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Abstract

In neuroscience and related fields, progress in instrumentation, computational power,
and signal processing methods continuously provide novel and increasingly powerful tools
toward the investigation of brain activity in real-time and everyday environments. Research
into real-life and application-oriented, non-invasive neurotechnology bears a number of
multidisciplinary challenges which need to be addressed. Neurophysiological signals have to
be measured subtly and safely while reliability and robustness have to be ensured. To this
end, new approaches are explored in this thesis that deal with the simultaneous acquisition
and utilization of multiple brain and body signals in mobile scenarios. They aim to reduce
acquisition restraints for mobile neuroimaging, and at the same time increase the amount of
information that is provided by hybrid acquisition equipment. This enables the exploitation of
complementary and shared information in the measured modalities toward the development
of methods that enhance robustness in the analysis and classification of brain signals.

The first contribution of this work comprises the development of novel architectures and
devices for the mobile measurement of brain and body signals. Here, the focus lies on func-
tional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) instruments.
The primary result is M3BA, an architecture for Mobile, Modular, Multimodal Biosignal
Acquisition. While miniaturized beyond previous approaches, M3BA offers hybrid and
high-precision measurement of fNIRS, EEG, acceleration and other signals while allowing
scalability and easy customization.

The second contribution targets the generation of evoked multimodal neuroimaging data
under realistic environmental but yet well-controlled movement conditions. Making use of
M3BA modules in a lightweight wireless headset, a novel, bespoke n-back-based cognitive
workload paradigm was designed and administered in a study with 17 freely moving subjects.

Using this unique dataset, the third contribution consists of the development of a multi-
modal Blind-Source-Separation framework for the analysis of fNIRS signals and its appli-
cation in BLISSA2RD, for the accelerometer-based rejection of movement induced artifacts.
Employing it along with other state-of-the-art methods, we ultimately provide a proof of
feasibility toward workload classification under challenging, realistic conditions. In this
unique approach, and with strict rejection of artifacts, accuracies greater than 80% based on
neurophysiological EEG-fNIRS markers is achieved.





Zusammenfassung

In den Neurowissenschaften und ihren angrenzenden Feldern ermöglichen Fortschritte in
der Messtechnik, Miniaturisierung, Rechenleistung und Signalverarbeitung leistungsstarke
Ansätze zur Untersuchung der Gehirnaktivität in Echtzeit und unter zunehmend alltagsähn-
lichen Bedingungen. Die Erforschung nicht-invasiver Neurotechnologie für anwendung-
sorientierte Szenarien außerhalb des Labors birgt jedoch eine Vielzahl multidisziplinärer
Herausforderungen. Neuartige Ansätze müssen eine unaufdringliche und schadlose Er-
fassung neurophysiologischer Signale ermöglichen und gleichzeitig Zuverlässigkeit und
Robustheit sicher stellen. Zu diesem Zweck werden in dieser Dissertation neue Ansätze
untersucht, die sich mit der simultanen Erfassung und Nutzung von multiplen Gehirn- und
Körpersignalen in mobilen Szenarien beschäftigen. Durch die Verbindung von Biomedizin-
technik, Neurowissenschaften und Maschinellem Lernen sollen die Möglichkeiten bei der
Signalerfassung erweitert und die Menge der erfassten Informationen erhöht werden. Diese
ermöglicht die Entwicklung multimodaler Methoden zur Verbesserung von Signalqualität
und Robustheit.

Der erste Teil dieser Arbeit besteht aus der Entwicklung von Grundlagen und Architek-
turen für den Entwurf neuer Instrumente zur mobilen, miniaturisierten und hybriden Mes-
sung von Gehirn- und peripheren Körpersignalen. Dabei liegen die Schwerpunkte auf
der funktionellen Nahinfrarot-Spektroskopie (fNIRS) und Elektroenzephalographie (EEG).
Das primäre Resultat ist M3BA, eine Mobile, Modulare, Multimodale Biosignalerfassungs-
Architektur. Während M3BA gegenüber früherer Ansätze weiter miniaturisiert ist, bietet
es hochpräzise hybride fNIRS-EEG- und Accelerometer-Messungen, Skalierbarkeit und
einfache Anpassung.

Diese Architektur ermöglicht im zweiten Teil die Entwicklung und experimentelle Um-
setzung eines neuartigen räumlichen n-back-Paradigmas für die Erfassung der mentalen
Arbeitslast in sich frei bewegenden Teilnehmern. Der resultierende Datensatz, mit einem
speziell darauf ausgelegten M3BA-Headgear erfasst, bietet eine Vielfalt physiologischer
Signale von 17 Probanden unter kontrollierten Bewegungsbedingungen.

Unter Verwendung dieses neuen Datensatzes besteht der dritte Teil aus der Entwicklung
einer Methode zur Analyse von fNIRS-Signalen und der Accelerometer-basierten Entfer-
nung von fNIRS Bewegungsartefakten mit dem Namen BLISSA2RD. In Kombination dieser
Methode mit anderen state-of-the art Ansätzen und unter strikter Artefaktbereinigung wird
abschließend die Klassifizierung mentaler Arbeitslast unter herausfordernden, realitätsnahen
Bedingungen untersucht. Ein erster Machbarkeitsnachweis wird mit erreichten Klassifika-
tionsgenauigkeiten von > 80% unter Ausnutzung der Multimodalität der Daten erbracht.
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Chapter 1

Introduction

1.1 Advancing Neurotechnology
For centuries, our understanding of the human brain has been gained through inference

from the combination of observed behavior in the living and anatomical studies in the dead. In
1879, Carl Reclam, a professor of medicine at the University of Leipzig, Germany, compared
the morphology of a German farmworker’s brain with that of the mathematician Gauss, and
concluded: “How does the brain obtain an increase in convolutions? [...] Why does it become
bigger? [...] The same mechanism that supports the growth of muscles [...] also increases the
mass and surface of the brain: work.” (in Der Leib des Menschen, p73, 1879 [Rec79]).

Figure 1.1: Comparison of the brains of Gauss (left) and a German farmworker (right) in 1879 [Rec79]

Half a century down the line, in 1929, Berger’s pioneer work established the electroen-
cephalogram (EEG) as a measure of and to quantify brain activity in the living [Ber29].
Since then, EEG and other more recently developed measurement modalities enabled neuro-
science and medicine to get glimpses into the immense complexity of the human brain and
move forward the understanding of its physiology and the neuronal correlates of behavior
and cognition [KSJ+00]. This is one illustration of the close link between the natural and
engineering sciences: The generation of knowledge often relies on appropriate tools for
investigation – and vice versa.

In neuroscience and related fields, progress in instrumentation, computational power,
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and signal processing methods continuously provided novel and increasingly powerful tools
toward the investigation of brain activity in real-time and everyday environments. As a conse-
quence, new applications for clinical diagnostics, assistance, and rehabilitation have emerged
over the last decades. Amongst them are telemedicine and pervasive healthcare [APLI+15;
ZDP+14] and brain-computer interfaces (BCI). A BCI is an artificial system that bypasses the
body’s normal efferent pathways, which are the neuromuscular output channels [WBM+02].
These systems aim to provide an active interface for communication and control [WBM+02;
BGH+99] and beyond, aiming to assess covert mental states [BTV+10; MTD+08] and to
monitor the “brain at work”, in so-called Neuroergonomic approaches [Par11; Par03]. BCI
and more integrative human-machine interfaces (HMI) - that use both brain and body signals,
have unprecedented potential to improve healthcare, work environments, efficiency, and
security as well as advance the understanding of brain function and cognition in general and
especially under everyday life conditions.

Research into real-life and application-oriented, non-invasive neurotechnology bears
a number of multidisciplinary challenges. Experimental conditions are harder to control;
environmental and physiological artifacts deteriorate signal quality; and interactions between
the different brain and body signal types increase non-stationarities within the individual
measures. One approach to tackle this multifaceted problem is to acquire multiple modalities,
exploiting the specific strengths of each signal by the use of novel signal analysis techniques.
Combining modalities from different imaging methods has been shown to robustify BCI
applications [FDS+15; DBS+15; FMS+12; PAB+10] and helped improve the understand-
ing of brain development and cognitive processing [ESM+05]. Other applications exist
in the investigation of brain dysfunction in clinical diagnostics, for instance in epilepsy
[VCR+11; DGM+07; IWS+93]. Hence, there is a clear call for high-quality multimodal
methods/measures and hybrid instruments for mobile employment, such as wearable body
sensors or wireless body sensor networks (WBSNs). Such instruments need to convince in
terms of the minimization of size, power consumption, weight, and cost while maintaining
high precision in data acquisition.

1.2 Objective and Contributions of this Thesis
This thesis contributes toward the ultimate aim to enable reliable non-invasive assessment

of large-scale brain signals outside the lab by making use of multimodal measurements.
The approach pursues to (1) decrease acquisition restraints for mobile neuroimaging and
thus increase usability, and at the same time (2) increase the amount of information that is
provided by hybrid acquisition equipment. This enables (3) the exploitation of complementary
and shared information in the measured signals toward the development of methods that
aid the robustness in the analysis and classification of brain signals (see Figure 1.2). To
achieve these goals, three interdisciplinary and interdependent fields are addressed: firstly,
the development of mobile multimodal instrumentation; consequently, the acquisition of
multimodal datasets under real-life conditions using novel paradigms; and finally, building
on those two, the development of new multimodal signal processing approaches making
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use of the newly available large-scale amount of information in the set of data.
With an emphasis on instrumentation and application, this thesis contributes to all

three fields, making use of methods from biomedical electrical engineering, computational
neuroscience, as well as machine learning.

Chapter 3

Multimodal
Instrumentation

Chapter 5

Multimodal
Signal Processing

Chapter 4

Experiments /
Datasets

Information
Acquisition
Restraints

Robustness

Non-Stationarities

Figure 1.2: Concept and links between contributions of this thesis. The design of novel multimodal in-
strumentation will allow for the acquisition of not yet existing hybrid datasets, and that beyond constrained
laboratory conditions. These newly available datasets then enable the development of novel multimodal signal
processing methods for increased robustness against non-stationarities by exploiting shared and complementary
information across modalities.

A Roadmap Through this Thesis

Chapter 2 briefly discusses the physiological background and fundamental principles of
the acquisition of electroencephalography (EEG) and functional near-infrared spectroscopy
(fNIRS). EEG-fNIRS is then motivated as the natural choice for multimodal neuroimaging
under mobile conditions.

Chapter 3 deals with multimodal instrumentation, and begins with fundamentals and
design considerations for both EEG and fNIRS technologies. On this basis, the two-stage
development and evaluation of wearable hybrid EEG-fNIRS instrumentation is then intro-
duced. The first stage, comprising a wearable miniaturized unimodal fNIRS architecture
(the openNIRS) will be discussed briefly with focus on concepts and lessons learned for the
centerpiece of this thesis: M3BA, our next-generation hybrid EEG-fNIRS architecture, that
features Multimodal, Mobile, Modular Biosignal Acquisition.

EEG-fNIRS in motion is a fairly young, just emerging field, and there are currently
no suitable datasets available that provide both evoked multimodal neuroimaging data and
well-controlled movement conditions. For this purpose, making use of the M3BA modules in
a lightweight wireless headset, a novel, bespoke n-back-based cognitive workload paradigm
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was designed and administered in freely moving subjects. This is described in Chapter 4,
which covers paradigm, protocol, channel selection and target features for classification of
the signals, and a brief Section of behavioral results.

In Chapter 5, this unique dataset is used for method design, quantitative and qualitative
evaluation, and classification: First, a novel framework and method for multimodal blind-
source separation analysis and movement artifact rejection in fNIRS signals (BLISSA2RD)
is developed and explored. Secondly, and finally, all preceding contributions are linked
with established methods in a brief feasibility study, approaching classification of cognitive
operator workload under challenging moving conditions and with few channels.

Chapter 6 concludes the thesis with some final, concluding remarks and discusses re-
maining limitations and future directions.

Each Chapter has its own emphasis on one specific discipline within the broad fields of
neurotechnology, and the respective relevant state of the art and aims are provided alongside
individually for each of the novel contributions presented in this thesis.

1.2.1 Included Publications
The work in this thesis has been published in peer-reviewed journals and conferences

and closely follows the publications listed in chronological order below.

Peer-Reviewed Journals
[1] von Lühmann, A., Herff, C., Heger, D., and Schultz, T. “Towards a wireless open source instrument:

functional Near-Infrared Spectroscopy in mobile Neuroergonomics and BCI applications”. In: Frontiers
in Human Neuroscience 9 (2015), p. 617

[2] von Lühmann, A., Wabnitz, H., Sander, T., and Müller, K.-R. “M3BA: A Mobile, Modular, Multimodal
Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring”.
In: IEEE Transactions on Biomedical Engineering 64.6 (2017), pp. 1199–1210

[3] von Lühmann, A., Boukouvalas, Z., Müller, K.-R., and Adali, T. “A new blind source separation
framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy”. In:
NeuroImage (2018). (in review)

[4] von Lühmann, A., Miklody, D., Blankertz, B., and Müller, K.-R. “Multimodal cognitive workload
monitoring in freely moving subjects”. In: Journal of Neural Engineering (2018). (in preparation)

Peer-Reviewed Conferences

[1] von Lühmann, A. and Müller, K.-R. “Why build an integrated EEG-NIRS? About the advantages of
hybrid bio-acquisition hardware”. In: Proceedings of the 39th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBS). 2017, pp. 4475–4478

Patents

[1] von Lühmann, A. and Müller, K.-R. “Biosignal acquisition device and system, method for acquisition
of biosignals”. Pat. US20170281014A1. 2018
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1.2.2 Additional Publications
Additional publications in peer-reviewed journals and conferences that were (co-)authored

are listed in the following.

Peer-Reviewed Journals
[1] Shin, J., von Lühmann, A., Blankertz, B., Kim, D.-W., Jeong, J., Hwang, H.-J., and Müller, K.-R. “Open

access dataset for EEG + NIRS single-trial classification”. In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 25.10 (2017), pp. 1735–1745

[2] Shin, J., von Lühmann, A., Kim, D.-W., Mehnert, J., Hwang, H.-J., and Müller, K.-R. “Simultaneous
acquisition of EEG and NIRS during cognitive tasks for an open access dataset”. In: Scientific Data
5.180003 (2018)

Book Chapters
[1] Soekadar, S., Birbaumer, N., and von Lühmann, A. “Optical brain-computer interfaces: state-of-the-

art, challenges, and perspectives”. In: Handbook of Clinical Neurology, Handbook Brain-Computer
Interfacing: Neural Devices for paralysis in neurological practice and beyond. Ed. by N. Ramsey and
J. Millan. Vol. xx. 3. (in print). Elsevier, 2018, pp

Peer-Reviewed Conference Contributions and Abstracts
[1] von Lühmann, A., Soekadar, S., Müller, K.-R., and Blankertz, B. “Headgear for mobile neurotechnology:

looking into alternatives for EEG and NIRS probes”. In: Proceedings of the 7th Graz Brain-Computer
Interface Conference. Verlag der Technischen Universität Graz, 2017, pp. 496–501

[2] von Lühmann, A., Addesa, J., Chandra, S., Das, A., Hayashibe, M., and Dutta, A. “Neural interfacing
non-invasive brain stimulation with NIRS-EEG joint imaging for closed-loop control of neuroenergetics
in ischemic stroke”. In: Proceedings of the 8th International IEEE EMBS Conference On Neural
Engineering (NER). 2017, pp. 349–353
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Chapter 2

Measures of Brain Activity

2.1 A Brief Overview of Methods

Methods available to acquire information about brain physiology include electrical,
magnetic and hemodynamic measurements. Among them are electroencephalography (EEG)
[Ber29], magnetoencephalography (MEG) [Coh68], functional near-infrared spectroscopy
(fNIRS) [Jöb77], functional magnet resonance imaging (fMRI) [BKM+91], positron emission
tomography (PET) [Swe53] and single photon emission computed tomography (SPECT)
[KE63]. Each of these technologies has its advantages concerning temporal, spatial and
anatomical resolution and specificity. Size, weight, patient positioning or radiation exposure
constrain these systems in method-specific ways. Table 2.1 gives a summary.

EEG MEG fNIRS fMRI SPECT PET
Parameter el. activity el. activity [Hb] [Hb] blood flow blood flow

Temporal Resol. 1ms 1ms 100ms 2−5s 1s 1s

Spatial Resol. > cm (smeared) < cm < cm mm3 10mm3 mm3

Size/Mobility small/yes big/no small/yes big/no big/no big/no

Cost med-low high med-low high high high

Inconvenience gel low low loud, confined injection injection

Table 2.1: Selected methods for the measurement of brain activity. [Hb]: hemoglobin concentration

In contrast to most other neuroimaging modalities, EEG and fNIRS have significantly
advanced toward higher miniaturization and mobility in the past years, making them well
suited for bimodal applications beyond static constraints. Therefore, with mobile neurotech-
nology applications in mind, this work focuses on these two methods. After separate brief
introductions to both, bimodal EEG-fNIRS will then be further motivated at the end of this
Chapter. While EEG has been established for some time, fNIRS is a comparatively new, still
progressing technology and will be discussed in considerably more detail in this thesis.
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2.2 Electroencephalography (EEG)
Electrophysiological measurements of brain activity include non-invasive investigation of

large neuronal assemblies with EEG [Ber29], intracellular action potentials of single neurons
[HH39] and, invasively, the rather focal/localized activity of single to multiple neurons by
intracranial microarrays or electrocorticography (ECoG) [WOL+84]. Here, we focus on
non-invasive EEG, as introduced in neuroscience textbooks [KSJ+00].

2.2.1 Physiological Background and Acquisition Principle
The brain is a network of approximately hundred billion heavily interconnected neurons

communicating via electrical and chemical processes. Information processing between
neurons takes place by means of synapses, where arriving electrical action potentials either
lead to excitation in the form of depolarization or inhibition in the form of hyperpolarization.
The postsynaptic potential resulting from this polarization creates a small electric dipole field
that spreads through the highly conductive tissue and, as a distance-dependent superposition
of all fields, can be measured as local field potential (LFP) [BAK12]. Single dipoles are weak
and only a large number of parallel and synchronously firing neurons sums up to an open
field that can be measured as a potential difference in the form of superficial EEG. As cortical
pyramid cells are spatially aligned and oriented orthogonally to the cortex and have long
dendrites close to the surface, they are the main contributors to measured EEG signals (see
Figure 2.1). There are significant differences between tissue conductivities, which are high
in brain and cerebrospinal fluid and relatively low in cranial bones and scalp. Consequently,
signals measured noninvasively at various scalp positions show almost equal contributions
from different brain areas. This significantly limits the spatial sensitivity of EEG.

UEEG

Figure 2.1: EEG acquisition principle: Volume conduction of additive single dipole fields and differential
measurement of local field potential as a voltage signal UEEG at the surface.

EEG signals contain four main components: (1) Oscillatory synchronous neural activity
[BD04], where oscillatory power is increased with strength in synchronization [DRL+11;
PS99]. (2) Synchronized transient activity following certain events or stimuli, such as event-
related potentials (ERPs), whose components are attributed to various cognitive processes
[Luc14; Reg89]. (3) Electrophysiological artifacts from sources other than the brain, such
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as muscles (EMG) or ocular movements (EOG). (4) Non-physiological artifacts due to
electromagnetic interference or instrumentation noise.

As the amplitudes of the signals of interest (1) and (2) are only in the order of microvolts
(µV ) on the scalp’s surface and artifacts are usually of much higher magnitude, the careful
design of amplification circuitry is crucial. Nowadays, it is generally based on differential
amplification of the signals in instrumentation amplifiers, which aim at low noise charac-
teristics and high suppression of common-mode signals. Reference and offset potentials as
well as the state-of-the-art electrode technology must be considered in the design. These
fundamentals will be briefly reviewed in Section 3.2.

2.2.2 Applications
EEG is an established tool for clinical diagnosis and psychiatric studies of neurological

disorders. Among the application domains are epilepsy [Eng01], brain trauma [RMS+56] or
brain death [Wij01], and surgical monitoring, e.g., during anesthesia and sedation [Ram98].
EEG is currently the primary modality used for BCI both in scenarios for communication and
control [TM10; DRMH+07; WBM+02; BCM02; BGH+99] and beyond [HKK+14; ELT12;
ZK11; BTV+10; MTD+08]. The former focus on oscillatory and synchronized transient
features of the EEG such as sensorimotor rhythms (SMR) in imagined and performed
motor actions [BTL+08], somatosensory visually evoked potentials (SSVEPs) from focused
attention on flickering stimuli [MPSB+05] or ERPs in spelling devices [FD88]. The latter are
adjacent to general fields of research in psychology and neuroscience and new fields such as
neuromarketing and human factors. Here, EEG has successfully been used to assess mental
states such as vigilance [MP83], meditation [CP06], sleep and dream states [DK57] and to
assess cognitive [SJL+11] and memory performance [Kli99].

2.3 functional Near-Infrared Spectroscopy (fNIRS)
In 1977, Jöbsis pioneered the field of non-invasive optical methods by no longer consid-

ering the skull - and bones in general - to be a natural border for light. By using near-infrared
light, he proved the feasibility of non-invasive local spectroscopy of cortical tissue oxygena-
tion through the intact skull [Jöb77]. In the late 1980s and the 1990s, research enhanced
the understanding of the fNIRS signal physiology, instrumentation and mathematical con-
cepts, accompanied by a generally growing knowledge of fundamental bio-optical processes
and the emergence of new optical technologies [Rol00]. In that process, several NIRS
instruments were built with the aim to enhance instrumentation and finding ways to obtain
absolute oxygenation values [WEB+97; WCD+90; CD88; ERC+88]. In 1993, four research
groups independently demonstrated the feasibility of non-invasive brain activity investigation
using fNIRS [CZU+93; HT93; KKT+93; VPH+93]. In the 2000s, many research groups
focused on the design of imaging instruments for brain activity mapping from topographic
information (functional near-infrared imaging, fNIRI) [VTE+04; BDF04; OV03; BBM+01;
SFH+00]. Today, fNIRS has entered neuroscience as a reliable research tool [SKM+14]
offering potentially complementary information to fMRI, PET, and EEG.
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2.3.1 Hemodynamic Signals
2.3.1.1 Physiological Background

Optical window fNIRS is a noninvasive optical technology that makes use of at least
two wavelengths in the near-infrared spectrum of light for the measurement of local oxy-
hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentration changes in cortical brain
areas. fNIRS, fNIRI and diffuse optical tomography (DOT) are all based on the same concept
[SBS02]: Near-infrared (NIR) light is emitted into the head at one position and undergoes
random scattering and absorption processes in the tissue, attenuating it by several orders of
magnitude. A fraction propagates on a banana-shaped path back to the surface where it is
then detected by a NIR-sensitive photodetector (see Figure 2.2 A).
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Figure 2.2: (A) Banana shaped path of photons between NIR light emitter and NIR light detector. (B) Optical
window (schematic): molar extinction ε for HbO and HbR, and absorption µa for 100% water.

As biological tissue, including the skull, is partially transparent to optical radiation in the
NIR range, the emitted light can penetrate the cranium and reach sufficient depth [OFS+97].
This characteristic optical range of approx. 600− 900nm, in which tissue is relatively
transparent to light, is often referred to as an optical window. While absorption and scattering
by components of the tissue, e.g., collagen, proteins, and fat, remain relatively constant
in that window, other chromophores such as HbO, HbR and cytochrome oxidase (CtOx)
are strong absorbers for NIR light. HbO and HbR concentrations change with metabolism
and blood flow. If two different wavelengths are chosen so that absorption by HbR and
HbO are maximal, changes in concentrations of the two chromophores result in measurable
attenuation changes that can be quantified, e.g., with the modified Beer-Lambert Law (see
next Section). The oxygen-dependent optical absorption is also key to (pulse) oximetry.
Some works also use CtOx as a chromophore for the indication of intracellular oxidative
processes with CtOx being the terminal enzyme of the intracellular respiratory chain [Rol00].

The hemodynamic response During brain activation, an increase in local Cerebral Meta-
bolic Rate of Oxygenation (CMRO2) is followed by a disproportional up-regulation of
regional Cerebral Blood Flow (CBF) and Cerebral Blood Volume (CBV) within milliseconds
to seconds, resulting in a focal hyperoxygenation [FR86]. These processes are reflected
in a decrease in HbR concentration accompanied by an increase in HbO concentration of
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typically 2-3-fold magnitude and thus result in an increase of total hemoglobin [OV03]. The
hemodynamic signal can usually be observed with a latency of approx. 5-8 seconds after
the onset of a stimulus/task and is termed hemodynamic response (see Figure 2.3). Neural
activity can be estimated from the relative increase in oxy-Hb and t-Hb compared to a relative
decrease of deoxy-Hb in the venous branch of the cerebral vascular system [WWT+02].
A focal decrease in HbO along with an increase in HbR is consequently interpreted as
deactivation. The hemodynamic response results in changes in the order of about 1-2% of the
optical NIRS signal’s direct current (DC) amplitude [CWM07; LSL+11]. Since the change
in HbO is usually larger compared to HbR, it is often preferred as a single indicator of brain
activity changes. HbR, however, has been shown to have a high negative correlation with the
fMRI BOLD signal [HHD+06; SCT+02; KOR+96], making it a better-validated parameter.
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Figure 2.3: Typical hemodynamic fNIRS response after stimulus onset and contributing coupling processes.
HbO: oxy-, HbR: deoxy-, HBt: total hemoglobin. Inspired by Figure from [SKM+14].

There is yet no clear mechanistic understanding of how neuronal activity regulates CBF
and metabolism [DSS+12], but “metabolic” and “neurogenic” hypotheses exist [ABM11;
PHR+10; RM06].
Non-stationary fNIRS signals based on HbO and HbR concentration changes are a combi-
nation of several components that include periodic artifacts, such as heartbeat (≈ 1−2Hz),
respiration (≈ 0.3− 0.1Hz) and Mayer waves [ESH+99] (≈ 0.1Hz). A classification of
physiological and non-physiological non-stationary components in fNIRS will be done in
Chapter 5, Multimodal Analysis, in Section 5.2.2.

2.3.1.2 Theoretical Background - the modified Beer-Lambert Law

For the conversion of measured raw NIR light intensities into chromophore concentrations,
a modified version of the Beer-Lambert Law (BLL) is commonly used. For an in-vitro cuvette
model as in Figure 2.4, the conventional BLL (Equation (2.1)) states that the attenuation A
of an interrogating monochromatic energy with incident intensity I0 is proportional to the
product of an absorbing compound’s concentration [c], in mol, dissolved in a non-absorbing
solvent, the compound’s molar extinction coefficient ελ , and the optical path length d.

To determine the time-dependent concentration of i chromophores, measuring at i differ-
ent wavelengths λi is necessary. In fNIRS, the optical path length is not straight and equal to
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I = I0 ·10−ελ cd

⇔ A =− log10

(
I
I0

)
= ελ cd.

(2.1) I0 I

d
I0

I
[c]

ε

Figure 2.4: In-vitro cuvette model for BLL

the distance d between light emitter and detector, but has to be corrected by a Differential
Path length Factor (DPF) that accounts for increased distance traveled by the light due to
scattering and absorption effects in the tissue:

A(t,λ ) =− log10

(
I(t,λ )
I0(t,λ )

)
=

n

∑
i=1

εiλ ci(t)DPF(λ )d +G(λ ). (2.2)

Here, G(λ ) is an unknown geometry dependent factor that takes scattering into account
and prevents the direct use of (2.2) for tissue interrogation. As a solution, Delpy et al.
modified the BLL (mBLL) [SF04; DCZ+88] by calculating chromophore concentration
changes between an initial time point t0 and consecutive timepoints t, thereby removing
effects from G(λ ), which are assumed to be constant. When attenuation changes ∆A are
evaluated at two wavelengths, the resulting system of equations can easily be solved for the
changes in concentrations ∆ci. For HbO and HbR these are then given by

[
∆ [HbR]
∆ [HbO]

]
=

1
d
·
[
εHbR,λ1 εHbO,λ1
εHbR,λ2 εHbO,λ2

]−1
[∆A(∆ t,λ1)

DPF(λ1)
∆A(∆ t,λ2)
DPF(λ2)

]
. (2.3)

Using the mBLL allows only a reasonable first approximation of relative chromophore
concentrations in the brain, as the underlying assumptions of a homogeneous medium and ho-
mogeneous change of parameters within the sampling volume are not valid [OV03; BBM+01].
However, it is used by a majority of approaches; and theoretical studies suggest that resulting
errors can be limited to less than 10% [SBS02].

For the application of the mBLL, several parameters are crucial:

• The chromophore extinction coefficients at different wavelengths, which were deter-
mined in vitro using laboratory spectrophotometers, e.g., in [Cop91].

• The DPF, which cannot be directly measured using the most commonly applied
continuous wave interrogation approach, was both experimentally and numerically
investigated and found to be age, gender- and wavelength-dependent, and varying up
to 15% between subjects with a mean value of 6.53±0.99 [DMC+95; EEC+93].

• The impact of source-detector spacing (SDS) on the partial optical path lengths in
tissue and corresponding sensitivity profiles were investigated by Okada et al. on the
basis of phantom-measurements and Monte Carlo and Finite Elements predictions
[OFS+97]. They concluded that for a SDS of 50mm, approximately 65% of the
total light path length is in scalp and skull, approximately 35% in the CSF and only
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approximately 5% in the gray matter of the cortex. Nevertheless, the contribution of
the gray matter layer was estimated to be at least 20-30% of the absorption change in
the signal. Today, SDS of 3−4cm are commonly used with the rule of thumb that the
depth of maximum brain sensitivity is approximately half the SDS distance [SBS02].

2.3.2 Instrumentation and Acquisition Principles
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Figure 2.5: fNIRS interrogation approaches

Currently, there are three main methodolog-
ical approaches for tissue interrogation with
fNIRS (see Figure 2.5):

(1) In Continuous-Wave (CW) approaches
(e.g., [SMB99]), continuous, slowly (kHz)
chopped or modulated light at constant ampli-
tude I0 trans-illuminates the tissue, and its at-
tenuation over time is measured. While CW
fNIRS achieves good SNR, it cannot deter-
mine optical path lengths/light scattering and,
therefore, only relative HbO/HbR concentra-
tion changes can be obtained. The use of multi-
ple source-detector distances, however, allows
the separation of different tissue layers to some
degree [GWZ+10; SB05].

(2) In Frequency-Domain (FD) techniques
[PP94; GMV+90], light is modulated in the
range of several 10−100MHz, and amplitude changes, as well as phase shifts φ , are mea-
sured. The latter allows an estimation of the time of flight and optical path length; absolute
chromophore concentrations can be determined. Costs, complexity, and volume of the instru-
ments are considerably higher than in CW systems.

(3) In Time-Domain (TD) (or time-resolved) spectroscopy [BS93; CLM+88], picosecond
light pulses are applied and the photon arrival times are measured directly as a temporal
point spread function of arriving photons. This allows the determination of absorption and
scattering information and the separation of different tissue layers [SBS02]. While TD
systems yield the highest amount of information, they are expensive, require significant
averaging times to improve SNR [SMB99] and are often large.

Since quantification of absolute values is often not as crucial in neuroscience as the
detection of brain activity changes, most fNIRS systems in research are based on CW tech-
nology [SKM+14]. CW is comparatively low-cost, can be integrated and miniaturized, is
lightweight and also works with mobile applications using wireless technology, which makes
it the approach matching the requirements best for the work in this thesis.

2.3.3 Applications
Given the increased understanding of fNIRS and advances in measuring instruments, a

variety of clinical applications were explored in recent years. These range from the long-
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term monitoring of cerebral oxygenation in newborn and high-risk infants [CD88; Cop91],
the study of the physiological correlates of cerebrovascular diseases, stroke [MYH+03],
and epileptic disorders, to the diseased brain, e.g., in Alzheimer’s or amyotrophic lateral
sclerosis, brain trauma and surgical intervention monitoring [Obr14; ZSY+13; WFQ07;
BII+06; BBM+01]. In the last decade, an increasing number of research groups used fNIRS
technology also in Brain-Computer Interface tasks and proved its applicability in this field
[KMM+09; MPW+08; CWM07; CWM+04]. fNIRS signals were used for BCI control
in severely paralyzed patients due to stroke, spinal cord injury or ALS [Bir06; YAS+10;
KMM+09] and for cognitive workload assessment [HHF+14; ASB+12; SY06; IBI+03].
Furthermore, fNIRS has been widely applied in basic brain research, e.g., in psychiatric
research [ESD+14; IPB+07], and brain activation studies of the visual, the somatosensory,
the auditory, the motor and the language system [FQ12]. Other applications are in brain
dynamics monitoring during working memory training and expertise development [AOI+13]
and recently also in combination with transcranial direct current stimulation [MPA15].

2.4 Summary and Motivation for Hybrid EEG-fNIRS
In consideration of the brief introduction to both modalities in this Chapter, the following

box summarizes and contrasts essential characteristics of fNIRS and EEG:

fNIRS vs. EEG

• EEG provides fast signals (0.1−250Hz) and high temporal resolution (> 1kHz)
compared to fNIRS (0.01−0.2Hz at typically > 8Hz), which however offers
higher temporal resolution than both fMRI and PET.

• fNIRS has a higher spatial (< 1cm) resolution compared to EEG (> 1cm).

• EEG measures neuro-electrical activity, fNIRS measures neuro-metabolic mark-
ers that are not available in other modalities, e.g., HbO or CtOx.

• EEG is a weak electrical signal (µV ) easily buried in electromagnetic noise,
fNIRS is a weak optical signal (µMol) easily buried in ambient light noise

• EEG is robust to ambient light changes, fNIRS is robust to electro-phyiological
artifacts (EOG, EMG,...)

• Both EEG and fNIRS have a comparable complexity and set up time, are com-
paratively low cost and can easily be combined.

• Both EEG and fNIRS can be miniaturized and wearable, enabling brain activation
studies in clinical offices and under more realistic conditions - and are usable for
subjects who cannot use fMRI, e.g., are not able to stay sufficiently still.

• Both methods are non-hazardous and therefore do not limit the number of scans
one can undergo, also enabling long-term monitoring.
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Being noninvasive, relatively low cost, and similar in setup complexity, EEG and fNIRS
together allow the investigation of interactions between neuronal electrical activity and
regional microcirculation changes under various conditions, e.g., mobile or at the bedside.
While constricted to near-surface brain regions, both complement each other in terms of the
measured physiological signal and their spatial and temporal resolution. Both modalities also
contain a variety of systemic physiological signal components. These are usually considered
artifacts but can be of considerable value in hybrid holistic approaches that aim to extract as
much physiological information as possible. Included in the set of non-neuronal physiologi-
cal signals measured in hybrid EEG-fNIRS are EMG, EOG, ECG, pulse-wave (heart rate),
(modulations by) breathing signals and Mayer-waves (Traube-Herring waves).

The combination of EEG and fNIRS enables new approaches in many domains related to
neuroscience and neurotechnology. Among them are advanced diagnostic tools for medicine,
e.g., toward the non-invasive real-time monitoring of the neuroenergetic status of cortical
gray matter in ischemic strokes [vAC+17], and new approaches in cognitive science, psy-
chology, Neuroergonomics [Par03; Par11] and adaptive neurotechnology research [ZK11;
BTV+10; MTD+08]. In Brain-Computer Interfaces (BCI), NIRS joined the set of modalities
used for either multimodal BCI or enhancement of EEG based BCI. These “hybrid BCIs”
[PAB+10] demonstrate the potential to significantly increase the amount of exploitable physi-
ological information and allow for higher robustness and classification accuracy [FDS+15;
FMS+12; BPM+11; PAB+10]. A continually growing number of experiments include bi-
modal EEG-fNIRS data and hybrid datasets are being published for open-access in the
scientific community [SvB+17; SvK+18], enabling the development of new signal analysis
approaches.

These overall factors make EEG and fNIRS predestined for multimodal and hybrid
integration into miniaturized and wearable non-invasive neuroimaging equipment, allowing
comparably high usability. Consequently, EEG and fNIRS are the modalities of choice for
the work in this thesis.





Chapter 3

Instrumentation for Novel
Neurotechnology Applications

3.1 Preface

This Chapter discusses the design of novel biosignal acquisition systems that ultimately
aim to enable neurotechnology applications outside the laboratory and is based on publica-
tions [vHH+15; vWS+17; vM17; vM18]. The way toward this goal is of an iterative nature,
both within and between system generations (see Figure 3.1).
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Figure 3.1: Iterative design cycle across contributing domains in the development of novel instrumentation. On
the way toward the ultimate aim to enable reliable neurotechnology applications outside the lab, instrumentation
generations in this thesis build upon each other: from openNIRS to M3BA.
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The following work comprises two contributions which can be regarded as a first and
second generation of instruments of the same family. The first generation, a unimodal mobile
and modular fNIRS device (the “openNIRS”), serves as a testbed for a more sophisticated
hybrid EEG-fNIRS approach (the “M3BA”) and will be presented only briefly and with focus
on its concept and lessons learned. The second generation M3BA integrates and expands the
openNIRS concept and will then be fully evaluated and discussed.
As a working basis for the design of both instruments, Section 3.2 will first provide compre-
hensive fundamentals and considerations and Sections 3.3 & 3.4 will present the current state
of the art and identify aims and architectural requirements.
As details in the evolution of instrument and software generations can be valuable from
an engineering perspective but are only of minor scientific interest, we then focus on the
concepts, architectures and selected design aspects essential to verification and validation of
the openNIRS (Section 3.5) and M3BA (Section 3.6).

High-precision and low-noise performance in the miniaturized and mixed-circuit designs
are crucial, as both modalities provide small signals that easily drown in noise. In contrast to
well established, widely known state of the art instrumentation principles in EEG, fNIRS
is a technology still comparatively young, challenging, and rapidly progressing. For this
reason, the emphasis in this Chapter lies on the design of (hybrid) fNIRS instrumentation.
EEG design fundamentals are documented in many textbooks for biomedical engineering
[Ged68; CB93] and will only be briefly addressed, when relevant for the overall approach
and hybridization.

3.2 Fundamentals and Design Considerations

3.2.1 State of the Art Instruments

As a preparation for the system design, literature on CW fNIRS approaches, including
comprehensive overviews by [SKM+14; SY06; SBS02; BGS+01]), was reviewed. State-of-
the-art non-mobile fNIRS systems can comprise up to 256 channels with temporal resolutions
as high as 250 Hz and lateral spatial resolutions of approximately 7-10 mm [FQ12]; commer-
cial instruments cost between some 10,000 USD to several 100,000 USD for whole-head
imaging systems. Similar in EEG, where temporal resolution can be significantly higher but
spatial resolution significantly lower. While there exists a variety of wearable miniaturized
EEG instruments in research and on the market, for fNIRS there are only few instruments
and most are portable devices with a volume > 500cm3, requiring an additional backpack
or small bag. Tab. A.4 in Appendix A.1 summarizes and contrasts main characteristics of
commercial and research fNIRS devices that support mobile use in one way or another. The
vast majority of these are unimodal instruments with a moderate number of Time Division
Multiplexed (TDM) channels (typically 1−32).

Until today, in scientific studies, the majority of bimodal EEG-fNIRS research has been
conducted utilizing separate and usually tabletop EEG and fNIRS instruments, as there are
no commercial hybrid systems available as yet.
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3.2.2 Core Components of EEG and fNIRS Instrumentation

3.2.2.1 Biopotential Measurements and Instrumentation Amplifier

High-precision instrumentation for the non-invasive acquisition of small biopotentials
such as EEG has to consider key elements [BU13; KC04; CB93; Kha92; Ged68] which are
displayed in Figure 3.2 and will be discussed in the following. Conventionally, electrolyte-
electrodes derive biopotentials galvanically from the surface of the skin. They can be regarded
as a diaphragm between electrolyte and body fluids containing the same ions. The overall skin
impedance Zs can be modeled by capacitive effects from skin layers and resistive conduction
due to glands and subcutaneous tissue. At the transition between electrode metal and
electrolyte, different chemical potentials lead to a charge gradient, the Helmholtz and Gouy-
Chapman layer [Cha13; Hel79], modeled by Ze including the Helmholtz capacitance and
faraday impedance. Resulting polarization effects can significantly deteriorate signal quality
and are dependent on applied materials; state of the art are “unpolarizable” AgCl electrodes
with NaCl electrolyte. Differences between electrodes lead to a DC offset potential that has
to be considered for the dynamic range of the designed instrument. Signal quality depends
on the overall electrode-skin impedance Zs +Ze that is ideally < 10kΩ . Implementation of
impedance measurements in the system design is therefore advisable. Due to the high source
impedance, the small (µV ) signals are prone to electrical interference and cross-talk before
amplification (see also Section 3.6.2.2 in hybrid systems). External noise pickup has to be
inherently minimized in the design by shielding and optimization of current paths.

The default solution for amplification of EEG signals is the use of Instrumentation
Amplifiers (IAs) that allow precision measurements of differential voltage signals in noisy
environments. IAs consist of a unity gain buffer input stage feeding into a differential
amplifier. Differential amplification of biosignals enables the rejection of common mode
signals on the body that are much larger than the signal of interest, e.g., electrical 50/60Hz
mains hum. Very high Common Mode Rejection Ratios (CMRR) > 100dB are advantageous.
The unity gain input buffers enable extremely high input impedances Zi ≫ Zs +Ze, essential
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Figure 3.2: Measurement of EEG and other bio-potentials: key elements and noise factors to consider (red).
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to measure signals over high impedances such as the effective electrode-skin impedance
and minimize voltage divider effects. Overall, the IA has to provide low bias/offset currents
and voltages, high input impedances, gains, linearity and slew rates, high CMRR and Power
Supply Rejection Ratios (PSRR) all at a very low input-referred noise. Ultra low noise
performance can only be achieved in a tradeoff with power consumption and dynamic range
(see Section 3.2.3.1). For biopotential acquisition, instrument and body have to share a
common reference. To further improve CMRR, inverted common mode signals can be fed
back to the body in a closed loop providing an active reference potential (known as Driven
Right Leg, DRL, from ECG [WW83]). In that case, the stability of the closed-loop control
has to be ensured.

3.2.2.2 NIR Light Emitters

The ideal light source provides multiple monochromatic wavelengths in the NIR range,
each at a relatively high power and with minimal radiation variance [SBS02] to yield a high
number of photons penetrating deeply into tissue. Without an additional monitor, fluctuations
cannot be discriminated from those caused by chromophore concentration changes. If
not monochromatic, the spectrum should be as sharply peaked as possible and weighted
averaging approaches can be used to correct the extinction coefficients [SKM+14], see also
the finite bandwidth effect in Section 3.2.3.4. As scattering processes in the first millimeters
of the tissue rapidly make the collimated interrogating beam diffuse [Cop91], collimation
of light is not as important as the incident power to the detector. Three types of sources
can be used for NIR light emission: (1) Laser Diodes (LD), (2) Light Emitting Diodes
(LED) and 3) White Light Sources (e.g., Xenon flash tubes or quartz halogen light) with
monochromators/interference filters. The latter are large, dissipate much heat and are not
suited for mobile fNIRS instrumentation. Table 3.1 contrasts LDs and LEDs regarding their
suitability for fNIRS instruments.

As LDs emit coherent light with very sharp radiation peaks and high intensities, they
are usually chosen for high-precision fNIRS signal generation [AKO+07; BBM+01; CD88;
Cop91]. Particularly in more recent approaches, and with progressing technology and
availability, Light Emitting Diodes are often used [PKK+14; AOI+13; SGM+13; LSL+11;
SMM+08; BLW+08; CWM07; CS07; BII+06; BRR+05; BO04; VTE+04]. LEDs come in
smaller packaging and at lower costs and are available in a larger variety of wavelengths
and multi-wavelength packages. In the application of the mBLL it is assumed that the
same volume of tissue is being interrogated with different wavelengths. Consequently,
emitted NIR light into scalp should optimally origin from the exact same spatial location
to minimize errors. LEDs have broader emission spectra (> 25nm) than sharp peaked LDs

package sharp emission modulation available multi λ

heating sizes spectrum power safety bandwidth λ packages
LD •• •• ≈ 1nm •• • ≤ GHz •• no
LED • • > 25nm • •• ≤ MHz ••• yes

Table 3.1: Comparison of NIR-emitter suitability for fNIRS instrumentation: LEDs vs LDs.
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(≈ 1nm); their incoherent and uncollimated light decreases safety concerns in view of the
maximum permissible exposure (MPE) limit for skin of about 2mW/mm2, and is safer with
the human eyes, facilitating designs without additional optical elements. These characteristics
make LEDs most suitable for wearable applications and allow their direct application on
the head, also making optical fiber guides redundant, when small emitter-distances in a
multiwavelength package are ensured.

Under these considerations, LEDs are the emitters of choice for the designs in this thesis.
For a selection of appropriate NIR LEDs see table A.3 in Appendix A.1.

3.2.2.3 Wavelength Selection

An optimal choice of the wavelength pair in the optical window is crucial for signal
sensitivity, separability and minimizing crosstalk of concentration changes that stems from the
simplifying assumptions in the mBLL [UKBS+02; SWO+01; BGS+01; HFE+93]. Generally,
one wavelength above and one below the isobestric point of 805nm in HbR and HbO
absorption [CWM07; Cop91] are chosen (see also Figure 2.2) to minimize absorption artifacts
due to the presence of compounds other than hemoglobin [Cop91]. As the hemoglobin
absorption spectra change little in the range of 830−900nm and the sensitivity of detecting
photomultiplier tubes decreases rapidly above 840nm [BDF04], 830nm was commonly
chosen as one wavelength in first instrument generations. Based on this early determination,
many of the later investigations used 830nm as a constant for further narrowing down the
optimal wavelength pair:

Using an error propagation approach, Yamashita et al. [YMK01] concluded that 830nm
together with < 780nm is optimal. Using the Monte Carlo Method and empiric SNR
tests, Yamashita, Sato, and Strangman et al. concluded that 830nm with 690nm or 760nm
minimize random and systematic errors [SKK+04; SFB03; YMK01]. Funane et al. [FAS+09]
concluded that SNR is maximum when both ends of the range 659−900nm are used. Using
the Monte Carlo Method for minimizing crosstalk, Okui et al. [OO05] came to the conclusion
that 830nm with 690−750nm are optimal. From theoretical analysis, Uludag et al., however,
stated that 830nm is not the optimal wavelength and that > 730 and < 720nm with both
not > 780nm should be used [USV+04]. Finally, based on a three-layer model analysis,
Correia et al. [CGH10] concluded that 887±12nm and 704±7nm are optimal. Table A.2
in Appendix A.1 gives an extensive overview of the recommended or selected wavelength
pairs in research and commercial fNIRS instruments.

3.2.2.4 NIR Light Detectors

There are three types of detectors typically employed for the measurement of near-infrared
light in CW fNIRS: (1) Photomultiplier Tubes (PMT), (2) Silicon Photodiodes (SiPD) and
(3) Avalanche Photodiodes (APD). PMTs are gold standard in terms of sensitivity and allow
single photon counting based on the external photoelectric effect: Photons free electrons
from a photocathode surface, which are then accelerated by a strong electric field, and knock
out secondary electrons from a cascade of dynodes, leading to gains of up to 106 to 107.

SiPDs and APDs are based on the internal photoelectric effect: The semiconductor
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junction absorbs incident photons, which raise electrons to higher energy, creating free
charge carriers that result in a detectable photocurrent. In APDs, similar to PMTs, up to
several hundred volts are applied across the semiconductor junction, accelerating free electric
charge carriers. These generate more carriers through impact ionization, resulting in the
so-called avalanche effect and amplification of a few hundred times. SiPDs have no internal
signal amplification. Emerging photocurrents in photodiodes have to be amplified by external
circuitry in one of two possible modes of operation: In photovoltaic mode, no bias voltage is
applied and the generated photocurrent is measured over a large load resistance. The response
of the signal to the optical power is logarithmic and much slower than in photoconductive
mode but enables a higher dynamic range. In photoconductive mode, in which SiPDs and
APDs are typically operated, a reverse bias voltage is applied to the semiconductor junction.
Advantages are reduced capacitance, higher speed, and improved linearity, however also
larger dark current.

While other photodiode types are available, silicon semiconductors are the most favorable
due to their higher sensitivity and better noise characteristics in the NIR spectrum compared
to, e.g., GaAs photodiodes. The detector choice largely determines the resulting sensitivity
of the instrument, the maximum sampling rate and the dynamic range [SBS02] and has to
include a consideration of the advantages and disadvantages in the context of mobile fNIRS
application (see Table 3.2).

PMTs were mainly used in the first fNIRS generations [Rol00; SFH+00; Cop91; CD88]
and more recently in Frequency Domain instruments but have mostly been replaced by
Avalanche Photo Diodes [BLW+08; SMM+08; CWM07; CWM+04; BBM+01] and SiPDs
[PKK+14; AOI+13; SGM+13; RSG+12; BII+06; BRR+05; VTE+04; SMB99]. Recently,
also Silicon Photomultipliers [WLS+17; ZBA+13] have been exploited for fNIRS applica-
tions.

The very small packaging, high dynamic, range and speed, together with low-voltage
operation make SiPDs a good choice for mobile, safe and cost-effective purposes when their
main disadvantage, low sensitivity, is carefully taken into consideration. Another advantage
is that they can be applied directly to the skin surface, which is the most efficient method of
collecting the light [Cop91]. Although APDs are in principle suitable, the necessity of high
supply voltages and cooling makes the design more complex with regard to safety aspects
and direct head attachment. Table A.1 in Appendix A.1 shows a selection of available SiPDs
with integrated Trans-Impedance Amplifiers, that meet the specifications requirements in the
following system designs.

sensitivity supply heating robustness
(internal speed dynamic size voltages (cooling (ambient light,
gains) range (safety) required) magn. fields)

PMT 107 > 100MHz < 60dB ••• 1 kV ••• •
APD 100 > 100MHz < 60dB • 100 V •• ••
SiPD 1 < 100MHz < 100dB • 1 V • •••

Table 3.2: Comparison of detectors for mobile fNIRS instrumentation. Photomultiplier Tubes (PMT),
Avalanche Photodiodes (APD) and Silicon Photodiodes (SiPD).
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3.2.2.5 Phase-Sensitive Detection

Lock-in amplification or phase-sensitive detection (PSD) [Mea83; Mea82] is a method
for the recovery of weak signals masked by a strong noisy background, and is widely-used in
spectroscopic applications. It is based on the modulation and demodulation of an interrogating
signal using a known common reference waveform of much higher frequency than the band
of interest. Being an extremely narrow-band bandpass filter, the phase-sensitive detector is
only sensitive to signals coherent with the reference (same frequency and phase) and rejects
others, thus significantly enhancing the signal-to-noise ratio (SNR). In fNIRS, this enables the
rejection of ambient room light and other noise sources (see Section 3.2.3). Among these are
dark current noise of the photodetector, amplifier offsets, and 1

f amplifier noise, given that the
signal is modulated at a frequency where the amplifier noise is significantly lower than at near
zero frequency. Let s(t) =VS(t) ·cos(ωSt+ΦS) be the modulated signal carrying information
in its amplitude VS(t) and r(t) =VR ·cos(ωRt +ΦR) be the reference with constant amplitude
VR both with frequency ω and phase Φ . Furthermore, let v(t) = s(t) ·r(t) be the demodulated
signal. In case that signal and reference have the same frequency ω = ωS = ωR and a
low-pass filter AL(ω) = |HL( jω)| is applied with cut-off frequency fc ≪ ω , AL(0) being
the magnitude of the filter response at zero frequency, the measured slow signal vLP(t) with
frequency components ≪ fc after filtering yields

vsine
LP (t)≈ VRAL(0)

2
VS(t) · cos(ΦS −ΦR). (3.1)

Here, cos(ΦS −ΦR) is an attenuation factor based on the phase between the incident and
detected optical signal and is mainly determined by the propagation delays due to hardware
components in the signal path. Therefore, these have to be chosen to minimize or correct the
resulting total phase shift. In practice, the reference signal is often a square wave instead of a
sine wave, allowing demodulation simply by a change of sign of the incoming signal. It can be
shown [Mea83], that the responses of the "ideal" sinusoidal synchronous detector (Equation
3.1) and the square wave reference detector differ only in a constant scaling factor with the
square wave excitation providing a 27% larger signal and also giving a phase-sensitive DC
output in response to signals at frequencies 3ωR, 5ωR, ...: vsqwave

LP (t)≈ 4
π vsine

LP (t).
Figure 3.3 depicts the square wave lock-in principle as it can be applied in fNIRS.
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3.2.2.6 Electrode and Optode Approaches EEG Electrode Types
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Figure 3.4: Electrode and optode types

Optical and electrical coupling between the
body and fNIRS and EEG instruments can be
achieved with a variety of optode and electrode
approaches (Figure 3.4). These determine signal
quality, robustness, and usability, especially under
moving conditions. In EEG, the default are stretch
fabric head caps or nets with non-polarizable wet
or dry AgCl electrodes. Wet electrodes (Figure 3.4
A) are applied with NaCl based electrolyte that also
acts as a buffer, reducing shift artifacts. Applica-
tion of gel requires a second person and subsequent
cleaning of the hair. To improve usability, recent so-
lutions focus on alternatives such as non-adhesive
solid gel [vSM+17; TTK12] (Figure 3.4 B) and
water-based electrodes (Figure 3.4 C/D) that com-
bine sponges or rolled-up cotton soaked in a NaCl
dilution [vSM+17; MGMP11; VVM+10]. Dry ac-
tive electrodes do not require preparation but have
higher impedances and a lower SNR [PFB+07].
Pins contact the skin through hair under relatively
high contact pressure that is sometimes perceived
as unpleasant. Recent approaches achieve good
signal quality using dry, sticky or wet electrodes in
or around the ear [DEDV+15; LKP+12].

Traditional fNIRS instruments use step-index
multimode fibers and fiber optic bundles for opti-
cal conduction to and from the scalp [SKM+14].
They require attachment with holders on straps or
caps and add weight and risk of optode shifts in
movement. In more recent portable devices, SiPDs,
APDs, LDs, and LEDs, are integrated into the op-
todes and placed directly on the head. This slightly
constrains the geometrical probe design and potential heating, as well as electrical hazards,
have to be considered. In turn, light losses are minimal and user mobility is less restricted.
A conventional solution is an integration into conus- and cylinder-shaped single probes for
fixation on EEG caps (Figure 3.4 G, as in [PKK+14]). Chain-link optode holders (Figure
3.4 E, as in [SGM+13]) helmets and helmet-like headsets [KAF+12; AKO+07] and fixated
mechanical mounting structures to sit in [CWM07] have also been applied. Spring-loaded de-
signs (Figure 3.4 F/G, and Section 3.5.1.1) enable easier application and minimize movement
artifacts due to optode shifts, but are mechanically more sophisticated. For measurement of
fNIRS signals on the forehead, optodes can be integrated into flexible PCBs or rubber mats
(Figure 3.4 H, [RSG+12; BII+06; BRR+05; VTE+04; Rol00], and Section 3.7).
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3.2.3 Noise, Crosstalk and Error Sources
In this Section, noise, crosstalk and other error sources are examined to extract guidelines

for the design of uni- and multimodal fNIRS/EEG systems.

3.2.3.1 Noise in Biosignal Amplification

With focus on the relevance for biopotential amplification, three types of noise are of
concern [DOC+14; KC04; Car01; CB93; Kha92], in the following expressed in rms noise
currents:

Is =
√

2qIdc∆B (3.2)

shot noise (3.2) is caused by random fluctuations in the mo-
tion of charge carriers in any conductor. It is unavoidable,
independent of temperature and has a uniform power density.
q is the electron charge, Idc the average DC current in Ampere and ∆B the Bandwidth in Hz.

Ith =

√
4kT ∆B

R
(3.3)

thermal noise or Nyquist-noise (3.3) is white noise resulting
from Brownian motion of charge carriers in resistors internal
and external to a detector. It depends on the resistor value R
in Ohms over which the noise is measured at temperature T in
Kelvin, the Blotzmann’s constant k and the measurement bandwidth. This noise contribution
of larger resistors leads to an inherent trade-off between noise and power consumption,
especially in battery-powered wearable precision equipment.

I f = Ki

√
log

fmax

fmin
(3.4)

flicker noise or 1
f -noise (3.4) is present in all (semi-) conduc-

tors and is not entirely understood theoretically. It increases as
the frequency f decreases with the same power content in each
decade and is proportional to the DC current in a device. Ki
is the proportionality constant representing I f at 1Hz, fmax is the upper cutoff frequency or
noise bandwidth and fmin is the lower cutoff frequency, customarily set to 0.1Hz.

3.2.3.2 Noise in Photodetector Systems

There are three types of noise in photodetector systems relevant for fNIRS [SKM+14;
Kno10; Liu05; Jen87].

Isp =
√

2qIphM2F∆B (3.5)

photon shot noise (3.5) is based on the quantum
nature of the photons and, being inherent in any signal
generated by the detector, cannot be avoided entirely
by technical means. Being quantized and discrete, the photons arrive independently of each
other, resulting in random fluctuations in photon-to-electron conversion in the detector over
time. Without internal amplification, the photon shot noise power is proportional to the
square root of the average intensity (the number of incident photons); the accuracy of a
measurement increases with the intensity of the detected light in a constant time window. q is
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the electron charge, Iph is the generated DC photocurrent, M the internal gain, F the detector
excess noise factor and ∆B is the electrical bandwidth of the detector amplifier combination.

Isd =
√

2qIdark∆B (3.6)

detector dark noise is the noise created by current flowing in
the detector in completely dark conditions (no incident photons)
and is highly influenced by the temperature of the material. To
minimize dark current due to thermal generation, the device can be cooled. When operated
in photoconductive mode without internal amplification, the shot noise of the dark current
dominates the noise of the photodiode and can be expressed by (3.6).

thermal noise in photodetector circuits is equal to (3.3). In detectors with internal gains
(for instance PMTs or APDs), photonic shot noise and dark currents including their noise are
amplified together with the signal. Thus, thermal noise is typically small compared to the
signal and becomes negligible. In detectors without internal gains such as SiPDs, however,
the preamplifier circuitry must be carefully designed to minimize thermal noise pickup.

SNRdetector =
ηNpτ√

ηNpτ +Ndτ
(3.7)

photodetector SNR Considering the ran-
dom Poisson distributed photon noise and
dark shot noise, (see [Cop91]) enables a
brief mathematical description of the overall SNR (3.7) of a photodetector. Here, Np and
Nd are the average photon arrival rate and the dark noise emission rate, η is the quantum
efficiency of the detector and τ is the measurement interval. This illustrates that for fixed
τ the dark noise should be much less than the optical signal, η near unity and the intensity
used for tissue interrogation high. Furthermore, as usual, SNR increases with

√
τ .

NEPλ =
µd +σd

Rλ ·Gtotal
(3.8)

A measure of photodetector sensitivity is the Noise Equiv-
alent Power, which is the signal power that yields a signal-
to-noise ratio of one in a one-hertz output bandwidth. It is
measured at dark conditions and can be expressed as (3.8) for the whole input bandwidth of
a detector system, where µd is the measured mean dark signal, σd its standard deviation, Rλ

the detector’s responsivity at wavelength λ and Gtotal the system’s total gain.

3.2.3.3 Crosstalk

Optical intrinsic crosstalk Change in one chromophore may mimic a change in another
and vice versa. One source of this crosstalk is a systematic error due to the partial volume
effect that results from the estimation of the wavelength-dependent differential path length
factors DPF(λ ) in (2.2), [SFB03; BGS+01]. The impact of intrinsic crosstalk between
HbO and HbR is highly wavelength-pair-dependent and can be significantly reduced by the
selection of an optimal wavelength pair [BDF04] (discussed in Section 3.2.2.3).
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Optical crosstalk between NIR emitters occurs when several active light sources si-
multaneously illuminate one detector. It can be minimized by applying I-Q-/frequency
modulation/demodulation or Time-Division Multiplexing (TDM) schemes.

Electrostatic/-magnetic coupling to external ac signals. Magnetic flux from external
AC signals can contaminate small electric signals significantly by inducing a voltage in the
measurement loop, especially when the source impedance is as high as in EEG. Examples
are mains hum from power lines or intermodality crosstalk from modulated NIR light source
currents into EEG channels. Electromagnetic and electrostatic noise pick-up into low-level
signal conductors as in EEG can be minimized by shielding and twisting the conductors
and proper grounding. In instrumentation amplifiers, common mode signals in the inputs
are furthermore attenuated by a high CMRR. To robustify against power supply voltage
variations, a high Power Supply Rejection Ratio (PSRR) is desirable.

Electric common-impedance coupling In circuits with more than one ground, such as
signal and system grounds or split references for analog and digital circuits in mixed circuit
designs, separate grounds are rarely at the same exact potential. Contacting more than
one ground to the same circuit creates “ground loops” that lead to current flow along
potential differences - and can introduce noise, prevent effective shielding, precise and
stable referencing and good CMRR. As countermeasures, good mixed circuit design practice
includes amongst others large ground planes, careful (multilayer) Printed Circuit Board
(PCB) layout, optimizing current paths, power supply and -plane placement, and via stitching
[Zum12; Kha92].

3.2.3.4 Other Error Sources

Finite bandwidth effect As the mBLL is only valid for monochromatic light sources,
finite bandwidth effects have to be taken into account. In practice, all light sources have a
finite bandwidth that is considerably more pronounced in LEDs than in LDs. The measured
transmission T̃ within a waveband λ1 to λ2 can be expressed as [Cop91]

T̃ =

∫ λ2
λ1

I(λ )S(λ )10−A(λ )dλ

∫ λ2
λ1

I(λ )S(λ )dλ
, (3.9)

where I(λ ) is the input light intensity, S(λ ) the detector sensitivity and A(λ ) the monochro-
matic absorbance. The measured absorbance is then given by Ã(λ ) = log10(

1
T̃ ).

Where A(λ ) is not constant within the waveband, the source and detector wavelength de-
pendencies in fNIRS instrumentation will lead to a measured attenuation smaller than the
theoretically expected value for the mean of A(λ ). [Cop91].

Stray radiation and ambient light Ambient light sources, such as the sun or artificial
light, also emit in the NIR range and add noise to the detected signal. This influence can be
reduced by opaque covers, the aforementioned phase-sensitive detection approach, and the
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subtraction of a dark current intensity baseline that is measured during inactive NIR emitter
times.

System non-linearities and drifts due to heating effects, capacitive charging, variations
in power supply voltages and others must be minimized by design and assessed before the
instrument is used for the collection of physiological data.

Mechanical instabilities Electrode and optode shifts lead to signal artifacts that decrease
SNR and can be critical. Electrode/optode and headgear concepts (see Section 3.2.2.6 and
approaches in Sections 3.5.1.1 and 3.7) are crucial to minimizing mechanical instabilities,
especially when applied under moving conditions.

3.2.4 Summary and Conclusions for High Precision Design
We conclude this Section by summarizing the fundamentals for directives in the subse-

quent system design, including a first closely related parameter selection for components:

Considerations for fNIRS instrumentation

1. Photon noise should be much lower than the optical signal. For this

(a) the quantum efficiency / sensitivity η of the NIR detector,
(b) the photon arrival rate Np and thus the interrogating light intensity, and
(c) the measurement interval τ should be as high as possible, as the photode-

tector SNR ∝
√

Np,
√

τ,
√

η (3.7).

2. Ambient background shot noise should be minimized by shielding the detector
from background radiation, e.g. with opaque covers or NIR bandpass filters.

3. To reduce electrical drifts, offsets and flicker noise as well as optical dark
and ambient background noise, phase-sensitive detection techniques can be
implemented. Propagation delays in the signal path should be kept as low as
possible.

4. To stabilize emitting intensities against thermal and power supply variations,
emitter currents should be controlled/regulated.

5. TDM schemes can be applied to prevent optical crosstalk between emitters.

6. To reduce optical intrinsic crosstalk, to ensure equal interrogation volume for
both wavelengths and to minimize illumination of superficial tissue regions, the
wavelength pair and emitter characteristics should be optimal.

• In this work, we selected 750+850nm in a multi-wavelength LED with
emitter-distance < 1mm, typ. total radiant power of > 15mW , half-widths
< 35nm and viewing half angles of ±20degr..
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7. Detectors should have maximium efficiency (proportional to its active area
[Cop91]), minimal noise-pickup of the pre-amplifed signal, and a suitable band-
width.

• In this work, we selected monolithic SiPDs with large optical sensing
surfaces of > 5mm2 and integrated trans-impedance amplifiers (TIA) oper-
ating in photoconductive mode.

Considerations for EEG instrumentation

1. For high precision measurements of weak electric biosignals, instrumentation
amplifiers with low input-referred noise (< µVpp) high input impedance, low
bias currents, high gains, high slew rate, high CMRR and PSRR should be
employed.

2. To increase CMRR in EEG, an active reference (DRL) should be provided.

3. To ensure good SNR, low electrode-skin impedance has to be assured by per-
forming impedance measurements and aplying non-polarizable, appropriate
electrodes.

Generally, for both modalities and especially in hybrid approaches, the following consid-
erations have furthermore to be taken into account:

General considerations for unimodal and multimodal EEG and fNIRS systems

1. Electrical crosstalk and common-impedance coupling should be minimized by
good (mixed signal) PCB design practice, current path optimization, shielding
and multilayer design.

2. Resistors in analog circuits should be dimensioned considering their thermal
noise contribution.

3. High precision components should be used to optimize noise, drifts, and linearity.

4. User safety aspects and potential hazards have to be considered, amongst others
by galvanic isolation from power lines, current limiting resistors at galvanic
connections (EEG-Electrodes), limitation of emitted optical power and heating
[BO04].

5. Due to dark, shot, and thermal noise, the electrical bandwidth of the system
should be as close to the required bandwidth as possible.

6. For mobile employment, electrode, optodes and headgear/ fixation concepts have
to consider increased mechanical requirements and robustness.
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3.3 Instrumentation: State of the Art and Aims
EEG and fNIRS-based technologies for real-life-oriented research and applications in

medicine, BCI and Neuroergonomics have to meet high requirements regarding signal quality,
robustness, and mobility. In addition, fast application and customization are desired. While
EEG is currently the primary modality used for mobile brain activity measurements, fNIRS
shows a growing potential to meet these requirements and is at the center of an increasing
number of research approaches.

EEG instrumentation is widely spread and open for access and thus easily customizable
[DEDV+15; DME+12]. For fNIRS, on the other hand, researchers either rely on expensive
and predominantly static predefined solutions or have to design their unimodal fNIRS equip-
ment from scratch. Many attempt to overcome the restrictions of commercial instruments
with undisclosed designs [WLS+17; AOI+13; SGM+13; LSL+11; AKO+07]. However, only
very few of these custom devices [SGM+13] are truly miniaturized, stand-alone, unobtrusive
and wearable and can be carried on the body without undue weight such as backpacks or
small bags. The ideal solution allows for free movement, data transmission and processing.
Oftentimes, external static instruments such as data acquisition devices, power sources, and
lock-in amplifiers are required, and the latter are often sacrificed entirely for the sake of
miniaturization and reduced complexity.

These limitations apply even more to combined (hybrid) EEG-fNIRS instrumentation ap-
proaches. Using complementary brain-body bio-signals toward more robust, comprehensive
diagnostic and research tools and BCI, the vast majority of multimodal studies have relied on
the combination of separate EEG and fNIRS tabletop systems in stationary experiments so
far (e.g., [SvK+18; LAS17; SvB+17; KLN+15; FMS+12]). In mobile applications, there are
currently no available commercial instruments combining fNIRS and electrophysiological
signals such as EEG, electrocardiogram (ECG) or electromyogram (EMG). In research,
due to the necessity of interdisciplinary expertise in hardware design and potentially high
costs and development time, only few hybrid instruments have been reported. Lareau et al.
presented one of the first mobile EEG-fNIRS hybrids in 2011 [LSL+11], and Sawan et al. its
next generation in 2013 [SSLL+13]. Both provide high channel count and performance, but
their size requires the use of a backpack (14×14×5cm3). In 2014, Zhang et al. [ZIH+14]
published a wearable hybrid with fNIRS, single-channel ECG and accelerometer (ACCEL)
for ambulatory long-term hemodynamic and systemic monitoring, but no EEG. In 2013,
Safaie et al. presented a sophisticated multichannel device for investigation of interactions
between neuronal electrical and regional microcirculation activity [SGM+13]. It features
high-performance fNIRS, EEG and ACCEL in a tiny volume (3.5×8×1cm3).

Aims

With the ultimate aim to enable the wide-range out-of-lab use of the existing
technology, it would be beneficial to integrate the following additional features into
one wearable hybrid EEG-fNIRS device:
(1) Phase sensitive detection of optical signals, increasing robustness to changing
ambient light in mobile applications.
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(2) Simultaneous acquisition of different bio-electrical signals with distinct references,
e.g., ECG or EMG together with EEG.
(3) Minimizing electrical intermodality crosstalk of fNIRS switching into bio-electrical
input channels.
(4) Simultaneous sampling of both bio-electrical and bio-optical signals by a shared
detector branch to decrease intermodality jitters.
(5) A flexible, easy to program, powerful onboard controller for software customization
in stand-alone scenarios.
(6) Acceleration sensors for the acquisition of movements.
(7) Further miniaturization, decreased cost and power consumption and improved
usability.

On the way to multimodal neuroimaging architectures that integrate these features,
openly documented and accessible core fNIRS technology could also benefit other
research approaches that rely on the design of custom fNIRS-based instruments.

With these aims in mind, we first identify general architectural requirements and propose
a suitable concept and design toward a unimodal low-cost, customizable, miniaturized multi-
channel system that provides stand-alone mobile core fNIRS functionality: The “openNIRS”
[vHH+15] (Section 3.5). It is openly documented including schematics under a CC BY-NC
4.0 license. In this thesis, we will limit ourselves to its architecture and lessons learned
and integrate its concept and fundamental functional units into a next-generation hybrid
instrument – the “M3BA” (Section 3.6), which will be extensively evaluated and discussed.

3.4 Identification of Architectural Requirements
In the design of architectures toward flexible neurotechnology-applications out of the

laboratory, the consideration of the following requirements is advisable:

• Usability: Miniaturization and mobility of the device, unobtrusiveness, and robustness
of the electrode and optode attachment. Wearability.

• Signal Quality: High precision, robustness and dynamic range, low crosstalk, consid-
erations of Section 3.2.4.

• Safety: Hazard-less heat & light intensities, galvanic isolation to power lines, safely
designed galvanic connections to the body.

• Configuration / Customization: Scalability of channel number, modularity, config-
uration of light intensities and input gains, flexible (re-)configuration of modalities,
open interface to custom hard-/software, simplicity in design.

• Low Power Consumption: For extended battery life and low heating.

The openNIRS and M3BA were designed with these requirements as a guideline, addi-
tionally aiming to minimize cost.
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3.5 The openNIRS - Open wearable fNIRS technology

3.5.1 A Modular Architecture
The openNIRS concept is based on a scalable number of stand-alone 4-channel modules

that comprise the core Continuous Wave fNIRS functionality. The modules can be controlled
via a simple parallel 4Bit interface, allowing the connection to any custom or standard data
acquisition (DAQ-) equipment (e.g., NI USB600x and others), given that 4 digital I/O, and
a symmetric ±5V power rail are provided. This enables full customization with respect to
the number of physical channels, power consumption, sampling rate and depth and enables
spatial distribution of the hardware components (and weight). By default, the modules are
interfaced by a mainboard that provides power supplies, analog-to-digital conversion (ADC),
channel-control and wireless communication. Localized signal generation, detection and
amplification on the modules minimize noise and interferences. The stand-alone fNIRS
module software sets up onboard peripheral hardware and is based on an interrupt-based
architecture that is controlled via the 4Bit interface. Figure 3.5 summarizes the modular
openNIRS system concept and architecture. More details, such as selected components, are
provided in Figure A.2 in Appendix A.2 and in [vHH+15].
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Figure 3.5: openNIRS system concept and architecture. Bottom: main units of one openNIRS module.

Each module provides four fNIRS channels using four NIR dual-wavelength LEDs
(Epitex L750/850-04A) and one central detector. The LED current is regulated by custom
adjustable current regulator circuits based on high precision amplifiers and field effect
transistors. Channel activation and current modulation for lock-in amplification are performed
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by high precision analog switches that are accessed via an analog 1:8 demultiplexer. After
tissue interrogation, NIR light is detected by a central Si photodiode (Burr-Brown OPT101)
with integrated trans-impedance amplifier (TIA) in photoconductive mode with a 14kHz
bandwidth. The NIR light emission branch and detector characteristics will be discussed
and evaluated in detail in the M3BA Section 3.6.1. The signal is then amplified and lock-
in demodulated using an analog demodulator IC. An 8Bit microcontroller controls the
peripheral hardware and provides a 3.125kHz PWM square wave reference for lock-in (de-)
modulation using an external crystal for jitter minimization. It also processes incoming
signals from the 4Bit control interface, adjusts LED currents at the current regulators via
an 8Bit digital-to-analog converter (DAC) and adjusts a programmable gain amplifier that
performs pre-amplification of the detected NIR signal with a variable gain from G = 0.688
to 88. This way, added amplifier noise components are reduced by the subsequent lock-in
demodulation in an analog demodulator IC. Finally, the analog signal is filtered by a 3rd-order
Butterworth low-pass and is then again amplified (G = 5.1) and stabilized by a set of two high
precision amplifiers before being fed out of the fNIRS module for external AD conversion.

Channels are Time-Division Multiplexed (TDM) for a trade-off between minimizing
inter-channel crosstalk, system complexity, heating [BO04] and battery consumption on the
one hand and sacrificing SNR, due to the limited time windows applied (Equation 3.7). While
demultiplexing the module’s analog output signal at the acquisition unit, a variable (sample
rate dependent) dwell time is inserted after channel activation onset to ensure sampling of the
steady-state photodetector signal. Sample rate and dwell time are the only limiting factors
when scaling the total channel/module count. Configurable PGA gain (G = 0.6875−88) and
LED-intensity (256 DAC levels) in combination with a feedback "signal monitor" line allow
the adaption of the dynamic range of the instrument.

For the default use of the modules in mobile applications, a microcontroller-based
mainboard was developed for wireless data acquisition. Using a 4 channel 16Bit ADC and
a Bluetooth wireless controller with a range of max. 20m, the mainboard supports up to 4
modules (16 channels), transmits the data to a computer via Serial Port Profile (SPP) and
processes incoming user controls. The symmetric ±5V power rail is provided from battery
DC voltage using a stabilized linear power regulator circuit. The use of low-voltage supplies
from batteries also ensures user safety. The SPP and ASCII-command based software concept
allows convenient platform and driver independent communication and control. Together
with the graphical user interface it will be addressed in the context of M3BA in Section 3.8.

3.5.1.1 A Spring-loaded Modular Optode Design

Making use of the new modular design, a new mechanical spring-loaded optode concept
was developed to optimize signal quality, sensitivity and light penetration depth together
with comfortable and robust, adaptive fixation (see Figure 3.6). Based on a spherical
approximation of the head with diameter D = 20cm, the central NIR light detector and the
four NIR LEDs are placed perpendicular to the scalp with a source-detector separation (SDS)
of d = 35mm. For perpendicular fixation of the emitters/detector and to allow alignment
to the natural unevenness of the head, the LEDs are integrated into movable spring-loaded
holders. These are based on two nested tubes that are spring-loaded against each other
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Figure 3.6: Spring-loaded optode concept of the openNIRS with a single centered detector.

(Figure 3.6 S1) and against the module housing (Figure 3.6 S2), and can rotate around an
axis R (Figure 3.6 R): While S1 presses the LED toward the surface of the head, enabling
alignment and buffering movements, S2 and R keep the LED perpendicular to the surface
while enabling small deviations for comfort and alignment. To minimize ambient light
influences and for cushioning purposes, the detector and emitters are encased by an opaque
cell rubber tubing. For single-module fixation, a flexible ribbon with hook-and-loop fastener
can be used that is sewed to the module housing. Without a cap or other concealing elements,
the mechanical concept facilitates use on any regions of the head by easy access of the
single spring-loaded optodes, allowing the application in a shuffling motion or by manually
brushing aside obstructing hair from under the optodes.
The default mainboard, Bluetooth module, and batteries can be worn on the upper arm of a
user in a chained multiple-unit housing, see also Figure 3.7 in the next section.

3.5.2 Brief Performance Discussion and Lessons Learned for M3BA
In the following, performance evaluation results will be briefly reviewed in light of the

architectural requirements from Section 3.4. In order to avoid repetition and redundancies, we
refrain from methodological details at this point: An extensive evaluation and performance
characterization will be provided shortly for the hybrid M3BA architecture which builds
upon the openNIRS.

Dark measurements yielded a Noise Equivalent Power of NEP ≈ 0.8nWrms for the full
input bandwidth. Hardware performance evaluation and physiological verification of the
designed instrument indicated a sufficient signal quality and system performance for brain
activity measurements with an approximated Signal-to-Noise Ratio (SNR) of 28dB. This is
a first rough approximation based on the initial ratio of 128dB between incident power into
tissue at 50% LED intensity and measured NEP, reduced by an assumed typical optical loss
of −60dB within tissue, and another −40dB by physiological fNIRS signals being typically
in the order of 1% of the measured DC amplitude. By using the full range of the PGA, the
dynamic range of the instrument is approximately 55dB and can be further increased by
the configuration of LED intensities on the emitter side. To minimize changes in the LED
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current regulation due to temperature variations, sensing resistors with a low temperature
coefficient of resistance (TCR =±50 ·10−6/◦C) were employed. Measurements of overall
system drift due to semiconductor junction temperature changes in the LEDs, supply voltage
variations and others yielded a negative drift coefficient of CD =−1 ·10−6V/s and a respec-
tive long-term stability coefficient of <−0.42% for both wavelengths.

For a preliminary physiological validation, qualitative investigations and a mental arith-
metic study with N=12 subjects were conducted. Details on the study are provided in
Appendix A.2. Single channel measurements showed pronounced physiological signals such
as pulse waves (verified with conventional reference pulse measurements) and low-frequency
oscillations in HbO, the raw signal, and their power spectrum. These are first indicators for
sufficient signal quality, as their amplitudes are in the order of metabolic variations due to
brain activity ([SKM+14; LSL+11; BDF04]). In the study, hemodynamic responses were
measured in mental arithmetic vs. relaxation tasks and classified on a single-trial basis using
two frontal channels placed between EEG 10-20 positions AFz (detector) and Fp1 and Fp2
(emitter) with a source-detector separation of 3.5cm. Single-trial classification accuracies
exceeded chance level for 9 out of 12 participants and yielded results comparable to those
measured with a commercial device in a similar study [HHP+13] using 2 out of 8 channels at
similar positions (65.14% vs. 67.26%).

In the course of the experiments, subjects appraised the usability of the device to be high
compared to commercial reference systems with longer preparation times, added weight of
optical fiber guides and non-cushioned optodes. Battery supply and wireless communication,
low heating due to time multiplexing of the channels and the use of LEDs as light sources
assured a safe usage of the device. Miniaturization of the modules and mobility through
Bluetooth based wireless transmission allowed free movement. The modular concept, simple
schematics, flexible parallel fNIRS module interface, and configurable emission and detection
gains allow easy customization and configuration of the hardware.
The following Figure and Table summarize the openNIRS and its performance characteristics.

Bluetooth
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Battery-Pack

DAQ
Mainboard

openNIRS Module

Noise Equivalent Power Opt. Power @ILED = 50% Opt. Power @ILED = 100% Estimated SNR
NEPλ=750: 0.80nWrms Pλ=750 = 5.70mW Pλ=750 = 11.10mW ≈ 28dBNEPλ=850: 0.78nWrms Pλ=850 = 5.38mW Pλ=850 = 10.30mW

Intensity levels Detection Gains Drift Dynamic Range Sample Rate
256 G = 3.5 · · ·450 <−1 ·10−6 V/s / <−0.5% > 55dB variable

Analog Lock-In Amplification Spring-Loaded Optodes Stand-alone Interface

Figure 3.7 & Table 3.3: openNIRS Hardware Overview and Characteristics.
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3.5.2.1 From openNIRS to M3BA

The openNIRS showed sufficient performance, comparable to other documented CW
fNIRS instruments. It fulfills its purpose as an aid in the design of novel fNIRS instrumenta-
tion by providing an open and simple architecture that is easy to grasp and to modify. Using
other LED wavelengths, the modules can also be used for other spectroscopy applications
aside from fNIRS. However, its concept also comprises limitations to be overcome in next-
generation approaches. Higher miniaturization, improved performance, and hybridization
with other biosignals are desirable.

Acquisition, control, and communication have to be fused onto a single module to achieve
higher miniaturization and stand-alone WBSN functionality. Shifting phase-sensitive detec-
tion from the analog to the digital domain bears further advantages: The number of hardware
components, cost, and power consumption can be reduced and phase shifts due to propagation
delays can be corrected for higher precision. In the openNIRS, the overall propagation delay
between the detected signal for lock-in demodulation and the reference signals (∆ t = 25.7 µs)
results in a small attenuation (see Equation 3.1) of A = cos(∆Φ) = cos(∆ t

T · 2π) ≈ 0.875
or −0.6dB. This can be easily alleviated in the digital domain. While the single centered
detector reduces the complexity of the detection circuitry on a single module, it is not optimal
regarding channel density, power consumption, and TDM. The simultaneous acquisition with
multiple detectors during illumination of a single emitter is an obvious advantage. In the
openNIRS, electrical crosstalk of the up to 100mA square wave 3.125kHz modulated emitter
currents was observed to influence the power supply voltage stability and noise performance
of the detection circuit. These effects are synchronous with the demodulation and strongly
suppressed by the subsequent low-pass filter. Nonetheless, their minimization by voltage
supply decoupling and layout optimization is desirable to improve performance, and vital
when other sensitive sensing circuitry, such as EEG, is to be incorporated.

Figure 3.8 depicts the evolution from the openNIRS to the hybrid M3BA architecture by
integrating openNIRS core funcitonality with a large number of additional features into the
hybrid M3BA concept that will be the focus of the rest of this Chapter.
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3.6 M3BA - Hybrid Modular EEG-fNIRS Acquisition

Figure 3.9: M3BA: An Architecture for Mobile, Modular, Multimodal Biosignal Acquisition

The M3BA – for Mobile, Modular Multimodal Biosignal Acquisition – is an architecture
for a new generation of highly customizable mobile, hybrid bio-optical/ -electrical designs
that are compatible with Wireless Body Sensor Network (WBSN) scenarios. Using a shared
Analog Front-End (AFE) and a powerful microcontroller, we integrate the requirements and
features outlined in Sections 3.3 and 3.4, use functional units from the openNIRS design,
improve resolution (24vs.16Bit), decrease costs and at the same time further miniaturize
beyond previous approaches (4.2×4.2×0.6cm3). In the following Section 3.6.1 concept,
architecture and selected design aspects are presented. Section 3.6.2 elaborates on perfor-
mance characterization, physiological validation in in-vivo studies, and the methods and
phantoms employed. Section 3.6.3 will give an overview and results will be discussed in
Section 3.6.4. While the architecture works for a variety of signals and applications, the
instrument is dedicated to hybrid neurotechnology solutions in this thesis, in particular BCI
and Neuroergonomics. The focus lies on fNIRS and EEG signals and ACCEL, ECG, and
EMG measurements are supported as additional modalities within the same device, and with
a separate reference-input.

3.6.1 Architecture and Design

3.6.1.1 Concept

To illustrate the system concept and scope of applications for the M3BA architecture,
Figure 3.10 shows an exemplary hybrid WBSN BCI scenario for which the modules were
designed. Taking into account Section 3.4, necessary for that are, amongst others, modularity,
mobility, miniaturization and multimodality, scalability and reconfigurable references. Also,
the scenario implies the resulting potential for multimodal signal analysis approaches.
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Figure 3.10: Multimodal modular concept and example scenario: Modules (Mx=1...3) can be combined to
increase channel count and number of measured modalities. Each module provides 4+2 bio-electrical and 4+2
bio-optical signal acquisition channels and one 3D accelerometer. Multimodal signal analysis allows extraction
of shared and complementary information in the simultaneously acquired data.

A single M3BA module provides 4+ 2 channels for bio-electrical signal acquisition.
These are designed for high precision acquisition of EEG signals and can also be used for
ECG, EMG and EOG recordings. 4 channels derive signals against a fixed common reference.
The additional 2 channels can be used for derivation against the same common electrode or
(via microswitch) against another independent reference. Each module also has two optical
detectors and emitters and thus provides 4+2 fNIRS channels, where the +2 channels are
available when neighboring M3BA modules share emitter-detector pairs in a time division
multiple access manner. Additionally, each module incorporates a 3D-accelerometer for the
acquisition of acceleration data. Electrodes and optodes can but do not have to be fixed to
the module as in the openNIRs concept. Thus, the module can but does not have to be worn
"on-site"; depending on the application, headgear or caps can be used.

In the example scenario in Figure 3.10, three modules M1-M3 are combined for simulta-
neous measurement of EEG, fNIRS, EMG and ECG: M1 and M2 and one (detached) optode
pair of M3 measure 8 EEG and 13 fNIRS channels over the left somatosensory cortex, while
M3 measures 2 EMG channels at the neck and 2 ECG channels on the chest. M1 and M2
share a reference and ground electrode and make no use of the 4 bio-electrical channels that
are additionally available. M3 uses the available reference split for the independent acquisi-
tion of EMG and ECG. M1, M2, and M3 share emitter/detector resources and thus create 4
shared fNIRS channels. Optionally, the modules can share a physical (non-wireless) interface
for common time-critical signals such as a shared sampling clock and fNIRS channel control
signals and - as in the case of M1 and M2 - a common reference. In the standard case, this is
established by flat ribbon wires with micro cable-to-PCB connectors. All modules acquire
movements (speed changes) via their 3D accelerometers.
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The resulting set of synchronously acquired (bio-)signals enables a variety of new ap-
proaches for multimodal signal analysis and robustifying against artifacts. We will return to
this topic in Chapter 5. Since the idea of multimodality is inherent to the system concept,
some potential benefits are briefly pointed out here: As opposed to single modality analysis,
exploiting several modalities in the analysis procedure enables a better identification, extrac-
tion or rejection of physiological artifacts ( e.g., heart rate, eye blinking frequency, ...) and
movement-induced artifacts. Typical examples for shared components in the acquired signals
are (1) the time-locked artifacts from heart activity as ECG in the EEG and pulse-waves in
fNIRS recordings and (2) respiratory or movement-related artifacts in EEG (EMG interfer-
ence or electrode shifts) and (3) in fNIRS (modulation of oxy-/deoxy hemoglobin signals
and optode shifts) that are co-modulating with synchronously acquired accelerometer data.
The latter will be addressed in Section 5.2. Raw multimodal data that further illustrates this
is depicted in Figure 3.23, Section 3.6.2.3 and Figure 4.4, Section 4.3.3.

3.6.1.2 Architecture

The hardware architecture (see Fig. 3.11) was designed to concord with the described
system concept and to provide high system performance, precision, and user safety.

In the design of new miniaturized hybrid instruments for bio-electrical and bio-optical
measurements, attention has to be paid on how to implement these hybrids so that high preci-
sion can be achieved and crosstalk between the signals and crosstalk from digital components
in the mixed-circuit design are minimized. Here, essential advantages of unified hybrid ap-
proaches opposed to the combination of two separate instruments are both the synchronicity
of the acquisition and a common ground that allows more sophisticated consideration of
current paths and fields to minimize noise and electrical cross-talk. Especially considering
miniaturization and precision aspects in a mixed-circuit design, we solved this by using a
common Analog Front-End (AFE) integrated circuit for both, bio-electrical and bio-optical
signals:

The M3BA hardware architecture is based on the high precision circuit ADS1299 [Tex12]
from Texas Instrument, which is a very low-noise (1µ Vpp(70HzBW )) 24-Bit Delta-Sigma
AFE with 8 differential inputs optimized for EEG bio-potential measurements. It provides
many peripheral features such as programmable gain amplifiers (PGAs, G = 1−24), config-
urable sample rate (250SPS−16kSPS), a built in bias-drive amplifier and a multifunctional
input multiplexer (MUX). Furthermore, an extensive documentation of electrical and per-
formance characteristics for bio-potential measurements is provided by the manufacturer.
We embedded the AFE in a framework made up of a powerful 32Bit ARM Cortex M4
microcontroller, an ADXL343 Accelerometer and enhanced functional units for near-infrared
(NIR) light emission and detection, that are based on those from the openNIRS:

The configurable NIR light emitter units use dual-wavelength Light Emitting Diodes
(LEDs) with 750nm and 850nm (Epitex L750/850-04A) that are stabilized and modulated
by further improved current regulation and modulation circuits (see following Section). The
openNIRS units were improved by applying an OpAmp with better noise characteristics,
higher slew rate, and lower operation voltage.
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The NIR light detector units are based on Si-photodiodes (Burr-Brown OPT101) with inte-
grated trans-impedance amplifiers (TIA). The selection is a tradeoff between safety and mini-
mization aspects (lower supply voltages and smaller size), responsivity (0.45A/W @650nm),
noise minimization and bandwidth (14kHz) for phase-sensitive detection. In the openNIRS
design, the analog detection was based on an analog lock-in demodulation circuit. Here, at-
tenuation by phase shifts, size, cost and number of components are minimized by performing
demodulation on the microcontroller in the digital domain.

The eight differential AFE signal inputs are split into 2 channels that measure the single-
ended optical time division multiplexed fNIRS signal against analog system ground and 4+2
differential bio-potential channels that are measured against a split or common reference
(selectable via a microswitch). In this way, the AFE fuses the high precision measurements
of both analog signal types. Configuration, control, processing and communication tasks are
performed by the Cortex M4 microcontroller running at 120MHz with an external crystal for
jitter minimization. In particular, it performs:
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• data processing and retrieval from AFE and Accelerometer (via Serial Peripheral
Interface, SPI)

• configuration of AFE (PGA, MUX, sample rate, ...) and peripherals

• adjustment, regulation and modulation of NIR LED currents. For adjustment, a filtered
internal 12Bit DAC signal is used as regulator command variable

• fNIRS channel control and timing, digital phase-sensitive demodulation

• communication with host (e.g. notebook) via flow controlled ring-buffered USART
Bluetooth module, and with other modules (physical interface for timing and control)

• power management and supply control

To minimize noise and electrical crosstalk between analog signals but also between
the analog and digital circuits, the architecture was carefully designed considering the
best practice for mixed-signal, multi-layer and multi-power supply designs. To maximally
decouple the functional analog and digital units in the instrument, the LED-emitter units,
the bipolar analog detector and AFE circuits and the digital components (microcontroller,
accelerometer, digital AFE side, ...) are supplied separately by ultra-low noise, high precision
and high PSRR low drop out regulator based power supplies and are additionally buffered
with LC- and ferrite low-pass filters (LCF). The instrument is supplied by a single Li-Ion
Battery with integrated protection circuit and provides a charge controller for fast recharging
via USB. As M3BA is completely wireless and running on voltages < 3.7V user safety and
power consumption issues are dramatically decreased: For fault conditions, current limiting
resistors are placed between electrodes and ADS1299 circuitry, which itself was designed by
the manufacturer to conform with the safety regulations for medical electrical equipment.

3.6.1.3 Selected Design Aspects

Emitter Branch and Current Regulation A careful design of the emitter circuit for high
accuracy is crucial, as fluctuations in the radiation intensity due to variations in supply
voltage or temperature cannot be discriminated from those due to changes in chromophore
concentrations. To enable stabilization, control, intensity adjustment and modulation of the
current through the LED semiconductor junctions, a customized current regulator circuit
was designed and evaluated, originating in the openNIRS design (see Figure 3.12). Analog
switches are used for square-wave modulation of the current, by pulling the inputs of the
regulator circuits low when deactivated. Activation and modulation of a selected channel are
thus realized simply by configuration of the channel multiplexer which feeds through the lock-
in reference to the respective current regulator. To minimize transient oscillation and settling
times of the regulated currents during kHz modulation, a passive negative RC feedback
was added. Simulations and measurements of different feedback decoupling capacitors
C = 0− 330 pF and high precision OpAmps for different current levels yielded the best
trade-off between high edge steepness and low transient oscillations for C = 100 pF in the
selected OpAmps with high slew rates. Detailed NIR emission characteristics of the adapted
current regulator design in conjunction with L750/850-04A AlGaAs multiwavelength LEDs
will be provided shortly in the following Section on performance characterization.



42 Instrumentation for Novel Neurotechnology Applications

680k

39k 1R

VCC

220R

C 10k

3.3MVin

Enable

330pF

200pF

100pF

33pF

10pF

4.7pF

0pF

50µs

Vin lvl 50% Vin lvl 100%

C=

A B

Figure 3.12: (A) Current regulator circuit & (B) decoupling capacitor evaluation, currents measured over 1R.

Hybrid Bio-Signal Acquisition and Timing To administrate and synchronize the acqui-
sition of both signal types, EEG and fNIRS, the AFE and microcontroller (µC) build a
closed loop in the M3BA architecture. Once a continuous measurement is started, the AFE
acquires signals with a sample rate previously set (using an internal oscillator) and indicates
complete conversions to the µC via a Data Ready (DRDY) signal. The DRDY signals trigger
data retrieval and time division multiplexing of the NIR emitters by the µC. Figure 3.13
exemplifies such a typical hybrid acquisition cycle of a single M3BA module.

The AFE runs at a fixed sample rate of 1kSPS (with an input bandwidth of BW = 262Hz);
one complete fNIRS measurement cycle takes 60 sample (DRDY) events. While the EEG
data is continuously saved, exponentially averaged and down-sampled to a user-configurable
sample rate of 500or 250SPS, the fNIRS routine is called every second DRDY iteration. In
one fNIRS measurement cycle, it subsequently switches twice (I/II) through all available
emitter states (here five: two LEDs Ly=1 and Ly=2 each with two wavelengths λx=1 = 750nm
and λx=2 = 850nm and a dark measurement period). Signals of all photodiodes during
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Figure 3.13: Hybrid acquisition timing scheme. DRDY: Data Ready signal of AFE sampling all channels
with 1kSPS; NStep #: iteration of fNIRS administration routine for one complete measurement for all active
channels (here: 4); EEG: EA+DS: Exponential Averaging and DownSampling of EEG signal; S&S: Sample
and Switch on/off new wavelengths (λ )/ LEDs (L); Assign & L-I: Assignment of emitter-detector combinations
to channels and phase-sensitive demodulation.
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one state are simultaneously measured. For one module, each state is sampled 6 times,
where at least the first two samples are discarded during the settling of the photodiode signal
(tdwell ≥ 2ms). The last of the acquired samples is saved, assigned, and the next emitter state
is activated. Once each 60ms, when a fNIRS measurement cycle is finished, all resulting four
measurements of each emitter-detector pair (2 active emitter and two dark measurements)
are combined in a phase-sensitive demodulation step (λxLy

I + λxLy
II −DarkI −DarkII)

for dark current and ambient light subtraction. This results in a fNIRS sample rate of
fs = 1/60ms = 16.66Hz with the fNIRS samples being time-locked to the EEG signal.
Since each emitter state is activated two times per measurement cycle, this yields an LED
current switching frequency of fswitch = 33.33Hz and its multiples, potentially creating
crosstalk into EEG inputs. The aforementioned PCB design minimizes this and we evaluate
the quality of the approach in Section 3.6.2.2.

For the synchronization of several M3BA modules, one declared master module shares
a physical 8-wire parallel interface with the slave modules. Over this interface, all AFEs
are synchronized with a shared sample clock provided by one master AFE; fNIRS TDMA
channel control is administrated and common references are shared. Each module com-
municates with a host Notebook or PC via an integrated Bluetooth module (BTM) from
ST-Microelectronics (SPBT2632C2A) using Serial Port Profile (SPP). Other processing
units that support Bluetooth SPP (like smartphones or tablets) can as well be used for data
acquisition. Data between µC and BTM is transferred via a flow-controlled and ring buffered
USART interface to minimize packet loss. The software concept will be further discussed in
Section 3.8.

Layout and Functional separation The 6 layer mixed-signal printed circuit board (PCB)
was lay-outed with split analog, digital and supply planes in a star ground (GND) manner with
dedicated spatial and functional separation of circuits and optimized return current routing.
Figure 3.14 gives a schematic overview of the M3BA layout. To minimize EEG-fNIRS
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crosstalk, fNIRS emitter circuits have dedicated voltage supplies and reference potential
planes and are spatially separated from the precision analog AFE bio-potential and NIR-
detector branches. GND and supply planes, and via stitching were used for local shielding of
conductor tracks for sensitive signals, such as fNIRS and EEG before amplification.

3.6.2 Performance Evaluation and Characteristics
3.6.2.1 Hardware Performance Characterization

In this Section, we discuss methods and phantoms used for evaluation of the hybrid archi-
tecture and the corresponding results. Since the ADS1299 is designed for EEG-acquisition
and performance details are provided by the manufacturer [Tex12], we focus on the optical
(fNIRS) and hybrid performances as well as crosstalk characteristics.

Evaluation of fNIRS signal quality and phantom The evaluation of the fNIRS charac-
teristics was performed employing a solid homogeneous optical phantom with tissue-like
scattering and absorption properties, to mimic (1) the total attenuation that occurs in the
tissue at a source-detector separation of 30 mm, (2) the diffuse nature (in terms of its spatial
and angular distribution) of light exiting the tissue. We made use of a phantom of known
diffuse transmittance that was devised and characterized to assess the responsivity of the
detection system of time-domain optical brain imagers [WTM+14; WTF+16].

NIR LED + Holder

Lens (f=16mm)

Lens (f=20mm)

Shutter

Neutral step filter

Neutral density filter

Holder / rail

Optical phantom

Phantom holder

Photo detector + holder

0mm

14mm

10mm

30mm

0mm

Distances

Figure 3.15: Experimental setup for fNIRS characterization using an
optical phantom with neutral step filters.

The phantom was a cylindri-
cal slab of thickness 20mm
and diameter 105mm, made
of epoxy resin with TiO2 par-
ticles added as a scattering
medium and black toner as
an absorbing medium, follow-
ing the recipe published by
Swartling et al. [SDAE03].
Its optical properties at 750nm
were: reduced scattering co-
efficient 0.53mm−1, absorp-
tion coefficient 0.0126mm−1,
refractive index 1.55. As a
measure of diffuse attenuation
we adopted the “optical loss”
(OL) as defined in the interna-
tional (IEC/ISO) standard for
functional fNIRS equipment
[IEC], i.e. as the ratio of the
total optical power exiting a
circular aperture of specified
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diameter (8mm) on the exit side of the phantom and the power injected on the entrance
side. In the following, the optical loss is either given as a ratio (OL) or in dB units, where
X dB optical loss is equivalent to 10−X/10. The optical loss of the phantom used was 24.7dB
at 750nm and 23.5dB at 850nm. The tests in the IEC/ISO standard refer to optical losses
of > 40dB or > 60dB, depending on the particular test, to mimic a typical attenuation for
fNIRS. We achieved such values by using additional gray filters.

The tests were performed in a custom experimental setup with one NIR emitter-detector
pair and the phantom in transmission geometry, as shown in Figure 3.15. The phantom was
placed in a black plastic holder, with its bottom surface in direct contact with the fNIRS
photodetector.

On the top side, the phantom holder case was closed with a custom black two-piece lid
(3D-printed) that acted as a rail for an absorbing neutral step filter (15 steps covering an
optical density range of approximately 2 orders (20dB)) and additional neutral density glass
filters. These filters were used to vary the overall optical loss. Light from the NIR emitter
mounted on top of the structure was imaged onto the phantom (diameter of illuminated
spot: 5mm) by two convex lenses and passed through a controllable optical shutter (type
Melles Griot 04 IES 211, controller 04 IPS 850, actuation speed: 17ms). The shutter was
controlled via an M3BA hardware-trigger output; shutter (de-)activation was acquired and
labeled to the acquired fNIRS data stream. The attenuation of all used neutral density filters
and filter steps were determined independently via power transmission measurements using a
supercontinuum laser (SC500-6, Fianium Ltd, UK) with acousto-optic tunable filter tuned to
750nm and 850nm, respectively, and a Coherent Fieldmaster power meter with sensor head
LM-2.

The following measurements were conducted with an input gain setting of G = 4 and an
emission level setting of I = 8 (8.94mW @750nm, 8.34mW @850nm):

Drifts / Stability At a fixed total optical loss (OL750nm = 47.3dB, OL850nm = 50.2dB), the
optical signal was acquired continuously for 15min twice. For estimation of the continuous
drift, the slope and R2 of a linear least squares fit were calculated.

The drift measurements revealed the need for a warm-up time of max. 5min after
switching on, in which the emitted 850nm power settles by 1.7%. After that, the optical
signals drifted less than 27.5nV/s, which in relation to the signal amplitude at 40dB optical
loss is less than 1.6 ppm/s.

Signal to Noise Ratio (SNR) / Coefficient of Variation (CV) and Linearity (LIN) of
the instrument In a continuous acquisition, after 5min free-running for warm up, 42
measurements of the fNIRS signal in a range of OL = 4 ·10−2 −9 ·10−6 (26.0dB−69.5dB)
were conducted in approx. 1.5dB steps. The last 10s of data (170 samples) were used for
the evaluation of each step. During manual filter step transitions, the shutter was closed.
For each measurement, the shutter was opened, thus also providing a Step Response (SR)
in the acquired signal s. Standard deviation (σs) and mean (m̄s) were calculated for all
steps and both acquired wavelengths. CV and SNR were calculated as CVs = σs/m̄s and
SNRs = 20 log(m̄s/σs). It should be noted that for hardware performance characterization
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this SNR is related to the total optical signal, not to the hemoglobin concentration changes
derived in fNIRS. For LIN evaluation, slopes and R2 values of linear least squares regression
fits on the m̄s for each wavelength were calculated. Results are shown in Figure 3.16.
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Figure 3.16: (A) Coefficient of Variation / SNR of fNIRS measurements. (B) Linearity of measured optical
fNIRS signals over the whole range of optical loss (OL).

The device showed very distinct linearity for both wavelengths (slopes S750 = 0.996,S850 =
1.005, corr. coeff. R2

750|850 = 0.999) over the full tested optical range.
The evaluation of CV and SNR for both wavelengths yielded predominantly constant

values (CV < 0.001, SNR > 60dB) for low attenuation OL < 5 ·10−4 and linearly increasing
CV / decreasing SNR above OL = 5 ·10−4. Even at very high optical losses in the range of
10−7, the SNR is about 20dB, indicating that small changes in optical power occurring in
fNIRS experiments can still be measured.
Step responses measured with the shutter for all OL-configurations showed a settling of the
signal within one fNIRS sample (60ms) without further oscillations.

NIR Emitter Power and Spectrum The continuously emitted radiant power (no switch-
ing) for each wavelength was measured with a Coherent Fieldmaster power meter with
sensor head LM-2. The LED was mounted in such a way, that the illuminated area was
fully covered by the sensor’s photosensitive area. The emitted power at 6 different current
levels (I = i ·10mA | i ∈ {5,6, ...,10}) and the illuminated area on the optode surface were
measured to determine the incident intensity at a user’s scalp.

The spectra of the NIR emitters for both wavelengths and different current levels were
measured with an Avantes AvaSpec 3648 spectrometer with an integration time of tI = 50ms
and averaging over 200 measurements. The NIR light was attenuated by 32.4dB (750nm)
and 33.3dB (850nm) using neutral density filters. The measured spectra were corrected by
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the previously determined calibrated spectral sensitivity and by dark measurements. Spectral
dependence on emission directions due to varying local semiconductor characteristics was
evaluated by measuring the spectra at different tilts of the emitter. Peak wavelengths (PW)
were calculated by a maximum search of a Gaussian fitted to the top 10% area of each
spectrum. Maximum PW shifts over all intensities were determined (∆PWλ ,max). The Full
Width at Half Maximum (FWHM) of the spectral power distribution was calculated as the
difference of the wavelength between the two points whose corresponding power values are
equal and 3dB lower than the values at each peak wavelength.
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Figure 3.17: NIR emitter spectra for six intensity levels (I), peak wavelengths (PW) and Full Width at Half
Maximum (FWHM) at min. and max. level of emitted intensities.

Results are shown in Figure 3.17. Tilting experiments did not show a significant depen-
dence between spectrum and tilt of the LED relative to the measurement probe. The spectra
measured for all six implemented intensity levels show a slight shift toward higher peak wave-
lengths with higher illumination intensities (∆PW750,max = 4.75nm, ∆PW850,max = 3.75nm).
Changes in the FWHM for both wavelengths are marginal (∆FWHMmax = 0.75nm). Due to
the TDM of channels, the effectively emitted intensities during fNIRS acquisition are 1

5 of
the ones measured during continuous emission.

Noise Equivalent Power (NEP) For determination of the NEP of the fNIRS detector
branch of the instrument, 60s (1000 samples) of the signal were acquired for each PGA
input gain G = 1...24, while the fNIRS emitters were active but the detectors were put into
an opaque box with no incident light. With OPT101 responsivities Rλ=750 = 0.55 V

µW and
Rλ=850 = 0.60 V

µW , the NEP for all PGA gain levels yielded NEPmin,850 = 295 fW/
√

Hz to
NEPmax,750 = 366 fW/

√
Hz and for the full 262Hz input bandwidth respectivelyNEPmin,850 =

4.77 pW to NEPmax,750 = 5.92 pW .
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3.6.2.2 About the Advantage of Hybrid Bio-Signal Acquisition

Since the design and development of hybrid devices are labor-intensive and costly, the
question arises why, and under which conditions it is worth to integrate both technologies
into one hybrid device. In the following, we investigate electrical crosstalk and intermodality
jitter (see Figure 3.18), comparing the M3BA EEG-fNIRS hybrid to separate commercial
instruments.
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Figure 3.18: Advantages of hybrid acquisition: Separate (light blue) and hybrid (dark blue) bimodal acquisition
of EEG and fNIRS. NIR emitter currents can introduce electrical crosstalk into EEG-inputs that can be
minimized in hybrid designs. Non-synchronized unimodal acquisition (circles and squares) increases jitters:
J1a/b) asynchronous analog to digital conversion with individual clock sources. J2) Within-modality marker-
sample assignment jitters. J3) Between-modality marker imprecision due to largely differing sample rates.
These can be minimized in a hybrid instrument (only circles).

NIRS LED current switching crosstalk into EEG Many miniaturized fNIRS instruments
suitable for mobile and bedside monitoring use near-infrared light from Laser Diode or LED
sources close to or directly placed on the head. The emitter currents are often sine- or square
wave-modulated and channels are either frequency division or time division multiplexed.
Switching and modulation of currents can, however, create considerable electrical crosstalk
by field coupling on the PCB and between fNIRS optode and EEG electrode wires. In hybrid
designs, a common ground and good mixed-circuit design practice, including shielded lines
and current return path optimization, can decrease these effects.

Setup: Electrical crosstalk into EEG inputs was investigated using a resistor network
made from metal film 0.1% resistors as shown in Figure 3.19. The phantom consists of
a polystyrene head covered with a resistive network with nodes ("electrodes") at 10-20
EEG-positions, which can be accessed via DIN-electrode jacks. The resistive network
simulates electrode-to-skin impedance (2.7kΩ ) and between-electrode skin conduction
(200Ω ). Clearly, this network does not have the same AC properties as the human scalp
probed with EEG. However, it allows well defined comparative measurements which rather
favor non-hybrid systems, as electrode impedances are low and equal and the network
topology homogeneous: Inhomogeneities in realistic applications, e.g., varying electrode
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Figure 3.19: Electrical phantom for crosstalk-evaluation of fNIRS switching into EEG-inputs of M3BA and
commercial device and measurement of system bandwidth.

impedances (resulting in a worse common mode rejection), are likely to have a lesser effect
in optimized hybrid systems with common ground than in combined stand-alone instru-
mentation approaches. At position F8, voltage divided sine signals with A = 150µV and
fs = {1,10,100}Hz from an Agilent 3500B signal generator were fed into the network. The
two NIR emitters of one M3BA module were placed between Fz&Cz and F3&C3 and either
active or inactive (a = 0,1). Signals were measured at positions p = {Cz,Fz,C3,F3,F8}
against a common reference (GND) at T5. Each 70s measurement m f ,p,a, was repeated with
both the M3BA module (@500SPS) and with a separate commercial reference EEG amplifier
for comparison (g-tec USB Amp, 2009, @512SPS). All experiments were conducted in a
magnetically and electrically shielded room (two-mu meta layer Ak3b, Vakuumschmelze,
Hanau).

Investigation: NIRS crosstalk in frequency bands above the EEG spectrum of interest
(typically 0.1−40Hz) can be suppressed by appropriate low-pass filters and will therefore
not cause serious problems. For evaluation of the crosstalk in the band of interest, the FFT
power spectra of the last 60s of the m f ,p,a were calculated and the spectrum converted to
Vrms amplitudes. Then, for all channels, and all conditions we extracted the signal intensities
at fswitch ±0.155Hz.

To differentiate between crosstalk external and internal to the EEG amplifier circuitry,
we additionally measured the input-referred noise using an internal feature of the ADS1299
AFE multiplexer. For active and non-active fNIRS (I = 8) and all PGA gains G = 1−24, the
input referred noise was determined by calculation of the standard deviation of 2000 samples
(@500SPS) for each condition.

Results: The comparative measurements during active and inactive fNIRS revealed an
increase of the high-precision bipolar supply voltage noise from 6.6 µVrms to 21.4 µVrms
(262Hz−BW ). However, the input-referred noise of the hybrid system’s EEG amplifier for
all PGA-settings did not show any significant deviations from the manufacturer’s reference
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values, regardless of active or non-active fNIRS switching (< 0.28 µVrms at 1kSPS with
262Hz bandwidth and G = 24), see Figure 3.20 A. This indicates good decoupling by a
successful PCB layout and shielding. The crosstalk by fNIRS switching on the electrical
phantom lead to distinct peaks at fswitch and its higher harmonics in the FFT-power spectra
for all test signals measured with the separate EEG device (Figure 3.20 C). Measured with
the M3BA module, they are almost entirely indiscernible from the generally lower noise
floor. While the noise around the switching frequency increased on average by less than
0.02±0.02 µVrms for each channel in the hybrid system, a spatially dependent increase of
up to 0.46± 0.12 µVrms noise was picked up by the separate EEG on one channel, and of
0.21±0.09 µVrms on average, across all other channels (Figure 3.20 B). The higher noise
within the comparative device may be due to longer cable length and unavoidable ground
loops as the combined setup was not optimized for low noise performance.

Marker precision and jitter in multimodal data streams Most biosignal acquisition
experiments require labeling of the data with marker signals for time-precise mapping of
events and conditions. These signals are usually fed into a dedicated trigger/marker input
of the instrument and data streams have to be fused and matched in time subsequently. In
separate instruments, different kinds of delay/jitter can affect the matching precision of
modalities (see Figure 3.18): J1a/b) asynchronous analog to digital conversion with individ-
ual clock sources and jitters, J2) Marker signals may either be acquired synchronously at
biosignal-inputs or at separate inputs. In the latter case, jitters in the marker-assignment to
the current biosignal sample time can occur. J3) Regardless of individual internal oscillator
jitters and assignment imprecisions, marker signal edges are assigned to biosignal samples
acquired with significantly differing sample rates between modalities. Whilst in unimodal
signals the sampling rate sets the time precision limit, alignment of multimodal data can at
the maximum only be as precise as the lowest individual marker timing resolution. In hybrid
instruments, such as the M3BA, signals of different modalities can be sampled and markers
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assigned based on one shared clock source serving for all timing-based processes.

To investigate the difference in precision between dedicated unimodal commercial sci-
entific instruments and the hybrid M3BA design, a recently published large open access
hybrid EEG-NIRS dataset was used [SvB+17]. In this dataset, data was acquired with a
BrainAmp EEG amplifier (Brain Products GmbH, Gilching, Germany) and a NIRScout
device (NIRx GmbH, Berlin, Germany). The dataset comprises synchronously acquired
data from 29 subjects: 3 hours in 6 acquisition blocks labeled with 19 trial markers each,
summing up to a total of 3309 markers for the entire dataset. In the experiments, the marker
signal was fed into both instruments’ trigger inputs simultaneously via a PC’s parallel port.
For comparison, hybrid EEG-NIRS dummy data was acquired with M3BA on a test bench,
feeding the marker signal into both the digital trigger- and an analog EEG measurement input,
resulting in 4410 markers and analog transitions each, of which the first 3309 were used. For
the dataset acquired with separate instruments, the marker timing jitters between modalities
were calculated by building the differences between corresponding EEG and fNIRS marker
times for all 3309 trials. In the M3BA data, the two modalities inherently do not show
marker-timing differences due to the synchronous sampling and allocation. Instead, the time
delays between the trigger edges in the sampled analog signal and the corresponding digital
trigger flags allocated by the processing unit were calculated. 1st and 2nd order statistics
were then calculated on the resulting 174 blocks of 19 marker timing differences for both the
hybrid and the separate system.

Results from the marker jitter evaluation are depicted in Figure 3.21. The mean and
standard deviation of the absolute jitter in marker timings amounted to 28.98± 18.17ms
for the separately acquired data. There was inherently zero difference in marker timing
between simultaneously acquired EEG+fNIRS in the hybrid device, but an imprecision of
1.59±0.97ms due to edge-detection and sample assignment by the M3BA processing unit.
Statistical analysis of the absolute jitter variance across blocks confirmed significantly higher
intermodality timing precision for the hybrid device (one-sided Welch’s t-test, p ≪ 0.001).
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EEG linearity and frequency response To verify the desired EEG input linearity and cut-
off (mainly influenced by the AFE input bandwidth and implemented exponential averaging
on the µC), the input frequency response was investigated by acquiring a linear 5s sweep from
0.1Hz−2kHz with constant step width and 100mVpp and 100 µVpp amplitudes, generated
by the Agilent 3500B on the previously discussed electrical phantom setup. The frequency
response was extracted by applying a polynomial curve fit with order 21 through the Hilbert
envelope of the acquired raw sweep signal and confirmed flatness (< 0.1dB) in the pass
band and the cut-offs set by the configurable exponential averaging ( fcEA500Hz = 210Hz,
fcEA250Hz = 100Hz) and AFE bandwidth ( fcBW = 262Hz).

3.6.2.3 Physiological Validation

Extensive evaluation using the optical phantom showed a high performance in optical
sensitivity and a significant improvement over the openNIRS design. To characterize the
practical capabilities of EEG amplifiers, it is often best to perform evoked potential mea-
surements with human subjects. Pure technical parameters can be easily determined using
proper test equipment, but for EEG signal generation phantoms are rarely known. Instead,
human subject data are considered the “gold standard”. For the EEG-functionality and
multimodal acquisition, the following human subject studies were conducted according to
the declaration of Helsinki and approved by institutional ethics committees. All participants
were comprehensively informed and gave written consent before the experiments.

EEG: Comparative measurements of Auditory Evoked Potentials (AEPs) Auditory
evoked potentials [PHK+74] were measured on five right-handed subjects (3 male, 2 female,
avg. age 26±2y.) stimulating the left ear with 1kHz sine tones of 400ms duration. Tones
were delivered using an Etymotic ER-30 insert earphone and an RME HDSP 9632 sound
card. Tones had 92dBSPL as measured with a Bruel&Kjaer type 4153 artificial ear. In
total, 300 tones were delivered with a randomized inter-stimulus interval of 1.5−2.5s. This
resulted in an experiment time of roughly 12mins and after 6mins subjects were notified of
half-time. Each subject was measured with the M3BA and a commercial g.USBamp EEG
amplifier (www.gtec.at). The electrode plugs were moved between device inputs and the
session lasted 30mins (12 + 12 + change of EEG plugs) in total for both amplifiers. The
sequence of M3BA and g.USBamp was randomized between subjects. The signals were
acquired over the left fronto-parietal region at the 10-20 positions C3, F3, T3, and T5 and
measured against the right mastoid with GND (DRL) placed at Fpz. AgCl ring electrodes
were used with gel and impedances were below 10kΩ . The recorded signals were digitally
filtered with a zero delay bandpass of 0.1−45Hz and 4th order Butterworth characteristics.
Epochs were baseline corrected in a 100ms pre-stimulus interval and then averaged for each
subject and channel to obtain the AEP. The obtained AEPs were compared to literature results
[PHK+74] with respect to amplitude and latency of the N1-P2 complex.

The signals of one out of five subjects were discarded due to very high mains hum in
the comparative measurement using the separate commercial EEG instead of the M3BA
EEG channels. Signal analysis showed distinct N1-P2 peaks typical for AEPs in the EEG
signals of all the remaining four subjects. Here, the positions C3 and F3 showed strong N100
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amplitudes, where less typical positions (T3 and T5) showed less distinct signals, as expected.
Figure 3.22 shows the signals of both devices for each channel averaged over all subjects for
comparison. The characteristics of the N1-P2 complex in the signals (timing, amplitude, and
shape) indicate that the M3BA performs like a standard precision EEG recording unit.
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Figure 3.22: N100 comparative results between M3BA and commercial separate EEG (COM) device. Solid
lines are signals averaged over all subjects, measured at indicated 10-20 electrode. Shaded error bars indicate
standard error of the mean (SEM).

Qualitative Multimodal Signals The acquisition of an extensive multimodal fNIRS-EEG
dataset that ultimately also provides further evidence of the device’s functionality is covered
in Chapter 4. For first qualitative example data and validation of the multimodal mobile
acquisition capabilities of the M3BA instrument several simple 10 trial experiments on one
subject were performed: One single M3BA module was fixated to a 10-20 EEG cap (EasyCap
GmbH, Germany) simultaneously measuring EEG (@500Hz) with gel electrodes at positions
O1, O2, Cz and Fp2, one channel of ECG (Einthoven 2 derivation), accelerometer data and 4
fNIRS channels (@16.6Hz). fNIRS emitters were placed at AF3 and AF7, detectors at F5
and Fp1, resulting in approx. 30mm emitter-detector distances. The participant was asked
to stand, close eyes and take a deep breath when a first beep sound was played and to open
eyes after a second beep sound after 10s. Other experiments also included sitting down,
standing up, walking and turning around. Example data for these longer trials can be found
in a more comprehensive Figure A.4 in Appendix A.3. For a better assessment of the raw
data quality, only minimal processing was performed: EEG and ECG channels were digitally
filtered with a 6th order zero delay 0.1−45Hz Butterworth bandpass. For alpha-band power
estimation during eyes closed, the average of the Hilbert envelopes of the bandpass filtered
(Butterworth 2nd. order, 10−13Hz) signals of O1 and O2 were calculated. fNIRS O2Hb
and HHb concentration changes were calculated from the raw optical signal using effective
extinction coefficients [ZBG+01] of the measured LED spectra and HomER2 [HDF+09]
software and were then baseline corrected by mean subtraction.

Figure 3.23 shows a typical single trial of the raw multimodal dataset acquired in the
qualitative experiment with a standing subject using one M3BA module. O1, O2, and Cz
show distinct alpha activity during eyes closed (10−20s), Fp2 shows typical eye blinking
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artifacts. Deep breathing in and out shows in the accelerometer signal. Also, the deep breath
impacts the ECG heart rate and R-wave amplitude as well as the overall fNIRS signals. The
fNIRS signals show the typically stronger pulse waves in O2Hb compared to HHb, which
are also clearly correlated to the electrical activity of the heart in the ECG.
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Figure 3.23: Synchronously recorded raw multimodal data from a standing subject during deep breath (t = 12s)
and eyes open/closed (t = 10s/20s): EEG channels and alpha power (A), ECG and fNIRS signals (only Ch1
(AF3-F5) for better overview) (B) and accelerometer signal (C). Some typical dependencies between modalities
are already observable in the raw ECG, fNIRS and accelerometer signals (R- and pulse wave correlation,
ECG/fNIRS modulation by breathing (accelerometer).

3.6.3 Overview

The M3BA architecture was implemented successfully in a highly miniaturized design
for precision EEG, EMG, ECG, and fNIRS acquisition, that can be used - amongst others -
for WBSN based hybrid BCI scenarios. The dimensions of a stand-alone M3BA module are
merely 4.2×4.2×0.6cm3, allowing a flexible integration into different mechanical set ups,
including the openNIRS approach, and head-and-body-gears. When the optodes are directly
connected to the module’s edges, the fNIRS source-detector distance is 35mm and freely
configurable otherwise. Different sizes and capacities of Li-Ion batteries can be connected
via a standard connector: with a current consumption of < 100mA (all features active), a
module runs more than 3 hours on a tiny 28× 34× 2mm3 (300mAh) Li-Ion battery, and
more than 18 hours on a standard mobile phone battery. The following Table and Figure give
an overview of the M3BA module characteristics, and Figure A.6 in Appendix A.3 provides
additional detail.
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42mm

23mm

42mm

EEG/EMG/ECG/...
# of Channels: 4+2 Resolution: 24Bit
Sample Rates: 500 | 250Hz Common Mode

RR:
−110dB

Inp. ref.
Noise:

1.39 | 0.98µVpp Input PGA: G = 1−24

Inp. Band-
width:

210 | 100Hz Config. Driven Right Leg (DRL)

EEG electrode impedance measurement functionality

fNIRS
# of Channels: 4+2 Resolution: 24Bit
Sample Rate: 16.6Hz Wavelengths: 750 | 850nm
Emitter lvl.: I = 5−10 NEP (full BW): 5.92 | 4.77 pW
Input PGA: G = 1−24 SiPD Respons.: 0.55 | 0.6 V

µW
Optical Drift: < 1.6 ppm

s ∆PeakWavelmax: 4.75 | 3.75nm
Optode Dist.: 35mm / conf. FWHM: 16.6 | 21.4nm
SNR (104 OL): 66dB Intensities750nm: 0.07−0.14 mW

mm2

SNR (106 OL): 40dB Intensities850nm: 0.07−0.13 mW
mm2

Full linearity (10−2 −10−7OL) Digital Phase-Sensitive Detection

Accelerometer
# of Channels: x,y,z Resolution: 10−13Bit
# Sample Rate: 0.1−1k Hz Ranges: ±2,4,8,16g

General
Power consumption: < 360mW Li-Ion Cell (replacable) + charger

Bluetooth range: Indoor 5m Modularity: Up to 4 modules
Hardware trigger precision: 2±1smpl

Figure 3.24 & Table 3.4: M3BA Module and Overview of Characteristics.

3.6.4 Discussion

Performance characteristics A systematic evaluation of the novel multimodal miniatur-
ized device was performed through performance measurements using an optical and an
electrical phantom, and internal features of the AFE. EEG precision was demonstrated in a
N=4 AEP in-vivo study with both the new and a commercial reference instrument and showed
the expected characteristic N1-P2 signal amplitudes and shapes. Multimodal acquisition was
validated by a qualitative raw data experiment simultaneously acquiring fNIRS, EEG, ECG
and acceleration data. The system-performance tests demonstrated excellent linearity, low
optical drift, and very low noise levels amongst others. The characterization of optical noise
revealed that between 20−50dB OL, the coefficient of variation (CV) remains constant with
values lower than 0.1%. This noise component can be attributed to the LED light source;
signal as well as noise are proportionally attenuated by the phantom, as long as photon
noise can be neglected. Above 50dB OL, the CV linearly increases with an approximate
slope of 1 which is indicative of the domination of a signal-independent noise component.
Extrapolating the course to 80dB OL yields CV ≈ 1 for a signal magnitude in the order of
10µV , which coincides with the manufacturer’s data for the photodiode’s dark noise in the
used bandwidth (15µV −262HzBW ). This is also in line with the measured NEP values in
the order of 10−12W , when considering: (1) the incident optical LED power of 10−3W , (2)
an OL due to the phantom of 10−8, (3) additional losses in the optical path, and (4) the fact
that the actual detector area (5mm2) is smaller than the area of the 8 mm diameter aperture
used in the definition of the optical loss. It is therefore assumed that the signal-independent
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noise component is the photodetector’s thermal noise on which future attempts to improve
performance should focus.

The M3BA architecture improves the openNIRS design by (1) shifting phase-sensitive de-
tection from the analog to the digital domain and thereby removing the phase shift dependent
attenuation (formerly: A = 0.874). This increases the SNR by approximately 1.16dB and
decreases both the number of analog components and potential noise sources in the detection
path, (2) stand-alone integration of all hardware into one single unit, (3) detector paral-
lelization, and 4) better electrical decoupling and overall performance optimization / noise
minimization (supplies, decoupling, amplification and conversion): The Noise Equivalent
Power for optical measurements over the whole respective input bandwidths was improved
by 3 orders of magnitude from nWpp in the openNIRS to pWpp in the M3BA.

Since the design is also based on a powerful microcontroller, the user can easily and
quickly change, implement and increase the complexity of programs running on the module.
Thus, new approaches such as decentralized on-line feature extraction, adaption, filtering
and online impedance measurements on the modules themselves become possible. These
features can be profitable in wireless tactile scenarios, where context information and the
bandwidth available on the wireless infrastructure are taken into account in the provision and
(pre-)processing of sensor information.

Hybridization While static hybrid fNIRS-EEG measurements can nowadays relatively
easily be performed by combining two separate commercial devices, it was studied quan-
titatively whether dedicated hybrid systems such as the M3BA exhibit properties that are
advantageous over combined setups.

To achieve the desired high-performance characteristics in all modalities, great care
was taken to minimize noise and crosstalk by optimizing the mixed-circuit multilayer and
multi-power-supply layout for the AFE - µC unit. The intermodality crosstalk evaluation
revealed that bimodal setups combining EEG and fNIRS could indeed create switching noise
crosstalk into EEG inputs in combined separate devices that can be minimized in hybrids
such as the M3BA. The achieved robustness is especially important when the fNIRS current
switching frequency lies within the EEG frequency band (here up to 0.66 µVpp in the β -band
at 33.3Hz). This can hardly be distinguished from oscillatory activity reflecting real neural
processes later on. Since fNIRS and EEG instrumentation architectures differ and will exhibit
different crosstalk characteristics, separate bimodal setups should be combined cautiously.
This is especially important without prior knowledge about what noise characteristics may
be exhibited. While crosstalk was consistently negligible in single hybrid M3BA modules,
it could in some cases still be observed in setups with multiple devices, when linked by a
physical cable connection for synchronization to achieve maximum time precision. In future
approaches, wireless synchronization procedures could alleviate this. Not all bimodal setups
will necessarily create inter-modality crosstalk. For instance, in fNIRS systems that use
optical fibers for guiding light from and to the scalp.

The comparative evaluation of marker timing precision in separate vs. hybrid devices
revealed a significant jitter between the separately acquired data streams. The timing impre-
cision increases, the more the sample rates between modalities differ. In the asynchronously
acquired non-hybrid data, the fNIRS sampling rate was 12.5Hz compared to 1kHz in EEG.
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Consequently, a triggering edge in the marker signal is assigned to the EEG data stream with
1ms precision, but only with 80ms precision to the fNIRS data stream. Since fNIRS signals
are slow-changing signals, this precision is usually sufficient for unimodal experiments.
However, when SNR is low, and high precision is required, acquisition with hybrid bimodal
devices can bring advantages. This is especially noted within scenarios that need to assess
fast but weak (e.g., P300-based) EEG components in conjunction with slow, yet precisely
time-locked fNIRS components, and additional synchronization hardware is made redundant.

We conclude that, where high performance is of interest, a hybrid design can have some
inherent advantages in terms of signal quality and timing precision.

Safety and energy consumption Using LEDs and SiPDs for the NIR light emission and
detection, we were able to minimize size, power consumption, and supply voltages, thereby
also decreasing safety concerns compared to laser- and avalanche photodiode (APDs) designs.
The M3BA unit is supplied with a single 3.7V Li-Ion Cell that can be recharged onboard via
USB. The battery cell capacity Cbatt can be adapted to the required runtime (trun ≈ Cbatt

100mAhh).
The time division multiplexing of fNIRS channels presents a drawback in terms of

sampling rate in the simultaneous use of multiple interconnected modules. Each additional
module divides it in half. Simultaneous illumination with sine-modulated light at different
frequencies can alleviate this and could be implemented using the microcontroller’s internal
DACs. However, this comes at the cost of comparatively higher power consumption.

Wireless limitations When two or more users, wearing multiple M3BA modules in a
WBSN scenario, meet at close distances, the interference from several Bluetooth-transmitters
is likely to lead to a loss of data packages that cannot be buffered. There are currently no
optimal solutions regarding wireless infrastructure. However, other transmission standards
like ZigBee (IEEE 802.15.4) and WBAN (IEEE 802.15.6) or even entirely new (5G) standards
could be taken into consideration for replacement.

Application and headset The instrument allows headgear and sensors to be tailored to
application- and scenario-specific requirements in order to provide mechanical stability and
high signal quality. Examples for such unobtrusive wearable sensor solutions are in-ear or
around-the-ear EEG [LPK+11; DEDV+15]. The M3BA architecture provides the necessary
flexibility for integration and customization and the high AFE input impedance (1T Ω ) and
Common Mode Rejection Ratio (−110dB) allow the use of both wet or dry electrodes. Aside
from typical procedures for applying fNIRS on haired regions (e.g., brushing aside hair
under the optodes), the M3BA modules can be integrated into the openNIRS spring-loaded
mechanical headgear concept. In the next Section, we will make use of the M3BA flexibility
by integrating two modules into a custom-tailored headset as a prerequisite for the work in
Chapter 4.

The implemented software makes use of the AFE’s current source/sink peripherals and
enables stand-alone AC Lead-Off detection and online electrode impedance measurements
for electrode preparation and monitoring of signal quality.

The presented M3BA architecture enables a wide range of new approaches in the fields
of multimodal wearable monitoring, diagnostics, BCI, and brain research.
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3.7 Hybrid Headgear

3.7.1 State of the Art and Aims

In previous hybrid EEG-fNIRS studies with tabletop instruments or backpacks, electrodes
and optodes are typically placed on conventional EEG caps. Cables and weight of equipment
can hinder free movement and increase the risk of electrode and optode shifts.

The Aim...

...is the development of customizable, fully integrated multipurpose headgear for the
application of M3BA. It should be comfortable, optimized for unconstrained movement
and lightweight to minimize shifts, allow robust fixation and adaptability to individual
head circumference, and 10-20 system compatibility. The primary implementation of
a custom-tailored headset aims at the subsequent application in a cognitive workload
experiment in Chapter 4.

3.7.2 M3BA Hybrid Headgear

Exploiting the modularity of the M3BA architecture, a multipurpose two-stage hybrid
headset was developed using rapid prototyping. It integrates two modules and one recharge-
able LiPo battery (up to 10h continuous acquisition), yielding 12 EEG/EMG/ECG channels,
10 fNIRS and channels and two 3D accelerometers (see Figure 3.25).

The first stage is designed for compatibility with both conventional EEG 10-20 caps
and customized headset solutions. One module is placed on each side of the head above
the ears, and a battery pack between the inion and upper neck. Units are connected with a
flexible elastic band which is adjustable to individual head circumferences at the module
cases (Figure 3.25 A). All electrode and optode solutions from Section 3.2.2.6 and [vSM+17]
are supported. When worn on top of a cap (Figure 3.25 B), standardized electrode/optode
positions are available, but the ease of use is decreased.

Headsets can be advantageous. However, they have to be custom-tailored to the applica-
tions/experiments, as channel selection naturally determines the availability of signals. For
the application in a mobile cognitive workload scenario in Chapter 4, a second stage custom-
tailored headset was designed (Figure 3.25 C). Its total weight of 150g is distributed across
the whole head and electrode and optode cable length is minimized, reducing both shifts and
noise pickup. In this layout, channels were placed to enable acquisition of frontal/parietal
alpha/theta EEG power, frontal metabolism, frontal asymmetries (in both EEG spectrum
and fNIRS oxygenation signals), Error Potentials and Event-Related Potentials based on a
minimum count of channels. Motivation and details on the channel selection and placement
are provided in Section 4.3.2. The optodes were designed for easy and robust application in
a frontal patch and direct application to the skin without the need of optical fiber guides. The
headset can easily be adjusted to most common head circumferences between 54−58cm by
the means of a mechanical regulation screw at the back of the head and elastic band that is
also adjustable at all connecting links. For EEG electrodes, standard easy-cap ring electrode
holders were integrated at target 10-20 positions.
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Figure 3.25: M3BA hybrid headgear. Blue arrows indicate adjustable/flexible connections. (A) multipurpose
M3BA headgear, applied on (B) a standard 10-20 cap and (C) integrated into a custom-tailored headset for
applications in Neuroergonomics.
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3.8 Framework for Communication and User Interface
The software framework for communication and control of the M3BA and openNIRS

instruments was designed for the support of:

1. Flexible device interfacing, independent of software, programming environment, host-
unit (PC, smartphones,...) or operating system employed by the user.

2. Low-level development, customization and debugging of the instrumentation as well
as efficient data transmission in normal running scenarios.

3. High stand-alone functionality of the instruments.
4. Adaptation and evolution across instrument generations.

For this purpose, Bluetooth with Serial Port Profile (SPP) was selected as the wireless
interface between M3BA/openNIRS and a host for control and data logging. This way, the
instruments can be installed and accessed without a driver and by any operating system that
supports Bluetooth SPP via a virtual Com Port. Instruments are controlled and configured via
simple ASCII commands (e.g., “S” for Start, “CECG6” for Configure EEG Channel Gain =
6), allowing intuitive control both manually (e.g., via a hyper terminal) or via more elaborate
scripts or graphical user interfaces. Data packets from the instruments have a variable length
indicated by the packet-header, identifying different modalities and allowing an adaptation to
the required/limited bandwidth available on the Bluetooth-channel. Figure 3.26 depicts the
implemented software framework and functional units. For use on a computer, a Graphical
User Interface (GUI) was developed in LabView. Based on an event-controlled queued
state machine (QSM) architecture, it supports device configuration, data logging, online
visualization, filtering and mBLL-conversion, hardware and software trigger management
and unit testing/debugging. Figure A.5 in Appendix A.3 shows an example.
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3.9 Summary

Advances in hybrid multimodal signal acquisition and processing technology are
invaluable for real-life-oriented research and applications in the fields of neurotech-
nology. Currently, there are no hybrid devices commonly available that combine
bio-electrical and bio-optical neurophysiological measurements such as EEG and
fNIRS. We identified basic principles and requirements for the design of high precision
EEG-fNIRS instrumentation for mobile application-oriented scenarios. With these
as a guideline, the objective in this Section was the two-step design of such an
instrument. Objectives considered were high performance, miniaturization, customiza-
tion, scalability, wireless communication, usability, safety, and low power consumption.

As a first step, the openNIRS was introduced. It is an architecture for wearable modular
fiberless fNIRS, providing open source core functionality to facilitate the development
of novel customized fNIRS instrumentation approaches in neurotechnology research.
In the second step, M3BA, a Mobile, Modular, Multimodal Biosignal Acquisition
architecture, was developed and evaluated. It is based on a high-performance analog
front-end optimized for bio-potential acquisition, a powerful microcontroller, and
exploits functional units and concepts from the openNIRS. The designed M3BA
devices are configurable high precision and low-noise modules (EEG input referred
noise @ 500SPS 1.39 µVpp, fNIRS noise equivalent power NEP750nm = 5.92 pWpp,
NEP850nm = 4.77 pWpp) with full input linearity, phase sensitive detection of optical
signals, Bluetooth, 3D accelerometer and low-power consumption. They support
flexible, user-specified bio-potential reference setups, and Wireless Body Sensor
Network (WBSN) scenarios and are further miniaturized (10cm3) beyond previous
approaches. The microcontroller enables flexible integration of additional routines.
Thus, EEG impedance measurements, filtering, and new approaches such as
decentralized on-line feature extraction and adaption become possible on-chip.
Performance characterization and in-vivo experiments confirmed functionality and
quality of the designed architecture. It was also shown that, where high performance is
of interest, a dedicated hybrid design can have some inherent advantages over separate
instruments in terms of signal quality (reduced intermodality crosstalk) and timing
precision (reduced jitters).

We provide both architectural details and performance characteristics of M3BA and
openNIRS. This way, this work aims to significantly facilitate future designs in those
fields of neurotechnology research that rely on or potentially profit from customizable
mobile hybrid biosignal acquisition instruments. The design principles put forward in
this Section are also applicable to other research areas than that of BCIs or Neuroer-
gonomics, for instance to physiological monitoring approaches in telemedicine.





Chapter 4

Multimodal Neuroimaging in Moving
Subjects: A Workload Experiment

4.1 State of the Art and Aims
While a multitude of new hybrid fNIRS-EEG application scenarios in more natural

everyday-environments is on the horizon, experiments and datasets are still lacking. An
increasing number of studies are using simultaneously acquired EEG-fNIRS signals [AJ17;
CRL+17], and open access EEG-fNIRS datasets have been published that include n-back,
discrimination/selection response, word generation, motor imagery and mental arithmetic
tasks [SvK+18; SvB+17]. However, these studies are almost exclusively done with combined
tabletop devices and focus on seated participants that move as little as possible. As fNIRS-
EEG in motion is a nascent domain, there are no suitable datasets available yet that provide
both evoked neuronal responses and well-controlled movement conditions, and certainly
not other modalities. In particular in areas where neurotechnology is to be applied under
realistic, life-like conditions, the generation of such experimental datasets is desirable and
often prerequisite for the development and evaluation of novel methods. One use case is, for
instance, operator workload monitoring as part of Neuroergonomics.

Aims

The aim of the work presented in this Chapter, based on publication [vMB+18], is the
generation of such a dataset to infer cognitive workload from freely moving operators.
To this end, a novel experimental paradigm is designed that aims to evoke working-
memory related neurophysiological changes with only minimal explicit behavioral
constraints under quasi-realistic circumstances, while at the same time implicitly
enforcing a high control of experimental conditions. The multimodal data was acquired
with the newly developed and custom-tailored M3BA headset. Its design for the
acquisition of selected target signals/features in a tradeoff with low channel numbers
will be motivated. The dataset thus obtained paves the way for novel analysis and
artifact rejection approaches, and for a feasibility study of multimodal workload
classification under challenging, realistic conditions, both discussed in Chapter 5.
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4.2 Mental Workload and Neuroergonomics

Progressing beyond conventional applications for communication and control in clinical
and rehabilitation contexts, more comprehensive Brain-Computer Interfaces aim to aid users
in everyday-environments by adaptation and enhancement of human-machine interaction.
These systems use physiological markers to assess mental or emotional states, including
vigilance, attention and mental workload and aim to create supportive environments in which
feedback or task demands are optimally adapted to the mental state of an operator. Mitigating
the consequences of excessive workload or allowing for strategy changes [Spe78], they can
increase safety, performance, effectiveness or motivation [PW08; PFS+00; SW95; Wil82].

Cognitive or mental workload (MWL), although having an intuitive appeal, is a concept
in ergonomics [YBW+15] that is comparatively hard to define. One approach is to define
it as the portion of a human operator’s limited mental capacity to process and respond
to information required to perform a particular task [BKT94]. Empirical approaches for
the assessment of workload make use of (1) subjective, (2) performance-based and/or (3)
physiological measures. While systemic body signals provide physiological markers such as
heart rate, skin conductance, respiration and ocular and pupillary movements, more recent
approaches make use of neurophysiology. Such “Neuroergonomic” approaches [Par03;
PW08; Par11] use markers in brain activity to assess covert mental states, such as mental
workload, independently of the reported subjective or measured overt performance of a
human operator. These systems aim to predict sudden performance declines that follow
sustained periods of excessive or too low task demands, for instance, to prevent catastrophic
losses in safety-critical working environments such as air traffic control [ASB+12].

In experiments, task demands have to be evoked in a controlled and reproducible way. A
widely used family of paradigms in cognitive neuroscience research is based on the n-back
protocol [OML+05] which demands sustained attention to a train of stimuli. It provides
varying task-load conditions to test associations between levels of difficulty and cortical
activation due to working memory modulation. It has been validated by major neuroimaging
modalities such as fMRI and PET and has been successfully applied to evoke and discriminate
different workload stages in both EEG [BHVE+12] and fNIRS [HHF+14; UIS+15]

4.3 A Workload Experiment in Freely Moving Subjects

4.3.1 Study Design and Protocol: A New Spatial N-back Paradigm

To evoke task-load under well-controlled conditions but without explicit movement con-
straints, the following modified spatial n-back paradigm was developed. The experiment was
implemented with custom multiplexing hardware for LED illumination and registration of
button-presses, interfaced and controlled with a NI DAQmx USB6003 device and a LabView
routine (National Instruments, USA) embedded into the main M3BA GUI. The overall set-up
and protocol are depicted in Figure 4.1 to elucidate the following explanations.
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A freely moving subject stands in front of a wall with 8 tiles equidistantly placed every
45◦ on a circle with an individually adjusted radius R. It is defined by the subject’s height
h with R = 0.45× h, which also approximates half of the span of outspread human arms.
The center is located at the participant’s solar plexus. Here, a screen shows instructions and
visual cues. The tiles are sized 10×10cm2 and are illuminated in 8 different RGB states (red,
magenta, blue, light blue, green, yellow, white, OFF). Pressing a tile activates a push button.

In each of the 12 experimental blocks with a respective duration of 10min, the participant
performs a sequence of 7 rounds based on a modified spatial n-back task, alternating n = 0
with a pseudo-randomized order of n = 1,2,3. Each block starts with a resting period of 30s.
At the beginning of each round, an instruction cue is shown on the screen for 6s. In this time,
a pseudo-randomized target color (all RGB states except OFF), the constant default color
OFF and the n-back instructions are displayed. 0-back rounds consist of 6 trials; 1,2,3-back
rounds consist of 18 trials, each with constant duration of 6s. At the beginning of each trial,
the color configuration is instantaneously and pseudo-randomly reconfigured; each tile has a
unique color. The participant has to decide for, and press one of the eight tiles within each
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Figure 4.1: Spatial n-back based cognitive workload paradigm with freely moving subjects. A,B,C: placehold-
ers for pseudo-randomized sequence of 1,2,3−back task. Small colored squares next to tiles mark example
configuration, roman letters mark number of the first four trials within an example round. "Target Position"
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trial and selection speed is not rewarded. For motivation, correct selections add points to a
block-wise score, erroneous/ or no selections within the trial period lead to a small penalty.
The target color and n-back level define the task to solve in each trial to follow in the same
round. See also Figure 4.1 for examples:

• In 0-back, the target and default colors are both OFF . In each trial, the subject finds
and selects the only tile that is not illuminated. There are n = 0 positions to memorize.
This serves as a baseline task.

• In n = 1,2,3−back, a tile is to be selected whenever the target color reappears in n+1
subsequent trials on the same spatial location. If this condition is not met within a
trial, the tile with the default color OFF has to be pressed. In each trial, the participant
has to remember and mentally update the target color position of n = 1,2,3 preceding
trials.

Only 25% of n = 1,2,3−back trials within each round fulfill the target condition. Partic-
ipants were instructed to use only their dominant hand for all button presses. For motivation,
each correct hit adds points to a block-wise score; higher n-back conditions give more points.
A wrong or no button press within a trial counts as an error, leading to a small point penalty
which is constant across conditions. Speakers provide simple auditory cues for rewards,
penalties and the begin and end of each trial.

At the end of each block, the participants were asked to assess their overall experienced
demand, concentration, and stress on a 5 level Likert item using a number pad (5: strong
agreement, 3: neutral, 1: strong disagreement). Afterward, there was a 3min pause, and after
every 4th block a break of arbitrary length chosen by the participant.

While the task difficulty is modulated by the number of positions that have to be remem-
bered for correct selection, all other experimental conditions in each trial remain constant
regardless of the task and individual performance. This includes constant trial duration, color
and spatial randomization and one performed selection in each trial. The individualized
tile distances lead to constant movement conditions and well defined terminating postures
across all participants and enforce stepping forward/backward for full vision and access to
the field. While the trial length of 6s leads to a shared frequency band between artifacts and
hemodynamic responses in fNIRS, the overall block lengths also enable analysis of slower
fNIRS signal changes.

During the whole experiment, EEG, fNIRS, Electrodermal Skin Activity (EDA), com-
bined EMG - ECG at the neck, and head and hand accelerations were recorded. Furthermore,
all data streams were continuously labeled with 2ms precision, including the following
events: Start, end, error or time up of a trial, begin and end of a round or block, tile color con-
figuration, target colors, n-back conditions and target positions, times of button presses and
breaks. In the following, we will elaborate on the target features in the signals acquired and
thus motivate the channel selection and placement in the custom-tailored headset designed
for this purpose in Section 3.7.
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4.3.2 Signal Acquisition, Channel Placement and Target Features
A variety of features in the acquired modalities can give insight into the cognitive state

and workload of a participant. In a headset for mobile application and limited preparation
time for higher usability, only a limited number of channels is available. The headset designed
for this experiment (Figure 3.25 C) was configured for the simultaneous acquisition of 9
fNIRS, 9 EEG, 2 EMG/ECG and two 3D Accelerometer channels, employing two M3BA
modules. Careful channel placement, considering the current understanding of task-related
brain physiology, is crucial to allow the exploitation of valuable information in the single and
combined modalities. The setup is summarized in Figure 4.2 and motivated in the following.
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Figure 4.2: Channel Placement: (A) EEG and fNIRS channels and optodes, (B) Positions of fNIRS emit-
ters/detectors on scalp and resulting channel positions on the cortex projected with HomER Atlas Viewer
[HDF+09], (C) ECG/EMG and EDA channels.

In EEG, a variety of cognitive phenomena such as attention, memory encoding, vigilance,
and fatigue, have been shown to correlate with modulations of band power in particular
frequency bands [BD04; DHK+03; KÅ93; MTD+08]. Especially in the investigation of vigi-
lance and cognitive workload, modulations of theta (4−7Hz)- and alpha (8−13Hz)-band
power in frontal and parietal regions have been found to be discriminative, where frontal theta
power usually is positively correlated, and parietal alpha power is negatively correlated with
increasing workload [GS03; HLK+09]. Studies have also exploited information from the
other frequency bands and event-related potentials (ERPs) [BHVE+12; PIFS+03; CEW+12].
ERPs and Error Related Potentials (ErrPs), measurable with few channels distributed over
frontocentral-parietal regions, have furthermore successfully been used in single trial analysis
and classification [MTD+08; BLT+11] also allowing for response-verification and -correction
[BSD+02]. Under these considerations, wet passive AgCL electrodes (abrasive gel) were
placed at frontocentral and parietal EEG-10-20 positions Fp1, Fp2, F7, F8, Fz, Cz, Pc, P3,
P4 measured against linked mastoids and with an active reference potential at AFz. EEG was
sampled at a rate of 250Hz.

Varying task-load conditions have been shown to modulate activation in the dorsolateral
(DLPFC) and ventrolateral prefrontal cortex (VLPFC) in PET and fMRI studies [OML+05;
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SJK96; dAZ+98] and fNIRS [AOI+13; PBW+10; SES+08]. In fNIRS, frontal oxygen-
dependent metabolism measured over prefrontal regions has been successfully used for the
assessment of expertise development [AOI+13] and classification of cognitive workload
[ASB+12; HHF+14; LAS17]. The fNIRS optodes used in this study were therefore placed
on the forehead with a source-detector separation (SDS) of 30mm and with the frontmost
optode pair registered to the EEG 10-20 positions F p1/F p2, resulting in 9 channels over
left and right superior-, medial- and medial-orbital -frontal regions, see Figure 4.2 B. Signals
were sampled at a rate of 8.33Hz.

The frontal placement of EEG and fNIRS channels potentially also enables assess-
ment of frontal asymmetries that have been shown to be related to affective processing,
approach/withdrawal-related tendencies and motivation [PSH+05; Dav04; CA04; DLC04].

For the combined acquisition of neck-EMG and ECG, two sticky electrodes were placed
on the left and right sternocleidomastoid muscle, with reference on vertebra C7, and sampled
at 250Hz. The two integrated 3D accelerometers from both M3BA modules fixated over the
left and right ear, were configured for a 12Bit resolution of ±2g, sampled at 50Hz. Electro
Dermal Activity (EDA) provides tonic and phasic information that has been widely used
as an indicator of emotional stress [Bou12]. EDA was measured with sticky electrodes
placed on thenar and hypothenar muscles of the dominant hand with a mobile one-channel
EDAmove device (Movisens GmbH, Germany), including 3D accelerometer, fixated to the
wrist. EDA was sampled at 32Hz, the accelerometer sampled at 50Hz.

This selection of modalities and channels also allows the extraction of additional systemic
body signals and their exploitation for workload assessment or artifact rejection. Among them
are overall movement artifacts, especially EOG and EMG in EEG and blood pooling/indirect
movement artifacts in fNIRS, that will be addressed in Section 5.2. The rate of eye blinking
and movements have been successfully used as vigilance indicator, for instance in real time
driver vigilance monitoring [BNS+06]. Other systemic signals are breathing and heart rate-
related modulations of fNIRS and EEG components. Additionally, the dataset incorporates
behavioral data from head and hand movements, EMG, reaction times, and error rates. Figure
4.3 summarizes the features available and modality interconnections in the signals.
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4.3.3 A Brief Overview of the Dataset and Behavioral Results

The experiment was performed with 17+11 participants (16 female, 27 right-handed),
with age 28.1± 5.8y and height 172± 9.4cm (mean±std). 11 participants took part in a
preliminary study with a slightly different protocol with fewer but longer blocks, but oth-
erwise same paradigm and randomization. The experiment was conducted in accordance
with the declaration of Helsinki and approved by the Ethics Committee of Berlin Institute
of Technology (approval number: LUE_01_20161117). All participants had normal or
corrected to normal vision, and none reported color-blindness or neurological, psychiatric,
or other brain-related diseases. All participants were informed about the experimental pro-
cedure, anonymized data evaluation, and distribution, and gave written consent prior to the
experiment.

The dataset of each participant in the main study contains 120min continuously recorded
multimodal data, with approximately 930 movements and subsequent button-presses per-
formed at the predefined positions. Figure 4.4 shows an excerpt of the unprocessed multi-
modal signals and exemplifies shared information across modalities, for instance between
EMG and EEG or Acceleration and fNIRS. Figure 4.5 provides a brief overview of average
behavioral data across participants.

Typical behavioral data of a single participant and experimental sequences (n = 1,2,3−
back rounds, target colors and button press events) is provided in Figure C.2 in Appendix
C.2. Within and across subjects, no dependency was observed between specific target colors
or positions and frequency of correct, wrong or no (time up) button presses.
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4.4 Observations and Discussion

The overall length of the experiment was on average 3 hours including briefing and
training, and the total set up time rarely exceeded 25 minutes. As adjusting and putting on
the headset is a matter of less than a minute, this was mainly due to attachment of peripherals,
electrodes, and application of gel. The latter can be made redundant when water-based
electrodes (Section 3.2.2.6 and [vM17]) are being used. In the main study, these electrodes
were not employed to limit uncertainties due to the number of non-conventional self-designed
elements in the acquisition chain. Participants welcomed the fast set-up time and comfort of
the headset and the freedom to move during the experiment.

While experimental conditions remain the same across participants, the level of induced
cognitive workload and performance is dependent on many subjective factors that can signifi-
cantly vary between participants. Among them are motivation, wakefulness and attention and
individual memory performance. It was attempted to decrease biases by (1) using colors and
spatial positions instead of numbers and letters, (2) performing experiments only at 10:00
am and 03:00 pm to limit effects of postprandial somnolence, and (3) including subjective
self-assessment at the end of each block to mirror trends across the 2.5h experiment.

The participant’s self-assessments show on average a neutral response to the statement “I
was Stressed”, a moderate bias towards agreement with the statement “the experiment was
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Demanding” and a stronger bias towards agreement with the statement “I was Concentrated”
(Figure 4.5 C), with no statistically significant changes in any of the three assessed variables
over the time-course of the experiment (1-way repeated measures ANOVAs, FS = 0.61,
pS = 0.82, FD = 1.44, pD = 0.16, FC = 1.13, pC = 0.34). A more frequent subjective assess-
ment (e.g., after each n-back round) would be desirable but comes at the cost of an increased
length of the experiment, and a decreased level of immersion due to the high number of
enforced interruptions.

Investigation of the behavioral data confirmed subjective reports and observations: The
average (re-)action times and the number of errors scaled with increasing task-difficulty
(Figure 4.5 A,D), and are very similar to those in other fNIRS n-back studies [ASB+12;
AGO17]. Grand average 3-back reaction times < 3.5s indicate that errors are not due
to insufficient trial length (6s). Slow decreases of average reaction times and errors and
a corresponding increase in scores (Figure 4.5 B) reveal minor training effects over the
full length of the experiment but remain highly distinguishable between different n-back
conditions. Observation of movement behavior confirmed the success of the geometrical
experiment design: Without exception, participants stepped back for a full field of vision
before moving to execute a button press at predefined positions within each trial.

Visual inspection of the acquired raw multimodal data (as in Figure 4.4) reveals, amongst
others, expected strong EOG artifacts in EEG, and slow position-dependent movement
artifacts in fNIRS that comodulate with acquired head movement signals. The next Chapter
on multimodal analysis will focus on the application and exploitation of this dataset.

Summary

A novel n-back based cognitive workload paradigm was developed that integrates and
enforces free movements to and from individually adjusted, predefined positions. The
corresponding study was conducted employing a custom-tailored M3BA headset for
the multimodal acquisition of 120min continuous EEG, fNIRS, EMG/ECG, EDA and
acceleration data in 17 participants. Behavioral data indicates a successful design
and appropriate difficulties. We will make use of this novel multimodal dataset in the
following.





Chapter 5

Multimodal Analysis

We begin this Chapter with the introduction of the General Linear Model (GLM) and
a selection of GLM-based state-of-the-art analysis techniques. These form the basis for
the subsequent analysis and method development based on the new experimental dataset.
Section 5.2 discusses the main contribution of this chapter, a novel multi-modal, Blind-Source
Separation-based Analysis and motion Artifact Rejection/Detection framework in fNIRS
entitled "BLISSA2RD", which is based on publication [vBM+18]. Last but not least, in
Section 5.3, based on publication [vMB+18], all contributions of this thesis will be linked in
an attempt to classify multimodal cognitive workload in moving participants.

5.1 State-of-the-Art Analysis Techniques
In the multimodal analysis and classification of data, the modalities can be fused at

different levels for the extraction of components, features or a calculation of a classification
output. In the following, we denote fusion at the signal level as sensor fusion, at the feature
level as early fusion and at the decision level (after individual classification) as late fusion.
The majority of methods introduced hereafter are unimodal methods that will be combined on
a sensor fusion level in BLISSA2RD and in an early fusion approach in the classification of
workload. An increasing number of novel methods has been developed that relate and extract
information at the sensor fusion level, such as group ICA methods [CLA09], temporal kernel
Cross-Correlation Analysis (tkCCA) [BMG+09] and multimodal Source Power Correlation
(mSPoC) [DBS+15; DBM+13]). In the following, to not exceed the scope of this thesis, we
restrict ourselves to the introduction of models and methods that will be employed in the
subsequent analysis and comment on the others only briefly for the sake of delimitation.

5.1.1 The General Linear Model
A commonly used abstract mathematical model for the generation of macroscopic neu-

roimaging data such as EEG, MEG, fMRI, and fNIRS is representing the measured data as
a linear mixture of functionally distinct processes [JTF97; CAM+01; PSG+05; YTJ+09].
These generative or forward models factorize measurement data into latent factors with a
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temporal signature and their corresponding spatial activation patterns.
In the following, we will denote observed data samples of modality 1 at time point t

and channel n with scalars xn(t) and those of modality 2 respectively with zn(t). While x
and z can be assigned to any modality, e.g., fNIRS and EEG, x is used for raw fNIRS data
samples and z for acceleration data in the following to prepare for Section 5.2, where we
will continue with this assignment. As the notation is congruent for all signals x and z, we
will continue it exemplary on x only. We denote the observation matrix with data from all
time points Tx and recorded channels Nx as X ∈ ℜNx×Tx , its row vectors as xn ∈ ℜTx and its
column vectors as x(t) ∈ ℜNx . The former are the observed time series at constant channel
n and the latter the signal at fixed time point t for all channels. In raw fNIRS intensity
signals, Nx =Cx ·Λx consists of the number of optode pairs Cx and the number of recorded
wavelengths Λx. Usually, the modalities differ both in the number of channels and sampling
rate Nx ̸= Nz and Tx ̸= Tz. We assume the presence of Kx ≥ 1 latent factors and denote these
by sn ∈ ℜTx and in analogy to above for all time points and factors by Sx ∈ ℜKx×Tx .

Then, the noiseless linear forward model, which maps latent components (sources) to
observed recordings (mixtures) can be expressed by

X =AxSx. (5.1)

Here, Ax ∈ ℜNx×Kx is the mapping matrix, with each column containing the spatial activation
patterns for corresponding components. In general, the linear forward model can additionally
contain the noise term ϵx ∈ ℜKx capturing activity that is not explained by the Kx components.
In the BLISSA2RD approach, we consider the noiseless model. Here, the effect of noise can
be mitigated through order selection in overdetermined cases [LAC07; FAA14] or another
stage of decomposition. Usually, it is of interest to estimate the spatial activation patterns
and time courses to recover the components from the data. Since estimating both A and
S jointly can lead to difficult optimization problems and high computational complexity,
a backward model approach is commonly applied. The latent sources Ŝx are estimated by
multiplying the observed data with a set of spatial extraction filters W ∈ ℜNx×Kx . As before,
we use ŝn ∈ ℜTx for the n-th source estimate. The discriminative or backward model is then
expressed by

WxX = Ŝx. (5.2)

Tx/z Number of data points in modality x/z
Nx/z Number of channels in modality x/z
Λx Number of wavelengths per optode Cx in modality x
Kx/z Number of latent factors (sources / components)
xn/x(t) Tx/Nx-dimensional row/column vector of observed data in modality x, here NIRS
zn/z(t) Tz/Nz-dimensional row/column vector of observed data in modality z, here Accelerometer
X,Z Nx/z ×Tx/z matrix containing the observed data in modality x/z
sx/z(t), ŝx/z(t) Kx/z-dimensional vector of (estimated) latent factors of modality x/z
Sx/z, Ŝx/z Kx/z ×Tx/z matrix containing all (estimated) latent factors of modality x/z
Ax/z Nx/z ×Kx/z matrix of sensor-space patterns in forward models
Wx/z Nx/z ×Kx/z matrix of spatial extraction filters in backward models

Table 5.1: GLM Notation.
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Table 5.1 summarizes the notation used in this Chapter. More details on the interpretation
of linear models in multivariate neuroimaging are provided, e.g., in [HMG+14]. Since
without additional constraints the factorization of A and S is not unique, further assumptions
about spatial and temporal dynamics are required. These distinguish different approaches
and their suitability for the respective application.

5.1.2 Relevant Supervised and Unsupervised Methods
Methods that attempt to factorize A and S without known labels to the data are termed

unsupervised or Blind-Source Separation approaches and are often relevant for analysis
and preprocessing. Supervised methods, on the other hand, make use of labeled data to
increase discriminability and are therefore commonly used for classification problems. In the
following, PCA, ICA, and CCA will be introduced from the former group and CSP and LDA
from the latter, and other cutting edge multimodal BSS methods will be briefly pointed out.

5.1.2.1 Principal Component Analysis (PCA)

One of the most frequently used BSS methods is Principal Component Analysis (PCA)
[Pea01; Jol82]. Decomposition is being performed under the assumption of mutually de-
correlated / orthogonal components w⊤x(t) so that these explain maximum variance:

max
w

Var
(
w⊤x(t)

)
, subject to∥w∥2 = 1. (5.3)

If the data has been centered, (5.3) can be expressed with the covariance matrix C = xx⊤,
which yields the eigenvalue equation Cw = λw. Here, λ is the generalized eigenvalue asso-
ciated with the eigenvector w. The solution can then be found by eigenvalue-decomposition
of C. As this decomposition is computationally efficient and explains as much variance as
possible in the data, PCA is often used for dimensionality reduction.

5.1.2.2 Independent Component Analysis (ICA)

A powerful way to obtain a unique decomposition under very relaxed conditions is
through the assumption of statistical independence of the source estimates Ŝ in the linear
mixture. For this, non-Gaussian distributions are commonly assumed. However, when both
sample dependence and higher-order statistics are taken into account, ICA can even estimate
multiple Gaussian sources [AAF14]. As preparation for the challenging application of ICA to
fNIRS and the corresponding framework in Section 5.2, we include the sample dependency
(SD) of the sources in the ICA formulation. For this, a natural way to estimate the extraction
filters W is by the minimization of the mutual information rate which is given by [AAF14]

Ir(W ) =
Nx

∑
n=1

Hr(ŝn)− log |det(W )|−Hr(x), (5.4)

where Hr is the (differential) entropy rate. The cost function (5.4) takes both higher order
statistics (HOS) as well as sample dependency into account. Among the widely used ICA
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algorithms, Infomax [BS95] uses a fixed nonlinearity model for the underlying distribution
of the sources. ICA-EBM [LA10] provides flexible density matching through the use of
four measuring functions based on the maximum entropy principle and has been shown
to maximize statistical independence efficiently. Most ICA algorithms take advantage of
only higher-order statistics by ignoring sample dependence that exists in many signals by
assuming independent and identically distributed samples. ICA-ERBM [FPA+14] (see a
brief overview in Appendix B.1) builds on the flexible density model of ICA-EBM and adds
the use of sample dependence in addition to HOS to achieve ICA by minimizing (5.4).

5.1.2.3 Canonical Correlation Analysis (CCA) and temporal embedding

A method for finding co-modulating components in multivariate data is Canonical Cor-
relation Analysis (CCA) [Hot36; And58]. It estimates normalized linear filters wx ∈ ℜNx

and wz ∈ ℜNz , the canonical variates, that maximize the canonical correlation between the
projections of each modality:

max
wx,wz

Corr
(
w⊤

x x(t),w
⊤
z z(t)

)
. (5.5)

If the two modalities do not correlate instantaneously, optimal filters depend on an — usually
unknown — time lag τ . One solution is to temporally embed one modality with a given set
of D time lags {τ0, ...,τD}, thus optimizing time-lag-dependent projections

max
wx,wz(τ)

Corr

(
D

∑
i
w⊤

x x(t),wz(τi)
⊤z(t − τi)

)
. (5.6)

This method has been applied to medical imaging in various forms, for instance with temporal
kernel CCA (tkCCA) for multimodal fMRI analysis [BMG+09].

5.1.2.4 Common Spatial Patterns (CSP)

Common Spatial Patterns (CSP) is a supervised method that allows the optimization of
spatial filters for the discrimination of oscillatory activity within (EEG-) signals and is often
used for classification [SKM14; TM10; BTL+08; Kol91]. Its spatial filters reduce the effects
of volume conduction in EEG and increase the SNR of band power features by maximizing
the variance of bandpass filtered signals for one class while minimizing the variance of the
other. Let C1 and C2 the covariance matrices of the respective classes. Then, the CSP
objective function can be expressed as

max
w

w⊤(C1 −C2)w

w⊤(C1 +C2)w
. (5.7)

The optimization problem (5.7) can be solved by a generalized eigenvalue decomposition that
yields the common spatial filters in the columns of W . These both maximize and minimize
(5.7), according to their corresponding Eigenvalues. Consequently, filters from each side of
the eigenvalue spectrum are chosen, and commonly two to three per class in practice.
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5.1.2.5 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a method that is, due to its good performance,
among those most frequently used in the classification of neuroimaging signals. LDA finds a
filter w that minimizes the within-class variance and maximizes the between-class variance,
here denoted with SW and SB respectively, by maximizing the Fisher criterion

max
w

w⊤SBw

w⊤SWw
. (5.8)

In a two-class problem, the optimal extraction filter can be determined by w= Ĉ−1(µ̂2−
µ̂1), where Ĉ is the estimated common covariance matrix (the average of the class-wise
covariance matrices), and µ̂i are the estimated class-wise means. If data is high dimensional
or when only limited observations are available for training of the classifier, the empirical
estimation can be distorted by outliers. As a countermeasure, in regularized or shrinkage
LDA, the empirical covariance matrix is shrunk by

Cshr(λ ) = (1−λ )Ĉ+λνI (5.9)

where γ ∈ [0,1] is the shrinking hyperparameter, and ν is the average eigenvalue of Ĉ.
An optimal shrinkage parameter can be found analytically, as shown in [LW04].
For binary problems, LDA is the Bayes’ optimal classifier under three assumptions: (1)
features are Gaussian distributed, (2) the distributions of all classes have identical covariance
matrices C and (3) the true class distributions are known [Fri89]. While the first two
assumptions are largely satisfied with EEG and fNIRS data, the third assumption is usually
not satisfied, but being dealt with by regularization.

5.1.2.6 Other multimodal methods

Aside from the above-mentioned (tk)CCA, a variety of BSS approaches have been
proposed for multivariate analysis: joint ICA (jICA), parallel ICA (paraICA) [CLA09] and
Independent Vector Analysis (IVA) [AAF14] enable the extraction of multimodal features
from groups of subjects or well-aligned datasets. For the investigation of co-modulations
between band power dynamics and target signals in the time domain, Dähne et al. developed
the Source Power Co-modulation (SPoC) framework [DBS+15; DBM+13]. Its multimodal
extension, mSPoC, allows the decomposition of multivariate data, for instance, EEG and
fNIRS, such that bandpass filtered oscillatory components from one modality and time-
(lagged) components from the other co-modulate maximally.

5.1.3 Challenges in Multimodal Signal Processing
Fusion of multimodal data at the sensor level has to overcome major challenges due to

(1) Non-instantaneous and non-linear coupling dynamics between modalities, (2) different
temporal resolutions, (3) different spatial resolutions and (4) unimodal outliers and low SNR
that hinders the estimation of combined statistics. In the following Section, several of these
challenges will be relevant to the multimodal BSS analysis of fNIRS signals.
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5.2 A Multimodal Blind-Source-Separation Framework for
fNIRS

5.2.1 State of the Art and Aims

Following the trend of EEG, new miniaturized wearable fNIRS instruments such as
the presented M3BA, openNIRS, and others [MHW08; SGM+13; WLS+17] expand the
spectrum of fNIRS beyond static and toward ambulatory domains. In both, static and mobile
domains, the recovery of evoked brain activity from measured fNIRS signals is crucial, as
neural task-related activity is masked by various physiological and non-physiological compo-
nents which are often of equal or higher magnitude [SKM+14]. In fNIRS applications with
moving subjects, this gains further importance, as changing environmental and behavioral
conditions add significant non-stationarities [BMK+09].

Many methods in the fNIRS literature provide a remedy only for a subclass of movement
artifacts (MA) which is the optical decoupling between optodes and scalp that leads to instan-
taneous virtual variations of chromophore concentrations in the form of fast transient changes
and sudden baseline shifts (see also fig. 5.1, MA1). A second type that becomes increasingly
important with the rise of new mobile applications, is challenging to identify and has been
tackled only exceptionally so far: Motion-induced slow, non-instantaneous physiological
processes (see also fig. 5.1, MA2), that modulate partial blood pressure, scalp- and cerebral
blood flow and blood volume (CBF /CBV). We denote these as indirect movement artifacts
(IMA). The overall impact of such modulations can be observed in our experimental dataset
(see also Figure 4.4), where IMAs are repeatedly induced in a controlled way due to the
designed paradigm. Once data contamination is detected, trials are often entirely rejected
[SNK+17]. However, when there are few trials or many movements, this is not an option.

There is currently no gold standard for the extraction of the hemodynamic response from
masking components and the rejection of movement artifacts. Univariate approaches include
moving standard deviation and spline interpolation [SSM+10], wavelet filtering [MD12],
Kalman filtering [ICB+10], and correlation-based approaches [CBR10]. A promising class of
multivariate methods makes use of complementary signals; either by performing regression or
adaptive filtering with accelerometer signals [VNK+11] or in multi-distance (MD) approaches
using multiple source-detector separations [SB05; ZSG09] for the rejection of superficial
components, e.g., those originating from the scalp. Scholkmann et al. 2014 gave an overview
of univariate and multivariate methods [SKM+14], Brigadoi et al. 2014 compared multiple
univariate motion correction techniques [BCC+14].

The majority of approaches implicitly assume the presence of latent physiological or
non-physiological artefactual components, but manipulate signals in the channel domain.
In contrast to other neuroimaging fields, elaborate Blind-Source Separation (BSS) -based
methods are yet comparatively underrepresented in fNIRS, although they explicitly aim to
identify latent processes. While Principal Component Analysis (PCA) -based approaches
have successfully been applied to reduce superficial contributions from blood flow in static
scenarios [ZBF+05; FJH+06], more complex methods such as Independent Component
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Analysis (ICA) have mainly served as an alternative to averaging for the extraction of
typical fast or slow evoked responses from a high number of time-locked epochs [MWL+04;
MKB+08; AAS06] or channels (e.g., 212 channels in a DOT system [MWZ+09], 650
wavelengths in a broadband fNIRS [ST12]). When applied to remove extracerebral signals
[KMS+07], Virtanen et al. concluded that (fast)ICA typically performs worse or equal than
PCA [VNM09].

A variety of fNIRS signal characteristics pose serious challenges to many standard BSS
approaches, depending on the assumptions and statistics in the underlying model. Among
the challenges in the signals are non-instantaneous and non-constant coupling, and source
dependencies [Hup16]. As a consequence, to the best of our knowledge, there exists no
elaborate BSS framework for the general analysis and decomposition of single-trial fNIRS
data so far. Ideally, such a framework enables extraction and analysis of functionally distinct
components without affecting others — even when they share the same frequency band.
Also, by taking advantage of complementary multimodal signals, it could facilitate the
identification of artefactual processes that are otherwise hard to separate from the evoked
hemodynamic responses, such as many indirect movement artifacts.
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Figure 5.1: Schematic decomposition of fNIRS signal into components via BSS vs. channel-wise manipulation
in other approaches. Modulation of components due to optode shifts and decoupling (MA1), and due to
non-instantaneous motion induced physiological effects (MA2), compare also fNIRS signals in Figure 4.4.
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Aims

In this Section an approach toward such a general BSS framework is presented for the
analysis of fNIRS signals by combining

• Independent Component Analysis (ICA) methods that exploit both higher order
statistics (HOS) and sample dependency by using mutual information rate as a
unifying framework for source decomposition [AAF14; FPA+14; ALSC15],

• multimodality — here complementing fNIRS with accelerometer signals —
assuming the presence of pairs of shared processes, and

• Canonical-Correlation Analysis (CCA) with temporal embedding to robustly
extract the corresponding components.

By calculating the entropy rate of the sources using ICA-ERBM (see Section 5.1.2.2),
and therefore taking advantage of multiple statistical properties, we expect to achieve a
superior estimation of underlying sources in the presence of source dependence.
We apply the novel Blind Source Separation framework to Accelerometer-based Artifact
Rejection and Detection (BLISSA2RD), tackling the challenge of indirect movement
artifacts in a multimodal approach and also point out common challenges and possible
solutions on the way. We use the unique dataset from Chapter 4 for quantitative and
qualitative evaluation of the proposed framework.

5.2.2 fNIRS Signal Components
When performing BSS to extract underlying processes from fNIRS signals, a classifica-

tion of expected components can help with interpretation in the source domain (see Figure
5.2). For those of physiological origin, we adopt a classification scheme from Scholkmann
et al. [SKM+14] and differentiate between six non-stationary physiological components
C1−C6 by categorizing them into classes as

1. source (intracerebral vs. extracerebral),
2. stimulus/task relation (evoked vs. non-evoked) and
3. cause (neuronal vs. systemic).

From the perspective of artifact rejection, it makes sense to extend this classification to
components of non-physiological origin NC1−NC3, typically introduced in the acquisition
processes: environmental influences, instrumentation noise (usually stationary) and changes
in acquisition geometry (e.g., optical decoupling).

Both types of components Cx and NCx originate in different domains, i.e., that of phys-
iological chromophore concentrations and that of raw signal intensities, respectively. The
domains are non-linearly linked to each other by the modified Beer-Lambert Law (mBLL)
[DCZ+88]. Variations in NCx lead to virtual changes in the chromophore concentration
domain. Commonly, careful instrumentation design robustifies against NC1−NC2. Low-
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or band-pass filtering of fNIRS signals with a typical cut-off frequency around 0.2Hz is
common practice to minimize non-evoked components C4−C6. Then, univariate and multi-
variate methods [BCC+14; SKM+14] are used to mitigate systemic cerebral & extracerebral
components (C2,C3,C5,C6) and movement artifacts due to optode shifts (NC3).
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Figure 5.2: fNIRS signal components. HR: Heart Rate, RESP: Respiratory signals, MW: Mayer Waves, VLFO:
Very Low Frequency Oscillations, CBF/CBV Cerebral Blood Flow/Volume, PaCO2: Partial CO2 Pressure.

5.2.3 Challenges and Considerations
For (multimodal) BSS analysis, several challenging properties of fNIRS signals have to

be taken into account, some of which can be exemplified in the observation of combined raw
fNIRS intensity and accelerometer signals from the acquired dataset (see Figure 5.3):

• Single channels include both spatially specific and global unspecific components of
neuronal or systemic, cerebral or extracerebral origin. These are subject to

• Non-instantaneous, non-constant and non-linear coupling of the underlying physio-
logical processes. Global and local systemic signals are non-simultaneously mixed
into channels with spatially and behaviorally dependent delays and morphology as
they non-instantaneously disperse along the arteriole system and depend i.a. on rel-
ative orientation and movement speed of the head and body (e.g., the pulse wave or
blood-pooling effects).

• Non-simultaneous acquisition of channels in time division multiplexing schemes: in
BSS, samples of different channels are usually assumed to be observed simultaneously.

• Under-determined problem: Ideally, BSS approaches require an equal or higher number
of measured signals than latent factors. As in EEG, it is often questionable whether
this condition is fulfilled.

• Dependency between fNIRS sources: The assumption of independence in ICA collides
with the fact that several underlying physiological processes in the fNIRS signals are
not entirely separable and independent but form an interacting network of interlinked
statistically dependent processes [Hup16; SKM+14].
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Figure 5.3: Example of spatially dependent non-instantaneous and non-constant modulation of raw fNIRS
intensity signals (AF4/AF6) in motion and first three PCA components of simultaneously acquired accelerometer
signals on the head. Signals normalized and low-pass filtered with fc = 0.5Hz. Peak-to-peak delays: Amin|max =
1050|1280ms, Bmin|max = 120|780ms.

Due to these properties, even the most elaborate BSS approaches might not achieve
an ideal decomposition. From a Signal to Noise Ratio (SNR) perspective this is, however,
not required, as separation into component subsets of the same or similar categories (C1−
6,NC1−3) can already enable reliable artifact rejection and thus increase the overall SNR.
This is the approach of BLISSA2RD, which identifies and then rejects subsets of movement-
induced changes within the fNIRS signals, including but not limited to those due to blood-
pooling.

5.2.4 The Framework and BLISSA2RD Method

In this approach, the challenge of fNIRS signal decomposition is tackled by exploiting
the combined strengths of the linear methods PCA, ICA and CCA. In a first step, the
fNIRS signals are decomposed into mutually independent sources with ERBM-ICA, taking
sample dependency and HOS into account for better performance in the presence of source
dependence. Performing further analysis and processing steps in the source space then allows
to increase the distance between components of interest and components for manipulation and
rejection. Here, using CCA, target signals from an additional modality are exploited for the
identification and extraction of co-modulating components. To take care of non-instantaneous
coupling dynamics, the complementary target signal is temporally embedded. In the context
of direct and indirect movement artifact rejection, the application of accelerometer signals as
targets is a natural choice.

In the following, BLISSA2RD is described, with one possible implementation for the
rejection of (indirect) movement artifacts based on the proposed framework.
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BLISSA2RD: Blind Source Separation and Accelerometer based Artifact Rejection
and Detection To increase the SNR of cerebral neuronal components of interest in the
fNIRS signals, we make use of the ERBM backward model in conjunction with multimodality
and CCA by assuming that fNIRS and accelerometer datasets are related by pairs of shared
processes whose components BLISSA2RD aims to extract and reject.

Figure 5.4 gives an overview of the method, Figure 5.8 in the next Section complements
this description with typical signals observed in the different stages of BLISSA2RD.

In a preprocessing step, both the fNIRS data X and accelerometer data Z are channel-
wise normalized to zero mean and unit variance, then linearly detrended and low-pass filtered
with a cut-off frequency of fc = 0.5Hz. We use a comparably high cutoff frequency at this
stage for better separability in the following process and apply conventional processing steps,
including a low-pass with a lower cutoff after cleaning. The accelerometer signals, usually
acquired with sample rates higher than that of fNIRS, are then sub-sampled to a common
time base.

In the fNIRS domain, all wavelengths are pooled in X and ICA unmixing of the raw
fNIRS intensity signals is performed with ERBM (Figure 5.8 I). For this, a hyperparameter,
the filter length p has to be selected. Its value determines the number of samples included in
the whitening process of ERBM [FPA+14]. Its selection will not be further elaborated here –
a brief note is provided in Appendix B.2.

On the accelerometer data, Principal Component Analysis (PCA) is performed for
dimensionality reduction to Kz = 3 pairwise orthogonal Euclidean dimensions by selecting
the three components with highest eigenvalues. This step is redundant when only one 3D
accelerometer on the head was used for the acquisition of movements. By appending D
time-shifted copies of the original (PCA reduced) data Sz(τd), the three main movement
components are then temporally embedded into a higher dimensional space (Figure 5.8 II) to
take non-instantaneous coupling into account: S̃τ,z =

[
Sτ0 ,Sτ1 , ...,SτD

]⊤ ∈ ℜDKz×Tz .
For the time shifts τd = d ·∆ t, d ∈ {0,1, ...,D} the number of copies D and step width

∆ t have to be set. The selection of these parameters impacts the effectivity of the method
concerning the coupling between movement (accelerometer signals) and fNIRS components.
We can include apriori knowledge of the physiological signal for this purpose:

• Causality. Movement induced artefactual fNIRS components cannot precede the
accelerometer signals: time-embedding is necessary only in positive directions.

• The fNIRS frequency band of interest limits the size and number of time shifts that are
reasonable.

Using the time-embedded main movement components S̃τ,z and the factorized independent
fNIRS components Ŝx, Canonical Correlation Analysis is now performed (Figure 5.8 III),
finding projections Ux and Vz of both modalities that correlate maximally. On the fNIRS
side, we assume n projections ux,n ∈ ℜTx that exceed a canonical correlation threshold to be
artefactual components caused by movements. Applying of Theorem 1 in [HMG+14], these
are then projected back by the means of

ACCA
x = Cov(Ŝx)W

CCA
x Cov(Ux)

−1 (5.10)
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and subtracted from the independent fNIRS sources (Figure 5.8 IV). Finally, back-projection
of the cleaned fNIRS sources into the original intensity signal domain and reversing the nor-
malization yields the raw fNIRS signals that are now cleaned from (time-delayed) processes
correlating with movement signals (Figure 5.8 V).
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Figure 5.4: BLISSA3RD Method Overview. (I) ICA decomposition step, (II) temporal embedding of principal
accelerometer components, (III) identifying shared processes with CCA, (IV) estimating artefactual components
in the ERBM source space, (V) cleaned signal.

5.2.5 Validation
A general challenge in the evaluation of motion artifact rejection techniques in fNIRS

signals is that the true hemodynamic response is unknown - and thus a ground truth is lacking
(compare [BCC+14]). Here, we present the methods and metrics employed for quantitative
evaluation based on statistical signal properties, target signals from multimodality, physiolog-
ical plausibility and simulations – and the corresponding results. The method is evaluated
on the 17× 120min dataset from the main workload study. As common preprocessing
step, channels are linearly detrended to remove slow drifts. Then, a 4th order zero-phase
Butterworth low-pass filter with fc1 = 0.5Hz is applied. BLISSA2RD artifact rejection is
always performed block-wise. Signal bandwidth is further reduced ( fc2 ∈ {0.2, 0.033Hz})
as a last common step. The statistical tests employed for significance are paired t-tests.
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5.2.5.1 Blind Source Separation of fNIRS signals: Real Data and Simulations

Independent Component Analysis of fNIRS The practical success of fNIRS BSS de-
pends on the quality of decomposition achieved by the applied ICA method. Unmixing
performance on the real-world and simulated data was investigated, applying ICA-ERBM,
ICA-EBM, Independent Vector Analysis [AAF14] and FastICA [Hyv99]. We focus here on
FastICA and ICA-ERBM. Quality in the real-world data was assessed visually with respect
to separability of components, using apriori knowledge about

(1) dependencies between time logged events, movement artifacts, and complementary
accelerometer signals and

(2) Morphology, smoothness, correlation and discriminability of commonly known phys-
iological components in fNIRS (see Section 5.2.2), i.e., effects of oscillatory processes like
Mayer waves, breathing and pulse waves.

Compared to all other methods, ERBM yielded superior fNIRS decomposition. Figure
5.5 depicts a typical example of 12 out of 18 sources decomposed with ERBM and fastICA
from the same set of real-world data.
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Sources were aligned by performing Bertsekas auction algorithm [Ber88] (one-sided,
fixed epsilon) in the normalized FFT domain. ERBM consistently yielded better discriminable
components, with respect to morphology, frequency content and physiological processes and
artifacts that are to be expected apriori. Including but not limited to ERBM, BSS decomposi-
tion of raw intensity signals consistently outperformed decomposition of signals previously
converted into physiological chromophore concentrations.

These qualitative results were quantitatively confirmed in a simplified approach to simu-
late fNIRS source characteristics. 7 processes were generated for t ∈ 0...100s, sampled at
fs = 8Hz (see Figure 5.6), representing S1) Breathing, S2) Heart rate, S3) Mayer waves, S4)
Evoked responses, S5) White random gaussian noise, S6) Movement artifacts, S7) Dependent
evoked processes). Appendix B.3 provides additional details on the signal generation.
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Two pairs of sources are statistically dependent: S1 and S2 are weakly correlated (< 0.1)
and S4 and S7 are moderately correlated (µ ±σ = 0.39±0.23, see also Figure 5.7 B. While
sources S1 −S4 remain constant, S5 −S7 were newly generated in each iteration. Observa-
tions were generated with a constant, arbitrary mixing matrix A and performed subsequent
unmixing with ERBM and fastICA. Estimated sources from each method were aligned to
true sources using Bertsekas auction algorithm [Ber88] in the normalized FFT domain. In the
following, the focus of interest is on the dependent target sources S4 and S7, which represent
the evoked responses.

To quantify unmixing performance, two metrics were investigated: Intersymbol interfer-
ence (ISI) [Mac93; EK04] as a global metric, and the correlation between aligned estimated
and true sources: Corr(Ŝi,Si) | i ∈ {4,7}. Simulations were repeated N = 1000 times. To
better differentiate the ISI results, convergence / stability of the unmixing performance was
assessed: Let G = WA with W the estimated demixing matrix and A the true mixing
matrix. The unmixing is considered stable, if the locations of the largest squared elements
in any two rows of G are different. Using this definition, ERBM unmixing yielded 59 and
fastICA yielded 290 unstable results out of 1000, where in 87 out of 290 cases fastICA did
not converge to the correct number of 7 target sources. Figure 5.6 depicts exemplary signals
from the simulations, Figure 5.7 A shows the resulting correlation and ISI performance
measures over all iterations.

For target source S4, ERBM yielded estimates that correlate with the true signal on
average (µ ±σ ) with 0.97± 0.04, fastICA yielded 0.93± 0.10. For the dependent target
source S7, ERBM yielded estimates that correlate with 0.92±0.17, where fastICA yielded
corresponding estimates with 0.72± 0.19. Across all other sources, the correlation is on
average 0.98±0.01 and 0.96±0.03 for ERBM and fastICA respectively. ISI analysis (Fig-
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ure 5.7 C) yielded an average (µ±σ ) ISI of 0.042±0.012 in ERBM and 0.095±0.033 in
fastICA for all decompositions. When only investigating unstable decompositions, ISI was
found to be 0.045±0.014 and 0.120±0.033 respectively.

Due to the use of both HOS and sample dependence, ERBM outperforms fastICA signifi-
cantly in all metrics (p ≪ 0.001) in the presence of source-dependence and generally yields
smoother results, confirming the observations from real-world fNIRS data as exemplified in
Figure 5.5.
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Exploiting Multimodality: BLISSA2RD Signals Complementing the formal description
of the multimodal BLISSA2RD approach in Figure 5.4, Figure 5.8 exemplifies typical
signals observed in the different processing steps and domains of the method, qualitatively
confirming the theoretical approach.

It illustrates amongst others that

• ERBM components are modulated by movements to different degrees - displayed
before and after CCA artifact rejection step (5.8 I).

• Temporal embedding of a principal accelerometer component (τD with D ∈ {0, ...,5})
helps to alleviate non-instantaneous coupling (5.8 II).

• CCA successfully extracts shared processes from the ERBM sources and temporally
embedded principal accelerometer components with high canonical correlation (5.8
III).

• Signals before vs. after cleaning differ significantly in both the intensity and chro-
mophore domain (5.8 V).
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Figure 5.8: Typical BLISSA2RD signals. Left side: 160s time window, right side zoomed in at 75−110s. Raw
intensities of channel AF4 (upper left) and 4 exemplary sources after ERBM decomposition before and after
cleaning (I). Time embedded 1st principal accelerometer component with τ ∈ {0, ...1.8s} vs. raw signal (II) and
first two resulting projections from CCA (III). Raw signals (lower left) and signals converted to chromophore
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5.2.5.2 1st and 2nd order Statistics: Hemodynamic Artifacts and SNR

Although the ground truth is unknown, essential features of hemodynamic response func-
tions are by now well understood and typically stable. Commonly, averages are calculated,
and the variability between single trials is assumed to be caused by the non-evoked processes
of both systemic origin and motion artifacts. Ideally, the evoked neuronal response in a single
subject should be stationary across rounds of the same cognitive task. In contrast, when
averaging across many trials with constant movement conditions (here selected tile position),
the induced hemodynamic motion artifacts should be stationary to a high degree. Under this
assumption, 1st and 2nd order statistics are being used for investigation of average artifacts
and SNR.

Average Artifacts Over the course of the experiment with 12 blocks × 7 rounds, each
participant performed approximately 930 time-logged, randomly distributed button presses.
This allows the calculation of average induced hemodynamic artifacts for each end-position
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in all channels, both within and across subjects. For this purpose, we segment the fNIRS
signals into epochs of ±3s around each button-press event. On the basis of approximately
113 epochs each, the averaged hemodynamic artifacts are then calculated for HbO/HbR in
each movement condition, channel, and subject, a total of 2×8×9×17 = 2448. This is done
both for the original data and data cleaned with BLISSA2RD. As the average artifact-free
signal is expected to be constant and close to zero, the peak to peak amplitude App and the
standard deviation of the average signal across time σ̄ = std(µ(t)) in each channel are used
to quantify average artifacts in each position before and after cleaning.
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Figure 5.9: Grand average hemodynamic artifacts and statistics. (A) Average signals for each button position
in original data and data processed with BLISSA2RD of selected channels AF3, Fpz, AF4. Scatter plots of
peak to peak amplitudes App (B) and standard deviations σ µ (C) of the average movement artifacts in each
channel for each subject and position. subscript "o" (y-axis): original data, subscript "c" (x-axis): cleaned data.
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Figure 5.9 A depicts the grand average hemodynamic artifacts in three exemplary chan-
nels AF3, Fpz and AF4 for all positions of the experiment and both the original and cleaned
data. Average movement artifacts were each calculated from a total number of 1920 epochs
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across all subjects. In the unprocessed data, significant artifacts can be observed for all
positions and channels (min. 0.2 µMolpp in HbO). Events where the participants stooped
down (pos. 4-6) go along with largest changes (up to 3 µMolpp in HbO, up to 0.8 µMolpp
in HbR in Fpz). Artifact morphologies differ between movement conditions but also be-
tween channels and often show an undershoot followed by a more substantial overshoot in
HbO, where HbR can display a similar or inverse behavior. In positions above shoulder
height (1,2,8), HbO typically displays only undershoots. In contrast, the data cleaned with
BLISSA2RD, shows remaining average hemodynamic artifacts of max. 0.08 µMolpp in HbO
and < 0.01 µMolpp in HbR across all channels and positions, an attenuation of up to two
orders of magnitude.

Scatter-plots in Figure 5.9 B & C depict the peak to peak amplitudes App
r / App

c and
standard deviations σ

µ
r / σ

µ
c of the average hemodynamic artifact in single subjects, channels

and movement positions for original (o) vs. cleaned (c) data. Across all subjects, channels
and movement positions, application of BLISSA2RD reduces App and σ̄ of averaged hemo-
dynamic artifacts in HbO and HbR on average by more than one order of magnitude and up
to two orders of magnitude in subsets.

Within-Subject Standard Deviation and Signal to Noise Ratio of the Hemodynamic
Responses For each subject and experimental n-back condition (n ∈ {1,2,3}), the signals
are segmented into Pn = 12 epochs using the first 90s of each round. The same metric
denoted “within-subject standard deviation” in [BCC+14] is being used as a measure of
noise in the evoked physiological HbO / HbR signals: σ̄ is the mean of the variability of
hemodynamic responses across epochs Pn of the same condition. For this, it is assumed as
an approximation that the stationarity of the evoked physiological hemodynamic response
prevails, while the variability between single epochs of the same condition is predominantly
due to motion artifacts. The improvement of SNR achieved in each channel is furthermore
quantified in terms of

∆SNR = SNRclean −SNRorig = 20 log10

(
σ̄orig

σ̄clean

)
(5.11)

This way, noise and SNR improvement are determined in 17 × 3 × 9 × 2 (subj ×
conditions × ch × HbO/HbR) = 918 average hemodynamic responses, each from 12 ex-
perimental runs in the same n-back condition. Analysis of the within-subject standard
deviation σ̄ and SNR of original and processed physiological HbO / HbR responses during
n = 1,2,3-back tasks yielded the results summarized in Figure 5.10 and Table 5.2.

n-back ∆SNR/dB ∆SNR/dB ∆SNR/dB
fc = 0.5Hz fc = 0.2Hz fc = 0.033Hz

1 4.58±1.99 4.10±1.81 1.83±1.13
HbO 2 4.10±1.68 3.64±1.52 1.78±0.99

3 3.60±1.78 3.17±1.62 1.64±1.14
1 3.50±2.03 3.01±1.76 1.80±1.08

HbR 2 3.14±1.68 2.69±1.42 1.64±0.92
3 2.88±1.77 2.41±1.47 1.40±0.99

Table 5.2: µ ±σ SNR improvement across all subjects and channels
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Across conditions and subjects, for low-pass filtered signals with fc = 0.2Hz, the within-
subject standard deviation σ̄ of the original signal is reduced on average by a factor 1.5
for HbO and a factor 1.3 for HbR through processing with BLISSA2RD. The SNR in each
channel is improved on average by 3.64dB for HbO and by 2.70dB for HbR. For signals
slower than 30s with fc = 0.033Hz, the improvement is on average still 1.75dB and 1.61dB
respectively. As before, in channel and subject subsets, reduction of σ̄ / SNR improvement
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are significantly higher up to factors around 3 / 10dB. To complement these findings, Figure
5.10 C shows average hemodynamic signals at position AF6 across whole 90s epochs of
n = 1−3 conditions in 4 exemplary subjects. Figure C.3 in Appendix C.3 depicts average
cleaned slow signals in all channels from three more participants. Generally, the higher n, the
higher the average HbO increase / HbR decrease over the time-course of each round. Within
individuals, variability in average responses of the signals across trials is distinctly higher in
orginal compared to cleaned data.

5.2.5.3 Correlation Metrics in the Intensity Domain

The time embedding parameter τ and the co-modulation between raw intensity fNIRS
channels/components and accelerometer target signals were investigated using the following
correlation-based metrics:

1. By Cross-correlation analysis in the channel domain, the optimal time lag and corre-
sponding Pearson correlation coefficient ρ between fNIRS intensity and accelerometer
signals in the channel domain are investigated. We do this for all subjects, all blocks
and all combinations of original/cleaned fNIRS signals and first three accelerometer
components, a total of approx. 17×12×18×3 = 11000.

2. Canonical correlation in BLISSA2RD: conventional (cross) correlation analysis cannot
take the time-embedding, independent source decomposition, and CCA projection
into account. We investigate the canonical correlation coefficients that result from
the BLISSA2RD CCA step, which projects decomposed fNIRS sources ŜERBM

x and
principal accelerometer components ŜPCA

z (τd) into canonical space. We investigate
all time embedding window lengths τd ∈ {0, ...,4.2s}, subjects and blocks, a total of
11×17×12 = 2244 coefficients.

Figure 5.11 A shows scatter plots of the Pearson correlation coefficients ρo, ρc at the
individual optimal lag between each fNIRS channel and first three principal accelerometer
components (PaC) for original and cleaned data with τ ∈ {0− 0.96s}. For conventional
fNIRS signals ( fc = 0.2Hz), the average correlation of fNIRS channels with the first PaC is
0.38±0.22 vs. 0.09±0.08 for original and cleaned data respectively and differs significantly
(p ≪ 0.001). For the second and third PaC, no significant statistical differences can be
observed. Similarly, for slow fNIRS and movement signals with periods lower than 30s,
( fc = 0.033Hz) a less distinct but significant difference can be observed (0.32±0.21 raw vs.
0.21±0.16, p ≪ 0.001) and none for the second and third PaC.

The histogram resulting from pooling all optimal time shifts found by cross-correlation
analysis on single-channels of the original data (Figure 5.11 B) reveals the majority of opti-
mal lags between 0−1.2s, peaking around 0.6s with an average correlation of 0.41±0.24
at the peak.

Figure 5.11 C shows average canonical correlation coefficients from the CCA step per-
formed within BLISSA2RD for different temporal embedding window sizes τD=0−10 =
0−4.2s (compare Figure 5.4, and 5.8 step III). Coefficients correspond to identified pairs
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of shared components in original fNIRS and accelerometer signals. Across all participants
and blocks, the average canonical correlation coefficients increase for greater τ , and saturate
toward longer time windows, where the most substantial increase can be observed for embed-
ding windows that cover 0−1.8s, coinciding with the findings from the cross-correlation
analysis. On average, the first three pairs of extracted shared components show a strong and
moderate- to strong canonical correlation of 0.85± 0.06, 0.71± 0.05 and 0.60± 0.05 for
τ ≥ 1.2s.
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Figure 5.11: Correlation metrics. (A) Pearson correlation coefficients between channels of all subjects and first
three principal accelerometer components for raw vs. cleaned data. (B) Histogram of optimal cross-correlation
lags between raw fNIRS signals and accelerometer signals. (C) Average canonical correlation coefficients of
shared components in fNIRS and accelerometer signals, extracted in BLISSA2RD CCA step III), across all
subjects and blocks

5.2.6 Discussion
An effective BSS framework and its implementation in the BLISSA2RD method for

fNIRS signal decomposition, analysis, and movement artifact rejection were proposed. In
the following, key findings and their implications are discussed.

fNIRS Blind Source Separation ICA unmixing based on Entropy Rate Bound Minimiza-
tion performed favorably over other tested ICA approaches that do not include both sample
dependency and higher-order statistics. All methods performed better when applied to raw
intensity signals compared to chromophores. Being linked by the logarithmic modified
Beer-Lambert Law (mBLL) this is consistent with expectations in a linear mixing model. For
a discussion of linear mixing and non-linearities, see also [DBM+13]. When decomposing
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intensity signals, it is essential to note implications for the interpretation of extracted latent
factors and their link to the chromophore domain.

The application of BSS is motivated with the separation of fNIRS signals into components
that reflect independent physiological and non-physiological processes (e.g., Mayer Waves,
respiration, pulse waves, motion and other systemic artifacts). However, the unmixing itself
does not yield sources that can be interpreted physiologically without caution as such (see
[HMG+14]). In contrast, they are of information-theoretical origin and should be projected
back to channel space, i.e., by means of Equation 5.10 (see also Figure 5.4 E), for reliable
physiological interpretation. From there, conversion from intensities to chromophores can be
performed conventionally with the mBLL.

Time embedding against non-instantaneous coupling By integrating time- embedded
multimodal CCA into the proposed BSS framework, non-instantaneous and non-constant
coupling between shared latent processes within fNIRS and accelerometer signals was
successfully tackled. Cross-correlation analysis yielded significant delays between fNIRS
and movement signals of up to 1.8s. The canonical correlation coefficients confirm these
findings, showing the most substantial increase within time-embedding windows τ ≤ 1.8s.
Overall, this emphasizes the importance of considering (co-)modulation delays in fNIRS
signals.

Artifact rejection The manifestation of indirect movement artifacts varies strongly be-
tween subjects, movement conditions, and particular channels. BLISSA2RD consistently
performed well across all factors: On average/ in subsets, it attenuated movement artifacts by
one/ up to two orders of magnitude, reduced the average within-subject standard deviation
σ̄ of evoked hemodynamic responses by a factor of 1.3/ up to 3, and increased its SNR by
3.64/2.70dB (HbO/HbR) up to 10dB. Also for signals far slower than the semi-periodic
movements ( fc < 0.033Hz) improvement could be observed (1.75/1.61dB). Behavioral
changes in body posture (e.g., a tilt of the head) and movement stand to reason to be the cause
and should be considered in approaches for rejection of indirect physiological movement
artifacts. The impact of BLISSA2RD artifact rejection on classification performance will be
addressed in the next section.
Investigating the interaction between fNIRS and movement signals, cross-correlation between
optimally time-lagged signals yielded only weak coefficients, noteworthy only for the first
principal accelerometer component with (ρ = 0.38) on average. In contrast, BLISSA2RD
extracted shared components in fNIRS and movement signals that consistently yielded strong
canonical correlations (up to 0.85) for three pairs of latent processes. As it can be assumed
that at least three Euclidean degrees of freedom in movement have a considerable impact on
fNIRS signals, we consider this a good indicator of success. Although powerful statistical
analysis tools come at the cost of higher computational complexity, the average runtime for
cleaning a block of 10min data (9×2 channels) in 2230 runs was still only 14s on an intel
i7vPro notebook with Mathworks Matlab2017b.

Limitations BSS approaches require a minimum number of acquired channels to allow
for stable decomposition into latent factors. For this reason, the proposed framework is not
suitable in settings with very-low channel counts let alone single-channels. Single-channel



5.2 A Multimodal Blind-Source-Separation Framework for fNIRS 95

artifacts, i.e., individual optode decoupling or shifts, will not reliably be rejected. These
can, however, also be minimized by lightweight instrumentation, headset and optode fixation
designs and were observed only exceptionally in our M3BA-based headset. Analysis was
performed on data recorded with a yet comparably low number of 9 optode pairs, which
was found to be sufficient for the approach. Further investigation of the ICA decomposition
performance and component stability in real-world data could take bootstrapping-based
resampling approaches into account, as proposed by [MZK+02].

Due to the inherent multimodality of BLISSA2RD, rigidly coupled accelerometer signals
are a requirement that is currently not supported by the majority of commercial instruments.
This may be a true limitation when not using M3BA or alike. Similar to trends in wearable
EEG, however, it is expectable that wearable fNIRS will include accelerometers by default
in the near future. Furthermore, the extension of any instrument with simple stand-alone
accelerometer modules is fairly easily possible.

The endeavor to further establish the novel multimodal BLISSA2RD framework will
benefit from additional comparative evaluation with existing univariate methods [BCC+14;
AH09], however, a straight-forward comparison is challenging. A way to create ground
truths for method evaluation and comparison is to add prototypical evoked responses onto
physiological baseline (resting state) signals. Metrics such as the area under the curve after
artifact rejection can then be investigated. Transferring this approach to fNIRS in motion
will require dedicated baseline measurements under realistic movement conditions. As
the current experimental data only provides motionless resting periods, future work will
have to incorporate such dedicated baseline measurements. For further investigation of the
method’s capability to identify and reject slow movement induced physiological components
beyond conventional movement artifacts (e.g., optode shifts), a similar approach could aim at
adding artificial channel specific movement induced fNIRS components to baseline signals,
when corresponding prototypical movement signals are also provided. However, for the
generation of realistic data for this purpose, there exists no model yet that describes the
complex interactions between both, movement signals and induced fNIRS signal components
sufficiently well.

Finally, adaptation of BLISSA2RD towards real-time applications goes beyond the scope
of this thesis and has not been investigated. Therefore, at this point, it remains unclear
whether multimodal accelerometer-based adaptive filtering approaches would yield a better
trade-off between movement artifact rejection and real-time capability.

Outlook and further applications The presented BSS framework is not limited to the
analysis and rejection of artifacts and can easily be adapted to other purposes by exchanging
methods and target signals, as the processing stages are modular. Possible expansions are:
(1) performing ICA decomposition with TDSEP [ZMN+00; ZM98] to exploit time structure
(pronounced autocorrelation) in the signals, e.g., when targeting oscillatory components.
(2) Applying Independent Vector Analysis (IVA) [AAF14], the multivariate extension of
ICA, which exploits dependencies between components as well as datasets.
It can be expected, that the performance of BLISSA2RD can be further improved by ex-
panding the degrees of freedom of provided movement target signals, e.g., by a combined
accelerometer and gyroscope sensor. While accelerometer data as target signals for removal
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of motion artifacts are a natural choice, other signals can be used for identification and analy-
sis of co-modulating sources in the fNIRS time-domain. For target signals in the frequency
domain, e.g., EEG band-power features, other methods such as those of the SPoC family
[DBS+15; DBM+13] are predestined.

The novel BSS framework presented can serve as an introduction to a new type of
multivariate methods for the BSS analysis of fNIRS signals and as a blueprint for artifact
rejection in complex environments beyond the applied paradigm. In combining strengths
with existing complementary methods such as multi-distance approaches, we see a promising
way to achieve the robustness desired for new medical and research-oriented ambulatory
neuroimaging applications.

Summary

In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from
real-world scenarios, artifact rejection is essential, but currently there exists no
gold-standard. Although a plenitude of methodological approaches implicitly assume
the presence of latent processes in the signal, elaborate Blind-Source-Separation
methods have rarely been applied so far due to challenging fNIRS characteristics,
e.g., non-instantaneous and non-constant coupling and presence of component
dependencies.

In this Section, a novel suitable BSS framework was presented that tackles these
issues by incorporating (1) Independent Component Analysis methods that exploit
both higher order statistics and sample dependency, (2) multimodality, i.e., fNIRS
with accelerometer signals, and (3) Canonical-Correlation Analysis with temporal
embedding. This enables advanced analysis of signal components and rejection of
motion-induced physiological hemodynamic artifacts that would otherwise be hard to
identify.

A method for Blind Source Separation and Accelerometer based Artifact Rejection
and Detection (BLISSA2RD) was implemented and evaluated on the novel multimodal
dataset with freely moving subjects. We made use of conventional metrics based on 1st

and 2nd order statistics, Signal-to-Noise Ratio, and simulations. Across 17 subjects,
the method rejects movement induced artifacts by up to 2 orders of magnitude and
improves the SNR of hemodynamic responses in single channels by up to 10dB, and on
average by 3.64/2.70dB (HbO / HbR). Simulations showed improved decomposition
performance in the presence of source dependence, as is the case in fNIRS, when
taking both higher order statistics and sample dependence into account for ICA. The
framework and methods presented can serve as an introduction to a new type of multi-
variate methods for the BSS analysis of fNIRS signals and as a blueprint for artifact
rejection in complex environments beyond the applied paradigm. In the next Section,
BLISSA2RD will be put to practice for artifact rejection in multimodal workload
classification and its impact on classification performance will be investigated.
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5.3 Workload in Freely Moving Operators: A Feasibility
Study

In this last Section, based on publication [vMB+18], all previous contributions are linked:
The result is a first feasibility study on the workload classification of moving operators under
comparatively challenging and realistic experimental conditions.

5.3.1 State of the Art and Aims
The assessment of mental workload (MWL) using neurophysiological markers is a central

feature of research and development in fields such as Neuroergonomics, as outlined in Section
4.2. Consequently, an increasing number of studies have investigated its classification using
EEG [SKDG+16], fNIRS [HHF+14; AOI+13; ASB+12], or more recently, hybrid EEG-
fNIRS [AGO17; LAS17; CBE12]. While most EEG and fNIRS studies are motivated by
real-life applications, only a minority is specifically designed for them [SKDG+16; AOI+13;
ASB+12], and the majority requires participants to sit and move as little as possible. However,
first studies prove the feasibility of non-invasive neurophysiological measurements outside
of the laboratory [BAD+16; MTD+08], for instance EEG in users walking naturally outdoors
[DME+12], in car driving [HKK+14; KDB+07] and fNIRS in outdoor bicycling [PKK+14].

The success of such endeavors depends both on the availability and suitability of minia-
turized wearable instrumentation, and the subsequent processing approaches that have to
face challenging signals. In real-world scenarios, movements are frequent and lead to high
contamination with artifacts. Furthermore, the number of channels available for biosignal
acquisition is usually limited. These conditions render a considerable number of approaches
useless and are particularly of concern when neurophysiological signals should not be ex-
ploited together with artifacts in an undifferentiated manner. In fNIRS-based MWL studies
with sitting participants, systemic physiological artifacts are typically rejected by low-pass
filtering, and optode shifts - if present - are removed by application of methods as discussed
in Section 5.2.1. An advantageous property is the immunity of fNIRS to electro-physiological
artifacts, e.g., eye movements. In contrast, EEG studies have to take great care to minimize
EOG interference [SKDG+16], as these artifacts can carry significant task-discriminative
information and overlap with the alpha- and theta- bands that are typically of interest.

Aims

The aim of this Section is a first exploration of the single trial classification of mental
workload based on neurophysiological markers under challenging conditions, namely
a low number of channels and many movement artifacts. While the given conditions
will limit classification accuracies and methodological approaches, we still try to
separate neurophysiological signals from other signals by rejecting artifacts as strictly
as possible. Following up on the previous Section, we will first investigate the impact of
BLISSA2RD artifact rejection on fNIRS classification performance and then integrate
fNIRS and EEG in a hybrid classification approach.
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5.3.2 Challenges
In the analysis and classification of brain states based on machine learning methods

[BTL+08; BLT+11; LBD+11], a common problem is the exploitation of movement artifacts
and task-related changes of non-neuronal origin by classification methods, leading to im-
proved discriminability. This is a known pitfall, especially in BCI [BAD+16; MTD+08].
Aside from adressing the general challenges in multimodal signal processing (Section 5.1.3),
the outlined endeavor has to therefore focus in particular on the extraction of neurophysiolog-
ical features from noisy background and only few channels, aiming to classify task-related
signals of neuronal origin while minimizing the impact of those from non-neuronal origin.
The experimental paradigm aims to minimize task-related information in movement artifacts
by randomization and constant movement conditions across n-back tasks. Nevertheless, be-
havioral changes that can be linked to task-execution and performance, have to be considered.
Among them are changes in speed and frequency of eye movements and blinking, uncon-
scious teeth-clenching or change in face- and neck-muscle tension, and changes in posture,
reaction times and -speed. The following signal processing pipelines aim to minimize such
influences and include steps that may sacrifice classification accuracy for better separability
between neural and non-neuronal signals, wherever necessary.

5.3.3 Signal Analysis Pipelines
We compare classification performances exploiting EEG, EOG, fNIRS and ACCEL

information of all 17 participants of the main study from Chapter 4 with 12 rounds per
n=1,2,3-back and Resting condition and 48 for 0-back. From the corresponding rounds,
we extract epochs eRest,1,2,3 ∈ {1, ...,12} and e0 ∈ {1, ...,48} of different length: Short
epochs contain the first 30s, long epochs the first 90s of a round after the instruction period,
respectively. While the former allow classification against the resting state and 0-back
baseline, both of which were limited to 30/36s periods by protocol, the latter allow only
the investigation of 1,2,3-back conditions against each other but provide more realistic time
spans of task involvement. No acquired trials, rounds or blocks were rejected. Filters applied
are zero-phase IIR filters with butterworth characteristic (ZP-B). In addition to the focus
on neurophysiological features here, the grand average results of an EDA signal analysis
are provided in Figure C.1 in Appendix C.1. Including the considerations in Section 4.3.2,
EEG and fNIRS feature selection and preprocessing is based on the current understanding
of cognitive workload-related neurophysiology and will be described in the following. The
overall signal processing pipeline is depicted in Figure 5.12. The statistical tests employed
are paired t-tests.

5.3.3.1 fNIRS Preprocessing and Feature Extraction

I) we investigate the impact of BLISSA2RD artifact rejection on fNIRS classification
performance on short epochs: We compare unimodal conventionally filtered (< 0.2Hz) and
slow (< 0.033Hz) fNIRS signals for both the original and cleaned data.

II) for the comparison to and fusion with other modalities, we perform analysis on both
short and long epochs using the cleaned data and only slow signals.
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Figure 5.12: Pipeline for uni- and multimodal workload classification. Feature fusion before rLDA.

Preprocessing: Raw fNIRS Signals are linearly detrended for each experimental block
and then low-pass filtered with fc1 = 0.5Hz (4th order ZP-B ). BLISSA2RD artifact rejection
is performed block-wise with ERBM-ICA whitening filter parameter p = 15 and time
embedding parameter τD=0−5 ∈ {0,0.36, ...,1.8s} to yield cleaned signals. We do not
perform dedicated artifact rejection of optode shifts, as these were observed extremely
rarely in the signals acquired with the lightweight M3BA headset. Raw intensities are then
transformed into optical densities, lowpass-filtered with fc2 ∈ {0.2,0.033Hz} (4th order
ZP-B) and converted to HbO/HbR concentrations by means of the modified Beer-Lambert
Law implemented in the HomER toolbox [HDF+09]. We use the 6s instruction period before
each epoch for baseline calculation in the mBLL. For the comparison and fusion with other
modalities, we only use fc2 = 0.03Hz low pass filtered signals.

Feature extraction: For each channel, we extract the difference between maximum and
minimum HbO/HbR activation, and their averages. This baseline-referred average and
activation amplitude has been adopted in many mental activation studies [LAS17; ASB+12;
FMS+12; CWM+04] and yields a total of 9ch×2×2 = 36 features per epoch.



100 Multimodal Analysis

5.3.3.2 EEG Preprocessing and Feature Extraction

Preprocessing: EEG data is bandpass filtered to 0.1−40Hz, employing a 3rd order ZP-B
filter, and subsequently down-sampled to 100Hz. For the suppression of motion- and eye
movement artifacts, a variety of EOG rejection methods were investigated for their suitability
to low-channel data, including common PCA-based approaches and the weights-adjusted
variant of second order blind identification (WASOBI) [GHDCA+06]. However, all methods
showed residual discriminative EOG information; BSS based methods are likely to have
underperformed due to the low number of channels available. Employing the strictest remedy,
we therefore remove EOG signals by means of a regression approach as described in detail
in [PSG+05], sacrificing 4 out of 9 channels. Following the same procedure as employed
by Schultze-Kraft et al. [SKDG+16], we use the difference between electrodes F7 and F10
and the average of electrodes F p1 and F p2 to estimate horizontal and vertical EOG activity
respectively and excluded all four electrodes in the subsequent EEG analysis. As EMG
activity is most strongly manifested above 20Hz [WPF+07], the contamination by muscle
activity is minimized by selecting features from frequency bands only below 14Hz.

Feature extraction: As motivated in Section 4.3.2, we focus the EEG feature extraction on
spatial theta (4−7.5Hz) and alpha (8−13Hz) activity. The 5-channel EEG data is band-pass
filtered (4th order ZP-B) for each band f ∈ {θ ,α}, yielding two sets X f . For adjacent 30s
windows d ∈ {1,2,3} within each epoch e, we extract spatial filters w f for each frequency
band, using the Common Spatial Patterns algorithm. From the extracted CSP filters, we apply
k ∈ {H1,H2,L1,L2}, the two with the largest and smallest absolute Eigenvalue, respectively.
On the thus obtained 2×2 spatially filtered components per band, we calculate Log Variance
features according to Ff ,k(e,d) = log

(
Var
(
wk

f
⊤
X f (e,d)

))
. This yields 8 features for short

epochs with only one window and 24 for long epochs with three windows.
To investigate the added value of the separated EOG, we extract power spectral density

(PSD) features in the band of 1−5Hz with 1Hz bins from the two estimated horizontal and
vertical EOG channels, yielding a total of 10 features per epoch.

5.3.3.3 Classification and Validation

Classification of n-back conditions is performed in a leave one block out cross-validation
using regularized LDA (rLDA) with automatic shrinkage parameter selection [SS05; LW04;
LBD+11]. The applied sampling in a leave one block out manner ensures independence
between cross-validation blocks, which equal the 12 experimental blocks. Classifier accura-
cies are computed class-wise normalized. In the investigation of I) BLISS2RD impact, we
focus on short epochs and classification against the resting state and baseline 0-back task,
and perform binary as well as multi-class classification. In II), the comparative unimodal
and hybrid cases, as CSP is only defined for binary problems, we focus on binary 1vs1 and
1vsmany classification of short as well as long epochs. In hybrid cases, we perform early
fusion, classifying features of different modalities jointly with rLDA. For further validation,
we additionally perform the identical classification and processing pipeline, skipping only
BLISSA2RD and EOG-regression based artifact removal.
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5.3.4 Results

5.3.4.1 I) Impacts of BLISSA2RD on fNIRS Classification Performance

The impact of BLISS2ARD artifact rejection on classification performance is summarized
in Figure 5.13 and Table 5.3 for short epochs low-pass filtered with fc ∈ {0.2,0.033Hz}.

For all binary condition sets “0 vs 1/2/3” and “Rest vs 0/1/2/3”, classification yielded
overall average performances of µn

raw > 81% and µn
clean > 76.2%. 3, 4 and 5 classes were

discriminated with accuracies of at least µn
raw > 48.1% and µn

clean > 41.9% in the 5-class case.
While the performance does not significantly depend on signal bandwidths reduced by fc,
removal of movement artifacts leads to a distinct and significant drop in average classification
accuracy across subjects and conditions (∆ µ7×2cls = 4.9%, ∆ µ3cls = 8%, ∆ µ4cls = 5.2%,
∆ µ5cls = 7.1%; p2cls ≪ 0.001, p3,4,5cls < 0.001).
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Figure 5.13: n-back workload classification in raw vs. cleaned signals. Average classification performance per
subject for fc = 0.2Hz (dark blue crosses) / fc = 0.03Hz (light blue circles). Red: Average across subjects.

Classes Accuracy Raw µ±σ Accuracy Clean µ±σ Chance level ∆Raw-Clean
fc = 0.2 | 0.03Hz fc = 0.2 | 0.03Hz fc = 0.2 | 0.03Hz

Rest vs 0 81.1±08.1 | 75.8±06.7 68.1±11.0 | 72.6±10.3 50% 13.0 | 03.2
Rest vs 1 83.2±11.4 | 81.5±09.3 77.4±11.4 | 76.3±10.6 50% 05.8 | 05.2
Rest vs 2 85.0±08.4 | 85.3±11.7 81.2±15.8 | 82.7±11.5 50% 03.8 | 02.6
Rest vs 3 86.4±11.8 | 88.3±11.5 79.7±11.6 | 84.0±13.6 50% 02.4 | 04.3
0 vs 1 74.9±10.6 | 74.4±10.2 72.1±11.0 | 71.8±09.9 50% 02.8 | 02.6
0 vs 2 79.6±14.0 | 78.5±09.4 74.0±13.4 | 75.2±13.2 50% 04.4 | 03.3
0 vs 3 86.0±08.3 | 83.5±12.1 81.1±09.7 | 78.9±11.4 50% 04.9 | 04.7
Rest vs 1 vs 3 69.4±14.2 | 70.3±11.8 62.1±08.9 | 61.6±09.7 33% 07.3 | 08.7
0 vs 1 vs 2 vs 3 48.5±09.1 | 49.0±08.9 43.1±08.3 | 44.0±08.5 25% 05.4 | 05.0
Rest vs 0 vs 1 vs 2 vs 3 50.5±09.8 | 48.1±08.8 41.9±07.9 | 42.6±07.7 20% 08.6 | 05.5

Table 5.3: Average classification performances across subjects. Highlighted column: typical L vs. H classifica-
tion in literature, best performance. ∆Raw-Clean: Performance correction by artifact rejection in %.
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5.3.4.2 II) Unimodal and Multimodal Workload Classification

Results of the comparative classification of operator workload in motion with EEG,
fNIRS and hybrid combinations are summarized in Figure 5.14 and Table 5.4.
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Figure 5.14: Operator Workload Classification: Accuracies of single participants (dots) and mean across partic-
ipants. Unimodal classification: EOG, EEG and fNIRS. Hybrid classification: EEG+fNIRS, EEG+fNIRS+EOG
and EEG+fNIRS UC (no artifact rejection with BLISSA2RD and no regression-based EOG removal).

EEG + fNIRS EEG + fNIRS
Classes EOG EEG fNIRS EEG + fNIRS +EOG Uncleaned ∆Hybrid
0 vs 1 (30s) 62.2±12.8 61.3±12.3 71.6±09.0 73.7±07.2 72.0±10.4 76.2±07.5 2.1%
0 vs 2 (30s) 69.4±13.7 66.8±11.8 75.2±12.7 77.4±12.0 78.3±13.6 82.4±09.7 2.2%
0 vs 3 (30s) 75.4±13.2 71.6±09.4 79.1±11.7 82.9±11.6 85.0± 07.7 89.7±08.1 3.8%
Rest vs 3 (30s) 90.1±09.2 84.5±10.0 83.0±13.1 89.0±09.6 93.4±05.6 95.0±05.0 6.0%
1 vs 2+3 (30s) 56.8±12.7 53.5±08.5 59.0±12.2 60.3±08.1 56.7±11.8 60.0±07.5 1.3%
0 vs 1+2+3 (30s) 71.7±10.3 68.4±09.2 79.8±06.8 80.3±06.6 81.1±07.7 84.9±06.6 0.5%
1 vs 3 (90s) 75.6±15.1 69.3±10.4 82.0±12.0 81.5±10.2 81.4±14.0 84.4±11.3 -0.5%
1 vs 2+3 (90s) 69.1±14.5 65.9±8.7 76.6±14.5 76.7±10.3 77.2±10.5 79.6±08.9 0.1%

Table 5.4: Mean ± std classification performances across subjects in different modalities and combinations.
∆Hybrid: Improvement of hybrid EEG+fNIRS classification over max(EEG,fNIRS). Highlighted rows/columns:
Most relevant in application-oriented scenarios.

Overall, several trends can be observed: Unimodal fNIRS and EOG-based classification
generally outperform EEG-based classification, and accuracies of all single and hybrid ap-
proaches increase with greater difference between workload levels. EEG notably improves
classification of fNIRS in hybrid EEG+fNIRS approaches for short epochs (0.5%< ∆ < 6%)
but not for long epochs. Short epochs enable a good discrimination between baseline 0-back
and resting tasks against increasing 1,2,3-back workload levels, but do not allow a good
differentiation between higher workload levels. In contrast, those can be discriminated
well in longer epochs, where EEG and EOG-PSD features however do not notably improve
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unimodal fNIRS classification in a hybrid approach. Toward application-oriented scenarios,
the following cases are of special interest:

(1) The general detection of any shift from a baseline toward increased cognitive perfor-
mance (0 vs 1+2+3-back) within short 30s windows. For this case, average accuracies of
68.4% (EEG) 79.8% (fNIRS) and 80.3% (EEG+fNIRS) were achieved.

(2) The Differentiation between moderate and high workload (1 vs 3-back) within longer
90s windows. Here, we achieve average accuracies of 69.3% (EEG) 82.0% (fNIRS) and
81.5% (EEG+fNIRS).

Across both conditions, classification was significantly better than chance level for 67.7%
(EEG), 91.2% (fNIRS) and 94.1% (EEG+fNIRS) of all participants (one-sided binomial,
α = 0.05). While unimodal classification of EOG outperforms EEG, including EOG features
to hybrid neurophysiological fNIRS+EEG features does not always provide an added value
(−3.6% < ∆ <+4.4%). Hybrid classification of features from uncleaned EEG and fNIRS
data (EEG+fNIRS UC, no artifact removal) outperforms all others consistently.

5.3.4.3 Observations from Validation
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Figure 5.15: A: Grand average R² values for mean HbO/HbR features. B: AUC and ∆AUC of the average α
and θ band power envelope time courses of the first CSP component in 0 (L) vs 1+2+3-back (H) discrimination
(30s) and corresponding time courses of two exemplary participants P12 and P14.

For further validation, the discriminative value of univariate fNIRS features in the context
of their corresponding channels was investigated in terms of their point biserial correlation
coefficient (r2-value). Working memory tasks have been shown to evoke cortical activation
in the dorsolateral and ventrolateral prefrontal cortex in many previous studies using PET
and fMRI ([SJK96; OML+05; RLJS+00]) and fNIRS [AOI+13; PBW+10; SES+08]. The
average r2 values across participants indicate consistency with these findings, showing higher
discriminability in mean activation over spatially well distinguishable fronto-lateral regions,
as exemplified for both 0 vs 1+2+3-back and 1 vs 3-back classification in Figure 5.15 A.
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In EEG, we investigated CSP components and scalp patterns calculated on the whole
dataset for each band f ∈ {α,θ}. As patterns of only 5 centered EEG channels offer
only limited explanatory power, we focus here on the respective CSP components with the
highest eigenvalue, projected on the epochs e of the segmented data: ŝe, f =w⊤

H1, fXe, f . We
investigated the corresponding power envelopes of the component’s time series, averaged over
all epochs of the same condition n: µenv

n, f =E
(

penv(ŝn
e, f )
)

. Single epoch power envelope time
courses were baseline-referenced to the end of each previous instruction period and low-pass
filtered to 0.1Hz with a 3rd order ZP-B before averaging. We then calculated the area under
the curve (AUC) of the average power envelopes for each band and condition, and the AUC
of the difference between high (H) and low (L) conditions (AUC∆ , f = AUC(µenv

H, f − µenv
L, f ).

Figure 5.15 B depicts results for the 0 vs 1+2+3-back discrimination task:
Average power envelopes develop over time. 11 out of 17 subjects show a positive

correlation of theta-band power with workload (see also 1st and 2nd quadrant of ∆AUC plot)
and 13 a negative correlation of alpha-band power with workload (2nd and 3rd quadrant of
∆AUC plot). 9 out of 17 subjects show both an increase in theta and a decrease in alpha with
increasing task load (2nd quadrant).

Additionally, exemplary CSP patterns and comparative classification accuracies for EEG
data with and without EOG removal are provided in Figures C.4 & C.5 in Appendix C.4.

5.3.5 Discussion
Despite the challenging experimental conditions that include a multisensory scenario, a

high number of movements and a low number of channels, we successfully discriminated
different workload levels across freely moving operators. Within short epochs, deviations
from resting and baseline tasks were discriminated best by the hybrid EEG+fNIRS approach
– on average 73.7% (0 vs 1-back) < 80.3% (0 vs 1+2+3-back) < 89% (Rest vs 3-back). Con-
sidering the temporal complementarity of fast EEG signals to delayed, slower hemodynamic
responses in fNIRS, the average performance increase of +2.7% due to hybridization in
short epochs is in line with expectations. Within longer epochs, fNIRS performed best in
discriminating between moderate to high workload with an average 82% accuracy for 1
vs 3-back, and hybridization did not improve overall accuracy. However, it increased the
number of participants classified significantly above chance level to 16 out of 17, an increase
of 6%.

These results are comparable with those reported by other EEG-fNIRS-based n-back stud-
ies with sitting participants. In the classification of increased workload against a 0-back base-
line, average classification accuracies of up to 74.0/92.0/93.8% (fNIRS/EEG/Hybrid) using
19 fNIRS channels and 19 EEG channels [AGO17] and 65.6/79.2/83.1% (fNIRS/EEG/
Hybrid) using 28 EEG and 16 fNIRS channels [LAS17] were reported. In single fNIRS
mental arithmetic-based workload studies, average accuracies of 80.5% in 1 vs 3-back (8
fNIRS channels) [HHF+14] or 79.7% [BSP+11], 72.6% [PKC12] and 77.4% [SC13] were
reported, as reviewed amongst others by [NH15].

Classification methods exploit any task-related information, including that introduced
by artifacts. When solely brain signals should be used, minimizing the impact of residual
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artifacts is typically desired. For this purpose, strict artifact rejection, restrictive feature
selection, comparative classification and physiological validation were performed. In the
following, some of the resulting implications for the interpretation of the classification results
are discussed.

On average, reaction times in each 6s trial increase with task-difficulty (see Section
4.3.3). As we employ fNIRS mean and amplitude difference features of signals filtered to
periods ≥ 30s and use only phase-independent EEG band power features, it is assumed that
these effects play a negligible role.

In addition to conventional low-pass filters for the rejection of physiological artifacts in
fNIRS, multimodal BLISS2RD was employed for the removal of movement induced artifacts.
Artifact rejection reduces the classification performance on average by 5.05% observable
for both normal ( fc = 0.2Hz) and slow ( fc = 0.033Hz) low pass filtered signals. The latter
might be indicative of the presence of slow, task-related posture changes and movements and
emphasizes the importance to reject slow indirect movement artifacts that would otherwise
remain untouched by simple low-pass filtering. Movement-independent, task-related changes
in tissue perfusion and other systemic components (e.g., PC2-3 in Figure 5.2) have been
documented [ZNH16; SKM+14]. At this time, such influences cannot be ruled out with
certainty, however: (1) HbO/HbR time courses (as exemplified in Figure 5.10 in the previous
Section) show comparable behavior as previously reported, for instance in [AOI+13]. (2) the
spatial specificity of R2 values and their accordance with fMRI/PET/fNIRS findings reported
in literature imply that superficial global components are not of major concern in this study.

In future approaches, an optimal solution could be the combination of BLISSA2RD with
complementary spatially resolved multi-distance approaches [FFP+98; SKM+14].

In several hybrid studies, unimodal classification of EEG outperforms fNIRS significantly.
While the low EEG performance in this study is certainly also due to the low number of
channels, the strict removal of EOG is likely another reason: Surprisingly many previously
mentioned hybrid studies use PSD features of the full EEG spectrum without dedicated EOG
removal other than by visual inspection and discarding of strongly affected epochs. The
exploitation of ocular activity in such cases is likely, and our pipeline on uncleaned data
yields comparable results: See (EEG+fNIRS UC) in Figure 5.14 and a direct comparison of
unimodal EEG classification with and without prior EOG removal in Figure C.4 in Appendix
C.4, where artifact rejection leads to an average decrease in the classification accuracy of
8.7% across subjects and conditions.

This is also in line with observations from spatial patterns obtained by CSP analysis of
EEG signals with and without previous regression-based EOG removal, as exemplified in
Figure C.5 in Appendix C.4. For most participants, the patterns corresponding to the first
CSP component (highest eigenvalue) from uncleaned data show typical ocular effects, for
instance strong prefrontal lateralization. These disappear after EOG removal, indicating a
successful rejection. The investigation of averaged power envelopes of CSP components
from EEG after EOG removal show a positive correlation between theta-power and workload
in 65%, an inverse behavior in alpha-power in 76% and both in 53% of all participants.
These trends are consistent with previously reported findings in workload literature [GS03;
HLK+09] and are good further indicators that neurophysiological features and not artifacts
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were classified. However, it is unclear to what extent these band-power trends should be
considered as sole legitimate indicators of workload, as (1) The experimental paradigm
requires engagement on a variety of levels, including spatial and visual attention, working
memory, and movements and (2) Other studies have shown that, e.g., expected negative
correlation of workload with alpha power, can fail to appear [SKDG+16], can be opposite
[JT02] or depend on the specific task, and strategy of participants [CCD+03; Kli99]. In
any case, an inverse relationship between alpha- and theta band-power further supports the
absence of residual ocular activity, as electro-physiological artifacts typically lead to positive
band-power correlations.

In an improved future approach, the sacrifice of frontal channels should be avoided by
integrating unobtrusively, e.g., dryly, measured EOG into the headset, which is inherently
already supported by the M3BA architecture.

In the presence of the strict artifact rejection and restrictive feature selection performed,
and the results from the comparative classification and validation, it is plausible that the dis-
criminative power in the classifiers is not based on artifacts. However, due to the challenging
conditions in this experiment, a residual level of uncertainty remains, which is a typical and
commonly known issue in the classification of biosignals in the domain of BCI [BAD+16;
MTD+08].

Across condition sets, a clear trend toward improvement of classification robustness by
the combined exploitation of EEG+fNIRS can be shown in short epochs. Although without
statistical significance, likely due to the under-performance of the low-channel EEG, this is
in line with statistically significant findings in other studies [SKM+18; SvB+17; AGO17;
LAS17; HFT+15; FMS+12]. While the overall results indicate the successful reproduction
of physiological and discriminatory findings of hybrid studies under static conditions, they
provide further validation evidence for the employed instrumentation and paradigm and show
the feasibility of studies in moving participants toward real-world conditions.

Summary

In this Section, we successfully discriminated different workload levels across freely
moving operators despite the challenging experimental conditions that include a mul-
tisensory scenario, many movements and a low number of channels. We achieved
(1) average hybrid accuracies of 80.3% in the detection of increased workload from a
baseline task within 30s, (2) 81.5% in the discrimination of moderate to high workload
within 90s, and (3) significantly better classification than chance level in 94.1% of
cases. The results are in line with previously reported findings from hybrid working
memory based studies under less challenging conditions. Experimental design, em-
ployed artifact rejection approaches, feature selection and validation results indicate
that classification is based on neurophysiological signals only. Making use of hybrid
EEG-fNIRS feature fusion and fNIRS-Accelerometer sensor fusion, the presented ap-
proach exploits multiple modalities toward the robust estimation of cognitive workload
outside of conventional lab environments and under real-life conditions.



Chapter 6

Summary and Conclusion

It is still a long way to go to completely understand human cognition and brain functions
(if ever possible within a fathomable scope). Yet, 150 years after the initially discussed
manual dissection and examination of Gauss’ brain, exploration of the brain is not restricted
to anatomical features anymore: The emergence of advanced tools for investigating and inter-
facing with human brain function enables science and medicine to expand significantly the
understanding of its physiology, function, and dysfunction. For this exploration to progress
beyond laboratory confinement, novel tools are needed to enable reliable, unobtrusive, robust
and hazard-free integration of neurotechnology into real-world scenarios. To this end, this
thesis exploits new approaches that address the simultaneous acquisition and utilization of
multimodal brain and body signals (see overview of contributions in Figure 6.1).
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Figure 6.1: Summary of contributions of this thesis: the two-step development of miniaturized openNIRS
and M3BA, hybrid multimodal EEG-fNIRS instrumentation for the mobile acquisition of brain and body
signals. Employing M3BA in a customized, spatial n-back paradigm made possible a multimodal workload
experiment in freely moving participants. Making use of this unique data set, BLISSA2RD was developed: a
multimodal framework for the analysis of fNIRS signals and the rejection of motion artifacts. Finally, linking
all contributions paved the way for the successful classification of mental workload in moving operators.
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Novel Instrumentation
Main Contributions This thesis presents design fundamentals and two novel instrumen-
tation architectures that provide means for mobile fNIRS-EEG-based neurotechnology
applications and optimize usability, performance, safety, and customizability.

The openNIRS is a fiberless miniaturized, modular and mobile fNIRS instrument. As
a test platform for the next-generation M3BA approach, it offers core open-source fNIRS
technology that simplifies the design of novel customized approaches.

The M3BA is a novel hybrid bio-signal acquisition architecture supporting Wireless
Body Area Network scenarios. It integrates improved openNIRS units with high-precision
bio-potential measurements, i.e., EEG, ECG, and EMG, utilizing a shared Analog Front-End
and a powerful microcontroller that enables the flexible expansion of on-chip routines. Apart
from being miniaturized beyond previous approaches, the presented architecture incorpo-
rates full modular stand-alone functionality, wearability, multimodality, and scalability; is
fully customizable; and, yet, provides desired features such as phase sensitive detection
and reconfigurable bio-potential references. Performance characterization using optical
and electrical phantoms and in-vivo experiments confirmed functionality and quality of the
designed instrument. It was also shown that, where high signal performance is of interest, a
dedicated hybrid design can have inherent advantages over separate instruments in terms of
signal quality and timing precision.

By providing design principles, architecture details and performance characteristics, this
work aims to facilitate future designs in those fields of neurotechnology research that rely on
or potentially profit from customizable mobile hybrid biosignal acquisition instruments.

Limitations In the openNIRS, the functional separation between modular core fNIRS tech-
nology and replaceable peripheral units naturally results in a trade-off between performance,
size, wearability and cost versus a functional design that is easy to grasp, modify, and inter-
face. Whilst providing medium precision, single modules are based on one centered detector,
which simplifies the architecture but at the same time limits the scalability of simultaneously
measured channels.

These trade-offs and limitations are being addressed and improved in the M3BA, which
does not follow the same objective of simplicity in design. The M3BA provides high perfor-
mance in all modalities and an increased total number of channels, scalable with the number
of combined devices, and additionally exploiting source-detector pairs between modules.
However, multi-distance measurements (MDM) are not yet supported by default. These may
be crucial to making fNIRS more robust to superficial, non-cortical fNIRS signals and can be
implemented to be compatible with a modular concept [WLS+17]. Incorporation of MDM
in a future device generation can be achieved by further increasing the number of physical
channels within a single module.

EEG-fNIRS inter-modality crosstalk minimization also seems to remain worth further
investigation: While we could show that it is minimal in single hybrid modules, in some
instances switching crosstalk was observed in setups with multiple, physically linked, syn-
chronous M3BA modules. A physical cable connection is only necessary when several
modules are to be used fully synchronized to achieve maximum time precision. Future
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approaches could make such a connection redundant by instead relying on wireless synchro-
nization procedures or GPS sensors to achieve a high-precision common timebase.

A final limitation results from the use of Bluetooth for wireless communication. While
its SPP profile provides an easy interface, Bluetooth is not optimized for high data rates, and
interference of multiple modules on close distances can lead to package loss. Depending on
the application scenario, another wireless standard might be more suitable.

Multimodal Experiment

Main Contributions Within this thesis, a novel spatial n-back based cognitive workload
paradigm was designed that allows for free movements to and from individually adjusted, pre-
defined positions. The corresponding experiment was conducted employing a custom-tailored
M3BA headset for the multimodal simultaneous acquisition of EEG, fNIRS, EMG/ECG,
accelerations and additional EDA in 17 participants. The paradigm aimed to evoke working-
memory related neurophysiological changes with minimal explicit constraints for the partici-
pants’ behavior under quasi-real-life conditions. These included tasks with multi-sensory
demands such as visual and spatial attention, active memorization and performing movements.
At the same time, amongst others by spatial design, the paradigm implicitly ensured a high
control of experimental conditions. Behavioral results demonstrate a successful approach,
appropriate difficulty levels, and small training effects, comparable to previous n-back studies.
Joining other existing hybrid EEG-fNIRS datasets for open access [SvB+17; SvK+18], this
novel data can be exploited for the development of new multimodal methodology approaches.

Limitations The use of neurophysiological features for the objective assessment of work-
load is motivated by the same challenges that also apply to the design and evaluation of
this experiment: Behavioral metrics, such as error rates, predefined task difficulties, and
self-reported assessment do not necessarily mirror the true level of personal engagement,
demand or induced cognitive workload. Furthermore, performance depends on a number of
subjective factors that may significantly vary between participants: Motivation, wakefulness,
attention, and individual memory performance. The experimental protocol could be further
improved by a calibration phase including detailed and individual assessment. This would
allow a more individualized adjustment of the n-back tasks to task-difficulty, potentially
improving comparability across participants.

The acquisition of only a limited number of channels in each modality was an intended
trade-off toward the use in realistic, application-oriented scenarios. In hindsight, the addi-
tional measurement of two dedicated EOG channels might have been desirable. However,
at the time, the integration of EOG-channels was not incorporated in the headset design in
the interest of usability and comfort. In future approaches, integration of peripheral dry or
water-based EOG electrodes into the headset could be approached and is already supported
by the M3BA modules. Similarly, after this first feasibility study, replacement of gel with
water-based electrodes would be a next step toward yet faster and easier, less obtrusive
application. Furthermore, due to the high spatial specificity of fNIRS, optimized individual
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registration and placement of channels could likely increase comparability and robustness of
measurements across subjects.

Multimodal Analysis

Main Contributions Making use of the present, so far unique multimodal dataset, this
thesis presents the development and evaluation of a multimodal Blind-Source Separation-
based framework for the analysis of fNIRS signals and its application in a method for
accelerometer-based movement artifact rejection, termed BLISSA2RD. This method tack-
les challenging fNIRS characteristics such as source dependencies, non-instantaneous and
non-constant coupling across channels by combining: (1) ICA that exploits both sample
dependency and higher order statistics; (2) temporal embedded CCA; and (3) multimodality
in terms of additional accelerometer signals. In principle, this allows the rejection of slow,
movement-induced physiological artifacts that would otherwise be hard to separate from
hemodynamic responses, due to a shared frequency band. Validation based on the present
dataset and simulations confirmed the success of the approach, by yielding an average attenu-
ation of movement-induced artifacts by up to 2 orders of magnitude and an increase of SNR
in single-channel hemodynamic responses by up to 10dB.

The framework and methods presented serve as an introduction to a new type of mul-
tivariate methods for the BSS analysis of fNIRS signals, as well as a blueprint for artifact
rejection in complex environments beyond the present paradigm.

BLISSA2RD is then put to practice in a first proof-of-concept study on the classification
of mental workload in freely moving operators, exploiting EEG, fNIRS and Acceleration
data. This study entered the complex terrain typical of real-world scenarios, namely a low
channel number, a multitude of movements, and a demanding task-environment. Employing
a strict artifact rejection, the analyses presented successfully detected workload changes
from a baseline task in short time windows, and discriminated between moderate and high
workload in longer time windows, with an average accuracy > 80% in this hybrid approach.
Overall performance is comparable to other hybrid workload studies under static laboratory
conditions, and validation results are in line with the relevant literature, demonstrating a
successful approach despite the challenging conditions.

Limitations Being based on Blind-Source Separation methods, BLISSA2RD requires a
minimum number of channels and is not guaranteed to reject single channel artifacts from
optode shifts. To exploit multimodality, an accelerometer is required and has to be rigidly
integrated into the headgear. Due to the novelty of the overall approach and multivariate data,
the method’s performance has not yet been tested against existing univariate methods or in
real-time applications. These will be important steps to further establish the novel framework
in the future, and for real-time application a time-windowed approach seems conceivable.

The approach of operator workload classification proved feasible despite strict artifact
rejection and challenging experimental conditions. A challenge, as well as limitation of
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studies under realistic conditions, is the trade-off between (1) the certainty and scientific
precision in the determination of signal origin, and (2) the application-oriented classification
performance achieved. The first case depends on the strict separation between artifacts and
neuronal activity and is the most likely reason for the comparatively weak performance of
EEG in our study. When the second case is the primary objective, e.g., in a Neuroergonomics
application in a specific workplace, the differentiation between neuronal and “artefactual”
signals may be less critical and joint exploitation can legitimately yield improved classifica-
tion performance.

In either case, signal separation can be of advantage and is typically desired. To improve
separability in an enhanced approach in the future, a multi-distance approach in fNIRS
and unobtrusively measures EOG should be incorporated. Furthermore, the experimental
paradigm could be improved by including rounds with reference tasks that also aim to evoke
different levels of mental workload but ensure there can be no correlation with eye or body
movements. However, an increased duration of the experiment would be the result.

Concluding remarks
In applied neurotechnology, i.e., BCI, a general increase in fNIRS-based approaches is

observable [NH15] and the hybridization of multiple brain and body signals derived from
EEG and fNIRS has been increasingly reported to improve classification performance and
robustness [PAB+10; FMS+12; AJ17; CRL+17]. At the same time, the study of mental
states based on neurophysiological measures has risen in popularity in both ergonomics and
adaptive-BCI research [YBW+15; CRL+17]. In these fields, the importance of real-life
studies is emphasized, as individuals can be expected to function differently in controlled
lab environments compared to ecologically valid, every-day situations [BZVE+15]. Such
developments, as well as the overwhelming increase in human-computer interactions in
our everyday-lives, and the emerging field of telemedicine, are indicators of the need for
advanced tools both for acquisition and processing of multiple biosignals.

This thesis identified the combination of EEG and fNIRS as one optimal bimodal pair of
signals and entered the so far relatively uncharted waters of brain-activity measurements in
ecologically valid conditions. It tackled a multitude of challenges by decreasing acquisition
constraints, increasing the amount of available information, and its exploitation to increase
robustness. Going the whole way from novel hybrid instrumentation via mobile experiments
to artifact rejection and classification of workload, this work focused on the hybrid acquisition
and analysis of fNIRS, EEG and accelerometer signals and provided a proof of concept
study towards the successful application in a demanding, out-of-lab application. It presents a
significant step towards the integration of neurotechnology into real-world applications for
BCI, neuroscience-related research, and advanced clinical ambulatory tools for diagnosis
and monitoring of neurological dysfunctions. The success of further steps in this direction
will continue to depend on the highly interdisciplinary integration of multiple disciplines:
the understanding of human brain physiology and clinical conditions, instrumentation and
engineering, application design, and multimodal signal processing and machine learning.
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Appendix A

Instrumentation Design: Details and
Characteristics

A.1 Devices and Parameter/Component Selection

Selection of NIR Detectors

Model Min. Supply
Voltage [V ]

TIA Gain
[Ω ]

Typ. Sensi-
tivity @ 850
nm [V/µW ]

Max. Dark
Offset [mV ]

Typ. Dark
Offs. Noise
[µV rms]

Cutoff Freq.
−3dB [kHz]

ODC. ODA-5W-100K ±5 100k 0.056 ±1 477 800
ODC. ODA-6W-100M ±5 100M 56 ±2 198 1
ODC. ODA-5W-500M ±5 500M 267 ±2 500 0.315
BB OPT101 +2.7 1M 0.6 +10 300 14
BB OPT301 ±2.25 1M 0.47 ±2 160 4
API SD112-42-11-221 ±5 100k 0.0558 ±1 60 750
API SD112-43-11-221 ±5 75M 45 ±3 20 1

Table A.1: Silicon photo diodes with integrated Trans-impedance amplifier(TIA). ODC: Opto Diode Corp.,
BB: Burr Brown, API: Advanced Photonic Inc. Highlighted: model used in this work.

Figure A.1: OPT101 block diagram and spectral responsivity, taken from datasheet [Tex03]
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Wavelength Selection

Authors / Wavelengths ≥≥≥
666555000

≥≥≥
666777555

≥≥≥
777000000

≥≥≥
777222555

≥≥≥
777555000

≥≥≥
777777555

≥≥≥
888000000

≥≥≥
888222555

≥≥≥
888555000

≥≥≥
888777555

≥≥≥
999000000

Funane2009 [FAS+09] 659 - - - - - - - - - - - - - - - - - - - - - - 900
Yamashita2001 [YMK01] - - - - - - - - - - - - - - - - - - - - - 780 830

Uludag2004 [USV+04] - - - - - - - - <
720

>
730 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Okui2005 [OO05] 690 - - - - - - - - - - 750 830
Strangman2003 [SFB03] 760 830
Sato2004 [SKK+04] 692 830
Correia2010 [CGH10] 704 887
Piper2013 [PKK+14] 760 850
Safaie2013 [SGM+13] 760 850
Kiguchi2012 [KAF+12] 754 830
Chang2011 [CCH+11] 735 850
Lareau2011 [LSL+11] 735 850
Kanoh2009 [KMM+09] 780 830
Zhang2009 [ZSW+09] 760 850
Bauernfeind2008 [BLW+08] 670 890
Soraghan2008 [SMM+08] 760 880
Kawaguchi2008 680 830
Atsumori2007 [AKO+07] 790 850
Coyle2007 [CWM07] 760 880
Chenier2007 [CS07] 730 850
Bunce2006 [BII+06] 730 850
Bozkurt2005 [BRR+05] 730 850
Vaithianathan2004 [VTE+04] 780 880
Coyle2004 [CWM+04] 700 880
Rolfe2001 [RMB+01] 780 850
Boas2001 [BBM+01] 785 830
Yamashita2001 [YMK01] 660 830
Rolfe2000 [Rol00] 775 850
Siegel1999 [SMB99] 780 830
Benni1995 [BCA+95] 780 830
Cope1991 [Cop91] 778 867
OXYMON Mk III, Artinis 760 850
PortaLite, Artinis 760 850
fNIR1100, fNIR Devices 730 850
ETG-4000, Hitachi 695 850
ETG-7100, Hitachi 695 850
WOT, Hitachi 705 830
Genie, MRRA 700 830
NIRScout(X), NIRx 760 850
Brainsight NIRS, R. Research 685 830
FOIRE-3000, Shimadzu 780 830
OEG-SpO2, Spectratech 770 840
CW6, TechEn 690 830
UCL Optical Topography,
UCL 780 850

Imagent, ISS 690 830
≥≥≥
666555000

≥≥≥
666777555

≥≥≥
777000000

≥≥≥
777222555

≥≥≥
777555000

≥≥≥
777777555

≥≥≥
888000000

≥≥≥
888222555

≥≥≥
888555000

≥≥≥
888777555

≥≥≥
999000000

Table A.2: Overview of (optimal) selection in dual-wavelength fNIRS systems. Light blue: Explicit investiga-
tions of optimal wavelength pairs. All others: selected wavelengths in implemented systems.
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Selection of NIR LEDs

Model Wavelengths Max IF Max pulse Typ. total Half-width Half Type
λ1 λ2 IP rad. power ∆λ -angle
/ nm / nm / nm / mA / mW / nm / degr. / mm

L760/850-04A 760 850 100 100 15 18 30 35 ± 20 5 Mold
L760/850-38 760 850 75 75 16 18 30 35 ± 40 3 Mold
L770/840-
40D59

770 840 100 100 500 500 12 9 28 32 ± 55 4.65 Stem

SMT735/850 735 850 75 75 300 300 10 18 20 35 ± 55 2.7 SMD
L750/850-04A 750 850 100 100 15 18 30 35 ± 20 5 Mold
L760/840-05A 760 840 100 100 15 18 30 35 ± 40 5.4 Stem
L760/850-05A 760 850 100 100 15 18 30 35 ± 40 5.4 Stem

Table A.3: Selection of multi-wavelength LEDs for NIR light emission. Highlighted: employed model.

Overview of Mobile fNIRS Instruments (Not Exhaustive)

Lock-
In

MUX λ

[nm]
# EM
Type

# DET
Type

Est. Vol-
ume

Mobility Wire-
less

Probe
Attach-
ment

Samplerate
& -depth

Ref.

No TDM 735
850

4
LED

1 APD 600cm3 PORT Yes helmet 20Hz
16Bit

Lareau 2011
[LSL+11]

Yes TDM 754
830

8 LD 8 APD 1100cm3 PORT Yes 600g
headset

Kiguchi 2012
[KAF+12]

No TDM 760
850

32
LED

4 PD 28cm3 WEAR Yes chain-
link
holder

8Hz
16Bit

Safaie 2013
[SGM+13]

No TDM 730
850

1
LED

2 PD 900cm3 PORT No Flexible
PCB

10Hz
12Bit

Bozkurt 2005
[BRR+05]

No TDM 730
805
850

1
LED

1 PD PORT No Velco
straps +
helmet

23Hz
18Bit

Chenier 2007
[CS07]

No TDM N/A 8
LED

2 PD 1500cm3 PORT No embedded
multi-
dist.
silicon
patch

2Hz
16Bit

Rajkumar 2012
[RSG+12]

No TDM 760
850

1
LED

1 PD 1200cm3 PORT No N/A 40Hz Zhang 2009
[ZSW+09]

(Yes) N/A 760
850

3
LED

1 PD 90cm3 WEAR Yes N/A 50Hz PortaLite, Artinis,
Netherlands

(Yes) TDM 730
850

4
LED

12 PD 540cm3 (WEAR) No silicone
forehead
patch

5Hz fNIR2000C,
fNIR Devices,
USA

(Yes) TDM+
FDM

760
850

8
LED

8 PD 710cm3 (WEAR) Yes cap 62.5Hz NIRSport, NIRx,
USA

(Yes) TDM+
FDM

705
830

8 LD 8 APD 1000cm3 PORT Yes forehead
headset

5Hz WOT, Hitachi,
Japan

N/A N/A 770
840

6
LED

6 PD 2000cm3 PORT No forehead
headset

0.76−
/6.10Hz

OEG-SpO2,
Spectratech,
Japan

Table A.4: Overview of mobile commercial and research CW fNIRS-Systems. TDM = Time-Division
Multiplex, FDM = Frequency-Division Multiplex, EM Type = Emitter Type. LED = Laser Emitting Diode,
LD = Laser Diode, DET Type = Detector Type. APD = Avalanche Photodiode, PD = Silicon Photodiode, Est.
Volume = Estimated volume of main acquisition device (excluding proves or headset). N/A: No information
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A.2 openNIRS: Supplements

openNIRS Architecture Details

Bluetooth Module
eAMBHFEEf

Battery Pack
eH x 9Vf

N(bV Linear Power
Regulator Circuit
eMC78E5 m MC79E5f
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External
&v MHz
Quartz

Timerx
PWM

LED
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Exµ
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Figure A.2: openNIRS System Architecture
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openNIRS Preliminary Mental Arithmetic Study
For a first verification of the openNIRS’ capability to measure evoked metabolic brain ac-

tivity, a BCI experiment was conducted with 12 subjects. Measured hemodynamic responses
from epochs containing mental arithmetic or relaxation are classified on a single-trial basis.
Mental arithmetic tasks are known to elicit strong hemodynamic reactions in frontal brain
areas and have been investigated in a variate of studies with fNIRS [BSB+14; HHP+13;
AGL+10].

Protocol: 30 trials of mental arithmetic data were recorded for each participant. During
each 10s, participants were asked to repeatedly subtract a number between 7 and 19 (ex-
cluding 10) from a randomly generated number between 501 and 999. Both numbers were
presented on a screen at a distance of roughly 50cm. After each trial, participants were asked
to relax for 25−30s. A fixation cross indicated these pause intervals cross on the screen. A
break was included after 15 trials to allow participants to rest and drink.

Channel placement: One openNIRS module was placed on the forehead. Two active
emitters were placed on the locations Fp1 & Fp2 of the international 10-20-system. The
detector was placed on AFz, resulting in a 3.5cm emitter-detector distance.

Preprocessing: Aiming only for a first validation, the signal processing of the recorded
data was performed in a straight-forward manner. The raw optical densities were converted
to HbO/HbR concentration with the mBLL using the HomER2 toolbox [HDF+09]. Signals
were then linearly detrended in windows of 300 seconds. Low-frequency noise was attenu-
ated by subtracting a moving average of the mean of 30 seconds prior and after every sample.
Data was then low-pass filtered using a 6th order zero-phase Butterworth filter with a cut-off
frequency of 0.5Hz to reduce systemic noise, like pulse artifacts.

Feature extraction and classification: Data was segmented into epochs with

Par�cipant
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Figure A.3: Results of mental arithmetic
classification using the slopes of HbO/HbR
in 2 frontal openNIRS channels.

relaxation and arithmetic. For relaxation, the last 10s
of the 25−30s pause intervals were extracted to en-
sure that hemoglobin levels have returned to baseline.
For mental arithmetics, 10s of data were extracted
with a 5s offset after stimulus presentation to ensure
that the hemodynamic response has already developed.
For each trial, the slopes of linear least-squares fits
to the HbO and HbR data of each channel were used
as a feature. Evaluation was performed using Linear
Discriminant Analysis in a 10-fold cross-validation.

Results: Discrimination between pause and men-
tal arithmetics yielded an average 65.14% accuracy
(see Figure A.3). Of the 12 recorded participants, 9
yielded accuracies significantly higher than chance
level (one-sided t-test, p< 0.05). In a similar study by
[HHP+13], mental arithmetics could be discriminated
from pause with 71.17 % using 8 channels and 67.26
% when using only two channels at similar positions
as in this study.
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A.3 M3BA: Supplements

Preliminary Tests: Multimodal Raw Data
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Graphical User Interface

Figure A.5: LabView Graphical User Interface for openNIRS and M3BA. Comprises: Configuration and
control, data visualization and logging, online filtering and mBLL conversion, trigger event management,
electrode impedance measurement.
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M3BA Barebone Module: Details
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Figure A.6: M3BA barebone module details: Connectors and configuration



Appendix B

Mathematical / Methodological Notes

B.1 Entropy Rate Bound Minimization (ERBM)

This section provides algorithmic details of ICA-ERBM, which was presented in Section
5.1.2.2. For ICA-ERBM, minimization of mutual information rate given in Equation (5.4)
provides the umbrella under which non-Gaussianity, and sample-to-sample dependence are
jointly exploited.

ICA-ERBM estimates the entropy rate by modeling each source sn as the output of an
invertible linear filter driven by an independent and identically distributed process vn with
unknown distribution. Therefore, there exists a whitening filter that generates each vn from
ŝn. By scaling the whitening filter such that the entropy rate of each ŝn is approximately equal
to the entropy of vn, the cost function (5.4) becomes

JICA(W) =
Nx

∑
n=1

H(vn)− log |det(W)|−C, (B.1)

where H(·) denotes the differential entropy. It is clear that minimizing (B.1) is not a
straightforward task due to the difficulty of estimating the entropy of each vn. As the model
deviates from the true probability density function (PDF), a bias is introduced in the estimate
of the demixing matrix that can be quantified using the Kullback-Leibler divergence between
the true and the estimated PDF [AAF14; BLSM+18]. This can be avoided by integrating a
flexible entropy estimation technique into the ICA framework in order to minimize the bias
of the demixing matrix. Therefore, ICA-ERBM uses the same entropy estimation technique
as ICA-EBM, which is based on the maximum entropy principle. The estimate of each H(vn)
is given by

Ĥ(vn) = log(σn)+ min
1≤m≤M

Hm(v̄n), (B.2)

where σ2
n = E(v2

n), v̄n = vn
σ

, and Hm(v̄n) = 0.5log(2πe)−Vk{E(Gm(v̄n))} is the smallest
entropy that corresponds to the mth measuring function Gm(·). ICA-ERBM uses four
measuring functions and are based on bimodal, symmetric, or skewed distributions [LA10]
resulting in successful estimates of a wide range of distributions.
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In addition to the flexible model on the density of the driving process, ICA-ERBM uses
a flexible model on the whitening filter in order to effectively exploit sample-to-sample
dependence of the underlying sources. Since each si has been assumed to be the output of an

invertible linear filter driven by vi, there exists a whitening filter Qn(z) =
K

∑
k=0

qnkz−k of length

K such that

vn(t) =
K

∑
k=0

qnkŝn(t − k). (B.3)

The optimum filter coefficients can be estimated by solving the following optimization
problem

minH(vn), s.t.
1

2π

∫
π

π

log |Q(ω)| dω = 0, (B.4)

where Q(ω) ≡ Q(z)|z=exp(
√
−1ω). The constraint in Equation (B.4) ensures that Hr(ŝn) =

H(vn) and each H(vn) has been estimated according to Equation (B.2).
Thus, it is clear that ICA-ERBM inherits all the advantages of ICA-EBM, namely its
flexibility, though with enhanced performance due to the exploitation of sample-to-sample
dependence.

B.2 ERBM Whitening Filter Parameter
For the application of the ERBM algorithm to fNIRS data the selection of the whitening-

filter length parameter p f l ∈ {1, ...30} was evaluated. Of all u subjects with complete datasets
in the preliminary study from Chapter 4, the first 10min of continuous raw data were used
from all 6 experimental blocks bi, to perform a total number of 30×6×6 (p f l ×u×b) =
1080 ERBM decompositions. For each subject and filter length p f l , consistency of ERBM
unmixing across blocks (time) was evaluated on all 15 possible combinations of two blocks
bi j {(i, j) ∈ {1, ...,6}|i < j}, calculating intersymbol interference (ISI) [Mac93; EK04]
between each pair (WWW bi ,WWW

−1
b j
). Overall, this yielded 7×15 = 90 scores per filter value p and

thus a total number of 2700 scores for evaluation of the optimal parameter selection across
subjects and time. After a rapid drop for small values p (normalized by the sample frequency
fs), the ISI saturates to values around 0.1 for p f l

fs
≥ 1s (see Figure B.1), which is thus the

threshold of p-values used for decompositions in this thesis.
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Figure B.1: ERBM p value
evaluation. Median ISI per
subject and whitening filter
length p f l (normalized by
sample rate fs). Right: over-
all median ISI across sub-
jects.
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B.3 fNIRS BSS: Simulations
Here we provide details for the simulations performed in Section 5.2.5.1. In a simpli-

fied approach to simulate fNIRS source characteristics, focusing on source dependencies,
processes were generated for t ∈ 0...100s, sampled at fs = 8Hz (see Figure B.2), representing

1. Breathing (0.14Hz | ω1 =
2π

7s ): S1(t) = sin(ω1t))

2. Heart rate (1Hz | ω2 =
2π

s ), amplitude modulated by S1:
S2(t) = |(1−0.3S1(t)|sin(ω2t)

3. Mayer waves (0.1Hz | ω3 =
2π

10s ): S3(t) = sin(ω3t)

4. Evoked responses using ω4 =
2π

20s and e(t) =

{
sin(ω4t), sin(ω4t)≥ 0
0, else

for

S4(t) = sgolayfilt(e(t)) with Savitzky-Golay filter order 1 and frame length 5s

5. White random gaussian noise in S5(t)

6. S6(t) Movement artifacts: initialize m(t) = 0 and draw a random numbers randn(t)
from N (0,1) for all t. At each timepoint tidx where randn(t)> 2 holds, add a gaussian
curve (N (0, 5

fs
), cut at halfwidth 2.5s) to m(t), centered at tidx

7. S7(t) Dependent evoked processes: initialize S(t) = 0, find time indices for local
maxima tmax of evoked responses S4, add a gaussian curve (N (0, 20

fs
), cut at halfwidth

5s) centered at tmax + td with a random (N 8
fs
, 1

fs
)) time delay td = randn×4s.

0 20 40 60 80 100
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True Sources

Figure B.2: Typical example
of simulated fNIRS compo-
nents. S1− S7 represent pro-
cesses due to breathing (1),
heart rate (2), Mayer waves (3),
evoked responses (4), white
noise (5), movement artifacts
(6) and dependent evoked pro-
cesses (7)
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Multimodal Study: Supplements

C.1 EDA Grand Averages
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Figure C.1: Workload experiment: grand average EDA signals (black) and participant averages (grey) across
n=1,2,3-back rounds. Features calculated on sliding 30s windows (5s step size) with Ledalab [BK10]. nSCR:
Number of above-threshold Skin Conductance Responses, AmpSum: Amplitude Sum, Tonic: mean Tonic
activity, PhasicMax: Maximum value of Phasic activity.
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C.2 Metadata: Example
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Figure C.2: Workload experiment metadata example for one participant. (A) Personal (game-)scores across
all blocks. (B) Self-assessed demand (dmd), concentration (cnc) and stress (strs) on a 1-5 Likert-Scale. (C)
Total number of errors and time-ups in n=0,1,2,3-back round in each block. (D) Average reaction times (time
to button press-event) in n=0,1,2,3-back rounds in each block. (E) Spatial distribution of button press events
at button positions 1-8 (compare Figure 4.1) across the whole time of the experiment = blocks 1...12. Green:
Correct selection. Red: Selection error. Blue: Time up (no selection). Indicator for target position distribution
without spatial bias. (F) n=0,1,2,3-back sequence over all blocks of the experiment. (G) Target color in each
round over all blocks of the experiment. x-axes are time (blocks). F and G are identical for all subjects. E is
identical for all subjects except erroneous selections and time-ups.
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C.3 Average fNIRS Signals: Examples
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Figure C.3: Average fNIRS HbR (blue) and HbO (red) signals of 3 exemplary participants across n=1,2,3-back
rounds. Signals are cleaned with BLISSA2RD and low-pass filtered with fc = 0.033Hz. Positions given are
10-05 EEG positions closest to the actual fNIRS channel of each signal.
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C.4 EOG in EEG Classification: Accuracies and Patterns
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Figure C.4: Comparative classification results from identical analysis pipeline as described in Section 5.3.3 for
EEG data with and without regression-based EOG removal. Average performance drop: 8.7%.
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Figure C.5: Scalp plots of spatial patterns corresponding to CSP components with highest eigenvalue in four
exemplary participants for both target frequency bands using EEG data with and without regression-based EOG
removal. Note that the latter reduces the number of available (frontal) channels. CSP analysis was performed
on the whole data set of each subject.
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