order to record neck muscle activity. Data were 
referenced to an electrode located closest to the standard po-
sition FCz. Impedances were kept below 10 kΩ for standard 
locations on the scalp, and below 50 kΩ for the neckband. 
Electrode locations were digitized using an optical tracking 
system (Polaris Vicra, NDI, Waterloo, ON, Canada). Motion 
capture and EEG samples were recorded and synchronized 
using labstreaminglayer (https://github.com/sccn/labst​reami​
nglayer).
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2.3  |  The invisible maze task

Upon collision of the right hand with an invisible wall, a 
white disc was displayed 30  cm behind the collision point 
parallel to the invisible wall much like the beam from a torch 
in a cave, see Figure  1c. No other visual stimulation was 
presented inside VR. We did not track the left hand and in-
structed participants to keep the left arm close to their body. 
Prior to the first trial, participants were familiarized with the 
VR scene. To this end, participants were placed in front of a 
virtual wall and were guided through experiencing the full in-
teractivity of the scene, that is, touching and drawing. When 
a satisfactory understanding of the interaction possibilities 
was apparent, participants were asked to take a couple of 
steps along the wall while touching it to their right-hand side 
to train the desired task behavior.

Performing the task, participants explored four different 
mazes in the order, “I,” “L,” “Z,” and “U” in three consecu-
tive trials for each maze (see Figure 1b). For each maze, the 
procedure was as follows: participants were briefly disori-
ented and then positioned facing the open side of the path. 
Then, participants were directed to explore the invisible path 
until they reached a dead end, and subsequently find their 
way back to the starting position. At the end of each maze 
and trial, termed “maze trial,” participants received a gam-
ified feedback and were then asked to draw a sketch map of 
the maze from a bird's eye view. Therefore, participants re-
mained inside VR and an experimenter entered the lab space 
and handed the participant a computer mouse to control the 
drawing application. Participants were instructed to start 
drawing by clicking once with the left mouse button. A red 
sphere appeared in the VR goggles at the tracked position 
of the right hand holding the mouse. Holding down the left 
mouse button, participants were able to draw a red line by 

moving their hand in space (see Figure 1d). Finally, partic-
ipants were instructed to take a camera screenshot of their 
drawing by pressing down the mouse wheel once and holding 
their final drawing in view. Participants were allowed to erase 
their drawing and restart at any time by pressing the right 
mouse button.

The whole procedure was repeated three times in a row 
for each maze to foster spatial learning within each maze. 
Between mazes, participants had the opportunity to take a 
brief break and were made aware of the change to a new 
maze. The complete experiment, including preparation of 
physiological measures (electroencephalogram, EEG), took 
approximately 4  hr. Preceding and following the task, par-
ticipants completed a set of questionnaires. In this paper, we 
report how perspective-taking ability as well as self-ascribed 
sense of direction impacted drawing of sketch maps. In the 
Perspective Taking and Spatial Orientation Test (PTSOT), 
participants viewed an array of objects on a sheet of paper 
and by taking the perspective of one of the objects judged the 
angle between two other objects in the array (Hegarty, 2002). 
We recorded the absolute deviation from the correct angle 
to investigate the impact of perspective-taking ability. The 
Santa Barbara Sense of Direction Scale (Freiburg Version), 
FSBSOD, measures self-ascribed navigational ability 
(Kozhevnikov & Hegarty, 2001). We took the average of all 
items as the final measure.

2.4  |  EEG preprocessing, independent 
component analysis, and motion capture 
preprocessing

Electroencephalography data preprocessing and independ-
ent component analysis (ICA) were performed with 

F I G U R E  1   (a) Participant displayed from a bird's eye view located at the starting point of an “I”-maze. The star marks the starting position 
but was not visible during the experiment. Participants were instructed to explore the maze and return to the start after full exploration of the maze. 
(b) Four mazes were used in the study including an “I,” “L,” “Z,” and “U” shaped maze clockwise from lower left to lower right. Each maze was 
explored three times before the next maze was learned. (c) Exemplary visual feedback in first-person view in binocular “VR optics” of subject in A 
(above) touching the wall to the right. No other visual stimulation was presented inside VR. This figure is in part licensed CC-BY and available in 
color on Figshare (Gehrke et al., 2018)
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MATLAB 2017a and 2019b (MATLAB, The MathWorks 
Inc., Natick, MA, USA), using the EEGLAB toolbox 
(Delorme & Makeig,  2004) and the custom “BeMoBIL 
Pipeline” scripts and functions.1 The single subject data 
were low-pass filtered with 124 Hz and subsequently down-
sampled to 250 Hz. An average of 12.7 (SD = 2.8) noisy 
channels were identified and removed through manual in-
spection on the time domain. Rejected channels were then 
interpolated while ignoring the EOG channel, and finally 
re-referenced to average reference (data A). The data were 
then filtered with a 1 Hz high-pass filter (data B) and a first 
single-model adaptive mixture independent component 
analysis (AMICA) (Palmer et al., 2011) was used to iden-
tify eye-related independent components (ICs), which were 
projected out of the sensor data. For this, the rank was re-
duced by one for the use of an average reference and further 
by the number of interpolated channels in the respective 
dataset. To identify eye components, ICLabel (Pion-
Tonachini et al., 2019) was used, with components exceed-
ing a value of 0.5 for the “eye” class being defined as eye 
components. Then, to detect segments of noisy data across 
channels, an automated time domain cleaning (see Gramann 
et al., 2018) was performed on narrowly filtered data (data 
B) from 1 to 40 Hz. The data were therefore first split into 
1-s-long segments for which the mean absolute amplitude 
and standard deviation of all channels as well as the 
Mahalanobis distance of all channel mean amplitudes were 
calculated. Results of all three methods were then joined 
together in order to rank all segments. The 12% highest 
ranking noisy segments were selected for rejection and an 
additional buffer of ±0.49  s was added around each seg-
ment resulting in about 15% rejected data for each subject. 
These data were rejected from data B and a second single-
model AMICA was calculated on this time domain cleaned 
data. A dipole fitting procedure was performed for each 
spatial filter using the 10–20 standard electrode locations 
and a boundary element head model (BEM) based on the 
MNI brain (Montreal Neurological Institute, MNI, 
Montreal, QC, Canada) using dipfit routines (Oostenveld & 
Oostendorp,  2002). The spatial filter information and 
equivalent dipole models were then copied back to the pre-
processed, interpolated, and average-referenced dataset 
(data A). Ultimately, all ICs with a “brain” probability 
smaller than 0.5 as indicated by ICLabel were projected out 
of the data resulting in the final dataset of likely brain 
sources and their projections to the channels investigated in 
all subsequent analyses. Across the study set, 213 ICs were 
retained forming a sample of 7.3 (SD = 3.8) components 
per participant. Motion capture data were filtered with a 
6 Hz zero-lag low-pass FIR filter and upsampled to match 

EEG frequency using MobiLAB routines for concurrent 
analyses (Ojeda et al., 2014).

2.5  |  Clustering independent components 
for group-level analyses

To allow for group-level analyses across ICs, we clus-
tered components based exclusively on their equivalent 
dipole locations, avoiding circular inference (Kriegeskorte 
et  al.,  2010). To this end, we employed our region of in-
terest (ROI)-driven repetitive k-means clustering approach 
(Gramann et  al.,  2018). ICs were clustered by applying 
the k-means algorithm with k equal 10 for 10,000 times. 
ICs with a distance of more than three standard deviations 
from any final centroid mean were considered outliers. 
Similar to Gramann et  al.  (2018), we set the target clus-
tering location to [0, −45, 30] in MNI space. From each 
of the 10,000 solutions, the cluster with a centroid clos-
est to the target location was selected. Subsequently, the 
10,000 selected clusters were ranked via weighting of the 
cluster's parameter. After applying desirable weights (num-
ber of participants: 3, ICs/participants: −2, spread: −1, RV: 
−1, distance from ROI: −2, Mahalanobis distance from the 
median: −1), the final clustering solution contained 30 ICs 
from 22 participants, that is a ratio of 1.3 ICs per participant 
and a mean RV of 7.9%. Following the assumptions of our 
clustering approach, which finds an optimal cluster for the 
given weights, we chose to average IC activity of partici-
pants exhibiting more than one IC in the optimized cluster 
wherever applicable.

2.6  |  Analyses and statistics

Prior to the statistical analysis, the data were further 
pruned. The objective was to keep trials comparable 
across trials and participants. Trials of maze exploration 
with more than 10 wall collisions were rejected as such 
exploration behaviors likely reflected participants being 
stuck “outside” of the maze and not finding their way 
back into the maze on their own. The number of such tri-
als was very low (six of a total of 348 maze explorations 
from 29 subjects exploring four mazes three times each). 
We further rejected four individual explorations because 
of technical issues (empty battery of the LED driver or 
loose LED cable). Central for a comparison of trials in 
which participants were able to build a spatial representa-
tion of the entire maze, we further deemed all explora-
tions incomplete where the path was not fully explored as 
such trials indicated that participants turned around before 
reaching the dead end and could not build an adequate 
spatial representation of the maze. With this criterion, 26  1https://github.com/Mariu​sKlug/​bemob​il-pipeline
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explorations were rejected. Overall, 312 maze explora-
tions remained, amounting to 89.7% of the total number 
of explorations.

2.7  |  Behavior: Grand averages of sketch 
map, time-on-task, and number of touches

2.7.1  |  Sketch map

Two independent raters judged each sketch map drawing. 
The raters were presented with the question: “Imagine that 
you can take the present sketch map with you into the virtual 
environment and use it as a navigational aid. How useful 
would the map be for you?” To give their rating between 
0 (= no help at all) and 6 (= very helpful), they were given 
the correct shape of the maze to be rated, see for example 
Figure 1b top left “L” shape, side by side with the drawing 
to rate, see exemplary “L” sketch maps in Figure  2b. To 
test inter-rater reliability, we computed Cohen's Kappa with 
squared weights to emphasize larger rating differences using 
RStudio Version 1.2.5001 (RStudio Team, 2019; RStudio, 
Inc., Boston, MA, USA) and package irr (Cohen,  1960; 
Gamer et al., 2010).

2.7.2  |  Time-on-task, number of 
touches, and velocity

Using motion capture, we extracted the time elapsed between 
the start of each maze trial and the return to the starting posi-
tion as well as the total number of wall touches during that 
time window. Reported velocity refers to the magnitude in 
2D (ground plane) of the head rigid body. When considering 
maze complexity, we refer to the number of turns afforded 
by a maze.

Due to unbalanced data after cleaning with respect to 
the factorial design, group-level statistics of behavioral 
data were performed using linear mixed effects model with 

package lmerTest (Kuznetsova et al., 2017). For each mea-
sure: sketch map, time-on-task and number of touches, a lin-
ear mixed effects model with fixed effects for Maze and Trial, 
their interaction and the random effect of participant was fit. 
Post-hoc contrasts were computed using package emmeans 
with Tukey's correction for multiple comparisons (Lenth 
et al., 2020).

2.8  |  Behavior: Mapping head location at 
wall touches

To increase the resolution of the exploration behavior, we 
constructed 2D “bird's-eye view maps” indicating where 
participants were located when touching a wall. Therefore, 
for each maze and trial, a 2D histogram with fixed edges, 
in order to maintain equal resolution across participants, 
was computed using the (x, y) head location at the times of 
the wall touches. To increase overlap across participants, a 
2D (square sized) Gaussian blur was applied to the result-
ing histogram image. A σ of 2 was chosen for the 2D filter 
kernel as it resulted in a good overlap across participants 
while maintaining spatial specificity. Group-level statistics 
on the images were performed using MATLAB functions 
fitrm and ranova. The analysis was conducted for each maze 
independently due to the shape differences of the mazes. For 
each pixel, a 1  ×  3 repeated-measures ANOVA was con-
ducted across the three trials within subjects. At each pixel, 
we removed all missing data (see description of the clean-
ing procedure above) and only conducted model-fitting if 
data from more than 12 participants were available. Else, the 
pixel was set to NaN. We corrected for multiple comparisons 
using false discovery rate (Benjamini & Hochberg, 1995) at 
α = 0.05. We report both corrected and uncorrected signifi-
cance masks due to the exploratory nature of the study. To 
report results, we extracted the F statistic and post-hoc con-
trasts at a given pixel of interest. For visualization purposes, 
we removed all patches including less than 2 significant 
pixels.

F I G U R E  2   (a) Participants wore high-density wireless EEG, head-mounted virtual reality goggles, and LEDs for motion capture attached to 
the hands, goggles, and torso. (b) Screenshot of drawn sketch maps of maze L. Three map drawing examples ranging from good (left, rating 6), to 
intermediate (middle map rating 3), to bad (right, rating 1)

(a) (b)
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2.9  |  EEG: Spectral maps

To address whether spectral activity of clusters of independ-
ent EEG components exhibited spatial specificity during 
maze exploration, images of spectral activity were con-
structed at each location (x, y). Therefore, we first computed 
the power spectral density for moving windows of 1 s length 
with a step size of 0.2 s between the start and end of each 
trial using EEGLAB's spectopo function. For computational 
purposes, we subsequently subsampled motion capture and 
power data at 1  Hz. In case a subject exhibited more than 
one IC in the cluster, the power values were averaged across 
participants. As above, a 2D histogram of the motion cap-
ture data with fixed edges per maze was constructed and for 
each histogram bin, power data were averaged and blurred 
with a Gaussian with a σ of 2 to increase overlap across 
participants. Subsequently, maps of individual frequen-
cies (theta 4–8  Hz and alpha 8–13  Hz), trials, and mazes 
were normalized dividing each map by its mean and subse-
quently transforming the image values to logarithmic scal-
ing (dB = 10 ×  log10(power)). Group-level statistics were 
performed in identical fashion to the head location maps. 
For plotting purposes, grand averages were first obtained in 
power and subsequently baseline corrected and transformed 
to logarithmic scaling.

2.10  |  EEG: Event-related spectral 
perturbations at wall touches

For each IC present in the cluster of interest, data were ep-
oched −1 to +3 s around the wall touch event. First, epochs 
were rejected if the touch duration was longer than 2 s, that 
is, resulting in a warning signal appearing in the VR where 
the disc turned red, see Gehrke et  al.  (2018) for details. 
The remaining epochs were subjected to a cleaning rou-
tine identifying considerable artifacts in the IC activation 
time course based on epoch mean, standard deviation, and 
Mahalanobis distance (Gramann et al., 2018). Per partici-
pant, the worst 10% epochs were flagged for removal. On 
average, 723 (SD = 334) epochs remained for further anal-
ysis. Time-frequency decomposition was computed via the 
newtimef function in EEGLAB for 3–80 Hz in logarithmic 
scale, using a wavelet transformation with three cycles for 
the lowest frequency and a linear increase with frequency 
of 0.5 cycles. As participants' behavior was not restricted, 
wall touches could be of different duration. Therefore, we 
calculated time-warp anchors across all touches (mean 
touch duration = 700 ms) and ERSPs were linearly warped 
to the touch onset (0), the end of the touch (700  ms), 
and 700  ms succeeding the end of the touch (1,400  ms). 
Subsequently, phase was discarded, and power values 
were kept for further analysis. To obtain baseline power 

spectral density vectors, power values preceding touch 
events (from −400 to −100 ms) were averaged across time. 
In case a subject exhibited more than one IC in the cluster, 
the ERSPs were averaged.

2.11  |  EEG: ERSP condition 
average statistics

Statistics on the grand-average ERSP were computed using 
statconds permutation t-test with 1,000 permutations. For 
each participant, averaged epochs as well as baseline power 
were aggregated. Next, the baseline vector was repeated to 
match the epoch size in time. Permuting epochs and baseline 
for 1,000 times and computing t-tests result in the distribu-
tion under the null hypothesis. To assess statistical signifi-
cance, the true result was thresholded at α  =  0.05 against 
the null distribution. We corrected for multiple comparisons 
using false discovery rate (Benjamini & Hochberg, 1995) at 
α = 0.05. For grand average plotting, participant power aver-
ages were aggregated (mean) and subsequently, data of the 
grand average touch epoch were divided by the baseline vec-
tor and the outcome was transformed to logarithmic scaling 
(dB  =  10  ×  log10(power)). Final plots contain the signifi-
cance thresholds as contours of significant time-frequency 
bins. For plotting purposes, significant patches exhibiting 
less than 50 pixels were removed and the significance mask 
was filtered using a Gaussian with σ = 1.5.

Group-level statistics for maze, trial, and their interaction 
were performed using robust repeated-measures ANOVA 
as implemented in LIMO EEG (Pernet et  al.,  2011). First, 
data from one participant were removed due to missing 
data. Then, epoch as well as baseline power were aggre-
gated (mean) for each maze and trial. Subsequently, power 
data of the touch epochs were divided by the baseline vec-
tors and the outcome was transformed to logarithmic scaling 
(dB  =  10  ×  log10(power)). To assess effects, family-wise 
error rate (FWER) was controlled using threshold-free clus-
ter enhancement (TFCE) as implemented in LIMO EEG. Due 
to the small sample size (N = 21), only bootstraps contain-
ing more than 70% of subjects were considered for the max-
TFCE distribution (Pernet et  al.,  2015). The threshold was 
set at α = 0.05 of a max-TFCE distribution of 600 bootstraps. 
As before, we report both uncorrected as well as corrected p-
values. For plotting purposes, significant patches exhibiting 
less than 10 pixels were removed.

2.12  |  Post-hoc EEG: ERSP single-
trial analysis

Following up our analysis on condition averages, we con-
sidered the information present in the head location maps 
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and derived the following single-trial analysis scheme. 
We considered the distance participants traveled between 
touches in combination with the encounter of a new ver-
sus an old wall as efficiently separating the touching be-
havior in corners versus along straight segments. There, 
we first computed the distance traveled since the previous 
successful touch, the Euclidean norm between two suc-
ceeding touches. To obtain per participant summaries of 
ERSP, mass-univariate multiple regression was computed. 

A linear model was estimated at each time-frequency 
pixel. The linear model was defined as tf_pixels =  inter-
cept  +  distance_traveled  ×  wall_change  +  baseline. In 
order to estimate the interaction term, both predictors were 
z-scored prior to model fitting. To further infer whether 
components of the event-related response could be ex-
plained by baseline activity, baseline power was entered 
as a predictor. To assess effects, statconds one-sample 
permutation t-test with 1,000 permutations were computed 

F I G U R E  3   Top row: Box-Whisker plots with individual observations of each participant averaged across maze configurations for each 
repeated maze trials 1–3. (a) Duration in seconds elapsed between the start and end of each exploration phase, (b) Number of wall touches during 
the exploration phase, and (c) Movement Velocity in meters per second. (d) 2D histograms of the head location at wall touch moments for all three 
explorations in each maze “I,” “L,” “Z,” and “U.” Warmer colors indicate more wall touches/time spent at location. Solid (corrected) and dotted 
(uncorrected) contours mark significant pixels of repeated explorations

(a) (b) (c)

(d)
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using the betas per participant. Subsequently, the surro-
gate t-tests were transformed to the TFCE statistic (Pernet 
et al., 2015). The threshold for multiple comparison was set 
at α = 0.05 of the max-TFCE distribution of 1,000 permu-
tations. For plotting purposes, significant patches exhibit-
ing less than 10 pixels were removed.

3  |   RESULTS

3.1  |  Behavior

The sketch map usefulness ratings revealed a very high agree-
ment between the two raters' judgments, Cohen's κ = 0.835, 
p < 0.001. Participants drew useful sketch maps already after 
the first maze trial (intercept: t124.5 = 9, p < 0.001; see Figure 2 
for exemplary sketch maps and their average usefulness rat-
ing). On average, 2/3 were able to draw very useful sketch 
map, see Figure 7, with the remaining third exhibiting an av-
erage sketch map rating of less than 2, referring to a sketch 
map that is of little help as a navigational aid. With repeated 
maze explorations, ratings of the usefulness of the drawn 
sketch maps did not further improve (F2,271.3 = 1.8, p = 0.16, 
mean first 3.2, SD = 2.1, second 3.6, SD = 1.9, and third trial 
3.7, SD = 1.9), nor did they vary as a function of maze com-
plexity (F3,272.25 = 1, p = 0.4, mean “I” 3.6, SD = 2.1, “L” 
3.7, SD = 1.8, “Z” 3.3, SD = 2.1, and “U” 3.3, SD = 1.9) and 
their interaction. We confirmed that individual differences 
in spatial ability had an impact on the sketch map drawings. 
Increasing perspective-taking and spatial orientation abil-
ity, as assessed with the PTSOT questionnaire, positively 
impacted the rating of sketch maps (b = 0.02, F1,27 = 4.9, 
p = 0.036, R2 = 0.15). We observed no impact of the subjec-
tive Santa Barbara Sense of Direction Scale on sketch map 
quality. As previously reported in Gehrke et al. (2018), we ob-
served a decrease in time-on-task with repeated explorations 
(F2,271.8 = 17.6, p < 0.001) and a main effect of maze com-
plexity, operationalized by the number of turns in the maze. 
More specifically, time-on-task decreased significantly com-
paring the first and second (t272 = 4.47, p < 0.001), as well as 
the first and third trials (t272 = 5.57, p < 0.001; see Figure 3a). 
The number of wall touches decreased with repeated explora-
tions (F2,271.1 = 26.1, p < 0.001) with a significant decrease 
from first to second (t271  =  4.63, p  <  0.001), first to third 
(t272 = 7.01, p < 0.001) as well as second to third (t272 = 2.4, 
p  =  0.045) trial (see Figure  3b). Furthermore, participants 
moved faster with increasing explorations (F2,272.35 = 46.1, 
p < 0.001; see Figure 3c), as well as in simple compared to 
more complex mazes (F2,274.1 = 6.8, p < 0.001). However, 
no interaction effect was observed. The main effect of maze 
complexity on velocity was driven by the “I” maze, with sig-
nificant linear contrasts between the “I” maze and all other 
mazes, for example, “I” – “U” (t276 = 4.23, p < 0.001).

To further investigate participants' exploration behavior, 
head locations were mapped at moments of wall touches 
indicating that participants sampled corners and dead ends 
more frequently than straight segments (see warmer col-
ors in Figure  3d). Specifically, at the dead-end of the “I” 
maze (F2,28  =  6.1, p  =  0.005 uncorrected) and “U” maze 
(F2,28 = 18.9, p < 0.001, FDR corrected), a decrease in the 
number of touches was observed as a main effect of trial. 
Furthermore, a change in touch frequency was observed at 
the inside turn in the “L” maze (F2,28 = 5.6, p = 0.001 uncor-
rected), trending down from earlier to later trials.

Taken together, participants took less time exploring 
the mazes in repeated explorations, needed fewer wall 
touches, and moved faster, Figure  3a–c. In detail, we ob-
served participants spending most of their time exploring 
“outside” (convex) corners and in the dead ends, Figure 3d. 
This exploration pattern was largely unaffected by repeated 
explorations.

3.2  |  Oscillations of independent 
EEG sources located in or near 
retrosplenial complex

Clustering ICs resulted in a cluster with a centroid location 
around X  =  3, Y  =  −52, Z  =  24 (MNI), a mean residual 
variance of 7%, containing 22 of 29 participants and 30 ICs, 
see Figure  4a. The MNI coordinates refer to the posterior 
cingulate bordering on the precuneus in the AAL atlas and 
BA23 (posterior cingulate cortex) in the Brodmann atlas, 
respectively.

Mapping continuous spectra to spatial locations revealed 
a main effect of repeated maze trials on theta band activity 
at the dead end of maze “I” (F2,42 = 12.3, p < 0.001), see 
Figure 4b top left, with the first trial exhibiting a higher power 
increase over its baseline then the subsequent trials two and 
three. Similarly, at the dead end of maze “I,” alpha power 
was affected by repeated maze trials (F2,42 = 13, p < 0.001), 
see Figure 4b bottom left. Further patches of a main effect 
of repeated explorations were observed for maze “I” at the 
center of the maze path as well as toward the left wall (left 
from the starting position) in both theta and alpha frequency 
bands. For the other mazes, repeated explorations did not im-
pact continuous theta nor alpha spectral power following cor-
rection for multiple comparison. Not correcting for multiple 
comparisons, mazes “L,” “Z,” and “U” exhibit slight effects 
of maze trial at the first turn segments (“L” and “U”) as well 
as at the second turn (“Z”) in the theta frequency band, see 
Figure 4b top. Overall, visual inspection hints at a concentra-
tion of power increase over the full-trial baseline at corners 
and dead ends in later compared to earlier trials and more so 
in theta than alpha frequency (see for example Figure 4b top 
“Z” and “U” mazes).
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3.3  |  Zooming in: Event-related spectral 
perturbations to wall touches

Grand-average ERSP to wall touches differed from baseline 
power in theta, alpha, and beta band frequencies, see Figure 5a. 
Following onset of the visual feedback during the wall touch, 
an initial theta power increase (t28 = 2.6, p < 0.001 at 380 ms 
and 5.5 Hz) preceded significant alpha and beta desynchroniza-
tion (t28 = −2.6, p < 0.001 at 630 ms and 12 Hz; t28 = −3.3, 
p < 0.001 at 600 ms and 24 Hz). Following the retraction of the 
hand from the wall, significant alpha and beta desynchroniza-
tion persisted for another 400 ms. Repeated measures ANOVA 
of repeated trials did not impact wall touch ERSP following 
multiple comparison correction (see Figure 5b).

3.4  |  Follow-up: Toward single-trial 
contextual analyses of spatial evidence 
integration

Figure 6b displays beta weights from single-trial regression 
including a baseline (bottom row), walking distance between 

subsequent wall touches, whether a new wall was encoun-
tered with the current touch, and their interaction as predic-
tors. The interaction term (see Figure 6c) alludes to the fact 
that walking distance was on average greater when touching 
a new wall (mean = 57 cm, SD = 61) than following along 
the same wall (mean = 24 cm, SD = 33). As expected, base-
line power impacted ERSP across all analyzed frequencies.

With increasing walking distance from the previous touch, 
alpha power increased throughout the duration of the touch 
event, for example, around 11.5 Hz and 350 ms following the 
visual onset of the touch feedback (t22 = 2.7, p < 0.001), see 
Figure 6b top left. At an uncorrected level, a positive relation 
was further observed for low frequencies (3–5  Hz) during 
(centered at 350 ms during the touch) as well as following the 
completion of the touch event. Touching a new wall, different 
to the one previously encountered, also positively affected low 
frequencies (3–5 Hz during the touch, t22 = 3.7, p < 0.001 at 
200 ms and 3 Hz). Furthermore, albeit at an uncorrected level, 
alpha power was decreased in touches toward a wall different 
than the one previously touched. This pattern was visually con-
spicuous during the touch as well as following the touch event. 
Ultimately, the interaction term negatively impacted alpha 

F I G U R E  4   (a) Locations of equivalent dipole models projected onto a standard brain space (MNI) with each small sphere representing 
individual ICs and the bigger sphere representing the cluster centroid. The cluster centroid was located in retrosplenial complex (x = 3; y = −52; 
z = 24), containing 30 ICs from 22 participants (corresponding to 74% of all participants). (b) Images of theta (4–7 Hz, top) and alpha (8–12 Hz, 
bottom) power for all three explorations in each maze “I,” “L,” “Z,” and “U.” Warmer colors indicate higher power. Solid (corrected) and dotted 
(uncorrected) contours mark significant pixels of repeated explorations

(a) (b)
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power during the touch event (t22 = −3.3, p < 0.001 at 550 ms 
and 11.5 Hz), meaning with increasing walking distance and 
specifically only in touches toward a wall different than the 
one previous touched, alpha power was negatively affected. 
Furthermore, at an uncorrected level, power in low frequen-
cies (3–5 Hz) was negatively impacted by the interaction term.

4  |   DISCUSSION

We performed a mobile brain/body imaging (MoBI) study al-
lowing physical full-body movement with which participants 
explored invisible mazes with the aim of building a mental 
model of the environment. Following a previous description 

F I G U R E  5   (a) Left: Magnification of bird's eye view of exemplary reaching to touch a wall. Touching a wall was visually indicated by a 
white sphere appearing oriented along the wall. Right: Grand-average “wall touch” ERSP in dB scale. ERSPs were linearly warped to the touch 
onset and mean offset (mean touch duration) and to 700 ms succeeding the touch. Solid (corrected) contours mark significant pixels compared to 
baseline. (b) Condition average ERSP per run aggregated across mazes, warmer colors indicate a power increase compared to baseline. Dotted 
(uncorrected) contours mark significant pixels of repeated explorations

(a) (b)

F I G U R E  6   (a) Bird's eye view of exemplary reaching to touch a wall. Predictor “walking distance” refers to the distance the participant's head 
traveled between subsequent touches, predictor “wall change” indicates a touch to a different wall than the previous touch. (b) Top: Beta weights 
of single-trial linear regressions. Warmer colors indicate positive betas. Solid (corrected) contours mark significant pixels. Bottom: Beta weights of 
baseline vector. Visual feedback to wall touches was displayed as white spheres indicating walls in VR. (c) Histogram of “walking distance” split 
by factor “wall change”

(a) (b)(a) (b)

(c)
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of behavior in this paradigm in Gehrke et al. (2018), we here 
explored EEG perturbations during spatial learning depending 
on hand thrusting movements to explore the environment. Our 
analyses specifically targeted deep posterior brain structures, in 
or near the retrosplenial complex. Here multimodal sensory sig-
nals from the “parietal window” converge with spatial memory, 
or predictions, originating from medial temporal structures such 
as the hippocampus (Clark et al., 2018; Stachenfeld et al., 2017). 
The data were analyzed in a repeated measures design manip-
ulating spatial learning as well as a single-trial regression ap-
proach dissecting egocentric sampling of the surrounding space.

First, we confirmed successful manipulation of spatial learn-
ing by finding that participants explored invisible mazes in less 
time, with fewer touches and with overall increased exploration 
speed in subsequent trials. Furthermore, about 2/3 of partici-
pants were able to draw an accurate sketch map, demonstrating 
the formation of survey knowledge in an allocentric reference 
frame. Second, we introduced a novel way to report continuous 
spectral power by mapping theta and alpha band activity. Power 
in either frequency band and spatial location did not change sig-
nificantly with repeated maze trials. Similarly, we investigated 
ERSP locked to wall touch events and did not observe signif-
icant modulation as a function of repeated trials. Meanwhile, 
compared to a pre-wall touch baseline, theta, alpha and beta 
activities were significantly modulated exercising the wall 
touches. Lastly, we disentangled wall touch ERSP by means of 
mass-univariate single-trial analysis and found a robust effect of 
alpha power increase with increasing distance traveled between 
consecutive touches. A decrease in alpha power in response to 
the encounter of novel walls was visually conspicuous but not 
significant. However, alpha power was decreased for the inter-
action, meaning it was decreased with increasing travel distance 
when encountering a new wall.

4.1  |  Behavioral evidence of spatial learning

Although participants navigated with greater efficiency in all 
subsequent trials following the initial exposure, a continuous 

learning effect determined via sketch map quality was ab-
sent. On average, participants were able to draw useful sketch 
maps with a mean rating of 3.2 indicating the maps as “some-
what useful as a navigational aid.” These maps, however, 
were either produced already following the first maze trial or 
participants were not able to draw a map at all. Sketch map 
quality did not change with repeated trials or as a function 
of maze complexity. Hence, underscoring previous findings, 
we confirmed that some participants were able to produce a 
useful map already after the first trial and then through all tri-
als, whereas others never produced a useful sketch map at all 
(Weisberg & Newcombe, 2018), see Figure 7. Interestingly, 
in our companion paper, Miyakoshi et al. (2020) report iden-
tical effects in a similar invisible maze task based on audi-
tory feedback to wall touches. In their work, however, only 
~40% of participants were able to draw a map with topologi-
cal similarity to the explored maze, shedding further light on 
the importance of individual characteristics as a precursor for 
formation of a cognitive map.

The importance of individual predispositions was fur-
ther underlined by the fact that participants scoring high 
in perspective-taking ability (PTSOT) were more likely to 
draw useful sketch maps. Strongly related to mental rotation 
ability, perspective taking has also been linked to real-world 
navigation performance (Schinazi et  al., 2013). In contrast, 
self-ascribed sense of direction did not exhibit any impact on 
sketch map production. Whether and how these predisposi-
tions impact spatial exploration behavior and EEG signals is 
an open question for future investigation.

We observed a discrepancy between the quality of sketch 
maps and the ability of nearly all participants to solve the task 
with increasing efficiency as reflected in decreasing time- 
on-task, number of wall touches, and increasing movement 
velocity over trials (Figure 3a–c). We hypothesize that those 
participants drawing useful sketch maps could also have 
made use of this allocentric representation during subsequent 
navigations, whereas the remaining participants may have 
solved the task more efficiently by increasing the accuracy of 
learned stimulus-response associations, for example, learning 
to take a certain number of steps after encountering a turn. 
Other approaches to assess allocentric spatial knowledge, 
such as distance and angular judgments, could prove fruit-
ful in quantifying spatial knowledge in future experiments 
(Starrett & Ekstrom, 2018).

Although the evidence is scattered, we argue to have 
triggered spatial learning on the continuum from stimulus-
response, or route knowledge, to allocentric survey knowl-
edge, or cognitive map. Using motion capture to image 
exploration behavior, we further indicate that participants 
spend more time at presumably navigationally relevant sec-
tions in later trials with the frequency of wall touches concen-
trating in corners and dead ends (Figure 3d). Already within 
the first maze trial, participants sampled the walls in corners 

F I G U R E  7   Distribution of participants' mean sketch map ratings 
across mazes and explorations. Ratings refer to the question: “How 
useful would the map be for you?” 0 (= no help at all) and 6 (= very 
helpful)
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and dead ends with a higher frequency than along straight 
segments. In terms of spatial microgenesis, corners and dead 
ends might have been integrated already during this initial 
exposure as distinct landmarks fostering stimulus-response 
associations.

Due to the invariant order of learning mazes from low 
to higher complexity levels, operationalized by the number 
of afforded turns, a continuous familiarization effect to the 
overall task might have masked maze-specific effects. This 
cannot be attributed to learning the interaction with the invis-
ible maze as participants were trained prior to the first trial 
on the interactions afforded by the invisible walls. Hence, the 
first trial participants were familiar with the interaction and 
how to solve the spatial task. Nonetheless, we observed the 
“I” maze driving behavioral effects, with the first exposure 
to the “I” maze differing from all subsequent trials. Possibly, 
a prolonged trial familiarization could have attenuated this 
intercept. Prior to data collection, we decided against pseudo-
randomization of maze complexity to not overwhelm partic-
ipants with a challenging navigation task of complex mazes 
in our novel VR setup.

4.2  |  Spatial 
specificity of posterior theta and alpha 
oscillations originating in or near 
retrosplenial complex

In order to assess whether theta and/or alpha activity express 
as a function of (allocentric) spatial location, we leveraged 
unique characteristics of mobile brain-body imaging (MoBI) 
to investigate multisensory integration via novel spectral 
maps. Because the output of the approach is a 2D map, we 
point out that tools for statistical inference readily exist in the 
field (see LIMO EEG, SPM, and others; Friston et al. 1994; 
Pernet et al. 2011). Again, we investigated changes as a result 
from repeated maze trials. We found that mapping ongoing 
spectral power in theta and alpha frequencies hinted at a po-
tentially stronger (allocentric) spatial specificity of theta com-
pared to alpha activity. Theta power increased in corners and 
dead ends in all mazes compared to the “full-map” baseline, 
see Figure 4b. Comparing the head location maps, Figure 3d, 
with the spectral maps in Figure 4b exhibits a similar pattern. 
Participants spent more time in corners and dead ends, at the 
same time power in theta and alpha was higher than baseline. 
Therefore, we contemplate that the spectral maps are likely 
strongly impacted by the processing around the touch events, 
both, in terms of motor planning and execution as well as vis-
ual processing and overall integration with respect to solving 
the spatial challenge at hand. Previously, Snider et al. (2013) 
described similar theta maps and found a correlation between 
(a) movement speed and theta synchronization and (b) theta 
synchronization and subsequent memory in a small-scale 

free exploration setting. In our case, theta synchronization 
was evident at the corners and dead ends, hinting at a possi-
ble pick up of medial temporal theta synchronicity in light of 
top-down, allocentric, prediction error signaling. A follow-
up analysis, similar to Snider et al. (2013) implicating a role 
of subsequent (spatial) memory performance and theta syn-
chronicity, correlating sketch map utility and the spatial theta 
maps, could provide further information on this theta signal 
but was beyond the scope of the current work.

In line with our findings of sketch maps not improving 
with repeated trials, we found that neither theta nor alpha 
maps changed with repeated trials, except in the “I” maze. 
In the “I” maze maps, a decrease in theta and alpha power 
from the initial to the later trials, see Figure 4b left, occurred 
at the dead end of the straight path. With the first “I” maze 
trial also differing significantly with respect to the explora-
tion behavior, we hypothesize that participants were likely 
most strongly engaged in the task in this first trial (although 
going through a task familiarization period earlier). After 
solving the first trial, task engagement may have declined as 
indicated by sketch maps not improving and only efficiency 
improving, potentially indicating a saturation in “cognitive” 
signal-to-noise ratio.

4.3  |  ERSP to wall touch do not change with 
repeated maze explorations

We hypothesized a shift from initial exploration to later 
knowledge exploitation behavior to impact event-related 
spectral activity in sources located in or near the retrosple-
nial complex. Grand average ERSP exhibited a significant 
early theta burst followed by alpha and beta desynchroni-
zation compared to the pre wall touch baseline (Figure 5). 
However, neither neural signature was significantly af-
fected by repeated maze trials. For ERSP analyses, we se-
lected a baseline immediately preceding, up until −100 ms, 
the visual wall touch feedback. Hence, baseline activity 
encompasses motor planning, preparation, and execution 
activity related to the hand reach, among others. Therefore, 
we conclude that the post-event activity more likely to be 
related to the processing of the visual stimulus and task-
relevant components and not related to motor execution of 
the reach. While other sensorimotor clusters may uniquely 
reflect motor activity related to the hand movement, previ-
ous work targeting the same ROI observed similar activ-
ity patterns in spatial tasks without hand movements (Chiu 
et al., 2012; Gramann et al., 2010; Lin et al., 2015; Plank 
et  al.,  2010). Furthermore, single-trial analysis revealed a 
robust effect of the distance traveled between touches on the 
ERSP. Hence, ROIs located in deep posterior areas, such 
as the retrosplenial complex, unlikely reflect pure motor-
driven modulation.
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As we did not observe an effect of maze trials, however, 
signals related to spatial learning were not captured by the 
analysis of condition average ERSPs as was hypothesized, 
see Figure 5b. Other analytical approaches may prove fruitful 
to carve out EEG signals related to the formation of a cogni-
tive map of an explored environment. Miyakoshi et al. (2020) 
conducted network analyses during spatial learning of a sim-
ilar “audiomaze” task and report significant connectivity 
shifts between clusters of independent EEG sources local-
ized to lingual gyrus and midcingulate cortex. Furthermore, 
we may have missed a transition effect from exploration to 
knowledge exploitation as allocentric hypotheses may likely 
be generated in deeper cortical structures, the medial tempo-
ral lobe (MTL). Because state-of-the-art EEG analyses are 
yet to find ways of capturing neural activity originating from 
deeper medial temporal sources, capturing signals of reflect-
ing the consolidation of allocentric spatial relations may still 
prove challenging.

4.4  |  Implicating posterior alpha 
in the formation and exploitation of mental 
spatial models

Evidence abounds for alpha oscillations in cortical informa-
tion processing (Jensen & Mazaheri, 2010; Klimesch, 2012). 
Klimesch (2012) summarizes a role in both inhibition and 
timing processes of suppression and attentional selection. 
More specifically, parietal alpha oscillations along the dor-
sal processing stream have been implied in spatial direction 
of attention and spatial working memory tasks, see Freud 
et al.  (2016) for a discussion. We observed alpha power to 
increase with distance traveled but to decrease with higher 
distances in case a wall different than the one previously en-
countered (Figure 6b). Recently, Deng et al. (2019) reported 
causal evidence for parietal alpha activity reflecting top-
down attentional direction, but importantly so, only for spa-
tial targets. In line with these findings, our results on alpha 
modulation by travel distance may reflect how attentional 
demands decrease (synchronization) with increasing travel 
distance along the same wall and hence may indicate how 
top-down attentional direction toward spatial targets may be 
directed from retrosplenial areas to the “parietal window” 
(Byrne et al., 2007).

We hypothesize that traveling along the same wall and 
repeatedly sampling it to maintain traveling orientation 
constituted confirmatory behavior. Further, increasing 
walking distance between touches potentially indicated 
a high-level of trust in the current heading direction. 
Therefore, alpha was not significantly impacted with re-
gard to gating by inhibition across the dorsal processing 
stream (Jensen & Mazaheri,  2010). On the other hand, 
encountering new walls, potentially with unexpected 

orientations, provided novel evidence about the sampled 
structure, even more so after significant travel distance. 
We observed an alpha power decrease (desynchronization) 
with increasing travel distance when touching a new wall. 
Here, we suspect increased attentional demands, assuming 
prediction error to be maximal by means of the integration 
of self-movement cues in combination with the novel wall 
orientation. Subsequently, this current information consti-
tutes maximally salient information in light of allocentric 
hypotheses testing. Therefore, facilitated message passing 
to “higher” allocentric hierarchies, possibly via attentional 
modulation, could be highly useful for future behavior.

Ultimately, our single-trial regression analysis revealed 
a theta increase for the main effect of encountering a wall 
differing from the previously touched. One can suspect that 
computations with regard to the heading direction may be 
reset upon confirmation of a new wall is picked up. However, 
our analysis did not distinguish between new walls following 
a turn around a corner or the change from one side of a path 
segment to touching the other side. In the latter case, allo-
centric heading does remain, whereas in the former case it 
changes by 90 degrees.

5  |   CONCLUSION

When navigating invisible mazes, like finding your way 
in the dark, the peripersonal context is sampled by reach-
ing and finding the nearest walls meanwhile building up 
a mental representation. Such mental representations can 
be leveraged to guide and optimize future behavior, such 
as taking less time to make your way to the next grocery 
store with a growling stomach. We confirmed such an opti-
mization in participants' behavior, indicating the potential 
of the invisible maze task and similar paradigms to inves-
tigate event-related EEG signals during spatial learning. 
Targeting deep posterior EEG sources located in the ret-
rosplenial complex, we did not observe a robust effect of 
discretized spatial learning in continuous EEG oscillations 
nor in event-related responses to wall touches, potentially 
in line with our findings that a highly accurate mental spa-
tial representation manifested already after the initial maze 
exposure, or never at all. Through single-trial regression, 
we found that alpha activity was impacted by exploration 
behavior such as walking distance between subsequent 
spatial samples.

In summary, we showcase the capabilities of MoBI in 
VR, demonstrating several analysis approaches integrating 
motion capture and both continuous as well as event-related 
EEG signals in fully mobile, interacting, participants. 
Through single-trial regression, we conclude a role of alpha 
oscillations originating in deep posterior EEG sources lo-
cated in the retrosplenial complex in multisensory action 
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and perception with a potential functional involvement in 
evidencing spatial predictions originating in medial tempo-
ral structures.
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